
The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Oracle® Cloud Native Environment

Storage for Release 1.4

F50105-04
March 2023

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Oracle Legal Notices

Copyright © 2021, Oracle and/or its affiliates.

https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Table of Contents
Preface .. v
1 Introduction to Storage .. 1

1.1 Persistent Storage Concepts ... 1
1.2 Container Storage Interface Plug-ins ... 2
1.3 Introduction to the Oracle Cloud Infrastructure Container Storage Interface Module 2
1.4 Introduction to the Gluster Container Storage Interface Module ... 2

2 Using Oracle Cloud Infrastructure Storage ... 5
2.1 Prerequisites .. 5
2.2 Deploying the Oracle Cloud Infrastructure Container Storage Interface Module 5
2.3 Verifying the Oracle Cloud Infrastructure Module Deployment ... 8
2.4 Creating Oracle Cloud Infrastructure Block Storage .. 8
2.5 Removing the Oracle Cloud Infrastructure Container Storage Interface Module 11

3 Using Gluster Storage ... 13
3.1 Prerequisites .. 13
3.2 Deploying the Gluster Module ... 13
3.3 Verifying the Gluster Module Deployment .. 15
3.4 Creating a Gluster Volume .. 16
3.5 Removing the Gluster Module ... 18

iii

iv

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Preface
This document contains information about setting up and using persistent storage in Oracle Cloud Native
Environment. It describes the modules provided with Oracle Cloud Native Environment to set up persistent
storage.

Document generated on: 2023-03-14 (revision: 1279)

Audience
This document is written for system administrators and developers who want to use persistent storage in
Oracle Cloud Native Environment. It is assumed that readers have a general understanding of the Oracle
Linux operating system, container concepts and cloud storage concepts.

Related Documents
The latest version of this document and other documentation for this product are available at:

https://docs.oracle.com/en/operating-systems/olcne/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a diverse workforce
that increases thought leadership and innovation. As part of our initiative to build a more inclusive culture

v

https://docs.oracle.com/en/operating-systems/olcne/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Diversity and Inclusion

that positively impacts our employees, customers, and partners, we are working to remove insensitive
terms from our products and documentation. We are also mindful of the necessity to maintain compatibility
with our customers' existing technologies and the need to ensure continuity of service as Oracle's offerings
and industry standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

vi

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 1 Introduction to Storage
Every meaningful workload in the computing industry requires some sort of data storage. Persistent
storage is essential when working with stateful applications like databases, as it is important that you are
able to retain data beyond the lifecycle of the container, or even of the pod itself.

Persistent storage in Kubernetes is handled in the form of PersistentVolume objects and are bound to pods
using a PersistentVolumeClaim. You can host a PersistentVolume locally or on networked storage devices
or services.

A typical Kubernetes environment involves multiple hosts and usually includes some type of networked
storage. Using networked storage helps to ensure resilience and allows you to take full advantage of a
clustered environment. In the case where the node where a pod is running fails, a new pod can be started
on an alternate node and storage access can be resumed. This is particularly important for database
environments where replica setup has been properly configured.

1.1 Persistent Storage Concepts

Persistent storage is provided in Kubernetes using the PersistentVolume subsystem. To configure
persistent storage, you should be familiar with the following terms:

• PersistentVolume. A PersistentVolume defines the type of storage that is being used and the
method used to connect to it. This is the real disk or networked storage service that is used to store data.

• PersistentVolumeClaim. A PersistentVolumeClaim defines the parameters that a consumer, like a
pod, uses to bind the PersistentVolume. The claim may specify quota and access modes that should be
applied to the resource for a consumer. A pod can use a PersistentVolumeClaim to gain access to the
volume and mount it.

• StorageClass. A StorageClass is an object that specifies a volume plug-in, known as a provisioner,
that allows users to define PersistentVolumeClaims without needing to preconfigure the storage for a
PersistentVolume. This can be used to provide access to similar volume types as a pooled resource that
can be dynamically provisioned for the lifecycle of a PersistentVolumeClaim.

PersistentVolumes can be provisioned either statically or dynamically.

Static PersistentVolumes are manually created and contain the details required to access real storage and
can be consumed directly by any pod that has an associated PersistentVolumeClaim.

