
The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Oracle® Cloud Native Environment

Service Mesh for Release 1.3

F50649-02
April 2022

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Oracle Legal Notices

Copyright © 2020, 2022, Oracle and/or its affiliates.

https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Table of Contents
Preface .. v
1 Introduction to the Service Mesh ... 1

1.1 What is a Service Mesh? .. 1
1.2 What is Istio? ... 1
1.3 About the Istio Module .. 1
1.4 Istio Module Components ... 2

2 Setting up a Service Mesh .. 3
2.1 Deploying a Service Mesh (Simple Method) ... 4
2.2 Deploying a Service Mesh (Advanced Method) .. 6
2.3 Deploying a Service Mesh (Interactive Method) ... 7
2.4 Verifying the Istio Module Deployment ... 8
2.5 Removing a Service Mesh .. 9

3 Using a Service Mesh ... 11
3.1 Enabling Proxy Sidecars ... 11
3.2 Setting up a Load Balancer for an Ingress Gateway ... 12
3.3 Setting up an Ingress Gateway ... 13
3.4 Setting up an Egress Gateway .. 15
3.5 Testing Network Resilience ... 16

iii

iv

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Preface
This document contains information about the Istio module for Oracle Cloud Native Environment to set
up a service mesh. It describes the differences from the upstream version, and includes information on
installing and using the Istio module.

Document generated on: 2022-04-29 (revision: 1232)

Audience
This document is written for system administrators and developers who want to use the Istio module to
create a service mesh in Oracle Cloud Native Environment. It is assumed that readers have a general
understanding of the Oracle Linux operating system, container concepts and service mesh concepts.

Related Documents
The latest version of this document and other documentation for this product are available at:

https://docs.oracle.com/en/operating-systems/olcne/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a diverse workforce
that increases thought leadership and innovation. As part of our initiative to build a more inclusive culture

v

https://docs.oracle.com/en/operating-systems/olcne/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Diversity and Inclusion

that positively impacts our employees, customers, and partners, we are working to remove insensitive
terms from our products and documentation. We are also mindful of the necessity to maintain compatibility
with our customers' existing technologies and the need to ensure continuity of service as Oracle's offerings
and industry standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

vi

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 1 Introduction to the Service Mesh
This chapter provides introductory information about the Istio module for Oracle Cloud Native Environment,
which is used to set up a service mesh in Oracle Cloud Native Environment.

1.1 What is a Service Mesh?

A service mesh is a configurable, low‑latency infrastructure layer that controls the interaction between a
network of microservices. A service mesh makes sure communication among containerized application
infrastructure services is fast, reliable, and secure. The service mesh provides critical capabilities
including service discovery, load balancing, encryption, observability, traceability, and authentication and
authorization.

A service mesh provides the ability to monitor the microservices in the Kubernetes cluster. Istio can
support most of the popular current deployment patterns for deploying microservices. This is transparent to
a developer.

1.2 What is Istio?

Istio is a type of service mesh designed to manage the interaction and operation of services in a
microservices architecture. Istio is an open source project that coordinates communication between
services, providing service discovery, load balancing, security, recovery, telemetry, and policy enforcement
capabilities. Istio uses a sidecar service mesh model. This means that network communication proxy
capabilities are implemented in a separate container for every service or application container that is
deployed. Envoy is the product that implements this proxy capability and these special containers run
alongside every other container. The Istio sidecar service mesh frees developers from having to program
these types of capabilities into application code and makes development and enhancement of applications
in a microservice architecture much more efficient and rapid.

Istio's control plane provides an abstraction layer over the underlying cluster management platform,
Kubernetes.

Istio contains the following components:

• Envoy: Sidecar proxies per microservice to handle ingress/egress traffic between services in the cluster
and from a service to external services. The proxies form a secure microservice mesh providing a rich
set of functions like discovery, rich layer-7 routing, policy enforcement and telemetry recording/reporting
functions.

• Istiod: A component responsible for service discovery, configuration and certificate management.

For more information on the Istio deployment architecture, see the upstream documentation at:

https://istio.io/latest/docs/ops/deployment/architecture/

1.3 About the Istio Module

The Istio module is based on a stable release of the upstream Istio project. Differences between Oracle
versions of the software and upstream releases are limited to Oracle provided configuration profiles and
patches for specific bugs.

