
Oracle® Fusion Middleware
Developing Message-Driven Beans for Oracle
WebLogic Server

14c (14.1.1.0.0)
F18297-04
August 2022

Oracle Fusion Middleware Developing Message-Driven Beans for Oracle WebLogic Server, 14c (14.1.1.0.0)

F18297-04

Copyright © 2007, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

Related Resources vii

Conventions vii

1 Understanding Message-driven Beans

JCA-Based MDBs 1-1

2 MDB Life Cycle

Overview 2-1

MDBs and Concurrent Processing 2-1

Limitations for Multi-threaded Topic MDBs 2-2

3 MDBs and Messaging Models

Point-to-Point (Queue) Model: One Message Per Listener 3-1

Publish/Subscribe (Topic) Model 3-2

Exactly-Once Processing 3-3

4 Deploying MDBs

Destination and MDBs: Collocation vs. non-Collocation 4-1

Collocated Destination/MDBs 4-1

Non-Collocated Destination/MDBs 4-3

JMS Distributed Destinations 4-4

Best Practice 4-5

iii

5 Programming and Configuring MDBs: Main Steps

Required JMS Configuration 5-1

Create MDB Class and Configure Deployment Elements 5-2

6 Programming and Configuring MDBs: Details

Configuring Destination Type 6-1

Configuring Transaction Management Strategy for an MDB 6-2

Configuring MDBs for Destinations 6-3

Whether to Use Foreign JMS Server Mappings 6-4

How to Set provider-url 6-4

How to Set initial-context-factory 6-4

How to Set destination-jndi-name 6-5

How to Set connection-factory-jndi-name 6-5

Common Destination Scenarios: Illustrations and Key Element Settings 6-5

Configuring Message Handling Behaviors 6-10

Ensuring Message Receipt Order 6-10

Preventing and Handling Duplicate Messages 6-11

Redelivery and Exception Handling 6-12

Using the Message-Driven Bean Context 6-13

Configuring Suspension of Message Delivery During JMS Resource Outages 6-13

Manually Suspending and Resuming Message Delivery 6-14

Configuring the Number of Seconds to Suspend a JMS Connection 6-14

How the EJB Container Determines How Long to Suspend a JMS Connection 6-14

Turning Off Suspension of a JMS Connection 6-15

Configuring a Security Identity for a Message-Driven Bean 6-15

Using MDBs With Cross Domain Security 6-16

Configuring EJBs to Use Logical Message Destinations 6-16

Configuring Logical JMS Message Destinations for Individual MDBs 6-17

Configuring Application-Scoped Logical JMS Message Destinations 6-17

7 Using EJB 3.2 Compliant MDBs

Implementing EJB 3.2 Compliant MDBs 7-1

Programming EJB 3.2 Compliant MDBs 7-1

MDB Sample Using Annotations 7-3

8 Migration and Recovery for Clustered MDBs

iv

9 Using Batching with Message-Driven Beans

Configuring MDB Transaction Batching 9-1

How MDB Transaction Batching Works 9-2

10

Configuring and Deploying MDBs Using JMS Topics

Supported Topic Types 10-1

The Most Commonly Used MDB Attributes 10-2

Setting the JMS Destination, Destination Type, and Connection Factory 10-3

Setting Subscription Durability 10-3

Setting Automatic Deletion of Durable Subscriptions 10-4

Setting Container Managed Transactions 10-4

Setting Message Filtering (JMS Selectors) 10-4

Controlling MDB Concurrency 10-4

Setting Subscription Identifiers 10-5

Setting Message Distribution Tuning 10-5

Setting topicMessagesDistributionMode 10-5

Setting distributedDestinationConnection 10-7

Best Practices 10-8

Warning about Non-Transactional MDBs in Compatibility Mode 10-8

Warning About Using Local RDTs with Durable MDBs 10-8

Warning About Using Local RDTs with Non-Durable MDBs 10-9

Warning about Changing Durable MDB Attributes, Topic Type, EJB Name 10-9

Choosing Between Partitioned and Replicated Topics 10-9

Choosing an MDB Topic Messages Distribution Mode 10-10

Managing and Viewing Subscriptions: 10-10

Handling Uneven Message Loads and/or Message Processing Delays 10-10

Configuring for Service Migration 10-11

Upgrading Applications from Previous Releases 10-11

Topic MDB Sample 10-11

11

Deployment Elements and Annotations for MDBs

A Topic Deployment Scenarios

How Configuration Permutations Determine Deployment Actions A-1

Typical Scenarios A-3

Standalone (Non-distributed) Topic Scenarios A-4

One-Copy-Per-Server A-4

v

One-Copy-Per-Application A-4

Replicated Distributed Topic Scenarios A-4

Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local Only
Consumption A-5

Scenario 2: Replicated DT, One Copy Per Server, Local Deployment, Every
Member Consumption, A-6

Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment A-8

Scenario 4: Replicated DT, One Copy Per Application, Local Deployment, Local
Only Consumption A-10

Scenario 5: Replicated DT, One Copy Per Application, Local Deployment, Every
Member Consumption A-11

Scenario 6: Replicated DT One Copy Per Application, Remote Deployment A-12

Partitioned Distributed Topic Scenarios A-13

Scenario 7: Partitioned DT, One Copy Per Server, Local Deployment, Local Only
Consumption A-13

Scenario 8: Partitioned DT, One Copy Per Server, Local Deployment, Every
Member Consumption A-13

Scenario 9: Partitioned DT, One Copy Per Server, Remote Deployment A-14

Scenario 10: Partitioned DT, One Copy Per Application, Local Deployment, Local
Only Consumption A-15

Scenario 11: Partitioned DT, One Copy Per Application, Local Deployment, Every
Member Consumption A-16

Scenario 12: Partitioned DT, One Copy Per Application, Remote Deployment A-17

B Topic Subscription Identifiers

C How WebLogic MDBs Leverage WebLogic JMS Extensions

vi

Preface

This document explains how to design, develop, configure, and manage applications that
include Oracle WebLogic Server 14c Message-Driven Beans (MDBs) using Java Enterprise
Edition (Java EE).

Audience
This document is written for application developers who understand the Java programming
language and Enterprise Java Bean (EJB) concepts and essentials.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Related Resources
• Tuning Performance of Oracle WebLogic Server

• Developing Enterprise JavaBeans for Oracle WebLogic Server

Conventions
The following text conventions are used in this document:

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

viii

1
Understanding Message-driven Beans

A message-driven bean (MDB) is an enterprise bean that allows Java EE applications to
process messages asynchronously. An MDB acts as a JMS or JCA message listener, which
is similar to an event listener except that it receives messages instead of events. The
messages are sent by any of the Java EE components like application client, another
enterprise bean, a Web component, or even a non-Java EE application.
These are the key features of message-driven beans:

• Clients do not access message-driven beans through interfaces. A message-driven bean
has only a bean class.

• A message-driven bean's instances retain no data or conversational state for a specific
client. All instances of a message-driven bean are equivalent, allowing the EJB container
to assign a message to any message-driven bean instance. The container can pool these
instances to allow streams of messages to be processed concurrently.

When a message arrives, the container calls the message-driven bean's onMessage method
to process the message. The onMessage method may call helper methods, or it may invoke a
session or entity bean to process the information in the message or to store it in a database.

A message may be delivered to a message-driven bean within a transaction context, so that
all operations within the onMessage method are part of a single transaction. If message
processing is rolled back, the message will be re-delivered.

For information about design alternatives for message-driven beans, see MDBs and
Messaging Models.

For a description of the overall EJB development process, see Developing Enterprise
JavaBeans for Oracle WebLogic Server.

JCA-Based MDBs
Learn how to configure MDBs to receive messages from JCA 1.7-compliant resource
adapters and to set the resource-adapter-jndi-name deployment descriptor.
See the JCA 1.7 specification and resource-adapter-jndi-name in Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

1-1

2
MDB Life Cycle

Examine the phases in the life cycle of an MDB instance and how you can configure an MDB
to control the life cycle.
This chapter includes the following sections:

• Overview

• MDBs and Concurrent Processing

• Limitations for Multi-threaded Topic MDBs

Overview
An MDB implements loosely coupled or asynchronous business logic in which the response
to a request need not be immediate. A message-driven bean receives messages from a JMS
queue or topic, and performs business logic based on the message contents. It is an
asynchronous interface between EJBs and JMS.
All instances of a message-driven bean are equivalent—the EJB container can assign a
message to any MDB instance. The container can pool these instances to allow streams of
messages to be processed concurrently.

The EJB container interacts directly with a message-driven bean—creating bean instances
and passing JMS messages to those instances as necessary. The container creates bean
instances at deployment time and may add and remove instances during operations based
on message traffic.

MDBs and Concurrent Processing
MDBs support concurrent processing for both topics and queues. On an Oracle WebLogic
Server instance, each MDB deployment maintains one or more MDB instance pools, also
known as free pools, that hold MDB instances not currently servicing requests. The value of
the max-beans-in-free-pool attribute, the number of available threads in the thread pool,
the type of thread pool, and sometimes other factors determine the maximum number of
MDB instances in a free pool .
For more information about topics and queues, see MDBs and Messaging Models.

The maximum number of MDB instances in a free pool depends on multiple factors. See
Tuning Message-Driven Beans in Tuning Performance of Oracle WebLogic Server.

The number of free pools associated with an MDB deployment depends on the type of
destination the MDB deployment is connected to. Typically, an MDB deployment is
associated with a single free pool on each Oracle WebLogic Server instance that hosts the
deployment. However, on each Oracle WebLogic Server instance that hosts the deployment,
an MDB deployment connected to a WebLogic JMS distributed destination might have one
free pool for each physical destination associated with the distributed destination. The
number of free pools is automatically determined by the EJB container; and, for MDBs
associated with a JMS destination, each MDB free pool always corresponds to a single JMS
connection.

2-1

In a queue-based JMS application (point-to-point model), each MDB instance creates
a single internal JMS session and corresponds to an MDB thread.

A topic-based JMS application (the publish/subscribe model) may require a single
instance, may share a single JMS session between multiple instances, or may create
a session for each instance. This is automatically determined by the MDB container
based on the message processing pattern specified by MDB application settings, the
type of topic, the work-manager, and the max-beans-in-free-pool setting. See
Configuring and Deploying MDBs Using JMS Topics . Also see Tuning Message-
Driven Beans in Tuning Performance of Oracle WebLogic Server.

Limitations for Multi-threaded Topic MDBs
Examine the limitations for multi-threaded topic MDBs.
The default behavior for non-transactional topic MDBs is to multi-thread the message
processing. There are some limitations when using:

• Non-transactional topic MDBs that work with foreign (non-WebLogic) topics

• Non-transactional topic MDBs that consume from a WebLogic JMS topic and
process messages that have a WebLogic JMS Unit-of-Order (UOO) value

For details, see the Caution in Controlling MDB Concurrency.

Chapter 2
Limitations for Multi-threaded Topic MDBs

2-2

3
MDBs and Messaging Models

Understand the different models for for MDBs. Oracle WebLogic Server MDBs are used in
either a point-to-point (queue) or publish/subscribe (topic) messaging model.
These models are described in detail in Developing JMS Applications for Oracle WebLogic
Server

This chapter includes the following sections:

• Point-to-Point (Queue) Model: One Message Per Listener

• Publish/Subscribe (Topic) Model

• Exactly-Once Processing

Point-to-Point (Queue) Model: One Message Per Listener
In the point-to-point model, a message from a JMS queue is picked up by one MDB listener
and stays in the queue until processed. If the MDB goes down, the message remains in the
queue, waiting for the MDB to come up again.
Example: A department must update its back-end inventory system to reflect items sold
throughout the day. Each message that decrements inventory must be processed once, and
only once. It is not necessary for messages to be processed immediately upon generation or
in any particular order, but it is critical that each message be processed.

Figure 3-1 illustrates a point-to-point application. Each message is processed by single
instance of MDB_A. Message "M1" is processed by MDB_A(1), "M2" is processed by
MDB_A(2), and "M3" is processed by MDB_A(3).

Figure 3-1 Point-to-Point Model

3-1

Publish/Subscribe (Topic) Model
In the publish/subscribe model, a JMS topic publishes a copy of each message to
each logical subscription. A logical subscription consists of one or more physical
subscriptions, where each physical subscription is associated with a different member
of a distributed topic.
For stand-alone (non-distributed) topics, a logical subscription always consists of a
single physical subscription on the topic. If an MDB goes down, that MDB will miss the
message, unless the topic is a durable subscription topic. For information on durable
subscriptions and for configuration instructions, see Setting Subscription Durability.

Example: A financial news service broadcasts stock prices and financial stories to
subscribers, such as news wire services. Each message is distributed to each
subscriber.

Figure 3-2 illustrates a publish/subscribe application. In contrast to a point-to-point
application, in a publish/subscribe model, a copy of the message is processed for each
of the logical subscriptions. In this diagram, there are two logical subscriptions, where
each logical subscription consists of a separate physical subscription on the single
topic. MDB_A has two instances that process the messages for a single dedicated
subscription. Similarly, MDB_B has two instances that process the messages for a
different single dedicated subscription. Message M1 is processed by an instance of
MDB_A and an instance of MDB_B. Similarly, message M2 is processed by an
instance of each of the subscribing MDBs.

Figure 3-2 Publish/Subscribe Model

Chapter 3
Publish/Subscribe (Topic) Model

3-2

Exactly-Once Processing
An MDB application processes each message at least once. To ensure that a message is
processed exactly once, use container-managed transactions, so that failures cause
transactional MDB work to roll back and force the message to be redelivered.
Potentially, a message can be processed more than once:

• If an application fails, a transaction rolls back, or the hosting server instance fails during
or after the onMessage() method completes but before the message is acknowledged or
committed, the message will be redelivered and processed again.

• Non-persistent messages are also redelivered in the case of failure, except when the
message's host JMS server shuts down or crashes, in which case the messages are
destroyed.

Chapter 3
Exactly-Once Processing

3-3

4
Deploying MDBs

Examine the various approaches for deploying MDBs and the JMS destination to which the
MDBs listen and understand how JMS distributes the messaging load across available
members of the distributed destination.
This chapter includes the following sections:

• Destination and MDBs: Collocation vs. non-Collocation

• Collocated Destination/MDBs

• Non-Collocated Destination/MDBs

• JMS Distributed Destinations

Destination and MDBs: Collocation vs. non-Collocation
You can deploy an MDB on the same server instance as the JMS destination on which it
listens or on separate server instance. When you deploy an MDB on the same server
instance as the JMS destination on which it listens it is referred to as collocation and when
you deploy and MDB on a separate server instance it is referred as non-collocation.

Collocated Destination/MDBs
Collocating an MDB with the destination to which it listens keeps message traffic local and
avoids network round trips. Collocation is the best choice if you use Oracle WebLogic Server
JMS and want to minimize message processing latency and network traffic.
You cannot collocate the MDB and the JMS destination if you use a third-party JMS provider
that cannot run on Oracle WebLogic Server, such as MQ Series.

Figure 4-1 and Figure 4-2 illustrate architectures in which the MDB application is deployed to
the server instance that hosts the associated JMS destination. These architectures vary in
that the first has a distributed destination and the second does not. In an application that uses
distributed destinations, the MDB is deployed to each server instance that hosts a member of
the distributed destination set. For more information about distributed destinations, see JMS
Distributed Destinations. As illustrated in Figure 4-1 the message "M1" is delivered to an
instance of MDB_A on each server instance where a distributed destination and MDB_A are
deployed. Figure 4-1 illustrates a One-Copy-Per-Server topic message distribution mode
pattern. Topic patterns are discussed in more detail in Setting
topicMessagesDistributionMode.

4-1

Figure 4-1 Collocated Destination/MDBs, Distributed Topic, One-Copy-Per-
Server Pattern

Figure 4-2 Collocated Destination/MDBs, Non-Distributed Destination

Chapter 4
Collocated Destination/MDBs

4-2

Non-Collocated Destination/MDBs
Examine the non-colloacated destination/MDBs in which an MDB runs on a different server
instance from the JMS Destination. It is best suited for applications that use a third-party JMS
provider or if you want to isolate application code (the MDBs) from the JMS infrastructure.
Figure 4-3 illustrates an architecture in which an MDB runs on a different server instance from
the JMS Destination to which the MDB listens.

Figure 4-3 Non-Collocated Application, Non-Distributed Destination

Chapter 4
Non-Collocated Destination/MDBs

4-3

Running your MDBs on a different server instance from the JMS Destination to which
the MDB listens is suitable if:

• Your application uses a third-party JMS provider, such as MQ Series.

• You want to isolate application code (the MDBs) from the JMS infrastructure. By
placing JMS destinations and MDBs on separate server instances, you prevent
application problems—for example, MDBs consuming all of your virtual machine's
memory—from interrupting the operation of the JMS infrastructure.

• Your MDB application is very CPU-intensive. On a separate machine, your
application can use 100 percent of the CPU without affecting the operation of the
JMS infrastructure.

• One machine in your configuration has more processing power, disk space, and
memory than other machines in the configuration.

The JMS destination and MDBs could also be deployed on non-clustered servers,
servers within the same cluster, or to servers in separate clusters.

Note:

WebLogic Server does not support non-collocated Destination/MDBs in a
cluster when you deploy the destination on a target that can be migrated.

JMS Distributed Destinations
When an MDB application runs on an Oracle WebLogic Server cluster, you can
configure multiple physical destinations (queues or topics) as a distributed destination,
which appears to message producers and consumers to be a single destination.
If you configure a distributed destination, WebLogic JMS distributes the messaging
load across available members of the distributed destination. If a member of the
destination becomes unavailable due to a server failure, message traffic is re-directed
to the other available physical destinations in the distributed destination set. You
control whether an MDB that accesses a WebLogic distributed queue in the same
cluster consumes from all distributed destination members or only those members
local to the current Oracle WebLogic Server, using the distributed-destination-
connection element in the weblogic-ejb-jar.xml file or the
distributedDestinationConnection annotation. Similarly, this setting controls
behavior for some topic MDB scenarios, as described in Configuring and Deploying
MDBs Using JMS Topics , and Topic Deployment Scenarios.

