
62

Start

Oracle Health Insurance Back
Office

HTTP Service Layer (HSL)
Installation & Configuration Manual

Version 1.28

Part number: F37348-01

September 3, 2021

Copyright © 2016, 2021, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use

and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license

agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,

distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,

disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If

you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf

of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government

customers are “commercial computer software” or “commercial technical data” pursuant to the applicable

Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,

disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the

applicable Government contract, and, to the extent applicable by the terms of the Government contract, the

additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).

Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not

developed or intended for use in any inherently dangerous applications, including applications which may

create a risk of personal injury. If you use this software in dangerous applications, then you shall be

responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of

this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this

software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of

their respective owners.

This software and documentation may provide access to or information on content, products, and services from

third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties

of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will

not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,

products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related

notices. For information on third party notices and the software and related documentation in connection with

which they need to be included, please contact the attorney from the Development and Strategic Initiatives

Legal Group that supports the development team for the Oracle offering. Contact information can be found on

the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be

considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement

only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in

making purchasing decisions. The development, release, and timing of any features or functionality described

in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive

property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of

your Oracle Software License and Service Agreement, which has been executed and with which you agree to

comply. This document and information contained herein may not be disclosed, copied, reproduced, or

distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your

license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or

affiliates.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual iii

CHANGE HISTORY

Release Version Changes

10.16.2.2.0 1.0 • Creation

10.16.2.2.0 1.1 • Revision

10.17.1.0.0 1.2 • Changed grant instructions

10.17.2.0.0 1.3 • Documented hsl.<app>.developermode and hsl.developermode

• Added reference to Doc[2] (Back Office HTTP Service Layer User Manual)

10.17.2.1.0 1.4 • Extended set of relevant properties.

10.17.2.2.0 1.5 • Minor revision of ‘Creating a HSL database account’

• Revised ‘Security Configuration’

• Removed ‘Restricting access with custom roles’ from Security Aspects

• Renamed ‘Security Aspects’ to ‘Additional Security Aspects’ and revised
contents.

• Added ‘Deployment Validation’

• Added ‘Appendix C – Testing with SoapUI’

• Added ‘Appendix D – Generating a WADL file’

• Extended set of relevant properties for HSL_CLA.war deployment.

10.17.2.3.0 1.6 • Added paragraph ‘Examining the Log File’

• Added JDK version specific information regarding JSSE configuration.

10.18.1.0.0 1.7 • Added Appendix E – Authentication and Authorization

• Added Appendix F – HSL_AUN and HSL_AUZ Services

• Revised 2.1 including diagram

• Revised introduction and document title

10.18.1.2.0 1.8 • Added Appendix G – PSL services

• Use setUserOverrides.sh instead of modifying startManagedWebLogic.sh
and Server Start arguments. Support for WLS 12.2.1.3.

10.18.1.3.0 1.9 • Added warning about patch 28278427

10.18.1.3.0 1.10 • Revised installation of PSL services

10.18.1.4.0 1.11 • Updated ‘Additional Security Aspects’
Mentioned use of Basic Authentication for ‘admin’ requests.

• Updated ‘setting user context’ in Appendix E

• Added HTTP codes to ‘Troublehooting’

10.18.1.4.0 1.12 • Updated HTTP codes overview in ‘Troubleshooting’

• Revised Appendix G – PSL services

10.18.2.0.0 1.13 • Corrected typo: hsl.auz, not hsl.aur.

• Rewrote explanation of setUserOverrides.sh

10.18.2.0.0 1.14 • Services Components: added HSL_AUN and HSL_AUZ

• WLS Preparation: fixed typos

• Additional Security Aspects: removed remarks about patch 28278427
(already covered by certification matrix)

10.18.2.1.0 1.15 • Added example properties for new PSL service with shortname zvp

• Added description of allowedorigins property to protect against cross site
scripting attack

10.18.2.2.0 1.16 • Added additional deployment notes for HSL_C2B

10.18.2.3.0 1.17 • Added Appendix for HSL_JUP

• Introduction of properties file templates

10.19.1.0.0 1.18 • No changes. Republished with different part nr.

10.19.1.4.0 1.19 • Added properties for logdirectory and logfilesuffix

• The operation of developermode changed

• Change in properties template is described

• Updated description of data source creation

10.19.2.0.0 1.20 • Added description of deployment check verifyInterfaceVersion

10.20.1.0.0 1.21 • No changes, republished.

10.20.3.0.0 1.22 • Adapted for impact of DB 19c and FMW12.2.1.4 certification

10.20.4.0.0 1.23 • Added new recommended Initial Capacity configuration option for data
sources in Creating a Data Source paragraph

10.20.7.0.0 1.24 • Introduced HSLBOWS.ear and adapted deployment instructions and
references to individual web service deployments.

• Introduced Appendix I as an example of limiting access to web
applications through the use of a security policy

10.21.1.0.0 1.25 • No changes, republished with new part number

10.21.2.0.0 1.26 • Added descriptions about Security Models

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual iv

Release Version Changes

10.21.5.0.0 1.27 • Added more information on the Custom Roles security model

10.21.7.0.0 1.28 • Custom Roles: added instructions

• Added Statement Timeout

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual v

RELATED DOCUMENTS

A reference in the text (doc[x]) is a reference to another document about a subject that
is related to this document.
Below is a list of related documents:

Doc[1] Object Authorisation within OHI Back Office (CTA 13533)

Doc[2] Back Office HTTP Service Layer User Manual (CDO 15195)

Doc[3] OHI Back Office JET Application Installation & Configuration Manual
(CTA13686)

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual vi

Contents

1 Introduction ...9

1.1 Licenses ..9

2 Architectural overview .. 10

2.1 Services components .. 10

3 Installation of HSL services ... 12

3.1 Terminology .. 12
3.2 Sizing/load aspects .. 12

3.2.1 Deployment choices .. 13
3.3 Database installation .. 13

3.3.1 Creating a HSL database account ... 13
3.4 WLS Preparation... 14

Using setUserOverrides.sh ... 15
3.4.1 Requirements ... 16
3.4.2 Creating a domain... 16
3.4.3 Creating Managed Server(s) .. 19
3.4.4 Creating a machine definition ... 20
3.4.5 Creating a data source .. 22

3.5 Security Configuration... 28
3.5.1 Set up security realm .. 29
3.5.2 Setup Weblogic user for accessing HSL application .. 29
3.5.3 Enable SSL .. 36
3.5.4 Setting up a key store ... 37
3.5.5 Configure Managed Server logging level .. 37
3.5.6 Set user lockout ... 38

3.6 (Re)deployment of the HSL Application ... 39
3.6.1 Deploy to a single Managed Server .. 40

..3.6.1.1 Deploy EAR file .. 40

..3.6.1.2 Specifiy configuration file ... 41
3.6.2 Deploy to multiple Managed Servers ... 42
3.6.3 Deploy to cluster ... 42
3.6.4 Deploy for multiple environments (DTAP) ... 42
3.6.5 Validate deployment .. 43

3.7 Additional Security Aspects ... 43
3.7.1 Deploying HSL Application for use with any weblogic user.............................. 44
3.7.2 Using a custom security policy for a deployed application 45
3.7.3 Cross Site scripting protection... 45

4 Deployment validation .. 46

4.1 Testing with Curl .. 46
4.2 Template Listing ... 47
4.3 getDatabaseInfo .. 47
4.4 verifyInterfaceVersion ... 48
4.5 Get Online Swagger definition ... 49

4.5.1 Saving the Swagger definition to a file ... 49
4.5.2 Viewing the Swagger definition.. 49

4.6 Troubleshooting .. 50

5 Configuration Files for HSL services ... 52

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 7

5.1 Properties file templates .. 52
5.2 Back Office HSL properties file .. 52

5.2.1 hsl.<app>.jndiname / hsl.jndiname ... 52
5.2.2 hsl.<app>.authorization / hsl.authorization ... 53
5.2.3 hsl.<app>.usercontext / hsl.usercontext .. 53
5.2.4 hsl.<app>.usercontext.control / hsl.usercontext.control 54
5.2.5 hsl.<app>.developermode / hsl.developermode ... 54
5.2.6 hsl.<app>. allowedorigins / hsl.allowedorigins ... 54
5.2.7 hsl.<app>.logdirectory, hsl.<app>.logfilesuffix & hsl.<app>.logfile /
hsl.logdirectory, hsl.logfilesuffix & hsl.logfile ... 54
5.2.8 hsl.<app>.loglevel / hsl.loglevel .. 56
5.2.9 hsl.<app>.log.limit / hsl.log.limit ... 56
5.2.10 hsl.<app>.log.count / hsl.log.count ... 56
5.2.11 hsl.<app>.log.append / hsl.log.append .. 57
5.2.12 Activating changes to hsl.properties .. 57
5.2.13 Troubleshooting hsl.properties ... 57
5.2.14 Keeping hsl.properties up to date ... 57

5.3 Examining the Log File .. 57
5.3.1 Changing the log format .. 59

6 Upgrading HSL services .. 61

7 Appendix A – Service Information... 63

8 Appendix B – Removing a WLS domain ... 64

9 Appendix C – Testing with SoapUI ... 65

9.1 Create REST project and import Swagger definiton 65
9.2 Create a request .. 65

10 Appendix D - Generating a WADL file .. 67

10.1 Create a REST project in SoapUI for your HSL application 67
10.2 Open the Service Viewer for the REST Project ... 67
10.3 Export WADL from your REST project ... 67

11 Appendix E – Authentication and Authorization ... 69

11.1 HTTP OPTIONS method ... 69
11.2 OAUTH 2.0 token authentication and validation .. 69

11.2.1 EAR File Deployment ... 70
11.2.2 Configuration .. 70
11.2.3 Authorization methods .. 70
11.2.4 Access Token Validation .. 70
11.2.5 Place Holders ... 71
11.2.6 POST Example ... 72
11.2.7 GET example.. 72
11.2.8 Setting user context ... 72
11.2.9 Overriding User Context with Back Office Parameter 73

12 Appendix F - HSL_AUN and HSL_AUZ Services .. 74

12.1 Disclaimer .. 74
12.2 HSL_AUN Authentication Service .. 74
12.3 HSL_AUZ Authorization Service ... 74
12.4 Use of JWT ... 75

12.4.1 Payload ... 75
12.4.2 Token Verification ... 75

12.5 HSL Properties .. 75
12.5.1 Signature Encryption .. 75
12.5.2 Authorization .. 76

12.6 Deployment ... 76
12.7 Testing .. 76

13 Appendix G – HSL_JUP service .. 77

13.1 Back Office parameters .. 77

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 8

13.2 HSL Properties .. 77
13.3 Deployment ... 78

14 Appendix H – HSL C2B services – deployment points of attention 79

14.1 HSL_C2B deployment aspects .. 79

Appendix I – Limiting access to a specific web application inside a module 81

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 9

1 Introduction

The OHI Back Office HTTP Service Layer is an optional component to provide so-
called Use Case services.

Use Case services constitute a group of specific operations aiming to support use
cases that are common for Dutch healthcare payers. Examples of typical use cases:
requesting a new policy, adding an insured member, changing insured products,
changing payment method etc.

OHI BO Use Case Services are implemented through the HTTP Service Layer (HSL).

The services in this service layer are based on RESTful Services technology which has
the following advantages for current web application frameworks (like AngularJS
and Oracle JET):

• accessible through HTTP (for example through Javascript)

• Supports (Javascript friendly) JSON as input and output formats

• standardized interface language through using HTTP verbs (GET, POST,
PUT, PATCH, DELETE)

• standardized set of exceptions through HTTP error codes

This HTTP Service Layer is intended to ease integration in a Service Oriented
environment.

This document describes the generic technical details regarding the HTTP Service
Layer, how to install and update it and how to change configuration settings.

1.1 Licenses

Customers are required to have the appropriate license for using the HTTP Service
Layer. Customers who have acquired a Connect to Back Office (C2B) license or an
OHI SOAP ServiceLayer (SVL) license are currently permitted to install and use the
web service component of the HTTP Service Layer. This is valid until further notice.

The corresponding PL/SQL services may not be used when no Connect to Back
Office license, SOAP Service Layer license or HTTP Service Layer license has been
obtained.

For further information please consult your OHI sales representative.

Attention: OHI Back Office release 10.20.3.0.x and 10.20.4.0.x are certified

against Fusion Middleware 12.2.1.3.0 and 12.2.1.4.0. This document will

assume an installation of Fusion Middleware 12.2.1.4.0. For installation of

Fusion Middleware 12.2.1.3.0, see version 1.21 of this document, as delivered

with OHI 10.20.1.0.0.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 10

2 Architectural overview

This chapter gives a high level architectural overview of the current HTTP Service
Layer implementation.

