
Oracle Cloud Native Environment
Concepts for Release 1.6

F75587-04
December 2023

Oracle Cloud Native Environment Concepts for Release 1.6,

F75587-04

Copyright © 2022, 2023, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion vi

1 Introduction

2 Components

Container Runtimes 2-1

Container Orchestration 2-1

Cloud Native Networking 2-1

Cloud Native Storage 2-1

3 Architecture

Platform API Server 3-1

Platform Agent 3-1

Platform CLI 3-2

Authentication 3-2

4 Environments and Modules

Environments 4-1

Modules 4-1

Kubernetes Module 4-2

Calico Module 4-3

Multus Module 4-3

Oracle Cloud Infrastructure Cloud Controller Manager Module 4-4

MetalLB Module 4-4

iii

Gluster Container Storage Interface Module 4-4

Operator Lifecycle Manager Module 4-4

Istio Module 4-5

Prometheus Module 4-5

Grafana Module 4-5

5 Network Planes

Management Plane 5-1

Control Plane 5-1

Data Plane 5-1

6 Highly Available Clusters

Load Balancer 6-1

Highly Available Cluster with External Load Balancer 6-1

Highly Available Cluster with Internal Load Balancer 6-2

7 Terminology

Environment 7-1

Module 7-1

Node 7-1

Kubernetes Node 7-1

Operator Node 7-1

Platform Agent 7-1

Platform API Server 7-1

Platform API Server Node 7-2

Platform CLI 7-2

iv

Preface

This document provides an overview of the different components of Oracle Cloud Native
Environment and explains key concepts that are essential to working with Oracle Cloud
Native Environment.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share
Alike 4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or
an adaptation of it, you must provide attribution to Oracle and retain the original copyright
notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/
t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

v

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

vi

1
Introduction

Oracle Cloud Native Environment is a fully integrated suite for the development and
management of cloud native applications.

Oracle Cloud Native Environment is a curated set of open source projects that are based on
open standards, specifications and APIs defined by the Open Container Initiative (OCI) and
Cloud Native Computing Foundation (CNCF) that can be easily deployed, have been tested
for interoperability and for which enterprise-grade support is offered. Oracle Cloud Native
Environment delivers a simplified framework for installations, updates, upgrades and
configuration of key features for orchestrating microservices.

Oracle Cloud Native Environment uses Kubernetes to deploy and manage containers. When
you create an environment, in addition to Kubernetes nodes, the Oracle Cloud Native
Environment Platform API Server must be installed on a server, and is needed to perform a
deployment and manage modules. The term module refers to a packaged software
component that can be deployed to provide both core and optional cluster-wide functionality.
The Kubernetes module for Oracle Cloud Native Environment is the core module, and
automatically installs and configures Kubernetes, CRI-O, runC and Kata Containers on the
Kubernetes nodes and brings up a Kubernetes cluster.

The Kubernetes nodes run an Oracle Cloud Native Environment Platform Agent. The
Platform Agent communicates with the Platform API Server to manage the deployment of
modules.

The Oracle Cloud Native Environment Platform Command-Line Interface performs the
validation and deployment of modules to the nodes, enabling easy deployment of modules
such as the Kubernetes module. The required software for modules is configured by the
Platform CLI, such as Kubernetes, CRI-O, runC, Kata Containers, CoreDNS, Flannel and
Calico. The Platform CLI also reports details about installed modules.

There are optional modules that can be installed into a Kubernetes cluster:

• The Calico module for Oracle Cloud Native Environment, which is used to set up Calico
as the Kubernetes CNI for the pod data plane.

• The Multus module for Oracle Cloud Native Environment which is used to set up Multus,
which is used to create a network bridge Calico or Flannel.

• The Oracle Cloud Infrastructure Cloud Controller Manager module for Oracle Cloud
Native Environment, which is used to set up persistent storage and load balancers to
provide external IP addresses for Kubernetes applications in a Kubernetes cluster
running on Oracle Cloud Infrastructure instances.