If you deploy an MDB and the associated distributed queue to the same cluster, Oracle
WebLogic Server automatically enumerates the distributed queue members and
ensures that each member is serviced by at least one MDB pool. For distributed
queues, there will be one MDB pool for each local member when
distributedDestinationConnection is LocalOnly (the default); otherwise, for
queues, when distributedDestinationConnection is set to EveryMember, each
Oracle WebLogic Server instance creates multiple local MDB pools - one for each
local member plus one for each remote member.

If you deploy an MDB and its associated queue to different clusters, Oracle WebLogic
Server automatically enumerates the distributed queue members and ensures that
each member is serviced by an MDB pool on each server in the MDB cluster. For

Chapter 4
JMS Distributed Destinations

4-4

example, if the distributed queue has three members, each JVM in the MDB cluster will
create three MDB pools.

For more information about distributed topics, see Configuring and Deploying MDBs Using
JMS Topics .

Best Practice
WebLogic clustering and WebLogic JMS distributed destinations increase scalability and high
availability. Examine some of the best practices to increase scalability and high availability.

Oracle recommends that the machines that host a cluster have identical or similar processing
power, disk space, and memory to ensure well-load-balanced message processing. Similarly,
it is recommended that the Oracle WebLogic Server instances in a particular WebLogic
cluster have homogenous JMS configuration and MDB deployments.

For an example, see Figure 4-1. For additional information about distributed destinations, see
Using Distributed Destinations in Developing JMS Applications for Oracle WebLogic Server.

Chapter 4
Best Practice

4-5

5
Programming and Configuring MDBs: Main
Steps

Examine the step-by-step instructions for implementing an MDB using pre-EJB 3.0 style XML
descriptors to configure its behavior.
For a summary of key deployment elements for MDBs, see Deployment Elements and
Annotations for MDBs. For an introduction to key deployment elements for topic MDBs, see
Configuring and Deploying MDBs Using JMS Topics .

This chapter includes the following sections:

• Required JMS Configuration

• Create MDB Class and Configure Deployment Elements

Required JMS Configuration
Examine the steps to configure JMS connection factory and JMS destination.
The steps in the following section assume that you have access to the appropriate JMS
components:

• A JMS connection factory.

A connection factory must be XA transaction (global JTA transaction) capable in order to
support transactional MDBs.

The default WebLogic JMS MDB connection factory is XA-capable, is automatically
generated on WebLogic clusters, and is sufficient for the majority of MDBs that consume
from WebLogic JMS destinations. For information about WebLogic JMS default
connection factories, see Using a Default Connection Factories Defined by WebLogic
Server in Administering JMS Resources for Oracle WebLogic Server.

For instructions about how to create a custom WebLogic JMS connection factory, see
Create connection factories in a system module in Oracle WebLogic Server
Administration Console Online Help.

The default behavior and configuration methods for other JMS provider connection
factories vary. If you use a non-Oracle JMS provider, see the vendor documentation for
details.

• A JMS destination

For instructions on configuring WebLogic JMS destinations, see Configure Messaging in
Oracle WebLogic Server Administration Console Online Help.

5-1

Note:

If your JMS provider is a remote Oracle WebLogic Server JMS provider
or a foreign JMS provider, and you use the wrapper approach
recommended in Whether to Use Foreign JMS Server Mappings, in
addition to configuring the non-local JMS components, you must also
configure a Foreign Connection Factory and Foreign JMS Destination in
your local JNDI tree.

Create MDB Class and Configure Deployment Elements
Examine the steps to implement a message-driven bean in an Oracle WebLogic
Server.
Use the following steps to implement a message-driven bean:

1. Create a source file (message-driven bean class) that implements both the
javax.ejb.MessageDrivenBean and javax.jms.MessageListener interfaces.

The MDB class must define the following methods:

• One ejbCreate() method that the container invokes after creating each new
instance of the MDB.

• One onMessage() method that is called by the EJB container when a message
is received. This method contains the business logic that processes the
message.

• One setMessageDrivenContext{} method that provides information to the
bean instance about its environment (certain deployment descriptor values);
the MDB also uses the context to access container services. See Using the
Message-Driven Bean Context,.

• One ejbRemove() method that removes the message-driven bean instance
from the free pool.

Note:

Most EJB 3.2 applications implement only javax.jms.MessageListener,
which defines a single method - onMessage(). However, a message-
driven bean is permitted to implement a listener interface with no
methods. A bean that implements a no-methods interface, exposes all
non-static public methods of the bean class and of any superclasses
except java.lang.Object as message listener methods.

2. Declare the MDB in ejb-jar.xml, as illustrated in the following excerpt:

<ejb-jar>
 <enterprise-beans>
 <message-driven>
 <ejb-name>...</ejb-name>
 <ejb-class>...</ejb-class>
 <transaction-type>Container</transaction-type>
 <acknowledge-mode>auto_acknowledge</acknowledge-mode>
 <message-driven-destination>

Chapter 5
Create MDB Class and Configure Deployment Elements

5-2

 <destination-type>javax.jms.Topic</destination-type>
 <subscription-durability>Durable</subscription-durability>
 </message-driven-destination>
 </message-driven>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>...</ejb-name>
 <method-name>onMessage()</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

The key behaviors to configure are:

• Transaction management strategy—The MDB's transaction management strategy, in
the transaction-type element. For instructions, see Configuring Transaction
Management Strategy for an MDB.

• Destination type—The type of destination to which the MDB listens. For more
information, see Configuring Destination Type.

3. Configure WebLogic-specific behaviors for the MDB in the message-driven-descriptor
element of weblogic-ejb-jar.xml. For example:

<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>exampleMessageDrivenA</ejb-name>
 <message-driven-descriptor>
 <pool>...</pool>
 <timer-descriptor>...</timer-descriptor>
 <destination-jndi-name>...</destination-jndi-name>
 <initial-context-factory>...</initial-context-factory>
 <provider-url>...</provider-url>
 <connection-factory-jndi-name>...</connection-factory-jndi-name>
 <jms-polling-interval-seconds>...</jms-polling-interval-seconds>
 <jms-client-id>...</jms-client-id>
 <generate-unique-jms-client-id>...</generate-unique-jms-client-id>
 <durable-subscription-deletion>...</durable-subscription-deletion>
 <max-messages-in-transaction>...</max-messages-in-transaction>
 <init-suspend-seconds>...</init-suspend-seconds>
 <max-suspend-seconds>...</max-suspend-seconds>
 </message-driven-descriptor>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

The key elements to configure are those that specify how to access the destination. In
general, applications that follow best practices should never need to specify the initial-
context-factory or provider-url fields. For instructions, see Configuring MDBs for
Destinations.

4. Compile and generate the MDB class using the instructions in Compile Java Source in
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

5. Deploy the bean on Oracle WebLogic Server using the instructions in the section
Preparing Applications and Modules for Deployment in Deploying Applications to Oracle
WebLogic Server

Chapter 5
Create MDB Class and Configure Deployment Elements

5-3

If Oracle WebLogic Server cannot find an MDB's JMS destination during
deployment, deployment succeeds, but Oracle WebLogic Server prints a message
saying the destination was not found. The MDB bean then periodically tries to
connect to its JMS queue until it succeeds. For more information, see Migration
and Recovery for Clustered MDBs.

Chapter 5
Create MDB Class and Configure Deployment Elements

5-4

6
Programming and Configuring MDBs: Details

Examine the steps to program and configure MDBs.
The sections supplement the instructions in Programming and Configuring MDBs: Main Steps

Note:

This chapter uses a pre-EJB 3.0 deployment descriptor to illustrate basic MDB
configuration. If you plan to use EJB 3.2 annotations, see also Deployment
Elements and Annotations for MDBs. and Using EJB 3.2 Compliant MDBs, for the
equivalent settings.

This chapter includes the following sections:

• Configuring Destination Type

• Configuring Transaction Management Strategy for an MDB

• Configuring MDBs for Destinations

• Configuring Message Handling Behaviors

• Using the Message-Driven Bean Context

• Configuring Suspension of Message Delivery During JMS Resource Outages

• Manually Suspending and Resuming Message Delivery

• Configuring the Number of Seconds to Suspend a JMS Connection

• Configuring a Security Identity for a Message-Driven Bean

• Using MDBs With Cross Domain Security

• Configuring EJBs to Use Logical Message Destinations

Configuring Destination Type
To configure the type of destination to which the MDB listens, set the destination-type
element in the message-driven-destination element of ejb-jar.xml or by using an
annotation.

• To specify a topic, set destination-type to javax.jms.Topic. If the destination is a
topic, specify subscription-durability as either Durable or NonDurable. For important
additional Topic related settings see Configuring and Deploying MDBs Using JMS
Topics , and Deployment Elements and Annotations for MDBs.

• To specify a queue, set destination-type to javax.jms.Queue. For additional Queue
related settings see Deployment Elements and Annotations for MDBs.

6-1

Configuring Transaction Management Strategy for an MDB
Learn how to configure an MDB for managing its own transactions or deferring
transaction management to the container.
To configure container-level transaction management using descriptor elements:

• Set the transaction-type element in the message-driven element in the ejb-
jar.xml file to Container.

• Set the trans-attribute element in the container-transaction element in ejb-
jar.xml to Required.

Note:

If transaction-type is set to Container, and trans-attribute is not
set, the default transaction-attribute values are applied: required
(for EJB 3.2 MDBs) and NotSupported (for MDBs prior to EJB 3.0).
Oracle WebLogic Server allows you to deploy the MDB, and logs a
compliance error. However, if you make this configuration error, the MDB
will not run transactionally—if a failure occurs mid-transaction, updates
that occurred prior to the failure will not be rolled back.

• To change the timeout period for the transaction, set trans-timeout-seconds in
the transaction-descriptor element of weblogic-ejb-jar.xml. If a transaction
times out, it is rolled back, and the message is redelivered. By default,
transactions time out after 30 seconds. For an application with long-running
transactions, it may be appropriate to increase the timeout period.

To configure container-level transaction management using EJB annotations:

 import javax.ejb.TransactionAttribute;
 import javax.ejb.TransactionAttributeType;
 ...
 @TransactionAttribute(value = TransactionAttributeType.REQUIRED)
 public void onMessage(Message msg) {
 ...

To configure bean-level transaction management using descriptor elements:

• Set the transaction-type element in the message-driven element in the ejb-
jar.xml file to Bean.

• Set the acknowledge-mode element to specify the desired JMS acknowledgment
semantics, either one of the following:

– AUTO_ACKNOWLEDGE (the default) as described at http://www.oracle.com/
technetwork/java/jms/index.html#AUTO_ACKNOWLEDGE

– DUPS_OK_ACKNOWLEDGE as described at http://www.oracle.com/technetwork/
java/jms/index.html#DUPS_OK_ACKNOWLEDGE

See Session in Developing JMS Applications for Oracle WebLogic Server.

Chapter 6
Configuring Transaction Management Strategy for an MDB

6-2

http://www.oracle.com/technetwork/java/jms/index.html#AUTO_ACKNOWLEDGE
http://www.oracle.com/technetwork/java/jms/index.html#AUTO_ACKNOWLEDGE
http://www.oracle.com/technetwork/java/jms/index.html#DUPS_OK_ACKNOWLEDGE
http://www.oracle.com/technetwork/java/jms/index.html#DUPS_OK_ACKNOWLEDGE

Configuring MDBs for Destinations
Learn how to configure local and remote destination for the MDBs. Oracle WebLogic Server
MDBs support WebLogic JMS destinations and foreign (non-Oracle) JMS provider
destinations.
A local destination is one that runs on the same machine or in the same cluster as the MDB.
A remote destination is one that runs on a different machine and is not a member of the same
cluster as the MDB. Whether a destination is local or remote depends on whether or not it
and the MDB share the same JNDI context.

To be considered local to one another, an MDB and the associated JMS destination must
both run either on the same machine or within the same Oracle WebLogic Server cluster. An
MDB and a JMS destination on server instances in the same Oracle WebLogic Server cluster
are local to one another even if they are on separate machines, because the server instances
in a Oracle WebLogic Server cluster each have a copy of the same cluster-wide JNDI tree.

Destinations that run under a non-Oracle JMS provider are referred to as foreign. Foreign
JMS providers have their own JNDI provider and foreign JMS objects do not share the same
context with a Oracle WebLogic Server MDB—unless the foreign JMS objects are configured
with mappings to appear in the MDB's JNDI context. This approach is discussed in Whether
to Use Foreign JMS Server Mappings.

The nature of a destination—local versus remote and WebLogic JMS versus non-Oracle—
governs the configuration alternatives available, and dictates to some extent how you
configure these key elements in the message-destination-descriptor for the MDB in
weblogic-ejb-jar.xml:

• initial-context-factory
• provider-url
• destination-jndi-name
• connection-factory-jndi-name
For foreign and remote destinations, the simplest configuration strategy is to use Oracle
WebLogic Server foreign JMS server mappings. These mappings allow you to create a
"symbolic link" between a JMS object in a third-party JNDI provider or in a different Oracle
WebLogic Server cluster or domain, and an object in the local WebLogic JNDI tree.

For more information on when foreign JMS server mappings are appropriate, and the rules
for configuring the message-driven-descriptor in weblogic-ejb-jar.xml, see these
sections:

• Whether to Use Foreign JMS Server Mappings

• How to Set provider-url

• How to Set initial-context-factory

• How to Set destination-jndi-name

• How to Set connection-factory-jndi-name

To configure the elements in message-driven-descriptor for specific scenarios, see
Common Destination Scenarios: Illustrations and Key Element Settings .

Chapter 6
Configuring MDBs for Destinations

6-3

Whether to Use Foreign JMS Server Mappings
Using mappings means configuring a Foreign Connection Factory and a Foreign
Destination that correspond to remote JMS objects (either non-Oracle or WebLogic
JMS) as entries in your local JNDI tree.

Note:

The Foreign JMS Server mapping feature is not the same as the Foreign
JNDI mapping feature. MDBs generally require that you use the Foreign JMS
Server feature when mapping JMS resources into JNDI. The Foreign JNDI
feature is meant for non-JMS resource types.

• The use of mappings is recommended if you use a foreign JMS provider or a
remote WebLogic JMS provider. For more information on JMS mapping classes,
see "Simplified Access to Remote or Foreign JMS Providers" in Enhanced Support
for Using WebLogic JMS with EJBs and Servlets in Developing JMS Applications
for Oracle WebLogic Server.

• If you use a mapping for either the connection factory or the destination, you must
create and use mappings for each of these objects.

Whether or not you use mappings determines how you configure the initial-
context-factory and destination-jndi-name.

How to Set provider-url
provider-url specifies the URL of the JNDI service used by the JMS provider for the
destination to which the MDB listens.

• If the JMS provider is local to the MDB (by definition, WebLogic JMS), do not
specify provider-url.

• If the JMS provider is remote, whether WebLogic JMS or a foreign provider, and:

– You do not use mappings, specify provider-url.

– You do use mappings, do not specify provider-url. The URL is implicitly
encoded in the mapping.

How to Set initial-context-factory
initial-context-factory identifies the class that implements the initial context
factory used by the JMS provider.

• If your JMS provider is WebLogic JMS, whether local or remote, do not specify
initial-context-factory.

• If your JMS provider is foreign, and

– you do not use mappings, specify the initial context factory used by the JMS
provider.

– you do use mappings, do not specify initial-context-factory.

Chapter 6
Configuring MDBs for Destinations

6-4

How to Set destination-jndi-name
destination-jndi-name identifies the JNDI name of destination to which the MDB listens.

• If your JMS provider is local, specify the name bound in the local JNDI tree for the
destination.

• If your JMS provider is foreign and:

– You do not use mappings, specify the name of the destination, as bound in the
foreign provider's JNDI tree.

– You do use mappings, specify the name Foreign Destination you set up in your local
JNDI tree that corresponds the remote or foreign destination.

How to Set connection-factory-jndi-name
connection-factory-jndi-name identifies the JNDI name of the connection factory used by
the JMS provider.

• If your JMS provider is local, do not specify connection-factory-jndi-name unless you
have configured a custom connection factory that the MDB will use.

Custom connection factories are used when the default Oracle WebLogic Server
connection factory does not satisfy your application requirements. For example, you
might configure a custom connection factory in order to specify a particular desired value
for the MessagesMaximum attribute. The procedure for configuring a connection factory is
described in Configure connection factories in Oracle WebLogic Server Administration
Console Online Help.

Note:

If you configure a custom JMS connection factory for an MDB, be sure to set
the Acknowledge Policy attribute to Previous, and that the
UserTransactionsEnabled attribute is enabled.

• If your JMS provider is remote or foreign, and:

– You do not use mappings, specify the name of the connection factory used by the
JMS provider, as bound in the remote JNDI tree.

– You do use mappings, specify the Foreign Connection Factory you set up in your
local JNDI tree that corresponds to the remote or foreign JMS provider's connection
factory.

Common Destination Scenarios: Illustrations and Key Element Settings
The figures in this section illustrate common destination configurations. For remote and
foreign destinations, scenarios with and without mappings are included.

• Figure 6-1

• Figure 6-2

• Figure 6-3

Chapter 6
Configuring MDBs for Destinations

6-5

• Figure 6-4

Table 6-1 summarizes how to configure the elements in the message-driven-
descriptor element of weblogic-ejb-jar.xml for each scenario.

Figure 6-1 A. Destination on a Local WebLogic JMS Server

Chapter 6
Configuring MDBs for Destinations

6-6

Figure 6-2 B. Destination On a Remote WebLogic JMS Server—No Mappings

Chapter 6
Configuring MDBs for Destinations

6-7

Figure 6-3 C. Destination on Foreign JMS Server—No Mappings

Chapter 6
Configuring MDBs for Destinations

6-8

Figure 6-4 D. Destination on a Remote Oracle WebLogic Server or Foreign JMS
Server—With Mappings

Table 6-1 Common Configuration Scenarios

Scenario If
destinatio
n is on...

