
Oracle® Fusion Middleware
Developing Security Providers for Oracle
WebLogic Server

14c (14.1.1.0.0)
F18331-06
February 2023

Oracle Fusion Middleware Developing Security Providers for Oracle WebLogic Server, 14c (14.1.1.0.0)

F18331-06

Copyright © 2007, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xii

Documentation Accessibility xii

Diversity and Inclusion xii

Related Documentation xiii

Conventions xiii

1 Introduction to Developing Security Providers for WebLogic Server

Prerequisites for This Guide 1-1

Overview of the Development Process 1-1

Designing the Custom Security Provider 1-1

Creating Runtime Classes for the Custom Security Provider by Implementing SSPIs 1-2

Generating an MBean Type to Configure and Manage the Custom Security Provider 1-3

Writing Console Extensions 1-3

Configuring the Custom Security Provider 1-4

Providing Management Mechanisms for Security Policies, Security Roles, and
Credential Maps 1-5

2 Design Considerations

General Architecture of a Security Provider 2-1

Security Services Provider Interfaces (SSPIs) 2-2

Understand Two Important Restrictions 2-2

Understand the Purpose of the Provider SSPIs 2-3

Understand the Purpose of the Bulk Access Providers 2-4

Determine Which Provider Interface You Will Implement 2-4

The DeployableAuthorizationProviderV2 SSPI 2-5

The DeployableRoleProviderV2 SSPI 2-5

The DeployableCredentialProvider SSPI 2-6

Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes 2-6

SSPI Quick Reference 2-8

iii

Security Service Provider Interface (SSPI) MBeans 2-9

Understand Why You Need an MBean Type 2-10

Determine Which SSPI MBeans to Extend and Implement 2-10

Understand the Basic Elements of an MBean Definition File (MDF) 2-10

Custom Providers and Classpaths 2-12

Throwing Exceptions from MBean Operations 2-12

Specifying Non-Clear Text Values for MBean Attributes 2-13

Using Dynamic MBean Attributes 2-13

Understand the SSPI MBean Hierarchy and How It Affects the Administration Console 2-13

Understand What the WebLogic MBeanMaker Provides 2-15

About the MBean Information File 2-16

SSPI MBean Quick Reference 2-17

Security Data Migration 2-19

Migration Concepts 2-19

Formats 2-19

Constraints 2-20

Migration Files 2-20

Adding Migration Support to Your Custom Security Providers 2-20

Administration Console Support for Security Data Migration 2-22

Management Utilities Available to Developers of Security Providers 2-24

Security Providers and WebLogic Resources 2-25

The Architecture of WebLogic Resources 2-26

Types of WebLogic Resources 2-27

WebLogic Resource Identifiers 2-27

The toString() Method 2-27

Resource IDs and the getID() Method 2-28

Creating Default Groups for WebLogic Resources 2-29

Creating Default Security Roles for WebLogic Resources 2-29

Creating Default Security Policies for WebLogic Resources 2-30

Looking Up WebLogic Resources in a Security Provider's Runtime Class 2-31

Single-Parent Resource Hierarchies 2-32

Pattern Matching for URL Resources 2-32

ContextHandlers and WebLogic Resources 2-33

Providers and Interfaces that Support Context Handlers 2-36

Initialization of the Security Provider Database 2-38

Best Practice: Create a Simple Database If None Exists 2-39

Best Practice: Configure an Existing Database 2-39

Best Practice: Delegate Database Initialization 2-41

Best Practice: Use the JDBC Connection Security Service API to Obtain Database
Connections 2-42

Implementing a JDBC Connection Security Service: Main Steps 2-43

iv

Differences In Attribute Validators 2-43

Differences In Attribute Validators for Custom Validators 2-44

3 Authentication Providers

Authentication Concepts 3-1

Users and Groups, Principals and Subjects 3-1

Providing Initial Users and Groups 3-3

LoginModules 3-3

The LoginModule Interface 3-4

LoginModules and Multipart Authentication 3-4

Java Authentication and Authorization Service (JAAS) 3-5

How JAAS Works With the WebLogic Security Framework 3-6

Example: Standalone T3 Application 3-7

The Authentication Process 3-9

Do You Need to Develop a Custom Authentication Provider? 3-10

How to Develop a Custom Authentication Provider 3-11

Create Runtime Classes Using the Appropriate SSPIs 3-11

Implement the AuthenticationProviderV2 SSPI 3-11

Implement the JAAS LoginModule Interface 3-13

Throwing Custom Exceptions from LoginModules 3-15

Example: Creating the Runtime Classes for the Sample Authentication Provider 3-16

Configure the Custom Authentication Provider Using the Administration Console 3-21

Managing User Lockouts 3-21

Specifying the Order of Authentication Providers 3-22

4 Identity Assertion Providers

Identity Assertion Concepts 4-1

Identity Assertion Providers and LoginModules 4-1

Identity Assertion and Tokens 4-2

How to Create New Token Types 4-2

How to Make New Token Types Available for Identity Assertion Provider
Configurations 4-3

Passing Tokens for Perimeter Authentication 4-4

Common Secure Interoperability Version 2 (CSIv2) 4-5

The Identity Assertion Process 4-5

Do You Need to Develop a Custom Identity Assertion Provider? 4-6

How to Develop a Custom Identity Assertion Provider 4-8

Create Runtime Classes Using the Appropriate SSPIs 4-8

Implement the AuthenticationProviderV2 SSPI 4-9

Implement the IdentityAsserterV2 SSPI 4-10

v

Example: Creating the Runtime Class for the Sample Identity Assertion Provider 4-11

Configure the Custom Identity Assertion Provider Using the Administration Console 4-14

Challenge Identity Assertion 4-14

Challenge/Response Limitations in the Java Servlet API 2.3 Environment 4-14

Filters and The Role of the weblogic.security.services.Authentication Class 4-15

How to Develop a Challenge Identity Asserter 4-15

Implement the ChallengeIdentityAsserterV2 Interface 4-15

Implement the ProviderChallengeContext Interface 4-16

Invoke the weblogic.security.services Challenge Identity Methods 4-16

Invoke the weblogic.security.services AppChallengeContext Methods 4-17

Implementing Challenge Identity Assertion from a Filter 4-17

5 Principal Validation Providers

Principal Validation Concepts 5-1

Principal Validation and Principal Types 5-1

How Principal Validation Providers Differ From Other Types of Security Providers 5-1

Security Exceptions Resulting from Invalid Principals 5-2

The Principal Validation Process 5-2

Do You Need to Develop a Custom Principal Validation Provider? 5-3

How to Use the WebLogic Principal Validation Provider 5-4

How to Develop a Custom Principal Validation Provider 5-4

Implement the PrincipalValidator SSPI 5-5

6 Authorization Providers

Authorization Concepts 6-1

Access Decisions 6-1

Using the Java Authorization Contract for Containers 6-1

The Authorization Process 6-2

Do You Need to Develop a Custom Authorization Provider? 6-4

Does Your Custom Authorization Provider Need to Support Application Versioning? 6-5

Is Your Custom Authorization Provider Thread Safe? 6-5

How to Develop a Custom Authorization Provider 6-5

Create Runtime Classes Using the Appropriate SSPIs 6-6

Implement the AuthorizationProvider SSPI 6-6

Implement the DeployableAuthorizationProviderV2 SSPI 6-7

Implement the AccessDecision SSPI 6-8

Example: Creating the Runtime Class for the Sample Authorization Provider 6-9

Policy Consumer SSPI 6-13

Required SSPI Interfaces 6-14

vi

Implement the PolicyConsumerFactory SSPI Interface 6-14

Implement the PolicyConsumer SSPI Interface 6-14

Implement the PolicyCollectionHandler SSPI Interface 6-15

Supporting an Updated Policy Collection 6-16

The PolicyConsumerMBean 6-16

PolicyStoreMBean 6-16

Examining the Format of a XACML Policy File 6-17

Using WLST to Add a Policy to the PolicyStoreMBean 6-18

Using WLST to Read a PolicySet as a String 6-19

Bulk Authorization Providers 6-20

Configure the Custom Authorization Provider Using the Administration Console 6-20

Managing Authorization Providers and Deployment Descriptors 6-21

Enabling Security Policy Deployment 6-22

Provide a Mechanism for Security Policy Management 6-22

Option 1: Develop a Stand-Alone Tool for Security Policy Management 6-22

Option 2: Integrate an Existing Security Policy Management Tool into the
Administration Console 6-23

7 Adjudication Providers

The Adjudication Process 7-1

Do You Need to Develop a Custom Adjudication Provider? 7-1

How to Develop a Custom Adjudication Provider 7-2

Create Runtime Classes Using the Appropriate SSPIs 7-2

Implement the AdjudicationProviderV2 SSPI 7-2

Implement the AdjudicatorV2 SSPI 7-3

Bulk Adjudication Providers 7-3

Configure the Custom Adjudication Provider Using the Administration Console 7-4

8 Role Mapping Providers

Role Mapping Concepts 8-1

Security Roles 8-1

Dynamic Security Role Computation 8-2

The Role Mapping Process 8-3

Is Your Custom Role Mapping Provider Thread Safe? 8-6

Do You Need to Develop a Custom Role Mapping Provider? 8-6

Does Your Custom Role Mapping Provider Need to Support Application Versioning? 8-7

How to Develop a Custom Role Mapping Provider 8-7

Create Runtime Classes Using the Appropriate SSPIs 8-7

Implement the RoleProvider SSPI 8-8

Implement the DeployableRoleProviderV2 SSPI 8-8

vii

Implement the RoleMapper SSPI 8-9

Implement the SecurityRole Interface 8-10

Example: Creating the Runtime Class for the Sample Role Mapping Provider 8-11

Role Consumer SSPI 8-17

Required SSPI Interfaces 8-17

Implement the RoleConsumerFactory SSPI Interface 8-17

Implement the RoleConsumer SSPI Interface 8-18

Implement the RoleCollectionHandler SSPI Interface 8-19

Supporting an Updated Role Collection 8-19

The RoleConsumerMBean 8-19

PolicyStoreMBean 8-19

Examining the Format of a XACML Policy File 8-20

Using WLST to Add a Policy to the PolicyStoreMBean 8-21

Using WLST to Read a PolicySet as a String 8-22

Bulk Role Mapping Providers 8-23

Configure the Custom Role Mapping Provider Using the Administration Console 8-24

Managing Role Mapping Providers and Deployment Descriptors 8-24

Enabling Security Role Deployment 8-25

Provide a Mechanism for Security Role Management 8-25

Option 1: Develop a Stand-Alone Tool for Security Role Management 8-26

Option 2: Integrate an Existing Security Role Management Tool into the
Administration Console 8-26

9 Auditing Providers

Auditing Concepts 9-1

Audit Channels 9-1

Auditing Events From Custom Security Providers 9-1

The Auditing Process 9-2

Implementing the ContextHandler MBean 9-4

ContextHandlerMBean Methods 9-4

Example: Implementing the ContextHandlerMBean 9-5

Extend weblogic.management.security.audit.ContextHandlerImpl 9-5

Do You Need to Develop a Custom Auditing Provider? 9-7

How to Develop a Custom Auditing Provider 9-8

Create Runtime Classes Using the Appropriate SSPIs 9-8

Implement the AuditProvider SSPI 9-8

Implement the AuditChannel SSPI 9-9

Example: Creating the Runtime Class for the Sample Auditing Provider 9-9

Configure the Custom Auditing Provider Using the Administration Console 9-11

Configuring Audit Severity 9-11

Security Framework Audit Events 9-11

viii

Passing Additional Audit Information 9-12

Audit Event Interfaces and Audit Events 9-13

AuditApplicationVersionEvent 9-13

AuditAtnEventV2 9-14

AuditAtzEvent 9-15

AuditCerPathBuilderEvent, AuditCertPathValidatorEvent 9-16

AuditConfigurationEvent 9-16

AuditCredentialMappingEvent 9-17

AuditLifecycleEvent 9-17

AuditMgmtEvent 9-18

AuditPolicyEvent 9-18

AuditRoleDeploymentEvent 9-19

AuditRoleEvent 9-20

10

Credential Mapping Providers

Credential Mapping Concepts 10-1

The Credential Mapping Process 10-1

Do You Need to Develop a Custom Credential Mapping Provider? 10-2

Does Your Custom Credential Mapping Provider Need to Support Application
Versioning? 10-4

How to Develop a Custom Credential Mapping Provider 10-4

Create Runtime Classes Using the Appropriate SSPIs 10-4

Implement the CredentialProviderV2 SSPI 10-4

Implement the DeployableCredentialProvider SSPI 10-5

Implement the CredentialMapperV2 SSPI 10-6

Provide a Mechanism for Credential Map Management 10-6

Option 1: Develop a Stand-Alone Tool for Credential Map Management 10-7

Option 2: Integrate an Existing Credential Map Management Tool into the
Administration Console 10-7

11

Auditing Events From Custom Security Providers

Security Services and the Auditor Service 11-1

How to Audit From a Custom Security Provider 11-2

Create an Audit Event 11-3

Implement the AuditEvent SSPI 11-3

Implement an Audit Event Convenience Interface 11-4

Audit Severity 11-7

Audit Context 11-7

Example: Implementation of the AuditRoleEvent Interface 11-7

Obtain and Use the Auditor Service to Write Audit Events 11-9

ix

Example: Obtaining and Using the Auditor Service to Write Role Audit Events 11-9

Auditing Management Operations from a Provider's MBean 11-10

Example: Auditing Management Operations from a Provider's MBean 11-11

Best Practice: Posting Audit Events from a Provider's MBean 11-13

12

Servlet Authentication Filters

Authentication Filter Concepts 12-1

Why Filters are Needed 12-1

Servlet Authentication Filter Design Considerations 12-2

How Filters Are Invoked 12-2

Do Not Call Servlet Authentication Filters From Authentication Providers 12-3

Example of a Provider that Implements a Filter 12-4

How to Develop a Custom Servlet Authentication Filter 12-4

Create Runtime Classes Using the Appropriate SSPIs 12-5

Implement the Servlet Authentication Filter SSPI 12-5

Implement the Filter Interface Methods 12-5

Implementing Challenge Identity Assertion from a Filter 12-6

Generate an MBean Type Using the WebLogic MBeanMaker 12-7

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 12-7

Configure the Authentication Provider Using Administration Console 12-8

13

Versionable Application Providers

Versionable Application Concepts 13-1

The Versionable Application Process 13-1

Do You Need to Develop a Custom Versionable Application Provider? 13-2

How to Develop a Custom VersionableApplication Provider 13-2

Create Runtime Classes Using the Appropriate SSPIs 13-2

Implement the VersionableApplication SSPI 13-3

Example: Creating the Runtime Class for the Sample VersionableApplication
Provider 13-3

Generate an MBean Type Using the WebLogic MBeanMaker 13-4

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 13-4

Configure the Custom Versionable Application Provider Using the Administration
Console 13-4

14

CertPath Providers

Certificate Lookup and Validation Concepts 14-1

The Certificate Lookup and Validation Process 14-1

Do You Need to Implement Separate CertPath Validators and Builders? 14-2

x

CertPath Provider SPI MBeans 14-3

WebLogic CertPath Validator SSPI 14-4

WebLogic CertPath Builder SSPI 14-4

Relationship Between the WebLogic Server CertPath SSPI and the JDK SPI 14-4

Do You Need to Develop a Custom CertPath Provider? 14-5

How to Develop a Custom CertPath Provider 14-6

Create Runtime Classes Using the Appropriate SSPIs 14-6

Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces 14-7

Implement the CertPath Provider SSPI 14-7

Implement the JDK Security Provider SPI 14-8

Use the CertPathBuilderParametersSpi SSPI in Your CertPathBuilderSpi
Implementation 14-9

Use the CertPathValidatorParametersSpi SSPI in Your CertPathValidatorSpi
Implementation 14-10

Returning the Builder or Validator Results 14-11

Example: Creating the Sample Cert Path Provider 14-12

Configure the Custom CertPath Provider Using the Administration Console 14-16

A MBean Definition File (MDF) Element Syntax

The MBeanType (Root) Element A-1

The MBeanAttribute Subelement A-3

The MBeanConstructor Subelement A-6

The MBeanOperation Subelement A-7

MBean Operation Exceptions A-9

Examples: Well-Formed and Valid MBean Definition Files (MDFs) A-10

B Generate an MBean Type Using the WebLogic MBeanMaker

Overview of Steps B-1

Create an MBean Definition File (MDF) B-1

Use the WebLogic MBeanMaker to Generate the MBean Type B-3

No Custom Operations B-3

No Optional SSPI MBeans and No Custom Operations B-4

Optional SSPI MBeans or Custom Operations B-5

About the Generated MBean Interface File B-7

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) B-7

Install the MBean Type Into the WebLogic Server Environment B-8

xi

Preface

This document provides security vendors and application developers with the
information needed to develop new security providers for use with WebLogic Server.

Audience
This document is written for independent software vendors (ISVs) who want to write
their own security providers for use with WebLogic Server. It is assumed that most
ISVs reading this documentation are sophisticated application developers who have a
solid understanding of security concepts, and that no basic security concepts require
explanation. It is also assumed that security vendors and application developers are
familiar with WebLogic Server and with Java (including Java Management eXtensions
(JMX)).

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documentation
The Oracle corporate Web site provides all documentation for WebLogic Server. Other
WebLogic Server documents that may be of interest to security vendors and application
developers working with security providers are:

• Understanding Security for Oracle WebLogic Server

• Administering Security for Oracle WebLogic Server

• Developing Applications with the WebLogic Security Service

• Securing Resources Using Roles and Policies for Oracle WebLogic Server

• Securing a Production Environment for Oracle WebLogic Server

• Java API Reference for Oracle WebLogic Server

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xiii

1
Introduction to Developing Security Providers
for WebLogic Server

This chapter prepares you to learn more about developing security providers.
This chapter includes the following sections:

• Prerequisites for This Guide

• Overview of the Development Process

Prerequisites for This Guide
Prior to reading this guide, you should review the following sections in Understanding
Security for Oracle WebLogic Server:

• Security Providers

• WebLogic Security Framework

Additionally, WebLogic Server security includes many unique terms and concepts that you
need to understand. These terms and concepts—which you will encounter throughout the
WebLogic Server security documentation—are defined in Security Fundamentals in
Understanding Security for Oracle WebLogic Server.

Overview of the Development Process
This section is a high-level overview of the process for developing new security providers, so
you know what to expect. Details for each step are discussed later in this guide.

The main steps for developing a custom security provider are:

• Designing the Custom Security Provider

• Creating Runtime Classes for the Custom Security Provider by Implementing SSPIs

• Generating an MBean Type to Configure and Manage the Custom Security Provider

• Configuring the Custom Security Provider

• Providing Management Mechanisms for Security Policies, Security Roles, and Credential
Maps

Designing the Custom Security Provider
The design process includes the following steps:

1. Review the descriptions of the WebLogic security providers to determine whether you
need to create a custom security provider.

Descriptions of the WebLogic security providers are available under WebLogic Security
Providers in Understanding Security for Oracle WebLogic Server and in later sections of

1-1

this guide under the Do You Need to Create a Custom <Provider_Type> Provider?
headings.

2. Determine which type of custom security provider you want to create.

The type may be authentication, identity assertion, principal validation,
authorization, adjudication, role mapping, auditing, credential mapping,
versionable application, or CertPath, as described in Types of Security Providers
in Understanding Security for Oracle WebLogic Server. Your custom security
provider can augment or replace the WebLogic security providers that are already
supplied with WebLogic Server.

3. Identify which security service provider interfaces (SSPIs) you must implement to
create the runtime classes for your custom security provider, based on the type of
security provider you want to create.

The SSPIs for the different security provider types are described in Security
Services Provider Interfaces (SSPIs) and summarized in SSPI Quick Reference.

4. Decide whether you will implement the SSPIs in one or two runtime classes.

These options are discussed in Understand the SSPI Hierarchy and Determine
Whether You Will Create One or Two Runtime Classes .

5. Identify which required SSPI MBeans you must extend to generate an MBean type
through which your custom security provider can be managed. If you want to
provide additional management functionality for your custom security provider
(such as handling of users, groups, security roles, and security policies), you also
need to identify which optional SSPI MBeans to implement.

The SSPI MBeans are described in Security Service Provider Interface (SSPI)
MBeans and summarized in SSPI MBean Quick Reference.

6. Determine how you will initialize the database that your custom security provider
requires. You can have your custom security provider create a simple database, or
configure your custom security provider to use an existing, fully-populated
database.

These two database initialization options are explained in Initialization of the
Security Provider Database.

7. Identify any database seeding that your custom security provider will need to do as
part of its interaction with security policies on WebLogic resources. This seeding
may involve creating default groups, security roles, or security policies.

See Security Providers and WebLogic Resources.

Creating Runtime Classes for the Custom Security Provider by
Implementing SSPIs

In one or two runtime classes, implement the SSPIs you have identified by providing
implementations for each of their methods. The methods should contain the specific
algorithms for the security services offered by the custom security provider. The
content of these methods describe how the service should behave.

Procedures for this task are dependent on the type of security provider you want to
create, and are provided under the Create Runtime Classes Using the Appropriate
SSPIs heading in the sections that discuss each security provider in detail.

Chapter 1
Overview of the Development Process

1-2

Generating an MBean Type to Configure and Manage the Custom Security
Provider

Generating an MBean type includes the following steps:

1. Create an MBean Definition File (MDF) for the custom security provider that extends the
required SSPI MBean, implements any optional SSPI MBeans, and adds any custom
attributes and operations that will be required to configure and manage the custom
security provider.

Information about MDFs is available in Understand the Basic Elements of an MBean
Definition File (MDF), and procedures for this task are provided under the Create an
MBean Definition File (MDF) heading in the sections that discuss each security provider
in detail.

2. Run the MDF through the WebLogic MBeanMaker to generate intermediate files
(including the MBean interface, MBean implementation, and MBean information files) for
the custom security provider's MBean type.

Information about the WebLogic MBeanMaker and how it uses the MDF to generate Java
files is provided in Understand What the WebLogic MBeanMaker Provides , and
procedures for this task are provided under the Use the WebLogic MBeanMaker to
Generate the MBean Type heading in the sections that discuss each security provider in
detail.

3. Edit the MBean implementation file to supply content for any methods inherited from
implementing optional SSPI MBeans, as well as content for the method stubs generated
as a result of custom attributes and operations added to the MDF.

4. Run the modified intermediate files (for the MBean type) and the runtime classes for your
custom security provider through the WebLogic MBeanMaker to generate a JAR file,
called an MBean JAR File (MJF).

Procedures for this task are provided under the Use the WebLogic MBeanMaker to
Create the MBean JAR File (MJF) heading in the sections that discuss each security
provider in detail.

5. Install the MBean JAR File (MJF) into the WebLogic Server environment.

Procedures for this task are provided under the Install the MBean Type into the WebLogic
Server Environment heading in the sections that discuss each security provider in detail.

Writing Console Extensions
Console extensions allow you to add JavaServer Pages (JSPs) to the WebLogic Server
Administration Console to support additional management and configuration of custom
security providers. Console extensions allow you to include Administration Console support
where that support does not yet exist, as well as to customize administrative interactions as
you see fit.

To get complete configuration and management support through the WebLogic Server
Administration Console for a custom security provider, you need to write a console extension
when:

• You decide not to implement an optional SSPI MBean when you generate an MBean type
for your custom security provider, but still want to configure and manage your custom

Chapter 1
Overview of the Development Process

1-3

security provider via the Administration Console. (That is, you do not want to use
the WebLogic Server Command-Line Interface instead.)

Generating an MBean type (as described in Generating an MBean Type to
Configure and Manage the Custom Security Provider) is the Oracle-
recommended way for configuring and managing custom security providers.
However, you may want to configure and manage your custom security provider
completely through a console extension that you write.

• You implement optional SSPI MBeans for custom security providers that are not
custom authentication providers.

When you implement optional SSPI MBeans to develop a custom authentication
provider, you automatically receive support in the Administration Console for the
MBean type's attributes (inherited from the optional SSPI MBean). Other types of
custom security providers, such as custom authorization providers, do not receive
this support.

• You add a custom attribute that cannot be represented as a simple data type to
your MBean Definition File (MDF), which is used to generate the custom security
provider's MBean type.

The Details tab for a custom security provider will automatically display custom
attributes, but only if they are represented as a simple data type, such as a string,
MBean, boolean or integer value. If you have custom attributes that are
represented as atypical data types (for example, an image of a fingerprint), the
Administration Console cannot visualize the custom attribute without
customization.

• You add a custom operation to your MBean Definition File (MDF), which is used to
generate the custom security provider's MBean type.

Because of the potential variety involved with custom operations, the
Administration Console does not know how to automatically display or process
them. Examples of custom operations might be a microphone for a voice print, or
import/export buttons. The Administration Console cannot visualize and process
these operations without customization.

Some other (optional) reasons for extending the Administration Console include:

• Corporate branding—when, for example, you want your organization's logo or look
and feel on the pages used to configure and manage a custom security provider.

• Consolidation—when, for example, you want all the fields used to configure and
manage a custom security provider on one page, rather than in separate tabs or
locations.

Configuring the Custom Security Provider

Note:

The configuration process can be completed by the same person who
developed the custom security provider, or by a designated administrator.

The configuration process consists of using the WebLogic Server Administration
Console to supply the custom security provider with configuration information. If you

Chapter 1
Overview of the Development Process

1-4

generated an MBean type for managing the custom security provider, configuring the custom
security provider in the WebLogic Server Administration Console also means that you are
creating a specific instance of the MBean type.

See Administering Security for Oracle WebLogic Server.

Providing Management Mechanisms for Security Policies, Security Roles,
and Credential Maps

Certain types of security providers need to provide administrators with a way to manage the
security data associated with them. For example, an authorization provider needs to supply
administrators with a way to manage security policies. Similarly, a role mapping provider
needs to supply administrators with a way to manage security roles, and a credential
mapping provider needs to supply administrators with a way to manage credential maps.

For the WebLogic Authorization, Role Mapping, and Credential Mapping providers, there are
already management mechanisms available for administrators in the WebLogic Server
Administration Console. However, do you not inherit these mechanisms when you develop a
custom version of one of these security providers; you need to provide your own mechanisms
to manage security policies, security roles, and credential maps. These mechanisms must
read and write the appropriate security data to and from the custom security provider's
database, but may or may not be integrated with the WebLogic Server Administration
Console.

For more information, refer to one of the following sections:

• Provide a Mechanism for Security Policy Management (for custom authorization
providers)

• Provide a Mechanism for Security Role Management (for custom role mapping providers)

• Provide a Mechanism for Credential Map Management (for custom credential mapping
providers)

Chapter 1
Overview of the Development Process

1-5

2
Design Considerations

This chapter describes security provider concepts and functionality in more detail to help you
get started. Careful planning of development activities can greatly reduce the time and effort
you spend developing custom security providers.
This chapter includes the following sections:

• General Architecture of a Security Provider

• Security Services Provider Interfaces (SSPIs)

• Security Service Provider Interface (SSPI) MBeans

• Security Data Migration

• Management Utilities Available to Developers of Security Providers

• Security Providers and WebLogic Resources

• Initialization of the Security Provider Database

• Differences In Attribute Validators

General Architecture of a Security Provider
Although there are different types of security providers you can create (see Types of Security
Providers in Understanding Security for Oracle WebLogic Server), all security providers follow
the same general architecture. Figure 2-1 illustrates the general architecture of a security
provider, and an explanation follows.

Figure 2-1 Security Provider Architecture

2-1

Note:

The SSPIs and the runtime classes (that is, implementations) you will create
using the SSPIs are shown on the left side of Figure 2-1 and are .java files.

Like the other files on the right side of Figure 2-1, MyFooMBean begins as
a .xml file, in which you will extend (and optionally implement) SSPI MBeans.
When this MBean Definition File (MDF) is run through the WebLogic
MBeanMaker utility, the utility generates the .java files for the MBean type, as
described in Generating an MBean Type to Configure and Manage the
Custom Security Provider .

Figure 2-1 shows the relationship between a single runtime class (MyFooProviderImpl)
and an MBean type (MyFooMBean) you create when developing a custom security
provider. The process begins when a WebLogic Server instance starts, and the
WebLogic Security Framework:

1. Locates the MBean type associated with the security provider in the security
realm.

2. Obtains the name of the security provider's runtime class (the one that implements
the Provider SSPI, if there are two runtime classes) from the MBean type.

3. Passes in the appropriate MBean instance, which the security provider uses to
initialize (read configuration data).

Therefore, both the runtime class (or classes) and the MBean type form what is called
the security provider.

Security Services Provider Interfaces (SSPIs)
As described in Overview of the Development Process, you develop a custom security
provider by first implementing a number of security services provider interfaces
(SSPIs) to create runtime classes. This section helps you:

• Understand Two Important Restrictions

• Understand the Purpose of the Provider SSPIs

• Understand the Purpose of the Bulk Access Providers

• Determine Which Provider Interface You Will Implement

• Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

Additionally, this section provides SSPI Quick Reference that indicates which SSPIs
can be implemented for each type of security provider.

Understand Two Important Restrictions
Security providers must adhere to the following restrictions:

• A custom security provider's runtime class implementation must not contain any
code that requires a security check to be performed by the WebLogic Security
Framework. Doing so causes infinite recursion, because the security providers are

Chapter 2
Security Services Provider Interfaces (SSPIs)

2-2

the components of the WebLogic Security Framework that actually perform the security
checks and grant access to WebLogic resources.

• No local (where local refers to the same server, cluster, or domain) Java Platform,
Enterprise Edition (Java EE) services are available for use within a security provider's
implementation. Any attempt to use them is unsupported. For example, this prohibits
calling an EJB in the current domain from your security provider.

Java EE services in other domains are accessible and can be used within a security
provider.

Note:

When writing your custom security provider, use only public WebLogic Server
classes as documented in Java API Reference for Oracle WebLogic Server. Do not
use or extend internal WebLogic Server or WebLogic Security provider classes.
Doing so can cause unexpected results.

Understand the Purpose of the Provider SSPIs
Each SSPI that ends in the suffix Provider (for example, CredentialProvider) exposes the
services of a security provider to the WebLogic Security Framework. This allows the security
provider to be manipulated (initialized, started, stopped, and so on).

Figure 2-2 "Provider" SSPIs

As shown in Figure 2-2, the SSPIs exposing security services to the WebLogic Security
Framework are provided by WebLogic Server, and all extend the SecurityProvider
interface, which includes the following methods:

• initialize

public void initialize(ProviderMBean providerMBean, SecurityServices
securityServices)

The initialize method takes as an argument a ProviderMBean, which can be narrowed
to the security provider's associated MBean instance. The MBean instance is created

Chapter 2
Security Services Provider Interfaces (SSPIs)

2-3

from the MBean type you generate, and contains configuration data that allows the
custom security provider to be managed in the WebLogic Server environment. If
this configuration data is available, the initialize method should be used to
extract it.

The securityServices argument is an object from which the custom security
provider can obtain and use the Auditor Service. See Auditing Providers and
Auditing Events From Custom Security Providers.

• getDescription

public String getDescription()

This method returns a brief textual description of the custom security provider.

• shutdown

public void shutdown()

This method shuts down the custom security provider.

Because they extend SecurityProvider, a runtime class that implements any SSPI
ending in Provider must provide implementations for these inherited methods.

Understand the Purpose of the Bulk Access Providers
This release of WebLogic Server includes bulk access versions of the following
authorization, adjudication, and role mapping provider SSPI interfaces:

• BulkAuthorizationProvider
• BulkAccessDecision
• BulkAdjudicationProvider
• BulkAdjudicator
• BulkRoleProvider
• BulkRoleMapper
The bulk access SSPI interfaces allow authorization, adjudication, and role mapping
providers to receive multiple decision requests in one call rather than through multiple
calls, typically in a 'for' loop. The intent of the bulk SSPI variants is to allow provider
implementations to take advantage of internal performance optimizations, such as
detecting that many of the passed-in Resource objects are protected by the same
policy and will generate the same decision result.

See Bulk Authorization Providers, Bulk Adjudication Providers, and Bulk Role Mapping
Providers for additional information.

Determine Which Provider Interface You Will Implement
Implementations of SSPIs that begin with the prefix Deployable and end with the suffix
Provider (for example, DeployableRoleProviderV2) expose the services of a custom
security provider into the WebLogic Security Framework as explained in Understand
the Purpose of the Provider SSPIs. However, implementations of these SSPIs also
perform additional tasks. These SSPIs also provide support for security in deployment
descriptors, including the servlet deployment descriptors (web.xml, weblogic.xml), the

Chapter 2
Security Services Provider Interfaces (SSPIs)

2-4

EJB deployment descriptors (ejb-jar.xml, weblogic-ejb.jar.xml) and the EAR deployment
descriptors (application.xml, weblogic-application.xml).

Authorization providers, role mapping providers, and credential mapping providers have
deployable versions of their Provider SSPIs.

Note:

If your security provider database (which stores security policies, security roles, and
credentials) is read-only, you can implement the non-deployable version of the SSPI
for your authorization, role mapping, and credential mapping security providers.
However, you will still need to configure deployable versions of these security
provider that do handle deployment.

The DeployableAuthorizationProviderV2 SSPI
An authorization provider that supports deploying security policies on behalf of Web
application or Enterprise JavaBean (EJB) deployments needs to implement the
DeployableAuthorizationProviderV2 SSPI instead of the AuthorizationProvider SSPI.
(However, because the DeployableAuthorizationProviderV2 SSPI extends the
AuthorizationProvider SSPI, you actually will need to implement the methods from both
SSPIs.) This is because Web application and EJB deployment activities require the
authorization provider to perform additional tasks, such as creating and removing security
policies. In a security realm, at least one authorization provider must support the
DeployableAuthorizationProviderV2 SSPI, or else it will be impossible to deploy Web
applications and EJBs.

Note:

For more information about security policies, see Security Policies in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

The DeployableRoleProviderV2 SSPI
A role mapping provider that supports deploying security roles on behalf of Web application
or Enterprise JavaBean (EJB) deployments needs to implement the
DeployableRoleProviderV2 SSPI instead of the RoleProvider SSPI. (However, because the
DeployableRoleProviderV2 SSPI extends the RoleProvider SSPI, you will actually need to
implement the methods from both SSPIs.) This is because Web application and EJB
deployment activities require the role mapping provider to perform additional tasks, such as
creating and removing security roles. In a security realm, at least one role mapping provider
must support this SSPI, or else it will be impossible to deploy Web applications and EJBs.

Note:

See Users, Groups, and Security Roles in Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

Chapter 2
Security Services Provider Interfaces (SSPIs)

2-5

The DeployableCredentialProvider SSPI

Note:

The DeployableCredentialProvider interface is deprecated in this release of
WebLogic Server.

A credential mapping provider that supports deploying security policies on behalf of
Resource Adapter (RA) deployments needs to implement the
DeployableCredentialProvider SSPI instead of the CredentialProvider SSPI.
(However, because the DeployableCredentialProvider SSPI extends the
CredentialProvider SSPI, you will actually need to implement the methods from both
SSPIs.) This is because Resource Adapter deployment activities require the credential
mapping provider to perform additional tasks, such as creating and removing
credentials and mappings. In a security realm, at least one credential mapping
provider must support this SSPI, or else it will be impossible to deploy Resource
Adapters.

Note:

See Credential Mapping Concepts. See Security Policies in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

Understand the SSPI Hierarchy and Determine Whether You Will
Create One or Two Runtime Classes

Figure 2-3 uses a credential mapping provider to illustrate the inheritance hierarchy
that is common to all SSPIs, and shows how a runtime class you supply can
implement those interfaces. In this example, Oracle supplies the SecurityProvider
interface, and the CredentialProviderV2 and CredentialMapperV2 SSPIs. Figure 2-3
shows a single runtime class called MyCredentialMapperProviderImpl that
implements the CredentialProviderV2 and CredentialMapperV2 SSPIs.

Chapter 2
Security Services Provider Interfaces (SSPIs)

2-6

Figure 2-3 Credential Mapping SSPIs and a Single Runtime Class

However, Figure 2-3 illustrates only one way you can implement SSPIs: by creating a single
runtime class. If you prefer, you can have two runtime classes (as shown in Figure 2-4): one
for the implementation of the SSPI ending in Provider (for example, CredentialProviderV2),
and one for the implementation of the other SSPI (for example, the CredentialMapperV2
SSPI).

When there are separate runtime classes, the class that implements the SSPI ending in
Provider acts as a factory for generating the runtime class that implements the other SSPI.
For example, in Figure 2-4, MyCredentialMapperProviderImpl acts as a factory for
generating MyCredentialMapperImpl.

Chapter 2
Security Services Provider Interfaces (SSPIs)

2-7

Figure 2-4 Credential Mapping SSPIs and Two Runtime Classes

Note:

If you decide to have two runtime implementation classes, you need to
remember to include both runtime implementation classes in the MBean JAR
File (MJF) when you generate the security provider's MBean type. See
Generating an MBean Type to Configure and Manage the Custom Security
Provider .

SSPI Quick Reference
Table 2-1 maps the types of security providers (and their components) with the SSPIs
and other interfaces you use to develop them.

Table 2-1 Security Providers, Their Components, and Corresponding SSPIs

Type/Component SSPIs/Interfaces

Authentication provider AuthenticationProviderV2
LoginModule (JAAS) LoginModule
Identity Assertion provider AuthenticationProviderV2
Identity Asserter IdentityAsserterV2
Principal Validation provider PrincipalValidator
Authorization AuthorizationProvider

DeployableAuthorizationProviderV2

Chapter 2
Security Services Provider Interfaces (SSPIs)

2-8

Table 2-1 (Cont.) Security Providers, Their Components, and Corresponding
SSPIs

Type/Component SSPIs/Interfaces

Access Decision AccessDecision
Adjudication provider AdjudicationProviderV2
Adjudicator AdjudicatorV2
Role Mapping provider RoleProvider

DeployableRoleProviderV2
Role Mapper RoleMapper
Auditing provider AuditProvider
Audit Channel AuditChannel
Credential Mapping provider CredentialProviderV2
Credential Mapper CredentialMapperV2
Cert Path Provider CertPathProvider
Versionable Application Provider VersionableApplicationProvider

Note:

The SSPIs you use to create runtime classes for custom security providers are
located in the weblogic.security.spi.package in the Java API Reference for
Oracle WebLogic Server.

Security Service Provider Interface (SSPI) MBeans
As described in Overview of the Development Process, the second step in developing a
custom security provider is generating an MBean type for the custom security provider. This
section helps you:

• Understand Why You Need an MBean Type

• Determine Which SSPI MBeans to Extend and Implement

• Understand the Basic Elements of an MBean Definition File (MDF)

• Understand the SSPI MBean Hierarchy and How It Affects the Administration Console

• Understand What the WebLogic MBeanMaker Provides

Additionally, this section provides SSPI MBean Quick Reference that indicates which required
SSPI MBeans must be extended and which optional SSPI MBeans can be implemented for
each type of security provider.

Chapter 2
Security Service Provider Interface (SSPI) MBeans

2-9

Understand Why You Need an MBean Type
In addition to creating runtime classes for a custom security provider, you must also
generate an MBean type. The term MBean is short for managed bean, a Java object
that represents a Java Management eXtensions (JMX) manageable resource.

Note:

JMX is a specification that defines a standard management architecture,
APIs, and management services. See Understanding JMX in Developing
Manageable Applications Using JMX for Oracle WebLogic Server.

An MBean type is a factory for instances of MBeans, the latter of which you or an
administrator can create using the WebLogic Server Administration Console. Once
they are created, you can configure and manage the custom security provider using
the MBean instance, through the WebLogic Server Administration Console.

Note:

All MBean instances are aware of their parent type, so if you modify the
configuration of an MBean type, all instances that you or an administrator
may have created using the WebLogic Server Administration Console will
also update their configurations. (For more information, see Understand the
SSPI MBean Hierarchy and How It Affects the Administration Console .)

Determine Which SSPI MBeans to Extend and Implement
You use MBean interfaces called SSPI MBeans to create MBean types. There are two
types of SSPI MBeans you can use to create an MBean type for a custom security
provider:

• Required SSPI MBeans, which you must extend because they define the basic
methods that allow a security provider to be configured and managed within the
WebLogic Server environment.

• Optional SSPI MBeans, which you can implement because they define additional
methods for managing security providers. Different types of security providers are
able to use different optional SSPI MBeans.

See SSPI MBean Quick Reference.

Understand the Basic Elements of an MBean Definition File (MDF)
An MBean Definition File (MDF) is an XML file used by the WebLogic MBeanMaker
utility to generate the Java files that comprise an MBean type. All MDFs must extend a
required SSPI MBean that is specific to the type of the security provider you have
created, and can implement optional SSPI MBeans.

Chapter 2
Security Service Provider Interface (SSPI) MBeans

2-10

Example 2-1 shows a sample MBean Definition File (MDF), and an explanation of its content
follows. (Specifically, it is the MDF used to generate an MBean type for the WebLogic
Credential Mapping provider. Note that the DeployableCredentialProvider interface is
deprecated in this release of WebLogic Server.)

Note:

A complete reference of MDF element syntax is available in MBean Definition File
(MDF) Element Syntax.

Example 2-1 DefaultCredentialMapper.xml

<MBeanType
 Name = "DefaultCredentialMapper"
 DisplayName = "DefaultCredentialMapper"
 Package = "weblogic.security.providers.credentials"
 Extends = "weblogic.management.security.credentials. DeployableCredentialMapper"
 Implements = "weblogic.management.security.credentials. UserPasswordCredentialMapEditor,
weblogic.management.security.credentials.UserPasswordCredentialMapExtendedReader,
weblogic.management.security.ApplicationVersioner,
weblogic.management.security.Import,
weblogic.management.security.Export"
PersistPolicy = "OnUpdate"
 Description = "This MBean represents configuration attributes for the WebLogic Credential
Mapping provider.<p>"
>
<MBeanAttribute
 Name = "ProviderClassName"
 Type = "java.lang.String"
 Writeable = "false"
 Default = ""weblogic.security.providers.credentials. DefaultCredentialMapperProviderImpl""
 Description = "The name of the Java class that loads the WebLogic Credential Mapping
provider."
/>
<MBeanAttribute
 Name = "Description"
 Type = "java.lang.String"
 Writeable = "false"
 Default = ""Provider that performs Default Credential Mapping""
 Description = "A short description of the WebLogic Credential Mapping provider."
/>
<MBeanAttribute
 Name = "Version"
 Type = "java.lang.String"
 Writeable = "false"
 Default = ""1.0""
 Description = "The version of the WebLogic Credential Mapping provider."
/>
:
:
</MBeanType>

The bold attributes in the <MBeanType> tag show that this MDF is named
DefaultCredentialMapper and that it extends the required SSPI MBean called
DeployableCredentialMapper. It also includes additional management capabilities by
implementing the UserPasswordCredentialMapEditor optional SSPI MBean.

Chapter 2
Security Service Provider Interface (SSPI) MBeans

2-11

The ProviderClassName, Description, and Version attributes defined in the
<MBeanAttribute> tags are required in any MDF used to generate MBean types for
security providers because they define the security provider's basic configuration
methods, and are inherited from the base required SSPI MBean called Provider (see
Figure 2-5). The ProviderClassName attribute is especially important. The value for the
ProviderClassName attribute is the Java filename of the security provider's runtime
class (that is, the implementation of the appropriate SSPI ending in Provider). The
example runtime class shown in Example 2-1 is
DefaultCredentialMapperProviderImpl.java.

While not shown in Example 2-1, you can include additional attributes and operations
in an MDF using the <MBeanAttribute> and <MBeanOperation> tags. Most custom
attributes will automatically appear in the Provider Specific tab for your custom security
provider in the WebLogic Server Administration Console. To display custom
operations, however, you need to write a console extension.

Note:

The Sample Auditing provider provides an example of adding a custom
attribute.

Custom Providers and Classpaths
Classes loaded from WL_HOME\server\lib\mbeantypes are not visible to other JAR
and EAR files deployed on WebLogic Server. If you have common utility classes that
you want to share, you must place them in the system classpath.

Note:

WL_HOME\server\lib\mbeantypes is the default directory for installing MBean
types. Beginning with 9.0, security providers can be loaded
from ...\domaindir\lib\mbeantypes as well. JAR files loaded from
the ...\domaindir\lib\mbeantypes directory can be shared across
applications. They do not need to be explicitly placed in the system
classpath.

Throwing Exceptions from MBean Operations
Your custom provider MBeans must throw only JDK exception types or
weblogic.management.utils exception types. Otherwise, JMX clients may not include
the code necessary to receive your exceptions.

• For typed exceptions, you must throw only the exact types from the throw clause
of your MBean's method, as opposed to deriving and throwing your own exception
type from that type.

• For nested exceptions, you must throw only JDK exception types or
weblogic.management.utils exceptions.

• For runtime exceptions, you must throw or pass through only JDK exceptions.

Chapter 2
Security Service Provider Interface (SSPI) MBeans

2-12

Specifying Non-Clear Text Values for MBean Attributes
As described in The MBeanAttribute Subelement, you can use the Encrypted attribute to
specify that the value of an MBean attribute should not be displayed as clear text. For
example, you encrypt the value of the MBean attribute when getting input for a password.
The following code fragment shows an example of using the Encrypted attribute:

<MBeanAttribute
Name = "PrivatePassPhrase"
Type = "java.lang.String"
Encrypted = "true"
Default = """"
Description = "The Keystore password."
/>

Using Dynamic MBean Attributes

A Dynamic MBean is an MBean that defines its management interface at run-time. For
example, a configuration MBean could determine the names and types of the attributes it
exposes by parsing an XML file. MBean attributes marked as dynamic can be changed
without requiring a server restart. If you declare an MBean attribute to be dynamic, then its
value is automatically updated as it is changed in the running server. When the security
provider implementation reads the value from the MBean object passed at runtime to the
initialize method, the provider receives the most recently updated value.

For more information about:

• The initialize method of the security provider interface, see Understand the Purpose
of the Provider SSPIs.

• Dynamic MBean attributes and how to specify them, see The MBeanAttribute
Subelement.

Understand the SSPI MBean Hierarchy and How It Affects the
Administration Console

All attributes and operations that are specified in the required SSPI MBeans that your MBean
Definition File (MDF) extends (all the way up to the Provider base SSPI MBean)
automatically appear in a WebLogic Server Administration Console page for the associated
security provider. You use these attributes and operations to configure and manage your
custom security providers.

Note:

For authentication security providers only, the attributes and operations that are
specified in the optional SSPI MBeans your MDF implements are also automatically
supported by the WebLogic Server Administration Console. For other types of
security providers, you must write a console extension in order to make the
attributes and operations inherited from the optional SSPI MBeans available in the
WebLogic Server Administration Console.

Chapter 2
Security Service Provider Interface (SSPI) MBeans

2-13

Figure 2-5 illustrates the SSPI MBean hierarchy for security providers (using the
WebLogic Credential Mapping MDF as an example), and indicates what attributes and
operations will appear in the WebLogic Server Administration Console for the
WebLogic Credential Mapping provider.

Figure 2-5 SSPI MBean Hierarchy for Credential Mapping Providers

Implementing the hierarchy of SSPI MBeans in the DefaultCredentialMapper MDF
(shown in Figure 2-5) produces the page in the WebLogic Server Administration
Console that is shown in Figure 2-6. (A partial listing of the DefaultCredentialMapper
MDF is shown in Example 2-1.)

Chapter 2
Security Service Provider Interface (SSPI) MBeans

2-14

Figure 2-6 DefaultCredentialMapper WebLogic Server Administration Console Page

The Name, Description, and Version fields come from attributes with these names inherited
from the base required SSPI MBean called Provider and specified in the
DefaultCredentialMapper MDF. Note that the DisplayName attribute in the
DefaultCredentialMapper MDF generates the value for the Name field, and that the
Description and Version attributes generate the values for their respective fields as well.
The Credential Mapping Deployment Enabled field is displayed (on the Provider Specific
page) because of the CredentialMappingDeploymentEnabled attribute in the
DeployableCredentialMapper required SSPI MBean, which the DefaultCredentialMapper
MDF extends. Notice that this WebLogic Server Administration Console page does not
display a field for the DefaultCredentialMapper implementation of the
UserPasswordCredentialMapEditor optional SSPI MBean.

Understand What the WebLogic MBeanMaker Provides
The WebLogic MBeanMaker is a command-line utility that takes an MBean Definition File
(MDF) as input and outputs files for an MBean type. When you run the MDF you created
through the WebLogic MBeanMaker, the following occurs:

• Any attributes inherited from required SSPI MBeans—as well as any custom attributes
you added to the MDF—cause the WebLogic MBeanMaker to generate complete getter/
setter methods in the MBean type's information file. (The MBean information file is not
shown in Figure 2-7.) See About the MBean Information File.

Necessary developer action: None. No further work must be done for these methods.

• Any operations inherited from optional SSPI MBeans cause the MBean implementation
file to inherit their methods, whose implementations you must supply from scratch.

Necessary developer action: Currently, the WebLogic MBeanMaker does not generate
method stubs for these inherited methods, so you will need to supply the appropriate
implementations.

• Any custom operations you added to the MDF will cause the WebLogic MBeanMaker to
generate method stubs.

Necessary developer action: You must provide implementations for these methods.
(However, because the WebLogic MBeanMaker generates the stubs, you do not need to
look up the Java method signatures.)

Chapter 2
Security Service Provider Interface (SSPI) MBeans

2-15

This is illustrated in Figure 2-7.

Figure 2-7 What the WebLogic MBeanMaker Provides

About the MBean Information File
The MBean information file contains a compiled definition of the data in the MBean
Definition File in a form that JMX Model MBeans require. The format of this file is a list
of attributes, operations, and notifications, each of which also has a set of descriptor
tags that describe that entity. In addition, the MBean itself also has a set of descriptor
tags. An example of this format is as follows:

MBean + tags
attribute1 + tags, attribute2 + tags ...
operation1 + tags, operation2 + tags ...
notification1 + tags, notification2 + tags ...

If desired, you can access this information at runtime by calling the standard JMX
server getMBeanInfo method to obtain the ModelMBeanInfo.

Note:

Be sure to reference the JMX specification to determine how to interpret the
returned structure.

Chapter 2
Security Service Provider Interface (SSPI) MBeans

2-16

SSPI MBean Quick Reference
Based on the list of SSPIs you need to implement as part of developing your custom security
provider, locate the required SSPI MBeans you need to extend in Table 2-2. Using Table 2-3
through Table 2-5, locate any optional SSPI MBeans you also want to implement for
managing your security provider.

Table 2-2 Required SSPI MBeans

Type Package Name Required SSPI MBean

Authentication provider authentication Authenticator
Identity Assertion provider authentication IdentityAsserter
Authorization provider authorization Authorizer or

DeployableAuthorizer
Adjudication provider authorization Adjudicator
Role Mapping provider authorization RoleMapper or

DeployableRoleMapper
Auditing provider audit Auditor
Credential Mapping provider credentials CredentialMapper or

DeployableCredentialMapper
Cert Path Provider pk CertPathBuilder or

CertPathValidator

Note:

The required SSPI MBeans shown in Table 2-2 are located in the
weblogic.management.security.<Package_Name> package.

Table 2-3 Optional Authentication SSPI MBeans

Optional SSPI MBeans Purpose

GroupEditor Create a group. If the group already exists, an exception is
thrown.

GroupMemberLister List a group's members.

GroupReader Read data about groups.

GroupRemover Remove groups.

MemberGroupLister List the groups containing a user or a group.

UserEditor Create, edit and remove users.

UserPasswordEditor Change a user's password.

UserReader Read data about users.

UserRemover Remove users.

Chapter 2
Security Service Provider Interface (SSPI) MBeans

2-17

Note:

The optional authentication SSPI MBeans shown in Table 2-3 are located in
the weblogic.management.security.authentication package. They are
also supported in the WebLogic Server Administration Console.

For an example of how to implement the optional authentication SSPI
MBeans shown in Table 2-4, review the code for the Manageable Sample
Authentication Provider.

Table 2-4 Optional Authorization SSPI MBeans

Optional SSPI MBeans Purpose

PolicyAuxiliary Auxiliary methods for creating, editing, and removing
policies.

PolicyConsumer Indicates that the provider supports policy
consumption.

PolicyEditor Create, edit and remove security policies.

PolicyLister List data about policies.

PolicyReader Read data about security policies.

PolicyStore Manages policies in a policy store.

RoleEditor Create, edit and remove security roles.

RoleReader Read data about security roles.

RoleLister List data about roles.

Note:

The optional authorization SSPI MBeans shown in Table 2-4 are located in
the weblogic.management.security.authorization package.

Table 2-5 Optional Credential Mapping SSPI MBeans

Optional SSPI MBeans Purpose

UserPasswordCredentialMapEditor Edit credential maps that map a WebLogic
user to a remote username and password.

UserPasswordCredentialMapExtendedRea
der

Read credential maps that map a WebLogic
user to a remote username and password.

UserPasswordCredentialMapReader Read credential maps that map a WebLogic
user to a remote username and password.

Chapter 2
Security Service Provider Interface (SSPI) MBeans

2-18

Note:

The optional credential mapping SSPI MBeans shown in Table 2-5 are located in
the weblogic.management.security.credentials package.

Security Data Migration
Several of the WebLogic security providers have been developed to support security data
migration. This means that administrators can export users and groups (for the WebLogic
Authentication provider), security policies (for the WebLogic Authorization provider), security
roles (for the WebLogic Role Mapping provider), or credential mappings (for the credential
mapping provider) from one security realm, and then import them into another security realm.
Administrators can migrate security data for each of these WebLogic security providers
individually, or migrate security data for all the WebLogic security providers at once (that is,
security data for the entire security realm).

The migration of security data may be helpful to administrators when:

• Transitioning from development mode to production mode

• Proliferating production mode security configurations to security realms in new WebLogic
Server domains

• Moving data to a new security realm in the same WebLogic Server domain or in a
different WebLogic Server domain.

• Moving from one security realm to a new security realm in the same WebLogic Server
domain, where one or more of the WebLogic security providers will be replaced with
custom security providers. (In this case, administrators need to copy security data for the
security providers that are not being replaced.)

The following sections provide more information about security data migration:

• Migration Concepts

• Adding Migration Support to Your Custom Security Providers

• Administration Console Support for Security Data Migration

Migration Concepts
Before you start to work with security data migration, you need to understand the following
concepts:

• Formats

• Constraints

• Migration Files

Formats
A format is simply a data format that specifies how security data should be exported or
imported. Currently, WebLogic Server does not provide any standard, public formats for
developers of security providers. Therefore, the format you use is entirely up to you. Keep in
mind, however, that for data to be exported from one security provider and later imported to

Chapter 2
Security Data Migration

2-19

another security provider, both security providers must understand how to process the
same format. Supported formats are the list of data formats that a given security
provider understands how to process.