• The MetalLB module for Oracle Cloud Native Environment, which is used to provide
external IP addresses for Kubernetes applications running on bare metal hosts. MetalLB
allows you to use Kubernetes LoadBalancer services, which traditionally make use of a
cloud provider network load balancer, in a bare metal environment.

• The Gluster Container Storage Interface module for Oracle Cloud Native Environment,
which is used to set up Glusterfs persistent storage for Kubernetes applications in a
Kubernetes cluster.

1-1

• The Operator Lifecycle Manager module for Oracle Cloud Native Environment,
which is used to deploy and manage Kubernetes operators in a Kubernetes
cluster.

• The Istio module for Oracle Cloud Native Environment, which is used to deploy a
service mesh on top of the Kubernetes cluster. The Istio module also installs the
Prometheus module and the Grafana module.

Chapter 1

1-2

2
Components

This chapter contains information on the components that are used to create Oracle Cloud
Native Environment.

Container Runtimes
Containers are the fundamental infrastructure to deploy modern cloud applications. Oracle
delivers the tools to create and provision Open Container Initiative (OCI)-compliant
containers using CRI-O.

CRI-O, an implementation of the Kubernetes CRI (Container Runtime Interface) to enable
using Open Container Initiative compatible runtimes, is included with Oracle Cloud Native
Environment. CRI-O allows you to run either runC or Kata Containers containers directly from
Kubernetes, without any unnecessary code or tooling.

Container Orchestration
The version of Kubernetes used in Oracle Cloud Native Environment is based on the
upstream Kubernetes project, and released under the CNCF Kubernetes Certified
Conformance program. The Platform API Server simplifies the configuration and set up of the
Kubernetes module to create a Kubernetes cluster, with support for backup and recovery. The
Kubernetes module is developed for Oracle Linux and integrates with CRI-O to provide a
comprehensive container and orchestration environment for the delivery of microservices and
next-generation application development.

Cloud Native Networking
The Container Network Interface (CNI) project, currently incubating under CNCF, seeks to
simplify networking for container workloads by defining a common network interface for
containers. The CNI plug-in is included with Oracle Cloud Native Environment.

When you install Kubernetes, you can choose between Flannel or Calico as the CNI. You can
also install Multus on top of Flannel or Calico to create a network bridge to pods.

Cloud Native Storage
There are a number of storage projects associated with the CNCF foundation, and several
providers are included by default in Kubernetes, including a plug-in for Gluster Storage for
Oracle Linux.

Storage integration is provided through the use of plug-ins, referred to as the Container
Storage Interface (CSI). The plug-ins adhere to a standard specification.

The Oracle Cloud Infrastructure Cloud Controller Manager module is used to set up
dynamically provisioned persistent storage using Oracle Cloud Infrastructure.

2-1

The Gluster Container Storage Interface module is used to set up dynamically
provisioned persistent storage using Gluster Storage for Oracle Linux.

Chapter 2
Cloud Native Storage

2-2

3
Architecture

Oracle Cloud Native Environment is built from a number of discrete components. You interact
with the environment directly using the Platform CLI. The Platform API Server interacts with
the Platform Agent on each Kubernetes node. The Platform Agent is responsible for handling
host-level operations on behalf of the Platform API Server.

Figure 3-1 Architecture

Platform API Server
The Platform API Server performs the business logic and manages all entities, from hosts to
microservices. The Platform API Server is responsible for managing the state of the
environment, including the deployment and configuration of modules to one or more nodes in
a cluster.

Platform Agent
The Platform Agent runs on each host to proxy requests from the Platform API Server to
small worker applications. The primary reason for this is to make sure the Platform Agent
process uses as little memory as possible. The Platform Agent refers to the union of the
Platform Agent process and associated worker applications.

The Platform Agent knows how to gather the state of resources on its host and to change the
state of those resources. That is, the Platform Agent knows if a firewall port is open or closed,
or if a package is installed and at which version. It also knows how to close that port if it is
open, upgrade the package if it is old, or install the package if it is not installed.

