
Oracle Cloud Native Environment
Rook Module for Release 1.7

F79936-04
December 2023

Oracle Cloud Native Environment Rook Module for Release 1.7,

F79936-04

Copyright © 2023, Oracle and/or its affiliates.

Contents

 Preface

Documentation License iv

Conventions iv

Documentation Accessibility iv

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 Introduction to the Rook Module

2 Installing the Rook Module

Prerequisites 2-1

Deploying the Rook Module 2-6

Verifying the Rook Module Deployment 2-7

3 Using Ceph Storage

Creating a CephCluster 3-1

Creating CephBlockPool Storage 3-2

Creating CephFilesystem Storage 3-6

Creating CephObjectStore Storage 3-10

4 Removing the Rook Module

iii

Preface

This document contains information about setting up and using the Rook module to
provide persistent storage to Kubernetes applications in Oracle Cloud Native
Environment. The Rook module deploys Ceph into the Kubernetes cluster to provide
the storage. This document describes how to deploy the Rook module and set up a
Ceph cluster, and provides a basic example to test the storage.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–
Share Alike 4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute
this content or an adaptation of it, you must provide attribution to Oracle and retain the
original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis,
or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands
within a paragraph, URLs, code in
examples, text that appears on the screen,
or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle
Accessibility Conformance Report at https://www.oracle.com/corporate/accessibility/
templates/t2-11535.html.

Preface

iv

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Preface

v

https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

1
Introduction to the Rook Module

Rook is a container storage platform built on Ceph. Rook is deployed as a Kubernetes
operator inside a Kubernetes cluster and automates the work required to provision Ceph-
backed persistent storage using the Kubernetes Container Storage Interface (CSI).

The Rook module is used to perform the installation of Rook into a Kubernetes cluster
running on Oracle Cloud Native Environment.

Ceph lets you set up various types of storage for Kubernetes applications:

• Block storage using a CephBlockPool. This provides raw block device volumes to pods.

• Shared file system storage using a CephFilesystem (CephFS). This provides mounting of
a shared POSIX (Portable OS Interface) compliant folder into one or more pods. This is
similar to NFS (Network File System) shared storage, or CIFS (Common Internet File
System) shared folders.

• Object storage using the CephObjectStore. This provides blob (Binary Large Object)
storage to pods.

A CephFilesystem volume can be used with ReadWriteMany persistent volumes, whereas a
CephBlockPool block volume can't as it's ReadWriteOnce.

A Ceph cluster and storage can be set up with a configuration file that contains the Ceph-
related Kubernetes custom resource definitions (CRDs) when you deploy the Rook module,
or after using the CRDs with the kubectl command.

For more information about Rook, see the upstream Rook documentation.

1-1

https://rook.io/docs/rook/v1.10/Getting-Started/intro/

2
Installing the Rook Module

This chapter discusses how to install the Rook module to set up dynamically provisioned
persistent storage for Kubernetes applications using Ceph on Oracle Cloud Native
Environment.

Prerequisites
This section contains the prerequisites for installing the Rook module.

Setting up the Worker Nodes

The Rook module deploys Ceph as containers to the Kubernetes worker nodes. You need at
least three worker nodes in the Kubernetes cluster.

In addition, at least one of these local storage options must be available on the Kubernetes
worker nodes:

• Raw devices (no partitions or formatted file systems).

• Raw partitions (no formatted file system).

• LVM Logical Volumes (no formatted file system).

• Persistent Volumes available from a storage class in block mode.

Tip:

Use the lsblk -f command to ensure no file system is on the device or partition. If
the FSTYPE field is empty, no file system is on the disk and it can be used with Ceph.

Creating a Rook Configuration File

If you deploy the Rook module without a configuration file, the Rook operator pod (rook-
ceph-operator) is created. You can then create a Ceph cluster and storage using the
kubectl command. You can optionally provide a Rook configuration file to set up a Ceph
cluster and storage, which is set up for you when you deploy the Rook module.

You can provide a Rook configuration file on the operator node in YAML format. The
configuration file contains the information to configure one or more Ceph clusters and storage
types. You use Ceph-related Kubernetes CRDs in the configuration file to perform the setup.
Include as many CRDs in the configuration file as you need to set up Ceph clusters, storage
options, and storage providers. For example:

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph

2-1

 namespace: rook
spec:
...

apiVersion: ceph.rook.io/v1
kind: CephBlockPool
metadata:
 name: replicapool
 namespace: rook
spec:
...