Dynamic PersistentVolumes can be automatically generated if a PersistentVolumeClaim does not match
an existing static PersistentVolume and an existing StorageClass is requested in the claim. A StorageClass
can be defined to host a pool of storage that can be accessed dynamically. Creating a StorageClass is an
optional step that is only required if you intend to use dynamic provisioning.

The process to provision persistent storage is as follows:

1. Create a PersistentVolume or StorageClass.

2. Create PersistentVolumeClaims.

3. Configure a pod to use the PersistentVolumeClaim.

The process for adding and configuring NFS and iSCSI volumes is described in detail in the upstream
documentation at:

1

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Container Storage Interface Plug-ins

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

1.2 Container Storage Interface Plug-ins

The Container Storage Interface (CSI) is an Open Container Initiative standard for controlling storage
workloads from container engines. Kubernetes implements this interface to provide automated control for
storage workloads inside Kubernetes clusters. For a list of the Kubernetes storage provisioners, see the
upstream documentation at:

https://kubernetes.io/docs/concepts/storage/storage-classes/

You can install CSI plug-ins into a Kubernetes cluster in Oracle Cloud Native Environment. To make it
easier to perform the CSI plug-in installation, Oracle provides a number of storage related modules.

The Oracle Cloud Infrastructure Container Storage Interface module for Oracle Cloud Native Environment
can be used to set up the CSI plug-in for Oracle Cloud Infrastructure.

The Gluster Container Storage Interface module for Oracle Cloud Native Environment can be used to set
up the CSI plug-in for Glusterfs.

More information on these modules is included in this guide.

1.3 Introduction to the Oracle Cloud Infrastructure Container
Storage Interface Module

Oracle Cloud Infrastructure block volumes provide reliable, high-performance block storage designed to
work with a range of virtual machines and bare metal instances. With built-in redundancy, block volumes
are persistent and durable beyond the lifespan of a virtual machine and can scale to 1 PB per compute
instance.

The Oracle Cloud Infrastructure Container Storage Interface module is used to set up dynamically
provisioned persistent storage using Oracle Cloud Infrastructure block volumes. The Oracle Cloud
Infrastructure Container Storage Interface module is deployed by the Helm module into a Kubernetes
cluster.

The Oracle Cloud Infrastructure Container Storage Interface module creates a Kubernetes StorageClass
provisioner to access storage on Oracle Cloud Infrastructure block volumes. The Kubernetes Cloud
Controller Manager (oci-cloud-controller-manager) is a CSI plug-in for Kubernetes clusters
running on Oracle Cloud Infrastructure. The Kubernetes Cloud Controller Manager is used to dynamically
provision Oracle Cloud Infrastructure volumes for use as Kubernetes PersistentVolumes. The Platform
API Server communicates with the Oracle Cloud Infrastructure API to provision and manage Oracle Cloud
Infrastructure volumes using PersistentVolumeClaims. The Oracle Cloud Infrastructure volumes can be
automatically destroyed when the PersistentVolumeClaims are deleted.

For more information on the Kubernetes Cloud Controller Manager, see the upstream documentation at:

https://github.com/oracle/oci-cloud-controller-manager

1.4 Introduction to the Gluster Container Storage Interface Module

Gluster is a scalable, distributed file system that aggregates disk storage resources from multiple servers
into a single global namespace. Heketi is used to create and manage volumes in a Gluster cluster.

2

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://github.com/oracle/oci-cloud-controller-manager

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Introduction to the Gluster Container Storage Interface Module

The Gluster Container Storage Interface module is used to set up dynamically provisioned persistent
storage using Gluster Storage for Oracle Linux. The Gluster Container Storage Interface module is
deployed by the Helm module into a Kubernetes cluster.

Oracle Cloud Native Environment does not deploy Gluster or Heketi. Gluster Storage for Oracle Linux and
the Heketi API must be installed and configured separately, before it can be added to Oracle Cloud Native
Environment.

The Gluster Container Storage Interface module creates a Kubernetes StorageClass provisioner to access
existing storage on Glusterfs. Kubernetes uses the Glusterfs plug-in to dynamically provision Gluster
volumes for use as Kubernetes PersistentVolumes. The Platform API Server communicates with the Heketi
API to provision and manage Gluster volumes using PersistentVolumeClaims. The Gluster volumes can be
automatically destroyed when the PersistentVolumeClaims are deleted.