3-1

Platform CLI
The Platform CLI is used to communicate with the Platform API Server. The Platform
CLI is a simple application (the olcnectl command) that converts the input to
Platform API Server calls. No business logic takes place in the Platform CLI. Parsing
of the commands entered into the Platform CLI takes place in the Platform API Server.

The Platform CLI must be installed on an operator node.

Authentication
Standard X.509 certificates are used to establish node identity and authentication. The
Platform API Server, Platform CLI and the Platform Agent on Kubernetes nodes
require a valid certificate chain that allow each component to mutually authenticate.
Without these certificates, connections between the components and nodes are
rejected.

X.509 certificates can be created and distributed manually, or using an authentication
server such as Vault by HashiCorp.

Chapter 3
Platform CLI

3-2

4
Environments and Modules

This chapter introduces the concepts of environments and modules in Oracle Cloud Native
Environment.

Environments
An environment is a namespace that encapsulates the software installed and managed by
Oracle Cloud Native Environment. Each environment contains at least the Kubernetes
module.

The Platform CLI allows you to create and manage multiple deployments. Each deployment
contains an environment, and each environment may potentially contain multiple modules.
This allows you to create multiple Kubernetes clusters using the same Oracle Cloud Native
Environment installation. Each Kubernetes cluster must have dedicated nodes, that is, a
server cannot be used in two clusters, or environments.

Figure 4-1 Environments

Modules
A module is a curated unit of software that can be installed and managed by Oracle Cloud
Native Environment. A module fulfills at least one specific role in a deployment. Modules that
fulfill the same roles may be swapped out in a managed way. Modules may encapsulate other
modules.

The available modules are:

• Kubernetes module

• Calico module

• Multus module

4-1

• Oracle Cloud Infrastructure Cloud Controller Manager module

• MetalLB module

• Gluster Container Storage Interface module

• Operator Lifecycle Manager module

• Istio module

• Prometheus module

• Grafana module

Helm is used by the Platform API Server to install additional modules. Helm is a
package manager for Kubernetes. Helm simplifies the task of deploying and managing
software inside Kubernetes clusters. Helm uses charts to manage the packages that it
can deploy. A chart is a collection of files that describe a related set of Kubernetes
resources.

Kubernetes Module
The core module in Oracle Cloud Native Environment is the Kubernetes module. The
Kubernetes module is used to deploy a Kubernetes cluster in an environment.

Figure 4-2 Kubernetes module

The Kubernetes module installs and configures Kubernetes on the nodes and sets up
the cluster.

Chapter 4
Modules

4-2

Figure 4-3 Kubernetes cluster

The Kubernetes module includes sub-components, such as:

• Flannel: The default overlay network for a Kubernetes cluster.

• CoreDNS: The DNS server for a Kubernetes cluster.

• CRI-O: Manages the container runtime for a Kubernetes cluster.

• runC: The default lightweight, portable container runtime for a Kubernetes cluster.

• Kata Containers: An optional lightweight virtual machine runtime for a Kubernetes
cluster.

For more information about installing and using the Kubernetes module, see Container
Orchestration.

Calico Module
The Calico module installs Calico into a Kubernetes cluster. This allows you to use Calico as
the CNI for the Kubernetes data plane.

Multus Module
The Multus module installs Multus into a Kubernetes cluster. This allows you to use Multus to
create a network bridge to pods. Multus can be used with either Calico or Flannel as the CNI
for the Kubernetes data plane.

Chapter 4
Modules

4-3

https://docs.oracle.com/en/operating-systems/olcne/1.6/orchestration/
https://docs.oracle.com/en/operating-systems/olcne/1.6/orchestration/

Oracle Cloud Infrastructure Cloud Controller Manager Module
The Oracle Cloud Infrastructure Cloud Controller Manager module is used to set up
dynamically provisioned persistent storage and application load balancers using
Oracle Cloud Infrastructure.