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: rook-ceph-block
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
provisioner: rook.rbd.csi.ceph.com
parameters:
...

The Platform API Server uses the information contained in the configuration file when
creating the Rook module. Rook performs all the set up and configuration for Ceph,
using the information you provide in this file.

Use the upstream documentation to create CRDs. For information on the options
available to use in the configuration file, see the upstream Rook documentation for
Ceph CRDs.

Important:

The example CRDs in this section include CRDs to set up a basic Ceph
cluster, storage types, and storage class providers. These are examples only
and aren't recommended for a production environment.

CephCluster CRD

The CephCluster CRD is used to create a Ceph cluster. The following example
configuration uses a Kubernetes cluster with 3 worker nodes that have a RAW disk
attached to each node as sdb. This example uses a Ceph cluster name of rook-ceph
in the rook namespace. Note that the Ceph image is pulled from the Oracle Container
Registry.

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
 namespace: rook
spec:
 cephVersion:

Chapter 2
Prerequisites

2-2

https://rook.io/docs/rook/v1.10/CRDs/Cluster/ceph-cluster-crd/

 image: container-registry.oracle.com/olcne/ceph:v17.2.5
 imagePullPolicy: Always
 dataDirHostPath: /var/lib/rook
 mon:
 count: 3
 allowMultiplePerNode: false
 dashboard:
 enabled: false
 storage:
 useAllNodes: true
 useAllDevices: false
 deviceFilter: sdb

CephBlockPool CRD

Use a CephBlockPool CRD to create the Ceph storage pool. This example sets up a replica
set of 3 in the CephBlockPool named replicapool in the rook namespace.

apiVersion: ceph.rook.io/v1
kind: CephBlockPool
metadata:
 name: replicapool
 namespace: rook
spec:
 failureDomain: host
 replicated:
 size: 3
 requireSafeReplicaSize: true

StorageClass CRD for CephBlockPool

To allow pods to access the Ceph block storage, you need to create a StorageClass. An
example CRD for this follows:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: rook-ceph-block
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
provisioner: rook.rbd.csi.ceph.com
parameters:
 clusterID: rook
 pool: replicapool
 imageFormat: "2"
 imageFeatures: layering
 csi.storage.k8s.io/provisioner-secret-name: rook-csi-rbd-provisioner
 csi.storage.k8s.io/provisioner-secret-namespace: rook
 csi.storage.k8s.io/controller-expand-secret-name: rook-csi-rbd-provisioner
 csi.storage.k8s.io/controller-expand-secret-namespace: rook
 csi.storage.k8s.io/node-stage-secret-name: rook-csi-rbd-node
 csi.storage.k8s.io/node-stage-secret-namespace: rook

Chapter 2
Prerequisites

2-3

 csi.storage.k8s.io/fstype: ext4
allowVolumeExpansion: true
reclaimPolicy: Delete

CephFilesystem CRD

You might also want to set up a CephFilesystem. You do this by including the
CephFilesystem CRD information in the configuration file. This example creates a
CephFilesystem named myfs in the rook namespace, with a replica count of 3.

apiVersion: ceph.rook.io/v1
kind: CephFilesystem
metadata:
 name: myfs
 namespace: rook
spec:
 metadataPool:
 replicated:
 size: 3
 dataPools:
 - name: replicated
 replicated:
 size: 3
 preserveFilesystemOnDelete: true
 metadataServer:
 activeCount: 1
 activeStandby: true

StorageClass CRD for CephFilesystem

To allow pods to access the CephFilesystem storage, you need to create a
StorageClass. An example CRD for this follows:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: rook-cephfs
provisioner: rook.cephfs.csi.ceph.com
parameters:
 clusterID: rook
 fsName: myfs
 pool: myfs-replicated
 csi.storage.k8s.io/provisioner-secret-name: rook-csi-cephfs-
provisioner
 csi.storage.k8s.io/provisioner-secret-namespace: rook
 csi.storage.k8s.io/controller-expand-secret-name: rook-csi-cephfs-
provisioner
 csi.storage.k8s.io/controller-expand-secret-namespace: rook
 csi.storage.k8s.io/node-stage-secret-name: rook-csi-cephfs-node
 csi.storage.k8s.io/node-stage-secret-namespace: rook
reclaimPolicy: Delete