3

4

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 2 Using Oracle Cloud Infrastructure Storage
This chapter discusses how to install and use the Oracle Cloud Infrastructure Container Storage Interface
module to set up dynamically provisioned persistent storage for Kubernetes applications in Oracle Cloud
Native Environment on Oracle Cloud Infrastructure instances.

2.1 Prerequisites
The Kubernetes module must be created using the --node-labels and --node-ocids options as
described in Section 2.2, “Deploying the Oracle Cloud Infrastructure Container Storage Interface Module”.
These options configure the Kubernetes nodes to work correctly with the Oracle Cloud Infrastructure CSI
plug-in (Kubernetes Cloud Controller Manager). These two olcnectl module create options must be
used when creating the Kubernetes module.

Important

You cannot modify the Kubernetes module to add these settings after it is deployed.

Before you set up the Oracle Cloud Infrastructure Container Storage Interface module, you need to gather
information about your Oracle Cloud Infrastructure environment. The most common information you need
is:

• The Oracle Cloud Identifier (OCID) of each instance to be used in the Kubernetes cluster (the control
plane and worker nodes).

• The identifier for the region.

• The OCID for the tenancy.

• The OCID for the compartment.

• The OCID for the user.

• The public key fingerprint for the API signing key pair.

• The private key file for the API signing key pair. The private key must be copied to the primary control
plane node. This is the first control plane node listed in the --master-nodes option when you create
the Kubernetes module.

You may need more information related to your Oracle Cloud Infrastructure networking or other
components.

For information on finding each of these identifiers or components, see the Oracle Cloud Infrastructure
documentation.

2.2 Deploying the Oracle Cloud Infrastructure Container Storage
Interface Module

You can deploy all the modules required to set up Oracle Cloud Infrastructure storage for a Kubernetes
cluster using a single olcnectl module create command. This method might be useful if you want to
deploy the Oracle Cloud Infrastructure Container Storage Interface module at the same time as deploying
a Kubernetes cluster.

If you have an existing deployment of the Kubernetes module, you can specify that instance when
deploying the Oracle Cloud Infrastructure Container Storage Interface module. Note there are specific

5

https://docs.oracle.com/iaas/Content/
https://docs.oracle.com/iaas/Content/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Deploying the Oracle Cloud Infrastructure Container Storage Interface Module

requirements for setting up the Kubernetes module if you want to access Oracle Cloud Infrastructure
storage.

This section guides you through installing each component required to deploy the Oracle Cloud
Infrastructure Container Storage Interface module.

For the full list of the Platform CLI command options available when creating modules, see the olcnectl
module create command in Platform Command-Line Interface.

To deploy the Oracle Cloud Infrastructure Container Storage Interface module:

1. If you do not already have an environment set up, create one into which the modules can be deployed.
For information on setting up an environment, see Getting Started. The name of the environment in this
example is myenvironment.

2. If you do not already have a Kubernetes module set up or deployed, set one up.

Important

Make sure you create the Kubernetes module using the --node-labels and
--node-ocids options. These options configure the Kubernetes nodes to work
correctly with the Oracle Cloud Infrastructure CSI plug-in. These options must
be used when creating the Kubernetes module. You cannot modify the module
to add these settings after it is deployed.

For information on adding a Kubernetes module to an environment, see Container Orchestration. The
name of the Kubernetes module in this example is mycluster.

3. If you do not already have a Helm module created and installed, create one. The Helm module in this
example is named myhelm and is associated with the Kubernetes module named mycluster using
the --helm-kubernetes-module option.

olcnectl module create \
--environment-name myenvironment \
--module helm \
--name myhelm \
--helm-kubernetes-module mycluster

4. If you are deploying a new Helm module, use the olcnectl module validate command to
validate the Helm module can be deployed to the nodes. For example:

olcnectl module validate \
--environment-name myenvironment \
--name myhelm

5. If you are deploying a new Helm module, use the olcnectl module install command to install
the Helm module. For example:

olcnectl module install \
--environment-name myenvironment \
--name myhelm

The Helm software packages are installed on the control plane nodes, and the Helm module is
deployed into the Kubernetes cluster.

