
Oracle® Fusion Middleware
Understanding Security for Oracle WebLogic
Server

14c (14.1.1.0.0)
F18310-04
October 2023

Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server, 14c (14.1.1.0.0)

F18310-04

Copyright © 2007, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience viii

Documentation Accessibility ix

Diversity and Inclusion ix

Related Information ix

Conventions x

1 Introduction

2 Overview of the WebLogic Security Service

Features of the WebLogic Security Service 2-1

Balancing Ease of Use and Customizability 2-2

3 Security Fundamentals

Auditing 3-1

Authentication 3-1

Subjects and Principals 3-2

Java Authentication and Authorization Service (JAAS) 3-3

JAAS LoginModules 3-4

JAAS Control Flags 3-4

CallbackHandlers 3-4

Mutual Authentication 3-5

Identity Assertion Providers and LoginModules 3-5

Identity Assertion and Tokens 3-6

Challenge Identity Assertion 3-6

Servlet Authentication Filters 3-6

Types of Authentication 3-7

Username/Password Authentication 3-7

Certificate Authentication 3-8

Digest Authentication 3-8

iii

Perimeter Authentication 3-8

Security Assertion Markup Language (SAML) 3-10

SAML Framework Concepts 3-11

SAML Components Provided in WebLogic Server 3-13

SAML Security Providers 3-14

Single Sign-On Services 3-14

Web Services Support for SAML Token Profile 1.1 3-15

Single Sign-On (SSO) 3-15

Web Browsers and HTTP Clients via SAML 3-15

Desktop Clients 3-16

Authorization 3-17

WebLogic Resources 3-17

Security Policies 3-18

ContextHandlers 3-19

Access Decisions 3-19

Adjudication 3-19

Identity and Trust 3-19

Private Keys 3-20

Digital Certificates 3-20

Certificate Authorities 3-21

Certificate Lookup and Validation 3-21

Secure Sockets Layer (SSL) 3-22

SSL Features 3-23

Cipher Suites 3-23

SSL Tunneling 3-24

One-way/Two-way SSL Authentication 3-24

Configuring SSL 3-25

Host Name Verification 3-26

Trust Managers 3-26

FIPS Support 3-26

Firewalls 3-26

Network Channels 3-27

Connection Filters 3-28

Perimeter Authentication 3-28

Java EE and WebLogic Security 3-28

Java Security Packages 3-28

The Java Secure Socket Extension (JSSE) 3-29

Java Authentication and Authorization Services (JAAS) 3-29

The Java Security Manager 3-29

Java Cryptography Architecture and Java Cryptography Extensions (JCE) 3-30

Java Authorization Contract for Containers (JACC) 3-30

iv

Java Authentication Service Provider Interface for Containers (JASPIC) 3-30

Java EE Security API (JSR 375) 3-30

Common Secure Interoperability Version 2 (CSIv2) 3-31

JASPIC Security 3-31

Overview of Java Authentication Service Provider Interface for Containers (JASPIC) 3-32

JASPIC Programming Model 3-33

Java EE Security API 3-33

Authentication Mechanisms 3-33

Programmatic Security 3-34

4 Security Realms

Introduction to Security Realms 4-1

Users 4-1

Groups 4-2

Security Roles 4-2

Security Policies 4-3

Security Providers 4-3

Security Provider Databases 4-4

What Is a Security Provider Database? 4-4

Security Realms and Security Provider Databases 4-4

Embedded LDAP Server 4-5

RDBMS Security Store 4-6

Types of Security Providers 4-7

Authentication Providers 4-7

Identity Assertion Providers 4-8

Principal Validation Providers 4-9

Authorization Providers 4-10

Adjudication Providers 4-11

Role Mapping Providers 4-11

Auditing Providers 4-12

Credential Mapping Providers 4-13

Certificate Lookup and Validation Providers 4-13

Security Provider Summary 4-14

Security Providers and Security Realms 4-14

5 WebLogic Security Service Architecture

WebLogic Security Framework 5-1

The Authentication Process 5-3

The Identity Assertion Process 5-3

v

The Principal Validation Process 5-4

The Authorization Process 5-5

The Adjudication Process 5-5

The Role Mapping Process 5-6

The Auditing Process 5-6

The Credential Mapping Process 5-7

The Certificate Lookup and Validation Process 5-8

Single Sign-On with the WebLogic Security Framework 5-9

Single Sign-On with SAML 1.1 5-9

WebLogic Server Acting as SAML 1.1 Source Site 5-9

Weblogic Server Acting as SAML 1.1 Destination Site 5-10

Single Sign-On and SAML 2.0 5-12

Service Provider Initiated Single Sign-On 5-12

Identity Provider Initiated Single Sign-On 5-14

Desktop SSO Process 5-15

SAML Token Profile Support in WebLogic Web Services 5-16

Sender-Vouches Assertions 5-17

Holder-of-Key Assertion 5-17

The Security Service Provider Interfaces (SSPIs) 5-18

WebLogic Security Providers 5-18

WebLogic Authentication Provider 5-20

Alternative Authentication Providers 5-20

Password Validation Provider 5-21

WebLogic Identity Assertion Provider 5-21

SAML Identity Assertion Provider for SAML 1.1 5-22

SAML 2.0 Identity Assertion Provider 5-22

Negotiate Identity Assertion Provider 5-23

WebLogic Principal Validation Provider 5-23

WebLogic Authorization Provider 5-24

WebLogic Adjudication Provider 5-24

WebLogic Role Mapping Provider 5-25

WebLogic Auditing Provider 5-25

WebLogic Credential Mapping Provider 5-25

SAML Credential Mapping Provider for SAML 1.1 5-26

SAML 2.0 Credential Mapping Provider 5-26

PKI Credential Mapping Provider 5-27

WebLogic CertPath Provider 5-27

Certificate Registry 5-27

Versionable Application Provider 5-27

vi

Glossary

vii

Preface

This document introduces and explains the underlying concepts of the WebLogic
Security Service in Oracle WebLogic Server 14.1.1.0.0.

Audience
This document is intended for the following audiences:

• Application Architects - Architects who, in addition to setting security goals and
designing the overall security architecture for their organizations, evaluate
WebLogic Server security features and determine how to best implement them.
Application Architects have in-depth knowledge of Java programming, Java
security, and network security, as well as knowledge of security systems and
leading-edge, security technologies and tools.

• Security Developers - Developers who focus on defining the system architecture
and infrastructure for security products that integrate into WebLogic Server and on
developing custom security providers for use with WebLogic Server. They work
with Application Architects to ensure that the security architecture is implemented
according to design and that no security holes are introduced, and work with
Server Administrators to ensure that security is properly configured. Security
Developers have a solid understanding of security concepts, including
authentication, authorization, auditing (AAA), in-depth knowledge of Java
(including Java Management eXtensions (JMX), and working knowledge of
WebLogic Server and security provider functionality.

• Application Developers - Developers who are Java programmers that focus on
developing client applications, adding security to Web applications and Enterprise
JavaBeans (EJBs), and working with other engineering, quality assurance (QA),
and database teams to implement security features. Application Developers have
in-depth/working knowledge of Java (including Java Platform, Enterprise Edition
(Java EE) Version 8 components such as servlets/JSPs and JSEE) and Java
security.

• Server Administrators - Administrators work closely with Application Architects to
design a security scheme for the server and the applications running on the server,
to identify potential security risks, and to propose configurations that prevent
security problems. Related responsibilities may include maintaining critical
production systems, configuring and managing security realms, implementing
authentication and authorization schemes for server and application resources,
upgrading security features, and maintaining security provider databases. Server
Administrators have in-depth knowledge of the Java security architecture,
including Web services, Web application and EJB security, Public Key security,
SSL, and Security Assertion Markup Language (SAML).

• Application Administrators - Administrators who work with Server Administrators to
implement and maintain security configurations and authentication and
authorization schemes, and to set up and maintain access to deployed application

Preface

viii

resources in defined security realms. Application Administrators have general knowledge
of security concepts and the Java Security architecture. They understand Java, XML,
deployment descriptors, and can identify security events in server and audit logs.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. Seehttp://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Related Information
The following WebLogic Server documents contain information that is relevant to the
WebLogic Security Service:

• Administering Security for Oracle WebLogic Server - This document explains how to
configure security for WebLogic Server.

• Developing Security Providers for Oracle WebLogic Server - This document provides
security vendors and application developers with the information needed to develop
custom security providers that can be used with WebLogic Server.

• Securing a Production Environment for Oracle WebLogic Server - This document
highlights essential security measures for you to consider before you deploy WebLogic
Server into a production environment.

• Securing Resources Using Roles and Policies for Oracle WebLogic Server - This
document introduces the various types of WebLogic resources, and provides information
that allows you to secure these resources using WebLogic Server. The current version of
this document primarily focuses on securing URL (Web) and Enterprise JavaBean (EJB)
resources.

• Upgrading Oracle WebLogic Server - This document provides procedures and other
information you need to upgrade earlier versions of WebLogic Server to the latest
version. For specific information on upgrading WebLogic Server, see Upgrading Oracle
WebLogic Server.

• Java API Reference for Oracle WebLogic Server - This document provides reference
documentation for the WebLogic security packages that are provided with and supported
by this release of WebLogic Server.

Preface

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Security Samples and Tutorials
In addition to the documents listed in Related Information, Oracle provides a variety of
code samples for developers.

Security Examples in the WebLogic Server Distribution
WebLogic Server optionally installs security API code examples in the
EXAMPLES_HOME\examples\src\examples\security directory, where
EXAMPLES_HOME represents the directory in which the WebLogic Server code
examples are configured. By default, this directory is
ORACLE_HOME\wlserver\samples\server. For more information about the WebLogic
Server code examples, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

The following examples illustrate WebLogic security features:

• Java Authentication and Authorization Service

• SAML 2.0 For Web SSO Scenario

• Outbound and Two-way SSL

The WebLogic Server installation also includes an example demonstrating the use of
the built-in database identity store functionality provided by the Java EE Security API
(JSR 375). This example is located in the
EXAMPLES_HOME\examples\src\examples\javaee8\security directory.

Additional Examples Available for Download
Additional API examples are available for download at http://www.oracle.com/
technetwork/indexes/samplecode/index.html. These examples are distributed
as .zip files that you can unzip into an existing WebLogic Server samples directory
structure.

You build and run the downloadable examples in the same manner as you would an
installed WebLogic Server example. See the download pages of individual examples
for more information.

New and Changed Security Features In This Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with
an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

Preface

x

http://www.oracle.com/technetwork/indexes/samplecode/index.html
http://www.oracle.com/technetwork/indexes/samplecode/index.html

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xi

1
Introduction

While other security documents in the WebLogic Server documentation set guide users
through specific tasks - such as programming WebLogic security, developing a custom
security provider, or managing the WebLogic Security Service - this guide is intended for all
users of the WebLogic Security Service. Thus, this document is the starting point for
understanding the WebLogic Security Service.

Note:

The WebLogic Security Service involves many unique terms. Before reading this
manual, familiarize yourself with the terms in Glossary.

1-1

2
Overview of the WebLogic Security Service

WebLogic Server includes a security architecture that provides a unique and secure
foundation for applications that are available via the Web. By taking advantage of the security
features in WebLogic Server, enterprises benefit from a comprehensive, flexible security
infrastructure designed to address the security challenges of making applications available on
the Web. WebLogic security can be used standalone to secure WebLogic Server applications
or as part of an enterprise-wide, security management system that represents a best-in-
breed, security management solution.

• Features of the WebLogic Security Service

• Balancing Ease of Use and Customizability

Features of the WebLogic Security Service
The open, flexible security architecture of WebLogic Server introduces an advanced security
design for application servers. Companies now have a unique application server security
solution that can assure the confidentiality, integrity, and availability of the server and its data.

The key features of the WebLogic Security Service include:

• A comprehensive and standards-based design.

• End-to-end security for WebLogic Server-hosted applications, from the mainframe to the
Web browser.

• Legacy security schemes that integrate with WebLogic Server security, allowing
companies to leverage existing investments.

• Security tools that are integrated into a flexible, unified system to ease security
management across the enterprise.

• Easy customization of application security to business requirements through mapping of
company business rules to security policies.

• A consistent model for applying security policies to Java EE and application-defined
resources.

• Easy updates to security policies. This release includes usability enhancements to the
process of creating security policies as well as additional expressions that control access
to WebLogic resources.

• Easy adaptability for customized security solutions.

• A modularized architecture, so that security infrastructures can change over time to meet
the requirements of a particular company.

• Support for configuring multiple security providers, as part of a transition scheme or
upgrade path.

• A separation between security details and application infrastructure, making security
easier to deploy, manage, maintain, and modify as requirements change.

• Default WebLogic security providers that provide you with a working security scheme out
of the box. This release supports additional authentication stores such as databases, and

2-1

gives the option to configure an external RDBMS system as a datastore to be
used by select security providers.

• Customization of security schemes using custom security providers

• Unified management of security rules, security policies, and security providers
through the WebLogic Server Administration Console.

• Support for standard Java EE security technologies such as the Java
Authentication and Authorization Service (JAAS), Java Secure Sockets Extensions
(JSSE), Java Cryptography Extensions (JCE), Java Authentication Service
Provider Interface for Containers (JASPIC), Java Authorization Contract for
Containers (JACC), and the JSR 375 Java EE Security API.

• A foundation for Web services security including support for Security Assertion
Markup Language (SAML) 1.1 and 2.0.

• Capabilities which allow WebLogic Server to participate in single sign-on (SSO)
with web sites, web applications, and desktop clients.

• A framework for managing public keys which includes certificate lookup,
verification, validation, and revocation as well as a certificate registry.

Balancing Ease of Use and Customizability
The components and services of the WebLogic Security Service seek to strike a
balance between ease of use, manageability (for end users and administrators), and
customizability (for application developers and security developers).

The following paragraphs highlight some examples:

Easy to use: WebLogic Server provides a Domain Configuration Wizard to help with
the creation of new domains that contain an Administration Server, and optionally
Managed Servers, and clusters. You can also extend existing domains by adding
individual servers. The Domain Configuration Wizard also automatically generates a
config.xml file and start scripts for the servers in the new domain.

Manageable: Administrators who configure and deploy applications in the WebLogic
Server environment can use the WebLogic security providers included with the
product. These default providers support all required security functions, out of the box.
An administrator can store security data in the WebLogic Server-supplied, security
store (an embedded, special-purpose, LDAP directory server) or use an external
LDAP server, database, or user source. To simplify the configuration and management
of security in WebLogic Server, a robust, default security configuration is provided.

Customizable: For application developers, WebLogic Server supports the WebLogic
security API and Java EE security standards such as JAAS, JSS, JCE, JACC,
JASPIC, and the Java EE Security API (JSR 375). Using these APIs and standards,
you can create a fine-grained and customized security environment for applications
that connect to WebLogic Server.

For security developers, the WebLogic Server Security Service Provider Interfaces
(SSPIs) support the development of custom security providers for the WebLogic
Server environment.

Chapter 2
Balancing Ease of Use and Customizability

2-2

3
Security Fundamentals

Learn about the fundamental security concepts in WebLogic Server, such as auditing,
authentication, authorization, identity and trust, Security Assertion Markup Language (SAML)
and more.

• Auditing

• Authentication

• Security Assertion Markup Language (SAML)

• Single Sign-On (SSO)

• Authorization

• Identity and Trust

• Secure Sockets Layer (SSL)

• Firewalls

• Java EE and WebLogic Security

• JASPIC Security

• Java EE Security API

Auditing
Auditing is the process whereby information about operating requests and the outcome of
those requests are collected, stored, and distributed for the purposes of non-repudiation. In
other words, auditing provides an electronic trail of computer activity. In the WebLogic Server
security architecture, an Auditing provider is used to provide auditing services.

If configured, the WebLogic Security Framework will call through to an Auditing provider
before and after security operations (such as authentication or authorization) have been
performed, when changes to the domain configuration are made, or when management
operations on any resources in the domain are invoked. The decision to audit a particular
event is made by the Auditing provider itself and can be based on specific audit criteria
and/or severity levels. The records containing the audit information may be written to output
repositories such as an LDAP server, database, and a simple file.

Authentication
Authentication is the process of deriving the identity of the users or system processes.
WebLogic Server provides authentication services through Authentication providers. Learn
about the authentication concepts and functionality.

Authentication is the mechanism by which callers prove that they are acting on behalf of
specific users or systems. Authentication answers the question, "Who are you?" using
credentials such as username/password combinations.

3-1

In WebLogic Server, Authentication providers are used to prove the identity of users or
system processes. Authentication providers also remember, transport, and make
identity information available to various components of a system (via subjects) when
needed. During the authentication process, a Principal Validation provider provides
additional security protections for the principals (users and groups) contained within
the subject by signing and verifying the authenticity of those principals.

The following sections describe authentication concepts and functionality.

• Subjects and Principals

• Java Authentication and Authorization Service (JAAS)

• CallbackHandlers

• Mutual Authentication

• Servlet Authentication Filters

• Identity Assertion Providers and LoginModules

• Identity Assertion and Tokens

• Types of Authentication

Note:

• For information on using the Java Authentication Service Provider
Interface for Containers (JASPIC) for authentication, see JASPIC
Security.

• For information on using the Java EE Security API (JSR 375) for
authentication, see Java EE Security API.

Subjects and Principals
A principal is an identity assigned to a user or group as a result of authentication. Both
users and groups can be used as principals by application servers such as WebLogic
Server. The Java Authentication and Authorization Service (JAAS) requires that
subjects be used as containers for authentication information, including principals.

Figure 3-1 illustrates the relationships among users, groups, principals, and subjects.

Chapter 3
Authentication

3-2

Figure 3-1 Relationships Among Users, Groups, Principals, and Subjects

As part of a successful authentication, principals are signed and stored in a subject for future
use. A Principal Validation provider signs principals, and an Authentication provider's
LoginModule actually stores the principals in the subject. Later, when a caller attempts to
access a principal stored within a subject, a Principal Validation provider verifies that the
principal has not been altered since it was signed, and the principal is returned to the caller
(assuming all other security conditions are met).

Any principal that is going to represent a WebLogic Server user or group needs to implement
the WLSUser and WLSGroup interfaces, which are available in the weblogic.security.spi
package.

Java Authentication and Authorization Service (JAAS)
Whether the client is an application, applet, Enterprise JavaBean (EJB), or servlet that
requires authentication, WebLogic Server uses the Java Authentication and Authorization
Service (JAAS) classes to reliably and securely authenticate to the client.

JAAS implements a Java version of the Pluggable Authentication Module (PAM) framework,
which permits applications to remain independent from underlying authentication
technologies. Therefore, the PAM framework allows the use of new or updated authentication
technologies without requiring modifications to your application.

WebLogic Server uses JAAS for remote fat-client authentication, and internally for
authentication. Therefore, only developers of custom Authentication providers and

Chapter 3
Authentication

3-3

developers of remote fat client applications need to be involved with JAAS directly.
Users of thin clients or developers of within-container fat client applications (for
example, those calling an Enterprise JavaBean (EJB) from a servlet) do not require
the direct use or knowledge of JAAS.

JAAS LoginModules
A LoginModule is the work-horse of authentication: all LoginModules are responsible
for authenticating users within the security realm and for populating a subject with the
necessary principals (users/groups). LoginModules that are not used for perimeter
authentication also verify the proof material submitted (for example, a user's
password).

If there are multiple Authentication providers configured in a security realm, each of
the Authentication providers' LoginModules will store principals within the same
subject. Therefore, if a principal that represents a WebLogic Server user (that is, an
implementation of the WLSUser interface) named "Joe" is added to the subject by one
Authentication provider's LoginModule, any other Authentication provider in the
security realm should be referring to the same person when they encounter "Joe". In
other words, the other Authentication providers' LoginModules should not attempt to
add another principal to the subject that represents a WebLogic Server user (for
example, named "Joseph") to refer to the same person. However, it is acceptable for
another Authentication provider's LoginModule to add a principal of a type other than
WLSUser with the name "Joseph".

JAAS Control Flags
If a security realm has multiple Authentication providers configured, the Control Flag
attribute on the Authenticator provider determines the ordered execution of the
Authentication providers. The values for the Control Flag attribute are as follows:

• REQUIRED - This LoginModule must succeed. Even if it fails, authentication
proceeds down the list of LoginModules for the configured Authentication
providers. This setting is the default.

• REQUISITE - This LoginModule must succeed. If other Authentication providers
are configured and this LoginModule succeeds, authentication proceeds down the
list of LoginModules. Otherwise, return control to the application.

• SUFFICIENT - This LoginModule needs not succeed. If it does succeed, return
control to the application. If it fails and other Authentication providers are
configured, authentication proceeds down the LoginModule list.

• OPTIONAL - The user is allowed to pass or fail the authentication test of this
Authentication providers. However, if all Authentication providers configured in a
security realm have the JAAS Control Flag set to OPTIONAL, the user must pass
the authentication test of one of the configured providers.

CallbackHandlers
A CallbackHandler is a highly-flexible JAAS standard that allows a variable number of
arguments to be passed as complex objects to a method. There are three types of
CallbackHandlers: NameCallback, PasswordCallback, and TextInputCallback, all of
which are part of the javax.security.auth.callback package.

Chapter 3
Authentication

3-4

The NameCallback and PasswordCallback return the username and password, respectively.
TextInputCallback can be used to access the data users enter into any additional fields on a
login form (that is, fields other than those for obtaining the username and password). When
used, there should be one TextInputCallback per additional form field, and the prompt string
of each TextInputCallback must match the field name in the form. WebLogic Server only
uses the TextInputCallback for form-based Web application login.

An application implements a CallbackHandler and passes it to underlying security services
so that they may interact with the application to retrieve specific authentication data, such as
usernames and passwords, or to display certain information, such as error and warning
messages.

CallbackHandlers are implemented in an application-dependent fashion. For example,
implementations for an application with a graphical user interface (GUI) may pop up windows
to prompt for requested information or to display error messages. An implementation may
also choose to obtain requested information from an alternate source without asking the user.

Underlying security services make requests for different types of information by passing
individual Callbacks to the CallbackHandler. The CallbackHandler implementation decides
how to retrieve and display information depending on the Callbacks passed to it. For
example, if the underlying service needs a username and password to authenticate a user, it
uses a NameCallback and PasswordCallback. The CallbackHandler can then choose to
prompt for a username and password serially, or to prompt for both in a single window.

Mutual Authentication
With mutual authentication, both the client and the server are required to authenticate
themselves to each other. This can be done by means of certificates or other forms of proof
material.

WebLogic Server supports two-way SSL authentication, which is a form of mutual
authentication. However, by strict definition, mutual authentication takes place at higher
layers in the protocol stack then does SSL authentication. See One-way/Two-way SSL
Authentication.

Identity Assertion Providers and LoginModules
When used with a LoginModule, Identity Assertion providers support single sign-on. For
example, an Identity Assertion provider can process a SAML assertion so that users are not
asked to sign on more than once.

The LoginModule that an Identity Assertion provider uses can be:

• Part of a custom Authentication provider you develop.

• Part of the WebLogic Authentication provider that Oracle developed and packaged with
WebLogic Server.

• Part of a third-party security vendor's Authentication provider.

Unlike in a simple authentication situation, the LoginModules that Identity Assertion providers
use do not verify proof material such as usernames and passwords; they simply verify that
the user exists.

Chapter 3
Authentication

3-5

Identity Assertion and Tokens
Identity Assertion providers support user name mappers, which map a valid token to a
WebLogic Server user.

You develop Identity Assertion providers to support the specific types of tokens that
you will be using to assert the identities of users or system processes. You can
develop an Identity Assertion provider to support multiple token types, but the
WebLogic Server administrator must configure the Identity Assertion provider so that it
validates only one "active" token type. While you can have multiple Identity Assertion
providers in a security realm with the ability to validate the same token type, only one
Identity Assertion provider can actually perform this validation.

Note:

To use the WebLogic Identity Assertion provider for X.501 and X.509
certificates, you have the option of using the default user name mapper that
is supplied with the WebLogic Server product
(weblogic.security.providers.authentication.
DefaultUserNameMapperImpl) or providing your own implementation of the
weblogic.security.providers.authentication.UserNameMapper interface.
See Do You Need to Develop a Custom Identity Assertion Provider? in
Developing Security Providers for Oracle WebLogic Server.

Challenge Identity Assertion
Challenge identity assertion schemes provide for multiple challenges, responses
messages, and state.

A WebLogic Server security realm can include security providers that support
authentication protocols such as Microsoft's Windows NT Challenge/Response
(NTLM), Simple and Protected GSS-API Negotiation Mechanism (SPNEGO), and
other challenge/response authentication mechanisms. WebLogic Server includes a
SPNEGO security provider, named the Negotiate Identity Assertion provider. You can
develop and deploy security providers that implement NTLM or other challenge/
response authentication mechanisms. See Identity Assertion Providers in Developing
Security Providers for Oracle WebLogic Server.

Servlet Authentication Filters
A Servlet Authentication filter is an extension of the filter object that overcomes these
drawbacks, allowing filters to replace container-based authentication.

As defined by the Java Servlet API specification, filters are objects that can modify a
request or response. Filters are preprocessors of the request before it reaches the
servlet, and/or postprocessors of the response leaving the servlet. Filters provide the
ability to encapsulate recurring tasks in reusable units.

Filters can be used as a substitute for container-based authentication but there are
some drawbacks to this design:

Chapter 3
Authentication

3-6

• As specified by the Java Servlet API specification, filters are run after authentication and
authorization. If filters are used for authentication, they must also be used for
authorization thereby preventing container-managed authorization from being used. Most
use cases that require extensions to the authentication process in the Servlet container
do not require extensions to the authorization process. Having to implement the
authorization process in a filter is awkward, time consuming, and error-prone.

• Java EE filters are defined per Web application. Code for a filter must reside in the WAR
file for the Web application and the configuration must be defined in the web.xml file. An
authentication mechanism is typically determined by the system administrator after an
application is written (not by the programmer who created the WAR file). The mechanism
can be changed during the lifetime of an application, and is desired for all (or at least
most) applications in a site.

JAAS LoginModules (within a WebLogic Authentication provider) can be used for
customization of the login process. Servlet Authentication filters enable the LoginModule
model allowing the authentication provider to control the actual conversation with the client.
Customizing the location of the user database, the types of proof material required to execute
a login, or the population of the Subject with groups is implemented via a LoginModule. On
the other hand, redirecting to a remote site to execute the login, extracting login information
out of the query string, and negotiating a login mechanism with a browser is implemented via
a Servlet Authentication filter.