2.1 Services components

The functionality of each service is implemented through a PL/SQL service package.
The service interface is provided through a Java layer.
Jersey, JAX-RS and MOXy are used to serialize and deserialize JSON objects and for
input validation.
JDBC is used to map Java objects to SQL objects and vice versa.
The PL/SQL service package performs the required operations, using operation
parameters and inbound objects to communicate with the OHI Back Office database.

WLS runtime process

Service WAR

SQL types model Java class model

Java service class

J
D

B
C

Java libraries

Including Jersey, MOXy and JAX-RS

WLS libraries

PL/SQL service

package

Request

JSON

Response

JSON

Metadata

JSON/YAML

Remote Authorization

Service

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 11

The high level schema below shows how the services are deployed. It also shows the
database connection to OHI which uses a database account with restricted access to
execute the HSL service implementation in PL/SQL.

Weblogic Server

Database server

HSL database account
with limited privileges

OHI object schema owner

PL/SQL code for HSL
SQL types for HSL

Managed server: OHIBOWebservices (example name)

Datasource

 JDBC Connectionpool

HSLBOWS.ear

HSL_POL.war
HSL_CLA.war
HSL_C2B.war
HSL_REL.war
HSL_BSN.war
HSL_ZPN.war

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 12

3 Installation of HSL services

This chapter describes the steps to (re)install the HSL services.

This chapter contains the following parts to separate the various work areas:

• Sizing/load aspects

• Database installation

• WLS preparation

• Security configuration

• (Re)deployment of the HSL application

• Additional Security aspects

3.1 Terminology

Note the following use of terminology:

• HSL stands for HTTP Service Layer. The underlying technology is based on
RESTful service technology.

• A HSL service has one or more service operations.

• Each HSL service resides in its own HSL application.

• The HSL applications are packaged together as an EAR file, which is deployed to

the WebLogic application server.

3.2 Sizing/load aspects

From the “Introduction” and the “Architectural overview” chapters it should be clear
that the HSL services are implemented through PL/SQL in the database.

The Java layer providing the REST interface handles request and response messages.
It validates an incoming request, calls the PL/SQL service implementation to perform
the required operation and transforms the result into a response message.

This choice means that the larger part of the processing is carried out on the database
server and only a small part is handled on the application server.
Since the architecture for HSL is similar to the SVL services, the distribution of loads
on the application and database server is expected to be comparable.
Based on the SVL services it may be assumed that for heavy processing only 1 CPU
thread will be busy processing HSL service requests if 10 CPU threads are needed for
the database processing for these requests.

Based on SVL experience, most of the simpler service operations on a well-sized and
well-performing production environment should not take more than 0.1 up to 0.5
second in total elapsed time when measured on the WebLogic Server. Of this elapsed
time most of the time should be spent by the database server handling the call, as
mentioned before.

More complicated calls and service calls that return large data sets may take more
time but usually should not exceed response times of more than a few seconds. As an
example, if it would be offered, a typical premium calculation call should be executed

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 13

within a second and a large set of claim lines (several hundreds) should usually be
returned within 5 to 10 seconds.

3.2.1 Deployment choices

The overall load on the OHI application resulting from HSL service calls is customer
specific and may change over time.

HSL services are likely to be used by customer-facing applications. Although it may
technically be possible to deploy HSL services to the application server running the
Forms GUI for internal users, you should be aware of the peak loads from HSL
services during commercial campaigns. These loads may well exceed your normal
capacity. You should devise your own strategy to cope with these extra loads. This
strategy may include using separate application servers for internet users, using a
separate database with cached data for information requests, throttling inbound
requests, etc.

If you choose to install HSL services on the application server for the Forms GUI it is
advisable to actively monitor the respective loads of Forms processes, SVL processes
and HSL processes. This allows you to pick up trends to help you refine your
infrastructure strategy.

Especially if you have multiple applications using the same HSL services, it may help
to use a service bus to create a ‘separation of concerns’. The service bus allows you to
map the HSL interface specification to a customer-specific interface which means less
maintenance on the client applications when deploying a new version of a HSL
service. As long as the mapping on the service bus is synchronized with the HSL
service interface, the code client applications can remain the same.

Stringent requirements for high availability and failover are also reasons to consider a
service bus as a go-between.

3.3 Database installation

All database components of the HTTP Service Layer are owned by the OHI Back
Office schema and are installed through the OHI Back Office release installation
procedure.

To use the database components of the HTTP service layer, one or more database
accounts must be created with HTTP Service Layer access privileges.

Before creating the account(s), check if you are licensed to use the HTTP Service
Layer.

Please check if you have a database object (package) HSL_UTIL_PCK in the OHI Back
Office schema. If not, something went wrong regarding the installation of the HTTP
Service Layer code. If this is incorrect please contact the OHI Support department.

If the package is present in your database you can continue with the database part of
the installation.

3.3.1 Creating a HSL database account

The OHI Back Office schema owns the PL/SQL code to implement the HTTP Service
Layer but may not be used to execute the services.

The use of a separate database account to access the HTTP Service Layer components
reduces the risk of accessing unauthorized OHI data and makes that account
accountable for HSL actions. The HSL account(s) need a minimum of object
privileges to the HSL database objects.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 14

One or more HSL accounts can be created:

• Default HSL account for use with WebLogic application server
This account is configured in the HSL properties file as the default account for
HSL service requests.

• Optional additional HSL accounts for use with WebLogic application server.
These may be configured in the HSL properties file for one or more specific
services.

• Additional HSL account for use with bespoke PL/SQL code development by the
customer. Please follow the directions in Doc[1].

The following steps are needed to setup a HTTP Service Layer database account:

1. Create a schema owner, for example HSL_USER. Determine the password
policy, temporary tablespace, etc. according to your company standards but
beware there is no interactive login which might show expiration messages
for the password due to the enforced password policy.

2. Grant create session system privilege to this account.

3. Grant the HTTP Service Layer object privileges: logon as the OHI Back Office
schema owner, enable server output, and run

alg_security_pck.HSL_grants

(pi_owner => ‘<ohibo_owner>’

,pi_grantee => ‘<hsl_user_account>’

)

Example:

execute

alg_security_pck.HSL_grants

(pi_owner => 'OZG_OWNER'

,pi_grantee => 'HSL_USER');

IMPORTANT: This command needs be run only once. While installing
subsequent OHI BO updates, the privileges of the HSL user accounts are
automatically updated.
However, if you run into ORA-01403 errors during an execution your first
check should be to run this command in sqlplus, enabling server output
before running, and see whether missing grant privileges were granted.

3.4 WLS Preparation

When the database account has been created and granted successfully, a WebLogic
Server environment (software home) must be prepared for deploying the HSL
application.

We expect that you are familiar with the WebLogic concepts like ‘Domain’, ‘
Managed Server’, ‘Cluster’, etc.

These are your options:

• Use the same WebLogic environment which is used for servicing the OHI Back
Office user interface and batches. In this case you should create a new WebLogic
domain (with a new Admin Server) for the HSL applications to prevent
interference with the GUI application.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 15

• Deploy the HSL applications in a separate WebLogic environment (possibly on a
separate server). This allows you to separately upgrade or patch the different
WebLogic environments, or implement a workload distribution.

Deploy HSL applications to multiple environments for better scalability. Be sure
to deploy each HSL application only once in a Managed Server or a cluster of
Managed Servers.

• For testing purposes you may want to have multiple versions within the same
domain. In that case you should have a separate Managed Server for each
deployment.

Some remarks about installing in a separate WebLogic environment:

• The OHI Back Office GUI application (Forms) installation requires a
WebLogic Server “Infrastructure” installation. That means the domain
created for Forms needs to have its own database schemas with OPSS and
Audit database tables (created by RCU). For the HTTP Service Layer domain
these schemas are not required provided you do not select more components
during the domain configuration than described.

• When installing in a separate WebLogic Server environment, use a different
Installer: use the “Generic” installer instead of the “FMW Infrastructure”
installer. When installing in a separate WebLogic environment make sure the
correct components are installed when creating the Domain. You need at
least:

o Weblogic Advanced Web Services for JAX-WS Extension -

12.2.1.4.0 [oracle_common]

o Weblogic JAX-WS SOAP/JMS Extension -

12.2.1.4.0 [oracle_common]

When you have not installed these components your web services will
respond with ‘There are error messages.’ All info in the
functionalFaultType will contain question marks (???).

The instructions in the following paragraphs cover the setup of a new domain
including the setting up of Managed Servers, a machine definition, data sources, etc.

This will support the following scenarios:

✓ Creating a separate domain with a single Managed Server

✓ Creating a separate domain with a cluster of 2 Managed Servers

✓ Adding a Managed Server to an existing domain

Using setUserOverrides.sh

Traditionally, Server Start arguments for the WebLogic Managed Server had to be
added in multiple locations (depending on the way the Managed Servers were
started):

• Via the Admin console: in the tab “Server Start” in the field “Arguments” for

Admin Servers and Managed Servers

• In the script $DOMAIN_HOME/bin/startManagedWebLogic.sh for
Managed Servers

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 16

• In script $DOMAIN_HOME/bin/startWebLogic.sh for Admin Servers

WebLogic 12.1.2 introduced a better way to pass Server Start arguments to the
WebLogic servers. See document “How To Customize Env Parameters Via
'setUserOverrides.sh' File (In WLS 12.1.2.0.0 ~ 12.2.1.3.0) (Doc ID 2138183.1)” on My
Oracle Support for details.

By using setUserOverrides.sh the Server Start arguments only need to be maintained
in one place. This document will assume you use this new method and it will only
give instructions for setting the Server Start arguments using this method. The file is
located here:

$DOMAIN_HOME/bin/setUserOverrides.sh

3.4.1 Requirements

The following requirements/limitations must be taken into account:

✓ A certified WebLogic Server version including JAX-WS (SOAP/JMS)
extensions. The HSL services must be deployed on a single Managed Server
or a cluster of Managed Servers (the ‘target’).

✓ The HSL services may not be deployed on a Managed Server which is also
used for hosting the OHI GUI application (Forms). The Managed Server may
not belong to a cluster used for deploying the GUI application.

✓ One deployment can only service one single OHI Back Office environment (it
connects to a specific connection pool which accesses a specific OHI Back
Office ‘instance’).

If the HSL application must be deployed more than once (for servicing different OHI
Back Office environments) each deployment should be on its own Managed Server or
Cluster.

HSL can be deployed on the same Managed Servers as SVL.

3.4.2 Creating a domain

Before creating a Domain, be sure to understand the difference between a “FMW
Infrastructure” and a “Generic” WebLogic installation, and the consequences. Make
sure the environment variable DOMAIN_HOME is not set.

If you create the new Weblogic Domain from the same software home as the Forms
Domain, you have to choose the same “Domain Mode” (Development or Production),
to avoid errors during startup of the new Managed Server(s).

For creating a new WebLogic domain please use the Configuration Wizard (typically
in the common/bin folder of the WebLogic Server home, so for example
$MW_HOME/oracle_common/common/bin/config.sh)

Specify the domain location. This is inside the Weblogic Home by default, but you
can specify a location outside the WebLogic Home. The last part of the location will
be the Domain Name.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 17

When creating a new domain select at least the options as shown below.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 18

In the next screens, specify the username and password for the domain administrator
account. When prompted for developer or production mode choose production mode
and pick a JDK.

In this documentation we choose to configure only the Administration Server using
the wizard. The Administration Server can be used as the starting point for additional
configuration options you may want to choose later:

For the Administration Server a free port number must be specified. Enable SSL to
support secure connections. An example using non default ports is shown below.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 19

3.4.3 Creating Managed Server(s)

Start the Administration Server (of the existing or newly created domain) using the
startWebLogic.sh script (this is present in the root folder of the domain folder, which
you created through the Configuration Wizard).

After it has started, logon to the console and choose the Servers option in the left
panel:

In the Change Center choose Lock & Edit to get into editing mode.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 20

This enables the New option in the ‘Summary of Servers’ overview:

You need to provide a name and listening port for the Managed Server. For easy
reference you may want to include the domain name in the name of the Managed
Server, for example ‘ms_ohi_hsl’.

At this point you should decide whether or not to make the Managed Server part of a
Cluster.

If no Cluster exists you can create one; if there is an existing Cluster you can make the
Managed Server a member of the Cluster.