Mappings
Configured?

destination-jndi-
name

initial-
context-
factory

provider-url connection-
factory-jndi-
name

A Local
WebLogic
JMS server

Not applicable for
local WebLogic JMS
server

Name of the local
destination, as
bound in local
JNDI tree

Do not
specify

Do not specify Specify only if
using a custom
connection
factory

Chapter 6
Configuring MDBs for Destinations

6-9

Table 6-1 (Cont.) Common Configuration Scenarios

Scenario If
destinatio
n is on...

Mappings
Configured?

destination-jndi-
name

initial-
context-
factory

provider-url connection-
factory-jndi-
name

B Remote
WebLogic
JMS Server

No mappings
configured

Name of the
remote
destination, as
bound in the
remote JNDI tree

Do not
specify

URL or cluster
address for the
remote
WebLogic JMS
Server

Specify only if
using a custom
connection
factory on the
remote
provider

C Foreign
JMS
Provider

No mappings
configured

Name of the
remote
destination, as
bound in the
remote JNDI tree

Name of
remote
initial
context
factory, as
bound in
remote
JNDI tree

URL to access
the foreign
JMS provider

JNDI name of
foreign
connection
factory

D Remote
Weblogic
JMS Server

or

Foreign
JMS server

Mappings configured The name of the
Foreign
Destination—as
bound in your
local JNDI tree —
that maps to the
remote or foreign
destination

Do not
specify

Do not specify The name of
the Foreign
Connection
Factory—as
bound in your
local JNDI tree
—that maps to
the remote or
foreign
connection
factory

Configuring Message Handling Behaviors
Examine the guidelines for behaviors related to message delivery:
This section includes the following topics:

• Ensuring Message Receipt Order

• Preventing and Handling Duplicate Messages

• Redelivery and Exception Handling

Ensuring Message Receipt Order
Make sure that the MDB's business logic allows for asynchronous message
processing. Do not assume that MDBs receive messages in the order the client issues
them.

When using WebLogic JMS destinations, Oracle recommends using the Unit-of-Order
feature if strict ordering is required. This feature enforces ordering under all
circumstances without requiring modification of the MDB, enables concurrent
processing of sub-orderings that exist within the same destinations, and can be
enabled via configuration or programmatically as appropriate. See Using Message
Unit-of-Order in Developing JMS Applications for Oracle WebLogic Server.

Chapter 6
Configuring Message Handling Behaviors

6-10

If you are not using WebLogic destinations with unit-of-order to ensure that receipt order
matches the order in which the client sent the message, you must do the following:

• Set max-beans-in-free-pool to 1 for the MDB. This ensures that the MDB is the sole
consumer of the message.

• If your MDBs are deployed on a cluster, deploy them to a single node in the cluster, as
illustrated in Figure 6-5.

To ensure message ordering in the event of transaction rollback and recovery, configure a
custom connection factory with MessagesMaximum set to 1, and ensure that no redelivery
delay is configured. Foreign vendors have different names for the equivalent setting. This
setting controls the number of messages that a vendor may push to a consumer before the
consumer completes processing of its current message.

See Ordered Redelivery of Messages in Developing JMS Applications for Oracle WebLogic
Server.

See the Java documentation on the Interface MessageListener—
javax.jms.MessageListener.onMessage()—for more information, at http://
download.oracle.com/javaee/1.2.1/api/javax/jms/MessageListener.html.

Preventing and Handling Duplicate Messages
A JMS vendor expects an MDB to acknowledge received messages. If the MDB receives the
message, but fails to send an acknowledgement, the JMS vendor re-sends the same
message.

Your MDB design should allow for the likelihood of duplicate messages. Duplicate messages
can be undesirable in certain cases. For example, if an MDB's onMessage() method includes
code to debit a bank account, receiving and processing that message twice would result in
the account being debited twice. In addition, re-sending messages consumes more
processing resources.

The best way to prevent delivery of duplicate messages is to use container-managed
transactions. In a container-managed transaction, message receipt and acknowledgement
occur within the transaction; either both happen or neither happens. However, while this
provides more reliability than using bean-managed transactions, performance can be
compromised because container-managed transactions use more CPU and disk resources.

If the MDB manages its own transactions, your onMessage() code must handle duplicate
messages, as receipt and acknowledgement occur outside of a transaction. In some
applications, receipt and processing of duplicate messages is acceptable. In other cases,
such as the bank account scenario, if a transaction is bean-managed, the bean code must
prevent processing of duplicate messages. For example, the MDB could track messages that
have been consumed in a database.

Even if an MDB's onMessage() method completes successfully, the MDB can still receive
duplicate messages if the server crashes between the time onMessage() completes and the
time the container acknowledges message delivery. Figure 6-5 illustrates this scenario.

Chapter 6
Configuring Message Handling Behaviors

6-11

http://download.oracle.com/javaee/1.2.1/api/javax/jms/MessageListener.html
http://download.oracle.com/javaee/1.2.1/api/javax/jms/MessageListener.html

Figure 6-5 Server Crash Between Completion of onMessage() and Container
Delivery Acknowledgement

Redelivery and Exception Handling
If an MDB is consuming a message when an unexpected error occurs, the MDB can
throw a system exception that causes JMS to resend, delay, and then resend or give
up, depending on how JMS is configured.

To force message redelivery for a transactional MDB, use the bean context to call
setRollbackOnly().

To force message redelivery for any MDB—transactional or non-transactional—you
can throw an exception derived from the RuntimeException or Error thrown by the
MDB. This causes the MDB instance to be destroyed and recreated, which incurs a
performance penalty. If you want to avoid the overhead of a destroy and recreate,
while still throwing a runtime exception, you can use a WebLogic extension. Throw an
instance of a weblogic.ejb.NonDestructiveRuntimeException, for example,

throw new weblogic.ejb.NonDestructiveRuntimeException("force redelivery");

You may want to configure a redelivery delay based on what type of task the MDB's
onMessage() method is performing. In some cases, redelivery should be
instantaneous, for example, in an application that posts breaking news to a newswire
service. In other cases, for example, if the MDB throws an exception because the
database is down, redelivery should not occur immediately, but after the database is
back up.

Chapter 6
Configuring Message Handling Behaviors

6-12

Note:

For fully ordered MDBs that do not use the Unit-of-Order feature, do not set a
redelivery delay.

For instructions on configuring a redelivery delay, and other JMS exception handling features
that can be used with MDB, see Managing Rolled Back, Recovered, Redelivered, or Expired
Messages in Developing JMS Applications for Oracle WebLogic Server.

Using the Message-Driven Bean Context
Oracle WebLogic Server calls setMessageDrivenContext() to associate the MDB instance
with a container context. Alternatively, EJB 3.2 MDB applications can specify an annotation
that injects the MDB context. This is not a client context; the client context is not passed
along with the JMS message.
To access the container context's properties from within the MDB instance, use the following
methods from the MessageDrivenContext interface:

• getCallerPrincipal()—Inherited from the EJBContext interface and should not be
called by MDB instances.

• isCallerInRole()—Inherited from the EJBContext interface and should not be called by
MDB instances.

• setRollbackOnly()—Can only be used by EJBs that use container-managed
transactions.

• getRollbackOnly()— Can only be used by EJBs that use container-managed
transactions.

• getUserTransaction()—Can only be used by EJBs that use bean-managed transaction
demarcations.

Note:

Although getEJBHome() is also inherited as part of the MessageDrivenContext
interface, message-driven beans do not have a home interface. Calling
getEJBHome() from within an MDB instance causes an
IllegalStateException.

Configuring Suspension of Message Delivery During JMS
Resource Outages

To configure how an MDB behaves when the EJB container detects a JMS resource outage
such as an MDB throwing the same exception ten times in succession.
You can configure:

• An MDB to suspend the JMS connection and thereby stop receiving additional messages
when the EJB container detects a JMS resource outage. If you choose this configuration
option, you can specify:

Chapter 6
Using the Message-Driven Bean Context

6-13

– The initial number of seconds the MDB should wait before it first resumes
receiving messages.

– The maximum number of seconds the MDB should wait before it resumes
receiving messages.

• An MDB to not suspend the JMS connection when the EJB container detects a
JMS resource outage.

When a JMS connection is suspended, message delivery is suspended for all JMS
sessions associated with the connection. By default, when it detects a JMS resource
outage, the EJB container suspends an MDB's JMS connection for init-suspend-
seconds.

Manually Suspending and Resuming Message Delivery
Administrators can use the WebLogic Server Administration Console to manually
suspend and resume message delivery to deployed MDBs.
See Suspend and resume MDB JMS connections in Oracle WebLogic Server
Administration Console Online Help.

Configuring the Number of Seconds to Suspend a JMS
Connection

You can suspend a JMS connection during a resource outage, which can be defined
as an MDB throwing the same exception 10 times in succession.
To suspend an MDB's JMS connection, configure the following elements in the
weblogic-ejb-jar.xm file:

• init-suspend-seconds—the initial amount of time, in seconds, to suspend a JMS
connection when the EJB container detects a JMS resource outage. The default
value is 5.

• max-suspend-seconds—the maximum amount of time, in seconds, to suspended a
JMS connection when the EJB container detects a JMS resource outage. The
default value is 60.

How the EJB Container Determines How Long to Suspend a JMS
Connection

The EJB container uses the following algorithm, based on the init-suspend-seconds
and max-suspend-seconds, to determine the amount of time a JMS connection is
suspended.

When the EJB container detects a JMS resource outage:

1. The MDB's JMS connection is suspended for the amount of time specified by
init-suspend-seconds.

2. The connection is checked. If the resource is available, go to Step 12.

3. If the value of init-suspend-seconds is greater than or equal to max-suspend-
seconds, go to Step 9.

Chapter 6
Manually Suspending and Resuming Message Delivery

6-14

4. The amount of time used to suspend the JMS connection, represented by Xseconds, is
calculated by multiplying the time of the previous suspension by 2.

5. The MDB's JMS connection is suspended for the amount of time specified by Xseconds.

6. The connection is checked. If the resource is available, go to Step 12.

7. If the value of init-suspend-seconds is greater than or equal to max-suspend-seconds,
go to Step 9.

8. Go to Step 4.

9. The MDB's JMS connection is suspended for the amount of time specified by max-
suspend-seconds.

10. Check the connection. If the resource is available, go to Step 12.

11. Go to Step 9.

12. Continue processing.

Turning Off Suspension of a JMS Connection
If you do not want an MDB's JMS connection to be suspended when the EJB container
detects a resource outage, set the value of max-suspend-seconds to 0. When the value of
max-suspend-seconds is 0, the value of init-suspend-seconds is ignored.

Configuring a Security Identity for a Message-Driven Bean
When a MDB receives messages from a JMS queue or topic, the EJB container uses a
Credential Mapping provider and a credential map to validate the security credentials to
establish the JMS connection and to execute the onMessage() method. This credential
mapping occurs only once, when the MDB is started.
Once the EJB container is connected, the JMS provider uses the established security identity
to retrieve all messages.

To configure a security identity for an MDB:

1. Create a WebLogic user for the MDB. See Users, Groups, and Security Roles in
Securing Resources Using Roles and Policies for Oracle WebLogic Server. Assign the
user the username and password that the non-Oracle JMS provider requires to establish
a JMS connection.

2. In the ejb-jar.xml deployment descriptor, define a run-as identity for the MDB:

<security-identity>
 <run-as>
 <role-name>admin</role-name>
 </run-as>
</security-identity>

3. To create the security-identity, you must also define the security-role inside the
assembly-descriptor element in ejb-jar.xml.

<assembly-descriptor>
 <security-role>
 <role-name>jmsrole</role-name>
 </security-role>

</assembly-descriptor>

Chapter 6
Configuring a Security Identity for a Message-Driven Bean

6-15

4. In the weblogic-ejb-jar.xml deployment descriptor, map the run-as identity to
the user defined in Step 2, as follows:

http://docs.oracle.com/middleware/1213/wls/WLACH/taskhelp/ejb/
CreateEJBComponentCredentialMappings.html
where username is the username for the user created in step 1.

5. If the JMS provider is not WebLogic JMS, configure the credential mapper as
described in Create EJB component credential mappings in Oracle WebLogic
Server Administration Console Online Help.

Note:

If the JMS provider is WebLogic JMS, it is not necessary to configure a
credential mapper.

Using MDBs With Cross Domain Security
Learn how to configure cross domain security for MDBs.
You should consider the following guidelines when implementing MDBs:

• If your MDBs must handle transactional messages, you must correctly configure
either Cross Domain Security or Security Interop Mode for all participating
domains.

Keep all the domains used by your process symmetric with respect to Cross
Domain Security configuration and Security Interop Mode. Because both settings
are set at the domain level, it is possible for a domain to be in a mixed mode,
meaning the domain has both Cross Domain Security and Security Interop Mode
set. See Configuring Secure Inter-Domain and Intra-Domain Transaction
Communication in Developing JTA Applications for Oracle WebLogic Server.

• You must configure Cross Domain Security in cases where an MDB listens to a
distributed destination in a different domain.

• MDBs handling non-transactional messages do not require you to configure Cross
Domain Security. However, you must configure Cross Domain Security for all the
domains with which your process communicates, if Cross Domain Security is
configured on one domain and the membership of the distributed destination that
the MDB listens to in any domain changes. You must configure Cross Domain
Security for cases where an MDB listens to a distributed destination that is in a
different domain.

A best practice is to keep all the domains used by your process symmetric with
respect to Cross Domain Security configuration— that is, all domains use Cross
Domain Security (or are on the appropriate exception lists) or none of the domains
have Cross Domain Security configured. See Configuring Cross-Domain Security
in Administering Security for Oracle WebLogic Server.

Configuring EJBs to Use Logical Message Destinations
You can declare logical message destinations in an EJB's deployment descriptor and
map the logical message destinations to actual message destinations such as JMS
queues or topics, or MDBs.

Chapter 6
Using MDBs With Cross Domain Security

6-16

Note:

Logical destinations and application-scoped destinations are not commonly used
and are for advanced users only. For most users, Oracle recommends using the
methods discussed in Configuring MDBs for Destinations.

After you declare logical message destinations, you can then create message destination
references that are linked to the logical message destinations. EJBs use the logical message
destination name to perform a JNDI lookup and access the actual message destination.
Logical JMS message destinations can be defined for individual MDBs or entire applications.

For information on how unresolved and unavailable message destinations are handled, see
EJBs and Message Destination References in Developing Enterprise JavaBeans, Version
2.1, for Oracle WebLogic Server.

Configuring Logical JMS Message Destinations for Individual MDBs
You can configure logical JMS message destinations for individual MDBs.

To configure an MDB to use a logical message destination to link to an actual message
destination:

1. Declare the message destination in the message-destination-descriptor element in
weblogic-ejb-jar.xml.

2. Declare message destination references in the following elements in ejb-jar.xml:

• message-destination-ref
• message-destination-ref-name—the environment name used in the enterprise bean

code for the message destination, relative to java:comp/env. For example,
<message-destination-ref>jms/StockQueue</message-destination-ref>.

• message-destination-type—the expected type of the referenced destination. For
example, <message-destination-type>javax.jms.Queue</message-destination-
type>.

• message-destination-usage—specifies whether messages are consumed from the
destination, produced for the destination, or both. For example, <message-
destination-usage>Produces<message-destination-usage>.

• message-destination-link—links the message destination reference to the actual
message destination. This value must match the destination defined in message-
destination-name in the weblogic-ejb-jar.xml file.

Configuring Application-Scoped Logical JMS Message Destinations
In this release of Oracle WebLogic Server, you can configure resources for applications.
Resources that are configured for entire applications are called application-scoped resources.
This section describes application-scoped logical JMS destinations for an EJB application.
For additional information on application-scoped resources, such as JMS and JDBC, see
Developing JMS Applications for Oracle WebLogic Server and Developing JDBC Applications
for Oracle WebLogic Server.

Chapter 6
Configuring EJBs to Use Logical Message Destinations

6-17

Application-scoped resources, such as logical JMS message destinations, for EJBs
apply to all MDBs in the application. You can override application-scoped JMS for
specific MDBs by configuring the MDBs to use logical message destinations to link to
actual message destinations, as described in Configuring Logical JMS Message
Destinations for Individual MDBs.

To configure application-scoped JMS for EJBs:

1. Declare the message destination in the message-destination-descriptor
element in weblogic-ejb-jar.xml.

2. Declare message destination references in the following elements in ejb-jar.xml:

• message-driven
– message-destination-type—the expected type of the referenced destination.

For example, <message-destination-type>javax.jms.Queue</message-
destination-type>.

– message-destination-usage—specifies whether messages are consumed
from the destination, produced for the destination, or both. For example,
<message-destination-usage>Produces<message-destination-usage>.

– message-destination-link—links the message destination reference to the
actual message destination. For example, <message-destination-
link>ExpenseProcessingQueue<message-destination-link>. This value
must match the destination defined in message-destination-name in the
weblogic-ejb-jar.xml file.

• message-destination
– message-destination-name—the name of the message destination. For

example, <message-destination-name>ExpenseProcessingQueue<message-
destination-name>. This value must match the destination defined in
message-destination-name in weblogic-ejb-jar.xml.

Chapter 6
Configuring EJBs to Use Logical Message Destinations

6-18

7
Using EJB 3.2 Compliant MDBs

Examine how to program and implement EJB 3.2 compliant MDBs:
This chapter includes the following sections:

• Implementing EJB 3.2 Compliant MDBs

• Programming EJB 3.2 Compliant MDBs

Implementing EJB 3.2 Compliant MDBs
You can implement MDBs that are complaint to specific EJB version.
To implement EJB 3.2 compliant MDBs, follow the steps described in Overview of the EJB
Development Process in Developing Enterprise JavaBeans for Oracle WebLogic Server.

Programming EJB 3.2 Compliant MDBs
You can program MDBs that are complaint to specific version of EJB.
To program EJB 3.2 compliant MDBs, follow the steps described in Programming the Bean
File: Typical Steps in Developing Enterprise JavaBeans for Oracle WebLogic Server.

You must use the @javax.ejb.MessageDriven annotation to declare the EJB type as
message-driven. You can specify the following optional attributes:

• messageListenerInterface—Specifies the message listener interface, if you have not
explicitly implemented it or if the bean implements additional interfaces.

