
Oracle® NoSQL Database
Administrator's Guide

Release 20.2
E85373-18
October 2020

Oracle NoSQL Database Administrator's Guide, Release 20.2

E85373-18

Copyright © 2011, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Conventions Used in This Book xv

1 Installing Oracle NoSQL Database

Installation Prerequisites 1-1

Installation 1-2

Installation Configuration Parameters 1-3

Configuring Your KVStore Installation 1-6

Configuring the Firewall 1-10

2 Upgrading an Existing Oracle NoSQL Database Deployment

Preparing to Upgrade 2-1

General Upgrade Notes 2-2

Upgrade to a New Release from an Existing Release 2-4

Using a Script to Upgrade to a New Release 2-10

3 Plans

Using Plans 3-1

Tracking Plan Progress 3-2

Plan States 3-2

Reviewing Plans 3-3

Plan Ownership 3-3

Pruning Plans 3-3

4 Configuring the KVStore

Configuration Overview 4-1

Start the Administration CLI 4-1

The plan Commands 4-3

Configure and Start a Set of Storage Nodes 4-3

iii

Name your KVStore 4-3

Create a Zone 4-4

Create an Administration Process on a Specific Host 4-6

Create a Storage Node Pool 4-7

Create the Remainder of your Storage Nodes 4-7

Create Additional Admin Processes 4-8

Create and Deploy Replication Nodes 4-10

Configuring Security with Remote Access 4-11

Configuring with Multiple Zones 4-12

Adding Secondary Zone to the Existing Topology 4-20

Using Master Affinity Zones 4-24

Benefits of Master Affinity Zones 4-25

Adding a Master Affinity Zone 4-25

Losing a Master Affinity Zone Node 4-27

Using a Script to Configure the Store 4-27

Smoke Testing the System 4-28

Troubleshooting 4-30

Where to Find Error Information 4-31

Service States 4-31

Useful Commands 4-32

5 Configuring Multi-Region KVStores

Use Case 1: Set up Multi-Region Environment 5-1

Deploy KVStore 5-2

Set Local Region Name 5-3

Configure XRegion Service 5-4

Start XRegion Service 5-8

Create Remote Regions 5-10

Create Multi-Region Tables 5-11

Access and Manipulate Multi-Region Tables 5-14

Stop XRegion Service 5-15

Use Case 2: Expand a Multi-Region Table 5-15

Prerequisites 5-15

Create MR Table in New Region 5-19

Add New Region to Existing Regions 5-20

Access MR Table in New and Existing Regions 5-24

Use Case 3: Contract a Multi-Region Table 5-24

Alter MR Table to Drop Regions 5-24

Use Case 4: Drop a Region 5-25

Prerequisites 5-26

iv

Isolate the Region 5-26

Drop MR Tables in the Isolated Region 5-27

Drop the Isolated Region 5-28

6 Determining Your Store's Configuration

Steps for Changing the Store's Topology 6-2

Make the Topology Candidate 6-2

Transforming the Topology Candidate 6-3

Increase Data Distribution 6-4

Increase Replication Factor 6-5

Balance a Non-Compliant Topology 6-6

Contracting a Topology 6-7

View the Topology Candidate 6-8

Validate the Topology Candidate 6-8

Preview the Topology Candidate 6-9

Deploy the Topology Candidate 6-9

Verify the Store's Current Topology 6-11

Deploying an Arbiter Node Enabled Topology 6-13

7 Administrative Procedures

Backing Up the Store 7-1

Taking a Snapshot 7-1

Snapshot Activities 7-2

Managing Snapshots 7-4

Recovering the Store 7-6

Using the Load Program 7-6

Load Program and Metadata 7-8

Restoring Directly from a Snapshot 7-10

Recovering from Data Corruption 7-11

Detecting Data Corruption 7-11

Data Corruption Recovery Procedure 7-12

Replacing a Failed Disk 7-13

Replacing a Failed Storage Node 7-15

Using a New Storage Node 7-16

Task for an Identical Node 7-18

Repairing a Failed Zone by Replacing Hardware 7-20

Using Oracle NoSQL Migrator 7-20

Overview 7-21

Terminology used with NoSQL Data Migrator 7-22

v

Using Oracle NoSQL Data Migrator 7-24

Sources and Sinks 7-26

Supported Sources and Sinks 7-27

Source Configuration Templates 7-27

Sink Configuration Templates 7-36

Transformation Configuration Templates 7-56

Use Case Demonstrations 7-65

Migrate from Oracle NoSQL Database Cloud Service to a JSON file 7-65

Migrate from Oracle NoSQL Database On-Premise to Oracle NoSQL
Database Cloud Service 7-70

Migrate from MongoDB-Formatted JSON file to an Oracle NoSQL Database
Cloud Service 7-72

Troubleshooting the NoSQL Data Migrator 7-74

Oracle NoSQL Data Migrator Vs. Import/Export Utility 7-77

Transitioning from Import/Export to NoSQL Data Migrator 7-78

Using the Import and Export Utilities 7-79

Import and Export Functionality 7-79

Understanding Data Sources and Data Targets (Sinks) 7-80

Importing Data 7-80

Exporting Data 7-81

Examples 7-81

Increasing Storage Node Capacity 7-83

Managing Storage Directory Sizes 7-87

Managing Disk Thresholds 7-87

Specifying Storage Directory Sizes 7-88

Specifying Differing Disk Capacities 7-89

Monitoring Disk Usage 7-90

Handling Disk Limit Exception 7-92

Increasing Storage Directory Size 7-93

Adding a New Shard 7-98

Managing Admin Directory Size 7-100

Admin is Working 7-101

Admin is not Working 7-101

Disabling Storage Node Agent Hosted Services 7-102

Verifying the Store 7-103

Monitoring the Store 7-107

Events 7-108

Setting Store Parameters 7-109

Changing Parameters 7-110

Setting Store Wide Policy Parameters 7-111

Admin Parameters 7-111

Changing Admin JVM Memory Parameters 7-112

vi

Storage Node Parameters 7-114

Replication Node Parameters 7-117

Global Parameters 7-118

Security Parameters 7-118

Admin Restart 7-120

Replication Node Restart 7-121

Removing an Oracle NoSQL Database Deployment 7-121

Modifying Storage Node HA Port Ranges 7-122

Modifying Storage Node Service Port Ranges 7-123

Storage Node Not Deployed 7-123

Storage Node Deployed 7-124

8 Availablity, Failover and Switchover Operations

Availability and Failover 8-1

Replication Overview 8-1

Loss of a Read-Only Replica Node 8-2

Loss of a Read/Write Master 8-3

Unplanned Network Partitions 8-3

Master is in the Majority Node Partition 8-4

Master is in the Minority Node Partition 8-5

No Majority Node Partition 8-5

Failover and Switchover Operations 8-6

Repairing a Failed Zone 8-7

Performing a Failover 8-7

Performing a Switchover 8-11

Zone Failover 8-14

Durability Summary 8-15

Consistency Summary 8-16

9 Monitoring Oracle NoSQL Database

Software Monitoring 9-1

System Log File Monitoring 9-2

Java Management Extensions (JMX) Monitoring 9-3

Monitoring for Storage Nodes (SN) 9-3

Metrics for Storage Nodes 9-3

Java Management Extensions (JMX) Notifications 9-5

Monitoring for Replication Nodes (RN) 9-20

Metrics for Replication Node 9-20

Monitoring for Arbiter Nodes 9-25

vii

Metrics for Arbiter Nodes 9-25

Monitoring for Administration (Admin) Nodes 9-27

Metrics for Admin Nodes 9-27

Hardware Monitoring 9-29

Monitoring for Hardware Faults 9-29

The Network 9-29

Persistent Storage 9-30

Servers 9-42

Detecting and Correlating Server Failures to NoSQL Log Events 9-42

Resolving Server Failures 9-42

Terminology Review 9-43

Assumptions 9-45

Replacement Procedure 1: Replace SN with Identical SN 9-45

Replacement Procedure 2: New SN Takes Over Duties of Removed SN 9-47

Examples 9-51

Setup 9-51

Example 1: Replace a Failed SN with an Identical SN 9-56

Example 2: New SN Takes Over Duties of Existing SN 9-62

10

Standardized Monitoring Interfaces

Java Management Extensions (JMX) 10-1

Enabling JMX Monitoring 10-1

In the Bootfile 10-2

By Changing Storage Node Parameters 10-2

Displaying the Oracle NoSQL Database MBeans 10-2

11

Using ELK to Monitor Oracle NoSQL Database

Enabling the Collector Service 11-1

Setting Up Elasticsearch 11-2

Setting Up Kibana 11-2

Setting Up Logstash 11-2

Setting Up Filebeat on Each Storage Node 11-3

Using Kibana for Analyzing Oracle NoSQL Database 11-3

Creating Index Patterns 11-4

Analyzing the Data 11-4

12

Using Plugins for Development

About Oracle Enterprise Manager (OEM) Plugin 12-1

Importing and Deploying the EM Plug-in 12-2

viii

Deploying Agent 12-2

Adding NoSQL Database Targets 12-4

Components of a NoSQL Store 12-9

Store Targets 12-9

Store Page 12-9

Storage Node Page 12-11

Shard Page 12-11

Replication Node Page 12-12

About IntelliJ Plugin 12-13

Setting Up IntelliJ Plug-in 12-14

Creating a NoSQL Project in IntelliJ 12-14

Connecting to Oracle NoSQL Database from IntelliJ 12-15

Managing Tables Using the IntelliJ Plugin 12-16

About Eclipse plugin 12-17

13

Oracle NoSQL Database Proxy and Driver

Oracle NoSQL Database Proxy 13-1

About the Oracle NoSQL Database Proxy 13-1

Configuring the Proxy 13-2

Using the Proxy in a Non-Secure kvstore 13-4

Using the Proxy in a Secure kvstore 13-6

Oracle NoSQL Database Java Driver 13-12

About the Oracle NoSQL Java SDK 13-12

Creating NoSQLHandle 13-13

Creating Regions 13-15

Creating Tables and Indexes 13-15

Adding Data 13-16

Adding JSON Data 13-17

Reading Data 13-18

Using Queries 13-19

Deleting Data 13-20

Modifying Tables 13-21

Drop Tables and Indexes 13-22

Drop Regions 13-23

Handling Errors 13-23

Oracle NoSQL Database Python Driver 13-24

ix

A Installing and Configuring a Non-secure Store

Installation Configuration A-1

B Admin CLI Reference

aggregate B-3

aggregate table B-3

await-consistent B-4

change-policy B-5

configure B-5

connect B-6

connect admin B-6

connect store B-7

delete B-7

delete kv B-8

delete table B-8

execute B-9

exit B-10

get B-10

get kv B-10

get table B-13

help B-14

hidden B-15

history B-15

load B-15

logtail B-18

namespace B-18

page B-18

ping B-18

plan B-26

plan add-index B-27

plan add-table B-28

plan cancel B-30

plan change-parameters B-30

plan change-storagedir B-32

plan change-user B-33

plan create-user B-34

plan deploy-admin B-34

plan deploy-datacenter B-35

plan deploy-sn B-35

plan deploy-topology B-37

x

plan deploy-zone B-38

plan deregister-es B-40

plan drop-user B-40

plan enable-requests B-41

plan evolve-table B-42

plan execute B-43

plan failover B-44

plan grant B-45

plan interrupt B-45

plan migrate-sn B-46

plan network-restore B-46

plan register-es B-47

plan remove-admin B-48

plan remove-datacenter B-48

plan remove-index B-48

plan remove-sn B-48

plan remove-table B-49

plan remove-zone B-49

plan repair-topology B-49

plan revoke B-50

plan start-service B-51

plan stop-service B-53

plan verify-data B-54

Executing verify-data B-56

plan wait B-56

pool B-57

pool clone B-57

pool create B-57

pool join B-58

pool leave B-58

pool remove B-58

put B-59

put kv B-59

put table B-60

repair-admin-quorum B-61

show B-61

show admins B-62

show datacenters B-63

show events B-63

show faults B-64

show indexes B-65

xi

show mrtable-agent-statistics B-66

show parameters B-72

show perf B-73

show plans B-73

show pools B-74

show snapshots B-74

show regions B-74

show tables B-74

show topology B-74

show upgrade-order B-75

show users B-76

show versions B-76

show zones B-77

snapshot B-77

snapshot create B-78

snapshot remove B-78

table B-78

table-size B-78

timer B-82

topology B-82

topology change-repfactor B-83

topology change-zone-arbiters B-83

topology change-zone-master-affinity B-84

topology change-zone-type B-84

topology clone B-84

topology contract B-85

topology create B-85

topology delete B-86

topology list B-86

topology preview B-87

topology rebalance B-87

topology redistribute B-87

topology validate B-87

topology view B-88

verbose B-88

verify B-88

verify configuration B-88

verify prerequisite B-89

verify upgrade B-89

xii

C Admin Utility Command Reference

export C-1

Export Utility Command Line Parameters C-1

Export Utility Configuration File C-3

Monitoring Export Progress C-5

Export Package Structure C-5

Schema Management C-6

Export Exit Codes C-6

generateconfig C-7

help C-10

import C-10

Import Utility Command Line Parameters C-10

Import Utility Configuration File C-13

MONGODB_JSON Format - Automatic Table Creation C-16

Monitoring Import Progress C-16

Import Exit Codes C-17

Valid JSON Files C-17

load admin metadata C-18

load store data C-19

makebootconfig C-20

ping C-25

Ping Command Line Parameters C-26

Ping Exit Codes C-28

Ping Report Text Output C-29

Ping Report JSON Output C-30

restart C-33

runadmin C-33

start C-34

status C-35

stop C-35

version C-35

D Initial Capacity Planning

Shard Capacity D-2

Application Characteristics D-2

Replication Factor D-2

Average Key Size D-2

Average Value Size D-3

Read and Write Operation Percentages D-3

Hardware Characteristics D-3

xiii

Shard Storage and Throughput Capacities D-4

Shard Storage Capacity D-4

Shard I/O Throughput capacity D-4

Memory and Network Configuration D-5

Machine Physical Memory D-5

Sizing Advice D-5

Determine JE Cache Size D-6

Machine Network Throughput D-7

Estimate total Shards and Machines D-8

Number of Partitions D-9

E Tuning

Turn off the swap E-1

Linux Page Cache Tuning E-2

OS User Limits E-3

File Descriptor Limits E-3

Process and Thread Limits E-3

Linux Network Configuration Settings E-3

Server Socket Backlog E-4

Isolating HA Network Traffic E-4

Receive Packet Steering E-5

Managing Off-heap Cache E-6

Configuring the Off-heap Cache E-7

Check AES Intrinsics Settings E-10

Viewing Key Distribution Statistics E-11

Examples: Key Distribution Statistics E-15

F Solid State Drives (SSDs)

Trim requirements F-1

Enabling Trim F-1

G Diagnostics Utility

Setting up the tool G-1

Packaging Information and Files G-2

Verifying Storage Node configuration G-4

xiv

Preface

This document describes how to install and configure Oracle NoSQL Database
(Oracle NoSQL Database).

This book is aimed at the systems administrator responsible for managing an Oracle
NoSQL Database installation.

Conventions Used in This Book
The following typographical conventions are used within this manual:

Information that you are to type literally is presented in monospaced font.

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME
directory."

Note:

Finally, notes of special interest are represented using a note block such as
this.

xv

1
Installing Oracle NoSQL Database

This chapter describes the installation process for Oracle NoSQL Database in a multi-
host environment. If you are planning a large system for production use, please read
Initial Capacity Planning to estimate the number of storage nodes on which you need
to install the software. For smaller systems, when you already know the number of
storage nodes you will use, follow the instructions that follow. The Oracle NoSQL
Database will make the best use of the storage nodes you provide.

Installation Prerequisites
Make sure that you have Java SE 8 or later installed on all of the hosts that you are
going to use for the Oracle NoSQL Database installation. Use this command to verify
the version:

java -version

Note:

Oracle NoSQL Database is compatible with, and is tested and certified
against Oracle Java SE 8 (64 bit). We recommend upgrading your
systems to the latest Java releases to take advantage of all bug fixes
and performance improvements. The release notes included in the Oracle
NoSQL Database download specify the exact Java versions used for
certification.

Be sure that the jps utility is working. Installing the JDK makes the jps tools
available for use by the Storage Node Agent (SNA) to optimally manage Oracle
NoSQL Database processes. The jps tools also allow you to diagnose any issues
that may turn up. While Oracle NoSQL Database can operate without the jps tools,
their absence diminishes the database’s ability to manage its processes.

If the JDK and its tools are installed correctly, the output from invoking jps should
list at least one Java process (the jps process itself). Use this command to verify
successful installation:

% jps
16216 Jps

1-1

Note:

You must run the commands listed above as the same OS user who will run
the Oracle NoSQL Database SNA processes.

Linux is officially supported platform for the Oracle NoSQL Database. Running the
Oracle NoSQL Database requires a 64-bit JVM.

You do not necessarily need root access on each node for the installation process.

Finally, make sure that each of the target machines is running some sort of reliable
clock synchronization. Generally, a synchronization delta of less than half a second is
required. Network Time Protocol (ntp) is sufficient for this purpose.

Installation
Follow this procedure to install the Oracle NoSQL Database:

1. Choose a directory where the Oracle NoSQL Database package files (libraries,
Javadoc, scripts, and so forth) should reside. We recommend using the same
directory path on all nodes in the installation. Use different directories for the
Oracle NoSQL Database package files (referred to as <KVHOME> in this document)
and the Oracle NoSQL Database data (referred to as KVROOT). Both the <KVHOME>
and KVROOT directories should be local to the node, and not on a Network File
System.

Note:

To make future software upgrades easier, adopt a convention for
<KVHOME> that includes the release number. Always use a <KVHOME>
location such as /var/kv/kv-M.N.O, where M.N.O represent the software
release.major.minor numbers. You can achieve this easily by using unzip
or untar on the distribution into a common directory (/var/kv in this
example).

2. Extract the contents of the Oracle NoSQL Database package (kv-M.N.O.zip or
kv-M.N.O.tar.gz) to create the <KVHOME> directory. For example, <KVHOME> is the
kv-M.N.O/ directory created by extracting the package). If <KVHOME> resides on a
shared network directory (which we do not recommend) you need only unpack it
on one machine. If <KVHOME> is local to each machine, unpack the package on
each node.

3. Verify the installation using the following command on one of the nodes:

java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvclient.jar

You should see some output that looks like this:

11gR2.M.N.O (....)

Chapter 1
Installation

1-2

where M.N.O is the package version number.

Note:

Oracle NoSQL Database is a distributed system and the runtime needs
to be installed on every node in the cluster. While the entire contents
of the Oracle NoSQL Database package do not need to be installed on
every node, the contents of the lib directory must be present. How this
distribution is done is beyond the scope of this manual.

Installation Configuration Parameters
Before you configure Oracle NoSQL Database, you should determine the following
parameters for each Storage Node in the store. Each of these parameters are
directives to use with the makebootconfig utility:

• root

Where the KVROOT directory should reside. There should be enough disk space
on each storage node to hold the data to be stored in your Oracle NoSQL
Database store. The KVROOT disk space requirements can be reduced if the
storagedir parameter is used to store the data at a different location outside
the KVROOT directory. We recommend that you make the KVROOT directory
the same local directory path on each node (but not a shared or NFS mounted
directory). The examples in this book assume that the KVROOT directory already
exists.

• port

The TCP/IP port through which the Storage Node should contact the Oracle
NoSQL Database. This port should be free (unused) on each storage node. The
examples in this book use port 5000. This port is sometimes referred to as the
registry port.

• harange

The Replication Nodes and Admin process use the harange (high availability
range) ports to communicate between each other. For each Storage Node in the
store, specify sequential port numbers, one port for each Replication Node on the
Storage Node, plus an additional port if the Storage Node hosts an Admin. The
Storage Node Agent manages this allotment of ports, reserving one for an Admin
service, if needed, and allocating the rest with one port for each Replication Node.
Specify the port range as startPort, endPort. After using port 5000 for the Storage
Node itself, this document uses values 5010,5020 for examples, with one for the
Admin service, and one for the Replication node.

• servicerange

A range of ports that a Storage Node uses to communicate with other
administrative services and its managed services. This optional parameter is
useful when Storage Node services must use specific ports for a firewall or other
security purposes. By default, the services use anonymous ports. Specify this port
range as value string as startPort,endPort. For more information, see Storage
Node Parameters.

• store-security

Chapter 1
Installation Configuration Parameters

1-3

Specifies whether security is in use. While this is an optional parameter, we
strongly advise that you configure Oracle NoSQL Database with security in mind.

Specifying none indicates that security will not be in use.

Specifying configure indicates that you want to configure security. The
makebootconfig process will then invoke the securityconfig utility as part of its
operation.

Specifying enable indicates security will be in use. However, you will need to
either configure security by utilizing the security configuration utility, or by copying
a previously created configuration from another system.

Note:

The -store-security parameter is optional. If you do not specify this
parameter, security is configured by default. To complete a secure
installation, you must use the securityconfig utility to create the
security folder before starting up the Storage Node agents. For more
information, see Configuring the KVStore.

• capacity

The total number of Replication Nodes the Storage Node can support. Capacity
is an optional, but extremely important parameter, representing the number of
replication nodes. If the Storage Node you are configuring has the resources
to support more than a one Replication Node, set the capacity value to
the appropriate number. As a general heuristic, hosting Replication Nodes
successfully requires sufficient disk, cpu, memory, and network bandwidth to
satisfy peak runtime demands.

To have your Storage Node host Arbiter Nodes, set the capacity to 0 . Then,
the pool of Storage Nodes configured to host Arbiter Nodes within a zone, will
be allocated as Arbiter Nodes whenever required. For more information see
Deploying an Arbiter Node Enabled Topology.

Consider the following configuration settings for Storage Nodes with a capacity
greater than one:

1. We recommend configuring each Storage Node with a capacity equal to
the number of available disks on the machine. Such a configuration permits
the placement of each Replication Node on its own disk, ensuring that
Replication Nodes on the Storage Node are not competing for I/O resources.
The –storagedir parameter lets you specify the directory location for each
Replication Node disk.

For example:

> java -Xmx64m -Xms64m \
 -jar <KVHOME>/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -port 5000 \
 -host node10
 -harange 5010,5025 \
 -capacity 3 \
 -admindir /disk1/ondb/admin01 \
 -admindirsize 200-MB \

Chapter 1
Installation Configuration Parameters

1-4

 -storagedir /disk1/ondb/data \
 -storagedir /disk2/ondb/data \
 -storagedir /disk3/ondb/data \
 -storagedirsize 1_tb \
 -rnlogdir /disk1/ondb/rnlog01 \
 -rnlogdir /disk2/ondb/rnlog02 \
 -rnlogdir /disk3/ondb/rnlog03

where -capacity 3 represents the number of disks on the Storage Node
(node10). The disks are (disk1, disk2, disk3).

2. Increase the –harange parameter to support additional ports required for the
Replication and Admin Nodes.

3. Increase the –servicerange parameter to account for the additional ports
required by the Replication Nodes.

The capacity value indicates the number of –storagedir parameters you must
specify. Otherwise, the value defaults to 1. The examples in this document use 1
as the capacity.

• admindir

The directory path to contain the environment associated with a Storage Node
Admin process.

We strongly recommend that the Admin directory path resolves to a separate disk.
You can accomplish this by creating suitable entries in the /etc/fstab directory
that attaches the file system on disk to an appropriate location in the overall
directory hierarchy. Placing the Admin environment on a separate disk ensures
that the Admin is not competing for I/O resources. It also isolates the impact of a
disk failure to a single environment.

If you do not specify an explicit directory path for -admindir, the Admin
environment files are located in this directory:

 KVROOT/KVSTORE/<SNID>/<AdminId>/

• admindirsize

The size of the Admin storage directory. This is optional but recommended. For
more information, see Managing Admin Directory Size.

• storagedir

A directory path that will contain the environment associated with a Replication
Node. When the –capacity parameter is greater than 1, you must specify a
multiple set of –storagedir parameter values, one for each Replication Node that
the Storage Node hosts. Each directory path should resolve to a separate disk.
You can accomplish this by creating suitable entries in the /etc/fstab directory
that attaches the file system on disk to an appropriate location in the overall
directory hierarchy. Placing each environment on a separate disk ensures that the
shards are not competing for I/O resources. It also isolates the impact of a disk
failure to a single location.

If you do not specify explicit directory locations, the environments are located
under the KVROOT directory.

• storagedirsize

Chapter 1
Installation Configuration Parameters

1-5

The size of each storage directory. We strongly recommend that you specify
this parameter for each Replication Node. The Oracle NoSQL Database uses
the storage directory size to enforce disk usage, using the –storagedirsize
parameter value to calculate how much data to store on disk before suspending
write activity. For more information, see Managing Storage Directory Sizes.

• rnlogdir

The directory path to contain the log files associated with a Replication Node. For
capacity values greater than one, specify multiple rnlogdir parameters, one for
each Replication Node that the Storage Node is hosting.

We recommend that each rnlogdir path resolves to a separate disk partition
on a Replication Node. You can accomplish this by creating suitable entries in
the /etc/fstab directory that attaches the file system on a disk to an appropriate
location in the overall directory hierarchy. Placing rnlogdir in a distinct partition
on the Replication Node ensures that metrics and errors can be reported and
retained, even if the partition containing the JE log files is full. Separating the
rnlogdir on a distinct partition also isolates the impact of losing complete
Replication Node log files from a kvroot disk failure.

If you do not specify a location for rnlogdir, logs are placed under the KVROOT/
KVSTORE/log directory by default.

• num_cpus

The total number of processors on the machine available to the Replication
Nodes. This is an optional parameter, used to coordinate the use of processors
across Replication Nodes. If the value is 0, the system queries the Storage Node
to determine the number of processors on the machine. The default value for
num_cpus is 0, and examples in this document use that value.

• memory_mb

The total number of megabytes of memory available to the Replication Node. The
system uses the memory_mb value to guide specification of the Replication Node's
heap and cache sizes. This calculation is more critical if a Storage Node hosts
multiple Replication Nodes, and must allocate memory between these processes.
If the value is 0, the system attempts to determine the amount of memory on the
Replication Node. However, the amount of memory value is available only when
the JVM used is the Oracle Hotspot JVM. The default value for memory_mb is 0,
and examples in this document use that value.

• force

Specifies that the command generates the boot configuration files, even if verifying
the configuration against the system finds any inaccurate parameters.

Configuring Your KVStore Installation
Once you determine your configuration information as described in the previous
section (see Installation Configuration Parameters), complete the following tasks to
configure your store. One of the tasks to complete is to start the SNA on each storage
node.

Chapter 1
Installation Configuration Parameters

1-6

Note:

Before starting the SNA, on each node, set the environment variable
MALLOC_ARENA_MAX to 1. Doing this ensures that memory usage is restricted
to the specified heap size.

1. Create the initial bootconfig configuration file using the makebootconfig utility. Do
this on each Oracle NoSQL Database node.

Note:

Using the makebootconfig command to create the configuration file is
integrated with the Storage Node on which you run the command. Such
integration checks and validates all parameters and their values against
the SN environment before generating the boot configuration files. To
bypass verifying any parameters or values for the boot configuration
files, use the -force flag (makebootconfig -force).

Following is an example of using makebootconfig, using a standard set of
parameters and values. For a list of all the makebootconfig parameters, see
makebootconfig.

> mkdir -p KVROOT
> java -Xmx64m -Xms64m \
-jar <KVHOME>/lib/kvstore.jar \
makebootconfig -root KVROOT \
 -port 5000 \
 -host <hostname> \
 -harange 5010,5020 \
 -capacity 1 \
 -admindir /export/admin \
 -admindirsize 2000 MB \
 -storagedir /export/data1 \
 -storagedirsize 1_tb \
 -rnlogdir /export/rnlogs

Note:

We strongly recommend that you specify both storagedir and
storagedirsize. If you specify the -storagedir parameter, but not -
storagedirsize, makebootconfig displays a warning.

For more information about the makebootconfig command, see Configuring
Security with Makebootconfig in the Security Guide.

Chapter 1
Installation Configuration Parameters

1-7

2. Use the securityconfig tool to create the security directory (also creates security
related files):

java -Xmx64m -Xms64m
-jar <KVHOME>/lib/kvstore.jar
securityconfig \
config create -root KVROOT -kspwd (******)
Created files
KVROOT/security/security.xml
KVROOT/security/store.keys
KVROOT/security/store.trust
KVROOT/security/client.trust
KVROOT/security/client.security
KVROOT/security/store.passwd (Generated in CE version)
KVROOT/security/store.wallet/cwallet.sso (Generated in EE version)
Created

See Configuring Security with Securityconfig in the Security Guide.

Note:

Once you configure multiple SNAs after running makebootconfig on
each SNA, copy the security directory to the KVROOT of each Oracle
NoSQL Database Storage Node Agent (SNA).

scp -r KVROOT/security NODE:KVROOT/

3. Start the Oracle NoSQL Database Storage Node Agent (SNA) on each of the
Oracle NoSQL Database nodes. The SNA manages the Oracle NoSQL Database
administrative processes on each node. It also owns and manages the registry
port, which is the main way to communicate with Oracle NoSQL Database
processes on that storage node. To start the SNA on each storage node use the
start utility as follows:

nohup java -Xmx64m -Xms64m \
-jar <KVHOME>/lib/kvstore.jar start -root KVROOT &

Note:

If the Replication Node or the Admin Service crashes, the SNA restarts
the processes.

4. Use the jps -m command to verify that the Oracle NoSQL Database processes
are running :

> jps -m
29400 ManagedService -root /tmp -class Admin -service

Chapter 1
Installation Configuration Parameters

1-8

BootstrapAdmin.13250 -config config.xml
29394 StorageNodeAgentImpl -root /tmp -config config.xml

5. Using ssh to reach the node, issue a ping command to be sure that the Oracle
NoSQL Database client library can contact the Oracle NoSQL Database Storage
Node Agent:

ssh node01
java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar ping -host
node01 -port 5000
-security KVROOT/security/client.security

Login as: Anonymous (Enter any user name here)
Anonymous's password: (Enter any password)

SNA at hostname: node01, registry port: 5000 is not registered.
No further information is available
Can't find store topology:
Could not contact any RepNode at: [node01:5000]

This return informs you that only the SN process is running on the local host. Once
Oracle NoSQL Database is fully configured, using ping again will provide more
details.

If the client library cannot contact the Storage Node agent, ping displays this
message:

Unable to connect to the storage node agent at host node01,
port 5000, which may not be running; nested exception is:

java.rmi.ConnectException: Connection refused to host: node01;
nested exception is:
java.net.ConnectException: Connection refused
Can't find store topology:
Could not contact any RepNode at: [node01:5000]

If the Storage Nodes do not start up, review the adminboot and snaboot logs in the
KVROOT directory to investigate what occurred and to help identify the problem. If you
have not completed the steps in the Configuring Security with Remote Access, the
ping command for a secure store is only available locally.

When the Storage Nodes have all started successfully, you can configure the KVStore.
For more information on how to configure the KVSTORE, see Configuring the KVStore.

Note:

For best results, configure your nodes so that the SNA starts automatically
when the node boots up. The details of how to do this are beyond the scope
of this document, because they depend on how your operating system is
designed. See your operating system documentation for information about
launching application automatically at bootup.

Chapter 1
Installation Configuration Parameters

1-9

Configuring the Firewall
To make sure your firewall works with Oracle NoSQL Database, you should set the
ports specified by the servicerange parameter of the makebootconfig command. This
parameter is used to constrain a store to a limited set of ports, usually for security or
data center policy reasons. By default the services use anonymous ports.

Additionally, the port specified by -port parameter of the makebootconfig command
need to be available as well.

The format of the value string is "startPort,endPort." The value varies with the capacity
of the Storage Node.

For more information about the servicePortRange and determining its sizing, see
Storage Node Parameters.

Chapter 1
Configuring the Firewall

1-10

2
Upgrading an Existing Oracle NoSQL
Database Deployment

This section describes how to upgrade the software of your Oracle NoSQL Database
deployment.

Installing new software requires that you restart each node. Depending on your store’s
configuration, it is sometimes possible to upgrade while the store remains online and
available to clients. Upgrading your software this way is known as a rolling upgrade.
Such a strategy is useful in most cases, since downtime is undesirable.

Even if your store can support a rolling upgrade, you may want to perform an offline
upgrade, which involves these steps:

1. Shutting down all nodes.

2. Installing new software on each node.

3. Restarting each node.

While an offline upgrade is a simpler process in some ways, your store is unavailable
for the duration of the upgrade.

If the store's replication factor is greater than two, you can perform a rolling upgrade.
With a replication factor greater than two, shards can maintain their majorities and
continue reading and writing data on behalf of clients. Meanwhile, you can restart and
upgrade software on each shard component, one at a time.

If the replication factor is 2 or 1, the shards cannot maintain their majorities through
a node restart. This means that each shard will be unavailable while you shutdown a
shard component, upgrade the software, and restart the node.

Preparing to Upgrade
Before beginning the upgrade process, create a backup of the store by making a
snapshot. See Taking a Snapshot.

In Oracle NoSQL Database, configuration changes and other administrative activities
involve plans. For information about plans, see Plans.

Note:

During the upgrade process, you should not create any plans until all
services in the store have been upgraded.

As soon as possible after upgrading the service components, upgrade any application
programs that use the kvstore client library.

2-1

General Upgrade Notes
This section contains upgrade information that is generally true for all versions of
Oracle NoSQL Database. Upgrade instructions and notes for specific releases are
given in sections following this one.

When Oracle NoSQL Database is first installed, it is placed in a KVHOME directory. Such
a directory can exist on each machine, or be shared by multiple Storage Nodes (for
example, using NFS). Here, we refer to this existing KVHOME location, OLD_KVHOME.

Note:

We recommend that installations adopt a naming convention for KVHOME
that includes the release number. If you always use a KVHOME location
such as /var/kv/kv-M.N.O, where M.N.O represents the release.major.minor
numbers, the version is easily visible. You can achieve this naming by
unzipping or untarring the distribution into a common directory, /var/kv in
this example.

Installing new software requires that each node be restarted. Oracle NoSQL Database
is a replicated system. To avoid excessive failover events, we recommend restarting
any node that is running as a MASTER after all those marked REPLICA. This
command lists which nodes are MASTER and REPLICA:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar ping -host <hostname> -port <port> \
-security USER/security/admin.security

Note:

Listing this information assumes that you followed the steps in Configuring
Security with Remote Access.

To make the upgrade process easy to debug when upgrading a node while the
Storage Node is stopped, move the existing log files under KVROOT and KVROOT/
<storename>/log to any other directory.

Use the host and registry port for any active node in the store. For example, in the
following example, rg1-rn1 and rg2-rn1 are running as MASTER, so restart those
last:

java -Xmx64m -Xms64m \
 -jar KVHOME/lib/kvstore.jar ping -port 5100 -host node01 \
 -security USER/security/admin.security

Pinging components of store mystore based upon topology sequence #315
300 partitions and 6 storage nodes
Time: 2020-07-30 15:13:23 UTC Version: 18.1.20

Chapter 2
General Upgrade Notes

2-2

Shard Status: healthy:2 writable-degraded:0 read-only:0 offline:0
total:2
Admin Status: healthy
Zone [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] RN Status: online:6 offline:0
maxDelayMillis:0 maxCatchupTimeSecs:0
Storage Node [sn1] on node01:5100
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 18.1.20 2018-09-19
06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise
Admin [admin1] Status: RUNNING,MASTER
Rep Node [rg1-rn1] Status: RUNNING,MASTER
sequenceNumber:338 haPort:5111
Storage Node [sn2] on node02:5200
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 18.1.20 2018-09-19
06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise
Admin [admin2] Status: RUNNING,REPLICA
Rep Node [rg1-rn2] Status: RUNNING,REPLICA
sequenceNumber:338 haPort:5211 delayMillis:0 catchupTimeSecs:0
Storage Node [sn3] on node03:5300
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 18.1.20 2018-09-19
06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise
Rep Node [rg1-rn3] Status: RUNNING,REPLICA
sequenceNumber:338 haPort:5310 delayMillis:0 catchupTimeSecs:0
Storage Node [sn4] on node04:5400
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 18.1.20 2018-09-19
06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise
Rep Node [rg2-rn1] Status: RUNNING,MASTER
sequenceNumber:338 haPort:5410
Storage Node [sn5] on node05:5500
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 18.1.20 2018-09-19
06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise
Rep Node [rg2-rn2] Status: RUNNING,REPLICA
sequenceNumber:338 haPort:5510 delayMillis:0 catchupTimeSecs:0
Storage Node [sn6] on node06:5600
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 18.1.20 2018-09-19
06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise
Rep Node [rg2-rn3] Status: RUNNING,REPLICA
sequenceNumber:338 haPort:5610 delayMillis:0 catchupTimeSecs:0

When upgrading your store, place the updated software in a new KVHOME directory
on a Storage Node running the admin service. This section refers to the new KVHOME
directory as NEW_KVHOME. If the KVHOME and NEW_KVHOME directories are shared by

Chapter 2
General Upgrade Notes

2-3

multiple Storage Nodes (for example, using NFS), maintain both locations while the
upgrade is in process. After the upgrade is complete, you no longer need the original
KVHOME directory. In this case, you must modify the start up procedure on each node to
refer to the NEW_KVHOME directory so it uses the new software.

Note:

In cases where each node has its own copy of the software installation, then
it is possible to replace the installation in place and not modify the value of
KVHOME.

To add security after upgrading from a non-secure store, see Adding Security to a New
Installation in the Security Guide.

Upgrade to a New Release from an Existing Release
Oracle NoSQL Database supports upgrades from releases for the current year and
prior two calendar years. For example, to upgrade a store to the 20.x release, the
store must be running release 18.x or later.

If you have a store running a 4.x release, you can upgrade it to the 20.x release by first
upgrading to a 19.x or 18.x release and then upgrading from that to the 20.x release.
If you have a store running a 3.x release, you can upgrade it by first upgrading to an
18.x release and then upgrading from that to the 20.x release.

Upgrading a store from an existing release to a new release can be accomplished one
Storage Node at a time because Storage Nodes running a mix of the two releases
are permitted to run simultaneously in the same store. This allows you to strategically
upgrade Storage Nodes in the most efficient manner.

Note:

If your store contains more than a handful of Storage Nodes, you may want
to perform your upgrade using a script. See Using a Script to Upgrade to a
New Release.

To avoid potential problems, new CLI commands are available to identify when nodes
can be upgraded at the same time. These commands are described in the following
procedure.

To upgrade your store, first install the latest software to upgrade the Admin CLI. Then,
use the upgraded CLI to verify that all of the Storage Nodes do not violate any basic
requirements:

kv-> verify prerequisite
...
Verification complete, no violations.