6. Create an Oracle Cloud Infrastructure Container Storage Interface module and associate it with the
Helm module named myhelm using the --oci-csi-helm-module option. In this example, the Oracle
Cloud Infrastructure Container Storage Interface module is named myoci.

6

https://docs.oracle.com/en/operating-systems/olcne/1.4/olcnectl/commands.html#module-create
https://docs.oracle.com/en/operating-systems/olcne/1.4/start/install.html#env-create
https://docs.oracle.com/en/operating-systems/olcne/1.4/orchestration/deploy-kube.html#module-create

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Deploying the Oracle Cloud Infrastructure Container Storage Interface Module

olcnectl module create \
--environment-name myenvironment \
--module oci-csi \
--name myoci \
--oci-csi-helm-module myhelm \
--oci-region us-ashburn-1 \
--oci-tenancy ocid1.tenancy.oc1... \
--oci-compartment ocid1.compartment.oc1... \
--oci-user ocid1.user.oc1... \
--oci-fingerprint b5:52:... \
--oci-private-key /home/opc/.oci/oci_api_key.pem

The --module option sets the module type to create, which is oci-csi. You define the name of the
Oracle Cloud Infrastructure Container Storage Interface module using the --name option, which in this
case is myoci.

The --oci-csi-helm-module option sets the name of the Helm module. If there is an existing Helm
module with the same name, the Platform API Server uses that instance of Helm.

The --oci-region option sets the Oracle Cloud Infrastructure region to use. The region in this
example is us-ashburn-1.

The --oci-tenancy option sets the OCID for your tenancy.

The --oci-compartment option sets the OCID for your compartment.

The --oci-user option sets the OCID for the user.

The --oci-fingerprint option sets the fingerprint for the public key for the Oracle Cloud
Infrastructure API signing key.

The --oci-private-key option sets the location of the private key for the Oracle Cloud
Infrastructure API signing key. The private key must be available on the primary control plane node.

If you do not include all the required options when adding the modules, you are prompted to provide
them.

7. Use the olcnectl module validate command to validate the Oracle Cloud Infrastructure
Container Storage Interface module can be deployed to the nodes. For example:

olcnectl module validate \
--environment-name myenvironment \
--name myoci

8. Use the olcnectl module install command to install the Oracle Cloud Infrastructure Container
Storage Interface module. For example:

olcnectl module install \
--environment-name myenvironment \
--name myoci

The Oracle Cloud Infrastructure Container Storage Interface module is deployed into the Kubernetes
cluster.

7

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Verifying the Oracle Cloud Infrastructure Module Deployment

2.3 Verifying the Oracle Cloud Infrastructure Module Deployment
You can verify the Oracle Cloud Infrastructure Container Storage Interface module is deployed using the
olcnectl module instances command on the operator node. For example:

olcnectl module instances \
--environment-name myenvironment
INSTANCE MODULE STATE
mycluster kubernetes installed
myhelm helm installed
myoci oci-csi installed
control1.example.com node installed
...

Note the entry for oci-csi in the MODULE column is in the installed state.

In addition, use the olcnectl module report command to review information about the module. For
example, use the following command to review the Oracle Cloud Infrastructure Container Storage Interface
module named myoci in myenvironment:

olcnectl module report \
--environment-name myenvironment \
--name myoci \
--children

For more information on the syntax for the olcnectl module report command, see Platform
Command-Line Interface.

On a control plane node, you can also verify the oci-bv StorageClass for the Oracle Cloud Infrastructure
provisioner is created using the kubectl get sc command:

kubectl get sc
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ...
oci-bv blockvolume.csi.oraclecloud.com Delete WaitForFirstConsumer ...

You can get more details about the StorageClass using the kubectl describe sc command. For
example:

kubectl describe sc oci-bv
Name: oci-bv
IsDefaultClass: No
Annotations: meta.helm.sh/release-name=myoci,meta.helm.sh/release-namespace=default
Provisioner: blockvolume.csi.oraclecloud.com
Parameters: <none>
AllowVolumeExpansion: <unset>
MountOptions: <none>
ReclaimPolicy: Delete
VolumeBindingMode: WaitForFirstConsumer
Events: <none>

2.4 Creating Oracle Cloud Infrastructure Block Storage
This section contains a basic test to verify you can create Oracle Cloud Infrastructure block storage to
provide persistent storage to applications running on Kubernetes.