Note:

The bean class must implement, directly or indirectly, the message listener
interface required by the messaging type that it supports or the methods of the
message listener interface. In the case of JMS, this is the
javax.jms.MessageListener interface.

• activationConfig—Specifies an array of activation configuration properties that
configure the bean in its operational environment.

Activation configuration properties are name-value pairs that are passed to the MDB
container when an MDB is deployed. The properties can be declared in either an ejb-
jar.xml deployment descriptor or by using the @ActivationConfigProperty annotation
on the MDB bean class. An example using the @ActivationConfigProperty annotation
is shown in Example 7-1. An example using the ejb-jar.xml deployment descriptor is
shown in Example 7-2.

To set activation configuration properties in the ejb-jar.xml descriptor, use the
activation-config-property element in the message-driven stanza, as shown in
Example 7-2.

7-1

Because activation configuration properties can be set in an ejb.jar deployment
descriptor or by using activationConfigProperty annotation properties, conflicts
may result if the same name is used in both places. Conflicts may also result from
using same-named properties from pre-3.0 versions of EJB or from proprietary
Oracle WebLogic Server EJB annotations. Such conflicts are resolved following
the following priority order, in sequence from high to low is:

1. Properties set in the weblogic-ejb-jar.xml deployment descriptor

2. Proprietary Oracle WebLogic Server 10.0 (and later) annotations

3. activation-config-property properties set in the ejb-jar.xml deployment
descriptor

4. activationConfigProperty annotation properties

For example, if the same property exists in the weblogic-ejb-jar.xml descriptor
and the ejb-jar.xml descriptor, the one in weblogic-ejb-jar.xml has the higher
priority and overrides the one in ejb-jar.xml value. Or, if the same property is set
in both an ejb-jar.xml descriptor element and in an activationConfigProperty
annotation, the descriptor element takes precedence and the annotation is
ignored.

For more information about activation configuration properties, see
javax.ejb.ActivationConfigProperty in Developing Enterprise JavaBeans for Oracle
WebLogic Server. Also see Table 11-1, which summarizes the activation
configuration properties supported by Oracle WebLogic Server.

Note:

Based on the Enterprise JavaBean specification, the
javax.ejb.ActivationConfigProperty annotation is used for MDBs
only. This annotation is not used for session or entity beans.

For detailed information on developing MDBs to support the messaging modes as
described in MDBs and Messaging Models, see Programming and Configuring MDBs:
Details.

Example 7-1 Example @ActivationConfigProperty Code

. . .
@ActivationConfigProperties(
 {
 @ActivationConfigProperty(
 name="connectionFactoryJndiName", value="JNDINameOfMDBSourceCF"
),
 @ActivationConfigProperty(
 name="initialContextFactory",
value="weblogic.jndi.WLInitialContextFactory"
)
 }
)
. . .

Example 7-2 Activation Configuration Properties Set in ejb-jar.xml

<message-driven>
 . . .

Chapter 7
Programming EJB 3.2 Compliant MDBs

7-2

 <activation-config>
 <activation-config-property>
 <activation-config-property-name>destinationLookup</activation-config-property-name>
 <activation-config-property-value>myQueue</activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>destinationType</activation-config-property-name>
 <activation-config-property-value>javax.jms.Queue</activation-config-property-value>
 <activation-config-property>
 </activation-config>
 . . .
 </message-driven>
 <message-driven>
 . . .
 <activation-config>
 <activation-config-property>
 <activation-config-property-name>destinationLookup</activation-config-property-name>
 <activation-config-property-value>myQueue</activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>destinationType</activation-config-property-name>
 <activation-config-property-value>javax.jms.Queue</activation-config-property-value>
 <activation-config-property>
 </activation-config>
 . . .
 </message-driven>

MDB Sample Using Annotations
Example 7-3 shows a WebLogic MDB that uses a subscription to a WebLogic JMS queue
(from Oracle WebLogic Server 10.3.4 or later), transactionally processes the messages, and
forwards the messages to a target destination.

The MDB connects using JMS connection factory MyCF to receive from queue MyQueue. It
forwards the messages to MyTargetDest using a connection generated from connection
factory MyTargetCF.

Resource reference pooling note: The MDB uses a resource reference to access
MyTargetCF. The resource reference automatically enables JMS producer pooling, as
described in Enhanced Support for Using WebLogic JMS with EJBs and Servlets in
Developing JMS Applications for Oracle WebLogic Server.

For a similar sample using topics instead of queues, see Example 10-1.

This is a sample Oracle WebLogic MDB for durably subscribing to a WebLogic
10.3.4/11gR1PS3 or later JMS topic, transactionally processes the messages, and forwards
the messages to a target destination.

The MDB connects using JMS connection factory "MyCF" to receive from topic "MyTopic." It
forwards the messages to "MyTargetDest" using a connection generated from connection
factory "MyTargetCF."

Resource reference pooling note:The MDB uses a resource reference to access
"MyTargetCF". The resource reference automatically enables JMS producer pooling, as per
the "Enhanced Support for Using WebLogic JMS with EJBs and Servlets" chapter of
"Programming JMS for Oracle WebLogic Server."

Chapter 7
Programming EJB 3.2 Compliant MDBs

7-3

Example 7-3 Sample MDB Using Distributed Queues

package test;
import javax.annotation.Resources;
import javax.annotation.Resource;
import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;
import javax.ejb.MessageDrivenContext;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.jms.*;

@MessageDriven(
 name = "MyMDB",
 activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "connectionFactoryJndiName",
 propertyValue = "MyCF"), // External JNDI Name

 @ActivationConfigProperty(propertyName = "destinationJndiName",
 propertyValue = "MyQueue") // Ext. JNDI Name
 }
)

@Resources ({
 @Resource(name="targetCFRef",
 mappedName="MyTargetCF", // External JNDI name
 type=javax.jms.ConnectionFactory.class),

 @Resource(name="targetDestRef",
 mappedName="MyTargetDest", // External JNDI name
 type=javax.jms.Destination.class)
})

public class MyMDB implements MessageListener {

 // inject a reference to the MDB context

 @Resource
 private MessageDrivenContext mdctx;

 // cache targetCF and targetDest for re-use (performance)

 private ConnectionFactory targetCF;
 private Destination targetDest;

 @TransactionAttribute(value = TransactionAttributeType.REQUIRED)
 public void onMessage(Message message) {

 System.out.println("My MDB got message: " + message);

 // Forward the message to "MyTargetDest" using "MyTargetCF"

 Connection jmsConnection = null;

 try {
 if (targetCF == null)
 targetCF = (javax.jms.ConnectionFactory)mdctx.lookup("targetCFRef");

Chapter 7
Programming EJB 3.2 Compliant MDBs

7-4

 if (targetDest == null)
 targetDest = (javax.jms.Destination)mdctx.lookup("targetDestRef");

 jmsConnection = targetCF.createConnection();
 Session s = jmsConnection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer mp = s.createProducer(null);

 mp.send(targetDest, message);

 } catch (JMSException e) {

 System.out.println("Forcing rollback due to exception " + e);
 e.printStackTrace();
 mdctx.setRollbackOnly();

 } finally {

 // Closing a connection automatically returns the connection and
 // its session plus producer to the resource reference pool.

 try { if (jmsConnection != null) jmsConnection.close(); }
 catch (JMSException ignored) {};
 }

 // emulate 1 second of "think" time

 try { Thread.currentThread().sleep(1000); }
 catch (InterruptedException ie) {
 Thread.currentThread().interrupt(); // Restore the interrupted status
 }
 }

}

Chapter 7
Programming EJB 3.2 Compliant MDBs

7-5

8
Migration and Recovery for Clustered MDBs

Learn about the migration and recovery for clustered MDBs. Oracle WebLogic Server
supports migration and recovery for clustered JMS destinations. In the event of failure, you
can bring a JMS destination back online on a different JVM. You can design your cluster so
that when a server instance fails, it automatically migrates the JMS destination from the failed
server in the cluster to an available server instance.
In turn, any MDB deployment associated with a migrated JMS destination is automatically
updated. Such an update may include closing and reinitializing MDB pools and/or
reconnecting to the JMS destination

Caution:

Service migration is not recommended for the following cases. In these cases,
migration can result in either missing messages or duplicate message processing.

Case 1, when all of the following are true:

• The MDB topicMessagesDistributionMode is One-Copy-Per-Server
• The MDB distributedDestinationConnection is LocalOnly
• The MDB is Durable
• The destination is configured as the logical name of a replicated distributed

topic

Case 2, when all of the following are true:

• The MDB topicMessagesDistributionMode is Compatibility
• The MDB is Durable
• The destination is configured as the logical name of a distributed topic

Case 3, when all of the following are true:

• The MDB topicMessagesDistributionMode is One-Copy-Per-Application
• The MDB distributedDestinationConnection is LocalOnly
• The migration target server has no MDB instance. Best practice is to target

MDB deployments to the entire cluster, to avoid this problem.

For more information on topic message processing, see Configuring and Deploying
MDBs Using JMS Topics .

8-1

Note:

A migratable service works with clustered servers only. A WebLogic JMS
destination can migrate to another server within a cluster, but cannot migrate
to a different cluster.

After a WebLogic JMS destination migrates to another server, an MDB deployment, or
"connection poller," reconnects to the migrated JMS destination and begins to receive
messages from the JMS destination again; the MDB may also create and close pools
as needed.

MDBs can be targeted to clusters or individual Oracle WebLogic Server instances, but
not to migratable targets. If an MDB is running in the same cluster as a migratable
destination, you must ensure that MDB is deployed everywhere that its source
destination may be hosted. You can do this in two ways:

• Deploy MDBs homogeneously to the cluster. (Recommended)

• Ensure that the MDB's target set includes all Oracle WebLogic Server instances
that are in the candidate lists for the migratable targets in the config.xml file used
by the JMS servers that host the destination. For more information on configuring
migratable targets, see Understanding Migratable Target Servers in a Cluster in
Administering Clusters for Oracle WebLogic Server.

For instructions on implementing the migratable service and for background
information on WebLogic JMS migration and recovery services for clustered
architectures, see JMS as a Migratable Service within a Cluster in Administering JMS
Resources for Oracle WebLogic Server.

Chapter 8

8-2

9
Using Batching with Message-Driven Beans

Examine using transaction batching with MDB. Within an MDB, business logic, possibly
including database transactions, is performed within the onMessage() method. Within an EJB
application, multiple MDBs can perform multiple onMessage() calls concurrently. If each
onMessage() call performs a container-managed transaction, this can create a lot of
overhead.
Oracle WebLogic Server provides a mechanism for grouping multiple container-managed
transaction MDB onMessage() calls together under a single transaction. This mechanism can
help increase the performance of an EJB application by implicitly grouping all of the work
from different onMessage calls into a single request.

For information on transaction management within MDBs, see Configuring Transaction
Management Strategy for an MDB.

Note:

Transaction batching is not effective for all MDB applications. For example,
database deadlocks can occur in an application where an MDB makes multiple calls
to a database. Using the transaction batching feature will cause the MDB to lock
more rows per transaction which can lead to database deadlocks.

This chapter includes the following sections:

• Configuring MDB Transaction Batching

• How MDB Transaction Batching Works

Configuring MDB Transaction Batching
You can enable MDB transaction batching by defining the max-messages-in-transaction
element or using the equivalent property in activationConfigProperty. The element is part
of the message-driven-descriptor element of the weblogic-ejb-jar.xml deployment
descriptor.
max-messages-in-transaction defines the batch size Oracle WebLogic Server uses to
process onMessage() transactions. However, increasing the batch size can increase latency.
You should start with a small value, 5 for example. You can increase this value as your
application performance allows.

When using MDB batching, more messages are processed per transaction. This may cause
more transactions to time out since more work is being performed in each transaction. You
can increase the transaction timeout be increasing the value of trans-timeout-seconds
attribute of weblogic-ejb-jar.xml. Alternatively, you can use @TransactionTimeoutSeconds
annotation, as follows:

import weblogic.javaee.TransactionTimeoutSeconds;
...;

9-1

@TransactionTimeoutSeconds(value = 60);
...;
public class MyMDB ...

How MDB Transaction Batching Works
MDB transaction batching does not require any changes to application code. As far as
the application is concerned, individual messages are still processed one by one.
There is no application level message list.
Internally, Oracle WebLogic Server creates a transaction for a batch. A message is
added to the transaction until the number of messages in the transaction is equal to
the batch size defined by max-messages-in-transaction or the equivalent property in
activationConfigProperty. When the number of messages in the equals max-
messages-in-transaction or there is no next message to be added to the transaction,
the transaction is submitted for processing. See Figure 9-1.

Figure 9-1 MDB Transaction Batching Transaction Processing Flow

If an individual onMessage() call fails, then the entire batch is rolled back. If the failure
was due to a transaction timeout, as defined in the trans-timeout-seconds attribute
of weblogic-ejb-jar.xml, the MDB container temporarily reduces the batch size and
attempts to process the transactions with smaller batches.

Chapter 9
How MDB Transaction Batching Works

9-2

If failure occurs for another reason, the MDB reprocesses each message within the failed
batch as an individual transaction. This avoids the scenario where an individual onMessage()
call can permanently hang an entire batch.

Chapter 9
How MDB Transaction Batching Works

9-3

10
Configuring and Deploying MDBs Using JMS
Topics

Examine how to develop an MDB that automatically sets up JMS topic subscriptions and then
processes subscription messages. A message that is published to a JMS topic is replicated
to all subscriptions that have a matching selector filter.
A single deployed MDB may create multiple topic subscriptions and may have one or more
free pools per host Oracle WebLogic Server instance. This behavior is controlled by MDB
attribute settings, topic type, and whether the MDB is running on the same cluster or JVM as
its topic. (For information about MDB free pools, see MDBs and Concurrent Processing.)

This chapter also describes how to use topic MDBs together with WebLogic JMS distributed
topics. WebLogic JMS distributed topics are logical topics that are composed of multiple
physical topics, where each physical topic is hosted on a different JMS Server instance. This
distributed topic capability was significantly enhanced in Oracle WebLogic Server 10.3.4 to
provide increased scalability and high availability. The enhancements include direct support
for remotely hosted distributed topics, for fully distributing the processing of a single logical
subscription across multiple physical subscriptions, and for multiple JVMs to process
messages from the same physical subscription.

This chapter includes the following sections:

• Supported Topic Types

• The Most Commonly Used MDB Attributes

• Best Practices

• Configuring for Service Migration

• Upgrading Applications from Previous Releases

• Topic MDB Sample

For additional information about JMS topics see:

• Topic Deployment Scenarios

• Topic Subscription Identifiers

• How WebLogic MDBs Leverage WebLogic JMS Extensions

• Developing Advanced Pub/Sub Applications in Developing JMS Applications for Oracle
WebLogic Server.

• Tuning WebLogic JMS in Tuning Performance of Oracle WebLogic Server

• Tuning Message-Driven Beans in Tuning Performance of Oracle WebLogic Server.

Oracle recommends reviewing the previous chapters of this book before reading this chapter.

Supported Topic Types
WebLogic MDBs support singleton, foreign provider, replicated distributed, and partitioned
distributed topic types.

10-1

WebLogic MDBs support the following types of topics:

• Singleton topics -- A singleton topic is either a non-distributed WebLogic JMS
topic or a reference to a particular member topic of a WebLogic JMS distributed
topic. The JNDI name syntax for a WebLogic JMS uniform distributed topic
member is based on the name of the JMS server that hosts the member: jms-
server-name@jndi-name-of-distributed-topic.

• Foreign provider topics -- Non-WebLogic JMS topics are called foreign provider
topics. MDBs treat foreign provider topics similarly to singleton topics. Such topics
are typically considered to be remote.

• Replicated distributed topics -- WebLogic JMS distributed topics are logical
topics composed of multiple physical topics, where each physical topic is hosted
on a different JMS server instance in the same cluster. In releases of Oracle
WebLogic Server prior to 10.3.4, each message sent to any member of a
distributed topic is always automatically replicated (forwarded) to all subscriptions
on all of the other members of the distributed topic. This kind of distributed topic is
still supported and is now called a replicated distributed topic (abbreviated RDT).

• Partitioned distributed topics - WebLogic JMS distributed topics are logical
topics composed of multiple physical topics, where each physical topic is hosted
on a different JMS server instance in the same cluster. A partitioned distributed
topic (abbreviated PDT) does not forward messages between members.
Messages published to a member of a PDT are only copied to subscriptions on
that member. Partitioned distributed topics are supported starting with Oracle
WebLogic Server 10.3.4.

To configure a distributed topic type, you set Partitioned or Replicated as the value
for the JMS distributed topic configuration attribute JMS Forwarding Policy. See
Configuring Partitioned Distributed Topics in Administering JMS Resources for Oracle
WebLogic Server.

The Most Commonly Used MDB Attributes
Examine some of the topic MDB attributes.
The most commonly used topic MDB attributes are:

• JMS destination and connection factory

• Subscription durability

• Container managed transactions

• Message distribution tuning

Some other useful topic MDB attributes are:

• Free pool size

• Auto-delete on undeploy

• Message filtering (JMS selectors)

• Subscription identifier

The message distribution tuning settings include the
topicMessagesDistributionMode, distributedDestinationConnection, and
generate-unique-client-id attributes.

Chapter 10
The Most Commonly Used MDB Attributes

10-2

Most attributes can be configured either by using an annotation or via descriptor XML
stanzas. In addition, specific attribute names for descriptor XML stanzas and annotations are
summarized in the tables in Deployment Elements and Annotations for MDBs.

Setting the JMS Destination, Destination Type, and Connection Factory
A topic MDB's configuration must properly specify the location of its JMS connection factory,
its destination, and its destination type. Typically, this is accomplished by:

1. Specifying a topic type. In the message-driven-destination element of ejb-jar.xml, set
destination-type to javax.jms.Topic. Alternatively, if using annotations, specify an
ActivationConfigProperty with propertyName = "destinationType" and
propertyValue = "javax.jms.Topic".