Note:

Because the data format used for the WebLogic security providers is
unpublished, you cannot currently migrate security data from a WebLogic
security provider to a custom security provider, or visa versa.

Additionally, security vendors wanting to exchange security data with security
providers from other vendors will need to collaborate on a standard format to
do so.

Constraints
Constraints are key/value pairs used to specify options to the export or import
process. Constraints allow administrators to control which security data is exported or
imported from the security provider's database. For example, an administrator may
want to export only users (not groups) from an authentication provider's database, or a
subset of those users. Supported constraints are the list of constraints that
administrators may specify during the migration process for a particular security
provider. For example, an authentication provider's database can be used to import
users and groups, but not security policies.

Migration Files
Export files are the files to which security data is written (in the specified format)
during the export portion of the migration process. Import files are the files from which
security data is read (also in the specified format) during the import portion of the
migration process. Both export and import files are simply temporary storage locations
for security data as it is migrated from one security provider's database to another.

Note:

The migration files are not protected unless you take additional measures to
protect them. Because migration files may contain sensitive data, take extra
care when working with them.

Adding Migration Support to Your Custom Security Providers
If you want to develop custom security providers that support security data migration
like the WebLogic security providers do, you need to extend the
weblogic.management.security.ImportMBean and
weblogic.management.security.ExportMBean optional SSPI MBeans in the MBean
Definition File (MDF) that you use to generate MBean types for your custom security
providers, then implement their methods. These optional SSPI MBeans include the
attributes and operations described in Table 2-6 and Table 2-7, respectively.

Chapter 2
Security Data Migration

2-20

Table 2-6 Attributes and Operations of the ExportMBean Optional SSPI MBean

Attributes/Operations Description

SupportedExportFormats A list of export data formats that the security
provider supports.

SupportedExportConstraints A list of export constraints that the security
provider supports.

exportData Exports provider-specific security data in a
specified format.

format A parameter on the exportData operation that
specifies the format to use for exporting provider-
specific data.

filename A parameter on the exportData operation that
specifies the full path to the filename used to
export provider-specific data.

Notes: The WebLogic security providers that
support security data migration are implemented
in a way that allows you to specify a relative path
(from the directory relative to the server you are
working on). You must specify a directory that
already exists; WebLogic Server will not create
one for you.

constraints A parameter on the exportData operation that
specifies the constraints to be used when
exporting provider-specific data.

Note:

See ExportMBean interface in Java API Reference for Oracle WebLogic Server.

Table 2-7 Attributes and Operations of the ImportMBean Optional SSPI MBean

Attributes/Operations Description

SupportedImportFormats A list of import data formats that the security provider
supports.

SupportedImportConstraints A list of import constraints that the security provider
supports.

importData Imports provider-specific data from a specified format.

format A parameter on the importData operation that
specifies the format to use for importing provider-
specific data.

Chapter 2
Security Data Migration

2-21

Table 2-7 (Cont.) Attributes and Operations of the ImportMBean Optional SSPI MBean

Attributes/Operations Description

filename A parameter on the importData operation that
specifies the full path to the filename used to import
provider-specific data.

Note: The WebLogic security providers that support
security data migration are implemented in a way that
allows you to specify a relative path (from the directory
relative to the server you are working on). You must
specify a directory that already exists; WebLogic
Server will not create one for you.

constraints A parameter on the importData operation that
specifies the constraints to be used when importing
provider-specific data.

Note:

See ImportMBean interface in Java API Reference for Oracle WebLogic
Server.

Administration Console Support for Security Data Migration
Unlike other optional SSPI MBeans you may extend in the MDF for your custom
security providers, the attributes and operations inherited from the ExportMBean and
ImportMBean optional SSPI MBeans automatically appear in a WebLogic Server
Administration Console page for the associated security provider, under a Migration
tab (see Figure 2-8 for an example). This allows administrators to export and import
security data for each security provider individually.

Note:

If a security provider does not have migration capabilities, the Migration tab
for that security provider will not appear in the WebLogic Server
Administration Console.

See Migrating Security Data in Administering Security for Oracle WebLogic
Server.

Chapter 2
Security Data Migration

2-22

Figure 2-8 Migration Tab for the WebLogic Authentication Provider

Additionally, if any of the security providers configured in your security realm have migration
capabilities, the Migration tab at the security realm level (see Figure 2-9 for an example)
allows administrators to export or import security data for all the security providers configured
in the security realm at once.

Note:

The Migration tab at the security realm level always appears in the WebLogic
Server Administration Console, whether or not any security providers with migration
capabilities are configured in the security realm. However, it is only operational if
one or more security providers have migration capabilities.

See Migrating Security Data in Administering Security for Oracle WebLogic Server.

Chapter 2
Security Data Migration

2-23

Figure 2-9 Migration Tab for a Security Realm

Note:

Administrators can also use the WebLogic Scripting Tool (WLST) (rather than
the WebLogic Server Administration Console) to migrate security data when
you extend the ExportMBean and ImportMBean optional SSPI MBeans. See
Understanding the WebLogic Scripting Tool.

As always, if you add additional attributes or operations to your MDF, you must write a
console extension in order to make them available in the WebLogic Server
Administration Console.

Management Utilities Available to Developers of Security
Providers

The weblogic.management.utils package contains additional management interfaces
and exceptions that developers might find useful, particularly when generating MBean
types for their custom security providers. Implementation of these interfaces and
exceptions is not required to develop a custom security provider (unless you inherit
them by implementing optional SSPI MBeans in your custom security provider's MDF).

Note:

The interfaces and classes are located in this package (rather than in
weblogic.management.security) because they are general purpose utilities;
in other words, these utilities can also be used for non-security MBeans. The
various types of MBeans are described in Overview of WebLogic Server
Subsystem MBeans in Developing Custom Management Utilities Using JMX
for Oracle WebLogic Server.

Chapter 2
Management Utilities Available to Developers of Security Providers

2-24

The weblogic.management.utils package contains the following utilities:

• Common exceptions.

• Interfaces that provide methods for handling large lists of data.

• An interface containing configuration attributes that are required to communicate with an
external LDAP server.

Note:

The Manageable Sample Authentication provider uses the
weblogic.management.utils package for exceptions as well as to handle lists
of data.

See Java API Reference for Oracle WebLogic Server for the weblogic.management.utils
package.

Security Providers and WebLogic Resources
A WebLogic resource is a structured object used to represent an underlying WebLogic
Server entity that can be protected from unauthorized access. Developers of custom
authorization, role mapping, and credential mapping providers need to understand how these
security providers interact with WebLogic resources and the security policies used to secure
those resources.

Note:

Security policies replace the access control lists (ACLs) and permissions that were
used to protect WebLogic resources in previous releases of WebLogic Server.

The following sections provide information about security providers and WebLogic resources:

• The Architecture of WebLogic Resources

• Types of WebLogic Resources

• WebLogic Resource Identifiers

• Creating Default Groups for WebLogic Resources

• Creating Default Security Roles for WebLogic Resources

• Creating Default Security Policies for WebLogic Resources

• Single-Parent Resource Hierarchies

• ContextHandlers and WebLogic Resources

Note:

See Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Chapter 2
Security Providers and WebLogic Resources

2-25

The Architecture of WebLogic Resources
The Resource interface, located in the weblogic.security.spi package, provides the
definition for an object that represents a WebLogic resource, which can be protected
from unauthorized access. The ResourceBase class, located in the
weblogic.security.service package, is an abstract base class for more specific
WebLogic resource types, and facilitates the model for extending resources. (See
Figure 2-10 and Types of WebLogic Resources .)

Figure 2-10 Architecture of WebLogic Resources

The ResourceBase class includes the Oracle-provided implementations of the getID,
getKeys, getValues, and toString methods. See WebLogic Server API Reference
Javadoc for the ResourceBase class.

This architecture allows you to develop security providers without requiring that they
be aware of any particular WebLogic resources. Therefore, when new resource types
are added, you should not need to modify the security providers.

Chapter 2
Security Providers and WebLogic Resources

2-26

Types of WebLogic Resources
As shown in Figure 2-10, certain classes in the weblogic.security.service package extend
the ResourceBase class, and therefore provide you with implementations for specific types of
WebLogic resources. WebLogic resource implementations are available for:

• Administrative resources

• Application resources

• COM resources

• Control resources

• EIS resources

• EJB resources

• JDBC resources

• JMS resources

• JNDI resources

• Remote resources

• Server resources

• URL resources

• Web service resources

• Work Context resources

Note:

See Securing Resources Using Roles and Policies for Oracle WebLogic Server
and the Java API Reference for Oracle WebLogic Server for the
weblogic.security.service package.

WebLogic Resource Identifiers
Each WebLogic resource (described in Types of WebLogic Resources) can be identified in
two ways: by its toString() representation or by an ID obtained using the getID() method.

The toString() Method
If you use the toString() method of any WebLogic resource implementation, a description of
the WebLogic resource will be returned in the form of a String. First, the type of the
WebLogic resource is printed in pointy-brackets. Then, each key is printed, in order, along
with its value. The keys are comma-separated. Values that are lists are comma-separated
and delineated by open and close curly braces. Each value is printed as is, except that
commas (,), open braces ({), close braces (}), and back slashes (\) are each escaped with a
back slash. For example, the EJB resource:

EJBResource ('myApp",
 'MyJarFile",
 'myEJB",

Chapter 2
Security Providers and WebLogic Resources

2-27

 'myMethod",
 'Home",
 new String[] {'argumentType1", 'argumentType2"}
);

will produce the following toString output:

type=<ejb>, app=myApp, module="MyJarFile", ejb=myEJB, method="myMethod",
 methodInterface="Home", methodParams={argumentType1, argumentType2}

The format of the WebLogic resource description provided by the toString() method
is public (that is, you can construct one without using a Resource object) and is
reversible (meaning that you can convert the String form back to the original
WebLogic resource).

Note:

Example 2-2 illustrates how to use the toString() method to identify a
WebLogic resource.

Resource IDs and the getID() Method
The getID() method on each of the defined WebLogic resource types returns a 64-bit
hashcode that can be used to uniquely identify the WebLogic resource in a security
provider. The resource ID can be effectively used for fast runtime caching, using the
following algorithm:

1. Obtain a WebLogic resource.

2. Get the resource ID for the WebLogic resource using the getID method.

3. Look up the resource ID in the cache.

4. If the resource ID is found, then return the security policy.

5. If the resource ID is not found, then:

a. Use the toString() method to look up the WebLogic resource in the security
provider database.

b. Store the resource ID and the security policy in cache.

c. Return the security policy.

Note:

Example 2-3 illustrates how to use the getID() method to identify a
WebLogic resource in an authorization provider, and provides a
sample implementation of this algorithm.

Because it is not guaranteed stable across multiple runs, you should not use the
resource ID to store information about the WebLogic resource in a security provider
database. Instead, Oracle recommends that you store any resource-to-security policy
and resource-to-security role mappings in their corresponding security provider
database using the WebLogic resource's toString() method.

Chapter 2
Security Providers and WebLogic Resources

2-28

Note:

See Initialization of the Security Provider Databaseand The toString() Method.

Creating Default Groups for WebLogic Resources
When writing a runtime class for a custom authentication provider, there are several default
groups that you are required to create. Table 2-8 provides information to assist you with this
task.

Table 2-8 Default Groups and Group Membership

Group Name Group Membership

Administrators Empty, or an administrative user.

Deployers Empty

Monitors Empty

Operators Empty

AppTesters Empty

OracleSystemGroup OracleSystemUser

Creating Default Security Roles for WebLogic Resources
When writing a runtime class for a custom role mapping provider, there are several default
global roles that you are required to create. Table 2-9 provides information to assist you with
this task.

Table 2-9 Default Global Roles and Group Associations

Global Role Name Group Association

Admin Administrators group

AdminChannelUser AdminChannelUsers, Administrators, Deployers,
Operators, Monitors, and AppTesters groups

Anonymous weblogic.security.WLSPrincipals.getEveryoneGr
oupname() group

CrossDomainConnector CrossDomainConnectors group

Deployer Deployers group

Monitor Monitors group

Operator Operators group

AppTester AppTesters group

OracleSystemRole OracleSystemGroup

Chapter 2
Security Providers and WebLogic Resources

2-29

Note:

See Users, Groups, and Security Roles in Securing Resources Using Roles
and Policies for Oracle WebLogic Server.

Creating Default Security Policies for WebLogic Resources
When writing a runtime class for a custom authorization provider, there are several
default security policies that you are required to create. These default security policies
initially protect the various types of WebLogic resources. Table 2-10 provides
information to assist you with this task.

Table 2-10 Default Security Policies for WebLogic Resources

WebLogic Resource Constructor Security Policy

new AdminResource(null, null, null) Admin global role

new AdminResource("Configuration",
null, null)

Admin, Deployer, Monitor, or Operator
global roles

new AdminResource('FileDownload",
null, null)

Admin or Deployer global role

new AdminResource('FileUpload", null,
null)

Admin or Deployer global role

New AdminResource('ViewLog", null,
null)

Admin or Deployer global role

new ControlResource(null, null, null) weblogic.security.WLSPrincipals.ge
tEveryoneGroupname() group

new EISResource(null, null, null) weblogic.security.WLSPrincipals.ge
tEveryoneGroupname() group

new EJBResource(null, null, null,
null, null, null)

weblogic.security.WLSPrincipals.ge
tEveryoneGroupname() group

new JDBCResource(null, null, null,
null, null)

weblogic.security.WLSPrincipals.ge
tEveryoneGroupname() group

new JNDIResource(null, null, null) weblogic.security.WLSPrincipals.ge
tEveryoneGroupname() group

new JMSResource(null, null, null,
null)

weblogic.security.WLSPrincipals.ge
tEveryoneGroupname() group

new ServerResource(null, null, null) Admin or Operator global roles

new URLResource(null, null, null,
null, null)

weblogic.security.WLSPrincipals.ge
tEveryoneGroupname() group

new WebServiceResource(null, null,
null, null)

weblogic.security.WLSPrincipals.ge
tEveryoneGroupname() group

new WorkContext(null, null) weblogic.security.WLSPrincipals.ge
tEveryoneGroupname() group

Chapter 2
Security Providers and WebLogic Resources

2-30

Note:

Application and COM resources should not have default security policies (that is,
they should not grant permission to anyone by default).

Looking Up WebLogic Resources in a Security Provider's Runtime Class
Example 2-2 illustrates how to look up a WebLogic resource in the runtime class of an
authorization provider. This algorithm assumes that the security provider database for the
authorization provider contains a mapping of WebLogic resources to security policies. It is not
required that you use the algorithm shown in Example 2-2, or that you utilize the call to the
getParentResource method. (See Single-Parent Resource Hierarchies.)

Example 2-2 How to Look Up a WebLogic Resource in an Authorization Provider:
Using the toString Method

Policy findPolicy(Resource resource) {
 Resource myResource = resource;
 while (myResource != null) {
 String resourceText = myResource.toString();
 Policy policy = lookupInDB(resourceText);
 if (policy != null) return policy;
 myResource = myResource.getParentResource();
 }
 return null;
}

You can optimize the algorithm for looking up a WebLogic resource by using the getID
method for the resource. (Use of the toString method alone, as shown in Example 2-2, may
impact performance due to the frequency of string concatenations.) The getID method may
be quicker and more efficient because it is a hash operation that is calculated and cached
within the WebLogic resource itself. Therefore, when the getID method is used, the toString
value only needs to be calculated once per resource (as shown in Example 2-3).

Example 2-3 How to Look Up a WebLogic Resource in an Authorization Provider:
Using the getID Method

Policy findPolicy(Resource resource) {
 Resource myResource = resource;
 while (myResource != null) {
 long id = myResource.getID();
 Policy policy = lookupInCache(id);
 if (policy != null) return policy;
 String resourceText = myResource.toString();
 Policy policy = lookupInDB(resourceText);
 if (policy != null) {
 addToCache(id, policy);
 return policy;
 }
 myResource = myResource.getParentResource();
 }
 return null;
}

Chapter 2
Security Providers and WebLogic Resources

2-31

Note:

The getID method is not guaranteed between patch sets or future WebLogic
Server releases. Therefore, you should not store getID values in your
security provider database.

Single-Parent Resource Hierarchies
The level of granularity for WebLogic resources is up to you. For example, you can
consider an entire Web application, a particular Enterprise JavaBean (EJB) within that
Web application, or a single method within that EJB to be a WebLogic resource.

WebLogic resources are arranged in a hierarchical structure ranging from most
specific to least specific. You can use the getParentResource method for each of the
WebLogic resource types if you like, but it is not required.

The WebLogic security providers use the single-parent resource hierarchy as follows:
If a WebLogic security provider attempts to access a specific WebLogic resource and
that resource cannot be located, the WebLogic security provider will call the
getParentResource method of that resource. The parent of the current WebLogic
resource is returned, and allows the WebLogic security provider to move up the
resource hierarchy to protect the next (less-specific) resource. For example, if a caller
attempts to access the following URL resource:

type=<url>, application=myApp, contextPath="/mywebapp", uri=foo/bar/my.jsp

and that exact URL resource cannot be located, the WebLogic security provider will
progressively attempt to locate and protect the following resources (in order):

type=<url>, application=myApp, contextPath="/mywebapp", uri=/foo/bar/*
type=<url>, application=myApp, contextPath="/mywebapp", uri=/foo/*
type=<url>, application=myApp, contextPath="/mywebapp", uri=*.jsp
type=<url>, application=myApp, contextPath="/mywebapp", uri=/*
type=<url>, application=myApp, contextPath="/mywebapp"
type=<url>, application=myApp
type=<app>, application=myApp
type=<url>

Note:

See Java API Reference for Oracle WebLogic Server for any of the
predefined WebLogic resource types or the Resource interface.

Pattern Matching for URL Resources
Sections SRV.11.1 and SRV.11.2 of the Java Servlet 2.3 Specification (http://
jcp.org/aboutJava/communityprocess/first/jsr053/index.html) describe the
servlet container's pattern matching rules. These rules are used for URL resources as
well. The following examples illustrate some important concepts with regard to URL
resource pattern matching.

Chapter 2
Security Providers and WebLogic Resources

2-32

http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

Example 1
For the URL resource type=<url>, application=myApp, contextPath=/mywebapp,
uri=/foo/my.jsp, httpMethod=GET, the resource hierarchy used is as follows. (Note lines 3
and 4, which contain URL patterns that may be different from what is expected.)

1. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/my.jsp,
httpMethod=GET

2. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/my.jsp

3. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/my.jsp/*,
httpMethod=GET

4. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/my.jsp/*

5. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/*, httpMethod=GET

6. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/*

7. type=<url>, application=myApp, contextPath=/mywebapp, uri=*.jsp, httpMethod=GET

8. type=<url>, application=myApp, contextPath=/mywebapp, uri=*.jsp

9. type=<url>, application=myApp, contextPath=/mywebapp, uri=/*, httpMethod=GET

10. type=<url>, application=myApp, contextPath=/mywebapp, uri=/*

11. type=<url>, application=myApp, contextPath=/mywebapptype=<url>, application=myApp

12. type=<app>, application=myApp

13. type=<url>

Example 2
For the URL resource type=<url>, application=myApp, contextPath=/mywebapp, uri=/
foo, the resource hierarchy used is as follows. (Note line 2, which contains a URL pattern
that may be different from what is expected.)

1. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo

2. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/*

3. type=<url>, application=myApp, contextPath=/mywebapp, uri=/*

4. type=<url>, application=myApp, contextPath=/mywebapp

5. type=<url>, application=myApp

6. type=<app>, application=myApp

7. type=<url>

ContextHandlers and WebLogic Resources
A ContextHandler is a high-performing WebLogic class that obtains additional context and
container-specific information from the resource container, and provides that information to
security providers making access or role mapping decisions. The ContextHandler interface
provides a way for an internal WebLogic resource container to pass additional information to
a WebLogic Security Framework call, so that a security provider can obtain contextual
information beyond what is provided by the arguments to a particular method. A
ContextHandler is essentially a name/value list and as such, it requires that a security

Chapter 2
Security Providers and WebLogic Resources

2-33

provider know what names to look for. (In other words, use of a ContextHandler
requires close cooperation between the WebLogic resource container and the security
provider.) Each name/value pair in a ContextHandler is known as a context element,
and is represented by a ContextElement object.

Note:

See Java API Reference for Oracle WebLogic Server for the
weblogic.security.service package.

Resource types have different context elements whose values you can inspect as part
of developing a custom provider. That is, not all containers pass all context elements.

Table 2-11 lists the available ContextHandler entries.

Table 2-11 Context Handler Entries

Context Element Name Description and Type

com.bea.contextelement.
servlet.HttpServletRequest

A servlet access request or SOAP message via HTTP

javax.http.servlet.HttpServletRequest
com.bea.contextelement.
servlet.HttpServletResponse

A servlet access response or SOAP message via HTTP

javax.http.servlet.HttpServletResponse
com.bea.contextelement.
wli.Message

A WebLogic Integration message. The message is
streamed to the audit log.

java.io.InputStream
com.bea.contextelement.
channel.Port

The internal listen port of the network channel accepting
or processing the request

java.lang.Integer
com.bea.contextelement.
channel.PublicPort

The external listen port of the network channel
accepting or processing the request

java.lang.Integer
com.bea.contextelement.
channel.RemotePort

The port of the remote end of the TCP/IP connection of
the network channel accepting or processing the
request

java.lang.Integer
com.bea.contextelement.
channel.Protocol

The protocol used to make the request of the network
channel accepting or processing the request

java.lang.String
com.bea.contextelement.
channel.Address

The internal listen address of the network channel
accepting or processing the request

java.lang.String
com.bea.contextelement.
channel.PublicAddress

The external listen address of the network channel
accepting or processing the request

java.lang.String

Chapter 2
Security Providers and WebLogic Resources

2-34

Table 2-11 (Cont.) Context Handler Entries

Context Element Name Description and Type

com.bea.contextelement.
channel.RemoteAddress

The remote address of the TCP/IP connection of the
network channel accepting or processing the request

java.lang.String
com.bea.contextelement.
channel.ChannelName

The name of the network channel accepting or
processing the request

java.lang.String
com.bea.contextelement.
channel.Secure

Is the network channel accepting or processing the
request using SSL?

java.lang.Boolean
com.bea.contextelement.
ejb20.Parameter[1-N]

Object based on parameter

com.bea.contextelement.
wsee.SOAPMessage

javax.xml.rpc.handler.MessageContext

com.bea.contextelement.
entitlement.EAuxiliaryID

Used by WebLogic Server internal process.

weblogic.entitlement.expression.EAuxiliary
com.bea.contextelement.
security.ChainPrevalidatedBy
SSL

The SSL framework has validated the certificate chain,
meaning that the certificates in the chain have signed
each other properly; the chain terminates in a certificate
that is one of the server's trusted CAs; the chain honors
the basic constraints rules; and the certificates in the
chain have not expired.

java.lang.Boolean
com.bea.contextelement.
xml.SecurityToken

Not used in this release of WebLogic Server.

weblogic.xml.crypto.wss.provider.SecurityTo
ken

com.bea.contextelement.
xml.SecurityTokenAssertion

Not used in this release of WebLogic Server.

java.util.Map
com.bea.contextelement.
webservice.Integrity{id:XXXX
X}

javax.security.auth.Subject

com.bea.contextelement.
saml.SSLClientCertificateCha
in

The SSL client certificate chain obtained from the SSL
connection over which a sender-vouches SAML
assertion was received.

java.security.cert.X509Certificate[]
com.bea.contextelement.
saml.MessageSignerCertificat
e

The certificate used to sign a Web service message.

java.security.cert.X509Certificate

com.bea.contextelement.
saml.subject.ConfirmationMet
hod

The type of SAML assertion: bearer, artifact, sender-
vouches, or holder-of-key.

java.lang.String
com.bea.contextelement.
saml.subject.dom.KeyInfo

The <ds:KeyInfo> element to be used for subject
confirmation with holder-of-key SAML assertions.

org.w3c.dom.Element

Chapter 2
Security Providers and WebLogic Resources

2-35

Example 2-4 illustrates how you can access HttpServletRequest and
HttpServletResponse context element objects via a URL (Web) resource's
ContextHandler. For example, you might use this code in the isAccessAllowed()
method of your AccessDecision SSPI implementation. See Implement the
AccessDecision SSPI.)

Example 2-4 Example: Accessing Context Elements in the URL Resource
ContextHandler

static final String SERVLETREQUESTNAME =
'com.bea.contextelement.servlet.HttpServletRequest";
if (resource instanceof URLResource) {
 HttpServletRequest req =
 (HttpServletRequest)handler.getValue(SERVLETREQUESTNAME);
}

Note:

You might also want to access these context elements in the getRoles()
method of the RoleMapper SSPI implementation or the getContext()
method of the AuditContext interface implementation. See Implement the
RoleMapper SSPI and Audit Context, respectively.)

Providers and Interfaces that Support Context Handlers
The ContextHandler interface provides a way to pass additional information to a
WebLogic Security Framework call, so that a security provider or interface can obtain
additional context information beyond what is provided by the arguments to a
particular method.

Table 2-12 describes the context handler support.

Table 2-12 Methods and Classes that Support Context Handlers

Method Description

AccessDecision.isAccessAllow
ed()

The isAccessAllowed() method accepts a
ContextHandler object that can optionally be used by
an access decision to obtain additional information that
may be used in making the authorization decision. If the
caller is unable to provide additional information, a null
value should be specified.

AdjudicatorV2.adjudicate() An implementation of the AdjudicatorV2 SSPI interface
is the part of an adjudication provider that is called after
all the Access Decisions' isAccessAllowed methods
have been called and returned successfully (that is,
without throwing exceptions). The AdjudicatorV2 SSPI
accepts the resource and ContextHandler as
additional arguments. When the AuthorizationManager
calls the Adjudicator, it passes the same resource and
ContextHandler as it passed to AccessDecision. This
allows the Adjudicator to have all of the information that
is available to AccessDecision.

Chapter 2
Security Providers and WebLogic Resources

2-36

Table 2-12 (Cont.) Methods and Classes that Support Context Handlers

Method Description

AuditAtnEventV2.getContext() Because the JAAS LoginModule.login() method
and the IdentityAsserter.assertIdentity()
method have access to the ContextHandler, the
AuditAtnEventV2 interface also gets this data so it can
audit relevant information. The getContext() method
is inherited from
weblogic.security.spi.AuditContext. The
getContext() method gets a ContextHandler object
from which additional audit information can be obtained.

AuditCertPathBuilderEvent.ge
tContext(),
AuditCertPathValidatorEvent.
getContext()

The getContext method gets an optional
ContextHandler object that may specify additional
data on how to look up and validate the CertPath.

AuditConfigurationEvent.getC
ontext()

The AuditConfigurationEvent.getContext()
method gets a ContextHandler object from which
additional audit information can be obtained.

AuditContext.getContext() The AuditContext.getContext() method gets a
ContextHandler object from which additional audit
information can be obtained.

AuditCredentialMappingEvent.
getContext()

The getContext method gets an optional
ContextHandler object that may specify additional
information about the credential mapping audit event.

CertPathBuilderParameterSpi.
getContext and
CertPathValidatorParameterSp
i.getContext

The CertPathBuilderParameterSpi and
CertPathValidatorParameterSpi interfaces include
a getContext() method to get a ContextHandler
that may pass in extra parameters that can be used for
building and validating the Cert Path.

ChallengeIdentityAsserterV2.
assertChallengeIdentity(),
ChallengeIdentityAsserterV2.
continueChallengeIdentity(),
and
ChallengeIdentityAsserterV2.
getChallengeIdentity()

The ChallengeIdentityAsserterV2 methods accept
a ContextHandler object that can optionally be user
by the Identity assertion provider to obtain additional
information that may be used in asserting the challenge
identity.

CredentialMapperV2.getCreden
tials()

The CredentialMapper.getCredentials() and
CredentialMapper.getCredential() methods
include a ContextHandler parameter with optional
extra data.

IdentityAsserterV2.assertIde
ntity()

The IdentityAsserterV2 provider allows the Security
Framework to pass a ContextHandler in the
assertIdentity method. The ContextHandler
object can optionally be used to obtain additional
information that may be used in asserting the identity.
For example, the ContextHandler allows users to
extract extra information from the
HttpServletRequest and to set cookies in the
HttpServletResponse.

Chapter 2
Security Providers and WebLogic Resources

2-37

Table 2-12 (Cont.) Methods and Classes that Support Context Handlers

Method Description

LoginModule.login() A ContextHandler can be passed to the JAAS
CallbackHandler parameter. A CallbackHandler is
a variable-argument data structure that is passed to the
login() method. Adding the ContextHandler in this
manner allows users to extract extra information from
the HttpServletRequest and to set cookies in the
HttpServletResponse, for example. The
implementation includes LoginModules used both for
authentication and identity assertion.

The EJB and Servlet containers must add the
ContextHandler to the CallbackHandler when
calling the Principal Authenticator. Specifically, they must
instantiate and pass a
weblogic.security.auth.callback.ContextHand
lerCallback to the invokeCallback method of a
CallbackHandler to retrieve the ContextHandler
related to this security operation. If no ContextHandler
is associated with this operation,
javax.security.auth.callback.UnsupportedCall
backException is thrown.

RoleMapper.getRoles() The getRoles() method accepts a ContextHandler
object that can optionally be used by the role mapping
provider to obtain additional information that may be
used in making the authorization decision. If the caller is
unable to provide additional information, a null value
should be specified.

URLCallbackHandler and
SimpleCallbackHandler Classes

As of WebLogic Server version 9.0, the
weblogic.security.URLCallbackHandler and
weblogic.security.SimpleCallbackHandler
classes were updated to handle the ContextHandler.

URLCallbackHandler is a CallbackHandler used by
application developers for returning a username,
password, URL, and ContextHandler as part of the
Authenticate API.

SimpleCallbackHandler is a simple
CallbackHandler used by application developers for
returning a username, password and ContextHandler
as part of the Authenticate API.

Initialization of the Security Provider Database

Note:

Prior to reviewing this section, be sure you have read Security Provider
Databases in the Understanding Security for Oracle WebLogic Server.

Chapter 2
Initialization of the Security Provider Database

2-38

At minimum, you must initialize security providers' databases with the default users, groups,
security policies, security roles, or credentials that your authentication, authorization, role
mapping, and credential mapping providers expect. You will need to initialize a given security
provider's database before the security provider can be used, and should think about how this
will work as you are writing the runtime classes for your custom security providers. The
method you use to initialize a security provider's database depends upon many factors,
including whether or not an externally administered database will be used to store the user,
group, security policy, security role, or credential information, and whether or not the
database already exists or needs to be created.

The following sections explain some best practices for initializing a security provider
database:

• Best Practice: Create a Simple Database If None Exists

• Best Practice: Configure an Existing Database

• Best Practice: Delegate Database Initialization

• Best Practice: Use the JDBC Connection Security Service API to Obtain Database
Connections

Best Practice: Create a Simple Database If None Exists
The first time an authentication, authorization, role mapping, or credential mapping provider is
used, it attempts to locate a database with the information it needs to provide its security
service. If the security provider fails to locate the database, you can have it create one and
automatically populate it with the default users, groups, security policies, security roles, and
credentials. This option may be useful for development and testing purposes.

Both the WebLogic security providers and the sample security providers follow this practice.
The WebLogic Authentication, Authorization, Role Mapping, and Credential Mapping
providers store the user, group, security policy, security role, and credential information in the
embedded LDAP server. If you want to use any of these WebLogic security providers, you will
need to follow the Configuring the Embedded LDAP Server instructions in Administering
Security for Oracle WebLogic Server.

Note:

The sample security providers simply create and use a properties file as their
database. For example, the sample authentication provider creates a file called
SampleAuthenticatorDatabase.java that contains the necessary information about
users and groups.

Best Practice: Configure an Existing Database
If you already have a database (such as an external LDAP server), you can populate that
database with the users, groups, security policies, security roles, and credentials that your
authentication, authorization, role mapping, and credential mapping providers require.
(Populating an existing database is accomplished using whatever tools you already have in
place for performing these tasks.)

Once your database contains the necessary information, you must configure the security
providers to look in that database. You accomplish this by adding custom attributes in your

Chapter 2
Initialization of the Security Provider Database

2-39

security provider's MBean Definition File (MDF). Some examples of custom attributes
are the database's host, port, password, and so on. After you run the MDF through the
WebLogic MBeanMaker and complete a few other steps to generate the MBean type
for your custom security provider, you or an administrator use the WebLogic Server
Administration Console to set these attributes to point to the database.

Note:

See Generating an MBean Type to Configure and Manage the Custom
Security Provider .

As an example, Example 2-5 shows some custom attributes that are part of the
WebLogic LDAP Authentication provider's MDF. These attributes enable an
administrator to specify information about the WebLogic LDAP Authentication
provider's database (an external LDAP server), so it can locate information about
users and groups.

Example 2-5 LDAPAuthenticator.xml

...
<MBeanAttribute
 Name = "UserObjectClass"
 Type = "java.lang.String"
 Default = ""person""
 Description = "The LDAP object class that stores users."
/>
<MBeanAttribute
 Name = "UserNameAttribute"
 Type = "java.lang.String"
 Default = ""uid""
 Description = "The attribute of an LDAP user object that specifies the name of
 the user."
/>
<MBeanAttribute
 Name = "UserDynamicGroupDNAttribute"
 Type = "java.lang.String"
 Description = "The attribute of an LDAP user object that specifies the
 distinguished names (DNs) of dynamic groups to which this user belongs.
 If such an attribute does not exist, WebLogic Server determines if a
 user is a member of a group by evaluating the URLs on the dynamic group.
 If a group contains other groups, WebLogic Server evaluates the URLs on
 any of the descendents of the group."
/>
<MBeanAttribute
 Name = "UserBaseDN"
 Type = "java.lang.String"
 Default = ""ou=people, o=example.com""
 Description = "The base distinguished name (DN) of the tree in the LDAP directory
 that contains users."
/>
<MBeanAttribute
 Name = "UserSearchScope"
 Type = "java.lang.String"
 Default = ""subtree""
 LegalValues = "subtree,onelevel"
 Description = "Specifies how deep in the LDAP directory tree to search for Users.
 Valid values are <code>subtree</code>

Chapter 2
Initialization of the Security Provider Database

2-40

 and <code>onelevel</code>."
/>
...

Best Practice: Delegate Database Initialization
If possible, initialization calls between a security provider and the security provider's database
should be done by an intermediary class, referred to as a database delegator. The database
delegator should interact with the runtime class and the MBean type for the security provider,
as shown in Figure 2-11.

Figure 2-11 Positioning of the Database Delegator Class

A database delegator is used by the WebLogic Authentication and Credential Mapping
providers. The WebLogic Authentication provider, for example, calls into a database
delegator to initialize the embedded LDAP server with default users and groups, which it
requires to provide authentication services for the default security realm.

Use of a database delegator is suggested as a convenience to application developers and
security vendors who are developing custom security providers, because it hides the security
provider's database and centralizes calls into the database.

Chapter 2
Initialization of the Security Provider Database

2-41

Best Practice: Use the JDBC Connection Security Service API to
Obtain Database Connections

As an alternative to the best practices for creating or configuring a database for your
custom security provider, you can use the JDBCConnectionService SSPI only during
provider initialization to access the JDBC data sources that are configured for your
WebLogic domain.

This capability enables your custom security providers to take advantage of full
database access and database connection management capabilities provided through
JDBC data sources, including multi data sources. See http://docs.oracle.com/
javase/8/docs/api/java/sql/Connection.html for information about how SQL
statements are executed and how the results are returned within the context of a
connection.

When you use the JDBCConnectionService SSPI, note the following:

• Obtain the JDBCConnectionService in the initialize() method of your custom
provider.

• Data sources are identified by name (sqlConnectionName), not JNDI path.

• During initialization, JDBC resources may not be available. Direct connections are
returned until the JNDI and JDBC subsystems are fully initialized and available.

• When finished with the database connection returned by the JDBC data source,
the security provider must invoke the releaseConnection method (and specify the
Connection object) to release the connection.

Example 2-6 shows using the JDBCConnectionService SSPI to obtain a database
connection from a named JDBC data source.

Although not shown in the example, JDBCConnectionService.getConnection can
throw JDBCConnectionServiceException if the named JDBC data source is
unavailable, or SQLException if the database connection is unavailable.
JDBCConnectionService.releaseConnection can throw SQLException if the database
connection is unavailable.

Example 2-6 Using the JDBCConnectionService API to Access JDBC Data Sources

JDBCConnectionService dbService = null;
if (services instanceof SecurityServicesJDBC) {
 try {

 dbService = ((SecurityServicesJDBC)services).getJDBCConnectionService();

 System.out.println("Obtained the JDBCConnectionService, " + dbService);

 Connection conn = dbService.getConnection("oracle-database");

 PreparedStatement statement = conn.prepareStatement("select sysdate from dual");
 ResultSet rs= statement.executeQuery();

 while (rs.next()) {
 String s1 = rs.getString(1);
 System.out.println("Sys date =" + s1);
 }

 dbService.releaseConnection(conn);
 } catch(Exception e) {

Chapter 2
Initialization of the Security Provider Database

2-42

http://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html
http://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html

 e.printStackTrace();
 }

Implementing a JDBC Connection Security Service: Main Steps
To implement a security service for obtaining access to JDBC data sources:

1. In your provider's initialize() method, invoke the getJDBCConnectionService method
of the SecurityServicesJDBC interface to obtain the JDBC connection service.

2. Invoke the getConnection method on the JDBC connection service instance, passing the
name of a JDBC data source that is configured in your WebLogic domain.

3. Add appropriate database commands, such as prepared statements, queries, and so on.

4. You must invoke the releaseConnection method on the JDBC connection service
instance to release the connection instance.

Differences In Attribute Validators
A validator is an interface that is implemented by a class that can validate various types of
expressions. In this release of WebLogic Server, the inheritance rules for security provider
attribute validator methods differ from the rules that existed in 8.1.

In 8.1, a derived MBean had only to customize an attribute validator method in its MBean
implementation file to make it take effect. As of version 9.0, the derived MBean must also
explicitly declare the attribute validator in its MDF file to make it take effect. Otherwise, the
customized method code is ignored.

Consider the following example of the base class of all identity assert MBean
implementations, weblogic.management.security.authentication.IdentityAsserterImpl.

IdentityAsserterImpl extends the authentication provider MBean implementation and gives
the authenticator's MBean implementation access to its configuration attributes.

In 8.1, you could do the following:

1. Write an Identity Asserter provider called IdentityAsserter1. In its MDF file, indicate that it
extends weblogic.management.security.authentication.IdentityAsserter.

2. Use the WebLogic MBeanMaker to generate the MBean type. The implementation file
created by the MBeanMaker, typically named IdentityAsserter1Impl.java, extends
weblogic.management.security.authentication.IdentityAsserterImpl.

Therefore, the MBean inherits the activeTypes attribute, which has an attribute validator
method. The validateActiveTypes(String[] activeTypes) method ensures that
activeTypes includes only supported types).

3. Modify the implementation file and specify a different implementation for the
validateActiveTypes method. For example, it could further restrict the active types or
loosen the rules.

4. In 8.1, IdentityAsserter1's validateActiveTypes implementation is used.

As of version 9.0, the base IdentityAsserter's validateActiveTypes implementation is
used instead. That is, IdentityAsserter1's validateActiveTypes implementation is silently
ignored.

To work around this difference in version 9.0 and later, redeclare the attribute validator in
IdentityAsserter1's MDF file in an MBeanOperation subelement.

Chapter 2
Differences In Attribute Validators

2-43

Differences In Attribute Validators for Custom Validators
The difference in inheritance rules for security provider attribute validators also applies
to custom validators. You could have a provider declare an attribute with a custom
validator. Then you could derive another provider from that one and write another
implementation of the validator. In 8.1, the derived provider's validator would be used.
As of version 9.0, the base provider's validator is used instead, and the derived one is
silently ignored.

Chapter 2
Differences In Attribute Validators

2-44

3
Authentication Providers

This chapter describes authentication provider concepts and functionality, and provides step-
by-step instructions for developing a custom authentication provider.
Authentication is the mechanism by which callers prove that they are acting on behalf of
specific users or systems. Authentication answers the question, "Who are you?" using
credentials such as username/password combinations.

In WebLogic Server, authentication providers are used to prove the identity of users or
system processes. Authentication providers also remember, transport, and make that identity
information available to various components of a system (via subjects) when needed. During
the authentication process, a principal validation provider provides additional security
protections for the principals (users and groups) contained within the subject by signing and
verifying the authenticity of those principals. (See Principal Validation Providers.)

This chapter includes the following sections:

• Authentication Concepts

• The Authentication Process

• Do You Need to Develop a Custom Authentication Provider?

• How to Develop a Custom Authentication Provider

Note:

An identity assertion provider is a specific form of authentication provider that
allows users or system processes to assert their identity using tokens. See
Identity Assertion Providers.

Authentication Concepts
Before delving into the specifics of developing custom authentication providers, it is important
to understand the following concepts:

• Users and Groups, Principals and Subjects

• LoginModules

• Java Authentication and Authorization Service (JAAS)

Users and Groups, Principals and Subjects
A user is similar to an operating system user in that it represents a person. A group is a
category of users, classified by common traits such as job title. Categorizing users into
groups makes it easier to control the access permissions for large numbers of users. See
Users, Groups, and Security Roles in Securing Resources Using Roles and Policies for
Oracle WebLogic Server.

3-1

Both users and groups can be used as principals by application servers like WebLogic
Server. A principal is an identity assigned to a user or group as a result of
authentication. The Java Authentication and Authorization Service (JAAS) requires
that subjects be used as containers for authentication information, including
principals. Each principal stored in the same subject represents a separate aspect of
the same user's identity, much like cards in a person's wallet. (For example, an ATM
card identifies someone to their bank, while a membership card identifies them to a
professional organization to which they belong.) See Java Authentication and
Authorization Service (JAAS).

Note:

Subjects replace WebLogic Server 6.x users.

Figure 3-1 illustrates the relationships among users, groups, principals, and subjects.

Figure 3-1 Relationships Among Users, Groups, Principals and Subjects

As part of a successful authentication, principals are signed and stored in a subject for
future use. A principal validation provider signs principals, and an authentication
provider's LoginModule actually stores the principals in the subject. Later, when a
caller attempts to access a principal stored within a subject, a principal validation
provider verifies that the principal has not been altered since it was signed, and the
principal is returned to the caller (assuming all other security conditions are met).

Chapter 3
Authentication Concepts

3-2

Note:

See Principal Validation Providers and LoginModules, respectively.

Any principal that is going to represent a WebLogic Server user or group needs to implement
the WLSUser and WLSGroup interfaces, which are available in the weblogic.security.spi
package.

Providing Initial Users and Groups
Authentication providers need a list of users and groups before they can be used to perform
authentication in a running WebLogic Server. Some authentication providers let the
administrator configure an external database (for example, add the users and groups to an
LDAP server or a DBMS) and then configure the provider to use that database. These
providers don't have to worry about how the users and groups are populated because the
administrator does that first, using the external database's tools.

However, some authentication providers create and manage their own list of users and
groups. This is the case for the ManageableSampleAuthenticator provider. These providers
need to worry about how their initial set of users and groups is populated. One way to handle
this is for the provider's "initialize" method to notice that the users and groups don't exist yet,
and then populate the list with an initial set of users and groups.

Note that some providers have a separate list of users and groups for each security realm,
and therefore need to create an initial set of users and groups the first time the list is used in
a new realm. For example, the ManageableSampleAuthenticator provider creates a separate
properties file of users and groups for each realm. Its initialize method gets the realm
name, determines whether the properties file for that realm exists and, if not, creates one,
populating it with its initial set of users and groups.

LoginModules
A LoginModule is a required component of an authentication provider, and can be a
component of an identity assertion provider if you want to develop a separate LoginModule
for perimeter authentication.

LoginModules are the work-horses of authentication: all LoginModules are responsible for
authenticating users within the security realm and for populating a subject with the necessary
principals (users/groups). LoginModules that are not used for perimeter authentication also
verify the proof material submitted (for example, a user's password).

Note:

See Identity Assertion Providers.

If there are multiple authentication providers configured in a security realm, each of the
authentication providers' LoginModules will store principals within the same subject.
Therefore, if a principal that represents a WebLogic Server user (that is, an implementation of
the WLSUser interface) named "Joe" is added to the subject by one authentication provider's
LoginModule, any other authentication provider in the security realm should be referring to

Chapter 3
Authentication Concepts

3-3

the same person when they encounter "Joe". In other words, the other authentication
providers' LoginModules should not attempt to add another principal to the subject that
represents a WebLogic Server user (for example, named "Joseph") to refer to the
same person. However, it is acceptable for a another authentication provider's
LoginModule to add a principal of a type other than WLSUser with the name "Joseph".

The LoginModule Interface
LoginModules can be written to handle a variety of authentication mechanisms,
including username/password combinations, smart cards, biometric devices, and so
on. You develop LoginModules by implementing the
javax.security.auth.spi.LoginModule interface, which is based on the Java
Authentication and Authorization Service (JAAS) and uses a subject as a container for
authentication information. The LoginModule interface enables you to plug in different
kinds of authentication technologies for use with a single application, and the
WebLogic Security Framework is designed to support multiple LoginModule
implementations for multipart authentication. You can also have dependencies across
LoginModule instances or share credentials across those instances. However, the
relationship between LoginModules and authentication providers is one-to-one. In
other words, to have a LoginModule that handles retina scan authentication and a
LoginModule that interfaces to a hardware device like a smart card, you must develop
and configure two authentication providers, each of which include an implementation
of the LoginModule interface. See Implement the JAAS LoginModule Interface.

Note:

You can also obtain LoginModules from third-party security vendors instead
of developing your own.

LoginModules and Multipart Authentication
The way you configure multiple authentication providers (and thus, multiple
LoginModules) can affect the overall outcome of the authentication process, which is
especially important for multipart authentication. First, because LoginModules are
components of authentication providers, they are called in the order in which the
authentication providers are configured. Generally, you configure authentication
providers using the WebLogic Server Administration Console. (See Specifying the
Order of Authentication Providers.) Second, the way each LoginModule's control flag is
set specifies how a failure during the authentication process should be handled.
Figure 3-2 illustrates a sample flow involving three different LoginModules (that are
part of three authentication providers), and illustrates what happens to the subject for
different authentication outcomes.

Chapter 3
Authentication Concepts

3-4

Figure 3-2 Sample LoginModule Flow

If the control flag for Custom Authentication Provider #1 had been set to Required, the
authentication failure in its User Authentication step would have caused the entire
authentication process to have failed. Also, if the user had not been authenticated by the
WebLogic Authentication provider (or custom authentication provider #2), the entire
authentication process would have failed. If the authentication process had failed in any of
these ways, all three LoginModules would have been rolled back and the subject would not
contain any principals.

Note:

See Java Authentication and Authorization Service (JAAS) LoginModule
Developer's Guide (http://docs.oracle.com/javase/8/docs/technotes/guides/
security/jaas/JAASLMDevGuide.html) and the LoginModule interface (http://
docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/
LoginModule.html), respectively.

Java Authentication and Authorization Service (JAAS)
Whether the client is an application, applet, Enterprise JavaBean (EJB), or servlet that
requires authentication, WebLogic Server uses the Java Authentication and Authorization
Service (JAAS) classes to reliably and securely authenticate to the client. JAAS implements a
Java version of the Pluggable Authentication Module (PAM) framework, which permits
applications to remain independent from underlying authentication technologies. Therefore,
the PAM framework allows the use of new or updated authentication technologies without
requiring modifications to your application.

WebLogic Server uses JAAS for remote fat-client authentication, and internally for
authentication. Therefore, only developers of custom authentication providers and developers
of remote fat client applications need to be involved with JAAS directly. Users of thin clients or
developers of within-container fat client applications (for example, those calling an Enterprise
JavaBean (EJB) from a servlet) do not require the direct use or knowledge of JAAS.

Chapter 3
Authentication Concepts

3-5

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html

How JAAS Works With the WebLogic Security Framework
Generically, authentication using the JAAS classes and WebLogic Security Framework
is performed in the following manner:

1. A client-side application obtains authentication information from a user or system
process. The mechanism by which this occurs is different for each type of client.

2. The client-side application can optionally create a CallbackHandler containing the
authentication information.

a. The client-side application passes the CallbackHandler to a local (client-side)
LoginModule using the LoginContext class. (The local LoginModule could be
UsernamePasswordLoginModule, which is provided as part of WebLogic
Server.)

b. The local LoginModule passes the CallbackHandler containing the
authentication information to the appropriate WebLogic Server container (for
example, RMI, EJB, servlet, or IIOP).

Note:

A CallbackHandler is a highly-flexible JAAS standard that allows a
variable number of arguments to be passed as complex objects to a
method. There are three types of CallbackHandlers: NameCallback,
PasswordCallback, and TextInputCallback, all of which reside in the
javax.security.auth.callback package. The NameCallback and
PasswordCallback return the username and password, respectively.
TextInputCallback can be used to access the data users enter into
any additional fields on a login form (that is, fields other than those
for obtaining the username and password). When used, there should
be one TextInputCallback per additional form field, and the prompt
string of each TextInputCallback must match the field name in the
form. WebLogic Server only uses the TextInputCallback for form-
based Web application login. See the CallbackHandler interface
(http://docs.oracle.com/javase/8/docs/api/javax/security/
auth/callback/CallbackHandler.html).

See the LoginContext class (http://docs.oracle.com/javase/8/
docs/api/javax/security/auth/login/LoginContext.html).

See Java API Reference for Oracle WebLogic Server for the
UsernamePasswordLoginModule class.

If you do not want to use a client-side LoginModule, you can specify
the username and password in other ways: for example, as part of
the initial JNDI lookup.

3. The WebLogic Server container calls into the WebLogic Security Framework. If
there is a client-side CallbackHandler containing authentication information, this is
passed into the WebLogic Security Framework.

4. For each of the configured authentication providers, the WebLogic Security
Framework creates a CallbackHandler using the authentication information that
was passed in. (These are internal CallbackHandlers created on the server-side

Chapter 3
Authentication Concepts

3-6

http://docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/CallbackHandler.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/CallbackHandler.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/LoginContext.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/LoginContext.html

by the WebLogic Security Framework, and are not related to the client's
CallbackHandler.)

5. The WebLogic Security Framework calls the LoginModule associated with the
authentication provider (that is, the LoginModule that is specifically designed to handle
the authentication information).

Note:

See LoginModules.

The LoginModule attempts to authenticate the client using the authentication information.

6. If the authentication is successful, the following occurs:

a. Principals (users and groups) are signed by a principal validation provider to ensure
their authenticity between programmatic server invocations. See Principal Validation
Providers.

b. The LoginModule associates the signed principals with a subject, which represents
the user or system process being authenticated. See Users and Groups, Principals
and Subjects.

Note:

For authentication performed entirely on the server-side, the process would
begin at step 3, and the WebLogic Server container would call the
weblogic.security.services.authentication.login method prior to step
4.

Example: Standalone T3 Application
Figure 3-3 illustrates how the JAAS classes work with the WebLogic Security Framework for
a standalone, T3 application, and an explanation follows.

Chapter 3
Authentication Concepts

3-7

Figure 3-3 Authentication Using JAAS Classes and WebLogic Server

For this example, authentication using the JAAS classes and WebLogic Security
Framework is performed in the following manner:

1. The T3 application obtains authentication information (username, password, and
URL) from a user or system process.

2. The T3 application creates a CallbackHandler containing the authentication
information.

a. The T3 application passes the CallbackHandler to the
UsernamePasswordLoginModule using the LoginContext class.

Note:

The
weblogic.security.auth.login.UsernamePasswordLoginModule
implements the standard JAAS
javax.security.auth.spi.LoginModule interface and uses client-
side APIs to authenticate a WebLogic client to a WebLogic Server
instance. It can be used for both T3 and IIOP clients. Callers of this
LoginModule must implement a CallbackHandler to pass the
username (NameCallback), password (PasswordCallback), and a
URL (URLCallback).

Chapter 3
Authentication Concepts

3-8

b. The UsernamePasswordLoginModule passes the CallbackHandler containing the
authentication information (that is, username, password, and URL) to the WebLogic
Server RMI container.

3. The WebLogic Server RMI container calls into the WebLogic Security Framework. The
client-side CallbackHandler containing authentication information is passed into the
WebLogic Security Framework.

4. For each of the configured authentication providers, the WebLogic Security Framework
creates a CallbackHandler containing the username, password, and URL that was
passed in. (These are internal CallbackHandlers created on the server-side by the
WebLogic Security Framework, and are not related to the client's CallbackHandler.)

5. The WebLogic Security Framework calls the LoginModule associated with the
authentication provider (that is, the LoginModule that is specifically designed to handle
the authentication information).

The LoginModule attempts to authenticate the client using the authentication information.

6. If the authentication is successful, the following occurs:

a. Principals (users and groups) are signed by a principal validation provider to ensure
their authenticity between programmatic server invocations.

b. The LoginModule associates the signed principals with a subject, which represents
the user or system being authenticated.

c. The WebLogic Security Framework returns the authentication status to the T3 client
application, and the T3 client application retrieves the authenticated subject from the
WebLogic Security Framework.

The Authentication Process
Figure 3-4 shows a behind-the-scenes look of the authentication process for a fat-client login.
JAAS runs on the server to perform the login. Even in the case of a thin-client login (that is, a
browser client) JAAS is still run on the server.

Figure 3-4 The Authentication Process

Chapter 3
The Authentication Process

3-9

Note:

Only developers of custom authentication providers will be involved with this
JAAS process directly. The client application could either use JNDI initial
context creation or JAAS to initiate the passing of the username and
password.

When a user attempts to log into a system using a username/password combination,
WebLogic Server establishes trust by validating that user's username and password,
and returns a subject that is populated with principals per JAAS requirements. As
Figure 3-4 also shows, this process requires the use of a LoginModule and a principal
validation provider, which are discussed in detail in LoginModules and Principal
Validation Providers respectively.

After successfully proving a caller's identity, an authentication context is established,
which allows an identified user or system to be authenticated to other entities.
Authentication contexts may also be delegated to an application component, allowing
that component to call another application component while impersonating the original
caller.

Do You Need to Develop a Custom Authentication Provider?
The default (that is, active) security realm for WebLogic Server includes a WebLogic
Authentication provider.

Note:

In conjunction with the WebLogic Authorization provider, the WebLogic
Authentication provider replaces the functionality of the File realm that was
available in 6.x releases of WebLogic Server.

The WebLogic Authentication provider supports delegated username/password
authentication, and utilizes an embedded LDAP server to store user and group
information. The WebLogic Authentication provider allows you to edit, list, and manage
users and group membership.