To create a test application to use Oracle Cloud Infrastructure storage:

1. Create a Kubernetes PersistentVolumeClaim file. On a control plane node, create a file named
pvc.yaml. Copy the following into the file.

apiVersion: v1

8

https://docs.oracle.com/en/operating-systems/olcne/1.4/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.4/olcnectl/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Creating Oracle Cloud Infrastructure Block Storage

kind: PersistentVolumeClaim
metadata:
 name: myoci-pvc
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: oci-bv
 resources:
 requests:
 storage: 50Gi

Note that the accessModes setting for Oracle Cloud Infrastructure storage must be ReadWriteOnce.
The minimum Oracle Cloud Infrastructure block size is 50Gi.

2. Create the Kubernetes PersistentVolumeClaim.

kubectl apply -f pvc.yaml
persistentvolumeclaim/myoci-pvc created

3. You can see the PersistentVolumeClaim is created using the kubectl get pvc command:

kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
myoci-pvc Pending oci-bv 15s

The STATUS is Pending and means the claim is waiting for an application to claim it.

You can get more details about the PersistentVolumeClaim using the kubectl describe pvc
command. For example:

kubectl describe pvc myoci-pvc
Name: myoci-pvc
Namespace: default
StorageClass: oci-bv
Status: Pending
Volume:
Labels: <none>
Annotations: <none>
Finalizers: [kubernetes.io/pvc-protection]
Capacity:
Access Modes:
VolumeMode: Filesystem
Used By: <none>
Events:
 Type Reason Age From ...
 ---- ------ ---- ----
 Normal WaitForFirstConsumer 2m18s (x26 over 8m29s) persistentvolume-controller ...

4. Create a Kubernetes application that uses the PersistentVolumeClaim. Create a file named
nginx.yaml and copy the following into the file.

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 run: mynginx
 name: mynginx
spec:
 replicas: 1
 selector:
 matchLabels:
 run: mynginx
 template:

9

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Creating Oracle Cloud Infrastructure Block Storage

 metadata:
 labels:
 run: mynginx
 spec:
 containers:
 - image: container-registry.oracle.com/olcne/nginx:1.17.7
 name: mynginx
 ports:
 - containerPort: 80
 volumeMounts:
 - name: nginx-pvc
 mountPath: /usr/share/nginx/html
 volumes:
 - name: nginx-pvc
 persistentVolumeClaim:
 claimName: myoci-pvc

5. Start the application:

kubectl apply -f nginx.yaml
deployment.apps/mynginx created

6. You can see the application is running using the kubectl get deployment command:

kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
mynginx 1/1 1 1 63s

7. You can see the application is using the PersistentVolumeClaim to provide persistent storage on Oracle
Cloud Infrastructure using the kubectl describe deployment command:

kubectl describe deployment mynginx
...
Pod Template:
 Labels: run=mynginx
 Containers:
 mynginx:
 Image: container-registry.oracle.com/olcne/nginx:1.17.7
 Port: 80/TCP
 Host Port: 0/TCP
 Environment: <none>
 Mounts:
 /usr/share/nginx/html from nginx-pvc (rw)
 Volumes:
 nginx-pvc:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
 ClaimName: myoci-pvc
 ReadOnly: false
...

Note the ClaimName is myoci-pvc, which is the name of the PersistentVolumeClaim created earlier.

You can see the PersistentVolumeClaim is now bound to this application using the kubectl get pvc
command:

kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
myoci-pvc Bound csi-84175067-... 50Gi RWO oci-bv 1m

Tip

If you log in to Oracle Cloud Infrastructure, you can see there is a block volume
created with the name listed in the VOLUME column. The block volume is

10

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Removing the Oracle Cloud Infrastructure Container Storage Interface Module

attached to the compute instance on which the Kubernetes application is
running.

8. You can delete the test application using:

kubectl delete deployment mynginx
deployment.apps "mynginx" deleted

9. You can delete the PersistentVolumeClaim using:

kubectl delete pvc myoci-pvc
persistentvolumeclaim "myoci-pvc" deleted

The storage is deleted.