2. Specifying a connection factory JNDI name and a destination JNDI name. Specifying a
connection factory JNDI name is usually not necessary if the connection factory is hosted
on the same cluster or server as the MDB. The default usually suffices.

3. If the destination is not located in the same cluster or server as the MDB pool,
administratively configure a mapping from the remote destination and connection factory
JNDI entries to local JNDI entries that match those specified in #2. There are alternative
approaches to referencing remote resources, but the mapping approach is the Oracle-
recommended best practice.

For each free pool, the MDB container creates a connection using the specified connection
factory, then uses the connection to find or create one or more subscriptions on its
destination, and finally uses the connection to create JMS consumers that receive the
messages from the subscription(s).

For the specific names of connection factory and destination MDB attributes, as well as
recommended JNDI mapping configuration, see Configuring MDBs for Destinations.

Setting Subscription Durability
MDBs automatically create subscriptions on JMS topics. JMS topics support two types of
subscriptions: durable and non-durable.

• Non-durable subscriptions exist only for the length of time their subscribers exist. When a
subscription has no more subscribers, the subscription is automatically deleted.
Messages stored in a non-durable subscription are never recovered after a JMS server
shut down or crash.

• Durable subscriptions make it possible for a subscriber to receive messages that are
published while the subscriber application is unavailable. For each durable subscription
on a topic, JMS stores a copy of each published persistent message in a file or database
until it can be delivered (or until it expires), even if there are no active subscribers on the
subscription at the time the message is delivered. JMS also stores a copy of each non-
persistent message in each durable subscription, but such messages are not recovered if
the JMS server shuts down or crashes.

Non-durable subscriptions are the default. To specify a durable subscription, in the
message-driven-destination element of ejb-jar.xml, set subscription-durability to
Durable. Alternatively, when using annotations, specify an ActivationConfigProperty
with propertyName = "subscriptionDurability" and propertyValue = "Durable".

Chapter 10
The Most Commonly Used MDB Attributes

10-3

Setting Automatic Deletion of Durable Subscriptions
You can configure an MDB to automatically delete a durable topic subscription when
the MDB is undeployed or deleted from a server. To configure an MDB to automatically
delete durable topic subscriptions, set durable-subscription-deletion to True. By
default, durable-subscription-deletion is set to False

Setting Container Managed Transactions
See Configuring Transaction Management Strategy for an MDB.

Setting Message Filtering (JMS Selectors)
JMS provides an SQL-like syntax for filtering messages based on standard JMS
message header fields and message properties. In addition, WebLogic JMS supports
an extension to the selector syntax that allows the specification of selectors that
include XML "xpath" expressions for filtering XML messages based on their XML
contents.

One way to specify a message selector is to specify it as the propertyValue for an
ActivationConfigProperty with propertyName = "messageSelector".

The syntax of JMS selectors is fully described in the Javadoc for the
javax.jms.Message class. The WebLogic xpath selector extension syntax is described
in Filtering Messages in Developing JMS Applications for Oracle WebLogic Server.

Controlling MDB Concurrency
As discussed in Topic Deployment Scenarios,, an MDB deployment may create one or
more MDB free pools. The max-beans-in-free-pool and dispatch-policy
descriptor attributes work together to control MDB thread concurrency in an MDB
free pool as follows:

• For a discussion of how to determine the number of concurrent MDBs, see
Determining the Number of Concurrent MDBs in Tuning Performance of Oracle
WebLogic Server.

• When an MDB topicMessagesDistributionMode is set to Compatibility and the
MDB uses container-managed transactions, concurrent MDB invocations are
prevented. In addition, max-beans-in-free-pool should be explicitly set to 1 for
bean-managed transaction MDBs that are driven by a foreign (non-WebLogic)
topic.

Chapter 10
The Most Commonly Used MDB Attributes

10-4

Caution:

Non-transactional Foreign Topics: Oracle recommends explicitly setting max-
beans-in-free-pool to 1 for non-transactional MDBs that work with foreign
(non-WebLogic) topics. Failure to do so may result in lost messages in the
event of certain failures, such as the MDB application throwing Runtime or
Error exceptions.

Unit-of-Order: Oracle recommends explicitly setting max-beans-in-free-pool
to 1 for non-transactional Compatibility mode MDBs that consume from a
WebLogic JMS topic and process messages that have a WebLogic JMS Unit-
of-Order value. Unit-of-Order messages in this use case may not be processed
in order unless max-beans-in-free-pool is set to 1.

See Tuning Message-Driven Beans in Tuning Performance of Oracle WebLogic Server for
more information.

Setting Subscription Identifiers
Individual JMS topic subscriptions are created and referenced based on their "subscription
identifier," which an MDB generates based on a number of MDB configuration settings. For a
discussion of the syntax of generated subscription identifiers, see Topic Subscription
Identifiers.

Setting Message Distribution Tuning
This section describes how and when to use message distribution tuning settings. It contains
information that applies to all topic types (singleton, foreign, and distributed). The settings
include the topicMessagesDistributionMode, distributedDestinationConnection, and
generate-unique-client-id attributes. They control where topic subscriptions are created,
what the subscription identifiers are, and whether an MDB processes each published topic
message only once or once per server.

For detailed descriptions and diagrams of the resulting automatically generated subscription
IDs, subscription locations, and deployed MDB free pool locations, see Topic Deployment
Scenarios, and Topic Subscription Identifiers.

Setting topicMessagesDistributionMode
Use the topicMessagesDistributionMode setting in combination with the
distributedDestinationConnection setting or the generate-unique-client-id setting to
control topic message processing behavior. To set the topicMessagesDistributionMode, you
can use the same-named @ActivationConfigProperty annotation or specify an
<activation-config-property> in the ejb-jar.xml deployment descriptor.

The valid values for topicMessagesDistributionMode are:

• One-Copy-Per-Application -- Specifies that the MDB application as a whole receives
each message published to a distributed topic once, no matter how many servers host
the application. This mode works with WebLogic JMS singleton and distributed topics in
Oracle WebLogic Server 10.3.4 and later.

Chapter 10
The Most Commonly Used MDB Attributes

10-5

• One-Copy-Per-Server -- Specifies that each deployment instance of the MDB
application receives every message published to a distributed topic. This mode
works with WebLogic JMS singleton and distributed topics in Oracle WebLogic
Server 10.3.4 and later.

• Compatibility - (Default) Specifies that the MDB application handles messages
from distributed topics in the same way they were handled in Oracle WebLogic
Server releases prior to 10.3.4. The mode supports durable and non-durable
subscriptions with foreign (non-WebLogic) topics, local replicated distributed topics
(RDTs), and singleton WebLogic topics; it also supports non-durable subscriptions
with a remote replicated distributed topics. See the Compatibility notes section for
more detail.

Note:

Oracle recommends using the One-Copy-Per-Application and One-
Copy-Per-Server modes for most new applications, except those that
must consume from WebLogic JMS topics in versions of Oracle
WebLogic Server prior to 10.3.4 or from foreign (non-WebLogic) topics.

The topic distribution modes support different topic types and versions with the
following restrictions:

– The One-Copy-Per-Application and One-Copy-Per-Server modes work only
with WebLogic singleton and distributed topics in Oracle WebLogic Server
10.3.4 and later. WebLogic MDBs log a warning and do not process messages
with these modes when using a foreign (non-WebLogic) topic or when using a
WebLogic topic from Oracle WebLogic Server releases prior to 10.3.4.

– One-Copy-Per-Application topic MDBs that are durable, that subscribe to a
local RDT, and that use the default LocalOnly value for the
distributedDestinationConnection attribute, do not support Service
Migration and require that exactly one topic member be configured per Oracle
WebLogic Server instance. If a service migration occurs, if there is no local
topic member configured, or if more than one topic member is deployed per
server, then the application may experience duplicate or lost messages and
may also create abandoned subscriptions that accumulate unprocessed
messages. If service migration is required, then use the EveryMember option
for the distributedDestinationConnection attribute instead of the default
LocalOnly.

– The Compatibility mode supports durable and non-durable subscriptions
with foreign (non-WebLogic) topics, with local replicated distributed topics
(RDTs) (with limitations described later), and with singleton WebLogic topics.
Compatibility mode also supports non-durable subscriptions with a remote
RDT. A deployment of a durable MDB that subscribes to the logical JNDI
name of a remote RDT may succeed, but the MDB deployment will fail to
connect, with Warning log messages. Similarly, a deployment of an MDB that
subscribes to a WebLogic PDT may succeed, but the MDB deployment will fail
to connect, with Warning log messages. See Notes on the Compatibility mode
of topicMessagesDistributionMode, for more detail.

– Compatibility mode MDBs that are durable and subscribes to a local RDT, see
Notes on the Compatibility mode of topicMessagesDistributionMode.

Chapter 10
The Most Commonly Used MDB Attributes

10-6

For a detailed descriptions and diagrams of MDB generated subscriptions, subscription
IDs, and free pool locations, refer to Topic Deployment Scenarios, and Topic Subscription
Identifiers..

Setting distributedDestinationConnection
To optionally fine tune the behavior of the One-Copy-Per-Application and One-Copy-Per-
Server modes of topicMessagesDistributionMode for a local distributed topic, you can use
the distributedDestinationConnection activation config property. Alternatively, you can use
the distributed-destination-connection element in the weblogic-ejb-jar.xml
deployment descriptor. The valid values are LocalOnly and EveryMember.

The distributedDestinationConnection setting specifies whether a Oracle WebLogic
Server MDB container sets up a local MDB free pool for each subscription in the entire
cluster (EveryMember), or local free pools only for subscriptions on members local to the
current Oracle WebLogic Server (LocalOnly - the default).

The use of distributedDestinationConnection is restricted as follows: if it is specified for
an MDB that subscribes to a remote cluster, a warning message is given and the option is
ignored. If you try to use it in Compatibility mode, a warning is given and the option is
ignored.

One reason to use EveryMember is that the LocalOnly option for durable MDBs has
restrictions for local RDTs in the One-Copy-Per-Server mode. See Warning About Using
Local RDTs with Durable MDBs.

Another reason to use EveryMember is to better handle uneven message loads or message
processing delays. See Handling Uneven Message Loads and/or Message Processing
Delays, for advice.

Notes on the Compatibility mode of topicMessagesDistributionMode

• See Setting topicMessagesDistributionMode, for a statement about supported topic types
and versions.

• If you're using the Compatibility topicMessagesDistributionMode in combination with
non-transactional MDBs, and the topic is a foreign (non-WebLogic) destination, or the
topic is a WebLogic destination with Unit-of-Order (UOO) messages, then see Controlling
MDB Concurrency, for warnings.

• Set the generate-unique-client-id attribute to change behavior:

– If generate-unique-client-id is set to true, each durable MDB free pool generates
a unique subscriber ID. Each MDB free pool will then receive a copy of each
published message. For more information see Topic Subscription Identifiers. For
more information about free pools, see MDBs and Concurrent Processing, and Topic
Deployment Scenarios.

– If generate-unique-client-id is false (the default), only one subscription will be
created by a durable MDB, and only one MDB free pool will successfully connect to
the durable subscription (the remaining MDB pools will fail to connect, log warnings,
and will keep retrying).

• For durable subscription MDBs that subscribe to the logical name of a local replicated
distributed topic (a local RDT), only the configuration described in Warning About Using
Local RDTs with Durable MDBs, is supported.

• For durable subscription MDBs that subscribe to the logical name of a remote replicated
topic (a remote RDT):

Chapter 10
The Most Commonly Used MDB Attributes

10-7

– A deployment of a durable MDB that subscribes to the logical JNDI name of
the RDT may succeed, but the MDB deployment will fail to connect, with
Warnings logs.

• For durable subscription MDBs that subscribe to a particular member destination
of a remote replicated topic:

– A deployment of a durable MDB that subscribes directly to a member of the
RDT will succeed, and the subsequent behavior will be determined by the
generate-unique-client-id setting. For a uniform distributed destination, the
JNDI name of a particular member is "jms-server-name@udd-jndi-name".

• For a non-durable subscription MDB that subscribes to the logical name of a local
replicated distributed topic (a local RDT), only the configuration described in
Warning About Using Local RDTs with Non-Durable MDBs, is fully supported.

• The distributedDestinationConnection option does not apply to Compatibility
mode. When set, a warning is given and it is ignored.

Best Practices
Examine some of the best practices when you configure MDBs.
Consider the information in the following sections to help you configure MDBs.

Warning about Non-Transactional MDBs in Compatibility Mode
If you're using the Compatibility mode of topicMessagesDistributionMode in
combination with non-transactional MDBs and the topic is a foreign (non-WebLogic)
destination or the topic is a WebLogic destination with Unit-of-Order (UOO) messages,
see Controlling MDB Concurrency, for warnings.

Warning About Using Local RDTs with Durable MDBs
In Compatibility mode, for durable subscription MDBs that subscribe to the logical
name of a local replicated distributed topic (a local RDT), only the following
configuration is supported:

• Always set generate-unique-client-id to true.

• Ensure each Oracle WebLogic Server in the cluster hosts exactly one member of
the RDT.

• Do not use WebLogic JMS service-migration. It is unsupported for this use
case; but you can use "whole server migration."

• Note that each server receives a copy of each message sent to the topic. When a
message arrives at one of the RDT physical topic members, the RDT
automatically ensures that a copy of the message is forwarded to each of the other
members of the topic.

Similarly, the above configuration is required in One-Copy-Per-Application mode
when distributedDestinationConnection is set to LocalOnly, for durable
subscription MDBs that subscribe to the logical name of a local replicated distributed
topic (a local RDT).

If your configuration does not match the recommendations, you may get
nondeterministic behavior, including lost messages, duplicate messages, and stuck

Chapter 10
Best Practices

10-8

messages. For more information, including alternatives, see Setting
topicMessagesDistributionMode.

Warning About Using Local RDTs with Non-Durable MDBs
In Compatibility mode, for non-durable subscription MDBs that subscribe to the logical
name of a local replicated distributed topic (a local RDT), only the following configuration is
fully supported:

• Ensure each Oracle WebLogic Server in the cluster hosts exactly one member of the
RDT.

• Do not use WebLogic JMS service-migration. It is unsupported for this use case; but
you can use "whole server migration."

• Note that each server receives a copy of each message sent to the topic. When a
message arrives at one of the RDT physical topic members, the RDT automatically
ensures that a copy of the message is forwarded to each of the other members of the
topic.

Similarly, the above three configurations is required in One-Copy-Per-Application mode
when distributedDestinationConnection is set to LocalOnly, for non-durable subscription
MDBs that subscribe to the logical name of a local replicated distributed topic (a local RDT).

If your configuration does not match the recommendations, you may get nondeterministic
behavior, including lost messages, duplicate messages, and stuck messages. For more
information, including alternatives, see Setting topicMessagesDistributionMode.

Warning about Changing Durable MDB Attributes, Topic Type, EJB Name
Changing MDB or JMS settings can cause the current messages on durable subscriptions to
be deleted, or can cause existing durable subscriptions to be abandoned, deleted, or
replaced in favor of new durable subscriptions. These settings include topic type, JMS
selector, distribution tuning, subscription durability, ejb-name, and, client-id.

Abandoned durable subscriptions continue to accumulate messages even though no MDB is
processing the messages. This can eventually lead to quota exceptions or even JVM out-of-
memory errors that prevent additional messages from being published to the topic.

For a discussion about locating and removing abandoned subscriptions see Managing
Durable Subscriptions in Developing JMS Applications for Oracle WebLogic Server. For a
discussion about subscription IDs and locations, see Topic Subscription Identifiers.

Choosing Between Partitioned and Replicated Topics
Supported Topic Types, describes the two types of WebLogic distributed topics (partitioned
and replicated). In general, Oracle recommends using partitioned topics (PDTs), when
available, except for these two cases:

• When replicated topic (RDT) behavior is required to interoperate with legacy applications
or non-MDB applications.

• In the local RDT case in the One-Copy-Per-Server LocalOnly case under certain
message loads. The message load determines whether the heavy forwarding overhead
built into an RDT is less expensive in comparison to the increased network traffic
required for the fully connected topology in the PDT One-Copy-Per-Server mode. In
general, it is better to use a PDT for non-persistent or "lighter" persistent message loads.

Chapter 10
Best Practices

10-9

To configure a distributed topic type, you set Partitioned or Replicated as the value
for the WebLogic JMS Distributed Topic configuration attribute JMS Forwarding Policy.
See Configuring Partitioned Distributed Topics in Administering JMS Resources for
Oracle WebLogic Server.

Choosing an MDB Topic Messages Distribution Mode
Oracle recommends using the One-Copy-Per-Application and One-Copy-Per-Server
modes for most new applications, except for those that must consume from WebLogic
JMS topics in Oracle WebLogic Server releases prior to 10.3.4 or from foreign (non-
WebLogic) topics. These two modes only work with WebLogic JMS topics in Oracle
WebLogic Server 10.3.4 or later.

Managing and Viewing Subscriptions:
See Topic Deployment Scenarios, and Topic Subscription Identifiers, for detailed
discussions of the names and location of subscriptions.

See also Managing Durable Subscriptions in Developing JMS Applications for Oracle
WebLogic Server.

Handling Uneven Message Loads and/or Message Processing Delays
For applications with uneven message loads or unanticipated message processing
delays, you may want to consider the following:

• For local distributed topics when the topic distribution mode is One-Copy-Per-
Server or One-Copy-Per-Application, tune distributedDestinationConnection
to EveryMember. While the LocalOnly option can yield significantly better
performance since it avoids unnecessary network traffic, there are use cases
where the LocalOnly optimization network savings does not outweigh the benefit
of distributing message processing for unbalanced queue loads as evenly as
possible across all JVMs in a cluster. This is especially a concern when message
backlogs develop unevenly throughout the cluster and message processing is
expensive. In these use cases, the LocalOnly configuration should be avoided in
favor of the EveryMember scenario with durable subscribers.

