

Oracle Banking Extensibility Workbench

User Guide

Release 14.4.0.0.0

Part No. F33934-01

July 2020

1

Oracle Banking Extensibility Workbench

User Manual

Oracle Financial Services Software Limited

Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries: Phone: +91 22 6718 3000

Fax: +91 22 6718 3001 www.oracle.com/financialservices/

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be

trademarks of their respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,

any programs installed on the hardware, and/or documentation, delivered to U.S. Government end

users are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation

and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and

adaptation of the programs, including any operating system, integrated software, any programs

installed on the hardware, and/or documentation, shall be subject to license terms and license

restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management

applications. It is not developed or intended for use in any inherently dangerous applications, including

applications that may create a risk of personal injury. If you use this software or hardware in dangerous

applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and

other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any

damages caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing

restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly

permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,

broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any

form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless

required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be

errorfree. If you find any errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content,

products and services from third parties. Oracle Corporation and its affiliates are not responsible for and

expressly disclaim all warranties of any kind with respect to third-party content, products, and services.

Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due

to your access to or use of third-party content, products, or services.

2

Table of Contents

1. Introduction .. 4

Setting up OBX for first time use .. 5

OBX Maintenance ... 6

OBX UI ... 7

Entity Details ... 9

Field Details ... 9

Child Entity Details .. 10

Relationship Details .. 10

2. Service Extensions... 12

Simple Sub Domain Service .. 13

Maintenance sub domain service ... 16

Data/Resource Segment sub domain service ... 19

Simple Publisher/Subscriber Event Service .. 21

Batch Service .. 23

Custom Validation Service .. 25

3. UI Extensions – Web Component ... 26

Component Server .. 28

Simple Standalone .. 29

Virtual Page ... 32

Maintenance Detail and Summary ... 35

Dashboard Widget .. 39

Running Component after Generation ... 41

Creating final Extended Component war for Deployment ... 42

Understanding DB Scripts for Web Components ... 43

4. Modification of Base Web Component .. 45

Steps for Modification of Base Component ... 45

OBX Update Command ... 46

Service Update .. 46

UI Update .. 46

OBX Release Command .. 48

5. Extending Product Data Segments with Additional Fields ... 49

Additional Fields Maintenance ... 49

Populating Data in Corresponding Fields From UI .. 56

3

Fetching the Saved Values .. 58

Action URL and Static Tag Maintenance ... 59

Action URL Maintenance .. 59

Static Tag Maintenance .. 59

Extensibility Use Cases for OBBRN Servicing .. 60

New Transaction Screen – 1499 (Exact Clone of 1401) .. 60

Exact Clone with Additional Fields Using Common Code ... 61

Exact Clone with Additional Fields Using Extensible Code ... 65

Jar Deployment in Weblogic: .. 65

Extensibility Use Cases for OBX .. 69

New Transaction screen – 1499 (Clone of 1401) .. 69

New Data Segment in Existing 1401 Screen ... 70

HTML Changes .. 72

JS Changes ... 73

JSON Changes .. 75

Model Changes ... 75

Database Changes ... 75

Service Component ... 76

New Field in Existing Base Data Segment ... 79

HTML Changes (Extended Components) .. 81

HTML Changes (Base Component) ... 81

JS Changes (Base Component) .. 82

JS Changes (Extended Component) .. 82

JSON Changes (Extended Component) ... 83

JSON Changes (Base Component) ... 83

DB Changes ... 84

Index ... 86

Reference .. 88

4

Welcome to Oracle Banking Extensibility Workbench

Welcome to the Oracle Banking Extensibility Workbench (OBX) user manual. It provides the complete

solution to create extensions for products based and developed on Oracle Banking Microservices

architecture (OBMA). It helps in generating the services and UI web components artifacts. This guide is

designed to help you create all these types of service and UI artifacts. It also has complete life cycle

management incorporated for all the extensions generated from tool.

1. Introduction
Oracle Banking Extensibility Workbench (OBX) is a combination of GUI and command line tool, intended

to create different type of extensions for Oracle Banking Micro services Architecture. OBX support

generation of following types of Extensions

 Service Extensions

o Simple sub domain service

o Maintenance sub domain service

o Data/Resource Segment sub domain service

o Simple Publisher/Subscriber Event Service

o Custom Validation Service

 UI Extensions – Web Component

o Simple Standalone

o Virtual Page

o Maintenance Detail and Summary

o Data Segment

o Dashboard Widget

 Modification of Base Web Component

o Additions of Fields on Existing component

o Hiding fields from screen

o Defaulting values on screen

o Disable field

o Making Non-mandatory field Mandatory

5

Setting up OBX for first time use

It is assumed that before setting up OBX for generating the first artifact, all the installation process is

completed till extension_home folder creation and you are able to see the help menu like below:

Once that is done, we will proceed to next step which is setting up libraries and components from base

product. Please follow the below process to setup libraries and components:

• Create a folder component-server inside extension_home directory

• Use 7zip or other similar tool to open app-shell.war from base product to copy the folders

common and components and paste it inside component-server folder inside extension_home

• Create a folder lib inside extension_home directory

• Again, using 7zip or other similar tool open any service war like cmc-datasegment-

services5.1.0.war, navigate inside WEB-INF\lib folder and copy all the jars and put it inside the

lib folder of extension_home

• Create a folder runtime inside extension_home directory

• From the gradle folder which comes inside the obx.zip, navigate inside the lib folder and copy

extra_jars which are compile time dependencies for services, and paste it inside runtime folder

extension_home

• After all the above process extension_home folder looks like below

6

• Once all of the above process is done we cannot now generate the artifact

OBX Maintenance

Before generating the artifact please verify the below items from the base installation

• In the plato-ui-config schema, verify if the table ‘PRODUCT_EXTENDED_LEDGER’ is present or

not. If not available please execute the below script:

--

-- DDL for Table PRODUCT_EXTENDED_LEDGER

--

CREATE TABLE "PRODUCT_EXTENDED_LEDGER" ("ID" VARCHAR2(20), "CCA_NAME"

VARCHAR2(100), "CCA_TYPE" VARCHAR2(20), "PARENT_CCA_NAME" VARCHAR2(100),

"PRODUCT_NAME" VARCHAR2(100))

--

-- Constraints for Table PRODUCT_EXTENDED_LEDGER

--

ALTER TABLE "PRODUCT_EXTENDED_LEDGER" ADD CONSTRAINT

"PRODUCT_EXTENDED_LEDGER_PK" PRIMARY KEY ("ID")

ALTER TABLE "PRODUCT_EXTENDED_LEDGER" MODIFY ("CCA_NAME" NOT NULL ENABLE)

ALTER TABLE "PRODUCT_EXTENDED_LEDGER" MODIFY ("ID" NOT NULL ENABLE)

ALTER TABLE "PRODUCT_EXTENDED_LEDGER" ADD CONSTRAINT "UNIQUES_CCA_NAME"

UNIQUE ("CCA_NAME")

• Please maintain the product name ‘OBX’ in the table ‘SMS_TM_APPLICATION’ inside SMS schema

• Please grant user ‘OBX’ application access through ‘SMS_TM_USER_APPLICATION’ or preferred use

the UI

7

OBX UI

After setting up the OBX, we can now proceed to generate the XDL (OBX Domain Language) file which will

be used by the OBX engine to further generate the service and UI artifacts. To start OBX UI we need to

navigate to extension_home folder from console emulator (cmder) and use the command obx xdl-gen.

