
Oracle Cloud Native Environment
Getting Started for Release 1.6

F75592-05
November 2023

Oracle Cloud Native Environment Getting Started for Release 1.6,

F75592-05

Copyright © 2022, 2023, Oracle and/or its affiliates.

Contents

 Preface

Conventions vi

Documentation Accessibility vi

Access to Oracle Support for Accessibility vi

Diversity and Inclusion vi

1 Host Requirements

Hardware Requirements 1-1

Kubernetes Control Plane Node Hardware 1-1

Kubernetes Worker Node Hardware 1-2

Operator Node Hardware 1-2

Kubernetes High Availability Requirements 1-2

Istio Requirements 1-3

Operating System Requirements 1-3

2 Prerequisites

Enabling Access to the Software Packages 2-1

Oracle Linux 8 2-1

Enabling Channels with ULN 2-1

Enabling Repositories with the Oracle Linux Yum Server 2-2

Oracle Linux 7 2-3

Enabling Channels with ULN 2-3

Enabling Repositories with the Oracle Linux Yum Server 2-4

Accessing the Oracle Container Registry 2-5

Using an Oracle Container Registry Mirror 2-5

Using a Private Registry 2-6

Setting up the Operating System 2-7

Setting up a Network Time Service 2-7

Disabling Swap 2-7

Setting up the Network 2-8

Setting up the Firewall Rules 2-9

iii

Non-HA Cluster Firewall Rules 2-10

Highly Available Cluster Firewall Rules 2-11

Setting up Other Network Options 2-11

Internet Access 2-11

Flannel Network 2-12

br_netfilter Module 2-12

Bridge Tunable Parameters 2-12

Network Address Translation 2-12

Setting FIPS Mode 2-13

Setting Up SSH Key-based Authentication 2-13

3 Installing Oracle Cloud Native Environment

Installation Overview 3-1

Setting up the Nodes 3-1

Setting up the Operator Node 3-2

Setting up Kubernetes Nodes 3-2

Setting up a Load Balancer for Highly Available Clusters 3-3

Setting up an External Load Balancer 3-3

Setting up a Load Balancer on Oracle Cloud Infrastructure 3-4

Setting up the Internal Load Balancer 3-4

Setting up X.509 Certificates for Kubernetes Nodes 3-5

Setting up Vault Authentication 3-6

Setting up CA Certificates 3-6

Setting up Private CA Certificates 3-6

Creating and Copying Certificates 3-6

Creating Additional Certificates 3-8

Setting up X.509 Certificates for the externalIPs Kubernetes Service 3-9

Setting up Vault Certificates 3-9

Setting up CA Certificates 3-11

Setting up Private CA Certificates 3-11

Starting the Platform API Server and Platform Agent Services 3-12

Starting the Services Using Vault 3-12

Starting the Services Using Certificates 3-13

4 Creating an Environment

Creating an Environment using Certificates Managed by Vault 4-1

Creating an Environment using Certificates 4-2

iv

5 Installing Modules

Creating a Kubernetes Module 5-1

Creating an Oracle Cloud Infrastructure Cloud Controller Manager Module 5-1

Creating a MetalLB Module 5-1

Creating a Gluster Container Storage Interface Module 5-2

Creating an Operator Lifecycle Manager Module 5-2

Creating an Istio Module 5-2

6 Configuring Services

Configuring the Platform API Server 6-1

Configuring the Platform Agent 6-2

v

Preface

This document contains information about Oracle Cloud Native Environment. It
includes information on installing and configuring Oracle Cloud Native Environment.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis,
or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands
within a paragraph, URLs, code in
examples, text that appears on the screen,
or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle
Accessibility Conformance Report at https://www.oracle.com/corporate/accessibility/
templates/t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit https://www.oracle.com/corporate/
accessibility/learning-support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain

Preface

vi

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

compatibility with our customers' existing technologies and the need to ensure continuity of
service as Oracle's offerings and industry standards evolve. Because of these technical
constraints, our effort to remove insensitive terms is ongoing and will take time and external
cooperation.

Preface

vii

1
Host Requirements

This chapter describes the hardware and operating system requirements for the hosts in
Oracle Cloud Native Environment.

Hardware Requirements
Oracle Cloud Native Environment is a clustered environment that requires more than one
node to form a cluster. You can install Oracle Cloud Native Environment on any of the
following server types:

• Bare-metal server

• Oracle Linux Kernel-based Virtual Machine (KVM) instance

• Oracle Cloud Infrastructure bare-metal instance

• Oracle Cloud Infrastructure virtual instance

• Oracle Private Cloud Appliance virtual instance

• Oracle Private Cloud at Customer virtual instance

Oracle Cloud Native Environment is available for 64-bit x86 hardware only.

Oracle Cloud Native Environment does not require specific hardware; however, certain
operations are CPU and memory intensive. For a list of certified bare-metal servers, see the
Oracle Linux Hardware Certification List at:

https://linux.oracle.com/hardware-certifications

For information on the current Oracle x86 Servers, see:

https://www.oracle.com/servers/x86/

For information on creating an Oracle Linux KVM instance, see Oracle® Linux: KVM User's
Guide.

The installation instructions for Oracle Private Cloud Appliance and Oracle Private Cloud at
Customer, as well as information about the Oracle Cloud Native Environment releases that
can be installed, are available in the Oracle Private Cloud Appliance and Oracle Private
Cloud at Customer documentation at:

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/

The hardware requirements listed here are for the absolute minimum to run Oracle Cloud
Native Environment. Your deployment is highly likely to require nodes with a larger footprint.

Kubernetes Control Plane Node Hardware
The Kubernetes control plane is the container orchestration layer that exposes the
Kubernetes API and interfaces to create and manage the lifecycle of containers. The nodes
that form the Kubernetes control plane are referred to as control plane nodes. A control plane
node is a host that runs the daemons and services needed to manage the cluster and

1-1

https://linux.oracle.com/hardware-certifications
https://www.oracle.com/servers/x86/
https://docs.oracle.com/en/operating-systems/oracle-linux/kvm-user/
https://docs.oracle.com/en/operating-systems/oracle-linux/kvm-user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/

orchestrate containers, such as the Oracle Cloud Native Environment Platform Agent,
etcd, the Kubernetes API Server, Scheduler, Controller Manager, and Cloud Controller
Manager.

A minimum Kubernetes control plane node configuration is:

• 4 CPU cores (Intel VT-capable CPU)

• 16GB RAM

• 1GB Ethernet NIC

• XFS file system (the default file system for Oracle Linux)

• 40GB hard disk space in the /var directory

Kubernetes Worker Node Hardware
A Kubernetes worker node is a host that runs the daemons and services needed to
run pods, such as the Platform Agent, kubelet, kube-proxy, CRI-O, RunC and Kata
Runtime.

A minimum Kubernetes worker node configuration is:

• 1 CPU cores (Intel VT-capable CPU)

• 8GB RAM

• 1GB Ethernet NIC

• XFS file system (the default file system for Oracle Linux)

• 15GB hard disk space in the /var directory

• XFS mount-point /var/lib/containers with dedicated space based on the
number of container images going to be saved and leveraged.

Operator Node Hardware
An operator node is a host that contains the Oracle Cloud Native Environment
Platform Command-Line Interface. This node may also likely include the Oracle Cloud
Native Environment Platform API Server.

A minimum operator node configuration is:

• 1 CPU cores (Intel VT-capable CPU)

• 8GB RAM

• 1GB Ethernet NIC

• 15GB hard disk space in the /var directory

Kubernetes High Availability Requirements
A minimum high availability (HA) configuration for a Kubernetes cluster is:

• 3 Kubernetes control plane nodes. At least 5 control plane nodes is
recommended.

• 2 Kubernetes worker nodes. At least 3 worker nodes is recommended.

Chapter 1
Hardware Requirements

1-2

Important:

The number of control plane nodes must be an odd number equal to or greater than
three, for example, 3, 5, or 7.

Istio Requirements
A minimum configuration for deploying the Istio module for Oracle Cloud Native Environment
is:

• 1 Kubernetes control plane node

• 2 Kubernetes worker nodes

These requirements are the minimum needed to successfully deploy Istio into a Kubernetes
cluster. However, as your cluster expands and more nodes are added, Istio requires
additional hardware resources.

Operating System Requirements
Oracle Cloud Native Environment is available for the following x86_64 operating systems.

Table 1-1 Operating Systems (x86_64)

Operating System Release Number Update Number Kernel

Oracle Linux 8 Latest and latest-1 Unbreakable
Enterprise Kernel
Release 7 (UEK R7)

Oracle Linux 8 Latest and latest-1 Unbreakable
Enterprise Kernel
Release 6 (UEK R6)

Oracle Linux 8 Latest and latest-1 Red Hat Compatible
Kernel (RHCK)

Red Hat Enterprise
Linux

8 Latest and latest-1 Red Hat Kernel

Oracle Linux 7 9 or later UEK R6

Chapter 1
Operating System Requirements

1-3

2
Prerequisites

This chapter describes the prerequisites for the systems to be used in an installation of
Oracle Cloud Native Environment. This chapter also discusses how to enable the repositories
to install the Oracle Cloud Native Environment packages.

Enabling Access to the Software Packages
This section contains information on setting up the locations for the operating system on
which you want to install the Oracle Cloud Native Environment software packages.

Oracle Linux 8
The Oracle Cloud Native Environment packages for Oracle Linux 8 are available on the
Oracle Linux yum server in the ol8_olcne16 repository, or on the Unbreakable Linux Network
(ULN) in the ol8_x86_64_olcne16 channel. However, there are also dependencies across
other repositories and channels, and these must also be enabled on each system where
Oracle Cloud Native Environment is installed.