Types of Authentication
WebLogic Server users must be authenticated whenever they request access to a protected
WebLogic resource. Each user is required to provide a credential (for example, a password)
to WebLogic Server. WebLogic Server provides a set of Authentication providers to perform
different types of authentication. You can also create a customer security provider to handle
your specific authentication needs.

The following types of authentication are supported by the WebLogic Authentication provider
that is included in the WebLogic Server distribution:

• Username/Password Authentication

• Certificate Authentication

• Digest Authentication

• Perimeter Authentication

WebLogic Server can use the WebLogic Authentication provider that is provided as part of
the WebLogic Server product or custom security providers to perform the different types of
authentication. For information on the WebLogic Authentication provider and how to configure
authentication, see The Authentication Process and the following sections in Administering
Security for Oracle WebLogic Server:

• Configuring WebLogic Security Providers

• Configuring SSL

Username/Password Authentication
In username/password authentication, a user ID and password are requested from the user
and sent to WebLogic Server. WebLogic Server checks the information and if it is trustworthy,
grants access to the protected WebLogic resource.

Chapter 3
Authentication

3-7

Secure Sockets Layer (SSL), or Hyper-Text Transfer Protocol (HTTPS), can be used
to provide an additional level of security to username/password authentication.
Because SSL encrypts the data transferred between the client and WebLogic Server,
the user ID and password of the user do not flow in the clear. Therefore, WebLogic
Server can authenticate the user without compromising the confidentiality of the user's
ID and password.

Certificate Authentication
When an SSL or HTTPS client request is initiated, WebLogic Server responds by
presenting its digital certificate to the client. The client then verifies the digital
certificate and an SSL connection is established. The digital certificate is issued by an
entity (a trusted certificate authority), which validates the identity of WebLogic Server.

You can also use two-way SSL authentication, a form of mutual authentication. With
two-way SSL authentication, both the client and server must present a certificate
before the connection thread is enabled between the two. See One-way/Two-way SSL
Authentication.

Note:

Two-way SSL authentication is supported by the WebLogic Authentication
provider that is provided as part of the WebLogic Server product.

Digest Authentication
Using digest authentication enables the storage of password information that is
required to support Web Services Security Password Digest.

When using digest authentication, the client makes an un-authenticated request to the
server, and the server sends a response with a digest authentication challenge
indicating that it supports digest authentication. The client generates a nonce and
sends it to the server along with a timestamp, digest, and username. The digest is a
cyptographic hash of the password, nonce, and timestamp. The client requests the
resource again this time sending the username and a cyptographic hash of the
password combined with the nonce value. The server generates the hash itself, and if
the generated hash matches the hash in the request, the request is allowed.

The advantage of digest authentication is it is resistant to replay attacks. The
implementation maintains a cache of used nonces/timestamps for a specified period of
time. All requests with a timestamp older than the specified timestamp are rejected as
well as any requests that use the same timestamp/nonce pair as the most recent
timestamp/nonce pair still in the cache. WebLogic Server stores this cache in a
database.

Perimeter Authentication
Perimeter authentication is used to authenticate the identity of a remote user outside
of the application server domain. WebLogic Server supports SAML and SPNEGO
perimeter authentication schemes.

The following sections describe perimeter authentication:

Chapter 3
Authentication

3-8

• How is Perimeter Authentication Accomplished?

• How Does WebLogic Server Support Perimeter Authentication?

How is Perimeter Authentication Accomplished?
Perimeter authentication is typically accomplished by the remote user specifying an asserted
identity and some form of corresponding proof material, normally in the form of a passphrase
(such as a password, a credit card number, Personal Identification Number, or some other
form of personal identification information), which is used to perform the verification.

The authentication agent, the entity that actually vouches for the identity, can take many
forms, such as a Virtual Private Network (VPN), firewall, an enterprise authentication service,
or some other form of global identity service. Each of these forms of authentication agents
has a common characteristic: they all perform an authentication process that results in an
artifact or token that must be presented to determine information about the authenticated
user at a later time. Currently, the format of the token varies from vendor to vendor, but there
are efforts to define a standard token format using XML. In addition, there is a current
standard for Attribute Certificates, which is based on the X.509 standard for digital
certificates. But even after all of this, if the applications and the infrastructure on which they
are built are not designed to support this concept, enterprises are still forced to require that
their remote users re-authenticate to the applications within the network.

How Does WebLogic Server Support Perimeter Authentication?
WebLogic Server is designed to extend the single sign-on concept all the way to the
perimeter through support for identity assertion (see Figure 3-2). Provided as a critical piece
of the WebLogic Security Framework, the concept of identity assertion allows WebLogic
Server to use the authentication mechanism provided by perimeter authentication schemes
such as the Security Assertion Markup Language (SAML), the Simple and Protected GSS-
API Negotiation Mechanism (SPNEGO), or enhancements to protocols such as Common
Secure Interoperability (CSI) v2 to achieve this functionality.

Chapter 3
Authentication

3-9

Figure 3-2 Perimeter Authentication

Support for perimeter authentication requires the use of an Identity Assertion provider
that is designed to support one or more token formats. Multiple and different Identity
Assertion providers can be registered for use. The tokens are transmitted as part of
any normal business request, using the mechanism provided by each of the various
protocols supported by WebLogic Server. Once a request is received with WebLogic
Server, the entity that handles the processing of the protocol message recognizes the
existence of the token in the message. This information is used in a call to the
WebLogic Security Framework that results in the appropriate Identity Assertion
provider being called to handle the verification of the token. It is the responsibility of
the Identity Assertion provider implementation to perform whatever actions are
necessary to establish validity and trust in the token and to provide the identity of the
user with a reasonable degree of assurance, without the need for the user to re-
authenticate to the application.

Security Assertion Markup Language (SAML)
SAML provides single sign-on capability for web applications to ensure that user
identities can be shared and protected, and allows for exchanging identity information
between software entities. WebLogic Server supports SAML 1.1. and 2.0, SAML Web
SSO profile, and the Web Services SAML Token Profile.

The SAML standard defines a common XML framework for creating, requesting, and
exchanging security assertions between software entities on the Web. This framework
specifies how SAML assertions and protocols may be used to provide the following:

• Browser-based single sign-on (SSO) between online business partners

• The exchange of identity information in web services security

Chapter 3
Security Assertion Markup Language (SAML)

3-10

SAML was developed by the Organization for the Advancement of Structured Information
Standards (OASIS), and this release of WebLogic Server includes broad support for SAML
1.1 and 2.0, including support for the following:

• SAML Web SSO profile

The SAML Web SSO profile specifies how SAML assertions and protocols should be
used to provide browser-based single sign-on between an Identity Provider (a producer
of assertions) and a Service Provider (a consumer of assertions).

In the SAML 2.0 Web SSO profile, a web user either invokes a resource hosted by a
Service Provider site, or accesses an Identity Provider site in a way that results in an
invocation on a resource hosted by the Service Provider. In either case, the web user is
authenticated by the Identity Provider, which in turn generates an assertion on behalf of
that user that contains information about the user's identity. The Identity Provider sends
the assertion to the Service Provider, which consumes the assertion by extracting identity
information about the user that is mapped to a Subject in the local security realm.

• Web Services Security (WS-Security) SAML Token profile 1.1

The SAML Token profile is part of the core set of WS-Security standards, and specifies
how SAML assertions can be used for Web services security. WebLogic Server supports
SAML Token Profile 1.1, including support for SAML 2.0 and SAML 1.1 assertions. SAML
Token Profile 1.1 is backwards compatible with SAML Token Profile 1.0.

The following sections introduce how SAML is supported in WebLogic Server:

• SAML Framework Concepts

• SAML Components Provided in WebLogic Server

SAML Framework Concepts
The SAML framework is based on the following concepts.

Note:

The terms for these concepts differ somewhat between SAML 1.1 and 2.0,
particularly regarding how the entities to which they correspond are represented in
the WebLogic Server Administration Console, as described in this section.

• Identity Provider - A system, or administrative domain, that asserts that a user has been
authenticated and is given associated attributes. For example, there is a user John Doe,
he has an email address of john.doe@example.com and he authenticated to this domain
using a password mechanism. An Identity Provider is also known as a SAML authority,
asserting party, or source site, and is often abbreviated as IdP.

You can configure a WebLogic Server instance to act in the role of Identity Provider. An
Identity Provider is known by its Issuer URI (name). The SAML credential mapping
provider supplies this functionality in WebLogic Server. (Note that the specific credential
mapping provider you configure is specific to the version of SAML you are using.)

Chapter 3
Security Assertion Markup Language (SAML)

3-11

Note:

When you configure SAML 1.1 services in a WebLogic Server instance,
the WebLogic Server Administration Console uses the term source site
in place of Identity Provider.

• Service Provider - A system, or administrative domain, that determines whether it
trusts the assertions provided to it by the Identity Provider. SAML defines a
number of mechanisms that enable the Service Provider to trust the assertions
provided to it. A Service Provider is also known as a relying party, or destination
site, and is often abbreviated as SP.

Although a Service Provider may trust the assertions provided to it, local access
policy defines whether the subject may access local resources. Therefore, even if
a Service Provider trusts that a user is Dan Murphy, it does not mean Dan Murphy
can access all the resources in the domain.

You can configure a WebLogic Server instance to act in the role of Service
Provider. Trust relationships with Identity Provider partners must be established.
The SAML identity assertion provider supplies this functionality in WebLogic
Server. (Note that the specific identity assertion provider you configure is specific
to the version of SAML you are using.)

When you configure SAML 1.1 services in a WebLogic Server instance, the
WebLogic Server Administration Console uses the term destination site in place of
Service Provider.

• Assertion - An assertion is a package of information that supplies one or more
statements made by an Identity Provider. The following types of statements are
supported:

– Authentication statements, which say when and how a subject was
authenticated.

– Attribute statements, which provide specific information about the subject (for
example, what groups the Subject is a member of).

– Authorization statements identity what the Subject is entitled to do.

Note:

Note the following regarding SAML assertions in WebLogic Server:

* Attribute statements are supported only for the purpose of
including group information. The SAML Authentication provider
can retrieve group information from a SAML assertion (see
Configuring the SAML Authentication Provider in Administering
Security for Oracle WebLogic Server.)

* SAML authorization is not supported in this release of WebLogic
Server.

• Protocols - SAML defines a number of request/response protocols for obtaining
assertions. A SAML request can ask for a specific known assertion or make
authentication or attribute decision queries, with the SAML response providing

Chapter 3
Security Assertion Markup Language (SAML)

3-12

back the requested assertions. The XML format for protocol messages with their
allowable extensions is defined in an XML schema.

WebLogic Server supports the authentication request protocol, which defines an
authentication request (that is, a message containing an <AuthnRequest> statement) that
causes an authentication response (that is, a message containing a <Response>
statement) to be returned. The authentication response contains an assertion that
pertains to a Principal.

Typically the authentication request is sent by a Service Provider to an Identity Provider,
which returns the authentication response. The authentication request protocol is used to
support the Web Browser SSO Profile.

• Bindings - Bindings define the lower-level communication or messaging protocols (such
as HTTP or SOAP) over which the SAML protocols can be transported. A binding details
exactly how the SAML protocol maps onto transport and messaging protocols. For
example, the mapping of the SAML <AuthnRequest> message onto HTTP.

For SAML 1.1, WebLogic Server provides support for HTTP POST and HTTP Artifact as
profiles. For SAML 2.0, WebLogic Server provides support for HTTP POST and HTTP
Artifact bindings for the Web SSO profile.

For SAML 2.0, WebLogic Server adds the HTTP Redirect binding for the Web SSO
profile.

• Profiles - Descriptions of particular flows of assertions and protocol messages that
define how SAML can be used for a particular purpose. A profile is the combination of
protocols, bindings, and the structure of assertions that are used to support a particular
use case, such as the Web SSO profile and SAML Token profile supported in WebLogic
Server.

• Metadata files - SAML 2.0 defines a new metadata schema for exchanging configuration
information between partners. WebLogic Server supports this schema by providing the
ability to create local site configuration data that is published to a file and shared with
partners for use with the Web SSO Profile. Partners subsequently import this metadata
file to retrieve this configuration data, which is used to populate partner registries and
ensure that SAML messages can be transmitted and consumed more consistently and
reliably. Note that metadata files are not used with the WS-Security SAML Token Profile
1.1.

For a complete description of these concepts and how they apply to the SAML architecture,
see the following:

• For SAML V1.1, see Technical Overview of the OASIS Security Assertion Markup
Language (SAML) V1.1 (http://www.oasis-open.org/committees/download.php/6628/
sstc-saml-tech-overview-1.1-draft-05.pdf).

• For SAML V2.0, see Security Assertion Markup Language (SAML) 2.0 Technical
Overview (http://www.oasis-open.org/committees/download.php/11511/sstc-saml-
tech-overview-2.0-draft-03.pdf).

SAML Components Provided in WebLogic Server
Support for SAML 1.1 and 2.0 is provided in the following WebLogic Server components:

• SAML security providers

• Single Sign-On services

• Web services support for SAML Token Profile 1.1

Chapter 3
Security Assertion Markup Language (SAML)

3-13

http://www.oasis-open.org/committees/download.php/6628/sstc-saml-tech-overview-1.1-draft-05.pdf
http://www.oasis-open.org/committees/download.php/6628/sstc-saml-tech-overview-1.1-draft-05.pdf
http://www.oasis-open.org/committees/download.php/11511/sstc-saml-tech-overview-2.0-draft-03.pdf
http://www.oasis-open.org/committees/download.php/11511/sstc-saml-tech-overview-2.0-draft-03.pdf

SAML Security Providers
WebLogic Server provides the following security providers to support SAML 1.1 and
2.0:

Table 3-1 Security Providers Included in WebLogic Server to Support SAML

To
support . . .

The following provider . . . Does the following . . .

SAML 1.1 SAML Credential Mapping
provider Version 2

Generates SAML 1.1 assertions. This provider
must be configured for a WebLogic Server
instance that serves as an Identity Provider
(or, as identified in the WebLogic Server
Administration Console, the source site).

SAML 1.1 SAML Identity Assertion
provider Version 2

Consumes SAML 1.1 assertions. This provider
must be configured for a WebLogic Server
instance that serves as an Service Provider
(or, as identified in the WebLogic Server
Administration Console, the destination site).

SAML 2.0 SAML 2.0 Credential Mapping
provider

Generates SAML 2.0 assertions. This provider
must be configured for a WebLogic Server
instance that serves as an Identity Provider.

SAML 2.0 SAML 2.0 Identity Assertion
provider

Consumes SAML 2.0 assertions. This provider
must be configured for a WebLogic Server
instance that serves as an Service Provider.

SAML 1.1
and 2.0

SAML Authentication provider Enables "virtual user" functionality for both the
SAML 1.1 and SAML 2.0 Identity Assertion
providers. (See Configuring the SAML
Authentication Provider in Administering
Security for Oracle WebLogic Server.)

Single Sign-On Services
WebLogic Server can be configured to act as a SAML Identity Provider (IdP), Service
Provider, or both. When acting as an IdP, the SAML credential mapping provider must
be configured so that the IdP can produce assertions. When acting as a Service
Provider, the SAML identity assertion provider must be configured so that the Service
Provider can consume assertions.

SAML Single Sign-On Services (SSO) are configured on a per-server basis. To enable
SAML SSO in two or more servers in a domain, such as in a cluster, the
recommended approach is to do the following:

1. Create a domain in which the RDBMS security store is configured. See Managing
the RDBMS Security Store in Administering Security for Oracle WebLogic Server.

2. Ensure that SSO services are configured individually and identically on each
server instance.

Chapter 3
Security Assertion Markup Language (SAML)

3-14

Web Services Support for SAML Token Profile 1.1
WebLogic Server Web services supports SAML Token Profile 1.1. This feature includes
support for both SAML 2.0 and SAML 1.1 assertions and is backwards-compatible with SAML
Token Profile 1.0.

You configure SAML tokens for a web service through use of the appropriate WS-
SecurityPolicy assertions.

Note:

SAML Token Profile 1.1 is supported only through WS-SecurityPolicy. The earlier
"WLS 9.2 Security Policy" supports SAML Token Profile 1.0/SAML 1.1 only.

When using SAML Token Profile, the appropriate SAML security providers must be
configured (either the SAML 2.0 or SAML 1.1 credential mapping or identity assertion
providers) depending on the desired SAML version and assertion usage.

Single Sign-On (SSO)
Single sign-on (SSO) enables users to log in securely to an application only once and gain
access to many different application components, even if these components have their own
authentication schemes.

WebLogic Server provides single sign-on (SSO) with the following environments:

• Web Browsers and HTTP Clients via SAML

• Desktop Clients

Web Browsers and HTTP Clients via SAML
The Security Assertion Markup Language (SAML) enables cross-platform authentication
between Web applications or Web services running in a WebLogic Server domain and Web
browsers or other HTTP clients. WebLogic Server supports single sign-on (SSO) based on
SAML. When users are authenticated at one site that participates in a single sign-on (SSO)
configuration, they are automatically authenticated at other sites in the SSO configuration and
do not need to log in separately.

Note:

When you use the WebLogic Server Administration Console to configure SAML,
you will notice that the names used for some SAML entities differ between SAML
1.1 and 2.0. This section identifies the key terminology differences.

The following steps describe a typical scenario that shows how SAML SSO works.

1. A Web user attempts to access a target resource at a site that is configured to accept
authentications through SAML assertions.

Chapter 3
Single Sign-On (SSO)

3-15

When configuring SAML 1.1 in the WebLogic Server Administration Console, this
site is called the destination site. In SAML 2.0, this site is called the Service
Provider.

2. The Service Provider determines that the user's credentials need to be
authenticated by a central site that can generate a SAML assertion for that user.
The Service Provider redirects the authentication request to that central site.

In SAML 1.1, the site that generates the SAML assertion is called the source site.
In SAML 2.0, this site is the Identity Provider. In both SAML versions, this site is
sometimes called a SAML Authority.

3. The user logs in to the Identity Provider site, typically via a login web application
hosted by that site. The Identity Provider authenticates the user, and generates a
SAML assertion.

4. Information about the SAML assertion provided by the Identity Provider and
associated with the user and the desired target is conveyed from the Identity
Provider site to the Service Provider site by the protocol exchange.

Through a sequence of HTTP exchanges, the user browser is transferred to an
Assertion Consumer Service (ACS) at the Service Provider site. The WebLogic
Server SAML Identity Assertion provider makes up a portion of the ACS.

5. The Identity Assertion provider maps the identity contained in the assertion to a
Subject in the local security realm. The access policies on the requested target are
evaluated to determine whether the user is authorized for that target. If access is
authorized, the user authenticated by the Identity Provider site is accepted as an
authenticated user by the Service Provider site, thereby achieving Web-based
SSO.

For more background information about the OASIS SAML standard, see the following:

• For SAML V1.1, see Bindings and Profiles for the OASIS Security Assertion
Markup Language (SAML) V1.1 (http://www.oasis-open.org/committees/
download.php/3405/oasis-sstc-saml-bindings-1.1.pdf).

• For SAML V2.0, see:

– Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0
(http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-
os.pdf).

– Bindings for the OASIS Security Assertion Markup Language (SAML) V2.0
(http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-
os.pdf).

For information about how SSO with web browsers and HTTP clients is implemented
in WebLogic Server, see Single Sign-On with the WebLogic Security Framework.

Desktop Clients
SSO with Desktop Clients uses HTTP-based authentication with Microsoft clients that
have authenticated in the Windows Active Directory environment. The Windows Active
Directory environment uses Kerberos as its security protocol. Kerberos provides
network authentication of heterogeneous realms. This means a user logged into a
Windows domain can access a Web application running on an application server and
use their Windows Active Directory credentials to authenticate to the server. The
application server can run on any platform that supports Kerberos.

Chapter 3
Single Sign-On (SSO)

3-16

http://www.oasis-open.org/committees/download.php/3405/oasis-sstc-saml-bindings-1.1.pdf
http://www.oasis-open.org/committees/download.php/3405/oasis-sstc-saml-bindings-1.1.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf

When a Web server receives a request from a browser it can request that the browser use
the Kerberos protocol to authenticate itself. This protocol performs authentication via HTTP,
and allows the browser (in most cases, Internet Explorer) to pass a delegated credential to
allow a web application to log into subsequent Kerberos-based services on the user's behalf.

When an HTTP server wishes to login a Microsoft client, it returns a 401 Unauthorized
response to the HTTP request with the WWW-Authorization:Negotiate header. The browser
then contacts the Key Distribution Center (KDC)/Ticket Granting Service (TGS) to obtain a
service ticket. It chooses a special Service Principal Name for the ticket request. The
returned ticket is then wrapped in a SPNEGO token which is encoded and sent back to the
server using an HTTP request. The token is unwrapped and the ticket is authenticated. Once
authenticated, the page corresponding to the requested URL is returned.

For information about how SSO with Microsoft clients is implemented in WebLogic Server,
see Desktop SSO Process.

Authorization
Authorization is the process whereby the interactions between users and WebLogic
resources are controlled, based on user identity or other information. In WebLogic Server,
Authorization providers use concepts of security policies, ContextHandlers, Access
Decisions, and so on, to provide authorization. An Authorization provider is used to limit the
interactions between users and WebLogic resources to ensure integrity, confidentiality, and
availability.

The following sections describe authorization concepts and functionality:

• WebLogic Resources

• Security Policies

• ContextHandlers

• Access Decisions

• Adjudication

• Java Authorization Contract for Containers (JACC)

WebLogic Resources
A WebLogic resource is a structured object used to represent an underlying WebLogic Server
entity, which can be protected from unauthorized access using security roles and security
policies.

WebLogic resources are hierarchical. Therefore, the level at which you define these security
roles and security policies is up to you. For example, you can define security roles and
security policies on: entire enterprise applications (EARs); an Enterprise JavaBean (EJB)
JAR containing multiple EJBs; a particular Enterprise JavaBean (EJB) within that JAR; or a
single method within that EJB.

WebLogic resource implementations are available for:

• Administrative resources

• Application resources

• Common Object Model (COM) resources

• Enterprise Information System (EIS) resources

Chapter 3
Authorization

3-17

• Enterprise JavaBean (EJB) resources

• Java Database Connectivity (JDBC) resources

• Java Messaging Service (JMS) resources

• Java Naming and Directory Interface (JNDI) resources

• Server resources

• Web application resources

• Web service resources

• Work Context resources

Note:

Each of these WebLogic resource implementations is explained in detail
in the Java API Reference for Oracle WebLogic Server.

Security Policies
Security policies replace access control lists (ACLs) and answer the question "Who
has access to a WebLogic resource?" A security policy is created when you define an
association between a WebLogic resource and one or more users, groups, or security
roles.

You can optionally define date and time constraints for a security policy. A WebLogic
resource has no protection until you assign it a security policy.

You assign security policies to any of the defined WebLogic resources (for example,
an EJB resource or a JNDI resource) or to attributes or operations of a particular
instance of a WebLogic resource (an EJB method or a servlet within a Web
application). If you assign a security policy to a type of WebLogic resource, all new
instances of that resource inherit that security policy. Security policies assigned to
individual resources or attributes override security policies assigned to a type of
WebLogic resource. For a list of the defined WebLogic resources, see WebLogic
Resources.

Security policies are stored in an Authorization provider's database. By default, the
XACML Authorization provider is configured in a domain, and security policies are
stored in the embedded LDAP server.

To use a user or group to create a security policy, the user or group must be defined in
the security provider database for the Authentication provider that is configured in the
security realm. To use a security role to create a security policy, the security role must
be defined in the security provider database for the Role Mapping provider that is
configured in the security realm. By default, the WebLogic Authentication and XACML
Role Mapping providers are configured in the database in the embedded LDAP server.

By default, security policies are defined in WebLogic Server for the WebLogic
resources. These security policies are based on security roles and default global
groups. You also have the option of basing a security policy on a user. Oracle
recommends basing security policies on security roles rather than users or groups.
Basing security policies on security roles allows you to manage access based on a
security role that a user or group is granted, which is a more efficient method of

Chapter 3
Authorization

3-18

management. For a listing of the default security policies for the WebLogic resources, see
Default Root Level Security Policies in Securing Resources Using Roles and Policies for
Oracle WebLogic Server.

ContextHandlers
A ContextHandler is a high-performing WebLogic class that obtains additional context and
container-specific information from the resource container, and provides that information to
security providers making access or role mapping decisions.

The ContextHandler interface provides a way for an internal WebLogic resource container to
pass additional information to a WebLogic Security Framework call, so that a security
provider can obtain contextual information beyond what is provided by the arguments to a
particular method. A ContextHandler is essentially a name/value list and as such, it requires
that a security provider know what names to look for. (In other words, use of a
ContextHandler requires close cooperation between the WebLogic resource container and
the security provider.) Each name/value pair in a ContextHandler is known as a context
element, and is represented by a ContextElement object.

Currently, three types of WebLogic resource containers pass ContextHandlers to the
WebLogic Security Framework: the Servlet, EJB, and Web service containers. Thus, URL
(Web), EJB, and Web service resource types have different context elements whose values
Adjudication, Identity Assertion, Authorization Credential Mapping, and Role Mapping
providers and the LoginModules used by an Authentication provider can inspect. An
implementation of the AuditContext interface (used when a security provider is implemented
to post audit events) may also examine the values of context elements.

For more information about the values of particular context elements, see ContextHandlers
and WebLogic Resources in Developing Security Providers for Oracle WebLogic Server.

Access Decisions
Like LoginModules for Authentication providers, an Access Decision is the component of an
Authorization provider that actually answers the "is access allowed?" question.

Specifically, an Access Decision is asked whether a subject has permission to perform a
given operation on a WebLogic resource, with specific parameters in an application. Given
this information, the Access Decision responds with a result of PERMIT, DENY, or ABSTAIN.

Adjudication
Adjudication involves resolving any authorization conflicts that may occur when more than
one Authorization provider is configured in a security realm, by weighing the result of each
Authorization provider's Access Decision.

In WebLogic Server, an Adjudication provider is used to tally the results that multiple Access
Decisions return, and determines the final PERMIT or DENY decision. An Adjudication provider
may also specify what should be done when an answer of ABSTAIN is returned from a single
Authorization provider's Access Decision.