For upstream Istio documentation, see https://istio.io/docs/.

1

https://istio.io/latest/docs/ops/deployment/architecture/
https://istio.io/docs/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Istio Module Components

For more information about Istio, see https://istio.io/.

1.4 Istio Module Components

The upstream Istio installation has a number of configuration profiles you can choose from. The
Istio module components are based on the upstream installation configuration profiles, and includes
components curated for Oracle Cloud Native Environment. You can see the upstream installation
configuration profiles at:

https://istio.io/docs/setup/additional-setup/config-profiles/

The core Istio components installed with their corresponding container name prefix are:

• Egress gateway (istio-egressgateway)

• Ingress gateway (istio-ingressgateway)

• Istiod (istiod)

The additional components installed with the Istio module are:

• Grafana (grafana)

• Prometheus (prometheus)

2

https://istio.io/
https://istio.io/docs/setup/additional-setup/config-profiles/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 2 Setting up a Service Mesh

This chapter discusses how to install the Istio module to set up a service mesh, and the components
deployed when you do this.

The high level overview of setting up a service mesh is:

• Oracle Cloud Native Environment: Set up an environment in which to deploy the modules.

• Kubernetes module: You can install a service mesh into an existing Kubernetes cluster, or deploy the
cluster at the same time.

• Helm module: Helm is a tool to manage Kubernetes packages and is used to install applications and
resources into Kubernetes clusters. Helm interacts with the Kubernetes API server to install, upgrade,
query and remove Kubernetes resources.

• Istio module: The Istio module deploys the required containers to deploy a service mesh, including
the Istio ingress and egress gateways, Prometheus (a time-series metric collection database), and the
cluster visualization tool Grafana.

When you deploy the Istio module, an embedded instance of Prometheus is also deployed. Prometheus is
used to monitor and gather metrics about the Kubernetes cluster.

Another embedded component deployed with the Istio module is Grafana. Grafana is a monitoring and
visualization tool for time-series data stored in a database which in this case is Prometheus. Grafana
enables you to visually query and monitor the network traffic and services in your Kubernetes cluster.
Grafana includes browser-based dashboards to visualize the cluster metrics gathered from Prometheus.
For information on using Grafana, see Monitoring and Visualization.

Note

Prometheus and Grafana are automatically configured to provide standard metrics
and dashboards for the Istio module. Persisting custom or manual configuration of
these components is not possible.

You can enter all the information required to create a service mesh in a number of ways. The examples in
this chapter show the following methods, although there are other combinations you can use:

• Create all modules in one olcnectl module create command, including the Kubernetes module.
The example in Section 2.1, “Deploying a Service Mesh (Simple Method)” shows this method.

• Create all modules using multiple olcnectl module create commands. The example in Section 2.2,
“Deploying a Service Mesh (Advanced Method)” shows this method.

• Create all modules using the olcnectl module create command by being prompted for values,
interactively. The example in Section 2.3, “Deploying a Service Mesh (Interactive Method)” shows this
method.

In reality, the method you use to deploy the modules depends on your own environment and preference,
and whether you want to deploy into an existing Kubernetes cluster, create a Kubernetes cluster at the
same time as deploying the service mesh, or take it step by step in some other way. There are many
variations and possibilities you can use to do the deployment of a service mesh, or any module deployment
for that matter.

3

https://docs.oracle.com/en/operating-systems/olcne/1.3/monitor/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Deploying a Service Mesh (Simple Method)

2.1 Deploying a Service Mesh (Simple Method)
You can deploy all the modules required to create a service mesh and a Kubernetes cluster using a single
olcnectl module create command. This method might be useful if you want to deploy a service mesh
at the same time as deploying a Kubernetes cluster. If you have an existing deployment of the Kubernetes
module, you can specify that instance when deploying a service mesh.

Figure 2.1, “Example Deployment” shows the modules deployed in this example. The name of each
module in the examples is shown in the boxes. The examples create an Oracle Cloud Native Environment
named myenvironment, into which a Kubernetes module named mycluster is deployed, and then into
which a Helm module named myhelm is deployed, and finally, an Istio module named myistio.

Figure 2.1 Example Deployment

For the full list of the options available when creating modules, see the olcnectl module create
command in Platform Command-Line Interface.