Chapter 2
Upgrade to a New Release from an Existing Release

2-4

Once all violations are corrected, if any, install the latest software on a Storage Node
that is running an admin service.

Do the following:

1. On a Storage Node running an admin service:

a. Place the updated software in a new KVHOME directory on a Storage Node
running the admin service. The new KVHOME directory is referred to here as
NEW_KVHOME. If nodes share this directory using NFS, this only needs to be
done once for each shared directory.

b. Stop the Storage Node using the CLI. When you do this, this shuts down the
admin service on that Storage Node.

If you have configured the node to automatically start the Storage Node Agent
on reboot using /etc/init.d, Upstart, or some other mechanism first modify that
script to point to NEW_KVHOME.

Once you have modified that script, shutdown the Storage Node:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop -root <kvroot>

c. Restart the Storage Node using the new release code:

nohup java -Xmx64m -Xms64m \
-jar NEW_KVHOME/lib/kvstore.jar start -root <kvroot> &

(If the system is configured to automatically restart the Storage Node Agent,
this step may not be necessary.)

d. Use the CLI to connect to the Storage Node which is now running the new
release code:

java -Xmx64m -Xms64m \
-jar NEW_KVHOME/lib/kvstore.jar runadmin -port 5100 -host node1 \
-security USER/security/admin/security

e. Verify that all the Storage Nodes in the store are running the proper software
level required to upgrade to the new release.

kv-> verify prerequisite
Verify: starting verification of store mystore
based upon topology sequence #315
300 partitions and 6 storage nodes
Time: 2020-07-30 15:23:50 UTC Version: 20.2.15
See node01:<KVROOT>/mystore/log/mystore_{0..N}.log for progress
messages
Verify prerequisite: Storage Node [sn1] on node01:5100
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify prerequisite: Storage Node [sn2] on node02:5200
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 18.1.20 2018-09-19

Chapter 2
Upgrade to a New Release from an Existing Release

2-5

06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise
...
Verification complete, no violations.

Note:

Only a partial sample of the verification command's output is shown
here. The important part is the last line, which shows no violations.

The most likely reason for a violation is if you are (accidentally) attempting
a release level downgrade. For example, it is illegal to downgrade from a
higher minor release to a lower minor release. Possibly this is occurring simply
because you are running the CLI using a package at a minor release level that
is lower than the release level at other nodes in the store.

Note:

It is legal to downgrade from a higher patch level to a lower patch
level. So, for example downgrading from 20.1.4 to 20.1.3 would be
legal, while downgrading from 20.1.3 to 20.0.4 would not be legal.

In any case, if the verify prerequisite command shows violations, resolve
the situation before you attempt to upgrade the identified nodes.

f. Obtain an ordered list of the nodes to upgrade.

kv-> show upgrade-order
Calculating upgrade order, target version: 20.2.15,
prerequisite: 18.1.5
sn3 sn4
sn2 sn5
sn6

This command displays one or more Storage Nodes on a line. Multiple
Storage Nodes on a line are separated by a space. If multiple Storage Nodes
appear on a single line, then those nodes can be safely upgraded at the same
time, if desired. When multiple nodes are upgraded at the same time, the
upgrade must be completed on all nodes before the nodes next on the list can
be upgraded. If at some point you lose track of which group of nodes should
be upgraded next, you can always run the show upgrade-order command
again.

The Storage Nodes combined together on a single line can be upgraded
together. Therefore, for this output, you would upgrade sn3 and sn4. Then
upgrade sn2 and sn5. And, finally, upgrade sn6.

Chapter 2
Upgrade to a New Release from an Existing Release

2-6

Note:

You must completely upgrade a group of nodes before continuing to
the next group. That is, upgrade sn3 and sn4 before you proceed to
upgrading sn2, sn5, or sn6.

2. For each of the Storage Nodes in the first group of Storage Nodes to upgrade (sn3
and sn4, in this example):

a. Place the new release software in a new KVHOME directory. The new
KVHOME directory is referred to here as NEW_KVHOME. If nodes share
this directory using NFS, this only needs to be done once for each shared
directory.

b. Stop the Storage Node using the CLI utility.

If you have configured the node to automatically start the Storage Node Agent
on reboot using /etc/init.d, Upstart, or some other mechanism first modify that
script to point to NEW_KVHOME.

Once you have modified that script, shutdown the Storage Node using the old
code:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop -root <kvroot>

c. Restart the Storage Node using the new release code:

nohup java -Xmx64m -Xms64m \
-jar NEW_KVHOME/lib/kvstore.jar start -root <kvroot> &

(If the system is configured to automatically restart the Storage Node Agent,
this step may not be necessary.)

3. Verify the upgrade before upgrading your next set of nodes. This command shows
which nodes have been successfully upgraded, and which nodes still need to be
upgraded:

kv-> verify upgrade
Verify: starting verification of store mystore
based upon topology sequence #315
300 partitions and 6 storage nodes
Time: 2020-07-30 15:28:15 UTC Version: 20.2.15
See node01:<KVROOT>/mystore/log/mystore_{0..N}.log for progress
messages
Verify upgrade: Storage Node [sn1] on node01:5100
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: sn2: Node needs to be upgraded from 18.1.20 to version
20.2.15 or newer
Verify upgrade: Storage Node [sn2] on node02:5200
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 18.1.20 2018-09-19

Chapter 2
Upgrade to a New Release from an Existing Release

2-7

06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise
Verify upgrade: Storage Node [sn3] on node03:5300
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify upgrade: Storage Node [sn4] on node04:5400
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: sn5: Node needs to be upgraded from 18.1.20 to version
20.2.15 or newer
Verify upgrade: Storage Node [sn5] on node05:5500
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 18.1.20 2018-09-19
06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise
Verify: sn6: Node needs to be upgraded from 18.1.20 to version
20.2.15 or newer
Verify upgrade: Storage Node [sn6] on node06:5600
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 18.1.20 2018-09-19
06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise

Verification complete, 0 violations, 3 notes found.
Verification note: [sn2] Node needs to be upgraded from
18.1.20 to version 20.2.15 or newer
Verification note: [sn5] Node needs to be upgraded from
18.1.20 to version 20.2.15 or newer
Verification note: [sn6] Node needs to be upgraded from
18.1.20 to version 20.2.15 or newer

For brevity and space, we only show part of the output generated by the verify
upgrade command. Those nodes which have been upgraded are identified with a
verification message that includes the current software version number:

Verify upgrade: Storage Node [sn3] on node03:5300
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise

Those nodes which still need to be upgraded are identified in two different ways.
First, the verification message for the node indicates that an upgrade is still
necessary:

Verification note: [sn2] Node needs to be upgraded from
18.1.20 to version 20.2.15 or newer

Chapter 2
Upgrade to a New Release from an Existing Release

2-8

Second, the very end of the verification output identifies all the nodes that still
need to be upgraded:

Verification complete, 0 violations, 3 notes found.
Verification note: [sn2] Node needs to be upgraded from
18.1.20 to version 20.2.15 or newer
Verification note: [sn5] Node needs to be upgraded from
18.1.20 to version 20.2.15 or newer
Verification note: [sn6] Node needs to be upgraded from
18.1.20 to version 20.2.15 or newer

Note:

If the verification shows nodes you thought were upgraded as being still
in need of an upgrade, you must resolve that problem before upgrading
the other nodes in your store. As a kind of a sanity check, you can verify
just those nodes you just finished upgrading:

kv-> verify upgrade -sn sn3 -sn sn4
Verify: starting verification of store mystore
based upon topology sequence #315
300 partitions and 6 storage nodes
Time: 2020-07-30 15:29:06 UTC Version: 20.2.15
See node01:<KVROOT>/mystore/log/mystore_{0..N}.log for
progress messages
Verify upgrade: Storage Node [sn3] on node03:5300
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 20.2.15
2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify upgrade: Storage Node [sn4] on node04:5400
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 20.2.15
2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise

Verification complete, no violations.

4. You can continue upgrading groups of Storage Nodes, as identified by the show
upgrade-order command. Follow the procedure outlined above. Stop the existing
release Storage Node using the existing release stop command, then restart the
Storage Node using the new release start command. Continue doing this until all
Storage Nodes have been upgraded.

If at some point you lose track of which group of nodes should be upgraded next,
you can always run the show upgrade-order command again:

kv-> show upgrade-order
Calculating upgrade order, target version: 20.2.15, prerequisite:
18.1.5

Chapter 2
Upgrade to a New Release from an Existing Release

2-9

sn2 sn5
sn6

5. When you are all done upgrading your Storage Nodes, the verify upgrade
command will show no verification notes at the end of its output:

kv-> verify upgrade
Verify: starting verification of store mystore
based upon topology sequence #315
300 partitions and 6 storage nodes
Time: 2020-07-30 15:33:22 UTC Version: 20.2.15
See node01:<KVROOT>/mystore/log/mystore_{0..N}.log for progress
messages
Verify upgrade: Storage Node [sn1] on node01:5100
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify upgrade: Storage Node [sn2] on node02:5200
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify upgrade: Storage Node [sn3] on node03:5300
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify upgrade: Storage Node [sn4] on node04:5400
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify upgrade: Storage Node [sn5] on node05:5500
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify upgrade: Storage Node [sn6] on node06:5600
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise

Verification complete, no violations.

Using a Script to Upgrade to a New Release
For any deployments with more than a handful of Storage Nodes, the manual upgrade
procedure described above becomes problematic. In that case, you should probably
upgrade your store using a script.

Chapter 2
Upgrade to a New Release from an Existing Release

2-10

An example script (bash shell script) is available for you to examine in the release 4
distribution. It can be found here:

<KVHOME>/examples/upgrade/onlineUpgrade

This script has the same upgrade restrictions as was described earlier in this section.
Your store must have a replication factor of at least 3 in order for your store to be
available during the upgrade process.

The provided script is an example only. It must be modified in order for it to properly
function for your installation.

Note:

The script does not perform any software provisioning for you. This means
you are responsible for placing the new release package on your host
machines in whatever location you are using for your installation software.
That said, the script communicates with your host machines using ssh, so
you could potentially enhance the script to provision your machines using
scp.

Because the script uses ssh, in order for it to function you must configure your
machines to allow automatic login (that is, login over ssh without a password). ssh
supports public/private key authentication, so this is generally a secure way to operate.

For information on how to configure ssh in this way, see https://www.linuxproblem.org/
art_9.html. For information on how to install and configure ssh and the ssh server, see
your operating system's documentation.

Chapter 2
Upgrade to a New Release from an Existing Release

2-11

https://www.linuxproblem.org/art_9.html
https://www.linuxproblem.org/art_9.html

3
Plans

This chapter describes plans, their purpose, and why and how you use them. If you
are installing a store for the first time, you can skip to the next chapter Configuring the
KVStore.

You use plans to configure your Oracle NoSQL Database. A plan consists of multiple
administrative operations. Plans can modify the state managed by the Admin service,
and issue requests to kvstore components such as Storage Nodes and Replication
Nodes. Some plans consist of simple state-changing operations, while others perform
a set of tasks that affect every node in the store over time. For example, you use a
plan to create a zone or Storage Node, or to reconfigure parameters on a Replication
Node.

Using Plans
You use the plan command, available from the administrative command line interface,
to both create and execute plans, as well as to perform many other tasks. For more
about using the plan command, see CLI Command Reference.

By default, running a plan command executes asynchronously in the background. The
command line prompt returns as soon as the background process begins. You can
check the progress of a running plan using the show plan id command.

You can run a plan command synchronously in two ways:

plan action_to_complete —wait

plan wait -id plan_id

Using either the –wait flag or the plan wait command, causes the command line
prompt to return only after the command completes.

The -wait flag and the plan wait command are useful when executing plans from
scripts, which typically expect each command to finish before processing the next
command.

You can also create a plan, but defer its execution using the optional -noexecute flag,
as follows:

plan action –name plan-name -noexecute

Later, execute the plan on demand as follows:

plan execute -id id_num

3-1

Tracking Plan Progress
There are several ways to track the progress of a plan.

• The show plan -id command provides information about the progress of a
running plan. Use the optional -verbose flag to get more detail.

• The CLI verify command gives service status information as the plan is executing
and services start.

Note:

The verify command is of interest for only topology-related plans. If the
plan is modifying parameters, such changes may not be visible using the
verify command.

• The CLI's logtail command lets you follow the store-wide log.

Plan States
Plans can be in any of the following states. A plan can be in only one state at a time.
These are the possible states:

Name Description

APPROVED The plan exists with correct operations, but is
not running.

CANCELED A plan that is manually INTERRUPTED or that
experiences an ERROR can be terminated. Use
the cancel command to terminate a plan.

ERROR If a plan in the RUNNING state encounters a
problem, it transitions to this state and ends
processing without successfully completing.
Storage Nodes and Replication Nodes can
encounter an error before the plan processes
the error and transitions to an ERROR state.

INTERRUPTED A RUNNING plan transitions to this state after
the interrupt command in the CLI.

INTERRUPT REQUESTED When a running plan receives an interrupt
request, the plan may have to cleanup
or reverse previous steps taken during its
execution. If the plan transitions to this state,
it is to make sure that the store remains in a
consistent state.

RUNNING The plan is currently executing its commands.

SUCCEEDED The plan has completed successfully.

You can use the plan execute command whenever a plan enters the INTERRUPTED,
INTERRUPT REQUESTED or ERROR state. Retrying is appropriate if the underlying problem
was transient or has been rectified. When you retry a Plan, it processes the steps
again. Each step is idempotent, and can be safely repeated.

Chapter 3
Plan States

3-2

Reviewing Plans
You can use the CLI show plans command to review the execution history of plans.
The command also lists the plan ID numbers, plan names, and the state of each
plan. With the plan ID, use the show plan -id <plan number> command to see more
details about a specific plan.

The next example shows the output of both the show plans command and then the
show plan -id <plan number> command. The show plan command returns the plan
name, the number of attempts, the start and end date and times, the total number of
tasks the plan completed, and the whether the plan completed successfully.

kv-> show plans
1 Deploy KVLite SUCCEEDED
2 Deploy Storage Node SUCCEEDED
3 Deploy Admin Service SUCCEEDED
4 Deploy KVStore SUCCEEDED
kv-> show plan -id 3
Plan Deploy Admin Service (3)
Owner: null
State: SUCCEEDED
Attempt number: 1
Started: 2012-11-22 22:05:31 UTC
Ended: 2012-11-22 22:05:31 UTC
Total tasks: 1
Successful: 1

For details on using the CLI, see Configuring the KVStore.

Plan Ownership
In a secure Oracle NoSQL Database deployment, each plan command is associated
with its creator as the owner. Only the plan owner can see and operate it. If a plan is
created in an earlier version of Oracle NoSQL Database, or in an insecure store, the
owner is null.

Note:

The SYSOPER privilege allows a role to perform cancel, execute, interrupt,
and wait on any plan.

Users with the SYSVIEW privilege can see plans owned by other users, plans with a
null owner, and plans whose owners have been removed from the Oracle NoSQL
Database.

For more information about roles and on configuring Oracle NoSQL Database
securely, see the Security Guide.

Pruning Plans

Chapter 3
Reviewing Plans

3-3

The system automatically prunes plans that should be removed. Plans are removed
from the Admin Store if they match both of these conditions:

• Are in a terminal state (SUCCEEDED or CANCELLED)

• Have a Plan ID number that is 1000 less than the most recent Plan ID

For example, if the most recent Plan ID is 2000, the system prunes all plans with ID
numbers 1000 or less that are in a terminal state . The system does not remove plans
in a non-terminal state.

While pruning plans occurs automatically, you can detect that pruning has occurred in
these situations:

• Attempting to show a plan with a specific ID that has been pruned.

• Specifying a range of plans that contains one or more removed plans.

Chapter 3
Pruning Plans

3-4

4
Configuring the KVStore

Once you have installed Oracle NoSQL Database on each of the nodes that you could
use in your store (see Installing Oracle NoSQL Database), you must configure the
store. To do this, you use the Administration command line interface (CLI).

To configure your store, you create and then execute plans. Plans describe a series
of operations that Oracle NoSQL Database should perform for you. While you do not
need to know the details of those internal operations, you do need to know how to use
and execute the plans.

Note:

For information on configuring a non-secure store see Installing and
Configuring a Non-secure Store.

Configuration Overview
At a high level, configuring your store requires these steps:

1. Configure and Start a Set of Storage Nodes

2. Name your KVStore

3. Create a Zone

4. Create an Administration Process on a Specific Host

5. Create a Storage Node Pool

6. Create the Remainder of your Storage Nodes

7. Create and Deploy Replication Nodes

8. Configuring Security with Remote Access

You perform all of these activities using the Oracle NoSQL Database command
line interface (CLI). The remainder of this chapter shows you how to perform these
activities. Examples are provided that show you which commands to use, and
how. For a complete list of all the commands available in the CLI, see Admin CLI
Reference.

Start the Administration CLI
Before running the Admin CLI and continuing further, you must have already
completed all of the configuration steps described in Configuring Your KVStore
Installation.

To configure your store, use the runadmin utility, which provides the Admin command
line interface (CLI). You can use the runadmin utility for a number of purposes. In this

4-1

section, we describe its use to administer the nodes in your store, after you supply the
node and registry port that runadmin can use to connect to the store.

If this is the first node you are connecting to the store using the CLI, the node
is designated as the one on which the master copy of the administration database
resides. If you have another node you want to perform that function, be sure to specify
that node at this time.

Note:

You cannot change whatever node you use to initially configure the store,
such as node01 in this example. Carefully plan the node to which runadmin
first connects.

In this description, we use the string node01 to represent the network name of the node
to which runadmin connects, and we use 5000 as the registry port.

One of the most important aspects of this node is that it must run the Storage Node
Agent (SNA). All storage nodes should have an SNA running on them at this point.
If any do not, complete the instructions in Installing Oracle NoSQL Database before
proceeding further.

To start runadmin to use the Admin command line interface (CLI) for administration
purposes, use these commands:

ssh node01
> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin \
-host node01 -port 5000 \
-security KVROOT/security/client.security

With this runadmin example, you specify a single host and port (-host node01 -port
5000), permitting one storage node host to run an Admin process. The Admin process
lets you run Admin CLI commands. If you want more than one host to support
CLI commands, use the runadmin utility –helper-hosts flag and list two or more
nodes amd ports, rather than –host <name> –port <value>. For example, the next
command starts and Admin process on three hosts, which can then service CLI
commands (node02, node03, and node04):

ssh node01
> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin \
-helper-hosts node02:5010, node03:5020, node04:5030 \
-security KVROOT/security/client.security

Chapter 4
Start the Administration CLI

4-2

Note:

If you have not completed the steps in the Configuring Security with Remote
Access, then the runadmin command for a secure store is only available
locally.

After starting the Admin CLI, you can invoke its help command to describe all of the
CLI commands.

You can collect the configuration steps that this chapter describes into a file, and then
pass the script to the CLI utility using its -script command. See Using a Script to
Configure the Store for more information.

The plan Commands
Some of the steps described in this chapter make heavy use of the CLI's plan
command. This command identifies a configuration action that you want to perform
on the store. You can either run that action immediately or you can create a series of
plans with the -noexecute flag and then execute them later by using the plan execute
command.

You can list all available plans by using the plan command without arguments.

For a high-level description of plans, see Plans.

Configure and Start a Set of Storage Nodes
You should already have configured and started a set of Storage Nodes to host the
KVStore cluster. If not, you need to follow the instructions in Installing Oracle NoSQL
Database before proceeding with this step.

Name your KVStore
When you start the command line interface, the kv-> prompt appears. Once you
see this, you can name your KVStore by using the configure -name command. The
only information this command needs is the name of the KVStore that you want to
configure.

Note that the name of your store is essentially used to form a path to records kept in
the store. For this reason, you should avoid using characters in the store name that
might interfere with its use within a file path. The command line interface does not
allow an invalid store name. Valid characters are alphanumeric, '-', '_', and '.'.

For example:

kv-> configure -name mystore
Store configured: mystore

Chapter 4
Configure and Start a Set of Storage Nodes

4-3

Note:

The store name must be unique across all instances of NoSQL Database
that will be monitored by a given instance of Enterprise Manager. For more
information, see Store Targets .

Create a Zone
After starting the Admin command line interface (CLI) and naming your KVstore, you
can create at least one zone. It is possible, and even desirable, to create more than
one zone. Because zones are complete copies of your store, using multiple zones
improves your store availability. This section describes an installation with a single
zone. For more directions about creating a store deployment with multiple zones, see
Configuring with Multiple Zones.

Note:

Once you add Storage Nodes to a zone, you cannot remove the zone from
your store.

To create a zone, use the plan deploy-zone with this usage:

plan deploy-zone -name <zone name>
-rf <replication factor>
[-type [primary | secondary]]
[-arbiters | -no-arbiters]
[-json]
[-master-affinity | -no-master-affinity]
[-plan-name <name>] [-wait] [-noexecute] [-force]

where:

• -arbiters

Specifies that you can allocate Arbiter Nodes on the Storage Node in the zone.

• -no-arbiters

Specifies that you cannot allocate Arbiter Nodes on the Storage Node in the zone.
You can specify this flag only on a primary zone.

Note:

Only primary zones can host Arbiter Nodes.

• -rf

Chapter 4
Create a Zone

4-4

A number specifying the Zone Replication Factor. A primary zone can have a
Replication Factor equal to zero. Zero capacity Storage Nodes would be added to
this zone to host the Arbiter Nodes.

• -name

Identifies the zone name, as a string.

• -json

Formats the command output in JSON.

Note:

Only primary zones can host Arbiter Nodes.

• –master-affinity

Indicates that this zone is a Master Affinity zone.

• -no-master-affinity

Specifies that this zone is not a Master Affinity zone.

• -type

Specifies the type of zone to create. If you do not specify a –type, the plan utility
creates a Primary zone.

For more information on Primary and Secondary Replication Factors, see Configuring
with Multiple Zones.

When you execute the plan deploy-zone command, the CLI returns the plan number.
It also returns instructions on how to check the plan's status, or to wait for it to
complete. For example:

kv-> plan deploy-zone -name "Boston" -rf 3 -wait
Executed plan 1, waiting for completion...
Plan 1 ended successfully

You can show the plans and their status using the show plans command.

kv-> show plans
1 Deploy Zone (1) SUCCEEDED

A zone may also have a Replication Factor equal to zero. This type of zone is useful
to host only Arbiter Nodes. You would add zero capacity Storage Nodes to this zone
in order to host Arbiter Nodes. For more information see Deploying an Arbiter Node
Enabled Topology.

You can also create Master Affinity Zones, which let you prioritize master nodes in
primary zones. See Master Affinity Zones.

Chapter 4
Create a Zone

4-5

Create an Administration Process on a Specific Host
Every KVStore has an administration database. You must deploy the Storage Node to
which the command line interface is currently connecting to, in this case, node01. You
then deploy an Administration process on that same node to continue configuring this
database. Use the deploy-sn and deploy-admin commands to complete this step.

The deploy-admin command creates an Administration process, the same type as the
Storage Node (SN) zone — if the zone is primary, the Admin is a primary Admin; if a
secondary zone, so is the Admin.

Secondary Admins support failover. If a primary Admin fails, it converts to an offline
secondary to re-establish quorum using existing Admins. A secondary Admin converts
to a primary to take over for the failed primary. For more information on how quorum is
applied, see the Concepts Guide.

To support failover, ensure that any zones used to continue store operation after a
failure contain at least one Admin node.

Note:

A deployed Admin must be the same type (PRIMARY or SECONDARY) as its
zone. Also, the number of deployed Admins in a zone should be equal to the
Replication Factor for the zone.

The deploy-sn command requires a Zone ID. You can get this ID by using the show
topology command:

kv-> show topology
store=mystore numPartitions=0 sequence=1
 zn: id=zn1 name=Boston repFactor=3 type=PRIMARY allowArbiters=false

The zone ID is zn1 in the output.

When you deploy the node, provide the zone ID, the node's network name, and its
registry port number. For example:

kv-> plan deploy-sn -zn zn1 -host node01 -port 5000 -wait
Executed plan 2, waiting for completion...
Plan 2 ended successfully

Having deployed the node, create the Admin process on the node that you just
deployed, using the deploy-admin command. This command requires the Storage
Node ID (which you can obtain using the show topology command) and an optional
plan name.

kv-> plan deploy-admin -sn sn1 -wait
Executed plan 3, waiting for completion...
Plan 3 ended successfully

Chapter 4
Create an Administration Process on a Specific Host

4-6

Create a Storage Node Pool
Once you have created your Administration process, you can create a Storage Node
Pool. This pool is used to contain all the Storage Nodes in your store. A Storage Node
pool is used for resource distribution when creating or modifying a store. You use the
pool create command to create this pool. Then you join Storage Nodes to the pool
using the pool join command.

Note that a default pool called AllStorageNodes will be created automatically and all
SNs will be added to it during the topology deployment process. Therefore, the pool
commands are optional if you use the AllStorageNodes pool as the default pool during
deployment.

Note:

You may have multiple kinds of storage nodes in different zones that vary
by processor type, speed and/or disk capacity. So the storage node pool lets
you define a logical grouping of storage nodes by whatever specification you
pick.

Remember that we already have a Storage Node created. We did that when
we created the Administration process. Therefore, after we add the pool, we can
immediately join that first SN to the pool.

The pool create command only requires you to provide the name of the pool.

The pool join command requires the name of the pool to which you want to join the
Storage Node, and the Storage Node's ID. You can obtain the Storage Node's ID using
the show topology command.

For example:

kv-> pool create -name BostonPool
Added pool BostonPool

kv-> show topology
store=mystore numPartitions=0 sequence=2
 zn: id=zn1 name=Boston repFactor=3 type=PRIMARY allowArbiters=false
 sn=[sn1] zn:[id=zn1 name=Boston] slc09kuu:5000 capacity=1 RUNNING

kv-> pool join -name BostonPool -sn sn1
Added Storage Node(s) [sn1] to pool BostonPool

Create the Remainder of your Storage Nodes
Having created your Storage Node Pool, you can create the remainder of your Storage
Nodes. Storage Nodes host the various Oracle NoSQL Database processes for each
of the nodes in the store. Consequently, you must use the deploy-sn command in
the same way as you did in Create an Administration Process on a Specific Host.

Chapter 4
Create a Storage Node Pool

4-7

Complete this command for each node that you use in your store. As you deploy each
Storage Node, join it to your Storage Node Pool as described in the previous section.

Hint: Storage Node ID numbers increment sequentially with each Storage Node you
add. So you do not have to repetitively look up the IDs with show topology. If the last
Storage Node you created was assigned an ID of 10, then the next Storage Node is
automatically assigned ID 11.

kv-> plan deploy-sn -zn zn1 -host node02 -port 5000 -wait
Executed plan 4, waiting for completion...
Plan 4 ended successfully
kv-> pool join -name BostonPool -sn sn2
Added Storage Node(s) [sn2] to pool BostonPool
kv-> plan deploy-sn -zn zn1 -host node03 -port 5000 -wait
Executed plan 5, waiting for completion...
Plan 5 ended successfully
kv-> pool join -name BostonPool -sn sn3
Added Storage Node(s) [sn3] to pool BostonPool
kv->
....

Continue this process until you have created Storage Nodes on every node in your
store.

Create Additional Admin Processes
Having deployed all your Storage Nodes, you can now add other Admin processes
using the deploy-admin plan. You are responsible for creating the appropriate number
of Admins.

At this point, you have a single Admin process deployed in your store. So far, this has
been sufficient to proceed with store configuration. However, to increase your store's
reliability, you should deploy multiple Admin processes, each running on a different
storage node. This way, you can continue to administer your store even if one SN
becomes unreachable and ends its Admin process. Having multiple Admin processes
also means that you can continue to monitor your store, even if you lose an SN that is
running an Admin process.

Create the Admin process on a node you just deployed, using the plan deploy-admin
command. This command requires the Storage Node ID, which you can get from the
show topology command:

kv-> show topology
store=MyStore numPartitions=100 sequence=104
 zn: id=zn1 name=MyRTZone repFactor=1 type=PRIMARY allowArbiters=false
masterAffinity=false
 sn=[sn1] zn:[id=zn1 name=MyRTZone] MyHost:5000 capacity=1 RUNNING
 [rg1-rn1] RUNNING
 single-op avg latency=9.420646 ms
 multi-op avg latency=0.40270275 ms
 numShards=1
 shard=[rg1] num partitions=100
 [rg1-rn1] sn=sn1
kv-> plan deploy-admin -sn sn1 -wait

Chapter 4
Create Additional Admin Processes

4-8

Executed plan 3, waiting for completion...
Plan 3 ended successfully

Although Admins are not required for normal data operations on the store, they are
needed to perform various administrative operations, including DDL operations. For
example to create or modify tables, and for security operations involving users and
roles. It is very important that the Admin services remain available.

Consideration for Admin Quorum
The full availability of the Admin service depends on having a quorum of the total
Admin services available at a given time. Having a quorum of Admins operates
similarly to the quorum for RNs in a shard. For RNs, the replication factor controls how
many members can fail and still maintain the service. For example, with a replication
factor of 3, the following table describes how failure numbers affect availability:

Failures Availability

0 Full

1 Full

2 Read-only

3 None

The same failure and availability values exist for Admins. We strongly recommend that
you use the store replication factor to determine how many Admins should exist. This
means that the Admin service has the same availability relative to failure as the store
does for data operations. We do not recommend using less than 3 Admins (matching
the typical replication factor), nor having either a very large number of Admins, or an
even number of them.

Since Admins perform data replication much as the replication nodes do, having a
large number of Admins adds more of a burden on the master admin, which must
replicate the data to all of the replicas. While allocating an admin on every SN might
seem convenient (because of its regularity), we do not recommend this, especially if
doing so results in a significantly large number of Admins.

As with the store replication factor, using an even number of replicas means that
maintaining quorum, a majority of the total number, now requires more than half of the
numbers, and results in reduced availability. For example, a replication factor of 4 has
this behavior with failures and availability:

Failures Availability

0 Full

1 Full

2 Read-only

3 Read-only

4 None

So, with a replication factor of 4, the group can still tolerate only a single failure and
maintain full availability. Moreover, in addition to the higher RF value having no benefit
during failures, now one more node exists that can fail, and the chance of losing

Chapter 4
Create Additional Admin Processes

4-9

quorum increases. The replication factors we are describing are for primary nodes
associated with primary zones. For stores with secondary zones, the nodes in the
secondary zones are not included in the quorum.

Available Admins in Zones
Making sure that Admins are available in the right zones is another important
consideration. If a store has multiple primary zones, the zones were presumably set
up to provide better availability. In this case, the admins should reflect the same
arrangement. We recommend that each zone have the same number of admins as
the zone's replication factor. Unlike replication nodes, where all nodes in the shard can
handle read operations, only the admin master responds to admin operations (unless
there is no master). So, putting admins in a secondary zone is mostly only useful to
support failure recovery.

For example, if a store has primary and secondary zones, and all of the primary zones
are lost, the administrator can use the repair-admin-quorum and plan failover
commands to resume operations by converting the secondary zone to a primary zone.
But these operations can occur only if an Admin node is available. For this reason,
stores with secondary zones should include Admins in the secondary zones.

Create and Deploy Replication Nodes
The final step in your configuration process is to create Replication Nodes on
every node in your store. You do this using the topology create and plan deploy-
topology commands in its place. The topology create command takes the following
arguments:

• topology name

A string to identify the topology.

• pool name

A string to identify the pool.

• number of partitions

The initial configuration is based on the storage nodes specified by pool.
This number is fixed once the topology is created and it cannot be changed.
The command will automatically create an appropriate number of shards and
replication nodes based upon the storage nodes in the pool.

You should make sure the number of partitions you select is more than the largest
number of shards you ever expect your store to contain, because the total number
of partitions is static and cannot be changed. For simpler use cases, you can use
the following formula to arrive at a very rough estimate for the number of partitions:

(Total number of disks hosted by the storage nodes /
 Replication Factor) * 10

To get a more accurate estimate for production use see Number of Partitions.

The plan deploy-topology command requires a topology name.

Once you issue the following commands, your store is fully installed and configured:

kv-> topology create -name topo -pool BostonPool -partitions 300
Created: topo

Chapter 4
Create and Deploy Replication Nodes

4-10

kv-> plan deploy-topology -name topo -wait
Executed plan 6, waiting for completion...
Plan 6 ended successfully

As a final sanity check, you can confirm that all of the plans succeeded using the show
plans command:

kv-> show plans
1 Deploy Zone (1) SUCCEEDED
2 Deploy Storage Node (2) SUCCEEDED
3 Deploy Admin Service (3) SUCCEEDED
4 Deploy Storage Node (4) SUCCEEDED
5 Deploy Storage Node (5) SUCCEEDED
6 Deploy-RepNodes SUCCEEDED

Having done that, you can exit the command line interface.

kv-> exit

Configuring Security with Remote Access
To configure security with remote access, see the following steps:

• Create the first admin user:

kv->execute 'CREATE USER admin IDENTIFIED BY "password" ADMIN'

• Grant the readwrite role to the first admin user:

kv->execute "GRANT readwrite TO USER admin"

• Make an admin user security directory for remote access:

ssh CLIENT_HOST mkdir USER/security

• Copy the SSL trust file from the server node:

scp node01:KVROOT/security/client.trust USER/security/

• Generate a password store for the first admin user. This step creates an
admin.passwd file in the USER/security directory. You can also copy the
admin.passwd from other machines to the USER/security directory if the file has
not been created locally. These are the commands to create admin.passwd:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig \
pwdfile create -file USER/security/admin.passwd

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig \

Chapter 4
Configuring Security with Remote Access

4-11

pwdfile secret \
-file USER/security/admin.passwd -set -alias admin -secret password

• Create an admin user login file as USER/security/admin.security:

oracle.kv.auth.username=admin
oracle.kv.auth.pwdfile.file=USER/security/admin.passwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=USER/security/client.trust

• Access the store remotely:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin \
-port 5000 -host node01 \
-security USER/security/admin.security

Configuring with Multiple Zones
To achieve optimal use of all available physical facilities, deploy your store across
multiple zones. Multiple zones provide fault isolation and availability for your data if
a single zone fails. Each zone has a copy of your complete store, including a copy
of all the shards. With this configuration, reads are always possible, as long as your
data's consistency guarantees can be met, because at least one replica is located in
every zone. Writes can also occur in the event of a zone loss, as long as the database
maintains quorum. See Concepts Guide.

You can specify a different replication factor to each zone. A replication factor is
quantified as one of the following:

Zone Replication Factor
The number of copies, or replicas, maintained in a zone.

Primary Replication Factor
The total number of replicas in all primary zones. This replication factor controls the
number of replicas that participate in elections and acknowledgments. For additional
information on how to identify the Primary Replication Factor and its implications,
see Replication Factor.

Secondary Replication Factor
The total number of replicas in all secondary zones. Secondary replicas provide
additional read-only copies of the data.

Store Replication Factor
Represents for all zones in the store, the total number of replicas across the entire
store.

Zones that are located near each other physically benefit by avoiding bottlenecks from
throughput limitations, and by reducing latency during elections and commits.

Chapter 4
Configuring with Multiple Zones

4-12

Note:

There are two types of zones: Primary, and Secondary.

Primary zones contain nodes which can serve as masters or replicas.
Zones are created as primary Zones by default. For good performance,
primary zones should be connected by low latency networks so that they
can participate efficiently in master elections and commit acknowledgments.
Primary zones can also become Master Affinity zones. See Using Master
Affinity Zones.

Secondary zones contain nodes which can only serve as replicas.
Secondary zones can be used to provide low latency read access to data
at a distant location, or to maintain an extra copy of the data to increase
redundancy or increase read capacity. Because the nodes in secondary
zones do not participate in master elections or commit acknowledgments,
secondary zones can be connected to other zones by higher latency
networks, because additional latency will not interfere with those time critical
operations.

Using high throughput and low latency networks to connect primary zones leads to
better results and improved performance. You can use networks with higher latency to
connect to secondary zones so long as the connections provide sufficient throughput
to support replication and sufficient reliability that temporary interruptions do not
interfere with network throughput.

Note:

Because any primary zone can host master nodes, you can reduce write
performance by connecting primary zones through a limited throughput or a
high latency network link.

The following steps walk you through the process of deploying six Storage Nodes
across three primary zones. You can then verify that each shard has a replica in every
zone; service can be continued in the event of a zone failure.