3.4.4 Creating a machine definition

It is recommended to create a machine definition to make it easier to start up
Managed Servers:

You can now assign Managed Servers to the new machine definition. In the example
below Managed Server ms_ohi_hsl is assigned to Machine1.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 21

If you start a Node Manager you can use the console to start the Managed Servers.

You need to associate the machine with the Node Manager so that the Node Manager
can start the Managed Server within the domain of the machine definition.

Do this in the Node Manager tab for the machine definition like in the example
below:

Make sure the listen address is the actual listen address that is used by the Node
Manager. This is passed as first parameter to the
$WL_HOME/server/bin/startNodeManager.sh shell script. The correct value

can be found as ListenAddress in the file nodemanager.properties.

This address can be changed in the file nodemanager.properties which is located in
the <domain home>/nodemanager folder. This is necessary when you have a node
manager per domain.

You need to create a boot.properties file for the new Managed Server for the domain
in the domain home Managed Server ../data/nodemanager.

This is done automatically when you start the Managed Server in the console (after
you have started the AdminServer for the domain).

When you are running in Development Mode, a boot.properties file is automatically
created for the AdminServer.

Because you are running in Production Mode, you need to create the file yourself, in
the $DOMAIN_HOME/servers/AdminServer/security folder. This file is used when
the AdminServer is started by the script startWebLogic.sh. If the file is not present,
the script prompts for the username/password. The same goes for the Managed
Servers when you start them through a script.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 22

3.4.5 Creating a data source

The HSL application needs a data source to connect with the OHI Back Office
database.

To create a data source, navigate in the Domain Structure panel on the left to the data
sources option. Choose ‘Lock & Edit’ so you are able to create a new data source.

Create a new ‘Generic data source’ in case of a ‘regular’ database instance:

When the data source connects to a RAC data source it is more useful to choose for
‘GridLink Data Source’ as this can respond to instance state changes.

Next, choose a name for the data source to reflect its purpose. For example, you may
want to reference the database name: DS_OHI_prd.

Next specify a JNDI name. The JNDI name will be used in the properties file for
starting the HSL application.

Specify ‘Oracle’ as the database type (for GridLink this is a predefined value).

An example:

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 23

Next you need to specify a database driver. For regular database instances, use
“Oracle’s Driver (Thin) for Service connections; Versions: Any”.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 24

If you are using RAC (or considering to use RAC) choose the thin RAC driver if you
created a regular data source (we do not advise this anymore but in previous versions
of this manual this was the usual option). Do not use the XA driver.

When you have chosen to create a GridLink data source use “Oracle’s Driver (Thin)
for GridLink Connections, Versions: Any”.

Choose the following Transaction Options:

• ‘Supports Global Transactions’;

• ‘One-Phase Commit’ (this is why you don’t need the XA driver)

Example:

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 25

Next specify the connection details like the example on the page below. Be sure to use
values which are valid for your environment.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 26

On the next page the result of your answers will be shown. You can test the
connection with the data shown (the table name is not relevant).

When you navigate to the next page you can select the targets where the data source
should be deployed to. In the example below only the Managed Server shown will
be used for deploying the data source to.

Press Activate Changes to conclude your configuration.

At this point, go back to your data source and re-open the connection pool tab.

Initial Capacity setting

Consider setting the ‘Initial Capacity’ to 0. During the setup of new connections a
health check, if you configured this (for more information see the OHI Release
Installation manual), claims a shared lock that might stall (patch) sessions and vice
versa.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 27

Setting this option to zero implies no connections are set up after the connection pool
is initialized but only on demand. Press Lock & Edit and set the option to 0 and press
Save.

Wrap Data Types setting

Navigate to the ‘Advanced’ part.

Ensure that the option ‘Wrap Data Types’ is unchecked. This setting is needed for
passing CLOB objects to and from the database and when activated slows down
execution. Uncheck this option and press Save and Activate the change.

Example:

Statement Timeout

Consider activating the ‘Statement Timeout’. This is the time after which a statement
currently being executed will time out. This can be used to limit the impact of run-
away queries (.e.g if a bad execution plan is chosen or a wildcard search is not
selective). Especially in scenarios where the requestor (e.g. OSB) stops listening after
a certain period – and possibly retries the same operation several times – continued
execution of these long running queries can overload the databaseThis can have
serious effects on the performance of other web services. In those cases it is better to
cancel the query (after a period that is a little longer than the timeout of the
requestor).

Queries that are canceled will result in a technical fault:

ORA-01013: user requested cancel of current operation

 or
ORA-03111: break received on communication channel

Note that it is possible to specify different data sources for different web services (see
properties file for the HSL web services). This can be used to specify different
timeouts for different web services. You could create a data source with a long
timeout for web services that usually take longer and one for web services that are
normally quick.

Be aware that the ‘Statement Timeout’ is only about database processing. Any
processing of output by the Middle Tier is not included in this period.

To activate ‘Statement Timeout’, go back to your data source and re-open the
connection pool tab.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 28

Navigate to the ‘Advanced’ part and change the default value of -1 to a value (in
seconds) that is appropriate for your situation.

Press ‘Save’ and ‘Activate Changes’ to conclude your configuration. You may have to
restart your Managed Server to activate this setting.

3.5 Security Configuration

All HSL applications are preconfigured to use basic authentication and SSL
encryption. This is the default policy. The HSL applications are also preconfigured to
be used by a WebLogic user “restuser”.

Before you can install HSL applications, you need to decide on a Security Model for
the HSL Web Services. See Comparison of Security Models for Web Applications and
EJBs for an introduction of the different Security Models. Your choice will depend on
the security standards set by your company.

A very short summary:

• DD Only (Deployment Descriptors Only): choose this option if you want to
use the default policies and role-mapping and allow the WebLogic user
“restuser” to execute the HSL Web Services.

• Custom Roles: choose this option if you want to use the default policies but
with a customizable role. The default policies are coupled to the role
“restuser-role”, which needs to be created using the Admin Console. Unless
you create and assign this role, all requests will be refused with HTTP 403
“Unauthorized”.

• Custom Roles and Policies: choose this option if you want to overrule the
default policy of each web service and create your own roles, eg. To limit
access to certain of the HSL Web Services. See paragraph Additional Security
Aspects.

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/roles/secejbwar.html#GUID-D38B3272-AD78-450A-9BED-29CDA571C31A
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/roles/secejbwar.html#GUID-D38B3272-AD78-450A-9BED-29CDA571C31A

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 29

If you want to use OAUTH 2.0 token authentication and validation (as an alternative
to Basic Authentication) you need to choose ‘Custom Roles and Policies’. See
Appendix E – Authentication and Authorization in this document for details.

The following steps are needed to set up minimal security for the HSL application:

• Set up security realm

• Setup Weblogic user for accessing HSL application

• Enable SSL

• Configure key store

• Configure logging level

• Configure user lockout

3.5.1 Set up security realm

Create a security realm if this has not already been done (normally realm ‘myrealm’
will already be present).

The security realm ‘myrealm’ as shown below will be used to configure the security
at application level.

If there are no other security realms, this will be the default security realm.

3.5.2 Setup Weblogic user for accessing HSL application

Each operation of an HSL application requires basic authentication. This means that
each call must be made as an authenticated WebLogic user.

Depending on the Security Model you choose for deployment, the WebLogic user
that makes the Web Services requests must have additional authorization.

..3.5.2.1 DDOnly

The name of the default Weblogic user to access the HSL application is defined in a
preconfigured deployment descriptor in the EAR file. This default name is ‘restuser’.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 30

If you deploy the HSL application with the default security model (DD Only) you
will need to create the Weblogic user ‘restuser’ and authenticate as ‘restuser’ when
invoking the HSL application.

To set up the Weblogic user ‘restuser’, select ‘Users and Groups’ for your security
realm:

Add ‘restuser’ to the pool of Weblogic users:

..3.5.2.2 CustomRoles

If you choose Security Model “Custom Roles”, create and /or customize the role
“restuser-role” now. See Securing Resources Using Roles and Policies for Oracle
WebLogic Server for more information on how to setup a secure role.

To create the role, assign it to a Group and add WebLogic users to that Group:

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/roles/secroles.html#GUID-79645C45-C982-454D-A22C-6115B86EDAD3
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/roles/secroles.html#GUID-79645C45-C982-454D-A22C-6115B86EDAD3

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 31

Choose “Security Realm” -> your realm -> “Users and Groups” -> “Groups”

Click the button “New”.

In the next screen, fill in a name and a description

Click the button “OK”.

Choose “Security Realm” -> your realm -> “Roles and Policies” -> “Realm Roles”.

Expand the Node “Global Roles” and click on the node “Roles”.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 32

In the next screen, click the button “New”.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 33

In the next screen, fill in the name of the pre-defined role “restuser-role” and click the
button “OK”.

Back in the screen “Global Roles”, click on the role “restuser-role” you have just
created. In the next screen, clikc on the button “Add Conditions” below “Role
Conditions :”

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 34

In the next screen, select “Group” and click button “Next”.

In the next screen, enter the name of the Group you created before, and click the button
“Add” to move the name to the box below. Then click button “Finish”

This should result in:

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 35

Do not forget to click button “Save”.

Now add an existing or new user to the Group to authorize that user for HSL, using
the Security Model “CustomRoles“. To create a new user, see the step above, for
DDOnly.

To add a user to the Group:

Choose “Security Realm” -> your realm -> “Users and Groups” -> “Users”. Click on
the user you want to authorize. In the next screen, move the Group you created to the
right, and click the button “Save”.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 36

..3.5.2.3 CustomRolesAndPolicies

If you do not want to authenticate an HSL application using the predefined weblogic
user ‘restuser’ and/or the predefined role “restuser-role”, you can choose to deploy
using ‘Custom Roles and Policies’. See Additional Security Aspects below.

If you choose Security Model “Custom Roles And Policies”, create your custom roles
and/or policies now.

Attention: deploying HSL with ‘Custom Roles and Policies’ but not adding

your own roles and policies will allow any authenticated WebLogic user to

execute the application.

3.5.3 Enable SSL

The HSL services are preconfigured to use a default policy which uses SSL. Therefore
you need to enable SSL for every Managed Server to which you deploy the HSL
application.

Go to the Managed Server configuration and enable SSL in the ‘Configuration >
General’ tab:

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 37

In previous versions op WebLogic, you nneded to configure Java Secure Socket
Extension (JSSE) if you JDK version was below JDK 1.8.0_162. Because the miminum
JDK version for WebLogic 12.2.1.4.0 is JDK 1.8.0_221, no action is needed any more.

3.5.4 Setting up a key store

For testing purposes you may want to use the built-in keystore as shown below in the
‘Configuration > Keystores’ tab for the Managed Server:

Note that in a production environment it is not safe to use the demo keystore.

For more information about configuring keystores please read the WebLogic
documentation. As a starter you can use this address: Configuring Keystores

It contains references to pages which describe in more detail how to obtain private
keys, digital certificates, etc.

You should take action and not rely on the demo keystore!

3.5.5 Configure Managed Server logging level

The standard logging level for a Managed Server regarding security issues is
intentionally non-informative to discourage fraudulent users.

A typical security-related error message looks like:

Got ‘Unknown exception, internal system processing error.’

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/secmg/identity_trust.html#GUID-7F03EB9C-9755-430B-8B86-17199E0C01DC

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 38

If you are trying to setup the HSL application to work with SSL and basic
authentication in a non-production environment you can configure verbose logging
with the following Server Start argument for the Managed Server:

-Dweblogic.wsee.security.debug=true

Create a new file $DOMAIN_HOME/bin/setUserOverrides.sh and add the
following text:

#!/bin/bash

echo Adding Settings from UserOverrides.sh

global settings (for all servers)

this will decrease start up times

JAVA_OPTIONS="-Djava.security.egd="file:/dev/./urandom" ${JAVA_OPTIONS}"

export JAVA_OPTIONS

CONFIG_JVM_ARGS="-Djava.security.egd=file:/dev/./urandom ${CONFIG_JVM_ARGS}"

export CONFIG_JVM_ARGS

specify additional java command line options for the Admin Server

#if ["${SERVER_NAME}" = "${AS_NAME}"]

#then

#fi

#export JAVA_OPTIONS

specify additional java command line options for specific servers

if ["${SERVER_NAME}" = "ms_ohi_hsl"]
then

 # add settings for HSL

 # Custom Setting for ms_ohi_hsl to set debug level for SSL

 JAVA_OPTIONS="-Dweblogic.wsee.security.debug="true" ${JAVA_OPTIONS}"

fi

export JAVA_OPTIONS

Replace the server name ms_ohi_hsl with your server name.