Identity and Trust
WebLogic Server uses private keys, digital certificates, and trusted certificates issues by
certification authorities to establish and verify server identity and trust.

Chapter 3
Identity and Trust

3-19

The public key is embedded into a digital certificate. A private key and digital certificate
provide identity. The trusted certificate authority (CA) certificate establishes trust for a
certificate. Certificates and certificate chains need to be validated before a trust
relationship is established.

This topic details the concepts associated with identity and trust. See the following
topics:

• Private Keys

• Digital Certificates

• Certificate Authorities

• Certificate Lookup and Validation

Private Keys
WebLogic Server uses public key encryption technology for authentication.

With public key encryption, a public key and a private key are generated for a server.
The keys are related such that data encrypted with the public key can only be
decrypted using the corresponding private key and vice versa. The private key is
carefully protected so that only the owner can decrypt messages that were encrypted
using the public key.

Digital Certificates
Digital certificates are electronic documents used to verify the unique identities of
principals and entities over networks such as the Internet.

A digital certificate securely binds the identity of a user or entity, as verified by a
trusted third party (known as a certificate authority), to a particular public key. The
combination of the public key and the private key provides a unique identity to the
owner of the digital certificate.

Digital certificates enable verification of the claim that a specific public key does in fact
belong to a specific user or entity. A recipient of a digital certificate can use the public
key in a digital certificate to verify that a digital signature was created with the
corresponding private key. If such verification is successful, this chain of reasoning
provides assurance that the corresponding private key is held by the subject named in
the digital certificate, and that the digital signature was created by that subject.

A digital certificate typically includes a variety of information, such as the following:

• The name of the subject (holder, owner) and other information required to confirm
the unique identity of the subject, such as the URL of the Web server using the
digital certificate, or an individual's e-mail address

• The subject's public key

• The name of the certificate authority that issued the digital certificate

• A serial number

• The validity period (or lifetime) of the digital certificate (defined by a start date and
an end date)

The most widely accepted format for digital certificates is defined by the ITU-T X.509
international standard. Digital certificates can be read or written by any application

Chapter 3
Identity and Trust

3-20

complying with the X.509 standard. The public key infrastructure (PKI) in WebLogic Server
recognizes digital certificates that comply with X.509 version 3, or X.509v3. Oracle
recommends obtaining digital certificates from a certificate authority such as Verisign or
Entrust.

See Configuring SSL in Administering Security for Oracle WebLogic Server.

Certificate Authorities
Digital certificates are issued by certificate authorities (CAs).

Any trusted, third-party organization or company that is willing to vouch for the identities of
those to whom it issues digital certificates and public keys can be a CA. When a CA creates a
digital certificate, the CA signs it with its private key, which ensures that any tampering will be
detected. The CA then returns the signed digital certificate to the requesting party.

The requesting party can verify the signature of the issuing CA by using the public key of that
CA. The CA makes its public key available by providing a certificate issued from a higher-
level certificate authority attesting to the validity of the public key of the lower-level certificate
authority. This scheme gives rise to hierarchies of certificate authorities. This hierarchy is
terminated by a top-level, self-signed certificate known as the root certificate, because no
other public key is needed to certify it.

A root certificate is issued by a trusted (root) CA. A CA certificate that is signed by a higher-
level CA is known as an intermediate certificate. The issuer of an intermediate certificate is
known as an intermediate CA.

If the recipient has a digital certificate containing the public key of an intermediate CA that is
signed by a superior CA who the recipient already trusts, the recipient of an encrypted
message can develop trust in the public key of an intermediate CA recursively. In this sense,
a digital certificate is a stepping stone in digital trust. Ultimately, it is necessary to trust only
the public keys of a small number of top-level CAs. Through a chain of certificates, or
certificate path, trust in a large number of users' digital signatures can be established.

The number of certificates in a certificate path is called the certificate path length. The
X.509 standard includes a constraint, pathLenConstraint, that can be specified in a root
certificate. When creating a root certificate, a CA can specify this constraint to set a limit on
the maximum number of intermediate certificates that may follow that root certificate in a
certificate path. In effect, this constraint limits the size of the certificate path length, which is a
property of trust that is verified during the SSL handshake.

In summary, digital signatures establish the identities of communicating entities, but a digital
signature can be trusted only to the extent that the public key for verifying it can be trusted.

See Configuring SSL in Administering Security for Oracle WebLogic Server.

Certificate Lookup and Validation
In WebLogic Server, certificate validation is performed by the Certificate Lookup and
Validation (CLV) framework which completes and validates X.509 certificate chains for
inbound 2-way SSL, outbound SSL, application code, and WebLogic Web services.

Applications that rely on public key technology for security must be confident that a user's
public key is genuine. A user may have a chain of certificates which recursively point to the
trusted CA that issued the initial certificate (referred to as the end certificate). A certificate
chain must be validated before it can be used to establish trust. In addition, a user may not
have a complete chain from a trusted CA to the target certificate. Completing a valid chain of

Chapter 3
Identity and Trust

3-21

certificates from the target certificate to the trusted CA is another requirement for
public key technology.

The CLV framework receives a certificate or certificate chain, completes the chain (if
necessary), and lookups and validates the certificate in the certificate chain. The
framework can use the end certificate, the Subject DN, the Issuer DN plus serial
number, the subject key identifier and/or X.509 thumbprint to find and validate a
certificate chain. In addition, the framework can perform additional validation on the
certificate chain such as revocation checking.

The CLV framework is based on the JDK architecture and plug-in framework for
locating and validating certificate chains. The CLV providers were built using the JDK
CertPath Builder and CertPath Validator API/SPI.

Secure Sockets Layer (SSL)
WebLogic Server fully supports SSL communication, which enables secure
communication between applications connected through the internet. WebLogic Server
uses the Java Secure Socket Extension (JSSE) as the SSL implementation for
securing incoming connections, and also for outgoing connections that use the
WebLogic SSL APIs.

Applications hosted on WebLogic Server can also invoke JSSE directly for outbound
SSL connections.

Note:

As of WebLogic Server version 12.1.1, JSSE is the only SSL implementation
that is supported. The Certicom-based SSL implementation is removed and
is no longer supported in WebLogic Server.

For complete information about JSSE, see the Java Secure Socket
Extension (JSSE) Reference Guide at the following location:

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/jgss-features.html

The following topics are discussed in this section:

• SSL Features

• Cipher Suites

• SSL Tunneling

• One-way/Two-way SSL Authentication

• Configuring SSL

• Host Name Verification

• Trust Managers

• FIPS Support

Chapter 3
Secure Sockets Layer (SSL)

3-22

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/jgss-features.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/jgss-features.html

SSL Features
WebLogic Server provides a pure-Java implementation of SSL. SSL provides a mechanism
that communicating applications can use to authenticate each other's identity and the
encryption of the data exchanged by applications.

When SSL is used, the target (the server) always authenticates itself to the initiator (the
client). Optionally, if the target requests it, the initiator can authenticate itself to the target.
Encryption scrambles the data that is transmitted. An SSL connection begins with a
handshake during which the applications exchange digital certificates, agree on the
encryption algorithms to be used, and generate the encryption keys to be used for the
remainder of the session.

SSL provides the following security features:

• Server authentication - WebLogic Server uses its digital certificate, issued by a trusted
certificate authority, to authenticate to clients. SSL minimally requires the server to
authenticate to the client using its digital certificate. If the client is not required to present
a digital certificate, the connection type is called one-way SSL authentication.

• Client Identity Verification - Optionally, clients might be required to present their digital
certificates to WebLogic Server. WebLogic Server then verifies that the digital certificate
was issued by a trusted certificate authority and establishes the SSL connection. An SSL
connection is not established if the digital certificate is not presented and verified. This
type of connection is called two-way SSL authentication, a form of mutual authentication.

• Confidentiality - All client requests and server responses are encrypted to maintain the
confidentiality of data exchanged over the network.

• Data Integrity - Each SSL message contains a message digest computed from the
original data. On the receiving end, a new digest is computed from the de-crypted data
and then compared with the digest that came with the message. If the data is altered, the
digests don't match and tampering is detected.

If you are using a Web browser to communicate with WebLogic Server, you can use the
Hyper-Text Transfer Protocol with SSL (HTTPS) to secure network communications.

Cipher Suites
A cipher suite is a combination of cryptographic parameters that define the security
algorithms and key sizes used for authentication, key agreement, encryption, and integrity
protection. Cipher suites protect the integrity of a communication.

For example, the cipher suite called RSA_WITH_RC4_128_MD5 uses RSA for key exchange,
RC4 with a 128-bit key for bulk encryption, and MD5 for message digest.

The set of cipher suites supported by the JDK default JSSE provider, SunJSSE, is available at
the following URLs:

• JDK 8: http://docs.oracle.com/javase/8/docs/technotes/guides/security/
SunProviders.html#SunJSSEProvider

• JDK 11: https://docs.oracle.com/en/java/javase/11/security/oracle-
providers.html#GUID-7093246A-31A3-4304-AC5F-5FB6400405E2

For information about configuring WebLogic Server to use the JSSE-based SSL
implementation, see Using the JSSE-Based SSL Implementation in Administering Security
for Oracle WebLogic Server.

Chapter 3
Secure Sockets Layer (SSL)

3-23

http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunJSSEProvider
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunJSSEProvider
https://docs.oracle.com/en/java/javase/11/security/oracle-providers.html#GUID-7093246A-31A3-4304-AC5F-5FB6400405E2
https://docs.oracle.com/en/java/javase/11/security/oracle-providers.html#GUID-7093246A-31A3-4304-AC5F-5FB6400405E2

SSL Tunneling
WebLogic Server tunnels the HTTP, T3, and IIOP protocols over SSL.

SSL can be used by Web browsers and Java clients as follows:

• A Web browser makes an SSL connection to a server over HTTPS. The browser
then sends HTTP requests and receives HTTP responses over this SSL
connection. For example:

https://myserver.com/mypage.html
WebLogic Server supports SSL versioning which means it can communicate with
any clients over this protocol including Web browsers.

• Java clients using HTTP/T3 protocols are tunnelled over SSL. For example:

t3s://myserver.com:7002/mypage.html
Java clients running in WebLogic Server can establish either T3S connections to
other WebLogic Server instances, or HTTPS connections to other servers that
support SSL, such as Web servers or secure proxy servers.

One-way/Two-way SSL Authentication
WebLogic Server supports one-way and two-way SSL authentication.

With one-way SSL authentication, the target (the server) is required to present a digital
certificate to the initiator (the client) to prove its identity. The client performs two checks
to validate the digital certificate:

1. The client verifies that the certificate is trusted (meaning, it was issued by the
client's trusted CA), is valid (not expired), and satisfies the other certificate
constraints.

2. The client checks that the certificate Subject's common name (CN) field value
matches the host name of the server to which the client is trying to connect

If both of the above checks return true, the SSL connection is established.

With two-way SSL authentication, both the client and the server must present digital
certificates before the SSL connection is enabled between the two. Thus, in this case,
WebLogic Server not only authenticates itself to the client (which is the minimum
requirement for certificate authentication), but it also requires authentication from the
requesting client. Two-way SSL authentication is useful when you must restrict access
to trusted clients only.

Figure 3-3 illustrates WebLogic Server SSL connections and shows which connections
support one-way SSL, two-way SSL, or both. The Web browser client, Web Server,
Fat client, Web services client, and SSL server connections can be configured for
either one-way or two-way SSL. WebLogic Server determines whether an SSL
connection is configured for one-way or two-way. Use the WebLogic Server
Administration Console to configure SSL.

Chapter 3
Secure Sockets Layer (SSL)

3-24

Figure 3-3 How WebLogic Server Supports SSL Connections

Configuring SSL
By default, WebLogic Server is configured for one-way SSL authentication, however, the SSL
port is disabled.

Using the WebLogic Server Administration Console, you can configure WebLogic Server for
two-way SSL authentication.

• To use one-way SSL from a client to a server: enable the SSL port on the server,
configure identity for the server and trust for the client.

• To use two-way SSL between a client and a server: enable two-way SSL on the server,
configure trust for the server, and identity for the server.

In either case, the trusted CA certificates need to include the trusted CA certificate that
issued the peer's identity certificate. This certificate does not necessarily have to be the
root CA certificate.

To acquire a digital certificate for your server, you generate a public key, private key, and a
Certificate Signature Request (CSR), which contains your public key. You send the CSR
request to a certificate authority and follow their procedures for obtaining a signed digital
certificate.

Once you have your private keys, digital certificates, and any additional trusted CA
certificates that you may need, you need to store them so that WebLogic Server can use
them to verify identity. Store private keys and certificates in keystores.

To use SSL when connecting to a WebLogic server application with your browser, you simply
specify HTTPS and the secure port (port number 7002) in the URL. For example: https://

Chapter 3
Secure Sockets Layer (SSL)

3-25

localhost:7002/examplesWebApp/SnoopServlet.jsp, where localhost is the name
of the system hosting the Web application.

For additional guidelines for configuring SSL in a production environment, see
Configure SSL/TLS in Securing a Production Environment for Oracle WebLogic
Server.

Host Name Verification
Host Name verification is the process of verifying that the name of the host to which an
SSL connection is made is the intended or authorized party. Host name verification
prevents man-in-the-middle attacks when a Web client (a Web browser, a WebLogic
client, or a WebLogic Server acting as a client) requests an SSL connection to another
application server.

By default, the SSL client, as a function of the SSL handshake, compares the common
name in the SubjectDN of the SSL server's digital certificate with the host name of the
SSL server to which it is trying to connect. If these names do not match, the SSL
connection is dropped.

Trust Managers
The Trust Manager provides a way to override the default SSL trust validation rules. It
allows the server to decide whether or not it trusts the client that is contacting it. Using
a Trust Manager you can perform custom checks before continuing an SSL
connection.

For example, you can use the Trust Manager to specify that only users from specific
localities, such as towns, states, or countries, or users with other special attributes,
can gain access via the SSL connection.

WebLogic Server provides interfaces that allows custom Trust Manager
implementations to be called during the SSL handshake. Custom implementations can
override the handshake error detected by the SSL implementation validation check,
raise an error based on their own certification rules, and control whether outbound
SSL uses certificate lookup and validation. See Using a Trust Manager and Using the
CertPath Trust Manager in Developing Applications with the WebLogic Security
Service.

FIPS Support
The Federal Information Processing Standards (FIPS) 140-2 is a standard that
describes U.S. Federal government requirements for sensitive but unclassified use.
WebLogic Server supports the ability to use a FIPS-compliant (FIPS 140-2) crypto
module.

See Enabling FIPS Mode in Administering Security for Oracle WebLogic Server.

Firewalls
A firewall controls network traffic by acting as a barrier between a trusted and an
untrusted network. Along with firewalls, you can use WebLogic Server network
channels, connection filters and perimeter authentication to restrict access to
resources based on user and network information.

Chapter 3
Firewalls

3-26

Firewalls can be a combination of software and hardware, including routers and dedicated
gateway machines. They employ filters that allow or disallow traffic to pass based on the
protocol, the service requested, routing information, and the origin and destination hosts or
networks. They may also allow access for authenticated users.

Figure 3-4 illustrates a typical setup with a firewall that filters traffic destined for a WebLogic
Server cluster.

Figure 3-4 Typical Firewall Setup

You can use the following features in WebLogic Server in conjunction with firewalls:

• Network Channels

• Connection Filters

• Perimeter Authentication

For details about how to secure the network in your environment using software and
hardware to create firewalls, components such as network channels to isolate incoming and
outgoing application traffic, and connection filters to deny access at the network level, see
Secure the Network in Securing a Production Environment for Oracle WebLogic Server.

Network Channels
Network channels define the attributes of a network connection to WebLogic Server, such as
the protocol the network supports, the listen address, listen ports for secure and non-secure
communication, and so on.

Using network channels allows administrators to have more control over exposing network
access to WebLogic Server. See Understanding Network Channels in Administering Server
Environments for Oracle WebLogic Server.

Chapter 3
Firewalls

3-27

Connection Filters
You can use WebLogic Server connection filters to set up firewalls that filter network
traffic based on protocols, IP addresses, and DNS node names. See Using Network
Connection Filters in Developing Applications with the WebLogic Security Service.

Perimeter Authentication
You can use Identity Assertion providers to set up perimeter authentication - a
special type of authentication using tokens. The WebLogic Server security architecture
supports Identity Assertion providers that perform perimeter-based authentication
(Web server, firewall, VPN) and handle multiple security token types/protocols (SOAP,
SAML, SPNEGO, IIOP-CSIv2).

Java EE and WebLogic Security
WebLogic Server utilizes the security services of the JDK for implementing and using
user authentication and authorization. WebLogic Server supports Java SE and Java
EE security packages, and also provides support for the EJB interoperability protocol.

The Java EE security services are based on standardized, modular components.
WebLogic Server implements these Java security service methods according to the
standard, and adds extensions that handle many details of application behavior
automatically, without requiring additional programming.

WebLogic Server's support for Java security means that application developers can
take advantage of the latest enhancements and developments in the area of security,
thus leveraging a company's investment in Java programming expertise. By following
the defined and documented Java standard, WebLogic Server's security support has a
common baseline for Java developers.

The following topics are discussed in this section:

• Java Security Packages

• Common Secure Interoperability Version 2 (CSIv2)

Java Security Packages
WebLogic Server is compliant with and supports the following Java SE and Java EE
8.0 security packages:

• The Java Secure Socket Extension (JSSE)

• Java Authentication and Authorization Services (JAAS)

• The Java Security Manager

• Java Cryptography Architecture and Java Cryptography Extensions (JCE)

• Java Authorization Contract for Containers (JACC)

• Java Authentication Service Provider Interface for Containers (JASPIC)

• Java EE Security API (JSR 375)

Chapter 3
Java EE and WebLogic Security

3-28

The Java Secure Socket Extension (JSSE)
JSSE is a set of packages that support and implement the SSL and TLS v1 protocol, making
those protocols and capabilities programmatically available. WebLogic Server provides
Secure Sockets Layer (SSL) support for encrypting data transmitted across WebLogic Server
clients, as well as other servers.

Java Authentication and Authorization Services (JAAS)
JAAS is a set of packages that provide a framework for user-based authentication and
access control. WebLogic Server uses only the authentication classes of JAAS.

Note:

There are security configuration settings in a WebLogic Server domain that can
impact the use of JAAS authorization if needed in your environment. See
Configuring a Domain to Use JAAS Authorization in Administering Security for
Oracle WebLogic Server for more information about when you might need to do
this.

JAAS is used as follows:

• For remote Java client authentication

• For authentication internally in instances of WebLogic Server in the Web and EJB
containers and in the WebLogic Authentication and Identity Assertion providers.

For more information on JAAS, see Java Authentication and Authorization Service (JAAS).

The Java Security Manager
The Java Security Manager is the security manager for the Java Virtual Machine (JVM). The
security manager works with the Java API to define security boundaries through the
java.lang.SecurityManager class. The SecurityManager class enables programmers to
establish a custom security policy for their Java applications.

The Java Security Manager can be used with WebLogic Server to provide additional
protection for WebLogic resources running in the JVM. Use of the Java Security Manager to
protect WebLogic resources in WebLogic Server is an optional security step.

You can use the Java Security Manager to perform the following security tasks to protect
WebLogic resources:

• Modify the weblogic.policy file for general use.

• Set application-type security policies on EJBs and Resource Adapters.

You use the Java security policy file to perform this task.

• Set application-specific security policies on specific EJBs and Resource Adapters.

You use the deployment descriptors (weblogic.xml, weblogic-ejb-jar.xml, and
rar.xml) to perform this task.

Chapter 3
Java EE and WebLogic Security

3-29

For more information on how to use the Java Security Manager to perform these
tasks, see Using Java Security to Protect WebLogic Resources in Developing
Applications with the WebLogic Security Service.

Java Cryptography Architecture and Java Cryptography Extensions (JCE)
These security APIs provide a framework for accessing and developing cryptographic
functionality for the Java platform and developing implementations for encryption, key
generation and key agreement, and Message Authentication Code (MAC) algorithms.

WebLogic Server fully supports these security APIs.

Java Authorization Contract for Containers (JACC)
JACC provides an alternate authorization mechanism for the EJB and Servlet
containers in a WebLogic Server domain. When JACC is configured, the WebLogic
Security Framework access decisions, adjudication, and role mapping functions are
not used for EJB and Servlet authorization decisions. The JACC classes are used for
role-to-principal mapping as well as for rendering access decisions. You cannot use
the JACC framework in conjunction with the WebLogic Security Framework. The JACC
classes used by WebLogic Server do not include an implementation of a Policy object
for rendering decisions but instead rely on the Java java.security.Policy object.

Java Authentication Service Provider Interface for Containers (JASPIC)
The Java Authentication Service Provider Interface for Containers (JASPIC)
specification (http://www.jcp.org/en/jsr/detail?id=196) defines a service provider
interface (SPI) by which authentication providers that implement message
authentication mechanisms can be integrated in server Web application message
processing containers or runtimes.

You do not have to modify your Web application code to use JASPIC. Instead, you use
the WebLogic Server Administration console or WLST to enable JASPIC for the Web
application post deployment.

For more information on how to use JASPIC with a Web application, including how to
custom validate principals created by the SAM, see Using JASPIC for a Web
Application in Developing Applications with the WebLogic Security Service.

Java EE Security API (JSR 375)
The JSR 375 Java EE Security API specification (https://www.jcp.org/en/jsr/
detail?id=375) defines portable, plug-in interfaces for authentication and identity
stores, and an injectable SecurityContext interface that provides an access point for
programmatic security. You can use the built-in implementations of the plug-in SPIs, or
write custom implementations.

In WebLogic Server, these authentication mechanisms are supported in the Web
application container, including web services, and the SecurityContext interfaces are
supported in the Servlet and EJB containers.

For details about how to use the Java EE Security API with WebLogic Server, see
Using the Java EE Security API in Developing Applications with the WebLogic Security
Service.

Chapter 3
Java EE and WebLogic Security

3-30

http://www.jcp.org/en/jsr/detail?id=196
https://jcp.org/aboutJava/communityprocess/pfd/jsr375/index.html
https://jcp.org/aboutJava/communityprocess/pfd/jsr375/index.html

Common Secure Interoperability Version 2 (CSIv2)
WebLogic Server provides support for the Enterprise JavaBean (EJB) interoperability protocol
that is based on Internet Inter-ORB (IIOP) (GIOP version 1.2) and the CORBA Common
Secure Interoperability version 2 (CSIv2) specification. CSIv2 support in WebLogic Server:

• Interoperates with the Java Platform, Enterprise Edition (J2EE) reference
implementation.

• Allows WebLogic Server IIOP clients to specify a username and password in the same
manner as T3 clients.

• Supports Generic Security Services Application Programming Interface (GSSAPI) initial
context tokens. For this release, only usernames and passwords and GSSUP (Generic
Security Services Username Password) tokens are supported.

Note:

The CSIv2 implementation in WebLogic Server passed Java EE Compatibility
Test Suite (CTS) conformance testing.

The external interface to the CSIv2 implementation is a JAAS LoginModule that retrieves the
username and password of the CORBA object. The JAAS LoginModule can be used in a
WebLogic Java client or in a WebLogic Server instance that acts as a client to another Java
EE application server. The JAAS LoginModule for the CSIv2 support is called
UsernamePasswordLoginModule, and is located in the weblogic.security.auth.login
package.

Note:

For information related to load balancing support for CSIv2 in a WebLogic Server
cluster, see Server Affinity and IIOP Client Authentication Using CSIv2 in
Administering Clusters for Oracle WebLogic Server

JASPIC Security
WebLogic Server extends support for using JASPIC to configure an Authentication
Configuration Provider for a Web application and using that instead of the default WLS
authentication mechanism for that Web application.

The Java Authentication Service Provider Interface for Containers (JASPIC) specification
(http://www.jcp.org/en/jsr/detail?id=196) defines a service provider interface (SPI) by
which authentication providers that implement message authentication mechanisms can be
integrated in server Web application message processing containers or runtimes.

WebLogic Server allows you to use JASPIC to delegate authentication for Web applications
to your configured Authentication Configuration Providers.

This section describes the following topics:

• Overview of Java Authentication Service Provider Interface for Containers (JASPIC)

Chapter 3
JASPIC Security

3-31

http://www.jcp.org/en/jsr/detail?id=196

• JASPIC Programming Model

Overview of Java Authentication Service Provider Interface for
Containers (JASPIC)

The JASPIC Authentication Configuration Provider assumes responsibility for
authenticating the user credentials for a Web application and returning a Subject. It
authenticates incoming Web application messages and returns the identity (the
expected Subject) established as a result of the message authentication to WebLogic
Server. This means that if you configure an Authentication Configuration Provider for a
Web application, it is used instead of the WLS authentication mechanism for that Web
application.

You can use either your own Server Authentication Module (SAM) that works with the
default WebLogic Server Authentication Configuration Provider, or you can create and
use both your own Authentication Configuration Provider and SAM.

As described in the Java Authentication Service Provider Interface for Containers
(JASPIC) specification (http://www.jcp.org/en/jsr/detail?id=196), the
Authentication Configuration Provider (called "authentication context configuration
provider" in the specification) is an implementation of the
javax.security.auth.message.config.AuthConfigProvider interface. The
Authentication Configuration Provider provides a configuration mechanism used to
define the registered SAM's and bindings to applications that require protection from
unauthenticated/authorized access.

Note:

WebLogic Server supports only JASPIC 1.1. WebLogic Server supports only
the Servlet Profile.

The SAM represents the implementation of a server-side authentication module that is
JASPIC compliant. As described in the Java Authentication Service Provider Interface
for Containers (JASPIC) specification (http://www.jcp.org/en/jsr/detail?id=196),
a SAM implements the javax.security.auth.message.module.ServerAuthModule
interface and is invoked by WebLogic Server at predetermined points in the message
processing model.

WebLogic Server allows you to:

• Enable or disable JASPIC across an entire domain. Only when JASPIC is enabled
for the domain can you then decide how each Web application supports JASPIC.

If you disable JASPIC for the domain, JASPIC is disabled for all Web applications,
regardless of their configuration.

• Configure domain-wide WebLogic Authentication Configuration Providers, for
which you specify the class name and properties of your own Server
Authentication Module (SAM).