• Use a PDT instead of an RDT, and tune producer load balancing in the producer's
connection factory configuration so that each producer's messages are evenly
processed on a round-robin basis throughout the cluster. Incoming messages can
be load balanced among the distributed topic members using the WebLogic JMS
connection factory Server Affinity Enabled and Load Balancing Enabled attributes.
Disabling affinity can increase network overhead but helps ensure that messages
are evenly load balanced across a cluster. The affinity setting has no effect with
RDTs. See Load Balancing Messages Across a Distributed Destination in
Administering JMS Resources for Oracle WebLogic Server.

• Decrease the WebLogic JMS asynchronous message pipeline size to 1 to prevent
additional messages from being pushed to an MDB thread that is already blocked
processing a previous message. The default for this setting is 10, and it is
configured by (a) configuring a custom WebLogic connection factory with the
Messages Maximum attributed tuned to 1 and XA Enabled set to true, (b) targeting
the connection factory to the same cluster that hosts the distributed topic, and (c)
modifying the MDB so that it references the custom connection factory.

Chapter 10
Best Practices

10-10

Configuring for Service Migration
Examine how to configure service migration manually or automatically in an MDB
deployment.
For durable subscriptions, JMS service migration (auto or manual) is not supported once
LocalOnly is applied on local replicated topics. Normally LocalOnly means the MDB
deployment instance is pinned on the local distributed topic member once the distributed
topic member is migrated to another server. The MDB deployment instance cannot subscribe
to the same original distributed member after a restart, which may cause warning messages
to be generated. Therefore, to use JMS service migration, you should configure as
EveryMember. Whole server migration is supported for both cases.

Upgrading Applications from Previous Releases
Examine the steps to upgrade MDB applications to take advantage of features such as
scalability and high availability in the latest releases.
As described throughout this chapter, new JMS features in Oracle WebLogic Server 10.3.4,
such as relaxed client ID, sharable subscriptions, and partitioned durable topics, make it
possible to implement and deploy MDBs that provide enhanced scalability and high
availability. To take advantage of these features, you must upgrade MDB applications written
for releases of Oracle WebLogic Server prior to 10.3.4.

Applications written to run on releases of Oracle WebLogic Server prior to 10.3.4 will continue
to run without modification in Compatibility mode, which is the default setting for
topicMessagesDistributionMode, as described in Setting topicMessagesDistributionMode.

To upgrade applications from previous releases,

1. Consider changing to a partitioned distributed topic. See Choosing Between Partitioned
and Replicated Topics.

2. Set the topicMessagesDistributionMode to One-Copy-Per-Server or One-Copy-Per-
Application and tune the distributedDestinationConnection options. See Setting
Message Distribution Tuning.

Caution:

Current messages are not preserved when changing out of Compatibility mode.
See Warning about Changing Durable MDB Attributes, Topic Type, EJB Name.

Topic MDB Sample
Examine a sample MDB using distributed topics.
Example 10-1 shows a WebLogic MDB that uses a durable subscription to a JMS topic (in
Oracle WebLogic Server 10.3.4 or later), transactionally processes the messages, and
forwards the messages to a target destination.

The MDB connects using JMS connection factory MyCF to receive from topic MyTopic. It
forwards the messages to MyTargetDest using a connection generated from connection
factory MyTargetCF.

Chapter 10
Configuring for Service Migration

10-11

Resource reference pooling note: The MDB uses a resource reference to access
MyTargetCF. The resource reference automatically enables JMS producer pooling, as
described in Enhanced Support for Using WebLogic JMS with EJBs and Servlets in
Developing JMS Applications for Oracle WebLogic Server.

For a similar sample using queues instead of topics, see Example 7-3.

Example 10-1 Sample MDB Using Distributed Topics

package test;
import javax.annotation.Resources;
import javax.annotation.Resource;
import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;
import javax.ejb.MessageDrivenContext;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.jms.*;

@MessageDriven(
 name = "MyMDB",
 activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Topic"),

 @ActivationConfigProperty(propertyName = "subscriptionDurability",
 propertyValue = "Durable"),

 @ActivationConfigProperty(propertyName = "connectionFactoryJndiName",
 propertyValue = "MyCF"), // External JNDI Name

 @ActivationConfigProperty(propertyName = "destinationJndiName",
 propertyValue = "MyTopic"), // Ext. JNDI Name

 @ActivationConfigProperty(propertyName = "topicMessagesDistributionMode",
 propertyValue = "One-Copy-Per-Application")
 }
)

@Resources ({
 @Resource(name="targetCFRef",
 mappedName="MyTargetCF", // External JNDI name
 type=javax.jms.ConnectionFactory.class),

 @Resource(name="targetDestRef",
 mappedName="MyTargetDest", // External JNDI name
 type=javax.jms.Destination.class)
})

public class MyMDB implements MessageListener {

 // inject a reference to the MDB context

 @Resource
 private MessageDrivenContext mdctx;

 // cache targetCF and targetDest for re-use (performance)

 private ConnectionFactory targetCF;
 private Destination targetDest;

Chapter 10
Topic MDB Sample

10-12

 @TransactionAttribute(value = TransactionAttributeType.REQUIRED)
 public void onMessage(Message message) {

 System.out.println("My MDB got message: " + message);

 // Forward the message to "MyTargetDest" using "MyTargetCF"

 Connection jmsConnection = null;

 try {
 if (targetCF == null)
 targetCF = (javax.jms.ConnectionFactory)mdctx.lookup("targetCFRef");

 if (targetDest == null)
 targetDest = (javax.jms.Destination)mdctx.lookup("targetDestRef");

 jmsConnection = targetCF.createConnection();
 Session s = jmsConnection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer mp = s.createProducer(null);

 mp.send(targetDest, message);

 } catch (JMSException e) {

 System.out.println("Forcing rollback due to exception " + e);
 e.printStackTrace();
 mdctx.setRollbackOnly();

 } finally {

 // Closing a connection automatically returns the connection and
 // its session plus producer to the resource reference pool.

 try { if (jmsConnection != null) jmsConnection.close(); }
 catch (JMSException ignored) {};
 }

 // emulate 1 second of "think" time

 try { Thread.currentThread().sleep(1000); }
 catch (InterruptedException ie) {
 Thread.currentThread().interrupt(); // Restore the interrupted status
 }
 }

}

Chapter 10
Topic MDB Sample

10-13

11
Deployment Elements and Annotations for
MDBs

Examine the deployment elements and configuration properties that affect the behavior of
MDBs.
Each row in Table 11-1 describes a deployment element (used in an EJB deployment
descriptor) and its associated configuration property (specified in annotations). Not all
elements have associated properties.

For information about using deployment descriptors versus using annotations in MDBs, see
Programming EJB 3.2 Compliant MDBs.

Note:

For those elements that have an associated configuration property, Oracle
recommends that you use that property instead of the element.

Table 11-1 is organized as follows:

• Each element in the Element column is followed in parentheses by the name of the
deployment descriptor in which the element is used. Elements in the weblogic-ejb-
jar.xml descriptor link to a more complete explanation of the element in weblogic-ejb-
jar.xml Deployment Descriptor Reference in Developing Enterprise JavaBeans, Version
2.1, for Oracle WebLogic Server. For elements in ejb-jar.xml, see the schema at
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-
jar_3_2.xsd.

• Unless otherwise noted, all the properties listed in the Configuration Property column
are activation configuration properties, that is, properties defined using
@ActivationConfigProperty annotations or using an activation-config-property
element in the message-driven stanza of an ejb-jar.xml descriptor. For more
information about using @ActivationConfigProperty, see Programming EJB 3.2
Compliant MDBs.

Note:

Based on the Enterprise JavaBean specification, the
javax.ejb.ActivationConfigProperty annotation is used for MDBs only. This
annotation is not used for session or entity beans.

• The Configuration Property column also lists annotations and properties that are not
@ActivationConfigProperty properties. In those cases, the property is followed by the
name of the annotation and by the import statement required for using that annotation.

11-1

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-jar_3_2.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-jar_3_2.xsd

Table 11-1 Deployment Elements and Annotations for MDBs

Element Configuration
Property

Description Allowable Values Default

activation-
config-
property
(ejb-jar.xml)

acknowledgeMode Notifies the JMS
provider that the
message was received
and processed. The
acknowledgement
mode is ignored if using
container-managed
transactions. (The
acknowledgement is
performed in the
context of the
transaction.)

• AUTO_ACKNOWLED
GE - the message
is acknowledged
immediately

• DUPS_OK_ACKNOW
LEDGE - the
acknowledgement
may be delayed,
allowing duplicate
messages to be
received

AUTO_ACKNOWLEDGE

connection-
factory-
jndi-name
(weblogic-
ejb-jar.xml)

connectionFactoryL
ookup

The lookup name of a
JMS connection factory
that will be used to
connect to the JMS
provider from which a
JMS message-driven
bean is to receive
messages.

Valid lookup name weblogic.jms.Mes
sageDrivenBeanCo
nnectionFactory

connection-
factory-
jndi-name
(weblogic-
ejb-jar.xml)

connectionFactoryJ
ndiName

The JNDI name of the
JMS ConnectionFactory
that the MDB looks up
to create its queues and
topics. See How to Set
connection-factory-jndi-
name.

Valid JNDI name weblogic.jms.Mes
sageDrivenBeanCo
nnectionFactory

connection-
factory-
resource-
link
(weblogic-
ejb-jar.xml)

connectionFactoryR
esourceLink

Maps to a resource
within a JMS module
defined in ejb-
jar.xml to an actual
JMS Module Reference
in Oracle WebLogic
Server. Rarely used.

Valid resource within a
JMS module

n/a

destination-
jndi-name
(weblogic-
ejb-jar.xml)

destinationLookup The lookup name of a
JMS queue or topic
from which a JMS
message-driven bean is
to receive messages.

Valid lookup name n/a

destination-
jndi-name
(weblogic-
ejb-jar.xml)

destinationJndiNam
e

The JNDI name used to
associate an MDB with
an actual JMS queue or
topic deployed in the
Oracle WebLogic
Server JNDI tree. See
How to Set destination-
jndi-name.

Valid JNDI name n/a

Chapter 11

11-2

Table 11-1 (Cont.) Deployment Elements and Annotations for MDBs

Element Configuration
Property

Description Allowable Values Default

destination-
resource-
link
(weblogic-
ejb-jar.xml)

destinationResourc
eLink

Maps to a resource
within a JMS module
defined in ejb-
jar.xml to an actual
JMS Module Reference
in Oracle WebLogic
Server. Rarely used.

Valid resource within a
JMS module

n/a

dispatch-
policy
(weblogic-
ejb-jar.xml)

n/a This optional element
allows you to specify a
particular WorkManager
for the bean. See
Tuning Message-Driven
Beans in Tuning
Performance of Oracle
WebLogic Server.

Valid execute queue
name

n/a

distributed-
destination-
connection
(weblogic-
ejb-jar.xml)

distributedDestina
tionConnection

Specifies whether an
MDB that accesses a
WebLogic JMS
distributed destination
(topic or queue) in the
same cluster consumes
from all distributed
destination members or
only those members
local to the current
Oracle WebLogic
Server instance. May
not apply to all use
cases. See JMS
Distributed
Destinations, and
Configuring and
Deploying MDBs Using
JMS Topics .

• LocalOnly
• EveryMember

LocalOnly

durable-
subscription
-deletion
(weblogic-
ejb-jar.xml)

durableSubscriptio
nDeletion

Indicates whether you
want durable topic
subscriptions to be
automatically deleted
when an MDB is
undeployed or removed.

• True
• False

False

Chapter 11

11-3

Table 11-1 (Cont.) Deployment Elements and Annotations for MDBs

Element Configuration
Property

Description Allowable Values Default

generate-
unique-jms-
client-id
(weblogic-
ejb-jar.xml)

See the
generateUniqueClie
ntID attribute of the
weblogic.javaee.JM
SClientID annotation.

Indicates whether or not
you want the EJB
container to generate a
unique client-id for
every instance of an
MDB. This setting
should be used only
when
topicMessagesDistr
ibutionMode is set to
Compatibility (the
default). See
Configuring and
Deploying MDBs Using
JMS Topics .

• True
• False

False

initial-
beans-in-
free-pool
(weblogic-
ejb-jar.xml)

n/a Sets the initial size of
the free pool. Oracle
WebLogic Server
populates the free pool
with the specified
number of bean
instances for every
bean class at startup.
Populating the free pool
in this way improves
initial response time for
the MDB, because
initial requests for the
bean can be satisfied
without generating a
new instance.

0 to maxBeans 0

initial-
context-
factory
(weblogic-
ejb-jar.xml)

initialContextFact
ory

The initial context
factory that the EJB
container uses to create
its connection factories.
See How to Set initial-
context-factory.

Valid name of an initial
context factory

weblogic.jndi.WL
InitialContextFa
ctory

init-
suspend-
seconds
(weblogic-
ejb-jar.xml)

initSuspendSeconds The initial number of
seconds to suspend an
MDB's JMS connection
when the EJB container
detects a JMS resource
outage. See
Configuring Suspension
of Message Delivery
During JMS Resource
Outages.

Any integer 5

Chapter 11

11-4

Table 11-1 (Cont.) Deployment Elements and Annotations for MDBs

Element Configuration
Property

Description Allowable Values Default

jms-client-
id
(weblogic-
ejb-jar.xml)

clientID The client identifier that
will be used when
connecting to the JMS
provider from which a
JMS message-driven
bean is to receive
messages.

n/a Depends on the
topicMessagesDis
tributionMode
activation config
property and possibly
on generate-
unique-client-id.
See Topic
Subscription
Identifiers)

jms-client-
id
(weblogic-
ejb-jar.xml)

jmsClientId The client ID for the
MDB when it connects
to a JMS destination.
Optional. Used for
durable subscriptions to
JMS topics. For more
information, see Topic
Subscription Identifiers.

n/a Depends on the
topicMessagesDis
tributionMode
activation config
property and possibly
on generate-
unique-client-id.
See Topic
Subscription
Identifiers)

jms-polling-
interval-
seconds
(weblogic-
ejb-jar.xml)

jmsPollingInterval
Seconds

The number of seconds
between attempts by
the EJB container to
reconnect to a JMS
destination that has
become unavailable.
See Migration and
Recovery for Clustered
MDBs.

Any integer 10 seconds

max-beans-
in-free-pool
(weblogic-
ejb-jar.xml)

n/a The maximum number
of bean instances in an
MDB free pool. The
actual number of
instances is also limited
by thread pool size as
well as other factors.
See Tuning Message-
Driven Beans in Tuning
Performance of Oracle
WebLogic Server.

0 to maxBeans 1000

max-
messages-in-
transaction
(weblogic-
ejb-jar.xml)

maxMessagesInTrans
action

Specifies the maximum
number of messages
that can be in a
transaction for this
MDB.

All positive integers n/a

Chapter 11

11-5

Table 11-1 (Cont.) Deployment Elements and Annotations for MDBs

Element Configuration
Property

Description Allowable Values Default

max-suspend-
seconds
(weblogic-
ejb-jar.xml)

maxSuspendSeconds The maximum number
of seconds to suspend
an MDB's JMS
connection when the
EJB container detects a
JMS resource outage.
See Configuring
Suspension of Message
Delivery During JMS
Resource Outages.

Any integer 60

message-
destination-
type
(ejb-jar.xml)

destinationType Specifies the type of the
JMS destination—the
Java interface expected
to be implemented by
the destination.

• javax.jms.Queu
e

• javax.jms.Topi
c

n/a

Chapter 11

11-6

Table 11-1 (Cont.) Deployment Elements and Annotations for MDBs

Element Configuration
Property

Description Allowable Values Default

messages-
maximum
(weblogic-
ejb-jar.xml)

messagesMaximum The maximum number
of messages that can
exist for an
asynchronous session,
which have not yet been
passed to the message
listener. A value of -1
indicates that there is
no limit on the number
of messages. In this
case, however, the limit
is set to the amount of
remaining virtual
memory.

When the number of
messages reaches the
specified value, the
following occurs:

• For multicast
sessions, new
messages are
discarded
according to the
specified overrun
policy, and a
DataOverrunExce
ption is thrown.

• For non-multicast
sessions, new
messages are flow-
controlled, or
retained on the
server until the
application can
accommodate the
messages.

For multicast sessions,
when a connection is
stopped, messages will
continue to be
accumulated, but only
until the specified
maximum value is
reached. Once this
value is reached,
messages will be
discarded based on the
overrun policy.

-1 and 1–263-1 10

Chapter 11

11-7

Table 11-1 (Cont.) Deployment Elements and Annotations for MDBs

Element Configuration
Property

Description Allowable Values Default

message-
selector
(ejb-jar.xml)

messageSelector A string used by a client
to specify, by header
field references and
property references, the
messages it is
interested in. Only
messages whose
header and property
values match the
selector are delivered

Conditional expression
using message
properties, or
message header

Null

messaging-
type
(ejb-jar.xml)

n/a Rarely used. javax.jms.Message
Listener

n/a

provider-url
(weblogic-
ejb-jar.xml)

providerURL The URL provider to be
used by the
InitialContext.
Typically, this is the
host:port. See How
to Set provider-url.

Valid URL Null

resource-
adapter-
jndi-name
(weblogic-
ejb-jar.xml)

resourceAdapterJnd
iName

For JCA-driven MDBs,
identifies the resource
adapter from which this
MDB receives
messages.

n/a n/a

security-
role-
assignment
(weblogic-
ejb-jar.xml)

n/a Maps application roles
in the ejb-jar.xml file
to the names of security
principals available in
Oracle WebLogic
Server.

n/a n/a

start-mdbs-
with-
application
(weblogic-
application.
xml)

n/a Controls when MDBs
start processing
messages. When set to
true, an MDB starts
processing messages
as soon as it is
deployed, even if Oracle
WebLogic Server has
not completed booting.
This can cause an MDB
application to access
uninitialized services or
applications during boot
up and, therefore, to
fail.

Set to false to defer
message processing
until after Oracle
WebLogic Server opens
its listen port.

• True
• False

False

Chapter 11

11-8

Table 11-1 (Cont.) Deployment Elements and Annotations for MDBs

Element Configuration
Property

Description Allowable Values Default

subscription
-durability
(ejb-jar.xml)

subscriptionDurabi
lity

Specifies whether a
JMS topic subscription
is Durable or
NonDurable. For more
information, see Setting
Subscription Durability.