This command will automatically open a new tab in cmder with OBX UI running at local port 8080

(https://localhost:8080)

Note: If you have any running on port number 8080, you may need to stop that to make obx ui up and

running.

https://localhost:8080/
https://localhost:8080/
https://localhost:8080/

8

Please open browser once obx UI is up and running and navigate to http://localhost:8080

Following are blocks present on the OBX UI-

• Entity Details

• Field Details

• Child Entity Details

http://localhost:8080/
http://localhost:8080/

9

• Relationship Details

Entity Details

In this section you will capture the entity name. As the Domain Entity pattern "an object is primarily

defined by its identity is called an Entity."

Field Details
For the main entity you need to define the fields in this section. For doing that click on the Add button

and provide the field details

Following are the different types of field types supported in OBX:

• String: This is inbuild field type of OBX, it gets translated to varchar for sql scripts, string type in

java files and normal text field in UI component

• Integer: This is inbuild field type of OBX, it gets translated to number for sql scripts, integer type

in java files and normal text field in UI component

• Float: This is inbuild field type of OBX, it gets translated to number for sql scripts, float type in

java files and normal text field in UI component

• LOV: This field type is inherited from the base product and has its own configuration as below

10

Here, ID is the specific id given to this LOV component, Title is displayed on the LOV dialog box

and End -point is the service end-point which this field connects to for fetching values

• Date: This field is also inherited from the base product and add date component on the screen

• Amount: This field is also inherited from the base product and add the amount field on the

screen. This field also captures currency along with the amount

• Combo box: This field is taken from Ojet Cookbook and OBX UI provides configurations to

needed for this component like value and label

• Checkbox: This field type is also taken from Ojet Cookbook and OBX UI provides configurations

to needed for this component like value and label

• Toggle Button: This field type is taken from Ojet Cookbook

• Text Area: This field type is taken from Ojet Cookbook

Child Entity Details
Use this block for adding the child entities. Once clicked on the Add Child Entity Button, it will open a dialog

box where we can enter the child entity name. Once clicked ok it will add a child block below with its

details

Please add the child entity field details in a similar way like we added for main entity

Relationship Details

Once all the entity details are added we can define relationship among them. Use this block to define

the relationship. Currently OBX supports two types of relationships:

• One to Many

11

• One to Many to Many

Once all of the above Entity, Field Details & Relationship is created click on the Save XDL button and it

will save the xdl file on machine

Note: Its recommended to put the xdl file under the same extension_home folder and give it proper name

(generally main entity name)

The final XDL file looks like this:

Once XDL file is generated you may come back to cmder main tab where it is waiting for the input. You

may proceed creating next set of artifacts which are described in next sections

12

2. Service Extensions
Using OBX we can create multiple types of service extensions. This services extension has complete

infrastructure needed to build to service. Also, the source folder generated out the box from OBX follows

the package structure which is adopted and used by base/kernel teams to keep it in sync.

Note: There are 2 ways to generate the service artifact:

1. Select the category immediately after generating the XDL file and proceed

2. Use the service specific command to generate different types

13

Both above ways will generate the same artifacts.

Simple Sub Domain Service

This is one of the primary use cases in OBX, to generate the simple sub-domain service. To generate it

please follow the below steps:

• Navigate to same extension_home folder using cmder

• Use the command obx service new -c

• Once this command is fired, this will take you to next section where it will prompt other set of

questions. Answer them accordingly to your setup and requirement

14

• Once all the questions are answered and path of XDL is given, it will generate a folder inside the

extension_home folder

• Please select the option based on your requirement for question

Do you want to create UI component for this service? (Y/n)

• For building the service please go into the service folder from cmder and run the command

gradle clean build

15

• This will build the service and we can find the war of the service getting created inside the

build/libs directory

• Use this service and deploy it in your environment

Notes:

• DB scripts for the service will be generated inside the folder \extension_home\obxcustomer-

service\src\main\resources\db

• Please Compile the Entity script in the entity schema created for extensions only

• Service created as part of extension should be deployed in separate domain and should not be

mixed or co-deployed with any other product specific services

• Before compiling CONFIG_SCRIPT.sql in verify the entries manually and change it according to

your setup

• Also, please verify PLATO_TABLE_SCRIPT.sql before executing it in the schema it may contain

some dummy values

16

Maintenance sub domain service
This section describes the process to generate the maintenance type of service. Maintenance service

generally has concept of main and work table. This allows enables functionality where all the Authorized

records goes to main table and all the unauthorized records goes to work table. Also, with this type of

service we attach audit details to payload. To generate it please follow the below steps:

• Navigate to same extension_home folder using cmder

• Use the command obx service mn -c

• Once this command is fired, this will take you to next section where it will prompt other set of

questions. Answer them accordingly to your setup and requirement

17

• Once all the questions are answered and path of XDL is given, it will generate a folder inside the

extension_home folder

• Please select the option based on your requirement for question

Do you want to create a Maintenance and Summary Components for this service? (Y/n)

• For building the service please go into the service folder from cmder and run the command

gradle clean build

• This will build the service and we can find the war of the service getting created inside the

build/libs directory

• Use this service and deploy it in your environment

18

Notes:

• DB scripts for the service will be generated inside the folder \extension_home\obxcustomer-

service\src\main\resources\db

• Please Compile the Entity script in the entity schema created for extensions only

• Service created as part of extension should be deployed in separate domain and should not be

mixed or co-deployed with any other product specific services

• Here SMS (Security Management System) scripts are also generated

\extension_home\obxcustomer-service\src\main\resources\db\sms

• Execute the SMS script in sms schema, here we only generate the functional activity of service.

Assigning to proper role should be done according to the steps mentioned in base application

19

Data/Resource Segment sub domain service
This section describes the process to generate the data/resource segment type of maintenance service.

Here we can generate Master Type of data segment or child type of data segment.

Master Type: This case is used when user wants to generate the complete flow from scratch. It will

generate the new screen class code for the data segments

Child Type: This is primarily used when user wants to attach a single data-segment in the existing

flow/process. Generally, this existing flow/process is available in the base product. We use the

same screen class code from base and attach our data segment to it To generate it please follow

the below steps:

• Navigate to same extension_home folder using cmder

• Use the command obx service ds -c

• Once this command is fired, this will take you to next section where it will prompt other set of

questions. Answer them accordingly to your setup and requirement

• Select the type of component according to your requirement

• Once all the questions are answered and path of XDL is given, it will generate a folder inside the

extension_home folder

20

• Please select the option based on your requirement for question

Do you want to create a Data Segment for this service? (Y/n)

• For building the service please go into the service folder from cmder and run the command

gradle clean build

• This will build the service and we can find the war of the service getting created inside the

build/libs directory

• Use this service and deploy it in your environment

21

Notes:

• DB scripts for the service will be generated inside the folder \extension_home\obxcustomer-

service\src\main\resources\db

• Please Compile the Entity script in the entity schema created for extensions only

• Service created as part of extension should be deployed in separate domain and should not be

mixed or co-deployed with any other product specific services

• Here SMS (Security Management System) scripts are also generated

\extension_home\obxcustomer-service\src\main\resources\db\sms

• Execute the SMS script in sms schema, here we only generate the functional activity of service.

Assigning to proper role should be done according to the steps mentioned in base application

• Here along with SMS and Entity, CMC scripts are also generated under folder

\extension_home\obx-customer-service\src\main\resources\db\cmc

• Please execute them in the CMC schema.