WebLogic Server also provides the following additional authentication providers that
you can use instead of or in conjunction with the WebLogic Authentication provider in
the default security realm:

• A set of LDAP authentication providers that access external LDAP stores
(including Open LDAP, iPlanet, Microsoft Active Directory, and Novell NDS).

• A set of Database Base Management System (DBMS) authentication providers
that access user, password, group, and group membership information stored in
databases for authentication

• A Windows NT Authentication provider that uses Windows NT users and groups
for authentication purposes.

• An LDAP X509 Identity Assertion provider.

Chapter 3
Do You Need to Develop a Custom Authentication Provider?

3-10

By default, these additional authentication providers are available but not configured in the
WebLogic default security realm.

If you want to perform additional authentication tasks, then you need to develop a custom
authentication provider.

Note:

If you want to perform perimeter authentication using a token type that is not
supported out of the box (for example, a new, custom, or third party token type), you
might need to develop a custom identity assertion provider. See Identity Assertion
Providers.

How to Develop a Custom Authentication Provider
If the WebLogic Authentication provider does not meet your needs, you can develop a
custom authentication provider by following these steps:

1. Create Runtime Classes Using the Appropriate SSPIs

2. Generate an MBean type for your custom authentication provider by completing the steps
described in Generate an MBean Type Using the WebLogic MBeanMaker.

3. Configure the Custom Authentication Provider Using the Administration Console

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

• Understand the Purpose of the Provider SSPIs

• Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes

When you understand this information and have made your design decisions, create the
runtime classes for your custom authentication provider by following these steps:

• Implement the AuthenticationProviderV2 SSPI

• Implement the JAAS LoginModule Interface

For an example of how to create a runtime class for a custom authentication provider, see
Example: Creating the Runtime Classes for the Sample Authentication Provider .

Implement the AuthenticationProviderV2 SSPI

Note:

The AuthenticationProvider SSPI is deprecated in this release of WebLogic
Server. Use the AuthenticationProviderV2 SSPI instead.

Chapter 3
How to Develop a Custom Authentication Provider

3-11

To implement the AuthenticationProviderV2 SSPI, provide implementations for the
methods described in Understand the Purpose of the Provider SSPIs and the following
methods:

• getLoginModuleConfiguration
public AppConfigurationEntry getLoginModuleConfiguration()

The getLoginModuleConfiguration method obtains information about the
authentication provider's associated LoginModule, which is returned as an
AppConfigurationEntry. The AppConfigurationEntry is a Java Authentication
and Authorization Service (JAAS) class that contains the classname of the
LoginModule; the LoginModule's control flag (which was passed in via the
authentication provider's associated MBean); and a configuration options map for
the LoginModule (which allows other configuration information to be passed into
the LoginModule).

To know about the AppConfigurationEntry class (located in the
javax.security.auth.login package) and the control flag options for
LoginModules, see the AppConfigurationEntry class (http://docs.oracle.com/
javase/8/docs/api/javax/security/auth/login/AppConfigurationEntry.html)
and the Configuration class (http://docs.oracle.com/javase/8/docs/api/
javax/security/auth/login/Configuration.html). See LoginModulesand
Understand Why You Need an MBean Type .

• getAssertionModuleConfiguration
public AppConfigurationEntry
getAssertionModuleConfiguration()

The getAssertionModuleConfiguration method obtains information about an
identity assertion provider's associated LoginModule, which is returned as an
AppConfigurationEntry. The AppConfigurationEntry is a JAAS class that
contains the classname of the LoginModule; the LoginModule's control flag (which
was passed in via the identity assertion provider's associated MBean); and a
configuration options map for the LoginModule (which allows other configuration
information to be passed into the LoginModule).

Chapter 3
How to Develop a Custom Authentication Provider

3-12

http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/AppConfigurationEntry.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/AppConfigurationEntry.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/Configuration.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/Configuration.html

Note:

The implementation of the getAssertionModuleConfiguration method can be
to return null, if you want the identity assertion provider to use the same
LoginModule as the authentication provider.

The assertIdentity() method of an identity assertion provider is called every
time identity assertion occurs, but the LoginModules may not be called if the
Subject is cached. The -Dweblogic.security.identityAssertionTTL flag can
be used to affect this behavior (for example, to modify the default TTL of 5
minutes or to disable the cache by setting the flag to -1).

It is the responsibility of the identity assertion provider to ensure not just that the
token is valid, but also that the user is still valid (for example, the user has not
been deleted).

To use the EJB <run-as-principal> element with a custom authentication
provider, use the getAssertionModuleConfiguration() method. This method
performs the identity assertion that validates the principal specified in the <run-
as-principal>element.

• getPrincipalValidator
public PrincipalValidator getPrincipalValidator()

The getPrincipalValidator method obtains a reference to the principal validation
provider's runtime class (that is, the PrincipalValidator SSPI implementation). In most
cases, the WebLogic Principal Validation provider can be used (see Example 3-1 for an
example of how to return the WebLogic Principal Validation provider). See Principal
Validation Providers.

• getIdentityAsserter
public IdentityAsserterV2 getIdentityAsserter()

The AuthenticationProviderV2 getIdentityAsserter method obtains a reference to the
new identity assertion provider's runtime class (that is, the IdentityAsserterV2 SSPI
implementation).

In most cases, the return value for this method will be null (see Example 3-1 for an
example). See Identity Assertion Providers.

See Java API Reference for Oracle WebLogic Server to know more about the
AuthenticationProviderV2 SSPI and the methods described above.

Implement the JAAS LoginModule Interface
To implement the JAAS javax.security.auth.spi.LoginModule interface, provide
implementations for the following methods:

• initialize
public void initialize (Subject subject, CallbackHandler callbackHandler, Map
sharedState, Map options)

The initialize method initializes the LoginModule. It takes as arguments a subject in
which to store the resulting principals, a CallbackHandler that the authentication provider

Chapter 3
How to Develop a Custom Authentication Provider

3-13

will use to call back to the container for authentication information, a map of any
shared state information, and a map of configuration options (that is, any
additional information you want to pass to the LoginModule).

A CallbackHandler is a highly-flexible JAAS standard that allows a variable
number of arguments to be passed as complex objects to a method. See the Java
SE 8.0 API Specification for the CallbackHandler interface (http://
docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/
CallbackHandler.html).

• login
public boolean login() throws LoginException

The login method attempts to authenticate the user and create principals for the
user by calling back to the container for authentication information. If multiple
LoginModules are configured (as part of multiple authentication providers), this
method is called for each LoginModule in the order that they are configured.
Information about whether the login was successful (that is, whether principals
were created) is stored for each LoginModule.

• commit
public boolean commit() throws LoginException

The commit method attempts to add the principals created in the login method to
the subject. This method is also called for each configured LoginModule (as part of
the configured authentication providers), and executed in order. Information about
whether the commit was successful is stored for each LoginModule.

• abort
public boolean abort() throws LoginException

The abort method is called for each configured LoginModule (as part of the
configured authentication providers) if any commits for the LoginModules failed (in
other words, the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL
LoginModules did not succeed). The abort method will remove that LoginModule's
principals from the subject, effectively rolling back the actions performed. See the
LoginModule interface (http://docs.oracle.com/javase/8/docs/api/javax/
security/auth/spi/LoginModule.html).

• logout
public boolean logout() throws LoginException

The logout method attempts to log the user out of the system. It also resets the
subject so that its associated principals are no longer stored.

Chapter 3
How to Develop a Custom Authentication Provider

3-14

http://docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/CallbackHandler.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/CallbackHandler.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/CallbackHandler.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html

Note:

The LoginModule.logout method is never called for the WebLogic
Authentication providers or custom authentication providers. This is simply
because once the principals are created and placed into a subject, the
WebLogic Security Framework no longer controls the lifecycle of the subject.
Therefore, the developer-written, user code that creates the JAAS LoginContext
to login and obtain the subject should also call the LoginContext.logout
method. When the user code runs in a Java client that uses JAAS directly, that
code has the option of calling the LoginContext.logout method, which clears
the subject. When the user code runs in a servlet, the servlet has the ability to
logout a user from a servlet session, which clears the subject.

See the Java Authentication and Authorization Service (JAAS) Developer's Guide (http://
docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/
JAASLMDevGuide.html) and the LoginModule interface (http://docs.oracle.com/javase/8/
docs/api/javax/security/auth/spi/LoginModule.html).

Throwing Custom Exceptions from LoginModules
You may want to throw a custom exception from a LoginModule you write. The custom
exception can then be caught by your application and appropriate action taken. For example,
if a PasswordChangeRequiredException is thrown from your LoginModule, you can catch that
exception within your application, and use it to forward users to a page that allows them to
change their password.

When you throw a custom exception from a LoginModule and want to catch it within your
application, you must ensure that:

1. The application catching the exception is running on the server. (Fat clients cannot catch
custom exceptions.)

2. Your servlet has access to the custom exception class at both compile time and deploy
time. You can do this using either of the following methods, depending on your
preference:

• Method 1: Make Custom Exceptions Available via the System and Compiler
Classpath

• Method 2: Make Custom Exceptions Available via the Application Classpath

Method 1: Make Custom Exceptions Available via the System and Compiler Classpath
1. Write an exception class that extends LoginException.

2. Use the custom exception class in your classes that implement the LoginModule and
AuthenticationProvider interfaces.

3. Put the custom exception class in both the system and compiler classpath when
compiling the security provider's runtime class.

4. Generate an MBean type for your custom authentication provider, as explained in
Generate an MBean Type Using the WebLogic MBeanMaker.

Method 2: Make Custom Exceptions Available via the Application Classpath

Chapter 3
How to Develop a Custom Authentication Provider

3-15

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html

1. Write an exception class that extends LoginException.

2. Use the custom exception class in your classes that implement the LoginModule
and AuthenticationProvider interfaces.

3. Put the custom exception's source in the classpath of the application's build, and
include it in the classpath of the application's JAR/WAR file.

4. Generate an MBean type for your custom authentication provider, as explained in
Generate an MBean Type Using the WebLogic MBeanMaker.

5. Add the custom exception class to the MJF (MBean JAR File) generated by the
WebLogic MBeanMaker.

6. Include the MJF when compiling your application.

Example: Creating the Runtime Classes for the Sample Authentication Provider
Example 3-1 shows the SimpleSampleAuthenticationProviderImpl.java class,
which is one of two runtime classes for the sample authentication provider. This
runtime class includes implementations for:

• The three methods inherited from the SecurityProvider interface: initialize,
getDescription and shutdown (as described in Understand the Purpose of the
Provider SSPIs.)

• The four methods in the AuthenticationProviderV2 SSPI: the
getLoginModuleConfiguration, getAssertionModuleConfiguration,
getPrincipalValidator, and getIdentityAsserter methods (as described in
Implement the AuthenticationProviderV2 SSPI).

Note:

The boldface code in Example 3-1 highlights the class declaration and
the method signatures.

Example 3-1 SimpleSampleAuthenticationProviderImpl.java

package examples.security.providers.authentication.simple;
import java.util.HashMap;
import javax.security.auth.login.AppConfigurationEntry;
import javax.security.auth.login.AppConfigurationEntry.LoginModuleControlFlag;
import weblogic.management.security.ProviderMBean;
import weblogic.security.spi.AuthenticationProviderV2;
import weblogic.security.spi.IdentityAsserterV2;
import weblogic.security.spi.PrincipalValidator;
import weblogic.security.spi.SecurityServices;
import weblogic.security.principal.WLSGroupImpl;
import weblogic.security.principal.WLSUserImpl;
public final class SimpleSampleAuthenticationProviderImpl implements AuthenticationProviderV2
{
 private String description;
 private SimpleSampleAuthenticatorDatabase database;
 private LoginModuleControlFlag controlFlag;
 public void initialize(ProviderMBean mbean, SecurityServices services)
 {
 System.out.println("SimpleSampleAuthenticationProviderImpl.initialize");
 SimpleSampleAuthenticatorMBean myMBean = (SimpleSampleAuthenticatorMBean)mbean;

Chapter 3
How to Develop a Custom Authentication Provider

3-16

 description = myMBean.getDescription() + "\n" + myMBean.getVersion();
 database = new SimpleSampleAuthenticatorDatabase(myMBean);
 String flag = myMBean.getControlFlag();
 if (flag.equalsIgnoreCase("REQUIRED")) {
 controlFlag = LoginModuleControlFlag.REQUIRED;
 } else if (flag.equalsIgnoreCase("OPTIONAL")) {
 controlFlag = LoginModuleControlFlag.OPTIONAL;
 } else if (flag.equalsIgnoreCase("REQUISITE")) {
 controlFlag = LoginModuleControlFlag.REQUISITE;
 } else if (flag.equalsIgnoreCase("SUFFICIENT")) {
 controlFlag = LoginModuleControlFlag.SUFFICIENT;
 } else {
 throw new IllegalArgumentException("invalid flag value" + flag);
 }
 }
 public String getDescription()
 {
 return description;
 }
 public void shutdown()
 {
 System.out.println("SimpleSampleAuthenticationProviderImpl.shutdown");
 }
 private AppConfigurationEntry getConfiguration(HashMap options)
 {
 options.put("database", database);
 return new
 AppConfigurationEntry(
 "examples.security.providers.authentication.Simple.Simple.SampleLoginModuleImpl",
 controlFlag,
 options
);
 }
 public AppConfigurationEntry getLoginModuleConfiguration()
 {
 HashMap options = new HashMap();
 return getConfiguration(options);
 }
 public AppConfigurationEntry getAssertionModuleConfiguration()
 {
 HashMap options = new HashMap();
 options.put("IdentityAssertion","true");
 return getConfiguration(options);
 }
 public PrincipalValidator getPrincipalValidator()
 {
 return new PrincipalValidatorImpl();
 }
 public IdentityAsserterV2 getIdentityAsserter()
 {
 return null;
 }
}

Example 3-2 shows the SampleLoginModuleImpl.java class, which is one of two runtime
classes for the sample authentication provider. This runtime class implements the JAAS
LoginModule interface (as described in Implement the JAAS LoginModule Interface), and
therefore includes implementations for its initialize, login, commit, abort, and logout
methods.

Chapter 3
How to Develop a Custom Authentication Provider

3-17

Note:

The boldface code in Example 3-2 highlights the class declaration and the
method signatures.

Example 3-2 SimpleSampleLoginModuleImpl.java

package examples.security.providers.authentication.simple;
import java.io.IOException;
import java.util.Enumeration;
import java.util.Map;
import java.util.Vector;
import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.UnsupportedCallbackException;
import javax.security.auth.login.LoginException;
import javax.security.auth.login.FailedLoginException;
import javax.security.auth.spi.LoginModule;
import weblogic.management.utils.NotFoundException;
import weblogic.security.spi.WLSGroup;
import weblogic.security.spi.WLSUser;
import weblogic.security.principal.WLSGroupImpl;
import weblogic.security.principal.WLSUserImpl;
final public class SimpleSampleLoginModuleImpl implements LoginModule
{
 private Subject subject;
 private CallbackHandler callbackHandler;
 private SimpleSampleAuthenticatorDatabase database;
 // Determine whether this is a login or assert identity
 private boolean isIdentityAssertion;
 // Authentication status
 private boolean loginSucceeded;
 private boolean principalsInSubject;
 private Vector principalsForSubject = new Vector();
 public void initialize(Subject subject, CallbackHandler callbackHandler, Map
 sharedState, Map options)
 {
 // only called (once!) after the constructor and before login
 System.out.println("SimpleSampleLoginModuleImpl.initialize");
 this.subject = subject;
 this.callbackHandler = callbackHandler;
 // Check for Identity Assertion option
 isIdentityAssertion =
 "true".equalsIgnoreCase((String)options.get("IdentityAssertion"));
 database = (SimpleSampleAuthenticatorDatabase)options.get("database");
 }
 public boolean login() throws LoginException
 {
 // only called (once!) after initialize
 System.out.println("SimpleSampleLoginModuleImpl.login");
 // loginSucceeded should be false
 // principalsInSubject should be false

 Callback[] callbacks = getCallbacks();
 String userName = getUserName(callbacks);

Chapter 3
How to Develop a Custom Authentication Provider

3-18

 if (userName.length() > 0) {
 if (!database.userExists(userName)) {
 throwFailedLoginException("Authentication Failed: User " + userName
 + " doesn't exist.");
 }
 if (!isIdentityAssertion) {
 String passwordWant = null;
 try {
 passwordWant = database.getUserPassword(userName);
 } catch (NotFoundException shouldNotHappen) {}
 String passwordHave = getPasswordHave(userName, callbacks);
 if (passwordWant == null || !passwordWant.equals(passwordHave)) {
 throwFailedLoginException(
 "Authentication Failed: User " + userName + " bad password."
);
 }
 }
 } else {
 // anonymous login - let it through?
 System.out.println("\tempty userName");
 }
 loginSucceeded = true;
 principalsForSubject.add(new WLSUserImpl(userName));
 addGroupsForSubject(userName);
 return loginSucceeded;
 }
 public boolean commit() throws LoginException
 {
 // only called (once!) after login
 // loginSucceeded should be true or false
 // principalsInSubject should be false
 // user should be null if !loginSucceeded, null or not-null otherwise
 // group should be null if user == null, null or not-null otherwise

 System.out.println("SimpleSampleLoginModule.commit");
 if (loginSucceeded) {
 subject.getPrincipals().addAll(principalsForSubject);
 principalsInSubject = true;
 return true;
 } else {
 return false;
 }
 }
 public boolean abort() throws LoginException
 {
 // The abort method is called to abort the authentication process. This is
 // phase 2 of authentication when phase 1 fails. It is called if the
 // LoginContext's overall authentication failed.
 // loginSucceeded should be true or false
 // user should be null if !loginSucceeded, otherwise null or not-null
 // group should be null if user == null, otherwise null or not-null
 // principalsInSubject should be false if user is null, otherwise true
 // or false

 System.out.println("SimpleSampleLoginModule.abort");
 if (principalsInSubject) {
 subject.getPrincipals().removeAll(principalsForSubject);
 principalsInSubject = false;
 }
 return true;
 }

Chapter 3
How to Develop a Custom Authentication Provider

3-19

 public boolean logout() throws LoginException
 {
 // should never be called
 System.out.println("SimpleSampleLoginModule.logout");
 return true;
 }
 private void throwLoginException(String msg) throws LoginException
 {
 System.out.println("Throwing LoginException(" + msg + ")");
 throw new LoginException(msg);
 }
 private void throwFailedLoginException(String msg) throws FailedLoginException
 {
 System.out.println("Throwing FailedLoginException(" + msg + ")");
 throw new FailedLoginException(msg);
 }
 private Callback[] getCallbacks() throws LoginException
 {
 if (callbackHandler == null) {
 throwLoginException("No CallbackHandler Specified");
 }
 if (database == null) {
 throwLoginException("database not specified");
 }
 Callback[] callbacks;
 if (isIdentityAssertion) {
 callbacks = new Callback[1];
 } else {
 callbacks = new Callback[2];
 callbacks[1] = new PasswordCallback("password: ",false);
 }
 callbacks[0] = new NameCallback("username: ");
 try {
 callbackHandler.handle(callbacks);
 } catch (IOException e) {
 throw new LoginException(e.toString());
 } catch (UnsupportedCallbackException e) {
 throwLoginException(e.toString() + " " + e.getCallback().toString());
 }
 return callbacks;
 }
 private String getUserName(Callback[] callbacks) throws LoginException
 {
 String userName = ((NameCallback)callbacks[0]).getName();
 if (userName == null) {
 throwLoginException("Username not supplied.");
 }
 System.out.println("\tuserName\t= " + userName);
 return userName;
 }
 private void addGroupsForSubject(String userName)
 {
 for (Enumeration e = database.getUserGroups(userName);
 e.hasMoreElements();) {
 String groupName = (String)e.nextElement();
 System.out.println("\tgroupName\t= " + groupName);
 principalsForSubject.add(new WLSGroupImpl(groupName));
 }
 }
 private String getPasswordHave(String userName, Callback[] callbacks) throws
 LoginException

Chapter 3
How to Develop a Custom Authentication Provider

3-20

 {
 PasswordCallback passwordCallback = (PasswordCallback)callbacks[1];
 char[] password = passwordCallback.getPassword();
 passwordCallback.clearPassword();
 if (password == null || password.length < 1) {
 throwLoginException("Authentication Failed: User " + userName + ".
 Password not supplied");
 }
 String passwd = new String(password);
 System.out.println("\tpasswordHave\t= " + passwd);
 return passwd;
 }
}

Configure the Custom Authentication Provider Using the Administration
Console

Configuring a custom authentication provider means that you are adding the custom
authentication provider to your security realm, where it can be accessed by applications
requiring authentication services.

Configuring custom security providers is an administrative task, but it is a task that may also
be performed by developers of custom security providers. This section contains information
that is important for the person configuring your custom authentication providers:

• Managing User Lockouts

• Specifying the Order of Authentication Providers

Note:

The steps for configuring a custom authentication provider using the WebLogic
Server Administration Console are described in Configuring WebLogic Security
Providers in Administering Security for Oracle WebLogic Server.

Managing User Lockouts
As part of using a custom authentication provider, you need to consider how you will
configure and manage user lockouts. You have two choices for doing this:

• Rely on the Realm-Wide User Lockout Manager

• Implement Your Own User Lockout Manager

Rely on the Realm-Wide User Lockout Manager
The WebLogic Security Framework provides a realm-wide User Lockout Manager that works
directly with the WebLogic Security Framework to manage user lockouts.

Chapter 3
How to Develop a Custom Authentication Provider

3-21

Note:

Both the realm-wide User Lockout Manager and a WebLogic Server
PasswordValidatorMBean (at the realm level) may be active. See Java API
Reference for Oracle WebLogic Server.

If you decide to rely on the realm-wide User Lockout Manager, then all you must do to
make it work with your custom authentication provider is use the WebLogic Server
Administration Console to:

1. Ensure that User Lockout is enabled. (It should be enabled by default.)

2. Modify any parameters for User Lockout (as necessary).

Note:

Changes to the User Lockout Manager do not take effect until you reboot
the server. Instructions for using the WebLogic Server Administration
Console to perform these tasks are described in Protecting User
Accounts in Administering Security for Oracle WebLogic Server.

Implement Your Own User Lockout Manager
If you decide to implement your own User Lockout Manager as part of your custom
authentication provider, then you must:

1. Disable the realm-wide User Lockout Manager to prevent double lockouts from
occurring. (When you create a new security realm using the WebLogic Server
Administration Console, a User Lockout Manager is always created.) Instructions
for performing this task are provided in Protecting User Accounts in Administering
Security for Oracle WebLogic Server.

2. Because you cannot borrow anything from the WebLogic Security Framework's
realm-wide implementation, you must also perform the following tasks:

a. Provide the implementation for your User Lockout Manager. Note that there is
no security service provider interface (SSPI) provided for User Lockout
Managers.

b. Modify an MBean by which the User Lockout Manager can be managed.

c. If you plan to manage your User Lockout Manager from the console,
incorporate the User Lockout Manager into the WebLogic Server
Administration Console using console extensions.

Specifying the Order of Authentication Providers
As described in LoginModules and Multipart Authentication, the order in which you
configure multiple authentication providers (and thus LoginModules) affects the
outcome of the authentication process.

You can configure authentication providers in any order. However, if you need to
reorder your configured authentication providers, follow the steps described in

Chapter 3
How to Develop a Custom Authentication Provider

3-22

Changing the Order of Authentication Providers in Administering Security for Oracle
WebLogic Server.

Chapter 3
How to Develop a Custom Authentication Provider

3-23

4
Identity Assertion Providers

This chapter describes identity assertion provider concepts and functionality, and provides
step-by-step instructions for developing a custom identity assertion provider.
An identity assertion provider is a specific form of authentication provider that allows users or
system processes to assert their identity using tokens (in other words, perimeter
authentication). identity assertion providers enable perimeter authentication and support
single sign-on. You can use an identity assertion provider in place of an authentication
provider if you create a LoginModule for the identity assertion provider, or in addition to an
authentication provider if you want to use the authentication provider's LoginModule.

If you want to allow the identity assertion provider to be configured separately from the
authentication provider, write two providers. If your identity assertion provider and
authentication provider cannot work independently, then write one provider.

This chapter includes the following sections:

• Identity Assertion Concepts

• The Identity Assertion Process

• Do You Need to Develop a Custom Identity Assertion Provider?

• How to Develop a Custom Identity Assertion Provider

Identity Assertion Concepts
Before you develop an identity assertion provider, you need to understand the following
concepts:

• Identity Assertion Providers and LoginModules

• Identity Assertion and Tokens

• Passing Tokens for Perimeter Authentication

• Common Secure Interoperability Version 2 (CSIv2)

Identity Assertion Providers and LoginModules
When used with a LoginModule, identity assertion providers support single sign-on. For
example, an identity assertion provider can generate a token from a digital certificate, and
that token can be passed around the system so that users are not asked to sign on more
than once.

The LoginModule that an identity assertion provider uses can be:

• Part of a custom authentication provider you develop. For more information, see
Authentication Providers.

• Part of the WebLogic Authentication provider Oracle developed and packaged with
WebLogic Server. See Do You Need to Develop a Custom Authentication Provider?.

• Part of a third-party security vendor's authentication provider.

4-1

Unlike in a simple authentication situation (described in The Authentication Process),
the LoginModules that identity assertion providers use do not verify proof material
such as usernames and passwords; they simply verify that the user exists.

The LoginModules in this configuration must:

• Populate the Subject with required Principals, such as those of type WLSGroup.

• Must trust that the user has submitted sufficient proof to login and not require a
password or some other proof material.

You must implement the
AuthenticationProviderV2.getAssertionModuleConfiguration method in your
custom authentication provider, as described in Implement the
AuthenticationProviderV2 SSPI. This method is called for identity assertion, such as
when an X.509 certificate is being used, and to process the run-as tag in deployment
descriptors. Other single signon strategies use it as well.

Note:

See LoginModules.

Identity Assertion and Tokens
You develop identity assertion providers to support the specific types of tokens that
you will be using to assert the identities of users or system processes. You can
develop an identity assertion provider to support multiple token types, but you or an
administrator configure the identity assertion provider so that it validates only one
active token type. While you can have multiple identity assertion providers in a
security realm with the ability to validate the same token type, only one identity
assertion provider can actually perform this validation.

Note:

Supporting token types means that the identity assertion provider's runtime
class (that is, the IdentityAsserter SSPI implementation) can validate the
token type in its assertIdentity method. See Implement the
IdentityAsserterV2 SSPI.

The following sections will help you work with new token types:

• How to Create New Token Types

• How to Make New Token Types Available for Identity Assertion Provider
Configurations

How to Create New Token Types
If you develop a custom identity assertion provider, you can also create new token
types. A token type is simply a piece of data represented as a string. The token types
you create and use are completely up to you. The token types currently defined for the

Chapter 4
Identity Assertion Concepts

4-2

WebLogic Identity Assertion provider include: AuthenticatedUser, X.509,
CSI.PrincipalName, CSI.ITTAnonymous, CSI.X509CertChain, CSI.DistinguishedName, and
wsse:PasswordDigest.

To create new token types, you create a new Java file and declare any new token types as
variables of type String., as shown in Example 4-1. The
PerimeterIdentityAsserterTokenTypes.java file defines the names of the token types Test
1, Test 2, and Test 3 as strings.

Note:

If you are defining only one new token type, you can also do it right in the identity
assertion provider's runtime class, as shown in Example 4-4.

Example 4-1 PerimeterIdentityAsserterTokenTypes.java

package sample.security.providers.authentication.perimeterATN;
public class PerimeterIdentityAsserterTokenTypes
{
 public final static String TEST1_TYPE = 'Test 1";
 public final static String TEST2_TYPE = 'Test 2";
 public final static String TEST3_TYPE = 'Test 3";
}

How to Make New Token Types Available for Identity Assertion Provider
Configurations

When you or an administrator configure a custom identity assertion provider (see Configure
the Custom Identity Assertion Provider Using the Administration Console), the Supported
Types field displays a list of the token types that the identity assertion provider supports. You
enter one of the supported types in the Active Types field, as shown in Figure 4-1.

Figure 4-1 Configuring the Sample Identity Assertion Provider

The content for the Supported Types field is obtained from the SupportedTypes attribute of
the MBean Definition File (MDF), which you use to generate your custom identity assertion
provider's MBean type. An example from the sample identity assertion provider is shown in
Example 4-2. (See Generate an MBean Type Using the WebLogic MBeanMaker.)

Example 4-2 SampleIdentityAsserter MDF: SupportedTypes Attribute

<MBeanType>
...

Chapter 4
Identity Assertion Concepts

4-3

 <MBeanAttribute
 Name = "SupportedTypes"
 Type = "java.lang.String[]"
 Writeable = "false"
 Default = "new String[] {"SamplePerimeterAtnToken"}"
 />
...
</MBeanType>

Similarly, the content for the Active Types field is obtained from the ActiveTypes
attribute of the MBean Definition File (MDF). You or an administrator can default the
ActiveTypes attribute in the MDF so that it does not have to be set manually with the
WebLogic Server Administration Console. An example from the sample identity
assertion provider is shown in Example 4-3.

Example 4-3 SampleIdentityAsserter MDF: ActiveTypes Attribute with Default

<MBeanAttribute
 Name= "ActiveTypes"
 Type= "java.lang.String[]"
 Default = "new String[] { "SamplePerimeterAtnToken" }"
/>

While defaulting the ActiveTypes attribute is convenient, you should only do this if no
other identity assertion provider will ever validate that token type. Otherwise, it would
be easy to configure an invalid security realm (where more than one identity assertion
provider attempts to validate the same token type). Best practice dictates that all
MDFs for identity assertion providers turn off the token type by default; then an
administrator can manually make the token type active by configuring the identity
assertion provider that validates it.

Note:

If an identity assertion provider is not developed and configured to validate
and accept a token type, the authentication process will fail. For more
information about configuring an identity assertion provider, see Configure
the Custom Identity Assertion Provider Using the Administration Console .

Passing Tokens for Perimeter Authentication
An identity assertion provider can pass tokens from Java clients to servlets for the
purpose of perimeter authentication. Tokens can be passed using HTTP headers,
cookies, SSL certificates, or other mechanisms. For example, a string that is base 64-
encoded (which enables the sending of binary data) can be sent to a servlet through
an HTTP header. The value of this string can be a username, or some other string
representation of a user's identity. The identity assertion provider used for perimeter
authentication can then take that string and extract the username.

If the token is passed through HTTP headers or cookies, the token is equal to the
header or cookie name, and the resource container passes the token to the part of the
WebLogic Security Framework that handles authentication. The WebLogic Security
Framework then passes the token to the identity assertion provider, unchanged.

WebLogic Server is designed to extend the single sign-on concept all the way to the
perimeter through support for identity assertion. Identity assertion allows WebLogic

Chapter 4
Identity Assertion Concepts

4-4

Server to use the authentication mechanism provided by perimeter authentication schemes
such as the Security Assertion Markup Language (SAML), the Simple and Protected GSS-
API Negotiation Mechanism (SPNEGO), or enhancements to protocols such as Common
Secure Interoperability (CSI) v2 to achieve this functionality.

Common Secure Interoperability Version 2 (CSIv2)
WebLogic Server provides support for an Enterprise JavaBean (EJB) interoperability protocol
based on Internet Inter-ORB (IIOP) (GIOP version 1.2) and the CORBA Common Secure
Interoperability version 2 (CSIv2) specification. CSIv2 support in WebLogic Server:

• Interoperates with the Java Platform, Enterprise Edition (Java EE) reference
implementation.

• Allows WebLogic Server IIOP clients to specify a username and password in the same
manner as T3 clients.

• Supports Generic Security Services Application Programming Interface (GSSAPI) initial
context tokens. For this release, only usernames and passwords and GSSUP (Generic
Security Services Username Password) tokens are supported.

Note:

The CSIv2 implementation in WebLogic Server passed Java EE Compatibility
Test Suite (CTS) conformance testing.

The external interface to the CSIv2 implementation is a JAAS LoginModule that retrieves the
username and password of the CORBA object. The JAAS LoginModule can be used in a
WebLogic Java client or in a WebLogic Server instance that acts as a client to another Java
EE application server. The JAAS LoginModule for the CSIv2 support is called
UsernamePasswordLoginModule, and is located in the weblogic.security.auth.login
package.

CSIv2 works in the following manner:

1. When creating a Security Extensions to Interoperable Object Reference (IOR), WebLogic
Server adds a tagged component identifying the security mechanisms that the CORBA
object supports. This tagged component includes transport information, client
authentication information, and identity token/authorization token information.

2. The client evaluates the security mechanisms in the IOR and selects the mechanism that
supports the options required by the server.

3. The client uses the SAS protocol to establish a security context with WebLogic Server.
The SAS protocol defines messages contained within the service context of requests and
replies. A context can be stateful or stateless.

For information about using CSIv2, see Common Secure Interoperability Version 2 in
Understanding Security for Oracle WebLogic Server. See LoginModules.

The Identity Assertion Process
In perimeter authentication, a system outside of WebLogic Server establishes trust via
tokens (as opposed to the type of authentication described in The Authentication Process,
where WebLogic Server establishes trust via usernames and passwords). Identity assertion

Chapter 4
The Identity Assertion Process

4-5

providers are used as part of perimeter authentication process, which works as follows
(see Figure 4-2):

1. A token from outside of WebLogic Server is passed to an identity assertion
provider that is responsible for validating tokens of that type and that is configured
as active.

2. If the token is successfully validated, the identity assertion provider maps the
token to a WebLogic Server username, and sends that username back to
WebLogic Server, which then continues the authentication process as described in
The Authentication Process. Specifically, the username is sent via a Java
Authentication and Authorization Service (JAAS) CallbackHandler and passed to
each configured authentication provider's LoginModule, so that the LoginModule
can populate the subject with the appropriate principals.

Figure 4-2 Perimeter Authentication

As Figure 4-2 also shows, perimeter authentication requires the same components as
the authentication process described in The Authentication Process, but also adds an
identity assertion provider.

Do You Need to Develop a Custom Identity Assertion
Provider?

The WebLogic Identity Assertion providers support certificate authentication using
X509 certificates, SPNEGO tokens, SAML assertion tokens, and CORBA Common
Secure Interoperability version 2 (CSIv2) identity assertion.

The LDAP X509 Identity Assertion provider receives an X509 certificate, looks up the
LDAP object for the user associated with that certificate, ensures that the certificate in
the LDAP object matches the presented certificate, and then retrieves the name of the
user from the LDAP object for the purpose of authentication.

The Negotiate Identity Assertion provider is used for SSO with Microsoft clients that
support the SPNEGO protocol. The Negotiate Identity Assertion provider decodes
SPNEGO tokens to obtain Kerberos tokens, validates the Kerberos tokens, and maps
Kerberos tokens to WebLogic users. The Negotiate Identity Assertion provider utilizes

Chapter 4
Do You Need to Develop a Custom Identity Assertion Provider?

4-6

the Java Generic Security Service (GSS) Application Programming Interface (API) to accept
the GSS security context via Kerberos. The Negotiate Identity Assertion provider is for
Windows NT Integrated Login.

The SAML Identity Assertion providers handle SAML assertion tokens when WebLogic
Server acts as a SAML destination site. The SAML Identity Assertion providers consume and
validate SAML assertion tokens and determines if the assertion is to be trusted (using either
the proof material available in the SOAP message, the client certificate, or some other
configuration indicator).

The default WebLogic Identity Assertion provider validates the token type, then maps X509
digital certificates and X501 distinguished names to WebLogic usernames. It also specifies a
list of trusted client principals to use for CSIv2 identity assertion. The wildcard character (*)
can be used to specify that all principals are trusted. If a client is not listed as a trusted client
principal, the CSIv2 identity assertion fails and the invoke is rejected.

Note:

To use the WebLogic Identity Assertion provider for X.501 and X.509 certificates,
you have the option of using the default user name mapper that is supplied with the
WebLogic Server product
(weblogic.security.providers.authentication.DefaultUserNameMapperImpl) or
providing you own implementation of the
weblogic.security.providers.authentication.UserNameMapper interface.

This interface maps a X.509 certificate to a WebLogic Server user name according
to whatever scheme is appropriate for your needs. You can also use this interface
to map from an X.501 distinguished name to a user name. You specify your
implementation of this interface when you use the WebLogic Server Administration
Console to configure an identity assertion provider.

The WebLogic Identity Assertion providers support the following token types:

• AU_TYPE, for a WebLogic AuthenticatedUser used as a token.

• X509_TYPE, for an X509 client certificate used as a token.

• CSI_PRINCIPAL_TYPE, for a CSIv2 principal name identity used as a token.

• CSI_ANONYMOUS_TYPE, for a CSIv2 anonymous identity used as a token.

• CSI_X509_CERTCHAIN_TYPE, for a CSIv2 X509 certificate chain identity used as a token.

• CSI_DISTINGUISHED_NAME_TYPE, for a CSIv2 distinguished name identity used as a token.

• AUTHORIZATION_NEGOTIATE, for a SPNEGO internal token used as a token.

• SAML_ASSERTION_B64_TYPE, for a Base64 encoded SAML.assertion used as a token.

• SAML_ASSERTION_DOM_TYPE, for a SAML DOM element used as a token.

• SAML_ASSERTION_TYPE, for a SAML string XML form used as a token.

• SAML2_ASSERTION_DOM_TYPE, for a SAML2 DOM element used as a token.

• SAML2_ASSERTION_TYPE, for a SAML2 string XML form used as a token.

• SAML_SSO_CREDENTIAL_TYPE, for a SAML string consisting of the TARGET parameter
concatenated with the assertion itself and used as a token.

Chapter 4
Do You Need to Develop a Custom Identity Assertion Provider?

4-7

• WSSE_PASSWORD_DIGEST_TYPE, for a username token with a password type of
password digest used as a token.

• WWW_AUTHENTICATE_NEGOTIATE, for a SPNEGO internal token used as a token.

If you want to perform additional identity assertion tasks or create new token types,
then you need to develop a custom identity assertion provider.

How to Develop a Custom Identity Assertion Provider
If the WebLogic Identity Assertion provider does not meet your needs, you can
develop a custom identity assertion provider by following these steps:

1. Create Runtime Classes Using the Appropriate SSPIs

2. Generate an MBean type for your custom identity assertion provider by completing
the steps described in Generate an MBean Type Using the WebLogic
MBeanMaker.

3. Configure the Custom Identity Assertion Provider Using the Administration
Console

4. Consider whether you need to implement challenge identity assertion, as
described in Challenge Identity Assertion.

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

• Understand the Purpose of the Provider SSPIs

• Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom identity assertion provider by following these
steps:

• Implement the AuthenticationProviderV2 SSPI

• Implement the IdentityAsserterV2 SSPI

Note:

If you want to create a separate LoginModule for your custom identity
assertion provider (that is, not use the LoginModule from your
authentication provider), you also need to implement the JAAS
LoginModule interface, as described in Implement the JAAS
LoginModule Interface.

For an example of how to create a runtime class for a custom identity assertion
provider, see Example: Creating the Runtime Class for the Sample Identity Assertion
Provider .

Chapter 4
How to Develop a Custom Identity Assertion Provider

4-8

Implement the AuthenticationProviderV2 SSPI

Note:

The AuthenticationProvider SSPI is deprecated in this release of WebLogic
Server. Use the AuthenticationProviderV2 SSPI instead.

To implement the AuthenticationProviderV2 SSPI, provide implementations for the
methods described in Understand the Purpose of the Provider SSPIs and the following
methods:

• getLoginModuleConfiguration

public AppConfigurationEntry getLoginModuleConfiguration()

The getLoginModuleConfiguration method obtains information about the authentication
provider's associated LoginModule, which is returned as an AppConfigurationEntry. The
AppConfigurationEntry is a Java Authentication and Authorization Service (JAAS) class
that contains the classname of the LoginModule; the LoginModule's control flag (which
was passed in via the authentication provider's associated MBean); and a configuration
options map for the LoginModule (which allows other configuration information to be
passed into the LoginModule).

For more information about the AppConfigurationEntry class (located in the
javax.security.auth.login package) and the control flag options for LoginModules,
see the AppConfigurationEntry class (http://docs.oracle.com/javase/8/docs/api/
javax/security/auth/login/AppConfigurationEntry.html) and the Configuration
class (http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/
Configuration.html). For more information about LoginModules, see LoginModules. For
more information about security providers and MBeans, see Understand Why You Need
an MBean Type .

• getAssertionModuleConfiguration

public AppConfigurationEntry
getAssertionModuleConfiguration()

The getAssertionModuleConfiguration method obtains information about an identity
assertion provider's associated LoginModule, which is returned as an
AppConfigurationEntry. The AppConfigurationEntry is a JAAS class that contains the
classname of the LoginModule; the LoginModule's control flag (which was passed in via
the identity assertion provider's associated MBean); and a configuration options map for
the LoginModule (which allows other configuration information to be passed into the
LoginModule).

The LoginModules in this configuration must populate the Subject with required
Principals, such as those of type WLSGroup, and must trust that the user has submitted
sufficient proof to login and not require a password or some other proof material.

Chapter 4
How to Develop a Custom Identity Assertion Provider

4-9

http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/AppConfigurationEntry.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/AppConfigurationEntry.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/Configuration.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/Configuration.html

Note:

The assertIdentity() method of an identity assertion provider is called
every time identity assertion occurs, but the LoginModules may not be
called if the Subject is cached. The -
Dweblogic.security.identityAssertionTTL flag can be used to affect
this behavior (for example, to modify the default TTL of 5 minutes or to
disable the cache by setting the flag to -1).

It is the responsibility of the identity assertion provider to ensure not just
that the token is valid, but also that the user is still valid (for example, the
user has not been deleted).

• getPrincipalValidator

public PrincipalValidator getPrincipalValidator()

The getPrincipalValidator method obtains a reference to the principal validation
provider's runtime class (that is, the PrincipalValidator SSPI implementation).
For more information, see Principal Validation Providers.

• getIdentityAsserter

public IdentityAsserterV2 getIdentityAsserter()

The getIdentityAsserter method obtains a reference to the identity assertion
provider's runtime class (that is, the IdentityAsserterV2 SSPI implementation).
For more information, see Implement the IdentityAsserterV2 SSPI.

Note:

When the LoginModule used for the identity assertion provider is the
same as that used for an existing authentication provider,
implementations for the methods in the AuthenticationProviderV2
SSPI (excluding the getIdentityAsserter method) for identity assertion
providers can just return null. An example of this is shown in
Example 4-4.

See Java API Reference for Oracle WebLogic Server to know more about the
AuthenticationProviderV2 SSPI and the methods described above.

Implement the IdentityAsserterV2 SSPI

Note:

The IdentityAsserterV2 SSPI includes additional token types and a
handler parameter to the assertIdentity method that can optionally be
used to obtain additional information when asserting the identity. Although
the IdentityAsserter SSPI is still supported, you should consider using the
IdentityAsserterV2 SSPI instead.

Chapter 4
How to Develop a Custom Identity Assertion Provider

4-10

To implement the IdentityAsserterV2 SSPI, provide implementations for the following
method:

• assertIdentity

public CallbackHandler assertIdentity(String type, Object token, ContextHandler
handler) throws IdentityAssertionException;

The assertIdentity method asserts an identity based on the token identity information
that is supplied. In other words, the purpose of this method is to validate any tokens that
are not currently trusted against trusted client principals. The type parameter represents
the token type to be used for the identity assertion. Note that identity assertion types are
case insensitive. The token parameter contains the actual identity information. The
handler parameter is a ContextHandler object that can optionally be used to obtain
additional information that may be used in asserting the identity. The CallbackHandler
returned from the assertIdentity method is passed to all configured authentication
providers' LoginModules to perform principal mapping, and should contain the asserted
username. If the CallbackHandler is null, this signifies that the anonymous user should
be used.

A CallbackHandler is a highly-flexible JAAS standard that allows a variable number of
arguments to be passed as complex objects to a method. For more information about
CallbackHandlers, see the CallbackHandler interface (http://docs.oracle.com/
javase/8/docs/api/javax/security/auth/callback/CallbackHandler.html).

Note:

The assertIdentity() method of an identity assertion provider is called every
time identity assertion occurs, but the LoginModules may not be called if the
Subject is cached. The -Dweblogic.security.identityAssertionTTL flag can
be used to affect this behavior (for example, to modify the default TTL of 5
minutes or to disable the cache by setting the flag to -1).

It is the responsibility of the identity assertion provider to ensure not just that the
token is valid, but also that the user is still valid (for example, the user has not
been deleted).

See Java API Reference for Oracle WebLogic Server to know more about the
IdentityAsserterV2 SSPI and the methods described above.

Example: Creating the Runtime Class for the Sample Identity Assertion Provider
Example 4-4 shows the SampleIdentityAsserterProviderImpl.java class, which is the
runtime class for the sample identity assertion provider. This runtime class includes
implementations for:

• The three methods inherited from the SecurityProvider interface: initialize,
getDescription, and shutdown (as described in Understand the Purpose of the Provider
SSPIs.)

• The four methods in the AuthenticationProviderV2 SSPI: the
getLoginModuleConfiguration, getAssertionModuleConfiguration,
getPrincipalValidator, and getIdentityAsserter methods (as described in Implement
the AuthenticationProviderV2 SSPI.

Chapter 4
How to Develop a Custom Identity Assertion Provider

4-11

http://docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/CallbackHandler.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/CallbackHandler.html

• The method in the IdentityAsserterV2 SSPI: the assertIdentity method
(described in Implement the IdentityAsserterV2 SSPI).

Note:

The bold face code in Example 4-4 highlights the class declaration and
the method signatures.

Example 4-4 SampleIdentityAsserterProviderImpl.java

package examples.security.providers.identityassertion.simple;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.AppConfigurationEntry;
import weblogic.management.security.ProviderMBean;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.AuthenticationProviderV2;
import weblogic.security.spi.IdentityAsserterV2;
import weblogic.security.spi.IdentityAssertionException;
import weblogic.security.spi.PrincipalValidator;
import weblogic.security.spi.SecurityServices;
public final class SimpleSampleIdentityAsserterProviderImpl implements AuthenticationProviderV2,
IdentityAsserterV2
{
 final static private String TOKEN_TYPE = "SamplePerimeterAtnToken";
 final static private String TOKEN_PREFIX = "username=";
 private String description;
 public void initialize(ProviderMBean mbean, SecurityServices services)
 {
 System.out.println("SimpleSampleIdentityAsserterProviderImpl.initialize");
 SimpleSampleIdentityAsserterMBean myMBean = (SimpleSampleIdentityAsserterMBean)mbean;
 description = myMBean.getDescription() + "\n" + myMBean.getVersion();
 }
 public String getDescription()
 {
 return description;
 }
 public void shutdown()
 {
 System.out.println("SimpleSampleIdentityAsserterProviderImpl.shutdown");
 }
 public IdentityAsserterV2 getIdentityAsserter()
 {
 return this;
 }
 public CallbackHandler assertIdentity(String type, Object token, ContextHandler context)
throws
 IdentityAssertionException
 {
 System.out.println("SimpleSampleIdentityAsserterProviderImpl.assertIdentity");
 System.out.println("\tType\t\t= " + type);
 System.out.println("\tToken\t\t= " + token);
 if (!(TOKEN_TYPE.equals(type))) {
 String error = "SimpleSampleIdentityAsserter received unknown token type \""
 + type + "\"." + " Expected " + TOKEN_TYPE;
 System.out.println("\tError: " + error);
 throw new IdentityAssertionException(error);
 }
 if (!(token instanceof byte[])) {

Chapter 4
How to Develop a Custom Identity Assertion Provider

4-12

 String error = "SimpleSampleIdentityAsserter received unknown token class \""
 + token.getClass() + "\"." + " Expected a byte[].";
 System.out.println("\tError: " + error);
 throw new IdentityAssertionException(error);
 }
 byte[] tokenBytes = (byte[])token;
 if (tokenBytes == null || tokenBytes.length < 1) {
 String error = "SimpleSampleIdentityAsserter received empty token byte array";
 System.out.println("\tError: " + error);
 throw new IdentityAssertionException(error);
 }
 String tokenStr = new String(tokenBytes);
 if (!(tokenStr.startsWith(TOKEN_PREFIX))) {
 String error = "SimpleSampleIdentityAsserter received unknown token string \""
 + type + "\"." + " Expected " + TOKEN_PREFIX + "username";
 System.out.println("\tError: " + error);
 throw new IdentityAssertionException(error);
 }
 String userName = tokenStr.substring(TOKEN_PREFIX.length());
 System.out.println("\tuserName\t= " + userName);
 return new SimpleSampleCallbackHandlerImpl(userName);
 }
 public AppConfigurationEntry getLoginModuleConfiguration()
 {
 return null;
 }
 public AppConfigurationEntry getAssertionModuleConfiguration()
 {
 return null;
 }
 public PrincipalValidator getPrincipalValidator()
 {
 return null;
 }
}

Example 4-5 shows the sample CallbackHandler implementation that is used along with the
SampleIdentityAsserterProviderImpl.java runtime class. This CallbackHandler
implementation is used to send the username back to an authentication provider's
LoginModule.

Example 4-5 SampleCallbackHandlerImpl.java

package examples.security.providers.identityassertion.simple;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
/*package*/ class SimpleSimpleSampleCallbackHandler implements CallbackHandler
{
 private String userName;
 /*package*/ SimpleSampleCallbackHandlerImpl(String user)
 {
 userName = user;
 }
 public void handle(Callback[] callbacks) throws UnsupportedCallbackException
 {
 for (int i = 0; i < callbacks.length; i++) {
 Callback callback = callbacks[i];
 if (!(callback instanceof NameCallback)) {
 throw new UnsupportedCallbackException(callback, "Unrecognized

Chapter 4
How to Develop a Custom Identity Assertion Provider

4-13

 Callback");
 }
 NameCallback nameCallback = (NameCallback)callback;
 nameCallback.setName(userName);
 }
 }
}

Configure the Custom Identity Assertion Provider Using the
Administration Console

Configuring a custom identity assertion provider means that you are adding the
custom identity assertion provider to your security realm, where it can be accessed by
applications requiring identity assertion services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers.

Note:

The steps for configuring a custom identity assertion provider using the
WebLogic Server Administration Console are described under Configuring
WebLogic Security Providers in Administering Security for Oracle WebLogic
Server.

Challenge Identity Assertion
The Challenge Identity Asserter interface supports challenge response schemes in
which multiple challenges, responses messages, and state are required. The
Challenge Identity Asserter interface allows identity assertion providers to support
authentication protocols such as Microsoft's Windows NT Challenge/Response
(NTLM), Simple and Protected GSS-API Negotiation Mechanism (SPNEGO), and
other challenge/response authentication mechanisms.

Challenge/Response Limitations in the Java Servlet API 2.3 Environment
The WebLogic Security Framework allows you to provide a custom authentication and
identity assertion provider. However, due to the nature of the Java Servlet API 2.3
specification, the interaction between the authentication provider and the client or
other servers is architecturally limited during the authentication process. This restricts
authentication mechanisms to those that are compatible with the authentication
mechanisms the Servlet container offers: basic, form, and certificate.

Servlet authentication filters, which are described in Servlet Authentication Filters have
fewer architecturally-dependence limitations; that is, they are not dependent on the
authentication mechanisms offered by the servlet container. By allowing filters to be
invoked prior to the container beginning the authentication process, a security realm
can implement a wider scope of authentication mechanisms. For example, a servlet
authentication filter could redirect the user to a SAML provider site for authentication.

Servlet authentication filters provide a convenient way to implement a challenge/
response protocol in your environment. Filters allow your Challenge Identity Assertion

Chapter 4
How to Develop a Custom Identity Assertion Provider

4-14

interface to loop through your challenge/response mechanism as often as needed to
complete the challenge.

Filters and The Role of the weblogic.security.services.Authentication Class
Servlet authentication filters allow you to implement a challenge/response protocol without
being limited to the authentication mechanisms compatible with the Servlet container.
However, because servlet authentication filters operate outside of the authentication
environment provided by the Security Framework, they cannot depend on the Security
Framework to determine provider context, and require an API to drive the multiple-challenge
identity assertion process.

The weblogic.security.services.Authentication class has been extended to allow
multiple challenge/response identity assertion from a servlet authentication filter. The
methods and interface provide a wrapper for the ChallengeIdentityAsserterV2 and
ProviderChallengeContext interfaces so that you can invoke them from a servlet
authentication filter.

There is no other documented way to perform a multiple challenge/response dialog from a
servlet authentication filter within the context of the Security Framework. Your servlet
authentication filter cannot directly invoke the ChallengeIdentityAsserterV2 and
ProviderChallengeContext interfaces.

Therefore, you need to implement the ChallengeIdentityAsserterV2 and
ProviderChallengeContext interfaces, and then use the
weblogic.security.services.Authentication methods and AppChallengeContext
interface to invoke them from a servlet authentication filter.

How to Develop a Challenge Identity Asserter
To develop a Challenge Identity Asserter:

• Implement the AuthenticationProviderV2 SSPI

• Implement the IdentityAsserterV2 SSPI

• Implement the ChallengeIdentityAsserterV2 Interface

• Invoke the weblogic.security.services Challenge Identity Methods

• Invoke the weblogic.security.services AppChallengeContext Methods

Implement the ChallengeIdentityAsserterV2 Interface
The ChallengeIdentityAsserterV2 interface extends the IdentityAsserterV2 SSPI. You
must implement the ChallengeIdentityAsserterV2 interface in addition to the
IdentityAsserterV2 SSPI.

Provide an implementation for all of the IdentityAsserterV2 methods, and the following
methods:

• assertChallengeIdentity

ProviderChallengeContext assertChallengeIdentity(String tokenType, Object token,
ContextHandler handler)

Use the supplied client token to establish client identity, possibly with multiple challenges.
This method returns your implementation of the ProviderChallengeContext interface.

Chapter 4
How to Develop a Custom Identity Assertion Provider

4-15

The ProviderChallengeContext interface provides a means to query the state of
the challenges.

• continueChallengeIdentity

void continueChallengeIdentity(ProviderChallengeContext context, String
tokenType, Object token,
ContextHandler handler)

Use the supplied provider context and client token to continue establishing client
identity.

• getChallengeToken

Object getChallengeToken(String type, ContextHandler handler)

This method returns the identity assertion provider's challenge token.

Implement the ProviderChallengeContext Interface
The ProviderChallengeContext interface provides a means to query the state of the
challenges. It allows the assertChallengeIdentity and continueChallengeIdentity
methods of the ChallengeIdentityAsserterV2 interface to return either the callback
handler or a new challenge to which the client must respond.

To implement the ProviderChallengeContext interface, provide implementations for
the following methods:

• getCallbackHandler

CallbackHandler getCallbackHandler()

This method returns the callback handler for the challenge identity assertion. Call
this method only when the hasChallengeIdentityCompleted method returns true.