Chapter 2
Prerequisites

2-4

CephObjectStore CRD

You might also want to set up a CephObjectStore. You do this by including the
CephObjectStore CRD information in the configuration file. For example:

apiVersion: ceph.rook.io/v1
kind: CephObjectStore
metadata:
 name: my-store
 namespace: rook
spec:
 metadataPool:
 failureDomain: host
 replicated:
 size: 3
 dataPool:
 failureDomain: host
 erasureCoded:
 dataChunks: 2
 codingChunks: 1
 preservePoolsOnDelete: true
 gateway:
 sslCertificateRef:
 port: 80
 instances: 1
 healthCheck:
 startupProbe:
 disabled: false
 readinessProbe:
 disabled: false
 periodSeconds: 5
 failureThreshold: 2

StorageClass (bucket) CRD for CephObjectStore

To allow pods to access the CephObjectStorage storage, you need to create a StorageClass,
which creates a bucket. An example CRD for this follows:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: rook-ceph-bucket
provisioner: rook-ceph.ceph.rook.io/bucket
reclaimPolicy: Delete
parameters:
 objectStoreName: my-store
 objectStoreNamespace: rook

Chapter 2
Prerequisites

2-5

Deploying the Rook Module
You can deploy all the modules required to set up Ceph storage for a Kubernetes
cluster using a single olcnectl module create command. This method might be
useful to deploy the Rook module at the same time as deploying a Kubernetes cluster.

If you have an existing deployment of the Kubernetes module, you can specify that
instance when deploying the Rook module.

This section guides you through installing each component required to deploy the
Rook module.

For the full list of the Platform CLI command options available when creating modules,
see the olcnectl module create command in Platform Command-Line Interface.

To deploy the Rook module:

1. If you don't already have an environment set up, create one into which the
modules can be deployed. For information on setting up an environment, see
Getting Started. The name of the environment in this example is myenvironment.

2. If you don't already have a Kubernetes module set up or deployed, set one up. For
information on adding a Kubernetes module to an environment, see Kubernetes
Module. The name of the Kubernetes module in this example is mycluster.

3. Create a Rook module and associate it with the Kubernetes module named
mycluster using the --rook-kubernetes-module option. In this example, the Rook
module is named myrook.

olcnectl module create \
--environment-name myenvironment \
--module rook \
--name myrook \
--rook-kubernetes-module mycluster \
--rook-config rook-config.yaml

The --module option sets the module type to create, which is rook. You define the
name of the Rook module using the --name option, which in this case is myrook.

The --rook-kubernetes-module option sets the name of the Kubernetes module.

The --rook-config option sets the location of a YAML file that contains the
configuration information for the Rook module. This is optional.

If you don't include all the required options when adding the module, you're
prompted to provide them.

4. Use the olcnectl module install command to install the Rook module. For
example:

olcnectl module install \
--environment-name myenvironment \
--name myrook

The Rook module is deployed into the Kubernetes cluster.

Chapter 2
Deploying the Rook Module

2-6

https://docs.oracle.com/en/operating-systems/olcne/1.7/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.7/start/
https://docs.oracle.com/en/operating-systems/olcne/1.7/kubernetes/
https://docs.oracle.com/en/operating-systems/olcne/1.7/kubernetes/

Verifying the Rook Module Deployment
You can verify the Rook module is deployed using the olcnectl module instances
command on the operator node. For example:

olcnectl module instances \
--environment-name myenvironment

The output looks similar to:

INSTANCE MODULE STATE
mycluster kubernetes installed
myrook rook installed
...

Note the entry for rook in the MODULE column is in the installed state.

In addition, you can use the olcnectl module report command to review information
about the module. For example, use the following command to review the Rook module
named myrook in myenvironment:

olcnectl module report \
--environment-name myenvironment \
--name myrook \
--children

For more information on the syntax for the olcnectl module report command, see
Platform Command-Line Interface.

On a control plane node, verify the rook-ceph deployments are running in the rook
namespace. Confirm that the Ceph operator pod (rook-ceph-operator) deployment is
running.

kubectl get deployments --namespace rook

The output looks similar to:

NAME READY UP-TO-DATE AVAILABLE AGE
rook-ceph-operator 1/1 1 1 163m

If you used a configuration file to deploy extra Ceph objects, such as a Ceph cluster, storage,
and storage class provisioners, you might have more deployments running. For example:

NAME READY UP-TO-DATE AVAILABLE AGE
csi-cephfsplugin-provisioner 2/2 2 2 159m
csi-rbdplugin-provisioner 2/2 2 2 159m
rook-ceph-operator 1/1 1 1 163m
rook-ceph-mgr-a 1/1 1 1 163m

Chapter 2
Verifying the Rook Module Deployment

2-7

https://docs.oracle.com/en/operating-systems/olcne/1.7/olcnectl/

rook-ceph-mon-b 1/1 1 1 163m
...