NOT_SUPPORTED:

Oracle does not support Kubernetes on systems where the ol8_developer or
ol8_developer_EPEL yum repositories or ULN channels are enabled, or where
software from these repositories or channels is currently installed on the systems
where Kubernetes runs. Even if you follow the instructions in this document, you
may render your platform unsupported if these repositories or channels are enabled
or software from these channels or repositories is installed on your system.

Enabling Channels with ULN
If you are registered to use ULN, use the ULN web interface to subscribe the system to the
appropriate channels.

To subscribe to the ULN channels:

1. Log in to https://linux.oracle.com with your ULN user name and password.

2. On the Systems tab, click the link named for the system in the list of registered machines.

3. On the System Details page, click Manage Subscriptions.

4. On the System Summary page, select each required channel from the list of available
channels and click the right arrow to move the channel to the list of subscribed channels.

Subscribe the system to the following channels:

• ol8_x86_64_olcne16
• ol8_x86_64_addons

2-1

https://linux.oracle.com

• ol8_x86_64_baseos_latest
• ol8_x86_64_appstream
• ol8_x86_64_kvm_appstream
• ol8_x86_64_UEKR7 (if hosts are running UEK R7)

• ol8_x86_64_UEKR6 (if hosts are running UEK R6)

Make sure the systems are not subscribed to the following channels:

• ol8_x86_64_developer
• ol8_x86_64_olcne15
• ol8_x86_64_olcne14
• ol8_x86_64_olcne13
• ol8_x86_64_olcne12

Enabling Repositories with the Oracle Linux Yum Server
If you are using the Oracle Linux yum server for system updates, enable the required
yum repositories.

To enable the yum repositories:

1. Install the oracle-olcne-release-el8 release package to install the Oracle Cloud
Native Environment yum repository configuration.

sudo dnf install oracle-olcne-release-el8
2. Set up the repositories for the release you want to install.

Enable the following yum repositories:

• ol8_olcne16
• ol8_addons
• ol8_baseos_latest
• ol8_appstream
• ol8_kvm_appstream
• ol8_UEKR7 (if hosts are running UEK R7)

• ol8_UEKR6 (if hosts are running UEK R6)

Use the dnf config-manager tool to enable the yum repositories. For hosts
running UEK R7:

sudo dnf config-manager --enable ol8_olcne16 ol8_addons ol8_baseos_latest
ol8_appstream ol8_kvm_appstream ol8_UEKR7

For hosts running UEK R6:

sudo dnf config-manager --enable ol8_olcne16 ol8_addons ol8_baseos_latest
ol8_appstream ol8_kvm_appstream ol8_UEKR6

For hosts running RHCK:

sudo dnf config-manager --enable ol8_olcne16 ol8_addons ol8_baseos_latest
ol8_appstream ol8_kvm_appstream

Chapter 2
Enabling Access to the Software Packages

2-2

Disable the following yum repositories:

• ol8_olcne15
• ol8_olcne14
• ol8_olcne13
• ol8_olcne12
• ol8_developer
Use the dnf config-manager tool to disable the yum repositories:

sudo dnf config-manager --disable ol8_olcne15 ol8_olcne14 ol8_olcne13 ol8_olcne12
ol8_developer

Oracle Linux 7
The Oracle Cloud Native Environment packages for Oracle Linux 7 are available on the
Oracle Linux yum server in the ol7_olcne16 repository, or on the Unbreakable Linux Network
(ULN) in the ol7_x86_64_olcne16 channel. However, there are also dependencies across
other repositories and channels, and these must also be enabled on each system where
Oracle Cloud Native Environment is installed.

NOT_SUPPORTED:

Oracle does not support Kubernetes on systems where the ol7_preview,
ol7_developer or ol7_developer_EPEL yum repositories or ULN channels are
enabled, or where software from these repositories or channels is currently installed
on the systems where Kubernetes runs. Even if you follow the instructions in this
document, you may render your platform unsupported if these repositories or
channels are enabled or software from these channels or repositories is installed on
your system.

Enabling Channels with ULN
If you are registered to use ULN, use the ULN web interface to subscribe the system to the
appropriate channels.

To subscribe to the ULN channels:

1. Log in to https://linux.oracle.com with your ULN user name and password.

2. On the Systems tab, click the link named for the system in the list of registered machines.

3. On the System Details page, click Manage Subscriptions.

4. On the System Summary page, select each required channel from the list of available
channels and click the right arrow to move the channel to the list of subscribed channels.

Subscribe the system to the following channels:

• ol7_x86_64_olcne16
• ol7_x86_64_kvm_utils
• ol7_x86_64_addons

Chapter 2
Enabling Access to the Software Packages

2-3

https://linux.oracle.com

• ol7_x86_64_latest
• ol7_x86_64_UEKR6
Make sure the systems are not subscribed to the following channels:

• ol7_x86_64_developer
• ol7_x86_64_olcne15
• ol7_x86_64_olcne14
• ol7_x86_64_olcne13
• ol7_x86_64_olcne12
• ol7_x86_64_olcne11
• ol7_x86_64_olcne

Enabling Repositories with the Oracle Linux Yum Server
If you are using the Oracle Linux yum server for system updates, enable the required
yum repositories.

To enable the yum repositories:

1. Install the oracle-olcne-release-el7 release package to install the Oracle Cloud
Native Environment yum repository configuration.

sudo yum install oracle-olcne-release-el7
2. Set up the repositories for the release you want to install.

Enable the following yum repositories:

• ol7_olcne16
• ol7_kvm_utils
• ol7_addons
• ol7_latest
• ol7_UEKR6
Use the yum-config-manager tool to enable the yum repositories:

sudo yum-config-manager --enable ol7_olcne16 ol7_kvm_utils ol7_addons
ol7_latest ol7_UEKR6

Disable the following yum repositories:

• ol7_olcne15
• ol7_olcne14
• ol7_olcne13
• ol7_olcne12
• ol7_olcne11
• ol7_olcne
• ol7_developer
Use the dnf config-manager tool to disable the yum repositories:

Chapter 2
Enabling Access to the Software Packages

2-4

sudo yum-config-manager --disable ol7_olcne15 ol7_olcne14 ol7_olcne13 ol7_olcne12
ol7_olcne11 ol7_olcne ol7_developer

Accessing the Oracle Container Registry
The container images that are deployed by the Platform CLI are hosted on the Oracle
Container Registry. For more information about the Oracle Container Registry, see the
Oracle® Linux: Oracle Container Runtime for Docker User's Guide.

For a deployment to use the Oracle Container Registry, each node within the environment
must be provisioned with direct access to the Internet.

You can optionally use an Oracle Container Registry mirror, or create your own private
registry mirror within your network.

When you create a Kubernetes module you must specify the registry from which to pull the
container images. This is set using the --container-registry option of the olcnectl
module create command. If you use the Oracle Container Registry the container registry
must be set to:

container-registry.oracle.com/olcne
If you use a private registry that mirrors the Oracle Cloud Native Environment container
images on the Oracle Container Registry, make sure you set the container registry to the
domain name and port of the private registry, for example:

myregistry.example.com:5000/olcne
When you set the container registry to use during an installation, it becomes the default
registry from which to pull images during updates and upgrades of the Kubernetes module.
You can set a new default value during an update or upgrade using the --container-
registry option.

Using an Oracle Container Registry Mirror
The Oracle Container Registry has many mirror servers located around the world. You can
use a registry mirror in your global region to improve download performance of container
images. While the Oracle Container Registry mirrors are hosted on Oracle Cloud
Infrastructure, they are also accessible external to Oracle Cloud Infrastructure. Using a mirror
that is closest to your geographical location should result in faster download speeds.

To use an Oracle Container Registry mirror to pull images, use the format:

container-registry-region-key.oracle.com/olcne
For example, to use the Oracle Container Registry mirror in the US East (Ashburn) region,
which has a region key of IAD, the registry should be set (using the using the --container-
registry option) to:

container-registry-iad.oracle.com/olcne
For more information on Oracle Container Registry mirrors and finding the region key for a
mirror in your location, see the Oracle Cloud Infrastructure documentation at:

https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm

Chapter 2
Accessing the Oracle Container Registry

2-5

https://container-registry.oracle.com/
https://container-registry.oracle.com/
https://docs.oracle.com/en/operating-systems/oracle-linux/docker/
https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm

Using a Private Registry
In some cases, nodes within your environment may not be provisioned with direct
access to the Internet. In these cases, you can use a private registry that mirrors the
Oracle Cloud Native Environment container images on the Oracle Container Registry.
Each node requires direct access to the mirror registry host in this scenario.

You can use an existing container registry in your network, or create a private registry
using Podman on an Oracle Linux 8 host. If you use an existing private container
registry, skip the first step in the following procedure that creates a registry.

To create a private registry:

1. Select an Oracle Linux 8 host to use for your Oracle Container Registry mirror
service. The mirror host must have access to the Internet and should be able to
pull images directly from the Oracle Container Registry, or alternately should have
access to the correct image files stored locally. Ideally, the host should not be a
node within your Oracle Cloud Native Environment, but should be accessible to all
of the nodes that are part of the environment.

On the mirror host, install Podman and set up a private registry, following the
instructions in the Setting up a Local Container Registry section in Oracle® Linux:
Podman User's Guide.

2. On the mirror host, enable access to the Oracle Cloud Native Environment
software packages. For information on enabling access to the packages, see
Enabling Access to the Software Packages.