1. For a new store, create the initial "boot config" configuration files using the
makebootconfig utility:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root Data/virtualroot/datacenter1/KVROOT \
-host localhost \
-port 5100 \
-harange 5110,5120 \
-capacity 1

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root Data/virtualroot/datacenter2/KVROOT \
-host localhost \

Chapter 4
Configuring with Multiple Zones

4-13

-port 5200 \
-harange 5210,5220 \
-capacity 1

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root Data/virtualroot/datacenter3/KVROOT \
-host localhost \
-port 5300 \
-harange 5310,5320 \
-capacity 1

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root Data/virtualroot/datacenter4/KVROOT \
-host localhost \
-port 5400 \
-harange 5410,5420 \
-capacity 1

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root Data/virtualroot/datacenter5/KVROOT \
-host localhost \
-port 5500 \
-harange 5510,5520 \
-capacity 1

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root Data/virtualroot/datacenter6/KVROOT \
-host localhost \
-port 5600 \
-harange 5610,5620 \
-capacity 1

2. Create and copy the security directory as below:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig config create \
-root Data/virtualroot/datacenter1/KVROOT -kspwd password
Created files
Data/virtualroot/datacenter1/KVROOT/security/security.xml
Data/virtualroot/datacenter1/KVROOT/security/store.keys
Data/virtualroot/datacenter1/KVROOT/security/store.trust
Data/virtualroot/datacenter1/KVROOT/security/client.trust
Data/virtualroot/datacenter1/KVROOT/security/client.security
Data/virtualroot/datacenter1/KVROOT/security/store.passwd
(Generated in CE version)
Data/virtualroot/datacenter1/KVROOT/security/store.wallet/
cwallet.sso
(Generated in EE version)

Chapter 4
Configuring with Multiple Zones

4-14

Created

cp -r Data/virtualroot/datacenter1/KVROOT/security \
Data/virtualroot/datacenter2/KVROOT/
cp -r Data/virtualroot/datacenter1/KVROOT/security \
Data/virtualroot/datacenter3/KVROOT/
cp -r Data/virtualroot/datacenter1/KVROOT/security \
Data/virtualroot/datacenter4/KVROOT/
cp -r Data/virtualroot/datacenter1/KVROOT/security \
Data/virtualroot/datacenter5/KVROOT/
cp -r Data/virtualroot/datacenter1/KVROOT/security \
Data/virtualroot/datacenter6/KVROOT/

3. Using each of the configuration files, start all of the Storage Node Agents:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start \
-root Data/virtualroot/datacenter1/KVROOT &

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start \
-root Data/virtualroot/datacenter2/KVROOT &

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start \
-root Data/virtualroot/datacenter3/KVROOT &

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start \
-root Data/virtualroot/datacenter4/KVROOT &

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start \
-root Data/virtualroot/datacenter5/KVROOT &

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start \
-root Data/virtualroot/datacenter6/KVROOT &

4. Start the CLI:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin \
-host localhost -port 5100 \
-security Data/virtualroot/datacenter1/KVROOT/security/
client.security

5. Name your store:

kv-> configure -name MetroArea
Store configured: MetroArea

Chapter 4
Configuring with Multiple Zones

4-15

6. Deploy the first Storage Node with administration process in the Manhattan zone:

kv-> plan deploy-zone -name Manhattan -rf 1 -wait
Executed plan 1, waiting for completion...
Plan 1 ended successfully

kv-> plan deploy-sn -znname Manhattan \
-host localhost -port 5100 -wait
Executed plan 2, waiting for completion...
Plan 2 ended successfully

kv-> plan deploy-admin -sn sn1 -wait
Executed plan 3, waiting for completion...
Plan 3 ended successfully

kv-> pool create -name SNs
Added pool SNs

kv-> pool join -name SNs -sn sn1
Added Storage Node(s) [sn1] to pool SNs

7. Deploy a second Storage Node in Manhattan zone:

kv-> plan deploy-sn -znname Manhattan \
-host localhost -port 5200 -wait
Executed plan 4, waiting for completion...
Plan 4 ended successfully

kv-> pool join -name SNs -sn sn2
Added Storage Node(s) [sn2] to pool SNs

8. Deploy the first Storage Node with administration process in the Jersey City zone:

kv-> plan deploy-zone -name JerseyCity -rf 1 -wait
Executed plan 5, waiting for completion...
Plan 5 ended successfully

kv-> plan deploy-sn -znname JerseyCity \
-host localhost -port 5300 -wait
Executed plan 6, waiting for completion...
Plan 6 ended successfully

kv-> plan deploy-admin -sn sn3 -wait
Executed plan 7, waiting for completion...
Plan 7 ended successfully

kv-> pool join -name SNs -sn sn3
Added Storage Node(s) [sn3] to pool SNs

9. Deploy a second Storage Node in Jersey City zone:

kv-> plan deploy-sn -znname JerseyCity \
-host localhost -port 5400 -wait
Executed plan 8, waiting for completion...

Chapter 4
Configuring with Multiple Zones

4-16

Plan 8 ended successfully

kv-> pool join -name SNs -sn sn4
Added Storage Node(s) [sn4] to pool SNs

10. Deploy the first Storage Node with administration process in the Queens zone:

kv-> plan deploy-zone -name Queens -rf 1 -wait
Executed plan 9, waiting for completion...
Plan 9 ended successfully

kv-> plan deploy-sn -znname Queens \
-host localhost -port 5500 -wait
Executed plan 10, waiting for completion...
Plan 10 ended successfully

kv-> plan deploy-admin -sn sn5 -wait
Executed plan 11, waiting for completion...
Plan 11 ended successfully

kv-> pool join -name SNs -sn sn5
Added Storage Node(s) [sn5] to pool SNs

11. Deploy a second Storage Node in Queens zone:

kv-> plan deploy-sn -znname Queens \
-host localhost -port 5600 -wait
Executed plan 12, waiting for completion...
Plan 12 ended successfully

kv-> pool join -name SNs -sn sn6
Added Storage Node(s) [sn6] to pool SNs

12. Create and deploy a topology:

kv-> topology create -name Topo1 -pool SNs -partitions 100
Created: Topo1

kv-> plan deploy-topology -name Topo1 -wait
Executed plan 13, waiting for completion...
Plan 13 ended successfully

13. Check service status with the show topology command:

kv-> show topology
store=MetroArea numPartitions=100 sequence=117
 zn: id=zn1 name=Manhattan repFactor=1 type=PRIMARY
 allowArbiters=false masterAffinity=false
 zn: id=zn2 name=JerseyCity repFactor=1 type=PRIMARY
 allowArbiters=false masterAffinity=false
 zn: id=zn3 name=Queens repFactor=1 type=PRIMARY
 allowArbiters=false masterAffinity=false

Chapter 4
Configuring with Multiple Zones

4-17

 sn=[sn1] zn:[id=zn1 name=Manhattan] node01:5100 capacity=1 RUNNING
 [rg1-rn1] RUNNING
 No performance info available
 sn=[sn2] zn:[id=zn1 name=Manhattan] node02:5200 capacity=1 RUNNING
 [rg2-rn1] RUNNING
 No performance info available
 sn=[sn3] zn:[id=zn2 name=JerseyCity] node03:5300 capacity=1
RUNNING
 [rg1-rn2] RUNNING
 No performance info available
 sn=[sn4] zn:[id=zn2 name=JerseyCity] node04:5400 capacity=1
RUNNING
 [rg2-rn2] RUNNING
 No performance info available
 sn=[sn5] zn:[id=zn3 name=Queens] node05:5500 capacity=1 RUNNING
 [rg1-rn3] RUNNING
 No performance info available
 sn=[sn6] zn:[id=zn3 name=Queens] node06:5600 capacity=1 RUNNING
 [rg2-rn3] RUNNING
 No performance info available

 numShards=2
 shard=[rg1] num partitions=50
 [rg1-rn1] sn=sn1
 [rg1-rn2] sn=sn3
 [rg1-rn3] sn=sn5
 shard=[rg2] num partitions=50
 [rg2-rn1] sn=sn2
 [rg2-rn2] sn=sn4
 [rg2-rn3] sn=sn6

14. Verify that each shard has a replica in every zone:

kv-> verify configuration
Verify: starting verification of store MetroArea
based upon topology sequence #117
100 partitions and 6 storage nodes
Time: 2020-07-30 17:04:02 UTC Version: 20.2.15
See node01:
Data/virtualroot/datacenter1/KVROOT/MetroArea/log/
MetroArea_{0..N}.log
for progress messages
Verify: Shard Status: healthy:2
writable-degraded:0 read-only:0 offline:0 total:2
Verify: Admin Status: healthy
Verify: Zone [name=Manhattan id=zn1
type=PRIMARY allowArbiters=false
masterAffinity=false] RN Status: online:2 read-only:0 offline:0
Verify: Zone [name=JerseyCity id=zn2
type=PRIMARY allowArbiters=false
masterAffinity=false] RN Status: online:2 read-only:0 offline:0
maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: Zone [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false] RN Status: online:2 read-only:0 offline:0

Chapter 4
Configuring with Multiple Zones

4-18

maxDelayMillis:4 maxCatchupTimeSecs:0
Verify: == checking storage node sn1 ==
Verify: Storage Node [sn1] on node01:5100
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Admin [admin1] Status: RUNNING,MASTER
Verify: Rep Node [rg1-rn1] Status: RUNNING,MASTER
sequenceNumber:1,261 haPort:5111 available storage size:31 GB
Verify: == checking storage node sn2 ==
Verify: Storage Node [sn2] on node02:5200
Zone: [name=Manhattan id=zn1 type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Rep Node [rg2-rn1] Status: RUNNING,MASTER
sequenceNumber:1,236 haPort:5210 available storage size:31 GB
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03:5300
Zone: [name=JerseyCity id=zn2 type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Admin [admin2] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn2] Status: RUNNING,REPLICA
sequenceNumber:1,261 haPort:5311 available storage size:31 GB
delayMillis:1 catchupTimeSecs:0
Verify: == checking storage node sn4 ==
Verify: Storage Node [sn4] on node04:5400
Zone: [name=JerseyCity id=zn2 type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Rep Node [rg2-rn2] Status: RUNNING,REPLICA
sequenceNumber:1,236 haPort:5410 available storage size:31 GB
delayMillis:0 catchupTimeSecs:0
Verify: == checking storage node sn5 ==
Verify: Storage Node [sn5] on node05:5500
Zone: [name=Queens id=zn3 type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Admin [admin3] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn3] Status: RUNNING,REPLICA
sequenceNumber:1,261 haPort:5511 available storage size:31 GB
delayMillis:1 catchupTimeSecs:0
Verify: == checking storage node sn6 ==
Verify: Storage Node [sn6] on node06:5600
Zone: [name=Queens id=zn3 type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Rep Node [rg2-rn3] Status: RUNNING,REPLICA
sequenceNumber:1,236 haPort:5610 available storage size:31 GB

Chapter 4
Configuring with Multiple Zones

4-19

delayMillis:4 catchupTimeSecs:0

Verification complete, no violations.

15. Follow the instructions mentioned in Configuring Security with Remote Access to
create the access for the user in the multiple zone deploy example.

In the previous example there are three zones (zn1 = Manhattan, zn2 = JerseyCity,
zn3=Queens) with six Replication Nodes (two masters and four replicas) in this cluster.
This means that this topology is not only highly available because you have three
replicas within each shard, but it is also able to recover from a single zone failure. If
any zone fails, the other two zones are enough to elect the new master, so service
continues without any interruption.

Adding Secondary Zone to the Existing Topology
This section shows how to add a secondary zone to the existing topology that was
created in the "Configuring with Multiple Zones" section. The following example adds a
secondary zone in a different geographical location, Europe, allowing the users to read
the data from the secondary zone either because it is physically located closer to the
client or because the primary zone in the New York metro area is unavailable due to
a disaster. The steps involve creating and starting a new Storage Node with capacity
2, creating a secondary zone, deploying the new Storage Node in the secondary zone,
and doing a redistribute of the topology so that a replica for each shard is placed in the
secondary zone.

1. Create the initial makebootconfig for the new Storage Node that will be deployed
in the Frankfurt zone.

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root Data/virtualroot/datacenter7/KVROOT \
-host localhost \
-port 5700 \
-harange 5710,5720 \
-capacity 1

2. Copy the security directory to the new Storage Node.

cp -r Data/virtualroot/datacenter1/KVROOT/security \
Data/virtualroot/datacenter7/KVROOT/

3. Start the 7th Storage Node Agent.

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start \
-root Data/virtualroot/datacenter7/KVROOT &

4. Start the Admin CLI.

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin \
-host localhost -port 5100 \

Chapter 4
Adding Secondary Zone to the Existing Topology

4-20

-security Data/virtualroot/datacenter1/KVROOT/security/
client.security

5. Create a secondary zone in Frankfurt.

kv-> plan deploy-zone -name Frankfurt -rf 1 -type secondary -wait
Executed plan 14, waiting for completion...
Plan 14 ended successfully

6. Deploy Storage Node sn7 in the Frankfurt zone.

kv-> plan deploy-sn -znname Frankfurt -host localhost -port 5700
-wait
Executed plan 15, waiting for completion...
Plan 15 ended successfully

kv-> pool join -name SNs -sn sn7
Added Storage Node(s) [sn7] to pool SNs

7. Do redistribute and then deploy the new topology to create one replica for every
shard in the secondary Frankfurt zone.

kv-> topology clone -current -name topo_secondary
Created topo_secondary

kv-> topology redistribute -name topo_secondary -pool SNs
Redistributed: topo_secondary

kv-> topology preview -name topo_secondary
Topology transformation from current deployed topology to
topo_secondary:
Create 1 RN
shard rg1
 1 new RN : rg1-rn4

kv-> plan deploy-topology -name topo_secondary -wait
Executed plan 16, waiting for completion...
Plan 16 ended successfully

8. Check service status with the show topology command.

kv-> show topology
store=MetroArea numPartitions=100 sequence=120
 zn: id=zn1 name=Manhattan repFactor=1 type=PRIMARY
 allowArbiters=false masterAffinity=false
 zn: id=zn2 name=JerseyCity repFactor=1 type=PRIMARY
 allowArbiters=false masterAffinity=false
 zn: id=zn3 name=Queens repFactor=1 type=PRIMARY
 allowArbiters=false masterAffinity=false
 zn: id=zn4 name=Frankfurt repFactor=1 type=SECONDARY
 allowArbiters=false masterAffinity=false

 sn=[sn1] zn:[id=zn1 name=Manhattan] node01:5100 capacity=1 RUNNING
 [rg1-rn1] RUNNING

Chapter 4
Adding Secondary Zone to the Existing Topology

4-21

 single-op avg latency=0.21372496 ms multi-op avg latency=0.0 ms
 sn=[sn2] zn:[id=zn1 name=Manhattan] node02:5200 capacity=1 RUNNING
 [rg2-rn1] RUNNING
 single-op avg latency=0.30840763 ms multi-op avg latency=0.0 ms
 sn=[sn3] zn:[id=zn2 name=JerseyCity] node03:5300 capacity=1
RUNNING
 [rg1-rn2] RUNNING
 No performance info available
 sn=[sn4] zn:[id=zn2 name=JerseyCity] node04:5400 capacity=1
RUNNING
 [rg2-rn2] RUNNING
 No performance info available
 sn=[sn5] zn:[id=zn3 name=Queens] node05:5500 capacity=1 RUNNING
 [rg1-rn3] RUNNING
 No performance info available
 sn=[sn6] zn:[id=zn3 name=Queens] node06:5600 capacity=1 RUNNING
 [rg2-rn3] RUNNING
 No performance info available
 sn=[sn7] zn:[id=zn4 name=Frankfurt] node07:5700 capacity=1 RUNNING
 [rg1-rn4] RUNNING
 No performance info available

 numShards=2
 shard=[rg1] num partitions=50
 [rg1-rn1] sn=sn1
 [rg1-rn2] sn=sn3
 [rg1-rn3] sn=sn5
 [rg1-rn4] sn=sn7
 shard=[rg2] num partitions=50
 [rg2-rn1] sn=sn2
 [rg2-rn2] sn=sn4
 [rg2-rn3] sn=sn6

9. Verify that the secondary zone has a replica for each shard.

kv-> verify config
Verify: starting verification of store MetroArea
based upon topology sequence #120
100 partitions and 7 storage nodes
Time: 2020-07-30 18:00:19 UTC Version: 20.2.15
See node01:
Data/virtualroot/datacenter1/KVROOT/MetroArea/log/
MetroArea_{0..N}.log
for progress messages
Verify: Shard Status: healthy:1
writable-degraded:1 read-only:0 offline:0 total:2
Verify: Admin Status: healthy
Verify: Zone [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] RN Status: online:2 read-only:0 offline:0
Verify: Zone [name=JerseyCity id=zn2
type=PRIMARY allowArbiters=false
masterAffinity=false] RN Status: online:2 read-only:0 offline:0
maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: Zone [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false] RN Status: online:2 read-only:0 offline:0

Chapter 4
Adding Secondary Zone to the Existing Topology

4-22

maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: Zone [name=Frankfurt id=zn4
type=SECONDARY allowArbiters=false
masterAffinity=false] RN Status: online:1 read-only:0 offline:0
maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: == checking storage node sn1 ==
Verify: Storage Node [sn1] on node01:5100
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Admin [admin1] Status: RUNNING,MASTER
Verify: Rep Node [rg1-rn1] Status: RUNNING,MASTER
sequenceNumber:1,261 haPort:5111 available storage size:31 GB
Verify: == checking storage node sn2 ==
Verify: Storage Node [sn2] on node02:5200
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Rep Node [rg2-rn1] Status: RUNNING,MASTER
sequenceNumber:1,236 haPort:5210 available storage size:31 GB
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03:5300
Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Admin [admin2] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn2] Status: RUNNING,REPLICA
sequenceNumber:1,261 haPort:5311 available storage size:31 GB
delayMillis:0 catchupTimeSecs:0
Verify: == checking storage node sn4 ==
Verify: Storage Node [sn4] on node04:5400
Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Rep Node [rg2-rn2] Status: RUNNING,REPLICA
sequenceNumber:1,236 haPort:5410 available storage size:31 GB
delayMillis:1 catchupTimeSecs:0
Verify: == checking storage node sn5 ==
Verify: Storage Node [sn5] on node05:5500
Zone: [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Admin [admin3] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn3] Status: RUNNING,REPLICA
sequenceNumber:1,261 haPort:5511 available storage size:31 GB
delayMillis:1 catchupTimeSecs:0
Verify: == checking storage node sn6 ==
Verify: Storage Node [sn6] on node06:5600
Zone: [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]

Chapter 4
Adding Secondary Zone to the Existing Topology

4-23

Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Rep Node [rg2-rn3] Status: RUNNING,REPLICA
sequenceNumber:1,236 haPort:5610 available storage size:31 GB
delayMillis:0 catchupTimeSecs:0
Verify: == checking storage node sn7 ==
Verify: Storage Node [sn7] on node07:5700
Zone: [name=Frankfurt id=zn4 type=SECONDARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Rep Node [rg1-rn4] Status: RUNNING,REPLICA
sequenceNumber:1,261 haPort:5710 available storage size:31 GB
delayMillis:1 catchupTimeSecs:0

Verification complete, no violations.

Using Master Affinity Zones
Master Affinity zones let you specify which Primary Zone handles write requests for
your client applications.

Oracle NoSQL Databases use zones. Zones duplicate the entire KVStore, spreading
the data store and load across multiple physical locations. Having zones helps to avoid
catastrophic data loss and operational disruptions. A zone consists of a number of
Storage Nodes (SNs) and Replication Nodes (RNs). See Architecture in the Concepts
Guide.

Two kinds of zones exist:

• Primary zones — can host both master nodes and replication nodes, though they
are not required to do so. Data read and write requests go to Primary zones
configured to handle such requests.

• Secondary zones — have no master node. They handle only read requests from
client applications.

Each shard has a single Master Node, which is capable of writing data to all RNs.
Regardless of zone type, all zones require high quality network connectivity to
maintain optimal performance for writing data to the RNs, and accessing data from
RNs for application data requests.

You choose which Primary zones have Master Affinity, which provides a way for you to
send write requests to a specific Primary zone. Setting the -master-affinity property
confirms its designation as such, while keeping the default –no-master-affinity
property designates that a zone is not a Master Affinity zone. Using the –master-
affinity property organizes Master nodes from different shards into the Master
Affinity zone, providing several advantages:

• Master Affinity zones service high demand write requests across shards.

• When a Master Node fails, a replacement from the Master Affinity zone is
available to take over from the failed node, with virtually no lag in service.

• RNs in the Master Affinity zone perform a standard election process to determine
the Master Node that assumes the role of the failed Master Node.

Chapter 4
Using Master Affinity Zones

4-24

Using Master Affinity zones successfully requires knowledge of the zones that are
in closest proximity to your client applications with the highest demands. The client
application is then predictably serviced by both the Master Node and RNs in the
Master Affinity zone.

Benefits of Master Affinity Zones

Master affinity is a zone property. A zone either has the Master Affinity property
(-master-affinity), or does not (-no-master-affinity). Most likely, you will choose
a specific Primary Zone to become a Master Affinity zone because that zone is ideally
suited to service demanding client write requests. The candidate zone is in close
proximity to the application demands, and has high quality communication capabilities
to service them.

You can set the Master Affinity property only on Primary Zones. Once you do, only
nodes in Master Affinity zones can become masters during a failover. Having a Master
Affinity zone with one or more Master nodes supports both low latency write activities
and high availability.

Typically, when a Master Node fails, the Replication Nodes (RNs) enter a selection
process to elect a new Master node. The election involves an algorithmic approach
using, among other factors, a criteria to elect the RN with the most recent data. Once
a zone is a Master Affinity zone, and a Master Node fails, a similar process occurs.
When a new Master node exists, write requests are automatically directed to the new
Master, and absolute consistency requests are serviced by the new Master in the
Master Affinity zone.

All storage nodes (SNs) can determine if they are part of a Master Affinity zone. If they
are not part of a Master Affinity zone, they help determine which SNs are candidates
to host RNs that will transfer to the Master Affinity zone as potential Master Nodes
during election. By choosing and assigning RNs to a Master Affinity zone, if the current
Master node fails, the next applicable node will assume its responsibilities.

Adding a Master Affinity Zone
Describes the Master Affinity zone parameter, and the effects of setting it.

Using Master Affinity zones is optional. By default, after upgrading to the current
release, all zones are set to -no-master-affinity. To use Master Affinity, you
change the zone property manually. The Master Affinity zone property affects only
the Replication Node masters, and has no effect on the database Admin masters. This
section describes how to use Master Affinity zones, and what effects they can have on
your operations.

Your first choice is to determine which zones should have Master Affinity. The chosen
zones must be in close physical proximity to the applications they serve. In this way, a
Master Affinity zone provides the lowest latency write performance.

As an example, the following topology is for two (2) shards (rg1 and rg2) with a
replication factor of three (3), described as a 2 * 3 KVSTORE, where rg2–rn1 and
rg1–rn2 are the master nodes in zn1 and zn2, respectively:

Storage Node [sn1] on localhost:5100 Zone: [name=1 id=zn1
type=PRIMARY allowArbiters=false Status: RUNNING
 Admin [admin1] Status: RUNNING,MASTER

Chapter 4
Using Master Affinity Zones

4-25

 Rep Node [rg1-rn1] Status: RUNNING,REPLICA
 Rep Node [rg2-rn1] Status: RUNNING,MASTER
Storage Node [sn2] on localhost:5200 Zone: [name=2 id=zn2
type=PRIMARY allowArbiters=false Status: RUNNING
 Admin [admin2] Status: RUNNING,REPLICA
 Rep Node [rg1-rn2] Status: RUNNING,MASTER
 Rep Node [rg2-rn2] Status: RUNNING,REPLICA
Storage Node [sn3] on localhost:5300 Zone: [name=3 id=zn3
type=PRIMARY allowArbiters=false Status: RUNNING
 Admin [admin3] Status: RUNNING,REPLICA
 Rep Node [rg1-rn3] Status: RUNNING,REPLICA
 Rep Node [rg2-rn3] Status: RUNNING,REPLICA

Here are the zones before using Master Affinity. Primary Zones 1 and 2 each have a
master node in their respective shards (rg1 and rg2):

Figure 4-1 Zone Distribution Before Master Affinity

After choosing the Primary Zone best suited for having Master Affinity, set the –
master-affinity property as follows:

• When deploying a zone for the first time, use the plan deploy-zone command.

• After deploying a zone, use the topology change-zone-master-affinity
command.

For example, here is the plan deploy-zone command being used as part of
configuring the store mystore to change the master-affinity zone property. In this
example, you set the master-affinity property for Zone 2.

configure -name mystore
plan deploy-zone -name 1 -rf 1 -no-master-affinity -wait
plan deploy-zone -name 2 -rf 1 -master-affinity -wait
plan deploy-zone -name 3 -rf 1 -wait

Note:

When Master Affinity is in effect for Zone 2, both master nodes for the two
shards are placed in Zone 2.

Chapter 4
Using Master Affinity Zones

4-26

Figure 4-2 Zone Distribution After Master Affinity

Losing a Master Affinity Zone Node
Describes what occurs when a Master Node fails in a Master Affinity Zone.

After your initial setup, you determine which Primary zone will be a Master Affinity
zone. Using Master Affinity zones optimizes write requests to Master Nodes in that
zone. The Storage Nodes (SNs) can detect if they are part of a Master Affinity zone.
If an SN is not part of a zone itself, it detects which SNs are part of a Master Affinity
zone.

If a Master Affinity zone master node fails, the RNs detect if an applicable node
exists within the zone. For example, the Master Affinity zone may have another master
node. If another master node is not available, RNs elect the best candidate, or have
applicable RNs from other zones migrate into the Master Affinity zone for Master Node
consideration. Such zone realignment occurs automatically to support the Master
Affinity zone.

Finally, the RNs vote to determine which node should become the next Master
node. For voting and deciding on a new master node, only the highest performance
RNs can become master nodes in the Master Affinity zone. Once the next Master
node is available, Oracle NoSQL directs all write requests and absolute consistency
requirements to that Master.

Using a Script to Configure the Store

Note:

You must follow the configuration steps as mentioned in Configuring Your
KVStore Installation before running the Admin CLI.

Up to this point, we have shown how to configure a store using an interactive
command line interface session. However, you can collect all of the commands used in
the prior sections into a script file, and then run them in a single batch operation. To do
this, use the load command in the command line interface. For example:

Chapter 4
Using a Script to Configure the Store

4-27

Using the load -file command line option:

ssh node01
> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host node01 \
-security \
KVROOT/security/client.security \
load -file script.txt

Using directly the load -file command:

kv-> load -file <path to file>

Using this command you can load the named file and interpret its contents as a script
of commands to be executed.

The file, script.txt, would contain content like this script. Note that the name of the
store in this example is BostonArea, rather one of the names used previously, such as
MetroArea:

Begin Script
configure -name BostonArea
plan deploy-zone -name "Boston" -rf 3 -wait
plan deploy-sn -zn zn1 -host node01 -port 5000 -wait
plan deploy-admin -sn sn1 -wait
pool create -name BostonPool
pool join -name BostonPool -sn sn1
plan deploy-sn -zn zn1 -host node02 -port 6000 -wait
pool join -name BostonPool -sn sn2
plan deploy-sn -zn zn1 -host node03 -port 7000 -wait
pool join -name BostonPool -sn sn3
topology create -name topo -pool BostonPool -partitions 300
plan deploy-topology -name topo -wait
exit
End Script ###

Follow the instructions mentioned in Configuring Security with Remote Access to
create the access for the user in the multiple zone deploy example.

Smoke Testing the System
There are several things you can do to ensure that your KVStore is up and fully
functional.

1. Run the ping command. See:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar ping -port 5000 \
-host node01 -security
USER/security/admin.security
Pinging components of store mystore based upon topology sequence
#316
300 partitions and 3 storage nodes

Chapter 4
Smoke Testing the System

4-28

Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
Shard Status: healthy:3 writable-degraded:0 read-only:0 offline:0
Admin Status: healthy
Zone [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:9 offline:0 maxDelayMillis:1 maxCatchupTimeSecs:0
Storage Node [sn1] on node01:5000
 Zone [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 RN Status: online:1 offline:0
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
 Admin [admin1] Status: RUNNING,MASTER
 Rep Node [rg1-rn1] Status: RUNNING,REPLICA
 sequenceNumber:231 haPort:5011 available storage size:14 GB
delayMillis:1 catchupTimeSecs:0
 Rep Node [rg2-rn1] Status: RUNNING,REPLICA
 sequenceNumber:231 haPort:5012 available storage size:12 GB
delayMillis:1 catchupTimeSecs:0
 Rep Node [rg3-rn1] Status: RUNNING,MASTER
 sequenceNumber:227 haPort:5013 available storage size:11 GB
Storage Node [sn2] on node02:6000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
 Rep Node [rg1-rn2] Status: RUNNING,MASTER
 sequenceNumber:231 haPort:6010 available storage size:13 GB
 Rep Node [rg2-rn2] Status: RUNNING,REPLICA
 sequenceNumber:231 haPort:6011 available storage size:18 GB
delayMillis:1 catchupTimeSecs:0
 Rep Node [rg3-rn2] Status: RUNNING,REPLICA
 sequenceNumber:227 haPort:6012 available storage size:16 GB
delayMillis:1 catchupTimeSecs:0
Storage Node [sn3] on node03:7000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
 Rep Node [rg1-rn3] Status: RUNNING,REPLICA
 sequenceNumber:231 haPort:7010 available storage size:12 GB
delayMillis:1 catchupTimeSecs:0
 Rep Node [rg2-rn3] Status: RUNNING,MASTER
 sequenceNumber:231 haPort:7011 available storage size:12 GB
 Rep Node [rg3-rn3] Status: RUNNING,REPLICA
 sequenceNumber:227 haPort:7012 available storage size:11 GB
delayMillis:1 catchupTimeSecs:0

2. Look through the Javadoc. You can access it from the documentation index page,
which can be found at KVHOME/doc/index.html.

If you run into installation problems or want to start over with a new store, then on
every node in the system:

Chapter 4
Smoke Testing the System

4-29

1. Stop the node using:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop -root KVROOT

2. Remove the contents of the KVROOT directory:

rm -rf KVROOT

3. Start over with the steps described in Installation Configuration Parameters.

Troubleshooting
Typical errors when bringing up a store are typos and misconfiguration. It is also
possible to run into network port conflicts, especially if the deployment failed and you
are starting over. In that case be sure to remove all partial store data and configuration
and kill any remnant processes. Processes associated with a store as reported by "jps
-m" are one of these:

• kvstore.jar start -root KVROOT (SNA process)

• ManagedService

If you kill the SNA process it should also kill its managed processes.

There are detailed log files available in KVROOT/storename/log as well as logs
of the bootstrap process in KVROOT/*.log. The bootstrap logs are most useful in
diagnosing initial startup problems. The logs in storename/log appear once the store
has been configured. The logs on the host chosen for the admin process are the
most detailed and include a store-wide consolidated log file: KVROOT/storename/log/
storename_*.log

Each line in a log file is prefixed with the date of the message, its severity, and the
name of the component which issued it. For example:

2012-10-25 14:28:26.982 UTC INFO [admin1]
Initializing Admin for store: kvstore

When looking for more context for events at a given time, use the timestamp and
component name to narrow down the section of log to peruse.

Error messages in the logs show up with "SEVERE" in them so you can grep for that if
you are troubleshooting. SEVERE error messages are also displayed in the CLI's show
events command, and when you use the ping command.

In addition to log files, these directories may also contain *.perf files, which are
performance files for the Replication Nodes.

In general, verify configuration is the tool of choice for understanding the
state of the cluster. In addition to contacting the components, it will cross check
each component's parameters against the Admin database. For example, verify
configuration might report that a Replication Node's helperHosts parameter was at
odds with the Admin. If this were the case then it might explain why a Replication
Node cannot come up. Verify configuration also checks on Admins. It also verifies
the configuration of Arbiter Nodes in the topology.

Chapter 4
Troubleshooting

4-30

Additionally, in order to catch configuration errors early, you can use the diagnostics
tool when troubleshooting your KVStore. Also, you can use this tool to package
important information and files to be able to send them to Oracle Support, for example.
For more information, see Diagnostics Utility

Where to Find Error Information
As your store operates, you can discover information about any problems that may be
occurring by looking at the plan history and by looking at error logs.

The plan history indicates if any configuration or operational actions you attempted to
take against the store encountered problems. This information is available as the plan
executes and finishes. Errors are reported in the plan history each time an attempt to
run the plan fails. The plan history can be seen using the CLI show plan command.

Other problems may occur asynchronously. You can learn about unexpected failures,
service downtime, and performance issues through the CLI's show events command.
Events come with a time stamp, and the description may contain enough information
to diagnose the issue. In other cases, more context may be needed, and the
administrator may want to see what else happened around that time.

The store-wide log consolidates logging output from all services. Browsing this
file might give you a more complete view of activity during the problem period.
It can be viewed using the CLI's logtail command, or by directly viewing the
<storename>_N.log file in the <KVHOME>/<storename>/log directory.

Service States
Oracle NoSQL Database uses four different types of services, all of which should be
running correctly in order for your store to be in a healthy state. The four service types
are the Admin, Storage Nodes, Replication Nodes and Arbiters Nodes. You should
have multiple instances of these services running throughout your store.

Each service has a status that can be viewed using any of the following:

• The show topology command in the Administration CLI.

• Using the ping command.

The status values can be one of the following:

Name Description

ERROR_NO_RESTART The service is in an error state and is
not automatically restarted. Administrative
intervention is required.

ERROR_RESTARTING The service is in an error state. Oracle NoSQL
Database attempts to restart the service.

RUNNING The service is running normally.

STARTING The service is coming up.

STOPPED The service was stopped intentionally and
cleanly.

STOPPING The service is stopping. This may take some
time as some services can be involved in time-
consuming activities when they are asked to
stop.

Chapter 4
Troubleshooting

4-31

Name Description

SUCCEEDED The plan has completed successfully.

UNREACHABLE The service is not reachable by the Admin.
If the status was seen using a command
issued by the Admin, this state may mask
a STOPPED or ERROR state. If an SN is
UNREACHABLE, or an RN is having problems
and its SN is UNREACHABLE, the first thing
to check is the network connectivity between
the Admin and the SN. However, if the
managing SNA is reachable and the managed
Replication Node is not, we can guess that the
network is OK and the problem lies elsewhere.

WAITING_FOR_DEPLOY The service is waiting for commands or
acknowledgments from other services during
its startup processing. If it is a Storage Node, it
is waiting for the initial deploy-SN command.
Other services should transition out of this
phase without any administrative intervention
from the user.

A healthy service begins with STARTING. It may transition to WAITING_FOR_DEPLOY for a
short period before going on to RUNNING.

ERROR_RESTARTING and ERROR_NO_RESTART indicate that there has been a problem that
should be investigated. An UNREACHABLE service may only be in that state temporarily,
although if that state persists, the service may be truly in an ERROR_RESTARTING or
ERROR_NO_RESTART state.

Useful Commands
The following commands may be useful to you when troubleshooting your KVStore.

• java -Xmx64m -Xms64m \
-jar kvstore.tmp/kvstore.jar ping -host node01 -port 5000 \
-security USER/security/admin.security

Reports the status of the store running on the specified host and port. This
command can be used against any of the host and port pairs used for Storage
Nodes.

• jps -m

Reports the Java processes running on a machine. If the Oracle NoSQL Database
processes are running, they are reported by this command.

Note:

This assumes that you have completed the steps in Configuring Security with
Remote Access.

Chapter 4
Troubleshooting

4-32

5
Configuring Multi-Region KVStores

Oracle NoSQL Database supports Multi-Region Architecture in which you can create
tables in multiple KVStores, and still maintain consistent data across these clusters.
Each KVStore cluster in a Multi-Region Oracle NoSQL Database setup is called a
Region. A Multi-Region Table or MR Table is a global logical table that is stored and
maintained in different regions. MR Tables maintain consistent data in all the regions.
That is, any updates made to an MR Table in one region automatically applies to the
corresponding MR Table in all the other participating regions. To learn more about
Oracle NoSQL Database Multi-Region Architecture and MR Tables, see Multi-Region
Architecture in the Concepts Guide.

You can configure a Multi-Region Oracle NoSQL Database, and create and
manipulate the MR Tables using the Oracle NoSQL Database command-line interface
(CLI).The remainder of this chapter is organized into four use cases to demonstrate
the different features of the Multi-Region Oracle NoSQL Database and MR Tables. The
examples provided show you which commands to use and how. For a complete list of
all the commands available in the CLI, see Admin CLI Reference.

Use Cases

• Use Case 1: Set up Multi-Region Environment

• Use Case 2: Expand a Multi-Region Table

• Use Case 3: Contract a Multi-Region Table

• Use Case 4: Drop a Region

Use Case 1: Set up Multi-Region Environment
An organization deploys two on-premise KVStores, one each at Frankfurt and London.
As per their requirement, they create a few MR Tables in both the regions. The Users
table is one of the many MR Tables created and maintained by this organization. In
the next few topics, let us discuss how to set up the Frankfurt and London regions and
how to create and work with an MR Table called Users in these two regions.

To configure a Multi-Region NoSQL Database, you need to execute the below listed
tasks in each region. For the use case under discussion, you must execute all the
below listed steps in both the participating regions, Frankfurt and London.

1. Deploy KVStore

2. Set Local Region Name

3. Configure XRegion Service

4. Start XRegion Service

5. Create Remote Regions

6. Create Multi-Region Tables

7. Access and Manipulate Multi-Region Tables

5-1

Deploy KVStore
In each region in the Multi-Region NoSQL Database setup, you must deploy its own
KVStore independently.

Steps:

To deploy the KVStore:

1. Follow the instructions given in Configuration Overview.

2. After deploying the KVStore of your desired topology, you can check the health of
the KVStore by executing the ping command from the command line interface.

[~]$ java -jar $KVHOME/lib/kvstore.jar ping -port <port number> -
host <host name>

3. You can also verify the topology of the KVStore by executing the show topology
command from the kv prompt. See show topology.

kv-> show topology

Example:

For the use case under discussion, you must set up KVStores for the two regions
proposed.

Connect to the KVStore deployed at host1, host2, and host3 from the
kv prompt
[~]$java -jar $KVHOME/lib/kvstore.jar runadmin \
-helper-hosts host1:5000,host2:5000,host3:5000

View the topology of the kvstore
kv-> show topology
store=mrtstore numPartitions=1000 sequence=1008
 zn: id=zn1 name=zn1 repFactor=3 type=PRIMARY allowArbiters=false
masterAffinity=false

 sn=[sn1] zn:[id=zn1 name=zn1] host1:5000 capacity=1 RUNNING
 [rg1-rn1] RUNNING
 single-op avg latency=0.8630216 ms multi-op avg
latency=1.7694647 ms
 sn=[sn2] zn:[id=zn1 name=zn1] host2:5000 capacity=1 RUNNING
 [rg1-rn2] RUNNING
 single-op avg latency=0.0 ms multi-op avg
latency=2.0211697 ms
 sn=[sn3] zn:[id=zn1 name=zn1] host3:5000 capacity=1 RUNNING
 [rg1-rn3] RUNNING
 single-op avg latency=0.0 ms multi-op avg
latency=1.8524266 ms

 numShards=1
 shard=[rg1] num partitions=1000
 [rg1-rn1] sn=sn1

Chapter 5
Use Case 1: Set up Multi-Region Environment

5-2

 [rg1-rn2] sn=sn2
 [rg1-rn3] sn=sn3

Connect to the KVStore deployed at host4, host5, and host6 from the
kv prompt
[~]$java -jar $KVHOME/lib/kvstore.jar runadmin \
-helper-hosts host4:5000,host5:5000,host6:5000

View the topology of the kvstore
kv-> show topology
store=mrtstore numPartitions=1000 sequence=1008
 zn: id=zn1 name=zn1 repFactor=3 type=PRIMARY allowArbiters=false
masterAffinity=false

 sn=[sn1] zn:[id=zn1 name=zn1] host4:5000 capacity=1 RUNNING
 [rg1-rn1] RUNNING
 single-op avg latency=0.7519707 ms multi-op avg
latency=2.000658 ms
 sn=[sn2] zn:[id=zn1 name=zn1] host5:5000 capacity=1 RUNNING
 [rg1-rn2] RUNNING
 single-op avg latency=0.0 ms multi-op avg
latency=3.2067895 ms
 sn=[sn3] zn:[id=zn1 name=zn1] host6:5000 capacity=1 RUNNING
 [rg1-rn3] RUNNING
 single-op avg latency=0.0 ms multi-op avg
latency=1.9516457 ms

 numShards=1
 shard=[rg1] num partitions=1000
 [rg1-rn1] sn=sn1
 [rg1-rn2] sn=sn2
 [rg1-rn3] sn=sn3

Set Local Region Name
Learn how to set a name to the local region in a Multi-Region NoSQL Database.