To deploy a service mesh:

1. If you do not already have an environment set up, create one into which the modules can be deployed.
For information on setting up an environment, see Container Orchestration . The name of the
environment in this example is myenvironment.

2. If you do not already have a Kubernetes module set up or deployed, set one up. For information
on adding a Kubernetes module to an environment, see Container Orchestration. The name of the
Kubernetes module in this example is mycluster.

4

https://docs.oracle.com/en/operating-systems/olcne/1.3/olcnectl/commands.html#module-create
https://docs.oracle.com/en/operating-systems/olcne/1.3/orchestration/deploy-kube.html#module-create
https://docs.oracle.com/en/operating-systems/olcne/1.3/orchestration/deploy-kube.html#module-create

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Deploying a Service Mesh (Simple Method)

3. Create the service mesh by adding the required modules to the Kubernetes module in the environment
using the olcnectl module create command. This example uses a Kubernetes module named
mycluster, into which it deploys a Helm module named myhelm, and finally, it creates an Istio
module named myistio.

olcnectl module create \
--environment-name myenvironment \
--module istio \
--name myistio \
--helm-kubernetes-module mycluster \
--istio-helm-module myhelm

The --module option sets the module type to create, which is istio. You define the name of the Istio
module using the --name option, which in this case is myistio.

As the Istio module requires Kubernetes and Helm, you must also provide the options for those
modules.

The --helm-kubernetes-module option sets the name of the Kubernetes module to use. The
Kubernetes module should already be set up or deployed. If you have an existing Kubernetes module
deployed, you can specify the name of the module using this option. If no Kubernetes module is
deployed with the name you provide, a new module is deployed which allows you to deploy Kubernetes
at the same time as a service mesh.

The --istio-helm-module option sets the name of the Helm module to deploy.

If you do not include all the required options when adding the modules you are prompted to provide
them.

Note

The Istio module and Grafana also require an instance of Prometheus. When
you deploy an Istio module, an embedded instance of Prometheus is created
and deployed. You do not need to provide any information for the embedded
Prometheus instance.

4. If you are deploying a new Kubernetes module, validate whether the module can be deployed to the
nodes using the olcnectl module validate command. You do not need to perform this step if
you have an existing Kubernetes module deployed to the nodes. For example:

olcnectl module validate \
--environment-name myenvironment \
--name mycluster

5. If you are deploying a new Kubernetes module, use the olcnectl module install command to
install it on the nodes. For example:

olcnectl module install \
--environment-name myenvironment \
--name mycluster

6. Use the olcnectl module validate command to validate the Helm module can be deployed to
the nodes. For example:

olcnectl module validate \
--environment-name myenvironment \
--name myhelm

5

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Deploying a Service Mesh (Advanced Method)

7. Use the olcnectl module install command to install the Helm module. For example:

olcnectl module install \
--environment-name myenvironment \
--name myhelm

The Helm software packages are installed on the control plane nodes, and the Helm module is
deployed into the Kubernetes cluster.

8. Use the olcnectl module validate command to validate the Istio module can be deployed to the
nodes. For example:

olcnectl module validate \
--environment-name myenvironment \
--name myistio

9. Use the olcnectl module install command to install the Istio module. For example:

olcnectl module install \
--environment-name myenvironment \
--name myistio

The Istio software packages are installed on the control plane nodes, and the Istio module is deployed
into the Kubernetes cluster.

2.2 Deploying a Service Mesh (Advanced Method)

You can deploy each module required to create a service mesh in a Kubernetes cluster individually. There
are more steps in this method, but you have explicit control of how each module is created and deployed to
your cluster. This example assumes a Kubernetes module named mycluster is already deployed into an
environment named myenvironment.

To deploy a service mesh:

1. Use the olcnectl module create command to create a Helm module and add it to a Kubernetes
module. For example, to create a Helm module named myhelm and add it to the Kubernetes module
named mycluster:

olcnectl module create \
--environment-name myenvironment \
--module helm \
--name myhelm \
--helm-kubernetes-module mycluster

The --module option sets the module type to create, which is helm. You define the name of the Helm
module using the --name option, which in this case is myhelm.

The --helm-kubernetes-module option sets the name of the Kubernetes module into which Helm
should be installed.