Oracle Cloud Infrastructure block volumes provide reliable, high-performance block
storage designed to work with a range of Oracle Cloud Infrastructure virtual machines
and bare metal instances. With built-in redundancy, block volumes are persistent and
durable beyond the lifespan of a virtual machine and can scale to 1 PB per compute
instance. The Oracle Cloud Infrastructure Cloud Controller Manager module creates a
Kubernetes StorageClass provisioner to access Oracle Cloud Infrastructure storage.

The Oracle Cloud Infrastructure Flexible Network Load Balancing service (Oracle
Cloud Infrastructure load balancer) provides automated traffic distribution from one
entry point to multiple backend servers in a Virtual Cloud Network (VCN). It operates at
the connection level and load balances incoming client connections to healthy
backend servers based on Layer 3/Layer 4 (IP protocol) data.

The Oracle Cloud Infrastructure load balancer provides network load balancers for
Kubernetes applications running on Oracle Cloud Infrastructure.

MetalLB Module
MetalLB is a network load balancer for Kubernetes applications running on bare metal
hosts. MetalLB allows you to use Kubernetes LoadBalancer services, which
traditionally make use of a cloud provider network load balancer, in a bare metal
environment.

The MetalLB module is used to set up network load balancers for Kubernetes
applications using MetalLB.

Gluster Container Storage Interface Module

Important:

The Gluster Container Storage Interface module, used to install Gluster and
set up Glusterfs, is deprecated. The Gluster Container Storage Interface
module may be removed in a future release.

The Gluster Container Storage Interface module is used to set up dynamically
provisioned persistent storage using Gluster Storage for Oracle Linux. Gluster is a
scalable, distributed file system that aggregates disk storage resources from multiple
servers into a single global namespace. The Gluster Container Storage Interface
module creates a Kubernetes StorageClass provisioner to access Gluster storage.

Operator Lifecycle Manager Module
The Operator Lifecycle Manager module manages the installation and lifecycle
management of Kubernetes operators in a Kubernetes cluster.

Chapter 4
Modules

4-4

A Kubernetes operator is a design pattern that allows you to write code to automate tasks
and extend Kubernetes. It is a set of concepts you can use to define a service for Kubernetes
and helps to automate administrative services in Kubernetes.

Istio Module
Istio is a fully featured service mesh for microservices in Kubernetes clusters. Istio can
handle most aspects of microservice management, for example, identity, authentication,
transport security, metric scraping, and so on.

The Istio module for Oracle Cloud Native Environment installs Istio into a Kubernetes module
(cluster).

The Istio module installs a number of components that are used exclusively by Istio:

• Egress gateway

• Ingress gateway

• Istiod

• Prometheus (installed by the Prometheus module)

• Grafana (installed by the Grafana module)

When you deploy the Istio module, Prometheus is also deployed as a supporting module.
Prometheus is used to monitor and gather metrics about the Kubernetes cluster. Another
supporting module that is deployed with Istio is Grafana. Grafana is a monitoring and
visualization tool for time-series data stored in a database, which in this case, is Prometheus.
Grafana enables you to visually query and monitor the network traffic and services in your
Kubernetes cluster. Grafana includes browser-based dashboards to visualize the cluster
metrics gathered from Prometheus.

For more information about installing and using the Istio module, see Service Mesh.

Prometheus Module
Prometheus is a systems monitoring and alerting toolkit that collects and stores metrics and
other time series data from various sources and presents it in an easily retrievable manner.

The Prometheus module for Oracle Cloud Native Environment is pre-configured with rich
monitoring of important systems inside a Kubernetes cluster.

The Prometheus module is required by the Istio module and is used to create an embedded
instance of Prometheus for use by Istio.

Note:

In this release, the Prometheus module should only be used in the context of an
Istio module deployment.

Grafana Module
Grafana is a monitoring and visualization tool that allows you to query the time-series data in
Prometheus and create dashboards to visualize that data. You can visually monitor your
Kubernetes cluster, the services that are running, and network traffic.

Chapter 4
Modules

4-5

https://docs.oracle.com/en/operating-systems/olcne/1.6/mesh/

The Grafana module for Oracle Cloud Native Environment is pre-configured to connect
to and read data from Prometheus.