• Screen Class and Data Segment has to be maintained from the UI which is present under

common core

Simple Publisher/Subscriber Event Service

This section describes the process to generate simple publisher/subscriber event service. To generate it

please follow the below steps:

• Navigate to same extension_home folder using cmder

• Use the command obx event -c

• Once this command is fired, this will take you to next section where it will prompt other set of

questions. Answer them accordingly to your setup and requirement

22

• Once all the questions are answered and path of XDL is given, it will generate a folder inside the

extension_home folder

• For building the service please go into the service folder from cmder and run the command

gradle clean build

23

• This will build the service and we can find the war of the service getting created inside the

build/libs directory

• Use this service and deploy it in your environment

Batch Service
This section describes the process to generate OBMA based Batch service. The purpose of this service is

to create reader, writer and processor in which methods will be written according to business use case..

To generate it please follow the below steps:

• Navigate to same extension_home folder using cmder

• Use the command obx batch -c

• Inputs to be given after the command o Select the product family o Enter name of the

service(I'll construct it as <productFamilyName>-batch<serviceName>-extended-services):

o Enter product release version

• Upon successful creation of batch service, user will find a folder generated with

<productFamilyName>-batch-<serviceName>-extended-services having the sample service code

generated

• The generated code has two types of batch job template inside.

o Simple job creation using spring batch features. The method name for this type of job

creation is jobName(). The reader, writer, processor etc are taken from spring’s

itemReader, itemWriter, itemProcessor.

o Plato batch type job creation by keeping plato batch into consideration. The method

name for this type of job creation is batchProcessJob(). In this case reader is specified as

EReader, writer as TWriter and processor as ETProcessor. E means the entity to be read

24

for this job; T means the transformed object to be persisted in the database. Hence the

names are given in that manner.

• For plato batch type job, user needs to write his/her entity classes in which the business logic

will be kept.

o For example, this is the structure of the entity class highlighted in the left.

 o

One needs to write methods for reader, writer and processor accordingly.

• To build the service o Navigate to the service.

o Fire the command gradle clean build.

o This will create the war file of the service in the folder structure build/libs/

productFamilyName>-batch-<serviceName>-extended-services.war

o

25

Custom Validation Service
This section describes the process to generate validation service. The purpose of this service is to perform

custom validations on the base service. It is important to remember that we will be only able to perform

the validation and never modify the payload to change the value. To generate it please follow the below

steps:

• Navigate to same extension_home folder using cmder

• Use the command obx validation -c

• It will generate a folder inside the extension_home folder with obx-validation-service

• For building the service please go into the service folder from cmder and run the command

gradle clean build

• This will build the service and we can find the war of the service getting created inside the

build/libs directory

• Use this service and deploy it in your environment

26

3. UI Extensions – Web Component

This section describes the OBX capability to generate to different types of web components. Each Web

component is capable of running itself locally. There are various types of these web components each

serving different functionality.

Standalone Component: A standalone component can be thought of as a smallest reusable UI component.

They are generally the building blocks of main screens. Components like amount, text fields, lov etc. are

part of standalone components

Virtual Page: A virtual page can be thought of as a screen or a web page in single page applications. They

are loaded inside the content area next to the left navigation menu. Important point to remember when

designing virtual page is, it appends and changes the router (app URL) when navigation is done

Container Component: These Components are a special type of components which are loaded inside a

container called as Wizard. It gives functionality like minimizing the component and open multiple screens

simultaneously on the screen. Important point to remove here is that these components never change to

router state, so bookmarking is not possible for these screens

27

Data/Resource Segment: A component designed using data segment approach are similar to that of

virtual page but are always part of flow or process and loaded like container components. It is helpful in

use cases where data to be captured is huge or is captured in various stages of applications

In above screenshot Customer and Income Details on left are two data segments which is part of

Customer DS Details Application

Widgets: Widgets are special components meant for dashboard. These are generally created in the form

of tiles and are attached to the dashboard

Note:

• All the above components except standalone components have SMS applied on it

• We have to assign functional activity of web components to the role and then only they are

integrated with the main application shell

• Also, it always recommended to try and run the component locally before merging them into

main application

• All web components come bundled with testing framework including unit test cases and

functional test. Therefore, it’s a good practice to write them along with the development

28

Component Server
It is one of highlight feature from OBX. A component server is hub of components which are available from

the base/kernel application. As each component is developed individually and reusable, we can use this

functionality to reuse even the components from base application. It saves time as we don’t have to code

same thing again and again. We can reuse as many components from base application into extensions.

Component server is started automatically when you generate the web component. It runs on

http://localhost:8002. One can simply go to browser and copy components and put them in a metadata.js

file which is created inside the component and by doing so it indicated OBX that we have to reuse the

component and it generates the code automatically.

http://localhost:8002/
http://localhost:8002/

29

Simple Standalone
This section describes the process of creating the simple standalone component using OBX. Following

are the steps needed to be followed:

• Navigate to extension_home folder from cmder

•

30

Use the command obx ui –sd

• Once this command is executed, this will take you to next section where it will prompt other set

of questions. Answer them accordingly to your setup and requirement

• It will automatically generate the libraries for the component to run locally and you will be also

able to see new cmder tab opened where component server is running.

At this point of time go to browser and navigate to http://localhost:8002. You will be able to

component server home page like

http://localhost:8002/
http://localhost:8002/

•

31

• Select the component which you want to reuse in your extension and paste it in module.exports

= []; inside the metadata.js file

• Once done come back to main tab in cmder where is waiting with question Please modify the

Metadata.js file before proceeding. Once done press 'y' to proceed?

• On completing the above process, it will automatically generate the source folder now and open

a new tab on cmder where component will be running

Along with cmder tab it will automatically open a tab on default browser as well with

component rendered on the screen

•

32

Virtual Page
This section describes the process of creating the virtual page component using OBX. Following are the

steps needed to be followed:

• Navigate to extension_home folder from cmder

• Use the command obx ui –vp

Once this command is executed, this will take you to next section where it will prompt other set

of questions. Answer them accordingly to your setup and requirement

•

33

• It will automatically generate the libraries for the component to run locally and you will be also

able to see new cmder tab opened where component server is running.

• At this point of time go to browser and navigate to http://localhost:8002. You will be able to

component server home page like

Select the component which you want to reuse in your extension and paste it in module.exports

= []; inside the metadata.js file

http://localhost:8002/
http://localhost:8002/

•

34

• Once done come back to main tab in cmder where is waiting with question Please modify the

Metadata.js file before proceeding. Once done press 'y' to proceed?

• On completing the above process, it will automatically generate the source folder now and open

a new tab on cmder where component will be running

• Along with cmder tab it will automatically open a tab on default browser as well with

component rendered on the screen

35

Maintenance Detail and Summary
This section describes the process of creating the Maintenance Detail and Summary component using

OBX. Here we have to remember that we will be generating two web components one will be detail

component and another one for summary component. Following are the steps needed to be followed:

• Navigate to extension_home folder from cmder

• Use the command obx ui –mnsm

• Once this command is executed, this will take you to next section where it will prompt other set

of questions. Answer them accordingly to your setup and requirement

• It will automatically generate the libraries for the components.

•

36

At this point of time go to browser and navigate to http://localhost:8002. You will be able to

component server home page like

• Select the component which you want to reuse in your extension and paste it in module.exports

= []; inside the metadata.js file

• Once done come back to main tab in cmder where is waiting with question Please modify the

Metadata.js file before proceeding. Once done press 'y' to proceed?

• On completing the above process, it will automatically generate the source folder for

maintenance details screen and same process will followed for summary screen as well.

• For this case we will be not able to see the component running locally as we have to 2

components generated.