• Configure domain-wide Custom Authentication Providers, for which you specify
the class name of this provider and its properties.

Chapter 3
JASPIC Security

3-32

http://www.jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/detail?id=196

• For each of your deployed Web applications in the domain, determine whether you want
JASPIC to be disabled (the default), or select one of your configured Authentication
Configuration Providers to authenticate the user credentials and return a valid Subject.

JASPIC Programming Model
The JASPIC programming model is described in the Java Authentication Service Provider
Interface for Containers (JASPIC) specification (http://www.jcp.org/en/jsr/detail?
id=196).

A sample SAM implementation is described in Adding Authentication Mechanisms to the
Servlet Container in the GlassFish Server Open Source Edition Application Development
Guide. Although written from the GlassFish Server perspective, the tips for writing a SAM,
and the sample SAM itself, are instructive.

Java EE Security API
Oracle WebLogic Server supports the Java EE Security API (JSR 375) which defines
portable authentication mechanisms (such as HttpAuthenticationMechanism and
IdentityStore), and an access point for programmatic security using the SecurityContext
interface. In WebLogic Server, these authentication mechanisms are supported in the web
container, and the SecurityContext interfaces are supported in the Servlet and EJB
containers.

The portable, plug-in authentication and identity store interfaces provide an advantage over
standard, container-provided implementations because they allow the application to control
the authentication process and the identity stores used for that authentication in a standard
and portable way. Bundling the security configuration in the application, instead of configuring
it externally, improves the management of the application’s lifecycle, especially in a world of
microservices that are distributed in containers.

The Java EE Security API requires that group principal names are mapped to roles of the
same name by default. In WebLogic Server, if the security-role-assignment element in the
weblogic.xml deployment descriptor does not declare a mapping between a security role
and one or more principals in the WebLogic Server security realm, then the role name is used
as the default principal.

There are no special logging requirements. Audit events triggered by implementations of the
Java EE Security API are logged by the WebLogic Auditing Provider, if configured.

The programming model for the Java EE Security API 1.0 (JSR 375) is defined in the
specification at https://www.jcp.org/en/jsr/detail?id=375?id=375.

For details about using JSR 375 in WebLogic Server, see Using the Java EE Security API in
Developing Applications with the WebLogic Security Service.

These topics provide additional information about the features of the Java EE Security API:

• Authentication Mechanisms

• Programmatic Security

Authentication Mechanisms
WebLogic Server supports the following JSR 375 plug-in SPIs for authentication:

Chapter 3
Java EE Security API

3-33

http://www.jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/detail?id=196
https://javaee.github.io/glassfish/doc/5.0/application-development-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/application-development-guide.pdf
https://www.jcp.org/en/jsr/detail?id=375

• HttpAuthenticationMechanism (HAM) - This interface is used to authenticate
callers to a web application. An application can supply its own custom
HttpAuthenticationMechanism, or use one of the built-in mechanisms provided by
the container. WebLogic Server supports the three standard built-in authentication
mechanisms that support BASIC, FORM, and Custom FORM authentication, as
well as the custom HAM. The HttpAuthenticationMechanism interface is
designed to capitalize on the strengths of existing Servlet and JASPIC
authentication mechanisms, and requires that JASPIC is enabled in WebLogic
Server (the default).

• IdentityStore - This interface defines methods for validating a caller’s credentials
(such as user name and password) and returning group membership information.
An application can provide its own custom IdentityStore, or use the built-in
LDAP or Database store included in WebLogic Server.

• RememberMeIdentityStore - This interface is a variation of the IdentityStore
interface which is intended to address cases where an authenticated user’s
identity should be remembered for an extended period of time so that the caller
can return to the application periodically without needing to present primary
authentication credentials each time.

Implementations of these SPI interfaces are CDI beans. As such, applications can
provide implementations that support application-specific authentication mechanisms,
or validate user credentials against application-specific identity stores simply by
including the interfaces in a bean archive that is part of the deployed application. For
information about CDI support in WebLogic Server, see Using Contexts and
Dependency Injection for the Java EE Platform in Developing Applications for Oracle
WebLogic Server.

The container is responsible for placing the HttpAuthenticationMechanism into
service. The IdentityStore interface is intended primarily for use by
HttpAuthenticationMechanism implementations, but could in theory be used by other
types of authentication mechanisms (such as a JASPIC ServerAuthModule).
HttpAuthenticationMechanism implementations are not required to use
IdentityStore — they can authenticate users in any manner they choose — but the
IdentityStore interface is a useful and convenient mechanism.

Programmatic Security
The Java EE Security API (JSR 375) specification defines the SecurityContext API
for use by application code to query and interact with the current security context.

The SecurityContext interface defines methods that allow an application to access
security information about a caller, authenticate a caller, and authorize a caller. These
methods include:

• getCallerPrincipal() - Retrieves the Principal representing the caller.

• getPrincipalsByType() - Retrieves all principals of the given type.

• isCallerInRole() - Checks if the authenticated caller is included in the specified
logical application "role".

• hasAccessToWebResource() - Determines if the caller has access to the specified
web resource for the specified HTTP methods, as determined by the security
constraints configured for the application.

Chapter 3
Java EE Security API

3-34

• authenticate() - Allows an application to signal to the container that it should start the
authentication process with the caller.

The getCallerPrincipal(), getPrincipalsByType(), and isCallerInRole() methods are
available in the WebLogic Servlet (including Web service) and EJB containers.

The hasAccessToWebResource() and the authenticate() APIs are supported only in the
WebLogic Servlet container (including Web service).

Chapter 3
Java EE Security API

3-35

4
Security Realms

A security realm is an instance of a security configuration for a domain. Each security realm
consists of a collection of users, groups, security roles, security policies, and a set of
configured security providers.

• Introduction to Security Realms

• Users

• Groups

• Security Roles

• Security Policies

• Security Providers

Introduction to Security Realms
A security realm comprises mechanisms for protecting WebLogic resources. Each security
realm consists of a set of configured security providers, users, groups, security roles, and
security policies (see Figure 4-1). A user must be defined in a security realm in order to
access any WebLogic resources belonging to that realm. When a user attempts to access a
particular WebLogic resource, WebLogic Server tries to authenticate and authorize the user
by checking the security role assigned to the user in the relevant security realm and the
security policy of the particular WebLogic resource.

Figure 4-1 WebLogic Server Security Realm

Users
A user must be defined in a security realm in order to access the WebLogic resources
belonging to that realm. A user can be a person, such as application end user, or a software
entity, such as a client application, or other instances of WebLogic Server.

4-1

Users are entities that can be authenticated in a security realm, such as myrealm (see
Figure 4-1).As a result of authentication, a user is assigned an identity, or principal.
Each user is given a unique identity within the security realm. Users may be placed
into groups that are associated with security roles, or be directly associated with
security roles.

When users want to access WebLogic Server, they present proof material (for
example, a password or a digital certificate) typically through a JAAS LoginModule to
the Authentication provider configured in the security realm. If WebLogic Server can
verify the identity of the user based on that username and credential, WebLogic Server
associates the principal assigned to the user with a thread that executes code on
behalf of the user. Before the thread begins executing code, however, WebLogic
Server checks the security policy of the WebLogic resource and the principal (that the
user has been assigned) to make sure that the user has the required permissions to
continue.

When you use the WebLogic Authentication provider and you define a user, you also
define a password for that user. WebLogic Server hashes all passwords.
Subsequently, when WebLogic Server receives a client request, the password
presented by the client is hashed and WebLogic Server compares it to the already
hashed password to see if it matches.

Note:

All user names and groups must be unique within a security realm.

Groups
Groups are logically ordered sets of users defined in a security realm. The members of
a group have something in common.

For example, a company may separate its sales staff into two groups, Sales
Representatives and Sales Managers. Companies may do this because they want
their sales personnel to have different levels of access to WebLogic resources,
depending on their job functions.

Managing groups is more efficient than managing large numbers of users individually.
For example, an administrator can specify permissions for 50 users at one time by
placing the users in a group, assigning the group to a security role, and then
associating the security role with a WebLogic resource via a security policy.

All user names and groups must be unique within a security realm.

Security Roles
Like a group, a security role allows you to restrict access to WebLogic resources for
several users at once.However, unlike groups, security roles:

• Are computed and granted to users or groups dynamically, based on conditions
such as user name, group membership, or the time of day.

Chapter 4
Groups

4-2

• Can be scoped to specific WebLogic resources within a single application in a WebLogic
Server domain (unlike groups, which are always scoped to an entire WebLogic Server
domain).

Granting a security role to a user or a group confers the defined access privileges to that user
or group, as long as the user or group is "in" the security role. Multiple users or groups can be
granted a single security role.

Note:

In WebLogic Server 6.x, security roles applied to Web applications and Enterprise
JavaBeans (EJBs) only. In subsequent releases, the use of security roles is
expanded to include all the defined WebLogic resources.

Security Policies
A security policy is an association between a WebLogic resource and one or more users,
groups, or security roles.

Security policies protect the WebLogic resource against unauthorized access. A WebLogic
resource has no protection until you create a security policy for it. A policy condition is a
condition under which a security policy is created. WebLogic Server provides a set of default
policy conditions. WebLogic Server includes policy conditions that access the HTTP Servlet
Request and Session attributes and EJB method parameters. Date and Time policy
conditions are included in the Policy Editor.

Note:

Security policies replace the access control lists (ACLs) that were used to protect
WebLogic resources in WebLogic Server 6.x.

Security Providers
Security providers provide security services to applications to protect WebLogic resources.
Choose from security providers that are provided as part of WebLogic Server or develop your
own custom security provider.

You can use the security providers that are provided as part of the WebLogic Server product,
purchase custom security providers from third-party security vendors, or develop your own
custom security providers. For information on how to develop custom security providers, see
Developing Security Providers for Oracle WebLogic Server.

The following topics are discussed in this section.

• Security Provider Databases

• Types of Security Providers

• Security Providers and Security Realms

Chapter 4
Security Policies

4-3

Security Provider Databases
The following sections explain what a security provider database is and describe how
security realms affect the use of security provider databases:

• What Is a Security Provider Database?

• Security Realms and Security Provider Databases

• Embedded LDAP Server

• RDBMS Security Store

What Is a Security Provider Database?
A security provider database contains the users, groups, security roles, security
policies, and credentials used by some types of security providers to provide security
services (see Figure 4-1). For example: an Authentication provider requires
information about users and groups; an Authorization provider requires information
about security policies; a Role Mapping provider requires information about security
roles, and a Credential Mapping provider requires information about credentials to be
used to remote applications. These security providers need this information to be
available in a database in order to function properly.

The security provider database can be the embedded LDAP server (as used by the
WebLogic security providers), a properties file (as used by the sample custom security
providers, available on the Web), or a production-quality, customer-supplied database
that you may already be using.

Note:

WebLogic Server also includes an Oracle Identity Cloud Integrator provider
that can access users, groups, and application roles stored in the Oracle
Identity Cloud Service. For details about the Oracle Identity Cloud Service,
see http://docs.oracle.com/en/cloud/paas/identity-cloud/
index.html.

The security provider database should be initialized the first time security providers are
used. (That is, before the security realm containing the security providers is set as the
default (active) security realm.) This initialization can be done:

• When a WebLogic Server instance boots.

• When a call is made to one of the security provider's MBeans.

At minimum, the security provider database is initialized with the default groups,
security roles, security policies provided by WebLogic Server. See Security Providers
and WebLogic Resources in Developing Security Providers for Oracle WebLogic
Server.

Security Realms and Security Provider Databases
If you have multiple security providers of the same type configured in the same
security realm, these security providers may use the same security provider database.

Chapter 4
Security Providers

4-4

http://docs.oracle.com/en/cloud/paas/identity-cloud/index.html
http://docs.oracle.com/en/cloud/paas/identity-cloud/index.html

This behavior holds true for all of the WebLogic security providers and the sample security
providers that are available on the Oracle Technology Network (OTN).

For example, if you configure two WebLogic Authentication providers in the default security
realm (called myrealm), both WebLogic Authentication providers will use the same location in
the embedded LDAP server as their security provider database, and thus, will use the same
users and groups. Furthermore, if you or an administrator add a user or group to one of the
WebLogic Authentication providers, you will see that user or group appear for the other
WebLogic Authentication provider as well.

Note:

If you have two WebLogic security providers (or two sample security providers) of
the same type configured in two different security realms, each will use its own
security provider database.

Custom security providers that you develop (or the custom security providers that you obtain
from third-party security vendors) can be designed so that each instance of the security
provider uses its own database or so that all instances of the security provider in a security
realm share the same database. This is a design decision that you need to make based on
your existing systems and security requirements. For more information about design
decisions that affect security providers, see Design Considerations in Developing Security
Providers for Oracle WebLogic Server.

Embedded LDAP Server
WebLogic Server uses its embedded LDAP server as the database that stores user, group,
security roles, and security policies for the WebLogic security providers. The embedded
LDAP server is a complete LDAP server that is production quality for reasonably small
environments (10,000 or fewer users). For applications that need to scale above this
recommendation, the embedded LDAP server can serve as an excellent development,
integration and testing environment for future export to an external LDAP server for
production deployment. The embedded LDAP server supports the following access and
storage functions:

• Access and modification of entries in the LDAP server

• Use of an LDAP browser to import and export security data into and from the LDAP
server.

• Read and write access by the WebLogic security providers.

Note:

WebLogic Server does not support adding attributes to the embedded LDAP
server.

Table 4-1 shows how each of the WebLogic security providers uses the embedded LDAP
server.

Chapter 4
Security Providers

4-5

Table 4-1 Usage of the Embedded LDAP Server

WebLogic Security Provider Embedded LDAP Server Usage

Authentication Stores user and group information.

Identity Assertion Stores user and group information.

Authorization Stores security roles and security policies.

Adjudication None.

Role Mapping Supports dynamic role associations by obtaining a computed
set of roles granted to a requestor for a given WebLogic
resource.

Auditing None.

Credential Mapping Stores username-password credential mapping information.

Certificate Registry Stores registered end certificates.

RDBMS Security Store
WebLogic Server provides the option of using an external RDBMS as a datastore that
is used by the following security providers:

• XACML Authorization and Role Mapping providers

• WebLogic Credential Mapping provider

• PKI Credential Mapping provider

• The following providers for SAML 1.1:

– SAML Identity Assertion provider V2

– SAML Credential Mapping provider V2

• The following providers for SAML 2.0:

– SAML 2.0 Identity Assertion provider

– SAML 2.0 Credential Mapping provider

• Default Certificate Registry

When the RDBMS security store is configured in a security realm, an instance of any
of the preceding security providers that has been created in the security realm
automatically uses only the RDBMS security store as a datastore, and not the
embedded LDAP server. Other security providers continue to use their default stores;
for example, the WebLogic Authentication provider continues to use the embedded
LDAP server.

Oracle recommends that you configure the RDBMS security store at the time of
domain creation. The Configuration Wizard has been enhanced to simplify the
process. This ensures that when the domain is booted, the security policies required to
access the domain can be retrieved from the external RDBMS.

Note that the use of the RDBMS security store is required to use SAML 2.0 services in
two or more WebLogic Server instances in a domain, such as in a cluster. For more
information about the RDBMS security store, see Managing the RDBMS Security
Store in Administering Security for Oracle WebLogic Server.

Chapter 4
Security Providers

4-6

Types of Security Providers
The following sections describe the types of security providers that you can use with
WebLogic Server:

• Authentication Providers

• Identity Assertion Providers

• Principal Validation Providers

• Authorization Providers

• Adjudication Providers

• Role Mapping Providers

• Auditing Providers

• Credential Mapping Providers

• Certificate Lookup and Validation Providers

Note:

You cannot develop a single security provider that merges several provider
types (for example, you cannot have one security provider that does
authorization and role mapping).

Authentication Providers
Authentication providers allow WebLogic Server to establish trust by validating a user. The
WebLogic Server security architecture supports Authentication providers that perform:
username/password authentication, certificate and digest authentication directly with
WebLogic Server, and HTTP certificate authentication proxied through an external Web
server.

Note:

An Identity Assertion provider is a special type of Authentication provider that
handles perimeter-based authentication and multiple security token types/protocols.

WebLogic Server includes an Oracle Identity Cloud Integrator provider that
combines authentication and identity assertion into a single provider. When the
identity store is the Oracle Identity Cloud Service, the provider establishes identity
(the Subject) on WebLogic Server with the authenticated user, the user's groups,
and the user's application roles. See Configuring the Oracle Identity Cloud
Integrator Provider in Administering Security for Oracle WebLogic Server.

A LoginModule is the part of an Authentication provider that actually performs the
authentication of a user or system. Authentication providers also use Principal Validation
providers which provide additional security by signing and verifying the authenticity of

Chapter 4
Security Providers

4-7

principals (users/groups). For more information about Principal Validation providers,
see Principal Validation Providers in Developing Security Providers for Oracle
WebLogic Server.

You must have at least one Authentication provider in a security realm, and you can
configure multiple Authentication providers in a security realm. Having multiple
Authentication providers allows you to have multiple LoginModules, each of which may
perform a different kind of authentication. An administrator configures each
Authentication provider to determine how multiple LoginModules are called when
users attempt to login to the system. Because they add security to the principals used
in authentication, a Principal Validation provider must be accessible to your
Authentication providers.

Authentication providers and LoginModules are discussed in more detail in
Authentication Providers in Developing Security Providers for Oracle WebLogic
Server.

Identity Assertion Providers
Identity assertion involves establishing a client's identity using client-supplied tokens
that may exist outside of the request. Thus, the function of an Identity Assertion
provider is to validate and map a token to a username. Once this mapping is complete,
an Authentication provider's LoginModule can be used to convert the username to
principals. Identity Assertion providers allow WebLogic Server to establish trust by
validating a user.

An Identity Assertion provider is a specific form of Authentication provider that allows
users or system processes to assert their identity using tokens (in other words,
perimeter authentication). You can use an Identity Assertion provider in place of an
Authentication provider if you create a LoginModule for the Identity Assertion provider,
or in addition to an Authentication provider if you want to use the Authentication
provider's LoginModule. Identity Assertion providers enable perimeter authentication
and support single sign-on.

WebLogic Server provides Identity Assertion providers that perform perimeter-based
authentication (Web server, firewall, VPN), support token types such as Digest,
SPNEGO, and SAML (1.1 and 2.0), and can handle multiple security protocols
(Kerberos, SOAP, IIOP-CSIv2). You can also write custom Identity Assertion providers
that support different token types, such as Microsoft Passport. When used with an
Authentication provider's LoginModule, Identity Assertion providers support single
sign-on. For example, the Identity Assertion provider can generate a token from a
digital certificate, and that token can be passed around the system so that users are
not asked to sign on more than once.

Chapter 4
Security Providers

4-8

Note:

To use the WebLogic Identity Assertion provider for X.501 and X.509 certificates,
you have the option of using the default user name mapper that is supplied with the
WebLogic Server product (weblogic.security.providers.authentication.
DefaultUserNameMapperImpl) or providing you own implementation of the
weblogic.security.providers.authentication.UserNameMapper interface. See
Do You Need to Develop a Custom Identity Assertion Provider?in Developing
Security Providers for Oracle WebLogic Server.

WebLogic Server includes an Oracle Identity Cloud Integrator provider that combines
authentication and identity assertion into a single provider. When the identity store is the
Oracle Identity Cloud Service, the provider establishes identity (the Subject) on WebLogic
Server with the authenticated user, the user's groups, and the user's application roles. See
Configuring the Oracle Cloud Integrator Provider in Administering Security for Oracle
WebLogic Server.

Multiple Identity Assertion providers can be configured in a security realm, but none are
required. An Identity Assertion provider can support more than one token type, but only one
token type at a time can be active in a particular Identity Assertion provider. For example, a
particular Identity Assertion provider can support both X.509 and SAML (either 1.1 or 2.0, but
not both), but an administrator configuring the system must select which token type (X.509 or
SAML) is to be active in that Identity Assertion provider. For example, if there only one
Identity Assertion provider configured and it is set to handle X.509 tokens, but SAML token
types must be supported as well, then another Identity Assertion provider must be configured
that can handle SAML tokens and SAML must be set as its active token type.

Note:

WebLogic Server provides separate Identity Assertion providers for SAML 1.1 and
SAML 2.0. They are not interchangeable between versions of SAML. The SAML
Identity Assertion provider V2 consumes SAML 1.1 assertions only, and the SAML
2.0 Identity Assertion provider consumes SAML 2.0 assertions only.

Identity Assertion providers are discussed in more detail in Identity Assertion Providers in
Developing Security Providers for Oracle WebLogic Server.

Principal Validation Providers
A Principal Validation provider is a special type of security provider that primarily acts as a
"helper" to an Authentication provider. Because some LoginModules can be remotely
executed on behalf of RMI clients, and because the client application code can retain the
authenticated subject between programmatic server invocations, Authentication providers
rely on Principal Validation providers to provide additional security protections for the
principals contained within the subject.

Principal Validation providers provide these additional security protections by signing and
verifying the authenticity of the principals. This principal validation provides an additional level
of trust and may reduce the likelihood of malicious principal tampering. Verification of the
subject's principals takes place during the WebLogic Server's demarshalling of RMI client

Chapter 4
Security Providers

4-9

requests for each invocation. The authenticity of the subject's principals is also verified
when making authorization decisions.

Because you must have at least one Authentication provider in a security realm, you
must also have one Principal Validation provider in a security realm. If you have
multiple Authentication providers, each of those Authentication providers must have a
corresponding Principal Validation provider.

Note:

You cannot use the WebLogic Server Administration Console to configure
Principal Validation providers directly. WebLogic Server configures the
required Principal Validation providers for you when you configure your
Authentication providers.

Principal Validation providers are discussed in more detail in Principal Validation
Providers in Developing Security Providers for Oracle WebLogic Server.

Authorization Providers
Authorization providers control access to WebLogic resources based on the security
role a user or group is granted, and the security policy assigned to the requested
WebLogic resource. For more information about WebLogic resources, security roles,
and security policies, see Understanding WebLogic Resource Security in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

An Access Decision is the part of the Authorization provider that actually determines
whether a subject has permission to perform a given operation on a WebLogic
resource. See Principal Validation Providers in Developing Security Providers for
Oracle WebLogic Server.

You must have at least one Authorization provider in a security realm, and you can
configure multiple Authorization providers in a security realm. Having multiple
Authorization providers allows you to follow a more modular design. For example, you
may want to have one Authorization provider that handles Web application and
Enterprise JavaBean (EJB) permissions and another that handles permissions for
other types of WebLogic resources. Another example might be to have one
Authorization provider that handles domestic employees, and another that handles
permissions for overseas employees.

WebLogic Server includes bulk access versions of the following Authorization provider
SSPI interfaces:

• BulkAuthorizationProvider

• BulkAccessDecision

The bulk access SSPI interfaces allow Authorization providers to receive multiple
decision requests in one call rather than through multiple calls, typically in a 'for' loop.
The intent of the bulk SSPI variants is to allow provider implementations to take
advantage of internal performance optimizations, such as detecting that many of the
passed-in Resource objects are protected by the same policy and will generate the
same decision result.

Chapter 4
Security Providers

4-10

Authorization providers and Access Decisions are discussed in more detail in Authorization
Providers in Developing Security Providers for Oracle WebLogic Server.

Adjudication Providers
As part of an Authorization provider, an Access Decision determines whether a subject has
permission to access a given WebLogic resource. Therefore, if multiple Authorization
providers are configured, each may return a different answer to the "is access allowed?"
question. These answers may be PERMIT, DENY, or ABSTAIN. Determining what to do if multiple
Authorization providers' Access Decisions do not agree on an answer is the function of an
Adjudication provider. The Adjudication provider resolves authorization conflicts by weighing
each Access Decision's answer and returning a final result. If you only have one
Authorization provider and no Adjudication provider, then an ABSTAIN returned from the single
Authorization provider's Access Decision is treated like a DENY.

Note:

The WebLogic Adjudication provider supports the use of the WebLogic Server
Administration Console to control whether an abstain is treated as a permit or a
deny.

You must configure an Adjudication provider in a security realm only if you have multiple
Authorization providers configured. You can have only one Adjudication provider in a security
realm.

Note:

Because the default security realm has only one Authorization provider, it does not
require an Adjudication provider, even though an Adjudication provider is provided.

WebLogic Server includes bulk access versions of the following Adjudication provider SSPI
interfaces:

• BulkAdjudicationProvider

• BulkAdjudicator

The bulk access SSPI interfaces allow Adjudication providers to receive multiple decision
requests in one call rather than through multiple calls, typically in a 'for' loop. The intent of
the bulk SSPI variants is to allow provider implementations to take advantage of internal
performance optimizations, such as detecting that many of the passed-in Resource objects
are protected by the same policy and will generate the same decision result.

Adjudication providers are discussed in more detail in Adjudication Providers in Developing
Security Providers for Oracle WebLogic Server.

Role Mapping Providers
A Role Mapping provider supports dynamic role associations by obtaining a computed set of
security roles granted to a requestor for a given WebLogic resource. The WebLogic Security

Chapter 4
Security Providers

4-11

Framework determines which security roles (if any) apply to a particular subject at the
moment that access is required for a given WebLogic resource by:

• Obtaining security roles from the Java EE and WebLogic deployment descriptor
files.

• Using business logic and the current operation parameters to determine security
roles.

A Role Mapping provider supplies Authorization providers with this security role
information so that the Authorization provider can answer the "is access allowed?"
question for WebLogic resources that use role-based security (that is, Web application
and Enterprise JavaBean container resources).

You set security roles in Java EE deployment descriptors, or create them using the
WebLogic Server Administration Console. Security roles set in deployment descriptors
are applied at deployment time (unless you specifically choose to ignore deployment
descriptors).

You must have at least one Role Mapping provider in a security realm, and you can
configure multiple Role Mapping providers in a security realm. Having multiple Role
Mapping providers allows you to work within existing infrastructure requirements (for
example, configuring one Role Mapping provider for each LDAP server that contains
user and security role information), or follow a more modular design (for example,
configuring one Role Mapping provider that handles mappings for Web applications
and Enterprise JavaBeans (EJBs) and another that handles mappings for other types
of WebLogic resources).

Note:

If multiple Role Mapping providers are configured, the set of security roles
returned by all Role Mapping providers will be intersected by the WebLogic
Security Framework. That is, security role names from all the Role Mapping
providers will be merged into single list, with duplicates removed.