2. Use the olcnectl module validate command to validate the Helm module can be deployed
to the nodes. For example, to validate the Helm module named myhelm in the environment named
myenvironment:

olcnectl module validate \
--environment-name myenvironment \
--name myhelm

6

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Deploying a Service Mesh (Interactive Method)

3. Use the olcnectl module install command to deploy the Helm module. For example, to deploy
the Helm module named myhelm in the environment named myenvironment:

olcnectl module install \
--environment-name myenvironment \
--name myhelm

4. Use the olcnectl module create command to create an Istio module and associate it with the
Helm module. For example, to create an Istio module named myistio and associate it with the Helm
module named myhelm:

olcnectl module create \
--environment-name myenvironment \
--module istio \
--name myistio \
--istio-helm-module myhelm

The --module option sets the module type to create, which is istio. You define the name of the Istio
module using the --name option, which in this case is myistio.

The --istio-helm-module option sets the name of the Helm module to use to deploy the Istio
module. In this case, this is the Helm module named myhelm, which is already deployed.

Note

The Istio module also requires an instance of Prometheus. When you deploy an
Istio module, an embedded instance of Prometheus is created and deployed.
You do not need to provide any information for the embedded Prometheus
instance.

5. Use the olcnectl module validate command to validate the Istio module can be deployed to
the nodes. For example, to validate the Istio module named myistio in the environment named
myenvironment:

olcnectl module validate \
--environment-name myenvironment \
--name myistio

6. Use the olcnectl module install command to deploy the Istio module. For example, to deploy
the Istio module named myistio in the environment named myenvironment:

olcnectl module install \
--environment-name myenvironment \
--name myistio

The Istio software packages are installed on the control plane nodes, and the Istio module is deployed
into the Kubernetes cluster.

2.3 Deploying a Service Mesh (Interactive Method)

You can also deploy each module required to create a service mesh in a Kubernetes cluster interactively,
being prompted for each required value. As with the other deployment methods, you need to first have an
Oracle Cloud Native Environment set up into which you can deploy the service mesh modules.

This example shows you the output when using the olcnectl module create command interactively
to create the modules required for a service mesh. This example deploys into an existing Kubernetes
cluster, using the same module names as the other examples in this chapter.

7

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Verifying the Istio Module Deployment

To deploy a service mesh:

1. Use the olcnectl module create command to create the Istio module, and be prompted for all
required values:

olcnectl module create

? Please enter a value for environment-name: myenvironment
? Enter the module name: istio
? Enter the name of the instance of the istio module myistio
? Please select an option for istio-helm-module: New Entry
? Please enter a value for istio-helm-module: myhelm
? Please select an option for helm-kubernetes-module: mycluster
Modules created successfully.
Modules created successfully.

2. Use the olcnectl module validate command to validate the Helm module can be deployed
to the nodes. For example, to validate the Helm module named myhelm in the environment named
myenvironment:

olcnectl module validate \
--environment-name myenvironment \
--name myhelm

3. Use the olcnectl module install command to deploy the Helm module. For example, to deploy
the Helm module named myhelm in the environment named myenvironment:

olcnectl module install \
--environment-name myenvironment \
--name myhelm

4. Use the olcnectl module validate command to validate the Istio module can be deployed to
the nodes. For example, to validate the Istio module named myistio in the environment named
myenvironment:

olcnectl module validate \
--environment-name myenvironment \
--name myistio

5. Use the olcnectl module install command to deploy the Istio module. For example, to deploy
the Istio module named myistio in the environment named myenvironment:

olcnectl module install \
--environment-name myenvironment \
--name myistio

2.4 Verifying the Istio Module Deployment
You can verify the Istio module is deployed and the required containers are running in the istio-
system namespace. To verify the containers are deployed, you need to use the kubectl command. For
information on setting up the kubectl command, see Container Orchestration.

To verify the required containers are running, list the containers running in the istio-system
namespace. You should see similar results to those shown here:

kubectl get deployment -n istio-system

NAME READY UP-TO-DATE AVAILABLE AGE
grafana 2/2 2 2 2m44s
istio-egressgateway 2/2 2 2 2m48s

8

https://docs.oracle.com/en/operating-systems/olcne/1.3/orchestration/kubectl.html

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Removing a Service Mesh

istio-ingressgateway 2/2 2 2 2m48s
istiod 2/2 2 2 3m2s
prometheus-server 2/2 2 2 2m44s

2.5 Removing a Service Mesh

You can remove a deployment of a service mesh and leave the Kubernetes cluster in place. To do this,
you remove the Istio module from the environment.