The Grafana module is required by the Istio module and is used to create an instance
of Grafana for use by Istio.

Note:

In this release, the Grafana module should only be used in the context of an
Istio module deployment.

Chapter 4
Modules

4-6

5
Network Planes

This chapter contains information about the Oracle Cloud Native Environment management,
control and data planes.

Management Plane
The management plane consists of the components that make up the Oracle Cloud Native
Environment platform, that is, the Platform API Server, the Platform Agent, and the Platform
CLI.

Communication between the components is secured using Transport Layer Security (TLS).
You can configure the cipher suites to use for TLS for the management plane.

You can set up the X.509 certificates used for TLS before you create environment, or have a
certificate management application, such as Vault, manage these for you.

Control Plane
The control plane contains the Kubernetes components and any load balancer.

Kubernetes has a sophisticated networking model with many options that allow users to finely
tune the networking configuration. Oracle Cloud Native Environment simplifies the
Kubernetes networking by setting network defaults that align closely with community best
practices.

By default, all Kubernetes services are bound to the network interface that handles the
default route for the system. The default route is set to the network interface used by the
Platform Agent, and it is used for both the Kubernetes control plane and the data plane.

There are two motivations behind this choice. The first is that the Platform API Server always
needs to be able to communicate with the Kubernetes API server. By making sure the
Kubernetes API server is bound to the same interface as the Platform Agent, this condition is
always met. Also, if nodes have multiple network interfaces, it will usually be the case that the
sensitive networks are not the networks that Oracle Cloud Native Environment is using to
communicate.

When deploying a highly available cluster having multiple control plane nodes with an internal
load balancer, the Platform API Server uses the same network interface as was set to host
the Kubernetes control plane services to host the virtual IP address.

Data Plane
The data plane is the network used by the pods running on Kubernetes.

The same algorithm for determining the default control plane interface is used when
instantiating the Kubernetes pod network. That is, the network interface used by the Platform
Agent is used for both the Kubernetes control plane and the data plane. In multi-network
environments, this may not be the best choice. Oracle Cloud Native Environment allows you
to customize the network interface used for pod networking when you create the Kubernetes

5-1

module. When the CNI is brought up, it uses the network interface you specify for the
pod network.

When you install Kubernetes, you can choose between Flannel or Calico as the CNI.
You can also install Multus on top of Flannel or Calico to create a network bridge to
pods.

Chapter 5
Data Plane

5-2

6
Highly Available Clusters

This chapter contains high level information about the types of highly available (HA)
Kubernetes clusters you can deploy using Oracle Cloud Native Environment.

Kubernetes can be deployed with more than one replica of the control plane node.
Automated failover to those replicas provides a more scalable and resilient service. This type
of cluster deployment is referred to in this document as an HA cluster.

Important:

To create an HA cluster you need at least three control plane nodes and two worker
nodes.

Creating an HA cluster with three control plane nodes ensures replication of configuration
data between them through the distributed key store, etcd, so your HA cluster is resilient to a
single control plane node failing without any loss of data or uptime. If more than one control
plane node fails, you should restore the control plane nodes in the cluster from a backup file
to avoid data loss.

Oracle Cloud Native Environment implements the Kubernetes stacked etcd topology, where
etcd runs on the control plane nodes. For more information on this topology, see the
upstream documentation at:

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
#stacked-etcd-topology

Load Balancer
An HA cluster needs a load balancer to provide high availability of the control plane nodes. A
load balancer communicates with the Kubernetes API Server to maintain high availability of
the control plane nodes.

You can use your own load balancer instance, use a load balancer provided by your cloud
infrastructure, or have the Platform CLI install a load balancer on the control plane nodes.

For more information about the configuration requirements of the load balancer, see Getting
Started.

Highly Available Cluster with External Load Balancer
When you set up an HA cluster to use an external load balancer, the load balancer is used to
manage the resource availability and efficiency of your control plane nodes to make sure
instances of the Kubernetes API Server on control plane nodes can fail without impacting
cluster availability.