• Durable
• NonDurable

NonDurable

activation-
config-
property
(ejb-jar.xml)

subscriptionName The name of the
subscription if the
message-driven bean is
intended to receive
messages published to
a topic. You can set this
property for durable or
non-durable topic
subscribers.

n/a n/a

n/a topicMessagesDistr
ibutionMode

Sets the distribution
mode for topic
messages. See
Configuring and
Deploying MDBs Using
JMS Topics ..

• One-Copy-Per-
Application

• One-Copy-Per-
Server

• Compatibility

Compatibility

transaction-
type
(ejb-jar.xml)

See trans-attribute Specifies an enterprise
bean's transaction
management type. For
more information, see
Configuring Transaction
Management Strategy
for an MDB.

• Bean
• Container

Container

Chapter 11

11-9

Table 11-1 (Cont.) Deployment Elements and Annotations for MDBs

Element Configuration
Property

Description Allowable Values Default

trans-
attribute
(ejb-jar.xml)

TransactionAttribu
teType property of
@TransactionAttrib
ute, for example:

import
javax.ejb.Transact
ionAttribute
@TransactionAttrib
ute(TransactionAtt
ributeType.REQUIRE
D)

Specifies how the
container must manage
the transaction
boundaries when
delegating a method
invocation to an
enterprise bean's
business method.

Note: f the bean is
specified as using
container-managed
transaction
demarcation, either the
REQUIRED or the
NOT_SUPPORTED
transaction attribute
must be used for the
message listener
methods, and either the
REQUIRED,
REQUIRES_NEW, or the
NOT_SUPPORTED
transaction attribute for
time-out callback
methods. For more
information, see
Configuring Transaction
Management Strategy
for an MDB.

• Required
• NotSupported
• Supports
• RequiresNew
• Mandatory
• Never

Required

trans-
timeout-
seconds
(weblogic-
ejb-jar.xml)

@TransactionTimeou
tSeconds
import
weblogic.javaee.Tr
ansactionTimeoutSe
conds

The maximum duration
for an EJB's container-
initiated transactions, in
seconds, after which
the transaction is rolled
back. See Configuring
Transaction
Management Strategy
for an MDB.

0 to max If the transaction
time-out is not
specified or is set to
0, the transaction
time-out configured
for the domain is
used. If a time-out is
not configured for the
domain, the default is
30.

use81-style-
polling
(weblogic-
ejb-jar.xml)

use81StylePolling Enables backwards
compatibility for Oracle
WebLogic Server
version 8.1-style polling.

• True
• False

False

Chapter 11

11-10

Table 11-1 (Cont.) Deployment Elements and Annotations for MDBs

Element Configuration
Property

Description Allowable Values Default

activation-
config-
property
(ejb-
jar.xml)

aqMDBReceiveNoWait If AQ JMS is the JMS
provider for the MDB
and this property is set
to true, synchronous
polling uses the
MessageConsumer.re
ceiveNoWait()
method to optimize QA
JMS dequeue
performance.

• True
• False

False

activation-
config-
property
(ejb-
jar.xml)

mdbDestinationPoll
IntervalMillis

When the JMS
destination has no
messages and
synchronous polling is
used for MDB, this
property sets the
message polling interval
in milliseconds. When
MDB interoperates with
AQ JMS and
minimizeAQSessions
is set to true, you can
avoid database
connection usage
bursts by setting this
property to a value that
is greater than 5000.
This configuration
randomly starts
message polling when
multiple MDBs are
started.

> or = 0 (Integer) 0

activation-
config-
property
(ejb-
jar.xml)

minimizeAQSessions This property is only
used when MDB
interoperates with AQ
JMS. When this
property is set to true, it
reduces database
resource usage by
dynamically closing AQ
JMS sessions.

• True
• False

False

Chapter 11

11-11

A
Topic Deployment Scenarios

Examine the MDB deployment actions and typical scenarios for various topic MDB
configurations.
The actions include where and how many MDB free pools are created, where and how many
subscriptions are created, and how the subscribers work together to achieve a given
messaging consumption pattern.

These sections do not cover details about legacy behavior which occurs when the
topicMessagesDistributionMode is set to Compatibility, when the topics are foreign (non-
WebLogic) topics, or when the topics are WebLogic JMS topics from Oracle WebLogic Server
releases prior to 10.3.4.

For help determining the right scenario (permutation) for your application, including
suggested settings, see Configuring and Deploying MDBs Using JMS Topics .

This appendix includes the following sections:

• How Configuration Permutations Determine Deployment Actions

• Typical Scenarios

How Configuration Permutations Determine Deployment Actions
Determine how WebLogic MDBs that consume from WebLogic JMS topics from Oracle
WebLogic Server 10.3.4 or later create instances of MDB free pools, subscription naming,
subscription locations, and how messages are distributed to those MDB pool instances.
The following settings determine:

• The topic location (in the same cluster or server as the MDB deployment or on a remote
cluster or server).

• The topic type (singleton WebLogic topic, Replicated or Partitioned distributed topic).

• The subscriptionDurability setting.

• The topicMessagesDistributionMode and distributedDestinationConnection
settings.

Table A-1 describes possible configuration permutations and corresponding deployment
actions. The first two columns describe the configuration permutations, and the last two
columns describe the resulting deployment. The columns are as follows:

• topicMessagesDistributionMode -- The value of the topicMessagesDistribution
configuration option, that is, One-Copy-Per-Server or One-Copy-Per-Application. The
legacy Compatibility mode is not covered in this table.

• Topic Type Permutation -- Options include the following:

– Local or Remote -- Whether the topic is deployed to the same cluster or server as
the MDB (Local) or to a different cluster or server (Remote).

A-1

– PDT, RDT, or Singleton WebLogic JMS topic -- The type of topic: partitioned
distributed topic (PDT), replicated distributed topic (RDT), or singleton
WebLogic JMS topic.

– EveryMember or LocalOnly -- The value of
distributedDestinationConnection. Specifies whether the MDB that
accesses a Local distributed topic in the same cluster consumes from all
distributed topic members or only from those local to the current server. If
neither EveryMember nor LocalOnly is specified, the permutation applies
regardless of how distributedDestinationConnection is set.

For example, the topic type permutation "Local RDT LocalOnly" means "An MDB
is deployed to the same cluster (Local) as the replicated topic (RDT), and the MDB
is configured to consume only from members of the topic on the same Oracle
WebLogic Server as the MDB (LocalOnly)."

• Each Server Subscribes to... -- The number of MDB pools a Oracle WebLogic
Server instance creates, and the members of the distributed topic to which the
MDB instances subscribe. For example,

– "Each server subscribes to ... All members" means "the container creates
one local MDB pool for each member of the distributed topic."

– "Each server subscribes to ... All local members" means "the container
creates one MDB pool for each of the members that are running on the same
server, and each MDB pool subscribes to one of those members."

• MDB Pools Per Server -- The number of MDB deployment instances on each
server in the cluster (and thereby the number of connections to the distributed
topic members). M = the number of distributed topic members (M=1 for standalone
topics).

Table A-1 Configuration Permutations and Their Resulting Deployment Actions

MDB Configuration Deployment Actions

topicMessagesDistributionMode Topic Type Permutation Each Server Subscribes
to...

MDB Pools
per Server

One-Copy-Per-Server • RDT Local LocalOnly1 One of the local members One

One-Copy-Per-Server • RDT Remote (Non-durable
only)2

One of the remote members One

One-Copy-Per-Server • PDT Local EveryMember3

• PDT Remote2

• RDT Local EveryMember
• RDT Remote (durable

subscriptions only)2

• Singleton WebLogic JMS
(M=1)

All members M

One-Copy-Per-Application • PDT Local LocalOnly
• RDT Local LocalOnly

All local members One per
local
member

Appendix A
How Configuration Permutations Determine Deployment Actions

A-2

Table A-1 (Cont.) Configuration Permutations and Their Resulting Deployment Actions

MDB Configuration Deployment Actions

topicMessagesDistributionMode Topic Type Permutation Each Server Subscribes
to...

MDB Pools
per Server

One-Copy-Per-Application • PDT Local EveryMember
• PDT Remote2

• RDT Local EveryMember
• RDT Remote2

• Singleton WebLogic JMS
(M=1)

All members M

1 The "One-Copy-Per-Server, RDT, Local, LocalOnly" permutation is not supported for durable subscription cases in some
configuration topologies (See details in Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local Only Consumption.)

2 For remote distributed topics, Oracle WebLogic Server always creates subscriptions to every topic member except for non-durable
subscriptions in the "One-Copy-Per-Server, Replicated Distributed Topic, Remote" permutation. In that case, only one subscription
to one of the remote members is created. (See Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment.)

3 The LocalOnly setting is always automatically replaced with EveryMember in the "One-Copy-Per-Server, Partitioned Distributed
Topic, Local" permutation. (See Scenario 7: Partitioned DT, One Copy Per Server, Local Deployment, Local Only Consumption.)

Typical Scenarios
Examine the Standalone Non-distributed, Replicated Distributed and Partitioned Distributed
scenarios of an MDB application.
The following sections show the possible deployment scenarios of an MDB application:

• Standalone (Non-distributed) Topic Scenarios

• Replicated Distributed Topic Scenarios

• Partitioned Distributed Topic Scenarios

Images and labels used in the figures presented in the scenarios are explained in Table A-2:

Table A-2 Explanation of Images and Text Used in Scenarios

Image or Text Explanation

Messages published to a distributed topic.

Messages are duplicated, and copies are forwarded to other members
of the topic. This indicates that the topics are replicated distributed
topics.

DT Member n Member of a distributed topic.

Appendix A
Typical Scenarios

A-3

Table A-2 (Cont.) Explanation of Images and Text Used in Scenarios

Image or Text Explanation

MDB Pool An MDB free bean pool.

A subscription. The MDB on one end of the arrow listens for and
consumes messages from the topic on the other end of the arrow.

Subscription 1, 2, and 3 Non-shared subscriptions. Subscription 1 is Managed Server 1's
subscription, Subscription 2 is Managed Server 2's subscription, and
so on.

Standalone (Non-distributed) Topic Scenarios
Standalone topic scenarios are as follows.

One-Copy-Per-Server
On each Oracle WebLogic Server instance that hosts the MDB application, an MDB
pool is created for the topic, whether the topic is running in the same cluster or in a
different cluster. For an MDB cluster of N nodes, N MDB pools are created. Each MDB
pool creates an individual subscription on the topic, and subscribers from different
MDB pools do not share the same subscription.

One-Copy-Per-Application
On each Oracle WebLogic Server instance that hosts the MDB application, an MDB
pool is created for the topic, whether the topic is running in the same cluster or in a
different cluster. For an MDB cluster of N nodes, N MDB pools are created. All
subscribers created by the MDB pools of the same MDB application share the same
subscription.

Replicated Distributed Topic Scenarios
With replicated distributed topics, all physical topic members receive each message
sent. When a message arrives at one of the physical topic members, a copy of the
message is automatically internally forwarded to the other members of the topic.

The following are the possible deployment scenarios for a replicated distributed topic:

• Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local Only
Consumption

• Scenario 2: Replicated DT, One Copy Per Server, Local Deployment, Every
Member Consumption,

• Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment

• Scenario 4: Replicated DT, One Copy Per Application, Local Deployment, Local
Only Consumption

Appendix A
Typical Scenarios

A-4

• Scenario 5: Replicated DT, One Copy Per Application, Local Deployment, Every Member
Consumption

• Scenario 6: Replicated DT One Copy Per Application, Remote Deployment

Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local Only
Consumption

Figure A-1 shows the following configuration:

• Replicated distributed topic

• topicMessagesDistributionMode = One-Copy-Per-Server.

• The MDB and the topic are deployed in the same (local) cluster.

• distributedDestinationConnection = LocalOnly.

Figure A-1 Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local
Only Consumption

In this scenario:

• Copies of messages are forwarded to other servers in the cluster by the RDT.

• One MDB pool is created on each server in the local cluster.

• Each MDB pool listens to one of the distributed topic member on the same server.

Appendix A
Typical Scenarios

A-5

This approach can yield higher performance than "RDT, One Copy Per Server, Local
Deployment, EveryMember," because all messaging is local (it avoids transferring
messages over network calls) and still ensures that all distributed topic members are
serviced by MDB consumers. However for some use cases, the EveryMember
alternative may work better, based on the trade-offs discussed in Handling Uneven
Message Loads and/or Message Processing Delays.

This scenario does not work correctly for durable subscriptions when there are multiple
members on the same server, when there are no members on any of the local servers
that host the MDB application, or when JMS service migration (auto or manual) is
involved.

Scenario 2: Replicated DT, One Copy Per Server, Local Deployment, Every
Member Consumption,

Figure A-2 shows the following configuration:

• Replicated distributed topic

• topicMessagesDistributionMode = One-Copy-Per-Server.

• The MDB and the topic are deployed in the same (local) cluster.

• distributedDestinationConnection = EveryMember.

Appendix A
Typical Scenarios

A-6

Figure A-2 Scenario 2: Replicated DT, One Copy Per Server, Local Deployment, Every
Member Consumption

In this scenario:

• Copies of messages are forwarded to other servers in the cluster by the RDT, but these
copies are filtered out (ignored) by the MDB subscriptions.

• An MDB pool is created for each distributed topic member on each server in the local
cluster.

• Each MDB pool listens to one of the distributed topic members in the cluster.

• Each Oracle WebLogic Server instance that hosts the MDB application listens to all
members of the distributed topic.

• Each server's subscribers on the same member of the DT have their own independent
subscriptions. In other words, subscribers from different servers to the same member do
not share any subscriptions.

This configuration yields high flexibility and is good for an application where an RDT is
required, but it cannot be guaranteed that there will be exactly one member per server, for
example due to migration.

Appendix A
Typical Scenarios

A-7

This configuration does not give the best performance in comparison to Scenario 1:
Replicated DT, One Copy Per Server, Local Deployment, Local Only Consumption,
especially for a static environment where no migration is involved and there is one and
only one member of the distributed topic on each managed server. Applications where
no migration is involved and where there is one and only one member of the
distributed topic on each managed server can use Scenario 1.

Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment
Figure A-3 shows the following configuration:

• Replicated distributed topic

• Durable subscription

• topicMessagesDistributionMode = One-Copy-Per-Server.

• The MDB and the topic are deployed in different (remote) clusters.

• distributedDestinationConnection ignored for remote deployments.

Appendix A
Typical Scenarios

A-8

Figure A-3 Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment

In this scenario:

• Copies of messages are forwarded to other servers in the cluster by the RDT, but these
copies are filtered out (ignored) by the MDB subscriptions.

• An MDB pool for each distributed topic member is created on each server in the remote
cluster.

• Each Oracle WebLogic Server instance that hosts the MDB application listens to all
members of the distributed topic (one local pool for each remote member).

• Each server's subscribers on the same member of the DT have their own independent
subscription. In other words, subscribers from different servers to the same member do
not share any subscriptions.

Appendix A
Typical Scenarios

A-9

Note that this is the behavior for durable cases. For non-durable cases, each Oracle
WebLogic Server instance creates a single MDB pool which connects to one of the
members (any member) as an optimization.

Scenario 4: Replicated DT, One Copy Per Application, Local Deployment, Local
Only Consumption

Figure A-4 shows the following configuration:

• Replicated distributed topic

• topicMessagesDistributionMode = One-Copy-Per-Application.

• The MDB and the topic are deployed in the same (local) cluster.

• distributedDestinationConnection = LocalOnly.

Figure A-4 Scenario 4: Replicated DT, One Copy Per Application, Local
Deployment, Local Only Consumption

In this scenario:

• Copies of messages are forwarded to other servers in the cluster by the RDT, but
these copies are filtered out (ignored) by the MDB subscriptions.

• One MDB pool is created on each server in the local cluster for each local member
(Figure A-5 shows a configuration where each Oracle WebLogic Server instance
hosts only one member. When there are multiple members on the same local
Oracle WebLogic Server instance, multiple MDB pools are created on the server).

Appendix A
Typical Scenarios

A-10

• A message is given to only one MDB pool.

• All subscribers on the same member share the same subscription.

Scenario 5: Replicated DT, One Copy Per Application, Local Deployment, Every
Member Consumption

Figure A-5 shows the following configuration:

• Replicated distributed topic

• topicMessagesDistributionMode = One-Copy-Per-Application.

• The MDB and the topic are deployed in the same (local) cluster.

• distributedDestinationConnection = EveryMember.

Figure A-5 Scenario 5: Replicated DT, One Copy Per Application, Local Deployment,
Every Member Consumption

In this scenario:

• Copies of messages are forwarded to other servers in the cluster by the RDT, but these
copies are filtered out (ignored) by the MDB subscriptions.

Appendix A
Typical Scenarios

A-11

• One MDB pool is created on each server in the local cluster for each member.

• A message is given to only one MDB pool.

• All subscribers on the same member share the same subscription.

Scenario 6: Replicated DT One Copy Per Application, Remote Deployment
Figure A-6 shows the following configuration:

• Replicated distributed topic

• topicMessagesDistributionMode = One-Copy-Per-Application.

• The MDB and the topic are deployed in different (remote) clusters.

• distributedDestinationConnection ignored for remote deployments.

Figure A-6 Scenario 6: Replicated DT, One Copy Per Application, Remote
Deployment

In this scenario:

Appendix A
Typical Scenarios

A-12

• Copies of messages are forwarded to other servers in the cluster by the RDT, but these
copies are filtered out (ignored) by the MDB subscriptions.

• One MDB pool is created on each server in the local cluster for each member in the
remote cluster.

• A message is given to only one MDB pool.

• All subscribers on the same member share the same subscription.

Partitioned Distributed Topic Scenarios
With partitioned topics:

• The distributed topic member receiving the message is the only member that is aware of
the message. The message is not forwarded to other members, and subscribers on other
members do not get a copy of the message.