Use the olcnectl module uninstall command to remove the Istio module. For example, to uninstall
the Istio module named myistio in the environment named myenvironment:

olcnectl module uninstall \
--environment-name myenvironment \
--name myistio

The Istio module and embedded Prometheus instance are removed from the environment.

You can confirm the Istio components are removed using the kubectl command to query all deployments
running in the istio-system namespace. You should see there are no deployments returned.

kubectl get deployment -n istio-system

No resources found in istio-system namespace.

9

10

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 3 Using a Service Mesh
Istio automatically populates its service registry with all services you create in the service mesh, so it
knows all possible service endpoints. By default, the Envoy proxy sidecars manage traffic by sending
requests to each service instance in turn in a round-robin fashion. You can configure the management of
this traffic to suit your own application requirements using the Istio traffic management APIs. The APIs are
accessed using Kubernetes custom resource definitions (CRDs), which you set up and deploy using YAML
files.

The Istio API traffic management features available are:

• Virtual services: Configure request routing to services within the service mesh. Each virtual service can
contain a series of routing rules, that are evaluated in order.

• Destination rules: Configures the destination of routing rules within a virtual service. Destination
rules are evaluated and actioned after the virtual service routing rules. For example, routing traffic to a
particular version of a service.

• Gateways: Configure inbound and outbound traffic for services in the mesh. Gateways are configured
as standalone Envoy proxies, running at the edge of the mesh. An ingress and an egress gateway are
deployed automatically when you install the Istio module.

• Service entries: Configure services outside the service mesh in the Istio service registry. Allows you to
manage the traffic to services as if they are in the service mesh. Services in the mesh are automatically
added to the service registry, and service entries allow you to bring in outside services.

• Sidecars: Configure sidecar proxies to set the ports, protocols and services to which a microservice can
connect.

These Istio traffic management APIs are well documented in the upstream documentation at:

https://istio.io/docs/concepts/traffic-management/

3.1 Enabling Proxy Sidecars
Istio enables network communication between services to be abstracted from the services themselves and
to instead be handled by proxies. Istio uses a sidecar design, which means that communication proxies run
in their own containers alongside every service container.

To enable the use of a service mesh in your Kubernetes applications, you need to enable automatic proxy
sidecar injection. This injects proxy sidecar containers into pods you create.

To put automatic sidecar injection into effect, the namespace to be used by an application must be labeled
with istio-injection=enabled. For example, to enable automatic sidecar injection for the default
namespace:

kubectl label namespace default istio-injection=enabled

namespace/default labeled

kubectl get namespace -L istio-injection

NAME STATUS AGE ISTIO-INJECTION
default Active 29h enabled
externalip-validation-system Active 29h
istio-system Active 29h

11

https://istio.io/docs/concepts/traffic-management/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Setting up a Load Balancer for an Ingress Gateway

kube-node-lease Active 29h
kube-public Active 29h
kube-system Active 29h
kubernetes-dashboard Active 29h

Any applications deployed into the default namespace have automatic sidecar injection enabled and the
sidecar runs alongside the pod. For example, create a simple NGINX deployment:

kubectl create deployment --image nginx hello-world

deployment.apps/hello-world created

Show the details of the pod to see that an istio-proxy container is also deployed with the application:

kubectl get pods

NAME READY STATUS RESTARTS AGE
hello-world-5fcdb6bc85-wph7h 2/2 Running 0 7m40s

kubectl describe pods hello-world-5fcdb6bc85-wph7h

...
 Normal Started 13s kubelet, worker1.example.com Started container nginx
 Normal Started 12s kubelet, worker1.example.com Started container istio-proxy

3.2 Setting up a Load Balancer for an Ingress Gateway

If you are deploying the Istio module, you may also want to set up a load balancer to handle the Istio
ingress gateway traffic. The information in this section shows you how to set up a load balancer to manage
access to services from outside the cluster using the Istio ingress gateway.