You can check the logs for the Ceph operator pod to ensure no errors occurred during
the deployment:

kubectl logs --namespace rook rook-ceph-operator-...

On a control plane node, you can also verify any StorageClasses for the Ceph
provisioner are created using the kubectl get sc command. These are only
created if you used a configuration file to create them when deploying the module. For
example:

kubectl get sc

The output looks similar to:

NAME PROVISIONER RECLAIMPOLICY
VOLUMEBINDINGMODE ...
rook-ceph-block (default) rook.rbd.csi.ceph.com Delete
Immediate ...
rook-cephfs rook.cephfs.csi.ceph.com Delete
Immediate ...

In this case, two StorageClasses exist, one named rook-ceph-block, which is the
default provider. This is the provider for Ceph block storage. The other StorageClass is
named rook-cephfs, which is the provider for CephFilesystem (CephFS).

You can get more details about a StorageClass using the kubectl describe sc
command. For example:

kubectl describe sc rook-ceph-block

The output looks similar to:

Name: rook-ceph-block
IsDefaultClass: Yes
Annotations: storageclass.kubernetes.io/is-default-class=true
Provisioner: rook.rbd.csi.ceph.com
Parameters: clusterID=rook,csi.storage.k8s.io/controller-
expand-secret-name=rook- ...
AllowVolumeExpansion: True
MountOptions: <none>
ReclaimPolicy: Delete
VolumeBindingMode: Immediate
Events: <none>

Chapter 2
Verifying the Rook Module Deployment

2-8

3
Using Ceph Storage

This chapter discusses how to use the Rook module to set up dynamically provisioned
persistent storage using Ceph for Kubernetes applications in Oracle Cloud Native
Environment.

Creating a CephCluster
This section contains a basic example on how to create a CephCluster.

If you don't create a Ceph cluster using a Rook configuration file, you can create one or more
clusters after the Rook module is deployed. You do this using the kubectl command to
deploy a CephCluster CRD.

For example, if you use the following CephCluster CRD in a YAML file:

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
 namespace: rook
spec:
 cephVersion:
 image: container-registry.oracle.com/olcne/ceph:v17.2.5
 imagePullPolicy: Always
 dataDirHostPath: /var/lib/rook
 mon:
 count: 3
 allowMultiplePerNode: false
 dashboard:
 enabled: false
 storage:
 useAllNodes: true
 useAllDevices: false
 deviceFilter: sdb

On a control plane node, use the kubectl apply command to create the CephCluster with
the file:

kubectl apply -f filename.yaml

The CephCluster is created. You can verify the CephCluster is created using:

kubectl get cephcluster --namespace rook

3-1

The output looks similar to:

NAME DATADIRHOSTPATH MONCOUNT AGE PHASE
MESSAGE HEALTH ...
rook-ceph /var/lib/rook 3 4m29s Ready Cluster created
successfully HEALTH ...

Creating CephBlockPool Storage
This section contains a basic test to verify you can create and use CephBlockPool
storage to provide persistent block storage to applications running on Kubernetes.

If you don't create a CephBlockPool using a Rook configuration file, you can create
one or more after the Rook module is deployed. You do this using the kubectl
command to deploy a CephBlockPool CRD.

For example, if you use the following CephBlockPool CRD in a YAML file:

apiVersion: ceph.rook.io/v1
kind: CephBlockPool
metadata:
 name: replicapool
 namespace: rook
spec:
 failureDomain: host
 replicated:
 size: 3
 requireSafeReplicaSize: true

On a control plane node, use the kubectl apply command to create the
CephBlockPool with the file:

kubectl apply -f filename.yaml

The CephBlockPool is created. You can verify the CephBlockPool is created using:

kubectl get cephblockpool --namespace rook

The output looks similar to:

NAME PHASE
replicapool Ready

If you don't create a StorageClass for the CephBlockPool using a Rook configuration
file, you can create one after the Rook module is deployed.