• getChallengeToken

Object getChallengeToken()

This method returns the challenge token for the challenge identity assertion. Call
this method only when the hasChallengeIdentityCompleted method returns
false.

• hasChallengeIdentityCompleted

boolean hasChallengeIdentityCompleted

This method returns whether the challenge identity assertion has completed. It
returns true if the challenge identity assertion has completed, false if not. If true,
the caller should use the getCallbackHandler method. If false, then the caller
should use the getChallengeToken method.

Invoke the weblogic.security.services Challenge Identity Methods
Have your servlet authentication filter invoke the following
weblogic.security.services.Authentication methods instead of calling the
ChallengeIdentityAsserterV2 SSPI directly:

• assertChallengeIdentity

Chapter 4
How to Develop a Custom Identity Assertion Provider

4-16

AppChallengeContext assertChallengeIdentity(String tokenType, Object token,
AppContext appContext)

Use the supplied client token to establish client identity, possibly with multiple challenges.
This method returns the context of the challenge identity assertion. This result may
contain either the authenticated subject or an additional challenge to which the client
must respond. The AppChallengeContext interface provides a means to query the state
of the challenges.

• continueChallengeIdentity

void continueChallengeIdentity(AppChallengeContext context, String tokenType,
 Object token, AppContext appContext)

Use the supplied provider context and client token to continue establishing client identity.

• getChallengeToken

Object getChallengeToken

This method returns the initial challenge token for the challenge identity assertion.

Invoke the weblogic.security.services AppChallengeContext Methods
Have your servlet authentication filter invoke the following AppChallengeContext methods
instead of invoking the ProviderChallengeContext interface directly:

• getAuthenticatedSubject

Subject getAuthenticatedSubject()

Returns the authenticated subject for the challenge identity assertion. Call this method
only when the hasChallengeIdentityCompleted method returns true.

• getChallengeToken

Object getChallengeToken()

This method returns the challenge token for the challenge identity assertion. Call this
method only when the hasChallengeIdentityCompleted method returns false.

• hasChallengeIdentityCompleted

boolean hasChallengeIdentityCompleted()

This method returns whether the challenge identity assertion has completed. It returns
true if the challenge identity assertion has completed, false if not. If true, the caller should
use the getCallbackHandler method. If false, then the caller should use the
getChallengeToken method.

Implementing Challenge Identity Assertion from a Filter
In the following code flow, assume that the servlet authentication filter, which is described in
Servlet Authentication Filters handles the HTTP level interactions (Authorization and WWW-
Authenticate) and is also responsible for calling the
weblogic.security.services.Authentication methods and interfaces to drive the
Challenge Identity Assertion process.

1. Browser sends a request

Chapter 4
How to Develop a Custom Identity Assertion Provider

4-17

2. Filter sees requests and no authorization header, so it calls the
weblogic.security.services.Authentication getChallengeToken method to
get an initial token and sends a 401 response with a WWW-Authenticate negotiate
header back

3. Browser sees 401 with WWW-Authenticate and responds with a new request and
a Authorization Negotiate token.

a. Filter sees this and calls the weblogic.security.services.Authentication
assertChallengeIdentity method. assertChallengeIdentity takes the
token as input, processes it according to whatever rules it needs to follow for
the assertion process it is following (for example, if NTLM, then do whatever
NTLM requires to process the token), and determine if that succeeded or not.
assertChallengeIdentity returns your implementation of the
AppChallengeContext interface.

b. Filter calls appChallengeContext hasChallengeCompleted method. Use the
AppChallengeContext hasChallengeIdentityCompleted method to see if the
challenge has completed. For example, it can determine if the callback handler
is not null, meaning that it contains a username, and return true. In this use it
returns false, so it must issue another challenge to the client. The filter then
calls AppChallengeContext getChallengeToken to get the token to challenge
back with.

c. Filter likely stores the AppChallengeContext somewhere such as a session
attribute.

d. Filter sends a 401 response with an WWW-Authenticate negotiate and the
new token.

4. Browser sees the new challenge and responds again with an authorization header.

a. Filter sees this and calls the weblogic.security.services.Authentication
continueChallengeIdentity method.

b. Filter calls the AppChallengeContext hasChallengeCompleted method. If it
returns false another challenge is in order, so call the AppChallengeContext
getChallengeToken method to get the token to challenge back with, and so
forth. If it returned true, then the challenge has completed and the filter would
then call AppChallengeContext getAuthenticatedSubject method and
perform a runAs(subject, request).

Chapter 4
How to Develop a Custom Identity Assertion Provider

4-18

5
Principal Validation Providers

This chapter describes principal validation provider concepts and functionality, and provides
step-by-step instructions for developing a custom principal validation provider.
Authentication providers rely on principal validation providers to sign and verify the
authenticity of principals (users and groups) contained within a subject. Such verification
provides an additional level of trust and may reduce the likelihood of malicious principal
tampering. Verification of the subject's principals takes place during the WebLogic Server's
demarshalling of RMI client requests for each invocation. The authenticity of the subject's
principals is also verified when making authorization decisions.

This chapter includes the following sections:

• Principal Validation Concepts

• The Principal Validation Process

• Do You Need to Develop a Custom Principal Validation Provider?

• How to Develop a Custom Principal Validation Provider

Principal Validation Concepts
Before you develop a principal validation provider, you need to understand the following
concepts:

• Principal Validation and Principal Types

• How Principal Validation Providers Differ From Other Types of Security Providers

• Security Exceptions Resulting from Invalid Principals

Principal Validation and Principal Types
Like identity assertion providers support specific types of tokens, principal validation
providers support specific types of principals. For example, the WebLogic Principal Validation
provider (described in Do You Need to Develop a Custom Principal Validation Provider?)
signs and verifies the authenticity of WebLogic Server principals.

The principal validation provider that is associated with the configured authentication provider
(as described in How Principal Validation Providers Differ From Other Types of Security
Providers) will sign and verify all the principals stored in the subject that are of the type the
principal validation provider is designed to support.

How Principal Validation Providers Differ From Other Types of Security
Providers

A principal validation provider is a special type of security provider that primarily acts as a
helper to an authentication provider. The main function of a principal validation provider is to
prevent malicious individuals from tampering with the principals stored in a subject.

5-1

The AuthenticationProvider SSPI (as described in Implement the
AuthenticationProviderV2 SSPI) includes a method called getPrincipalValidator. In
this method, you specify the principal validation provider's runtime class to be used
with the authentication provider. The principal validation provider's runtime class can
be the one Oracle provides (called the WebLogic Principal Validation provider) or one
you develop (called a custom principal validation provider). An example of using the
WebLogic Principal Validation provider in an authentication provider's
getPrincipalValidator method is shown in Figure 3-1.

Because you generate MBean types for authentication providers and configure
authentication providers using the WebLogic Server Administration Console, you do
not have to perform these steps for a principal validation provider.

Security Exceptions Resulting from Invalid Principals
When the WebLogic Security Framework attempts an authentication (or authorization)
operation, it checks the subject's principals to see if they are valid. If a principal is not
valid, the WebLogic Security Framework throws a security exception with text
indicating that the subject is invalid. A subject may be invalid because:

• A principal in the subject does not have a corresponding principal validation
provider configured (which means there is no way for the WebLogic Security
Framework to validate the subject).

Note:

Because you can have multiple principals in a subject, each stored by
the LoginModule of a different authentication provider, the principals can
have different principal validation providers.

• A principal was signed in another WebLogic Server security domain (with a
different credential from this security domain) and the caller is trying to use it in the
current domain.

• A principal with an invalid signature was created as part of an attempt to
compromise security.

• A subject never had its principals signed.

The Principal Validation Process
As shown in Figure 5-1, a user attempts to log into a system using a username/
password combination. WebLogic Server establishes trust by calling the configured
authentication provider's LoginModule, which validates the user's username and
password and returns a subject that is populated with principals per Java
Authentication and Authorization Service (JAAS) requirements.

Chapter 5
The Principal Validation Process

5-2

Figure 5-1 The Principal Validation Process

WebLogic Server passes the subject to the specified principal validation provider, which signs
the principals and then returns them to the client application via WebLogic Server. Whenever
the principals stored within the subject are required for other security operations, the same
principal validation provider will verify that the principals stored within the subject have not
been modified since they were signed.

Do You Need to Develop a Custom Principal Validation
Provider?

The default (that is, active) security realm for WebLogic Server includes a WebLogic Principal
Validation provider. Much like an identity assertion provider supports a specific type of token,
a principal validation provider signs and verifies the authenticity of a specific type of principal.
The WebLogic Principal Validation provider signs and verifies WebLogic Server principals. In
other words, it signs and verifies principals that represent WebLogic Server users or
WebLogic Server groups.

Note:

You can use the WLSPrincipals class (located in the
weblogic.security.principal package) to determine whether a principal (user or
group) has special meaning to WebLogic Server. (That is, whether it is a predefined
WebLogic Server user or WebLogic Server group.) Furthermore, any principal that
is going to represent a WebLogic Server user or group needs to implement the
WLSUser and WLSGroup interfaces (available in the weblogic.security.spi
package).

WLSPrincipals is used only by PrincipalValidatorImpl, not by the Security
Framework. An authentication provider can implement its own principal validator, or
it can use the PrincipalValidatorImpl. If you configure an authentication provider
with custom principal validators, then the WLSPrincipals interface is not used.

An authentication provider needs to implement the WLSPrincipals interface if the
provider is going to use PrincipalValidatorImpl.

Chapter 5
Do You Need to Develop a Custom Principal Validation Provider?

5-3

The WebLogic Principal Validation provider includes implementations of the WLSUser
and WLSGroup interfaces, named WLSUserImpl and WLSGroupImpl. These are located in
the weblogic.security.principal package.

It also includes an implementation of the PrincipalValidator SSPI called
PrincipalValidatorImpl, located in the weblogic.security.provider package. The
sign() method in the PrincipalValidatorImpl class generates a random seed and
computes a digest based on that random seed. (See Implement the PrincipalValidator
SSPI.)

How to Use the WebLogic Principal Validation Provider
If you have simple user and group principals (that is, they only have a name), and you
want to use the WebLogic Principal Validation provider:

• Use the existing weblogic.security.principal.WLSUserImpl and
weblogic.security.principal.WLSGroupImpl classes. See the WLSUser and
WLSGroup interfaces in the weblogic.security.spi package for usage information.

• Use the weblogic.security.provider.PrincipalValidatorImpl class. See the
PrincipalValidator SSPI for usage information.

If you have user or group principals with extra data members (that is, in addition to a
name), and you want to use the WebLogic Principal Validation provider:

• Write your own UserImpl and GroupImpl classes.

• Extend the weblogic.security.principal.WLSAbstractPrincipal class.

• Implement the weblogic.security.spi.WLSUser and
weblogic.security.spi.WLSGroup interfaces.

• Implement the equals() method to include your extra data members. Your
implementation should call the super.equals() method when complete so the
WLSAbstractPrincipal can validate the remaining data.

Note:

By default, only the user or group name will be validated. If you want to
validate your extra data members as well, then implement the
getSignedData() method.

• Use the weblogic.security.provider.PrincipalValidatorImpl class. See the
PrincipalValidator SSPI for usage information.

If you have your own validation scheme and do not want to use the WebLogic Principal
Validation provider, or if you want to provide validation for principals other than
WebLogic Server principals, then you need to develop a custom principal validation
provider.

How to Develop a Custom Principal Validation Provider
To develop a custom principal validation provider:

• Write your own UserImpl and GroupImpl classes by:

Chapter 5
How to Develop a Custom Principal Validation Provider

5-4

– Implementing the weblogic.security.spi.WLSUser and
weblogic.security.spi.WLSGroup interfaces.

– Implementing the java.io.Serializable interfaces.

• Write your own PrincipalValidationImpl class by implementing the
weblogic.security.spi.PrincipalValidator SSPI. (See Implement the
PrincipalValidator SSPI.)

Implement the PrincipalValidator SSPI
To implement the PrincipalValidator SSPI, provide implementations for the following
methods:

• validate

public boolean validate(Principal principal) throws SecurityException;

The validate method takes a principal as an argument and attempts to validate it. In
other words, this method verifies that the principal was not altered since it was signed.

• sign

public boolean sign(Principal principal);

The sign method takes a principal as an argument and signs it to assure trust. This
allows the principal to later be verified using the validate method.

Your implementation of the sign method should be a secret algorithm that malicious
individuals cannot easily recreate. You can include that algorithm within the sign method
itself, have the sign method call out to a server for a token it should use to sign the
principal, or implement some other way of signing the principal.

• getPrincipalBaseClass

public Class getPrincipalBaseClass();

The getPrincipalBaseClass method returns the base class of principals that this
principal validation provider knows how to validate and sign.

See Java API Reference for Oracle WebLogic Server for the PrincipalValidator SSPI.

Chapter 5
How to Develop a Custom Principal Validation Provider

5-5

6
Authorization Providers

This chapter describes authorization provider concepts and functionality, and provides step-
by-step instructions for developing a custom authorization provider.
Authorization is the process whereby the interactions between users and WebLogic
resources are controlled, based on user identity or other information. In other words,
authorization answers the question, "What can you access?" In WebLogic Server, an
authorization provider is used to limit the interactions between users and WebLogic resources
to ensure integrity, confidentiality, and availability.

This chapter includes the following sections:

• Authorization Concepts

• The Authorization Process

• Do You Need to Develop a Custom Authorization Provider?

• Is Your Custom Authorization Provider Thread Safe?

• How to Develop a Custom Authorization Provider

Authorization Concepts
Before you develop an authorization provider, you need to understand the following concepts:

• Access Decisions

• Using the Java Authorization Contract for Containers

• Security Providers and WebLogic Resources

Access Decisions
Like LoginModules for authentication providers, an Access Decision is the component of an
authorization provider that actually answers the "is access allowed?" question. Specifically,
an Access Decision is asked whether a subject has permission to perform a given operation
on a WebLogic resource, with specific parameters in an application. Given this information,
the Access Decision responds with a result of PERMIT, DENY, or ABSTAIN.

Note:

See Implement the AccessDecision SSPI.

Using the Java Authorization Contract for Containers
The Java Authorization Contract for Containers (JACC) is part of Java EE. JACC extends the
permission-based security model to EJBs and Servlets. JACC is defined by JSR-115
(http://www.jcp.org/en/jsr/detail?id=115).

6-1

http://www.jcp.org/en/jsr/detail?id=115

JACC provides an alternate authorization mechanism for the EJB and Servlet
containers in a WebLogic Server domain. When JACC is configured, the WebLogic
Security framework access decisions, adjudication, and role mapping functions are not
used for EJB and Servlet authorization decisions.

Note:

You cannot use the JACC framework in conjunction with the WebLogic
Security framework. The JACC classes used by WebLogic Server do not
include an implementation of a Policy object for rendering decisions but
instead rely on the java.security.Policy (http://docs.oracle.com/javase/8/
docs/api/java/security/Policy.html) object.

WebLogic Server implements a JACC provider that, although fully compliant with
JSR-115, is not as optimized as the WebLogic Authentication provider. The Java JACC
classes are used for rendering access decisions. Because JSR-115 does not define
how to address role mapping, WebLogic JACC classes are used for role-to-principal
mapping. For information on developing a JACC provider, see https://
javaee.github.io/javaee-spec/javadocs/javax/security/jacc/package-
summary.html.

The Authorization Process
Figure 6-1 illustrates how authorization providers (and the associated adjudication and
role mapping providers) interact with the WebLogic Security Framework during the
authorization process, and an explanation follows.

Figure 6-1 Authorization Providers and the Authorization Process

Chapter 6
The Authorization Process

6-2

http://docs.oracle.com/javase/8/docs/api/java/security/Policy.html
http://docs.oracle.com/javase/8/docs/api/java/security/Policy.html
https://javaee.github.io/javaee-spec/javadocs/javax/security/jacc/package-summary.html
https://javaee.github.io/javaee-spec/javadocs/javax/security/jacc/package-summary.html
https://javaee.github.io/javaee-spec/javadocs/javax/security/jacc/package-summary.html

Generally, authorization is performed in the following manner:

1. A user or system process requests a WebLogic resource on which it will attempt to
perform a given operation.

2. The resource container that handles the type of WebLogic resource being requested
receives the request (for example, the EJB container receives the request for an EJB
resource).

Note:

The resource container could be the container that handles any one of the
WebLogic Resources described in Security Providers and WebLogic
Resources.

3. The resource container constructs a ContextHandler object that may be used by the
configured role mapping providers and the configured authorization providers' Access
Decisions to obtain information associated with the context of the request.

Note:

See ContextHandlers and WebLogic Resources, Access Decisions, and Role
Mapping Providers.

The resource container calls the WebLogic Security Framework, passing in the subject,
the WebLogic resource, and optionally, the ContextHandler object (to provide additional
input for the decision).

4. The WebLogic Security Framework calls the configured role mapping providers.

5. The role mapping providers use the ContextHandler to request various pieces of
information about the request. They construct a set of Callback objects that represent
the type of information being requested. This set of Callback objects is then passed as
an array to the ContextHandler using the handle method.

The role mapping providers use the values contained in the Callback objects, the
subject, and the resource to compute a list of security roles to which the subject making
the request is entitled, and pass the list of applicable security roles back to the WebLogic
Security Framework.

6. The WebLogic Security Framework delegates the actual decision about whether the
subject is entitled to perform the requested action on the WebLogic resource to the
configured authorization providers.

The authorization providers' Access Decisions also use the ContextHandler to request
various pieces of information about the request. They too construct a set of Callback
objects that represent the type of information being requested. This set of Callback
objects is then passed as an array to the ContextHandler using the handle method. (The
process is the same as described for role mapping providers in Step 5.)

7. The isAccessAllowed method of each configured authorization provider's Access
Decision is called to determine if the subject is authorized to perform the requested
access, based on the ContextHandler, subject, WebLogic resource, and security roles.
Each isAccessAllowed method can return one of three values:

Chapter 6
The Authorization Process

6-3

• PERMIT, indicates that the requested access is permitted.

• DENY, indicates that the requested access is explicitly denied.

• ABSTAIN, indicates that the Access Decision was unable to render an explicit
decision.

This process continues until all Access Decisions are used.

8. The WebLogic Security Framework delegates the job of reconciling any
discrepancies among the results rendered by the configured authorization
providers' Access Decisions to the adjudication provider. The adjudication provider
determines the ultimate outcome of the authorization decision.

Note:

See Adjudication Providers.

9. The adjudication provider returns either a TRUE or FALSE verdict, which is
forwarded to the resource container through the WebLogic Security Framework.

• If the decision is TRUE, the resource container dispatches the request to the
protected WebLogic resource.

• If the decision is FALSE, the resource container throws a security exception
that indicates that the requestor was not authorized to perform the requested
access on the protected WebLogic resource.

Do You Need to Develop a Custom Authorization Provider?
The default (that is, active) security realm for WebLogic Server includes the WebLogic
Authorization provider and the XACML Authorization provider.

Note:

The WebLogic Authorization provider, also referred to as the
DefaultAuthorizer, is deprecated in WebLogic Server 14.1.1.0.0 and will be
removed in a future release. Instead, the XACML Authorization provider is
the default authorization provider.

The XACML Authorization provider returns an access decision using a policy-based
authorization engine to determine if a particular user is allowed access to a protected
WebLogic resource. The XACML Authorization provider also supports the deployment
and undeployment of security policies within the system. If you want to use an
authorization mechanism that already exists within your organization, you could create
a custom authorization provider to tie into that system.

Chapter 6
Do You Need to Develop a Custom Authorization Provider?

6-4

Does Your Custom Authorization Provider Need to Support Application
Versioning?

All authorization, role mapping, and credential mapping providers for the security realm must
support application versioning in order for an application to be deployed using versions. If you
develop a custom security provider for authorization, role mapping, or credential mapping and
need to support versioned applications, you must implement the Versionable Application
SSPI, as described in Versionable Application Providers.

Is Your Custom Authorization Provider Thread Safe?
For the best performance, and by default, Weblogic Server supports parallel modification to
security policy and roles during application and module deployment. For this reason,
deployable authorization and role mapping providers configured in the security realm should
support parallel calls. The WebLogic deployable XACML Authorization and Role Mapping
providers meet this requirement.

However, custom deployable authorization and role mapping providers may or may not
support parallel calls. If your custom deployable authorization or role mapping providers do
not support parallel calls, you need to disable the parallel security policy and role
modification and instead enforce a synchronization mechanism that results in each
application and module being placed in a queue and deployed sequentially.

Note:

Enabling the synchronization mechanism affects every deployable provider
configured in the realm, including the predefined WebLogic Server providers.
Enabling the synchronization mechanism may negatively impact the performance of
these providers.

See Administering Security for Oracle WebLogic Server for information on how to turn on this
synchronization enforcement mechanism.

How to Develop a Custom Authorization Provider
If the XACML Authorization provider does not meet your needs, you can develop a custom
authorization provider by following these steps:

1. Create Runtime Classes Using the Appropriate SSPIs, or, optionally, implement the Bulk
Authorization Providers

2. Optionally, implement the Policy Consumer SSPI

3. Optionally, implement the PolicyStoreMBean

4. Generate an MBean type for your custom authorization provider by completing the steps
described in Generate an MBean Type Using the WebLogic MBeanMaker.

5. Configure the Custom Authorization Provider Using the Administration Console

6. Provide a Mechanism for Security Policy Management

Chapter 6
Is Your Custom Authorization Provider Thread Safe?

6-5

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

• Understand the Purpose of the Provider SSPIs

• Determine Which Provider Interface You Will Implement

• Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom authorization provider by following these steps:

• Implement the AuthorizationProvider SSPI or Implement the
DeployableAuthorizationProviderV2 SSPI

• Implement the AccessDecision SSPI

Note:

At least one authorization provider in a security realm must implement
the DeployableAuthorizationProvider SSPI, or else it will be
impossible to deploy Web applications and EJBs.

For an example of how to create a runtime class for a custom authorization provider,
see Example: Creating the Runtime Class for the Sample Authorization Provider .

Implement the AuthorizationProvider SSPI
To implement the AuthorizationProvider SSPI, provide implementations for the
methods described in Understand the Purpose of the Provider SSPIs and the following
method:

• getAccessDecision

public AccessDecision getAccessDecision();

The getAccessDecision method obtains the implementation of the
AccessDecision SSPI. For a single runtime class called
MyAuthorizationProviderImpl.java, the implementation of the
getAccessDecision method would be:

return this;

If there are two runtime classes, then the implementation of the
getAccessDecision method could be:

return new MyAccessDecisionImpl;

This is because the runtime class that implements the AuthorizationProvider
SSPI is used as a factory to obtain classes that implement the AccessDecision
SSPI.

See Java API Reference for Oracle WebLogic Server for the AuthorizationProvider
SSPI.

Chapter 6
How to Develop a Custom Authorization Provider

6-6

Implement the DeployableAuthorizationProviderV2 SSPI
To implement the DeployableAuthorizationProviderV2 SSPI, provide implementations for
the methods described in Understand the Purpose of the Provider SSPIs, Implement the
AuthorizationProvider SSPI, and the following methods:

• deleteApplicationPolicies

public void deleteApplicationPolicies(ApplicationInfo application) throws
ResourceRemovalException

The deleteApplicationPolicies method deletes all policies for an application. The
deleteApplicationPolicies method is called only on the Administration Server.

• deployExcludedPolicy

public void deleteApplicationPolicies(DeployPolicyHandle handle, Resource
 resource) throws ResourceCreationException

The deployExcludedPolicy method deploys a policy that always denies access. If a
policy already exists, it is removed and replaced by this policy.

• deployPolicy

public void deployPolicy(DeployPolicyHandle handle, Resource resource,
 String[] roleNames) throws ResourceCreationException

The deployPolicy method creates a security policy on behalf of a deployed Web
application or EJB, based on the WebLogic resource to which the security policy should
apply and the security role names that are in the security policy.

• deployUncheckedPolicy

public void deployUncheckedPolicy(DeployPolicyHandle handle, Resource
 resource) throws ResourceCreationException

The deployUncheckedPolicy method deploys a policy that always grants access. If a
policy already exists, it is removed and replaced by this policy.

• endDeployPolicies

public void endDeployPolicies(DeployPolicyHandle handle) throws
 ResourceCreationException

The deployExcludedPolicy method deploys a policy that always denies access. If a
policy already exists, it is removed and replaced by this policy.

• startDeployPolicies

public deployPolicyHandle startDeployPolicies(ApplicationInfo application)
 throws DeployHandleCreationException

The startDeployPolicies method marks the beginning of an application policy
deployment and is called on all servers within a WebLogic Server domain where an
application is targeted.

• undeployAllPolicies

public void undeployAllPolicies(DeployPolicyHandle handle) throws
 ResourceRemovalException

Chapter 6
How to Develop a Custom Authorization Provider

6-7

The undeployAllPolicies method deletes a set of policy definitions on behalf of
an undeployed Web application or EJB.

See Java API Reference for Oracle WebLogic Server for the
DeployableAuthorizationProviderV2 SSPI.

The ApplicationInfo Interface
The ApplicationInfo interface passes data about an application deployment to a
security provider. You can use this data to uniquely identity the application.

The Security Framework implements the ApplicationInfo interface for your
convenience. You do not need to implement any methods for this interface.

The DeployableAuthorizationProviderV2 and DeployableRoleProviderV2 interfaces
use ApplicationInfo. For example, consider an implementation of the
DeployableAuthorizationProviderV2 methods. The Security Framework calls the
DeployableAuthorizationProviderV2 startDeployPolicies method and passes in
the ApplicationInfo interface for this application. The ApplicationInfo data is
determined based on the information supplied in the WebLogic Server Administration
Console when an application is deployed.

The startDeployPolicies method returns DeployPolicyHandle, which you can then
use in the other DeployableAuthorizationProviderV2 methods.

You use the ApplicationInfo interface to get the application identifier, the component
name, and the component type for this application. Component type can be
APPLICATION, CONTROL_RESOURCE, EJB, or WEBAPP, as defined in the
ApplicationInfo.ComponentType class.

The following example shows one way to accomplish this task:

public DeployPolicyHandle startDeployPolicies(ApplicationInfo appInfo)
 throws DeployHandleCreationException
 :
// Obtain the application information...
 String appId = appInfo.getApplicationIdentifier();
 ComponentType compType = appInfo.getComponentType();
 String compName = appInfo.getComponentName();

The Security Framework calls the DeployableAuthorizationProviderV2
deleteApplicationPolicies method and passes in the ApplicationInfo interface for
this application. The deleteApplicationPolicies method deletes all policies for an
application and is called (only on the Administration Server within a WebLogic Server
domain) at the time an application is deleted.

Implement the AccessDecision SSPI
When you implement the AccessDecision SSPI, you must provide implementations for
the following methods:

• isAccessAllowed

public Result isAccessAllowed(Subject subject, Map roles,
Resource resource, ContextHandler handler, Direction direction) throws
InvalidPrincipalException

Chapter 6
How to Develop a Custom Authorization Provider

6-8

The isAccessAllowed method utilizes information contained within the subject to
determine if the requestor should be allowed to access a protected method. The
isAccessAllowed method may be called prior to or after a request, and returns values of
PERMIT, DENY, or ABSTAIN. If multiple Access Decisions are configured and return
conflicting values, an adjudication provider will be needed to determine a final result. For
more information, see Adjudication Providers.

• isProtectedResource

public boolean isProtectedResource(Subject subject, Resource resource) throws
InvalidPrincipalException

The isProtectedResource method is used to determine whether the specified WebLogic
resource is protected, without incurring the cost of an actual access check. It is only a
lightweight mechanism because it does not compute a set of security roles that may be
granted to the caller's subject.

See Java API Reference for Oracle WebLogic Server for the AccessDecision SSPI.

Example: Creating the Runtime Class for the Sample Authorization Provider
Example 6-1 shows the SampleAuthorizationProviderImpl.java class, which is the runtime
class for the sample authorization provider. This runtime class includes implementations for:

• The three methods inherited from the SecurityProvider interface: initialize,
getDescription and shutdown (as described in Understand the Purpose of the Provider
SSPIs.)

• The method inherited from the AuthorizationProvider SSPI: the getAccessDecision
method (as described in Implement the AuthorizationProvider SSPI).

• The seven methods in the DeployableAuthorizationProviderV2 SSPI: the
deleteApplicationPolicies, deployExcludedPolicy, deployPolicy,
deployUncheckedPolicy, endDeployPolicies, starteployPolicies, and
undeployAllPolicies methods (as described in Implement the
DeployableAuthorizationProviderV2 SSPI).

• The two methods in the AccessDecision SSPI: the isAccessAllowed and
isProtectedResource methods (as described in Implement the AccessDecision SSPI).

Note:

The bold face code in Example 6-1 highlights the class declaration and the
method signatures.

Example 6-1 SimpleSampleAuthorizationProviderImpl.java

package examples.security.providers.authorization.simple;
import java.security.Principal;
import java.util.Date;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import javax.security.auth.Subject;
import weblogic.management.security.ProviderMBean;
import weblogic.security.SubjectUtils;

Chapter 6
How to Develop a Custom Authorization Provider

6-9

import weblogic.security.WLSPrincipals;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.AccessDecision;
import weblogic.security.spi.ApplicationInfo;
import weblogic.security.spi.ApplicationInfo.ComponentType;
import weblogic.security.spi.DeployableAuthorizationProviderV2;
import weblogic.security.spi.DeployPolicyHandle;
import weblogic.security.spi.Direction;
import weblogic.security.spi.InvalidPrincipalException;
import weblogic.security.spi.Resource;
import weblogic.security.spi.Result;
import weblogic.security.spi.SecurityServices;
import weblogic.security.spi.VersionableApplicationProvider;
public final class SimpleSampleAuthorizationProviderImpl implements
DeployableAuthorizationProviderV2, AccessDecision, VersionableApplicationProvider
{
 private static String[] NO_ACCESS = new String[0];
 private static String[] ALL_ACCESS = new String[] {WLSPrincipals.getEveryoneGroupname()};
 private String description;
 private SimpleSampleAuthorizerDatabase database;
 public void initialize(ProviderMBean mbean, SecurityServices services)
 {
 System.out.println("SimpleSampleAuthorizationProviderImpl.initialize");
 SimpleSampleAuthorizerMBean myMBean = (SimpleSampleAuthorizerMBean)mbean;
 description = myMBean.getDescription() + "\n" + myMBean.getVersion();
 database = new SimpleSampleAuthorizerDatabase(myMBean);
 }
 public String getDescription()
 {
 return description;
 }
 public void shutdown()
 {
 System.out.println("SampleAuthorizationProviderImpl.shutdown");
 }
 public AccessDecision getAccessDecision()
 {
 return this;
 }
 public Result isAccessAllowed(Subject subject, Map roles, Resource resource,
 ContextHandler handler, Direction direction)
 {
 System.out.println("SimpleSampleAuthorizationProviderImpl.isAccessAllowed");
 System.out.println("\tsubject\t= " + subject);
 System.out.println("\troles\t= " + roles);
 System.out.println("\tresource\t= " + resource);
 System.out.println("\tdirection\t= " + direction);
 Set principals = subject.getPrincipals();
 for (Resource res = resource; res != null; res = res.getParentResource()) {
 if (database.policyExists(res)) {
 Result result = isAccessAllowed(res, subject, roles);
 System.out.println("\tallowed\t= " + result);
 return result;
 }
 }
 Result result = Result.ABSTAIN;
 System.out.println("\tallowed\t= " + result);
 return result;
 }
 public boolean isProtectedResource(Subject subject, Resource resource) throws
 InvalidPrincipalException

Chapter 6
How to Develop a Custom Authorization Provider

6-10

 {
 System.out.println("SimpleSampleAuthorizationProviderImpl.
 isProtectedResource");
 System.out.println("\tsubject\t= " + subject);
 System.out.println("\tresource\t= " + resource);
 for (Resource res = resource; res != null; res = res.getParentResource()) {
 if (database.policyExists(res)) {
 System.out.println("\tprotected\t= true");
 return true;
 }
 }
 System.out.println("\tprotected\t= false");
 return false;
 }
public DeployPolicyHandle startDeployPolicies(ApplicationInfo application)
{
 String appId = application.getApplicationIdentifier();
 String compName = application.getComponentName();
 ComponentType compType = application.getComponentType();
 DeployPolicyHandle handle = new SampleDeployPolicyHandle(appId,compName,compType);
 database.removePoliciesForComponent(appId, compName, compType);
 return handle;
 public void deployPolicy(DeployPolicyHandle handle,
Resource resource, String[] roleNamesAllowed)
{
 System.out.println("SimpleSampleAuthorizationProviderImpl.deployPolicy");
 System.out.println("\thandle\t= " + ((SampleDeployPolicyHandle)handle).toString());
 System.out.println("\tresource\t= " + resource);
 for (int i = 0; roleNamesAllowed != null && i < roleNamesAllowed.length; i++) {
 System.out.println("\troleNamesAllowed[" + i + "]\t= " + roleNamesAllowed[i]);
}
database.setPolicy(resource, roleNamesAllowed);
}
 public void deployUncheckedPolicy(DeployPolicyHandle handle, Resource resource)
{
 System.out.println("SimpleSampleAuthorizationProviderImpl.deployUncheckedPolicy");
 System.out.println("\thandle\t= " + ((SampleDeployPolicyHandle)handle).toString());
 System.out.println("\tresource\t= " + resource);
 database.setPolicy(resource, ALL_ACCESS);
}
public void deployExcludedPolicy(DeployPolicyHandle handle, Resource resource)
 {
 System.out.println("SimpleSampleAuthorizationProviderImpl.deployExcludedPolicy");
 System.out.println("\thandle\t= " + ((SampleDeployPolicyHandle)handle).toString());
 System.out.println("\tresource\t= " + resource);
 database.setPolicy(resource, NO_ACCESS);
}
public void endDeployPolicies(DeployPolicyHandle handle)
{
 database.savePolicies();
}
public void undeployAllPolicies(DeployPolicyHandle handle)
{
 System.out.println("SimpleSampleAuthorizationProviderImpl.undeployAllPolicies");
 SampleDeployPolicyHandle myHandle = (SampleDeployPolicyHandle)handle;
 System.out.println("\thandle\t= " + myHandle.toString());

 // remove policies
 database.removePoliciesForComponent(myHandle.getApplication(),
 myHandle.getComponent(),
 myHandle.getComponentType());

Chapter 6
How to Develop a Custom Authorization Provider

6-11

}
public void deleteApplicationPolicies(ApplicationInfo application)
{
 System.out.println("SimpleSampleAuthorizationProviderImpl.deleteApplicationPolicies");
 String appId = application.getApplicationIdentifier();
 System.out.println("\tapplication identifier\t= " + appId);

 // clear out policies for the application
 database.removePoliciesForApplication(appId);
}
private boolean rolesOrSubjectContains(Map roles, Subject subject, String roleOrPrincipalWant)
{
 // first, see if it's a role name match
if (roles.containsKey(roleOrPrincipalWant)) {
 return true;
}

 // second, see if it's a group name match
 if (SubjectUtils.isUserInGroup(subject, roleOrPrincipalWant)) {
 return true;
 }

 // third, see if it's a user name match
 if (roleOrPrincipalWant.equals(SubjectUtils.getUsername(subject))) {
 return true;
 }

 // didn't match
 return false;
}

private Result isAccessAllowed(Resource resource, Subject subject, Map roles)
{
 // loop over the principals and roles in our database who are allowed to access this resource
 for (Enumeration e = database.getPolicy(resource); e.hasMoreElements();) {
 String roleOrPrincipalAllowed = (String)e.nextElement();
 if (rolesOrSubjectContains(roles, subject, roleOrPrincipalAllowed)) {
 return Result.PERMIT;
 }
 }
 // the resource was explicitly mentioned and didn't grant access
 return Result.DENY;
}

public void createApplicationVersion(String appId, String sourceAppId)
{
 System.out.println("SimpleSampleAuthorizationProviderImpl.createApplicationVersion");
 System.out.println("\tapplication identifier\t= " + appId);
 System.out.println("\tsource app identifier\t= " + ((sourceAppId != null) ? sourceAppId :
"None"));

 // create new policies when existing application is specified
 if (sourceAppId != null) {
 database.clonePoliciesForApplication(sourceAppId,appId);
 }
}
public void deleteApplicationVersion(String appId)
{
 System.out.println("SimpleSampleAuthorizationProviderImpl.deleteApplicationVersion");
 System.out.println("\tapplication identifier\t= " + appId);

Chapter 6
How to Develop a Custom Authorization Provider

6-12

 // clear out policies for the application
 database.removePoliciesForApplication(appId);
}

public void deleteApplication(String appName)
{
 System.out.println("SimpleSampleAuthorizationProviderImpl.deleteApplication");
 System.out.println("\tapplication name\t= " + appName);

 // clear out policies for the application
 database.removePoliciesForApplication(appName);
}

class SampleDeployPolicyHandle implements DeployPolicyHandle
{
 Date date;
 String application;
 String component;
 ComponentType componentType;

 SampleDeployPolicyHandle(String app, String comp, ComponentType type)
{
 this.application = app;
 this.component = comp;
 this.componentType = type;
 this.date = new Date();
}

 public String getApplication() { return application; }
 public String getComponent() { return component; }
 public ComponentType getComponentType() { return componentType; }

 public String toString()
 {
 String name = component;
 if (componentType == ComponentType.APPLICATION)
 name = application;
 return componentType +" "+ name +" ["+ date.toString() +"]";
 }
 }
}

Policy Consumer SSPI
WebLogic Server implements a policy consumer for JMX (MBean) default policies and Web
service annotations. This release of WebLogic Server includes an SSPI that authorization
providers can use to obtain the policy collections.

The PolicyConsumer SSPI is optional; only those authorization providers that implement the
SSPI are called to consume a policy collection.

The SSPI supports both the delivery of initial policy collections and the delivery of updated
policy collections.

All authorization providers that support the PolicyConsumer SSPI are called to consume a
policy collection. Each authorization provider can choose to skip or obtain the policy
collection for a given policy set. In the case where a provider persists policy, the provider
need only collect the policy once. However, providers keeping policy in memory can obtain
the policy collection again.

Chapter 6
How to Develop a Custom Authorization Provider

6-13

The out-of-the-box WebLogic Server Authorization providers persist the policy into
LDAP.

Required SSPI Interfaces
If you want your custom authorization provider to support the delivery of policy
collections, you must implement three interfaces:

• weblogic.security.spi.PolicyConsumerFactory
• weblogic.security.spi.PolicyConsumer
• weblogic.security.spi.PolicyCollectionHandler
• These interfaces are described in the sections that follow.

Implement the PolicyConsumerFactory SSPI Interface
An authorization provider implements the PolicyConsumerFactory interface so that an
instance of a PolicyConsumer is available to the WebLogic Security Framework. The
WebLogic Security Framework calls your PolicyConsumerFactory implementation to
obtain the provider's implementation of the policy consumer.

The PolicyConsumerFactory SSPI has one method, which returns your
implementation of the PolicyConsumer SSPI interface.

public interface PolicyConsumerFactory
{
/**
* Obtain the implementation of the PolicyConsumer
* security service provider interface (SSPI).
*
* @return a PolicyConsumer SSPI implementation.
*/
public PolicyConsumer getPolicyConsumer();
}

Implement the PolicyConsumer SSPI Interface
The PolicyConsumer SSPI returns a policy collection handler for consumption of a
policy collection. It has one method, getPolicyCollectionHandler(), which takes a
PolicyCollectionInfo implementation as an argument and returns your
implementation of the PolicyCollectionHandler interface.

public interface PolicyConsumer
 {
 /**
 * Obtain a policy handler for consumption of a policy set.
 *
 * @param info the PolicyCollectionInfo for the policy set.
 *
 * @return a PolicyCollectionHandler or NULL which indicates
 * that the policy set is not needed.
 *
 * @exception ConsumptionException if an error occurs
 * obtaining the handler and the policy set cannot be consumed.
 */
public PolicyCollectionHandler getPolicyCollectionHandler(
 PolicyCollectionInfo info)

Chapter 6
How to Develop a Custom Authorization Provider

6-14

 throws ConsumptionException;
}

The WebLogic Security Framework calls the getPolicyCollectionHandler() method and
passes data about a policy collection to a security provider as an implementation of the
PolicyCollectionInfo interface. (This interface implementation is provided for you, you do
not have to implement it.)

You use the PolicyCollectionInfo getName(), getVersion(), getTimestamp(), and
getResourceTypes() methods to discover information about this policy set. You then return a
PolicyCollectionHandler, or NULL to indicate that the policy collection is not needed.

public interface PolicyCollectionInfo
{
/**
 * Get the name of the collection.
 */
public String getName();

/**
 * Get the runtime version of the policy.
 */
public String getVersion();

/**
 * Get the timestamp of the policy.
 */
public String getTimestamp();

/**
 * Get the resource types used in the policy collection.
 */
public Resource[] getResouceTypes();
}

Implement the PolicyCollectionHandler SSPI Interface
The PolicyConsumer.getPolicyCollectionHandler() method returns your implementation
of the PolicyCollectionHandler interface. PolicyCollectionHandler has three methods:
setPolicy, setUncheckedPolicy, and done(). The setPolicy() method takes a resource
and role names and sets a policy based on the role. The setUncheckedPolicy() method
opens access to everyone.

The done() method signals the completion of the policy collection. We recommend that the
done() method remove all old policies for the policy set.

public interface PolicyCollectionHandler
{
 /**
 * Set a policy for the specified resource.
 */
 public void setPolicy(Resource resource, String[] roleNames)
 throws ConsumptionException;

 /**
 * Sets a policy which always grants access.
 */
 public void setUncheckedPolicy(Resource resource)
 throws ConsumptionException;

Chapter 6
How to Develop a Custom Authorization Provider

6-15

 /**
 * Signals the completion of the policy collection.
 */
 public void done()
 throws ConsumptionException;

}

Supporting an Updated Policy Collection
To support the delivery of an updated policy collection, all authorization providers that
support the PolicyConsumer SSPI need to examine the contents of the
PolicyCollectionInfo passed in the
PolicyConsumer.getPolicyCollectionHandler() method to determine if a policy set
has changed. Each provider must decide (possibly by configuration) how to perform
conflict resolution with the initial policy collection and any customized policy received
outside of the SSPI.

For the WebLogic Server supplied authorization providers, customized policy will not
be replaced by the updated policy collection: all policy from the initial policy collection
will be removed and only the customized policies, plus the updated policy collection,
will be in effect. If the policy collection info has a different timestamp or version, it's
treated as an updated policy collection. The collection name is used as a persistence
key.

The PolicyConsumerMBean
Authorization providers that implement the Policy Consumer SSPI must also
implement the
weblogic.management.security.authorization.PolicyConsumerMBean to indicate
that the provider supports policy consumption.

PolicyStoreMBean
This release of WebLogic Server includes support for a new MBean
(weblogic.management.security.authorization.PolicyStoreMBean) that allows for
standard management (add, delete, get, list, modify, read) of administrator-generated
XACML policies and policy sets. An authorization or role mapping provider MBean can
optionally implement this MBean interface.

The PolicyStoreMBean methods allow security administrators to manage policy in the
server as XACML documents. This includes creating and managing a domain that
uses the default XACML provider, as well as managing XACML documents that the
administrator has created. The administrator can then use WLST to manage these
XACML policies in WebLogic Server.

WebLogic Server includes an implementation of this MBean for use with the out-of-the-
box XACML providers, and you can write your own implementation of this MBean for
use with your own custom authorization or role mapping providers. The WebLogic
Server out-of-the-box XACML providers support the mandatory features of XACML, as
described in the XACML 2.0 Core Specification (http://docs.oasis-open.org/
xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf), with the Oracle-specific
usage described in Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

Chapter 6
How to Develop a Custom Authorization Provider

6-16

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Policies are expressed as XACML 2.0 Policy or PolicySet documents. Custom authorization
providers should expect standard Policy or PolicySet documents as described in the XACML
2.0 Core Specification (http://docs.oasis-open.org/xacml/2.0/access_control-
xacml-2.0-core-spec-os.pdf). Custom role mapping providers should expect Policy or
PolicySet documents consistent with role assignment policies described by the Core and
hierarchical role based access control (RBAC) profile of XACML v2.0 (http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf).

Specifically, the Target must contain:

• An ActionAttributeDesignator with the id,
urn:oasis:names:tc:xacml:1.0:action:action-id, and the value,
urn:oasis:names:tc:xacml:2.0:actions:enableRole, according to anyURI-equal. For
example:

<Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#anyURI">urn:oasis:names:tc:xacml:2.0
:actions:enableRole
</AttributeValue>

<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

</ActionMatch>
</Action>

• A ResourceAttributeDesignator with the id,
urn:oasis:names:tc:xacml:2.0:subject:role, and a value naming the role being
assigned, according to string-equal. For example:

<ResourceAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor-or-self"
DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

Examining the Format of a XACML Policy File
The XACML 2.0 Core Specification (http://docs.oasis-open.org/xacml/2.0/
access_control-xacml-2.0-core-spec-os.pdf) and the Oracle extensions described in
Securing Resources Using Roles and Policies for Oracle WebLogic Server are the definitive
sources of information for the XACML policy files used by the supplied XACML Authorization
and Role Mapping Providers.

However, if as part of your development process you want to take a look at the format of a
supported XACML file, perhaps the most convenient way is to use the WebLogic Server
Administration Console to export the data from the XACML Authorization or Role Mapping
provider's database as a XACML file. Copy this exported XACML file to a file with some other
name and use the tool of your choice to review the copy.

Note:

Treat the exported file as read-only. If you do make changes, do not import the file
back into WebLogic Server. Editing exported files might result in an unusable
WebLogic Server configuration and is not supported.

Chapter 6
How to Develop a Custom Authorization Provider

6-17

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Using WLST to Add a Policy to the PolicyStoreMBean
Example 6-2 shows an example of using WLST to add a single policy to an instance of
the PolicyStoreMBean from a XACML file.

The example assumes that you have defined the properties used in this script
elsewhere, in a manner similar to the following lines from an ant script:

<property name="xacml-docs-dir" value="${xacmldir}/xacml-docs"/>
<sysproperty key="file" value="${xacml-docs-dir}/policy-getSubject.xacml"/>

You should avoid entering clear-text passwords in WLST commands in general, and
you should especially avoid saving on disk WLST scripts that include clear-text
passwords. In these instances you should use a mechanism for passing encrypted
passwords instead. See Security for WLST in Understanding the WebLogic Scripting
Tool.

Example 6-2 Using WLST to Add a Policy to the PolicyStoreMBean

:
try:
 protocol = System.getProperty("protocol")
 host = System.getProperty("host")
 user = System.getProperty("authuser")
 passwd = System.getProperty("authpwd")
 port = System.getProperty("port")
 dom = System.getProperty("domain")
 rlm = System.getProperty("realm")
 fil = System.getProperty("file")
 prov = System.getProperty("provider")
 stat = System.getProperty("status")

def configure():
try:
 url = protocol + "://" + host + ":" + port
 connect(user,passwd, url)
 path = "/SecurityConfiguration/" + dom + "/Realms/" + rlm + "/" + prov
 print("cd'ing to " + path)
 cd(path)
 print("calling open()")
 xacmlFile = open(fil,"r")
 print("calling read()")
 xacmlDoc = xacmlFile.read()
 print("calling cmo.addPolicy")
 if stat == "none":
 cmo.addPolicy(xacmlDoc)
 else:
 cmo.addPolicy(xacmlDoc, stat)
 print("Add error handling")
:
:

As described in the Navigating and Interrogating MBeans section of Understanding the
WebLogic Scripting Tool, when WLST first connects to an instance of WebLogic
Server, the variable, cmo (Current Management Object), is initialized to the root of all
configuration management objects, DomainMBean. When you navigate to an MBean
type, in this case SecurityConfigurationMBean, the value of cmo reflects
SecurityConfigurationMBean. When you navigate to an MBean instance, in this case

Chapter 6
How to Develop a Custom Authorization Provider

6-18

to an Authorizer MBean that implements the PolicyStoreMBean, identified in the example by
the variable prov, WLST changes the value of cmo to be the current MBean instance.

The example uses the addPolicy() method of the PolicyStoreMBean to add a policy read from
a XACML file to the policy store. Two variants of the addPolicy() method (without and with
status) are shown.

If you use an addPolicy() method that does not specify status, it defaults to ACTIVE, which
indicates that the policy is evaluated for any decision to which its target applies. You can
explicitly set status to be ACTIVE, INACTIVE, or BYREFERENCE. The INACTIVE status
indicates that the policy will never be evaluated and is only being stored. The
BYREFERENCE status indicates that the policy will only be evaluated when referenced by a
policy set that is being evaluated.

You can invoke this type of WLST script from the command line, in a manner similar to the
following:

java -Dhost="localhost " -Dprotocol="t3" -Dauthuser="weblogic"
-Dauthpwd="weblogic" -Dport="7001" -Ddomain="mydomain" -Drealm="myrealm"
-Dprovider="Authorizers/XACMLAuthorizer"
-Dfile="C:/XACML/xacml-docs/policy12.xml" -Dstatus="none" weblogic.WLST
XACML/scripts/XACMLaddPolicy.py

Using WLST to Read a PolicySet as a String
Example 6-3 shows an example of using WLST to read a PolicySet as a string.

The example assumes that you have defined the properties used in this script elsewhere, in a
manner similar to the following lines from an ant script:

<sysproperty key="identifier"
value="urn:sample:xacml:2.0:wlssecqa:resource:type@E@Fejb@G@M@Oapplication@ENoD
DRolesOrPoliciesEar@M@Omodule@Eejb11inEarMiniAppBean.jar@M@Oejb@EMiniAppBean@
M@Omethod@EgetSubject@M@OmethodInterface@ERemote"/>
<sysproperty key="version" value="1.0"/>

You should avoid entering clear-text passwords in WLST commands in general, and you
should especially avoid saving on disk WLST scripts that include clear-text passwords. In
these instances you should use a mechanism for passing encrypted passwords instead. See
Security for WLST in Understanding the WebLogic Scripting Tool.

Example 6-3 Using WLST to Read a PolicySet as a String

:
:
try:
 print("start XACMLreadPolicySet.py")
 protocol = System.getProperty("protocol")
 host = System.getProperty("host")
 user = System.getProperty("authuser")
 passwd = System.getProperty("authpwd")
 port = System.getProperty("port")
 dom = System.getProperty("domain")
 rlm = System.getProperty("realm")
 prov = System.getProperty("provider")
 id = System.getProperty("identifier")
 vers = System.getProperty("version")
:
:
def configure():

Chapter 6
How to Develop a Custom Authorization Provider

6-19

try:
 url = protocol + "://" + host + ":" + port
 connect(user,passwd, url)
 path = "/SecurityConfiguration/" + dom + "/Realms/" + rlm + "/" + prov
 print("cd'ing to " + path)
 cd(path)
 polset = cmo.readPolicySetAsString(id, vers)
 print("readPolicySetAsString() returned the following policy set: " + polset)
 print"Add error handling."
:
:

As described in the XACML 2.0 Core Specification (http://docs.oasis-open.org/
xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf), the <PolicySet> element
contains a set of <Policy> or other <PolicySet> elements and a specified procedure
for combining the results of their evaluation. See the XACML 2.0 Core Specification for
complete information.

Bulk Authorization Providers
This release of WebLogic Server includes bulk access versions of the following
authorization provider SSPI interfaces:

• BulkAuthorizationProvider
• BulkAccessDecision
The bulk access SSPI interfaces allow authorization providers to receive multiple
decision requests in one call rather than through multiple calls, typically in a 'for'
loop. The intent of the bulk SSPI variants is to allow provider implementations to take
advantage of internal performance optimizations, such as detecting that many of the
passed-in Resource objects are protected by the same policy and will generate the
same decision result.

There are subtle differences in how the non-bulk and bulk versions of the SSPI
interfaces are used.

Note that the BulkAccessDecision.isAccessAllowed() method takes a Map of roles,
indexed first by Resource object and then by role name (Map<Resource, Map<String,
SecurityRole>> roles), that are associated with the subject and should be taken into
consideration when making the authorization decision.

The BulkAccessDecision.isAccessAllowed() method returns a Map (indexed by
Resource, result) that indicates whether the authorization policies defined for the
resources allow the requested methods to be performed.

Configure the Custom Authorization Provider Using the Administration
Console

Configuring a custom authorization provider means that you are adding the custom
authorization provider to your security realm, where it can be accessed by applications
requiring authorization services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. This section

Chapter 6
How to Develop a Custom Authorization Provider

6-20

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

contains information that is important for the person configuring your custom authorization
providers:

• Managing Authorization Providers and Deployment Descriptors

• Enabling Security Policy Deployment

Note:

The steps for configuring a custom authorization provider using the WebLogic
Server Administration Console are described under Configuring WebLogic
Security Providers in Administering Security for Oracle WebLogic Server.

Managing Authorization Providers and Deployment Descriptors
Some application components, such as Enterprise JavaBeans (EJBs) and Web applications,
store relevant deployment information in Java EE and WebLogic Server deployment
descriptors. For Web applications, the deployment descriptor files (called web.xml and
weblogic.xml) contain information for implementing the Java EE security model, including
declarations of security policies. Typically, you will want to include this information when first
configuring your authorization providers in the WebLogic Server Administration Console.

Because the Java EE platform standardizes Web application and EJB security in deployment
descriptors, WebLogic Server integrates this standard mechanism with its Security Service to
give you a choice of techniques for securing Web application and EJB resources. You can
use deployment descriptors exclusively, the WebLogic Server Administration Console
exclusively, or you can combine the techniques for certain situations.

Depending on the technique you choose, you also need to apply a Security Model. WebLogic
supports different security models for individual deployments, and a security model for realm-
wide configurations that incorporate the technique you want to use.

When configured to use deployment descriptors, WebLogic Server reads security policy
information from the web.xml and weblogic.xml deployment descriptor files (examples of
web.xml and weblogic.xml files are shown in Example 6-4 and Example 6-5). This
information is then copied into the security provider database for the authorization provider.

Example 6-4 Sample web.xml File

<web-app>
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Success</web-resource-name>
 <url-pattern>/welcome.jsp</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>developers</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>default</realm-name>

Chapter 6
How to Develop a Custom Authorization Provider

6-21

 </login-config>
 <security-role>
 <role-name>developers</role-name>
 </security-role>
</web-app>

Example 6-5 Sample weblogic.xml File

<weblogic-web-app>
 <security-role-assignment>
 <role-name>developers</role-name>
 <principal-name>myGroup</principal-name>
 </security-role-assignment>
</weblogic-web-app>

Enabling Security Policy Deployment
If you implemented the DeployableAuthorizationProviderV2 SSPI as part of
developing your custom authorization provider and want to support deployable security
policies, the person configuring the custom authorization provider (that is, you or an
administrator) must be sure that the Policy Deployment Enabled check box in the
WebLogic Server Administration Console is checked. Otherwise, deployment for the
authorization provider is considered turned off. Therefore, if multiple authorization
providers are configured, the Policy Deployment Enabled check box can be used to
control which authorization provider is used for security policy deployment.