3. Install the olcne-utils package so you have access to the registry mirroring
utility.

sudo dnf install olcne-utils

If you are using an existing container registry in your network that is running on
Oracle Linux 7, use yum instead of dnf to install olcne-utils.

4. Copy the required container images from the Oracle Container Registry to the
private registry using the registry-image-helper.sh script with the required
options:

registry-image-helper.sh --to host.example.com:5000/olcne

Where host.example.com:5000 is the resolvable domain name and port on which
your private registry is available.

You can optionally use the --from option to specify an alternate registry from
which to pull the images. For example, to pull the images from an Oracle
Container Registry mirror:

registry-image-helper.sh \
--from container-registry-iad.oracle.com/olcne \
--to host.example.com:5000/olcne

If the host where you are running the script does not have access to the Internet,
you can replace the --from option with the --local option to load the container
images directly from a local directory. The local directory which contains the
images should be either:

• /usr/local/share/kubeadm/

Chapter 2
Accessing the Oracle Container Registry

2-6

https://docs.oracle.com/en/operating-systems/oracle-linux/podman/
https://docs.oracle.com/en/operating-systems/oracle-linux/podman/

• /usr/local/share/olcne/
The image files should be archives in TAR format. All TAR files in the directory are loaded
into the private registry when the script is run with the --local option.

You can use the --version option to specify the Kubernetes version you want to mirror. If
not specified, the latest release is used. The available versions you can pull are those
listed in Release Notes.

Setting up the Operating System
The following sections describe the requirements that must be met to install and configure
Oracle Cloud Native Environment on Oracle Linux 8 and Oracle Linux 7 systems.

Setting up a Network Time Service
As a clustering environment, Oracle Cloud Native Environment requires that the system time
is synchronized across each Kubernetes control plane and worker node within the cluster.
Typically, this can be achieved by installing and configuring a Network Time Protocol (NTP)
daemon on each node. Oracle recommends installing and setting up the chronyd daemon for
this purpose.

The chronyd service is enabled and started by default on Oracle Linux 8 systems.

Systems running on Oracle Cloud Infrastructure are configured to use the chronyd time
service by default, so there is no requirement to add or configure NTP if you are installing into
an Oracle Cloud Infrastructure environment.

To set up chronyd on Oracle Linux 7:

1. On each Kubernetes control plane and worker node, install the chrony package, if it is
not already installed:

sudo yum install chrony
2. Edit the NTP configuration in /etc/chrony.conf. Your requirements may vary. If you are

using DHCP to configure the networking for each node, it is possible to configure NTP
servers automatically. If you have not got a locally configured NTP service that your
systems can sync to, and your systems have Internet access, you can configure them to
use the public pool.ntp.org service. See https://www.ntppool.org/.

3. Make sure NTP is enabled to restart at boot and that it is started before you proceed with
the Oracle Cloud Native Environment installation. For example:

sudo systemctl enable --now chronyd.service
For information on configuring a Network Time Service, see the Oracle® Linux 7:
Administrator's Guide.

Disabling Swap
You must disable swap on the Kubernetes control plane and worker nodes. To disable swap,
enter:

sudo swapoff -a

Chapter 2
Setting up the Operating System

2-7

https://docs.oracle.com/en/operating-systems/olcne/1.6/relnotes/components.html
https://www.ntppool.org/
https://docs.oracle.com/en/operating-systems/oracle-linux/7/admin/
https://docs.oracle.com/en/operating-systems/oracle-linux/7/admin/

To make this permanent over reboots, edit the /etc/fstab file to remove or comment
out any swap disks. For example, you can consider using commands similar to those
shown in the following steps:

1. Check contents of the /etc/fstab file before any change:

sudo cat /etc/fstab
2. Make a backup of /etc/fstab.

sudo cp /etc/fstab /etc/fstab_copy
3. Comment out swap disks from the /etc/fstab file:

sudo sed -i '/\bswap\b/s/^/#/' /etc/fstab
4. Check contents of /etc/fstab after the change:

sudo cat /etc/fstab

Setting up the Network
This section contains information about the networking requirements for Oracle Cloud
Native Environment nodes.

The following table shows the network ports used by the services in a deployment of
Kubernetes in an environment.

From Node
Type

To Node Type Port Protocol Reason

Worker Operator 8091 TCP(6) Platform API
Server

Control plane Operator 8091 TCP(6) Platform API
Server

Control plane Control plane 2379-2380 TCP(6) Kubernetes etcd
(highly
available
clusters)

Operator Control plane 6443 TCP(6) Kubernetes API
server

Worker Control plane 6443 TCP(6) Kubernetes API
server

Control plane Control plane 6443 TCP(6) Kubernetes API
server

Control plane Control plane 6444 TCP(6) Alternate
Kubernetes API
server (highly
available
clusters)

Operator Control plane 8090 TCP(6) Platform Agent

Chapter 2
Setting up the Network

2-8

From Node
Type

To Node Type Port Protocol Reason

Control plane Control plane 10250
10251
10252
10255

TCP(6)
TCP(6)
TCP(6)
TCP(6)

Kubernetes
kubelet API
server
Kubernetes
kube-
scheduler
(highly
available
clusters)
Kubernetes
kube-
controller-
manager (highly
available
clusters)
Kubernetes
kubelet API
server for read-
only access with
no
authentication

Control plane Control plane 8472 UDP(11) Flannel

Control plane Worker 8472 UDP(11) Flannel

Worker Control plane 8472 UDP(11) Flannel

Worker Worker 8472 UDP(11) Flannel

Control plane Control plane N/A VRRP(112) Keepalived for
Kubernetes API
server (highly
available
clusters)

Operator Worker 8090 TCP(6) Platform Agent

Control plane Worker 10250
10255

TCP(6)
TCP(6)

Kubernetes
kubelet API
server
Kubernetes
kubelet API
server for read-
only access with
no
authentication

The following sections show you how to set up the network on each node to enable the
communication between nodes in an environment.

Setting up the Firewall Rules
Oracle Linux installs and enables firewalld, by default. You can install Oracle Cloud Native
Environment with firewalld enabled, or you can disable it and use your own firewall solution.
This sections shows you how to set up the firewall rules if you want to enable firewalld.

Chapter 2
Setting up the Network

2-9

Important:

Calico requires the firewalld service to be disabled. If you are installing
Calico as the Kubernetes CNI for pods, you do not need to configure the
networking ports as shown in this section. See Container Orchestration for
information on disabling firewalld and how to install Calico.

If you want install with firewalld enabled, the Platform CLI notifies you of any rules
that you may need to add during the deployment of the Kubernetes module. The
Platform CLI also provides the commands to run to modify your firewall configuration
to meet the requirements.

Make sure that all required ports are open. The ports required for a Kubernetes
deployment are:

• 2379/tcp: Kubernetes etcd server client API (on control plane nodes in highly
available clusters)

• 2380/tcp: Kubernetes etcd server client API (on control plane nodes in highly
available clusters)

• 6443/tcp: Kubernetes API server (control plane nodes)

• 8090/tcp: Platform Agent (control plane and worker nodes)

• 8091/tcp: Platform API Server (operator node)

• 8472/udp: Flannel overlay network, VxLAN backend (control plane and worker
nodes)

• 10250/tcp: Kubernetes kubelet API server (control plane and worker nodes)

• 10251/tcp: Kubernetes kube-scheduler (on control plane nodes in highly available
clusters)

• 10252/tcp: Kubernetes kube-controller-manager (on control plane nodes in
highly available clusters)

• 10255/tcp: Kubernetes kubelet API server for read-only access with no
authentication (control plane and worker nodes)

The commands to open the ports and to set up the firewall rules are provided below.

Non-HA Cluster Firewall Rules
For a cluster with a single control plane node, the following ports are required to be
open in the firewall.

Operator Node

On the operator node, run:

sudo firewall-cmd --add-port=8091/tcp --permanent

Restart the firewall for these rules to take effect:

sudo systemctl restart firewalld.service

Chapter 2
Setting up the Network

2-10

https://docs.oracle.com/en/operating-systems/olcne/1.6/orchestration/

Worker Nodes

On the Kubernetes worker nodes run:

sudo firewall-cmd --zone=trusted --add-interface=cni0 --permanent
sudo firewall-cmd --add-port=8090/tcp --permanent
sudo firewall-cmd --add-port=10250/tcp --permanent
sudo firewall-cmd --add-port=10255/tcp --permanent
sudo firewall-cmd --add-port=8472/udp --permanent

Restart the firewall for these rules to take effect:

sudo systemctl restart firewalld.service

Control Plane Nodes

On the Kubernetes control plane nodes run:

sudo firewall-cmd --zone=trusted --add-interface=cni0 --permanent
sudo firewall-cmd --add-port=8090/tcp --permanent
sudo firewall-cmd --add-port=10250/tcp --permanent
sudo firewall-cmd --add-port=10255/tcp --permanent
sudo firewall-cmd --add-port=8472/udp --permanent
sudo firewall-cmd --add-port=6443/tcp --permanent

Restart the firewall for these rules to take effect:

sudo systemctl restart firewalld.service

Highly Available Cluster Firewall Rules
For a highly available cluster, open all the firewall ports as described in Non-HA Cluster
Firewall Rules, along with the following additional ports on the control plane nodes.

On the Kubernetes control plane nodes run:

sudo firewall-cmd --add-port=10251/tcp --permanent
sudo firewall-cmd --add-port=10252/tcp --permanent
sudo firewall-cmd --add-port=2379/tcp --permanent
sudo firewall-cmd --add-port=2380/tcp --permanent

Restart the firewall for these rules to take effect:

sudo systemctl restart firewalld.service

Setting up Other Network Options
This section contains information on other network related configuration that affects an Oracle
Cloud Native Environment deployment. You may not need to make changes from this section,
but they are provided to help you understand any issues you may encounter related to
network configuration.