After deploying the KVStore and before creating the first MR Table in each
participating region, you must set a local region name. You can change the local
region name as long as no MR Tables are created in that region. After creating the first
MR Table, the local region name becomes immutable.

Steps:

To set the local region name:

1. Connect to the sql prompt from the local region, and connect to the local KVStore.

2. Execute the following command from the sql prompt.

sql-> SET LOCAL REGION <local region name>;

Chapter 5
Use Case 1: Set up Multi-Region Environment

5-3

3. Optionally, you can execute the following command to verify that the local region
name is set successfully.

sql-> SHOW REGIONS;

Example:

Set the local region name for the two proposed regions, Frankfurt and London.

Connect to the KVStore deployed at host1, host2, and host3 from the
SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

-- Set the local region name to 'fra'
sql-> SET LOCAL REGION fra;
Statement completed successfully

-- List the regions
sql-> SHOW REGIONS;
regions
 fra (local, active)

Connect to the KVStore deployed at host4, host5, and host6 from the
SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

-- Set the local region name to 'lnd'
sql-> SET LOCAL REGION lnd;
Statement completed successfully

-- List the regions
sql-> SHOW REGIONS;
regions
 lnd (local, active)

Configure XRegion Service
Learn how to configure the XRegion Service in a Multi-Region Oracle NoSQL
Database

Before creating any MR Table, you must deploy an XRegion Service. In simple terms,
this is also called an agent. The XRegion Service runs independently with the local
KVStore and it is recommended to deploy it close to the local KVStore. To know more
about agent and agent groups, see Cross-Region Service in the Concepts Guide.

Steps:

To configure the XRegion Service, execute the following tasks in each region:

1. Create a home directory for the XRegion Service.

Chapter 5
Use Case 1: Set up Multi-Region Environment

5-4

2. Create a JSON config file in the home directory created in the step 1. The
structure of the json.config file is shown below.

{
 "path" : "<entire path to the home directory for the XRegion
Service>",
 "agentGroupSize" : <number of service agents>,
 "agentId" : <agent id using 0-based numbering>,
 "region" : "<local region name>",
 "store" : "<local store name>",
 "helpers" : [
 "<host1>:<port>",
 "<host2>:<port>",
 …
 "<hostn>:<port>"
],
 "security" : "<entire path to the security file of the local
store>",
 "regions" : [
 {
 "name" : "<remote region name>",
 "store" : "<remote store name>",
 "security" : "<entire path to the security file of the
remote store>",
 "helpers" : [
 "<host1>:<port>",
 "<host2>:<port>",
 …
 "<hostn>:<port>
]
 },
 {
 "name" : "<remote region name>",
 "store" : "<remote store name>",
 "security" : "<entire path to the security file of the
remote store>",
 "helpers" : [
 "<host1>:<port>",
 "<host2>:<port>",
 …
 "<hostn>:<port>
]
 },
 ...
]
 "durability" : "<durability setting>"
}

Where each attribute in the json.config file is explained below:

path This is the root directory of the XRegion
Service. The agents use this directory to
dump logs, statistics and other auxiliary

Chapter 5
Use Case 1: Set up Multi-Region Environment

5-5

files. The directory shall be readable
and writable to the agents.

agentGroupSize and agentId Specifies the number of service agents
and the Agent ID in the agent group.
The Agent ID is specified as numbers
starting from 0. These details are used
to form a group of agents that serve the
local region. Forming a group of agents
achieves horizontal scalability.

Note:

The current release supports
only a single service for each
local region. Therefore the
agentGroupSize is set to 1
and the agentId is set to 0.

security Specifies the security file used by the
agent. This attribute must be defined for
the local store as well as the remote
stores.

region Specifies the local region name defined
for the region where you are configuring
the agent.

store Specifies the name of the store in the
local region.

helpers Specifies the list of host and port
numbers used for configuring the local
store. These helper hosts are those you
used to create a KV client. For XRegion
Service to connect to the local and
remote regions, each region's firewall
must be configured to open the registry
port and HA ports.

regions After defining the local region, you must
define a list of remote regions. At least
one remote region shall be defined in
order to create an MR Table.
Specifies the region name, store name,
and helper hosts for each remote region
you want to include.

Chapter 5
Use Case 1: Set up Multi-Region Environment

5-6

Note:

The remote region names
listed here must be same as
the local region names defined
for them.

durability This is an optional parameter. It
specifies the durability setting for Master
commit synchronization. The possible
values are:

• COMMIT_NO_SYNC

• COMMIT_SYNC

• COMMIT_WRITE_NO_SYNC

The default durability setting is
COMMIT_NO_SYNC.

3. Grant the following privileges to the XRegion Service Agent:

• Write permission to system table

• Read and Write permission to all the user tables

— create role for the agent --
CREATE ROLE <Agent Role>

— grant privileges to the role --
GRANT WRITE_SYSTEM_TABLE to <Agent Role>
GRANT READ_ANY_TABLE to <Agent Role>
GRANT INSERT_ANY_TABLE to <Agent Role>

— grant role to the agent user --
GRANT <Agent Role> to user <Agent User>

Note:

This step is required only for secure KVStores. In a non-secure KVStore
setup, this step can be skipped.

Example:

Create a json.config file for each proposed region, Frankfurt and London.

Contents of the configuration file in the 'fra' Region
{
 "path": "<path to the json config file>",
 "agentGroupSize": 1,
 "agentId": 0,

Chapter 5
Use Case 1: Set up Multi-Region Environment

5-7

 "region": "fra",
 "store": "<storename at the fra region>",
 "security": "<path to the security file>",
 "helpers": [
 "host1:5000",
 "host2:5000",
 "host3:5000"
],
 "regions": [
 {
 "name": "lnd",
 "store": "<storename at the lnd region>",
 "security": "<path to the security file>",
 "helpers": [
 "host4:5000",
 "host5:5000",
 "host6:5000"
]
 }
]
}

Contents of the configuration file in the 'lnd' Region
{
 "path": "<path to the json config file>",
 "agentGroupSize": 1,
 "agentId": 0,
 "region": "lnd",
 "store": "<storename at the lnd region>",
 "security": "<path to the security file>",
 "helpers": [
 "host4:5000",
 "host5:5000",
 "host6:5000"
],
 "regions": [
 {
 "name": "fra",
 "store": "<storename at the fra region>",
 "security": "<path to the security file>",
 "helpers": [
 "host1:5000",
 "host2:5000",
 "host3:5000"
]
 }
]
}

Start XRegion Service
You must start the XRegion service in each region using the XRSTART command
providing the complete path to the JSON config file. As this service is a long-running

Chapter 5
Use Case 1: Set up Multi-Region Environment

5-8

process, it is recommended to invoke it as a background process by appending the &
at the end of the command.

Note:

The local KVStore must be started before starting the XRegion Service. If the
KVStore in the local region has not started or is not reachable, the XRegion
Service will not start.

Steps:

To start the XRegion Service:

1. Execute the xrstart command for each KVStore separately.

nohup java -Xms256m -Xmx2048m -jar $KVHOME/lib/kvstore.jar xrstart \
-config <complete path to the json.config file> > \
<complete path to the home directory for the XRegion Service>/
nohup.out &

where each parameter is explained below:

-config Specifies the complete path where the
json.config file is placed.

> Instructs to redirect the output to the file
specified next to it.

nohup.out Specifies the file to be used for logging
the status messages.

2. Optionally, you can view the status of the xrstart command execution by reading
the contents of nohup.out.

cat <complete path to the home directory for the XRegion Service>/
nohup.out

3. You can even check the detailed logs in the service log, that is available in the
XRegion Service home directory specified in the XRegion Service configuration file
(json.config) earlier.

Example:

Start the XRegion Service in both the regions, Frankfurt and London.

Start the XRegion Service in the 'fra' Region
[oracle@host1 xrshome]$nohup java -Xms256m -Xmx2048m -jar $KVHOME/lib/
kvstore.jar xrstart \
-config <path to the json config file> > \
<path to the home directory of the xregion service>/nohup.out &

[1] 24356
[oracle@host1 xrshome]$ nohup: ignoring input and redirecting stderr to
stdout

Chapter 5
Use Case 1: Set up Multi-Region Environment

5-9

View the status of the xrstart command in the 'fra' Region
[oracle@host1 xrshome]$ cat nohup.out
Cross-region agent (region=fra,store=mrtstore, helpers=[host1:5000,
host2:5000, host3:5000])
starts up from config file=/home/oracle/xrshome/ json.config at
2019-11-07 08:57:34 UTC

Start the XRegion Service in the 'lnd' Region
[oracle@host4 xrshome]$ nohup java -Xms256m -Xmx2048m -jar $KVHOME/lib/
kvstore.jar xrstart \
-config <path to the json config file> > \
<path to the home directory of the xregion service>/nohup.out &

[1] 17587
[oracle@host4 xrshome]$ nohup: ignoring input and redirecting stderr to
stdout

View the status of the xrstart command in the 'lnd' Region
[oracle@host4 xrshome]$ cat nohup.out
Cross-region agent (region=lnd,store=mrtstore, helpers=[host4:5000,
host5:5000, host6:5000])
starts up from config file=/home/oracle/xrshome/ json.config at
2019-11-07 08:57:34 UTC

Create Remote Regions
Learn to create remote regions from each region in a Multi-Region NoSQL Database.

Before creating and operating on an MR table, you must define the remote regions.
You have already set the local region name for each region, in an earlier step. In this
step, you define all the remote regions for each region. A remote region is different
from the local region where the command is executed.

Steps:

To create the remote regions:

1. Connect to the sql prompt from the local region, and connect to the local KVStore.

2. Execute the following command from the sql prompt.

sql-> CREATE REGION <remote region name>;

3. Optionally, you can execute the following command to list the remote regions that
are created successfully.

sql-> SHOW REGIONS;

Chapter 5
Use Case 1: Set up Multi-Region Environment

5-10

Example:

Create the remote regions in both the regions, Frankfurt and London.

Connect to the KVStore deployed in the 'fra' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

–- Create a remote region 'lnd'
sql-> CREATE REGION lnd;
Statement completed successfully

– List the regions
sql-> SHOW REGIONS;
regions

 fra (local, active)
 lnd (remote, active)

Connect to the KVStore deployed in the 'lnd' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

–- Create a remote region 'fra'
sql-> CREATE REGION fra;
Statement completed successfully

– List the regions
sql-> SHOW REGIONS;
regions

 lnd (local, active)
 fra (remote, active)

Create Multi-Region Tables
You must create an MR Table on each KVStore in the connected graph, and specify
the list of regions that the table should span. For the use case under discussion, you
must create the users table as an MR Table at both the regions, in any order.

Steps:

To create an MR Table:

1. To create a table definition, use a CREATE TABLE statement. See Create Table in
the SQL Reference Guide.

2. Optionally, you can verify the regions associated with the MR Table by executing
the following command from the kv prompt.

kv-> SHOW TABLE -NAME <table name>

Chapter 5
Use Case 1: Set up Multi-Region Environment

5-11

Example:

Create an MR Table called users in both the regions, Frankfurt and London.

Connect to the KVStore deployed in the 'fra' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

-- Create the users MR Table
sql-> CREATE TABLE users(
 -> id INTEGER,
 -> name STRING,
 -> team STRING,
 -> PRIMARY KEY (id))
 -> IN REGIONS fra,lnd;
Statement completed successfully

Connect to the KVStore deployed in the 'fra' region from the kv prompt
[~]$java -jar $KVHOME/lib/kvstore.jar runadmin \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

Verify the regions associated with the users MR table
kv-> SHOW TABLE -NAME users
{
 "json_version": 1,
 "type": "table",
 "name": "users",
 "regions": {
 "1": "fra",
 "2": "lnd"
 },
 "fields": [
 {
 "name": "id",
 "type": "INTEGER",
 "nullable": false
 },
 {
 "name": "name",
 "type": "STRING",
 "nullable": true
 },
 {
 "name": "team",
 "type": "STRING",
 "nullable": true
 }
],
 "primaryKey": [
 "id"
],
 "shardKey": [

Chapter 5
Use Case 1: Set up Multi-Region Environment

5-12

 "id"
]
}

Connect to the KVStore deployed in the 'lnd' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

-- Create the users MR Table
sql-> CREATE TABLE users(
 -> id INTEGER,
 -> name STRING,
 -> team STRING,
 -> PRIMARY KEY (id))
 -> IN REGIONS lnd,fra;
Statement completed successfully

Connect to the KVStore deployed in the 'lnd' region from the kv prompt
[~]$java -jar $KVHOME/lib/kvstore.jar runadmin \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

Verify the regions associated with the users MR table
kv-> SHOW TABLE -NAME users
{
 "json_version": 1,
 "type": "table",
 "name": "users",
 "regions": {
 "2": "fra",
 "1": "lnd"
 },
 "fields": [
 {
 "name": "id",
 "type": "INTEGER",
 "nullable": false
 },
 {
 "name": "name",
 "type": "STRING",
 "nullable": true
 },
 {
 "name": "team",
 "type": "STRING",
 "nullable": true
 }
],
 "primaryKey": [
 "id"
],
 "shardKey": [

Chapter 5
Use Case 1: Set up Multi-Region Environment

5-13

 "id"
]
}

Access and Manipulate Multi-Region Tables
After creating the MR Table, you can perform read or write operations on the table
using the existing data access APIs or DML statements. There is no change to any
existing data access APIs or DML statements to work with the MR Tables. See Data
Row Management in the SQL Reference Guide.

Example:

Perform DML operations on the users table in one region, and verify if the changes
are replicated to the other region.

To be executed in the fra region
-- Insert two rows into the users MR Table
sql-> INSERT INTO users(id,name,team) VALUES(1,"Amy","HR");
{"NumRowsInserted":1}
1 row returned
sql-> INSERT INTO users(id,name,team) VALUES(2,"Jack","HR");
{"NumRowsInserted":1}
1 row returned

To be executed in the lnd region
-- Verify if the rows are replicated from the fra region
sql-> SELECT * FROM users;
{"id":1,"name":"Amy","team":"HR"}
{"id":2,"name":"Jack","team":"HR"}

2 rows returned

-- Update the row with id = 2 in the users MR Table
sql-> UPDATE users SET team = "IT" WHERE id = 2;
{"NumRowsUpdated":1}
1 row returned

-- Delete the row with id = 1 from the users MR Table
sql-> DELETE FROM users WHERE id = 1;
{"NumRowsDeleted":1}
1 row returned

To be executed in the fra region
-- Verify if the changes are replicated from the lnd region
sql-> SELECT * FROM users;
{"id":2,"name":"Jack","team":"IT"}
1 row returned

Chapter 5
Use Case 1: Set up Multi-Region Environment

5-14

Stop XRegion Service
In a case where you want to relocate your XRegion Service to another host machine,
you must shut it down in the current machine and then restart it in the new host
machine.

Steps:

To stop the XRegion Service:

1. Execute the xrstop command for each KVStore separately.

java -Xmx1024m -Xms256m -jar $KVHOME/lib/kvstore.jar xrstop \
-config <complete path to the json.config file>

Example:

Stop the XRegion Service in both the regions, Frankfurt and London.

Stopping the XRegion Service in the fra region
[~]$ java -Xmx1024m -Xms256m -jar $KVHOME/lib/kvstore.jar xrstop \
-config <path to the json config file>

Similarly, you must stop the XRegion Service in the other region, lnd.

Use Case 2: Expand a Multi-Region Table
An organization deploys two on-premise KVStores, one each at Frankfurt and London.
As per their requirement, they create a few MR Tables in both the regions. The users
table is one of the many MR Tables created and maintained by this organization.
Now, they decide to expand their organization by adding another NoSQL Database
in Dublin. After creating Dublin as the new region, they want to expand the existing
MR Tables to the new region. In the next few topics, you learn how to add the Dublin
region to the users table that you already created in the previous use case.

If you have not created the users MR Table earlier, execute the steps outlined in Use
Case 1: Set up Multi-Region Environment.

Prerequisites
Steps:

Before expanding the users table to the new region, you must have set up the new
region by executing the following tasks:

1. Set up a multi-region NoSQL Database with two regions Frankfurt (fra) and
London (lnd). See Use Case 1: Set up Multi-Region Environment.

2. Deploy a local KVStore with store name as dubstore in the new region. See
Configuration Overview.

3. Set the new region's local region name to dub. See Set Local Region Name.

Chapter 5
Use Case 2: Expand a Multi-Region Table

5-15

4. Configure and start the XRegion Service in the dub region. See Configure XRegion
Service and Start XRegion Service.

5. Update the json.config file in the existing regions, that is, Frankfurt (fra) and
London (lnd) to include dub (Dublin) as a remote region.

Note:

You must restart the agent at existing regions to pick up the new region
(dub) from the json.config file.

6. Create two remote regions, fra and lnd in the new region dub. See Create
Remote Regions.

Example:

1. Set the local region name for the new region, Dublin.

Connect to the KVStore deployed at host7, host8, and host9 from
the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host7:5000,host8:5000,host9:5000 \
-store dubstore

-- Set the local region name to 'dub'
sql-> SET LOCAL REGION dub;
Statement completed successfully

-- List the regions
sql-> SHOW REGIONS;
regions
 dub (local, active)

2. Create a json.config file for the new region, Dublin.

Contents of the configuration file in the 'dub' Region
{
 "path": "<entire path to the home directory for the XRegion
Service>",
 "agentGroupSize": 1,
 "agentId": 0,
 "region": "dub",
 "store": "<storename at the dub region>",
 "security": "<path to the security file>",
 "helpers": [
 "host7:5000",
 "host8:5000",
 "host9:5000"
],
 "regions": [
 {
 "name": "fra",
 "store": "<store name at the fra region>",
 "security": "<path to the security file>",

Chapter 5
Use Case 2: Expand a Multi-Region Table

5-16

 "helpers": [
 "host1:5000",
 "host2:5000",
 "host3:5000"
]
 },
 {
 "name": "lnd",
 "store": "<store name at the lnd region>",
 "security": "<path to the security file>",
 "helpers": [
 "host4:5000",
 "host5:5000",
 "host6:5000"
]
 }
]
}

3. Start the XRegion Service in the new region, Dublin.

Start the XRegion Service in the 'dub' Region
[oracle@host7 xrshome]$nohup java -Xms256m -Xmx2048m -jar
$KVHOME/lib/kvstore.jar xrstart \
-config <path to the json config file> > \
<path to the home directory of the xregion service>/nohup.out &

[1] 24123
[oracle@host7 xrshome]$ nohup: ignoring input and redirecting
stderr to stdout

View the status of the xrstart command in the 'dub' Region
[oracle@host7 xrshome]$ cat nohup.out
Cross-region agent (region=fra,store=mrtstore, helpers=[host7:5000,
host8:5000, host9:5000])
starts up from config file=/home/oracle/xrshome/ json.config at
2020-11-07 08:57:34 UTC

4. Modify the json.config files in the existing regions (Frankfurt and London) to
include Dublin as a remote region.

Contents of the configuration file in the 'fra' Region
{
 "path": "<path to the json config file>",
 "agentGroupSize": 1,
 "agentId": 0,
 "region": "fra",
 "store": "<storename at the fra region>",
 "security": "<path to the security file>",
 "helpers": [
 "host1:5000",
 "host2:5000",
 "host3:5000"
],
 "regions": [

Chapter 5
Use Case 2: Expand a Multi-Region Table

5-17

 {
 "name": "lnd",
 "store": "<storename at the lnd region>",
 "security": "<path to the security file>",
 "helpers": [
 "host4:5000",
 "host5:5000",
 "host6:5000"
]
 },
 {
 "name": "dub",
 "store": "<storename at the dub region>",
 "security": "<path to the security file>",
 "helpers": [
 "host7:5000",
 "host8:5000",
 "host9:5000"
]
 }
]
}

Contents of the configuration file in the 'lnd' Region
{
 "path": "<path to the json config file>",
 "agentGroupSize": 1,
 "agentId": 0,
 "region": "lnd",
 "store": "<storename at the lnd region>",
 "security": "<path to the security file>",
 "helpers": [
 "host4:5000",
 "host5:5000",
 "host6:5000"
],
 "regions": [
 {
 "name": "fra",
 "store": "<storename at the fra region>",
 "security": "<path to the security file>",
 "helpers": [
 "host1:5000",
 "host2:5000",
 "host3:5000"
]
 },
 {
 "name": "dub",
 "store": "<storename at the dub region>",
 "security": "<path to the security file>",
 "helpers": [
 "host7:5000",
 "host8:5000",

Chapter 5
Use Case 2: Expand a Multi-Region Table

5-18

 "host9:5000"
]
 }
]
}

5. Create two remote regions, fra and lnd in the new region, Dublin.

Connect to the KVStore deployed in the 'dub' region from the SQL
shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host7:5000,host8:5000,host9:5000 \
-store dubstore

–- Create remote regions 'fra' and 'lnd'
sql-> CREATE REGION fra;
Statement completed successfully
sql-> CREATE REGION lnd;
Statement completed successfully

– List the regions
sql-> SHOW REGIONS;
regions

 dub (local, active)
 fra (remote, active)
 lnd (remote, active)

Create MR Table in New Region
Steps:

As a first step in expanding an MR Table to a new region, you must create the MR
Table in the new region using the CREATE TABLE statement. See Create Multi-Region
Tables.

Note:

Creating the MR Table in the new region alone does not ensure replicating
the data from the existing regions. This is because you have not yet linked
the new region to this MR Table from the existing regions.

Example:

Create the users MR Table in the new region, Dublin.

Connect to the KVStore deployed in the 'dub' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host7:5000,host8:5000,host9:5000 \
-store dubstore

-- Create the users MR Table

Chapter 5
Use Case 2: Expand a Multi-Region Table

5-19

sql-> CREATE TABLE users(
 -> id INTEGER,
 -> name STRING,
 -> team STRING,
 -> PRIMARY KEY (id))
 -> IN REGIONS dub,fra,lnd;
Statement completed successfully

Connect to the KVStore deployed in the 'dub' region from the kv prompt
[~]$java -jar $KVHOME/lib/kvstore.jar runadmin \
-helper-hosts host7:5000,host8:5000,host9:5000 \
-store dubstore

Verify the regions associated with the users MR table
kv-> SHOW TABLE -NAME users
{
 "json_version": 1,
 "type": "table",
 "name": "users",
 "regions": {
 "1": "dub",
 "2": "fra"
 "3": "lnd"
 },
 "fields": [
 {
 "name": "id",
 "type": "INTEGER",
 "nullable": false
 },
 {
 "name": "name",
 "type": "STRING",
 "nullable": true
 },
 {
 "name": "team",
 "type": "STRING",
 "nullable": true
 }
],
 "primaryKey": [
 "id"
],
 "shardKey": [
 "id"
]
}

Add New Region to Existing Regions
As a next step, you must create the new region as a remote region in the existing
regions. Then, you must associate the new region with the MR Table in the existing
regions.

Chapter 5
Use Case 2: Expand a Multi-Region Table

5-20

Steps:

Execute the following steps from each existing region:

1. Add the new region as a remote region. See Create Remote Regions.

2. Associate the new region with the existing MR Table using the DDL command
shown below.

ALTER TABLE <table name> ADD REGIONS <region name>;

Example:

1. Add the new region, Dublin as a remote region from the existing regions, Frankfurt
and London.

Connect to the KVStore deployed in the 'fra' region from the SQL
shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

–- Create a remote region 'dub'
sql-> CREATE REGION dub;
Statement completed successfully

– List the regions
sql-> SHOW REGIONS;
regions

 fra (local, active)
 lnd (remote, active)
 dub (remote, active)

Connect to the KVStore deployed in the 'lnd' region from the SQL
shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

–- Create a remote region 'dub'
sql-> CREATE REGION dub;
Statement completed successfully

– List the regions
sql-> SHOW REGIONS;
regions

 lnd (local, active)
 fra (remote, active)
 dub (remote, active)

Chapter 5
Use Case 2: Expand a Multi-Region Table

5-21

2. In the existing regions, alter the users MR Table to add the new region, Dublin.

Connect to the KVStore deployed in the 'fra' region from the SQL
shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

–- Add the 'dub' region to the users MR Table
sql-> ALTER TABLE users ADD REGIONS dub;
Statement completed successfully

Connect to the KVStore deployed in the 'fra' region from the kv
prompt
[~]$java -jar $KVHOME/lib/kvstore.jar runadmin \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

Verify the regions associated with the users MR table
kv-> SHOW TABLE -NAME users
{
 "json_version": 1,
 "type": "table",
 "name": "users",
 "regions": {
 "1": "fra",
 "2": "lnd"
 "3": "dub"
 },
 "fields": [
 {
 "name": "id",
 "type": "INTEGER",
 "nullable": false
 },
 {
 "name": "name",
 "type": "STRING",
 "nullable": true
 },
 {
 "name": "team",
 "type": "STRING",
 "nullable": true
 }
],
 "primaryKey": [
 "id"
],
 "shardKey": [
 "id"

Chapter 5
Use Case 2: Expand a Multi-Region Table

5-22

]
}

Connect to the KVStore deployed in the 'lnd' region from the SQL
shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

–- Add the 'dub' region to the users MR Table
sql-> ALTER TABLE users ADD REGIONS dub;
Statement completed successfully

Connect to the KVStore deployed in the 'lnd' region from the kv
prompt
[~]$java -jar $KVHOME/lib/kvstore.jar runadmin \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

Verify the regions associated with the users MR table
kv-> SHOW TABLE -NAME users
{
 "json_version": 1,
 "type": "table",
 "name": "users",
 "regions": {
 "1": "lnd",
 "2": "fra"
 "3": "dub"
 },
 "fields": [
 {
 "name": "id",
 "type": "INTEGER",
 "nullable": false
 },
 {
 "name": "name",
 "type": "STRING",
 "nullable": true
 },
 {
 "name": "team",
 "type": "STRING",
 "nullable": true
 }
],
 "primaryKey": [
 "id"
],
 "shardKey": [
 "id"
]
}

Chapter 5
Use Case 2: Expand a Multi-Region Table

5-23

Access MR Table in New and Existing Regions
After performing the tasks discussed in the previous sections, you can perform
read/write operations on the MR Table from the new region without any disruption.
However, the table may not return the complete data from the existing regions until
the initialization completes in the background. Especially if the MR Table has a huge
volume of data in the existing regions, it may take a while for the new table to see the
data from the remote regions.

Similarly, you can continue performing read/write operations on the MR Table from
the existing regions without any disruption. Adding a new region is transparent to the
customers accessing the MR Table from the existing regions. However, the MR Table
at the existing regions may also need initialization to see the writes from the new
region. If the table at the new region is empty or small, the existing regions will quickly
sync up with it. To learn how to access the MR Tables, see Access and Manipulate
Multi-Region Tables.

Use Case 3: Contract a Multi-Region Table
An organization deploys three on-premise KVStores, one each at Frankfurt, London,
and Dublin. As per their requirement, they created a few MR Tables in all three
regions. The users table is one of the many MR tables created and maintained by this
organization. As per some changes in their business requirements, they decided to
remove the users table from the Dublin region. In the next few topics, you learn how to
contract an MR Table, that is, how to remove an MR Table from specific regions.

If you have not created the users MR table earlier, execute the steps outlined in Use
Case 1: Set up Multi-Region Environment.

If you have not added the Dublin region to the users MR table, execute the steps
outlined in Use Case 2: Expand a Multi-Region Table.

Alter MR Table to Drop Regions
Learn how to contract a Multi-Region table and reduce the regions it spans across.

Steps:

To remove an MR Table from a specific region in a Multi-Region NoSQL Database
setup, you must execute the following steps from all the other participating regions.

1. Execute the following command from the sql prompt.

ALTER TABLE <table name> DROP REGIONS <comma separated list of
regions>

2. Optionally, you can execute the following command from the kv prompt to verify
that the region is dropped successfully.

SHOW TABLE -NAME <table name>

Chapter 5
Use Case 3: Contract a Multi-Region Table

5-24

Note:

Suppose you drop region A from an MR table created in region B. Then:

• Region B can't see any new writes on this MR table from the region A.

• Region A continues to see the writes on this MR Table from the region B.

If you want to isolate the MR table in the region A from other regions, you
must drop those regions from the MR table created in region A. This is only a
recommendation and not a mandatory step in contracting an MR Table.

Example:

Drop the Dublin region from the users MR table in the other two regions, Frankfurt and
London.

Connect to the KVStore deployed in the 'fra' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

–- drop the 'dub' region from the 'users' MR table
sql-> ALTER TABLE users DROP REGIONS dub;
Statement completed successfully

Connect to the KVStore deployed in the 'lnd' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

–- drop the 'dub' region from the 'users' MR table
sql-> ALTER TABLE users DROP REGIONS dub;
Statement completed successfully

Use Case 4: Drop a Region
An organization deploys three on-premise KVStores, one each at Frankfurt, London,
and Dublin. As per their requirement, they created a few MR Tables in all three
regions. As part of business down-sizing, they decided to exclude the Dublin region
resulting in a two-region NoSQL Database. In the next few topics, you learn how
to drop an existing region from the NoSQL environment that you had set up in the
previous sections.

If you have not set up a Multi-Region NoSQL Database with three regions already,
execute the steps outlined in:

• Use Case 1: Set up Multi-Region Environment

• Use Case 2: Expand a Multi-Region Table

Chapter 5
Use Case 4: Drop a Region

5-25

Prerequisites
Learn about the conditions to be satisfied before dropping a region from a Multi-
Region NoSQL Database.

Before removing a region from a Multi-Region NoSQL Database, it is recommended
to:

• Stop writing to all the MR Tables linked to that region.

• Ensure that all writes to the MR Tables in that region have replicated to the other
regions. This helps in maintaining consistent data across the different regions.

Note:

As of the current release, there is no provision in Oracle NoSQL Database
to make a table read-only. Hence, you must stop writes to the identified MR
Tables at the application level.

Isolate the Region
Learn how to isolate a region from a Multi-Region NoSQL Database.

When you decide to drop a region, it is a good practice to isolate that region from all
the other participating regions. Isolating a region disconnects it from all the MR Tables
in the Multi-Region NoSQL Database.

Isolating a region ensures that:

• The isolated region cannot see writes from the other regions.

• The other regions cannot see writes from the isolated region.

Note:

Even though it is not mandatory to isolate the region before dropping it from
a Multi-Region NoSQL Database, this is considered a cleaner approach and
hence suggested.

Steps:

Isolating a region from the Multi-Region NoSQL Database environment involves two
tasks. They are:

1. Drop the target region from all the MR Tables in the other regions using the DDL
command shown below.

2. Drop all the other regions from all the MR Tables in the region to be isolated.

See Alter MR Table to Drop Regions.

Chapter 5
Use Case 4: Drop a Region

5-26

Example:

1. Drop the Dublin region from the users MR table in the other two regions, Frankfurt
and London.

Connect to the KVStore deployed in the 'fra' region from the SQL
shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

–- drop the 'dub' region from the 'users' MR table
sql-> ALTER TABLE users DROP REGIONS dub;
Statement completed successfully

Connect to the KVStore deployed in the 'lnd' region from the SQL
shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

–- drop the 'dub' region from the 'users' MR table
sql-> ALTER TABLE users DROP REGIONS dub;
Statement completed successfully

2. Drop the other regions (Frankfurt and London) from the users MR table in the
Dublin region.

Connect to the KVStore deployed in the 'dub' region from the SQL
shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host7:5000,host8:5000,host9:5000 \
-store dubstore

–- drop 'fra' and 'lnd' regions from the 'users' MR table
sql-> ALTER TABLE users DROP REGIONS fra,lnd;
Statement completed successfully

Drop MR Tables in the Isolated Region
After you ensure that the region to be dropped is isolated, you can drop all the
MR Tables created in that region safely. Dropping an MR Table is exactly similar to
dropping a local table.

Example:

Drop users MR table from the isolated region, Dublin.

Connect to the KVStore deployed in the 'dub' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host7:5000,host8:5000,host9:5000 \
-store dubstore

Chapter 5
Use Case 4: Drop a Region

5-27

–- drop the 'users' MR table
sql-> DROP TABLE users;
Statement completed successfully

Drop the Isolated Region
Finally, you can drop the isolated region from all the other regions.

Note:

Dropping an isolated region is not mandatory. You can retain the isolated
region without dropping from other regions, for any future use.

Steps:

To drop the isolated region from other regions:

1. Connect to the sql prompt, and connect to the local KVStore.

2. Execute the following DDL command from the SQL prompt.

DROP REGION <region name>;

3. Optionally, you can execute the following command to verify that the isolated
region is dropped successfully.

SHOW REGIONS;

Example:

Drop the Dublin region from the other two regions, Frankfurt and London.

Connect to the KVStore deployed in the 'fra' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

–- drop the 'dub' region
sql-> DROP REGION dub;
Statement completed successfully

– List the regions
sql-> SHOW REGIONS;
regions

 fra (local, active)
 lnd (remote, active)

Connect to the KVStore deployed in the 'lnd' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \

Chapter 5
Use Case 4: Drop a Region

5-28

-store mrtstore

–- drop the 'dub' region
sql-> DROP REGION dub;
Statement completed successfully

– List the regions
sql-> SHOW REGIONS;
regions

 lnd (local, active)
 fra (remote, active)

Chapter 5
Use Case 4: Drop a Region

5-29

6
Determining Your Store's Configuration

A store consists of a number of Storage Nodes. Each Storage Node can host one or
more Replication Nodes, based on its storage capacity. The term topology is used to
describe the distribution of Replication Nodes. A topology is derived from the number
and capacity of available Storage Nodes, the number of partitions in the store, and the
replication factors of the store's zones. Topology layouts are also governed by a set of
rules that maximize the availability of the store.

All topologies must adhere to the following rules:

1. Each Replication Node from the same shard must reside on a different Storage
Node. This rule prevents a single Storage Node failure causing multiple points of
failure for a single shard.

2. The number of Replication Nodes assigned to a Storage Node must be less than
or equal to the capacity of Storage Nodes.

3. A zone must have one or more Replication Nodes from each shard.

4. A valid Arbiter Node distribution is one in which the Arbiter Node is hosted on a
Storage Node that does not contain other members of its shard.

The store’s initial configuration, or topology, is set when you create the store. Over
time, it can be necessary to change the store topology. There are several reasons for
such a change:

1. You need to replace or upgrade an existing Storage Node.

2. You need to increase read throughput. This is done by increasing the replication
factor and creating more copies of the store's data which can be used to service
read only requests.

3. You need to increase write throughput. Since each shard has a single master
node, distributing the data in the store over a larger number of shards provides the
store with more nodes to execute write operations.

You change the store's configuration by changing the number or capacity of available
Storage Nodes, or the replication factor of a zone. To change from one configuration
to another, you either create a new initial topology, or clone an existing topology and
modify it into your target topology. You then deploy this target topology.

Note:

Deploying a target topology can be a lengthy operation. Plus, the time
required scales with the amount of data to move. During the deployment,
the system updates the topology at each step. Because of that, the store
passes through intermediate topologies which you did not explicitly create.

This chapter discusses how to make configuration or topological changes to a store. It
also describes how to deploy a topology enabled with Arbiter Nodes.

6-1

Note:

Do not make configuration changes while a taking a snapshot, or take
a snapshot when changing the configuration. Before making configuration
changes, we recommend you first create a snapshot as a backup. For
additional information on creating snapshots, see Taking a Snapshot.

Steps for Changing the Store's Topology
When you change your topology, you should go through these steps:

1. Make the Topology Candidate

2. Transforming the Topology Candidate

3. View the Topology Candidate

4. Validate the Topology Candidate

5. Preview the Topology Candidate

6. Deploy the Topology Candidate

7. Verify the Store's Current Topology

Creating a new topology is typically an iterative process, trying different options to
see what is best before deploying changes. After trying options, examine the topology
candidate and decide if it is satisfactory. If not, apply more transformations, or start
over with different parameters. You can view and validate topology candidates to
determine if they are appropriate.

The possible transformations to expand the store include redistributing data,
increasing the replication factor, and rebalancing. These are described in Transforming
the Topology Candidate.

You can also decrease the current topology by removing Storage Nodes. See
Contracting a Topology.

The following sections walk you through the process of changing your store’s
configuration using the Administration CLI.

Make the Topology Candidate
To create the first topology candidate for an initial deployment, before any Replication
Nodes exist, use the topology create command. The topology create command
requires a topology name, a pool name and the number of partitions as arguments.

Note:

Avoid using the dollar sign ($) character in topology candidate names. The
CLI displays a warning if you try to create or clone topologies whose names
contain the reserved character.

Chapter 6
Steps for Changing the Store's Topology

6-2

For example:

kv-> topology create -name firstTopo -pool BostonPool
-partitions 300
Created: firstTopo

Use the plan deploy-topology command to deploy this initial topology candidate
without further transformations.

After your store is initially deployed, you can create candidate topologies with the
topology clone command. The source of a clone can be another topology candidate,
or the current, deployed topology. The topology clone command takes the following
arguments:

• -from <from topology>

The name of the source topology candidate.

• -name <to topology>

The name of the clone.

For example:

kv-> topology clone -from topo -name CloneTopo
Created CloneTopo

This variant of the topology clone command that takes the following arguments:

• -current

Specifies using the current deployed topology as a source, so the argument
requires no name.

• -name <to topology>

The name of the topology clone.

For example:

kv-> topology clone -current -name ClonedTopo
Created ClonedTopo

Transforming the Topology Candidate
After you initially deploy your store, you can change it by deploying another topology
candidate that differs from the current topology. This target topology is generated by
transforming a topology candidate to expand the store by using these commands:

• topology redistribute

• rebalance

• change-repfactor

Alternatively, you can contract the target topology candidate using the topology
contract command.
Transformations follow the topology rules described in the previous section.

Chapter 6
Steps for Changing the Store's Topology

6-3

The topology rebalance, redistribute or change-repfactor commands can only make
changes to the topology candidate if there are additional, or changed, Storage Nodes
available. It uses the new resources to rearrange Replication Nodes and partitions so
the topology complies with the topology rules and the store improves on read or write
throughput.

The following are scenarios in how you might expand or contract the store.

Increase Data Distribution
Use the topology redistribute command to increase data distribution to enhance
write throughput. The redistribute command works only if new Storage Nodes are
added to make creating new replication nodes possible for new shards. With new
shards, the system distributes partitions across the new shards, resulting in more
Replication Nodes to service write operations.