6-1

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/#stacked-etcd-topology
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/#stacked-etcd-topology
https://docs.oracle.com/en/operating-systems/olcne/1.6/start/install.html#install-lb
https://docs.oracle.com/en/operating-systems/olcne/1.6/start/install.html#install-lb

If you want to use your own load balancer implementation, it should be set up and
ready to use before you perform an HA cluster deployment. The load balancer
hostname and port is entered as an option when you create the Kubernetes module.

A load balancer provided by your cloud infrastructure can also be used, for example,
an Oracle Cloud Infrastructure load balancer. This should also be set up and ready to
use before you create the Kubernetes module.

Highly Available Cluster with Internal Load Balancer
When you set up an HA cluster to use an internal load balancer, the Platform CLI
installs NGINX and Keepalived on the control plane nodes to enable the container-
based deployment of the load balancer. The internal load balancer configures the
native active-active high availability solution for the Kubernetes API server.

NGINX improves the resource availability and efficiency of your control plane nodes to
make sure instances of the Kubernetes API server on control plane nodes can fail
without impacting cluster availability.

If you use the internal load balancer, you must set aside an IP address on the control
plane network to use as a virtual IP address. The Keepalived instance makes sure the
virtual IP address is always reachable by monitoring the health of other control plane
nodes and appropriating the IP address if a node fails. Keepalived is used to failover
automatically to a standby control plane node if problems occur.

As part of deploying the internal load balancer, the olcne-nginx and keepalived
services are enabled and started on the control plane nodes.

Chapter 6
Load Balancer

6-2

7
Terminology

Environment
A namespace that encapsulates the software installed and managed by Oracle Cloud Native
Environment. Each environment contains at least the Kubernetes module.

Module
A module represents some installable object in an environment. The most common module is
the Kubernetes module, as it is required for most other modules. A module may encapsulate
other modules.

Node
A host system that is a member of an Oracle Cloud Native Environment, including hosts used
as Kubernetes control plane and worker nodes, and hosts that run the Platform API Server
and Platform CLI.

Kubernetes Node
A host in an Oracle Cloud Native Environment that contains the Platform Agent and other
required software to run as a Kubernetes cluster member, either as a control plane or worker
node.

Operator Node
A host in an Oracle Cloud Native Environment that contains the Platform CLI. This node may
also be a Platform API Server node.

Platform Agent
The Oracle Cloud Native Environment Platform Agent is a software agent installed on all
nodes which is used by the Platform API Server to report and change state as directed by the
Platform API Server.

Platform API Server
The Oracle Cloud Native Environment Platform API Server manages the state of one or more
environments, including the deployment and configuration of modules to one or more nodes
in a cluster.

7-1

Platform API Server Node
A host in an Oracle Cloud Native Environment that contains the Platform API Server.
This node may also be an operator node.

Platform CLI
The Oracle Cloud Native Environment Platform Command-Line Interface used to
create and manage deployments. The olcnectl command.

Chapter 7
Platform API Server Node

7-2

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Introduction
	2 Components
	Container Runtimes
	Container Orchestration
	Cloud Native Networking
	Cloud Native Storage

	3 Architecture
	Platform API Server
	Platform Agent
	Platform CLI
	Authentication

	4 Environments and Modules
	Environments
	Modules
	Kubernetes Module
	Calico Module
	Multus Module
	Oracle Cloud Infrastructure Cloud Controller Manager Module
	MetalLB Module
	Gluster Container Storage Interface Module
	Operator Lifecycle Manager Module
	Istio Module
	Prometheus Module
	Grafana Module

	5 Network Planes
	Management Plane
	Control Plane
	Data Plane

	6 Highly Available Clusters
	Load Balancer
	Highly Available Cluster with External Load Balancer
	Highly Available Cluster with Internal Load Balancer

	7 Terminology
	Environment
	Module
	Node
	Kubernetes Node
	Operator Node
	Platform Agent
	Platform API Server
	Platform API Server Node
	Platform CLI