WebLogic Server includes bulk access versions of the following Role Mapping provider
SSPI interfaces:

• BulkRoleProvider

• BulkRoleMapper

The bulk access SSPI interfaces allow Role Mapping providers to receive multiple
decision requests in one call rather than through multiple calls, typically in a 'for' loop.
The intent of the bulk SSPI variants is to allow provider implementations to take
advantage of internal performance optimizations, such as detecting that many of the
passed-in Resource objects are protected by the same policy and will generate the
same decision result.

Role Mapping providers are discussed in more detail in Role Mapping Providers in
Developing Security Providers for Oracle WebLogic Server.

Auditing Providers
An Auditing provider collects, stores, and distributes information about operating
requests and the outcome of those requests for the purposes of non-repudiation. An

Chapter 4
Security Providers

4-12

Auditing provider makes the decision about whether to audit a particular event based on
specific audit criteria, including audit severity levels. Auditing providers can write the audit
information to output repositories such as an LDAP directory, database, or simple file.
Specific actions, such as paging security personnel, can also be configured as part of an
Auditing provider.

Other types of security providers (such as Authentication or Authorization providers) can
request audit services before and after security operations have been performed by calling
through the WebLogic Security Framework. See Auditing Events From Custom Security
Providers in Developing Security Providers for Oracle WebLogic Server.

You can configure multiple Auditing providers in a security realm, but none are required.

Auditing providers are discussed in more detail in Auditing Providers in Developing Security
Providers for Oracle WebLogic Server.

Credential Mapping Providers
A credential map is a mapping of credentials used by WebLogic Server to credentials used
in a legacy or remote system, which tell WebLogic Server how to connect to a given resource
in that system. In other words, credential maps allow WebLogic Server to log into a remote
system on behalf of a subject that has already been authenticated.

A Credential Mapping provider can handle several different types of credentials (for example,
username/password combinations, SAML assertions, public key certificates, and alias/
credential type combinations). You can set credential mappings in deployment descriptors or
by using the WebLogic Server Administration Console. These credential mappings are
applied at deploy time (unless you specifically choose to ignore the credential mappings).

You must have at least one Credential Mapping provider in a security realm, and you can
configure multiple Credential Mapping providers in a security realm. If multiple Credential
Mapping providers are configured, then the WebLogic Security Framework calls into each
Credential Mapping provider to find out if they contain the type of credentials requested by
the container. The WebLogic Security Framework then accumulates and returns all the
credentials as a list.

Note:

WebLogic Server provides separate Credential Mapping providers for SAML 1.1
and SAML 2.0. They are not interchangeable between versions of SAML. The
SAML Credential Mapping provider V2 generates SAML 1.1 assertions only, and
the SAML 2.0 Credential Mapping provider generates SAML 2.0 assertions only.

Credential Mapping providers are discussed in more detail in Credential Mapping Providers in
Developing Security Providers for Oracle WebLogic Server.

Certificate Lookup and Validation Providers
The Certificate Lookup and Validation providers complete certificate paths and validate X509
certificate chains. There are two types of CLV providers:

• CertPath Builder - Receives a certificate, a certificate chain, or certificate reference (the
end certificate in a chain or the Subject DN of a certificate) from a web service or
application code. The provider looks up and validates the certificates in the chain.

Chapter 4
Security Providers

4-13

• CertPath Validator - Receives a certificate chain from the SSL protocol, a web
service, or application code and performs extra validation (for example, revocation
checking).

There must be at least one CertPath Builder and one CertPath Validator configured in
a security realm. Multiple CertPath Validators can be configured in a security realm. If
multiple providers are configured, a certificate or certificate chain must pass validation
with all the CertPath Validators in order for the certificate or certificate chain to be
valid.

WebLogic Server provides the functionality of the CLV providers in the WebLogic
CertPath provider and the Certificate Registry.

Security Provider Summary
Table 4-2 indicates whether you can configure multiple security providers of the same
type in a security realm.

Table 4-2 Multiple Providers of Same Type in Same Security Realm

Type Multiple Providers Supported?

Authentication provider Yes

Identity Assertion provider Yes

Principal Validation provider Yes

Authorization provider Yes

Adjudication provider No

Role Mapping provider Yes

Auditing provider Yes

Credential Mapping provider Yes

Certificate Lookup and Validation
provider

One CertPath Builder

Multiple CertPath Validators

Security Providers and Security Realms
All security providers exist within the context of a security realm. The WebLogic Server
security realm defined out-of-the-box as the default realm (that is, the active security
realm called myrealm) contains the WebLogic security providers displayed in
Figure 4-2.

Chapter 4
Security Providers

4-14

Figure 4-2 WebLogic Security Providers in a Security Realm

Because security providers are individual modules or components that are "plugged into" a
WebLogic Server security realm, you can add, replace, or remove a security provider with
minimal effort. You can use the WebLogic security providers, custom security providers you
develop, security providers obtained from third-party security vendors, or a combination of all
three to create a fully-functioning security realm. However, as Figure 4-2 also shows, some
types of security providers are required for a security realm to operate properly. Table 4-3
summarizes which security providers must be configured for a fully-operational security
realm.

Table 4-3 Security Providers in a Security Realm

Type Required?

Authentication provider Yes

Identity Assertion provider Yes, if using perimeter authentication.

Principal Validation provider Yes

Authorization provider Yes

Adjudication provider Yes, if there are multiple Authorization providers configured.

Role Mapping provider Yes

Auditing provider No

Credential Mapping provider Yes

Chapter 4
Security Providers

4-15

Table 4-3 (Cont.) Security Providers in a Security Realm

Type Required?

Certificate Lookup and Validation
providers

Yes

For more information about security realms, see Configuring WebLogic Security: Main
Steps in Administering Security for Oracle WebLogic Server.

Chapter 4
Security Providers

4-16

5
WebLogic Security Service Architecture

The architecture of the WebLogic Security Service comprises three major components —
WebLogic containers (Web and EJB), the Resource containers, and the security providers.

• WebLogic Security Framework

• Single Sign-On with the WebLogic Security Framework

• SAML Token Profile Support in WebLogic Web Services

• The Security Service Provider Interfaces (SSPIs)

• WebLogic Security Providers

WebLogic Security Framework
The primary function of the WebLogic Security Framework is to provide a simplified
application programming interface (API) that can be used by security and application
developers to define security services. Within that context, the WebLogic Security Framework
also acts as an intermediary between the WebLogic containers (Web and EJB), the Resource
containers, and the security providers.

WebLogic Security Framework provides a simplified application programming interface (API)
that can be used by security and application developers to define security services.

Figure 5-1 shows a high-level view of the WebLogic Security Framework. The framework
comprises interfaces, classes, and exceptions in the weblogic.security.service package.

5-1

Figure 5-1 WebLogic Security Service Architecture

The following sections describe the interactions between the WebLogic containers and
Resource containers and each of the security providers via the WebLogic Security
Framework:

• The Authentication Process

• The Identity Assertion Process

• The Principal Validation Process

• The Authorization Process

• The Adjudication Process

• The Role Mapping Process

• The Auditing Process

• The Credential Mapping Process

• The Certificate Lookup and Validation Process

Chapter 5
WebLogic Security Framework

5-2

The Authentication Process
Figure 5-2 shows the authentication process for a fat-client login. JAAS runs on the server to
perform the login. Even in the case of a thin-client login (that is, a Web browser client) JAAS
is still run on the server.

Figure 5-2 The Authentication Process

Note:

Only developers of custom Authentication providers will be involved with this JAAS
process directly. The client application could either use a JNDI Initial Context or
JAAS to initiate the passing of the username and password.

When a user attempts to log into a system using a username/password combination,
WebLogic Server establishes trust by validating that user's username and password, and
returns a subject that is populated with principals per JAAS requirements. As Figure 5-2 also
shows, this process requires the use of a LoginModule and a Principal Validation provider.
For more information on Principal Validation providers, see WebLogic Principal Validation
Provider.

After successfully proving a caller's identity, an authentication context is established, which
allows an identified user or system to be authenticated to other entities. Authentication
contexts may also be delegated to an application component, allowing that component to call
another application component while impersonating the original caller.

The Identity Assertion Process
Identity Assertion providers are used as part of perimeter authentication process. When
perimeter authentication is used (see Figure 5-3), a token from outside of the WebLogic
Server domain is passed to an Identity Assertion provider in a security realm that is
responsible for validating tokens of that type and that is configured as "active". If the token is
successfully validated, the Identity Assertion provider maps the token to a WebLogic Server
username, and sends that username back to WebLogic Server, which then continues the
authentication process. Specifically, the username is sent via a JAAS CallbackHandler and
passed to each configured Authentication provider's LoginModule so that the LoginModule
can populate the subject with the appropriate principals.

Chapter 5
WebLogic Security Framework

5-3

Note:

To use the WebLogic Identity Assertion provider for X.501 and X.509
certificates, you have the option of using either the default user name
mapper that is supplied with the WebLogic Server product
(weblogic.security.providers.authentication.
DefaultUserNameMapperImpl) or your own implementation of the
weblogic.security.providers.authentication.UserNameMapper interface.
See Do You Need to Develop a Custom Identity Assertion Provider? in
Developing Security Providers for Oracle WebLogic Server.

Figure 5-3 Perimeter Authentication

As Figure 5-3 also shows, perimeter authentication requires the same components as
the authentication process, but also adds an Identity Assertion provider.

The Principal Validation Process
As shown in Figure 5-4, a user attempts to log into a system using a username/
password combination. WebLogic Server establishes trust by calling the configured
Authentication provider's LoginModule, which validates the user's username and
password and returns a subject that is populated with principals per JAAS
requirements.

Figure 5-4 The Principal Validation Process

Chapter 5
WebLogic Security Framework

5-4

WebLogic Server then passes the subject to the specified Principal Validation provider, which
signs the principals and returns them to the client application via WebLogic Server. Whenever
the principals stored within the subject are required for other security operations, the same
Principal Validation provider will verify that the principals stored within the subject have not
been modified since they were signed.

The Authorization Process
Figure 5-5 illustrates how Authorization providers (and the associated Adjudication and Role
Mapping providers) interact with the WebLogic Security Framework during the authorization
process.

Figure 5-5 Authorization Process

The authorization process is initiated when a user or system process requests a WebLogic
resource on which it will attempt to perform a given operation. The resource container that
handles the type of WebLogic resource being requested receives the request (for example,
the EJB container receives the request for an EJB resource). The resource container calls
the WebLogic Security Framework and passes in the request parameters, including
information such as the subject of the request and the WebLogic resource being requested.
The WebLogic Security Framework calls the configured Role Mapping providers and passes
in the request parameters in a format that the Role Mapping providers can use. The Role
Mapping providers use the request parameters to compute a list of roles to which the subject
making the request is entitled and passes the list of applicable roles back to the WebLogic
Security Framework. The Authorization provider determines whether the subject is entitled to
perform the requested action on the WebLogic resource, that is, the Authorization provider
makes the Access Decision. If there are multiple Authorization providers configured, the
WebLogic Security Framework delegates the job of reconciling any conflicts in the Access
Decisions rendered by the Authorization providers to the Adjudication provider and the
Adjudication provider determines the ultimate outcome of the authorization decision.

The Adjudication Process
If there are multiple Authorization providers configured (see Figure 5-5), an Adjudication
provider is required to tally the multiple Access Decisions and render a verdict. The
Adjudication provider returns either a TRUE or FALSE verdict to the Authorization providers,
which forward it to the resource container through the WebLogic Security Framework.

• If the decision is TRUE, the resource container dispatches the request to the protected
WebLogic resource.

Chapter 5
WebLogic Security Framework

5-5

• If the decision is FALSE, the resource container throws a security exception that
indicates that the requestor was not authorized to perform the requested access
on the protected WebLogic resource.

The Role Mapping Process
The WebLogic Security Framework calls each Role Mapping provider that is
configured for a security realm as part of an authorization decision. For related
information, see The Authorization Process.

Figure 5-6 shows how the Role Mapping providers interact with the WebLogic Security
Framework to create dynamic role associations.

Figure 5-6 Role Mapping Process

The role mapping process is initiated when a user or system process requests a
WebLogic resource on which it will attempt to perform a given operation. The resource
container that handles the type of WebLogic resource being requested receives the
request (for example, the EJB container receives the request for an EJB resource).
The resource container calls the WebLogic Security Framework and passes in the
request parameters, including information such as the subject of the request and the
WebLogic resource being requested. The WebLogic Security Framework calls each
configured Role Mapping provider to obtain a list of the roles that apply. If a security
policy specifies that the requestor is entitled to a particular role, the role is added to the
list of roles that are applicable to the subject. This process continues until all security
policies that apply to the WebLogic resource or the resource container have been
evaluated. The list of roles is returned to the WebLogic Security Framework, where it
can be used as part of other operations, such as access decisions.

The result of the dynamic role association (performed by the Role Mapping providers)
is a set of roles that apply to the principals stored in a subject at a given moment.
These roles can then be used to make authorization decisions for protected WebLogic
resources, as well as for resource container and application code. For example, an
Enterprise JavaBean (EJB) could use the Java EE isCallerInRole method to retrieve
fields from a record in a database, without having knowledge of the business policies
that determine whether access is allowed.

The Auditing Process
Figure 5-7 shows how Auditing providers interact with the WebLogic Security
Framework and other types of security providers (using an Authentication provider as
an example).

Chapter 5
WebLogic Security Framework

5-6

Figure 5-7 Auditing Process

The auditing process is initiated when a resource container passes a user's authentication
information (for example, a username/password combination) to the WebLogic Security
Framework as part of a login request. The WebLogic Security Framework passes the
information associated with the login request to the configured Authentication provider. If, in
addition to providing authentication services, the Authentication provider is designed to post
audit events, the Authentication provider instantiates an AuditEvent object. The AuditEvent
object includes information such as the event type to be audited and an audit severity level.
The Authentication provider then calls the Auditor Service in the WebLogic Security
Framework, passing in the AuditEvent object. The Auditor Service passes the AuditEvent
object to the configured Auditing providers' runtime classes, enabling audit event recording.
The Auditing providers' runtime classes use the information obtained from the AuditEvent
object to control audit record content. When the criteria for auditing specified by the
Authentication providers in the AuditEvent object is met, the appropriate Auditing provider's
runtime class writes out audit records. Depending on the Auditing provider implementation,
audit records may be written to a file, a database, or some other persistent storage medium.

The Credential Mapping Process
Figure 5-8 illustrates how Credential Mapping providers interact with the WebLogic Security
Framework during the credential mapping process.

Figure 5-8 Credential Mapping Process

Chapter 5
WebLogic Security Framework

5-7

The credential mapping process is initiated when application components, such as
JavaServer Pages (JSPs), servlets, Enterprise JavaBeans (EJBs), or Resource
Adapters call into the WebLogic Security Framework (through the appropriate resource
container) to access an Enterprise Information System (EIS), for example, some
relational database like Oracle, SQL Server, and so on. As part of the call, the
application component passes in the subject (that is, the "who" making the request),
the WebLogic resource (that is, the "what" that is being requested) and information
about the type of credentials needed to access the WebLogic resource. The WebLogic
Security Framework sends the application component's request for credentials to a
configured Credential Mapping provider that handles the type of credentials needed by
the application component. The Credential Mapping provider consults its database to
obtain a set of credentials that match those requested by the application component
and returns the credentials to the WebLogic Security Framework. The WebLogic
Security Framework passes the credentials back to the requesting application
component through the resource container. The application component uses the
credentials to access the external system.

The Certificate Lookup and Validation Process
During the certificate lookup and validation process, CertPath Builders, CertPath
Validators, and the Certificate Lookup and Validation (CLV) framework all interact.

The process for building certificate chains works as follows:

1. The CLV framework is passed a certificate chain and a cert path selector (either
the end certificate, the Subject DN, the Issuer DN plus serial number, and/or the
subject key identifier) from either a WebLogic Web service or application code.

2. The CLV framework calls the CertPath Builder to locate the certificate chain and
validate it. When using Web services, the CLV framework passes the server's list
of trusted CAs to the provider. Application code passes in a list of trusted CAs to
the provider.

3. If the certificate chain is found and valid, the CLV framework calls any CertPath
Validators configured in the security realm the order they were configured.

The certificate chain is only valid if the CertPath Builder and all the configured
CertPath Validators successfully validate it.

4. The CLV framework returns the certificate chain to the requesting party.

5. Processing continues.

The process for validating certificate chains works as follows:

1. The CLV framework is passed a certificate chain and a cert path selector (either
the end certificate, the Subject DN, the Issuer DN plus serial number, and/or the
subject key identifier) from the SSL protocol, a WebLogic Web service, or
application code.

2. The CLV framework ensures calls the certificate chain is ordered and each
certificate in the chain signs the next.

3. If the certificate chain is valid, the CLV framework calls any CertPath Validators
configured in the security realm the order they were configured.

The certificate chain is only valid if all the configured CertPath Validators
successfully validate it. Validation stops if an error occurs.

4. The CLV framework returns the certificate chain to the requesting party.

Chapter 5
WebLogic Security Framework

5-8

5. Processing continues.

Single Sign-On with the WebLogic Security Framework
The SAML and Windows Integrated Login features provide web-based single sign-on (SSO)
functionality for WebLogic Server applications.

The following sections describe the interactions among the WebLogic containers, the security
providers, and the WebLogic Security Framework during the single sign-on process:

• Single Sign-On with SAML 1.1

• Single Sign-On and SAML 2.0

• Desktop SSO Process

Single Sign-On with SAML 1.1
The following sections describe how a WebLogic Server instance behaves during when
configured with SAML 1.1 services:

• WebLogic Server Acting a SAML 1.1 Source Site

• Weblogic Server Acting as SAML 1.1 Destination Site

WebLogic Server Acting as SAML 1.1 Source Site
Acting as a SAML source involves the following:

• Generating valid SAML assertions that assert that a source domain has authenticated a
user and provide the name by which the user is known at the SAML source site.
Optionally, the names of the local (source site) groups that the user is a member of are
provided.

• Providing a SAML ITS and a SAML Assertion Retrieval Service (ARS)

WebLogic Server can act as a SAML ITS and ARS. These services are provided by a servlet
that is deployed based on configuration settings on the Server > Configuration > Federated
Services pages in the WebLogic Server Administration Console.

The SAML ITS service requires separate URLs for the POST and Artifact profiles for V1
SAML providers; separate URLs are not required for the POST and Artifact profiles with V2
SAML providers.

The following sections detail how WebLogic Server is used as a SAML source in the POST
and Artifact profiles.

POST Profile
The POST profile works as follows:

1. The user accesses the web site (for example, http://www.weblogic.com/samlits/its)
for the SAML source site.

2. The SAML ITS servlet calls the SAML Credential Mapper to request a bearer assertion.

3. The SAML Credential Mapping provider returns the assertion. The SAML Credential
Mapping provider also returns the URL of the SAML destination site and the path to the
appropriate POST form.

Chapter 5
Single Sign-On with the WebLogic Security Framework

5-9

4. The SAML ITS servlet generates a signed SAML response containing the
generated assertion, signs it, based64-encodes it, and embeds it in the HTML
form (default or custom).

5. The SAML ITS servlet returns the form to the user's browser.

6. The user's browser POSTs the form to the destination site's ACS.

7. The assertion is validated and if successful, the user is logged in and redirected to
the target.

Artifact Profile
The Artifact profile works as follows:

1. The user accesses the web site (www.weblogic.com) for the SAML source site.

2. The SAML Inter-site Transfer Service (ITS) servlet calls the SAML Credential
Mapper to request an assertion, passing in the desired assertion type (artifact).

3. The SAML Credential Mapping provider returns the assertion. The SAML
Credential Mapping provider also returns the destination Assertion Consumer
Service (ACS) URL and the assertion ID.

4. The SAML ITS servlet generates an artifact based on the assertion ID and the
local source site's source ID. (This value is calculated from the Source Site URL
configured on the Federation Services Source Site page.)

5. The SAML ITS servlet redirects the user to the Assertion Consumer Service (ACS)
of the SAML destination site, passing the artifact as a query parameter.

6. The ACS gets the artifact from the query parameter and decodes it to get the
source ID. It then uses the source ID to look up the URL of the Assertion Retrieval
Service (ARS) of the SAML source site. The ACS then sends a request to the URL
of the ARS of the SAML source site requesting the assertion corresponding to the
artifact.

7. The SAML Assertion Retrieval Service (ARS) responds to the incoming assertion
request, using the artifact to locate the corresponding assertion in its assertion
store, and if found, returning the assertion to the SAML destination site.

8. The assertion is validated and if successful, the user is logged in and redirected to
the target.

Weblogic Server Acting as SAML 1.1 Destination Site
WebLogic Server acts as a SAML destination site when an unauthenticated Web
browser or HTTP client tries to access a protected WebLogic resource and SAML is
configured as the authentication mechanism in the security realm.

The SAML destination site is implemented as a servlet authentication filter (referred to
as the SAML authentication filter) deployed by the SAML Identity Assertion provider
based on its configuration. The SAML destination site listens for incoming assertions
at one or more configured URLs.These URLs provide the Access Consumer Service
(ACS). The SAML destination site can also be configured to redirect unauthenticated
users to remote SAML source sites for authentication based on the particular URL
they tried to access.

The following sections detail how WebLogic Server is used as a SAML destination in
the POST and Artifact profiles.

Chapter 5
Single Sign-On with the WebLogic Security Framework

5-10

POST Profile
In a typical SSO scenario, the POST profile works as follows:

1. The user accesses the web site (for example, http://www.weblogic.com/samlits/its)
for the SAML source site.

2. The SAML source site authenticates the user, generates an assertion, and returns a
POST form containing the assertion in a signed SAML response to the user's browser.

3. The user's browser posts the POST form to the ACS at the SAML destination site. The
ACS looks for an asserting party ID (APID) as a form parameter of the incoming request,
and uses this to look up the configuration before performing any other processing.

4. Upon receiving a POST form from the SAML source site, the SAML destination site
extracts the embedded SAML response from the POST form and verifies trust in the
certificate used to sign the response. An optional recipient check may be performed
depending on the configuration.

5. The SAML Authentication filter also ensures that this assertion has not been previously
used. If the one-use check is configured, the filter checks to see if the assertion has
already been used. If so, the filter returns an error. If not, the filter persists the assertion
to enable future checks.

6. One of the following then occurs:

• If the one-use check or any other validity/trust check fails, the login fails and
WebLogic Server returns a 403 Forbidden.

• If the one-use check and any other validity/trust checks are successful, the user is
logged in (by the assertIdentity() call). The SAML authentication filter creates a
session for the user and redirects the now authenticated user to the requested target
URL.

Artifact Profile
The Artifact profile works as follows:

1. The user accesses the web site (for example, http://www.weblogic.com/samlits/its)
for the SAML source site.

2. The request is redirected to the SAML ITS service.

3. The SAML source site authenticates user.

4. After the user is authenticated, the SAML ITS generates an assertion and then generates
a base-64 encoded artifact that contains the assertion ID and the source ID of the SAML
ITS.

5. The SAML ITS redirects the user to the Assertion Consumer Service (ACS) of the SAML
destination site, passing the artifact as a query parameter on the redirect URL. The ACS
looks for an asserting party ID (APID) as a query parameter of the incoming request, and
uses this to look up the configuration before performing any other processing. The ACS
gets the artifact by looking for the query parameter.

6. The SAML authentication filter base64-decodes the artifact to determine the source ID of
the SAML source site and the assertion ID. The source ID is used to look up the
Assertion Retrieval URL for that source site. The filter then makes a SOAP request to the
Artifact Retrieval Service (ARS) at the SAML source site, sending the artifact and
requesting the corresponding assertion.

Chapter 5
Single Sign-On with the WebLogic Security Framework

5-11

7. The SAML source site returns an assertion.

8. The SAML authentication filter calls the PrincipalValidator to assert the user's
identity.

9. One of the following then occurs:

• If any validity/trust check fails, the login fails and WebLogic Server returns a
403 Forbidden.

• If all validity/trust checks are successful, the user is logged in (by the
assertIdentity() call). The SAML authentication filter creates a session for
the user and redirects the now authenticated user to the requested target
URL.

Single Sign-On and SAML 2.0
The SAML 2.0 Web Single Sign-On (SSO) profile supported by WebLogic Server
implements the Authentication Request Protocol in conjunction with the HTTP
Redirect, HTTP POST, and HTTP Artifact bindings. The following sections describe
the flow of execution in both ways of that this profile can be initiated, showing the
interaction among the SAML 2.0 services provided in WebLogic Server and the
WebLogic Security Service:

• Service Provider Initiated Single Sign-On

• Identity Provider Initiated Single Sign-On

Service Provider Initiated Single Sign-On
In a typical Service Provider initiated SSO scenario, an unauthenticated user tries to
access a protected resource on a Service Provider site. In response, the Service
Provider initiates a Web SSO session by identifying the appropriate Identity Provider
partner and sending or redirecting an authentication request to that partner. The
Identity Provider then authenticates the user, typically via a login web application,
generates a SAML assertion containing that user's identity information, and returns the
assertion to the Service Provider in the form of an authentication response.

When the Service Provider receives the authentication response, the Service Provider
extracts the identity information from the assertion contained in the response and
verifies the user's identity by mapping it to a Subject in the local security realm. If the
user's identity is successfully mapped, the Service Provider can consequently
authorize the user's access to the protected resource.

Figure 5-9 shows the flow of execution in an example of a Service Provider initiated
Web single sign-on session.

Chapter 5
Single Sign-On with the WebLogic Security Framework

5-12

Figure 5-9 Service Provider Initiated Single Sign-On

Note the following callouts in Figure 5-9 showing the flow of execution:

1. From a web browser, a user attempts to access a protected resource running in a
WebLogic container that is hosted by a Service Provider.

2. The WebLogic container invokes the WebLogic Security Service to determine if the user
is authenticated.

3. Because the user is not authenticated, the Service Provider generates an authentication
request that contains information about the unauthenticated user and sends it to the
Identity Provider, using the endpoint of the Identity Provider's Single Sign-On Service.

The Service Provider can be configured to use one of the following bindings for
transmitting the authentication request:

• HTTP POST - When using the HTTP POST binding, the Service Provider sends an
HTTP POST message containing the authentication request to the user's browser.
The HTTP POST message is then sent to the Identity Provider's Single Sign-On
Service.