The following example demonstrates adding a set of Storage Nodes (node04 —
node07) and redistributing the data to those nodes. Four Storage Nodes are required
to meet the zone's replication factor of four and the new shards require four nodes to
satisfy the replication requirements:

kv-> plan deploy-sn -zn zn1 -host node04 -port 5000 -wait
Executed plan 7, waiting for completion...
Plan 7 ended successfully

kv-> plan deploy-sn -zn zn1 -host node05 -port 5000 -wait
Executed plan 8, waiting for completion...
Plan 8 ended successfully

kv-> plan deploy-sn -zn zn1 -host node06 -port 5000 -wait
Executed plan 9, waiting for completion...
Plan 9 ended successfully

kv-> plan deploy-sn -zn zn1 -host node07 -port 5000 -wait
Executed plan 10, waiting for completion...
Plan 10 ended successfully

kv-> pool join -name BostonPool -sn sn4
Added Storage Node(s) [sn4] to pool BostonPool
kv-> pool join -name BostonPool -sn sn5
Added Storage Node(s) [sn5] to pool BostonPool
kv-> pool join -name BostonPool -sn sn6
Added Storage Node(s) [sn6] to pool BostonPool
kv-> pool join -name BostonPool -sn sn7
Added Storage Node(s) [sn7] to pool BostonPool

kv-> topology clone -current -name newTopo
Created newTopo

kv-> topology redistribute -name newTopo -pool BostonPool
Redistributed: newTopo

kv-> plan deploy-topology -name newTopo -wait
Executed plan 11, waiting for completion...
Plan 11 ended successfully

Chapter 6
Steps for Changing the Store's Topology

6-4

The redistribute command incorporates the new Storage Node capacity that you
added to the BostonPool, and creates new shards. The command also migrates
partitions to the new shards. If the number of new shards is less than or equal to
the current number of shards, the topology redistribute command fails.

Note:

Do not execute the topology redistribute command against a store with
mixed shards. A mixed shard store has shards whose Replication Nodes are
operating with different software versions of Oracle NoSQL Database.

The system goes through these steps when it is redistributing a topology candidate:

1. The topology redistribute command creates new Replication Nodes (RNs) for each
shard, assigning the nodes to Storage Nodes according to the topology rules.
While creating new RNs, the topology command might move existing RNs to
different Storage Nodes, to best use available resources while complying with the
topology rules.

2. The topology command distributes Partitions evenly among all shards. The
partitions in over populated shards are moved to shards with the least number
of partitions.

You cannot specify which partitions the command moves.

Increase Replication Factor
You can use the topology change-repfactor command to increase the replication
factor. Increasing the replication factor creates more copies of the data and improves
read throughput and availability. More Replication Nodes are added to each shard so
that it has the requisite number of nodes. The new Replication Nodes are populated
from existing nodes in the shard. Since every shard in a zone has the same replication
factor, and a large number of shards, this command may require a significant number
of new Storage Nodes to succeed.

For additional information on how to identify your primary replication factor and to
understand the implications of the factor value, see Replication Factor.

The following example increases the replication factor of the store to 4. The
administrator deploys a new Storage Node and adds it to the Storage Node pool.
The admin then clones the existing topology and transforms it to use a new replication
factor of 4.

kv-> plan deploy-sn -zn zn1 -host node08 -port 5000 -wait
Executed plan 12, waiting for completion...
Plan 12 ended successfully

kv-> pool join -name BostonPool -sn sn8
Added Storage Node(s) [sn8] to pool BostonPool

kv-> topology clone -current -name repTopo
Created repTopo

kv-> topology change-repfactor -name repTopo -pool BostonPool -rf 4 -zn

Chapter 6
Steps for Changing the Store's Topology

6-5

zn1
Changed replication factor in repTopo

kv-> plan deploy-topology -name repTopo -wait
Executed plan 13, waiting for completion...
Plan 13 ended successfully

The change-repfactor command fails if either of the following occurs:

1. The new replication factor is less than or equal to the current replication factor.

2. The Storage Nodes specified by the storage node pool do not have enough
capacity to host the required new Replication Nodes.

Balance a Non-Compliant Topology
Topologies must obey the rules described in Determining Your Store's Configuration.
Changes to the physical characteristics of the store can cause the current store
topology to violate those rules. For example, after performance tuning, you want to
decrease the capacity of a Storage Node (SN). If that SN is already hosting the
maximum permissible number of Replication Nodes, reducing its capacity will make
the store non-compliant with the capacity rules. To decrease the capacity of an
SN before using the topology rebalance command , use the change-parameters
command for the storage node capacity. See plan change-parameters.

You can balance a non-compliant configuration using the topology rebalance
command. This command requires a topology candidate name and a Storage Node
pool name.

Before rebalancing your topology, use the topology validate command for any
violations to the topology rules in your repTopo plan:

kv-> topology validate -name repTopo
Validation for topology candidate "repTopo":
4 warnings.
sn7 has 0 RepNodes and is under its capacity limit of 1
sn8 has 0 RepNodes and is under its capacity limit of 1
sn5 has 0 RepNodes and is under its capacity limit of 1
sn6 has 0 RepNodes and is under its capacity limit of 1

In this case, there are anticipated warnings, but you do not need improvements to
the topology. However, if improvements are needed, then the topology rebalance
command will move or create Replication Nodes, using the Storage Nodes in the
BostonPool pool, to correct any violations. The command does not create additional
shards under any circumstances. See Shard Capacity.

kv-> topology rebalance -name repTopo -pool BostonPool
Rebalanced: repTopo

If there are insufficient Storage Nodes, or if an insufficient storage directory size is
allocated, the topology rebalance command may be unable to correct all violations.
In that case, the command makes as much progress as possible, and warns of
remaining issues.

Chapter 6
Steps for Changing the Store's Topology

6-6

Contracting a Topology
You can contract a topology by using the topology contract command. This
command requires a topology candidate name and a Storage Node pool name. This
command supports the removal of Storage Nodes and contracts the topology by
relocating Replication Nodes, deleting shards, and migrating partitions.

Note:

Decreasing the replication factor is not currently supported. Also, Admin
relocation is not supported. If an admin is present on a contracted Storage
Node, the contraction operation will fail.

The following example contracts the topology by removing 3 Storage Nodes (sn2,
sn5 and sn8). First, you clone the pool using the pool clone command and remove
the Storage Nodes from the cloned pool using the pool leave command. Then,
the topology is contracted and deployed using the contracted pool. Finally, the
Storage Nodes can be removed using the plan remove-sn command. This command
automatically stops Storage Nodes before removal.

Clone the existing Storage Node pool as to be contractedPool
kv-> pool clone -name contractedPool -from AllStorageNodes
Cloned pool contractedPool
kv-> pool leave -name contractedPool -sn sn2
Removed Storage Node(s) [sn2] from pool contractedPool
kv-> pool leave -name contractedPool -sn sn5
Removed Storage Node(s) [sn5] from pool contractedPool
kv-> pool leave -name contractedPool -sn sn8
Removed Storage Node(s) [sn8] from pool contractedPool

Generate a contracted candidate topology
kv-> topology clone -current -name contractedTopology
Created contractedTopology
kv-> topology contract -name contractedTopology -pool contractedPool
Contracted: contractedTopology

Deploy the contracted candidate topology as the real topology.
kv-> plan deploy-topology -name contractedTopology -wait
Executed plan 16, waiting for completion...
Plan 16 ended successfully

Remove to-be-deleted SNs
kv-> plan remove-sn -sn sn2 -wait
Executed plan 17, waiting for completion...
Plan 17 ended successfully
kv-> plan remove-sn -sn sn5 -wait
Executed plan 18, waiting for completion...
Plan 18 ended successfully
kv-> plan remove-sn -sn sn8 -wait

Chapter 6
Steps for Changing the Store's Topology

6-7

Executed plan 19, waiting for completion...
Plan 19 ended successfully

View the Topology Candidate
You can view details of the topology candidate or a deployed topology by using the
topology view command. The command takes a topology name as an argument.
With the topology view command, you can view all at once: the store name, number of
partitions, shards, replication factor, host name and capacity in the specified topology.

For example:

kv-> topology view -name repTopo
store=mystore numPartitions=300 sequence=315
 zn: id=zn1 name=Boston repFactor=4 type=PRIMARY

 sn=[sn1] zn:[id=zn1 name=Boston] node01:5000 capacity=1
 [rg1-rn1]
 sn=[sn2] zn:[id=zn1 name=Boston] node02:5000 capacity=1
 [rg1-rn2]
 sn=[sn3] zn:[id=zn1 name=Boston] node03:5000 capacity=1
 [rg1-rn3]
 sn=[sn4] zn:[id=zn1 name=Boston] node04:5000 capacity=1
 [rg1-rn4]
 sn=[sn5] zn:[id=zn1 name=Boston] node05:5000 capacity=1
 sn=[sn6] zn:[id=zn1 name=Boston] node06:5000 capacity=1
 sn=[sn7] zn:[id=zn1 name=Boston] node07:5000 capacity=1
 sn=[sn8] zn:[id=zn1 name=Boston] node08:5000 capacity=1

 shard=[rg1] num partitions=300
 [rg1-rn1] sn=sn1
 [rg1-rn2] sn=sn2
 [rg1-rn3] sn=sn3
 [rg1-rn4] sn=sn4

Validate the Topology Candidate
You can validate the topology candidate or a deployed topology by using the topology
validate command. The topology validate command takes a topology name as an
argument. If no topology is specified, the current topology is validated. Validation
makes sure that the topology candidate obeys the topology rules described in
Determining Your Store's Configuration. Validation generates "violations" and "notes".

Violations are issues that can cause problems and should be investigated.

Notes are informational and highlight configuration oddities that may be potential
issues, but may be expected.

For example:

kv-> topology validate -name repTopo
Validation for topology candidate "repTopo":
4 warnings.
sn7 has 0 RepNodes and is under its capacity limit of 1

Chapter 6
Steps for Changing the Store's Topology

6-8

sn8 has 0 RepNodes and is under its capacity limit of 1
sn5 has 0 RepNodes and is under its capacity limit of 1
sn6 has 0 RepNodes and is under its capacity limit of 1

Preview the Topology Candidate
You should preview the changes that would be made for the specified topology
candidate relative to a starting topology. You use the topology preview command
to do this. This command takes the following arguments:

• name

A string to identify the topology.

• start <from topology>

If -start topology name is not specified, the current topology is used. This
command should be used before deploying a new topology.

For example:

kv-> topology clone -current -name redTopo
Created redTopo
kv-> topology redistribute -name redTopo -pool BostonPool
Redistributed: redTopo
kv-> topology preview -name redTopo
Topology transformation from current deployed topology to redTopo:
Create 1 shard
Create 4 RNs
Migrate 150 partitions

shard rg2
 4 new RNs: rg2-rn1 rg2-rn2 rg2-rn3 rg2-rn4
 150 partition migrations
kv-> topology validate -name redTopo
Validation for topology candidate "redTopo":
No problems

Deploy the Topology Candidate
When your topology candidate is satisfactory, use the Admin service to generate and
execute a plan that migrates the store to the new topology.

Deploy the topology candidate with the plan deploy-topology command, which takes
a topology name as an argument.

While the plan is executing, you can monitor the plan's progress. You have several
options:

• The plan can be interrupted then retried, or canceled.

• Other, limited plans may be executed while a transformation plan is in progress to
deal with ongoing problems or failures.

By default, the plan deploy-topology command will not deploy a topology candidate
if deployment would introduce new violations of the topology rules. You can override

Chapter 6
Steps for Changing the Store's Topology

6-9

this behavior using the optional -force plan flag. Do not use the –force plan without
consideration. Introducing a topology rule violation can have many adverse effects.

The next example shows the topology differences before and after plan deployment.
The first show topology output lists four Storage Nodes running in Zone 1, with one
shard (rg1) storing 300 partitions. Storage nodes sn5 —sn8 are available.

After deploying the plan, the show topology output lists storage nodes sn5 — sn8
as running. Another shard exists (rg2), and the partitions are split between the two
shards, each with 150 partitions.

kv-> show topology
store=mystore numPartitions=300 sequence=315
 zn: id=zn1 name=Boston repFactor=4 type=PRIMARY

 sn=[sn1] zn=[id=zn1 name=Boston] node01:5000 capacity=1 RUNNING
 [rg1-rn1] RUNNING
 No performance info available
 sn=[sn2] zn=[id=zn1 name=Boston] node02:5000 capacity=1 RUNNING
 [rg1-rn2] RUNNING
 No performance info available
 sn=[sn3] zn=[id=zn1 name=Boston] node03:5000 capacity=1 RUNNING
 [rg1-rn3] RUNNING
 No performance info available
 sn=[sn4] zn=[id=zn1 name=Boston] node04:5000 capacity=1 RUNNING
 [rg1-rn4] RUNNING
 No performance info available
 sn=[sn5] zn=[id=zn1 name=Boston] node05:5000 capacity=1
 sn=[sn6] zn=[id=zn1 name=Boston] node06:5000 capacity=1
 sn=[sn7] zn=[id=zn1 name=Boston] node07:5000 capacity=1
 sn=[sn8] zn=[id=zn1 name=Boston] node08:5000 capacity=1

 shard=[rg1] num partitions=300
 [rg1-rn1] sn=sn1
 [rg1-rn2] sn=sn2
 [rg1-rn3] sn=sn3
 [rg1-rn4] sn=sn4

kv-> plan deploy-topology -name redTopo -wait
Executed plan 14, waiting for completion...
Plan 14 ended successfully

kv-> show topology
store=mystore numPartitions=300 sequence=470
 zn: id=zn1 name=Boston repFactor=4 type=PRIMARY

 sn=[sn1] zn:[id=zn1 name=Boston] node01:5000 capacity=1 RUNNING
 [rg1-rn1] RUNNING
 No performance info available
 sn=[sn2] zn:[id=zn1 name=Boston] node02:5000 capacity=1 RUNNING
 [rg1-rn2] RUNNING
 No performance info available
 sn=[sn3] zn:[id=zn1 name=Boston] node03:5000 capacity=1 RUNNING
 [rg1-rn3] RUNNING
 No performance info available

Chapter 6
Steps for Changing the Store's Topology

6-10

 sn=[sn4] zn:[id=zn1 name=Boston] node04:5000 capacity=1 RUNNING
 [rg1-rn4] RUNNING
 No performance info available
 sn=[sn5] zn:[id=zn1 name=Boston] node05:5000 capacity=1 RUNNING
 [rg2-rn1] RUNNING
 No performance info available
 sn=[sn6] zn:[id=zn1 name=Boston] node06:5000 capacity=1 RUNNING
 [rg2-rn2] RUNNING
 No performance info available
 sn=[sn7] zn:[id=zn1 name=Boston] node07:5000 capacity=1 RUNNING
 [rg2-rn3] RUNNING
 No performance info available
 sn=[sn8] zn:[id=zn1 name=Boston] node08:5000 capacity=1 RUNNING
 [rg2-rn4] RUNNING
 No performance info available

 shard=[rg1] num partitions=150
 [rg1-rn1] sn=sn1
 [rg1-rn2] sn=sn2
 [rg1-rn3] sn=sn3
 [rg1-rn4] sn=sn4
 shard=[rg2] num partitions=150
 [rg2-rn1] sn=sn5
 [rg2-rn2] sn=sn6
 [rg2-rn3] sn=sn7
 [rg2-rn4] sn=sn8

Verify the Store's Current Topology
You can verify the store's current topology by using the verify command. The verify
command checks the current, deployed topology to make sure it adheres to the
topology rules described in Determining Your Store's Configuration.

You should examine the new topology and decide if it is satisfactory. If it is not, you
can apply more transformations, or start over with different parameters.

For example:

kv-> verify configuration
Verify: starting verification of store mystore based upon
 topology sequence #470
300 partitions and 8 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
See localhost:KVROOT/mystore/log/mystore_{0..N}.log for progress
messages
Verify: Shard Status: healthy:2 writable-degraded:0 read-only:0
offline:0
Verify: Admin Status: healthy
Verify: Zone [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 RN Status: online:8 offline:0 maxDelayMillis:0 maxCatchupTimeSecs:0
Verify: == checking storage node sn1 ==
Verify: Storage Node [sn1] on node01:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]

Chapter 6
Steps for Changing the Store's Topology

6-11

 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin1] Status: RUNNING,MASTER
Verify: Rep Node [rg1-rn1] Status: RUNNING,MASTER ...
Verify: == checking storage node sn2 ==
Verify: Storage Node [sn2] on node02:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg1-rn2] Status: RUNNING,REPLICA ...
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg1-rn3] Status: RUNNING,REPLICA ...
Verify: == checking storage node sn4 ==
Verify: Storage Node [sn4] on node04:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg1-rn4] Status: RUNNING,REPLICA ...
Verify: == checking storage node sn5 ==
Verify: Storage Node [sn5] on node05:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn1] Status: RUNNING,MASTER ...
Verify: == checking storage node sn6 ==
Verify: Storage Node [sn6] on node06:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn2] Status: RUNNING,REPLICA ...
Verify: == checking storage node sn7 ==
Verify: Storage Node [sn7] on node07:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn3] Status: RUNNING,REPLICA ...
Verify: == checking storage node sn8 ==
Verify: Storage Node [sn8] on node08:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn4] Status: RUNNING,REPLICA ...
Verification complete, no violations.

Chapter 6
Steps for Changing the Store's Topology

6-12

Deploying an Arbiter Node Enabled Topology
An Arbiter Node is a service that supports write availability when the store replication
factor is two and a single Replication Node becomes unavailable. The role of an
Arbiter Node is to participate in elections and respond to acknowledge requests if one
of the two Replication Nodes in a shard becomes unavailable.

Arbiter Nodes are automatically configured in a topology if the store replication factor
is two and a primary zone is configured to host Arbiter Nodes.

For example, suppose a store consists of a primary zone, "Manhattan" with two
Storage Nodes deployed in the same shard. In this example, an Arbiter Node is
deployed in the third Storage Node (capacity = 0) in order to provide write availability
even if one of the two Replication Nodes in the shard becomes unavailable.

Note:

Durability.ReplicaAckPolicy must be set to SIMPLE_MAJORITY, so that
writes can succeed if a Replication Node becomes unavailable in a shard.
For more information on ReplicaAckPolicy, see this Javadoc page.

1. Create, start, and configure the store. Note that a Storage Node with capacity
equal to zero is deployed, which will host the Arbiter Node.

• Create the store:

java -Xmx64m -Xms64m \
-jar kv/lib/kvstore.jar makebootconfig \
-root KVROOT \
-host node01 \
-port 8000 \
-harange 8010,8020 \
-capacity 1

java -Xmx64m -Xms64m \
-jar kv/lib/kvstore.jar makebootconfig \
-root KVROOT \
-host node02 \
-port 9000 \
-harange 9010,9020 \
-capacity 1

java -Xmx64m -Xms64m \
-jar kv/lib/kvstore.jar makebootconfig \
-root KVROOT \
-host node03 \
-port 10000 \
-harange 1000,10020 \
-capacity 0 \

Chapter 6
Deploying an Arbiter Node Enabled Topology

6-13

• Create and copy the security directories:

java -Xmx64m -Xms64m \
-jar kv/lib/kvstore.jar
securityconfig \
config create -root KVROOT -kspwd password
Created files
KVROOT/security/security.xml
KVROOT/security/store.keys
KVROOT/security/store.trust
KVROOT/security/client.trust
KVROOT/security/client.security
KVROOT/security/store.passwd (Generated in CE version)
KVROOT/security/store.wallet/cwallet.sso (Generated in EE
version)

Created
scp -r KVROOT/security node02:KVROOT/
scp -r KVROOT/security node03:KVROOT/

• Start the store by running the following command on each Storage Node:

Note:

Before starting the SNA, on each node, set the environment variable
MALLOC_ARENA_MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar \
start -root KVROOT &

2. Load the following script conf.txt to deploy the zone, admin and Storage Nodes.
To host an Arbiter Node, the zone must be primary and should have the -arbiters
flag set.

ssh node01
java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar runadmin \
-port 8000 -host node01 load -file conf.txt \
-security KVROOT/security/client.security

The file, conf.txt, would then contain content like this:

Begin Script
plan deploy-zone -name "Manhattan" -type primary -arbiters -rf 2
-wait
plan deploy-sn -zn zn1 -host node01 -port 8000 -wait
pool create -name SNs
pool join -name SNs -sn sn1
plan deploy-admin -sn sn1 -port 8001 -wait
plan deploy-sn -zn zn1 -host node02 -port 9000 -wait
pool join -name SNs -sn sn2

Chapter 6
Deploying an Arbiter Node Enabled Topology

6-14

plan deploy-sn -zn zn1 -host node03 -port 10000 -wait
pool join -name SNs -sn sn3
End Script ###

3. Create a topology, preview it, and then deploy it:

kv-> topology create -name arbTopo -pool SNs -partitions 300
Created: arbTopo

kv-> topology preview -name arbTopo
Topology transformation from current deployed topology to arbTopo:
Create 1 shard
Create 2 RNs
Create 300 partitions
Create 1 AN

shard rg1
 2 new RNs : rg1-rn1 rg1-rn2
 1 new AN : rg1-an1
 300 new partitions

kv-> plan deploy-topology -name arbTopo -wait
Executed plan 6, waiting for completion...
Plan 6 ended successfully

4. Verify that the Arbiter Node is running.

kv-> verify configuration
Verify: starting verification of store mystore
based upon topology sequence #308
300 partitions and 3 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
See node01:KVROOT/mystore/log/mystore_{0..N}.log
for progress messages
Verify: Shard Status: healthy:1 writable-degraded:0
 read-only:0 offline:0
Verify: Admin Status: healthy
Verify: Zone [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true
masterAffinity=false]
RN Status: online:2 offline:0 maxDelayMillis:6 maxCatchupTimeSecs:0
Verify: == checking storage node sn1 ==
Verify: Storage Node [sn1] on node01:8000
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true
masterAffinity=false]
Status: RUNNING
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin1] Status: RUNNING,MASTER
Verify: Rep Node [rg1-rn1]
Status: RUNNING,MASTER sequenceNumber:635 haPort:8011 available
storage size:11 GB
Verify: == checking storage node sn2 ==
Verify: Storage Node [sn2] on node02:9000
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true

Chapter 6
Deploying an Arbiter Node Enabled Topology

6-15

masterAffinity=false]
Status: RUNNING
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg1-rn2]
Status: RUNNING,REPLICA
sequenceNumber:635 haPort:9010 available storage size:12 GB
delayMillis:6 catchupTimeSecs:0
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03:10000
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true
masterAffinity=false]
Status: RUNNING
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Arb Node [rg1-an1]
Status: RUNNING,REPLICA sequenceNumber:0 haPort:node03:10010
...

5. Now suppose node02 is unreachable. Verify this by using verify configuration:

kv-> verify configuration
Verify: starting verification of store mystore
based upon topology sequence #308
300 partitions and 3 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
See node01:KVROOT/mystore/log/mystore_{0..N}.log
for progress messages
Verify: Shard Status: healthy:0 writable-degraded:1
 read-only:0 offline:0
Verify: Admin Status: healthy
Verify:
 Zone [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true
masterAffinity=false]
RN Status: online:1 offline:1
Verify: == checking storage node sn1 ==
Verify: Storage Node [sn1] on node01:8000
Zone:
 [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin1] Status: RUNNING,MASTER
Verify: Rep Node [rg1-rn1]
Status: RUNNING,MASTER sequenceNumber:901 haPort:8011 available
storage size:12 GB
Verify: == checking storage node sn2 ==
Verify: sn2: ping() failed for sn2 : Unable to connect to
the storage node agent at host node02, port 9000, which may not be
running; nested exception is:
 java.rmi.ConnectException: Connection refused to
 host: node02; nested exception is:
 java.net.ConnectException: Connection refused
Verify: Storage Node [sn2] on node02:9000
Zone:
 [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true
masterAffinity=false] UNREACHABLE

Chapter 6
Deploying an Arbiter Node Enabled Topology

6-16

Verify: rg1-rn2: ping() failed for rg1-rn2 : Unable to
connect
to the storage node agent at host node02, port 9000, which may not
be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
node02;
 nested exception is:
 java.net.ConnectException: Connection refused
Verify: Rep Node [rg1-rn2] Status: UNREACHABLE
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03:10000
 Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true
masterAffinity=false]
 Status: RUNNING
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Arb Node [rg1-an1]
Status: RUNNING,REPLICA sequenceNumber:901 haPort:node03:10010
available storage size:16 GB delayMillis:? catchupTimeSecs:?
Verification complete, 3 violations, 0 notes found.
Verification violation: [rg1-rn2]
ping() failed for rg1-rn2 : Unable to connect to the storage node
agent at host node02, port 9000, which may not be running;
nested exception is:
 java.rmi.ConnectException: Connection refused to
 host: node02; nested exception is:
 java.net.ConnectException: Connection refused
Verification violation: [sn2] ping() failed for sn2 : Unable to
connect to the storage node agent at host node02, port 9000, which
may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
node02;
nested exception is:
 java.net.ConnectException: Connection refused
...

In this case the Arbiter Node supports write availability so you can still perform
write operations while node02 is repaired or replaced. Once node02 is restored,
any written data will be migrated.

6. Test that you can still write to the store with the help of the Arbiter Node. For
example, run the script file test.kvsql (see below for test.kvsql) using the Oracle
NoSQL Database Shell utility (see below example). To do this, use the load
command in the Query Shell:

> java -jar KVHOME/lib/sql.jar -helper-hosts node01:8000 \
-store mystore -security USER/security/admin.security
kvsql-> load -file ./test.kvsql
Statement completed successfully.
Statement completed successfully.
Loaded 3 rows to users.

Chapter 6
Deploying an Arbiter Node Enabled Topology

6-17

Note:

For the Enterprise Edition (EE) installation, make sure the kvstore-ee.jar
is added in the classpath.

The following commands are collected in test.kvsql:

Begin Script
load -file test.ddl
import -table users -file users.json
End Script

Where the file test.ddl would contain content like this:

DROP TABLE IF EXISTS users;
CREATE TABLE users(id INTEGER, firstname STRING, lastname STRING,
age INTEGER, primary key (id));

And the file users.json would contain content like this:

{"id":1,"firstname":"Dean","lastname":"Morrison","age":51}
{"id":2,"firstname":"Idona","lastname":"Roman","age":36}
{"id":3,"firstname":"Bruno","lastname":"Nunez","age":49}

Chapter 6
Deploying an Arbiter Node Enabled Topology

6-18

7
Administrative Procedures

This chapter contains useful procedures for the Oracle NoSQL Database
administrator.

Note:

Oracle NoSQL Database Storage Nodes and Admins make use of an
embedded database (Oracle Berkeley DB, Java Edition). Never directly
manipulate the files maintained by this database. Do not move, delete or
modify the files and directories located under KVROOT unless you are asked
to do so by Oracle Customer Support. In particular, never move or delete any
file ending with a jdb suffix. These files are all located in an env directory
under KVROOT.

Backing Up the Store
To make backups of your KVStore, use the CLI snapshot command to copy nodes in
the store. To maintain consistency, no topology changes should be in process when
you create a snapshot. Restoring a snapshot relies on the system configuration having
exactly the same topology that was in effect when you created the snapshot.

When you create a snapshot, it is stored in a subdirectory of the SN. It is your
responsibility to copy each of the snapshots to another location, preferably on a
different machine, for data safety.

Due to the distributed nature and scale of Oracle NoSQL Database, it is unlikely that
a single machine has the resources to contain snapshots for the entire store. This
document does not address where and how you should store your snapshots.

Taking a Snapshot
To create a snapshot from the Admin CLI, use the snapshot create command:

kv-> snapshot create -name <snapshot name>

A snapshot consists of a set of hard links to data files in the current topology,
specifically, all partition records within the same shard. The snapshot does not
include partitions in independent shards. To minimize any potential inconsistencies,
the snapshot utility performs its operations in parallel as much as possible.

7-1

To create a snapshot with a name of your choice, use snapshot create –name
<name>.

kv-> snapshot create -name Thursday
Created snapshot named 110915-153514-Thursday on all 3 nodes
Successfully backup configurations on sn1, sn2, sn3

To remove an existing snapshot, use snapshot remove <name>.

kv-> snapshot remove -name 110915-153514-Thursday
Removed snapshot 110915-153514-Thursday

To remove all snapshots currently stored in the store, use snapshot remove –all:

kv-> snapshot create -name Thursday
Created snapshot named 110915-153700-Thursday on all 3 nodes
kv-> snapshot create -name later
Created snapshot named 110915-153710-later on all 3 nodes
kv-> snapshot remove -all
Removed all snapshots

Note:

To avoid any snapshot from being inconsistent or unusable, do not take
snapshots while any configuration (topological) changes are in process.
At the time of the snapshot, use the ping command and save the output
information that identifies Masters for later use during a load or restore. For
more information, see Managing Snapshots.

Snapshot Activities

Creating a snapshot of the NoSQL database store performs these activities:

• Backs up the data files

• Backs up the configuration and environment files required for restore activities

To complete a full set of snapshot files, the snapshot command attempts to backup
the storage node data files, configuration files, and adds other required files. Following
is a description of the various files and directories the snapshot command creates or
copies:

Creates a snapshots directory
as a peer to the env directory.
Each snapshots directory
contains one subdirectory for
each snapshot you create. That
subdirectory contains the *.jdb
files.

kvroot/mystore/sn1/rg1-rn1/snapshots/
170417-104506-snapshotName/*.jdb
kvroot/mystore/sn1/rg1-rn1/env/*.jdb
kvroot/mystore/sn1/admin1/snapshots/

Chapter 7
Backing Up the Store

7-2

The snapshot name
subdirectory with a date-time-
name prefix has the name
you supply with the –name
parameter. The date-time prefix
consists of a 6-digit, year,
month, day value in YYMMDD
format, and a 6-digit hour,
minute, seconds timestamp as
HHMMSS. The date and time
values are separated from each
other with a dash (-), and
include a dash (-) suffix before
the snapshot name.

170417-104506-snapshotName/*.jdb
kvroot/mystore/sn1/admin1/env/*.jdb

Copies the root config.xml file
to the date-time-name directory. kvroot/config.xml >

kvroot/snapshots/170417-104506-
snapshotName/config.xml

Creates a status file in the
date-time-name subdirectory.
The contents of this
file, snapshot.stat, indicate
whether creating a snapshot
was successful. When you
restore to a snapshot, the
procedure first validates the
status file contents, continuing
only if the file contains the string
SNAPSHOT=COMPLETED.

kvroot/snapshots/170417-104506-
snapshotName/snapshot.stat

Creates a lock file in the
date-time-name subdirectory.
The lock file, snapshot.lck,
is used to avoid concurrent
modifications from different SN
Admins within the same root
directory.

kvroot/snapshots/170417-104506-
snapshotName/snapshot.lck

Creates a subdirectory of the
date-time-name subdirectory,
security. This subdirectory has
copies of security information
copied from kvroot/security.

kvroot/snapshots/170417-104506-
snapshotName/security

Copies the root security policy
from kvroot/security.policy,
to the date-time-name
subdirectory.

kvroot/snapshots/170417-104506-
snapshotName/security.policy

Chapter 7
Backing Up the Store

7-3

Copies the store security policy
to date-time-name subdirectory,
into another subdirectory,
mystore.

kvroot/snapshots/170417-104506-
snapshotName/mystore/security.policy

Copies the Storage
Node configuration file,
config.xml, from kvroot/
mystore/sn1/config.xml to a
corresponding SN subdirectory
in the date-time-name directory.

kvroot/snapshots/170417-104506-
snapshotName/mystore/sn1/config.xml

Managing Snapshots
When you create a snapshot, the utility collects data from every Replication Node in
the system, including Masters and replicas. If the operation does not succeed for any
one node in a shard, the entire snapshot fails.

When you are preparing to take the snapshot, you can use the ping command to
identify which nodes are currently running as the Master. Each shard has a Master,
identified by the MASTER keyword. For example, in the sample output, replication node
rg1-rn1, running on Storage Node sn1, is the current Master:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar ping -port 5000 -host node01 \
-security USER/security/admin/security
Pinging components of store mystore based upon topology sequence #316
300 partitions and 3 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
Shard Status: healthy:3 writable-degraded:0 read-only:0 offline:0
Admin Status: healthy
Zone [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:9 offline:0 maxDelayMillis:1 maxCatchupTimeSecs:0
Storage Node [sn1] on node01:5000
 Zone: [name=Boston id=zn1 type=PRIMARY]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
 Admin [admin1] Status: RUNNING,MASTER
 Rep Node [rg1-rn1] Status: RUNNING,REPLICA
 sequenceNumber:231 haPort:5011 available storage size:14 GB
delayMillis:1 catchupTimeSecs:0
 Rep Node [rg2-rn1] Status: RUNNING,REPLICA
 sequenceNumber:231 haPort:5012 available storage size:12 GB
delayMillis:1 catchupTimeSecs:0
 Rep Node [rg3-rn1] Status: RUNNING,MASTER
 sequenceNumber:227 haPort:5013 available storage size:13 GB
Storage Node [sn2] on node02:6000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
 Rep Node [rg1-rn2] Status: RUNNING,MASTER
 sequenceNumber:231 haPort:6010 available storage size:15 GB

Chapter 7
Backing Up the Store

7-4

 Rep Node [rg2-rn2] Status: RUNNING,REPLICA
 sequenceNumber:231 haPort:6011 available storage size:18 GB
delayMillis:1 catchupTimeSecs:0
 Rep Node [rg3-rn2] Status: RUNNING,REPLICA
 sequenceNumber:227 haPort:6012 available storage size:12 GB
delayMillis:1 catchupTimeSecs:0
Storage Node [sn3] on node03:7000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
 Rep Node [rg1-rn3] Status: RUNNING,REPLICA
 sequenceNumber:231 haPort:7010 available storage size:11 GB
delayMillis:1 catchupTimeSecs:0
 Rep Node [rg2-rn3] Status: RUNNING,MASTER
 sequenceNumber:231 haPort:7011 available storage size:11 GB
 Rep Node [rg3-rn3] Status: RUNNING,REPLICA
 sequenceNumber:227 haPort:7012 available storage size:10 GB
delayMillis:1 catchupTimeSecs:0

You should save the above information and associate it with the respective snapshot,
for later use during a load or restore. If you decide to create an off-store copy of
the snapshot, you should copy the snapshot data for only one of the nodes in each
shard. If possible, copy the snapshot data taken from the node that was serving as the
Master at the time the snapshot was taken.

Note:

Snapshots include the admin database, which may be required if the store
needs to be restored from this snapshot.

Snapshot data for the local Storage Node is stored in a directory inside of the KVROOT
directory. For each Storage Node in the store, you have a directory named:

KVROOT/<store>/<SN>/<resource>/snapshots/<snapshot_name>/files

where:

• <store> is the name of the store.

• <SN> is the name of the Storage Node.

• <resource> is the name of the resource running on the Storage Node. Typically,
this is the name of a replication node.

• <snapshot_name> is the name of the snapshot.

Snapshot data consists of a number of files. For example:

 > ls /var/kvroot/mystore/sn1/rg1-rn1/snapshots/110915-153514-Thursday
00000000.jdb 00000002.jdb 00000004.jdb 00000006.jdb
00000001.jdb 00000003.jdb 00000005.jdb 00000007.jdb

Chapter 7
Backing Up the Store

7-5

Note:

To preserve storage, purge obsolete snapshots on a periodic basis.

Recovering the Store
There are two ways to recover your store from a previously created snapshot:

1. Use a snapshot to create a store with any topology with the Load utility.

2. Restore a snapshot using the exact topology you were using when you created the
snapshot.

This section describes and explains both ways to recover your store.

Note:

If you need to recover due to a hardware problem, such as a failed Storage
Node, that qualifies as a topology change, so you must use the Load utility
to recover. For information about replacing a failed Storage Node, see
Replacing a Failed Storage Node.

Using the Load Program
You can use the oracle.kv.util.Load program to restore a store from a previously
created snapshot. You can run this program directly, or you can access it using
kvstore.jar, as shown in the examples in this section.

Using this tool lets you restore to any topology, not just the topology in effect when you
created the snapshot.

This Load mechanism works by iterating through all records in a snapshot, putting
each record into a target store as it proceeds through the snapshot. Use Load to
populate a new, empty store. Do not use this with an existing store. Load only writes
records if they do not already exist.

Note that to recover the store, you must load records from snapshot data captured
for each shard in the store. For best results, you should load records using snapshot
data captured from the replication nodes that were running as Master at the time the
snapshot was taken. (If you have three shards in your store, then there are three
Masters at any given time, and so you need to load data from three sets of snapshot
data). To identify the Master, use ping at the time the snapshot was taken.

You should use snapshot data taken at the same point in time; do not, for example,
use snapshot data for shard 1 that was taken on Monday, and snapshot data for shard
2 that was taken on Wednesday. Such actions will restore your store to an inconsistent
state.

Also, the Load mechanism can only process data at the speed necessary to insert
data into a new store. Because you probably have multiple shards in your store, you
should restore your store from data taken from each shard. To do this, run multiple

Chapter 7
Recovering the Store

7-6

instances of the Load program in parallel, having each instance operate on data from
different replication nodes.

The program's usage to load admin metadata is:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar load \
-store <storeName> -host <hostname> port <port> \
-load-admin \
-source <admin-backup-dir> \
[-force] [-username <user>] \
[-security <security-file-path>]

The program's usage to load store data is:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar load [-verbose] \
-store <storeName> -host <hostname> \
-port <port> -source <shard-backup-dir> \
[, <shard-backup-dir>]* \
[-checkpoint <checkpoint-files-directory>] \
[-username <user>] [-security <security-file-path>]

where:

• -load-admin Loads the store metadata from the snapshot to the new store. In this
case the -source directory must point to the environment directory of the admin
node from the snapshot. The store must not be available for use by users at the
time of this operation.

Note:

This option should not be used on a store unless that store is being
restored from scratch. If -force is specified in conjunction with -load-
admin, any existing metadata in the store, including tables and security
metadata, will be overwritten. For more information, see Load Program
and Metadata.

• -host <hostname> identifies the host name of a node in your store.

• -port <port> identifies the registry port in use by the store's node.

• -security <security-file-path> identifies the security file used to specify
properties for login.

• -source <admin-backup-dir> | <shard-backup-dir> [,<shard-backup-dir>]*
admin-backup-dir specifies the admin snapshot directory containing the contents
of the admin metadata that is to be loaded into the store.

Shard-backup-dir specifies the backup directories that represent the contents of
snapshots created using the snapshot commands described at Taking a Snapshot.

• -store <storeName> identifies the name of the store.

• -username <user> identifies the name of the user to login to the secured store.

Chapter 7
Recovering the Store

7-7

For example, if a snapshot exists in /var/backups/snapshots/110915-153828-later,
and a new store named "mystore" on host "host1" using registry port 5000, run the
Load program on the host that has the /var/backups/snapshots directory:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar load \
-source /var/backups/snapshots/110915-153514-Thursday -store mystore \
-host host1 -port 5000 -security KVROOT/security/client.security

Note:

Before you load records into the new store, make sure that the store is
deployed. For more information, see Configuring the KVStore.