Internet Access
The Platform CLI checks it is able to access the container registry, and possibly other Internet
resources, to be able to pull any required container images. Unless you intend to set up a
local registry mirror for container images, the systems where you intend to install Oracle

Chapter 2
Setting up the Network

2-11

Cloud Native Environment must either have direct internet access, or must be
configured to use a proxy.

Flannel Network
The Platform CLI configures a flannel network as the network fabric used for
communications between Kubernetes pods. This overlay network uses VxLANs to
facilitate network connectivity. For more information on flannel, see the upstream
documentation at:

https://github.com/flannel-io/flannel

By default, the Platform CLI creates a network in the 10.244.0.0/16 range to host this
network. The Platform CLI provides an option to set the network range to an alternate
range, if required, during installation. Systems in an Oracle Cloud Native Environment
deployment must not have any network devices configured for this reserved IP range.

br_netfilter Module
The Platform CLI checks whether the br_netfilter module is loaded and exits if it is
not available. This module is required to enable transparent masquerading and to
facilitate Virtual Extensible LAN (VxLAN) traffic for communication between
Kubernetes pods across the cluster. If you need to check whether it is loaded, run:

sudo lsmod|grep br_netfilter
br_netfilter 24576 0
bridge 155648 2 br_netfilter,ebtable_broute

If you see the output similar to shown, the br_netfilter module is loaded. Kernel
modules are usually loaded as they are needed, and it is unlikely that you need to load
this module manually. If necessary, you can load the module manually and add it as a
permanent module by running:

sudo modprobe br_netfilter
sudo sh -c 'echo "br_netfilter" > /etc/modules-load.d/br_netfilter.conf'

Bridge Tunable Parameters
Kubernetes requires that packets traversing a network bridge are processed for
filtering and for port forwarding. To achieve this, tunable parameters in the kernel
bridge module are automatically set when the kubeadm package is installed and a
sysctl file is created at /etc/sysctl.d/k8s.conf that contains the following lines:

net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1

If you modify this file, or create anything similar yourself, run the following command to
load the bridge tunable parameters:

sudo /sbin/sysctl -p /etc/sysctl.d/k8s.conf

Network Address Translation
Network Address Translation (NAT) is sometimes required when one or more
Kubernetes worker nodes in a cluster are behind a NAT gateway. For example, you
might want to have a control plane node in a secure company network while having

Chapter 2
Setting up the Network

2-12

https://github.com/flannel-io/flannel

other worker nodes in a publicly accessible demilitarized zone which is less secure. The
control plane node would access the worker nodes through the worker node's NAT gateway.
Or you may have a worker node in a legacy network that you want to use in your cluster that
is primarily on a newer network. The NAT gateway, in these cases, translates requests for an
IP address accessible to the Kubernetes cluster into the IP address on the subnet behind the
NAT gateway.

Note:

Only worker nodes can be behind a NAT. Control plane nodes cannot be behind a
NAT.

Regardless of what switches or network equipment you use to set up your NAT gateway, you
must configure the following for a node behind a NAT gateway:

• The node's interface behind the NAT gateway must have an public IP address using
the /32 subnet mask that is reachable by the Kubernetes cluster. The /32 subnet restricts
the subnet to one IP address, so that all traffic from the Kubernetes cluster flows through
this public IP address.

• The node's interface must also include a private IP address behind the NAT gateway that
your switch uses NAT tables to match the public IP address to.

For example, you can use the following command to add the reachable IP address on the
ens5 interface:

sudo ip addr add 192.168.64.6/32 dev ens5

You can then use the following command to add the private IP address on the same
interface:

sudo ip addr add 192.168.192.2/18 dev ens5

Setting FIPS Mode
You can optionally configure Oracle Cloud Native Environment operator, control plane, and
worker hosts to run in Federal Information Processing Standards (FIPS) mode as described
in Oracle® Linux 8: Enhancing System Security. Oracle Cloud Native Environment uses the
cryptographic binaries of OpenSSL from Oracle Linux 8 when the host runs in FIPS mode.

Note:

You cannot use Oracle Cloud Native Environment on Oracle Linux 7 hosts running
in FIPS mode.

Setting Up SSH Key-based Authentication
Set up SSH key-based authentication for the user that is to run the Platform CLI (olcnectl)
installation commands to enable login from the operator node to the following nodes:

• Each Kubernetes node.

Chapter 2
Setting FIPS Mode

2-13

https://docs.oracle.com/en/operating-systems/oracle-linux/8/security/

• The Platform API Server node

For more information about setting up SSH key-based Authentication see "Set up SSH
Key-based Authentication" in Quick Installation. More information can also be found in
Oracle® Linux: Connecting to Remote Systems With OpenSSH.

Chapter 2
Setting Up SSH Key-based Authentication

2-14

https://docs.oracle.com/en/operating-systems/olcne/1.6/quickinstall/
https://docs.oracle.com/en/operating-systems/oracle-linux/openssh/

3
Installing Oracle Cloud Native Environment

This chapter discusses how to prepare the nodes to be used in an Oracle Cloud Native
Environment deployment. When the nodes are prepared, they must be installed with the
Oracle Cloud Native Environment software packages. When the nodes are set up with the
software, you can use the Platform CLI to perform a deployment of a Kubernetes cluster and
optionally install other modules.

This chapter shows you how to perform the steps to set up the hosts and install the Oracle
Cloud Native Environment software, ready to perform a deployment of modules. When you
have set up the nodes, deploy the Kubernetes module to install a Kubernetes cluster using
the steps in Container Orchestration.

Installation Overview
The high level overview of setting up Oracle Cloud Native Environment is described in this
section.

To install Oracle Cloud Native Environment:

1. Prepare the operator node: An operator node is a host that is used to perform and
manage the deployment of environments. The operator node must be set up with the
Platform API Server, and the Platform CLI (olcnectl).

2. Prepare the Kubernetes nodes: The Kubernetes control plane and worker nodes must
to be set up with the Platform Agent.

3. Set up a load balancer: If you are deploying a highly available Kubernetes cluster, set
up a load balancer. You can set up your own load balancer, or use the container-based
load balancer deployed by the Platform CLI.

4. Set up X.509 Certificates: X.509 Certificates are used to provide secure communication
between the Kubernetes nodes. You must set up the certificates before you create an
environment and perform a deployment.

5. Start the services: Start the Platform API Server and Platform Agent services on nodes
using the X.509 Certificates.

6. Create an environment: Create an environment into which you can install the
Kubernetes module and any other optional modules.

7. Deploy modules: Deploy the Kubernetes module and any other optional modules.

Setting up the Nodes
This section discusses setting up nodes to use in an Oracle Cloud Native Environment. The
nodes are used to form a Kubernetes cluster.

An operator node should be used to perform the deployment of the Kubernetes cluster using
the Platform CLI and the Platform API Server. An operator node may be a node in the
Kubernetes cluster, or a separate host. In examples in this book, the operator node is a
separate host, and not part of the Kubernetes cluster.

3-1

https://docs.oracle.com/en/operating-systems/olcne/1.6/orchestration/

On each Kubernetes node (both control plane and worker nodes) the Platform Agent
must be installed. Before you set up the Kubernetes nodes, you must prepare them.
For information on preparing the nodes, see Prerequisites.

During the installation of the required packages on, an olcne user is created. This user
is used to start the Platform API Server or Platform Agent services and has the
minimum operating system privileges to perform that task. The olcne user should not
be used for any other purpose.

Setting up the Operator Node
This section discusses setting up the operator node. The operator node is a host that
is used to perform and manage the deployment of environments, including deploying
the Kubernetes cluster.

To set up the operator node:

1. On the operator node, install the Platform CLI, Platform API Server, and utilities.

On Oracle Linux 8 enter:

sudo dnf install olcnectl olcne-api-server olcne-utils

On Oracle Linux 7 enter:

sudo yum install olcnectl olcne-api-server olcne-utils
2. Enable the olcne-api-server service, but do not start it. The olcne-api-server

service is started when you configure the X.509 Certificates.

sudo systemctl enable olcne-api-server.service

For information on configuration options for the Platform API Server, see
Configuring the Platform API Server.

Setting up Kubernetes Nodes
This section discusses setting up the nodes to use in a Kubernetes cluster. Perform
these steps on both Kubernetes control plane and worker nodes.

To set up the Kubernetes nodes:

1. On each node to be added to the Kubernetes cluster, install the Platform Agent
package and utilities.

On Oracle Linux 8 enter:

sudo dnf install olcne-agent olcne-utils

On Oracle Linux 7 enter:

sudo yum install olcne-agent olcne-utils
2. Enable the olcne-agent service, but do not start it. The olcne-agent service is

started when you configure the X.509 Certificates.

sudo systemctl enable olcne-agent.service

For information on configuration options for the Platform Agent, see Configuring
the Platform Agent.

Chapter 3
Setting up the Nodes

3-2

3. If you use a proxy server, configure it with CRI-O. On each Kubernetes node, create a
CRI-O systemd configuration directory:

sudo mkdir /etc/systemd/system/crio.service.d

Create a file named proxy.conf in the directory, and add the proxy server information.
For example:

[Service]
Environment="HTTP_PROXY=http://proxy.example.com:3128"
Environment="HTTPS_PROXY=https://proxy.example.com:3128"
Environment="NO_PROXY=mydomain.example.com"

If you are also installing Calico (as a module or as the Kubernetes Container Network
Interface), or the Multus module, add the Kubernetes service IP (the default is
10.96.0.1) to the NO_PROXY variable:

Environment="NO_PROXY=mydomain.example.com,10.96.0.1"

4. If the docker service is running, stop and disable it.

sudo systemctl disable --now docker.service
5. If the containerd service is running, stop and disable it.

sudo systemctl disable --now containerd.service

Setting up a Load Balancer for Highly Available Clusters
A highly available (HA) cluster needs a load balancer to provide high availability of control
plane nodes. A load balancer communicates with the Kubernetes API Server on the control
plane nodes.