Provide a Mechanism for Security Policy Management
While configuring a custom authorization provider via the WebLogic Server
Administration Console makes it accessible by applications requiring authorization
services, you also need to supply administrators with a way to manage this security
provider's associated security policies. The WebLogic Authorization provider, for
example, supplies administrators with a Policy Editor page that allows them to add,
modify, or remove security policies for various WebLogic resources.

Neither the Policy Editor page nor access to it is available to administrators when you
develop a custom authorization provider. Therefore, you must provide your own
mechanism for security policy management. This mechanism must read and write
security policy data (that is, expressions) to and from the custom authorization
provider's database.

You can accomplish this task in one of two ways:

• Option 1: Develop a Stand-Alone Tool for Security Policy Management

• Option 2: Integrate an Existing Security Policy Management Tool into the
Administration Console

Option 1: Develop a Stand-Alone Tool for Security Policy Management
You would typically select this option if you want to develop a tool that is entirely
separate from the WebLogic Server Administration Console.

For this option, you do not need to write any console extensions for your custom
authorization provider, nor do you need to develop any management MBeans.
However, your tool needs to:

Chapter 6
How to Develop a Custom Authorization Provider

6-22

1. Determine the WebLogic resource's ID, since it is not automatically provided to you by
the console extension. See WebLogic Resource Identifiers.

2. Determine how to represent the expressions that make up a security policy. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom authorization provider's
database.

Option 2: Integrate an Existing Security Policy Management Tool into the
Administration Console

You would typically select this option if you have a tool that is separate from the WebLogic
Server Administration Console, but you want to launch that tool from the WebLogic Server
Administration Console.

For this option, your tool needs to:

1. Determine the WebLogic resource's ID, since it is not automatically provided to you by
the console extension. See WebLogic Resource Identifiers.

2. Determine how to represent the expressions that make up a security policy. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom authorization provider's
database.

4. Link into the WebLogic Server Administration Console using basic console extension
techniques.

Chapter 6
How to Develop a Custom Authorization Provider

6-23

7
Adjudication Providers

This chapter describes adjudication provider concepts and functionality, and provides step-
by-step instructions for developing a custom adjudication provider.
Adjudication involves resolving any authorization conflicts that may occur when more than
one authorization provider is configured, by weighing the result of each authorization
provider's Access Decision. In WebLogic Server, an adjudication provider is used to tally the
results that multiple Access Decisions return, and determines the final PERMIT or DENY
decision. An adjudication provider may also specify what should be done when an answer of
ABSTAIN is returned from a single authorization provider's Access Decision.

This chapter includes the following sections:

• The Adjudication Process

• Do You Need to Develop a Custom Adjudication Provider?

• How to Develop a Custom Adjudication Provider

The Adjudication Process
The use of adjudication providers is part of the authorization process, and is described in The
Authorization Process.

Do You Need to Develop a Custom Adjudication Provider?
The default (that is, active) security realm for WebLogic Server includes a WebLogic
Adjudication provider. The WebLogic Adjudication provider is responsible for adjudicating
between potentially differing results rendered by multiple authorization providers' Access
Decisions, and rendering a final verdict on whether or not access will be granted to a
WebLogic resource.

The WebLogic Adjudication provider has an attribute called Require Unanimous Permit that
governs its behavior. By default, the Require Unanimous Permit attribute is set to TRUE, which
causes the WebLogic Adjudication provider to act as follows:

• If all the authorization providers' Access Decisions return PERMIT, then return a final
verdict of TRUE (that is, permit access to the WebLogic resource).

• If some authorization providers' Access Decisions return PERMIT and others return
ABSTAIN, then return a final verdict of FALSE (that is, deny access to the WebLogic
resource).

• If any of the authorization providers' Access Decisions return ABSTAIN or DENY, then
return a final verdict of FALSE (that is, deny access to the WebLogic resource).

If you change the Require Unanimous Permit attribute to FALSE, the WebLogic Adjudication
provider acts as follows:

• If all the authorization providers' Access Decisions return PERMIT, then return a final
verdict of TRUE (that is, permit access to the WebLogic resource).

7-1

• If some authorization providers' Access Decisions return PERMIT and others return
ABSTAIN, then return a final verdict of TRUE (that is, permit access to the WebLogic
resource).

• If any of the authorization providers' Access Decisions return DENY, then return a
final verdict of FALSE (that is, deny access to the WebLogic resource).

Note:

You set the Require Unanimous Permit attributes when you configure the
WebLogic Adjudication provider. See Configuring the WebLogic
Adjudication Provider in Administering Security for Oracle WebLogic
Server.

If you want an adjudication provider that behaves in a way that is different from what is
described above, then you need to develop a custom adjudication provider. (Keep in
mind that an adjudication provider may also specify what should be done when an
answer of ABSTAIN is returned from a single authorization provider's Access Decision,
based on your specific security requirements.)

How to Develop a Custom Adjudication Provider
If the WebLogic Adjudication provider does not meet your needs, you can develop a
custom adjudication provider by following these steps:

1. Create Runtime Classes Using the Appropriate SSPIs, or, optionally, use the Bulk
Adjudication Providers

2. Generate an MBean type for your custom adjudication provider by completing the
steps described in Generate an MBean Type Using the WebLogic MBeanMaker.

3. Configure the Custom Adjudication Provider Using the Administration Console

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

• Understand the Purpose of the Provider SSPIs

• Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom adjudication provider by following these steps:

• Implement the AdjudicationProviderV2 SSPI

• Implement the AdjudicatorV2 SSPI

Implement the AdjudicationProviderV2 SSPI
To implement the AdjudicationProviderV2 SSPI, provide implementations for the
methods described in Understand the Purpose of the Provider SSPIs and the following
method:

• getAdjudicator

Chapter 7
How to Develop a Custom Adjudication Provider

7-2

public AdjudicatorV2 getAdjudicator()

The getAdjudicator method obtains the implementation of the AdjudicatorV2 SSPI. For
a single runtime class called MyAdjudicationProviderImpl.java, the implementation of
the getAdjudicator method would be:

return this;

If there are two runtime classes, then the implementation of the getAdjudicator method
could be:

return new MyAdjudicatorImpl;

This is because the runtime class that implements the AdjudicationProviderV2 SSPI is
used as a factory to obtain classes that implement the AdjudicatorV2 SSPI.

See Java API Reference for Oracle WebLogic Server for the AdjudicationProviderV2 SSPI.

Implement the AdjudicatorV2 SSPI
To implement the AdjudicatorV2 SSPI, provide implementations for the following methods:

• initialize

public void initialize(AuthorizerMBean[] accessDecisionClassNames)

The initialize method initializes the names of all the configured authorization
providers' Access Decisions that will be called to supply a result for the "is access
allowed?" question. The accessDecisionClassNames parameter may also be used by an
adjudication provider in its adjudicate method to favor a result from a particular Access
Decision. For more information about authorization providers and Access Decisions, see
Authorization Providers.

• adjudicate

public boolean adjudicate(Result[] results, Resource resource,
 ContextHandler handler)

The adjudicate method determines the answer to the "is access allowed?" question,
given all the results from the configured authorization providers' Access Decisions.

See Java API Reference for Oracle WebLogic Server for the AdjudicatorV2 SSPI.

Bulk Adjudication Providers
This release of WebLogic Server includes bulk access versions of the following adjudication
provider SSPI interfaces:

• BulkAdjudicationProvider
• BulkAdjudicator
The bulk access SSPI interfaces allow adjudication providers to receive multiple decision
requests in one call rather than through multiple calls, typically in a 'for' loop. The intent of
the bulk SSPI variants is to allow provider implementations to take advantage of internal
performance optimizations, such as detecting that many of the passed-in Resource objects
are protected by the same policy and will generate the same decision result.

There are subtle differences in how the non-bulk and bulk versions of the SSPI interfaces are
used.

Chapter 7
How to Develop a Custom Adjudication Provider

7-3

The BulkAdjudicator.adjudicate() method takes a List of Map (Resource,
Result) instances, as passed in by the WebLogic Server Authorization Manager,
which contain the results of each bulk access decision. The order of results is the
same as the order of the Access Decision class names that were passed in the
BulkAdjudicator.initialize() method.

Note too that the BulkAdjudicator.adjudicate() method returns a Set of Resource
objects. If a Resource object is present in the set, access has been granted for that
object; otherwise, access has been denied.

Configure the Custom Adjudication Provider Using the Administration
Console

Configuring a custom adjudication provider means that you are adding the custom
adjudication provider to your security realm, where it can be accessed by applications
requiring adjudication services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. The steps for
configuring a custom adjudication provider using the WebLogic Server Administration
Console are described under Configuring WebLogic Security Providers in
Administering Security for Oracle WebLogic Server.

Chapter 7
How to Develop a Custom Adjudication Provider

7-4

8
Role Mapping Providers

This chapter describes role mapping provider concepts and functionality, and provides step-
by-step instructions for developing a custom role mapping provider.
Role mapping is the process whereby principals (users or groups) are dynamically mapped
to security roles at runtime. In WebLogic Server, a role mapping provider determines what
security roles apply to the principals stored a subject when the subject is attempting to
perform an operation on a WebLogic resource. Because this operation usually involves
gaining access to the WebLogic resource, role mapping providers are typically used with
authorization providers.

This chapter includes the following sections:

• Role Mapping Concepts

• The Role Mapping Process

• Is Your Custom Role Mapping Provider Thread Safe?

• Do You Need to Develop a Custom Role Mapping Provider?

• How to Develop a Custom Role Mapping Provider

Role Mapping Concepts
Before you develop a role mapping provider, you need to understand the following concepts:

• Security Roles

• Dynamic Security Role Computation

• Security Providers and WebLogic Resources

Security Roles
A security role is a named collection of users or groups that have similar permissions to
access WebLogic resources. Like groups, security roles allow you to control access to
WebLogic resources for several users at once. However, security roles are scoped to specific
resources in a WebLogic Server domain (unlike groups, which are scoped to an entire
WebLogic Server domain), and can be defined dynamically (as described in Dynamic
Security Role Computation).

Note:

See Users, Groups, and Security Roles in Securing Resources Using Roles and
Policies for Oracle WebLogic Server, Security Providers and WebLogic Resources,
and Resource Types You Can Secure with Policies in Securing Resources Using
Roles and Policies for Oracle WebLogic Server.

8-1

The SecurityRole interface in the weblogic.security.service package is used to
represent the abstract notion of a security role. (See Java API Reference for Oracle
WebLogic Server for the SecurityRole interface.)

Mapping a principal to a security role grants the defined access permissions to that
principal, as long as the principal is in the security role. For example, an application
may define a security role called AppAdmin, which provides write access to a small
subset of that application's resources. Any principal in the AppAdmin security role would
then have write access to those resources. See Dynamic Security Role Computation
and Users, Groups, and Security Roles in Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

Many principals can be mapped to a single security role. See Users and Groups,
Principals and Subjects.

Security roles are specified in Java EE deployment descriptor files and/or in the
WebLogic Server Administration Console. See Managing Role Mapping Providers and
Deployment Descriptors.

Dynamic Security Role Computation
Security roles can be declarative (that is, Java Platform, Enterprise Edition (Java EE)
roles) or dynamically computed based on the context of the request.

Dynamic security role computation is the term for this late binding of principals (that
is, users or groups) to security roles at runtime. The late binding occurs just prior to an
authorization decision for a protected WebLogic resource, regardless of whether the
principal-to-security role association is statically defined or dynamically computed.
Because of its placement in the invocation sequence, the result of any principal-to-
security role computations can be taken as an authentication identity, as part of the
authorization decision made for the request.

This dynamic computation of security roles provides a very important benefit: users or
groups can be granted a security role based on business rules. For example, a user
may be allowed to be in a Manager security role only while the actual manager is away
on an extended business trip. Dynamically computing this security role means that you
do not need to change or redeploy your application to allow for such a temporarily
arrangement. Further, you would not need to remember to revoke the special
privileges when the actual manager returns, as you would if you temporarily added the
user to a Managers group.

Note:

You typically grant users or groups security roles using the role conditions
available in the WebLogic Server Administration Console. (In this release of
WebLogic Server, you cannot write custom role conditions.) See Users,
Groups, and Security Roles in Securing Resources Using Roles and Policies
for Oracle WebLogic Server.

The computed security role is able to access a number of pieces of information that
make up the context of the request, including the identity of the target (if available) and
the parameter values of the request. The context information is typically used as
values of parameters in an expression that is evaluated by the WebLogic Security

Chapter 8
Role Mapping Concepts

8-2

Framework. This functionality is also responsible for computing security roles that were
statically defined through a deployment descriptor or through the WebLogic Server
Administration Console.

Note:

The computation of security roles for an authenticated user enhances the Role-
Based Access Control (RBAC) security defined by the Java EE specification.

You create dynamic security role computations by defining role statements in the
WebLogic Server Administration Console. See Users, Groups, and Security Roles
in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

The Role Mapping Process
The WebLogic Security Framework calls each role mapping provider that is configured for a
security realm as part of an authorization decision. For related information, see The
Authorization Process.

The result of the dynamic security role computation (performed by the role mapping
providers) is a set of security roles that apply to the principals stored in a subject at a given
moment. These security roles can then be used to make authorization decisions for protected
WebLogic resources, as well as for resource container and application code. For example, an
Enterprise JavaBean (EJB) could use the Java EE isCallerInRole method to retrieve fields
from a record in a database, without having knowledge of the business policies that
determine whether access is allowed.

Figure 8-1 shows how the role mapping providers interact with the WebLogic Security
Framework to create dynamic security role computations, and an explanation follows.

Chapter 8
The Role Mapping Process

8-3

Figure 8-1 Role Mapping Providers and the Role Mapping Process

Generally, role mapping is performed in the following manner:

1. A user or system process requests a WebLogic resource on which it will attempt to
perform a given operation.

2. The resource container that handles the type of WebLogic resource being
requested receives the request (for example, the EJB container receives the
request for an EJB resource).

Note:

The resource container could be the container that handles any one of
the WebLogic Resources described in Security Providers and WebLogic
Resources.

Chapter 8
The Role Mapping Process

8-4

3. The resource container constructs a ContextHandler object that may be used by role
mapping providers to obtain information associated with the context of the request.

Note:

See ContextHandlers and WebLogic Resources.

The resource container calls the WebLogic Security Framework, passing in the subject
(which already contains user and group principals), an identifier for the WebLogic
resource, and optionally, the ContextHandler object (to provide additional input).

Note:

See Users and Groups, Principals and Subjects. See WebLogic Resource
Identifiers.

4. The WebLogic Security Framework calls each configured role mapping provider to obtain
a list of the security roles that apply. This works as follows:

a. The role mapping providers use the ContextHandler to request various pieces of
information about the request. They construct a set of Callback objects that
represent the type of information being requested. This set of Callback objects is
then passed as an array to the ContextHandler using the handle method.

The role mapping providers may call the ContextHandler more than once in order to
obtain the necessary context information. (The number of times a role mapping
provider calls the ContextHandler is dependent upon its implementation.)

b. Using the context information and their associated security provider databases
containing security policies, the subject, and the WebLogic resource, the role
mapping providers determine whether the requestor (represented by the user and
group principals in the subject) is entitled to a certain security role.

The security policies are represented as a set of expressions or rules that are
evaluated to determine if a given security role is to be granted. These rules may
require the role mapping provider to substitute the value of context information
obtained as parameters into the expression. In addition, the rules may also require
the identity of a user or group principal as the value of an expression parameter.

Note:

The rules for security policies are set up in the WebLogic Server
Administration Console and in Java EE deployment descriptors. See
Security Policies in Securing Resources Using Roles and Policies for
Oracle WebLogic Server.

c. If a security policy specifies that the requestor is entitled to a particular security role,
the security role is added to the list of security roles that are applicable to the subject.

d. This process continues until all security policies that apply to the WebLogic resource
or the resource container have been evaluated.

Chapter 8
The Role Mapping Process

8-5

5. The list of security roles is returned to the WebLogic Security Framework, where it
can be used as part of other operations, such as access decisions.

Is Your Custom Role Mapping Provider Thread Safe?
For the best performance, and by default, Weblogic Server supports parallel
modification to security policy and roles during application and module deployment.
For this reason, deployable authorization and role mapping providers configured in the
security realm should support parallel calls. The WebLogic deployable XACML
Authorization and Role Mapping providers meet this requirement.

However, custom deployable authorization and role mapping providers may or may not
support parallel calls. If your custom deployable authorization or role mapping
providers do not support parallel calls, you need to disable the parallel security policy
and role modification and instead enforce a synchronization mechanism that results in
each application and module being placed in a queue and deployed sequentially.

Note:

Enabling the synchronization mechanism affects every deployable provider
configured in the realm, including the predefined WebLogic Server providers.
Enabling the synchronization mechanism may negatively impact the
performance of these providers.

See Administering Security for Oracle WebLogic Server for information on how to turn
on this synchronization enforcement mechanism.

Do You Need to Develop a Custom Role Mapping Provider?
The default (that is, active) security realm for WebLogic Server includes the WebLogic
Role Mapping provider and the XACML Role Mapping provider.

Note:

The WebLogic Role Mapping provider, also referred to as the
DefaultRoleMapper, is deprecated in WebLogic Server 14.1.1.0.0 and will be
removed in a future release. Instead, the XACML Role Mapping provider is
the default role mapping provider.

The XACML Role Mapping provider computes dynamic security roles for a specific
user (subject) with respect to a specific protected WebLogic resource for each of the
default users and WebLogic resources. The XACML Role Mapping provider supports
the deployment and undeployment of security roles within the system. It implements
XACML 2.0, the standard access control policy markup language. If you want to use a
role mapping mechanism that already exists within your organization, you could create
a custom role mapping provider to tie into that system.

Chapter 8
Is Your Custom Role Mapping Provider Thread Safe?

8-6

Does Your Custom Role Mapping Provider Need to Support Application
Versioning?

All authorization, role mapping, and credential mapping providers for the security realm must
support application versioning in order for an application to be deployed using versions. If you
develop a custom security provider for authorization, role mapping, or credential mapping and
need to support versioned applications, you must implement the Versionable Application
SSPI, as described in Versionable Application Providers.

How to Develop a Custom Role Mapping Provider
If the XACML Role Mapping provider does not meet your needs, you can develop a custom
role mapping provider by following these steps:

1. Create Runtime Classes Using the Appropriate SSPIs, or, optionally, implement the Bulk
Role Mapping Providers

2. Optionally, implement the Role Consumer SSPI

3. Generate an MBean type for your custom role mapping provider by completing the steps
described in Generate an MBean Type Using the WebLogic MBeanMaker.

4. Configure the Custom Role Mapping Provider Using the Administration Console

5. Provide a Mechanism for Security Role Management

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

• Understand the Purpose of the Provider SSPIs

• Determine Which Provider Interface You Will Implement

• Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes

When you understand this information and have made your design decisions, create the
runtime classes for your custom role mapping provider by following these steps:

• Implement the RoleProvider SSPI or Implement the DeployableRoleProviderV2 SSPI

• Implement the RoleMapper SSPI

• Implement the SecurityRole Interface

Note:

At least one role mapping provider in a security realm must implement the
DeployableRoleProviderV2 SSPI, or else it will be impossible to deploy Web
applications and EJBs.

For an example of how to create a runtime class for a custom role mapping provider, see
Example: Creating the Runtime Class for the Sample Role Mapping Provider .

Chapter 8
How to Develop a Custom Role Mapping Provider

8-7

Implement the RoleProvider SSPI
To implement the RoleProvider SSPI, provide implementations for the methods
described in Understand the Purpose of the Provider SSPIs and the following method:

• getRoleMapper

public RoleMapper getRoleMapper()

The getRoleMapper method obtains the implementation of the RoleMapper SSPI.
For a single runtime class called MyRoleProviderImpl.java, the implementation of
the getRoleMapper method would be:

return this;

If there are two runtime classes, then the implementation of the getRoleMapper
method could be:

return new MyRoleMapperImpl;

This is because the runtime class that implements the RoleProvider SSPI is used
as a factory to obtain classes that implement the RoleMapper SSPI.

See Java API Reference for Oracle WebLogic Server for the RoleProvider SSPI.

Implement the DeployableRoleProviderV2 SSPI

Note:

The DeployableRoleProvider SSPI is deprecated in this release of
WebLogic Server. Use the DeployableRoleProviderV2 SSPI instead.

To implement the DeployableRoleProviderV2 SSPI, provide implementations for the
methods described in Understand the Purpose of the Provider SSPIs, Implement the
RoleProvider SSPI, and the following methods:

• deleteApplicationRoles

void deleteApplicationRoles(ApplicationInfo application)

Deletes all roles for an application and is called only on the Administration Server
within a WebLogic Server domain at the time an application is deleted.

• deployRole

void deployRole(DeployRoleHandle handle, Resource resource, String roleName,
String[] userAndGroupNames)

Creates a role on behalf of a deployed Web application or EJB. If the role already
exists, it is removed and replaced by this role.

• endDeployRoles

void endDeployRoles(DeployRoleHandle handle)

Marks the end of an application role deployment.

Chapter 8
How to Develop a Custom Role Mapping Provider

8-8

• startDeployRoles

DeployRoleHandle startDeployRoles(ApplicationInfo application)

Marks the beginning of an application role deployment and is called on all servers within
a WebLogic Server domain where an application is targeted.

• undeployAllRoles

void undeployAllRoles(DeployRoleHandle handle)

Deletes a set of roles on behalf of an undeployed Web application or EJB.

See Java API Reference for Oracle WebLogic Server for the DeployableRoleProviderV2
SSPI.

The ApplicationInfo Interface
The ApplicationInfo interface passes data about an application deployment to a security
provider. You can use this data to uniquely identity the application.

The Security Framework implements the ApplicationInfo interface for your convenience. You
do not need to implement any methods for this interface.

The DeployableAuthorizationProviderV2 and DeployableRoleProviderV2 interfaces use
ApplicationInfo. For example, consider an implementation of the
DeployableRoleProviderV2 methods. The Security Framework calls the
DeployableRoleProviderV2 startDeployRoles method and passes in the ApplicationInfo
interface for this application. The ApplicationInfo data is determined based on the information
supplied in the WebLogic Server Administration Console when an application is deployed.

The startDeployRoles method returns DeployRoleHandle, which you can then use in the
other DeployableRoleProviderV2 methods.

You use the ApplicationInfo interface to get the application identifier, the component name,
and the component type for this application. Component type can be APPLICATION,
CONTROL_RESOURCE, EJB, or WEBAPP, as defined in the ApplicationInfo.ComponentType class.

The following example shows one way to accomplish this task:

public DeployRoleHandle startDeployRoles(ApplicationInfo appInfo)
 throws DeployHandleCreationException
 :
// Obtain the application information...
 String appId = appInfo.getApplicationIdentifier();
 ComponentType compType = appInfo.getComponentType();
 String compName = appInfo.getComponentName();

The Security Framework calls the DeployableRoleProviderV2 deleteApplicationRoles
method and passes in the ApplicationInfo interface for this application. The
deleteApplicationRoles method deletes all roles for an application and is called (only on
the Administration Server within a WebLogic Server domain) at the time an application is
deleted.

Implement the RoleMapper SSPI
To implement the RoleMapper SSPI, provide implementations for the following methods:

• getRoles

Chapter 8
How to Develop a Custom Role Mapping Provider

8-9

public Map getRoles(Subject subject, Resource resource, ContextHandler
handler)

The getRoles method returns the security roles associated with a given subject for
a specified WebLogic resource, possibly using the optional information specified in
the ContextHandler. For more information about ContextHandlers, see
ContextHandlers and WebLogic Resources.

See Java API Reference for Oracle WebLogic Server for the RoleMapper SSPI and
the getRoles methods.

Implement the SecurityRole Interface
The methods on the SecurityRole interface allow you to obtain basic information
about a security role, or to compare it to another security role. These methods are
designed for the convenience of security providers.

Note:

SecurityRole implementations are returned as a Map by the getRoles()
method (see Implement the RoleProvider SSPI).

To implement the SecurityRole interface, provide implementations for the following
methods:

• equals

public boolean equals(Object another)

The equals method returns TRUE if the security role passed in matches the security
role represented by the implementation of this interface, and FALSE otherwise.

• toString

public String toString()

The toString method returns this security role, represented as a String.

• hashCode

public int hashCode()

The hashCode method returns a hashcode for this security role, represented as an
integer.

• getName

public String getName()

The getName method returns the name of this security role, represented as a
String.

• getDescription

public String getDescription()

Chapter 8
How to Develop a Custom Role Mapping Provider

8-10

The getDescription method returns a description of this security role, represented as a
String. The description should describe the purpose of this security role.

Example: Creating the Runtime Class for the Sample Role Mapping Provider
Example 8-1 shows the SimpleSampleRoleMapperProviderImpl.java class, which is the
runtime class for the sample role mapping provider. This runtime class includes
implementations for:

• The three methods inherited from the SecurityProvider interface: initialize,
getDescription and shutdown (as described in Understand the Purpose of the Provider
SSPIs).

• The method inherited from the RoleProvider SSPI: the getRoleMapper method (as
described in Implement the RoleProvider SSPI).

• The five methods in the DeployableRoleProviderV2 SSPI: the deleteApplicationRoles,
deployRole, endDeployRoles, startDeployRoles, and undeployAllRoles methods (as
described in Implement the DeployableRoleProviderV2 SSPI).

• The method in the RoleMapper SSPI: the getRoles method (as described in Implement
the RoleProvider SSPI).

Note:

The bold face code in Example 8-1 highlights the class declaration and the
method signatures.

Example 8-1 SimpleSampleRoleMapperProviderImpl.java

package examples.security.providers.roles.simple;

import java.security.Principal;
import java.util.Collections;
import java.util.Date;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Properties;
import java.util.Set;
import javax.security.auth.Subject;
import weblogic.management.security.ProviderMBean;
import weblogic.security.SubjectUtils;
import weblogic.security.WLSPrincipals;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.ApplicationInfo;
import weblogic.security.spi.ApplicationInfo.ComponentType;
import weblogic.security.spi.DeployableRoleProviderV2;
import weblogic.security.spi.DeployRoleHandle;
import weblogic.security.spi.Resource;
import weblogic.security.spi.RoleMapper;
import weblogic.security.spi.SecurityServices;
import weblogic.security.spi.VersionableApplicationProvider;

public final class SimpleSampleRoleMapperProviderImpl

Chapter 8
How to Develop a Custom Role Mapping Provider

8-11

implements DeployableRoleProviderV2, RoleMapper, VersionableApplicationProvider
{
 private String description;
// a description of this provider
 private SimpleSampleRoleMapperDatabase database;
// manages the role definitions for this provider
 private static final Map NO_ROLES = Collections.unmodifiableMap(new HashMap(1));
// used when no roles are found

 public void initialize(ProviderMBean mbean, SecurityServices services)
 {
 System.out.println("SimpleSampleRoleMapperProviderImpl.initialize");

// Cast the mbean from a generic ProviderMBean to a SimpleSampleRoleMapperMBean.
 SimpleSampleRoleMapperMBean myMBean = (SimpleSampleRoleMapperMBean)mbean;

 // Set the description to the simple sample role mapper's mbean's description and version
 description = myMBean.getDescription() + "\n" + myMBean.getVersion();

 // Instantiate the helper that manages this provider's role definitions
 database = new SimpleSampleRoleMapperDatabase(myMBean);
 }
 public String getDescription()
{
 return description;
}

 public void shutdown()
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.shutdown");
}

 public RoleMapper getRoleMapper()
 {
 // Since this class implements both the DeployableRoleProvider
 // and RoleMapper interfaces, this object is the
 // role mapper object so just return "this".
 return this;
 }

public Map getRoles(Subject subject, Resource resource, ContextHandler handler)
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.getRoles");
 System.out.println("\tsubject\t= " + subject);
 System.out.println("\tresource\t= " + resource);

 // Make a list for the roles
 Map roles = new HashMap();

 // Make a list for the roles that have already been found and evaluated
 Set rolesEvaluated = new HashSet();

 // since resources scope roles, and resources are hierarchical,
 // loop over the resource and all its parents, adding in any roles
 // that match the current subject.
 for (Resource res = resource; res != null; res = res.getParentResource()) {
 getRoles(res, subject, roles, rolesEvaluated);
 }

 // try global resources too

Chapter 8
How to Develop a Custom Role Mapping Provider

8-12

 getRoles(null, subject, roles, rolesEvaluated);

 // special handling for no matching roles
 if (roles.isEmpty()) {
 return NO_ROLES;
 }

 // return the roles we found.
 System.out.println("\troles\t= " + roles);
 return roles;
 }

public DeployRoleHandle startDeployRoles(ApplicationInfo application)
{
 String appId = application.getApplicationIdentifier();
 String compName = application.getComponentName();
 ComponentType compType = application.getComponentType();
 DeployRoleHandle handle = new SampleDeployRoleHandle(appId,compName,compType);

 // ensure that previous roles have been removed so that
 // the most up to date deployment roles are in effect
 database.removeRolesForComponent(appId, compName, compType);

 // A null handle may be returned if needed
 return handle;

 }

public void deployRole(DeployRoleHandle handle, Resource resource,
String roleName, String[] principalNames)
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.deployRole");
 System.out.println("\thandle\t\t= " + ((SampleDeployRoleHandle)handle).toString());
 System.out.println("\tresource\t\t= " + resource);
 System.out.println("\troleName\t\t= " + roleName);

 for (int i = 0; principalNames != null && i < principalNames.length; i++) {
 System.out.println("\tprincipalNames[" + i + "]\t= " + principalNames[i]);
 }
 database.setRole(resource, roleName, principalNames);
}
public void endDeployRoles(DeployRoleHandle handle)
{
database.saveRoles();
}

public void undeployAllRoles(DeployRoleHandle handle)
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.undeployAllRoles");
 SampleDeployRoleHandle myHandle = (SampleDeployRoleHandle)handle;
 System.out.println("\thandle\t= " + myHandle.toString());

 // remove roles
 database.removeRolesForComponent(myHandle.getApplication(),
 myHandle.getComponent(),
 myHandle.getComponentType());
}

public void deleteApplicationRoles(ApplicationInfo application)
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.deleteApplicationRoles");

Chapter 8
How to Develop a Custom Role Mapping Provider

8-13

 String appId = application.getApplicationIdentifier();
 System.out.println("\tapplication identifier\t= " + appId);

 // clear out roles for the application
 database.removeRolesForApplication(appId);
}

private void getRoles(Resource resource, Subject subject,
 Map roles, Set rolesEvaluated)
 {
 // loop over all the roles in our "database" for this resource
 for (Enumeration e = database.getRoles(resource); e.hasMoreElements();) {
 String role = (String)e.nextElement();

 // Only check for roles not already evaluated
 if (rolesEvaluated.contains(role)) {
 continue;
 }
 // Add the role to the evaluated list
 rolesEvaluated.add(role);

 // If any of the principals is on that role, add the role to the list.
 if (roleMatches(resource, role, subject)) {

 // Add a simple sample role mapper role instance to the list of roles.
 roles.put(role, new SimpleSampleSecurityRoleImpl(role));
 }
 }
}

private boolean roleMatches(Resource resource, String role, Subject subject)
{
 // loop over the the principals that are in this role.
 for (Enumeration e = database.getPrincipalsForRole(resource, role); e.hasMoreElements();) {

 // get the next principal in this role
 String principalWant = (String)e.nextElement();

 // see if any of the current principals match this principal
 if (subjectMatches(principalWant, subject)) {
 return true;
 }
 }
return false;
}

private boolean subjectMatches(String principalWant, Subject subject)
{
 // first, see if it's a group name match
 if (SubjectUtils.isUserInGroup(subject, principalWant)) {
 return true;
 }
 // second, see if it's a user name match
 if (principalWant.equals(SubjectUtils.getUsername(subject))) {
 return true;
 }
 // didn't match
 return false;
}

Chapter 8
How to Develop a Custom Role Mapping Provider

8-14

public void createApplicationVersion(String appId, String sourceAppId)
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.createApplicationVersion");
 System.out.println("\tapplication identifier\t= " + appId);
 System.out.println("\tsource app identifier\t= " + ((sourceAppId != null) ? sourceAppId : "None"));

 // create new roles when existing application is specified
 if (sourceAppId != null) {
 database.cloneRolesForApplication(sourceAppId,appId);
 }
}

public void deleteApplicationVersion(String appId)
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.deleteApplicationVersion");
 System.out.println("\tapplication identifier\t= " + appId);

 // clear out roles for the application
 database.removeRolesForApplication(appId);
}

public void deleteApplication(String appName)
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.deleteApplication");
 System.out.println("\tapplication name\t= " + appName);

 // clear out roles for the application
 database.removeRolesForApplication(appName);
}

class SampleDeployRoleHandle implements DeployRoleHandle
{
 Date date;
 String application;
 String component;
 ComponentType componentType;

 SampleDeployRoleHandle(String app, String comp, ComponentType type)
 {
 this.application = app;
 this.component = comp;
 this.componentType = type;
 this.date = new Date();
 }

 public String getApplication() { return application; }
 public String getComponent() { return component; }
 public ComponentType getComponentType() { return componentType; }

 public String toString()
{
 String name = component;
 if (componentType == ComponentType.APPLICATION)
 name = application;
 return componentType +" "+ name +" ["+ date.toString() +"]";
 }
 }
}

Chapter 8
How to Develop a Custom Role Mapping Provider

8-15

Example 8-2 shows the sample SecurityRole implementation that is used along with
the SimpleSampleRoleMapperProviderImpl.java runtime class.

Example 8-2 SimpleSampleSecurityRoleImpl.java

package examples.security.providers.roles.simple;
import weblogic.security.service.SecurityRole;
/*package*/ class SimpleSampleSecurityRoleImpl implements SecurityRole
{
 private String roleName; // the role's name
 private int hashCode; // the role's hash code
/*package*/ SimpleSampleSecurityRoleImpl(String roleName)
{
 this.roleName = roleName;
 this.hashCode = roleName.hashCode() + 17;
}
public boolean equals(Object genericRole)
{
 // if the other role is null, we're not the same
 if (genericRole == null) {
 return false;
 }
// if we're the same java object, we're the same
if (this == genericRole) {
 return true;
}

// if the other role is not a simple sample role mapper role,
// we're not the same
if (!(genericRole instanceof SimpleSampleSecurityRoleImpl)) {
return false;
}

// Cast the other role to a simple sample role mapper role.
SimpleSampleSecurityRoleImpl sampleRole =
(SimpleSampleSecurityRoleImpl)genericRole;
// if our names don't match, we're not the same
if (!roleName.equals(sampleRole.getName())) {
 return false;
}
// we're the same
 return true;
}
public String toString()
{
return roleName;
}

public int hashCode()
{
return hashCode;
}

public String getName()
{
 return roleName;
}
public String getDescription()
{
 return "";

Chapter 8
How to Develop a Custom Role Mapping Provider

8-16

}
}

Role Consumer SSPI
WebLogic Server implements a role consumer for Web service annotations. This release of
WebLogic Server includes an SSPI that role mapping providers can use to obtain the role
collections.

The RoleConsumer SSPI is optional; only those role mapping providers that implement the
SSPI are called to consume a role collection.

The SSPI supports both the delivery of initial role collections and the delivery of updated role
collections.

All role mapping providers that support the RoleConsumer SSPI are called to consume a role
collection. Each role mapping provider can choose to skip or obtain the role collection for a
given role set. In the case where a provider persists roles, the provider need only collect the
role once. However, providers keeping roles in memory can obtain the role collection again.

The out-of-the-box WebLogic Server Role Mapping providers persist the role into LDAP.

Required SSPI Interfaces
If you want your custom role mapping provider to support the delivery of role collections, you
must implement three interfaces:

• weblogic.security.spi.RoleConsumerFactory
• weblogic.security.spi.RoleConsumer
• weblogic.security.spi.RoleCollectionHandler
These interfaces are described in the sections that follow.

Implement the RoleConsumerFactory SSPI Interface
A role mapping provider implements the RoleConsumerFactory interface so that an instance
of a RoleConsumer is available to the WebLogic Security Framework. The WebLogic Security
Framework calls your RoleConsumerFactory implementation to obtain the provider's
implementation of the role consumer.

The RoleConsumerFactory SSPI has one method, which returns your implementation of the
RoleConsumer SSPI interface.

public interface RoleConsumerFactory
{
 /**
 * Obtain the implementation of the RoleConsumer
 * security service provider interface (SSPI).<P>
 *
 * @return a RoleConsumer SSPI implementation.<P>
 */
 public RoleConsumer getRoleConsumer();
}

Chapter 8
How to Develop a Custom Role Mapping Provider

8-17

Implement the RoleConsumer SSPI Interface
The RoleConsumer SSPI returns a role collection handler for consumption of a role
collection. It has one method, getRoleCollectionHandler(), which takes a
RoleCollectionInfo implementation as an argument and returns your implementation
of the RoleCollectionHandler interface.

public interface RoleConsumer
{
 /**
 * Obtain a role handler for consumption of a role collection.
 *
 * @param info the RoleCollectionInfo for the role collection.
 *
 * @return a RoleCollectionHandler or NULL which indicates
 * that the role collection is not needed.
 *
 * @exception ConsumptionException if an error occurs
 * obtaining the handler and the role collection cannot be consumed.
 */
 public RoleCollectionHandler getRoleCollectionHandler(
 RoleCollectionInfo info)
 throws ConsumptionException;
}

The WebLogic Security Framework calls the getRoleCollectionHandler() method
and passes data about a role collection to a security provider as an implementation of
the RoleCollectionInfo interface. (This interface implementation is provided for you,
you do not have to implement it.)

You use the RoleCollectionInfo getName(), getVersion(), getTimestamp(), and
getResourceTypes() methods to discover information about this role collection. You
then return a RoleCollectionHandler, or NULL to indicate that the role collection is
not needed.

public interface RoleCollectionInfo
{
 /**
 * Get the name of the collection.
 */
 public String getName();

 /**
 * Get the runtime version of the role.
 */
 public String getVersion();

 /**
 * Get the timestamp of the role.
 */
 public String getTimestamp();

 /**
 * Get the resource types used in the role collection.
 */
 public Resource[] getResouceTypes();
}

Chapter 8
How to Develop a Custom Role Mapping Provider

8-18

Implement the RoleCollectionHandler SSPI Interface
The RoleConsumer.getRoleCollectionHandler() method returns your implementation of the
RoleCollectionHandler interface. RoleCollectionHandler has two methods: setRole() and
done(). The setRole() method takes a resource, a role name, and an array of user and
group names that defines what user names and group names are to be assigned to that role
for the given resource.

The done() method signals the completion of the role collection.

public interface RoleCollectionHandler
{
 /**
 * Set a role for the specified resource.
 */
 public void setRole(Resource resource, String roleName, String[] userAndGroupNames)
 throws ConsumptionException;

 /**
 * Signals the completion of the role collection.
 */
 public void done()
 throws ConsumptionException;

}

Supporting an Updated Role Collection
To support the delivery of an updated role collection, all role mapping providers that support
the RoleConsumer SSPI need to examine the contents of the RoleCollectionInfo passed in
the RoleConsumer.getRoleCollectionHandler() method to determine if a role collection has
changed. Each provider must decide (possibly by configuration) how to perform conflict
resolution with the initial role collection and any customized role received outside of the SSPI.

For the WebLogic Server supplied role mapping providers, customized roles will not be
replaced by the updated role collection: all roles from the initial role collection will be removed
and only the customized roles, plus the updated role collection, will be in effect. If the role
collection info has a different timestamp or version, it's treated as an updated role collection.
The collection name is used as a persistence key.

The RoleConsumerMBean
Role mapping providers that implement the Role Consumer SSPI must also implement the
weblogic.management.security.authorization.RoleConsumerMBean to indicate that the
provider supports policy consumption.

PolicyStoreMBean
This release of WebLogic Server includes support for a new MBean
(weblogic.management.security.authorization.PolicyStoreMBean) that allows for
standard management (add, delete, get, list, modify, read) of administrator-generated XACML
policies and policy sets. An authorization or role mapping provider MBean can optionally
implement this MBean interface.

Chapter 8
How to Develop a Custom Role Mapping Provider

8-19

The PolicyStoreMBean methods allow security administrators to manage policy in the
server as XACML documents. This includes creating and managing a domain that
uses the default XACML provider, as well as managing XACML documents that the
administrator has created. The administrator can then use WLST to manage these
XACML policies in WebLogic Server.

WebLogic Server includes an implementation of this MBean for use with the out-of-the-
box XACML providers, and you can write your own implementation of this MBean for
use with your own custom authorization or role mapping providers. The WebLogic
Server out-of-the-box XACML providers support the mandatory features of XACML, as
described in the XACML 2.0 Core Specification (http://docs.oasis-open.org/
xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf), with the Oracle-specific
usage described in Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

Policies are expressed as XACML 2.0 Policy or PolicySet documents. Custom
authorization providers should expect standard Policy or PolicySet documents as
described in the XACML 2.0 Core Specification. Custom role mapping providers
should expect Policy or PolicySet documents consistent with role assignment policies
described by the Core and hierarchical role based access control (RBAC) profile of
XACML v2.0 (http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-
rbac-profile1-spec-os.pdf).

Specifically, the Target must contain:

• An ActionAttributeDesignator with the id,
urn:oasis:names:tc:xacml:1.0:action:action-id, and the value,
urn:oasis:names:tc:xacml:2.0:actions:enableRole, according to anyURI-
equal. For example:

<Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

<AttributeValue
DataType="http://www.w3.org/2001/
XMLSchema#anyURI">urn:oasis:names:tc:xacml:2.0:actions:enableRole
</AttributeValue>

<ActionAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

</ActionMatch>
</Action>

• A ResourceAttributeDesignator with the id,
urn:oasis:names:tc:xacml:2.0:subject:role, and a value naming the role
being assigned, according to string-equal. For example:

<ResourceAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor-or-self"
DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

Examining the Format of a XACML Policy File
The XACML 2.0 Core Specification (http://docs.oasis-open.org/xacml/2.0/
access_control-xacml-2.0-core-spec-os.pdf) and the Oracle extensions described
in Securing Resources Using Roles and Policies for Oracle WebLogic Server are the

Chapter 8
How to Develop a Custom Role Mapping Provider

8-20

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

definitive sources of information for the XACML policy files used by the supplied XACML
Authorization and Role Mapping Providers.

However, if as part of your development process you want to take a look at the format of a
supported XACML file, perhaps the most convenient way is to use the WebLogic Server
Administration Console to export the data from the XACML Authorization or Role Mapping
provider's database as a XACML file. Copy this exported XACML file to a file with some other
name and use the tool of your choice to review the copy.

Note:

Treat the exported file as read-only. If you do make changes, do not import the file
back into WebLogic Server. Editing exported files might result in an unusable
WebLogic Server configuration and is not supported.

Using WLST to Add a Policy to the PolicyStoreMBean
Example 8-3 shows an example of using WLST to add a single policy to an instance of the
PolicyStoreMBean from a XACML file.

The example assumes that you have defined the properties used in this script elsewhere, in a
manner similar to the following lines from an ant script:

<property name="xacml-docs-dir" value="${xacmldir}/xacml-docs"/>
<sysproperty key="file" value="${xacml-docs-dir}/policy-getSubject.xacml"/>

You should avoid entering clear-text passwords in WLST commands in general, and you
should especially avoid saving on disk WLST scripts that include clear-text passwords. In
these instances you should use a mechanism for passing encrypted passwords instead. See
Security for WLST in Understanding the WebLogic Scripting Tool.

Example 8-3 Using WLST to Add a Policy to the PolicyStoreMBean

:
try:
 protocol = System.getProperty("protocol")
 host = System.getProperty("host")
 user = System.getProperty("authuser")
 passwd = System.getProperty("authpwd")
 port = System.getProperty("port")
 dom = System.getProperty("domain")
 rlm = System.getProperty("realm")
 fil = System.getProperty("file")
 prov = System.getProperty("provider")
 stat = System.getProperty("status")

def configure():
try:
 url = protocol + "://" + host + ":" + port
 connect(user,passwd, url)
 path = "/SecurityConfiguration/" + dom + "/Realms/" + rlm + "/" + prov
 print("cd'ing to " + path)
 cd(path)
 print("calling open()")
 xacmlFile = open(fil,"r")
 print("calling read()")

Chapter 8
How to Develop a Custom Role Mapping Provider

8-21

 xacmlDoc = xacmlFile.read()
 print("calling cmo.addPolicy")
 if stat == "none":
 cmo.addPolicy(xacmlDoc)
 else:
 cmo.addPolicy(xacmlDoc, stat)
 print("Add error handling")
:
:

As described in the Navigating and Interrogating MBeans section of Understanding the
WebLogic Scripting Tool, when WLST first connects to an instance of WebLogic
Server, the variable, cmo (Current Management Object), is initialized to the root of all
configuration management objects, DomainMBean. When you navigate to an MBean
type, in this case SecurityConfigurationMBean, the value of cmo reflects
SecurityConfigurationMBean. When you navigate to an MBean instance, in this case
to an Authorizer MBean that implements the PolicyStoreMBean, identified in the
example by the variable prov, WLST changes the value of cmo to be the current
MBean instance.

The example uses the addPolicy() method of the PolicyStoreMBean to add a policy
read from a XACML file to the policy store. Two variants of the addPolicy() method
(without and with status) are shown.

If you use an addPolicy() method that does not specify status, it defaults to ACTIVE,
which indicates that the policy is evaluated for any decision to which its target applies.
You can explicitly set status to be ACTIVE, INACTIVE, or BYREFERENCE. The
INACTIVE status indicates that the policy will never be evaluated and is only being
stored. The BYREFERENCE status indicates that the policy will only be evaluated
when referenced by a policy set that is being evaluated.

You can invoke this type of WLST script from the command line, in a manner similar to
the following:

java -Dhost="localhost " -Dprotocol="t3" -Dauthuser="weblogic"
-Dauthpwd="weblogic" -Dport="7001" -Ddomain="mydomain" -Drealm="myrealm"
-Dprovider="Authorizers/XACMLAuthorizer"
-Dfile="C:/XACML/xacml-docs/policy12.xml" -Dstatus="none" weblogic.WLST
XACML/scripts/XACMLaddPolicy.py

Using WLST to Read a PolicySet as a String
Example 8-4 shows an example of using WLST to read a PolicySet as a string.

The example assumes that you have defined the properties used in this script
elsewhere, in a manner similar to the following lines from an ant script:

<sysproperty key="identifier"
value="urn:sample:xacml:2.0:wlssecqa:resource:type@E@Fejb@G@M@Oapplication@ENoD
DRolesOrPoliciesEar@M@Omodule@Eejb11inEarMiniAppBean.jar@M@Oejb@EMiniAppBean@
M@Omethod@EgetSubject@M@OmethodInterface@ERemote"/>
<sysproperty key="version" value="1.0"/>

You should avoid entering clear-text passwords in WLST commands in general, and
you should especially avoid saving on disk WLST scripts that include clear-text
passwords. In these instances you should use a mechanism for passing encrypted
passwords instead. See Security for WLST in Understanding the WebLogic Scripting
Tool.

Chapter 8
How to Develop a Custom Role Mapping Provider

8-22

Example 8-4 Using WLST to Read a PolicySet as a String

:
:
try:
 print("start XACMLreadPolicySet.py")
 protocol = System.getProperty("protocol")
 host = System.getProperty("host")
 user = System.getProperty("authuser")
 passwd = System.getProperty("authpwd")
 port = System.getProperty("port")
 dom = System.getProperty("domain")
 rlm = System.getProperty("realm")
 prov = System.getProperty("provider")
 id = System.getProperty("identifier")
 vers = System.getProperty("version")
:
:
def configure():
try:
 url = protocol + "://" + host + ":" + port
 connect(user,passwd, url)
 path = "/SecurityConfiguration/" + dom + "/Realms/" + rlm + "/" + prov
 print("cd'ing to " + path)
 cd(path)
 polset = cmo.readPolicySetAsString(id, vers)
 print("readPolicySetAsString() returned the following policy set: " + polset)
 print"Add error handling."
:
:

As described in the XACML 2.0 Core Specification (http://docs.oasis-open.org/
xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf), the <PolicySet> element
contains a set of <Policy> or other <PolicySet> elements and a specified procedure for
combining the results of their evaluation. See the XACML 2.0 Core Specification for complete
information.

Bulk Role Mapping Providers
This release of WebLogic Server includes bulk access versions of the following role mapping
provider SSPI interfaces:

• BulkRoleProvider
• BulkRoleMapper
The bulk access SSPI interfaces allow role mapping providers to receive multiple decision
requests in one call rather than through multiple calls, typically in a 'for' loop. The intent of
the bulk SSPI variants is to allow provider implementations to take advantage of internal
performance optimizations, such as detecting that many of the passed-in Resource objects
are protected by the same policy and will generate the same decision result.

There are subtle differences in how the non-bulk and bulk versions of the SSPI interfaces are
used. For example, the BulkRoleMapper.getRoles() method returns a Map of roles indexed
first by resource and then by their names (Map<Resource, Map<String, SecurityRole>>),
representing the security roles associated with the specified resources that have been
granted to the subject.

Chapter 8
How to Develop a Custom Role Mapping Provider

8-23

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Configure the Custom Role Mapping Provider Using the Administration
Console

Configuring a custom role mapping provider means that you are adding the custom
role mapping provider to your security realm, where it can be accessed by applications
requiring role mapping services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. This section
contains information that is important for the person configuring your custom role
mapping providers:

• Managing Role Mapping Providers and Deployment Descriptors

• Enabling Security Role Deployment

Note:

The steps for configuring a custom role mapping provider using the
WebLogic Server Administration Console are described
underConfiguring WebLogic Security Providers in Administering Security
for Oracle WebLogic Server.

Managing Role Mapping Providers and Deployment Descriptors
Some application components, such as Enterprise JavaBeans (EJBs) and Web
applications, store relevant deployment information in Java EE and WebLogic Server
deployment descriptors. For Web applications, the deployment descriptor files (called
web.xml and weblogic.xml) contain information for implementing the Java EE security
model, including security roles. Typically, you will want to include this information when
first configuring your role mapping providers in the WebLogic Server Administration
Console.

Because the Java EE platform standardizes Web application and EJB security in
deployment descriptors, WebLogic Server integrates this standard mechanism with its
Security Service to give you a choice of techniques for securing Web application and
EJB resources. You can use deployment descriptors exclusively, the WebLogic Server
Administration Console exclusively, or you can combine the techniques for certain
situations.

Depending on the technique you choose, you also need to apply a Security Model.
WebLogic supports different security models for individual deployments, and a security
model for realm-wide configurations that incorporate the technique you want to use.

See Options for Securing EJB and Web Application Resources in Securing Resources
Using Roles and Policies for Oracle WebLogic Server.

When configured to use deployment descriptors, WebLogic Server reads security role
information from the web.xml and weblogic.xml deployment descriptor files (examples
of web.xml and weblogic.xml files are shown in Example 8-5 and Example 8-6. This
information is then copied into the security provider database for the role mapping
provider.

Chapter 8
How to Develop a Custom Role Mapping Provider

8-24

Example 8-5 Sample web.xml File

<web-app>
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Success</web-resource-name>
 <url-pattern>/welcome.jsp</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>developers</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>default</realm-name>
 </login-config>
 <security-role>
 <role-name>developers</role-name>
 </security-role>
</web-app>

Example 8-6 Sample weblogic.xml File

<weblogic-web-app>
 <security-role-assignment>
 <role-name>developers</role-name>
 <principal-name>myGroup</principal-name>
 </security-role-assignment>
</weblogic-web-app>

Enabling Security Role Deployment
If you implemented the DeployableRoleProviderV2 SSPI as part of developing your custom
role mapping provider and want to support deployable security roles, the person configuring
the custom role mapping provider (that is, you or an administrator) must be sure that the Role
Deployment Enabled box in the WebLogic Server Administration Console is checked.
Otherwise, deployment for the role mapping provider is considered turned off. Therefore, if
multiple role mapping providers are configured, the Role Deployment Enabled box can be
used to control which role mapping provider is used for security role deployment.

Provide a Mechanism for Security Role Management
While configuring a custom role mapping provider via the WebLogic Server Administration
Console makes it accessible by applications requiring role mapping services, you also need
to supply administrators with a way to manage this security provider's associated security
roles. The WebLogic Role Mapping provider, for example, supplies administrators with a Role
Editor page that allows them to add, modify, or remove security roles for various WebLogic
resources.

Neither the Role Editor page nor access to it is available to administrators when you develop
a custom role mapping provider. Therefore, you must provide your own mechanism for
security role management. This mechanism must read and write security role data (that is,
expressions) to and from the custom role mapping provider's database.

Chapter 8
How to Develop a Custom Role Mapping Provider

8-25

You can accomplish this task in one of two ways:

• Option 1: Develop a Stand-Alone Tool for Security Role Management

• Option 2: Integrate an Existing Security Role Management Tool into the
Administration Console

Option 1: Develop a Stand-Alone Tool for Security Role Management
You would typically select this option if you want to develop a tool that is entirely
separate from the WebLogic Server Administration Console.

For this option, you do not need to write any console extensions for your custom role
mapping provider, nor do you need to develop any management MBeans. However,
your tool needs to:

1. Determine the WebLogic resource's ID, since it is not automatically provided to
you by the console extension. For more information, see WebLogic Resource
Identifiers.

2. Determine how to represent the expressions that make up a security role. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom role mapping provider's
database.

Option 2: Integrate an Existing Security Role Management Tool into the
Administration Console

You would typically select this option if you have a tool that is separate from the
WebLogic Server Administration Console, but you want to launch that tool from the
WebLogic Server Administration Console.

For this option, your tool needs to:

1. Determine the WebLogic resource's ID, since it is not automatically provided to
you by the console extension. See WebLogic Resource Identifiers.

2. Determine how to represent the expressions that make up a security role. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom role mapping provider's
database.

4. Link into the WebLogic Server Administration Console using basic console
extension techniques.

Chapter 8
How to Develop a Custom Role Mapping Provider

8-26

9
Auditing Providers

This chapter describes Auditing provider concepts and functionality, and provides step-by-
step instructions for developing a custom Auditing provider.
Auditing is the process whereby information about operating requests and the outcome of
those requests are collected, stored, and distributed for the purposes of non-repudiation. In
WebLogic Server, an Auditing provider provides this electronic trail of computer activity.

This chapter includes the following sections:

• Auditing Concepts

• The Auditing Process

• Extend weblogic.management.security.audit.ContextHandlerImpl

• How to Develop a Custom Auditing Provider

• Security Framework Audit Events

Auditing Concepts
Before you develop an Auditing provider, you need to understand the following concepts:

• Audit Channels

• Auditing Events From Custom Security Providers

Audit Channels
An Audit Channel is the component of an Auditing provider that determines whether a
security event should be audited, and performs the actual recording of audit information
based on Quality of Service (QoS) policies.