Load Program and Metadata
You can use the Load program to restore a store with metadata (tables, security) from
a previously created snapshot.

The following steps describe how to load from a snapshot with metadata to a newly
created store:

1. Create, start and configure the new store (target). Do not make the store
accessible to applications yet.

• Create the new store:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT \
-host NewHost -port 8000 \
-harange 8010,8020 \
-capacity 1

• Create security directory:

java -Xmx64m -Xms64m \
-jar kv/lib/kvstore.jar securityconfig \
config create
-root KVROOT -kspwd password
Created files
KVROOT/security/security.xml
KVROOT/security/store.keys
KVROOT/security/store.trust
KVROOT/security/client.trust
KVROOT/security/client.security
KVROOT/security/store.passwd (Generated in CE version)
KVROOT/security/store.wallet/cwallet.sso (Generated in EE
version)

Created

Chapter 7
Recovering the Store

7-8

• Start the new store:

Note:

Before starting the SNA, on each node, set the environment variable
MALLOC_ARENA_MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start \
-root KVROOT &

• Configure the new store:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin \
-port 8000 -host NewHost \
-security KVROOT/security/client.security
kv-> configure -name NewStore
Store configured: NewStore

Note:

Loading security metadata requires the names of the source store and
the target store to be the same, otherwise the security metadata cannot
be used later.

2. Locate the snapshot directories for the source store. There should be one for
the admin nodes plus one for each shard. For example in a 3x3 store there
should be 4 snapshot directories used for the load. The load program must have
direct file-based access to each snapshot directory loaded. In this case, the
snapshot source directory is in /var/kvroot/mystore/sn1/admin1/snapshots/
110915-153514-Thursday.

3. Load the store metadata using the -load-admin option. Host, port, and store refer
to the target store. In this case the -source directory must point to the environment
directory of the admin node from the snapshot.

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar load \
-source \
/var/kvroot/mystore/sn1/admin1/snapshots/110915-153514-Thursday \
-store NewStore -host NewHost -port 8000 \
-load-admin \
-security KVROOT/security/client.security

Chapter 7
Recovering the Store

7-9

Note:

This command can be run more than once if something goes wrong, as
long as the store is not accessible to applications.

4. Deploy the store. For more information, see Configuring the KVStore.

5. Once the topology is deployed, load the shard data for each shard. To do this, run
the Load program in parallel, with each instance operating on data captured from
different replication nodes. For example, suppose there is a snapshot of OldStore
in var/backups/snapshots/140827-144141-back.

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar load \
-source var/backups/snapshots/140827-144141-back -store NewStore \
-host NewHost -port 8000 \
-security KVROOT/security/client.security

Note:

This step may take a long time or might need to be restarted. In order to
significantly reduce retry time, the use of a status file is recommended.

If the previous store has been configured with username and password,
the program will prompt for username and password here.

6. The store is now ready for applications.

Restoring Directly from a Snapshot
You can restore a store directly from a snapshot. This mechanism is faster than using
the Load program. However, you can restore from a snapshot only to the exact same
topology as was in use when the snapshot was taken. This means that all ports and
host names or IP addresses (depending on your configuration) must be exactly the
same as when you took the snapshot.

To restore from a snapshot, complete these steps:

1. Run this command on each of the Storage Nodes (SNs) to shut down the store:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop -root $KVROOT

2. When each SN is stopped, run this command on each SN in the store to restore to
the backup (using –update-config true):

> java -jar KVHOME/lib/kvstore.jar start -root /var/kvroot \
-restore-from-snapshot 170417-104506-mySnapshot -update-config true

Chapter 7
Recovering the Store

7-10

3. To restore to the backup, but not override the existing configurations, run this
command on each SN (with –update-config false):

> java -jar KVHOME/lib/kvstore.jar start -root /var/kvroot \
-restore-from-snapshot 170417-104506-mySnapshot -update-config
false

The 170417–104506–mySnapshot value represents the directory name of the
snapshot to restore.

Note:

This procedure recovers the store to the time you created the snapshot. If
your store was active after snapshot creation, all modifications made since
the last snapshot are lost.

Recovering from Data Corruption
Oracle NoSQL Database can automatically detect data corruption in the database
store. When it detects data corruption, Oracle NoSQL Database automatically shuts
down the associated Admin or Replication Nodes. Manual administrative action is then
required before the nodes can be brought back online.

Detecting Data Corruption
Oracle NoSQL Database Admin or Replication Node processes will exit when they
detect data corruption. This is caused by a background task which detects data
corruption caused by a disk failure, or similar physical media or I/O subsystem
problem. Typically, the corruption is detected because of a checksum error in a log
entry in one of the data (*.jdb) files contained in an Admin or Replication Node
database environment. A data corruption error generates output in the debug log
similar to this:

2016-10-25 16:59:52.265 UTC SEVERE [rg1-rn1] Process exiting
com.sleepycat.je.EnvironmentFailureException: (JE 7.3.2)
rg1-rn1(-1):kvroot/mystore/sn1/rg1-rn1/env
com.sleepycat.je.log.ChecksumException:
Invalid log entry type: 102 lsn=0x0/0x0 bufPosition=5
bufRemaining=4091 LOG_CHECKSUM:
Checksum invalid on read, log is likely invalid. Environment is
invalid and must be closed
...
2016-10-25 16:59:52.270 UTC SEVERE [rg1-rn1] Exception creating
service rg1-rn1:
(JE 7.3.2) rg1-rn1(-1):kvroot/mystore/sn1/rg1-rn1/env
com.sleepycat.je.log.ChecksumException:
Invalid log entry type: 102 lsn=0x0/0x0 bufPosition=5
bufRemaining=4091 LOG_CHECKSUM:
Checksum invalid on read, log is likely invalid. Environment is

Chapter 7
Recovering from Data Corruption

7-11

invalid and must be closed. (12.1.4.3.0): oracle.kv.FaultException:
(JE 7.3.2) rg1-rn1(-1):kvroot/mystore/sn1/rg1-rn1/env
com.sleepycat.je.log.ChecksumException: Invalid log entry type: 102
lsn=0x0/0x0 bufPosition=5 bufRemaining=4091 LOG_CHECKSUM: Checksum
invalid on read, log is likely invalid. Environment is invalid and
must be closed. (12.1.4.3.0)
Fault class name: com.sleepycat.je.EnvironmentFailureException
...
2016-10-25 16:59:52.272 UTC INFO [rg1-rn1] Service status changed
from STARTING to ERROR_NO_RESTART

The EnvironmentFailureException will cause the process to exit. Because the
exception was caused by log corruption, the service status is set to ERROR_NO_RESTART,
which means that the service will not restart automatically.

Data Corruption Recovery Procedure
If an Admin or Replication Node has been stopped due to data corruption, then
manual administration intervention is required in order to restart the Node:

1. Optional: Archive the corrupted environment data files.

If you want to send the corrupted environment to Oracle support for help in
identifying the root cause of the failure, archive the corrupted environment data
files. These are usually located at:

<KVROOT>/<STORE_NAME>/<SNx>/<Adminx>/"

or

<KVROOT>/<STORE_NAME>/<SNx>/<rgx-rnx>"

However, if you used the plan change-storagedir CLI command to change the
storage directory for your Replication Node, then you will find the environment in
the location that you specified to that command.

You can use the show topology CLI command to display your store's topology. As
part of this information, the storage directory for each of your Replication Nodes
are identified.

2. Confirm that a non-corrupted version of the data is available.

Before removing the files associated with the corrupted environment, confirm that
another copy of the data is available either on another node or via a previously
save snapshot. For a Replication Node, you must be using a Replication Factor
greater than 1 and also have a properly operating Replication Node in the store in
order for the data to reside elsewhere in the store. If you are using a RF=1, then
you must have a previously saved snapshot in order to continue.

If the problem is with an Admin Node, there must be to be another Admin available
in the store that is operating properly.

Use the ping or verify configuration commands to check if the available nodes are
running properly and healthy.

3. Remove all the data files that reside in the corrupted environment.

Chapter 7
Recovering from Data Corruption

7-12

Once the data files associated with a corrupted environment have been saved
elsewhere, and you have confirmed that another copy of the data is available,
delete all the data files in the enviroment directory. Make sure you only delete
the files associated with the Admin or Replication Node that has failed due to a
corrupted environment error.

ls <KVROOT>/mystore/sn1/rg1-rn1/env
00000000.jdb 00000001.jdb 00000002.jdb je.config.csv
je.info.0 je.lck je.stat.csv

rm <KVROOT>/mystore/sn1/rg1-rn1/env/*.jdb

4. Perform recovery using either Network Restore, or from a backup. Be aware the
recovery from a backup will not work to recover an Admin Node.

• Recovery using Network Restore

Network restore can be used to recover from data corruption if the corrupted
node belongs to a replication group that has other replication nodes available.
Network restore is automatic recovery task. After removing all of the database
files in the corrupted environment, you only need to connect to CLI and restart
the corrupted node.

For a Replication Node:

kv-> plan start-service -service rg1-rn1

For an Admin:

kv-> plan start-service -service rg1-rn1

• Recovery from a backup (RNs only)

If the store does not have another member in the Replication Node's shard
or if all of the nodes in the shard have failed due to data corruption, you will
need to restore the node's environment from a previously created snapshot.
See Recovering the Store for details.

Note that to recover an Admin that has failed due to data corruption, you must
have a working Admin somewhere in the store. Snapshots do not capture
Admin data.

Replacing a Failed Disk
You can replace a disk that is either in the process of failing, or has already failed. Disk
replacement procedures are necessary to keep the store running. These are the steps
required to replace a failed disk to preserve data availability.

The following example deploys a KVStore to a set of three machines, each with 3
disks. Use the storagedir flag of the makebootconfig command to specify the storage
location of the disks.

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -port 5000 \

Chapter 7
Replacing a Failed Disk

7-13

 -host node09
 -harange 5010,5020 \
 -num_cpus 0 \
 -memory_mb 0 \
 -capacity 3 \
 -admindir /disk1/ondb/admin -admindirsize 1_gb \
 -storagedir /disk1/ondb/data \
 -storagedir /disk2/ondb/data \
 -storagedir /disk3/ondb/data \
 -rnlogdir /disk1/ondb/rnlog01

With a boot configuration such as the previous example, the directory structure
created and populated on each machine is as follows:

 - Machine 1 (SN1) - - Machine 2 (SN2) - - Machine 3 (SN3) -
/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 /security /security /security
 /store-name /store-name /store-name
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml

/disk1/ondb/admin /disk1/ondb/admin /disk1/ondb/admin
 /admin1 /admin2 /admin3
 /env /env /env

/disk1/ondb/data /disk1/ondb/data /disk1/ondb/data
 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /env /env /env

/disk2/ondb/data /disk2/ondb/data /disk2/ondb/data
 /rg2-rn1 /rg2-rn2 /rg2-rn3
 /env /env /env

/disk3/ondb/data /disk3/ondb/data /disk3/ondb/data
 /rg3-rn1 /rg3-rn2 /rg3-rn3
 /env /env /env

/disk1/ondb/rnlog01 /disk1/ondb/rnlog01 /disk1/ondb/rnlog01
 /log /log /log

In this case, configuration information and administrative data is stored in a location
that is separate from all of the replication data. The replication data itself is stored by
each distinct Replication Node service on separate, physical media as well. Storing
data in this way provides failure isolation and will typically make disk replacement
less complicated and time consuming. For information on how to deploy a store, see
Configuring the KVStore.

To replace a failed disk:

1. Determine which disk has failed. To do this, you can use standard system
monitoring and management mechanisms. In the previous example, suppose
disk2 on Storage Node 3 fails and needs to be replaced.

Chapter 7
Replacing a Failed Disk

7-14

2. Then given a directory structure, determine which Replication Node service to
stop. With the structure described above, the store writes replicated data to disk2
on Storage Node 3, so rg2-rn3 must be stopped before replacing the failed disk.

3. Use the plan stop-service command to stop the affected service (rg2-rn3) so
that any attempts by the system to communicate with it are no longer made;
resulting in a reduction in the amount of error output related to a failure you are
already aware of.

kv-> plan stop-service -service rg2-rn3

4. Remove the failed disk (disk2) using whatever procedure is dictated by the
operating system, disk manufacturer, and/or hardware platform.

5. Install a new disk using any appropriate procedures.

6. Format the disk to have the same storage directory as before; in this case, /
disk2/ondb/var/kvroot.

7. With the new disk in place, use the plan start-service command to start the
rg2-rn3 service.

kv-> plan start-service -service rg2-rn3

Note:

Depending on the amount of data stored on the disk before it failed,
recovering that data can take a considerable amount of time. Also, the
system may encounter unexpected or additional network traffic and load
while repopulating the new disk. If so, such events add even more time
to completion.

Replacing a Failed Storage Node
You can replace a failed Storage Node, or one that is in the process of failing.
Upgrading a healthy machine to another one with better specifications is also
a common Storage Node replacement scenario. Generally, you should repair the
underlying problem (be it hardware or software related) before proceeding with this
procedure.

There are two ways to replace a failed Storage Node:

• A new, different Storage node

• An identical Storage Node

This section describes both replacement possibilities.

Chapter 7
Replacing a Failed Storage Node

7-15

Note:

Replacing a Storage Node qualifies as a topology change. This means that
if you want to restore your store from a snapshot taken before the Storage
Node was replaced, you must use the Load program. See Using the Load
Program for more information.

Using a New Storage Node

To replace a failed Storage Node by using a new, different Storage Node (node uses
different host name, IP address, and port as the failed host):

1. If you are replacing hardware, bring it up and make sure it is ready for your
production environment.

2. On the new, replacement node, create a "boot config" configuration file using
the makebootconfig utility with the following commands. Do this on the hardware
where your new Storage Node runs.

> mkdir -p KVROOT (if it doesn't already exist)
> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig -root KVROOT \
 -port 5000 \
 -host <hostname> \
 -harange 5010,5020 \
 -capacity 1 \
 -admindir /export/admin1
\
 -admindirsize 3_gb \
 -storagedir /export/
data1 \
 -storagedirsize 1_tb \
 -rnlogdir /export/rnlog1

3. Use the securityconfig tool to create the security directory. For more information,
see Configuring Your KVStore Installation.

4. Copy the security directory from a healthy node to the failed node:

scp -r <sec dir> node02:KVROOT/security KVROOT/

5. Start the Oracle NoSQL Database software on the new node:

Chapter 7
Replacing a Failed Storage Node

7-16

Note:

Before starting the SNA, on each node, set the environment variable
MALLOC_ARENA_MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

> nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT &

6. Deploy the new Storage Node to the new node. To do this using the CLI:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin \
-port <5000> -host <host> \
-security USER/admin.security
kv-> plan deploy-sn -zn <id> -host <host> -port <5000> -wait
kv->

7. Add the new Storage Node to the Storage Node pool. (You created a Storage
Node pool when you installed the store, and you added all your Storage Nodes to
it, but it is otherwise not used in this version of the product.)

kv-> show pools
AllStorageNodes: sn1, sn2, sn3, sn4 ... sn25, sn26
BostonPool: sn1, sn2, sn3, sn4 ... sn25
kv-> pool join -name BostonPool -sn sn26
AllStorageNodes: sn1, sn2, sn3, sn4 ... sn25, sn26
BostonPool: sn1, sn2, sn3, sn4 ... sn25
kv->

8. Make sure the old Storage Node is not running. If the problem is with the
hardware, then turn off the broken machine. You can also stop just the Storage
Node software by:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop -root KVROOT &

9. Migrate the services from one Storage Node to another. The syntax for this plan is:

kv-> plan migrate-sn -from <old SN ID> -to <new SN ID>

Assuming that you are migrating from Storage Node 25 to 26, you would use:

kv-> plan migrate-sn -from sn25 -to sn26

10. The old Storage Node is shown in the topology and is reported as
UNREACHABLE. The source SNA should be removed and its rootdir should be
hosed out. Bringing up the old SNA will also bring up the old Replication Nodes
and admins, which are no longer members of their replication groups. This should
be harmless to the rest of the store, but it produces log error messages that might

Chapter 7
Replacing a Failed Storage Node

7-17

be misinterpreted as indicating a problem with the store. Use the plan remove-sn
command to remove the old and unused Storage Node in your deployment.

kv-> plan remove-sn sn25 -wait

Note:

Replacing a Storage Node qualifies as a topology change. This means that
if you want to restore your store from a snapshot taken before the Storage
Node was replaced, you must use the Load program. See Using the Load
Program for more information.

Task for an Identical Node

To replace a failed Storage Node with an identical node, i.e. the target node uses the
same host name, internet address, and port as the failed host.

1. Prerequisite information:

a. The hostname and port number (registry port) of the machine in the cluster
where the admin process is running (e.g “host1” and 5000).

b. The ID of the Storage Node to replace (e.g. "sn1").

Note:

The user can use the Admin CLI ping command to get the registry
port and Storage Node Identifier of any failed Storage Node.

c. Before starting the new Storage Node, the Storage Node to be replaced must
be taken down. This can be done administratively or via failure.

Note:

The instructions below assume that the KVROOT in the target host is
empty and has no valid data. When the new Storage Node Agent begins
it starts the services that it hosts, which recovers their data from other
hosts. The time taken for the recovery depends on the size of the shards
involved and it happens in the background.

2. Create the configuration file of the failed host using the generateconfig
command. The generateconfig command can be executed from any active host
(machine) in the NoSQL cluster.

The generateconfig's usage is:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar generateconfig \
-host <hostname> -port <port> -sn <StorageNodeId> -target <zipfile>

Chapter 7
Replacing a Failed Storage Node

7-18

\
-security <path to security login file>

Parameter Required Description

host Yes The host name of the failed
storage node for which the
config file is generated.

port Yes The registry port of the failed
storage node for which the
config file is generated.

sn Yes Identifier of the failed storage
node.

target Yes Full path of the zip file to be
created.

security No The client security
configuration file. This
parameter is only required
if your store is secure.
A fully qualified path to
a file containing security
information can be specified.

For more information on generateconfig command, See generateconfig

For example:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar generateconfig -host adminhost \
-port 13230 -sn sn1 -target /tmp/sn1.config.zip \
-security USER/security/admin.security

The command above creates the target "/tmp/sn1.config.zip" . This is a zip file
with the required configuration to re-create the failed Storage Node. The top-level
directory in the newly created zip file (sn1.config.zip) is the store's KVROOT.

Note:

This assumes that you must have followed the steps as mentioned in
Configuring Security with Remote Access.

3. Restore the Storage Node configuration on the target host:

a. Copy the zip file "sn1.config.zip" to the target host.

b. Unzip the archive into your target host's KVROOT directory. That is, if KVROOT
is /opt/kvroot, then do the following:

> cd /opt
> unzip <path-to-sn1.config.zip>

Chapter 7
Replacing a Failed Storage Node

7-19

Note:

If kvroot already exists under /opt directory , remove all the
contents in the kvroot directory before unzipping the config file.

4. Restart the Storage Node on the target host.

Note:

Before starting the SNA, on each node, set the environment variable
MALLOC_ARENA_MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT

Note:

The hostname, port number and internet address of the target host and
the failed node are the same. So no changes have to be done in the
Storage Node pool and the topology of the store.

Repairing a Failed Zone by Replacing Hardware
If all of the machines belonging to a zone fail, and quorum is maintained, you can
replace them by using new, different Storage Nodes deployed to the same zone.

If a zone fails but quorum is lost, you can perform a failover instead. To do this, see
Performing a Failover.

For example, suppose a store consists of three zones; zn1, deployed to the machines
on the first floor of a physical data center, zn2, deployed to the machines on the
second floor, and zn3, deployed to the third floor. Additionally, suppose that a fire
destroyed all of the machines on the second floor, resulting in the failure of all of the
associated Storage Nodes. In this case, you need to replace the machines in the zn2
zone; which can be accomplished by doing the following:

1. Replace each individual Storage Node in the failed zone with new, different
Storage Nodes belonging to same zone (zn2), although located in a new physical
location. To do this, follow the instructions in Replacing a Failed Storage Node.
Make sure to remove each old Storage Node after performing the replacement.

2. After replacing and then removing each of the targeted SNs, the zone to which
those SNs belonged should now contain the new SNs.

Using Oracle NoSQL Migrator
Learn about Oracle NoSQL Data Migrator and how to use it for data migration.

Chapter 7
Repairing a Failed Zone by Replacing Hardware

7-20

Oracle NoSQL Data Migrator is a tool that supports the movement of Oracle
NoSQL tables from one data source to another. This tool can operate on tables in
Oracle NoSQL Database Cloud Service, Oracle NoSQL Database on-premise, and
handle JSON and MongoDB-formatted JSON input files. This utility supports multiple
migration options, such as:

• Oracle NoSQL Database on-premise to Oracle NoSQL Database Cloud Service
and vice-versa

• Between two Oracle NoSQL on-premise Databases

• Between two Oracle NoSQL Database Cloud Service Tables

• JSON file to Oracle NoSQL Database on-premise and vice-versa

• JSON file to Oracle NoSQL Database Cloud Service and vice-versa

• MongoDB-formatted JSON file to an Oracle NoSQL Database table on-premise or
cloud

Topics:

• Overview

• Using Oracle NoSQL Data Migrator

• Supported Sources and Sinks

• Use Case Demonstrations

• Troubleshooting the NoSQL Data Migrator

• Oracle NoSQL Data Migrator Vs. Import/Export Utility

• Transitioning from Import/Export to NoSQL Data Migrator

Overview
Oracle NoSQL Data Migrator lets you move Oracle NoSQL tables from one data
source to another, such as Oracle NoSQL Database on-premise or cloud or even a
simple JSON file.

There can be many situations that require you to migrate NoSQL tables from or to
an Oracle NoSQL Database. For instance, a team of developers enhancing a NoSQL
Database application may want to test their updated code in the local Oracle NoSQL
Database Cloud Service (NDCS) instance using cloudsim. To verify all the possible
test cases, they must set up the test data similar to the actual data. To do this, they
must copy the NoSQL tables from the production environment to their local NDCS
instance, the cloudsim environment. In another situation, NoSQL developers may
need to move their application data from on-premise to the cloud and vice-versa,
either for development or testing.

In all such cases and many more, you can use Oracle NoSQL Data Migrator to move
your NoSQL tables from one data source to another, such as Oracle NoSQL Database
on-premise or cloud or even a simple JSON file. You can also copy NoSQL tables
from a MongoDB-formatted JSON input file into your NoSQL Database on-premise or
cloud.

Oracle NoSQL Data Migrator is created to replace and enhance the existing on-
premise-only import/export utility. To know how the NoSQL Data Migrator is different
from the existing import/export utility, see Oracle NoSQL Data Migrator Vs. Import/
Export Utility .

Chapter 7
Using Oracle NoSQL Migrator

7-21

As depicted in the following figure, the NoSQL Data Migrator utility acts as a connector
or pipe between the data source and the target (referred to as the sink). In essence,
this utility exports data from the selected source and imports that data into the sink.
This tool is table-oriented, that is, you can move the data only at the table level. A
single migration task operates on a single table and supports the following options:

• JSON file to Oracle NoSQL Database on-premise and vice versa

• JSON file to Oracle NoSQL Database Cloud Service and vice versa

• Oracle NoSQL Database on-premise to Oracle NoSQL Database Cloud Service
and vice versa

• MongoDB-formatted JSON file to an Oracle NoSQL Database table

• MongoDB-formatted JSON file to an Oracle NoSQL Database Cloud Service table

• One Oracle NoSQL Database on-premise to another

• One Oracle NoSQL Database Cloud Service to another

Oracle NoSQL Data Migrator is designed such that it can support additional sources
and sinks in the future. For a list of sources and sinks supported by Oracle NoSQL
Data Migrator as of the current release, see Supported Sources and Sinks.

Migration Pipe
Source Sink

NoSQL
Table Data

NoSQL
Table Data

Transformations

Terminology used with NoSQL Data Migrator
Learn about the different terms used in the above diagram, in detail.

• Source: An entity from where the NoSQL tables are exported for migration. Some
examples of sources are Oracle NoSQL Database on-premise or cloud, JSON file,
and MongoDB-formatted JSON file.

• Sink: An entity that imports the NoSQL tables from NoSQL Data Migrator. Some
examples for sinks are Oracle NoSQL Database on-premise or cloud and JSON
file.

• Migration Pipe: The data from a source will be transferred to the sink by NoSQL
Data Migrator. This can be visualized as a Migration Pipe.

• Transformations: You can add rules to modify the NoSQL table data in the
migration pipe. These rules are called Transformations. Oracle NoSQL Data
Migrator allows data transformations at the top-level fields or columns only. It does
not let you transform the data in the nested fields. Some examples of permitted
transformations are:

– Drop or ignore one or more columns,

– Rename one or more columns, or

– Aggregate several columns into a single field, typically a JSON field.

• Configuration File : A configuration file is a JSON file where you define all
the parameters required for the migration activity. Later, you pass this JSON

Chapter 7
Using Oracle NoSQL Migrator

7-22

file as a single parameter to the runMigrator command from the CLI. A typical
configuration file format looks like as shown below.

{
 "source": {
 "type" : <source type>,
 //source-configuration for type. See Source Configuration Templates .
 },
 "sink": {
 "type" : <sink type>,
 //sink-configuration for type. See Sink Configuration Templates .
 },
 "transforms" : {
 //transforms configuration. See Transformation Configuration Templates .
 },
 "migratorVersion" : "1.0.0",
 "abortOnError" : <true|false>
}

Group Parameters Mandatory
(Y/N)

Purpose Supported
Values

source type Y Represents the
source from
which to migrate
the data. The
source provides
data and
metadata (if any)
for migration.

To know the
type value for
each source,
see Supported
Sources and
Sinks.

source-
configuration for
type

Y Defines the
configuration for
the source.
These
configuration
parameters are
specific to the
type of source
selected above.

See Source
Configuration
Templates for
the complete list
of configuration
parameters for
each source
type.

sink type Y Represents the
sink to which to
migrate the data.
The sink is the
target or
destination for
the migration.

To know the
type value for
each source,
see Supported
Sources and
Sinks.

sink-
configuration for
type

Y Defines the
configuration for
the sink. These
configuration
parameters are
specific to the
type of sink
selected above.

See Sink
Configuration
Templates for
the complete list
of configuration
parameters for
each sink type.

Chapter 7
Using Oracle NoSQL Migrator

7-23

Group Parameters Mandatory
(Y/N)

Purpose Supported
Values

transforms transforms
configuration

N Defines the
transformations
to be applied to
the data in the
migration pipe.

See
Transformation
Configuration
Templates for
the complete list
of
transformations
supported by the
NoSQL Data
Migrator.

- migratorVersi
on

N Version of the
NoSQL Data
Migrator

-

- abortOnError N Specifies
whether to stop
the migration
activity in case
of any error or
not.

The default
value is true
indicating that
the migration
stops whenever
it encounters a
migration error.

If you set this
value to false,
the migration
continues even
in case of failed
records or other
migration errors.
The failed
records and
migration errors
will be logged as
WARNINGs on
the CLI terminal.

true, false

Note:

As JSON is case-sensitive, all the parameters defined in the
configuration file are case-sensitive unless specified otherwise.

Using Oracle NoSQL Data Migrator
Learn about the various steps involved in using the Oracle NoSQL Data Migrator utility
for migrating your NoSQL data.

The high level flow of tasks involved in using NoSQL Data Migrator is depicted in the
below figure.

Chapter 7
Using Oracle NoSQL Migrator

7-24

BEGIN

Download the NoSQL
Migrator Utility

Identify Source & Sink for
Migration

OR

OR

Generate the
Configuration JSON File

using runMigrator

Create a
Configuration JSON

File Manually

Proceed to Migration
with the Generated

Configuration JSON File

Save the Configuration
JSON File for a Future

Migration

Run runMigrator by
passing the Configuration
JSON File as a Parameter

END

You can reuse the
Config JSON File
multiple times.

You can reuse the
Config JSON File
multiple times.

You can reuse the
Config JSON File
multiple times.

Download the NoSQL Data Migrator Utility

The Oracle NoSQL Data Migrator utility is available for download from the Oracle
NoSQL Downloads page. Once you download and unzip it on your machine, you can
access the runMigrator command from the command line interface.

Identify the Source and Sink

Before using the migrator, you must identify the data source and sink. For instance,
if you want to migrate a NoSQL table from Oracle NoSQL Database on-premise to
a JSON formatted file, your source will be Oracle NoSQL Database and sink will be
JSON file. Ensure that the identified source and sink are supported by the Oracle
NoSQL Data Migrator by referring to Supported Sources and Sinks. This is also an
appropriate phase to decide the schema for your NoSQL table in the target or sink,
and create them.

• Identify Sink Table Schema: If the sink is Oracle NoSQL Database on-premise or
cloud, you must identify the schema for the sink table and ensure that the source
data matches with the target schema. If required, use transformations to map the
source data to the sink table.

Chapter 7
Using Oracle NoSQL Migrator

7-25

• Create Sink Table: Once you identify the sink table schema, create the sink
table either through the Admin CLI or using the schemaInfo attribute of the sink
configuration file. See Sink Configuration Templates .

Run the runMigrator command

The runMigrator executable file is available in the extracted NoSQL Data Migrator
files. You must install Java 8 or higher version and bash on your system to
successfully run the runMigrator command.

You can run the runMigrator command in two ways:

1. By creating the JSON configuration file using the runtime options of the
runMigrator command as shown below.

[~]$./runMigrator
configuration file is not provided. Do you want to generate
configuration?
(y/n)

[n]: y
...
...

• When you invoke the runMigrator utility, it provides a series of runtime
options and creates the configuration JSON file based on your choices for
each option.

• After the utility creates the configuration JSON file, you have a choice to either
proceed with the migration activity in the same run or save the configuration
file for a future migration.

• Irrespective of your decision to proceed or defer the migration activity with
the generated configuration JSON file, the file will be available for edits or
customization to meet your future requirements. You can use the customized
configuration JSON file for migration later.

2. By passing a manually created JSON configuration file as a runtime parameter
using the -c or --config option. You must create the configuration JSON file
manually before running the runMigrator command with the -c or --config
option. For any help with the source and sink configuration parameters, see
Sources and Sinks.

[~]$./runMigrator -c </path/to/the/configuration/json/file>

Sources and Sinks
Learn about the different sources and sinks supported by the Oracle NoSQL Data
Migrator utility and their configuration templates.

Topics:

• Supported Sources and Sinks

• Source Configuration Templates

Chapter 7
Using Oracle NoSQL Migrator

7-26

• Sink Configuration Templates

• Transformation Configuration Templates

Supported Sources and Sinks
This topic provides the list of the sources and sinks supported by the Oracle NoSQL
Data Migrator.

You can use any combination of a valid source and sink from this table for the
migration activity. However, you must ensure that at least one of the ends, that is,
source or sink must be an Oracle NoSQL product. You can not use the NoSQL Data
Migrator to move the NoSQL table data from one file to another.

Entity type Value Valid Source Valid Sink

JSON file file Y Y

MongoDB-formatted
JSON file

file Y N

Oracle NoSQL
Database

nosqldb Y Y

Oracle NoSQL
Database Cloud
Service

nosqldb_cloud Y Y

Source Configuration Templates
Learn about the configuration file formats for each valid source and the purpose of
each configuration parameter.

Topics

• JSON File

• MongoDB-Formatted JSON File

• Oracle NoSQL Database

• Oracle NoSQL Database Cloud Service

JSON File
The configuration file format for JSON File as a source of NoSQL Data Migrator is
shown below.

Configuration Template

"source" : {
 "type" : "file",
 "format" : "json",
 "dataPath": "</path/to/a/json/file>"
}

Chapter 7
Using Oracle NoSQL Migrator

7-27

Explanation

Table 7-1 Source Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

type Identifies the
source type.

string Y "type" :
"file"

format Specifies the
source format.

string Y "format" :
"json"

dataPath Specifies the
absolute path to a
file or directory
containing the
JSON data for
migration.

You must ensure
that this data
matches with the
NoSQL table
schema defined
at the sink.

If you specify a
directory, the
NoSQL Data
Migrator identifies
all the files with
the .json
extension in that
directory for the
migration. Sub-
directories are
not supported.

string Y • Specifying a
JSON file

"dataPath"
: "/home/
user/
sample.jso
n"

• Specifying a
directory

"dataPath"
: "/home/
user"

MongoDB-Formatted JSON File
The configuration file format for MongoDB-formatted JSON File as a source of NoSQL
Data Migrator is shown below.

Configuration Template

"source" : {
 "type" : "file",
 "format" : "mongodb_json",
 "dataPath": "</path/to/a/json/file>"
}

Chapter 7
Using Oracle NoSQL Migrator

7-28

Explanation

Table 7-2 Source Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

type Identifies the
source type.

string Y "type" :
"file"

format Specifies the
source format.

string Y "format" :
"mongodb_json
"

dataPath Specifies the
absolute path to a
file or directory
containing the
MongoDB
exported JSON
data for
migration.

You must have
generated these
files using the
mongoexport
tool. See
mongoexport for
more information.

You can supply
the MongoDB-
formatted JSON
file that is
generated using
the mongoexport
tool in either
canonical or
relaxed mode.
Both the modes
are supported by
the NoSQL Data
Migrator for
migration.

If you specify a
directory, the
NoSQL Data
Migrator identifies
all the files with
the .json
extension in that
directory for the
migration. Sub-
directories are
not supported.

You must ensure
that this data
matches with the
NoSQL table
schema defined
at the sink.

string Y • Specifying a
MongoDB
formatted
JSON file

"dataPath"
: "/home/
user/
sample.jso
n"

• Specifying a
directory

"dataPath"
: "/home/
user"

Chapter 7
Using Oracle NoSQL Migrator

7-29

Oracle NoSQL Database
The configuration file format for Oracle NoSQL Database as a source of NoSQL Data
Migrator is shown below.

Configuration Template

"source" : {
 "type": "nosqldb",
 "table" : "<fully qualified table name>",
 "storeName" : "<store name>",
 "helperHosts" : ["hostname1:port1","hostname2:port2,..."],
 "security" : "</path/to/store/security/file>",
 "requestTimeoutMs" : 5000
}

Explanation

Table 7-3 Source Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

type Identifies the
source type.

string Y "type" :
"nosqldb"

table Fully qualified
table name from
which to migrate
the data.

Format:

[namespace_na
me:]<table_na
me>

If the table is in
the DEFAULT
namespace, you
can omit the
namespace_nam
e. The table must
exist in the store.

string Y • With the
DEFAULT
namespace

"table" :"
mytable"

• With a non-
default
namespace

"table" :
"mynamespa
ce:mytable
"

storeName Name of the
Oracle NoSQL
Database store.

string Y "storeName" :
"kvstore"

helperHosts A list of host and
registry port pairs
in the
hostname:port
format. Delimit
each item in the
list using a
comma. You must
specify at least
one helper host.

array of strings Y "helperHosts"
:
["localhost:5
000","localho
st:6000"]

Chapter 7
Using Oracle NoSQL Migrator

7-30

Table 7-3 (Cont.) Source Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

security If your store is a
secure store,
provide the
absolute path to
the security login
file that contains
your store
credentials. See
Configuring
Security with
Remote Access
in Administrator's
Guide to know
more about the
security login file.
You can use
either password
file based
authentication or
wallet based
authentication.
However, the
wallet based
authentication is
supported only in
the Enterprise
Edition (EE) of
Oracle NoSQL
Database.
The Community
Edition(CE)
edition supports
password file
based
authentication
only.
To authenticate
using a wallet,
you need
additional jar files
that are part of
the EE
installation.
Without these jar
files, you will get
the following
exception.
java.lang.NoC
lassDefFoundE
rror: oracle/
security/pki/
OracleSecretS
toreException
To prevent the
exception shown

string Y for a secure
store.

"security" :
"/home/user/
client.creden
tials"

Example security
file content for
password file
based
authentication:

oracle.kv.pa
ssword.noPro
mpt=true
oracle.kv.au
th.username=
admin
oracle.kv.au
th.pwdfile.f
ile=/home/
nosql/
login.passwd
oracle.kv.tr
ansport=ssl
oracle.kv.ss
l.trustStore
=/home/
nosql/
client.trust
oracle.kv.ss
l.protocols=
TLSv1.2,TLSv
1.1,TLSv1
oracle.kv.ss
l.hostnameVe
rifier=dnmat
ch(CN\=NoSQL
)

Example security
file content for
wallet based
authentication:

oracle.kv.pa
ssword.noPro
mpt=true
oracle.kv.au
th.username=
admin

Chapter 7
Using Oracle NoSQL Migrator

7-31

Table 7-3 (Cont.) Source Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

above, you must
copy the below
jar files from your
EE server
package to the
nosql-
migrator-1.0.
0/lib directory:
• oraclepki.

jar
• osdt_core.

jar
• osdt_cert.

jar

oracle.kv.au
th.wallet.di
r=/home/
nosql/
login.wallet
oracle.kv.tr
ansport=ssl
oracle.kv.ss
l.trustStore
=/home/
nosql/
client.trust
oracle.kv.ss
l.protocols=
TLSv1.2,TLSv
1.1,TLSv1
oracle.kv.ss
l.hostnameVe
rifier=dnmat
ch(CN\=NoSQL
)

requestTimeou
tMs

Specifies the time
to wait for each
read operation
from the store to
complete. This is
provided in
milliseconds. The
default value is
5000. The value
can be any
positive integer.

integer N "requestTimeo
utMs" : 5000

Oracle NoSQL Database Cloud Service
The configuration file format for Oracle NoSQL Database Cloud Service as a source of
NoSQL Data Migrator is shown below.

Configuration Template

"source" : {
 "type" : "nosqldb_cloud",
 "endpoint" : "<Oracle NoSQL Cloud Service Endpoint. You can either
specify the complete URL or the Region ID alone.>",
 "table" : "<table name>",
 "compartment" : "<OCI compartment name or id>",
 "credentials" : "</path/to/oci/credential/file>",
 "credentialsProfile" : "<oci credentials profile name>",

Chapter 7
Using Oracle NoSQL Migrator

7-32

 "readUnitsPercent" : <table readunits percent>,
 "requestTimeoutMs" : <timeout in milli seconds>
}

Explanation

Table 7-4 Source Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

type Identifies the
source type.

string Y "type" :
"nosqldb_clou
d"

endpoint Specifies the
Service Endpoint
of the Oracle
NoSQL Database
Cloud service.