The methods of setting up a load balancer to create an HA cluster are:

• Using your own external load balancer instance

• Using a load balancer provided by your cloud infrastructure, for example an Oracle Cloud
Infrastructure load balancer

• Using the internal load balancer that can be deployed by the Platform CLI on the control
plane nodes

Setting up an External Load Balancer
If you want to use your own external load balancer implementation, it should be set up and
ready to use before you perform an HA cluster deployment. The load balancer hostname and
port is entered as an option when you create the Kubernetes module. The load balancer
should be set up with the following configuration:

• The listener listening on TCP port 6443.

• The distribution set to round robin.

• The target set to TCP port 6443 on the control plane nodes.

• The health check set to TCP.

For more information on setting up an external load balancer, see Oracle® Linux 8: Setting
Up Load Balancing, or Oracle® Linux 7: Administrator's Guide.

Chapter 3
Setting up a Load Balancer for Highly Available Clusters

3-3

https://docs.oracle.com/en/operating-systems/oracle-linux/8/balancing/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/balancing/
https://docs.oracle.com/en/operating-systems/oracle-linux/7/admin/

Setting up a Load Balancer on Oracle Cloud Infrastructure
To set up a load balancer on Oracle Cloud Infrastructure:

1. Log into the Oracle Cloud Infrastructure User Interface.

2. Create a load balancer.

3. Add a backend set to the load balancer using weighted round robin. Set the health
check to be TCP port 6443.

4. Add the control plane nodes to the backend set. Set the port for the control plane
nodes to port 6443.

5. Create a listener for the backend set using TCP port 6443.

For more information on setting up a load balancer in Oracle Cloud Infrastructure, see
the Oracle Cloud Infrastructure documentation.

Setting up the Internal Load Balancer

Note:

Using the internal load balancer is NOT recommended for production
deployments.

Instead, use a correctly configured load-balancer that is outside of the
Kubernetes cluster, for example your own external load balancer, or a load
balancer provided by your cloud infrastructure, such as an Oracle Cloud
Infrastructure load balancer.

If you want to use the internal load balancer that can be deployed by the Platform CLI,
you need to perform the following steps to prepare the control plane nodes.

To prepare control plane nodes for the load balancer deployed by the Platform CLI:

1. Set up the control plane nodes as described in Setting up Kubernetes Nodes.

2. Use the --virtual-ip option when creating the Kubernetes module to nominate a
virtual IP address that can be used for the primary control plane node. This IP
address should not be in use on any node and is assigned dynamically to the
control plane node assigned as the primary controller by the load balancer. If the
primary node fails, the load balancer reassigns the virtual IP address to another
control plane node, and that, in turn, becomes the primary node.

Chapter 3
Setting up a Load Balancer for Highly Available Clusters

3-4

https://docs.cloud.oracle.com/iaas/Content/Balance/Concepts/balanceoverview.htm

Tip:

If you are deploying to Oracle Cloud Infrastructure virtual instances, you can
assign a secondary private IP address to the VNIC on a control plane node to
create a virtual IP address. Make sure you list this control plane node first when
creating the Kubernetes module. For more information on secondary private IP
addresses, see the Oracle Cloud Infrastructure documentation.

3. On each control plane node, open port 6444. When you use a virtual IP address, the
Kubernetes API server port is changed from the default of 6443 to 6444. The load
balancer listens on port 6443 and receives the requests and passes them to the
Kubernetes API server.

sudo firewall-cmd --add-port=6444/tcp
sudo firewall-cmd --add-port=6444/tcp --permanent

4. On each control plane node, enable the Virtual Router Redundancy Protocol (VRRP)
protocol:

sudo firewall-cmd --add-protocol=vrrp
sudo firewall-cmd --add-protocol=vrrp --permanent

Setting up X.509 Certificates for Kubernetes Nodes
Communication between the Kubernetes nodes is secured using X.509 certificates.

Before you deploy Kubernetes, you need to configure the X.509 certificates used to manage
the communication between the nodes. There are a number of ways to manage and deploy
the certificates. You can use:

• Vault: The certificates are managed using the HashiCorp Vault secrets manager.
Certificates are created during the deployment of the Kubernetes module. You need to
create a token authentication method for Oracle Cloud Native Environment.

• CA Certificates: Use your own certificates, signed by a trusted Certificate Authority (CA),
and copied to each Kubernetes node before the deployment of the Kubernetes module.
These certificates are unmanaged and must be renewed and updated manually.

• Private CA Certificates: Using generated certificates, signed by a private CA you set up,
and copied to each Kubernetes node before the deployment of the Kubernetes module.
These certificates are unmanaged and must be renewed and updated manually. A script
is provided to help you set this up.

A software-based secrets manager is recommended to manage these certificates. The
HashiCorp Vault secrets manager can be used to generate, assign and manage the
certificates. Oracle recommends you implement your own instance of Vault, setting up the
appropriate security for your environment.

For more information on installing and setting up Vault, see the HashiCorp documentation at:

https://developer.hashicorp.com/vault/tutorials

If you do not want to use Vault, you can use your own certificates, signed by a trusted CA,
and copied to each node. A script is provided to generate a private CA which allows you to
generate certificates for each node. This script also gives you the commands needed to copy
the certificates to the nodes.

Chapter 3
Setting up X.509 Certificates for Kubernetes Nodes

3-5

https://docs.oracle.com/iaas/Content/Network/Tasks/managingIPaddresses.htm
https://developer.hashicorp.com/vault/tutorials

Setting up Vault Authentication
To configure Vault for use with Oracle Cloud Native Environment, set up a Vault token
with the following properties:

• A PKI secret engine with a CA certificate or intermediate, located at
olcne_pki_intermediary.

• A role under that PKI, named olcne, configured to not require a common name,
and allow any name.

• A token authentication method and policy that attaches to the olcne role and can
request certificates.

For information on setting up the Vault PKI secrets engine to generate dynamic X.509
certificates, see:

https://developer.hashicorp.com/vault/docs/secrets/pki

For information on creating Vault tokens, see:

https://developer.hashicorp.com/vault/docs/commands/token/create

Setting up CA Certificates
This section shows you how to use your own certificates, signed by a trusted CA,
without using a secrets manager such as Vault. To use your own certificates, copy
them to all Kubernetes nodes, and to the Platform API Server node.

To make sure the Platform Agent on each Kubernetes node, and the Platform API
Server have access to certificates, make sure you copy them into the /etc/olcne/
certificates/ directory on each node. The path to the certificates is used when
setting up the Platform Agent and Platform API Server, and when creating an
environment.

The examples in this book use the /etc/olcne/certificates/ directory for
certificates. For example:

• CA Certificate: /etc/olcne/certificates/ca.cert
• Node Key: /etc/olcne/certificates/node.key
• Node Certificate: /etc/olcne/certificates/node.cert

Setting up Private CA Certificates
This section shows you how to create a private CA, and use that to generate signed
certificates for the nodes. This section also contains information on copying the
certificates to the nodes. Additionally this section contains information on generating
additional certificates for nodes that you want to scale into a Kubernetes cluster.

Creating and Copying Certificates
This section shows you how to create a private CA, and use that to generate signed
certificates for the nodes.

To generate certificates using a private CA:

Chapter 3
Setting up X.509 Certificates for Kubernetes Nodes

3-6

https://developer.hashicorp.com/vault/docs/secrets/pki
https://developer.hashicorp.com/vault/docs/commands/token/create

1. Use the /etc/olcne/gen-certs-helper.sh script to generate a private CA and
certificates for the nodes.

The gen-certs-helper.sh script saves the certificate files to the directory from which you
run the script. The gen-certs-helper.sh script also creates a script you can use to copy
the certificates to each Kubernetes node (olcne-tranfer-certs.sh). If you run the gen-
certs-helper.sh script from the /etc/olcne directory, it uses the directory /etc/olcne/
configs/certificates/ to save generated files.

Note:

You can optionally use the --cert-dir option to specify the location to save the
certificates and transfer script. If you use the --cert-dir option, make sure you
change the path in this section to the path you specify.

Provide the nodes for which you want to create certificates using the --nodes option. You
should create a certificate for each node that runs the Platform API Server or Platform
Agent. That is, for the operator node, and each Kubernetes node. If you are deploying a
highly available Kubernetes cluster using a virtual IP address, you do not need to create
a certificate for a virtual IP address.

Provide the private CA information using the --cert-request* options (some, but not all,
of these options are shown in the example). You can get a list of all command options
using the gen-certs-helper.sh --help command.

For example:

cd /etc/olcne
sudo ./gen-certs-helper.sh \
--cert-request-organization-unit "My Company Unit" \
--cert-request-organization "My Company" \
--cert-request-locality "My Town" \
--cert-request-state "My State" \
--cert-request-country US \
--cert-request-common-name cloud.example.com \
--nodes
operator.example.com,control1.example.com,worker1.example.com,worker2.example.com,\
worker3.example.com

The certificates and keys for each node are generated and saved to the directory:

/etc/olcne/configs/certificates/tmp-olcne/node/
Where node is the name of the node for which the certificate was generated.