• To start the component, one needs to go inside the component are run it manually

http://localhost:8002/
http://localhost:8002/

37

Data Segment

This section describes the process of creating the virtual page component using OBX. Following are the

steps needed to be followed:

• Navigate to extension_home folder from cmder

• Use the command obx ui –ds

• Once this command is executed, this will take you to next section where it will prompt other set

of questions. Answer them accordingly to your setup and requirement

• It will automatically generate the libraries for the component to run locally and you will be also

able to see new cmder tab opened where component server is running.

• At this point of time go to browser and navigate to http://localhost:8002. You will be able to

component server home page like

http://localhost:8002/
http://localhost:8002/

•

38

Select the component which you want to reuse in your extension and paste it in module.exports

= []; inside the metadata.js file

• Once done come back to main tab in cmder where is waiting with question Please modify the

Metadata.js file before proceeding. Once done press 'y' to proceed?

• On completing the above process, it will automatically generate the source folder now and open

a new tab on cmder where component will be running

• Along with cmder tab it will automatically open a tab on default browser as well with

component rendered on the screen

39

Dashboard Widget
This section describes the process of creating the simple standalone component using OBX. Following

are the steps needed to be followed:

• Navigate to extension_home folder from cmder

• Use the command obx ui --wd

• Once this command is executed, this will take you to next section where it will prompt other set

of questions. Answer them accordingly to your setup and requirement

• It will automatically generate the libraries for the component to run locally and you will be also

able to see new cmder tab opened where component server is running.

At this point of time go to browser and navigate to http://localhost:8002. You will be able to see

component server home page like

http://localhost:8002/
http://localhost:8002/

•

40

• Select the component which you want to reuse in your extension and paste it in module.exports

= []; inside the metadata.js file

• Once done come back to main tab in cmder where is waiting with question Please modify the

Metadata.js file before proceeding. Once done press 'y' to proceed?

• On completing the above process, it will automatically generate the source folder now and open

a new tab on cmder where component will be running

• Along with cmder tab it will automatically open a tab on default browser as well with

component rendered on the screen

41

Running Component after Generation
This section describes the steps you need to follow to re-run the component created or generated

earlier. Please follow the below steps to do the same:

• Make sure you always have the component server rightly created

• Open two tabs in the cmder tool and navigate to component folder in both the tabs for example

\extension_home\obx-vp-customer

• From the first tab run the command node startCS.js

• This will make the component server up and running again. This is important as component

server not only serves base component but also some other important files which is needed for

the component to run locally

• After this from another cmder tab run the command npm start

42

• This will make the component running again on http://localhost:8001/ and also open the default

browser

Creating final Extended Component war for Deployment
This is the final stage for generating extended-component war for all the Web components inside the

extension_home folder. Important point to note here that before any component gets bundled to

extended-component.war, it needs to pass all the test cases. Please perform the following steps to

generate the war:

• Go inside the individual component and run the command sh buildExtendedComponent.sh •

 This command will start performing and running unit test cases on the component

http://localhost:8001/
http://localhost:8001/

43

• Once the test cases are executed successfully it will create a folder inside the extension_home

folder named extended-components

• Now we have to navigate back to extension_home folder and run the command obx build-cca

• This extended-component.war should be deployed in the same domain where application shell

is deployed

Understanding DB Scripts for Web Components
This section describes the significance of db folder generate inside the web component folder. This is

important as without executing these scripts extension web components will not be loaded inside

application shell and even these components menu will be not listed in left navigation menu.

44

DB folder inside the web component consists of two folders sms and ui-config:

SMS: The sms scripts consists of all the service activity, functional activity generated all out of the box

from OBX

UI Config: This script should be compiled in ui-config schema. It maintains the ledger of all the extended

components. App-shell uses this configuration to identify which components should be referred from

extended-component war

45

4. Modification of Base Web Component
This feature of OBX enables users to create extensions which helps to modify the behavior of existing

component. It serves the one of the most common use cases from extensibility perspective. There are

few important points which should be remembered before modifying the behavior of existing

components.

Important Points:

• Addition of fields can be done on various locations of base screen, but this make break the CSS if

not handled properly (Responsive Behavior). In such cases it is always recommended to put

additional fields at the bottom of other fields

• Wherever possible, use Data-segments to add additional field

• In use case where you want to hide the fields from existing screen, always check whether the

field is mandatory or not. If it is mandatory then it should set before making it hidden on the

screen. If not done so service calls make break

• Above point is also valid in case where you want to disable a field on the screen

Following are the uses cases which can be achieved using modification of existing component

• Addition of Fields

• Hiding fields from screen

• Defaulting values on screen

• Disable field

• Making Non-mandatory field Mandatory

Steps for Modification of Base Component
This section describes the steps to follow in case of adding fields on the existing screen. It is assumed

that before using this command a developer knows the name of the base component in which he will be

adding the additional fields. Following are the steps needed to be followed:

• Navigate to the extension_home folder from the cmder

• Execute the command obx ui --mb

46

• After above command is executed it will prompt for the name of base component. Once given it

will create a folder with base component name appending -extended at the end of it

• Here also like above all the libraries are generated at runtime

• Component generated contains the boiler plate or reference code, which helps to achieve the

use case

• Again, db folder contains all the relevant scripts which is needed to be executed prior to see the

component live and running in main application shell

OBX Update Command
This section helps in migrating the artifacts from previous version of OBX to latest. This is applied to both

services and web components. Following sections describes the steps to be followed to upgrade the

existing artifacts:

Service Update
To migrate services developed in previous versions of OBX to latest please follow the below

steps:

o Navigate to service specific folder inside the extension_home directory o

Execute the command obx service-update

 o

Provide the relevant product release version number

o Once provided it will automatically change the build.gradle file and

service is ready to be built with latest dependencies

UI Update
To migrate services developed in previous versions of OBX to latest please follow the below

steps:

o Navigate to UI (Web Component) specific folder inside the extension_home directory

o Execute the command obx ui-update

47

 o This

command will automatically start removing old libraries without changing the source folder.

This help will help you retaining the business logic already written in web component o One

done and executed successfully you will the below message

o Now to run the command with new libraries run below command sequentially

 sh npm-link.sh – it will create new node module folder inside the component

with latest modules and dependencies

 node startCS.js - Open a new tab in cmder and navigate to same web

component directory and run command node startCS.js

 npm start – From the main tab, where we executed npm-link command run the

command npm start, it will automatically run the web component with latest

libraries and launch it on the browser as well

48

OBX Release Command
This command is used to check all the available features bundled with OBX version installed on the

machine. To run this command, navigate to extension_home folder and run the command obx release

49

5. Extending Product Data Segments with Additional Fields

Additional Fields Maintenance

This screen is used to maintain the additional fields for a transaction screen. To process this screen, type

Additional Fields Maintenance in the Menu Item Search located at the left corner of the application toolbar and

select the appropriate screen (or) do the following steps:

1. From Home screen, click Core Maintenance. Under Core Maintenance, click Additional Fields

Maintenance.

 The Additional Fields Maintenance screen is displayed.

Figure 1: Additional Fields Maintenance

2. Specify the details in the Additional Fields Maintenance screen. For more information on fields, refer

to table Field Description – Additional Field Maintenance.

50

Field Description – Additional Field Maintenance

Field Description

Component Name Specify the data segment name as component name.

NOTE: By default, the value fsgbu-ob-cmn-ds-

additional-fields is displayed, which is the

Common Core Data Segment that displays the

maintained additional fields. It will fetch the

corresponding maintained record for Additional

Fields by querying with uiKey =

DataSegmentName @ ProductCode.

Product Code Specify the function code as product code.

Product Name Displays the product name of the specified product

code.

Description Displays the description as Additional Fields.