You can either
specify the
complete URL or
the Region ID
alone. See Data
Regions and
Associated
Service URLs in
Using Oracle
NoSQL Database
Cloud Service for
the list of data
regions
supported for
Oracle NoSQL
Database Cloud
Service.

string Y • Region ID

"endpoint"
: "us-
ashburn-1"

• URL format

"endpoint"
:
"https://
nosql.us-
ashburn-1.
oci.oracle
cloud.com/
"

table Name of the table
from which to
migrate the data.

string Y "table" :"myT
able"

Chapter 7
Using Oracle NoSQL Migrator

7-33

Table 7-4 (Cont.) Source Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

compartment Specifies the
name or OCID of
the compartment
in which the table
resides.

If you do not
provide any
value, it defaults
to the root
compartment.

You can find your
compartment's
OCID from the
Compartment
Explorer window
under
Governance in
the OCI Cloud
Console.

string Y if the table is
not in the root
compartment of
the tenancy.

• Compartmen
t name

"compartme
nt" :
"mycompart
ment"

• Compartmen
t name
qualified with
its parent
compartment

"compartme
nt" :
"parent.ch
ildcompart
ment"

• No value
provided.
Defaults to
the root
compartment
.

"compartme
nt": ""

• Compartmen
t OCID

"compartme
nt" :
"ocid1.ten
ancy.oc1..
.4ksd"

credentials Absolute path to
a file containing
OCI credentials.

If not specified, it
defaults
to $HOME/.oci/
config

See Example
Configuration for
an example of the
credentials file.

string N 1. "credentia
ls" : "/
home/
user/.oci/
config"

2. "credentia
ls" : "/
home/user/
security/
config"

Chapter 7
Using Oracle NoSQL Migrator

7-34

Table 7-4 (Cont.) Source Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

credentialsPr
ofile

Name of the
profile in the
credentials file
that must used to
connect to the
Oracle NoSQL
Database Cloud
Service.

If not specified, it
defaults to
DEFAULT.

string N 1. "credentia
lsProfile"
:
"DEFAULT"

2. "credentia
lsProfile"
:
"ADMIN_USE
R"

readUnitsPerc
ent

Percentage of
table read units to
be used while
migrating the
NoSQL table.

The default value
is 90. The valid
range is any
integer between 1
to 100.

Please note that
amount of time
required to
migrate data is
directly
proportional to
this attribute.

It's better to
increase the read
throughput of the
table for the
migration activity.

You can reduce
the read
throughput after
the migration
process
completes.

To learn the daily
limits on
throughput
changes, see
Cloud Limits in
Using Oracle
NoSQL Database
Cloud Service.

integer N "readUnitsPer
cent" : 90

Chapter 7
Using Oracle NoSQL Migrator

7-35

Table 7-4 (Cont.) Source Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

requestTimeou
tMs

Specifies the time
to wait for each
read operation
from the source
to complete.

This is provided
in milliseconds.
The default value
is 5000.

The value can be
any positive
integer.

integer N "requestTimeo
utMs" : 5000

Sink Configuration Templates
Learn about the configuration file formats for each valid sink and the purpose of each
configuration parameter.

Topics

• JSON File

• Oracle NoSQL Database

• Oracle NoSQL Database Cloud Service

JSON File
The configuration file format for JSON File as a sink of NoSQL Data Migrator is shown
below.

Configuration Template

"sink" : {
 "type" : "file",
 "format" : "json",
 "dataPath": "</path/to/a/file>",
 "schemaPath" : "<path/to/a/file>"
}

Explanation

Table 7-5 Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

type Identifies the sink
type.

string Y "type" :
"file"

format Specifies the sink
format

string Y "format" :
"json"

Chapter 7
Using Oracle NoSQL Migrator

7-36

Table 7-5 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

dataPath Specifies the
absolute path to a
file where the
source data will
be copied in the
JSON format.

If the file does not
exist in the
specified data
path, the NoSQL
Data Migrator
creates it.

If it exists already,
the NoSQL Data
Migrator will
overwrite its
contents with the
source data.

You must ensure
that the parent
directory for the
file specified in
the data path is
valid.

string Y "dataPath" :
"/home/user/
sample.json"

Chapter 7
Using Oracle NoSQL Migrator

7-37

Table 7-5 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

schemaPath Specifies the
absolute path to
write schema
information
provided by the
source.

If this value is not
defined, the
source schema
information will
not be migrated
to the sink.

If this value is
specified, the
migrator utility
writes the
schema of the
source table into
the file specified
here.

The schema
information is
written as one
DDL command
per line in this
file.

If the file does not
exist in the
specified data
path, NoSQL
Data Migrator
creates it.

If it exists already,
NoSQL Data
Migrator will
overwrite its
contents with the
source data.

You must ensure
that the parent
directory for the
file specified in
the data path is
valid.

string N "schemaPath"
: "/home/
user/
schema_file"

Chapter 7
Using Oracle NoSQL Migrator

7-38

Oracle NoSQL Database
The configuration file format for Oracle NoSQL Database as a sink of NoSQL Data
Migrator is shown below.

Configuration Template

"sink" : {
 "type": "nosqldb",
 "table" : "<fully qualified table name>",
 "schemaInfo" : {
 "schemaPath" : "</path/to/a/schema/file>" or "defaultSchema" : true
 }
 "storeName" : "<store name>",
 "helperHosts" : ["hostname1:port1","hostname2:port2,..."],
 "security" : "</path/to/store/credentials/file>",
 "requestTimeoutMs" : <timeout in milli seconds>
}

Explanation

Table 7-6 Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

type Identifies the sink
type.

string Y "type" :
"nosqldb"

Chapter 7
Using Oracle NoSQL Migrator

7-39

Table 7-6 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

table Fully qualified
table name from
which to migrate
the data.

Format:

[namespace_na
me:]<table_na
me>

If the table is in
the DEFAULT
namespace, you
can omit the
namespace_nam
e. The table must
exist in the store
during the
migration, and its
schema must
match with the
source data.

If the table is not
available in the
sink, you can use
the schemaInfo
parameter to
instruct the
NoSQL Data
Migrator to create
the table also in
the sink.

string Y • With the
DEFAULT
namespace

"table" :"
mytable"

• With a non-
default
namespace

"table" :
"mynamespa
ce:mytable
"

schemaInfo Specifies the
schema for the
data being
migrated. If this is
not specified, the
NoSQL Data
Migrator assumes
that the table
already exists in
the sink's store.

Object N • With Default
Schema:

"schemaIn
fo" : {

"defaultS
chema" :
true,

"readUnit
s" : 100,

"writeUni
ts" : 60,

"storageS
ize" : 1
 }

Chapter 7
Using Oracle NoSQL Migrator

7-40

Table 7-6 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

schemaInfo.sc
hemaPath

Specifies the
absolute path to a
file containing
DDL statements
for the NoSQL
table.

The NoSQL Data
Migrator executes
the DDL
commands listed
in this file before
migrating the
data.

The NoSQL Data
Migrator does not
support more
than one DDL
statement per line
in the
schemaPath file.

• With a pre-
defined
schema:

"schemaIn
fo" : {

"schemaPa
th" :
"<complet
e/
path/to/t
he/
schema/
definitio
n/file>",

"readUnit
s" : 100,

"writeUni
ts" :
100,

"storageS
ize" : 1
 }

string Y, only when the
schemaInfo.de
faultSchema
parameter is set
to No.

Chapter 7
Using Oracle NoSQL Migrator

7-41

Table 7-6 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

schemaInfo.de
faultSchema

Setting this
parameter to Yes
instructs the
NoSQL Data
Migrator to create
a table with
default schema.
The default
schema is
defined by the
migrator itself.

If the source is a
MongoDB-
formatted JSON
file, the default
schema for the
table will be as
follows:

CREATE TABLE
IF NOT EXISTS
<tablename>(I
D STRING,
DOCUMENT
JSON,PRIMARY
KEY(SHARD(ID)
);

Where:
• tablename

= value
provided for
the table
attribute in
the
configuration
.

• ID = _id
value from
each
document of
the
mongoDB
exported
JSON source
file.

• DOCUMENT =
For each
document in
the
mongoDB
exported file,
the contents
excluding the
_id field is
aggregated

boolean Y, only when the
schemaInfo.sc
hemaPath
parameter is set
to No.

N

o

t

e

:

d
e
f
a
u
l
t
S
c
h
e
m
a and schemaPath are mutually exclusive.

Chapter 7
Using Oracle NoSQL Migrator

7-42

Table 7-6 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

into the
DOCUMENT
column.

N

o

t

e

:

I
f
t
h
e
_
i
d value is not provided as a string in the MongoDB-formatted JSON file, NoSQL Data Migrator converts it into string before inserting into the default schema.

For all the other
sources, the
default schema
will be as follows:

CREATE TABLE
IF NOT EXISTS
<tablename>
(ID LONG
GENERATED
ALWAYS AS
IDENTITY,
DOCUMENT
JSON, PRIMARY
KEY(ID))

Where:
• tablename

= value
provided for
the table
attribute in
the
configuration
.

• ID = An
auto-
generated
LONG value.

• DOCUMENT =
The JSON

Chapter 7
Using Oracle NoSQL Migrator

7-43

Table 7-6 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

record
provided by
the source is
aggregated
into the
DOCUMENT
column.

storeName Name of the
Oracle NoSQL
Database store.

string Y "storeName" :
"kvstore"

helperHosts A list of host and
registry port pairs
in the
hostname:port
format. Delimit
each item in the
list using a
comma. You must
specify at least
one helper host.

array of strings Y "helperHosts"
:
["localhost:5
000","localho
st:6000"]

Chapter 7
Using Oracle NoSQL Migrator

7-44

Table 7-6 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

security If your store is a
secure store,
provide the
absolute path to
the security login
file that contains
your store
credentials. See
Configuring
Security with
Remote Access
in Administrator's
Guide to know
more about the
security login file.
You can use
either password
file based
authentication or
wallet based
authentication.
However, the
wallet based
authentication is
supported only in
the Enterprise
Edition (EE) of
Oracle NoSQL
Database.
The Community
Edition(CE)
edition supports
password file
based
authentication
only.
To authenticate
using a wallet,
you need
additional jar files
that are part of
the EE
installation.
Without these jar
files, you will get
the following
exception.
java.lang.NoC
lassDefFoundE
rror: oracle/
security/pki/
OracleSecretS
toreException
To prevent the
exception shown

string Y for a secure
store.

"security" :
"/home/user/
client.creden
tials"

Example security
file content for
password file
based
authentication:

oracle.kv.pa
ssword.noPro
mpt=true
oracle.kv.au
th.username=
admin
oracle.kv.au
th.pwdfile.f
ile=/home/
nosql/
login.passwd
oracle.kv.tr
ansport=ssl
oracle.kv.ss
l.trustStore
=/home/
nosql/
client.trust
oracle.kv.ss
l.protocols=
TLSv1.2,TLSv
1.1,TLSv1
oracle.kv.ss
l.hostnameVe
rifier=dnmat
ch(CN\=NoSQL
)

Example security
file content for
wallet based
authentication:

oracle.kv.pa
ssword.noPro
mpt=true
oracle.kv.au
th.username=
admin

Chapter 7
Using Oracle NoSQL Migrator

7-45

Table 7-6 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

above, you must
copy the below
jar files from your
EE server
package to the
nosql-
migrator-1.0.
0/lib directory:
• oraclepki.

jar
• osdt_core.

jar
• osdt_cert.

jar

oracle.kv.au
th.wallet.di
r=/home/
nosql/
login.wallet
oracle.kv.tr
ansport=ssl
oracle.kv.ss
l.trustStore
=/home/
nosql/
client.trust
oracle.kv.ss
l.protocols=
TLSv1.2,TLSv
1.1,TLSv1
oracle.kv.ss
l.hostnameVe
rifier=dnmat
ch(CN\=NoSQL
)

requestTimeou
tMs

Specifies the time
to wait for each
write operation in
the sink to
complete. This is
provided in
milliseconds. The
default value is
5000. The value
can be any
positive integer.

integer N "requestTimeo
utMs" : 5000

Oracle NoSQL Database Cloud Service
The configuration file format for Oracle NoSQL Database Cloud Service as a sink of
NoSQL Data Migrator is shown below.

Configuration Template

"sink" : {
 "type" : "nosqldb_cloud",
 "endpoint" : "<Oracle NoSQL Cloud Service Endpoint>",
 "table" : "<table name>",
 "compartment" : "<OCI compartment name or id>",
 "schemaInfo" : {
 "schemaPath" : "</path/to/a/schema/file>" or "defaultSchema" :
true

Chapter 7
Using Oracle NoSQL Migrator

7-46

 "readUnits" : <table read units>,
 "writeUnits" : <table write units>,
 "storageSize" : <storage size in GB>
 },
 "credentials" : "</path/to/oci/credential/file>",
 "credentialsProfile" : "<oci credentials profile name>",
 "writeUnitsPercent" : <table writeunits percent>,
 "requestTimeoutMs" : <timeout in milli seconds>
}

Explanation

Table 7-7 Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

type Identifies the sink
type.

string Y "type" :
"nosqldb_clou
d"

endpoint Specifies the
Service Endpoint
of the Oracle
NoSQL Database
Cloud Service.

You can either
specify the
complete URL or
the Region ID
alone. See Data
Regions and
Associated
Service URLs in
Using Oracle
NoSQL Database
Cloud Service for
the list of data
regions
supported for
Oracle NoSQL
Database Cloud
Service.

string Y • Region ID

"endpoint"
: "us-
ashburn-1"

• URL format

"endpoint"
:
"https://
nosql.us-
ashburn-1.
oci.oracle
cloud.com/
"

Chapter 7
Using Oracle NoSQL Migrator

7-47

Table 7-7 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

table Name of the table
to which to
migrate the data.

You must ensure
that this table
exists in your
Oracle NoSQL
Database Cloud
Service.
Otherwise, you
have to use the
schemaInfo
object in the sink
configuration to
instruct the
NoSQL Data
Migrator to create
the table.

The schema of
this table must
match the source
data.

string Y "table" :"myT
able"

Chapter 7
Using Oracle NoSQL Migrator

7-48

Table 7-7 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

compartment Specifies the
name or OCID of
the compartment
in which the table
resides.

If you do not
provide any
value, it defaults
to the root
compartment.

You can find your
compartment's
OCID from the
Compartment
Explorer window
under
Governance in
the OCI Cloud
Console.

string Y if the table is
not in the root
compartment of
the tenancy.

• Compartmen
t name

"compartme
nt" :
"mycompart
ment"

• Compartmen
t name
qualified with
its parent
compartment

"compartme
nt" :
"parent.ch
ildcompart
ment"

• No value
provided.
Defaults to
the root
compartment
.

"compartme
nt": ""

• Compartmen
t OCID

"compartme
nt" :
"ocid1.ten
ancy.oc1..
.4ksd"

schemaInfo Specifies the
schema for the
data being
migrated.

If you do not
specify this
parameter, the
NoSQL Data
Migrator assumes
that the table
already exists in
your Oracle
NoSQL Database
Cloud Service.

If this parameter
is not specified
and the table
does not exist in
the sink, the
migration fails.

Object N • With
schemaPath

"schemaIn
fo" : {

"schemaPa
th" : "</
path/to/a
/schema/
file>",

"readUnit
s" : 500,

"writeUni
ts" :
1000,

Chapter 7
Using Oracle NoSQL Migrator

7-49

Table 7-7 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

schemaInfo.sc
hemaPath

"storageS
ize" :
5 }

• With
defaultSch
ema

"schemaIn
fo" : {

"defaultS
chema" :Y
es,

"readUnit
s" :
500,

"writeUni
ts" :
1000,

"storageS
ize" :
5
}

Specifies the
absolute path to a
file containing
DDL statements
for the NoSQL
table.

The NoSQL Data
Migrator executes
the DDL
commands listed
in this file before
migrating the
data.

The NoSQL Data
Migrator does not
support more
than one DDL
statement per line
in the
schemaPath file.

string Y, only when
schemaInfo.de
faultSchema is
set to No.

Chapter 7
Using Oracle NoSQL Migrator

7-50

Table 7-7 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

schemaInfo.de
faultSchema

Setting this
parameter to Yes
instructs the
NoSQL Data
Migrator to create
a table with
default schema.
The default
schema is
defined by the
migrator itself.

If the source is a
MongoDB-
formatted JSON
file, the default
schema for the
table will be as
follows:

CREATE TABLE
IF NOT EXISTS
<tablename>(I
D STRING,
DOCUMENT
JSON,PRIMARY
KEY(SHARD(ID)
);

Where:
• tablename

= value
provided for
the table
attribute in
the
configuration
.

• ID = _id
value from
each
document of
the
mongoDB
exported
JSON source
file.

• DOCUMENT =
For each
document in
the
mongoDB
exported file,
the contents
excluding the
_id field is
aggregated

boolean Y, only when
schemaInfo.sc
hemaPath is set
to No.

N

o

t

e

:

d
e
f
a
u
l
t
S
c
h
e
m
a and schemaPath are mutually exclusive.

Chapter 7
Using Oracle NoSQL Migrator

7-51

Table 7-7 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

into the
DOCUMENT
column.

N

o

t

e

:

I
f
t
h
e
_
i
d value is not provided as a string in the MongoDB-formatted JSON file, NoSQL Data Migrator converts it into string before inserting into the default schema.

For all the other
sources, the
default schema
will be as follows:

CREATE TABLE
IF NOT EXISTS
<tablename>
(ID LONG
GENERATED
ALWAYS AS
IDENTITY,
DOCUMENT
JSON, PRIMARY
KEY(ID))

Where:
• tablename

= value
provided for
the table
attribute in
the
configuration
.

• ID = An
auto-
generated
LONG value.

• DOCUMENT =
The JSON

Chapter 7
Using Oracle NoSQL Migrator

7-52

Table 7-7 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

record
provided by
the source is
aggregated
into the
DOCUMENT
column.

schemaInfo.re
adUnits

Specifies the
read throughput
of the new table.

integer Y

schemaInfo.wr
iteUnits

Specifies the
write throughput
of the new table.

integer Y

schemaInfo.st
orageSize

Specifies the
storage size of
the new table in
GB.

integer Y

credentials Absolute path to
a file containing
OCI credentials.

If not specified, it
defaults
to $HOME/.oci/
config

See Example
Configuration for
an example of the
credentials file.

string N "credentials"
: "/home/
user/
security/
config"

credentialsPr
ofile

Name of the
configuration
profile to be used
to connect to the
Oracle NoSQL
Database Cloud
Service.

If you do not
specify this value,
it defaults to the
DEFAULT profile.

string N "credentialsP
rofile":
"ADMIN_USER"

Chapter 7
Using Oracle NoSQL Migrator

7-53

Table 7-7 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

writeUnitsPer
cent

Specifies the
Percentage of
table write units
to be used during
the migration
activity.

The default value
is 90. The valid
range is any
integer between 1
to 100.

N

o

t

e

:

T
h
e
t
i
m
e
r
e
q
u
i
r
e
d
f
o
r
t
h
e
d
a
t
a
m
i
g
r
a
t

integer N "readUnitsPer
cent" : 90

Chapter 7
Using Oracle NoSQL Migrator

7-54

Table 7-7 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

i
o
n
i
s
d
i
r
e
c
t
l
y
p
r
o
p
o
r
t
i
o
n
a
l
t
o
t
h
e
w
r
i
t
e
U
n
i
t
s
P
e
r
c
e
n
t value.

See
Troubleshooting
the NoSQL Data
Migrator to learn
how to use this

Chapter 7
Using Oracle NoSQL Migrator

7-55

Table 7-7 (Cont.) Sink Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

attribute to
improve the data
migration speed.

requestTimeou
tMs

Specifies the time
to wait for each
write operation in
the sink to
complete.

This is provided
in milliseconds.
The default value
is 5000.

The value can be
any positive
integer.

integer N "requestTimeo
utMs" : 5000

Transformation Configuration Templates
This topic explains the configuration parameters for the different transformations
supported by the Oracle NoSQL Data Migrator.

Oracle NoSQL Data Migrator lets you modify the data, that is, add data
transformations as part of the migration activity. You can define multiple
transformations in a single migration. In such a case, the order of transformations
is vital because the source data undergoes each transformation in the given order.
The output of one transformation becomes the input to the next one in the migrator
pipeline.

The different transformations supported by the NoSQL Data Migrator are:

Table 7-8 Transformations

Transformation Config Attribute You can use this transformation to ...

ignoreFields Ignore the identified columns from the source
row before writing to the sink.

renameFields Rename the identified columns from the
source row before writing to the sink.

aggregateFields Aggregate multiple columns from the source
into a single column in the sink. As part
of this transformation, you can also identify
the columns that you want to exclude in the
aggregation. Those fields will be skipped from
the aggregated column.

You can find the configuration template for each supported transformation below.

• ignoreFields

• renameFields

• aggregateFields

Chapter 7
Using Oracle NoSQL Migrator

7-56

ignoreFields
The configuration file format for the ignoreFields transformation is shown below.

Configuration Template

"transforms" : {
 "ignoreFields" : ["<field1>","<field2>",...]
}

Chapter 7
Using Oracle NoSQL Migrator

7-57

Explanation

Table 7-9 Transformation Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

ignoreFields An array of the
column names to
be ignored from
the source
records.

N

o

t

e

:

Y
o
u
c
a
n
s
u
p
p
l
y
o
n
l
y
t
o
p
-
l
e
v
e
l
f
i
e
l
d
s
.
T
r
a

array of strings Y To ignore the
columns named
"name" and
"address" from
the source
record:

"ignoreFields
" :
["name","addr
ess"]

Chapter 7
Using Oracle NoSQL Migrator

7-58

Table 7-9 (Cont.) Transformation Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

n
s
f
o
r
m
a
t
i
o
n
s
c
a
n
n
o
t
b
e
a
p
p
l
i
e
d
o
n
t
h
e
d
a
t
a
i
n
t
h
e
n
e
s
t
e
d
f
i
e
l
d

Chapter 7
Using Oracle NoSQL Migrator

7-59

Table 7-9 (Cont.) Transformation Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

s
.

renameFields
The configuration file format for the renameFields transformation is shown below.

Configuration Template

"transforms" : {
 "renameFields" : {
 "<old_name>" : "<new_name>",
 "<old_name>" : "<new_name>,"

 }
}

Chapter 7
Using Oracle NoSQL Migrator

7-60

Explanation

Table 7-10 Transformation Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

renameFields Key-Value pairs
of the old and
new names of the
columns to be
renamed.

N

o

t

e

:

Y
o
u
c
a
n
s
u
p
p
l
y
o
n
l
y
t
o
p
-
l
e
v
e
l
f
i
e
l
d
s
.
T
r
a

JSON object Y To rename the
column named
"residence" to
"address" and the
column named
"_id" to "id":

"renameFields
" :
{ "residence"
: "address",
"_id" :
"id" }

Chapter 7
Using Oracle NoSQL Migrator

7-61

Table 7-10 (Cont.) Transformation Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

n
s
f
o
r
m
a
t
i
o
n
s
c
a
n
n
o
t
b
e
a
p
p
l
i
e
d
o
n
t
h
e
d
a
t
a
i
n
t
h
e
n
e
s
t
e
d
f
i
e
l
d

Chapter 7
Using Oracle NoSQL Migrator

7-62

Table 7-10 (Cont.) Transformation Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

s
.

aggregateFields
The configuration file format for the aggregateFields transformation is shown below.

Configuration Template

"transforms" : {
 "aggregateFields" : {
 "fieldName" : "name of the new aggregate field",
 "skipFields" : ["<field1>","<field2">,...]
 }
}

Chapter 7
Using Oracle NoSQL Migrator

7-63

Explanation

Table 7-11 Transformation Parameters

Parameter Purpose Data Type Mandatory (Y/N) Example

fieldName Name of the
aggregated field
in the sink.

string Y If the given
record is:

{
 "id" :
100,
 "name" :
"john",

"address" :
"USA",
 "age" : 20
}

If the aggregate
transformation is:

"aggregateFi
elds" : {

"fieldName"
:
"document",

"skipFields"
 : "id"
}

The aggregated
column in the
sink looks like:

{
 "id": 100,

"document":
{
 "name":
"john",

"address":
"USA",
 "age":
20
 }
}

Chapter 7
Using Oracle NoSQL Migrator

7-64

Use Case Demonstrations
Learn how to perform data migration using the Oracle NoSQL Data Migrator for
specific use cases. You can find detailed systematic instructions with code examples
to perform migration in each of the use cases listed below.

Topics:

• Migrate from Oracle NoSQL Database Cloud Service to a JSON file

• Migrate from Oracle NoSQL Database On-Premise to Oracle NoSQL Database
Cloud Service

• Migrate from MongoDB-Formatted JSON file to an Oracle NoSQL Database
Cloud Service

Migrate from Oracle NoSQL Database Cloud Service to a JSON file
This example shows how to use the Oracle NoSQL Data Migrator to copy data and
the schema definition of a NoSQL table from Oracle NoSQL Database Cloud Service
(NDCS) to a JSON file.

Use Case

An organization decides to train a model using the Oracle NoSQL Database
Cloud Service (NDCS) data to predict future behaviors and provide personalized
recommendations. They can take a periodic copy of the NDCS tables' data to a JSON
file and apply it to the analytic engine to analyze and train the model. Doing this helps
them separate the analytical queries from the low-latency critical paths.

Example

For the demonstration, let us look at how to migrate the data and schema definition of
a NoSQL table called myTable from NDCS to a JSON file.

Prerequisites

• Identify the source and sink for the migration.

– Source: Oracle NoSQL Database Cloud Service

– Sink: JSON file

• Identify your OCI cloud credentials and capture them in the OCI config file. Save
the config file in /home/.oci/config. See Acquiring Credentials in Using Oracle
NoSQL Database Cloud Service.

[DEFAULT]
tenancy=ocid1.tenancy.oc1....
user=ocid1.user.oc1....
fingerprint= 43:d1:....
key_file=</fully/qualified/path/to/the/private/key/>
pass_phrase=<passphrase>

• Identify the region endpoint and compartment name for your Oracle NoSQL
Database Cloud Service.

– endpoint: us-phoenix-1

Chapter 7
Using Oracle NoSQL Migrator

7-65

– compartment: developers

Procedure
To migrate the data and schema definition of myTable from Oracle NoSQL Database
Cloud Service to a JSON file:

1. Open the command prompt and navigate to the directory where you extracted the
NoSQL Data Migrator utility.

2. To generate the configuration JSON file using the NoSQL Data Migrator, run the
runMigrator command without any runtime parameters.

[~/nosqlMigrator/nosql-migrator-1.0.0]$./runMigrator

3. As you did not provide the configuration file as a runtime parameter, the utility
prompts if you want to generate the configuration now. Type y.

configuration file is not provided. Do you want to generate
configuration? (y/n) [n]: y

This command provides a walkthrough of creating a valid config for
Oracle NoSQL data migrator.

The following link explain where to find the information required
by this
script:

<link to doc>

4. Based on the prompts from the utility, choose your options for the Source
configuration.

Enter a location for your config [./migrator-config.json]: /home/
apothula/nosqlMigrator/NDCS2JSON
Select the source:
1) nosqldb
2) nosqldb_cloud
3) file
#? 2
Configuration for source type=nosqldb_cloud
Enter endpoint URL or region of the Oracle NoSQL Database Cloud:
us-phoenix-1
Enter table name: myTable
Enter compartment name or id of the source table []: developers
Enter path to the file containing OCI credentials [/home/
apothula/.oci/config]:
Enter the profile name in OCI credentials file [DEFAULT]:
Enter percentage of table read units to be used for migration
operation. (1-100) [90]:
Enter store operation timeout in milliseconds. (1-30000) [5000]:

5. Based on the prompts from the utility, choose your options for the Sink
configuration.

Select the sink:
1) nosqldb

Chapter 7
Using Oracle NoSQL Migrator

7-66

2) nosqldb_cloud
3) file
#? 3
Configuration for sink type=file
Enter path to a file to store JSON data: /home/apothula/
nosqlMigrator/myTableJSON
Would you like to store JSON in pretty format? (y/n) [n]: y
Would you like to migrate the table schema also? (y/n) [y]: y
Enter path to a file to store table schema: /home/apothula/
nosqlMigrator/myTableSchema

6. Based on the prompts from the utility, choose your options for the source data
transformations. The default value is n.

Would you like to add transformations to source data? (y/n) [n]:

7. Enter your choice to determine whether to proceed with the migration in case any
record fails to migrate.

Would you like to continue migration in case of any record/row is
failed to migrate?: (y/n) [n]:

8. The utility displays the generated configuration on the screen.

generated configuration is:
{
 "source": {
 "type": "nosqldb_cloud",
 "endpoint": "us-phoenix-1",
 "table": "myTable",
 "compartment": "developers",
 "credentials": "/home/apothula/.oci/config",
 "credentialsProfile": "DEFAULT",
 "readUnitsPercent": 90,
 "requestTimeoutMs": 5000
 },
 "sink": {
 "type": "file",
 "format": "json",
 "schemaPath": "/home/apothula/nosqlMigrator/myTableSchema",
 "pretty": true,
 "dataPath": "/home/apothula/nosqlMigrator/myTableJSON"
 },
 "abortOnError": true,
 "migratorVersion": "1.0.0"
}

9. Finally, the utility prompts for your choice to decide whether to proceed with the
migration with the generated configuration file or not. The default option is y.

Chapter 7
Using Oracle NoSQL Migrator

7-67

Note:

If you select n, you can use the generated configuration file to run the
migration using the ./runMigrator -c or the ./runMigrator --config
option.

would you like to run the migration with above configuration?
If you select no, you can use the generated configuration file to
run the migration using
./runMigrator --config /home/apothula/nosqlMigrator/NDCS2JSON
(y/n) [y]:

10. The NoSQL Data Migrator migrates your data and schema from NDCS to the
JSON file.

Records provided by source=10,Records written to sink=10,Records
failed=0.
Elapsed time: 0min 1sec 277ms
Migration completed.

Validation
To validate the migration, you can open the JSON Sink files and view the schema and
data.

-- Exported myTable Data

[~/nosqlMigrator]$cat myTableJSON
{
 "id" : 10,
 "document" : {
 "course" : "Computer Science",
 "name" : "Neena",
 "studentid" : 105
 }
}
{
 "id" : 3,
 "document" : {
 "course" : "Computer Science",
 "name" : "John",
 "studentid" : 107
 }
}
{
 "id" : 4,
 "document" : {
 "course" : "Computer Science",
 "name" : "Ruby",
 "studentid" : 100
 }
}
{

Chapter 7
Using Oracle NoSQL Migrator

7-68

 "id" : 6,
 "document" : {
 "course" : "Bio-Technology",
 "name" : "Rekha",
 "studentid" : 104
 }
}
{
 "id" : 7,
 "document" : {
 "course" : "Computer Science",
 "name" : "Ruby",
 "studentid" : 100
 }
}
{
 "id" : 5,
 "document" : {
 "course" : "Journalism",
 "name" : "Rani",
 "studentid" : 106
 }
}
{
 "id" : 8,
 "document" : {
 "course" : "Computer Science",
 "name" : "Tom",
 "studentid" : 103
 }
}
{
 "id" : 9,
 "document" : {
 "course" : "Computer Science",
 "name" : "Peter",
 "studentid" : 109
 }
}
{
 "id" : 1,
 "document" : {
 "course" : "Journalism",
 "name" : "Tracy",
 "studentid" : 110
 }
}
{
 "id" : 2,
 "document" : {
 "course" : "Bio-Technology",
 "name" : "Raja",
 "studentid" : 108

Chapter 7
Using Oracle NoSQL Migrator

7-69

 }
}

-- Exported myTable Schema

[~/nosqlMigrator]$cat myTableSchema
CREATE TABLE IF NOT EXISTS myTable (id INTEGER, document JSON, PRIMARY
KEY(SHARD(id)))

Migrate from Oracle NoSQL Database On-Premise to Oracle NoSQL Database
Cloud Service

This example shows how to use the Oracle NoSQL Data Migrator to copy data and the
schema definition of a NoSQL table from Oracle NoSQL Database to Oracle NoSQL
Database Cloud Service (NDCS).

Use Case

As a developer, you are exploring options to avoid the overhead of managing
the resources, clusters, and garbage collection for your existing NoSQL Database
KVStore workloads. As a solution, you decide to migrate your existing on-premise
KVStore workloads to Oracle NoSQL Database Cloud Service because NDCS
manages them automatically.

Example

For the demonstration, let us look at how to migrate the data and schema definition
of a NoSQL table called myTable from the NoSQL Database KVStore to NDCS. We
will also use this use case to show how to run the runMigrator utility by passing a
pre-created configuration JSON file.

Prerequisites

• Identify the source and sink for the migration.

– Source: Oracle NoSQL Database

– Sink: Oracle NoSQL Database Cloud Service

• Identify your OCI cloud credentials and capture them in the OCI config file. Save
the config file in /home/.oci/config. See Acquiring Credentials in Using Oracle
NoSQL Database Cloud Service.

[DEFAULT]
tenancy=ocid1.tenancy.oc1....
user=ocid1.user.oc1....
fingerprint= 43:d1:....
key_file=</fully/qualified/path/to/the/private/key/>
pass_phrase=<passphrase>

• Identify the region endpoint and compartment name for your Oracle NoSQL
Database Cloud Service.

– endpoint: us-phoenix-1

– compartment: developers

Chapter 7
Using Oracle NoSQL Migrator

7-70

• Identify the following details for the on-premise KVStore:

– storeName: kvstore

– helperHosts: <hostname>:5000

– table: myTable

Procedure
To migrate the data and schema definition of myTable from NoSQL Database KVStore
to NDCS:

1. Prepare the configuration JSON file with the identified Source and Sink details.
See Source Configuration Templates and Sink Configuration Templates .

{
 "source" : {
 "type" : "nosqldb",
 "storeName" : "kvstore",
 "helperHosts" : ["<hostname>:5000"],
 "table" : "myTable",
 "requestTimeoutMs" : 5000
 },
 "sink" : {
 "type" : "nosqldb_cloud",
 "endpoint" : "us-phoenix-1",
 "table" : "myTable",
 "compartment" : "developers",
 "schemaInfo" : {
 "schemaPath" : "<complete/path/to/the/JSON/file/with/DDL/
commands/for/the/schema/definition>",
 "readUnits" : 100,
 "writeUnits" : 100,
 "storageSize" : 1
 },
 "credentials" : "<complete/path/to/oci/config/file>",
 "credentialsProfile" : "DEFAULT",
 "writeUnitsPercent" : 90,
 "requestTimeoutMs" : 5000
 },
 "abortOnError" : true,
 "migratorVersion" : "1.0.0"
}

2. Open the command prompt and navigate to the directory where you extracted the
NoSQL Data Migrator utility.

3. Run the runMigrator command by passing the configuration JSON file using the
--config or -c option.

[~/nosqlMigrator/nosql-migrator-1.0.0]$./runMigrator --config
<complete/path/to/the/JSON/config/file>

4. The utility proceeds with the data migration, as shown below.

Records provided by source=10, Records written to sink=10, Records
failed=0.

Chapter 7
Using Oracle NoSQL Migrator

7-71

Elapsed time: 0min 10sec 426ms
Migration completed.

Validation
To validate the migration, you can login to your NDCS console and verify that myTable
is created with the source data.

Migrate from MongoDB-Formatted JSON file to an Oracle NoSQL
Database Cloud Service

This example shows how to use the Oracle NoSQL Data Migrator to copy Mongo-DB
Formatted Data to the Oracle NoSQL Database (NDCS).

Use Case

After evaluating multiple options, an organization finalizes Oracle NoSQL Database as
its NoSQL Database platform. As its NoSQL tables and data are in MongoDB, they are
looking for a way to migrate those tables and data to Oracle NDCS.

Example

For the demonstration, let us look at how to migrate a MongoDB-formatted JSON file
to NDCS. We will use a manually created configuration JSON file for this example.

Prerequisites

• Identify the source and sink for the migration.

– Source: MongoDB-Formatted JSON File

– Sink: Oracle NoSQL Database

• Extract the data from Mongo DB using the mongoexport utility. See mongoexport
for more information.

• Create a NoSQL table in the sink with a table schema that matches the data in
the Mongo-DB-formatted JSON file. As an alternative, you can instruct the NoSQL
Data Migratorto create a table with the default schema structure by setting the
defaultSchema attribute to true.

Chapter 7
Using Oracle NoSQL Migrator

7-72

Note:

For a MongoDB-Formatted JSON source, the default schema for the
table will be as:

CREATE TABLE IF NOT EXISTS <tablename>(ID STRING, DOCUMENT
JSON,PRIMARY KEY(SHARD(ID));

Where:

– tablename = value of the table config.

– ID = _id value from the mongoDB exported JSON source file.

– DOCUMENT = The entire contents of the mongoDB exported JSON
source file is aggregated into the DOCUMENT column excluding the _id
field.

• Identify your OCI cloud credentials and capture them in the OCI config file. Save
the config file in /home/.oci/config. See Acquiring Credentials in Using Oracle
NoSQL Database Cloud Service.

[DEFAULT]
tenancy=ocid1.tenancy.oc1....
user=ocid1.user.oc1....
fingerprint= 43:d1:....
key_file=</fully/qualified/path/to/the/private/key/>
pass_phrase=<passphrase>

• Identify the region endpoint and compartment name for your Oracle NoSQL
Database.

– endpoint: us-phoenix-1

– compartment: developers

Procedure
To migrate the MongoDB-formatted JSON data to the Oracle NoSQL Database:

1. Prepare the configuration JSON file with the identified Source and Sink details.
See Source Configuration Templates and Sink Configuration Templates .

{
 "source" : {
 "type" : "file",
 "format" : "mongodb_json",
 "dataPath" : "<complete/path/to/the/MongoDB/Formatted/JSON/
file>"
 },
 "sink" : {
 "type" : "nosqldb_cloud",
 "endpoint" : "us-phoenix-1",
 "table" : "mongoImport",
 "compartment" : "developers",
 "schemaInfo" : {

Chapter 7
Using Oracle NoSQL Migrator

7-73

 "defaultSchema" : true,
 "readUnits" : 100,
 "writeUnits" : 60,
 "storageSize" : 1
 },
 "credentials" : "<complete/path/to/the/oci/config/file>",
 "credentialsProfile" : "DEFAULT",
 "writeUnitsPercent" : 90,
 "requestTimeoutMs" : 5000
 },
 "abortOnError" : true,
 "migratorVersion" : "1.0.0"
}

2. Open the command prompt and navigate to the directory where you extracted the
NoSQL Data Migrator utility.

3. Run the runMigrator command by passing the configuration JSON file using the
--config or -c option.

[~/nosqlMigrator/nosql-migrator-1.0.0]$./runMigrator --config
<complete/path/to/the/JSON/config/file>

4. The utility proceeds with the data migration, as shown below.

Records provided by source=29,353, Records written to sink=29,353,
Records failed=0.
Elapsed time: 9min 9sec 630ms
Migration completed.