For example, if you use the following StorageClass CRD in a YAML file:

apiVersion: storage.k8s.io/v1
kind: StorageClass

Chapter 3
Creating CephBlockPool Storage

3-2

metadata:
 name: rook-ceph-block
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
provisioner: rook.rbd.csi.ceph.com
parameters:
 clusterID: rook
 pool: replicapool
 imageFormat: "2"
 imageFeatures: layering
 csi.storage.k8s.io/provisioner-secret-name: rook-csi-rbd-provisioner
 csi.storage.k8s.io/provisioner-secret-namespace: rook
 csi.storage.k8s.io/controller-expand-secret-name: rook-csi-rbd-provisioner
 csi.storage.k8s.io/controller-expand-secret-namespace: rook
 csi.storage.k8s.io/node-stage-secret-name: rook-csi-rbd-node
 csi.storage.k8s.io/node-stage-secret-namespace: rook
 csi.storage.k8s.io/fstype: ext4
allowVolumeExpansion: true
reclaimPolicy: Delete

On a control plane node, use the kubectl apply command to create the StorageClass with
the file:

kubectl apply -f filename.yaml

The StorageClass is created. You can verify the StorageClass is created using:

kubectl get sc

The output looks similar to:

NAME PROVISIONER RECLAIMPOLICY
VOLUMEBINDINGMODE ...
rook-ceph-block (default) rook.rbd.csi.ceph.com Delete
Immediate ...

To create a test application to use the CephBlockPool storage:

1. Create a Kubernetes PersistentVolumeClaim file. On a control plane node, create a file
named pvc-cephblock.yaml. Copy the following into the file.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: myrook-block-pvc
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

Chapter 3
Creating CephBlockPool Storage

3-3

2. Create the Kubernetes PersistentVolumeClaim.

kubectl apply -f pvc-cephblock.yaml

3. You can see the PersistentVolumeClaim is created using the kubectl get pvc
command:

kubectl get pvc

The output looks similar to:

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
myrook-block-pvc Bound pvc-72da7... 1Gi RWO
rook-ceph-block 1h

You can get more details about the PersistentVolumeClaim using the kubectl
describe pvc command. For example:

kubectl describe pvc myrook-block-pvc

The output looks similar to:

Name: myrook-block-pvc
Namespace: default
StorageClass: rook-ceph-block
Status: Bound
Volume: pvc-72da7cbf-9e4e-49c9-92cf-65047e3780dd
Labels: <none>
Annotations: pv.kubernetes.io/bind-completed: yes
 pv.kubernetes.io/bound-by-controller: yes
 volume.beta.kubernetes.io/storage-provisioner:
rook.rbd.csi.ceph.com
 volume.kubernetes.io/storage-provisioner:
rook.rbd.csi.ceph.com
Finalizers: [kubernetes.io/pvc-protection]
Capacity: 1Gi
Access Modes: RWO
VolumeMode: Filesystem
Used By: <none>
Events:
...

4. Create a Kubernetes application that uses the PersistentVolumeClaim. Create a
file named nginx-block.yaml and copy the following into the file.

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 run: mynginx
 name: mynginx-block

Chapter 3
Creating CephBlockPool Storage

3-4

spec:
 replicas: 1
 selector:
 matchLabels:
 run: mynginx
 template:
 metadata:
 labels:
 run: mynginx
 spec:
 containers:
 - image: container-registry.oracle.com/olcne/nginx:1.17.7
 name: mynginx
 ports:
 - containerPort: 80
 volumeMounts:
 - name: nginx-pvc
 mountPath: /usr/share/nginx/html
 volumes:
 - name: nginx-pvc
 persistentVolumeClaim:
 claimName: myrook-block-pvc

5. Start the application:

kubectl apply -f nginx-block.yaml

6. You can see the application is running using the kubectl get deployment command:

kubectl get deployment

The output looks similar to:

NAME READY UP-TO-DATE AVAILABLE AGE
mynginx-block 1/1 1 1 65s

7. You can see the application is using the PersistentVolumeClaim to provide persistent
storage on CephBlockPool storage using the kubectl describe deployment
command:

kubectl describe deployment mynginx-block

The output looks similar to:

...
Pod Template:
 Labels: run=mynginx
 Containers:
 mynginx:
 Image: container-registry.oracle.com/olcne/nginx:1.17.7
 Port: 80/TCP
 Host Port: 0/TCP
 Environment: <none>

Chapter 3
Creating CephBlockPool Storage

3-5

 Mounts:
 /usr/share/nginx/html from nginx-pvc (rw)
 Volumes:
 nginx-pvc:
 Type: PersistentVolumeClaim (a reference to a
PersistentVolumeClaim in the same namespace)
 ClaimName: myrook-block-pvc
 ReadOnly: false
...