The load balancer port mapping in this section sets ports for HTTP and HTTPS. That is, the load balancer
listens for HTTP traffic on port 80 and redirects it to the Istio ingress gateway NodePort number for http2.
You query the port number to set for http2 by entering the following on a control plane node:

kubectl describe svc istio-ingressgateway -n istio-system |grep http2

Port: http2 80/TCP
NodePort: http2 32681/TCP

In this example, the NodePort is 32681. So the load balancer must be configured to listen for HTTP traffic
on port 80 and redirect it to the istio-ingressgateway service on port 32681.

For HTTPS traffic, the load balancer listens on port 443 and redirects it to the Istio ingress gateway
NodePort number for https. To find the port numbers to set for https, enter:

kubectl describe svc istio-ingressgateway -n istio-system |grep https

Port: https 443/TCP
NodePort: https 31941/TCP

In this example, the NodePort is 31941. So the load balancer must be configured to listen for HTTPS
traffic on port 443 and redirect it to the istio-ingressgateway service on port 31941.

The load balancer should be set up with the following configuration for HTTP traffic:

• The listener listening on TCP port 80.

• The distribution set to round robin.

12

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Setting up an Ingress Gateway

• The target set to the TCP port for http2 on the worker nodes. In this example it is 32681.

• The health check set to TCP.

For HTTPS traffic:

• The listener listening on TCP port 443.

• The distribution set to round robin.

• The target set to the TCP port for https on the worker nodes. In this example it is 31941.

• The health check set to TCP.

For more information on setting up your own load balancer, see the Oracle® Linux 7: Administrator's
Guide, or Oracle® Linux 8: Setting Up Load Balancing.

If you are deploying to Oracle Cloud Infrastructure, you can either set up a new load balancer or, if you
have one, use the load balancer you set up for the Kubernetes module.

To set up a load balancer on Oracle Cloud Infrastructure for HTTP traffic:

1. Add a backend set to the load balancer using weighted round robin.

2. Add the worker nodes to the backend set. Set the port for the worker nodes to the TCP port for http2.
In this example it is 32681.

3. Create a listener for the backend set using TCP port 80.

To set up a load balancer on Oracle Cloud Infrastructure for HTTPS traffic:

1. Add a backend set to the load balancer using weighted round robin.

2. Add the worker nodes to the backend set. Set the port for the worker nodes to the TCP port for https.
In this example it is 31941.

3. Create a listener for the backend set using TCP port 443.

For more information on setting up a load balancer in Oracle Cloud Infrastructure, see the Oracle Cloud
Infrastructure documentation.

3.3 Setting up an Ingress Gateway
An Istio ingress gateway allows you to define entry points into the service mesh through which all incoming
traffic flows. A ingress gateway allows you to manage access to services from outside the cluster. You can
monitor and set route rules for the traffic entering the cluster.

This section contains a simple example to configure the automatically created ingress gateway to
an NGINX web server application. The example assumes you have a load balancer available at
lb.example.com and is connecting to the istio-ingressgateway service on TCP port 32681.
The load balancer listener is set to listen on HTTP port 80, which is the port for the NGINX web server
application used in the virtual service in this example.

To set up an ingress gateway:

1. Create the deployment file to create the NGINX webserver application. Create a file named my-
nginx.yml, containing:

13

https://docs.oracle.com/en/operating-systems/oracle-linux/7/admin/
https://docs.oracle.com/en/operating-systems/oracle-linux/7/admin/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/balancing/
https://docs.cloud.oracle.com/iaas/Content/Balance/Concepts/balanceoverview.htm
https://docs.cloud.oracle.com/iaas/Content/Balance/Concepts/balanceoverview.htm

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Setting up an Ingress Gateway

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: my-webserver
 name: my-nginx
 namespace: my-namespace
spec:
 replicas: 3
 selector:
 matchLabels:
 app: my-webserver
 template:
 metadata:
 labels:
 app: my-webserver
 spec:
 containers:
 - image: nginx
 name: my-nginx
 ports:
 - containerPort: 80

2. Create a service for the deployment. Create a file named my-nginx-service.yml containing:

apiVersion: v1
kind: Service
metadata:
 name: my-http-ingress-service
 namespace: my-namespace
spec:
 ports:
 - name: http
 port: 80
 protocol: TCP
 targetPort: 80
 selector:
 app: my-webserver
 type: ClusterIP

3. Create an ingress gateway for the service. Create a file named my-nginx-gateway.yml containing:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: my-nginx-gateway
 namespace: my-namespace
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "mynginx.example.com"