The private CA certificate and key files are saved to the directory:

/etc/olcne/configs/certificates/production/
2. Copy the certificate generated for a node from the /etc/olcne/configs/certificates/

tmp-olcne/node/ directory to that node.

The examples in this book use the /etc/olcne/certificates/ directory as the location
for certificates on nodes. This is the recommended location for the certificates on nodes.
The path to the certificates is used when setting up the Platform Agent or Platform API
Server on each node, and when creating an environment.

Chapter 3
Setting up X.509 Certificates for Kubernetes Nodes

3-7

A script is created to help you copy the certificates to the nodes, /etc/olcne/
configs/certificates/olcne-tranfer-certs.sh. You can use this script and
modify it to suit your needs, or transfer the certificates to the nodes using some
other method.

Important:

Ensure the USER variable in the olcne-tranfer-certs.sh script is set to
the user set up with SSH key-based authentication to the nodes. See
Setting Up SSH Key-based Authentication

Run the script to copy the certificates to the nodes:

bash -ex /etc/olcne/configs/certificates/olcne-tranfer-certs.sh

This script copies the certificates for each node to the following directory on nodes:

/etc/olcne/configs/certificates/production/

Important:

If you use the olcne-tranfer-certs.sh script to copy the certificate
files, they are copied to a different directory than is used in examples in
this documentation.

Make sure you use this path (/etc/olcne/configs/certificates/
production/) when starting the Platform API Server and Platform Agent
services, and when creating an environment. This path differs from the
standard path of /etc/olcne/certificates/ which is used in examples
in this documentation.

3. Make sure the olcne user on each node that runs the Platform API Server or
Platform Agent is able to read the directory in which you copy the certificates. If
you used the default path for certificates of /etc/olcne/certificates/, the olcne
user has read access.

If you used a different path, check the olcne user can read the certificate path. On
the operator node, and each Kubernetes node, run:

sudo -u olcne ls /etc/olcne/configs/certificates/production/

ca.cert node.cert node.key

You should see a list of the certificates and key for the node.

Creating Additional Certificates
This section contains information about generating certificates for any additional nodes
that you want to add to a Kubernetes cluster. This section shows you how to generate
additional certificates using the /etc/olcne/gen-certs-helper.sh script on the
operator node.

To generate additional certificates using a private CA:

Chapter 3
Setting up X.509 Certificates for Kubernetes Nodes

3-8

1. On the operator node, generate new certificates for the nodes using the /etc/olcne/
gen-certs-helper.sh script. For example:

cd /etc/olcne
sudo ./gen-certs-helper.sh \
--cert-request-organization-unit "My Company Unit" \
--cert-request-organization "My Company" \
--cert-request-locality "My Town" \
--cert-request-state "My State" \
--cert-request-country US \
--cert-request-common-name cloud.example.com \
--nodes control4.example.com,control5.example.com \
--byo-ca-cert /etc/olcne/configs/certificates/production/ca.cert \
--byo-ca-key /etc/olcne/configs/certificates/production/ca.key

The private key to generate the new certificates is specified with the --byo-ca-key option
and the CA certificate with the --byo-ca-cert option. In this example, the private CA
certificate and key files are located in the directory:

/etc/olcne/configs/certificates/production/
The location may be different if you used the --cert-dir option of the gen-certs-
helper.sh script when creating the original certificates.

2. When you have generated the new certificates, copy them to the nodes. A script is
created to help you copy the certificates to the nodes, olcne-tranfer-certs.sh. You can
use this script and modify it to suit your needs, or transfer the certificates to the nodes
using some other method.

Run the script to copy the certificates to the nodes:

bash -ex /etc/olcne/configs/certificates/olcne-tranfer-certs.sh

Setting up X.509 Certificates for the externalIPs Kubernetes
Service

When you deploy Kubernetes, a service is deployed to the cluster that controls access to
externalIPs in Kubernetes services. The service is named externalip-validation-
webhook-service and runs in the externalip-validation-system namespace. This
Kubernetes service requires X.509 certificates be set up prior to deploying Kubernetes. You
can use Vault to generate the certificates, or use your own certificates for this purpose. You
can also generate certificates using the gen-certs-helper.sh script. The certificates must be
available on the operator node.

The examples in this book use the /etc/olcne/certificates/restrict_external_ip/
directory for these certificates.

Setting up Vault Certificates
You can use Vault to generate a certificates for the externalIPs Kubernetes service. The
Vault instance must be configured in the same way as described in Setting up Vault
Authentication.

You need to generate certificates for two nodes, named:

externalip-validation-webhook-service.externalip-validation-system.svc

Chapter 3
Setting up X.509 Certificates for the externalIPs Kubernetes Service

3-9

externalip-validation-webhook-service.externalip-validation-
system.svc.cluster.local
The certificate information should be generated in PEM format.

For example:

vault write olcne_pki_intermediary/issue/olcne \
 alt_names=externalip-validation-webhook-service.externalip-validation-
system.svc,\
externalip-validation-webhook-service.externalip-validation-
system.svc.cluster.local \
 format=pem_bundle

The output is displayed. Look for the section that starts with certificate. This section
contains the certificates for the node names (set with the alt_names option). Save the
output in this section to a file named node.cert. The file should look something like:

-----BEGIN RSA PRIVATE KEY-----
MIIEpQIBAAKCAQEAymg8uHy+mpwlelCyC4WrnfLwUmJ5vZmSos85QnIlZvyycUPK
...
X3c8LNaJDfQx1wKfTc/c0czBhHYxgwfau0G6wjqScZesPi2xY0xyslE=
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
MIID2TCCAsGgAwIBAgIUZ/M/D7bAjhyGx7DivsjBb9oeLhAwDQYJKoZIhvcNAQEL
...
9bRwnen+JrxUn4GV59GtsTiqzY6R2OKPm+zLl8E=
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIIDnDCCAoSgAwIBAgIUMapl4aWnBXE/02qTW0zOZ9aQVGgwDQYJKoZIhvcNAQEL
...
kV8w2xVXXAehp7cg0BakVA==
-----END CERTIFICATE-----

Look for the section that starts with issuing_ca. This section contains the CA
certificate. Save the output in this section to a file named ca.cert. The file should look
something like:

-----BEGIN CERTIFICATE-----
MIIDnDCCAoSgAwIBAgIUMapl4aWnBXE/02qTW0zOZ9aQVGgwDQYJKoZIhvcNAQEL
...
kV8w2xVXXAehp7cg0BakVA==
-----END CERTIFICATE-----

Look for the section that starts with private_key. This section contains the private key
for the node certificates. Save the output in this section to a file named node.key. The
file should look something like:

-----BEGIN RSA PRIVATE KEY-----
MIIEpQIBAAKCAQEAymg8uHy+mpwlelCyC4WrnfLwUmJ5vZmSos85QnIlZvyycUPK
...
X3c8LNaJDfQx1wKfTc/c0czBhHYxgwfau0G6wjqScZesPi2xY0xyslE=
-----END RSA PRIVATE KEY-----

Copy the three files (node.cert, ca.cert and node.key) to the operator node and set
the ownership of the files as described in Setting up CA Certificates.

Chapter 3
Setting up X.509 Certificates for the externalIPs Kubernetes Service

3-10

Setting up CA Certificates
If you are using your own certificates, you should copy them to a directory under /etc/olcne/
certificates/ on the operator node. For example:

• CA Certificate: /etc/olcne/certificates/restrict_external_ip/ca.cert
• Node Key: /etc/olcne/certificates/restrict_external_ip/node.key
• Node Certificate: /etc/olcne/certificates/restrict_external_ip/node.cert
You should copy these certificates to a different location on the operator node than the
certificates and keys used for the Kubernetes nodes as set up in Setting up X.509 Certificates
for Kubernetes Nodes. This makes sure you do not overwrite those certificates and keys. You
need to generate certificates for two nodes, named:

externalip-validation-webhook-service.externalip-validation-system.svc
externalip-validation-webhook-service.externalip-validation-
system.svc.cluster.local
The certificates for these two nodes should be saved as a single file as node.cert.

Make sure the permissions of the directory where the certificates are located can be read by
the user on the operator node that you intend to use to run the olcnectl commands to
install Kubernetes. In this example the opc user is to be used on the operator node, so
ownership of the directory is set to the opc user:

sudo chown -R opc:opc /etc/olcne/certificates/restrict_external_ip/

Setting up Private CA Certificates
You can use the gen-certs-helper.sh script to generate the certificates. Run the script on
the operator node and enter the options required for your environment.

The --cert-dir option sets the location where the certificates are to be saved.