Note:

See Implement the AuditChannel SSPI.

Auditing Events From Custom Security Providers
Each type of security provider can call the configured Auditing providers with a request to
write out information about security-related events, before or after these events take place.
For example, if a user attempts to access a withdraw method in a bank account application
(to which they should not have access), the authorization provider can request that this
operation be recorded. Security-related events are only recorded when they meet or exceed
the severity level specified in the configuration of the Auditing providers.

For information about how to post audit events from a custom security provider, see Auditing
Events From Custom Security Providers.

9-1

The Auditing Process
Figure 9-1 shows how Auditing providers interact with the WebLogic Security
Framework and other types of security providers (using authentication providers as an
example) to audit selected events. An explanation follows.

Figure 9-1 Auditing Providers, the WebLogic Security Framework, and Other
Security Providers

Auditing providers interact with the WebLogic Security Framework and other types of
security providers in the following manner:

Note:

In Figure 9-1 and the explanation below, the other types of security providers
are a WebLogic Authentication provider and a custom authentication
provider. However, these can be any type of security provider that is
developed as described in Auditing Events From Custom Security Providers.

Chapter 9
The Auditing Process

9-2

1. A resource container passes a user's authentication information (for example, a
username/password combination) to the WebLogic Security Framework as part of a login
request.

2. The WebLogic Security Framework passes the information associated with the login
request to the configured authentication providers.

3. If, in addition to providing authentication services, the authentication providers are
designed to post audit events, the authentication providers will each:

a. Instantiate an AuditEvent object. At minimum, the AuditEvent object includes
information about the event type to be audited and an audit severity level.

Note:

An AuditEvent class is created by implementing either the AuditEvent SSPI
or an AuditEvent convenience interface in the authentication provider's
runtime class, in addition to the other security service provider interfaces
(SSPIs) the custom authentication provider must already implement. See
Create an Audit Event.

b. Make a trusted call to the Auditor Service, passing in the AuditEvent object.

Note:

This is a trusted call because the Auditor Service is already passed to the
security provider's initialize method as part of its Provider SSPI
implementation. See Understand the Purpose of the Provider SSPIs.

4. The Auditor Service passes the AuditEvent object to the configured Auditing providers'
runtime classes (that is, the AuditChannel SSPI implementations), enabling audit event
recording.

Note:

Depending on the authentication providers' implementations of the AuditEvent
convenience interface, audit requests may occur both pre and post event, as
well as just once for an event.

5. The Auditing providers' runtime classes use the event type, audit severity and other
information (such as the Audit Context) obtained from the AuditEvent object to control
audit record content. Typically, only one of the configured Auditing providers will meet all
the criteria for auditing.

Note:

See Audit Severity and Audit Context, respectively.

Chapter 9
The Auditing Process

9-3

6. When the criteria for auditing specified by the authentication providers in their
AuditEvent objects is met, the appropriate Auditing provider's runtime class (that
is, the AuditChannel SSPI implementation) writes out audit records in the manner
their implementation specifies.

Note:

Depending on the AuditChannel SSPI implementation, audit records
may be written to a file, a database, or some other persistent storage
medium when the criteria for auditing is met.

Implementing the ContextHandler MBean
The ContextHandlerMBean, weblogic.management.security.audit.ContextHandler,
provides a set of attributes for ContextHandler support. You use this interface to
manage audit providers that support context handler entries in a standard way.

An Auditor provider MBean can optionally implement the ContextHandlerMBean
MBean. The Auditor provider can then use the MBean to determine the supported and
active ContextHandler entries.

The WebLogic Server Administration Console detects when an Auditor provider
implements this MBean and automatically provides a tab for using these attributes.

Note:

The ContextHandler entries associated with the ContextHandlerMBean are
not related to, nor do they affect, the contents of an AuditEvent that is
passed to the Audit providers. An AuditEvent received by a provider may or
may not include a ContextHandler with ContextElements. If a
ContextHandler is included, an Audit provider can get the ContextHandler
from the AuditEvent, regardless of whether you implemented the
ContextHandlerMBean management interface. In particular, the AuditContext
getContext method returns a weblogic.security.service.ContextHandler
interface that is independent of the context handler implemented by the
ContextHandlerMBean.

You can choose to implement the ContextHandlerMBean context handler in
a manner that compliments the AuditContext getContext method. (The
SimpleSampleAuditProviderImpl.java sample takes this approach.)
However, there is no requirement that you do so.

ContextHandlerMBean Methods
The ContextHandlerMBean interface implements the following methods:

• getActiveContextHandlerEntries

public String[] getActiveContextHandlerEntries()

Chapter 9
Implementing the ContextHandler MBean

9-4

Returns the ContextHandler entries that the Audit provider is currently configured to
process.

• getSupportedContextHandlerEntries

public String[] getSupportedContextHandlerEntries()

Returns the list of all ContextHandler entries supported by the auditor.

• setActiveContextHandlerEntries

public void setActiveContextHandlerEntries(String[] types) throws
InvalidAttributeValueException

Sets the ContextHandler entries that the Audit provider will process. The entries you
specify must be listed in the Audit provider's SupportedContextHandlerEntries attribute.

Example: Implementing the ContextHandlerMBean
Example 9-5 shows the SimpleSampleAuditProviderImpl.java class, which is the runtime
class for the sample Auditing provider. This sample Auditing provider has been enhanced to
implement the ContextHandlerMBean.

An MBean Definition File (MDF) is an XML file used by the WebLogic MBeanMaker utility to
generate the Java files that comprise an MBean type. All MDFs must extend a required SSPI
MBean that is specific to the type of the security provider you have created, and can
implement optional SSPI MBeans.

Example 9-1 shows the key sections of the MDF for the sample Auditing provider, which
implements the optional ContexthandlerMBean.

Example 9-1 Example: SimpleSampleAuditor.xml

<MBeanType
Name = "SimpleSampleAuditor"
DisplayName = "SimpleSampleAuditor"
Package = "examples.security.providers.audit.simple"
Extends = "weblogic.management.security.audit.Auditor"
Implements = "weblogic.management.security.audit.ContextHandler"
PersistPolicy = "OnUpdate"
>
...
<MBeanAttribute
Name = "SupportedContextHandlerEntries"
Type = "java.lang.String[]"
Writeable = "false"
Default = "new String[] {
"com.bea.contextelement.servlet.HttpServletRequest" }"
Description = "List of all ContextHandler entries
supported by the auditor."
/>

Extend weblogic.management.security.audit.ContextHandlerImpl
The ContextHandlerMBean has an setActiveContextHandlerEntries attribute that sets the
ContextHandler entries that the Audit provider is currently configured to process. The entries
you specify must be listed in the Audit provider's SupportedContextHandlerEntries attribute.
However, this requirement is not actually enforced by the MBean. Additional work is required

Chapter 9
Implementing the ContextHandler MBean

9-5

to validate that this attribute can set only values from the
SupportedContextHandlerEntries attribute.

You must also create an MBean customizer (for example, you might call it
MyAuditorImpl.java) file that extends
weblogic.management.security.audit.ContextHandlerImpl. Extending
weblogic.management.security.audit.ContextHandlerImpl gives the provider
access to the ActiveContextHandlerEntries attribute validator, which ensures that
the entries include only SupportedContextHandlerEntries.

An example of extending ContextHandlerImpl is available in
SimpleSampleAuditorImpl, which is shown in Example 9-2.

After you implement code similar to that in SimpleSampleAuditorImpl, add code to
your Audit runtime provider to get the ActiveContextHandlerEntries. One possible
way to do this is shown in Example 9-3.

Example 9-2 SimpleSampleAuditorImpl

package examples.security.providers.audit.simple;
import javax.management.MBeanException;
import javax.management.modelmbean.RequiredModelMBean;
import weblogic.management.security.audit.ContextHandlerImpl;

/**
* The simple sample auditor's mbean implementation.
* <p>
* It is needed to inherit the ContextHandlerMBean's ActiveContextHandlerEntries
* attribute validator that ensures that the ActiveContextHandlerEntries
* attribute only contains values from the SupportedContextHandlerEntries
* attribute.
*
* @author Copyright © 1996, 2008, Oracle and/or its affiliates.
* All rights reserved.
*/
public class SimpleSampleAuditorImpl extends ContextHandlerImpl
// Note: extend ContextHandlerImpl instead of AuditorImpl to inherit
// the ActiveContextHandlerEntries attribute validator.
{
/**
* Standard mbean impl constructor.
*
* @throws MBeanException
*/
public SimpleSampleAuditorImpl(RequiredModelMBean base) throws MBeanException
{
super(base);
}
}

Example 9-3 Getting Active Context Handler Entries

 String [] activeHandlerEntries = myMBean.getActiveContextHandlerEntries();
 if (activeHandlerEntries != null) {
 for (int i=0; i<activeHandlerEntries.length; i++) {
 if ((activeHandlerEntries[i] != null) &&
 (activeHandlerEntries[i].equalsIgnoreCase(HTTP_REQUEST_ELEMENT))) {
 handlerEnabled = true;
 break;
 }

Chapter 9
Implementing the ContextHandler MBean

9-6

 }
 }

Do You Need to Develop a Custom Auditing Provider?
The default (that is, active) security realm for WebLogic Server includes a WebLogic Auditing
provider. The WebLogic Auditing provider records information from a number of security
requests, which are determined internally by the WebLogic Security Framework. The
WebLogic Auditing provider also records the event data associated with these security
requests, and the outcome of the requests.

The WebLogic Auditing provider makes an audit decision in its writeEvent method, based on
the audit severity level it has been configured with and the audit severity contained within the
AuditEvent object that is passed into the method. See Create an Audit Event.

Note:

You can change the audit severity level that the WebLogic Auditing provider is
configured with using the WebLogic Server Administration Console. See
Configuring a WebLogic Auditing Provider in Administering Security for Oracle
WebLogic Server.

If there is a match, the WebLogic Auditing provider writes audit information to the
DefaultAuditRecorder.log file, which is located in the
WL_HOME\yourdomain\yourserver\logs directory. Example 9-4 is an excerpt from the
DefaultAuditRecorder.log file.

Example 9-4 DefaultAuditRecorder.log File: Sample Output

When Authentication suceeds. [SUCCESS]
Audit Record Begin <Feb 23, 2005 11:42:17 AM> <Severity=SUCCESS>
<<<Event Type = Authentication Audit Event><TestUser><AUTHENTICATE>>> Audit
Record End ####
When Authentication fails. [FAILURE]
Audit Record Begin <Feb 23, 2005 11:42:01 AM> <Severity=FAILURE>
<<<Event Type = Authentication Audit Event><TestUser><AUTHENTICATE>>> Audit
Record End ####When Operations are invoked.[SUCCESS]
When a user account is unlocked. [SUCCESS]
Audit Record Begin <Feb 23, 2005 11:42:17 AM> <Severity=SUCCESS>
<<<Event Type = Authentication Audit Event><TestUser><USERUNLOCKED>>> Audit
Record End ####
When an Authorization request succeeds. [SUCCESS]
Audit Record Begin <Feb 23, 2005 11:42:17 AM> <Severity=SUCCESS>
<<<Event Type = Authorization Audit Event ><Subject: 1
Principal = class weblogic.security.principal.WLSUserImpl("TestUser")
><ONCE><<jndi>><type=<jndi>, application=, path={weblogic}, action=lookup>>>
Audit Record End ####

Specifically, Example 9-4 shows the Role Manager (a component in the WebLogic Security
Framework that deals specifically with security roles) recording an audit event to indicate that
an authorized administrator has accessed a protected method in a certificate servlet.

You can specify a new directory location for the DefaultAuditRecorder.log file on the
command line with the following Java startup option:

Chapter 9
Do You Need to Develop a Custom Auditing Provider?

9-7

-Dweblogic.security.audit.auditLogDir=c:\foo

The new file location will be c:\foo\yourserver\DefaultAuditRecorder.log.

If you want to write audit information in addition to that which is specified by the
WebLogic Security Framework, or to an output repository that is not the
DefaultAuditRecorder.log (that is, to a simple file with a different name/location or to an
existing database), then you need to develop a custom Auditing provider.

How to Develop a Custom Auditing Provider
If the WebLogic Auditing provider does not meet your needs, you can develop a
custom Auditing provider by following these steps:

1. Create Runtime Classes Using the Appropriate SSPIs

2. Generate an MBean type for your custom auditing provider by completing the
steps described in Generate an MBean Type Using the WebLogic MBeanMaker.

3. Configure the Custom Auditing Provider Using the Administration Console

Note:

After creating a custom Auditing provider, if you are using WLST to manage
your custom Auditing provider configuration, you must ensure that the
provider interface jar is specified in the WLST_EXT_CLASSPATH environment
variable. Optionally, you can set the location of the directory containing the
provider jar using the -Dweblogic.alternateTypesDirectory system
property in the CONFIG_JVM_ARGS environment variable.

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

• Understand the Purpose of the Provider SSPIs.

• Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom Auditing provider by following these steps:

• Implement the AuditProvider SSPI

• Implement the AuditChannel SSPI

For an example of how to create a runtime class for a custom Auditing provider, see
Example: Creating the Runtime Class for the Sample Auditing Provider.

Implement the AuditProvider SSPI
To implement the AuditProvider SSPI, provide implementations for the methods
described in Understand the Purpose of the Provider SSPIs and the following method:

• getAuditChannel

public AuditChannel getAuditChannel();

Chapter 9
How to Develop a Custom Auditing Provider

9-8

The getAuditChannel method obtains the implementation of the AuditChannel SSPI. For
a single runtime class called MyAuditProviderImpl.java, the implementation of the
getAuditChannel method would be:

return this;

If there are two runtime classes, then the implementation of the getAuditChannel method
could be:

return new MyAuditChannelImpl;

This is because the runtime class that implements the AuditProvider SSPI is used as a
factory to obtain classes that implement the AuditChannel SSPI.

See Java API Reference for Oracle WebLogic Server for the AuditProvider SSPI.

Implement the AuditChannel SSPI
To implement the AuditChannel SSPI, provide an implementation for the following method:

• writeEvent

public void writeEvent(AuditEvent event)

The writeEvent method writes an audit record based on the information specified in the
AuditEvent object that is passed in. See Create an Audit Event.

See Java API Reference for Oracle WebLogic Server for the AuditChannel SSPI.

Example: Creating the Runtime Class for the Sample Auditing Provider
Example 9-5 shows the SimpleSampleAuditProviderImpl.java class, which is the runtime
class for the sample Auditing provider. This runtime class includes implementations for:

• The three methods inherited from the SecurityProvider interface: initialize,
getDescription and shutdown (as described in Understand the Purpose of the Provider
SSPIs.)

• The method inherited from the AuditProvider SSPI: the getAuditChannel method (as
described in Implement the AuditProvider SSPI).

• The method in the AuditChannel SSPI: the writeEvent method (as described in
Implement the AuditChannel SSPI).

Note:

The bold face code in Example 9-5 highlights the class declaration and the
method signatures.

Example 9-5 SimpleSampleAuditProviderImpl.java

package examples.security.providers.audit.simple;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.PrintStream;
import javax.servlet.http.HttpServletRequest;

Chapter 9
How to Develop a Custom Auditing Provider

9-9

import weblogic.management.security.ProviderMBean;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.AuditChannel;
import weblogic.security.spi.AuditContext;
import weblogic.security.spi.AuditEvent;
import weblogic.security.spi.AuditProvider;
import weblogic.security.spi.SecurityServices;

public final class SimpleSampleAuditProviderImpl implements AuditProvider, AuditChannel
{
 private String description; // a description of this provider
 private PrintStream log; // the log file that events are written to
 private boolean handlerEnabled = false;
 private final static String HTTP_REQUEST_ELEMENT =
 "com.bea.contextelement.servlet.HttpServletRequest";
 public void initialize(ProviderMBean mbean, SecurityServices services)
 {
 System.out.println("SimpleSampleAuditProviderImpl.initialize");
 SimpleSampleAuditorMBean myMBean = (SimpleSampleAuditorMBean)mbean;
 description = myMBean.getDescription() + "\n" + myMBean.getVersion();
 String [] activeHandlerEntries = myMBean.getActiveContextHandlerEntries();
 if (activeHandlerEntries != null) {
 for (int i=0; i<activeHandlerEntries.length; i++) {
 if ((activeHandlerEntries[i] != null) &&
 (activeHandlerEntries[i].equalsIgnoreCase(HTTP_REQUEST_ELEMENT))) {
 handlerEnabled = true;
 break;
 }
 }
 }
 File file = new File(myMBean.getLogFileName());
 System.out.println("\tlogging to " + file.getAbsolutePath());
 try {
 log = new PrintStream(new FileOutputStream(file), true);
 } catch (IOException e) {
 throw new RuntimeException(e.toString());
 }
 }

 public String getDescription()
 {
 return description;
 }
 public void shutdown()
 {
 System.out.println("SimpleSampleAuditProviderImpl.shutdown");
 log.close();
 }
 public AuditChannel getAuditChannel()
 {
 return this;
 }
 public void writeEvent(AuditEvent event)
 {
 log.println(event);

 if ((!handlerEnabled) || (!(event instanceof AuditContext)))
 return;

 AuditContext auditContext = (AuditContext)event;
 ContextHandler handler = auditContext.getContext();

Chapter 9
How to Develop a Custom Auditing Provider

9-10

 if ((handler == null) || (handler.size() == 0))
 return;

 Object requestValue = handler.getValue("com.bea.contextelement.servlet.HttpServletRequest");
 if ((requestValue == null) || (!(requestValue instanceof HttpServletRequest)))
 return;
 HttpServletRequest request = (HttpServletRequest) requestValue;
 log.println(" " + HTTP_REQUEST_ELEMENT + " method: " + request.getMethod());
 log.println(" " + HTTP_REQUEST_ELEMENT + " URL: " + request.getRequestURL());
 log.println(" " + HTTP_REQUEST_ELEMENT + " URI: " + request.getRequestURI());
 return;
 }
}

Configure the Custom Auditing Provider Using the Administration Console
Configuring a custom Auditing provider means that you are adding the custom Auditing
provider to your security realm, where it can be accessed by security providers requiring audit
services.

Configuring custom security providers is an administrative task, but it is a task that may also
be performed by developers of custom security providers. This section contains information
that is important for the person configuring your custom Auditing providers:

• Configuring Audit Severity

Note:

The steps for configuring a custom Auditing provider using the WebLogic
Server Administration Console are described under Configuring WebLogic
Security Providers in Administering Security for Oracle WebLogic Server.

Configuring Audit Severity
During the configuration process, an Auditing provider's audit severity must be set to one of
the following severity levels:

• INFORMATION
• WARNING
• ERROR
• SUCCESS
• FAILURE

Security Framework Audit Events
This section describes the audit events that are posted by the WebLogic Server Security
Framework. If you write a custom audit provider, it should be prepared to handle these
events. The following topics are covered in this section:

• Passing Additional Audit Information

Chapter 9
Security Framework Audit Events

9-11

• Audit Event Interfaces and Audit Events

Passing Additional Audit Information
The WebLogic Security providers implement the appropriate AuditEvent interfaces and
post those events to the Audit provider. The audit events that also implement the
AuditContext interface can provide more information via a ContextHandler.

Table 9-1 lists the weblogic.security.spi subinterfaces that extend the AuditEvent
SSPI, and indicates which subinterfaces implement the AuditContext interface.

Table 9-1 Audit Events

Audit Event Name Interface Class Audit Event Audit
Context

Application Version Event weblogic.security.spi.AuditA
pplicationVersionEvent

Yes No

Authentication Audit Event weblogic.security.spi.AuditA
tnEvent

Yes No

Authentication Audit Event
V2

weblogic.security.spi.AuditA
tnEventV2

Yes Yes

Authorization Audit Event weblogic.security.spi.AuditA
tzEvent

Yes Yes

CertPathBuilder Audit
Event

weblogic.security.spi.AuditC
ertPathBuilderEvent

Yes Yes

CertPathValidator Audit
Event

weblogic.security.spi.AuditC
ertPathValidatorEvent

Yes Yes

Configuration Audit Event weblogic.security.spi.AuditC
onfigurationEvent

Yes Yes

Credential Mapping Audit
Event

weblogic.security.spi.AuditC
redentialMappingEvent

Yes Yes

Life Cycle Event weblogic.security.spi.AuditL
ifecycleEvent

Yes No

Audit Management Event weblogic.security.spi.AuditM
gmtEvent

Yes No

Policy Audit Event weblogic.security.spi.AuditP
olicyEvent

Yes No

Policy Consumer Audit
Event

weblogic.security.service.in
ternal.PolicyConsumerAuditEv
ent

AuditPolicyE
vent

No

Provider Audit Record com.bea.security.spi.Provide
rAuditRecord

Yes Yes

Role Consumer Audit
Event

weblogic.security.service.in
ternal.RoleConsumerAuditEven
t

AuditRoleEv
ent

Yes

Role Deployment Audit
Event

weblogic.security.spi.AuditR
oleDeploymentEvent

Yes No

Chapter 9
Security Framework Audit Events

9-12

Table 9-1 (Cont.) Audit Events

Audit Event Name Interface Class Audit Event Audit
Context

Role Mapping Audit Event weblogic.security.spi.AuditR
oleEvent

Yes Yes

Audit Event Interfaces and Audit Events
In the weblogic.security.spi package, WebLogic Security defines one top-level base interface
(AuditEvent) with derived interfaces that represent the different types of audit events.

Subsequent sections describe when the security framework and security providers post the
following audit events:

• AuditApplicationVersionEvent
• AuditAtnEventV2
• AuditAtzEvent
• AuditCerPathBuilderEvent, AuditCertPathValidatorEvent
• AuditConfigurationEvent (AuditCreateConfigurationEvent,

AuditDeleteConfigurationEvent, AuditInvokeConfigurationEvent,
AuditSetAttributeConfigurationEvent)

• AuditCredentialMappingEvent
• AuditLifecycleEvent
• AuditMgmtEvent
• AuditPolicyEvent (AuditEndPolicyDeployEvent, AuditPolicyDeleteAppEvent,

AuditPolicyDeployEvent, AuditPolicyUndeployEvent,
AuditResourceProtectedEvent, AuditStartPolicyDeployEvent,
PolicyConsumerAuditEvent)

• AuditRoleDeploymentEvent (AuditStartRoleDeployEvent,
AuditEndRoleDeployEvent, AuditRoleUndeployEvent, AuditRoleDeleteAppEvent)

• AuditRoleEvent (RoleConsumerAuditEvent)

AuditApplicationVersionEvent
Application version audit events are posted by the security framework. You can use the
getEventType method to get the type of the audit event. The actual audit string returned by
getEventType is String = "Application Version Audit Event".

Table 9-2 describes the conditions under which the event is posted and severity level of the
event.

Chapter 9
Security Framework Audit Events

9-13

Table 9-2 Application Version Events

Component Description Severity

Security
Framework

The security framework posts these events for
the following reasons:

• Authorization Manager application version
creation has succeeded or failed.

• Authorization Manager application version
deletion has succeeded or failed.

• Authorization Manager non-versioned
application deletion has succeeded or
failed.

• Role Manager application version creation
has succeeded or failed.

• Role Manager application version deletion
has succeeded or failed.

• Role Manager non-versioned application
deletion has succeeded or failed.

• Credential Manager application version
creation has succeeded or failed.

• Credential Manager application version
deletion has succeeded or failed.

• Credential Manager non-versioned
application deletion has succeeded or
failed.

Success or Failure

AuditAtnEventV2
Authentication audit events are posted by the security framework. You can use the
getEventType method to get the type of the audit event. The actual audit string
returned by getEventType is String eventType = "Event Type = Authentication
Audit Event".

Table 9-3 describes the conditions under which the event is posted and severity level
of the event.

Table 9-3 Authentication Audit Events

Component Description Severity

Security Framework Posted after successful
authentication of a user.

Success

Security Framework Posted after unsuccessful
authentication (a LoginException
thrown from JAAS login method).
This LoginException can be thrown
by either JAAS framework or by
JAAS LoginModule of WebLogic
Server authentication provider.

Failure

Security Framework Posted after an identity assertion to
an anonymous user.

Success

Chapter 9
Security Framework Audit Events

9-14

Table 9-3 (Cont.) Authentication Audit Events

Component Description Severity

Security Framework Posted after an unsuccessful identity
assertion
(IdentityAssertionException thrown
from identity assertion method)

Failure

Security Framework Posted after an unsuccessful identity
assertion (IOException is thrown by
identity assertion callback handler
when retrieving username from
callback).

Failure

Security Framework Posted after an unsuccessful identity
assertion
(UnsupportedCallbackException is
thrown by identity assertion callback
handler when retrieving username
from callback).

Failure

Security Framework Posted after an unsuccessful identity
assertion (when username returned
from identity assertion callback
handler is null or zero length).

Failure

Security Framework Posted after a successful identity
assertion.

Success

Security Framework Posted after an unsuccessful identity
assertion.

Failure

Security Framework Posted after a successful
impersonate identity (anonymous
identity).

Success

Security Framework Posted after a successful
impersonate identity.

Success

Security Framework Posted after an unsuccessful
impersonate identity.

Failure

Security Framework Posted after a failure of principal
validation.

Failure

AuditAtzEvent
Authorization audit events are posted by the security framework. You can use the
getEventType method to get the type of the audit event. The actual audit string returned by
getEventType is String eventType = "Event Type = Authorization Audit Event V2 ".

Table 9-4 describes the conditions under which the events are posted and severity level of
the event.

Table 9-4 Authorization Audit Events

Component Description Severity

Security Framework Posted if access is not allowed to resource
(exception thrown by authorization provider).

Failure

Chapter 9
Security Framework Audit Events

9-15

Table 9-4 (Cont.) Authorization Audit Events

Component Description Severity

Security Framework Posted if access is allowed to resource. Success

Security Framework Posted if access is not allowed to resource. Failure

AuditCerPathBuilderEvent, AuditCertPathValidatorEvent
CertPath Builder and Validation audit events are posted by the security framework.
You can use the getEventType method to get the type of the audit event. The actual
audit strings returned by getEventType are as follows:

• String eventType = "Event Type = CertPathBuilder Audit Event "
• String eventType = "Event Type = CertPathValidator Audit Event "
Table 9-5 describes the conditions under which the events are posted and severity
level of the event.

Table 9-5 CertPath Builder and Validation Events

Component Description Severity

Security Framework Posted if the Certificate Path is
successfully built.

Success

Security Framework Posted if the Certificate Path is not
successfully built.

Failure

Security Framework Posted if the Certificate Path is
successfully validated.

Success

Security Framework Posted if the Certificate Path is not
successfully validated.

Failure

AuditConfigurationEvent
Configuration audit events are posted by the security framework. The following events
are posted:

• AuditConfigurationEvent
• AuditCreateConfigurationEvent (The actual audit string returned by

getEventType is String CREATE_EVENT = "Create Configuration Audit
Event")

• AuditDeleteConfigurationEvent (The actual audit string returned by
getEventType is String DELETE_EVENT = "Delete Configuration Audit
Event")

• AuditInvokeConfigurationEvent (The actual audit string returned by
getEventType is String INVOKE_EVENT = "Invoke Configuration Audit
Event")

Chapter 9
Security Framework Audit Events

9-16

• AuditSetAttributeConfigurationEvent (The actual audit string returned by
getEventType is String SETATTRIBUTE_EVENT = "SetAttribute Configuration Audit
Event")

Table 9-6 describes the conditions under which the events are posted and severity level of
the events.

Table 9-6 Audit Configuration Events

Component Description Severity

WebLogic Management
Infrastructure

The WebLogic Management
infrastructure implements this
interface and may post configuration
audit events for the following
configuration change events:

• A request to create a new
configuration artifact has been
allowed or disallowed.

• A request to delete an existing
configuration artifact has been
allowed or disallowed.

• A request to modify an existing
configuration artifact has been
allowed or disallowed.

• A invoke an operation on an
existing configuration artifact has
been allowed or disallowed.

Success or Failure

AuditCredentialMappingEvent
Credential mapping audit events are posted by the security framework. You can use the
getEventType method to get the type of the audit event. The actual audit string returned by
getEventType is String EVENT_TYPE = "Event Type = Credential apping Audit Event".

Table 9-7 describes the condition under which the events are posted and severity level of the
event.

Table 9-7 Credential Mapping Audit Events

Component Description Severity

Security Framework The WebLogic Security Framework
implements this interface and may post audit
events for the following security events:

Credentials for a WebLogic Server User are
requested

Credentials for a Subject are requested

Success

AuditLifecycleEvent
The AuditLifecycleEvent interface is used to post audit lifecycle events. The WebLogic
Security Framework implements this interface and may post audit events for the following
security events:

• After the auditing service in the framework is started.

Chapter 9
Security Framework Audit Events

9-17

• Before the auditing service in the framework is stopped.

The actual audit string returned by getEventType is String eventType = "Event Type
= AuditLifecycle Audit Event".

The AuditLifecycleEventType class describes the audit service lifecycle event types
that are supported. Possible values are START_AUDIT and STOP_AUDIT.

An Auditing provider can use this interface to get additional information about the audit
lifecycle event. The AuditSeverity and AuditLifecycleEventType attributes can be
used to determine which of the above audit events has been posted.

AuditMgmtEvent
Management audit events are not currently posted by either the Security Framework
or by the supplied providers. However, a custom security provider may implement this
interface and post different audit events for the various management operations
performed by the custom security provider.

An Auditing provider can use this interface to get additional information about the
management audit event. The AuditSeverity attribute can be used to determine
whether the management operation succeeded or failed.

AuditPolicyEvent
AuditPolicyEvent is posted by the security framework and the WebLogic
Authorization provider. The security framework posts audit policy events when policies
are deployed to or undeployed from an authorization provider. The WebLogic Server
authorization provider posts audit policy events when creating, deleting, or updating
policies. You can use the getEventType method to get the type of the audit event. The
audit events and the actual audit strings returned by getEventType are as follows:

• AuditStartPolicyDeployEvent (The actual audit string returned by
getEventType is String eventType = "Event Type = Authorization Start
Policy Deploy Audit Event ".)

• AuditPolicyUndeployEvent (The actual audit string returned by getEventType is
String eventType = "Event Type = Authorization Policy Undeploy Audit
Event ".)

• AuditPolicyDeployEvent (The actual audit string returned by getEventType is
String eventType = "Event Type = Authorization Policy Deploy Audit
Event ".)

• AuditPolicyDeleteAppEvent (The actual audit string returned by getEventType
is String eventType = "Event Type = Authorization Delete Application
Policies Audit Event ".)

• AuditEndPolicyDeployEvent (The actual audit string returned by getEventType
is String eventType = "Event Type = Authorization End Policy Deploy
Audit Event ".)

For PolicyConsumerAuditEvent, which implements AuditPolicyEvent, the actual
audit strings returned by getEventType are:

• String eventType = "Event Type = Policy Consumer Get Handler"
• String eventType = "Event Type = Policy Consumer Set Policy"

Chapter 9
Security Framework Audit Events

9-18

• String eventType = "Event Type = Policy Consumer Set Unchecked Policy"
• String eventType = "Event Type = Policy Consumer Done"
Table 9-8 describes the conditions under which the events are posted and lists the event
severity level.

Table 9-8 Audit Policy Events

Component Description Severity

WebLogic Authorization
Provider

• The WebLogic Authorization provider
implements this interface and posts audit
events for the following security events:

• Security policy creation has succeeded.
• Security policy creation has failed.
• Security policy removal has succeeded.
• Security policy removal has failed.
• A security policy update has succeeded.
• A security policy update has failed.
• Application deletion of security policies has

succeeded.
• Application deletion of security policies has

failed.

Success or Failure

AuditRoleDeploymentEvent
The security framework posts audit role deployment events when roles are deployed to or
undeployed from a role mapping provider. You can use the getEventType method to get the
type of the audit event. The following events are posted:

• AuditRoleDeployEvent (The actual audit string returned by getEventType is String
eventType = "Event Type = RoleManager Deploy Audit Event ".)

• AuditStartRoleDeployEvent (The actual audit string returned by getEventType is String
eventType = "Event Type = RoleManager Start Deploy Role Audit Event ".)

• AuditEndRoleDeployEvent (The actual audit string returned by getEventType is String
eventType = "Event Type = RoleManager End Deploy Role Audit Event ".)

• AuditRoleUndeployEvent (The actual audit string returned by getEventType is String
eventType = "Event Type = RoleManager Undeploy Audit Event ".)

Table 9-9 describes the conditions under which the events are posted and lists the event
severity level.

Chapter 9
Security Framework Audit Events

9-19

Table 9-9 Audit Role Deployment Events

Component Description Severity

Security Framework The WebLogic Security Framework
implements this interface and may post audit
events for the following security events:

• Security role deployment to a role
mapping provider has succeeded.

• Security role deployment to a role
mapping provider has failed.

• Security role undeployment to a role
mapping provider has succeeded.

• Security role undeployment to a role
mapping provider has failed.

• Application deletion of security roles to a
role mapping provider has succeeded.

• Application deletion of security roles to a
role mapping provider has failed.

Success or
Failure

AuditRoleEvent
The WebLogic Authorization provider posts audit role events when roles are created,
deleted, or updated. You can use the getEventType method to get the type of the audit
event. The actual audit strings returned by getEventType are as follows:

• String eventType = "Event Type = RoleManager Audit Event "
• String eventType = "Event Type = RoleManager Delete Application Roles

Audit Event "
For RoleConsumerAuditEvent, which implements AuditRoleEvent, the actual audit
strings returned by getEventType are:

• String eventType = "Event Type = Role Consumer Get Handler"
• String eventType = "Event Type = Role Consumer Set Role"
• String eventType = "Event Type = Role Consumer Done"
Table 9-10 describes the conditions under which the events are posted and lists the
event severity level.

Table 9-10 Audit Role Events

Component Description Severity

WebLogic Authorization
Provider

The WebLogic Authorization provider
implements this interface and posts audit
events for the following security events:

• Security role creation has succeeded.
• Security role creation has failed.
• Security role removal has succeeded.
• Security role removal has failed.
• A security role update has succeeded.
• A security role update has failed.

Success

Chapter 9
Security Framework Audit Events

9-20

10
Credential Mapping Providers

This chapter describes credential mapping provider concepts and functionality, and provides
step-by-step instructions for developing a custom credential mapping provider.
Credential mapping is the process whereby a legacy system's database is used to obtain an
appropriate set of credentials to authenticate users to a target resource. In WebLogic Server,
a credential mapping provider is used to provide credential mapping services and bring new
types of credentials into the WebLogic Server environment.

This chapter includes the following sections:

• Credential Mapping Concepts

• The Credential Mapping Process

• Do You Need to Develop a Custom Credential Mapping Provider?

• How to Develop a Custom Credential Mapping Provider

Credential Mapping Concepts
A subject, or source of a WebLogic resource request, has security-related attributes called
credentials. A credential may contain information used to authenticate the subject to new
services. Such credentials include username/password combinations, Kerberos tickets, and
public key certificates. Credentials might also contain data that allows a subject to perform
certain activities. Cryptographic keys, for example, represent credentials that enable the
subject to sign or encrypt data.

A credential map is a mapping of credentials used by WebLogic Server to credentials used
in a legacy (or any remote) system, which tell WebLogic Server how to connect to a given
resource in that system. In other words, credential maps allow WebLogic Server to log in to a
remote system on behalf of a subject that has already been authenticated. You can map
credentials in this way by developing a credential mapping provider.

The Credential Mapping Process
Figure 10-1 illustrates how credential mapping providers interact with the WebLogic Security
Framework during the credential mapping process, and an explanation follows.

10-1

Figure 10-1 Credential Mapping Providers and the Credential Mapping Process

Generally, credential mapping is performed in the following manner:

1. Application components, such as JavaServer Pages (JSPs), servlets, Enterprise
JavaBeans (EJBs), or Resource Adapters call into the WebLogic Security
Framework through the appropriate resource container. As part of the call, the
application component passes in the subject (that is, the who making the request),
the WebLogic resource (that is, the what that is being requested) and information
about the type of credentials needed to access the WebLogic resource.

2. The WebLogic Security Framework sends the application component's request for
credentials to a configured credential mapping provider. It is up to the credential
mapper to decide whether it supports the token or not. If it supports the token, it
performs its processing.

3. The credential mapping provider consults the legacy system's database to obtain
a set of credentials that match those requested by the application component.

4. The credential mapping provider returns the credentials to the WebLogic Security
Framework.

5. The WebLogic Security Framework passes the credentials back to the requesting
application component through the resource container.

The application component uses the credentials to access the external system.
The external system might be a database resource, such as an Oracle or SQL
Server.

Do You Need to Develop a Custom Credential Mapping
Provider?

The default (that is, active) security realm for WebLogic Server includes a WebLogic
Credential Mapping provider. The WebLogic Credential Mapping provider maps

Chapter 10
Do You Need to Develop a Custom Credential Mapping Provider?

10-2

WebLogic Server users and groups to the appropriate username/password credentials that
may be required by other, external systems. If the type of credential mapping you want is
between WebLogic Server users and groups and username/password credentials in another
system, then the WebLogic Credential Mapping provider is sufficient.

WebLogic Server includes a PKI Credential Mapping provider. The PKI (Public Key
Infrastructure) Credential Mapping provider included in WebLogic Server maps a WebLogic
Server subject (the initiator) and target resource (and an optional credential action) to a key
pair or public certificate that should be used by the application when using the targeted
resource. The PKI Credential Mapping provider uses the subject and resource name to
retrieve the corresponding credential from the keystore. The PKI Credential Mapping provider
supports the CredentialMapperV2.PKI_KEY_PAIR_TYPE and
CredentialMapperV2.PKI_TRUSTED_CERTIFICATE_TYPE token types.

WebLogic Server also includes the SAML Credential Mapping provider. The SAML Credential
Mapping provider generates SAML 1.1 and 2.0 assertions for authenticated subjects based
on a target site or resource. If the requested target has not been configured and no defaults
are set, an assertion will not be generated. User information and group membership (if
configured as such) are put in the AttributeStatement.

As described in Configuring SAML SSO Attribute Support in Developing Applications with the
WebLogic Security Service, WebLogic Server enhanced the SAML 1.1 and 2.0 Credential
Mapping provider and Identity Assertion provider mechanisms to support the use of a custom
attribute mapper that can obtain additional attributes (other than group information) to be
written into SAML assertions, and to then map attributes from incoming SAML assertions.

The SAML Credential Mapping provider supports the
CredentialMapperV2.SAML_ASSERTION_B64_TYPE,
CredentialMapperV2.SAML_ASSERTION_DOM_TYPE, and
CredentialMapperV2.SAML_ASSERTION_TYPE token types.

The SAML 2.0 Credential Mapping provider supports the
CredentialMapperV2.SAML2_ASSERTION_DOM_TYPE, and
CredentialMapperV2.SAML2_ASSERTION_TYPE token types.

If the out-of-the-box credential mapping providers do not meet your needs, then you need to
develop a custom credential mapping provider. Note, however, that only the following token
types are ever requested by the WebLogic Server resource containers:

• CredentialMapperV2.PASSWORD_TYPE
• CredentialMapperV2.PKI_KEY_PAIR_TYPE
• CredentialMapperV2.PKI_TRUSTED_CERTIFICATE_TYPE
• CredentialMapperV2.SAML_ASSERTION_B64_TYPE
• CredentialMapperV2.SAML_ASSERTION_DOM_TYPE
• CredentialMapperV2.SAML_ASSERTION_TYPE
• CredentialMapperV2.SAML2_ASSERTION_DOM_TYPE
• CredentialMapperV2.SAML2_ASSERTION_TYPE
• CredentialMapperV2.USER_PASSWORD_TYPE

Chapter 10
Do You Need to Develop a Custom Credential Mapping Provider?

10-3

Does Your Custom Credential Mapping Provider Need to Support
Application Versioning?

All authorization, role mapping, and credential mapping providers for the security
realm must support application versioning in order for an application to be deployed
using versions. If you develop a custom security provider for authorization, role
mapping, or credential mapping and need to support versioned applications, you must
implement the Versionable Application SSPI, as described in Versionable Application
Providers.

How to Develop a Custom Credential Mapping Provider
If the WebLogic Credential Mapping provider does not meet your needs, you can
develop a custom credential mapping provider by following these steps:

1. Create Runtime Classes Using the Appropriate SSPIs

2. Generate an MBean type for your custom credential mapping provider by
completing the steps described in Generate an MBean Type Using the WebLogic
MBeanMaker.

3. Provide a Mechanism for Credential Map Management

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

• Understand the Purpose of the Provider SSPIs

• Determine Which Provider Interface You Will Implement

• Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom credential mapping provider by following these
steps:

• Implement the CredentialProviderV2 SSPI or Implement the
DeployableCredentialProvider SSPI

• Implement the CredentialMapperV2 SSPI

Implement the CredentialProviderV2 SSPI
To implement the CredentialProviderV2 SSPI, provide implementations for the
methods described in Understand the Purpose of the Provider SSPIs and the following
method:

• getCredentialProvider

public CredentialMapperV2 getCredentialProvider();

The getCredentialProviderV2 method obtains the implementation of the
CredentialMapperV2 SSPI. For a single runtime class called

Chapter 10
How to Develop a Custom Credential Mapping Provider

10-4

MyCredentialMapperProviderImpl.java (as in Figure 2-3), the implementation of the
getCredentialProvider method would be:

return this;

If there are two runtime classes, then the implementation of the getCredentialProvider
method could be:

return new MyCredentialMapperImpl;

This is because the runtime class that implements the CredentialProviderV2 SSPI is
used as a factory to obtain classes that implement the CredentialMapperV2 SSPI.

See Java API Reference for Oracle WebLogic Server for the CredentialProviderV2 SSPI.

Implement the DeployableCredentialProvider SSPI

Note:

The DeployableCredentialProvider SSPI is deprecated in this release of WebLogic
Server.

To implement the DeployableCredentialProvider SSPI, provide implementations for the
methods described in Understand the Purpose of the Provider SSPIs, Implement the
CredentialProviderV2 SSPI, and the following methods:

• deployCredentialMapping

public void deployCredentialMapping(Resource resource, String
initiatingPrincipal, String eisUsername, String eisPassword)throws
ResourceCreationException;

The deployCredentialMapping method deploys credential maps. If the mapping already
exists, it is removed and replaced by this mapping. The resource parameter represents
the WebLogic resource to which the initiating principal (represented as a String) is
requesting access. The Enterprise Information System (EIS) username and password are
the credentials in the legacy (remote) system to which the credential maps are being
made.

• undeployCredentialMappings

public void undeployCredentialMappings(Resource resource) throws
ResourceRemovalException;

The undeployCredentialMappings method undeploys credential maps (that is, deletes a
credential mapping on behalf of an undeployed Resource Adapter from a database). The
resource parameter represents the WebLogic resource for which the mapping should be
removed.

Note:

The deployCredentialMapping/undeployCredentialMappings methods operate
on username/password credentials only.

Chapter 10
How to Develop a Custom Credential Mapping Provider

10-5

See Java API Reference for Oracle WebLogic Server.

Implement the CredentialMapperV2 SSPI
The CredentialMapperV2 interface defines the security service provider interface
(SSPI) for objects capable of obtaining the appropriate set of credentials for a
particular resource that is scoped within an application.

Only the following credential types are supported and passed to the
CredentialMapperV2 interface:

• PASSWORD_TYPE

• PKI_KEY_PAIR_TYPE

• PKI_TRUSTED_CERTIFICATE_TYPE

• SAML_ASSERTION_B64_TYPE

• SAML_ASSERTION_DOM_TYPE

• SAML_ASSERTION_TYPE

• SAML2_ASSERTION_DOM_TYPE

• SAML2_ASSERTION_TYPE

• USER_PASSWORD_TYPE

To implement the CredentialMapperV2 SSPI, you must provide implementations for
the following methods:

• getCredential

public Object getCredential(Subject requestor, String initiator, Resource
resource, ContextHandler handler, String credType);

The getCredential method returns the credential of the specified type from the
target resource associated with the specified initiator.

• getCredentials

public Object[] getCredentials(Subject requestor, Subject initiator, Resource
resource, ContextHandler handler, String credType);

The getCredentials method returns the credentials of the specified type from the
target resource associated with the specified initiator.

See Java API Reference for Oracle WebLogic Server for the CredentialMapperV2
SSPI.

Provide a Mechanism for Credential Map Management
While configuring a custom credential mapping provider via the WebLogic Server
Administration Console makes it accessible by applications requiring credential
mapping services, you also need to supply administrators with a way to manage this
security provider's associated credential maps. The WebLogic Credential Mapping
provider, for example, supplies administrators with a credential mappings page that
allows them to add, modify, or remove credential mappings for various Connector
modules.

Chapter 10
How to Develop a Custom Credential Mapping Provider

10-6

Neither the credential mapping page nor access to it is available to administrators when you
develop a custom credential mapping provider. Therefore, you must provide your own
mechanism for credential map management. This mechanism must read and write credential
maps to and from the custom credential mapping provider's database.

You can accomplish this task in one of two ways:

• Option 1: Develop a Stand-Alone Tool for Credential Map Management

• Option 2: Integrate an Existing Credential Map Management Tool into the Administration
Console

Option 1: Develop a Stand-Alone Tool for Credential Map Management
You would typically select this option if you want to develop a tool that is entirely separate
from the WebLogic Server Administration Console.

For this option, you do not need to write any console extensions for your custom credential
mapping provider, nor do you need to develop any management MBeans. However, your tool
needs to:

1. Determine the WebLogic resource's ID, since it is not automatically provided to you by
the console extension. See WebLogic Resource Identifiers.

2. Determine how to represent the represent the local-to-remote user relationship. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom credential mapping provider's
database.

Option 2: Integrate an Existing Credential Map Management Tool into the
Administration Console

You would typically select this option if you have a tool that is separate from the WebLogic
Server Administration Console, but you want to launch that tool from the WebLogic Server
Administration Console.

For this option, your tool needs to:

1. Determine the WebLogic resource's ID. See WebLogic Resource Identifiers.

2. Determine how to represent the represent the local-to-remote user relationship. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom credential mapping provider's
database.

4. Link into the WebLogic Server Administration Console using basic console extension
techniques.

Chapter 10
How to Develop a Custom Credential Mapping Provider

10-7

11
Auditing Events From Custom Security
Providers

This chapter describes the background information you need to understand before adding
auditing capability to your custom security providers, and provides step-by-step instructions
for adding auditing capability to a custom security provider.
As described in Auditing Providers auditing is the process whereby information about
operating requests and the outcome of those requests are collected, stored, and distributed
for the purposes of non-repudiation. Auditing providers provide this electronic trail of
computer activity.

Each type of security provider can call the configured Auditing providers with a request to
write out information about security-related events, before or after these events take place.
For example, if a user attempts to access a withdraw method in a bank account application
(to which they should not have access), the authorization provider can request that this
operation be recorded. Security-related events are only recorded when they meet or exceed
the severity level specified in the configuration of the Auditing providers.

This chapter includes the following sections:

• Security Services and the Auditor Service

• How to Audit From a Custom Security Provider

Security Services and the Auditor Service
The SecurityServices interface, located in the weblogic.security.spi package, is a
repository for security services (currently just the Auditor Service). As such, the
SecurityServices interface is responsible for supplying callers with a reference to the
Auditor Service via the following method:

• getAuditorService

public AuditorService getAuditorService

The getAuditorService method returns the AuditService if an Auditing provider is
configured.

The AuditorService interface, also located in the weblogic.security.spi package,
provides other types of security providers (for example, authentication providers) with limited
(write-only) auditing capabilities. In other words, the Auditor Service fans out invocations of
each configured Auditing provider's writeEvent method, which simply writes an audit record
based on the information specified in the AuditEvent object that is passed in.

See Implement the AuditChannel SSPIand Create an Audit Event. The AuditorService
interface includes the following method:

• providerAuditWriteEvent

public void providerAuditWriteEvent (AuditEvent event)

11-1

The providerAuditWriteEvent method gives security providers write access to
the object in the WebLogic Security Framework that calls the configured Auditing
providers. The event parameter is an AuditEvent object that contains the audit
criteria, including the type of event to audit and the audit severity level. See Create
an Audit Event and Audit Severity respectively.

The Auditor Service can be called to write audit events before or after those events
have taken place, but does not maintain context in between pre and post operations.
Security providers designed with auditing capabilities will need to obtain the Auditor
Service as described in Obtain and Use the Auditor Service to Write Audit Events.

Note:

Implementations for both the SecurityServices and AuditorService
interfaces are created by the WebLogic Security Framework at boot time if
an Auditing provider is configured. (See Configure the Custom Auditing
Provider Using the Administration Console.) Therefore, you do not need to
provide your own implementations of these interfaces.

Additionally, SecurityServices objects are specific to the security realm in
which your security providers are configured. Your custom security provider's
runtime class automatically obtains a reference to the realm-specific
SecurityServices object as part of its initialize method. (See Understand
the Purpose of the Provider SSPIs.)

See Java API Reference for Oracle WebLogic Serverfor the SecurityServices and
AuditorServiceinterfaces.

How to Audit From a Custom Security Provider
Add auditing capability to your custom security provider by following these steps:

• Create an Audit Event

• Obtain and Use the Auditor Service to Write Audit Events

Examples for each of these steps are provided in Example: Implementation of the
AuditRoleEvent Interface and Example: Obtaining and Using the Auditor Service to
Write Role Audit Events , respectively.

Note:

If your custom security provider is to record audit events, be sure to include
any classes created as a result of these steps into the MBean JAR File
(MJF) for the custom security provider (that is, in addition to the other files
that are required).

Chapter 11
How to Audit From a Custom Security Provider

11-2

Create an Audit Event
Security providers must provide information about the events they want audited, such as the
type of event (for example, an authentication event) and the audit severity (for example,
error). Audit Events contain this information, and can also contain any other contextual data
that is understandable to a configured Auditing provider. To create an Audit Event, either:

• Implement the AuditEvent SSPI or

• Implement an Audit Event Convenience Interface

Implement the AuditEvent SSPI
To implement the AuditEvent SSPI, provide implementations for the following methods:

• getEventType

public java.lang.String getEventType()

The getEventType method returns a string representation of the event type that is to be
audited, which is used by the Audit Channel (that is, the runtime class that implements
the AuditChannel SSPI). For example, the event type for the Oracle-provided
implementation is Authentication Audit Event. See Audit Channels and Implement the
AuditChannel SSPI.

• getFailureException

public java.lang.Exception getFailureException()

The getFailureException method returns an Exception object, which is used by the
Audit Channel to obtain audit information, in addition to the information provided by the
tostring method.

• getSeverity

public AuditSeverity getSeverity()

The getSeverity method returns the severity level value associated with the event type
that is to be audited, which is used by the Audit Channel. This allows the Audit Channel
to make the decision about whether or not to audit. See Audit Severity.

• toString

public java.lang.String toString()

The toString method returns preformatted audit information to the Audit Channel.

Note:

The toString method can produce any character and no escaping is used. If
your Audit provider is writing the toString value into a format that uses
characters for syntax, escape the toString value before writing it.

See Java API Reference for Oracle WebLogic Server for the AuditEvent SSPI.

Chapter 11
How to Audit From a Custom Security Provider

11-3

Implement an Audit Event Convenience Interface
There are several subinterfaces of the AuditEvent SSPI that are provided for your
convenience, and that can assist you in structuring and creating Audit Events.

Each of these Audit Event convenience interfaces can be used by an Audit Channel
(that is, a runtime class that implements the AuditChannel SSPI) to more effectively
determine the instance types of extended event type objects, for a certain type of
security provider. For example, the AuditAtnEventV2 convenience interface can be
used by an Audit Channel that wants to determine the instance types of extended
authentication event type objects. (See Audit Channels and Implement the
AuditChannel SSPI.)

The Audit Event convenience interfaces are:

• The AuditAtnEventV2 Interface

• The AuditAtzEvent and AuditPolicyEvent Interfaces

• The AuditMgmtEvent Interface

• The AuditRoleEvent and AuditRoleDeploymentEvent Interfaces

Note:

It is recommended, but not required, that you implement one of the Audit
Event convenience interfaces.

The AuditAtnEventV2 Interface
The AuditAtnEventV2 convenience interface helps Audit Channels to determine
instance types of extended authentication event type objects.

Note:

The AuditAtnEvent interface is deprecated in this release of WebLogic
Server.

To implement the AuditAtnEventV2 interface, provide implementations for the methods
described in Implement the AuditEvent SSPI and the following methods:

• getUsername

public String getUsername()

The getUsername method returns the username associated with the authentication
event.

• getAtnEventType

public AuditAtnEventV2.AtnEventTypeV2 getAtnEventType()

Chapter 11
How to Audit From a Custom Security Provider

11-4

The getAtnEventType method returns an event type that more specifically represents the
authentication event. The specific authentication event types are:

AUTHENTICATE: simple authentication using a username and password occurred.

ASSERTIDENTITY: perimeter authentication based on tokens occurred.

CREATEDERIVEDKEY: represents the creation of the Derived key.

CREATEPASSWORDDIGEST: represents the creation of the Password Digest.

IMPERSONATEIDENTITY: client identity has been established using the supplied client
username (requires kernel identity).

USERLOCKED: a user account has been locked because of invalid login attempts.

USERUNLOCKED: a lock on a user account has been cleared.

USERLOCKOUTEXPIRED: a lock on a user account has expired.

VALIDATEIDENTITY: authenticity (trust) of the principals within the supplied subject has
been validated.

• toString

public String toString()

The toString method returns the specific authentication information to audit, represented
as a string.

Note:

The toString method can produce any character and no escaping is used. If
your Audit provider is writing the toString value into a format that uses
characters for syntax, escape the toString value before writing it.

The AuditAtnEventV2 convenience interface extends both the AuditEvent and
AuditContext interfaces. For more information about the AuditContext
interface, see Audit Context.

See Java API Reference for Oracle WebLogic Server for the AuditAtnEventV2 interface.

The AuditAtzEvent and AuditPolicyEvent Interfaces
The AuditAtzEvent and AuditPolicyEvent convenience interfaces help Audit Channels to
determine instance types of extended authorization event type objects.

Note:

The difference between the AuditAtzEvent convenience interface and the
AuditPolicyEvent convenience interface is that the latter only extends the
AuditEvent interface. (It does not also extend the AuditContext interface.) See
Audit Context.

Chapter 11
How to Audit From a Custom Security Provider

11-5

To implement the AuditAtzEvent or AuditPolicyEvent interface, provide
implementations for the methods described in Implement the AuditEvent SSPI and the
following methods:

• getSubject

public Subject getSubject()

The getSubject method returns the subject associated with the authorization
event (that is, the subject attempting to access the WebLogic resource).