• HTTP Artifact - The Service Provider sends an HTTP redirect message that includes
a SAML artifact to the user's browser. The SAML artifact contains a pointer to the
authentication request message, which is maintained by the Service Provider's
Artifact Resolution Service (ARS). When the Identity Provider receives the HTTP
redirect message, it sends an artifact resolution request to the Service Provider's
ARS to obtain the authentication request message.

• HTTP Redirect - The Service Provider sends an HTTP redirect message to the user's
browser, which sends an HTTP GET message to the Identity Provider's Single Sign-
On Service.

4. The user is presented with a login web application hosted by an Identity Provider that is
capable of authenticating that user. The Identity Provider challenges the user for his or
her credentials.

5. The user provides his or her username and password to the Identity Provider, which
completes the authentication operation.

6. The Single Sign-On Service hosted by the Identity Provider generates an assertion for
the user and returns an authentication response to the Service Provider's Assertion
Consumer Service (ACS).

The Identity Provider can be configured to use the following bindings:

Chapter 5
Single Sign-On with the WebLogic Security Framework

5-13

• HTTP POST - The Identity Provider sends the authentication response, which
contains the assertion, to the user's browser. The authentication response is
transmitted to the Service Provider via an HTTP POST message.

• HTTP Artifact - The Identity Provider sends an authentication response, which
contains a SAML artifact, to the user's browser. The SAML artifact contains a
pointer to the assertion, which is handled by the Identity Provider's Artifact
Resolution Service (ARS). The authentication response is transmitted to the
Service Provider via an HTTP redirect message.When the Service Provider
receives the response, it sends an artifact resolution request to the Identity
Provider's ARS to obtain the assertion.

The ACS validates the assertion, extracts the identity information from that
assertion, and maps that identity to a subject in the local security realm.

7. The ACS sends an HTTP redirect message to the browser, passing a cookie
containing a session ID and enabling the browser to access the requested
resource.

The WebLogic Security Service performs an authorization check to determine
whether the browser may access the requested resource. If the authorization
check succeeds, access to the resource is granted.

If SAML Single Logout is configured, when the user logs out of a resource, they are
also logged out of every other resource from a participating Service Provider.

Identity Provider Initiated Single Sign-On
WebLogic Server also supports the scenario in which a web single sign-on session is
initiated by an Identity Provider. In this scenario, a user is authenticated by an Identity
Provider and issues a request on a resource that is hosted by a Service Provider. The
Identity Provider initiates the SSO session by sending an unsolicited authentication
response to the Service Provider.

When the Service Provider receives the authentication response, the Service Provider
extracts the identity of the user from the assertion, maps that identity to a local subject,
and performs an authorization check on the requested resource. If the authorization
check succeeds, access is granted.

Figure 5-10 shows the flow of execution in a typical Identity Provider initiated SSO
session.

Figure 5-10 Identity Provider Initiated Single Sign-On

Chapter 5
Single Sign-On with the WebLogic Security Framework

5-14

Note the following callouts in Figure 5-10 showing the flow of execution:

1. The user is presented with a login web application hosted by an Identity Provider that
authenticates the user. The Identity Provider challenges the user for his or her
credentials.

2. The user provides his or her username and password to the Identity Provider, which
completes the authentication process.

The user issues a request on a resource that is hosted by a Service Provider.

3. The Single Sign-On Service hosted by the Identity Provider sends an unsolicited
authentication response to the Service Provider to the Service Provider's Assertion
Consumer Service (ACS).

Regardless of how the SSO session is initiated, the Identity Provider uses the same
bindings as described in Service Provider Initiated Single Sign-On.

4. The ACS validates the assertion, extracts the identity information, and maps that identity
to a subject in the local security realm. The ACS sends an HTTP redirect message to the
browser, passing a cookie containing a session ID and enabling the browser to access
the requested resource.

5. The WebLogic Security Service performs an authorization check to determine whether
the browser may access the requested resource. If the authorization check succeeds,
access to the resource is granted.

Desktop SSO Process
The process works as follows:

1. The Negotiate Identity Assertion provider is configured to support the WWW-Authenticate
and Authorization HTTP headers. The Negotiate Identity Assertion provider uses a
servlet authentication filter to generate the appropriate WWW-Authenticate header on
unauthorized responses for the negotiate protocol and handles the Authorization headers
on subsequent requests.

2. A user logs into the Windows domain. The user acquires Kerberos credentials from the
domain.

3. Using a browser that supports the SPNEGO protocol (for example, Internet Explorer or
Mozilla), the user tries to access a Web Application running on an application server. The
application server can be running on a UNIX or Windows platform.

4. The browser sends a GET request to the application server.

5. The application server sends back an unauthorized response with the appropriate WWW-
Authenticate headers.

6. The Servlet container gets the configured chain of servlet authentication filters from the
WebLogic Security Framework.

7. The Servlet container calls the chain of servlet authentication filters. The Negotiate
servlet authentication filter adds the WWW-Authenticate request header for the negotiate
authentication scheme and calls into the WebLogic Security Framework to get the initial
Negotiate challenge. The following message is sent back:

401 Unauthorize
WWW-Authenticate: Negotiate

Chapter 5
Single Sign-On with the WebLogic Security Framework

5-15

8. The browser receives the WWW-Authenticate header and determines whether or
not it can support the Negotiate authentication scheme. The browser then creates
a SPNEGO token containing the supported GSS mechanism token types. It
Base64 encodes the token and sends it back to the application server via an
Authorization header on the original GET message as follows:

GET...
Authorization: Negotiate <Base64 encoded SPNEGO token>

9. Since the request is still unauthorized, the Servlet container calls the servlet
authentication filters. The Negotiate servlet authentication filter handles the
Authorization request header and calls the WebLogic Security Framework. The
framework passes the token to the Negotiate Identity Assertion provider.

10. The Negotiate Identity Assertion provider uses the GSS context to get the name of
the initiating Principal. This name is mapped to a username and passed back to
the WebLogic Security Framework via a Callback handler.

The WebLogic Security Framework also determines to which groups the user
belongs.

11. The authentication is complete and the GET request is processed.

SAML Token Profile Support in WebLogic Web Services
The WebLogic Web services and the WebLogic Security Framework support the
generation, consumption, and validation of SAML 1.1 and 2.0 assertions.

When using SAML assertions, a web service passes a SAML assertion and the
accompanying proof material to the WebLogic Security Framework.If the SAML
assertion is valid and trusted, the framework returns an authenticated Subject with a
trusted principal back to the web service. WebLogic Web services and the WebLogic
Security Framework support the following SAML assertions:

• Sender-Vouches - The asserting party (different from the subject) vouches for the
verification of the subject. The receiver must have a trust relationship with the
asserting party.

• Holder-of-Key - The purpose of SAML token with "holder-of-key" subject
confirmation is to allow the subject to use an X.509 certificate that may not be
trusted by the receiver to protect the integrity of the request messages.

Conceptually, the asserting party inserts an X.509 public certificate (or other key
info) into a SAML assertion. (More correctly, the asserting party binds a key to a
subject.) In order to protect this embedded certificate, the SAML assertion itself
must be signed by the asserting entity. For WebLogic Server, the Web service
client signs the SAML assertion with its private key. That is, the signature on the
assertion is the signature of the SAML authority, and is not based on the certificate
contained in, or identified by, the assertion.

• Bearer - The subject of the assertion is the bearer of the assertion, subject to
optional constraints on confirmation using attributes that may be included in the
<SubjectConfirmationData> element of the assertion.

The following sections describe how the processing of these assertions work.

Chapter 5
SAML Token Profile Support in WebLogic Web Services

5-16

Sender-Vouches Assertions
All the Sender-Vouches assertions are basically the same, the difference is in how trust is
established (meaning whether or not SSL is used for transport and whether or not the SAML
assertion and the message bodies are signed).

The Sender-Vouches assertions are used in the following manner:

1. A user invokes a WebLogic Web service.

2. The Web service requests a SAML assertion from the user.

3. The user generates a SAML assertion and returns it to the Web service.

4. The Web service calls the SAML Credential Mapping provider, which generates an
appropriate SAML assertion.

5. One of the following occurs. Note that this list represents the most likely scenarios and
that other scenarios are possible.

• The Web service sends an unsigned assertion and uses a non-SSL transport in a
SOAP message to the destination. With this type of assertion, there is no proof
material in the SOAP message so the assertion cannot be trusted nor can it be
assumed that the assertion came from a trusted party.

• The Web service uses the SSL protocol to send an unsigned assertion in a SOAP
message to the destination. With this type of assertion, the client certificate is used to
establish trust.

• The Web service signs the assertion and sends it using a non-SSL transport in a
SOAP message to the destination. With this type of assertion, the signature provides
the proof material for trust but it can't be assumed that the connection was not
compromised. However, modification of a signed assertion can be detected because
any change will break the signature

• The Web service signs the assertion and uses the SSL protocol to send the signed
assertion in a SOAP message to the destination. With this type of assertion, trust is
established either through the signature or the client certificate.

6. The SAML Identity Assertion provider consumes and validates the assertion and
determines if the assertion is to be trusted.

7. If the assertion is to be trusted, the SAML Identity Assertion provider creates a Subject
containing user principals and possibly group principals and returns the Subject with
principals to the Web service.

8. The Web service returns the response to the user.

Holder-of-Key Assertion
In the Holder-of-Key assertion, the Web service client depends on the Web service server to
ensure that the user is to be trusted.

The Holder-of-Key assertions are used in the following manner:

1. A user authenticates to a Web service client through some undetermined mechanism.
The Web service client can be local or remote and may or may not be a WebLogic server
instance.

Chapter 5
SAML Token Profile Support in WebLogic Web Services

5-17

2. The Web service client trusts the user, generates a SAML assertion containing the
certificate of the user, and signs the SAML assertion with its private key. The Web
service client returns the SAML assertion to the user.

3. The user inserts the SAML assertion information into a wsse:Security header in a
SOAP message. The message body is signed with the private key of the user.

4. The user invokes a WebLogic Web service.

5. The Web service sends the SOAP message to the Web service server (in this
case, a WebLogic Server instance). The Web service server makes a trust
decision based on whether or not it trusts the SAML assertion and the SOAP
message.

6. The Web services server receives the assertion and passes it to the SAML Identity
Asserter. The SAML Identity Asserter verifies the assertion signature and verifies
trust in the certificate used for that signature.

If this succeeds, the Web service server can assume that the key in the holder-of-
key assertion does in fact belong to the Subject of the assertion. Web services can
then use that key to verify the signature that signs the SOAP message, which
establishes that the SOAP message was generated/sent by the holder of the key.
It is up to the Web service server to verify trust in the X.509 certificate itself.

The Web service server returns a Subject with principals for the SAML assertion to
the Web service client.

7. The Web service client returns the response to the user.

Optionally, the SSL protocol can be used with this assertion. If the SSL protocol is
used, the client certificate can also be used as proof material.

The Security Service Provider Interfaces (SSPIs)
Developers and third-party vendors can use SSPIs to develop custom security
providers for securing the WebLogic Server environment. SSPIs are available for
Adjudication, Auditing, Authentication, Authorization, Credential Mapping, Identity
Assertion, Role Mapping, and Certificate Lookup and Validation.

The SSPIs allow customers to use custom security providers for securing WebLogic
Server resources. Customers can use the SSPIs to develop custom security providers
or they can purchase customer security providers from third-party vendors.

To assist customers in developing custom security providers, sample custom security
providers are also available on the Oracle Technology Network (OTN).

For more information on developing custom security providers, see Introduction to
Developing Security Providers for WebLogic Server in Developing Security Providers
for Oracle WebLogic Server.

WebLogic Security Providers
Security providers are modules that "plug into" a WebLogic Server security realm to
provide security services to applications. WebLogic Server includes security providers
such as WebLogic Authentication provider, WebLogic Authorization provider,
WebLogic Identity Assertion provider and many more.

Chapter 5
The Security Service Provider Interfaces (SSPIs)

5-18

This section provides descriptions of the security providers that are included in the WebLogic
Server product for your use. The security providers call into the WebLogic Security
Framework on behalf of applications.

If the security providers supplied with the WebLogic Server product do not fully meet your
security requirements, you can supplement or replace them with custom security providers.
You develop a custom security provider by:

• Implementing the appropriate security service provider interfaces (SSPIs) from the
weblogic.security.spi package to create runtime classes for the security provider.

• Creating an MBean Definition File (MDF) and using the WebLogic MBeanMaker utility to
generate an MBean type, which is used to configure and manage the security provider.

See Overview of the Development Process in Developing Security Providers for Oracle
WebLogic Server.

Figure 5-11 shows the security providers that are required and those that are optional in a
WebLogic security realm.

Figure 5-11 WebLogic Security Providers

The security providers are described in the following sections:

• WebLogic Authentication Provider

• Alternative Authentication Providers

• Password Validation Provider

• WebLogic Identity Assertion Provider

• SAML Identity Assertion Provider for SAML 1.1

Chapter 5
WebLogic Security Providers

5-19

• Negotiate Identity Assertion Provider

• WebLogic Principal Validation Provider

• WebLogic Authorization Provider

• WebLogic Adjudication Provider

• WebLogic Role Mapping Provider

• WebLogic Auditing Provider

• WebLogic Credential Mapping Provider

• SAML Credential Mapping Provider for SAML 1.1

• SAML 2.0 Credential Mapping Provider

• PKI Credential Mapping Provider

• WebLogic CertPath Provider

• Certificate Registry

• Versionable Application Provider

WebLogic Authentication Provider
The default (active) security realm for WebLogic Server includes a WebLogic
Authentication provider. The WebLogic Authentication provider supports delegated
username/password and WebLogic Server security digest authentication. It utilizes an
embedded LDAP server to store user and group information. This provider allows you
to edit, list, and manage users and group membership.

This provider also provides a set of attributes, such as employee number and
department number, that you can assign to users.

Alternative Authentication Providers
WebLogic Server provides the following additional Authentication providers which can
be used instead of or in conjunction with the WebLogic Authentication provider in the
default security realm:

• A set of LDAP Authentication providers that access external LDAP stores (Open
LDAP, iPlanet, Microsoft Active Directory, Oracle Internet Directory, Oracle Virtual
Directory, and Novell NDS).

• A set of Database Base Management System (DBMS) authentication providers
that access user, password, group, and group membership information stored in
databases for authentication purposes. Optionally, WebLogic Server can be used
to manage the user, password, group, and group membership information. The
DBMS Authentication provider is the upgrade path from the RDBMS security
realm, which was removed from WebLogic Server 12.2.1.

The following DBMS Authentication providers are available:

– SQL Authentication provider - A manageable authentication provider that
supports the listing and editing of user, password, group, and group
membership information.

– Read-only SQL Authentication provider - An authentication provider that
supports authentication of users in a database and the listing of the contents
of the database through the WebLogic Server Administration Console. The

Chapter 5
WebLogic Security Providers

5-20

authentication provider requires a specific set of SQL statements so it might not meet
all customer needs.

– Custom DBMS Authentication provider - A run-time authentication provider that only
supports authentication. This provider require customer-written code that handles
querying the database to obtain authentication information.This authentication
provider is a flexible alternative that allows customer to adapt a DBMS Authentication
provider to meet their special database needs.

• A Windows NT Authentication provider that uses Windows NT users and groups for
authentication purposes. The Windows NT Authentication provider is the upgrade path
for the Window NT security realm. The Windows NT users and groups are displayed
through the WebLogic Server Administration Console however, they cannot be managed
through the console.

• An LDAP X509 Identity Assertion provider that looks up the LDAP object for the user
associated with an X509 certificate, ensures that the certificate in the LDAP object
matches the presented certificate, and then retrieves the name of the user from the LDAP
object for the purpose of authentication.

Note:

By default, these additional Authentication providers are available but not
configured in the WebLogic default security realm.

Password Validation Provider
WebLogic Server includes a Password Validation provider, which manages and enforces a
set of password composition rules when configured with one or more of the following
authentication providers:

• WebLogic Authentication provider

• SQL Authenticator provider

• LDAP Authentication provider

• Active Directory Authentication provider

• iPlanet Authentication provider

• Novell Authentication provider

• Open LDAP Authentication provider

When the Password Validation provider is configured with an authentication provider, the
authentication provider invokes the Password Validation provider whenever a password is
created or updated. The Password Validation provider then performs a check to determine
whether the password meets the criteria established by a set of configurable composition
rules.

WebLogic Identity Assertion Provider
The WebLogic Identity Assertion provider supports certificate authentication using X.509
certificates and CORBA Common Secure Interoperability version 2 (CSIv2) identity assertion.
The WebLogic Identity Assertion provider validates the token type, then maps X.509 digital
certificates and X.501 distinguished names to WebLogic users. It also specifies a list of

Chapter 5
WebLogic Security Providers

5-21

trusted client principals to use for CSIv2 identity assertion. The wildcard character (*)
can be used to specify that all principals are trusted. If a client is not listed as a trusted
client principal, the CSIv2 identity assertion fails and the invoke is rejected.

The WebLogic Identity Assertion provider supports the following token types:

• AU_TYPE - for a WebLogic AuthenticatedUser used as a token.

• X509_TYPE - for an X.509 client certificate used as a token.

• CSI_PRINCIPAL_TYPE - for a CSIv2 principal name identity used as a token.

• CSI_ANONYMOUS_TYPE - for a CSIv2 anonymous identity used as a token.

• CSI_X509_CERTCHAIN_TYPE - for a CSIv2 X.509 certificate chain identity used as a
token.

• CSI_DISTINGUISHED_NAME_TYPE - for a CSIv2 distinguished name identity used as
a token.

• WSSE_PASSWORD_DIGEST - for a wsse:UsernameToken with a password type of
wsse:PasswordDigest used as a token.

SAML Identity Assertion Provider for SAML 1.1
The SAML Identity Assertion provider V2 validates SAML 1.1 assertions and verifies
the issuer is trusted. If so, identity is asserted based on the authentication statement
contained in the assertion.

Provider configuration includes settings that configure and enable SAML source site
and destination site SSO services (such as ITS, ACS, and ARS) to run in the server.

The SAML Identity Assertion provider supports the following SAML Subject
confirmation methods:

• artifact
• bearer
• sender-vouches
• holder-of-key

SAML 2.0 Identity Assertion Provider
Similar to the SAML Identity Assertion provider V2 for SAML 1.1, the SAML 2.0
Identity Assertion provider validates SAML 2.0 assertions and verifies that the issuer is
trusted. If so, identity is asserted based on the authentication statement contained in
the assertion.

Provider configuration includes settings that configure and enable SAML 2.0 Service
Provider services, such as the Assertion Consumer Service and Artifact Resolution
Service, to run in the server.

The SAML 2.0 Identity Assertion provider supports the following SAML Subject
confirmation methods:

• bearer
• sender-vouches

Chapter 5
WebLogic Security Providers

5-22

• holder-of-key

Negotiate Identity Assertion Provider
The Negotiate Identity Assertion provider is used for SSO with Microsoft clients that support
the SPNEGO protocol. Specifically, it decodes SPNEGO tokens to obtain Kerberos tokens,
validates the Kerberos tokens, and maps Kerberos tokens to WebLogic users. The Negotiate
Identity Assertion provider utilizes the Java Generic Security Service (GSS) Application
Programming Interface (API) to accept the GSS security context via Kerberos. For more
information about the Java GSS API, see http://docs.oracle.com/javase/8/docs/
technotes/guides/security/jgss/jgss-features.html.

The Negotiate Identity Assertion provider interacts with the WebLogic Servlet container which
handles WWW-Authenticate and WWW-Authorization headers, adding the appropriate
Negotiate header.

By default, the Negotiate Identity Assertion provider is available but not configured in the
WebLogic default security realm. The Negotiate Identity Assertion provider can be used
instead of or in addition to the WebLogic Identity Assertion provider.

WebLogic Principal Validation Provider
The default (active) security realm for WebLogic Server includes a WebLogic Principal
Validation provider. This provider signs and verifies WebLogic Server principals. In other
words, it signs and verifies principals that represent WebLogic Server users or WebLogic
Server groups.

Note:

You can use the WLSPrincipals class (located in the weblogic.security package) to
determine whether a principal (user or group) has special meaning to WebLogic
Server (that is, whether it is a predefined WebLogic Server user or WebLogic
Server group). Furthermore, any principal that is going to represent a WebLogic
Server user or group needs to implement the WLSUser and WLSGroup interfaces
(available in the weblogic.security.spi package).

The WebLogic Principal Validation provider includes implementations of the WLSUser and
WLSGroup interfaces, named WLSUserImpl and WLSGroupImpl. These are located in the
weblogic.security.principal package. It also includes an implementation of the
PrincipalValidator SSPI called PrincipalValidatorImpl. For more information about the
PrincipalValidator SSPI, see Implement the PrincipalValidator SSPI in Developing Security
Providers for Oracle WebLogic Server.

Much as an Identity Assertion provider supports a specific type of token, a Principal Validation
provider signs and verifies the authenticity of a specific type of principal. Therefore, you can
use the WebLogic Principal Validation provider to sign and verify principals that represent
WebLogic Server users or WebLogic Server groups.

Chapter 5
WebLogic Security Providers

5-23

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/jgss-features.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/jgss-features.html

WebLogic Authorization Provider
As of version 9.1, WebLogic Server includes an Authorization provider that supports
the eXtensible Access Control Markup Language (XACML) 2.0 standard from OASIS.
WebLogic This provider can import, export, persist and execute policy expressed using
all standard XACML 2.0 functions, attributes, and schema elements.

New domains created using WebLogic Server 9.1 and later will default to using the
XACML Authorization provider. Existing domains, upgraded WebLogic Server 9.1 and
later, will continue to use the Authorization provider currently specified, such as third-
party partner providers or the original WebLogic Server proprietary providers. If you
use the WebLogic Server Administration Console to add a new Authorization provider,
you can add the new provider as a DefaultAuthorizer or as a XACML provider.

Custom XACML providers are not supported in this release.

Version 9.1 of WebLogic Server also included the "default" WebLogic Authorization
provider. This provider supplied the default enforcement of authorization for versions of
WebLogic Server prior to 9.1. Using a policy-based authorization engine, the
WebLogic Authorization provider returns an access decision to determine if a particular
user is allowed access to a protected WebLogic resource. The WebLogic Authorization
provider also supports the deployment and undeployment of security policies within
the system.

WebLogic Adjudication Provider
The default (active) security realm for WebLogic Server includes a WebLogic
Adjudication provider. This provider would normally be responsible for tallying the
potentially differing results rendered by multiple Authorization providers' Access
Decisions and rendering a final verdict on whether or not access will be granted to a
WebLogic resource. However, because the default security realm only has one
Authorization provider, only one Access Decision is produced so the WebLogic
Adjudication provider is not used.

The WebLogic Adjudication provider has an attribute called Require Unanimous Permit
that governs its behavior. By default, the Require Unanimous Permit attribute is set to
TRUE, which causes the WebLogic Adjudication provider to act as follows:

• If all the Authorization providers' Access Decisions return PERMIT, then return a
final verdict of TRUE (that is, permit access to the WebLogic resource).

• If some Authorization providers' Access Decisions return PERMIT and others return
ABSTAIN, then return a final verdict of FALSE (that is, deny access to the WebLogic
resource).

• If any of the Authorization providers' Access Decisions return ABSTAIN or DENY,
then return a final verdict of FALSE (that is, deny access to the WebLogic
resource).

If you change the Require Unanimous Permit attribute to FALSE, the WebLogic
Adjudication provider acts as follows:

• If all the Authorization providers' Access Decisions return PERMIT, then return a
final verdict of TRUE (that is, permit access to the WebLogic resource).

Chapter 5
WebLogic Security Providers

5-24

• If some Authorization providers' Access Decisions return PERMIT and others return
ABSTAIN, then return a final verdict of TRUE (that is, permit access to the WebLogic
resource).

• If any of the Authorization providers' Access Decisions return DENY, then return a final
verdict of FALSE (that is, deny access to the WebLogic resource).

Note:

You set the Require Unanimous Permit attributes when you configure the
WebLogic Adjudication provider. For more information about configuring an
Adjudication provider, see Configuring the WebLogic Adjudication Provider in
Administering Security for Oracle WebLogic Server.

WebLogic Role Mapping Provider
As of version 9.1, WebLogic Server includes a Role Mapping provider that supports the
eXtensible Access Control Markup Language (XACML) 2.0 standard from OASIS. WebLogic
This provider can import, export, persist and execute policy expressed using all standard
XACML 2.0 functions, attributes, and schema elements.

New domains created using WebLogic Server 9.1 and later will default to using the XACML
Role Mapping provider. Existing domains, upgraded to WebLogic Server 9.1 and later, will
continue to use the Role Mapping provider currently specified, such as third-party partner
providers or the original WebLogic Server proprietary providers. If you use the WebLogic
Server Administration Console to add a new Role Mapping provider, you can add the new
provider as a DefaultRoleMapper or as a XACML provider.

Custom XACML providers are not supported in this release.

Version 9.1 of WebLogic Server also included the "default" WebLogic Role Mapping provider.
This provider supplied the default enforcement of role mapping for versions of WebLogic
Server prior to WebLogic Server 9.1. This provider determines dynamic roles for a specific
user (subject) with respect to a specific protected WebLogic resource for each of the default
users and WebLogic resources. The WebLogic Role Mapping provider supports the
deployment and undeployment of roles within the system. The WebLogic Role Mapping
provider uses the same security policy engine as the WebLogic Authorization provider.

WebLogic Auditing Provider
The default (active) security realm for WebLogic Server includes a WebLogic Auditing
provider. This provider records information from a number of security requests, which are
determined internally by the WebLogic Security Framework. The WebLogic Auditing provider
also records the event data associated with these security requests, and the outcome of the
requests.

WebLogic Credential Mapping Provider
The default (active) security realm for WebLogic Server includes a WebLogic Credential
Mapping provider. You use the WebLogic Credential Mapping provider to associate, or map,
a WebLogic Server user to the appropriate credentials to be used with a Resource Adapter to
access an Enterprise Information System (EIS), for example, some relational database like
Oracle, SQL Server, and so on. The provider maps a user's authentication credentials

Chapter 5
WebLogic Security Providers

5-25

(username and password) to those required for legacy applications, so that the legacy
application gets the necessary credential information. For example, the EIS may be a
mainframe transaction processing, database systems, or legacy applications not
written in the Java programming language.