The --nodes option must be set to the name of the Kubernetes service, as shown:

--nodes externalip-validation-webhook-service.externalip-validation-
system.svc,externalip-validation-webhook-service.externalip-validation-
system.svc.cluster.local
Use the --one-cert option to save the certificates for the two service names to a single file.

cd /etc/olcne
sudo ./gen-certs-helper.sh \
--cert-dir /etc/olcne/certificates/restrict_external_ip/ \
--cert-request-organization-unit "My Company Unit" \
--cert-request-organization "My Company" \
--cert-request-locality "My Town" \
--cert-request-state "My State" \
--cert-request-country US \
--cert-request-common-name cloud.example.com \
--nodes externalip-validation-webhook-service.externalip-validation-system.svc,\
externalip-validation-webhook-service.externalip-validation-system.svc.cluster.local \
--one-cert

Chapter 3
Setting up X.509 Certificates for the externalIPs Kubernetes Service

3-11

You can use the same CA certificate and private key you used to generate the
Kubernetes node certificates by using the --byo-ca-cert and --byo-ca-key options.
For example, if you used the gen-certs-helper.sh script to generate the node
certificates, add the following lines to the command:

--byo-ca-cert /etc/olcne/configs/certificates/production/ca.cert \
--byo-ca-key /etc/olcne/configs/certificates/production/ca.key

In this example, the certificates are created and located in the directory:

/etc/olcne/certificates/restrict_external_ip/production
Make sure the permissions of the output directory where the certificates are located
can be read by the user on the operator node that you intend to use use to run the
olcnectl commands to install Kubernetes. In this example the opc user is to be used
on the operator node, so ownership of the directory is set to the opc user. For
example:

sudo chown -R opc:opc /path/

If you used the gen-certs-helper.sh script as shown in this section, run:

sudo chown -R opc:opc /etc/olcne/certificates/restrict_external_ip/production

Starting the Platform API Server and Platform Agent
Services

This section discusses using certificates to set up secure communication between the
Platform API Server and the Platform Agent on nodes in the cluster. You can set up
secure communication using certificates managed by Vault, or using your own
certificates copied to each node. You must configure the Platform API Server and the
Platform Agent to use the certificates when you start the services.

For information on setting up the certificates with Vault, see Setting up X.509
Certificates for Kubernetes Nodes.

For information on creating a private CA to sign certificates that can be used during
testing, see Setting up Private CA Certificates.

Starting the Services Using Vault
This section shows you how to set up the Platform API Server and Platform Agent
services to use certificates managed by Vault.

To set up and start the services using Vault:

1. On the operator node, use the /etc/olcne/bootstrap-olcne.sh script to
configure the Platform API Server to retrieve and use a Vault certificate. Use the
bootstrap-olcne.sh --help command for a list of options for this script. For
example:

sudo /etc/olcne/bootstrap-olcne.sh \
--secret-manager-type vault \
--vault-token s.3QKNuRoTqLbjXaGBOmO6Psjh \
--vault-address https://192.0.2.20:8200 \
--force-download-certs \
--olcne-component api-server

Chapter 3
Starting the Platform API Server and Platform Agent Services

3-12

The certificates are generated and downloaded from Vault.

By default, the certificates are saved to the /etc/olcne/certificates/ directory. You
can alternatively specify a path for the certificates, for example, by including the following
options in the bootstrap-olcne.sh command:

--olcne-ca-path /path/ca.cert \
--olcne-node-cert-path /path/node.cert \
--olcne-node-key-path /path/node.key \

The Platform API Server is configured to use the certificates, and started. You can
confirm the service is running using:

systemctl status olcne-api-server.service
2. On each Kubernetes node, use the /etc/olcne/bootstrap-olcne.sh script to configure

the Platform Agent to retrieve and use a certificate. For example:

sudo /etc/olcne/bootstrap-olcne.sh \
--secret-manager-type vault \
--vault-token s.3QKNuRoTqLbjXaGBOmO6Psjh \
--vault-address https://192.0.2.20:8200 \
--force-download-certs \
--olcne-component agent

The certificates are generated and downloaded from Vault.

By default, the certificates are saved to the /etc/olcne/certificates/ directory. You
can alternatively specify a path for the certificates, for example, by including the following
options in the bootstrap-olcne.sh command:

--olcne-ca-path /path/ca.cert \
--olcne-node-cert-path /path/node.cert \
--olcne-node-key-path /path/node.key \

The Platform Agent is configured to use the certificates, and started. You can confirm the
service is running using:

systemctl status olcne-agent.service

Starting the Services Using Certificates
This section shows you how to set up the Platform API Server and Platform Agent services to
use your own certificates, which have been copied to each node. This example assumes the
certificates are available on all nodes in the /etc/olcne/certificates/ directory.

To set up and start the services using certificates:

1. On the operator node, use the /etc/olcne/bootstrap-olcne.sh script to configure the
Platform API Server to use the certificates. Use the bootstrap-olcne.sh --help
command for a list of options for this script. For example:

sudo /etc/olcne/bootstrap-olcne.sh \
--secret-manager-type file \
--olcne-component api-server

If your certificates are in a directory other than /etc/olcne/certificates/, add the
location of the certificates using the following options, for example:

Chapter 3
Starting the Platform API Server and Platform Agent Services

3-13

--olcne-node-cert-path /etc/olcne/configs/certificates/production/node.cert \
--olcne-ca-path /etc/olcne/configs/certificates/production/ca.cert \
--olcne-node-key-path /etc/olcne/configs/certificates/production/node.key \

The Platform API Server is configured to use the certificates, and started. You can
confirm the service is running using:

systemctl status olcne-api-server.service
2. On each Kubernetes node, use the /etc/olcne/bootstrap-olcne.sh script to

configure the Platform Agent to use the certificates. For example:

sudo /etc/olcne/bootstrap-olcne.sh \
--secret-manager-type file \
--olcne-component agent

If your certificates are in a directory other than /etc/olcne/certificates/, add
the location of the certificates using the following options, for example:

--olcne-node-cert-path /etc/olcne/configs/certificates/production/node.cert \
--olcne-ca-path /etc/olcne/configs/certificates/production/ca.cert \
--olcne-node-key-path /etc/olcne/configs/certificates/production/node.key \

The Platform Agent is configured to use the certificates, and started. You can
confirm the service is running using:

systemctl status olcne-agent.service

Chapter 3
Starting the Platform API Server and Platform Agent Services

3-14

4
Creating an Environment

The first step to creating a Kubernetes cluster is to create an environment. You can create
multiple environments, with each environment potentially containing multiple modules.
Naming each environment and module makes it easier to manage the deployed components
of Oracle Cloud Native Environment.

Note:

You should not use the same node in more than one environment.

Use the olcnectl environment create command on the operator node to create an
environment. For more information on the syntax for the olcnectl environment create
command, see Platform Command-Line Interface.

Tip:

You can also use a configuration file to create an environment. The configuration
file is a YAML file that contains the information about the environments and
modules you want to deploy. Using a configuration file reduces the information you
need to provide with olcnectl commands. For information on creating and using
a configuration file, see Platform Command-Line Interface.

This section shows you how to create an environment using Vault, and using your own
certificates copied to the file system on each node. For information on setting up X.509
certificates, see Setting up X.509 Certificates for Kubernetes Nodes.

Creating an Environment using Certificates Managed by Vault
This section shows you how to create an environment using Vault to provide and manage the
certificates.

On the operator node, use the olcnectl environment create command to create an
environment. For example, to create an environment named myenvironment using certificates
generated from a Vault instance located at https://192.0.2.20:8200:

olcnectl environment create \
--api-server 127.0.0.1:8091 \
--environment-name myenvironment \
--secret-manager-type vault \
--vault-token s.3QKNuRoTqLbjXaGBOmO6Psjh \
--vault-address https://192.0.2.20:8200 \
--update-config

4-1

https://docs.oracle.com/en/operating-systems/olcne/1.6/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.6/olcnectl/config.html

The --api-server option sets the location of the Platform API Server service. In this
example, the Platform API Server is running on the operator node (the localhost) and
listening on port 8091.

The --environment-name option sets the name of the environment, which in this
example is myenvironment.

The --secret-manager-type option sets the certificate manager to Vault.

Replace --vault-token with the token to access Vault.

Replace --vault-address with the location of your Vault instance.

By default, the certificate generated by Vault is saved to $HOME/.olcne/certificates/
environment_name/. If you want to specify a different location to save the certificate,
use the --olcne-node-cert-path, --olcne-ca-path, and --olcne-node-key-path
options. For example, add the following options to the olcnectl environment
create command:

--olcne-node-cert-path /path/node.cert \
--olcne-ca-path /path/ca.cert \
--olcne-node-key-path /path/node.key

The --update-config option writes information about the environment to a local
configuration file at $HOME/.olcne/olcne.conf, and this configuration is used for future
calls to the Platform API Server. If you use this option, you do not need to specify the
Platform API Server (using the --api-server option) in future olcnectl commands.
For more information on setting the Platform API Server see Platform Command-Line
Interface.

Creating an Environment using Certificates
This section shows you how to create an environment using your own certificates,
copied to each node. This example assumes the certificates are available on all nodes
in the /etc/olcne/certificates/ directory.

On the operator node, create the environment using the olcnectl environment
create command. For example:

olcnectl environment create \
--api-server 127.0.0.1:8091 \
--environment-name myenvironment \
--secret-manager-type file \
--olcne-node-cert-path /etc/olcne/certificates/node.cert \
--olcne-ca-path /etc/olcne/certificates/ca.cert \
--olcne-node-key-path /etc/olcne/certificates/node.key \
--update-config

The --api-server option sets the location of the Platform API Server service. In this
example, the Platform API Server is running on the operator node (the localhost) and
listening on port 8091.

The --environment-name option sets the name of the environment, which in this
example is myenvironment.

The --secret-manager-type option sets the certificate manager to use file-based
certificates.

Chapter 4
Creating an Environment using Certificates

4-2

https://docs.oracle.com/en/operating-systems/olcne/1.6/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.6/olcnectl/

The --olcne-node-cert-path, --olcne-ca-path, and --olcne-ca-path options set the
location of the certificate files. You can optionally set the location for the certificate files using
environment variables; olcnectl uses these if they are set. The following environment
variables map to the olcnectl environment create command options:

Table 4-1 Certificate Options

Command Option Environment Variable Purpose

--olcne-node-cert-path $OLCNE_SM_CERT_PATH The path to the node
certificate.

--olcne-ca-path $OLCNE_SM_CA_PATH The path to the Certificate
Authority certificate.

--olcne-node-key-path $OLCNE_SM_KEY_PATH The path to the key for the
node's certificate.