8. You can delete the test application using:

kubectl delete deployment mynginx-block

9. You can delete the PersistentVolumeClaim using:

kubectl delete pvc myrook-block-pvc

Creating CephFilesystem Storage
This section contains a basic test to verify you can use CephFilesystem storage to
provide persistent storage to applications running on Kubernetes.

If you don't create a CephFilesystem using a Rook configuration file, you can create
one or more after the Rook module is deployed. You do this using the kubectl
command to deploy a CephFilesystem CRD.

For example, if you use the following CephFilesystem CRD in a YAML file:

apiVersion: ceph.rook.io/v1
kind: CephFilesystem
metadata:
 name: myfs
 namespace: rook
spec:
 metadataPool:
 replicated:
 size: 3
 dataPools:
 - name: replicated
 replicated:
 size: 3
 preserveFilesystemOnDelete: true
 metadataServer:
 activeCount: 1
 activeStandby: true

On a control plane node, use the kubectl apply command to create the
CephFilesystem with the file:

kubectl apply -f filename.yaml

Chapter 3
Creating CephFilesystem Storage

3-6

The CephFilesystem is created. You can verify the CephFilesystem is created using:

kubectl get cephfilesystem --namespace rook

The output looks similar to:

NAME ACTIVEMDS AGE PHASE
myfs 1 18s Ready

If you don't create a StorageClass for the CephFilesystem using a Rook configuration file,
you can create one after the Rook module is deployed.

For example, if you use the following StorageClass CRD in a YAML file:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: rook-cephfs
provisioner: rook.cephfs.csi.ceph.com
parameters:
 clusterID: rook
 fsName: myfs
 pool: myfs-replicated
 csi.storage.k8s.io/provisioner-secret-name: rook-csi-cephfs-provisioner
 csi.storage.k8s.io/provisioner-secret-namespace: rook
 csi.storage.k8s.io/controller-expand-secret-name: rook-csi-cephfs-
provisioner
 csi.storage.k8s.io/controller-expand-secret-namespace: rook
 csi.storage.k8s.io/node-stage-secret-name: rook-csi-cephfs-node
 csi.storage.k8s.io/node-stage-secret-namespace: rook
reclaimPolicy: Delete

On a control plane node, use the kubectl apply command to create the StorageClass with
the file:

kubectl apply -f filename.yaml

The StorageClass is created. You can verify the StorageClass is created using:

kubectl get sc

The output looks similar to:

NAME PROVISIONER RECLAIMPOLICY
VOLUMEBINDINGMODE ...
rook-ceph-block (default) rook.rbd.csi.ceph.com Delete
Immediate ...
rook-cephfs rook.cephfs.csi.ceph.com Delete
Immediate ...

Chapter 3
Creating CephFilesystem Storage

3-7

To create a test application to use the CephFilesystem storage:

1. Create a Kubernetes PersistentVolumeClaim file. On a control plane node, create
a file named pvc-cephfs.yaml. Copy the following into the file.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: myrook-pvc-fs
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 storageClassName: rook-cephfs

2. Create the Kubernetes PersistentVolumeClaim.

kubectl apply -f pvc-cephfs.yaml

3. You can see the PersistentVolumeClaim is created using the kubectl get pvc
command:

kubectl get pvc

The output looks similar to:

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
myrook-pvc-fs Bound pvc-... 1Gi RWX
rook-cephfs 18s

You can get more details about the PersistentVolumeClaim using the kubectl
describe pvc command. For example:

kubectl describe pvc myrook-pvc-fs

The output looks similar to:

Name: myrook-pvc-fs
Namespace: default
StorageClass: rook-cephfs
Status: Bound
Volume: pvc-b98f9230-03d9-401d-9e19-81491eb785f9
Labels: <none>
Annotations: pv.kubernetes.io/bind-completed: yes
 pv.kubernetes.io/bound-by-controller: yes
 volume.beta.kubernetes.io/storage-provisioner:
rook.cephfs.csi.ceph.com
 volume.kubernetes.io/storage-provisioner:
rook.cephfs.csi.ceph.com
Finalizers: [kubernetes.io/pvc-protection]

Chapter 3
Creating CephFilesystem Storage

3-8

Capacity: 1Gi
Access Modes: RWX
VolumeMode: Filesystem
Used By: <none>
Events:
 Type Reason Age
From ...
 ---- ------ ----
---- ...
 Normal ExternalProvisioning 106s persistentvolume-
controller ...
 Normal Provisioning 106s rook.cephfs.csi.ceph.com_csi-
cephfsplugin-provisio...
 Normal ProvisioningSucceeded 106s rook.cephfs.csi.ceph.com_csi-
cephfsplugin-provisio...