Application ID Displays the Application ID.

+ icon Click this icon to add a new row.

– icon Click this icon to delete a row, which is already added.

Construct Additional Fields

MetaData

Specify the fields.

Select Check this box to select a row.

Field ID Specify the Field ID.

Field Label Specify the field label.

Category Specify the category.

51

Field Description

Field Type Specify the field type.

Edit Select if a value needs to be inputted in the additional

field.

Mandatory Select if the input value is mandatory in the additional

field.

Construct Validation MetaData Specify the fields.

Select Check this box to select a row.

Validation Name Specify the validation name.

Validation Template to Use Specify the template to be used for validation.

Custom Error Message Specify the custom error message to be displayed.

Edit Arguments Select if arguments needs to be edited in the additional

field.

52

3. Click Save to add the additional field in the maintenance work table

(CMC_TW_ADDT_ATTR_MASTER).

NOTE: Once it is approved, the data will persist in the master table. Currently, Mobile Number and

Date are added as additional fields. In addition,the validation is added for Date.

Figure 2: MetaData Examples

4. Sign in with different user ID since maker will not be able to approve the records with the same user

ID.

Figure 3: Additional Field Maintenance Record

53

5. Map the new data segment for the function code. Make sure that the data is present in

CMC_TM_SCREEN_DS_MAPPING.

NOTE: Once the additional fields are added for a particular function code, a separate data segment

will be enabled in the transaction screen for Additional Fields.

Figure 4: Additional Field Data Segment

6. Click Submit, to save the transaction data of additional fields to the CMC_TB_ADDT_ATTR_DATA.

In addition, the following actions have been performed from service side:

 Fetch record through inter-service call to additional attributes service in common transaction with
record ID.

 Append the field data to the main payload for the ejlogging.

{

"data": {

 "addDtls": {

"signatureVerifyIndicator": "Y",

"hostStatus": null,

"hostMultiTripId": null,

"txnBranchCcy": "GBP",

"txnBranchDate": "2020-03-25T18:30:00.000+0000",

"txnType": "C",

"cashInOutIndicator": "I",

"ejLoggingRequired": null,

"ejTxnAmtMapping": "TO",

"ejTxnCcyMapping": "TO",

"adviceName": null,

"orchestratorId": null,

"rsp": null,

"isReversal": "N",

"isAdvice": "N",

"reversalButton": "N",

54

"ignoreApproval": false,

"ignoreWarning": false,

"isExternal": false

},

"txnDtls": {

"functionCode": "1401",

"txnBranchCode": null,

"txnBranchCcy": null,

"txnBranchDate": null,

"requestStatus": "COMPLETED",

"assignmentMode": null,

"txnId": "f6b36a91-889d-4505-aac0-d7b98484d098",

"txnRefNumber": "989124345493245",

"tellerSeqNumber": null,

"overrideConfirmFlag": null,

"supervisorId": null,

"onlineOfflineTxn": null,

"userComments": null,

"authoriserComments": null,

"eventCode": null,

"accountType": "UBS"

},

"dataPayload": {

"datasegment": null,

"fromAccountAmt": 100,

"fromAccountCcy": "GBP",

"toAccountCcy": "GBP",

"beneficiaryName": null,

"beneficiaryAddress1": null,

"beneficiaryAddress2": null,

"beneficiaryAddress3": null,

"beneficiaryAddress4": null,

"identificationType": null,

"identificationNumber": null,

"exchangeRate": 1,

"recievedAccountCcy": null,

"recievedAccountAmt": null,

"totalCharges": null,

"cashAmount": 100,

"netAccountCcy": null,

"netAccountAmt": null,

"narrative": "Cash Deposit",

"txnControllerRefNo": null,

55

"recordId": "f6b36a91-889d-4505-aac0-d7b98484d098",

"cashAmtCcy": null,

"cashAmt": null,

"chequeDate": null,

"chequeNumber": null,

"eventCode": null,

"ejId": null,

"emailId": null,

"fromAccountBranch": "000",

"fromAccountNumber": null,

"mobileNumber": null,

"orginalExchangeRate": null,

"payee": null,

"productCode": null,

"reversalDate": null,

"stationId": null,

"toAccountBranch": "000",

"toAccountNumber": "00000008010010",

"toAccountAmt": 100,

"txnBranchCode": "000",

"functionCode": null,

"txnCustomer": null,

"tellerId": null,

"txnDate": 1585161000000,

"txnRefNumber": "9892566557744",

"txnSeqNumber": null,

"uniqueIdentifierNumber": null,

"uniqueIdentifierType": null,

"userRefNumber": null,

"valueDate": null,

"versionNumber": null,

"referenceNumber": null,

"createdBy": null,

"createdTs": null,

"updatedBy": null,

"updatedTs": null,

"demDtls": [],

"fxInDemDtls": null,

"fxOutDemDtls": null,

"prcDtls": [],

"addDtls": null,

"txnDtls": null,

"overrideDtls": null,

56

"batchTableDetails": null,

"cmcAddlFields": [

{

"id": "OTH_passprt",

"label": "Passport No",

"type": "TEXT",

"value": "43243"

},

{

"id": "UDF_aadhar",

"label": "Aadhar",

"type": "TEXT",

"value": "1243"

},

{

"id": "TMIS_toDate",

"label": "To Date",

"type": "DATE",

"value": ""

},

{

"id": "TMIS_fromDate",

"label": "From Date",

"type": "DATE",

"value": ""

}

},

"extDetails": null,

"warDtls": [],

"authoriserDtls": []

},

"errors": null,

"warnings": null,

"informations": null,

"authorizations": null,

"paging": ""

}

Populating Data in Corresponding Fields From UI

Unlike the other transaction screen data-segments, the ejlogged data is not required. Instead, two GET calls that

happen during screen launch fetches all the details. To fetch the corresponding Additional-Fields-Maintenance

screen record based on which it will display the maintained fields for this function code.

Endpoint: CORE.GET_CMC_ADDITIONAL_ATTRIBUTES

57

Request URL: http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-

additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006

Sample Response:

{

"data": [

{

"keyId": "33347926-842b-4232-af31-8c1b59612244",

"makerId": "ABHINAV",

"makerDateStamp": null,

"checkerId": null,

"checkerDateStamp": null,

"modNo": 1,

"recordStatus": "O",

"authStatus": "A",

"onceAuth": null,

"doerRemarks": null,

"approverRemarks": null,

"links": [

{

"rel": "self",

"href": "http://10.40.158.157:8005/cmc-additional-attributes-services/cmc-

additional-attributes-services/33347926-842b-4232-af31-8c1b59612244"

}

],

"description": "Additional Fields",

"fieldMetaData": "[{\"id\":\"OTH_Mobile\",\"label\":\"Mobile

Number\",\"type\":\"NUMBER\",\"required\":true},{\"id\":\"OTH_From\",\"label\":\"Fr

om Date\",\"type\":\"DATE\",\"required\":true},{\"id\":\"OTH_To_Date\",\"label\":\"To

Date\",\"type\":\"DATE\",\"required\":true}]",

"uiKey": "fsgbu-ob-cmn-ds-additional-fields@1006",

"validationMetaData":

"[{\"id\":\"\",\"validateMethod\":\"compareFromToDates\",\"type\":\"\",\"args\":[{\"ty

pe\":\"FIELD\",\"value\":\"OTH_From\"},{\"type\":\"FIELD\",\"value\":\"OTH_To_Date\"

}],\"errorMsg\":\"Error Date 1 must be &gt; Date 2\",\"validationName\":\"Date

Validation\"}]",

"applicationId": "OBTFPM"

}],

"paging": {

"totalResults": 1,

"links": {

"next": null,

"prev": null

}

http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006

58

}

}

Fetching the Saved Values

You can fetch the values saved for each field during the transaction.