• getResource

public Resource getResource()

The getResource method returns the WebLogic resource associated with the
authorization event that the subject is attempting to access.

See Java API Reference for Oracle WebLogic Server for the AuditAtzEvent and
AuditPolicyEvent interfaces.

The AuditMgmtEvent Interface
The AuditMgmtEvent convenience interface helps Audit Channels to determine
instance types of extended security management event type objects, such as a
security provider's MBean. It contains no methods that you must implement, but
maintains the best practice structure for an Audit Event implementation.

Note:

See Security Service Provider Interface (SSPI) MBeans.

See Java API Reference for Oracle WebLogic Server for the AuditMgmtEvent
interface.

The AuditRoleEvent and AuditRoleDeploymentEvent Interfaces
The AuditRoleDeploymentEvent and AuditRoleEvent convenience interfaces help
Audit Channels to determine instance types of extended role mapping event type
objects. They contain no methods that you must implement, but maintain the best
practice structure for an Audit Event implementation.

Note:

The difference between the AuditRoleEvent convenience interface and the
AuditRoleDeploymentEvent convenience interface is that the latter only
extends the AuditEvent interface. (It does not also extend the AuditContext
interface.) See Audit Context.

See Java API Reference for Oracle WebLogic Server for the AuditRoleEvent and
AuditRoleDeploymentEventinterfaces.

Chapter 11
How to Audit From a Custom Security Provider

11-6

Audit Severity
The audit severity is the level at which a security provider wants audit events to be
recorded. When the configured Auditing providers receive a request to audit, each will
examine the severity level of events taking place. If the severity level of an event is greater
than or equal to the level an Auditing provider was configured with, that Auditing provider will
record the audit data.

Note:

Auditing providers are configured using the WebLogic Server Administration
Console. See Configure the Custom Auditing Provider Using the Administration
Console.

The AuditSeverity class, which is part of the weblogic.security.spi package, provides
audit severity levels as both numeric and text values to the Audit Channel (that is, the
AuditChannel SSPI implementation) through the AuditEvent object. The numeric severity
value is to be used in logic, and the text severity value is to be used in the composition of the
audit record output. See Implement the AuditChannel SSPI and Create an Audit
Eventrespectively.

Audit Context
Some of the Audit Event convenience interfaces extend the AuditContext interface to
indicate that an implementation will also contain contextual information. This contextual
information can then be used by Audit Channels. See Audit Channels and Implement the
AuditChannel SSPI.

The AuditContext interface includes the following method:

• getContext

public ContextHandler getContext()

The getContext method returns a ContextHandler object, which is used by the runtime
class (that is, the AuditChannel SSPI implementation) to obtain additional audit
information. See ContextHandlers and WebLogic Resources.

Example: Implementation of the AuditRoleEvent Interface
Example 11-1 shows the MyAuditRoleEventImpl.java class, which is a sample
implementation of an Audit Event convenience interface (in this case, the AuditRoleEvent
convenience interface). This class includes implementations for:

• The four methods inherited from the AuditEvent SSPI: getEventType,
getFailureException, getSeverity and toString (as described in Implement the
AuditEvent SSPI).

• One additional method: getContext, which returns additional contextual information via
the ContextHandler. (See ContextHandlers and WebLogic Resources.)

Chapter 11
How to Audit From a Custom Security Provider

11-7

Note:

The bold face code in Example 11-1 highlights the class declaration and
the method signatures.

Example 11-1 MyAuditRoleEventImpl.java

package mypackage;
import javax.security.auth.Subject;
import weblogic.security.SubjectUtils;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.AuditRoleEvent;
import weblogic.security.spi.AuditSeverity;
import weblogic.security.spi.Resource;
/*package*/ class MyAuditRoleEventImpl implements AuditRoleEvent
{
 private Subject subject;
 private Resource resource;
 private ContextHandler context;
 private String details;
 private Exception failureException;
 /*package*/ MyAuditRoleEventImpl(Subject subject, Resource resource,
 ContextHandler context, String details, Exception
 failureException) {
 this.subject = subject;
 this.resource = resource;
 this.context = context;
 this.details = details;
 this.failureException = failureException;
 }
 public Exception getFailureException()
 {
 return failureException;
 }
 public AuditSeverity getSeverity()
 {
 return (failureException == null) ? AuditSeverity.SUCCESS :
 AuditSeverity.FAILURE;
 }
 public String getEventType()
 {
 return "MyAuditRoleEventType";
 }
 public ContextHandler getContext()
 {
 return context;
 }
 public String toString()
 {
 StringBuffer buf = new StringBuffer();
 buf.append("EventType:" + getEventType() + "\n");
 buf.append("\tSeverity: " +
 getSeverity().getSeverityString());
 buf.append("\tSubject: " +
 SubjectUtils.displaySubject(getSubject());
 buf.append("\tResource: " + resource.toString());
 buf.append("\tDetails: " + details);
 if (getFailureException() != null) {
 buf.append("\n\tFailureException:" +

Chapter 11
How to Audit From a Custom Security Provider

11-8

 getFailureException());
 }
 return buf.toString();
 }
}

Obtain and Use the Auditor Service to Write Audit Events
To obtain and use the Auditor Service to write audit events from a custom security provider,
follow these steps:

1. Use the getAuditorService method to return the Audit Service.

Note:

Recall that a SecurityServices object is passed into a security provider's
implementation of a Provider SSPI as part of the initialize method. (For more
information, see Understand the Purpose of the Provider SSPIs.) An
AuditorService object will only be returned if an Auditing provider has been
configured.

2. Instantiate the Audit Event you created in Implement the AuditEvent SSPI and send it to
the Auditor Service through the AuditService.providerAuditWriteEvent method.

Example: Obtaining and Using the Auditor Service to Write Role Audit Events
Example 11-2 illustrates how a custom role mapping provider's runtime class (called
MyRoleMapperProviderImpl.java) would obtain the Auditor Service and use it to write out
audit events.

Note:

The MyRoleMapperProviderImpl.java class relies on the
MyAuditRoleEventImpl.java class from Example 11-1.

Example 11-2 MyRoleMapperProviderImpl.java

package mypackage;
import javax.security.auth.Subject;
import weblogic.management.security.ProviderMBean;
import weblogic.security.SubjectUtils;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.AuditorService;
import weblogic.security.spi.RoleMapper;
import weblogic.security.spi.RoleProvider;
import weblogic.security.spi.Resource;
import weblogic.security.spi.SecurityServices;
public final class MyRoleMapperProviderImpl implements RoleProvider, RoleMapper
{
 private AuditorService auditor;
 public void initialize(ProviderMBean mbean, SecurityServices
 services)

Chapter 11
How to Audit From a Custom Security Provider

11-9

 {
 auditor = services.getAuditorService();
 ...
 }
 public Map getRoles(Subject subject, Resource resource,
 ContextHandler handler)
 {
 ...
 if (auditor != null)
 {
 auditor.providerAuditWriteEvent(
 new MyRoleEventImpl(subject, resource, context,
 "why logging this event",
 null); // no exception occurred
 }
 ...
 }
}

Auditing Management Operations from a Provider's MBean
A SecurityServices object is passed into a security provider's implementation of a
"Provider" SSPI as part of the initialize method. (See Understand the Purpose of
the Provider SSPIs.) The provider can use this object's auditor to audit provider-
specific security events, such as when a user is successfully logged in.

A security provider's MBean implementation is not passed a SecurityServices object.
However, the provider may need to audit its MBean operations, such as a user being
created.

To work around this, the provider's runtime implementation can cache the
SecurityServices object and use a provider-specific mechanism to pass it to the
provider's MBean implementation. This allows the provider to audit its MBean
operations.

The Manageable Sample Authentication Provider shows one way to accomplish this
task. The sample provider contains three major implementation classes:

• ManageableSampleAuthenticationProviderImpl contains its security runtime
implementation.

• ManageableSampleAuthenticatorImpl contains its MBean implementation.

• UserGroupDatabase is a helper class used by
ManageableSampleAuthenticationProviderImpl and
ManageableSampleAuthenticatorImpl.

The code flow to cache and obtain the SecurityServices object is as follows:

1. The ManageableSampleAuthenticationProviderImpl's initialize method is
passed a SecurityServices object.

2. The initialize method creates a UserGroupDataBase object and passes it the
SecurityServices object.

3. The UserGroupDataBaseObject caches the SecurityServices object. The
initialize method also puts the UserGroupDatabase object into a hash table
using the realm's name as the lookup key.

4. The ManageableSampleAuhenticatorImpl's init method finds its realm name from
its MBean.

Chapter 11
How to Audit From a Custom Security Provider

11-10

5. The init method uses the realm name to find the corresponding UserGroupDataBase
object from the hash table.

6. The init method then retrieves the SecurityServices object from the
UserGroupDatabase object, and uses its auditor to audit management operations such
as "createUser."

Note:

A provider's runtime implementation is initialized only if the provider is part of
the default realm when the server is booted. Therefore, if the provider is not in
the default realm when the server is booted, its runtime implementation is never
initialized, and the provider's MBean implementation cannot gain access to the
SecurityServices object. That is, if the provider is not in the default realm
when the server is booted, the provider cannot audit its MBean operations.

Example: Auditing Management Operations from a Provider's MBean
Example 11-3 illustrates how the ManageableSampleAuhenticatorImpl's init method finds its
realm name from its MBean, how it uses the realm name to find the corresponding
UserGroupDataBase object from the hash table (via the UserGroupDatabase helper class), and
how it then retrieves the SecurityServices object from the UserGroupDatabase object.

Example 11-3 also shows how ManageableSampleAuhenticatorImpl uses its auditor to audit
management operations such as "createUser."

Example 11-3 ManageableSampleAuthenticatorImpl.java

package examples.security.providers.authentication.manageable;
import java.util.Enumeration;
import javax.management.MBeanException;
import javax.management.modelmbean.ModelMBean;
import weblogic.management.security.authentication.AuthenticatorImpl;
import weblogic.management.utils.AlreadyExistsException;
import weblogic.management.utils.InvalidCursorException;
import weblogic.management.utils.NotFoundException;
import weblogic.security.spi.AuditorService;
import weblogic.security.spi.SecurityServices;

public class ManageableSampleAuthenticatorImpl extends AuthenticatorImpl
{
// Manages the user and group definitions for this provider:
private UserGroupDatabase database;

// Manages active queries (see listUsers, listGroups, listMemberGroups):
private ListManager listManager = new ListManager();

// The name of the realm containing this provider:
private String realm;

// The name of this provider:
private String provider;

// The auditor for auditing user/group management operations.
// This is only available if this provider was configured in
// the default realm when the server was booted.

Chapter 11
How to Audit From a Custom Security Provider

11-11

private AuditorService auditor;

public ManageableSampleAuthenticatorImpl(ModelMBean base) throws MBeanException
{
super(base);
}

private synchronized void init() throws MBeanException
{
if (database == null) {
try {
ManageableSampleAuthenticatorMBean myMBean = (ManageableSampleAuthenticatorMBean)getProxy();
database = UserGroupDatabase.getDatabase(myMBean);
realm = myMBean.getRealm().getName();
provider = myMBean.getName();
SecurityServices services = database.getSecurityServices();
auditor = (services != null) ? services.getAuditorService() : null;
}
catch(Exception e) {
throw new MBeanException(e, "SampleAuthenticatorImpl.init failed");
}
}
}
...
public void createUser(String user, String password, String description)
throws MBeanException, AlreadyExistsException
{
init();
String details = (auditor != null) ?
"createUser(user = " + user + ", password = " + password + ",
description = " + description + ")" : null;
try {
// we don't support descriptions so just ignore it
database.checkDoesntExist(user);
database.getUser(user).create(password);
database.updatePersistentState();
auditOperationSucceeded(details);
}
catch (AlreadyExistsException e) { auditOperationFailed(details, e); throw e; }
catch (IllegalArgumentException e) { auditOperationFailed(details, e); throw e; }
}
...
private void auditOperationSucceeded(String details)
{
if (auditor != null) {
auditor.providerAuditWriteEvent(
new ManageableSampleAuthenticatorManagementEvent(realm, provider, details, null)
);
}
}
...
private void auditOperationFailed(String details, Exception failureException)
{
if (auditor != null) {

auditor.providerAuditWriteEvent(
new ManageableSampleAuthenticatorManagementEvent(realm, provider, details, failureException)
);
}
}
}

Chapter 11
How to Audit From a Custom Security Provider

11-12

Best Practice: Posting Audit Events from a Provider's MBean
Provider's management operations that do writes (for example, create user, delete user,
remove data) should post audit events, regardless of whether or not the operation succeeds.

If your provider audits MBean operations, you should keep the following Best Practice
guidelines in mind.

• If the write operation succeeds, post an INFORMATION audit event.

• If the write operation fails because of a bad parameter (for example, because the user
already exists, or due to a bad import format name, a non-existent file name, or the
wrong file format), do not post an audit event.

• If the write operation fails because of an error (for example, LDAPException,
RuntimeException), post a FAILURE audit event.

• Import operations can partially succeed. For example, some of the users are imported,
but others are skipped because there are already users with that name in the provider.

• If you can easily detect that the data you are skipping is identical to the data already in
the provider (for example, the username, description, and password are the same) then
consider posting a WARNING event.

• If you are skipping data because there is a partial collision (for example, the username is
the same but the password is different), you should post a FAILURE event.

• If it is too difficult to distinguish the import data from the data already stored in the
provider, post a FAILURE event.

Chapter 11
How to Audit From a Custom Security Provider

11-13

12
Servlet Authentication Filters

This chapter describes Servlet Authentication Filter interface concepts and functionality, and
provides step-by-step instructions for developing a Servlet Authentication Filter.
A Servlet Authentication Filter is a provider type that performs pre- and post-processing for
authentication functions, including identity assertion. A Servlet Authentication Filter is a
special type of security provider that primarily acts as a helper to an authentication provider.

The ServletAuthenticationFilter interface defines the security service provider interface
(SSPI) for authentication filters that can be plugged in to WebLogic Server. You implement
the ServletAuthenticationFilter interface as part of an authentication provider, and
typically as part of the identity assertion form of authentication provider, to signal that the
authentication provider has authentication filters that it wants the servlet container to invoke
during the authentication process.

This chapter includes the following sections:

• Authentication Filter Concepts

• How Filters Are Invoked

• Example of a Provider that Implements a Filter

• How to Develop a Custom Servlet Authentication Filter

Authentication Filter Concepts
Filters, as defined by the Java Servlet API 2.3 specification, are preprocessors of the request
before it reaches the servlet, and/or postprocessors of the response leaving the servlet.
Filters provide the ability to encapsulate recurring tasks in reusable units and can be used to
transform the response from a servlet or JSP page.

Servlet Authentication filters are an extension to of the filter object that allows filters to
replace or extend container-based authentication.

Why Filters are Needed
The WebLogic Security Framework allows you to provide a custom authentication provider.
However, due to the nature of the Java Servlet API 2.3 specification, the interaction between
the authentication provider and the client or other servers is architecturally limited during the
authentication process. This restricts authentication mechanisms to those that are compatible
with the authentication mechanisms the Servlet container offers: basic, form, and certificate.

Filters have fewer architecturally-dependence limitations; that is, they are not dependent on
the authentication mechanisms offered by the Servlet container. By allowing filters to be
invoked prior to the container beginning the authentication process, a security realm can
implement a wider scope of authentication mechanisms. For example, a Servlet
Authentication Filter could redirect the user to a SAML provider site for authentication.

JAAS LoginModules (within a WebLogic Authentication provider) can be used for
customization of the login process. Customizing the location of the user database, the types

12-1

of proof material required to execute a login, or the population of the Subject with
groups is implemented via a LoginModule.

Conversely, redirecting to a remote site to execute the login, extracting login
information out of the query string, and negotiating a login mechanism with a browser
are implemented via a Servlet Authentication Filter.

Servlet Authentication Filter Design Considerations
You should consider the following design considerations when writing Servlet
Authentication Filters:

• Do you need to allow multiple filters to be specified? You might want to allow this
so that administrative decisions can be made at configuration time.

• Do you depend on a particular order of-execution? Servlet Authentication Filters
must not be dependent on the order in which filters are executed.

• Have you considered allowing each filter to process the request both before and
after authentication? If so, the filter should not make any assumptions about when
it is being invoked.

• Consider allowing each filter to have the option of stopping the execution of the
remaining filters and the Servlet's authentication process by not calling the Filter
doFilter method.

• Do you need to allow a filter to cause the browser to redirect?

• Consider allowing a filter to work for 1-way SSL, 2-way SSL, identity assertion,
form authentication, and basic authentication. For example, Form authentication is
a two-request process and the filter is called twice for form authentication.

How Filters Are Invoked
The Servlet Authentication Filter interface allows an authentication provider to
implement zero or more Servlet Authentication Filter classes. The filters are invoked
as follows:

1. The servlet container calls the Servlet Authentication Filters prior to authentication
occurring.

The servlet container gets the configured chain of Servlet Authentication Filters
from the WebLogic Security Framework.

The Security Framework returns the Servlet Authentication Filters in the order of
the authentication providers. If one provider has multiple Servlet Authentication
Filters, the Security Framework uses the ordered list of javax.servlet.Filters
returned by the ServletAuthenticationFilter getAuthenticationFilters method.

Duplicate filters are allowed because they might need to execute multiple times to
correctly manipulate the request.

2. For each filter, the servlet container calls the Filter init method to indicate to a
filter that it is being placed into service.

3. The servlet container calls the Filter doFilter method on the first filter each time a
request/response pair is passed through the chain due to a client request for a
resource at the end of the chain.

Chapter 12
How Filters Are Invoked

12-2

The FilterChain object passed in to this method allows the Filter to pass on the request
and response to the next entity in the chain. Filters use the FilterChain object to invoke
the next filter in the chain, or if the calling filter is the last filter in the chain, to invoke the
resource at the end of the chain.

4. If all Servlet Authentication Filters call the Filter doFilter method then, when the final
one calls the doFilter method, the servlet container then performs authentication as it
would if the filters were not present.

However, if any of the Servlet Authentication Filters do not call the doFilter method, the
remaining filters, the servlet, and the servlet container's authentication procedure are not
called. This allows a filter to replace the servlet's authentication process. This typically
involves authentication failure or redirecting to another URL for authentication.

Do Not Call Servlet Authentication Filters From Authentication Providers
Although you implement the Servlet Authentication Filter interface as part of an authentication
provider, authentication providers do not actually call Servlet Authentication Filters directly.
The implementation of Servlet Authentication Filters depends upon particular features of the
WebLogic Security Framework that know how to locate and invoke the filters.

If you develop a custom Servlet Authentication Filter, make sure that your custom
authentication providers do not call the WLS-specific classes (for example,
weblogic.servlet.*) and the Java EE-specific classes (for example, javax.servlet.*).
Following this rule ensures maximum portability with WebLogic Security.

Figure 12-1 illustrates this requirement.

Chapter 12
How Filters Are Invoked

12-3

Figure 12-1 Authentication Providers Do Not Call Servlet Authentication Filters

Example of a Provider that Implements a Filter
WebLogic Server includes a Servlet Authentication Filter that handles the header
manipulation required by the Simple and Protected Negotiate (SPNEGO). This Servlet
Authentication Filter, called the Negotiate Servlet Authentication Filter, is configured to
support the WWW-Authenticate and Authorization HTTP headers.

The Negotiate Servlet Authentication Filter generates the appropriate WWW-
Authenticate header on unauthorized responses for the negotiate protocol and handles
the authorization headers on subsequent requests. The filter is available through the
Negotiate Identity Assertion Provider.

By default, the Negotiate Identity Assertion provider is available, but not configured, in
the WebLogic default security realm. The Negotiate Identity Assertion provider can be
used instead of, or in addition to, the WebLogic Identity Assertion provider.

How to Develop a Custom Servlet Authentication Filter
You can develop a custom Servlet Authentication Filter by following these steps:

1. Create Runtime Classes Using the Appropriate SSPIs

2. Generate an MBean Type Using the WebLogic MBeanMaker

Chapter 12
Example of a Provider that Implements a Filter

12-4

3. Configure the Authentication Provider Using Administration Console

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

• Understand the Purpose of the Provider SSPIs

• Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes

When you understand this information and have made your design decisions, create the
runtime classes for your Servlet Authentication Filter by following these steps:

• Implement the AuthenticationProviderV2 SSPI or Implement the IdentityAsserterV2 SSPI

• Implement the Servlet Authentication Filter SSPI

• Implement the Filter Interface Methods

For an example of how to create a runtime class for a custom Servlet Authentication Filter
provider, see Generate an MBean Type Using the WebLogic MBeanMaker.

Implement the Servlet Authentication Filter SSPI
You implement the ServletAuthenticationFilter interface as part of an authentication
provider to signal that the authentication provider has authentication filters that it wants the
servlet container to invoke during the authentication process.

To implement the Servlet Authentication Filter SSPI, provide an implementation for the
following method:

• get Servlet Authentication Filters

public Filter[] getServletAuthenticationFilters

The getServletAuthenticationFilters method returns an ordered list of the
javax.servlet.Filters that are executed during the authentication process of the Servlet
container. The container may call this method multiple times to get multiple instances of
the Servlet Authentication Filter. On each call, this method should return a list of new
instances of the filters.

Implement the Filter Interface Methods
To implement the Filter interface methods, provide implementations for the following
methods. In typical use, you would call init() once, doFilter() possibly many times, and
destroy() once.

• destroy

public void destroy()

The destroy method is called by the web container to indicate to a filter that it is being
taken out of service. This method is only called once all threads within the filter's doFilter
method have exited, or after a timeout period has passed. After the web container calls
this method, it does not call the doFilter method again on this instance of the filter.

Chapter 12
How to Develop a Custom Servlet Authentication Filter

12-5

This method gives the filter an opportunity to clean up any resources that are
being held (for example, memory, file handles, threads) and make sure that any
persistent state is synchronized with the filter's current state in memory

• doFilter

public void doFilter(ServletRequest request, ServletResponse response,
FilterChain chain)

The doFilter method of the Filter is called by the container each time a request/
response pair is passed through the chain due to a client request for a resource at
the end of the chain. The FilterChain passed in to this method allows the Filter to
pass on the request and response to the next entity in the chain.

A typical implementation of this method would follow the following pattern:

1. Examine the request.

2. Optionally, wrap the request object with a custom implementation to filter
content or headers for input filtering.

3. Optionally, wrap the response object with a custom implementation to filter
content or headers for output filtering.

4. Either invoke the next entity in the chain using the FilterChain object
(chain.doFilter()), or do not pass on the request/response pair to the next entity
in the filter chain to block the request processing.

5. Directly set headers on the response after invocation of the next entity in the
filter chain.

• init

public void init(FilterConfig filterConfig)

The init method is called by the web container to indicate to a filter that it is being
placed into service. The servlet container calls the init method exactly once after
instantiating the filter. The init method must complete successfully before the
filter is asked to do any filtering work.

Implementing Challenge Identity Assertion from a Filter
As described in Identity Assertion Providers the Challenge Identity Assertion interface
supports challenge response schemes in which multiple challenges, responses
messages, and state are required. The Challenge Identity Asserter interface allows
identity assertion providers to support authentication protocols such as Microsoft's
Windows NT Challenge/Response (NTLM), Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO), and other challenge/response authentication
mechanisms.

Servlet Authentication Filters allow you to implement a challenge/response protocol
without being limited to the authentication mechanisms compatible with the Servlet
container. However, because Servlet Authentication Filters operate outside of the
authentication environment provided by the Security Framework, they cannot depend
on the Security Framework to determine provider context, and require an API to drive
the multiple-challenge identity assertion process.

The weblogic.security.services.Authentication class has been extended to allow
multiple challenge/response identity assertion from a Servlet Authentication Filter. The
methods and interface provide a wrapper for the ChallengeIdentityAsserterV2 and

Chapter 12
How to Develop a Custom Servlet Authentication Filter

12-6

ProviderChallengeContext SSPI interfaces so that you can invoke them from a Servlet
Authentication Filter.

There is no other documented way to perform a multiple challenge/response dialog from a
Servlet Authentication Filter within the context of the Security Framework. Your Servlet
Authentication Filter cannot directly invoke the ChallengeIdentityAsserterV2 and
ProviderChallengeContext interfaces.

Therefore, if you plan to implement multiple challenge/response identity assertion from a
filter, you need to implement the ChallengeIdentityAsserterV2 and
ProviderChallengeContext interfaces, and then use the
weblogic.security.services.Authentication methods and AppChallengeContect
interface to invoke them from a Servlet Authentication Filter.

The steps to accomplish this process are described in Identity Assertion Providers and are
summarized here:

• Implement the AuthenticationProviderV2 SSPI or Implement the IdentityAsserterV2 SSPI

• Implement the ChallengeIdentityAsserterV2 Interface

• Implement the ProviderChallengeContext Interface

• Invoke the weblogic.security.services Challenge Identity Methods

• Invoke the weblogic.security.services AppChallengeContext Methods

Generate an MBean Type Using the WebLogic MBeanMaker
When you generate the MBean type for your custom authentication provider as described in
Authentication Providers you must also implement the MBean for your Servlet Authentication
Filter.

The ServletAuthenticationFilter MBean extends the AuthenticationProvider MBean.
The ServletAuthenticationFilter MBean is a marker interface and has no methods.

<?xml version="1.0" ?>
<!DOCTYPE MBeanType SYSTEM "commo.dtd">
<MBeanType

Name = "ServletAuthenticationFilter"
Package = "weblogic.management.security.authentication"
Extends = "weblogic.management.security.authentication.AuthenticationProvider"
PersistPolicy = "OnUpdate"
Abstract = "true"
Description = "The SSPI MBean that all Servlet Authentication Filter providers
must extend.
This MBean is just a marker interface. It has no methods on it."
>
</MBeanType>

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementations for the appropriate methods within it, you need to package the MBean files
and the runtime classes for the custom authentication provider, including the Servlet
Authentication Filter, into an MBean JAR File (MJF).

Chapter 12
How to Develop a Custom Servlet Authentication Filter

12-7

These steps are described in Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF).

Configure the Authentication Provider Using Administration Console
Configuring a custom authentication provider that implements a Servlet Authentication
Filter means that you are adding the custom authorization provider to your security
realm, where it can be accessed by applications requiring authorization services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers.

The steps for configuring a custom authorization provider using the WebLogic Server
Administration Console are described under Configuring WebLogic Security Providers
in Administering Security for Oracle WebLogic Server.

Chapter 12
How to Develop a Custom Servlet Authentication Filter

12-8

13
Versionable Application Providers

This chapter describes the background information you need to understand before adding
application versioning capability to your custom security providers, and provides step-by-step
instructions for adding application versioning capability to a custom security provider.
A versionable application is an application that has an application archive version specified in
the manifest of the application archive (EAR file). Versionable applications can be deployed
side-by-side and active simultaneously. Versionable applications allow multiple versions of an
application, where security constraints can vary between the application versions.

The versionable application provider SSPI enables all security providers that support
application versioning to be notified when versions are created and deleted. It also enables
all security providers that support application versioning to be notified when non-versioned
applications are removed.

This chapter includes the following sections:

• Versionable Application Concepts

• The Versionable Application Process

• Do You Need to Develop a Custom Versionable Application Provider?

• How to Develop a Custom VersionableApplication Provider

Versionable Application Concepts
Redeployment of versionable applications is always done via side-by-side versions, unless
the same archive version is specified in the subsequent redeployments. However, a
versionable application has to be written in such a way that multiple versions of it can be run
side-by-side without conflicts; that is, it does not make any assumption of the uniqueness of
the application name, and so forth. For example, in the case where an applications may use
the application name as a unique key for global data structures, such as database tables or
LDAP stores, the applications would need to change to use the application identifier instead.

Production Redeployment is allowed only if the configured security providers support the
application versioning security SSPI. All authorization, role mapping, and credential mapping
providers for the security realm must support application versioning for an application to be
deployed using versions.

See Developing Applications for Production Redeployment in Developing Applications for
Oracle WebLogic Server for detailed information on how an application assigns an application
version.

The Versionable Application Process
For a security provider to support application versioning, it must implement the versionable
application SSPI. The WebLogic Security Framework calls the versionable application
provider SSPI when an application version is created and deleted so that the provider can
take any required actions to create, copy or removed data associated with the application
version. It is up to the provider to determine the appropriate action to take, if any.

13-1

In addition, the versionable application provider SSPI is also called when a non-
versioned application is deleted so that the provider can perform cleanup actions.

The WebLogic Security Framework passes the versionable application provider the
application identifier for the new version and the application identifier of the version
used as the source of application data. When the source identifier is not supplied, the
initial version of the application is being created.

Do You Need to Develop a Custom Versionable Application
Provider?

The WebLogic Server out-of-the-box security providers for authorization, role mapping,
and credential mapping support the application versioning SSPI. When a new version
is created, all the customized roles, policies and credential maps are cloned with new
resource identifiers representing the new application version. In addition, when an
application version is deleted, resources associated with the deleted version are
removed.

If you develop a custom security provider for authorization, role mapping, or credential
mapping and need to support versioned applications, you must implement the
versionable application SSPI.

How to Develop a Custom VersionableApplication Provider
If you need to support the versionable application SSPI, you can develop a custom
versionable application provider by following these steps:

• Implement your custom authorization, role mapping, or credential mapping
providers. All authorization, role mapping, or credential mapping providers for the
security realm must support application versioning for an application to be
deployed using versions.

• Create Runtime Classes Using the Appropriate SSPIs

• Generate an MBean Type Using the WebLogic MBeanMaker

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

• Understand the Purpose of the Provider SSPIs

• Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom versionable application provider by following these
steps:

• Implement your custom authorization, role mapping, or credential mapping
providers.

• Implement the VersionableApplication SSPI

Chapter 13
Do You Need to Develop a Custom Versionable Application Provider?

13-2

Implement the VersionableApplication SSPI
To implement the VersionableApplication SSPI, provide implementations for the methods
described in Understand the Purpose of the Provider SSPIs and the following methods:

• createApplicationVersion

void createApplicationVersion(String appIdentifier, String sourceAppIdentifier)

Marks the creation of a new application version and is called (only on the Administration
Server within a WebLogic Server domain) on one server within a WebLogic Server
domain at the time the version is created. The WebLogic Security Framework passes the
createApplicationVersion method the application identifier for the new version
(appIdentifier) and the application identifier of the version used as the source of
application data (sourceAppIdentifier). When the source identifier is not supplied, the
initial version of the application is being created.

• deleteApplication

void deleteApplication(String appName)

Marks the deletion of a non-versioned application and is called (only on the
Administration Server within a WebLogic Server domain) at the time the application is
deleted.

• deleteApplicationVersion

void deleteApplicationVersion(String appIdentifier)

Marks the deletion of an application version and is only called (only on the Administration
Server within a WebLogic Server domain) at the time the version is deleted.

Example: Creating the Runtime Class for the Sample VersionableApplication
Provider

Example 13-1 shows how the versionable application SSPI is implemented in the sample
authorization provider.

Example 13-1 SimpleSampleAuthorizationProviderImpl

public final class SimpleSampleAuthorizationProviderImpl
 implements DeployableAuthorizationProviderV2, AccessDecision,
VersionableApplicationProvider
:
:
public void createApplicationVersion(String appId, String sourceAppId)
{
System.out.println("SimpleSampleAuthorizationProviderImpl.createApplicationVersion");
System.out.println("\tapplication identifier\t= " + appId);
System.out.println("\tsource app identifier\t= " + ((sourceAppId != null) ?
sourceAppId : "None"));
// create new policies when existing application is specified
 if (sourceAppId != null) {
 database.clonePoliciesForApplication(sourceAppId,appId);
 }

public void deleteApplicationVersion(String appId)
{

Chapter 13
How to Develop a Custom VersionableApplication Provider

13-3

System.out.println("SimpleSampleAuthorizationProviderImpl.deleteApplicationVersio
n");
System.out.println("\tapplication identifier\t= " + appId);

// clear out policies for the application
database.removePoliciesForApplication(appId);
}

public void deleteApplication(String appName)
{
System.out.println("SimpleSampleAuthorizationProviderImpl.deleteApplication");
System.out.println("\tapplication name\t= " + appName);

// clear out policies for the application
database.removePoliciesForApplication(appName);
}

Generate an MBean Type Using the WebLogic MBeanMaker
When you generate the MBean type for your custom authorization, role mapping, and
credential mapping providers, you must also implement the MBean for your
versionable application provider. The ApplicationVersionerMBean is a marker interface
and has no methods.

Example 13-2 shows how the SimpleSampleAuthorizer MBean Definition File (MDF)
implements the ApplicationVersionerMBean MBean.

Example 13-2 Implementing the ApplicationVersionerMBean

<MBeanType
 Name = "SimpleSampleAuthorizer"
 DisplayName = "SimpleSampleAuthorizer"
 Package = "examples.security.providers.authorization.simple"
 Extends =
"weblogic.management.security.authorization.DeployableAuthorizer"
 Implements = "weblogic.management.security.ApplicationVersioner"
 PersistPolicy = "OnUpdate"
>

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementations for the appropriate methods within it, you need to package the
MBean files and the runtime classes for the custom authorization, role mapping, or
credential mapping provider, including the versionable application provider, into an
MBean JAR File (MJF).

These steps are described in Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF).

Configure the Custom Versionable Application Provider Using the
Administration Console

Configuring a custom versionable application provider means that you are adding the
custom versionable application provider to your security realm, where it can be
accessed by applications requiring application version services.

Chapter 13
How to Develop a Custom VersionableApplication Provider

13-4

Configuring custom security providers is an administrative task, but it is a task that may also
be performed by developers of custom security providers.

The steps for configuring a custom versionable application provider using the WebLogic
Server Administration Console are described under Configuring WebLogic Security Providers
in Administering Security for Oracle WebLogic Server.

Chapter 13
How to Develop a Custom VersionableApplication Provider

13-5

14
CertPath Providers

This chapter describes the background information you need to understand before adding
certificate lookup and validation capability to your custom security providers, and provides
step-by-step instructions for adding certificate lookup and validation capability to a custom
security provider.
The WebLogic Security service provides a framework that finds and validates X509 certificate
chains for inbound 2-way SSL, outbound SSL, application code, and WebLogic Web
services. The Certificate Lookup and Validation (CLV) framework is a new security plug-in
framework that finds and validates certificate chains. The framework extends and completes
the JDK CertPath functionality, and allows you to create a custom CertPath provider.

This chapter includes the following sections:

• Certificate Lookup and Validation Concepts

• Do You Need to Develop a Custom CertPath Provider?

• How to Develop a Custom CertPath Provider

Certificate Lookup and Validation Concepts
A CertPath is a JDK class that stores a certificate chain in memory. The term CertPath is also
used to refer to the JDK architecture and framework that is used to locate and validate
certificate chains.

There are two distinct types of providers, CertPath Validators and CertPath Builders:

• The purpose of a certificate validator is to determine if the presented certificate chain is
valid and trusted. As the CertPath Validator provider writer, you decide how to validate
the certificate chain and determine whether you need to use the trusted CA's.

• The purpose of a certificate builder is to use a selector (which holds the selection criteria
for finding the CertPath) to find a certificate chain. Certificate builders often to validate the
certificate chain as well. As the CertPath Builder provider writer, you decide which of the
four selector types you support and whether you also validate the certificate chain. You
also decide how much of the certificate chain you fill in and whether you need to use the
trusted CA's.

The WebLogic CertPath providers are built using both the JDK and WebLogic CertPath SPI's.

The Certificate Lookup and Validation Process
The certificate lookup and validation process is shown in Figure 14-1.

14-1

Figure 14-1 Certificate Lookup and Validation Process

Do You Need to Implement Separate CertPath Validators and
Builders?

You can implement the CertPath provider in several ways:

• You can implement a CertPath Builder that performs both building and validation.
In this case, you are responsible for:

1. Implementing the Validator SPI.

2. Implementing the Builder SPI.

3. You must validate the certificate chain you build as part of the Builder SPI.
Your provider will be called only once; you will not be called a second time
specifically for validation.

4. You decide the validation algorithm, which selectors to support, and whether to
use trusted CA's.

• You can implement a CertPath Validator that performs only validation. In this case,
you are responsible for:

1. Implementing the Validator SPI.

2. You decide the validation algorithm and whether to use trusted CA's.

• You can implement a CertPath Builder that performs only building. In this case,
you are responsible for:

1. Implementing the Builder SPI.

2. You decide whether to validate the chain you build.

3. You decide which selectors to support and whether to use trusted CA's.

Chapter 14
Certificate Lookup and Validation Concepts

14-2

CertPath Provider SPI MBeans
WebLogic Server includes two CertPath provider SPI MBeans, both of which extend
CertPathProviderMBean:

• CertPathBuilderMBean indicates that the provider can look up certificate chains. It adds
no attributes or methods. CertPathBuilder providers must implement a custom MBean
that extends this MBean.

• CertPathValidatorMBean indicates that the provider can validate a certificate chain. It
adds no attributes or methods. CertPathValidator providers must implement a custom
MBean that extends this MBean.

Your CertPath provider, depending on its type, must extend one or both of the MBeans. A
security provider that supports both building and validating should write an MBean that
extends both of these MBeans, as shown in Example 14-1.

Example 14-1 Sample CertPath MBean MDF

<?xml version="1.0" ?>
<!DOCTYPE MBeanType SYSTEM "commo.dtd">

<MBeanType
Name = "MyCertPathProvider"
DisplayName = "MyCertPathProvider"
Package = "com.acme"
Extends = "weblogic.management.security.pk.CertPathBuilder"
Implements = "weblogic.management.security.pk.CertPathValidator"
PersistPolicy = "OnUpdate"
>
<MBeanAttribute
Name = "ProviderClassName"
Type = "java.lang.String"
Writeable = "false"
Default = ""com.acme.MyCertPathProviderRuntimeImpl""
/>

<MBeanAttribute
Name = "Description"
Type = "java.lang.String"
Writeable = "false"
Default = ""My CertPath Provider""
/>

<MBeanAttribute
Name = "Version"
Type = "java.lang.String"
Writeable = "false"
Default = ""1.0""
/>

 <!-- add custom attributes for the configuration data needed by this provider -->
<MBeanAttribute
Name = "CustomConfigData"
Type = "java.lang.String"
/>

Chapter 14
Certificate Lookup and Validation Concepts

14-3

WebLogic CertPath Validator SSPI
The WebLogic CertPath Validator SSPI has four parts:

• An MBean SSPI, described in CertPath Provider SPI MBeans.

• The JDK CertPathValidatorSPI interface, as described inImplement the JDK
CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces .

• The WebLogic Server CertPathProvider SSPI interface, as described in
Implement the CertPath Provider SSPI.

• The JDK security provider that registers your CertPathValidatorSPI
implementation with the JDK, as described in Implement the JDK Security
Provider SPI.

WebLogic CertPath Builder SSPI
The WebLogic CertPath Builder SSPI has four parts:

• An MBean SSPI, described in CertPath Provider SPI MBeans.

• The JDK CertPathBuilderSPI interface, as described inImplement the JDK
CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces .

• The WebLogic Server CertPathProvider SSPI interface, as described in
Implement the CertPath Provider SSPI.

• The JDK security provider that registers your CertPathBuilderSPI with the JDK,
as described in Implement the JDK Security Provider SPI.

Relationship Between the WebLogic Server CertPath SSPI and the
JDK SPI

Unlike other WebLogic Security Framework providers, your implementation of the
CertPath provider relies on a tightly-coupled integration of WebLogic and JDK
interfaces. This integration might best be shown in the tasks you perform to create a
CertPath provider.

If you are writing a CertPath Validator, you must perform the following tasks:

1. Create a CertPathValidatorMBean that extends CertPathProviderMBean, as
described in Generate an MBean Type Using the WebLogic MBeanMaker.

2. Implement the JDK java.security.cert.CertPathValidatorSpi, as described in
Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces .

Your JDK implementation will be passed a JDK CertPathParameters object that
you can cast to a WebLogic CertPathValidatorParametersSpi. You can then
access its WebLogic methods to get the trusted CA's and ContextHandler. You
can also use it to access your WebLogic CertPath provider object.

Use the CertPathValidatorParametersSpi to provide the data you need to
validate the certificate chain, such as Trusted CA's, the ContextHandler, and your
CertPath provider SSPI implementation, which gives access to any custom
configuration data provided by your MBean, as described in Use the

Chapter 14
Certificate Lookup and Validation Concepts

14-4

CertPathValidatorParametersSpi SSPI in Your CertPathValidatorSpi Implementation .

Your WebLogic CertPath provider is important because your CertPathValidatorSpi
implementation has no direct way to get the custom configuration data in your MBean.
Your WebLogic CertPath provider can provide a proprietary mechanism to make your
custom MBean data available to your JDK implementation.

3. Implement the WebLogic CertPath provider SSPI, as described in Implement the
CertPath Provider SSPI. In particular, you use the initialize method of the CertPath
provider SSPI to hook into the MBean and make its custom configuration data available
to your CertPathValidatorSpi implementation, as shown in Example 14-2.

4. Implement a JDK security provider that registers your CertPathValidatorSpi
implementation, as described in Implement the JDK Security Provider SPI. This coding
might not be intuitive, and is called out in Example 14-5.

If you are writing a CertPath Builder, you must perform the following tasks:

1. Create a CertPathBuilderMBean that extends CertPathProviderMBean, as described in
Generate an MBean Type Using the WebLogic MBeanMaker.

2. Implement the JDK java.security.cert.CertPathBuilderSpi, as described in
Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces .

Your JDK implementation will be passed a JDK CertPathParameters object that you can
cast to a WebLogic CertPathBuilderParametersSpi. You can then access its WebLogic
methods to get the trusted CA's, selector, and ContextHandler. You can also use it to
access your WebLogic CertPath provider object.

Use the CertPathBuilderParametersSpi to provide the data you need to build the
CertPath, such as Trusted CA's, ContextHandler, the CertPathSelector, and your
CertPath provider SSPI implementation, which gives access to any custom configuration
data provided by your MBean, as described in Use the CertPathBuilderParametersSpi
SSPI in Your CertPathBuilderSpi Implementation .

Your WebLogic CertPath provider is important because your CertPathBuilderSpi
implementation has no direct way to get the custom configuration data in your MBean.
Your WebLogic CertPath provider can provide a proprietary mechanism to make your
custom MBean data available to your JDK implementation.

3. Implement a WebLogic CertPath provider SSPI, as described in Implement the CertPath
Provider SSPI. In particular, you use the initialize method of the CertPath provider
SSPI to hook into the MBean and make its custom configuration data available to your
CertPathBuilderSpi implementation, as shown in Example 14-2.

4. Implement the JDK security provider that registers your CertPathBuilderSpi
implementation, as described in Implement the JDK Security Provider SPI. This coding
might not be intuitive, and is called out in Example 14-5.

Do You Need to Develop a Custom CertPath Provider?
WebLogic Server includes a CertPath provider and the Certificate Registry.

The WebLogic Server CertPath provider is both a CertPath Builder and a CertPath Validator.
The provider completes certificate paths and validates the certificates using the trusted CA
configured for a particular WebLogic Server instance. It can build only chains that are self-
signed or are issued by a self-signed certificate authority, which must be listed in the server's
trusted CA's. If a certificate chain cannot be completed, it is invalid. The provider uses only
the EndCertificateSelector selector.

Chapter 14
Do You Need to Develop a Custom CertPath Provider?

14-5

The WebLogic Server CertPath provider also checks the signatures in the chain,
ensures that the chain has not expired, and checks that one of the certificates in the
chain is issued by one of the trusted CAs configured for the server. If any of these
checks fail, the chain is not valid. Finally, the provider checks each certificate's basic
constraints (that is, the ability of the certificate to issue other certificates) to ensure the
certificate is in the proper place in the chain.

The WebLogic Server CertPath provider can be used as a CertPath Builder and a
CertPath Validator in a security realm.

The WebLogic Server Certificate Registry is an out-of-the-box CertPath provider that
allows the administrator to configure a list of trusted end certificates via the WebLogic
Server Administration Console. The Certificate Registry is a builder/validator. The
selection criteria can be EndCertificateSelector, SubjectDNSelector,
IssuerDNSerialNumberSelector, or SubjectKeyIdentifier. The certificate chain that
is returned has only the end certificate. When it validates a chain, it makes sure only
that the end certificate is registered; no further checking is done.

You can configure both the CertPath provider and the Certificate Registry. You might
do this to make sure that a certificate chain is valid only if signed by a trusted CA, and
that the end certificate is in the registry.

If the supplied WebLogic Server CertPath providers do not meet your needs, you can
develop a custom CertPath provider.

How to Develop a Custom CertPath Provider
If the WebLogic CertPath provider or Certificate Registry does not meet your needs,
you can develop a custom CertPath provider by following these steps:

Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

• Understand the Purpose of the Provider SSPIs

• Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom CertPath provider by completing the steps
described in the following sections:

• Generate an MBean type for your custom authentication provider by completing
the steps described in Generate an MBean Type Using the WebLogic
MBeanMaker.

• Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces

• Implement the CertPath Provider SSPI

• Implement the JDK Security Provider SPI

• Use the CertPathBuilderParametersSpi SSPI in Your CertPathBuilderSpi
Implementation and/or Use the CertPathValidatorParametersSpi SSPI in Your
CertPathValidatorSpi Implementation

Chapter 14
How to Develop a Custom CertPath Provider

14-6

Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces
The java.security.cert.CertPathBuilderSpi interface is the Service Provider Interface
(SPI) for the CertPathBuilder class. All CertPathBuilder implementations must include a
class that implements this interface (CertPathBuilderSpi).

The java.security.cert.CertPathValidatorSpi interface is the Service Provider Interface
(SPI) for the CertPathValidator class. All CertPathValidator implementations must include
a class that implements this interface (CertPathValidatorSpi).

Example 14-6 shows an example of implementing the CertPathBuilderSpi and
CertPathValidatorSpi interfaces.

Implement the CertPath Provider SSPI
The CertPathProvider SSPI interface exposes the services provided by both the JDK
CertPathValidator and CertPathBuilder SPIs and allows the provider to be manipulated
(initialized, started, stopped, and so on).

In particular, you use the initialize method of the CertPath provider SSPI to hook into the
MBean and make its custom configuration data available to your CertPathBuilderSpi or
CertPathValidatorSpi implementation, as shown in Example 14-2.

A more complete example is available in Example 14-6.

Example 14-2 Code Fragment: Obtaining Custom Configuration Data From MBean

public class MyCertPathProviderRuntimeImpl implements CertPathProvider
{
:
:
 public void initialize(ProviderMBean mBean, SecurityServices securityServices)
 {
 MyCertPathProviderMBean myMBean = (MyCertPathProviderMBean)mBean;
 description = myMBean.getDescription();
 customConfigData = myMBean.getCustomConfigData();
:
}
:
 // make my config data available to my JDK CertPathBuilderSpi and
 // CertPathValidatorSpi impls
 private String getCustomConfigData() { return customConfigData; }
}
:
static public class MyJDKCertPathBuilder extends CertPathBuilderSpi
{
:
//get my runtime implementation instance which holds the configuration
//data needed to build and validate the cert path
MyCertPathProviderRuntimeImpl runtime =
(MyCertPathProviderRuntimeImpl)params.getCertPathProvider();
String myCustomConfigData = runtime.getCustomConfigData();

Example 14-5 shows how to register your JDK implementation with the JDK.

To implement the CertPathProvider SSPI, provide implementations for the methods
described in Understand the Purpose of the Provider SSPIs and the following methods:

Chapter 14
How to Develop a Custom CertPath Provider

14-7

• getCertPathBuilder

public CertPathBuilder getCertPathBuilder()

Gets a CertPath Provider's JDK CertPathBuilder that invokes your JDK
CertPathBuilderSpi implementation, as shown in Example 14-3. A
CertPathBuilder finds, and optionally validates, a certificate chain.

Example 14-3 Code Fragment: getCertPathBuilder

public void initialize(ProviderMBean mBean, SecurityServices securityServices)
{
:
 // get my JDK cert path impls
 try {
 certPathBuilder = CertPathBuilder.getInstance(BUILDER_ALGORITHM);
 } catch (NoSuchAlgorithmException e) { throw new AssertionError("..."); }

• getCertPathValidator

public CertPathValidator getCertPathValidator()

Gets a CertPath Provider's JDK CertPathValidator that invokes your JDK
CertPathValidatorSpi implementation, as shown in Example 14-4. A
CertPathValidator validates a certificate chain.

Example 14-4 Code Fragment: getCertPathValidator

public void initialize(ProviderMBean mBean, SecurityServices securityServices)
{
:
 // get my JDK cert path impls
 try {
 certPathValidator = CertPathValidator.getInstance(VALIDATOR_ALGORITHM);
 } catch (NoSuchAlgorithmException e) { throw new AssertionError("..."); }
 }

Implement the JDK Security Provider SPI
Implement the JDK security provider SPI and use it to register your
CertPathBuilderSpi or CertPathValidatorSpi implementations with the JDK. Use it
to register your JDK implementation in your provider's initialize method.

Example 14-6 shows an example of creating the runtime class for a sample CertPath
provider. Example 14-5 shows the fragment from that larger example that implements
the JDK security provider.

Example 14-5 Implementing the JDK Security Provider

public class MyCertPathProviderRuntimeImpl implements CertPathProvider
{
private static final String MY_JDK_SECURITY_PROVIDER_NAME = "MyCertPathProvider";
private static final String BUILDER_ALGORITHM = MY_JDK_SECURITY_PROVIDER_NAME +
"CertPathBuilder";
private static final String VALIDATOR_ALGORITHM = MY_JDK_SECURITY_PROVIDER_NAME +
"CertPathValidator";
:
:
 public void initialize(ProviderMBean mBean, SecurityServices securityServices)
 {
 MyCertPathProviderMBean myMBean = (MyCertPathProviderMBean)mBean;

Chapter 14
How to Develop a Custom CertPath Provider

14-8

 description = myMBean.getDescription();

 customConfigData = myMBean.getCustomConfigData();

// register my cert path impls with the JDK
// so that the CLV framework may invoke them via
// the JDK cert path apis.
if (Security.getProvider(MY_JDK_SECURITY_PROVIDER_NAME) == null) {
 AccessController.doPrivileged(
 new PrivilegedAction() {
 public Object run() {
 Security.addProvider(new MyJDKSecurityProvider());
 return null;
 }
 }
);
}
:
// This class implements the JDK security provider that registers
// this provider's cert path builder and cert path validator implementations
// with the JDK.
private class MyJDKSecurityProvider extends Provider
 {
 private MyJDKSecurityProvider()
 {
 super(MY_JDK_SECURITY_PROVIDER_NAME, 1.0, "MyCertPathProvider JDK CertPath provider");
 put("CertPathBuilder." + BUILDER_ALGORITHM,
 "com.acme.MyPathProviderRuntimeImpl$MyJDKCertPathBuilder");
 put("CertPathValidator." + VALIDATOR_ALGORITHM,
 "com.acme.MyCertPathProviderRuntimeImpl$MyJDKCertPathValidator");
 }
 }
}

Use the CertPathBuilderParametersSpi SSPI in Your CertPathBuilderSpi
Implementation

Your JDK implementation will be passed a JDK CertPathParameters object that you can cast
to a WebLogic CertPathBuilderParametersSpi. You can then access its WebLogic methods
to get the trusted CA's, selector, and ContextHandler. You can also use it to access your
WebLogic CertPath provider object. The following methods are provided:

• getCertPathProvider

CertPathProvider getCertPathProvider()

Gets the CertPath Provider SSPI interface that exposes the services provided by a
CertPath provider to the WebLogic Security Framework. In particular, you use the
initialize method of the CertPath provider SSPI to hook into the MBean and make its
custom configuration data available to your CertPathBuilderSpi implementation, as
shown in Example 14-2.

• getCertPathSelector

CertPathSelector getCertPathSelector()

Gets the CertPathSelector interface that holds the selection criteria for finding the
CertPath.

Chapter 14
How to Develop a Custom CertPath Provider

14-9

WebLogic Server provides a set of classes in weblogic.security.pk that
implement the CertPathSelector interface, one for each supported type of
certificate chain lookup. Therefore, the getCertPathSelector method returns one
of the following derived classes:

• EndCertificateSelector – used to find and validate a certificate chain given its
end certificate.

• IssuerDNSerialNumberSelector – used to find and validate a certificate chain
from its end certificate's issuer DN and serial number.

• SubjectDNSelector – used to find and validate a certificate chain from its end
certificate's subject DN.

• SubjectKeyIdentifierSelector – used to find and validate a certificate chain
from its end certificate's subject key identifier (an optional field in X509
certificates).

Each selector class has one or more methods to retrieve the selection data and a
constructor.

Your CertPathBuilderSpi implementation decides which selectors it supports.
The CertPathBuilderSpi implementation must use the getCertPathSelector
method of the CertPathBuilderParametersSpi SSPI to get the CertPathSelector
that holds the selection criteria for finding the CertPath. If your
CertPathBuilderSpi implementation supports that type of selector, it then uses
the selector to build and validate the chain. Otherwise, it must throw an
InvalidAlgorithmParameterException, which is propagated back to the caller.

• getContext()

ContextHandler getContext()

Gets a ContextHandler that may pass in extra parameters that can be used for
building and validating the CertPath.

• getTrustedCAs()

X509Certificate[] getTrustedCAs()

Gets a list of trusted certificate authorities that may be used for building the
certificate chain. If your CertPathBuilderSpi implementation needs Trusted CA's
to build the chain, it should use these Trusted CA's.

• clone

Object clone()

This interface is not cloneable.

Use the CertPathValidatorParametersSpi SSPI in Your CertPathValidatorSpi
Implementation

Your JDK implementation will be passed a JDK CertPathParameters object that you
can cast to a WebLogic CertPathValidatorParametersSpi. You can then access its
WebLogic methods to get the trusted CA's and ContextHandler. You can also use it to
access your WebLogic CertPath provider object. The CLV framework ensures that the
certificate chain passed to the validator SPI is in order (starting at the end certificate),
and that each cert has signed the next. The following methods are provided:

Chapter 14
How to Develop a Custom CertPath Provider

14-10

• getCertPathProvider

CertPathProvider getCertPathProvider()

Gets the CertPath Provider SSPI interface that exposes the services provided by a
CertPath provider to the WebLogic Security Framework. In particular, you use the
initialize method of the CertPath provider SSPI to hook into the MBean and make its
custom configuration data available to your CertPathValidatorSpi implementation, as
shown in Example 14-2.

• getContext()

ContextHandler getContext()

Gets a ContextHandler that may pass in extra parameters that can be used for building
and validating the CertPath.

SSL performs some built-in validation before it calls one or more CertPathValidator
objects to perform additional validation. A validator can reduce the amount of validation it
must do by discovering what validation has already been done.