4. Create a Kubernetes application that uses the PersistentVolumeClaim. Create a file
named nginx-cephfs.yaml and copy the following into the file.

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 run: mynginx
 name: mynginx-cephfs
spec:
 replicas: 1
 selector:
 matchLabels:
 run: mynginx
 template:
 metadata:
 labels:
 run: mynginx
 spec:
 containers:
 - image: container-registry.oracle.com/olcne/nginx:1.17.7
 name: mynginx
 ports:
 - containerPort: 80
 volumeMounts:
 - name: nginx-pvc
 mountPath: /usr/share/nginx/html
 volumes:
 - name: nginx-pvc
 persistentVolumeClaim:
 claimName: myrook-pvc-fs

5. Start the application:

kubectl apply -f nginx-cephfs.yaml

Chapter 3
Creating CephFilesystem Storage

3-9

6. You can see the application is running using the kubectl get deployment
command:

kubectl get deployment

The output looks similar to:

NAME READY UP-TO-DATE AVAILABLE AGE
mynginx-cephfs 1/1 1 1 16s

7. You can see the application is using the PersistentVolumeClaim to provide
persistent storage on CephFilesystem using the kubectl describe
deployment command:

kubectl describe deployment mynginx-cephfs

The output looks similar to:

...
Pod Template:
 Labels: run=mynginx
 Containers:
 mynginx:
 Image: container-registry.oracle.com/olcne/nginx:1.17.7
 Port: 80/TCP
 Host Port: 0/TCP
 Environment: <none>
 Mounts:
 /usr/share/nginx/html from nginx-pvc (rw)
 Volumes:
 nginx-pvc:
 Type: PersistentVolumeClaim (a reference to a
PersistentVolumeClaim in the ...
 ClaimName: myrook-pvc-fs
 ReadOnly: false
...

8. You can delete the test application using:

kubectl delete deployment mynginx-cephfs

9. You can delete the PersistentVolumeClaim using:

kubectl delete pvc myrook-pvc-fs

Creating CephObjectStore Storage
This section contains a basic test to verify you can use CephObjectStore storage to
provide object storage to applications running on Kubernetes.

The example in this section is based on the upstream Rook documentation example to
create a CephObjectStore, and then test it. The content here is changed to use the

Chapter 3
Creating CephObjectStore Storage

3-10

https://rook.io/docs/rook/v1.11/Storage-Configuration/Object-Storage-RGW/object-storage/#create-a-local-object-store

rook Kubernetes namespace (the default namespace for Rook in Oracle Cloud Native
Environment), but is otherwise the same. To create an application to test that you can put or
get an object from the CephObjectStore, see the upstream documentation. The information
here shows you how to set up the CephObjectStore and create an ObjectBucketClaim, but
not how to create an application to test it.

If you don't create a CephObjectStore using a Rook configuration file, you can create one or
more after the Rook module is deployed. You do this using the kubectl command to deploy a
CephObjectStore CRD.

For example, if you use the following CephObjectStore CRD in a YAML file:

apiVersion: ceph.rook.io/v1
kind: CephObjectStore
metadata:
 name: my-store
 namespace: rook
spec:
 metadataPool:
 failureDomain: host
 replicated:
 size: 3
 dataPool:
 failureDomain: host
 erasureCoded:
 dataChunks: 2
 codingChunks: 1
 preservePoolsOnDelete: true
 gateway:
 sslCertificateRef:
 port: 80
 instances: 1
 healthCheck:
 startupProbe:
 disabled: false
 readinessProbe:
 disabled: false
 periodSeconds: 5
 failureThreshold: 2

On a control plane node, use the kubectl apply command to create the CephObjectStore
with the file:

kubectl apply -f filename.yaml

The CephObjectStore is created. You can verify the CephObjectStore is created using:

kubectl get cephobjectstore --namespace rook

Chapter 3
Creating CephObjectStore Storage

3-11

The output looks similar to:

NAME PHASE
my-store Ready

You can confirm the object store is configured by showing the pod is started:

kubectl get pod -l app=rook-ceph-rgw --namespace rook

The output looks similar to:

NAME READY STATUS RESTARTS AGE
rook-ceph-rgw-my-store-a-... 1/1 Running 0 3m35s

If you don't create a StorageClass (bucket) for the CephObjectStore using a Rook
configuration file, you can create one after the Rook module is deployed.