When startup times of your service calls are important and the security of the
connection is less important you may consider to specify an alternative for retrieving
cryptographically strong random numbers (included above):

JAVA_OPTIONS="-Djava.security.egd="file:/dev/./urandom" ${JAVA_OPTIONS}"

Restart the Managed Server to get the new verbose messages later on.

3.5.6 Set user lockout

While setting up HSL services for testing you may want to disable user lockout.
In a production environment you should enable user lockout to discourage
fraudulent use. Navigate to the Security Realm and use the ‘Configuration > User
Lockout’ tab.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 39

3.6 (Re)deployment of the HSL Application

The HSL web applications are packaged in a single archive named ‘HSLBOWS.ear’.
This EAR file must be deployed to WLS.

The EAR file containing the HSL applications resides in the $OZG_BASE/java
directory on the application server containing the OHI Back Office software release.

You can copy this to another location if required.

Ensure that the .ear file is located on the WLS Admin Server host (this is the server
running the WLS Administration Console).

Note that you cannot use an older EAR file with a newer OHI Back Office release and
vice versa.

The following scenarios are discussed:

• Deploy to a single Managed Server

• Deploy to multiple Managed Servers

• Deploy to a cluster

• Deploy for DTAP (development, test, acceptance, production)

Until OHI Back Office release 10.20.6.0.0 all HSL applications were deployed
separately. Before deploying ‘HSLBOWS.ear’ ensure that none of the
HSL_<app>.war files are deployed. If HSL services do exist they need to be deleted
in the WLS console. Note that HSL_AUN, HSL_AUZ and HSL_JUP are not part of
the ‘HSLBOWS.ear’ but are deployed via the ‘OHIJET.ear’.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 40

3.6.1 Deploy to a single Managed Server

..3.6.1.1 Deploy EAR file

In the Domain Structure pane, select the Deployments branch. This will show the
applications that have already been deployed

If you want to shorten this list, use ‘Customize this table’ to exclude the libraries.

Select ‘Lock & Edit’ to enter editing mode, this will enable the ‘Install’ button which
you need to use next.

In the new window, locate the .ear file on the WLS server, select one and press ‘Next’:

Note: See Appendix E to decide if you need to install HSL_AUN, HSL_AUZ and
HSL_JUP too.

Select ‘Install this deployment as an application’, press ‘Next’ and select the target(s)
for deployment. In the example below only Managed Server ms_ohi_hsl is chosen.

Press ‘Next’ and decide about a deployment name and security model. At this
moment the version of the .ear file is also shown (can contain up to 4 digits like any
application source).

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 41

Select ‘Custom Roles’ if you want to use the default policy and the customizable role
“restuser-role”. Select ‘Custom Roles and Policies’ if you want to overrule the default
of each web service.

Regarding source accessibility, select ‘Copy this application….’ if you want to remove
the EAR file from its current location.

Finish the configuration.

Beware that – in Production mode - you need to Activate your changes in order to
enable the web services. At that moment the deployment will show status ‘Prepared’.

By selecting the deployment in the Control tab and pressing Start → Servicing all
requests the State will change to ‘Active’ (assuming your Managed Server is in
‘Running’ state, the hsl.properties file has been specified and can be found).

..3.6.1.2 Specifiy configuration file

Before using the web services, implement the following actions as described below.
These actions have to be executed only once. There is no need to repeat them when
you update a deployment or delete and install it again.

Add a Server Start argument by adding a line to the file
$DOMAIN_HOME/bin/setUserOverrides.sh you created earlier. Add the line to the
part for the HSL server, as indicated below:

specify additional java command line options for specific servers

if ["${SERVER_NAME}" = "ms_ohi_hsl"]
then

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 42

 # add settings for HSL

 # Custom Setting for ms_ohi_hsl to set debug level for SSL

 JAVA_OPTIONS="-Dweblogic.wsee.security.debug="true" ${JAVA_OPTIONS}"

 # Set location for HSL properties file

 JAVA_OPTIONS="-Dhsl.properties="/u01/app/oracle/product/OHI/vohi/hsl.properties" ${JAVA_OPTIONS}"

fi

export JAVA_OPTIONS

• Make sure to keep the parts with ${JAVA_OPTIONS} on the same line

This example uses a properties file with the name hsl.properties which is located in
the $OZG_BASE folder of your OHI Back Office application server environment, but
you can specify any name and location.

The contents of this file are discussed in a Chapter 5 ”Configuration files for HSL
services”).

When completed, (re)start the Managed Server. This can be done from the WebLogic
Admin console, or from the command line with the following commands;

cd $DOMAIN_HOME/bin

./startManagedWebLogic.sh ms_ohi_hsl http://localhost:7061

The example above contains the Managed Server’s name as first parameter and the
listen address of the Admin Server of the domain as second parameter

Check in the <ManagedServer>.out file in the logs folder of your Managed Server
whether the command line contains the arguments as specified above.

If the file specified by hsl.properties cannot be read , messages as below will show up:

ERROR: logfile could not be set because of: null

3.6.2 Deploy to multiple Managed Servers

You may deploy the application to more than one target.

Example: if you choose to target the application to Managed Servers MS1 and MS2,
the application will be available on separate end points. The URLs of these end points
will only differ in port number.

If you choose this scenario, be aware that each Managed Server should have different
Server Start argument values (hsl.properties).

3.6.3 Deploy to cluster

You may deploy the application on all the Managed Servers of a cluster. This may be
needed for better scalability. Be aware to use some form of load balancing to allow
the use of a single end point.

The best way to implement this type of deployment depends on your specific
situation.

If you are planning a load balanced environment with multiple Managed Servers in a
cluster it is vital that the configuration of every Managed Server is aligned with the
others.

3.6.4 Deploy for multiple environments (DTAP)

If you use several OHI-related environments to support the various DTAP (Develop-
Test-Accept-Production) stages you may want to have different versions of the HSL
application running at the same time.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 43

To implement this you need to:

• Create at least one Managed Server for each of the DTAP stages.

• Create a data source for each OHI Back Office database and deploy that data
source only to the corresponding Managed Server(s).

• Create an hsl.properties file for each Managed Server.

• Configure each Managed Server to start up with the appropriate
hsl.properties.

• Deploy the appropriate version of the HSL application to its corresponding
Managed Server(s) and give it a unique deployment name to identify its
deployment.

3.6.5 Validate deployment

Be aware that the URLs displayed in the Admin Console cannot be used to test or
validate the deployment.

Also note that, even with the correct URLs, you cannot use a browser to test, because
the request needs to send a Request Header “Accept:application/json”.

You may get no response, or a reply like this:

<exceptionResponse>

<internalStatus>Not Acceptable</internalStatus>

<message>Wrong value for Accept</message>

</exceptionResponse>

Instead, use curl, as described in chapter 4 “Deployment validation” or SoapUI, as
described in Appendix C “Testing with SoapUI”.

3.7 Additional Security Aspects

Since HSL services provide an additional channel to access OHI Back Office data, you
must prevent unauthorized use of the HSL applications.

Please consult the ‘Oracle Health Insurance Security Aspects’ guide for more
information about OHI Back Office security aspects.

In order to prevent the exposure of sensitive data or unauthorized changes to the
OHI Back Office data, access of the HSL applications should be limited to trusted

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 44

systems and interfaces. Otherwise people in your organization might be tempted to
try to misuse the functionality provided by the HSL services.

By default, HSL service operations require basic authentication as a minimal policy to
reduce the risk of unauthorized access and network sniffing. Basic authentication
requires HTTPS communication and providing a Weblogic username/password with
each call.

The preconfigured deployment descriptor in the HSL applications requires
authentication by a Weblogic user ‘restuser’. See the instructions for creating this
user in Security Configuration above.

If you deploy using ‘Custom Roles and Policies’ you may:

• Deploy the HSL applications for use with any weblogic user

• Use a custom security policy for a deployed web application

Note that all ‘admin’ requests require Basic Authentication and SSL
(/swagger, /swagger.json, /swagger.yaml, /dbinfo and /templates)

Finally, note that it is your responsibility as an administrator to secure the HSL
services within your organization.

3.7.1 Deploying HSL Application for use with any weblogic user

If you want to deploy a HSL application for use with another weblogic user than the
default ‘restuser’, you should deploy with the security model ‘Custom Roles and
Policies’:

You can now use any weblogic user to access the HSL application.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 45

3.7.2 Using a custom security policy for a deployed application

The Weblogic console allows the administrator to specify a custom security policy for
HSL applications deployed using ‘Custom Roles and Policies’.
For example, a custom security policy can be used:

• to limit access to a specified list of named Weblogic users; or

• to limit access to a group of Weblogic users; or

• to limit access to Weblogic users with a specific role; or

• to limit access to a specific web module; or

• to limit access to a specific web service operation inside a module (see

Appendix I for an example)

• or a combination of the above.

3.7.3 Cross Site scripting protection

As a measure to prevent against potential cross site scripting attacks you can limit the
callers of the REST services by specifying a set of trusted origins. For this the property
‘allowedorigins’ can specify one or more originating (trusted) server URL’s (property
files are discussed later on in this document).

An example:

hsl.allowedorigins=https://server.domain.com:7430, https://localhost:8000

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 46

4 Deployment validation

Especially when deploying a HSL application for the first time, it makes sense to
validate that the HSL application is in working order.

Before you begin, check in the WLS Admin Console that the deployment status of the
HSL application is active.

The following validation tests can be performed by the administrator:

• Template Listing

• getDatabaseInfo operation

• Get Online Swagger definition

Apart from the template listing, each of the validations requires a JDBC connection
between the HSL application and the OHI BO database, so you are not only testing
the deployment itself but also the integration between the HSL application and the
OHI database.

If a validation test fails see the paragraph ‘Troubleshooting’ below to find and resolve
the problem.

The validation tests described below assume that you test with ‘curl’.

4.1 Testing with Curl

An operation of the HSL application can be invoked with many HTTP client tools.
One of these tools is curl, which is present on any Linux/Unix server.
Assuming that you have terminal access to the Linux server running WLS, curl is a
good tool to run the deployment validation tests.

Use ‘curl --version’ to check the curl version. Ensure that you are running curl

7.35.0 or higher as that supports the required SSL implementation.

A typical invocation of a HSL operation using curl would look like this

curl -D - -X <verb> -k -H Accept:application/json --user <user>

<url>

Explanation of the used options and placeholders:

• -D -

Dump response headers to stdout

• -X <verb>

add HTTP verb (GET/PUT/POST/PATCH/DELETE)

• -k

Allow curl to run HTTP requests without checking SSL certificates.

• -H Accept:application/json
Add request header to require a response in application/json format.
This is required for every HSL operation.

• --user <user>

The username of the WLS user used for Basic Authentication.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 47

The <user> must refer to an existing WLS user.
Note that curl will prompt for a password if it is not given at the command line.

• <url>
The path to the HSL operation.

The url format is https://server:port/application/path where

server This must be one of the managed servers listed in WLS
console as an active target for the HSL application.

port The SSL port of the managed server running the HSL
application.

Every HSL operation requires SSL and Basic Authentication.

application This is the name of the HSL application as listed on the WLS
deployment page.

For example, HSL_POL, HSL_REL, HSL_CLA or HSL_C2B.

path The path to this operation.
Each operation is uniquely identified by a <path> + <verb>
combination.

Path examples: ‘/dbinfo’ or ‘templates’ or ‘api/swagger.json’

In the following example, a template listing is requested from the HSL_POL
application on the local WLS host running a managed server at SSL port 7094:

curl -D - -k -–user restuser -H Accept:application/json

https://localhost:7094/HSL_POL/templates

4.2 Template Listing

This operation lists the templates which were used to generate the Java code for the
HSL application. The listing itself is irrelevant, but since the operation does not
require a JDBC connection with the OHI BO database, it is the simplest of all
deployment tests. If it fails the remaining deployment tests will also fail.

The template listing is invoked through

https://server:port/application/templates

In the following example we retrieve the template listing through curl for the
HSL_POL application. It is assumed that we run curl locally on the WLS server and
that the managed server running the HSL application can be accessed through SSL
port 7094.

curl -k -H Accept:application/json --user restuser

https://localhost:7094/HSL_POL/templates

The output is a JSON object listing template files and template versions used to
generate the Java code for the HSL application.

4.3 getDatabaseInfo

This operation provides information about the database connection between the HSL
application and the OHI BO database.
If you are familiar with OHI BO’s SVL services, note that the getDatabaseInfo

https://server:port/application/path
https://localhost:7094/HSL_POL/templates

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 48

operation is comparable with the ‘isAlive’ operation implemented in every SVL
service.