• Incoming messages can be load balanced among the distributed topic members using
the JMS Affinity and Load Balance attributes. See Load Balancing Partitioned
Distributed Topics in Administering JMS Resources for Oracle WebLogic Server.

The following are the possible deployment scenarios for a partitioned distributed topic:

• Scenario 7: Partitioned DT, One Copy Per Server, Local Deployment, Local Only
Consumption

• Scenario 8: Partitioned DT, One Copy Per Server, Local Deployment, Every Member
Consumption

• Scenario 9: Partitioned DT, One Copy Per Server, Remote Deployment

• Scenario 10: Partitioned DT, One Copy Per Application, Local Deployment, Local Only
Consumption

• Scenario 11: Partitioned DT, One Copy Per Application, Local Deployment, Every
Member Consumption

• Scenario 12: Partitioned DT, One Copy Per Application, Remote Deployment

Scenario 7: Partitioned DT, One Copy Per Server, Local Deployment, Local Only
Consumption

The setting of distributedDestinationConnection is ignored for this scenario and a warning
message is logged. The setting is forced to EveryMember instead. The behavior becomes the
same as the "EveryMember" case (see Scenario 8: Partitioned DT, One Copy Per Server,
Local Deployment, Every Member Consumption).

Scenario 8: Partitioned DT, One Copy Per Server, Local Deployment, Every Member
Consumption

Figure A-7 shows the following configuration:

• Partitioned distributed topic

• topicMessagesDistributionMode = One-Copy-Per-Server.

• The MDB and the topic are deployed in the same (local) cluster.

• distributedDestinationConnection = EveryMember.

Appendix A
Typical Scenarios

A-13

Figure A-7 Scenario 8: Partitioned DT, One Copy Per Server, Local Deployment,
Every Member Consumption

In this scenario:

• Messages are distributed individually to the distributed topic members. Messages
are not duplicated or copied to other members in the cluster.

• An MDB pool is created for each distributed topic member on each server in the
local cluster.

• Each server's subscribers on the same member of the DT have their own
independent subscription. In other words, subscribers from a particular server to
the same member do not share any subscriptions with subscribers from another
server.

Scenario 9: Partitioned DT, One Copy Per Server, Remote Deployment
The details of this scenario are the same as the previous one except that the MDB
deployment and the PDT are in different clusters.

Appendix A
Typical Scenarios

A-14

Scenario 10: Partitioned DT, One Copy Per Application, Local Deployment, Local
Only Consumption

Figure A-8 shows the following configuration:

• Partitioned distributed topic

• topicMessagesDistributionMode = One-Copy-Per-Application.

• The MDB and the topic are deployed in the same (local) cluster.

• distributedDestinationConnection = LocalOnly.

Figure A-8 Scenario 10: Partitioned DT, One Copy Per Application, Local Deployment,
LocalOnly Consumption

In this scenario:

• Messages are distributed individually to the distributed topic members. Messages are not
duplicated or copied to other members in the cluster.

• One MDB pool is created on each server in the local cluster for each local member
(Figure A-9 shows a configuration where each Oracle WebLogic Server hosts only one
member. When there are multiple members on the same local Oracle WebLogic Server,
multiple MDB pools are created on each Oracle WebLogic Server instance).

This scenario is the recommended configuration for One-Copy-Per-Application and Local
PT for high performance. However for some use cases, the EveryMember alternative may

Appendix A
Typical Scenarios

A-15

work better, based on the trade-offs discussed in Handling Uneven Message Loads
and/or Message Processing Delays.

Scenario 11: Partitioned DT, One Copy Per Application, Local Deployment,
Every Member Consumption

Figure A-10 shows the following configuration:

• Partitioned distributed topic

• topicMessagesDistributionMode = One-Copy-Per-Application.

• The MDB and the topic are deployed in the same (local) cluster.

• distributedDestinationConnection = EveryMember.

Figure A-9 Scenario 11: Partitioned DT, One Copy Per Application, Local
Deployment, Every Member Consumption

For a partitioned distributed topic, one copy per application, local deployment, it is
better to use LocalOnly consumption for most use cases, as shown in Scenario 10:
Partitioned DT, One Copy Per Application, Local Deployment, Local Only
Consumption. However the trade-offs discussed in Handling Uneven Message Loads
and/or Message Processing Delays, apply here.

Appendix A
Typical Scenarios

A-16

Scenario 12: Partitioned DT, One Copy Per Application, Remote Deployment
Figure A-10 shows the following configuration:

• Partitioned distributed topic

• topicMessagesDistributionMode = One-Copy-Per-Application.

• The MDB and the topic are deployed in different (remote) cluster.

• distributedDestinationConnection ignored for remote deployments.

Figure A-10 Scenario 12: Partitioned DT, One Copy Per Application, Remote
Deployment

In this scenario:

• Messages are distributed individually to the distributed topic members. Messages are not
duplicated or copied to other members in the cluster.

Appendix A
Typical Scenarios

A-17

• Subscriptions are created on all the distributed topic members automatically and
dynamically.

• A message is given to only one MDB pool.

• All subscribers from the same MDB application on the same member share the
same subscription.

Appendix A
Typical Scenarios

A-18

B
Topic Subscription Identifiers

Examine how the topic subscription identifiers are generated.
In JMS, a subscription is identified and located based on the following:

1. The topic with which the subscription is associated

2. The connection "Client ID" string that is specified for the connection that is used to
access the subscription

3. If durable subscriptions are used, the subscription name. The subscription name is
established by either of the following means:

• When the durable subscription is created

• By the SubscriptionName configuration property

If the SubscriptionName property is provided, that property is used. Otherwise, the
subscription name is generated when the subscription is created.

4. The "Client ID Policy" option, by which a subscription is also identified in WebLogic JMS.
If two WebLogic JMS subscription references on the same physical topic have the same
client ID and subscription name, then the references resolve to:

• A single subscription, if the client ID policies are also the same

• Two different subscriptions, if the client ID policies are different

A WebLogic MDB container automatically generates items 1 through 4 in the preceding list,
based on the following settings:

• ejb-name
• jms-client-id
• topicMessagesDistributionMode
• SubscriptionName configuration property

• distributedDestinationConnection
• generate-unique-client-id
• subscriptionDurability
• Other elements of the MDB deployment and JMS configurations

The last four settings, apply only to Compatibility mode MDBs.

Table B-1 summarizes how the settings are used to generate subscription IDs:

B-1

Table B-1 How Subscription IDs are Generated

Setting ClientID Subscription Name for
the Durable Subscription
Case

Client ID Policy for
WebLogic Topics

topicMessagesDistribu
tionMode = One-Copy-
Per-Application

jmsClientIDBase SubscriptionName
property, if used, or ejb-
name

Unrestricted

topicMessagesDistribu
tionMode = One-Copy-
Per-Server

jmsClientIDBase
+ "_"

+ currentDomainName
+ "_"

+ currentServerName

SubscriptionName
property, if used, or ejb-
name

Unrestricted

topicMessagesDistribu
tionMode =
Compatibility
generateUniqueClientI
D = true
distributedDestinatio
nConnection =
LocalOnly
subscriptionDurabilit
y = Durable1

jmsClientIDBase
+ "_"

+ currentDomainName
+ "_"

+ uniqueKey

Same as the ClientId, or
SubscriptionName
property, if used

Restricted

Same as previous row,
except:

distributedDestinatio
nConnection =
EveryMember

jmsClientIDBase
+ "_"

+ currentDomainName
+ "_"

+ uniqueKey
+ "_"

+ DDMemberName

Same as the ClientId, or
SubscriptionName
property, if used

Restricted

topicMessagesDistribu
tionMode =
Compatibility
generateUniqueClientI
D = false
subscriptionDurabilit
y = Durable1

jmsClientIDBase Same as the ClientId, or
SubscriptionName
property, if used

Restricted

1 Non-durable Compatibility mode MDBs do not set a Client-ID or Subscription-Name, and use the default Restricted Client
ID Policy.

Key:

• jms-client-id — an optional MDB attribute string set by the MDB descriptor or
an annotation; alternatively (but rarely), the jms-client-id can be set by changing
the MDB to reference a custom JMS connection factory that in turn has a client-id
configured

Appendix B

B-2

• SubscriptionName — an optional setting to establish the durable subscription name. If
specified, this setting takes precedence over any automatically generated name.

• ejb-name = the name of the EJB

• jmsClientIDBase — jms-client-id (if specified by user) or ejb-name (if jms-client-id
is not specified)

• currentDomainName — the name of the WebLogic domain that runs the MDB

• currentServerName — the name of the Oracle WebLogic Server that the MDB is running
on

• uniqueKey — a string that contains some of the MDB deployment elements, possibly the
currentServerName. If the destination is a WebLogic destination that is hosted by a JMS
server that is using a migratable target, then this string includes the migratable target
name.

• DDMemberName — the name of a distributed destination member; or, alternatively, the
destination name if the topic is a singleton or a distributed destination in releases of
Oracle WebLogic Server prior to 10.3.4.

Client ID uniqueness is enforced as follows:

• For foreign (non-WebLogic) JMS vendors: Some JMS vendors prevent more than one
connection from specifying the same connection Client ID. (An exception is thrown on an
attempt to create the second connection.) This limitation in turn can prevent more than
one free pool from using the same Client ID, because each free pool creates a single
JMS connection with potentially the same Client ID as other free pool connections. After
a first free pool instance of the MDB starts on a server instance in the cluster, an
additional instance of the EJB can deploy successfully on another clustered server; but
when the MDB attempts to create a JMS connection, a Client ID conflict is detected and
that instance of the MDB fails to fully connect to JMS.

• For WebLogic JMS: For WebLogic JMS in releases of Oracle WebLogic Server prior to
10.3.4, JMS connections were restricted so only one connection with the same Client ID
could exist in the scope of a cluster. However, for Oracle WebLogic Server 10.3.4 and
later, WebLogic JMS connection factories or connections can optionally set a Client ID
Policy to control this restriction. With a Client ID Policy of RESTRICTED, the pre-10.3.4
behavior remains in effect, while with a Client ID Policy of UNRESTRICTED, this
limitation is lifted. See Developing JMS Applications for Oracle WebLogic Server.
Unrestricted client IDs make it possible for multiple WebLogic subscriber connections and
subscriptions to share the same client ID. Both One-Copy-Per-Server and One-Copy-
Per-Application Topic Message Distribution Modes set the ClientIDPolicy to
Unrestricted. Note that if two WebLogic JMS subscription references on the same
physical topic have the same Client ID and durable subscription name, then the
references resolve to a single subscription if the Client ID Policy is also the same, but
they resolve to two different subscriptions if the Client ID Policies are different.

Appendix B

B-3

C
How WebLogic MDBs Leverage WebLogic
JMS Extensions

Examine how MDBs utilize certain WebLogic JMS features such as shared subscriptions, and
unrestricted client IDs.
The MDB deployment scenarios described in Topic Deployment Scenarios. take advantage of
the following JMS features:

• Shared subscriptions -- Shared subscriptions allow multiple subscribers to share one
subscription, even when the subscribers are created from different MDB servers. All
subscribers that share the same subscription collectively process all of the messages
published to the topic. Each message is processed by only one of the subscribers. For
example, if there are two subscribers, S1 and S2, and three messages, M1, M2, and M3,
S1 might receive M1 and M2 (but not M3) and, then, S2 would receive M3 (but not M1
and M2).

This enables applications to employ "round-robin" distributed or parallel processing of a
single subscription's topic messages. MDBs can create multiple subscribers on the same
subscription identifier, whether it is durable or non-durable. For more information about
the JMS Subscription Sharing Policy, see Configure Shared Subscriptions in
Administering JMS Resources for Oracle WebLogic Server.

• Unrestricted Client IDs -- Unrestricted Client IDs allow multiple concurrently active
connections to use the same Client ID. The JMS clientID identifies a JMS connection
and is used to identify a durable subscription on that connection. Setting the clientID to
Unrestricted allows you to create multiple physical subscriptions, with the same name,
on different destinations. This allows subscriptions with the same name to exist on
different members of the same distributed topic, and together, these subscriptions can be
treated as a single logical subscription. See Configure an Unrestricted Client ID in
Administering JMS Resources for Oracle WebLogic Server.

The topicMessagesDistributionMode defines permutations of the JMS attributes
SubscriptionSharingPolicy and ClientIdPolicy (set on the connection factory), to control
how messages are distributed to distributed topics. Oracle WebLogic Server sets those
values as shown in Table C-1.

Table C-1 Relationships Between topicMessagesDistributionMode Settings and
Settings on JMS Connection Factory

topicMessagesDistributionMode SubscriptionSharingPolicy ClientIdPolicy

One-Copy-Per-Server or One-Copy-
Per-Application

Sharable Unrestricted

Compatibility (replicated distributed
topics and foreign topics only)

Exclusive Restricted

If the settings on the connection factory are not these values, Oracle WebLogic Server
overrides them and gives a warning message. If Oracle WebLogic Server cannot override the
values for any reason, it throws an exception, and the MDB cannot process any messages

C-1

unless the administrator changes the settings on the JMS connection factory. You
cannot programmatically set these attributes on the connection factory directly.
Instead, use topicMessagesDistributionMode, and the MDB deployment will set the
values on the connection instances.

Appendix C

C-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	1 Understanding Message-driven Beans
	JCA-Based MDBs

	2 MDB Life Cycle
	Overview
	MDBs and Concurrent Processing
	Limitations for Multi-threaded Topic MDBs

	3 MDBs and Messaging Models
	Point-to-Point (Queue) Model: One Message Per Listener
	Publish/Subscribe (Topic) Model
	Exactly-Once Processing

	4 Deploying MDBs
	Destination and MDBs: Collocation vs. non-Collocation
	Collocated Destination/MDBs
	Non-Collocated Destination/MDBs
	JMS Distributed Destinations
	Best Practice

	5 Programming and Configuring MDBs: Main Steps
	Required JMS Configuration
	Create MDB Class and Configure Deployment Elements

	6 Programming and Configuring MDBs: Details
	Configuring Destination Type
	Configuring Transaction Management Strategy for an MDB
	Configuring MDBs for Destinations
	Whether to Use Foreign JMS Server Mappings
	How to Set provider-url
	How to Set initial-context-factory
	How to Set destination-jndi-name
	How to Set connection-factory-jndi-name
	Common Destination Scenarios: Illustrations and Key Element Settings

	Configuring Message Handling Behaviors
	Ensuring Message Receipt Order
	Preventing and Handling Duplicate Messages
	Redelivery and Exception Handling

	Using the Message-Driven Bean Context
	Configuring Suspension of Message Delivery During JMS Resource Outages
	Manually Suspending and Resuming Message Delivery
	Configuring the Number of Seconds to Suspend a JMS Connection
	How the EJB Container Determines How Long to Suspend a JMS Connection
	Turning Off Suspension of a JMS Connection

	Configuring a Security Identity for a Message-Driven Bean
	Using MDBs With Cross Domain Security
	Configuring EJBs to Use Logical Message Destinations
	Configuring Logical JMS Message Destinations for Individual MDBs
	Configuring Application-Scoped Logical JMS Message Destinations

	7 Using EJB 3.2 Compliant MDBs
	Implementing EJB 3.2 Compliant MDBs
	Programming EJB 3.2 Compliant MDBs
	MDB Sample Using Annotations

	8 Migration and Recovery for Clustered MDBs
	9 Using Batching with Message-Driven Beans
	Configuring MDB Transaction Batching
	How MDB Transaction Batching Works

	10 Configuring and Deploying MDBs Using JMS Topics
	Supported Topic Types
	The Most Commonly Used MDB Attributes
	Setting the JMS Destination, Destination Type, and Connection Factory
	Setting Subscription Durability
	Setting Automatic Deletion of Durable Subscriptions
	Setting Container Managed Transactions
	Setting Message Filtering (JMS Selectors)
	Controlling MDB Concurrency
	Setting Subscription Identifiers
	Setting Message Distribution Tuning
	Setting topicMessagesDistributionMode
	Setting distributedDestinationConnection

	Best Practices
	Warning about Non-Transactional MDBs in Compatibility Mode
	Warning About Using Local RDTs with Durable MDBs
	Warning About Using Local RDTs with Non-Durable MDBs
	Warning about Changing Durable MDB Attributes, Topic Type, EJB Name
	Choosing Between Partitioned and Replicated Topics
	Choosing an MDB Topic Messages Distribution Mode
	Managing and Viewing Subscriptions:
	Handling Uneven Message Loads and/or Message Processing Delays

	Configuring for Service Migration
	Upgrading Applications from Previous Releases
	Topic MDB Sample

	11 Deployment Elements and Annotations for MDBs
	A Topic Deployment Scenarios
	How Configuration Permutations Determine Deployment Actions
	Typical Scenarios
	Standalone (Non-distributed) Topic Scenarios
	One-Copy-Per-Server
	One-Copy-Per-Application

	Replicated Distributed Topic Scenarios
	Scenario 1: Replicated DT, One Copy Per Server, Local Deployment, Local Only Consumption
	Scenario 2: Replicated DT, One Copy Per Server, Local Deployment, Every Member Consumption,
	Scenario 3: Replicated DT, One Copy Per Server, Remote Deployment
	Scenario 4: Replicated DT, One Copy Per Application, Local Deployment, Local Only Consumption
	Scenario 5: Replicated DT, One Copy Per Application, Local Deployment, Every Member Consumption
	Scenario 6: Replicated DT One Copy Per Application, Remote Deployment

	Partitioned Distributed Topic Scenarios
	Scenario 7: Partitioned DT, One Copy Per Server, Local Deployment, Local Only Consumption
	Scenario 8: Partitioned DT, One Copy Per Server, Local Deployment, Every Member Consumption
	Scenario 9: Partitioned DT, One Copy Per Server, Remote Deployment
	Scenario 10: Partitioned DT, One Copy Per Application, Local Deployment, Local Only Consumption
	Scenario 11: Partitioned DT, One Copy Per Application, Local Deployment, Every Member Consumption
	Scenario 12: Partitioned DT, One Copy Per Application, Remote Deployment

	B Topic Subscription Identifiers
	C How WebLogic MDBs Leverage WebLogic JMS Extensions