If you only want to map WebLogic Server users and groups to username/password
credentials in another system, then the WebLogic Credential Mapping provider is
sufficient.

SAML Credential Mapping Provider for SAML 1.1
The SAML Credential Mapping provider V2 generates SAML 1.1 assertions for
authenticated subjects based on relying party/destination site configuration. Assertions
contain an authentication statement and, optionally, an attribute statement containing
WebLogic Server group information. If the requested target has not been configured
and no defaults are set, an assertion will not be generated. User information and group
membership (if configured as such) are put in the AttributeStatement.

The WebLogic Server Administration Console Federation Services configuration pages
include settings that configure and enable SAML source site and destination site SSO
services (such as ITS, ACS, and ARS) to run in the server.

The provider supports the following SAML Subject confirmation methods:

• artifact
• bearer
• sender-vouches
• holder-of-key

SAML 2.0 Credential Mapping Provider
The SAML 2.0 Credential Mapping provider generates SAML 2.0 assertions for
authenticated subjects based on the configuration of Identity Provider services and the
set of Service Provider partners. Assertions contain an authentication statement and,
optionally, an attribute statement containing WebLogic Server group information. If the
requested target has not been configured and no defaults are set, an assertion will not
be generated. User information and group membership (if configured as such) are put
in the AttributeStatement.

The WebLogic Server Administration Console Federation Services configuration pages
for SAML 2.0 include settings that configure and enable SAML 2.0 source site and
destination site services (such as Single Sign-On, and Artifact Resolution Service) to
run in the server.

The provider supports the following SAML Subject confirmation methods:

• bearer
• sender-vouches
• holder-of-key

Chapter 5
WebLogic Security Providers

5-26

PKI Credential Mapping Provider
The PKI (Public Key Infrastructure) Credential Mapping provider maps a WebLogic Server
subject (the initiator) and target resource (and an optional credential action) to a public/
private key pair or public certificate that should be used by the application when using the
targeted resource. This provider can also map an alias to a public/private key pair or public
certificate. The PKI Credential Mapping provider uses the subject and resource name, or the
alias, to retrieve the corresponding credential from the keystore.

WebLogic CertPath Provider
The WebLogic CertPath provider is both a CertPath Builder and a CertPath Validator. The
provider completes certificate paths and validates the certificates using the trusted CA
configured for a particular server instance.If a certificate chain cannot be completed, it is
invalid.

The WebLogic CertPath provider also checks the signatures in the chain, ensures that the
chain has not expired, and checks that one of the certificates in the chain is issued by one of
the trusted CAs configured for the server. If any of these checks fail, the chain is not valid.

Finally, the provider checks that the each certificate's basic constraints (that is, the ability of
the certificate to issue other certificates) to ensure the certificate is in the proper place in the
chain.

The WebLogic CertPath provider can be used as CertPath Builder or a CertPath Validator in
a security realm.

Certificate Registry
The Certificate Registry allows the system administrator to explicitly configure a list of trusted
CA certificates that are allowed access to the server. The Certificate Registry provides an
inexpensive mechanism for performing revocation checking. An administrator revokes a
certificate by removing it from the certificate registry. The registry is stored in the embedded
LDAP server.

Certificate Registries are configured on a per domain basis rather than a per server basis.

The Certificate Registry is both a CertPath Builder and a CertPath Validator. In either case,
the Certificate Registry ensures that the chain's end certificate is stored in the registry.

Versionable Application Provider
A versionable application is an application that has an application archive version specified in
the manifest of the application archive (EAR file). Versionable applications can be deployed
side-by-side and active simultaneously. Versionable applications allow multiple versions of an
application, where security constraints can vary between the application versions.

The Versionable Application provider SSPI enables all security providers that support
application versioning to be notified when versions are created and deleted. It also enables
all security providers that support application versioning to be notified when non-versioned
applications are removed.

Chapter 5
WebLogic Security Providers

5-27

Glossary

access control list (ACL)
In WebLogic 6.x, a data structure used to control access to computer resources. Each entry
on the access control list (ACL) contains a set of permissions associated with a particular
principal that represents an individual user or a group of users. Entries can be positive or
negative. An entry is positive if it grants permission and negative if it denies permission. In
WebLogic Server 7.0 and later, ACLs are deprecated and are replaced by security policies. In
WebLogic Server 12.2.1, ACL support is removed.

Access Decision
Code that determines whether a subject has permission to perform a given operation on a
WebLogic resource. The result of an Access Decision is to permit, deny, or abstain from
making a decision. An Access Decision is a component of an Authorization provider. See also
Authorization provider, subject, WebLogic resource.

ACL
See access control list (ACL).

Adjudication provider and Adjudicator
A WebLogic security provider that tallies the results that multiple Access Decisions return,
resolves conflicts between the Access Decisions, and determines the final PERMIT or DENY
decision. The Adjudicator is a component of the Adjudication provider. See also Access
Decision, security provider.

Artifact Resolution Service (ARS)
An addressable SAML service that stores the content for a SAML artifact and responds to
artifact resolution requests sent by either an Identity Provider or Service Provider partner.

asserting party
When using web SSO, asserts that a user has been authenticated and given associated
attributes. For example, there is a user John Doe, he has an email address of
john.doe@example.com and he authenticated to this domain using a password mechanism.

Glossary-1

In web SSO, asserting parties are also known as SAML authorities. See also relying
party, Security Assertion Markup Language (SAML), single sign-on.

assertion
An XML statement about whether or not a user has been logged in to a domain.
Assertions can be thought of as XML representations of a Subject containing a
username and groups.

Assertion Consumer Service (ACS)
An addressable component that receives assertions and/or artifacts generated by a
SAML partner and uses them to authenticate users at the Service Provider, or
destination, site.

Assertion Receiver Service (ARS)
An addressable component in the SAML 1.1 architecture that converts artifacts into
SAML 1.1 assertions.

asymmetric key cryptography
A key-based cryptography that uses an encryption algorithm in which different keys,
private and public, are used to encrypt and decrypt the data. Data that is encrypted
with the public key can be decrypted only with the private key. This asymmetry is the
property that makes public key cryptography so useful. Asymmetric key cryptography
is also called public key cryptography. See also private key, public key, symmetric key
cryptography.

auditing
Process whereby information about operating requests and the outcome of those
requests is collected, stored, and distributed for the purposes of non-repudiation.
Auditing provides an electronic trail of computer activity. See also Auditing provider.

Auditing provider
A security provider that provides auditing services. See also auditing, security
provider.

authentication
Process whereby the identity of users or system processes are proved or verified.
Authentication also involves remembering, transporting, and making identity
information available to various components of a system when that information is
needed. Authentication typically involves username/password combinations, but can

Glossary

Glossary-2

also be done using tokens. See also Authentication provider, identity assertion, LoginModule,
perimeter authentication, token, user.

Authentication provider
A security provider that enables WebLogic Server to establish trust by validating a user. The
WebLogic Security Service architecture supports Authentication providers that perform
username/password authentication; certificate-based authentication directly with WebLogic
Server; and HTTP certificate-based authentication proxied through an external Web server.
See also authentication, digital certificate, security provider, user.

authorization
Process whereby a user's access to a WebLogic resource is permitted or denied based on
the user's security role and the security policy assigned to the requested WebLogic resource.
See also Authorization provider, security policy, user, WebLogic resource.

Authorization provider
A security provider that controls access to WebLogic resources based on the user's security
role and the security policy assigned to the requested WebLogic resource. See also security
provider, user, WebLogic resource.

certificate
See digital certificate.

certificate authentication
Method of providing a confident identification of a client by a server through the use of digital
certificates. Certificate authentication is generally preferred over password authentication
because it is based on what the user has (a private key), as well as what the user knows (a
password that protects the private key).

certificate authority
A trusted entity that issues public key certificates. A certificate authority attests to a user's
real-world identity, much as a notary public does. See also certificate chain, digital certificate,
entity, private key, public key, trusted (root) certificate authority.

certificate chain
An array that contains a private key, the matching public key, and a chain of digital certificates
for trusted certificate authorities, each of which is the issuer of the previous digital certificate.
The certificate for the server, authority, authority2, and authority3, constitute a chain, where
the server certificate is signed by the authority, the authority's certificate is signed by
authority2, and authority2's certificate is signed by authority3. If the certificate authority for

Glossary

Glossary-3

any of these authorities is recognized by the client, the client authenticates the server.
See also trusted (root) certificate authority.

Certificate Lookup and Validation (CLV) framework
A WebLogic Server framework which completes certificate paths and validates X509
certificate chains. The CLV framework receives a certificate or certificate chain,
completes the chain (if necessary), and validates the certificates in the chain.

Certificate Reference
An string that uniquely identifies the certificate chain. For example, a subject DN or an
issuer DN plus a serial number.

Certificate Registry
A list of trusted CA certificates that are allowed to access the servers in a domain. The
Certificate Registry provides a mechanism for revocation checking. Only certificates in
the Certificate Registry are valid.

Certificate Revocation List (CRL)
A list of certificates that a trusted CA has revoked.

CertPath
A JDK class that stores a certificate chain in-memory. Also used to refer to the JDK
architecture and framework used to locate and validate certificate chains.

CertPath Builder
A provider in the Certificate Lookup and Validation (CLV) framework that completes the
certificate path (if necessary) and validates the certificates.

CertPath Validator
A provider in the CLV framework that validates the certificates in a certificate chain.

connection filter
A programmable filter that WebLogic Server uses to determine whether the server
should allow incoming connections from a network client. In addition to security
policies that protect WebLogic resources based on user characteristics, you can add
another layer of security by filtering based on network connections. See also security
policy, user, WebLogic resource.

Glossary

Glossary-4

connector
See resource adapter

context handler
A ContextHandler is a high-performing WebLogic class that obtains additional context and
container-specific information from the resource container, and provides that information to
security providers making access or role mapping decisions. The ContextHandler interface
provides a way for an internal WebLogic resource container to pass additional information to
a WebLogic Security Framework call, so that a security provider can obtain contextual
information beyond what is provided by the arguments to a particular method. A
ContextHandler is essentially a name/value list, and as such, it requires that a security
provider know what names to look for. (In other words, use of a ContextHandler requires
close cooperation between the WebLogic resource container and the security provider.) See
also security provider, WebLogic container, WebLogic Security Framework.

credential
Security-related attribute of a subject, which may contain information used to authenticate the
subject to new services. Types of credentials include username/password combinations,
Kerberos tickets, and public key certificates. See also credential mapping, Credential
Mapping provider, digital certificate, Kerberos ticket, public key, subject.

credential mapping
The process whereby a legacy system's database is used to obtain an appropriate set of
credentials to authenticate users to a target resource. WebLogic Server uses credential
mapping to map credentials used by WebLogic Server users to credentials used in a legacy
(or any remote) system. WebLogic Server then uses the credential maps to log in to a remote
system on behalf of a subject that has already been authenticated. See also credential,
Credential Mapping provider, resource.

Credential Mapping provider
A security provider that is used to provide credential mapping services and bring new types of
credentials into the WebLogic Server environment. See also credential, credential mapping,
security provider.

Cross-Domain Single Sign-on
WebLogic Server security feature that allows users to authenticate once but access multiple
applications, even if these applications reside in different DNS domains. You can use this
feature to construct a network of affiliates or partners that participate in a Single Sign-On
domain. See also single sign-on.

CSIv2 protocol
A protocol that is based on IIOP (GIOP 1.2) and the CORBA Common Secure Interoperability
version 2 (CSIv2) CORBA specification. The secure interoperability requirements for EJB2.0

Glossary

Glossary-5

and other Java EE 1.4.1 containers correspond to Conformance Level 0 of the CSIv2
specification. The CORBA Security Attribute Service (SAS) is the protocol that is used
in CSIv2. See http://www.omg.org/spec/CORBA/.

custom security provider
Security provider written by third-party security vendors or security developers that can
be integrated into the WebLogic Security Service. Custom security providers are
implementations of the Security Service Provider Interfaces (SSPIs) and are not
supplied with the WebLogic Server product.

database delegator
Intermediary class that mediates initialization calls between a security provider and the
security provider's database. See also security provider database.

Database Management System (DBMS) Authentication provider
A security provider that accesses user, password, group, and group membership
information stored in databases for authentication purposes. Optionally, WebLogic
Server can be used to manage the user, password, group, and group membership
information.

declarative security
Security that is defined, or declared, using the application deployment descriptors. For
Web applications, you define the deployment descriptors in the web.xml and
weblogic.xml files. For EJBs, you define the deployment descriptors in the ejb-
jar.xml and weblogic-ejb-jar.xml files.

default realm
The active security realm. In WebLogic Server 7.0 and later, you can configure multiple
active security realms in a WebLogic Server domain; however, only one can be the
default administrative security realm. See also security realm and WebLogic Server
domain.

digest authentication
An authentication mechanism in which a Web application authenticates itself to a Web
service by sending the server a message digest along with its HTTP request message.
The digest is computed by employing a one-way hash algorithm to a concatenation of
the HTTP request message and the client's password. The digest is typically smaller
than the HTTP request and does not contain the password.

digital certificate
Digital statement that associates a particular public key with a name or other
attributes. The statement is digitally signed by a certificate authority. By trusting that

Glossary

Glossary-6

http://www.omg.org/spec/CORBA/

authority to sign only true statements, you can trust that the public key belongs to the person
named in the certificate. See also digital signature, public key, trusted (root) certificate
authority.

digital signature
String of bits used to protect the security of data being exchanged between two entities by
verifying the identities of those entities. Specifically, this string is used to verify that the data
came from the sending entity of record and was not modified in transit. A digital signature is
computed from an entity's signed data and private key. It can be trusted only to the extent
that the public key used to verify it can be trusted. See also entity, private key, public key.

Domain Configuration Wizard
An interactive, graphical user interface (GUI) that facilitates the creation of a new WebLogic
Server domain. The wizard can create WebLogic Server domain configurations for stand-
alone servers, Administration Servers with Node Managers and Managed Servers, and
clustered servers. You can use it to create the appropriate directory structure for your
WebLogic Server domain, a basic config.xml file, and scripts that you can use to start the
servers in your domain.

domain controller
A machine which holds Windows NT domain information. When configuring the Windows NT
Authentication provider, the domain controller needs to be specified. See also Windows NT
Authentication provider.

embedded LDAP server
A server that contains user, group, security role, security policy and credential information.
The WebLogic Authentication, Authorization, Role Mapping, and Credential Mapping
providers use the embedded LDAP server as their security provider databases. See also
credential, group, security policy, security role.

end certificate
The last certificate considered in a certificate chain.

entity
Something that exists independently as a particular and discrete unit. Persons, corporations,
and objects are examples of entities.

filter
As defined by the Java Servlet API specification, filters are objects that can transform a
request or modify a response. Filters are not servlets, they do not actually create a response.
They are preprocessors of the request before it reaches the servlet, and/or postprocessors of

Glossary

Glossary-7

the response leaving the servlet. Filters provide the ability to encapsulate recurring
tasks in reusable units and can be used to transform the response from a servlet or
JSP page.

firewall
Software that monitors traffic between an internal network and the Internet, and that
regulates the type of network traffic that can enter and leave the internal network. A
firewall can be connected to the Internet or set up within a company's network to
prevent unauthorized access to the network. Firewalls protect information on
computers and information that is being carried over the network. Firewalls use
various types of filters to prevent access, including limiting the types of protocols
allowed and restricting access from network nodes by IP addresses and DNS node
names.

global role
A security role that applies to all WebLogic resources within a security realm. For
example, if the WebLogic Role Mapping provider is being used in the default security
realm, global roles can be defined in terms of user, group, and hours of access. See
also Role Mapping provider, scoped role, security realm, security role, WebLogic
resource.

group
Collection of users that share some characteristic, such as a department, a job
function, or a job title. Groups are a static identity that a server administrator assigns.
Groups are associated with security roles. Giving permission to a group is the same as
giving the permission to each user who is a member of the group. See also user.

host name verification
The process of verifying that the name of the host to which an SSL connection is made
is the intended or authorized party. See also host name verifier, Secure Sockets Layer
(SSL).

host name verifier
Code that validates that the host to which an SSL connection is made is the intended
or authorized party. A host name verifier is useful when a WebLogic Server client or a
WebLogic Server instance acts as an SSL client to another application server. It helps
prevent man-in-the-middle attacks. By default, WebLogic Server, as a function of the
SSL handshake, compares the common name in the subject distinguished name (DN)
of the SSL server's digital certificate with the host name of the SSL server used to
initiate the SSL connection. If the subject DN and the host name do not match, the

Glossary

Glossary-8

SSL connection is dropped. See also digital certificate, host name verification, Secure
Sockets Layer (SSL), subject.

identity assertion
Special type of authentication whereby a client's identity is established through the use of
client-supplied tokens that are generated from an outside source. Identity is asserted when
these tokens are mapped to usernames. For example, the client's identity can be established
by using a digital certificate, and that certificate can be passed around the system so that
users are not asked to sign on more than once. Thus, identity assertion can be used to
enable single sign-on. See also authentication, digital certificate, Identity Assertion provider,
single sign-on, SSL tunneling, token.

Identity Assertion provider
A security provider that performs perimeter authentication - a special type of authentication
using tokens. Identity Assertion providers also allow WebLogic Server to establish trust by
validating a user. Thus, the function of an Identity Assertion provider is to validate and map a
token to a username. See also perimeter authentication, security provider, token, user.

Identity Provider
A system, or administrative domain, that asserts that a user has been authenticated and is
given associated attributes. For example, there is a user John Doe who has an email address
of john.doe@example.com and he authenticated to this domain using a password
mechanism. Also known as a SAML authority, or asserting party.

Intersite Transfer Service (ITS)
An addressable component in the SAML 1.1 architecture that provides a point of functionality
for SAML 1.1 processing, such as artifact or redirect generation.

JAAS control flag
If a security realm has multiple Authentication providers configured, the JAAS control flag
determines how the login sequence uses the Authentication providers. See also
Authentication provider.

JAAS LoginModule
Responsible for authenticating users within the security realm and for populating a subject
with the necessary principals (users/groups). A LoginModule is a required component of an
Authentication provider, and can be a component of an Identity Assertion provider if you want
to develop a separate LoginModule for perimeter authentication. LoginModules that are not
used for perimeter authentication also verify the proof material submitted (for example, a

Glossary

Glossary-9

user's password). See also authentication, group, Identity Assertion provider,
perimeter authentication, principal, security realm, subject.

Java Authentication and Authorization Service (JAAS)
Set of Java packages that enable services to authenticate and enforce access controls
upon users. JAAS implements a Java version of the standard Pluggable
Authentication Module (PAM) framework, and supports user-based authorization.
WebLogic Server only implements the authentication portion of JAAS. See also
authentication, authorization, user.

Java Authorization Contract for Containers (JACC)
A permissions-based security model for EJBs and servlets. JACC can be used as a
replacement for the EJB and Servlet container deployment and authorization provided
by WebLogic Server.

Java Cryptography Architecture
A framework for accessing and developing cryptographic functionality for the Java
platform. For a description of the Java Cryptography Architecture see http://
docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/
CryptoSpec.html. See also Java Cryptography Extensions (JCE).

Java Cryptography Extensions (JCE)
Set of Java packages that extends the Java Cryptography Architecture API to include
APIs for encryption, key exchange, and Message Authentication Code (MAC)
algorithms. (JCE should be thought of as a part of the JCA.) See http://
docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/
CryptoSpec.html for a description of JCE. See also Java Cryptography Architecture.

Java Naming and Directory Interface (JNDI)
The Java Naming and Directory Interface (JNDI) is an application programming
interface (API) that provides naming services to Java applications. JNDI is an integral
component of the Java EE technology and is defined to be independent of any specific
naming or directory service implementation. It supports the use of a single method for
accessing various new and existing services. This support allows any service-provider
implementation to be plugged into the JNDI framework using the standard service
provider interface (SPI) conventions. In addition, JNDI allows Java applications in
WebLogic Server to access external directory services such as LDAP in a
standardized fashion, by plugging in the appropriate service provider.

Java Security Manager
Security manager for the Java virtual machine (JVM). The Java Security Manager
works with the Java API to define security boundaries through the

Glossary

Glossary-10

http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

java.lang.SecurityManager class, thus, enabling developers to establish a custom security
policy for their Java applications.

WebLogic Server supports the use of the Java Security Manager to prevent untrusted code
from performing actions that are restricted by the Java security policy file. The Java Security
Manager uses the Java security policy file to enforce a set of permissions granted to classes.
The permissions allow specified classes running in that instance of the JVM to permit or deny
certain runtime operations. See also Java security policy file, policy condition.

Java security policy file
File used by the Java Security Manager to enforce a set of permissions granted to specified
classes running in an instance of the WebLogic Server-supported Java Virtual Machine
(JVM). Classes running in that instance of the JVM use the permissions to permit or deny
certain runtime operations. See also Java Security Manager, policy condition.

JNDI
See Java Naming and Directory Interface (JNDI).

KDC/TGS
Key Distribution Center/Ticket Granting Service. In Kerberos authentication, the KDC
maintains a list of user principals and is contacted through the kinit program for the user's
initial ticket. The Ticket Granting Service maintains a list of service principals and is contacted
when a user wants to authenticate to a server providing such a service.

The KDC/TGS is a trusted third party that must run on a secure host. It creates ticket-granting
tickets and service tickets. The KDC and TGS are usually the same entity.

Kerberos
A network authentication service developed under Massachusetts Institute of Technology's
Project Athena that strengthens security in distributed environments. Kerberos is a trusted
third-party authentication system that relies on shared secrets and assumes that the third
party is secure. It provides single sign-on capabilities and database link authentication (MIT
Kerberos only) for users, provides centralized password storage, and enhances PC security.

Kerberos ticket
A sequence of a few hundred bytes in length that is used to control access to physically
insecure networks. Kerberos tickets are based on the Kerberos protocol. Kerberos is a
network authentication protocol that allows entities (users and services) communicating over
networks to prove their identity to each other, while preventing eavesdropping or replay
attacks. The protocol was designed to provide strong authentication for client/server
applications by using secret-key cryptography. See http://web.mit.edu/kerberos/www/.
See also private key.

Glossary

Glossary-11

http://web.mit.edu/kerberos/www/

keystore
An in-memory collection of private key and trusted certificate pairs. The information is
protected by a passphrase, such as a password, a credit card number, Personal
Identification Number, or some other form of personal identification information. In the
WebLogic Server Administration Console, the keystore is referred to as the Trusted
Keystore. See the Javadoc, which is available at http://docs.oracle.com/javase/8/
docs/api/index.html. See also private key and trusted (root) certificate authority.

LDAP Authentication provider
Authentication provider that uses a Lightweight Data Access Protocol (LDAP) server to
access user and group information, for example, iPlanet's Active Directory and Novell's
OpenLDAP. See also group, user.

LoginModule
See JAAS LoginModule.

MBean
Short for "managed bean," a Java object that represents a Java Management
eXtensions (JMX) manageable resource. MBeans are instances of MBean types.
MBeans are used to configure and manage security providers. See also MBean type,
security provider.

MBean Definition File (MDF)
An XML file used by the WebLogic MBeanMaker to generate files for an MBean type.
See also MBean type, WebLogic MBeanMaker.

MBean implementation file
One of several intermediate Java files generated by the WebLogic MBeanMaker utility
to create an MBean type for a custom security provider. You edit this file to supply your
specific method implementations. See also MBean information file, MBean interface
file, MBean type, WebLogic MBeanMaker.

MBean information file
One of several intermediate Java files generated by the WebLogic MBeanMaker utility
to create an MBean type for a custom security provider. This file contains mostly
metadata and therefore requires no editing. See also MBean implementation file,
MBean interface file, MBean type, WebLogic MBeanMaker.

MBean interface file
One of several intermediate Java files generated by the WebLogic MBeanMaker utility
to create an MBean type for a custom security provider. This file is the client-side API

Glossary

Glossary-12

http://docs.oracle.com/javase/8/docs/api/index.html
http://docs.oracle.com/javase/8/docs/api/index.html

to the MBean that your runtime class or your MBean implementation will use to obtain
configuration data, and requires no editing. See also MBean implementation file, MBean
information file, MBean type, runtime class, WebLogic MBeanMaker.

MBean JAR File (MJF)
JAR file that contains the runtime classes and MBean types for a security provider. MJFs are
created by the WebLogic MBeanMaker. See also MBean type, runtime class, security
provider, WebLogic MBeanMaker.

MBean type
Factory for creating the MBeans used to configure and manage security providers. MBean
types are created by the WebLogic MBeanMaker. See also MBean, security provider,
WebLogic MBeanMaker.

message digest
A digitally created hash, or fingerprint, created from a block of plain text. Even though the
complete message is used to create the hash, the message cannot be recreated from the
hash. Message digests help prevent man-in-the-middle attacks. Because there is only one
digest for any given block of plain text, the digest can be used to verify the authenticity of the
message. Thus, this process results in a digital signature of the message, which can be used
to provide non-repudiation and integrity services. See also message digest algorithm.

message digest algorithm
A computational procedure that is used to produce a message digest from a block of plain
text. Once a message digest is produced, other security mechanisms are used to encrypt and
convey the digest. See also message digest.

mutual authentication
Authentication that requires both client and server to present proof of identity. Two-way SSL
authentication is a form of mutual authentication in that both client and server present digital
certificates to prove their identity. However, with two-way SSL, the authentication happens at
the SSL level, whereas other forms of mutual authentication are executed at higher levels in
the protocol stack. See also authentication, digital certificate, Secure Sockets Layer (SSL),
two-way SSL authentication, trusted (root) certificate authority.

nonce
An opaque token used in Digest authentication.

Glossary

Glossary-13

non-repudiation
Irrefutable evidence that a security event occurred.

one-way SSL authentication
Type of SSL authentication which requires the server to present a certificate to the
client, but the client is not required to present a certificate to the server. The client
must authenticate the server, but the server will accept any client into the connection.
Enabled by default in WebLogic Server. See also mutual authentication, two-way SSL
authentication.

Password Validation provider
Security provider that can be configured with an authentication provider to enforce a
set of password composition rules.

perimeter authentication
Authentication that occurs outside the application server domain. Perimeter
authentication is typically accomplished when a remote user specifies an asserted
identity and some form of corresponding proof material, normally in the form of a
passphrase (such as a password, a credit card number, Personal Identification
Number, or some other form of personal identification information.), to an
authentication server (typically a Web server) that performs the verification and then
passes an artifact, or token, to the application server domain (for example, a WebLogic
Server domain). The application server can then pass the token around to systems in
the domain so that users are not asked to sign on more than once.