This operation requires a working database connection and invokes the PL/SQL
implementation package specific to the HSL application.

The getDatabaseInfo operation is invoked through

https://server:port/application/dbinfo

In the following example the getDatabaseInfo of the HSL_POL application running
on SSL port 7094 on our local WLS host is invoked through curl.

curl -k -H Accept:application/json --user restuser

https://localhost:7094/HSL_POL/dbinfo

The output is a JSON object with information about the database connection and the
PL/SQL package implementing the HSL application in the OHI BO database:

{

 "basePath": "https://localhost:7094/HSL_POL/pol",

 "database": "BDDEV1722",

 "instance": "CDB02",

 ”jndiName": "HSL_BDDEV1722",

 "plsqlPackage": "hsl_pol_sp_pck $Revision: 4.21 $",

 "user": "HSL_USER",

 "userContext": "MANAGER"

}

4.4 verifyInterfaceVersion

This operation checks whether the deployed version at the application server and the
corresponding objects as installed in the database do match with each other.

The verifyInterfaceVersion operation is invoked through

https://server:port/application/api/verifyInterfaceVersion

In the example below the operation is called for application HSL_CLA running on
SSL port 7410 on the local WLS host:

curl -k -H Accept:application/json --user restuser

https://localhost:7410/HSL_CLA/api/verifyInterfaceVersion

The output is a JSON object like:

{

 "items":

 [{"name":"plsqlSwaggerRevision","value":"4.47.1.1"}

 ,{"name":"warSwaggerRevision","value":"4.47.1.1"}

 ,{"name":"match","value":"true"}

]

}

It states whether both versions do match (true) or not (false). They should match and
if not you should find out what went wrong, is the problem at the database side of
the application server deployment side.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 49

4.5 Get Online Swagger definition

Each HSL application has an operation to generate a Swagger definition which
documents the operations and the objects of the HSL service.
This documentation is not only useful to client application developers, but can also be
used as the basis for code generation.

The Swagger 2.0 standard is supported by many leading software vendors including
Oracle. It is documented on http://swagger.io.

The Swagger definition can be retrieved as follows:

• https:/server:port/application/api/swagger.json

Returns the Swagger definition in JSON format

• https:/server:port/application/api/swagger

Returns the Swagger definition in JSON format

• https:/server:port/application/api/swagger.yaml

Returns the Swagger definition in YAML format

In the following example we retrieve the online Swagger definition of the POL
service running on localhost at SSL port 7094:

curl -k -H Accept:application/json --user restuser

https://localhost:7094/HSL_POL/api/swagger.json

The output is a JSON object containing the Swagger definition of the deployed HSL
application.

For retrieving the YAML format beware that you specify x-yaml in the -H argument:

curl -k -H Accept:application/x-yaml --user restuser

https://localhost:7094/HSL_POL/api/swagger.yaml

4.5.1 Saving the Swagger definition to a file

By redirecting the output of the curl command to a file you can use the contents for
other purposes like viewing the Swagger definition in an editor.

In the example below we save the online Swagger definition of the POL service
running on localhost at SSL port 7094 to a file called ‘saved_swagger.json’:

curl -k --user restuser -H Accept:application/json

https://localhost:7094/HSL_POL/api/swagger.json >

saved_swagger.json

4.5.2 Viewing the Swagger definition

The online Swagger editor (http://editor.swagger.io) provides a user friendly
overview of the Swagger definition.

In the following example we use curl to retrieve the Swagger definition of the
HSL_POL service and save it to a file. Having opened the saved Swagger definition
we then copy its contents into the online Swagger Editor.

https://localhost:7094/HSL_POL/api/swagger.json

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 50

Assuming that the HSL_POL application is running on localhost at port 7094 the
following command can be used to save the Swagger definition to
‘saved_swagger.json’:

curl -k --user restuser -H Accept:application/json

https://localhost:7094/HSL_POL/api/swagger.json >

saved_swagger.json

Open ‘saved_swagger.json’ in a text editor (or browser) and copy the contents of the
entire file.

Open the online Swagger editor by browsing http://editor.swagger.io

Use ‘File > Clear Editor’ to clear the contents of the online editor (if any).
Right-click and paste the contents of the saved Swagger definition into the editor.

The screen will look like this:

You can now navigate through the paths, operations and type definitions of the HSL
service. More information about Swagger can be found on http://swagger.io

4.6 Troubleshooting

If the deployment validation fails, first check that the following items have been
configured correctly:

• hsl.properties configuration file
This sets the data source for your HSL application.

• hsl.properties Server Start argument
This parameter tells the HSL application where to find the hsl.properties file.
If the hsl.properties parameter refers to a non-existing file, the HSL
application cannot be started by WLS and its state will be ‘Failed’.

• Data source configured in hsl.properties configuration file
This data source is used to create the JDBC connection between the HSL
application and the OHI BO database

https://localhost:7094/HSL_POL/api/swagger.json
http://swagger.io/

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 51

• HSL database account
This account in the OHI BO database has access to the PL/SQL components
used by the HSL application.

Troubleshooting tips:

• Edit the hsl.properties file and set ‘developermode=true’ for your HSL

application.

• Restart the managed server for your application.
Error messages will now be included in the output (normally they are
suppressed from the output).

• Reproduce the request with curl. Be sure to use the ‘dumpheader’ option (-D)

to dump the response headers.

The table below may help you to pinpoint the problem:

HTTP Message Problem Action

 WLS Console:
java.lang.RuntimeException:
Property file could not be
loaded.

The configuration file could not
be loaded when starting the
HSL application.

Restart application after ensuring
that the file referred to by the
‘hsl.properties’ Server Start
argument exists and is readable.

500 Unable to resolve ‘xyz' The jndiname property for this
application does not refer to a
valid data source.

Examine hsl.properties and ensure
that the application’s jndiname
points to a valid datasource.

500 ORA-06550:line 1.. The required HSL objects
cannot be accessed by the
database user related to the data
source.

Verify that the data source points to
a HSL database account.

Verify that the HSL database account
has access to the HSL objects (see
‘Creating a HSL database account’
above).

401 Missing Authentication
Scheme

No WLS user credentials
supplied for this request

Add WLS user credentials to the
request. The preconfigured WLS user
is ‘restuser’.

401 Unauthorized Wrong WLS user credentials.
Wrong username and/or
password.

Add correct WLS user credentials to
the request.

422 Functional Error A syntactically correct request
could not be completed due to a
functional error or business rule
violation.

Adapt the request or the database
situation so the cause of the failure is
prevented.

412 Precondition Failed Another user already updated
these data.

Refresh data and try again.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 52

5 Configuration Files for HSL services

In the previous chapter a properties file was referenced in the web service application
server deployment description. This chapter provides more information about that
file.

5.1 Properties file templates

With the OHI Back Office release installation, a properties file template called
hsl.properties.template is distributed to the $OZG_BASE/conf/Back-Office directory.
Each OHI Back Office release may overwrite this template with an updated version.
The hsl.properties.template can be used as an example to create your own
hsl.properties file (for example in $OZG_BASE/conf).

Please note that all values are examples. You should consider if these values are
appropriate for your installation and replace them with your own values if needed.
Values indicated with <<SOME_NAME>> in the templates are placeholders and must

be replaced. This notation is intended to make scripted deployment easier.

Also make sure not to set log level to FINE, FINER or FINEST in production mode,
use SEVERE or WARNING instead.

The generic properties are described in more detail in the next section. The
HSL_AUN, HSL_AUZ and HSL_JUP specific properties are described in more detail
in Appendix E & F. Also consult Appendix E & F to determine if you need to add the
properties for the HSL_AUN, HSL_AUZ and HSL_JUP services at all.

5.2 Back Office HSL properties file

The location of the Back Office properties file for the HSL services is specified as a
Server Start argument for a Managed Server with:

 -Dhsl.properties=<filename>

This file contains properties to configure the various deployed HSL applications:

• Datasource to connect the HSL application to the OHI database

• Default OHI officer on whose behalf a request is executed

• Logging configuration.
Note that HSL services use Java Util Logging (JUL). You may find more
information about the configuration options of JUL on the internet.

In the subsection below, the properties are described in more detail, where “<app>”
is a placeholder for the service name, like “rel” or “pol” (see the properties file
template for more examples).

5.2.1 hsl.<app>.jndiname / hsl.jndiname

The JNDI name of the data source to connect this HSL application to the OHI
database is configured in hsl.<app>.jndiname. If not set, this value defaults to the

value of the hsl.jndiname property.

There is no default value if hsl.jndiname is not set, which will result in an error.

Setting hsl.<app>.jndiname allows you to use different datasources for different
HSL applications. A different datasource may connect to the same database using a

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 53

different account, or to a different database altogether.
As an example, you may want to use HSL_PRD for the REL service and HSL_RO
(‘read only’) for the POL service to avoid changes to the policies in the production
database.

Note that you must use // for each forward slash in the JNDI name.

Example:

hsl.jndiname=jdbc//HSL_BDDEV1622

5.2.2 hsl.<app>.authorization / hsl.authorization

By default, HSL service operations require basic authentication as a minimal policy to
reduce the risk of unauthorized access and network sniffing. Basic authentication
requires HTTPS communication and providing a Weblogic username/password with
each call.

To enforce basic authentication, the value of hsl.<app>.authorization or the

default hsl.authorization property, should be set to BASIC.

If OAUTH2 is desired as authentication method, the value should be set to TOKEN.
More details about the configuration of OAUTH2 can be found in Appendix E –
Authentication and Authorization.

5.2.3 hsl.<app>.usercontext / hsl.usercontext

The OHI officer (Dutch: functionaris) on whose behalf a request is executed.

Setting hsl.<app>.usercontext allows you to set an OHI officer per HSL

application. If not set, this value defaults to the value of the hsl.usercontext

property.

The user context is inserted in the call context which is included in the call to the
PL/SQL implementation procedure. Note that the PL/SQL implementation may set a
different OHI officer based on the request data.

This user context determines the user identity that is used for logging changes to the
data, and which language is used for messages. The value must be the Oracle
username of a registered BackOffice user (in Dutch: “Functionaris”).

Notes:

• the usercontext must always be set, even if

hsl.<app>.usercontext.control is set to TOKEN

• the user context from the hsl.properties file may be overwritten in the SQL at the
HSL application level. This should be documented in the functional
specification(s) which apply to the given HSL application.

• This value does not have to match the technical account (HSL_USER) used for the
DataSource. If you do want to use HSL_USER, make sure you register a
BackOffice user with that Oracle username.

• Do not use the value “MANAGER”. Records created and updated by HSL
functionality should be recognizable as such. Using MANAGER will make it
impossible to distinguish those records from records created or updated by batch
procedures and conversion scripts.

Example:

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 54

hsl.usercontext=HSL_FUNC_USER

5.2.4 hsl.<app>.usercontext.control / hsl.usercontext.control

The property hsl.<app>.usercontext.control controls where the usercontext

is taken from. If not set, this value defaults to the value of the
hsl.usercontext.control property. For the HSL applications using BASIC
authentication, the value should be set to ‘PROPERTY’ (meaning
hsl.<app>.usercontext is used to set the user context).

If OAUTH2 authentication is used, the value TOKEN can also be used. See Appendix
E for a description of this value.

5.2.5 hsl.<app>.developermode / hsl.developermode

For security reasons, a response for a failed request contains minimal information so
that potential hackers cannot use this information to misuse the HSL services. For
functional errors, being either a BAD REQUEST or an OHI business rule violation,
the functional error is returned. For all other errors, the error message will be
replaced with ‘Non-disclosed’. The original error message is written to the log file.

If hsl.<app>.developermode is set to ‘true’, the response for a failed request
contains the original error message for all errors. If not set, this value defaults to the
value of the hsl.developermode property. If hsl.developermode is not set,

developermode is disabled.

Note that in production mode it is strongly advised to delete the
hsl.developermode and hsl.<app>.developermode property from the

hsl.properties file.

See Doc[2] (‘Error Handling’) for the differences in error handling between developer
mode and non-developer mode.

5.2.6 hsl.<app>. allowedorigins / hsl.allowedorigins

For security reasons, to provide cross site scripting attack protection, you can limit
the callers of the REST services by specifying a set of trusted origins. See also the
separate paragraph with ‘Additional Security Aspects’ earlier in this document
describing this property.

If hsl.<app>.allowedorigings is not set, this value defaults to the value of the

hsl.allowedorigina property. If hsl.allowedorigins is not set, protection is

not enabled.