Tip

If you log in to Oracle Cloud Infrastructure, you can see the block volume is
terminated.

2.5 Removing the Oracle Cloud Infrastructure Container Storage
Interface Module

You can remove a deployment of the Oracle Cloud Infrastructure Container Storage Interface module and
leave the Kubernetes cluster in place. To do this, you remove the Oracle Cloud Infrastructure Container
Storage Interface module from the environment.

Use the olcnectl module uninstall command to remove the Oracle Cloud Infrastructure Container
Storage Interface module. For example, to uninstall the Oracle Cloud Infrastructure Container Storage
Interface module named myoci in the environment named myenvironment:

olcnectl module uninstall \
--environment-name myenvironment \
--name myoci

The Oracle Cloud Infrastructure Container Storage Interface module is removed from the environment.

11

12

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Chapter 3 Using Gluster Storage
This chapter discusses how to install and use the Gluster Container Storage Interface module to set up
dynamically provisioned persistent storage for Kubernetes applications using Gluster Storage for Oracle
Linux and Heketi in Oracle Cloud Native Environment.

3.1 Prerequisites
You need to have a Gluster Storage for Oracle Linux cluster set up and ready to use. You must also install
Heketi in the Gluster cluster. The Platform API Server communicates with the Heketi API to provision and
manage Gluster volumes.

You do not need to create any Gluster volumes as these are dynamically provisioned as required.

The basic requirements for setting up Gluster are:

• Install Gluster on each node in the Gluster cluster.

• Set up the cluster to access volumes using the Gluster native client (FUSE) method.

• Install Heketi and create the Gluster cluster.

• Make sure you can connect to the Heketi API from the operator node.

For information on installing and setting up Gluster Storage for Oracle Linux and Heketi, see Oracle®
Linux: Gluster Storage for Oracle Linux User's Guide.

3.2 Deploying the Gluster Module
You can deploy all the modules required to set up Gluster storage for a Kubernetes cluster using a single
olcnectl module create command. This method might be useful if you want to deploy the Gluster
Container Storage Interface module at the same time as deploying a Kubernetes cluster.

If you have an existing deployment of the Kubernetes module, you can specify that instance when
deploying the Gluster Container Storage Interface module.

This section guides you through installing each component required to deploy the Gluster Container
Storage Interface module.

For the full list of the Platform CLI command options available when creating modules, see the olcnectl
module create command in Platform Command-Line Interface.

To deploy the Gluster Container Storage Interface module:

1. If you do not already have an environment set up, create one into which the modules can be deployed.
For information on setting up an environment, see Getting Started. The name of the environment in this
example is myenvironment.

2. If you do not already have a Kubernetes module set up or deployed, set one up. For information
on adding a Kubernetes module to an environment, see Container Orchestration. The name of the
Kubernetes module in this example is mycluster.

3. If you do not already have a Helm module created and installed, create one. The Helm module in this
example is named myhelm and is associated with the Kubernetes module named mycluster using
the --helm-kubernetes-module option.

13

https://docs.oracle.com/en/operating-systems/oracle-linux/gluster-storage/
https://docs.oracle.com/en/operating-systems/oracle-linux/gluster-storage/
https://docs.oracle.com/en/operating-systems/olcne/1.4/olcnectl/commands.html#module-create
https://docs.oracle.com/en/operating-systems/olcne/1.4/start/install.html#env-create
https://docs.oracle.com/en/operating-systems/olcne/1.4/orchestration/deploy-kube.html#module-create

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Deploying the Gluster Module

olcnectl module create \
--environment-name myenvironment \
--module helm \
--name myhelm \
--helm-kubernetes-module mycluster

4. If you are deploying a new Helm module, use the olcnectl module validate command to
validate the Helm module can be deployed to the nodes. For example:

olcnectl module validate \
--environment-name myenvironment \
--name myhelm

5. If you are deploying a new Helm module, use the olcnectl module install command to install
the Helm module. For example:

olcnectl module install \
--environment-name myenvironment \
--name myhelm

The Helm software packages are installed on the control plane nodes, and the Helm module is
deployed into the Kubernetes cluster.