Endpoint: CORE.GET_ADDITIONAL_ATTRIBUTES

Request URL: http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-

services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-

0d6f-4400-a9c5-0f56551165e4

Sample Response:

{

"ExtensibleDTO": [

{

"id": "1644022a-179e-429b-82c8-873761c3ac74",

"uiKey": "fsgbu-ob-cmn-ds-additional-fields@1006",

"dataReferenceKey": "00a01dfd-0d6f-4400-a9c5-0f56551165e4",

"fieldMetaDataVersion": "1",

"fieldData": [

{

"id": "OTH_Mobile",

"label": "Mobile Number",

"type": "NUMBER",

"value": “678688789”

},

{

"id": "OTH_From",

"label": "From Date",

"type": "DATE",

"value": ”678688789”

},

{

"id": "OTH_To_Date",

"label": "To Date",

"type": "DATE",

"value": null

}

],

"applicationId": "OBREMO"

}

]

}

http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4

59

Action URL and Static Tag Maintenance

Action URL Maintenance

Endpoints are maintained in cmn-transaction-services for the specific transaction based on function code. The

operation has to be maintained as action URL in table SRV_TB_BC_ACTIONS_URL. Action URL will be called from

all the domain services based on function code and action (like OPENCHECK, CREATE, OVERRIDE, REVERSAL,

PENDING_APPROVAL, or AUTHORIZE). The database details are as follows:

Schema: BRANCHCOMMON

Table: SRV_TB_BC_ACTIONS_URL

If the action URL is not maintained for the specific operation of the particular transaction, the error message will

be displayed as Action URL not maintained. Error code is maintained in ERTB_MSGS as RM-BC-UR-01.

Static Tag Maintenance

Static tag is maintained for accounting, till update, and debit-credit for each transaction based on the function

code in table SRV_TB_TX_STATIC_TAGS.

The database details are as follows:

Schema: TRANSACTION

Table: SRV_TB_TX_STATIC_TAGS

TILL_TAGS, DRCR_TAGS and ACCOUNTING_TAGS are maintained as JSON structure. Static tags will be fetched

from cmn-transaction-services based on function code. If it is not maintained for the particular function code,

the transaction will be failed.

60

Extensibility Use Cases for OBBRN Servicing

New Transaction Screen – 1499 (Exact Clone of 1401)

For this use case, you need to ensure data is present in the tables similar to 1401. The below mentioned tables

need to be checked in SMS schema:

 SMS_TM_MENU

 SMS_TM_MENU_Description

 SMS_TM_SERVICE_ACTIVITY

 SMS_TM_FUNCTIONAL_ACTIVITY

 SMS_TM_FUNC_ACTIVITY_DETAIL

 SMS_TM_ROLE_ACTIVITY

 SMS_TM_UI_ACTIVITY

The below mentioned tables need to be checked in common core schema:

 CMC_TM_SCREEN_CLASS

 CMC_TM_SCREEN_DS_MAPPING

The below mentioned tables need to be checked in branch common schema:

 SRV_TM_BC_FUNCTION_INDICATOR

 SRV_TM_BC_FUNCTION_CODE

 SRV_TM_BC_FUNCTION_PREF

 SRV_TM_BC_FUNCTION_PREF_DTLS

 SRV_TM_BC_BRANCH_ACCOUNTING

 SRV_TM_MENU_CONFIG

 SRV_TB_BC_ACTIONS_URL

The below mentioned tables need to be checked in transaction schema:

 SRV_TB_TX_STATIC_TAGS

Figure 5: Cash Deposit Clone

61

Figure 6: Information Message

Exact Clone with Additional Fields Using Common Code

A new screen is available with function code 9999. The Additional Fields is shown as 4th data segment as below:

Figure 7: Additional Fields Segment

The library reference in weblogic.xml is available for extensibility, for example, obremo-srv-ext-common-txn. A

new jar obremo-srv-cmn-common-txn, which holds the most of the code of transaction service and can be a

dependency in the external jar.

<wls:library-ref>

<wls:library-name>obremo-srv-cmn-common-txn</wls:library-name>

</wls:library-ref>

Response:

{

"data": {

"addDtls": {

"signatureVerifyIndicator": "Y",

"hostStatus": null,

62

"hostMultiTripId": null,

"txnBranchCcy": "GBP",

"txnBranchDate": "2020-03-25T18:30:00.000+0000",

"txnType": "C",

"cashInOutIndicator": "I",

"ejLoggingRequired": null,

"ejTxnAmtMapping": "TO",

"ejTxnCcyMapping": "TO",

"adviceName": null,

"orchestratorId": null,

"rsp": null,

"isReversal": "N",

"crossCcyEnabled": null,

"isTotChargesReq": null

},

"txnDtls": {

"functionCode": "9999",

"txnBranchCode": null,

"txnBranchCcy": null,

"txnBranchDate": null,

"requestStatus": "COMPLETED",

"assignmentMode": null,

"txnId": "71a08a0f-ee2a-405b-a1e3-b77ca9e59b6e",

"txnRefNumber": "0002008600007160",

"tellerSeqNumber": null,

"overrideConfirmFlag": "N",

"supervisorId": null,

"onlineOfflineTxn": null,

"userComments": null,

"authoriserComments": null,

"eventCode": null,

"accountType": "UBS"

},

"dataPayload": {

"datasegment": null,

"fromAccountAmt": 100,

"fromAccountCcy": "GBP",

"toAccountCcy": "GBP",

"beneficiaryName": null,

"beneficiaryAddress1": null,

"beneficiaryAddress2": null,

"beneficiaryAddress3": null,

"beneficiaryAddress4": null,

63

"identificationType": null,

"identificationNumber": null,

"exchangeRate": 1,

"recievedAccountCcy": null,

"recievedAccountAmt": null,

"totalCharges": null,

"cashAmount": null,

"netAccountCcy": null,

"netAccountAmt": null,

"narrative": "Cash Deposit",

"txnControllerRefNo": null,

"recordId": "bd40562d-06b4-4f95-95fe-e66fa6eb7f13",

"cashAmtCcy": null,

"cashAmt": null,

"chequeDate": null,

"chequeNumber": null,

"eventCode": null,

"ejId": null,

"emailId": null,

"fromAccountBranch": "000",

"fromAccountNumber": null,

"mobileNumber": null,

"orginalExchangeRate": null,

"payee": null,

"productCode": null,

"reversalDate": null,

"stationId": null,

"toAccountBranch": "000",

"toAccountNumber": "00000008010010",

"toAccountAmt": 100,

"txnBranchCode": "000",

"functionCode": null,

"txnCustomer": null,

"tellerId": null,

"txnDate": 1585161000000,

"txnRefNumber": "0002008600007160",

"txnSeqNumber": null,

"uniqueIdentifierNumber": null,

"uniqueIdentifierType": null,

"userRefNumber": null,

"valueDate": null,

"versionNumber": null,

"referenceNumber": null,

64

"createdBy": null,

"createdTs": null,

"updatedBy": null,

"updatedTs": null,

"demDtls": null,

"fxInDemDtls": null,

"fxOutDemDtls": null,

"prcDtls": null,

"addDtls": null,

"txnDtls": null,

"overrideDtls": null,

"batchTableDetails": null

},

"extDetails": null,

"warDtls": [],

"authoriserDtls": []

},

"errors": null,

"warnings": null,

"informations": null,

"authorizations": null,

"paging": ""

}

Figure 8: Common Core Additional Attributes

In the debug, you can find that the common code is used, stempImpl onCashSubmitTillAcc will be called.