Note that in production mode it is strongly advised to set explicitly trusted origins
through this property.

An example:

hsl.allowedorigins=https://server.domain.com:7430, https://localhost:8000

5.2.7 hsl.<app>.logdirectory, hsl.<app>.logfilesuffix & hsl.<app>.logfile / hsl.logdirectory, hsl.logfilesuffix
& hsl.logfile

For the purpose of less maintenance, the properties hsl.logdirectory and

hsl.logfilesuffix can be used instead of the hsl.<app>.logfile property.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 55

With hsl.logdirectory, a generic logdirectory can be defined. When there is no

fully qualified logfile defined in hsl.<app>.logfile, the log file for the HSL

application will be written to this location.

With hsl.logfilesuffix a generic logfile name suffix can be defined. When no

hsl.<app>.logfile property is defined, it will default to “hsl.<app>.log”, but

when the suffix is set the logfile will default to “hsl.<app>.<logfilesuffix>.log”.

When hsl.logdirectory is set, the hsl.<app>.logfile property no longer has

to be set. The HSL application will be able to determine the log file name and location
from hsl.logdirectory (and optionally hsl.logfilesuffix). This means

that you will not have to add properties for new HSL applications.

These properties can also be set at app level: hsl.<app>.logdirectory and

hsl.<app>.logfilesuffix, but that will not help to reduce the configuration

effort.

hsl.<app>.logfile can only be set at <app> level.

Default values:

• hsl.<app>.logdirectory: no default value

• hsl.<app>.logfilesuffix: no default value

• hsl.<app>.logfile: “hsl.<app>.log”

Note:

• the directory referenced in hsl.<app>.logdirectory /

hsl.logdirectory must exist and must be writable by the OS user

running the WLS application server

• The hsl.<app>.logfile property can be a filename only or a fully

qualified path including a filename.

Examples:

• hsl.logdirectory=/u01/log

hsl.logfilesuffix=BOPROD_AS1

hsl.<app>.logfile is not set
This wil result in logfiles for all HSL applications as follows:
/u01/log/hsl.<app>.BOPROD_AS1.log

This is the recommended setup.

• hsl.logdirectory=/u01/log

hsl.logfilesuffix is not set

hsl.<app>.logfile is not set

This wil result in logfiles for all HSL applications as follows:
/u01/log/hsl.<app>.log

NOTE: do not use this setup for multiple OHI Environments and/or multiple
Managed Servers (e.g. in a clustered environment) to log to the same
directory. Locking issues will occur. Use different (sub) directories for each
OHI Environment and Managed Server, or use the logfilesuffix to create
unique file names.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 56

• hsl.logdirectory is not set

hsl.logfilesuffix is not set
hsl.<app>.logfile=/u01/log/hsl.myownname.log

This wil result in logfiles per HSL applications as follows:
/u01/log/hsl.myownname.log

HSL applications that have no setting for hsl.<app>.logfile will try to

create a logfile in the WLS domain directory (which is likely to cause issues):
/<WLS domain directory>/hsl.<app>.log

This setup is not recommended.

5.2.8 hsl.<app>.loglevel / hsl.loglevel

The severity level that determines which log messages should be written is controlled
by hsl.<app>.loglevel. If not set, this value defaults to the value of the

hsl.loglevel property. If the global property is also not set, the default value is

SEVERE.

Logging levels: SEVERE, WARNING, INFO, CONFIG, FINE, FINER or FINEST.

The following logging levels are currently used: SEVERE, FINE, FINER and FINEST.
The logging levels FINE, FINER and FINEST should only be used for debugging.

Example:

hsl.loglevel=SEVERE

 WARNING: When setting the loglevel to FINE, FINER or

FINEST this may lead to extensive log messages being

recorded which can slow down the processing of service

requests considerably. Response times measured while using

such detailed log levels are clearly affected and should not be

considered as representative for regular use.

5.2.9 hsl.<app>.log.limit / hsl.log.limit

The maximum size of the log file (in bytes) is controlled by hsl.<app>.log.limit.

If not set, this value defaults to the value of the hsl.log.limit property. If the

global property is also not set, the default value is 1000000 (1Mb).

When the size of the log file reaches this limit, the log is rolled over to the next log
file.

Note that a value of 0 means ‘unlimited’.

Example:

hsl.log.limit=5000000

5.2.10 hsl.<app>.log.count / hsl.log.count

The number of log files to use in the log file rotation is controlled by
hsl.<app>.log.count. If not set, this value defaults to the value of the

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 57

hsl.log.count property. If the global property is also not set, the default value is

1.

A value of 1 means that only 1 log file is created and no log rotation takes place.
When the log.limit is reached, the log file is overwritten and its previous contents are
lost.

Set the log.count to 2 or higher to avoid overwriting the log file once it is full.

Example

hsl.log.count=2

5.2.11 hsl.<app>.log.append / hsl.log.append

Configure hsl.<app>.log.append if logging can be appended to existing log files.

If not set, this value defaults to the value of the hsl.log.append property. If the

global property is also not set, the default value is true.

If false, a new log file will be created when rotating log files.

Example:

hsl.log.append=false

5.2.12 Activating changes to hsl.properties

To activate changes to hsl.properties you must restart the managed server.

5.2.13 Troubleshooting hsl.properties

Note the following if you have trouble starting up with a new hsl.properties file:

• an empty value for ANY property will block any HSL application from starting
up.
Example:
hsl.jndiname=

• lines starting with ‘#’ are ignored.

• empty lines are ignored

• do not use whitespace characters in property lines (even at the end). Whitespace
characters are tabs and spaces. Inserting whitespace characters may result in a
malfunction in the operation of HSL services.

5.2.14 Keeping hsl.properties up to date

When new HSL properties are released through (patch) releases of OHI Back Office,
the installation instructions will tell you to change the hsl.properties file if required.
Also, an updated properties file template will be released, as described in the
previous section ‘Properties file templates’.

5.3 Examining the Log File

When encountering long-running HSL operations, examining the log file allows you
to break down the roundtrip into different components.

Ensure that the log level for the HSL application is set to FINE.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 58

If the log level is set to FINEST, writing log messages alone may require significant
time and may account for much of the time spent in the HSL operation.

If you changed the log level you must restart the Managed Server to activate the new
log properties.

Next, look up the long-running operation in the log file. The example shows log
messages of a fictitious operation:

Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: begin getDossierRegels

Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService getLanguage

FINE: getLanguage() returns: nl-NL

Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: expand=all

Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: limit=10000

Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: number=35

Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: offset=0

Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.CCallContext

toJDBCObject

FINE: enter toJDBCObject

Mar 08, 2018 5:09:40 PM com.oracle.insurance.ohibo.hpo.CCallContext

toJDBCObject

FINE: leave toJDBCObject

Mar 08, 2018 5:09:41 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: Before calling PL/SQL operation

Mar 08, 2018 5:09:59 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: After calling PL/SQL operation

Mar 08, 2018 5:10:00 PM com.oracle.insurance.ohibo.exception.ExceptionUtil

handleReturnContext

FINE: start handleReturnContext

Mar 08, 2018 5:10:00 PM com.oracle.insurance.ohibo.exception.ExceptionUtil

handleReturnContext

FINE: end handleReturnContext

Mar 08, 2018 5:10:00 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: Before mapping SQL object to Java object

Mar 08, 2018 5:10:21 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: After mapping SQL object to Java object

Mar 08, 2018 5:10:21 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: http code=200

Mar 08, 2018 5:10:21 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: Before creating response

Mar 08, 2018 5:10:22 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: After creating response

Mar 08, 2018 5:10:22 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: end getDossierRegels

From this fragment we may derive the following information:

• Total roundtrip is about 43s (5:09:39 - 5:10:22)

• PL/SQL execution: 18s (5:09:41 - 5:09:59)

• Mapping SQL object to Java object:<1s

• Creating response with JSON string:<1s

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 59

5.3.1 Changing the log format

The default format for logging timestamps is not suitable for sub-second operations.
Logging timestamps in milliseconds since 01-01-1970 is needed if you want to analyse
sub-second operations.

To override the default format, create a configuration file with the following contents:

override default format for timestamps in milliseconds since 01-01-1970.

java.util.logging.SimpleFormatter.format=%1$tQ %2$s%n%4$s: %5$s%6$s%n

You now need to activate this configuration for the managed server to which the HSL
application is deployed:

• Start WebLogic Console

• Choose Environments > Servers > managed_server

• Add -Djava.util.logging.config.file=your_config_file to the Server

Start parameters. . Add a line to the file
$DOMAIN_HOME/bin/setUserOverrides.sh you created earlier. Add the line to
the part for the HSL server:

 JAVA_OPTIONS="-Djava.util.logging.config.file=”your_config_file” {JAVA_OPTIONS}"

• Restart the managed server.

• Call the HSL operation and check that the subsequent log messages show log
messages in milliseconds since 01-01-1970

The output should now look like:

1520867075960 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: begin getDossierRegels

1520867075971 com.oracle.insurance.ohibo.hpo.HpoService getLanguage

FINE: getLanguage() returns: nl-NL

1520867075974 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: expand=all

1520867075974 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: limit=10000

1520867075975 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: number=11

1520867075975 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: offset=0

1520867075976 com.oracle.insurance.ohibo.hpo.CCallContext toJDBCObject

FINE: enter toJDBCObject

1520867075977 com.oracle.insurance.ohibo.hpo.CCallContext toJDBCObject

FINE: leave toJDBCObject

1520867075978 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: Before calling PL/SQL operation

1520867092723 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: After calling PL/SQL operation

1520867092728 com.oracle.insurance.ohibo.exception.ExceptionUtil

handleReturnContext

FINE: start handleReturnContext

1520867092729 com.oracle.insurance.ohibo.exception.ExceptionUtil

handleReturnContext

FINE: end handleReturnContext

1520867092730 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: Before mapping SQL object to Java object

1520867093066 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: After mapping SQL object to Java object

1520867093068 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: http code=200

1520867093072 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: Before creating response

1520867093073 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: After creating response

1520867093074 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: end getDossierRegels

This log output of a fictitious operation gives us the following information:

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 60

• Total roundtrip is 17114 ms (1520867093074 - 1520867075960)

• PL/SQL execution: 16745 ms (1520867092723 – 1520867075978)

• Mapping SQL object to Java object: 336 ms (1520867093066 - 1520867092730)

• Creating response with JSON string: 1 ms

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 61

6 Upgrading HSL services

Future OHI releases may include a new EAR file for HSL services.

To deploy a new version of an existing HSL application, follow the steps below:

✓ Check your web service properties file (typically hsl.properties) and
implement necessary changes for your release. For information about the
contents please see the previous chapter.

✓ Logon to the Admin Server console of the domain where the web services are
deployed.

✓ Navigate to the deployments pane.

✓ Choose the ‘Lock & Edit’ option.

✓ If you already have a Retired version of the deployment, mark the check box
in front of the retired deployment and delete it.

✓ Navigate to the deployment that must be updated and mark the check box in
front of it.

✓ Press the Update button.

✓ Determine whether the same source path still applies (typically a new
version is delivered in the $OZG_BASE/java folder of your environment but
your organisation may have additional distribution methods implemented).
When the correct .ear file is selected press Next.

✓ You now have two options for ‘retiring’ the previous version. Because
normally the Back Office application is not available during patching, you
can retire the previous version ‘immediately’, meaning using a timeout of 1
second:

Press ‘Finish’ to retire the previous version and continue.

✓ Choose ‘Activate Changes’.

✓ Refresh the screen a few seconds after having activated the changes.

✓ Inform the communities which use the web services of the availability and
publish the latest URI’s to the swagger definitions to them.

It the old deployment cannot be deleted when updating, stop the deployment with
the ‘Force’ option and deploy it again completely (using the ‘Install’ option for
deployments). In some cases (depending on the changes) you may need to repeat the

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 62

Deployment delete/install when the install results in errors. If the deployment keeps
failing, you may have to restart the Managed Server(s) as a last resort.

After this the deployment state of the web services should be Active again (be sure
the Managed Server(s) is/are running, otherwise start it/them to get this result).

If not, check whether your OHI database environment and deployed version are
correct, meaning that their version levels correspond with each other.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 63

7 Appendix A – Service Information

The following URI provides version information about a running HSL application:

https://server:port/application/dbinfo

For example:

https://localhost:7002/HSL_POL/dbinfo

This will return a JSON object like below:

{

 "basePath": "https://localhost:7002/HSL_POL/pol",

 "database": "BTSPC19",

 "instance": "CDB19",

 "jndiName": "HSL_BTSPC19",

 "plsqlPackage": "hsl_pol_sp_pck $Revision: 4.39 $",

 "user": "HSL_USER",

 "userContext": "MANAGER"

}

Information:

• basePath
Format: https://server:port/application/context

This is the base URI for all operations in this service.