6. Create a Gluster Container Storage Interface module and associate it with the Helm module named
myhelm using the --gluster-helm-module option. In this example, the Gluster Container Storage
Interface module is named mygluster.

olcnectl module create \
--environment-name myenvironment \
--module gluster \
--name mygluster \
--gluster-helm-module myhelm \
--gluster-server-url https:\\mygluster.example.com:8080

The --module option sets the module type to create, which is gluster. You define the name
of the Gluster Container Storage Interface module using the --name option, which in this case is
mygluster.

The --gluster-helm-module option sets the name of the Helm module. If there is an existing Helm
module with the same name, the Platform API Server uses that instance of Helm.

The --gluster-server-url option sets the location of the Heketi API server, which in this example
is https:\\mygluster.example.com:8080. You do not need to include this option if Heketi is on
the operator node and using HTTP, as the default for this option is http://127.0.0.1:8080.

Tip

Make sure you can reach the Heketi API from the operator node using curl, for
example:

curl -w "\n" https:\\mygluster.example.com:8080/hello

Or if Heketi is on the operator node using HTTP:

curl -w "\n" http:\127.0.0.1:8080/hello

You should see returned:

Hello from Heketi.

14

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Verifying the Gluster Module Deployment

If you do not include all the required options when adding the modules, you are prompted to provide
them.

There are some optional command options that you may need to include if you are not using the default
values, such as, --gluster-server-user and --gluster-secret-key .

7. Use the olcnectl module validate command to validate the Gluster Container Storage Interface
module can be deployed to the nodes. For example:

olcnectl module validate \
--environment-name myenvironment \
--name mygluster

8. Use the olcnectl module install command to install the Gluster Container Storage Interface
module. For example:

olcnectl module install \
--environment-name myenvironment \
--name mygluster

The Gluster Container Storage Interface module is deployed into the Kubernetes cluster.

3.3 Verifying the Gluster Module Deployment

You can verify the Gluster Container Storage Interface module is deployed using the olcnectl module
instances command on the operator node. For example:

olcnectl module instances \
--environment-name myenvironment
INSTANCE MODULE STATE
mycluster kubernetes installed
myhelm helm installed
mygluster gluster installed
control1.example.com node installed
...

Note the entry for gluster in the MODULE column is in the installed state.

In addition, use the olcnectl module report command to review information about the module. For
example, use the following command to review the Gluster Container Storage Interface module named
mygluster in myenvironment:

olcnectl module report \
--environment-name myenvironment \
--name mygluster \
--children

For more information on the syntax for the olcnectl module report command, see Platform
Command-Line Interface.

On a control plane node, you can also verify the StorageClass for the Glusterfs provisioner is created using
the kubectl get sc command:

kubectl get sc
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ...
hyperconverged (default) kubernetes.io/glusterfs Delete Immediate ...

In this case, the StorageClass is named hyperconverged, which is the default name.

15

https://docs.oracle.com/en/operating-systems/olcne/1.4/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.4/olcnectl/

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Creating a Gluster Volume

You can get more details about the StorageClass using the kubectl describe sc command. For
example:

kubectl describe sc hyperconverged
Name: hyperconverged
IsDefaultClass: Yes
Annotations: meta.helm.sh/release-name=mygluster,meta.helm.sh/release-namespace=defau...
Provisioner: kubernetes.io/glusterfs
Parameters: restauthenabled=true,resturl=http://...:8080,restuser=admin,secretName=a...
AllowVolumeExpansion: <unset>
MountOptions: <none>
ReclaimPolicy: Delete
VolumeBindingMode: Immediate
Events: <none>

3.4 Creating a Gluster Volume
This section contains a basic test to verify you can create a Gluster volume to provide persistent storage to
applications running on Kubernetes.