Figure 9: Common Code

65

Exact Clone with Additional Fields Using Extensible Code

A screen is created with function code 9999 and Additional Fields as 4th data segment.

Figure 10: Additional Fields Segment

A library reference is added weblogic.xml (obremo-srv-ext-common-txn) for extensibility. A new jar obremo-srv-

cmn-common-txn, which holds the most of the code of transaction service and can be a dependency in the

external jar.

<wls:library-ref>

<wls:library-name>obremo-srv-cmn-common-txn</wls:library-name>

</wls:library-ref>

Jar Deployment in Weblogic:

Figure 11: Jar Deployment

Response:

{

"data": {

 "addDtls": {

"signatureVerifyIndicator": "Y",

"hostStatus": null,

"hostMultiTripId": null,

"txnBranchCcy": "GBP",

"txnBranchDate": "2020-03-25T18:30:00.000+0000",

"txnType": "C",

"cashInOutIndicator": "I",

"ejLoggingRequired": null,

"ejTxnAmtMapping": "TO",

"ejTxnCcyMapping": "TO",

66

"adviceName": null,

"orchestratorId": null,

"rsp": null,

"isReversal": "N",

"crossCcyEnabled": null,

"isTotChargesReq": null

},

"txnDtls": {

"functionCode": "9999",

"txnBranchCode": null,

"txnBranchCcy": null,

"txnBranchDate": null,

"requestStatus": "COMPLETED",

"assignmentMode": null,

"txnId": "71a08a0f-ee2a-405b-a1e3-b77ca9e59b6e",

"txnRefNumber": "0002008600007160",

"tellerSeqNumber": null,

"overrideConfirmFlag": "N",

"supervisorId": null,

"onlineOfflineTxn": null,

"userComments": null,

"authoriserComments": null,

"eventCode": null,

"accountType": "UBS"

},

"dataPayload": {

"datasegment": null,

"fromAccountAmt": 100,

"fromAccountCcy": "GBP",

"toAccountCcy": "GBP",

"beneficiaryName": null,

"beneficiaryAddress1": null,

"beneficiaryAddress2": null,

"beneficiaryAddress3": null,

"beneficiaryAddress4": null,

"identificationType": null,

"identificationNumber": null,

"exchangeRate": 1,

"recievedAccountCcy": null,

"recievedAccountAmt": null,

"totalCharges": null,

"cashAmount": null,

"netAccountCcy": null,

67

"netAccountAmt": null,

"narrative": "Cash Deposit",

"txnControllerRefNo": null,

"recordId": "bd40562d-06b4-4f95-95fe-e66fa6eb7f13",

"cashAmtCcy": null,

"cashAmt": null,

"chequeDate": null,

"chequeNumber": null,

"eventCode": null,

"ejId": null,

"emailId": null,

"fromAccountBranch": "000",

"fromAccountNumber": null,

"mobileNumber": null,

"orginalExchangeRate": null,

"payee": null,

"productCode": null,

"reversalDate": null,

"stationId": null,

"toAccountBranch": "000",

"toAccountNumber": "00000008010010",

"toAccountAmt": 100,

"txnBranchCode": "000",

"functionCode": null,

"txnCustomer": null,

"tellerId": null,

"txnDate": 1585161000000,

"txnRefNumber": "0002008600007160",

"txnSeqNumber": null,

"uniqueIdentifierNumber": null,

"uniqueIdentifierType": null,

"userRefNumber": null,

"valueDate": null,

"versionNumber": null,

"referenceNumber": null,

"createdBy": null,

"createdTs": null,

"updatedBy": null,

"updatedTs": null,

"demDtls": null,

"fxInDemDtls": null,

"fxOutDemDtls": null,

"prcDtls": null,

68

"addDtls": null,

"txnDtls": null,

"overrideDtls": null,

"batchTableDetails": null

},

"extDetails": null,

"warDtls": [],

"authoriserDtls": []

},

"errors": null,

"warnings": null,

"informations": null,

"authorizations": null,

"paging": ""

}

Figure 12: Common Core Additional Attributes

In the debug, the extensible code is used, which is present in the extension jar (obremo-srv-ext-common-

txn.jar). Instead stempImpl onCashSubmitTillAcc, FC9999 onCashSubmitTillAcc will be called, where you can

add code that is required for the new dataSegment added or to achieve different functionality of charging,

accounting, till updates, etc.

Figure 13: Debug Codes

69

Extensibility Use Cases for OBX

New Transaction screen – 1499 (Clone of 1401)

For this use case, make sure that the data is present in the below tables similar to 1401. The below mentioned

tables need to be checked in SMS schema:

 SMS_TM_MENU

 SMS_TM_MENU_Description

 SMS_TM_SERVICE_ACTIVITY

 SMS_TM_FUNCTIONAL_ACTIVITY

 SMS_TM_FUNC_ACTIVITY_DETAIL

 SMS_TM_ROLE_ACTIVITY

 SMS_TM_UI_ACTIVITY

The below mentioned tables need to be checked in in Common Core schema:

 CMC_TM_SCREEN_CLASS

 CMC_TM_SCREEN_DS_MAPPING

The below mentioned tables need to be checked in branch Common schema:

 SRV_TM_BC_FUNCTION_INDICATOR

 SRV_TM_BC_FUNCTION_CODE

 SRV_TM_BC_FUNCTION_PREF

 SRV_TM_BC_FUNCTION_PREF_DTLS

 SRV_TM_BC_BRANCH_ACCOUNTING

 SRV_TM_MENU_CONFIG

Figure 14: Cash Deposit Clone

70

Figure 15: Information Message

New Data Segment in Existing 1401 Screen

For this use case, it is needed to implement UI Component and Service side to persist data. The steps to create UI

Component are as follows:

1. Start OBX and create XDL by running command obx xdl-gen.

2. Once XDL is created, go to Cmder tab, and press Y for XDL generation.

Figure 16: XDL Generation

3. Select the option UI Component.

4. Choose product family as Oracle Banking Retail Mid Office.

5. Specify the name of virtual page/data-segment/stand-alone component to be created.

71

6. Specify absolute path of the XDL generated. (XDL is generated inside extension_home folder).

NOTE: A new UI Component will be created in extension_home folder with prefix obx-vp/obx-ds. In

the Cmder tab, OBX will prompt to modify Metadata.js file of the newly created component. In

addition, the component-server will start running at port 8002.

Figure 17: XDL Path

Figure 18: Extension Home Folder

The generated UI component contains boiler plate code to do the common operations of Save, Get, Get All etc.

Changes needed in the newly created component from OBX tool from UI side.

72

HTML Changes

The HTML fields look like Figure 19: HTML Changes for all the screens. According to the screen design, one can

change the HTML values like payload() and.mobileNumber. If mobileNumber field is entered by the user, value

of mobileNumber will directly update the JS payload that will be going as a part of save call.

Figure 19: HTML Changes

The oj-validation-group is required for configuring the HTML as part of validation.

Figure 20: Validation

73

JS Changes

Perform the following steps to implement JS changes:

1. Add all the dependencies in define block.

Figure 21: JS Changes

The JS self.payload is an observable, which will hold all the info inputted from the HTML. All keys in self.payload

is directly linked with HTML.

Figure 22: JS Self Payload

74

Save method implementation will look like Figure 23: Save Method. In the next line, it is making a promise and

calling the save function of cmn-ct-datasegment providing the payload and endpoint as parameters. If save is

success, it will resolve and for failures it will come to reject.