• database

The name of the database associated with the current database connection

• instance
Instance name of the database associated with the current database connection.

• jndiName
The JNDI name of the database connection (specified in the hsl.properties file)

• plsqlPackage
The PL/SQL package which implements the operations of the HSL service.
In this release, the revision number refers to the revision number of the code
template used to generate the PL/SQL package. In a future release this will point
to the minimum revision number of the compiled PL/SQL package.

• user
The database account used to log on to the database.

• user context
The default OHI officer on whose behalf service operations are performed, as
specified in the hsl.properties file.

https://localhost:7002/HSL_POL/dbinfo

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 64

8 Appendix B – Removing a WLS domain

In case you want to restructure your environment or recreate a domain you can
remove an existing domain.

In order to do this make sure all servers for the domain are stopped and make sure
there is no Node Manager process running which ‘guards’ this domain.

Next perform the following actions:

✓ Completely remove your domain directory including all contents.

✓ Remove any reference in start and stop scripts to this domain.

✓ Remove, if present, the domain from the <WebLogic
home>\oracle_common\common\nodemanager\nodemanager.domains.

✓ Remove the domain from the domain-registry.xml file which is located in the
Middleware home folder ($MW_HOME).

For more information please use the standard WebLogic documentation.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 65

9 Appendix C – Testing with SoapUI

SoapUI is a tool for testing web services which can be downloaded from
http://www.soapui.org.

It is especially useful for functional testing of the HSL application.

WLS 12c has removed the support for the security protocols SSLv3 and TLS 1.1,
because they are now considered insecure.
This means you must access the HSL application with a client that uses TLS 1.2.

Unlike earlier versions, SoapUI 5.3 and 5.4 enable TLS 1.2 by default. The examples
below assume SoapUI 5.4 or higher.

9.1 Create REST project and import Swagger definiton

• Follow the instructions in ‘Get Online Swagger Definition (curl)’ to retrieve the
online Swagger definition from the HSL application and save the output to a file
(for example ‘saved_swagger.json’)

• Create a new REST project (empty value for URL)

• Choose ‘Project > Import Swagger’ and select the saved Swagger definition.

The operations of the HSL application are now discovered:

You may now create requests for the operations provided by this HSL application.

9.2 Create a request

Once you have imported the Swagger definition you may create a request for each of
the operations.

In the example below we create a request for the getDatabaseInfo operation:

• Double-click on ‘Request 1’ of the requested operation

(in our case /dbinfo > getDatabaseInfo).

http://www.soapui.org/

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 66

• Set the endpoint for the request to https://<server>:<port>

For example https://127.0.0.1:7094.

• Select ‘Headers’ and add a HTTP request header with Header value ‘Accept’ and

with Value value ‘application/json’.

• Add other HTTP request headers as required (not needed for this example)

• Select ‘Auth’ to add Basic Authentication for the WLS user.
If you deployed with the ‘DD Only’ deployment model the WLS user should be
‘restuser’.

• Set ‘preemptive authentication’.

• Run the request.

The request window should now look like this:

https://127.0.0.1:7094/

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 67

10 Appendix D - Generating a WADL file

A WADL (Web Application Description Language) file may be required by Oracle
Service Bus or other middleware to describe your HSL application.

The current HSL applications cannot be used to generate WADL files directly.

However, a WADL file can be easily generated from the online Swagger definition
using SoapUI.

This involves the following steps:

• Create a REST project in SoapUI for your HSL application

• Open the Service Viewer for the REST project

• Export WADL from your REST project

10.1 Create a REST project in SoapUI for your HSL application

Follow the instructions in ‘Testing with SoapUI’ to set up SoapUI for testing with
your HSL application.

10.2 Open the Service Viewer for the REST Project

Click on the ‘WADL Content’ to see the WADL description.
Your screen may look like this:

10.3 Export WADL from your REST project

Save the buffer to a WADL file.

Alternatively you may right-click on the service within the REST project (highlighted
in the screen shot below):

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 68

And select ‘Export WADL’ to create the WADL for this application.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 69

11 Appendix E – Authentication and Authorization

In 10.18.1.0.0 the following changes were made to the security of the HSL services
(and later on also the PSL services):

• No authentication needed for OPTIONS method

• OAUTH 2.0 token authentication and validation as an alternative to Basic
Authentication

11.1 HTTP OPTIONS method

The HTTP OPTIONS method is used by browsers as a pre-flight check to retrieve the
allowable methods for a given URL. This check, for which no authentication is
needed, is part of the CORS (Cross-Origin Resource Sharing) mechanism.

11.2 OAUTH 2.0 token authentication and validation

If Basic Authentication is used, the 'Authorization' header starts with 'Basic' followed
by a base64-encoded username/password combination for a valid Weblogic account.
Basic authentication is the default mechanism for HSL services.

As an alternative for Basic Authentication, support for OAUTH 2.0 has been
developed for the HSL and PSL services:

• Authentication based on access-token

• Token validation using an Authorization Service

• Set OHI officer (optional)

For the PSL services OAUTH2 is the default authorization method.

If access-token authorization is used, the 'Authorization' header starts with 'Bearer'
followed by an encoded string which must be validated by a remote authorization
service.

The token validation using a remote authorization service has been indicated with a
dotted line in the application architecture diagram:

WLS runtime process

Service WAR

SQL types model Java class model

Java service class

J
D

B
C

Java libraries

Including Jersey, MOXy and JAX-RS

WLS libraries

PL/SQL service

package

Request

JSON

Response

JSON

Metadata

JSON/YAML

Remote Authorization

Service

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 70

11.2.1 EAR File Deployment

In order to use access token validation (OAUTH2), the application must be deployed
with ‘Custom Roles and Policies’.

11.2.2 Configuration

Authentication and authorization are configured through the hsl.properties and
psl.properties file.
To implement the changes in the properties file, the managed server(s) associated
with the EAR file must be restarted.

11.2.3 Authorization methods

The hsl.<app>.authorization property selects which authorization methods are
allowed for a HSL service (and likewise for PSL services in a psl property). This value
defaults to the value of hsl.authorization (or psl.authorization).

If hsl.authorization is not set, the default value of 'BASIC' is used to enforce

Basic Authentication.

Allowed values:

• BASIC – use ‘Basic’ HTTP Authorization header with WLS credentials

• TOKEN – use ‘Bearer’ HTTP Authorization header with JWT token

• Or a combination of these.

11.2.4 Access Token Validation

To support the OAUTH2 access token validation, the HSL or PSL service must be
configured to call a remote authorization service, which validates:

• that the caller is a legitimate user of the system

• that the caller is authorized for the requested HSL/PSL service operation
(expressed through path+method)

The HSL/PSL service which is called by the client application now dynamically
creates the call to the remote authorization service.

The remote authorization should meet the following criteria:

• The authorization service can be invoked using the HTTP protocol.

• POST or GET is used as the default method to invoke remote authorization

• Basic authentication may be used to call the remote authorization service

• JSON is used to format the body parameter

To test this functionality, the HSL_AUN and HSL_AUZ services were developed. See
‘Appendix F’ for a description.

The following hsl.properties parameters are used to configure the call (for PSL
services the same psl properties can be applied):

• hsl.<app>.tokenvalidation.url - defaults to the value of
hsl.tokenvalidation.url

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 71

The URL of the authorization service (for testing purposes this can be the URI
of the HSL_AUZ service).

• hsl.<app>.tokenvalidation.method - defaults to the value of
hsl.tokenvalidation.method

Method to access the authorization service operation
Default value: POST

• hsl.<app>.tokenvalidation.headerparams - defaults to the value of
hsl.tokenvalidation.headerparams

A template with place holders which is used to add HTTP request headers
when calling the remote authorization service. The place holders are
described in the next section.

• hsl.<app>.tokenvalidation.queryparams - defaults to the value of
hsl.tokenvalidation.queryparameters

A template with placeholders which is used to construct a query string. The
place holders are described in the next section.

• hsl.<app>.tokenvalidation.bodyparam - defaults to the value of
hsl.tokenvalidation.bodyparam

A template with placeholders which is used to create a JSON string which is
used as a body parameter. The place holders are described in the next
section.

• hsl.<app>.tokenvalidation.authentication - defaults to the value

of hsl.tokenvalidation.authentication

Contents for the Authorization header which is used to authenticate the
request to the remote authorization service.
The value for hsl.tokenvalidation.authentication is a base64

encoded username:password string prepended with ‘Basic ’.
The username:password combination must refer to a valid Weblogic user
which has access to the HSL_AUZ service.
You may use the linux command base64 to generate the base64 encoded
string, e.g. (the -n is needed to return a string without carriage retun
character).

echo -n wlsuser1:password1 | base64

Note that the dynamically constructed request may be created from

• hsl.<app>.tokenvalidation.headerparams

• hsl.<app>.tokenvalidation.bodyparm

• hsl.<app>.tokenvalidation.queryparams

• or a combination of these.

11.2.5 Place Holders

The following placeholders are expanded before calling the remote authorization
service (in the next paragraphs some example code is shown using these
placeholders):

• #method#
Method (GET,POST,PUT,PATCH,DELETE) of the service operation. The
method value is derived from the HTTP request for the service operation.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 72

• #jwt#
Contents of the access token which must be passed to the remote
authorization service.
This is the contents of the 'Authorization' header of the original request after
removing the 'Bearer\s' prefix.

• #path#
Path to the service operation for which the token validation is desired. The
path value is derived from the HTTP request for the service operation.

11.2.6 POST Example

hsl.tokenvalidation.authentication=Basic cmVzdHVzZXI6b3Blbnpvcmc5OQ==

hsl.tokenvalidation.bodyparam={ "method" : "#method#", "token" : "#jwt#" ,

"resource" : "#path#" }

hsl.tokenvalidation.method=post

hsl.tokenvalidation.url=https://ol6ohi.us.oracle.com:7110/HSL_AUZ/auz/v1/authorizati

on/verify

11.2.7 GET example

Fictitious example to configure a verify operation using the GET method:

hsl.hba.tokenvalidation.url=https://ol6ohi.ohi.oracle.com:7094/HSL_HBA/hba/v1/author

ization/verify

hsl.hba.tokenvalidation.method=get

hsl.hba.tokenvalidation.queryparams=?id=123&HTTPverb=#method#&token=#jwt#&resource=#

path#

hsl.hba.tokenvalidation.authentication=Basic cmVzdHVzZXI6b3Blbnpvcmc5OQ==

hsl.hba.tokenvalidation.headerparams=hdr1:value1 hdr2:value2

11.2.8 Setting user context

Every operation of a REST service must be executed by an OHI officer account
(Dutch: functionaris). This is a registered user of the OHI BackOffice application).

The properties below are described for hsl services but also apply to psl services with
psl properties.

The default account is set through hsl.<app>.usercontext (defaults to

hsl.usercontext).

If token validation is used, the usercontext is retrieved from the JWT access token.

The following configuration parameters are used:

• hsl.<app>.usercontext - defaults to the value of hsl.usercontext
The user context which must be used for executing an operation.
The value must be a registered OHI officer (in Dutch: ‘functionaris’).

• hsl.<app>.usercontext.control - defaults to the value of
hsl.usercontext.control

Allowed values:

o PROPERTY
Use the value of hsl.<app>.usercontext to set the user context.

o TOKEN
Retrieve the user context from the access token.
Note that hsl.<app>.usercontext.claim must be set to

indicate which field contains the usercontext.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 73

If hsl.<app>.usercontext.control is set to TOKEN, the following

configuration parameters control how the usercontext is retrieved:

• hsl.<app>.usercontext.token.type - defaults to the value of
hsl.usercontext.token.type

Set the type of token.
Allowed values: JWT

• hsl.<app>.usercontext.claim - defaults to the value of
hsl.usercontext.claim

Determines which field in the JWT token contains the usercontext. Claim is a
standard JSON object of a JTW token. In the example below prn is a reserved
claim name for the principal, the subject of the JWT.
Example: hsl.<app>.usercontext.claim=prn

Note that hsl.<app>.usercontext must always be set to a valid default value in

order to retrieve the Swagger definition.

11.2.9 Overriding User Context with Back Office Parameter

For several HSL services (and not for PSL services!), a Back Office parameter (Dutch:
functionaris) has been created to override the user context when for example basic
authentication is used.

If the Back Office parameter for setting the user context for a specific service has been
set it will overrule the user context as set at the start of the service operation!