For example, if you use the following StorageClass CRD in a YAML file:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: rook-ceph-bucket
provisioner: rook-ceph.ceph.rook.io/bucket
reclaimPolicy: Delete
parameters:
 objectStoreName: my-store
 objectStoreNamespace: rook

On a control plane node, use the kubectl apply command to create the StorageClass
with the file:

kubectl apply -f filename.yaml

The StorageClass is created. You can verify the StorageClass is created using:

kubectl get sc

The output looks similar to:

NAME PROVISIONER
RECLAIMPOLICY VOLUMEBIND ...
rook-ceph-block (default) rook.rbd.csi.ceph.com
Delete Immediate ...
rook-ceph-bucket rook-ceph.ceph.rook.io/bucket
Delete Immediate ...
rook-cephfs rook.cephfs.csi.ceph.com
Delete Immediate ...

To create an ObjectBucketClaim to access the CephObjectStore storage:

Chapter 3
Creating CephObjectStore Storage

3-12

1. Create a Kubernetes ObjectBucketClaim file. On a control plane node, create a file
named obc.yaml. Copy the following into the file.

apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: ceph-bucket
spec:
 generateBucketName: ceph-bkt
 storageClassName: rook-ceph-bucket

2. Create the Kubernetes ObjectBucketClaim.

kubectl apply -f obc.yaml

3. You can see the ObjectBucketClaim is created using the kubectl get obc command:

kubectl get obc

The output looks similar to:

NAME AGE
ceph-bucket 31s

You can get more details about the ObjectBucketClaim using the kubectl describe
obc command. For example:

kubectl describe obc ceph-bucket

The output looks similar to:

Name: ceph-bucket
Namespace: default
Labels: <none>
Annotations: <none>
API Version: objectbucket.io/v1alpha1
Kind: ObjectBucketClaim
Metadata:
 Creation Timestamp: <date>
 Generation: 1
 Managed Fields:
 API Version: objectbucket.io/v1alpha1
 Fields Type: FieldsV1
 fieldsV1:
 f:metadata:
 f:annotations:
 .:
 f:kubectl.kubernetes.io/last-applied-configuration:
 f:spec:
 .:
 f:generateBucketName:
 f:storageClassName:

Chapter 3
Creating CephObjectStore Storage

3-13

 Manager: kubectl-client-side-apply
 Operation: Update
 Time: <date>
 Resource Version: 354339
 UID: c53e5eb7-f460-435a-b31d-2eaab1bcddd3
Spec:
 Generate Bucket Name: ceph-bkt
 Storage Class Name: rook-ceph-bucket
Events: <none>

4. To create a Kubernetes application that uses the ObjectBucketClaim, follow the
rest of the example in the upstream Rook documentation.

5. You can delete the ObjectBucketClaim using:

kubectl delete obc ceph-bucket

Chapter 3
Creating CephObjectStore Storage

3-14

https://rook.io/docs/rook/v1.11/Storage-Configuration/Object-Storage-RGW/object-storage/#consume-the-object-storage

4
Removing the Rook Module

You can remove a deployment of the Rook module and leave the Kubernetes cluster in place.
To do this, you remove the Rook module from the environment.

If you used a Rook configuration file to deploy the Rook module, any Ceph configuration in
that file is also removed, including Ceph clusters, storage, and StorageClasses. If you
manually set up Ceph using the kubectl command with CRD files, that Ceph setup remains
in place. Remove these manually before removing the Rook module.

Use the olcnectl module uninstall command to remove the Rook module. For
example, to uninstall the Rook module named myrook in the environment named
myenvironment:

olcnectl module uninstall \
--environment-name myenvironment \
--name myrook

The Rook module is removed from the environment.

4-1

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Introduction to the Rook Module
	2 Installing the Rook Module
	Prerequisites
	Deploying the Rook Module
	Verifying the Rook Module Deployment

	3 Using Ceph Storage
	Creating a CephCluster
	Creating CephBlockPool Storage
	Creating CephFilesystem Storage
	Creating CephObjectStore Storage

	4 Removing the Rook Module