Figure 23: Save Method

The function null check is as shown below:

Figure 24: Function Null Check

The validate function is shown in the Figure 25: Validate Function, which will check all mandatory fields during

save.

Figure 25: Validate Function

75

JSON Changes

The data and datatransferPayload properties needs to be exposed from JSON. The data property is used to take

the information of transaction specific and the datatransferPayload property is used to share data between data

segments.

Figure 26: JSON Changes

Model Changes

There will be no methods in the model. All the REST calls needs to go through cmn-ct-datasegment similar to

Save. Perform the following steps to make model changes:

1. Run the DB Scripts present in this component.

NOTE: The OBX generates SQL script with default HEADER_APPID as PXDSSRV001 for all

components. This script can be changed and used.

2. Create extended war for the component and deploy.

Database Changes

1. Add the newly created data segment name in the PRODUCT_EXTENDED_LEDGER table (this will

be done when DB script from UI component is run).

76

2. Make a fourth Data Segment entry for function code 1401 in CMC_TM_SCREEN_DS_MAPPING

table of CMNCORE. The DS_CODE should be the name of the UI Component created. The entry is

as shown in the Figure 27: Data Segment Entry.

Figure 27: Data Segment Entry

3. If the service is created separately than UI Component, change the endpoint URL in SQL script for

table PRODUCT_SERVICES_LEDGER accordingly.

Service Component

1. Start OBX and use the XDL file that is already generated.

2. Select the domain service with optional UI component.

Figure 28: Domain Service

77

3. Select product family as Oracle Banking Retail Mid Office.

Figure 29: Product Family

4. Specify the service name as additionalDetails and all the remaining details as mentioned in the

Figure 30: Service Name.

Figure 30: Service Name

78

5. A new service is generated in extension_home folder with prefix obremo-.

Figure 31: Extension Home Folder

6. Run the DB scripts present in this service.

NOTE: It will create a new table to persist data of new data segment. For example, a table is created

as ADDITIONALDETAILS. This table can be created in existing schema or in a new schema.

If you need to create a new schema, mention that in table

PRODUCT_SERVICES_CTX_LEDGER while running UI Component Script.

7. Restart plato servers once this change is completed.

8. If required, make appropriate changes in the service, build it, and deploy.

NOTE: After deploying extended war and additional details service along with proper DB entry, you

can see a new data segment in the appshell screen.

9. Fill the necessary details and click Submit, the data for new DS will be saved in new table.

79

Figure 32: Additional Details Segment

Figure 33: Updated Data in New Table

New Field in Existing Base Data Segment

This use case defines a new field in the existing base data segment (fsgbu-ob-remo-srv-ds-cash-deposit) in 1401

screen class. For this use case, you need to create an extended UI Component, make changes in the existing UI

appshell, and make changes in the service. Perform the following steps:

1. Modify the base component cca and create an extended component. To do this, start OBX and run

the command obx ui --mb. It will prompt for name of base web component.

2. Specify the name of base web component. A folder will be created with base component name

appending -extended at the end of it.

80

Figure 34: Base Web Component

Figure 35: Extended Folder

NOTE: Changes needed in the extended component from UI side.

81

HTML Changes (Extended Components)

The extended component contains the boiler plate codes, in which you need to make the changes as shown in

the Figure 36: HTML Changes (Extended Component). After you make the necessary changes, the additional

fields will be added after the existing fields in the base component.

Figure 36: HTML Changes (Extended Component)

The following changes are required only if you need to add the additional field at the end of the base component

and in a separate extension panel. You can choose to add the additional fields in the existing base component or

in the extension panel as per the requirement.

Figure 37: Extension Panel

HTML Changes (Base Component)

Perform the HTML changes in the base component as shown in Figure 38: HTML Changes (Base Component).

Figure 38: HTML Changes (Base Component)

82

JS Changes (Base Component)

Perform the JS changes in the base component as shown in Figure 39: JS Changes (Base Component).

Figure 39: JS Changes (Base Component)

The part of code shown below is present in JS or view model file. From the self.connected method, you need to

call self.loadExtendedComponent method.

Figure 40: Self Connected Method

JS Changes (Extended Component)

In the bindings applied, it will take the ID of the fields and add the additional fields after the field base

component. Both additional fields will be added after the field of base component for which the ID is lastTab.

Figure 41: JS Changes (Extended Component)

83

JSON Changes (Extended Component)

Perform the HTML changes as shown in Figure 42: JSON Changes (Extended Component) to add data and base

property for extended component.

Figure 42: JSON Changes (Extended Component)

JSON Changes (Base Component)

In base component JSON file, the properties isExtensible and authMode are present. You need to make changes

in the existing appshell UI component so that it reads the extended component. In addition, it will contain DB

scripts which need to be run.

Figure 43: JSON Changes (Base Component)

84

DB Changes

Add the newly created data segment name in the PRODUCT_EXTENDED_LEDGER table. Perform the following

steps to make the service level change:

1. Add a new field named additionalFields with data type String in work and main table entity classes of

the respective service. The corresponding setters and getters should also be added in these classes.

@Column(name = “ADDITIONAL_FIELDS”)

private String additionalFields;

2. Add a column with the name ADDITIONAL_FIELDS in the main and work tables of the DB with CLOB

data type.

3. For persistence of data in main table, add additionalFields with data type String in model class.

4. Deploy the changed service, extended war component, and changed appshell.

NOTE: After deployment, the two additional fields named Pan No and Aadhaar No will be added in

existing data segment.

5. Specify the necessary details and click Submit. The additional fields will be saved in respective work

and main table in an additional column ADDITIONAL_FIELDS.

Figure 44: Data Segment with Additional Fields

In the request payload from UI to backend, the values appear as follows:

Figure 45: Request Payload

The data will get saved in newly added column Additional Fields in the respective table.

85

Figure 46: SRV_TB_CH_CASH_TXN Table

86

Index
A

Addition of Fields ...

42

C

Child Entity Details ...

8
Component Server ...

25
Container Component ..

23
Creating final Extended Component war for

Deployment ... 39
Custom Validation Service

21

D

Dashboard Widget ...

36
Data Segment ..

34
Data/Resource Segment ...

24
Data/Resource Segment sub domain service

17
Defaulting values on screen.....................................

42
Disable field ...

42

E

Entity Details ..

6

F

Field Details ...

6

H

Hiding fields from screen ...

42

M

Maintenance Detail and Summary

32
Maintenance sub domain service

14

Making Non-mandatory field Mandatory

42 Modification of Base Web Component

................... 42

O

OBX Release Command ...

45
OBX UI ..

5
OBX Update Command ..

43

R

Relationship Details ...

8
Running Component after Generation

38

S

Service Extensions ...

10
Service Update ...

43
Setting up OBX for first time use

4
Simple Publisher/Subscriber Event Service

19
Simple Standalone ...

26
Simple Sub Domain Service

10
Standalone Component ..

23
Steps for Modification of Base Component.............

42

U

UI Extensions – Web Component

23
UI Update ...

44
Understanding DB Scripts for Web Components

40

V

Virtual Page ... 23,

29

W

87

Widgets ...

24

88

Reference and Feedback
Reference

For more information on any related features, you can refer to the following documents:

 • Oracle Banking Extensibility Workbench Installation Guide

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at http://www.oracle.com/us/corporate/accessibility/index.html

Feedback and Support

Oracle welcomes customers' comments and suggestions on the quality and usefulness of the document.

Your feedback is important to us. If you have a query that is not covered in this user guide or if you still

need assistance, please contact documentation team.

http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html