The authentication agent, the entity that actually vouches for the identity, can take
many forms, such as a Virtual Private Network (VPN), a firewall, an enterprise
authentication service (Web server), or some other form of global identity service.

The WebLogic Server security architecture supports Identity Assertion providers that
perform perimeter authentication (Web server, firewall, VPN) and handle multiple
security token types and protocols (SOAP, IIOP-CSIv2). See also authentication and
identity assertion.

policy condition
A condition under which a security policy will be created. Policy conditions, along with
the specific information you supply for the condition (such as an actual user name,
group, security role, or start/stop times), are called expressions. See also policy
statement.

policy expression
See policy statement.

Glossary

Glossary-14

policy statement
A policy statement is the collection of expressions that define who is granted access to a
WebLogic resource, and is therefore the main part of any security policy you create. Policy
statements are also referred to as policy expressions. See also policy condition.

principal
The identity assigned to a user, group, or system process as a result of authentication. A
principal can consist of any number of users and groups. Principals are typically stored within
subjects. See also authentication, group, subject, user.

principal validation
The act of signing and later verifying that a principal has not been altered since it was signed.
Principal validation establishes trust of principals. See also principal.

private key
An encryption/decryption key known only to the party or parties that exchange secret
messages. It is called private because it must be kept secret from everyone but the owner.
See also public key.

private key algorithm
The computational procedure used to encode, or encrypt, ciphertext. Data encrypted with the
private key can only be decrypted by the public key. See also private key and public key.

programmatic security
Application security that is defined in servlets and EJBs using Java methods.

public key
Value provided by a certificate authority as an encryption/decryption key that, combined with
a private key, can be used to effectively encrypt and decrypt messages and digital signatures.
The key is called public because it can be made available to anyone. Public key cryptography
is also called asymmetric cryptography because different keys are used to encrypt and
decrypt the data. See also asymmetric key cryptography and private key.

public key algorithm
The computational procedure used to encode, or encrypt, plain text. Data encrypted with the
public key can only be decrypted by the private key. See also private key, private key
algorithm, and public key.

Glossary

Glossary-15

public key cryptography
See asymmetric key cryptography.

RDBMS security store
An external RDBMS containing a datastore that, when configured in a domain, is used
by select security providers for storing security data.

relying party
In web SSO, determines whether assertions provided to it by an asserting party should
be trusted. SAML defines a number of mechanisms that enable the relying party to
trust the assertions provided to it. Although a relying party may trust the assertions
provided to it, local access policy defines whether the subject may access local
resources. Therefore, even if a relying party trusts that a user is John Doe, it does not
mean John Doe can access all the resources in the domain. See also asserting party,
Identity Provider, Security Assertion Markup Language (SAML), single sign-on.

resource
See WebLogic resource.

resource adapter
System-level software driver (also called a connector) used by an application server
(such as WebLogic Server) or an application client to connect to an enterprise
information system (EIS). Resource adapters contain the Java components and, if
necessary, the native components required to interact with the EIS.

The WebLogic Java EE Connector Architecture supports resource adapters developed
by EIS vendors and third-party application developers that can be deployed in any
application server supporting the Java EE Platform Specification.

Responder service
The URL on the SAML source site that will process requests for SAML. See also
SAML source site.

role condition
A condition under which a security role (global or scoped) will be granted to a user or
group. Role conditions, along with the specific information you supply when creating
the condition (such as an actual user name, group, or start/stop times), are called
expressions. See security policy, role mapping.

Glossary

Glossary-16

role expression
Specific information that you supply when creating role conditions. See role condition.

role mapping
Process by which the WebLogic Security Service compares users or groups against a
security role condition to determine whether they should be dynamically granted a security
role. Role mapping occurs at runtime, just prior to when an Access Decision is rendered for a
protected WebLogic resource. See also Access Decision, group, principal, role condition,
security role, user, WebLogic resource, WebLogic Security Service.

Role Mapping provider
A security provider that determines what security roles apply to the principals stored in a
subject when the subject is attempting to perform an operation on a WebLogic resource.
Because this operation usually involves gaining access to the WebLogic resource, Role
Mapping providers are typically used with Authorization providers. See also Authorization
provider, principal, security role, subject, WebLogic resource.

role statement
A collection of expressions that define how a security role is granted, and is therefore the
main part of any security role you create. See role expression.

runtime class
Java class that implements a Security Service Provider Interface (SSPI) and contains the
actual security-related behavior for a security provider. See also security provider, Security
Service Provider Interfaces (SSPIs).

SAML artifact
A small data object containing a pointer to a SAML protocol message. A SAML artifact is
typically embedded in a SAML request/response, and partner that receives the SAML
request/response subsequently de-references the SAML artifact to obtain the SAML protocol
message by invoking the sending partner's Artifact Resolution Service. See also Artifact
Resolution Service (ARS).

SAML assertion
A package of information that supplies one or more statements made by a SAML Authority.
The following types of statements are supported:

• Authentication statements which say when and how a subject was authenticated.

• Attribute statements which provide specific information about the subject (for example,
what groups the Subject is a member of).

Glossary

Glossary-17

• Authorization statements identity what the Subject is entitled to do.

SAML authority
An entity that can make authoritatively assert security information in the form of SAML
assertions. See also Identity Provider, asserting party, Single Sign-On Service.

SAML binding
Details exactly how the SAML protocol maps onto transport and messaging protocols.

SAML destination site
The receiver of a SAML assertion. See also Service Provider.

SAML profile
Technical descriptions of particular flows of assertions and protocol messages that
define how SAML can be used for a particular purpose.

SAML source site
A system, or administrative domain, that asserts that a user has been authenticated
and is given associated attributes. A SAML source can be either the site that
authenticates the user (such as with the SAML Web SSO profile), or the site that is
forwarding identity when acting as a client (such as with Web Services Security SAML
Token profile). See also Identity Provider.

schema
A data structure associated with the data stored in a database. The DBMS
Authentication providers require that the schema used to store data in the database be
defined during configuration.

scoped role
A security role that applies to a specific WebLogic resource in a security realm. See
also global role, Role Mapping provider, security role, security realm.

secret key cryptography
See symmetric key cryptography.

Secure Sockets Layer (SSL)
An Internet transport-level technology to provide data privacy between applications.
Generally, Secure Sockets Layer (SSL) provides (1) a mechanism that the applications
can use to authenticate each other's identity and (2) encryption of the data exchanged

Glossary

Glossary-18

by the applications. SSL supports the use of public key cryptography for authentication, and
secret key cryptography and digital signatures to provide privacy and data integrity. See also
authentication, digital signature, public key cryptography, symmetric key cryptography.

Security Assertion Markup Language (SAML)
An XML-based framework for exchanging security information. SAML implementations
provide an interoperable, XML-based, security solution that allows authentication and
authorization information to be exchanged securely. SAML is the key to enabling single sign-
on capabilities for Web services. See http://xml.coverpages.org/saml.html.

You can develop custom Identity Assertion providers for WebLogic Server that support
different token types, including SAML. See also authentication, authorization, identity
assertion, perimeter authentication, Cross-Domain Single Sign-on, and user.

security policy
An association between a WebLogic resource and a user, group, or security role that protects
the WebLogic resource against unauthorized access. A WebLogic resource has no protection
until you assign it a security policy. You can assign security policies to an individual WebLogic
resource or to components of the WebLogic resource.

In WebLogic Server 7.0 and later, security policies replace access control lists (ACLs). See
also access control list (ACL), group, security role, user, and WebLogic resource.

security provider
In WebLogic Server 7.0 and later, software modules that can be "plugged into" a WebLogic
Server security realm to provide security services (such as authentication, authorization,
auditing, and credential mapping) to applications. A security provider consists of runtime
classes and MBeans, which are created from SSPIs and MBean types, respectively. Security
providers are WebLogic security providers (provided with WebLogic Server) or custom
security providers. See also custom security provider, MBean, MBean type, runtime class,
Security Service Provider Interfaces (SSPIs), WebLogic security provider.

security provider database
Database that contains the users, groups, security policies, roles, and credentials used by
some types of security providers to provide security services. The security provider database
can be the embedded LDAP server (as used by the WebLogic security providers), a
properties file (as used by the sample security providers), or a production-quality database
that you may already be using. See also credential, embedded LDAP server, group, security
role, security policy, WebLogic security provider.

security realm
In WebLogic Server 7.0 and later, security realms act as a scoping mechanism. Each security
realm consists of a set of configured security providers, users, groups, roles, and security
policies. You can configure multiple active security realms in a domain; however, only one

Glossary

Glossary-19

http://xml.coverpages.org/saml.html

can be the default security realm, which is used for domain administrative purposes.
WebLogic Server provides a default security realm: myrealm. You can configure a new
security realm and set it as default security realm. See also default realm, Domain
Configuration Wizard, security provider, and WebLogic resource.

security role
A dynamically computed privilege that is granted to users or groups based on specific
conditions. The difference between groups and roles is that a group is a static identity
that a server administrator assigns, while membership in a role is dynamically
calculated based on data such as user name, group membership, or the time of day.
Security roles are granted to individual users or to groups, and multiple roles can be
used to create security policies for a WebLogic resource. Once you create a security
role, you define an association between the role and a WebLogic resource. This
association (called a security policy) specifies who has what access to the WebLogic
resource. See also global role, group, role mapping, scoped role, security policy, user,
WebLogic resource.

Security Service Provider Interfaces (SSPIs)
Set of WebLogic packages that enables custom security providers to be developed
and integrated with the WebLogic Server Security Service. These interfaces are
implemented by the WebLogic security providers and custom security providers. The
WebLogic Security Framework calls methods in these interfaces to perform security
operations. See also security provider, WebLogic Security Framework.

Service Provider
A system, or administrative domain, that determines whether it trusts the assertions
provided to it by the Identity Provider. SAML defines a number of mechanisms that
enable the Service Provider to trust the assertions provided to it. See also relying
party.

Servlet Authentication filter
A unique implementation of the Java EE filter object which replace container-based
authentication. Servlet Authentication filters control the authentication conversation
with the client redirecting to a remote site to execute the login, extracting login
information out of the query string, and negotiating a login mechanism with the
browser.

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
A protocol that allows participation in a Kerberos SSO environment.

single sign-on
Ability to require a user to sign on to an application only once and gain access to many
different application components, even though these components may have their own

Glossary

Glossary-20

authentication schemes. Single sign-on is achieved using identity assertion, LoginModules,
and tokens. See also authentication, Cross-Domain Single Sign-on, identity assertion, JAAS
LoginModule, token, and user.

Single Sign-On Service
Service used in the SAML 2.0 Web Single Sign-On Profile that:

• Accepts authentication requests from a Service Provider

• Authenticates the user

• Invokes the SAML 2.0 Credential Mapping provider to generate a SAML assertion

• Wraps the assertion in an authentication response to be sent to the Service Provider.

This service can also create an unsolicited authentication response, which is then sent to the
Service Provider to start an Identity Provider initiated web single sign-on session.

SSL hardware accelerator
A peripheral Secure Sockets Layer (SSL) platform that attaches to a Web switch with the
express purpose of improving SSL performance for a client. For example, the Alteon SSL
Accelerator can be used with WebLogic Server. This accelerator performs a TCP handshake
with the client (in this case, WebLogic Server) through a Web switch and performs all the SSL
encryption and decryption for the session.

SSL tunneling
Tunneling Secure Socket Layer (SSL) over an IP-based protocol. Tunneling means that each
SSL record is encapsulated and packaged with the headers needed to send the record over
another protocol.

SSPI MBean
Interfaces used by Oracle to generate MBean types for the WebLogic security providers, and
from which you generate MBean types for custom security providers. SSPI MBeans may be
required (for configuration) or optional (for management). See also custom security provider,
MBean type, WebLogic security provider.

subject
A grouping of related information for a single entity, such as a person, as specified by the
Java Authentication and Authorization Service (JAAS). The related information includes the
Subject's identities, or Principals, as well as its security-related attributes (for example,
passwords and cryptographic keys). A subject can contain any number of Principals. Both
users and groups can be used as Principals by application servers such as WebLogic Server.
In WebLogic security providers (security providers supplied with the WebLogic Server
product), the Subject contains a Principal for the user (WLSUser Principal) and a Principal for
each group of which the user is a member (WLSGroups Principals). Custom security

Glossary

Glossary-21

providers may store identities differently. See also authentication, custom security
provider, group, JAAS control flag, principal, user.

symmetric key cryptography
A key-based cryptography that uses an encryption algorithm in which the same key is
used both to encrypt and decrypt the data. Symmetric key cryptography is also called
secret key cryptography. See also asymmetric key cryptography.

target URL
The requested URL that initiates the authentication process in web SSO. See also
SAML source site.

token
Artifact generated as part of the authentication process of users or system processes.
When using identify assertion, a token is presented to show that the user has been
authenticated. Tokens come in many different types, including Kerberos and Security
Assertion Markup Language (SAML). See also authentication, Security Assertion
Markup Language (SAML), Secure Sockets Layer (SSL), identity assertion, SSL
tunneling, Security Assertion Markup Language (SAML), and user.

Trust Manager
An interface that enables you to override validation errors in a peer's digital certificate
and continue the SSL handshake. You can also use the interface to discontinue an
SSL handshake by performing additional validation on a server's digital certificate
chain.

trusted (root) certificate authority
A well-known and trusted third-party organization or company that issues digital
certificates used to create digital signatures and public-private key pairs. The function
of the trusted certificate authority is similar to that of a notary public: to guarantee the
identify of the individual or organization presenting the certificate. Trusted certificate
authorities issue certificates that are used to sign other certificates. Certificate
authorities are referred to as root certificate authorities because their authority is
recognized and thus they do not need anyone to validate their identity. Trusted (root)
certificate authority (CA) certificates are installed into applications that authenticate
certificates. For example, Web browsers are usually distributed with several trusted
(root) CA certificates pre-installed. If the server certificate is not signed by a well-
known certificate authority and you want to ensure that the server's certificate will be
authenticated by the client, it is good practice for the server to issue a certificate chain
that terminates with a certificate that is signed by a well-known certificate authority.
See also certificate chain, private key, public key.

Glossary

Glossary-22

two-way SSL authentication
Authentication that requires both the client and server to present a certificate before the
connection thread is enabled between the two. With two-way SSL authentication, WebLogic
Server not only authenticates itself to the client (which is the minimum requirement for
certificate authentication), it also requires authentication from the requesting client. Clients
are required to submit digital certificates issued by a trusted certificate authority. This type of
authentication is useful when you must restrict access to trusted clients only. Two-way SSL
authentication is a form of mutual authentication. See also authentication, digital certificate,
mutual authentication, Secure Sockets Layer (SSL), trusted (root) certificate authority.

user
An entity that can be authenticated. A user can be a person or a software entity, such as a
Java client. Each user is given a unique identity within a security realm. For more efficient
security management, Oracle recommends adding users to groups. A group is a collection of
users who usually have something in common, such as working in the same department in a
company. Users can be placed into groups that are associated with security roles, or be
directly associated with security roles. See also entity, group, security role, WebLogic
resource.

WebLogic component
WebLogic Server implements Java EE component technologies, which include servlets, JSP
Pages, and Enterprise JavaBeans. To build a WebLogic Server application, you must create
and assemble components, using the service APIs when necessary. Components are
executed in the WebLogic Server Web container or EJB container. Web components provide
the presentation logic for browser-based Java EE applications. EJB components encapsulate
business objects and processes. See also WebLogic container, Windows NT security realm.

WebLogic container
To promote fast development and portability, Java EE identifies common services needed by
components and implements them in the container that hosts the component. Containers
provide the life cycle support and services defined by the Java EE specifications so that the
components you build do not have to handle underlying details. A component has only the
code necessary to describe the object or process that it models. It has no code to access its
execution environment or services such as transaction management, access control, network
communications, or persistence mechanisms. These services are provided by the container,
which is implemented in WebLogic Server. Additionally, WebLogic containers give
applications access to the Java EE application programming interfaces (APIs). WebLogic
containers are available for use once the server is started. This component/container
abstraction allows developers to work within their fields of expertise. WebLogic Server
provides two types of containers: the Web container and the EJB container. See also
WebLogic component, Windows NT security realm.

WebLogic Java EE service
WebLogic Server implements Java EE services, which include access to standard network
protocols, database systems, and messaging systems. To build a WebLogic Server

Glossary

Glossary-23

application, you must create and assemble components, using the service APIs when
necessary. Web applications and EJBs are built on Java EE application services, such
as JDBC, Java Messaging Service (JMS), and Java Transaction API (JTA). See also
WebLogic component.

WebLogic MBeanMaker
Command-line utility that takes an MBean Definition File (MDF) as input and output
files for an MBean type. See also MBean Definition File (MDF), MBean type.

WebLogic resource
Entities that are accessible from WebLogic Server, such as events, servlets, JDBC
connection pools, JMS destinations, JNDI contexts, connections, sockets, files, and
enterprise applications and resources, such as databases. See also entity.

WebLogic Security Framework
Interfaces in the weblogic.security.service package that unify security enforcement
and present security as a service to other WebLogic Server components. Security
providers call into the WebLogic Security Framework on behalf of applications
requiring security services. See also security provider.

WebLogic security provider
Any of the security providers that are supplied by Oracle as part of the WebLogic
Server product. These providers were developed using the Security Service Provider
Interfaces (SSPIs) for WebLogic Server. See also custom security provider, security
provider, Security Service Provider Interfaces (SSPIs).

WebLogic Security Service
The WebLogic Server subsystem that implements the security architecture. This
subsystem comprises there major components: the WebLogic Security Framework,
the Security Service Provider Interfaces (SSPIs), and the WebLogic security providers.

WebLogic Server domain
A collection of servers, services, interfaces, machines, and associated WebLogic
resource managers defined by a single configuration file. See also WebLogic resource.

Windows NT Authentication provider
An authentication provider that uses Windows NT users and groups for authentication
purposes.

Glossary

Glossary-24

Windows NT security realm
A WebLogic Server 6.x security realm. The Windows NT Security realm uses account
information defined for a Windows NT domain to authenticate users and groups. See also
authentication, authorization, group, security realm, and user.

Glossary

Glossary-25

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Information
	Security Samples and Tutorials
	Security Examples in the WebLogic Server Distribution
	Additional Examples Available for Download

	New and Changed Security Features In This Release

	Conventions

	1 Introduction
	2 Overview of the WebLogic Security Service
	Features of the WebLogic Security Service
	Balancing Ease of Use and Customizability

	3 Security Fundamentals
	Auditing
	Authentication
	Subjects and Principals
	Java Authentication and Authorization Service (JAAS)
	JAAS LoginModules
	JAAS Control Flags

	CallbackHandlers
	Mutual Authentication
	Identity Assertion Providers and LoginModules
	Identity Assertion and Tokens
	Challenge Identity Assertion
	Servlet Authentication Filters
	Types of Authentication
	Username/Password Authentication
	Certificate Authentication
	Digest Authentication
	Perimeter Authentication
	How is Perimeter Authentication Accomplished?
	How Does WebLogic Server Support Perimeter Authentication?

	Security Assertion Markup Language (SAML)
	SAML Framework Concepts
	SAML Components Provided in WebLogic Server
	SAML Security Providers
	Single Sign-On Services
	Web Services Support for SAML Token Profile 1.1

	Single Sign-On (SSO)
	Web Browsers and HTTP Clients via SAML
	Desktop Clients

	Authorization
	WebLogic Resources
	Security Policies
	ContextHandlers
	Access Decisions
	Adjudication

	Identity and Trust
	Private Keys
	Digital Certificates
	Certificate Authorities
	Certificate Lookup and Validation

	Secure Sockets Layer (SSL)
	SSL Features
	Cipher Suites
	SSL Tunneling
	One-way/Two-way SSL Authentication
	Configuring SSL
	Host Name Verification
	Trust Managers
	FIPS Support

	Firewalls
	Network Channels
	Connection Filters
	Perimeter Authentication

	Java EE and WebLogic Security
	Java Security Packages
	The Java Secure Socket Extension (JSSE)
	Java Authentication and Authorization Services (JAAS)
	The Java Security Manager
	Java Cryptography Architecture and Java Cryptography Extensions (JCE)
	Java Authorization Contract for Containers (JACC)
	Java Authentication Service Provider Interface for Containers (JASPIC)
	Java EE Security API (JSR 375)

	Common Secure Interoperability Version 2 (CSIv2)

	JASPIC Security
	Overview of Java Authentication Service Provider Interface for Containers (JASPIC)
	JASPIC Programming Model

	Java EE Security API
	Authentication Mechanisms
	Programmatic Security

	4 Security Realms
	Introduction to Security Realms
	Users
	Groups
	Security Roles
	Security Policies
	Security Providers
	Security Provider Databases
	What Is a Security Provider Database?
	Security Realms and Security Provider Databases
	Embedded LDAP Server
	RDBMS Security Store

	Types of Security Providers
	Authentication Providers
	Identity Assertion Providers
	Principal Validation Providers
	Authorization Providers
	Adjudication Providers
	Role Mapping Providers
	Auditing Providers
	Credential Mapping Providers
	Certificate Lookup and Validation Providers
	Security Provider Summary

	Security Providers and Security Realms

	5 WebLogic Security Service Architecture
	WebLogic Security Framework
	The Authentication Process
	The Identity Assertion Process
	The Principal Validation Process
	The Authorization Process
	The Adjudication Process
	The Role Mapping Process
	The Auditing Process
	The Credential Mapping Process
	The Certificate Lookup and Validation Process

	Single Sign-On with the WebLogic Security Framework
	Single Sign-On with SAML 1.1
	WebLogic Server Acting as SAML 1.1 Source Site
	POST Profile
	Artifact Profile

	Weblogic Server Acting as SAML 1.1 Destination Site
	POST Profile
	Artifact Profile

	Single Sign-On and SAML 2.0
	Service Provider Initiated Single Sign-On
	Identity Provider Initiated Single Sign-On

	Desktop SSO Process

	SAML Token Profile Support in WebLogic Web Services
	Sender-Vouches Assertions
	Holder-of-Key Assertion

	The Security Service Provider Interfaces (SSPIs)
	WebLogic Security Providers
	WebLogic Authentication Provider
	Alternative Authentication Providers
	Password Validation Provider
	WebLogic Identity Assertion Provider
	SAML Identity Assertion Provider for SAML 1.1
	SAML 2.0 Identity Assertion Provider
	Negotiate Identity Assertion Provider
	WebLogic Principal Validation Provider
	WebLogic Authorization Provider
	WebLogic Adjudication Provider
	WebLogic Role Mapping Provider
	WebLogic Auditing Provider
	WebLogic Credential Mapping Provider
	SAML Credential Mapping Provider for SAML 1.1
	SAML 2.0 Credential Mapping Provider
	PKI Credential Mapping Provider
	WebLogic CertPath Provider
	Certificate Registry
	Versionable Application Provider

	Glossary
	access control list (ACL)
	Access Decision
	ACL
	Adjudication provider and Adjudicator
	Artifact Resolution Service (ARS)
	asserting party
	assertion
	Assertion Consumer Service (ACS)
	Assertion Receiver Service (ARS)
	asymmetric key cryptography
	auditing
	Auditing provider
	authentication
	Authentication provider
	authorization
	Authorization provider
	certificate
	certificate authentication
	certificate authority
	certificate chain
	Certificate Lookup and Validation (CLV) framework
	Certificate Reference
	Certificate Registry
	Certificate Revocation List (CRL)
	CertPath
	CertPath Builder
	CertPath Validator
	connection filter
	connector
	context handler
	credential
	credential mapping
	Credential Mapping provider
	Cross-Domain Single Sign-on
	CSIv2 protocol
	custom security provider
	database delegator
	Database Management System (DBMS) Authentication provider
	declarative security
	default realm
	digest authentication
	digital certificate
	digital signature
	Domain Configuration Wizard
	domain controller
	embedded LDAP server
	end certificate
	entity
	filter
	firewall
	global role
	group
	host name verification
	host name verifier
	identity assertion
	Identity Assertion provider
	Identity Provider
	Intersite Transfer Service (ITS)
	JAAS control flag
	JAAS LoginModule
	Java Authentication and Authorization Service (JAAS)
	Java Authorization Contract for Containers (JACC)
	Java Cryptography Architecture
	Java Cryptography Extensions (JCE)
	Java Naming and Directory Interface (JNDI)
	Java Security Manager
	Java security policy file
	JNDI
	KDC/TGS
	Kerberos
	Kerberos ticket
	keystore
	LDAP Authentication provider
	LoginModule
	MBean
	MBean Definition File (MDF)
	MBean implementation file
	MBean information file
	MBean interface file
	MBean JAR File (MJF)
	MBean type
	message digest
	message digest algorithm
	mutual authentication
	nonce
	non-repudiation
	one-way SSL authentication
	Password Validation provider
	perimeter authentication
	policy condition
	policy expression
	policy statement
	principal
	principal validation
	private key
	private key algorithm
	programmatic security
	public key
	public key algorithm
	public key cryptography
	RDBMS security store
	relying party
	resource
	resource adapter
	Responder service
	role condition
	role expression
	role mapping
	Role Mapping provider
	role statement
	runtime class
	SAML artifact
	SAML assertion
	SAML authority
	SAML binding
	SAML destination site
	SAML profile
	SAML source site
	schema
	scoped role
	secret key cryptography
	Secure Sockets Layer (SSL)
	Security Assertion Markup Language (SAML)
	security policy
	security provider
	security provider database
	security realm
	security role
	Security Service Provider Interfaces (SSPIs)
	Service Provider
	Servlet Authentication filter
	Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
	single sign-on
	Single Sign-On Service
	SSL hardware accelerator
	SSL tunneling
	SSPI MBean
	subject
	symmetric key cryptography
	target URL
	token
	Trust Manager
	trusted (root) certificate authority
	two-way SSL authentication
	user
	WebLogic component
	WebLogic container
	WebLogic Java EE service
	WebLogic MBeanMaker
	WebLogic resource
	WebLogic Security Framework
	WebLogic security provider
	WebLogic Security Service
	WebLogic Server domain
	Windows NT Authentication provider
	Windows NT security realm