For example, the WebLogic CertPath Provider performs the same validation that SSL
does, and there is no need to duplicate that validation when invoked by SSL. Therefore,
SSL puts some information into the context it hands to the validators to indicate what
validation has already occurred. The weblogic.security.SSL.SSLValidationConstants
CHAIN_PREVALIDATED_BY_SSL field is a Boolean that indicates whether SSL has pre-
validated the certificate chain. Your application code can test this field, which is set to true
if SSL has pre-validated the certificate chain, and is false otherwise.

• getTrustedCAs()

X509Certificate[] getTrustedCAs()

Gets a list of trusted certificate authorities that may be used for validating the certificate
chain. If your CertPathBuilderSpi implementation needs Trusted CA's to validate the
chain, it should use these Trusted CA's.

• clone

Object clone()

This interface is not cloneable.

Returning the Builder or Validator Results
Your JDK CertPathBuilder or CertPathValidator implementation must return an object that
implements the java.security.cert.CertPathValidatorResult or
java.security.cert.CertPathValidatorResult interface.

You can write your own results implementation or you can use the WebLogic Server
convenience routines.

WebLogic Server provides two convenience results-implementation classes,
WLSCertPathBuilderResult and WLSCertPathValidatorResult, both of which are located in
weblogic.security.pk, that you can use to return instances of
java.security.cert.CertPathValidatorResult or
java.security.cert.CertPathValidatorResult.

Chapter 14
How to Develop a Custom CertPath Provider

14-11

Note:

The results you return are not passed through the WebLogic Security
framework.

Example: Creating the Sample Cert Path Provider
Example 14-6 shows an example CertPath builder/validator provider. The example
includes extensive comments that explain the code flow.

Example 14-1 shows the CertPath MBean that Example 14-6 uses.

Example 14-6 Creating the Sample Cert Path Provider

package com.acme;

import weblogic.management.security.ProviderMBean;
import weblogic.security.pk.CertPathSelector;
import weblogic.security.pk.SubjectDNSelector;
import weblogic.security.pk.WLSCertPathBuilderResult;
import weblogic.security.pk.WLSCertPathValidatorResult;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.CertPathBuilderParametersSpi;
import weblogic.security.spi.CertPathProvider;
import weblogic.security.spi.CertPathValidatorParametersSpi;
import weblogic.security.spi.SecurityServices;
import weblogic.security.SSL.SSLValidationConstants;

import java.security.InvalidAlgorithmParameterException;
import java.security.NoSuchAlgorithmException;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.security.Provider;
import java.security.Security;
import java.security.cert.CertPath;
import java.security.cert.CertPathBuilder;
import java.security.cert.CertPathBuilderResult;
import java.security.cert.CertPathBuilderSpi;
import java.security.cert.CertPathBuilderException;
import java.security.cert.CertPathParameters;
import java.security.cert.CertPathValidator;
import java.security.cert.CertPathValidatorResult;
import java.security.cert.CertPathValidatorSpi;
import java.security.cert.CertPathValidatorException;
import java.security.cert.X509Certificate;

public class MyCertPathProviderRuntimeImpl implements CertPathProvider
{
 private static final String MY_JDK_SECURITY_PROVIDER_NAME = "MyCertPathProvider";
 private static final String BUILDER_ALGORITHM = MY_JDK_SECURITY_PROVIDER_NAME +
"CertPathBuilder";
 private static final String VALIDATOR_ALGORITHM = MY_JDK_SECURITY_PROVIDER_NAME +
"CertPathValidator";

 // Used to invoke my JDK cert path builder / validator implementations
 private CertPathBuilder certPathBuilder;
 private CertPathValidator certPathValidator;

Chapter 14
How to Develop a Custom CertPath Provider

14-12

 // remember my custom configuration data from my mbean
 private String customConfigData;

 private String description;

 public void initialize(ProviderMBean mBean, SecurityServices securityServices)
 {
 MyCertPathProviderMBean myMBean = (MyCertPathProviderMBean)mBean;

 description = myMBean.getDescription();

 customConfigData = myMBean.getCustomConfigData();

 // register my cert path impls with the JDK
 // so that the CLV framework may invoke them via
 // the JDK cert path apis.
 if (Security.getProvider(MY_JDK_SECURITY_PROVIDER_NAME) == null) {
 AccessController.doPrivileged(
 new PrivilegedAction() {
 public Object run() {
 Security.addProvider(new MyJDKSecurityProvider());
 return null;
 }
 }
);
 }

 // get my JDK cert path impls
 try {
 certPathBuilder = CertPathBuilder.getInstance(BUILDER_ALGORITHM);
 } catch (NoSuchAlgorithmException e) { throw new AssertionError("..."); }

 try {
 certPathValidator = CertPathValidator.getInstance(VALIDATOR_ALGORITHM);
 } catch (NoSuchAlgorithmException e) { throw new AssertionError("..."); }
 }

 public void shutdown () { }
 public String getDescription () { return description; }
 public CertPathBuilder getCertPathBuilder () { return certPathBuilder;}
 public CertPathValidator getCertPathValidator () { return certPathValidator;}

 // make my config data available to my JDK CertPathBuilderSpi and
 // CertPathValidatorSpi impls
 private String getCustomConfigData() { return customConfigData; }

 /**
 * This class contains JDK cert path builder implementation for this provider.
 */

 static public class MyJDKCertPathBuilder extends CertPathBuilderSpi
 {
 public CertPathBuilderResult
 engineBuild(CertPathParameters genericParams)
 throws CertPathBuilderException, InvalidAlgorithmParameterException
 {

 // narrow the CertPathParameters to the WLS ones so we can get the
 // data needed to build and validate the cert path
 if (!(genericParams instanceof CertPathBuilderParametersSpi)) {
 throw new InvalidAlgorithmParameterException("The CertPathParameters must be a

Chapter 14
How to Develop a Custom CertPath Provider

14-13

 weblogic.security.pk.CertPathBuilderParametersSpi instance.");
 }

 CertPathBuilderParametersSpi params = (CertPathBuilderParametersSpi)genericParams;

 // get my runtime implementation instance which holds the configuration
 // data needed to build and validate the cert path
 MyCertPathProviderRuntimeImpl runtime =
(MyCertPathProviderRuntimeImpl)params.getCertPathProvider();
 String myCustomConfigData = runtime.getCustomConfigData();

 // get the selector which indicates which cert path the caller wants built.
 // it can be an EndCertificateSelector, SubjectDNSelector,
 // IssuerDNSerialNumberSelector
 // or a SubjectKeyIdentifier.
 CertPathSelector genericSelector = params.getCertPathSelector();

 // decide which kinds of selectors this builder wants to support.

 if (genericSelector instanceof SubjectDNSelector) {

 // get the subject dn of the end certificate of the cert path the caller
 // wants built
 SubjectDNSelector selector = (SubjectDNSelector)genericSelector;
 String subjectDN = selector.getSubjectDN();

 // if your implementation requires trusted CAs, get them.
 // otherwise, ignore them. that is, it's a quality of service
 // issue whether or not you require trusted CAs.
 X509Certificate[] trustedCAs = params.getTrustedCAs();

 // if your implementation requires looks for extra data in
 // the context handler, get it. otherwise ignore it.
 ContextHandler context = params.getContext();
 if (context != null) {
 // ...
 }

 // use my custom configuration data (ie. myCustomConfigData),
 // the trusted CAs (if applicable to my implementation),
 // the context (if applicable to my implementation),
 // and the subject DN to build and validate the cert path
 CertPath certpath = ...
 // or X509Certificate[] chain = ...

 // if not found, throw an exception:
 if (...) {
 throw new CertPathBuilderException("Could not build a cert path for " + subjectDN);
 }

 // if not valid, throw an exception:
 if (...) {
 throw new CertPathBuilderException("Could not validate the cert path for " + subjectDN);
 }

 // if found and valid, return the cert path.
 // for convenience, use the WLSCertPathBuilderResult class
 return new WLSCertPathBuilderResult(certpath);
 // or return new WLSCertPathBuilderResult(chain);

 } else {

Chapter 14
How to Develop a Custom CertPath Provider

14-14

 // the caller passed in a selector that my implementation does not support
 throw new InvalidAlgorithmParameterException("MyCertPathProvider only
 supports weblogoic.security.pk.SubjectDNSelector");
 }
 }
}

 /**
 * This class contains JDK cert path validator implementation for this provider.
 */

 static public class MyJDKCertPathValidator extends CertPathValidatorSpi
 {
 public CertPathValidatorResult
 engineValidate(CertPath certPath, CertPathParameters genericParams)
 throws CertPathValidatorException, InvalidAlgorithmParameterException
 {

 // narrow the CertPathParameters to the WLS ones so we can get the
 // data needed to build and validate the cert path
 if (!(genericParams instanceof CertPathValidatorParametersSpi)) {
 throw new InvalidAlgorithmParameterException("The CertPathParameters must be a
 weblogic.security.pk.CertPathValidatorParametersSpi instance.");
 }

 CertPathValidatorParametersSpi params = (CertPathValidatorParametersSpi)genericParams;

 // get my runtime implementation instance which holds the configuration
 // data needed to build and validate the cert path
 MyCertPathProviderRuntimeImpl runtime =
(MyCertPathProviderRuntimeImpl)params.getCertPathProvider();
 String myCustomConfigData = runtime.getCustomConfigData();

 // if your implementation requires trusted CAs, get them.
 // otherwise, ignore them. that is, it's a quality of service
 // issue whether or not you require trusted CAs.
 X509Certificate[] trustedCAs = params.getTrustedCAs();

 // if your implementation requires looks for extra data in
 // the context handler, get it. otherwise ignore it.
 ContextHandler context = params.getContext();
 if (context != null) {
 // ...
 }

 // The CLV framework has already done some minimal validation
 // on the cert path before sending it to your provider:
 // 1) the cert path is not empty
 // 2) the cert path starts with the end cert
 // 3) each certificate in the cert path was issued and
 // signed by the next certificate in the chain
 // So, your validator can rely on these checks having
 // already been performed (vs your validator needing to
 // do these checks too).

 // Use my custom configuration data (ie. myCustomConfigData),
 // the trusted CAs (if applicable to my implementation),
 // and the context (if applicable to my implementation)
 // to validate the cert path

Chapter 14
How to Develop a Custom CertPath Provider

14-15

 // if not valid, throw an exception:
 if (...) {
 throw new CertPathValidatorException("Could not validate the cerpath " + certPath);
 }
 // if valid, return success

 // For convenience, use the WLSCertPathValidatorResult class

 return new WLSCertPathValidatorResult();
 }
}

 // This class implements the JDK security provider that registers this // provider's
 // cert path builder and cert path validator implementations with the JDK.
 private class MyJDKSecurityProvider extends Provider
 {
 private MyJDKSecurityProvider()
 {
 super(MY_JDK_SECURITY_PROVIDER_NAME, 1.0, "MyCertPathProvider JDK CertPath provider");
 put("CertPathBuilder." + BUILDER_ALGORITHM,
"com.acme.MyPathProviderRuntimeImpl$MyJDKCertPathBuilder");
 put("CertPathValidator." + VALIDATOR_ALGORITHM,
"com.acme.MyCertPathProviderRuntimeImpl$MyJDKCertPathValidator");
 }
 }
}

Configure the Custom CertPath Provider Using the Administration
Console

Configuring a custom CertPath provider means that you are adding the custom
CertPath provider to your security realm, where it can be accessed by applications
requiring CertPath services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers.

Note:

The steps for configuring a custom CertPath provider using the WebLogic
Server Administration Console are described under Configuring WebLogic
Security Providers in Administering Security for Oracle WebLogic Server.

Chapter 14
How to Develop a Custom CertPath Provider

14-16

A
MBean Definition File (MDF) Element Syntax

This appendix describes the elements and attributes that are available for use in a valid
MBean Definition File (MDF). An MBean Definition File (MDF) is an input file to the
WebLogic MBeanMaker utility, which uses the file to create an MBean type for managing a
custom security provider. An MDF must be formatted as a well-formed and valid XML file that
describes a single MBean type.
This appendix includes the following sections:

• The MBeanType (Root) Element

• The MBeanAttribute Subelement

• The MBeanConstructor Subelement

• The MBeanOperation Subelement

• Examples: Well-Formed and Valid MBean Definition Files (MDFs)

The MBeanType (Root) Element
All MDFs must contain exactly one root element called MBeanType, which has the following
syntax:

<MBeanType Name= string optional_attributes>
 subelements
</MBeanType>

The MBeanType element must include a Name attribute, which specifies the internal,
programmatic name of the MBean type. (To specify a name that is visible in a user interface,
use the DisplayName attribute.) Other attributes are optional.

The following is a simplified example of an MBeanType (root) element:

<MBeanType Name="MyMBean" Package="com.mycompany">
 <MBeanAttribute Name="MyAttr" Type="java.lang.String" Default="Hello World"/>
</MBeanType>

Attributes specified in the MBeanType (root) element apply to the entire set of MBeans
instantiated from that MBean type. To override attributes for specific MBean instances, you
need to specify attributes in the MBeanAttribute subelement. See The MBeanAttribute
Subelement.

Table A-1 describes the attributes available to the MBeanType (root) element. The JMX
Specification/Oracle Extension column indicates whether the attribute is an Oracle extension
to the JMX specification or a standard JMX attribute. Note that Oracle extensions might not
function on other Java EE Web servers.

A-1

Table A-1 MBeanType (Root) Element Attributes

Attribute JMX Specification
/Oracle Extension

Allowed
Values

Description

Abstract Oracle Extension true/false A true value specifies that the
MBean type cannot be instantiated
(like any abstract Java class), though
other MBean types can inherit its
attributes and operations. If you
specify true, you must create other
non-abstract MBean types for
carrying out management tasks. If
you do not specify a value for this
attribute, the assumed value is
false.

Deprecated Oracle Extension true/false Indicates that the MBean type is
deprecated. This information appears
in the generated Java source, and is
also placed in the ModelMBeanInfo
object for possible use by a
management application. If you do
not specify this attribute, the assumed
value is false.

Description JMX Specification String An arbitrary string associated with the
MBean type that appears in various
locations, such as the Javadoc for
generated classes. There is no default
or assumed value.

Note: To specify a description that is
visible in a user interface, use the
DisplayName attribute.

DisplayName JMX Specification String The name that a user interface
displays to identify instances of
MBean types. For an instance of type
X, the default DisplayName is
instance of type X. This value is
typically overridden when instances
are created.

Extends Oracle Extension Pathname A fully qualified MBean type name
that this MBean type extends.

Implements Oracle Extension Comma-

separated list

A comma-separated list of fully
qualified MBean type names that this
MBean type implements.

See also Extends.

Name JMX Specification String Mandatory attribute that specifies the
internal, programmatic name of the
MBean type.

Appendix A
The MBeanType (Root) Element

A-2

Table A-1 (Cont.) MBeanType (Root) Element Attributes

Attribute JMX Specification
/Oracle Extension

Allowed
Values

Description

Package Oracle Extension String Specifies the package name of the
MBean type and determines the
location of the class files that the
WebLogic MBeanMaker creates. If
you do not specify this attribute, the
MBean type is placed in the Java
default package.

Note: MBean type names can be the
same as long as the package name
varies.

PersistPolicy JMX Specification /OnUpdate Specifies how persistence will occur:

OnUpdate. The attribute is stored
every time the attribute is updated.

Note: When specified in the
MBeanType element, this value
overrides any setting within an
individual MBeanAttribute
subelement.

The MBeanAttribute Subelement
You must supply one instance of an MBeanAttribute subelement for each attribute in your
MBean type. The MBeanAttribute subelement must be formatted as follows:

<MBeanAttribute Name=string optional_attributes />

The MBeanAttribute subelement must include a Name attribute, which specifies the internal,
programmatic name of the Java attribute in the MBean type. (To specify a name that is visible
in a user interface, use the DisplayName attribute.) Other attributes are optional.

The following is a simplified example of an MBeanAttribute subelement within an MBeanType
element:

<MBeanType Name="MyMBean" Package="com.mycompany">
 <MBeanAttribute Name= "WhenToCache"
 Type="java.lang.String"
 LegalValues="'cache-on-reference','cache-at-initialization','cache-never'"
 Default= "cache-on-reference"
 />
</MBeanType>

Attributes specified in an MBeanAttribute subelement apply to a specific MBean instance. To
set attributes for the entire set of MBeans instantiated from an MBean type, you need to
specify attributes in the MBeanType (root) element. See The MBeanType (Root) Element.

Table A-2 describes the attributes available to the MBeanAttribute subelement. The JMX
Specification/Oracle Extension column indicates whether the attribute is an Oracle extension
to the JMX specification. Note that Oracle extensions might not function on other Java EE
Web servers.

Appendix A
The MBeanAttribute Subelement

A-3

Table A-2 MBeanAttribute Subelement Attributes

Attribute JMX Specification
/Oracle Extension

Allowed
Values

Description

Default JMX Specification String The value to be returned if the
MBeanAttribute subelement does
not provide a getter method or a
cached value. The string represents a
Java expression that must evaluate to
an object of a type that is compatible
with the provided data type for this
attribute.

If you do not specify this attribute, the
assumed value is null. If you use
this assumed value, and if you set the
LegalNull attribute to false, then an
exception is thrown by WebLogic
MBeanMaker and WebLogic Server.

Deprecated Oracle Extension true/false Indicates that the MBean attribute is
deprecated. This information appears
in the generated Java source, and is
also placed in the ModelMBeanInfo
object for possible use by a
management application. If you do
not specify this attribute, the assumed
value is false.

Description JMX Specification String An arbitrary string associated with the
MBean attribute that appears in
various locations, such as the
Javadoc for generated classes. There
is no default or assumed value.

Note: To specify a description that is
visible in a user interface, use the
DisplayName attribute.

Dynamic Oracle Extension true/false Changes made to dynamic MBeans
take effect without rebooting the
server. By default, all custom security
provider MBean attributes are non-
dynamic.

Note that in 8.1 and 7.0, all custom
security provider MBean attributes
were dynamic.

Encrypted Oracle Extension true/false A true value indicates that this
MBean attribute will be encrypted
when it is set. If you do not specify
this attribute, the assumed value is
false.

Appendix A
The MBeanAttribute Subelement

A-4

Table A-2 (Cont.) MBeanAttribute Subelement Attributes

Attribute JMX Specification
/Oracle Extension

Allowed
Values

Description

InterfaceType Oracle Extension String Classname of an interface to be used
instead of the MBean interface
generated by the WebLogic
MBeanMaker. InterfaceType can
be

• int
• long
• float
• double
• char
• byte
Do not specify if Type is
java.lang.String,
java.lang.String[], or
java.lang.Properties.

IsIs JMX Specification true/false Specifies whether a generated Java
interface uses the JMX
is<AttributeName> method to
access the boolean value of the
MBean attribute (as opposed to the
get<AttributeName> method). If
you do not specify this attribute, the
assumed value is false.

LegalNull Oracle Extension true/false Specifies whether null is an
allowable value for the current
MBeanAttribute subelement. If you
do not specify this attribute, the
assumed value is true.

LegalValues Oracle Extension Comma-
separated list

Specifies a fixed set of allowable
values for the current
MBeanAttribute subelement. If you
do not specify this attribute, the
MBean attribute allows any value of
the type that is specified by the Type
attribute.

Note: The items in the list must be
convertible to the data type that is
specified by the subelement's Type
attribute.

Max Oracle Extension Integer For numeric MBean attribute types
only, provides a numeric value that
represents the inclusive maximum
value for the attribute. If you do not
specify this attribute, the value can be
as large as the data type allows.

Appendix A
The MBeanAttribute Subelement

A-5

Table A-2 (Cont.) MBeanAttribute Subelement Attributes

Attribute JMX Specification
/Oracle Extension

Allowed
Values

Description

Min Oracle Extension Integer For numeric MBean attribute types
only, provides a numeric value which
represents the inclusive minimum
value for the attribute. If you do not
specify this attribute, the value can be
as small as the data type allows.

Name JMX Specification String Mandatory attribute that specifies the
internal, programmatic name of the
MBean attribute.

Type JMX Specification Java class
name

The fully qualified classname of the
data type of this attribute. This
corresponding class must be
available on the classpath. If you do
not specify this attribute, the assumed
value is java.lang.String. Type
can be

• java.lang.Integer
• java.lang.Integer[]
• java.lang.Long
• java.lang.Long[]
• java.lang.Float
• java.lang.Float[]
• java.lang.Double
• java.lang.Double[]
• java.lang.Char
• java.lang.Char[]
• java.lang.Byte
• java.lang.Byte[]
• java.lang.String
• java.lang.String[]
• java.util.Properties

Writeable JMX Specification true/false A true value allows the MBean API
to set an MBeanAttribute's value. If
you do not specify this attribute in
MBeanType or MBeanAttribute, the
assumed value is true.

When specified in the MBeanType
element, this value is considered the
default for individual
MBeanAttribute subelements.

The MBeanConstructor Subelement
MBeanConstructor subelements are not currently used by the WebLogic MBeanMaker,
but are supported for compliance with the Java Management eXtensions specification
and upward compatibility. Therefore, attribute details for the MBeanConstructor

Appendix A
The MBeanConstructor Subelement

A-6

subelement (and its associated MBeanConstructorArg subelement) are omitted from this
documentation.

The MBeanOperation Subelement
You must supply one instance of an MBeanOperation subelement for each operation (method)
that your MBean type supports. The MBeanOperation must be formatted as follows:

<MBeanOperation Name=string optional_attributes >
 <MBeanOperationArg Name=string optional_attributes />
</MBeanOperation>

The MBeanOperation subelement must include a Name attribute, which specifies the internal,
programmatic name of the operation. (To specify a name that is visible in a user interface,
use the DisplayName attribute.) Other attributes are optional.

Within the MBeanOperation element, you must supply one instance of an MBeanOperationArg
subelement for each argument that your operation (method) uses. The MBeanOperationArg
must be formatted as follows:

<MBeanOperationArg Name=string optional_attributes />
The Name attribute must specify the name of the operation. The only optional attribute for
MBeanOperationArg is Type, which provides the Java class name that specifies behavior for a
specific type of Java attribute. If you do not specify this attribute, the assumed value is
java.lang.String.

The following is a simplified example of an MBeanOperation and MBeanOperationArg
subelement within an MBeanType element:

<MBeanType Name="MyMBean" Package="com.mycompany">
 <MBeanOperation
 Name= "findParserSelectMBeanByKey"
 ReturnType="XMLParserSelectRegistryEntryMBean"
 Description="Given a public ID, system ID, or root element tag, returns the
 object name of the corresponding XMLParserSelectRegistryEntryMBean."
 >
 <MBeanOperationArg Name="publicID" Type="java.lang.String"/>
 <MBeanOperationArg Name="systemID" Type="java.lang.String"/>
 <MBeanOperationArg Name="rootTag" Type="java.lang.String"/>
 </MBeanOperation>
</MBeanType>

Table A-3 describes the attributes available to the MBeanOperation subelement. The JMX
Specification/Oracle Extension column indicates whether the attribute is an Oracle extension
to the JMX specification. Note that Oracle extensions might not function on other Java EE
Web servers.

Appendix A
The MBeanOperation Subelement

A-7

Table A-3 MBeanOperation Subelement Attributes

Attribute JMX Specification
/Oracle Extension

Allowed
Values

Description

Deprecated Oracle Extension true/false Indicates that the MBean operation
is deprecated. This information
appears in the generated Java
source, and is also placed in the
ModelMBeanInfo object for
possible use by a management
application. If you do not specify
this attribute, the assumed value is
false.

Description JMX Specification String An arbitrary string associated with
the MBean operation that appears
in various locations, such as the
Javadoc for generated classes.
There is no default or assumed
value.

Note: To specify a description that
is visible in a user interface, use the
DisplayName attribute.

Name JMX Specification String Mandatory attribute that specifies
the internal, programmatic name of
the MBean operation.

ReturnType JMX Specification String A string containing the fully
qualified classname of the Java
object returned by the operation
being described. ReturnType can
be void or the following:

• int
• int[]
• long
• long[]
• float
• float[]
• double
• double[]
• char
• char[]
• byte
• byte[]
• java.lang.String
• java.lang.String[]
• java.util.Properties

Table A-4 describes the attributes available to the MBeanOperationArg subelement.
The JMX Specification/Oracle Extension column indicates whether the attribute is an
Oracle extension to the JMX specification. Note that Oracle extensions might not
function on other Java EE Web servers.

Appendix A
The MBeanOperation Subelement

A-8

Table A-4 MBeanOperationArg Subelement Attributes

Attribute JMX Specification
/Oracle Extension

Allowed
Values

Description

Description JMX Specification String An arbitrary string associated with the
MBean operation argument that
appears in various locations, such as
the Javadoc for generated classes.
There is no default or assumed value.

Name JMX Specification String Mandatory attribute that specifies the
name of the argument.

Type JMX Specification String The type of the MBean operation
argument. If you do not specify this
attribute, the assumed value is
java.lang.String. Type can be

• int
• int[]
• long
• long[]
• float
• float[]
• double
• double[]
• char
• char[]
• byte
• byte[]
• java.lang.String
• java.lang.String[]
• java.util.Properties

MBean Operation Exceptions
Your MBean Definition Files (MDFs) must use only JDK exception types or
weblogic.management.utils exception types. The following is a code fragment from
Example A-1 that shows the use of an MBeanException within an MBeanOperation
subelement:

<MBeanOperation
Name = "registerPredicate"
ReturnType = "void"
Description = "Registers a new predicate with the specified class name."
>
<MBeanOperationArg
Name = "predicateClassName"
Type = "java.lang.String"
Description = "The name of the Java class that implements the predicate."
/>
<MBeanException>weblogic.management.utils.InvalidPredicateException</MBeanException>
<MBeanException>weblogic.management.utils.AlreadyExistsException</MBeanException>
</MBeanOperation>

Appendix A
MBean Operation Exceptions

A-9

Examples: Well-Formed and Valid MBean Definition Files
(MDFs)

Example A-1 and Example A-2 provide examples of MBean Definition Files (MDFs)
that use many of the attributes described in this Appendix. Example A-1 shows the
MDF used to generate an MBean type that manages predicates and reads data about
predicates and their arguments.Example A-2 shows the MDF used to generate the
MBean type for the WebLogic (default) Authorization provider.

Example A-1 PredicateEditor.xml

<?xml version="1.0" ?>
<!DOCTYPE MBeanType SYSTEM "commo.dtd">
<MBeanType
Name = "PredicateEditor"
Package = "weblogic.security.providers.authorization"
Implements = "weblogic.security.providers.authorization.PredicateReader"
PersistPolicy = "OnUpdate"
Abstract = "false"
Description = "This MBean manages predicates and reads data about predicates and
their arguments.<p>"
>
<MBeanOperation
Name = "registerPredicate"
ReturnType = "void"
Description = "Registers a new predicate with the specified class name."
>
<MBeanOperationArg
Name = "predicateClassName"
Type = "java.lang.String"
Description = "The name of the Java class that implements the predicate."
/>
 <MBeanException>weblogic.management.utils.InvalidPredicateException</
MBeanException>
<MBeanException>weblogic.management.utils.AlreadyExistsException</MBeanException>
</MBeanOperation>

<MBeanOperation
Name = "unregisterPredicate"
ReturnType = "void"
Description = "Unregisters the currently registered predicate." >

<MBeanOperationArg
Name = "predicateClassName"
Type = "java.lang.String"
Description = "The name of the Java class that implements predicate to be
unregistered."
/>
<MBeanException>weblogic.management.utils.NotFoundException</MBeanException>
</MBeanOperation>
</MBeanType>

Example A-2 DefaultAuthorizer.xml

<?xml version="1.0" ?>
<!DOCTYPE MBeanType SYSTEM "commo.dtd">
<MBeanType
Name = "DefaultAuthorizer"

Appendix A
Examples: Well-Formed and Valid MBean Definition Files (MDFs)

A-10

DisplayName = "DefaultAuthorizer"
Package = "weblogic.security.providers.authorization"
Extends ="weblogic.management.security.authorization.DeployableAuthorizer"
Implements = "weblogic.management.security.authorization.PolicyEditor,
weblogic.security.providers.authorization.PredicateEditor"
PersistPolicy = "OnUpdate"
Description = "This MBean represents configuration attributes
for the WebLogic Authorization provider. <p>"
>
<MBeanAttribute
Name = "ProviderClassName"
Type = "java.lang.String"
Writeable = "false"
Default""weblogic.security.providers.authorization.DefaultAuthorizationProviderImp
l""
Description = "The name of the Java class used to load the WebLogic
Authorization provider."
/>
<MBeanAttribute
Name = "Description"
Type = "java.lang.String"
Writeable = "false"
Default = ""Weblogic Default Authorization Provider"" Description =
"A short description of the WebLogic Authorization provider." />
<MBeanAttribute
Name = "Version"
Type = "java.lang.String"
Writeable = "false"
Default = ""1.0""
Description = "The version of the WebLogic Authorization provider."
/>
</MBeanType>

Appendix A
Examples: Well-Formed and Valid MBean Definition Files (MDFs)

A-11

B
Generate an MBean Type Using the
WebLogic MBeanMaker

This appendix explains how to create the MBean type for your custom security provider.
This appendix includes the following sections:

• Overview of Steps

• Create an MBean Definition File (MDF)

• Use the WebLogic MBeanMaker to Generate the MBean Type

• Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

• Install the MBean Type Into the WebLogic Server Environment

Overview of Steps
Before you start generating an MBean type for your custom security provider, you should first:

• General Architecture of a Security Provider

• Security Services Provider Interfaces (SSPIs)

• Security Service Provider Interface (SSPI) MBeans

• Security Data Migration

• Management Utilities Available to Developers of Security Providers

When you understand this information and have made your design decisions, create the
MBean type for your custom security provider by completing the following steps:

1. Create an MBean Definition File (MDF)

2. Use the WebLogic MBeanMaker to Generate the MBean Type

3. Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

4. Install the MBean Type Into the WebLogic Server Environment

Note:

Several sample security providers are available to illustrate how to perform these
steps.

All instructions provided in this section assume that you are working in a Windows
environment.

Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

B-1

1. Copy the MDF for the sample security provider to a text file.

For each of the sample security providers, note the following MDF file names:

Table B-1 MDF File Name

Sample Security Provider Type MDF File Name

Authentication provider SimpleSampleAuthenticator.xml
Identity Assertion provider SampleIdentityAsserter.xml
Authorization provider SimpleSampleAuthorizer.xml
Adjudication provider There is currently no sample adjudication

provider, but you can use the MDF file for the
sample authentication provider,
SimpleSampleAuthenticator.xml.

Role Mapping provider SimpleSampleRoleMapper.xml
Auditing provider SampleAuditor.xml
Credential Mapping provider There is currently no sample credential mapping

provider, but you can use the MDF file for the
sample authentication provider,
SimpleSampleAuthenticator.xml.

CertPath provider There is currently no sample CertPath provider,
but you can use the MDF file for the sample
authentication provider,
SimpleSampleAuthenticator.xml.

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in your
MDF so that they are appropriate for your custom security provider.

Note the following:

• If you are creating a custom identity assertion provider, consider the following
fragment to set the Base64DecodingRequired attribute to false:

<MBeanAttribute
 Name = "Base64DecodingRequired"
 Type = "boolean"
 Writeable = "false"
 Default = "false"
 Description = "See MyIdentityAsserter-doc.xml."
/>

• If you are creating a custom CertPath provider, you need to extend or
implement CertPathBuilderMBean or CertPathValidatorMBean.

3. Add any custom attributes and operations (that is, additional <MBeanAttribute>
and <MBeanOperation> elements) to your MDF.

4. Save the file.

Note:

A complete reference of MDF element syntax is available in MBean
Definition File (MDF) Element Syntax.

Appendix B
Create an MBean Definition File (MDF)

B-2

Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic MBeanMaker. The
WebLogic MBeanMaker is currently a command-line utility that takes as its input an MDF, and
generates a set of intermediate Java files, including the following:

• An MBean interface

• An MBean implementation

• An associated MBean information file

Together, these intermediate files form the MBean type for your custom security provider.

The instructions for generating an MBean type differ based on the design of your custom
security provider. Follow the instructions that are appropriate to your situation:

• No Custom Operations

• No Optional SSPI MBeans and No Custom Operations

• Optional SSPI MBeans or Custom Operations

No Custom Operations
This section applies to custom adjudication, role mapping, and auditing providers.

If the MDF for your custom security provider does not include any custom operations,
complete the following steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

In the preceding command:

• The -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code.

• xmlFile represents the XML MBean description file (MDF).

• filesdir represents the location where the WebLogic MBeanMaker places the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Appendix B
Use the WebLogic MBeanMaker to Generate the MBean Type

B-3

Note:

The WebLogic MBeanMaker processes one MDF at a time. Therefore,
you may have to repeat this process if you have multiple MDFs for a
given security provider type (for example, multiple adjudication
providers).

3. Proceed to Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF).

No Optional SSPI MBeans and No Custom Operations
This section applies to the following custom security provider types:

• Authentication providers

• Identity assertion providers

• Authorization providers

• Credential mapping providers

• CertPath providers

If the MDF for your custom security provider does not implement any optional SSPI
MBeans and does not include any custom operations, complete the following steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
 weblogic.management.commo.WebLogicMBeanMaker

In the preceding command:

• The -DMDF flag indicates that the WebLogic MBeanMaker should translate the
MDF into code.

• xmlFile represents the XML MBean description file (MDF).

• filesdir represents the location where the WebLogic MBeanMaker places the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note:

As of version 9.0 of WebLogic Server, you can also provide a directory
that contains multiple MDFs by using the -DMDFDIR <MDF directory
name> option. In prior versions of WebLogic Server, the WebLogic
MBeanMaker processed only one MDF at a time. Therefore, you had to
repeat this process if you had multiple MDFs for a given security provider
type (for example, multiple authentication providers).

3. Proceed to Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF).

Appendix B
Use the WebLogic MBeanMaker to Generate the MBean Type

B-4

Optional SSPI MBeans or Custom Operations
This section applies to all custom security provider types.

If the MDF for your custom security provider does implement some optional SSPI MBeans or
does include custom operations, consider the following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

In the preceding command:

• The -DMDF flag indicates that the WebLogic MBeanMaker should translate the MDF
into code.

• xmlFile represents the XML MBean description file (MDF).

• filesdir represents the location where the WebLogic MBeanMaker places the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note:

As of version 9.0 of WebLogic Server, you can also provide a directory that
contains multiple MDFs by using the -DMDFDIR <MDF directory name> option.
In prior versions of WebLogic Server, the WebLogic MBeanMaker processed
only one MDF at a time. Therefore, you had to repeat this process if you had
multiple MDFs for a given security provider type (for example, multiple
authentication providers).

3. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is named
MBeanNameImpl.java. For example, for the MDF named SampleAuthenticator, the
MBean implementation file to be edited is named SampleAuthenticatorImpl.java.

b. For each optional SSPI MBean that you implemented in your MDF, implement each
method. Be sure to also provide implementations for any methods that the optional
SSPI MBean inherits.

4. If you included any custom attributes or operations in your MDF, implement the methods
using the method stubs.

5. Save the file.

6. Proceed to Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF).

Are you updating an existing MBean type? If so, follow these steps:

Appendix B
Use the WebLogic MBeanMaker to Generate the MBean Type

B-5

1. Copy your existing MBean implementation file to a temporary directory so that
your current method implementations are not overwritten by the WebLogic
MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

In the preceding command:

• The -DMDF flag indicates that the WebLogic MBeanMaker should translate the
MDF into code.

• xmlFile represents the XML MBean description file (MDF).

• filesdir represents the location where the WebLogic MBeanMaker places the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note:

As of version 9.0 of WebLogic Server, you can also provide a directory
that contains multiple MDF's by using the -DMDFDIR <MDF directory
name> option. In prior versions of WebLogic Server, the WebLogic
MBeanMaker processed only one MDF at a time. Therefore, you had to
repeat this process if you had multiple MDFs for a given security provider
type (for example, multiple authentication providers).

4. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate and open the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is
named <MBeanName>Impl.java. For example, for the MDF named
SampleAuthenticator, the MBean implementation file to be edited is named
SampleAuthenticatorImpl.java.

b. Open your existing MBean implementation file (which you saved to a
temporary directory in step 1).

c. Synchronize the existing MBean implementation file with the MBean
implementation file generated by the WebLogic MBeanMaker.

Accomplishing this task may include, but is not limited to: copying the method
implementations from your existing MBean implementation file into the newly-
generated MBean implementation file (or, alternatively, adding the new
methods from the newly-generated MBean implementation file to your existing
MBean implementation file); and verifying that any changes to method
signatures are reflected in the version of the MBean implementation file that
you are going to use (for methods that exist in both MBean implementation
files).

Appendix B
Use the WebLogic MBeanMaker to Generate the MBean Type

B-6

d. If you modified the MDF to implement optional SSPI MBeans that were not in the
original MDF, implement each method. Be sure to also provide implementations for
any methods that the optional SSPI MBean inherits.

5. If you modified the MDF to include any custom operations that were not in the original
MDF, implement the methods using the method stubs.

6. Save the version of the MBean implementation file that is complete (that is, has all
methods implemented).

7. Copy this MBean implementation file into the directory where the WebLogic MBeanMaker
placed the intermediate files for the MBean type. You specify this as filesdir in step 3.
(You override the MBean implementation file generated by the WebLogic MBeanMaker
as a result of step 3.)

8. Proceed to Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF).

About the Generated MBean Interface File
The MBean interface file is the client-side API to the MBean that your run-time class or your
MBean implementation uses to obtain configuration data. It is typically used in the initialize
method as described in Understand the Purpose of the Provider SSPIs.

Because the WebLogic MBeanMaker generates MBean types from the MDF you created, the
generated MBean interface file has the name of the MDF along with the text MBean appended
to it. For example, the result of running the SimpleSampleAuthenticator MDF through the
WebLogic MBeanMaker yields the MBean interface file
SimpleSampleAuthenticatorMBean.java.

Use the WebLogic MBeanMaker to Create the MBean JAR File
(MJF)

Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementations for the appropriate methods within it, you need to package the MBean files
and the run-time classes for the custom security provider into an MBean JAR File (MJF). The
WebLogic MBeanMaker also automates this process.

To create an MJF for your custom security provider, complete the following steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

In the preceding command:

• The -DMJF flag indicates that the WebLogic MBeanMaker should build a JAR file
containing the new MBean types.

• jarfile represents the name for the MJF.

• filesdir represents the location where the WebLogic MBeanMaker looks for the files to
JAR into the MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and no errors
occur, an MJF is created with the specified name.

Appendix B
Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

B-7

Note:

When you create a JAR file for a custom security provider, a set of XML
binding classes and a schema are also generated. You can choose a
namespace to associate with that schema. Doing so avoids the
possibility that your custom classes conflict with those provided by
Oracle. The default for the namespace is vendor. You can change this
default by passing the -targetNameSpace argument to the
WebLogicMBeanMaker or the associated WLMBeanMaker ant task.

If you want to update an existing MJF, you must delete the MJF and
regenerate it. Do not rename the MJF. The WebLogic MBeanMaker also
has a -DIncludeSource option, which controls whether source files are
included into the resulting MJF. Source files include both the generated
source and the MDF itself. The default is false. This option is ignored
when -DMJF is not used.

The resulting MJF can be installed into your WebLogic Server environment, or
distributed to your customers for installation into their WebLogic Server environments.

Install the MBean Type Into the WebLogic Server
Environment

To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level
WebLogic Server installation directory. This deploys your custom security provider —
that is, it makes the custom security provider manageable from the WebLogic Server
Administration Console.

Appendix B
Install the MBean Type Into the WebLogic Server Environment

B-8

Note:

WL_HOME\server\lib\mbeantypes is the default directory for installing MBean types.
(Beginning with WebLogic Server 9.0, security providers can be loaded
from ...\domaindir\lib\mbeantypes as well.) However, if you want WebLogic
Server to look for MBean types in additional directories, use the -
Dweblogic.alternateTypesDirectory=dir command-line flag when starting your
server, where dir is a comma-separated list of directory names. When you use this
flag, WebLogic Server always loads MBean types from
WL_HOME\server\lib\mbeantypes first, then looks in the additional directories and
loads all valid archives present in those directories (regardless of their extension).

For example, if -Dweblogic.alternateTypesDirectory = dirX,dirY, WebLogic
Server first loads MBean types from WL_HOME\server\lib\mbeantypes, then any
valid archives present in dirX and dirY. If you instruct WebLogic Server to look in
additional directories for MBean types and are using the Java Security Manager,
you must also update the weblogic.policy file to grant appropriate permissions for
the MBean type (and thus, the custom security provider). See Using Java Security
to Protect WebLogic Resources in Developing Applications with the WebLogic
Security Service.

You can create instances of the MBean type by configuring your custom security provider
using the WebLogic Server Administration Console, and then use those MBean instances
from a GUI, from other Java code, or from APIs. For example, you can use the WebLogic
Server Administration Console to get and set attributes and invoke operations, or you can
develop other Java objects that instantiate MBeans and automatically respond to information
that the MBeans supply. We recommend that you back up these MBean instances.

Appendix B
Install the MBean Type Into the WebLogic Server Environment

B-9

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Introduction to Developing Security Providers for WebLogic Server
	Prerequisites for This Guide
	Overview of the Development Process
	Designing the Custom Security Provider
	Creating Runtime Classes for the Custom Security Provider by Implementing SSPIs
	Generating an MBean Type to Configure and Manage the Custom Security Provider
	Writing Console Extensions
	Configuring the Custom Security Provider
	Providing Management Mechanisms for Security Policies, Security Roles, and Credential Maps

	2 Design Considerations
	General Architecture of a Security Provider
	Security Services Provider Interfaces (SSPIs)
	Understand Two Important Restrictions
	Understand the Purpose of the Provider SSPIs
	Understand the Purpose of the Bulk Access Providers
	Determine Which Provider Interface You Will Implement
	The DeployableAuthorizationProviderV2 SSPI
	The DeployableRoleProviderV2 SSPI
	The DeployableCredentialProvider SSPI

	Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two Runtime Classes
	SSPI Quick Reference

	Security Service Provider Interface (SSPI) MBeans
	Understand Why You Need an MBean Type
	Determine Which SSPI MBeans to Extend and Implement
	Understand the Basic Elements of an MBean Definition File (MDF)
	Custom Providers and Classpaths
	Throwing Exceptions from MBean Operations
	Specifying Non-Clear Text Values for MBean Attributes
	Using Dynamic MBean Attributes

	Understand the SSPI MBean Hierarchy and How It Affects the Administration Console
	Understand What the WebLogic MBeanMaker Provides
	About the MBean Information File

	SSPI MBean Quick Reference

	Security Data Migration
	Migration Concepts
	Formats
	Constraints
	Migration Files

	Adding Migration Support to Your Custom Security Providers
	Administration Console Support for Security Data Migration

	Management Utilities Available to Developers of Security Providers
	Security Providers and WebLogic Resources
	The Architecture of WebLogic Resources
	Types of WebLogic Resources
	WebLogic Resource Identifiers
	The toString() Method
	Resource IDs and the getID() Method

	Creating Default Groups for WebLogic Resources
	Creating Default Security Roles for WebLogic Resources
	Creating Default Security Policies for WebLogic Resources
	Looking Up WebLogic Resources in a Security Provider's Runtime Class
	Single-Parent Resource Hierarchies
	Pattern Matching for URL Resources
	Example 1
	Example 2

	ContextHandlers and WebLogic Resources
	Providers and Interfaces that Support Context Handlers

	Initialization of the Security Provider Database
	Best Practice: Create a Simple Database If None Exists
	Best Practice: Configure an Existing Database
	Best Practice: Delegate Database Initialization
	Best Practice: Use the JDBC Connection Security Service API to Obtain Database Connections
	Implementing a JDBC Connection Security Service: Main Steps

	Differences In Attribute Validators
	Differences In Attribute Validators for Custom Validators

	3 Authentication Providers
	Authentication Concepts
	Users and Groups, Principals and Subjects
	Providing Initial Users and Groups

	LoginModules
	The LoginModule Interface
	LoginModules and Multipart Authentication

	Java Authentication and Authorization Service (JAAS)
	How JAAS Works With the WebLogic Security Framework
	Example: Standalone T3 Application

	The Authentication Process
	Do You Need to Develop a Custom Authentication Provider?
	How to Develop a Custom Authentication Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the AuthenticationProviderV2 SSPI
	Implement the JAAS LoginModule Interface
	Throwing Custom Exceptions from LoginModules
	Method 1: Make Custom Exceptions Available via the System and Compiler Classpath
	Method 2: Make Custom Exceptions Available via the Application Classpath

	Example: Creating the Runtime Classes for the Sample Authentication Provider

	Configure the Custom Authentication Provider Using the Administration Console
	Managing User Lockouts
	Rely on the Realm-Wide User Lockout Manager
	Implement Your Own User Lockout Manager

	Specifying the Order of Authentication Providers

	4 Identity Assertion Providers
	Identity Assertion Concepts
	Identity Assertion Providers and LoginModules
	Identity Assertion and Tokens
	How to Create New Token Types
	How to Make New Token Types Available for Identity Assertion Provider Configurations

	Passing Tokens for Perimeter Authentication
	Common Secure Interoperability Version 2 (CSIv2)

	The Identity Assertion Process
	Do You Need to Develop a Custom Identity Assertion Provider?
	How to Develop a Custom Identity Assertion Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the AuthenticationProviderV2 SSPI
	Implement the IdentityAsserterV2 SSPI
	Example: Creating the Runtime Class for the Sample Identity Assertion Provider

	Configure the Custom Identity Assertion Provider Using the Administration Console
	Challenge Identity Assertion
	Challenge/Response Limitations in the Java Servlet API 2.3 Environment
	Filters and The Role of the weblogic.security.services.Authentication Class
	How to Develop a Challenge Identity Asserter
	Implement the ChallengeIdentityAsserterV2 Interface
	Implement the ProviderChallengeContext Interface
	Invoke the weblogic.security.services Challenge Identity Methods
	Invoke the weblogic.security.services AppChallengeContext Methods
	Implementing Challenge Identity Assertion from a Filter

	5 Principal Validation Providers
	Principal Validation Concepts
	Principal Validation and Principal Types
	How Principal Validation Providers Differ From Other Types of Security Providers
	Security Exceptions Resulting from Invalid Principals

	The Principal Validation Process
	Do You Need to Develop a Custom Principal Validation Provider?
	How to Use the WebLogic Principal Validation Provider

	How to Develop a Custom Principal Validation Provider
	Implement the PrincipalValidator SSPI

	6 Authorization Providers
	Authorization Concepts
	Access Decisions
	Using the Java Authorization Contract for Containers

	The Authorization Process
	Do You Need to Develop a Custom Authorization Provider?
	Does Your Custom Authorization Provider Need to Support Application Versioning?

	Is Your Custom Authorization Provider Thread Safe?
	How to Develop a Custom Authorization Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the AuthorizationProvider SSPI
	Implement the DeployableAuthorizationProviderV2 SSPI
	The ApplicationInfo Interface

	Implement the AccessDecision SSPI
	Example: Creating the Runtime Class for the Sample Authorization Provider

	Policy Consumer SSPI
	Required SSPI Interfaces
	Implement the PolicyConsumerFactory SSPI Interface
	Implement the PolicyConsumer SSPI Interface
	Implement the PolicyCollectionHandler SSPI Interface
	Supporting an Updated Policy Collection
	The PolicyConsumerMBean

	PolicyStoreMBean
	Examining the Format of a XACML Policy File
	Using WLST to Add a Policy to the PolicyStoreMBean
	Using WLST to Read a PolicySet as a String

	Bulk Authorization Providers
	Configure the Custom Authorization Provider Using the Administration Console
	Managing Authorization Providers and Deployment Descriptors
	Enabling Security Policy Deployment

	Provide a Mechanism for Security Policy Management
	Option 1: Develop a Stand-Alone Tool for Security Policy Management
	Option 2: Integrate an Existing Security Policy Management Tool into the Administration Console

	7 Adjudication Providers
	The Adjudication Process
	Do You Need to Develop a Custom Adjudication Provider?
	How to Develop a Custom Adjudication Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the AdjudicationProviderV2 SSPI
	Implement the AdjudicatorV2 SSPI

	Bulk Adjudication Providers
	Configure the Custom Adjudication Provider Using the Administration Console

	8 Role Mapping Providers
	Role Mapping Concepts
	Security Roles
	Dynamic Security Role Computation

	The Role Mapping Process
	Is Your Custom Role Mapping Provider Thread Safe?
	Do You Need to Develop a Custom Role Mapping Provider?
	Does Your Custom Role Mapping Provider Need to Support Application Versioning?

	How to Develop a Custom Role Mapping Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the RoleProvider SSPI
	Implement the DeployableRoleProviderV2 SSPI
	The ApplicationInfo Interface

	Implement the RoleMapper SSPI
	Implement the SecurityRole Interface
	Example: Creating the Runtime Class for the Sample Role Mapping Provider

	Role Consumer SSPI
	Required SSPI Interfaces
	Implement the RoleConsumerFactory SSPI Interface
	Implement the RoleConsumer SSPI Interface
	Implement the RoleCollectionHandler SSPI Interface
	Supporting an Updated Role Collection
	The RoleConsumerMBean

	PolicyStoreMBean
	Examining the Format of a XACML Policy File
	Using WLST to Add a Policy to the PolicyStoreMBean
	Using WLST to Read a PolicySet as a String

	Bulk Role Mapping Providers
	Configure the Custom Role Mapping Provider Using the Administration Console
	Managing Role Mapping Providers and Deployment Descriptors
	Enabling Security Role Deployment

	Provide a Mechanism for Security Role Management
	Option 1: Develop a Stand-Alone Tool for Security Role Management
	Option 2: Integrate an Existing Security Role Management Tool into the Administration Console

	9 Auditing Providers
	Auditing Concepts
	Audit Channels
	Auditing Events From Custom Security Providers

	The Auditing Process
	Implementing the ContextHandler MBean
	ContextHandlerMBean Methods
	Example: Implementing the ContextHandlerMBean
	Extend weblogic.management.security.audit.ContextHandlerImpl

	Do You Need to Develop a Custom Auditing Provider?
	How to Develop a Custom Auditing Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the AuditProvider SSPI
	Implement the AuditChannel SSPI
	Example: Creating the Runtime Class for the Sample Auditing Provider

	Configure the Custom Auditing Provider Using the Administration Console
	Configuring Audit Severity

	Security Framework Audit Events
	Passing Additional Audit Information
	Audit Event Interfaces and Audit Events
	AuditApplicationVersionEvent
	AuditAtnEventV2
	AuditAtzEvent
	AuditCerPathBuilderEvent, AuditCertPathValidatorEvent
	AuditConfigurationEvent
	AuditCredentialMappingEvent
	AuditLifecycleEvent
	AuditMgmtEvent
	AuditPolicyEvent
	AuditRoleDeploymentEvent
	AuditRoleEvent

	10 Credential Mapping Providers
	Credential Mapping Concepts
	The Credential Mapping Process
	Do You Need to Develop a Custom Credential Mapping Provider?
	Does Your Custom Credential Mapping Provider Need to Support Application Versioning?

	How to Develop a Custom Credential Mapping Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the CredentialProviderV2 SSPI
	Implement the DeployableCredentialProvider SSPI
	Implement the CredentialMapperV2 SSPI

	Provide a Mechanism for Credential Map Management
	Option 1: Develop a Stand-Alone Tool for Credential Map Management
	Option 2: Integrate an Existing Credential Map Management Tool into the Administration Console

	11 Auditing Events From Custom Security Providers
	Security Services and the Auditor Service
	How to Audit From a Custom Security Provider
	Create an Audit Event
	Implement the AuditEvent SSPI
	Implement an Audit Event Convenience Interface
	The AuditAtnEventV2 Interface
	The AuditAtzEvent and AuditPolicyEvent Interfaces
	The AuditMgmtEvent Interface
	The AuditRoleEvent and AuditRoleDeploymentEvent Interfaces

	Audit Severity
	Audit Context
	Example: Implementation of the AuditRoleEvent Interface

	Obtain and Use the Auditor Service to Write Audit Events
	Example: Obtaining and Using the Auditor Service to Write Role Audit Events
	Auditing Management Operations from a Provider's MBean
	Example: Auditing Management Operations from a Provider's MBean

	Best Practice: Posting Audit Events from a Provider's MBean

	12 Servlet Authentication Filters
	Authentication Filter Concepts
	Why Filters are Needed
	Servlet Authentication Filter Design Considerations

	How Filters Are Invoked
	Do Not Call Servlet Authentication Filters From Authentication Providers

	Example of a Provider that Implements a Filter
	How to Develop a Custom Servlet Authentication Filter
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the Servlet Authentication Filter SSPI
	Implement the Filter Interface Methods
	Implementing Challenge Identity Assertion from a Filter
	Generate an MBean Type Using the WebLogic MBeanMaker
	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

	Configure the Authentication Provider Using Administration Console

	13 Versionable Application Providers
	Versionable Application Concepts
	The Versionable Application Process
	Do You Need to Develop a Custom Versionable Application Provider?
	How to Develop a Custom VersionableApplication Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the VersionableApplication SSPI
	Example: Creating the Runtime Class for the Sample VersionableApplication Provider

	Generate an MBean Type Using the WebLogic MBeanMaker
	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

	Configure the Custom Versionable Application Provider Using the Administration Console

	14 CertPath Providers
	Certificate Lookup and Validation Concepts
	The Certificate Lookup and Validation Process
	Do You Need to Implement Separate CertPath Validators and Builders?
	CertPath Provider SPI MBeans
	WebLogic CertPath Validator SSPI
	WebLogic CertPath Builder SSPI
	Relationship Between the WebLogic Server CertPath SSPI and the JDK SPI

	Do You Need to Develop a Custom CertPath Provider?
	How to Develop a Custom CertPath Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces
	Implement the CertPath Provider SSPI
	Implement the JDK Security Provider SPI
	Use the CertPathBuilderParametersSpi SSPI in Your CertPathBuilderSpi Implementation
	Use the CertPathValidatorParametersSpi SSPI in Your CertPathValidatorSpi Implementation
	Returning the Builder or Validator Results
	Example: Creating the Sample Cert Path Provider

	Configure the Custom CertPath Provider Using the Administration Console

	A MBean Definition File (MDF) Element Syntax
	The MBeanType (Root) Element
	The MBeanAttribute Subelement
	The MBeanConstructor Subelement
	The MBeanOperation Subelement
	MBean Operation Exceptions
	Examples: Well-Formed and Valid MBean Definition Files (MDFs)

	B Generate an MBean Type Using the WebLogic MBeanMaker
	Overview of Steps
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	No Custom Operations
	No Optional SSPI MBeans and No Custom Operations
	Optional SSPI MBeans or Custom Operations
	About the Generated MBean Interface File

	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