For example, to set the certificate information using environment variables for the same
environment, you could use:

export OLCNE_SM_CA_PATH=/etc/olcne/certificates/ca.cert
export OLCNE_SM_CERT_PATH=/etc/olcne/certificates/node.cert
export OLCNE_SM_KEY_PATH=/etc/olcne/certificates/node.key

olcnectl environment create \
--api-server 127.0.0.1:8091 \
--environment-name myenvironment \
--secret-manager-type file \
--update-config

The --update-config option writes information about the environment to a local configuration
file at $HOME/.olcne/olcne.conf, and this configuration is used for future calls to the Platform
API Server. If you use this option, you do not need to specify the Platform API Server (using
the --api-server option) in future olcnectl commands. For more information on setting the
Platform API Server see Platform Command-Line Interface.

Chapter 4
Creating an Environment using Certificates

4-3

https://docs.oracle.com/en/operating-systems/olcne/1.6/olcnectl/

5
Installing Modules

After you create an environment, you can add any modules you want to the environment.

Creating a Kubernetes Module
A base installation requires a Kubernetes module which is used to create a Kubernetes
cluster. For information on creating and installing a Kubernetes module, see Container
Orchestration.

Creating an Oracle Cloud Infrastructure Cloud Controller
Manager Module

When you have created and installed a Kubernetes module, you can optionally install the
Oracle Cloud Infrastructure Cloud Controller Manager module to set up access to Oracle
Cloud Infrastructure storage and application load balancers. This allows you to use Oracle
Cloud Infrastructure block volumes to provide persistent storage for Kubernetes applications.
This also allows you to create load balancers for Kubernetes applications so they can be
accessed externally, from outside the cluster.

For information on installing the Oracle Cloud Infrastructure Cloud Controller Manager
module to provide Oracle Cloud Infrastructure storage, see Storage.

For information on installing the Oracle Cloud Infrastructure Cloud Controller Manager
module to provide Oracle Cloud Infrastructure application load balancers, see Application
Load Balancers.

Note:

The same Oracle Cloud Infrastructure Cloud Controller Manager module is used to
set up access to both Oracle Cloud Infrastructure storage and application load
balancers. You do not need to deploy separate modules.

Creating a MetalLB Module
When you have created and installed a Kubernetes module, you can optionally install the
MetalLB module. MetalLB is a network load balancer for Kubernetes applications running on
bare metal hosts. MetalLB allows you to use Kubernetes LoadBalancer services, which
traditionally make use of a cloud provider network load balancer, in a bare metal
environment. For information on installing the MetalLB module, see Application Load
Balancers.

5-1

https://docs.oracle.com/en/operating-systems/olcne/1.6/orchestration/deploy-kube-intro.html
https://docs.oracle.com/en/operating-systems/olcne/1.6/orchestration/deploy-kube-intro.html
https://docs.oracle.com/en/operating-systems/olcne/1.6/storage/
https://docs.oracle.com/en/operating-systems/olcne/1.6/lb/
https://docs.oracle.com/en/operating-systems/olcne/1.6/lb/
https://docs.oracle.com/en/operating-systems/olcne/1.6/lb/
https://docs.oracle.com/en/operating-systems/olcne/1.6/lb/

Creating a Gluster Container Storage Interface Module

Important:

The Gluster Container Storage Interface module, used to install Gluster and
set up Glusterfs, is deprecated. The Gluster Container Storage Interface
module may be removed in a future release.

When you have created and installed a Kubernetes module, you can optionally install
the Gluster Container Storage Interface module to set up access to Gluster storage.
This allows you to use a Gluster cluster to provide persistent storage for Kubernetes
applications. For information on installing the Gluster Container Storage Interface
module, see Storage.

Creating an Operator Lifecycle Manager Module
When you have created and installed a Kubernetes module, you can optionally install
the Operator Lifecycle Manager module to manage the installation and lifecycle
management of operators in a Kubernetes cluster. For information on installing the
Operator Lifecycle Manager module, see Container Orchestration.

Creating an Istio Module
When you have created and installed a Kubernetes module, you can optionally install
a service mesh using the Istio module. For information on installing the Istio module to
create a service mesh, see Service Mesh.

Chapter 5
Creating a Gluster Container Storage Interface Module

5-2

https://docs.oracle.com/en/operating-systems/olcne/1.6/storage/
https://docs.oracle.com/en/operating-systems/olcne/1.6/orchestration/operators.html
https://docs.oracle.com/en/operating-systems/olcne/1.6/mesh/

6
Configuring Services

This chapter contains information about any configuration options for Oracle Cloud Native
Environment, including configuring the Platform API Server and Platform Agent services.

Configuring the Platform API Server
The Platform API Server runs as a Systemd service, named olcne-api-server. You can get
logs for this service using:

sudo journalctl -u olcne-api-server

By default, the service runs on TCP port 8091. You can change this and other Platform API
Server settings by editing the Systemd service unit file so that the binary is invoked to use
additional options.

olcne-api-server options:

• [-p|--port] port_number

Specifies the port that the Platform API Server binds to. Defaults to 8091 if unspecified.

• [-i|--installables] installables_path

Specifies the path to the directory of installable modules. Defaults to /etc/olcne/
modules.

• [-x|--insecure]

Allows the gRPC server to accept clients that do not securely establish their identity.

To reconfigure the Platform API Server to use any of these options, you can edit the Systemd
unit file at /usr/lib/systemd/system/olcne-api-server.service and append the option to
the ExecStart line. For example:

[Unit]
Description=Platform API Server for Oracle Cloud Native Environments
Wants=network.target
After=network.target

[Service]
ExecStart=/usr/libexec/olcne-api-server -i /etc/olcne/modules --port 9083
WorkingDirectory=/var/olcne
User=olcne
Group=olcne
Restart=on-failure

[Install]
WantedBy=multi-user.target

If you edit the Systemd unit file, you must run the following commands for the changes to
take effect:

6-1

sudo systemctl daemon-reload
sudo systemctl restart olcne-api-server.service

Note:

If you change the port value for this service, you should take this into account
for all other instructions provided in the documentation.

Configuring the Platform Agent
The Platform Agent runs as a Systemd service, named olcne-agent. You can get logs
for this service using:

sudo journalctl -u olcne-agent

By default, the service runs on TCP port 8090. You can change this and other Platform
Agent settings by editing the Systemd service unit file so that the binary is invoked to
use additional options.

Additional options available to olcne-agent include:

olcne-agent options:

• [-p|--port] port-number

Specifies the port that the Platform Agent service binds to. Defaults to 8090 if
unspecified.

• [-x|--insecure]

Allows the gRPC server to accept clients that do not securely establish their
identity.

To reconfigure the Platform Agent to use any of these options, you can edit the
Systemd unit file at /usr/lib/systemd/system/olcne-agent.service and append the
option to the ExecStart line.

If you edit the Systemd unit file, you must run the following commands for the changes
to take effect:

sudo systemctl daemon-reload
sudo systemctl restart olcne-agent.service

Note:

If you change the port value for this service, you should take this into account
for all other instructions provided in the documentation.

Chapter 6
Configuring the Platform Agent

6-2

	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Host Requirements
	Hardware Requirements
	Kubernetes Control Plane Node Hardware
	Kubernetes Worker Node Hardware
	Operator Node Hardware
	Kubernetes High Availability Requirements
	Istio Requirements

	Operating System Requirements

	2 Prerequisites
	Enabling Access to the Software Packages
	Oracle Linux 8
	Enabling Channels with ULN
	Enabling Repositories with the Oracle Linux Yum Server

	Oracle Linux 7
	Enabling Channels with ULN
	Enabling Repositories with the Oracle Linux Yum Server

	Accessing the Oracle Container Registry
	Using an Oracle Container Registry Mirror
	Using a Private Registry

	Setting up the Operating System
	Setting up a Network Time Service
	Disabling Swap

	Setting up the Network
	Setting up the Firewall Rules
	Non-HA Cluster Firewall Rules
	Highly Available Cluster Firewall Rules

	Setting up Other Network Options
	Internet Access
	Flannel Network
	br_netfilter Module
	Bridge Tunable Parameters
	Network Address Translation

	Setting FIPS Mode
	Setting Up SSH Key-based Authentication

	3 Installing Oracle Cloud Native Environment
	Installation Overview
	Setting up the Nodes
	Setting up the Operator Node
	Setting up Kubernetes Nodes

	Setting up a Load Balancer for Highly Available Clusters
	Setting up an External Load Balancer
	Setting up a Load Balancer on Oracle Cloud Infrastructure
	Setting up the Internal Load Balancer

	Setting up X.509 Certificates for Kubernetes Nodes
	Setting up Vault Authentication
	Setting up CA Certificates
	Setting up Private CA Certificates
	Creating and Copying Certificates
	Creating Additional Certificates

	Setting up X.509 Certificates for the externalIPs Kubernetes Service
	Setting up Vault Certificates
	Setting up CA Certificates
	Setting up Private CA Certificates

	Starting the Platform API Server and Platform Agent Services
	Starting the Services Using Vault
	Starting the Services Using Certificates

	4 Creating an Environment
	Creating an Environment using Certificates Managed by Vault
	Creating an Environment using Certificates

	5 Installing Modules
	Creating a Kubernetes Module
	Creating an Oracle Cloud Infrastructure Cloud Controller Manager Module
	Creating a MetalLB Module
	Creating a Gluster Container Storage Interface Module
	Creating an Operator Lifecycle Manager Module
	Creating an Istio Module

	6 Configuring Services
	Configuring the Platform API Server
	Configuring the Platform Agent