4. Create a virtual service for the ingress gateway. Create a file named my-nginx-
virtualservice.yml containing:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

14

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Setting up an Egress Gateway

 name: my-nginx-virtualservice
 namespace: my-namespace
spec:
 hosts:
 - "mynginx.example.com"
 gateways:
 - my-nginx-gateway
 http:
 - match:
 - uri:
 prefix: /
 route:
 - destination:
 port:
 number: 80
 host: my-http-ingress-service

5. Set up a namespace for the application named my-namespace and enable automatic proxy sidecar
injection.

kubectl create namespace my-namespace
kubectl label namespaces my-namespace istio-injection=enabled

6. Run the deployment, service, ingress gateway and virtual service:

kubectl apply -f my-nginx.yml
kubectl apply -f my-nginx-service.yml
kubectl apply -f my-nginx-gateway.yml
kubectl apply -f my-nginx-virtualservice.yml

7. You can see the ingress gateway is running using:

kubectl get gateways.networking.istio.io -n my-namespace

NAME AGE
my-nginx-gateway 33s

8. You can see the virtual service is running using:

kubectl get virtualservices.networking.istio.io -n my-namespace

NAME GATEWAYS HOSTS AGE
my-nginx-virtualservice [my-nginx-gateway] [mynginx.example.com] 107s

9. To confirm the ingress gateway is serving the application to the load balancer, use:

curl -I -HHost:mynginx.example.com lb.example.com:80/

HTTP/1.1 200 OK
Date: Fri, 06 Mar 2020 00:39:16 GMT
Content-Type: text/html
Content-Length: 612
Connection: keep-alive
last-modified: Tue, 03 Mar 2020 14:32:47 GMT
etag: "5e5e6a8f-264"
accept-ranges: bytes
x-envoy-upstream-service-time: 15

3.4 Setting up an Egress Gateway

The Istio egress gateway allows you to set up access to external HTTP and HTTPS services from
applications inside the service mesh. External services are called using the sidecar container.

15

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Testing Network Resilience

The Istio egress gateway is deployed automatically. You do not need to manually deploy it. You can
confirm the Istio egress gateway service is running using:

kubectl get svc istio-egressgateway -n istio-system

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
istio-egressgateway ClusterIP 10.111.233.121 <none> 80/TCP,443/TCP,15443/TCP 9m26s

The upstream documentation provides an example to show you how to set up use an Istio egress gateway.

https://istio.io/docs/tasks/traffic-management/egress/egress-gateway/

3.5 Testing Network Resilience

Istio network resilience and testing features allow you to set up and test failure recovery and to inject
faults to test resilience. You set up these features dynamically at runtime to improve the reliability of your
applications in the service mesh. The network resilience and testing features available in this release are:

• Timeouts: The amount of time that a sidecar proxy should wait for replies from a service. You can set up
a virtual service to configure specific timeouts for a service. The default timeout for HTTP requests is 15
seconds.

• Retries: The number of retries allowed by the sidecar proxy to connect to a service after an initial
connection failure. You can set up a virtual service to enable and configure the number of retries for a
service. By default, no retries are allowed.

• Fault injection: Set up fault injection mechanisms to test failure recovery of applications. You can set up
a virtual service to set up and inject faults into a service. You can set delays to mimic network latency or
an overloaded upstream service. You can also set aborts to mimic crashes in an upstream service.

16

https://istio.io/docs/tasks/traffic-management/egress/egress-gateway/

	Oracle® Cloud Native Environment
	Table of Contents
	Preface
	Chapter 1 Introduction to the Service Mesh
	1.1 What is a Service Mesh?
	1.2 What is Istio?
	1.3 About the Istio Module
	1.4 Istio Module Components

	Chapter 2 Setting up a Service Mesh
	2.1 Deploying a Service Mesh (Simple Method)
	2.2 Deploying a Service Mesh (Advanced Method)
	2.3 Deploying a Service Mesh (Interactive Method)
	2.4 Verifying the Istio Module Deployment
	2.5 Removing a Service Mesh

	Chapter 3 Using a Service Mesh
	3.1 Enabling Proxy Sidecars
	3.2 Setting up a Load Balancer for an Ingress Gateway
	3.3 Setting up an Ingress Gateway
	3.4 Setting up an Egress Gateway
	3.5 Testing Network Resilience