If you want to ensure that the user context is set by the psl.<app>.usercontext

parameter or through the access token, you should remove the value of the
‘functionaris’ parameter for the given service through the OHI BO application.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 74

12 Appendix F - HSL_AUN and HSL_AUZ Services

Two HSL services were developed for testing the OAUTH2 support of HSL (and
PSL), see services: HSL_AUN and HSL_AUZ.

• HSL_AUN
This service authenticates the username/password account of a database
account and, if successful, returns an access token in JWT format.

• HSL_AUZ
After verifying that the JWT-formatted access token was not compromised,
this service should verify that the OHI officer referenced in the token
(acquired from HSL_AUN) is authorized for the requested service operation.

The HSL_AUN and HSL_AUZ services may be used by customers to test the
OAUTH2 support in the HSL services. A description of OAUTH2 support and the
PSL services is found in the previous Appendix.

12.1 Disclaimer

Note that HSL_AUN and HSL_AUZ are only for testing when combined with the
HSL services! You can use them as mock-up services to imitate a real OAUTH2
implementation, but should NOT use them to authenticate or authorize requests in a
production environment.

In combination with the ZRGOHIJET application and the PSL services they may be
used for production purposes.

Also note that at the time of writing, the implementation of the ‘postVerify’ operation
in HSL_AUZ is incomplete.

12.2 HSL_AUN Authentication Service

This service authenticates the username/password account of a database account
and, if successful, returns an access token in JWT format.

The HSL_AUN service has a single operation ‘postToken’ to

• log in to the (OHI Back Office) database using the username and password
passed through the ‘Credentials’ resource.

• Issue a access token in JWT format
The ‘claims’ attribute will contain a list of modules for which the principal
(OHI officer) is authorized.
Note: this list is currently empty!

12.3 HSL_AUZ Authorization Service

After verifying that the JWT-formatted access token was not compromised, this
service should verify that the OHI officer referenced in the token (acquired from
HSL_AUN) is authorized for the requested service operation.

This service has a single operation ‘postVerify’ to verify that:

• the access token has not expired.

• the access token has not been tampered with

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 75

The postVerify operation should also verify that the requested service operation
matches with an item in the claims list in the access token. This functionality has not
yet been implemented.

12.4 Use of JWT

JWT (JSON Web Token) is emerging as a standard format for access tokens. A JWT is
a base64-encoded string consisting of three parts separated by ‘.’ characters:

• header
Contains encryption method and token type (JWT)

• payload
Contains principal and claims (priveleges)
The principal for HSL_AUN and HSL_AUZ is the ‘OHI officer’ (aka
‘functionaris’).

• signature
Checksum based on encrypted header + payload

12.4.1 Payload

The payload may contain the following attributes:

• exp - expirydate in number of seconds since 01-01-1970
When the token is issued this is the system date + one year.

• iss - token issuer

Hardcoded: www.oracle.com

• prn - the username of the OHI officer making the request.
Example: HSL_FUNC_USER

• name - The name of the OHI officer.
Example: “HSL Web Services”

• claims – a list of modules which can be started by the OHI officer.

12.4.2 Token Verification

The JWT signature contains the encrypted concatenation of the header and payload
when the token was issued by HSL_AUN.

When verifying the access token, HSL_AUZ.postVerify recalculates the signature
using the header and payload. For this it uses the same algorithm as
HSL_AUN.postToken. If the new signature is different from the original signature,
the token verification will fail.

12.5 HSL Properties

In addition to the generic HSL properties (see ‘Back Office HSL properties file’
above), also set the HSL properties in hsl.properties as described in this section before
using the HSL_AUN and HSL_AUZ service.

12.5.1 Signature Encryption

The encryption algorithm used by HSL_AUN and HSL_AUZ is driven by the HSL
property hsl.tokenvalidation.rotor=your_secret_key

http://www.oracle.com/

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 76

Keep the value of hsl.tokenvalidation.rotor secret and limit the access to thje

properties file at the OS level! Although HSL_AUN and HSL_AUZ are not currently
in production mode for HSL, this may change in the future. And for ZRGOHIJECT
and the PSL services production usage is supported.

12.5.2 Authorization

The default value for hsl.<app>.authorization is BASIC. This is also the case

for the HSL_AUZ service, as any weblogic user can call HSL_AUZ to verify token for
token bearer.

The value for HSL_AUN is different: hsl.aun.authorization=NONE

Rationale: the postToken operation (as described in the next section) uses the
username and password supplied in the Credentials parameter to log into the OHI
Back Office database. The operation fails if the credentials are incorrect.

12.6 Deployment

The procedure to deploying the HSL services is described in section ‘(Re)deployment
of the HSL Application’.

Deploy HSL_AUN with ‘Custom Roles and Policies’.

Deploy HSL_AUZ with ‘Custom Roles and Policies’ if you want to fine-tune access
through WLS. Deploy with ‘Default Descriptors’ if any weblogic user may call this
service.

12.7 Testing

You may test whether the HSL_AUN and HSL_AUZ services are working by using
curl as described earlier.

An example call for testing the HSL_AUN service:

 curl -k -i \

 -H Content-Type: application/json \

 -H Accept: application/json \

 -XPOST

https://<backend_url>/HSL_AUN/aun/v1/authentication/token \

 -d "{\"username\": \"cmVuZQ==\",\"password\":

\"d2VsY29tZQ==\",\"grant_type\": \"password\"}"

In the example above the username and password string are again base64 encoded
(see earlier in this document how to obtain the base64 encoding).

An access token will be returned. This access token is used for accessing a regular
service. In the ZRGOHIJET installation manual an example is given of how to pass on
such a token to a curl call to test a service.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 77

13 Appendix G – HSL_JUP service

The ZRGOHIJET application (as described in Doc[3]) calls HSL_AUN and HSL_AUZ
for authentication and authorization of its users. It uses the PSL services (also
described in Doc[3]) as a back end to access OHI Back Office data.

Before it can do so, it needs to locate a Base URL where these services (all services
that are used, so HSL_AUZ, HSL_AUN and the PSL services) can be found.
This is where HSL_JUP comes in. This service, running in the same managed server
as ZRGOHIJET itself, will connect to the OHI Back Office database and retrieve the
OHI Back Office parameters of group ‘Javascript user interface’ to retrieve the
backend url and log level.

13.1 Back Office parameters

To set the Back Office parameters:

• Open the Forms GUI and select ‘Systeem > Beheer > Algemeen > Back Office
parameter waarden’.

• Select group ‘Javascript user interface’ and engage Execute Query.

• Set ‘Backend URL’ to the Base URL of the HSL_AUN, HSL_AUZ and the PSL
services that are used (currently they need to be deployed on the same
environment).
The format is https://server:port

Example: https://localhost:8888

• Optionally, set the log level and Online help URL.

13.2 HSL Properties

In addition to the usual HSL properties (see ‘Back Office HSL properties file’ above),
the HSL property hsl.jup.authorization in hsl.properties should be set to a
value that differs from the value for the other HSL services. The value must be set to
NONE. The reason is that anyone must be able to call HSL_JUP to retrieve the OHI BO

params for the Javascript UI.

https://localhost:8888/

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 78

The data source (hsl.jup.jndiname) is used to retrieve Back Office Parameters for

the ZRGOHIJET Application. The ‘Backend Url’ parameter should point to the base
URL for the HSL_AUN, HSL_AUZ and the PSL services.

13.3 Deployment

The procedure for deploying the HSL_JUP service is described in section
‘(Re)deployment of the HSL Application’.

Deploy HSL_JUP with ‘Custom Roles and Policies’.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 79

14 Appendix H – HSL C2B services – deployment points of attention

Starting with OHI Back Office release 10.17.2.2.0, a set of web service operations has
been made available in the HTTP Service Layer in order to replace the ‘old’ Connect
to Back Office (C2B) services that modified policies and relations. These SOAP
envelope based services were first delivered in 2006 and have been used for a long
time by many OHI customers to send all kinds of policy and relation modification
requests to OHI Back Office.

However, as years went by, these services were kept up to date from a functional
perspective, but received no technical updates. From a technical and security
perspective, they could no longer be supported, because they were based on by now
obsolete Java libraries and did not support any form of security.

In 2015 it was announced the C2B services would become obsolete and be replaced
by more use case driven HSL services. This intention was frustrated because
customers could not agree on a uniform set of commonly accepted service definitions
to replace the C2B services. It also became clear that OHI customers could not easily
say goodbye to the functionally well known behaviour of the old C2B services. The
impact of implementing a new set of functionally different services was perceived as
difficult and as a change that would have a large impact on the business.

So, as more strict security requirements demanded phasing out of the old C2B
services, time ran out to develop completely new C2B use case services. This resulted
in a compromise, where OHI Development would implement a new set of C2B
business operations according to the technology used for the existing, modern HTTP
Service Layer services, but their functional behaviour would be kept identical, as
much as possible.

As a result the C2B ‘Use Case services’ clearly differ from the other Use Case services
that were developed from scratch. The C2B Use Case services should be seen as
‘classic C2B operations’ being implemented with more modern technology but with a
minimum of effort. No new functionality has been added and no new requirements
were set, to keep the implementation costs low. It was deemed better to invest later
on in new functionality.

This clearly influences the way the C2B Use Case services should be deployed and
used. This paragraph focuses on these aspects. Please bear in mind that the old C2B
services descend from an OHI era in which it was agreed documentation was not
part of the contractual obligations and usage knowledge was transferred as part of
consulting activities.

14.1 HSL_C2B deployment aspects

The ‘old’ C2B operations were made available in 2 different versions:

• A synchronous deployment

• An asynchronous deployment

The asynchronous deployment one required a hard-coded JMS queue and contained
a MessageDriven Bean that dequeued the message and called the service. This bean
could only be deployed to one WebLogic Managed Server and as such was not
scalable In that way it simply processed the offered messages in First in First out
order. This had a fortunate side-effect: 2 changes on the same policy were always
processed in the correct order provided they were put on the queue in the correct
order.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 80

In the new C2B implementation the asynchronous deployment is no longer
supported by code in the application. Modern queueing and service implementations
offer this functionality out of the box and as such only a synchronous implementation
can be deployed. Queues with delayed asynchronous processing should be
implemented through standard middleware functionality and put in front of the
synchronous implementation

This has deployment implications:

• Scalability is still relatively poor as it is expected messages are processed in
FIFO order and it is assumed that changes on the same policy are offered and
processed non-concurrently. This means the number of processing threads
must be kept to a minimum, preferably one or only a few, provided that
dequeueing and processing takes care of the order of processing. A C2B
operation for adding a new policy and possibly ending an existing one (a
typical functionality from the old C2B SOAP Services) is a relatively resource
consuming operation, in which up to a several hundred standard and custom
‘policy checks’ and other business rules are fired and during which a full
copy of the policy to be approved may be created, changed and dropped.
This may lead to a response time of several seconds even on modern
infrastructure. This response time may increase when synchronous policy
processing calls also lead to synchronous callouts towards external providers,
like ‘GBA’ and ‘Vecozo’.

• Large amounts of stored messages that may have piled up during a
maintenance downtime of OHI Back Office should not be processed through
a burst of many parallel threads but must be digested in an ordered manner
of (at most) a few parallel processes.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 81

Appendix I – Limiting access to a specific web application inside a module

When HSL applications are deployed using ‘Custom Roles and Policies’ additional
options are available to limit the access to a web application or operation. Weblogic
can be configured to limit access through the use of a security policy. To give an idea
as to what configuration might involve, an example is shown below.

First, expand the HSLBOWS ear-file, revealing the individual HSL applications.

Now to fully disable the HSL_REL service, enter its configuration page by clicking on
the link. Click on the tab ‘Security’ in the resulting page. Finally enter the ‘Policies’
sub-tab.

As we want to disable access to this specific application in its entirety, adding a
policy with an URL pattern of ‘*’ is enough. After the creation of the policy, rules and
conditions need to be defined that will be enforced through the policy. Enter the
policy’s configuration page through clicking on the link named after the URL pattern
of the newly created policy.

cta13681.doc Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 82

A number of options are available on the following page to narrow, limit or deny
access to a web application. Add a condition and choose the predicate ‘Deny access to
everyone’ from the predicate list. The added condition becomes active immediately
after saving the policy at which point all access to the HSL_REL web application is
denied.

Note that the created policies survive an update of the ear-file but not a complete
reinstall (deletion and subsequent installation of the ear-file). This allows for setting
up policies as a one time configuration step and having all future updates adhere to
the same (strict) set of policies.