To create a test application to use Glusterfs:

1. Create a Kubernetes PersistentVolumeClaim file. On a control plane node, create a file named
pvc.yaml. Copy the following into the file.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mygluster-pvc
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi

2. Create the Kubernetes PersistentVolumeClaim.

kubectl apply -f pvc.yaml
persistentvolumeclaim/mygluster-pvc created

3. You can see the PersistentVolumeClaim is created using the kubectl get pvc command:

kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
mygluster-pvc Bound pvc-59f70... 1Gi RWX hyperconverged 18s

You can get more details about the PersistentVolumeClaim using the kubectl describe pvc
command. For example:

kubectl describe pvc mygluster-pvc
Name: mygluster-pvc
Namespace: default
StorageClass: hyperconverged
Status: Bound
Volume: pvc-59f7047b-9287-4163-9cff-c669cfbd4970
Labels: <none>
Annotations: pv.kubernetes.io/bind-completed: yes
 pv.kubernetes.io/bound-by-controller: yes
 volume.beta.kubernetes.io/storage-provisioner: kubernetes.io/glusterfs
Finalizers: [kubernetes.io/pvc-protection]
Capacity: 1Gi

16

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Creating a Gluster Volume

Access Modes: RWX
VolumeMode: Filesystem
Used By: <none>
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ProvisioningSucceeded 73s persistentvolume-controller Successfully provi...

4. Create a Kubernetes application that uses the PersistentVolumeClaim. Create a file named
nginx.yaml and copy the following into the file.

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 run: mynginx
 name: mynginx
spec:
 replicas: 1
 selector:
 matchLabels:
 run: mynginx
 template:
 metadata:
 labels:
 run: mynginx
 spec:
 containers:
 - image: container-registry.oracle.com/olcne/nginx:1.17.7
 name: mynginx
 ports:
 - containerPort: 80
 volumeMounts:
 - name: nginx-pvc
 mountPath: /usr/share/nginx/html
 volumes:
 - name: nginx-pvc
 persistentVolumeClaim:
 claimName: mygluster-pvc

5. Start the application:

kubectl apply -f nginx.yaml
deployment.apps/mynginx created

6. You can see the application is running using the kubectl get deployment command:

kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
mynginx 1/1 1 1 16s

7. You can see the application is using the PersistentVolumeClaim to provide persistent storage on
Glusterfs using the kubectl describe deployment command:

kubectl describe deployment mynginx
...
Pod Template:
 Labels: run=mynginx
 Containers:
 mynginx:
 Image: container-registry.oracle.com/olcne/nginx:1.17.7
 Port: 80/TCP
 Host Port: 0/TCP
 Environment: <none>

17

The software described in this documentation is either no longer supported or is in extended support.
Oracle recommends that you upgrade to a current supported release.

Removing the Gluster Module

 Mounts:
 /usr/share/nginx/html from nginx-pvc (rw)
 Volumes:
 nginx-pvc:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the ...
 ClaimName: mygluster-pvc
 ReadOnly: false

8. You can delete the test application using:

kubectl delete deployment mynginx
deployment.apps "mynginx" deleted

9. You can delete the PersistentVolumeClaim using:

kubectl delete pvc mygluster-pvc
persistentvolumeclaim "mygluster-pvc" deleted

3.5 Removing the Gluster Module

You can remove a deployment of the Gluster Container Storage Interface module and leave the
Kubernetes cluster in place. To do this, you remove the Gluster Container Storage Interface module from
the environment.

Use the olcnectl module uninstall command to remove the Gluster Container Storage Interface
module. For example, to uninstall the Gluster Container Storage Interface module named mygluster in
the environment named myenvironment:

olcnectl module uninstall \
--environment-name myenvironment \
--name mygluster

The Gluster Container Storage Interface module is removed from the environment.

18

	Oracle® Cloud Native Environment
	Table of Contents
	Preface
	Chapter 1 Introduction to Storage
	1.1 Persistent Storage Concepts
	1.2 Container Storage Interface Plug-ins
	1.3 Introduction to the Oracle Cloud Infrastructure Container Storage Interface Module
	1.4 Introduction to the Gluster Container Storage Interface Module

	Chapter 2 Using Oracle Cloud Infrastructure Storage
	2.1 Prerequisites
	2.2 Deploying the Oracle Cloud Infrastructure Container Storage Interface Module
	2.3 Verifying the Oracle Cloud Infrastructure Module Deployment
	2.4 Creating Oracle Cloud Infrastructure Block Storage
	2.5 Removing the Oracle Cloud Infrastructure Container Storage Interface Module

	Chapter 3 Using Gluster Storage
	3.1 Prerequisites
	3.2 Deploying the Gluster Module
	3.3 Verifying the Gluster Module Deployment
	3.4 Creating a Gluster Volume
	3.5 Removing the Gluster Module