Validation
To validate the migration, you can login to your NDCS console and verify that myTable
is created with the source data.

Troubleshooting the NoSQL Data Migrator
Learn about the general challenges that you may face while using the , and how to
resolve them.

Migration has failed. How can I resolve this?

A failure of the data migration can be because of multiple underlying reasons. The
important causes are listed below:

Chapter 7
Using Oracle NoSQL Migrator

7-74

Table 7-12 Migration Failure Causes

Error Message Meaning Resolution

Failed to connect to
Oracle NoSQL Database

The migrator could not
establish a connection with the
NoSQL Database.

• Check if the values
of the storeName and
helperHosts attributes
in the configuration JSON
file are valid and that the
hosts are reachable.

• For a secured store, verify
if the security file is valid
with correct user name
and password values.

Failed to connect to
Oracle NoSQL Database
Cloud Service

The migrator could not
establish a connection with
the Oracle NoSQL Database
Cloud Service.

• Verify if the endpoint URL
or region name specified
in the configuration JSON
file is correct.

• Check if the OCI
credentials file is available
in the path specified in the
configuration JSON file.

• Ensure that the OCI
credentials provided in the
OCI credentials are valid.

Table not found The table identified for the
migration could not be located
by the NoSQL Data Migrator.

For the Source:
• Verify if the table is

present in the source
database.

• Ensure that the table
is qualified with its
namespace in the
configuration JSON file, if
the table is created in a
non-default namespace.

• Verify if you have
the required read/write
authorization to access
the table.

• If the source is Oracle
NoSQL Database Cloud
Service, verify if the
valid compartment name
is specified in the
configuration JSON file,
and ensure that you have
the required authorization
to access the table.

For the Sink:
• Verify if the table is

present in the Sink. If
it does not exist, you
must either create the
table manually or use
the schemaInfo config
to create it through the
migration.

Chapter 7
Using Oracle NoSQL Migrator

7-75

Table 7-12 (Cont.) Migration Failure Causes

Error Message Meaning Resolution

DDL Execution failed The DDL commands provided
in the input schema definition
file is invalid.

• Check the syntax of the
DDL commands in the
schemaPath file.

• Ensure that there is only
one DDL statement per
line in the schemaPath
file.

failed to write record
to the sink table with
java.lang.IllegalArgume
ntException

The input record is not
matching with the table
schema of the sink.

• Check if the data
types and column names
specified in the target sink
table are matching with
sink table schema.

• If you applied any
transformation, check if
the transformed records
are matching with the sink
table schema.

Request timeout The source or sink's operation
did not complete within the
expected time.

• Verify the network
connection.

• Check if the NoSQL
Database is up and
running.

• Try to increase
requestTimeout value
in the configuration JSON
file.

What should I consider before restarting a failed migration?

When a data migration task fails, the sink will be at an intermediate state containing
the imported data until the point of failure. You can identify the error and failure details
from the logs and restart the migration after diagnosing and correcting the error. A
restarted migration starts over, processing all data from the beginning. There is no way
to checkpoint and restart the migration from the point of failure. Therefore, NoSQL
Data Migrator overwrites any record that was migrated to the sink already.

Migration is too slow. How can I speed it up?

The time taken for the data migration depends on multiple factors such as volume of
data being migrated, network speed, current load on the database. In case of a cloud
service, the speed of migration also depends on the read throughput and the write
throughput provisioned. So, to improve the migration speed, you can:

• Try to reduce the current workload on your Oracle NoSQL Database while
migrating the data.

• Ensure that the machine that is running the migration, source, and sink all are
located in the same data center and the network latencies are minimal.

• In case of Oracle NoSQL Database Cloud Service, provision high read/write
throughput and verify if the storage allocated for table is sufficient or not. If
the NoSQL Data Migrator is not creating the table, you can increase the write
throughput. If the migrator is creating the table, consider specifying a higher value

Chapter 7
Using Oracle NoSQL Migrator

7-76

for the schemaInfo.writeUnits parameter in the sink configuration. Once the
data migration completes, you can lower this value. Be aware of daily limits on
throughput changes. see Cloud Limits and Sink Configuration Templates .

I have a long running migration involving huge datasets. How can I track the
progress of the migration?

You can enable additional logging to track the progress of a long-running migration. To
control the logging behavior of Oracle NoSQL Data Migrator, you must set the desired
level of logging in the logging.properties file. This file is provided with the NoSQL
Data Migrator package and available in the directory where the Oracle NoSQL Data
Migrator was unpacked. The different levels of logging are OFF, SEVERE, WARNING,
INFO, FINE, and ALL in the order of increasing verbosity. Setting the log level to OFF
turns off all the logging information, whereas setting the log level to ALL provides the
full log information. The default log level is WARNING. All the logging output is configured
to go to the console by default. You can see comments in the logging.properties file
to know about each log level.

Oracle NoSQL Data Migrator Vs. Import/Export Utility
This topic explains how the Oracle NoSQL Data Migrator utility is different from the
existing Oracle NoSQL import/export utility.

The Oracle NoSQL Data Migrator is created to replace and enhance the existing
on-premise-only import/export utility. It moves the NoSQL table data and schema
definition between a source and a sink or target. It supports multiple sources and sinks
as listed in Supported Sources and Sinks. However, the import/export utility lets you
import into or export from Oracle NoSQL Database (on-premise) only. That is, using
the import/export utility, you can either import data into the Oracle NoSQL Database
or export data from Oracle NoSQL Database. When you export, the source type is
always Oracle NoSQL Database (where you extract data from) and the sink is the
recipient of that data. When you import, the source type is currently limited to a file and
the sink is always Oracle NoSQL Database. See Export and Import Functionality.

Apart from this fundamental difference, both the utilities are different in many other
ways. You can see them in the comparison table below.

Table 7-13 Comparison Table

Oracle NoSQL Data Migrator Oracle NoSQL Import/
Export

Sources and Sinks Supports multiple sources
and sinks such as
Oracle NoSQL Database
(on-premise), Oracle NoSQL
Database Cloud Service,
JSON file, and MongoDB-
formatted JSON file. See
Supported Sources and Sinks.

Import
Source: JSON, binary, or
MongoDB-formatted JSON

Sink: Oracle NoSQL Database
(on-premise) only.

Export
Source: Oracle NoSQL
Database (on-premise) only.

Sink: Local or network
mounted filesystem.

Chapter 7
Using Oracle NoSQL Migrator

7-77

Table 7-13 (Cont.) Comparison Table

Oracle NoSQL Data Migrator Oracle NoSQL Import/
Export

Supported Platforms Both the Oracle NoSQL
Database (on-premise) and
the Oracle NoSQL Database
Cloud Service (NDCS).

Only Oracle NoSQL Database
(on-premise).

Migration Level The migration is supported
only at the table level. You can
migrate only one table at a
time.

You can perform the import/
export operations at a table
level, store level, or an
namespace level. You can
import/export multiple tables in
a single operation.

Data Formats Supports only JSON format
for the data. The schema
definition is represented as a
file with one DDL command
per line.

Supports both the Binary and
JSON formats.

Unit of Migration The Oracle NoSQL Data
Migrator migrates the data and
schema definition from the
Source to the Sink without
creating any intermediate
packages.

When you export data from
Oracle NoSQL Database, the
import/export utility creates an
export package (a directory
structure) that contains
schema metadata and table
data. When you import data
into Oracle NoSQL Database,
you can run the utility against
this export package, or any
directory that contains files
with data formats supported
by the import/export utility.

Key-Value and Large Object
Data

Not supported. Supported by the export
command.

NoSQL Database on-
premise to on-premise
Migration

Supported. Not supported.

Transitioning from Import/Export to NoSQL Data Migrator
Learn how to transition from the import/export utility to the Oracle NoSQL Data
Migrator.

If you have been using the import/export utility for data migration you would be aware
that the kvtool.jar that is part of the Oracle NoSQL Database (on-premise) handles
export and import functionality with the help of two commands, export and import.
You can achieve the same export and import operations using the NoSQL Data
Migrator, as explained below.

Equivalent of the export command in NoSQL Data Migrator

The export command is used to export the NoSQL Database (on-premise) data to
a local or network mounted file system. You can achieve the equivalent operation by
defining the following attributes in the Configuration JSON file as follows:

• "source"="nosqldb"

Chapter 7
Using Oracle NoSQL Migrator

7-78

• "sink"="file" with "format"="JSON"

The other configuration attributes can be defined as per the requirement. As the
NoSQL Data Migrator supports migrating only one table at a time, you must run the
NoSQL Data Migrator separately for exporting multiple tables.

Equivalent of the import command in NoSQL Data Migrator

The import command is used to import a package created by the export command,
an external JSON file, or a MongoDB-formatted JSON file. You can achieve the
equivalent operation by defining the following attributes in the Configuration JSON
file as follows:

• "source"="file" with "format"="json" or "format"="mongodb_json" depending
on the source file type.

• "sink"="nosqldb"

Note:The NoSQL Data Migrator treats an external JSON file or a package that was
generated using the existing import/export utility similarly.

Using the Import and Export Utilities
Oracle NoSQL Database contains an import/export utility to extract and load table
based data, raw key/value based data, and large object data. You can use the import/
export utility, available through kvtool.jar, to:

• Export table data from Oracle NoSQL Database and store the data as JSON
formatted files on a local (or network mounted) file system.

• Import ad-hoc JSON data generated from a relational database or other sources,
and JSON data generated via MongoDB strict export.

• Export data and metadata from one or more existing Oracle NoSQL Database
tables, raw key/value based data, and large object data to a compact binary
format.

• Read data from, or write data to files in the file system.

• Import one or more tables into an Oracle NoSQL Database.

• Restart from a checkpoint if an import or export fails before completion.

The import/export utility allows you to configure rich error handling semantics and
data transformations. Other configurable options include logging, check-pointing, and
restarting from failure points.

For more information, see import and export.

Import and Export Functionality
The import/export utility allows you to:

• Import data files containing binary, JSON or MongoDB JSON format into Oracle
NoSQL Database.

• Export data from Oracle NoSQL Database to data files in binary or JSON format.

When you export data from Oracle NoSQL Database, the import/export utility creates
an "export package" (a directory structure) that contains schema metadata and table
data. This package is self-contained and you can use it to re-create the state of one

Chapter 7
Using the Import and Export Utilities

7-79

or more tables on any Oracle NoSQL Database instance. When you import data into
Oracle NoSQL Database, you can run the utility against this "export package", or any
directory that contains files with data formats supported by the import/export utility.

Both import and export operations execute as online operations. These operations
run against an Oracle NoSQL Database data store that is servicing read and
write requests. Hence, when you export data, the export utility does not force a
synchronization point or obtain a global lock that guarantees a consistent table state
across all the shards in your Oracle NoSQL Database data store. If you wish to
capture a consistent state for your tables, it is recommended that you pause any
ongoing write operations (from your application) that modifies the state of your tables
during the export operation. During an import operation, you can configure the import
to ignore overwrite of any record that already exists in your data store.

Understanding Data Sources and Data Targets (Sinks)
When working with the import/export utility, you should understand the concept of
"source", "sink", and data format. You use the import/export utility to transfer data
from the configured source to the configured sink, optionally transforming the data
(based upon configuration options explained later) before inserting the data into the
configured sink. The "direction" of the transfer defines how sources and sinks are
utilized. The data format describes how you want the import/export tool to interpret the
data being read from a source or sink.

When you export, the source type is always Oracle NoSQL Database (where you
extract data from) and the sink is the recipient of that data. When you import,
the source type is currently limited to a file and the sink is always Oracle NoSQL
Database. In subsequent releases, you will be able to use source type as Oracle
Cloud Storage and other cloud storage providers.

For example, you may want to import some textual JSON data files into Oracle NoSQL
Database. In this case, your source type is LOCAL (indicating that the data is stored in
files) and the sink type is NoSQLDB. The data format is JSON.

Note:

You can configure several data formats for sources and sinks in the import/
export utility’s configuration file.

Importing Data
Use the import utility to import a package containing binary or JSON data and schema
that was created with the export utility. By using the import utility, you can also import
JSON data that was extracted from MongoDB or other sources such as a relational
database. When you run the import/export utility to import data, the sink (or target of
the import) is always Oracle NoSQL Database, while the source format (JSON, binary,
or MongoDB) can be configured.

When you import data from an export package, the import utility loads data for one
or more tables whose data exist within the known structure of the export package.
When you import data that was not created by export, the import utility only supports
loading into a single table. If you need to load multiple tables with data that was not

Chapter 7
Using the Import and Export Utilities

7-80

created by export, it is advisable to store the data for each table in a separate directory
structure and run the import utility once for each table to be loaded. Modify the path
and tableName parameters for each table in the JSON config file. See the section
below for a detailed description of the parameters available in the JSON config file.

Exporting Data
When you use the export option, the import/export utility creates a package that
contains:

• Data from your table(s)

• Schema definition metadata of your table(s)

• Logging information

When you use the import option, you may supply the same package to the import/
export utility to automatically create and load your tables from the contents of the
export package.

You can export all data and metadata to either a local or network mounted filesystem.
In future releases, you can export your data to the Oracle Storage Cloud or other cloud
storage providers.

You can optionally use the import/export utility to export individual tables instead of the
entire data store. This utility writes:

• Application created data (excluding security data).

• Schema metadata:

– DDL for recreating the table(s).

– DDL for recreating indexes.

• Time to live information for every table record.

Import/export utility does not allow you to:

• Export security data (such as user definition)

• Export Oracle NoSQL Database deployment information (such as cluster topology)

• Incrementally export data (such as export from a given moment in time)

• Export derived information (such as index data and key distribution statistics data).
You must recreate derived information upon data import.

For export operations, Oracle highly recommends that the target of the export
operation be an encrypted file system such as dm-crypt.

Examples
1. Export the entire contents of Oracle NoSQL Database data store and place the

export package into the /users/oracle/kvstore_export directory. Supply two
helper hosts, sn1 and sn2, so that the export can try and contact any host that is
reachable.

java –Xmx64m –Xms64m -jar KVHOME/lib/kvtool.jar export \
 -export-all -store kvstore -helper-hosts sn1:5000,sn2:5000 \
 -config export_config

Chapter 7
Using the Import and Export Utilities

7-81

The export_config file resides in the current working directory and the file content
is as below:

{
 "path": "/users/oracle/kvstore_export"
}

2. Import all data from the export package created in example 1 into a different
Oracle NoSQL Database data store. Since you are using the export package
created by the export utility, all tables will be automatically created if they do not
already exist.

java –Xmx64m –Xms64m -jar KVHOME/lib/kvtool.jar import \
 -import-all -store other_kvstore -helper-hosts sn10:5000 \
 -config import_config

The import_config file resides in the current working directory and the file content
is as below:

{
 "path": "/users/oracle/kvstore_export"
}

3. Export 3 tables in JSON format by placing the exported data into the /users/
oracle/json_table_data directory.

java –Xmx64m –Xms64m -jar KVHOME/lib/kvtool.jar export \
 -tables table1, table2, table3 -store kvstore -helper-hosts
sn1:5000,sn2:5000 \
 -config export_config -format JSON

The export_config file resides in the current directory and the file content is as
below:

{
 "path": "/users/oracle/json_table_data"
}

4. Import 3 tables that were exported in example 3 to a different Oracle NoSQL
Database data store. Use checkpoints to be able to restart the import from where it
left, if it fails.

java –Xmx64m –Xms64m -jar KVHOME/lib/kvtool.jar import \
 -store other_kvstore -helper-hosts sn10:5000 \
 -config import_config \
 -status /users/oracle/checkpoint_dir –format JSON

Chapter 7
Using the Import and Export Utilities

7-82

The import_config file resides in the current working directory and the file content
is as below:

{
 "path": "/users/oracle/json_table_data"
}

5. Run import on data files that contain data from a MongoDB strict export while not
transferring a sensitive attribute in the data entitled "social_security_number".
Store all of the errors and progress information for the import in /users/oracle/
mongo_db_import_logs.

java –Xmx64m –Xms64m -jar KVHOME/lib/kvtool.jar import \
 -external -store other_kvstore \
 -helper-hosts sn10:5000 -config import_config \
 -status /users/oracle/checkpoint_dir –format MONGODB_JSON

The import_config file resides in the current working directory and the file content
is as below:

{
 "path": "/users/oracle/my_mongodb_data",
 "ignoreFields": "social_security_number",
 "errorOutput": "/users/oracle/mongo_db_import_logs"
}

Increasing Storage Node Capacity
You can increase the capacity of a Storage Node by adding additional hard disks.
Adding hard disks to a Storage Node permits the placement of each Replication Node
on its own disk, ensuring that the Replication Nodes on the SN are not competing for
I/O resources. Specify the location of the storage directory on the new disk using the
storagedir parameter.

Note:

When you specify a storage directory, Oracle strongly recommends you also
specify the storage directory size using the -storagedirsize parameter.
See Managing Storage Directory Sizes for details. The system uses the
configured directory sizes to enforce disk usage. Be sure to specify a storage
directory size for every storage node in the store.

The following example demonstrates deploying a new store and adding two more
disks to a Storage Node, increasing the capacity from 1 to 3:

1. Create, start and configure the new store.

• Create the new store:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \

Chapter 7
Increasing Storage Node Capacity

7-83

-root KVROOT \
-host node20 -port 5000 \
-harange 5010,5030 \
-capacity 1 \
-memory_mb 200 \
-storagedir /disk1/ondb/data

• Create and copy the security directory:

java -Xmx64m -Xms64m \
-jar kv/lib/kvstore.jar \
securityconfig config create -root KVROOT -kspwd password
Created files
KVROOT/security/security.xml
KVROOT/security/store.keys
KVROOT/security/store.trust
KVROOT/security/client.trust
KVROOT/security/client.security
KVROOT/security/store.passwd (Generated in CE version)
KVROOT/security/store.wallet/cwallet.sso (Generated in EE
version)

Created

• Start the new store:

Note:

Before starting the SNA, on each node, set the environment variable
MALLOC_ARENA_MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start \
-root KVROOT &

• Configure the new store:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin \
-port 5000 -host node20 \
-security KVROOT/security/client.security

kv-> configure -name kvstore
Store configured: kvstore

2. Create a zone. Then create an administration process on a specific host:

kv-> plan deploy-zone -name Houston -rf 1 -wait
Executed plan 1, waiting for completion...
Plan 1 ended successfully

Chapter 7
Increasing Storage Node Capacity

7-84

kv-> plan deploy-sn -znname "Houston" -port 5000 -wait -host node20
Executed plan 2, waiting for completion...
Plan 2 ended successfully

kv-> plan deploy-admin -sn sn1 -port 5001 -wait
Executed plan 3, waiting for completion...
Plan 3 ended successfully

3. Create the storage node pool. Then add the storage node to the pool:

kv-> pool create -name AllStorageNodes

kv-> pool join -name AllStorageNodes -sn sn1

4. Create a topology, preview it, and then deploy it:

kv-> topology create -name 1x1 -pool AllStorageNodes -partitions 120
Created: 1x1

kv-> topology preview -name 1x1
Topology transformation from current deployed topology to 1x1:
Create 1 shard
Create 1 RN
Create 120 partitions

shard rg1
 1 new RN : rg1-rn1
 120 new partitions

kv-> plan deploy-topology -name 1x1 -wait
Executed plan 4, waiting for completion...
Plan 4 ended successfully

5. Add two more disk drives to the Storage Node, mounted as disk2 and disk3. Add
the storage directories using the plan change-storagedir command. Be sure to
add the Storage Directory size, such as -storagedirsize “1 tb”.

kv-> plan change-storagedir -sn sn1 -storagedir /disk2/ondb/data \
-storagedirsize "1 tb" -add -wait
Executed plan 5, waiting for completion...
Plan 5 ended successfully
kv-> plan change-storagedir -sn sn1 -storagedir /disk3/ondb/data \
-storagedirsize "1 tb" -add -wait
Executed plan 6, waiting for completion...
Plan 6 ended successfully

Chapter 7
Increasing Storage Node Capacity

7-85

Note:

Because we specified storage directory sizes in the previous example, it
is necessary to provide that information to your other nodes if you have
not already done so. See Managing Storage Directory Sizes for more
information.

6. Change the capacity equal to the total number of disks now available on the
Storage Node (3).

kv-> plan change-parameters -service sn1 -wait -params capacity=3
Executed plan 7, waiting for completion...
Plan 7 ended successfully

Note:

You need to perform last two steps on all the Storage Nodes (in your
cluster) to add the disk drives and increase the capacity of each Storage
Node. In this case, it is a single node deployment, so the topology is now
ready to be redistributed.

7. Redistribute your topology to expand the cluster in order to use the new capacity
(3) of the Storage Node.

kv-> topology clone -current -name 3x1
Created 3x1

kv-> topology redistribute -name 3x1 -pool AllStorageNodes
Redistributed: 3x1

kv-> topology preview -name 3x1
Topology transformation from current deployed topology to 3x1:
Create 2 shards
Create 2 RNs
Migrate 80 partitions

shard rg2
 1 new RN : rg2-rn1
 40 partition migrations
shard rg3
 1 new RN : rg3-rn1
 40 partition migrations

kv-> plan deploy-topology -name 3x1 -wait
Executed plan 8, waiting for completion...
Plan 8 ended successfully

Chapter 7
Increasing Storage Node Capacity

7-86

Managing Storage Directory Sizes
We strongly recommend that you always specify storage directory sizes for each
Replication Node on every Storage Node in the store. Doing so sets disk threshold
levels for each replication node, even when your store has hardware with varying disk
capacities. This section describes this topic, and others.

Managing Disk Thresholds
It is very important to configure each storage directory with a specific amount of
available disk space. The Oracle NoSQL Database uses the configured Storage
Directory sizes to enforce disk space limits. Without configuring how much disk
space is available, the store opportunistically uses all available space, less 5 GB
free disk space. The system maintains 5 GB of free space to allow manual recovery
if the Storage Node exceeds its configured disk limit. Be sure to monitor disk usage
regularly using the statistics provided, as described in Monitoring Disk Usage.

Storage Nodes use their available disk space for two purposes:

• To store your data.

• To save reserved files.

Reserved files consist of data that has already been replicated to active replica nodes.
The purpose of storing a copy of this data is to use for Replica Nodes that lose
contact with the Master Node. Losing contact typically occurs because Replica nodes
are shut down, or a network partition event occurs, or because another transient
problem occurs. The Storage Node is primarily designed to consume the amount of
disk space you assign it, and to use the remaining disk space to save the reserved
files. Each Storage Node manages its available disk space, leaving 5 GB free for
recovery purposes. Your intervention is typically not required in this disk management
process, unless a storage node exceeds its available disk capacity.

Note:

If a Storage Node (SN) consumes more than what is assigned as
storagedirsize, including leaving 5 GB of space free, the SN automatically
attempts to free up disk space by deleting reserved files (not your data files),
until more than 5 GB of space is available. If the Storage Node is unable
to free up enough space, it suspends write operations to the node. Read
operations continue as normal. Write operations resume automatically once
the node obtains sufficient free disk space.

You can limit how much disk space the store consumes on a node by node basis,
by explicitly specifying a storage directory size for each storage node, as described
in Specifying Storage Directory Sizes. Storage nodes can then consume all of their
configured disk space as needed, leaving free the required 5 GB. However, if you
do not indicate a storage directory size, the Storage Node uses disk space until it
consumes the disk, except for the required 5 GB for manual recovery.

Consider a storage node with a 200 GB disk. Without configuring a storagedirsize for
that disk, the store keeps consuming up to 195 GB of disk space (leaving only the 5

Chapter 7
Managing Storage Directory Sizes

7-87

GB for manual recovery). If your standard policy requires a minimum 20 GB available
space on each disk, you must configure the storage node with a storagedirsize of 175
GB, leaving 20 GB available, and 5 GB for store recovery.

The most common reason a node's storage directory fills up is because of reserved
files. If the Storage Node exceeds its disk threshold, it continues to delete the reserved
files until the threshold is no longer exceeded.

Specifying Storage Directory Sizes
Use the makebootconfig storagedirsize parameter to specify Storage Node (SN)
capacity when you initially install your store. See Configuring Your KVStore Installation
and makebootconfig for details. Additionally, if your SN has the capacity to support
more than one Replication Node, specify a storage directory location and storage
directory size for each Replication Node.

To specify or change storage capacity after you have installed the store, use plan
change-storagedir. When you use plan change-storagedir be sure to specify the
-storagedirsize parameter to indicate how large the new storage directory is.

Note:

If you specify the -storagedir parameter, but not -storagedirsize,
makebootconfig displays a warning. Always specify both parameters for
control and tracking.

The value specified for the storagedirsize parameter must be a long, optionally
followed by a unit string. Accepted unit strings are: KB, MB, GB, and TB,
corresponding to 1024, 1024^2, 1024^3, 1024^4 respectively. Acceptable strings are
case insensitive. Valid delimiters between the long value and the unit string are " ", "-",
or "_".

For example:

kv-> verbose
Verbose mode is now on
kv-> show topology
store=mystore numPartitions=300 sequence=308
 zn: id=zn1 name=Manhattan repFactor=3 type=PRIMARY
allowArbiters=false

 sn=[sn1] zn:[id=zn1 name=Manhattan] node1:9000 capacity=1 RUNNING
 [rg1-rn1] RUNNING /storage-dir/sn1 0
 No performance info available
 sn=[sn2] zn:[id=zn1 name=Manhattan] node2:9000 capacity=1 RUNNING
 [rg1-rn2] RUNNING /storage-dir/sn2 0
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 sn=[sn3] zn:[id=zn1 name=Manhattan] node3:9000 capacity=1 RUNNING
 [rg1-rn3] RUNNING /storage-dir/sn3 0
 No performance info available

 shard=[rg1] num partitions=300
 [rg1-rn1] sn=sn1 haPort=node1:9010

Chapter 7
Managing Storage Directory Sizes

7-88

 [rg1-rn2] sn=sn2 haPort=node2:9010
 [rg1-rn3] sn=sn3 haPort=node3:9010
 partitions=1-300

kv-> plan change-storagedir -sn sn1 -storagedir /storage-dir/sn1 \
-storagedirsize "200 gb" -add -wait
Executed plan 7, waiting for completion...
Plan 7 ended successfully
kv-> plan change-storagedir -sn sn2 -storagedir /storage-dir/sn2 \
-storagedirsize "300 gb" -add -wait
Executed plan 8, waiting for completion...
Plan 8 ended successfully
kv-> plan change-storagedir -sn sn3 -storagedir /storage-dir/sn3 \
-storagedirsize "400 gb" -add -wait
Executed plan 9, waiting for completion...
Plan 9 ended successfully
kv-> show topology
store=mystore numPartitions=300 sequence=308
 zn: id=zn1 name=Manhattan repFactor=3 type=PRIMARY
allowArbiters=false

 sn=[sn1] zn:[id=zn1 name=Manhattan] node1:9000 capacity=1 RUNNING
 [rg1-rn1] RUNNING /storage-dir/sn1 214748364800
 No performance info available
 sn=[sn2] zn:[id=zn1 name=Manhattan] node2:9000 capacity=1 RUNNING
 [rg1-rn2] RUNNING /storage-dir/sn2 322122547200
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 sn=[sn3] zn:[id=zn1 name=Manhattan] node3:9000 capacity=1 RUNNING
 [rg1-rn3] RUNNING /storage-dir/sn3 429496729600
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms

 shard=[rg1] num partitions=300
 [rg1-rn1] sn=sn1 haPort=node1:9010
 [rg1-rn2] sn=sn2 haPort=node2:9010
 [rg1-rn3] sn=sn3 haPort=node3:9010
 partitions=1-300

Note:

If any Storage Node stores its data in the root directory (not recommended),
then instead of plan change-storagedir, set the rootDirSize parameter.
For example:

kv-> plan change-parameters -service sn1 -params
rootDirSize=200_gb

Specifying Differing Disk Capacities
By default, Oracle NoSQL Database evenly distributes data across all the Storage
Nodes in your store. No check is made in advance. The store expects all of the

Chapter 7
Managing Storage Directory Sizes

7-89

hardware in your storee to be homogenous, and so all Storage Nodes would have the
same disk capacity.

However, more likely, you are running a store in an environment where some Storage
Nodes have more disk capacity than others. In this case, you must specify appropriate
disk capacity for each storage node. Oracle NoSQL Database will then place more
data on higher capacity Storage Nodes. Be aware that specifying greater disk capacity
to a storage node can result in an increased workload. Storage Nodes with more
capacity than others could then serve more read and/or write activity. Be sure to size
your storage nodes accordingly to support additional workload, if any.

Monitoring Disk Usage
If a Storage Node exceeds its disk usage threshold value (storagedirsize - 5GB),
then all write activity for that node is suspended until sufficient disk space is made
available. The store makes disk space available by removing reserved files to satisfy
the threshold requirement. No data files are removed. Read activity continues while
reserved data is being removed.

To ensure that your Storage Node can continue to service write requests, monitor the
availableLogSize JMX statistic. This represents the amount of space that can be
used by write operations. This value is not necessarily representative of the amount
of disk space currently in use, since quite a lot of disk space can, and is, used for
reserved files, which are not included in the availableLogSize statistic.

Reserved files are data files that have already been replicated, but which are retained
for replication to nodes that are out of contact with the master node. Because
Oracle NoSQL Database liberally reserves files, all available storage will frequently
be consumed by reserved data. However, reserved data is automatically deleted
as necessary by the Storage Node to continue write operations. For this reason,
monitoring the actual disk usage is not meaningful.

If availableLogSize reaches zero, writes are suspended for the Storage Node.
Earlier, as availableLogSize approaches zero, the node has less and less space
for reserved data files. The result is that the store becomes increasingly less resilient
in the face of a prolonged but temporary node outage because there are increasingly
fewer historical log files that the store can use to gracefully bring a node up to date
once it is available again.

The following tables lists some other useful statistics about disk usage. These
statistics are stored in the stats file, or you can monitor them using the JMX
oracle.kv.repnode.envmetric type. (Xref)

Statistic Description

availableLogSize Disk space available (in bytes) for write operations. This value
is calculated with consideration fo reserved data files, which are
deleted automatically whenever space is required to perform write
operations:

free space + reservedLogSize - protectedLogSize

In general, monitoring disk usage in the file system is not meaningful,
because of the presence of reserved files that can be deleted
automatically.

activeLogSize Bytes used by all active data files: files required for basic operation.

Chapter 7
Managing Storage Directory Sizes

7-90

Statistic Description

reservedLogSize Bytes used by all reserved data files: files that have been cleaned
and can be deleted if they are not protected.

protectedLogSize Bytes used by all protected data files: the subset of reserved files
that are temporarily protected and cannot be deleted.

ProtectedLogSizeMap A breakdown of protectedLogSize as a map of protecting entity name
to protected size in bytes.

TotalLogSize Total bytes used by data files on disk: activeLogSize +
reservedLogSize.

The following list from part of some JMX output, shows an example of how you will see
each statistic. All of these statistic names have a Cleaning_ prefix, indicating that they
may be in the log cleaning statistics group (for garbage collection):

.

.

.
"Cleaning_nRepeatIteratorReads": 0,
"Cleaning_nLNsExpired": 0,
"Cleaning_nCleanerRuns": 0,
"Cleaning_nBINDeltasDead": 0,
"Cleaning_nCleanerDisksReads": 0,
"Cleaning_protectedLogSizeMap": "",
"Cleaning_nCleanerDeletions": 0,
"Cleaning_nCleanerEntriesRead": 0,
"Cleaning_availableLogSize": 48942137344,
"Cleaning_nLNsDead": 0,
"Cleaning_nINsObsolete": 0,
"Cleaning_activeLogSize": 112716,
"Cleaning_nINsDead": 0,
"Cleaning_nINsMigrated": 0,
"Cleaning_totalLogSize": 112716,
"Cleaning_nBINDeltasCleaned": 0,
"Cleaning_nLNsObsolete": 0,
"Cleaning_nLNsCleaned": 0,
"Cleaning_nLNQueueHits": 0,
"Cleaning_reservedLogSize": 0,
"Cleaning_protectedLogSize": 0,
"Cleaning_nClusterLNsProcessed": 0,
"Node Compression_processedBins": 0,
.
.
.

You can tell if writes have been suspended for a Storage Node using the ping
command from the CLI. In the following sample output, the Shard Status shows
read-only:1. This indicates that one of the Storage Nodes is in read-only mode. The
likeliest reason for that is that it has exceeded its disk threshold.

kv-> ping
Pinging components of store istore based upon topology sequence #11
3 partitions and 3 storage nodes

Chapter 7
Managing Storage Directory Sizes

7-91

Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
Shard Status: healthy:0 writable-degraded:0 read-only:1 offline:0
Admin Status: healthy
Zone [name=dc1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:1 offline:2
Storage Node [sn1] on sn1.example.com:5000 Zone: [name=dc1
id=zn1 type=PRIMARY allowArbiters=false masterAffinity=false] Status:
RUNNING
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Admin [admin1] Status: RUNNING,MASTER
Rep Node [rg1-rn1] Status: RUNNING,MASTER (non-authoritative)
sequenceNumber:39,177,477 haPort:5011 available storage size:6 GB
Storage Node [sn2] on sn2.example.com:5000 Zone:
[name=dc1 id=zn1 type=PRIMARY allowArbiters=false masterAffinity=false]
Status: RUNNING
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Rep Node [rg1-rn2] Status: RUNNING,UNKNOWN sequenceNumber:39,176,478
haPort:5010 available storage size:NOT AVAILABLE delayMillis:?
catchupTimeSecs:?
Storage Node [sn3] on sn3.example.com:5000 Zone: [name=dc1
id=zn1 type=PRIMARY allowArbiters=false masterAffinity=false] Status:
RUNNING
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Rep Node [rg1-rn3] Status: RUNNING,UNKNOWN sequenceNumber:39,166,804
haPort:5010 available storage size:NOT AVAILABLE delayMillis:?
catchupTimeSecs:?

For information on JMX monitoring the store, see Java Management Extensions (JMX)
Notifications.

Handling Disk Limit Exception
If a Storage Node exceeds its disk usage threshold value (<storagedirsize> - 5 GB),
then the store suspends all write activities on that node, until sufficient data is removed
to satisfy the threshold requirement. In such a situation, there are two ways to bring
the store back to read and write availability, without deleting user data.

• Increasing storagedirsize on one or more Replication Nodes if there is available
disk space

• Expanding the store by adding a new shard

If there is enough space left on the disk or if the complete disk size is not set as
the size of storagedirsize, you can bring back the write availability (without any
additional need of the hardware) by simply increasing the storage directory size for
one or more Replication Nodes.

If there is not enough space left on disk or if the complete disk size is set as the size
of the storage directory, then you should follow the store expansion procedure, where
you will need additional hardware to increase the number of shards by one.

Chapter 7
Managing Storage Directory Sizes

7-92

Note:

If you are following the store expansion procedure, it is important to check
the performance files to see if the cleaner is working well, by monitoring the
minUtilization statistics. If the minUtilization statistics is less than 30%,
it may mean that the cleaner is not keeping up. In this case it is not possible
to perform store expansion.
Store expansion can only be performed if the minUtilization statistics
percentage is not less than 30%.

For example:

2018-03-07 16:07:12.499 UTC INFO [rg1-rn1] JE: Clean file
0x2b:
predicted min util is below minUtilization, current util min:
39 max: 39,
predicted util min: 39 max: 39, chose file with util min: 30
max: 30 avg: 30

2018-03-07 16:07:04.029 UTC INFO [rg1-rn2] JE: Clean file
0x27:
predicted min util is below minUtilization, current util min:
39 max: 39,
predicted util min: 39 max: 39, chose file with util min: 30
max: 30 avg: 30

2018-03-07 16:05:44.960 UTC INFO [rg1-rn3] JE: Clean file
0x27:
predicted min util is below minUtilization, current util min:
39 max: 39,
predicted util min: 39 max: 39, chose file with util min: 30
max: 30 avg: 30

Increasing Storage Directory Size
To increase the storage directory size in one or more Replication Nodes, open the CLI
and execute the following commands:

1. Disable write operations on the store or on the failed shard.

plan enable-requests -request-type READONLY \
{-shard <shardId[,shardId]*> | -store}

Here, -request-type READONLY is the option which disables write operations on
a shard. You can disable write operations on one or more shards by using the
-shard option, or on the entire store by using the —store option.

Chapter 7
Managing Storage Directory Sizes

7-93

Note:

Though Replication Nodes are already in non-write availability mode
whenever they hit an out of disk limit exception, it is important to disable
user write operations explicitly. Disabling the user write operations
ensures that the Replication Nodes are brought back up in the correct
manner.

2. Execute the PING command to analyze the state of one or more Replication
Nodes.

kv-> ping

Usually, when Replication Nodes hit an out of disk limit exception, Replica
Replication Nodes are in the RUNNING, UNKNOWN state, and Master Replication
Nodes are in the RUNNING, MASTER (non-authoritative) state.

3. To display the current, deployed topology, execute the show topology —verbose
command. Make note of the current storage directory size allocated to each
Replication Node.

show topology -verbose [-zn] [-rn] [-an] [-sn] [-store] [-status]
[-json]

4. To ensure that other Replication nodes in the store do not hit a disk limit exception
while you increase the storagedirsize, reduce the JE free disk space on all
Replication Nodes to 2 GB or 3 GB. You can use the -all-rns option to reduce
the JE free disk space on all Replication Nodes at once, or the -service -rgx-
rgy option to reduce the free disk space on a specific Replication Node.

kv-> plan change-parameters [-all-rns|-service -rgx-rgy] \
-params "configProperties=je.freeDisk=XXX"

After executing this command with either option, the system will stop the
Replication Nodes, update parameters, and restart Replication Nodes with the JE
free disk space parameter you specify.

5. To increase the storage directory size on one or more Replication Nodes.

kv-> plan change-storagedir -wait -sn snX \
-storagedir <storagedirpath> –add -storagedirsize X_GB

Here snX is the Storage Node whose directory size you want to increase, and X is
the new storage size in GB.

6. After the plan change-parameters command executes successfully, verify the
new storagedirsize value is assigned to one or more Replication Nodes in the
store.

show topology -verbose [-zn] [-rn] [-an] [-sn] [-store] [-status]
[-json]

Chapter 7
Managing Storage Directory Sizes

7-94

7. Lastly, reset the JE free disk space back to 5 GB. Also, enable write operations
back on the store or a specific shard.

kv-> plan change-parameters [-all-rns|-service -rgx-rgy] \
-params "configProperties=je.freeDisk=5368709120"

kv-> plan enable-requests –request-type ALL {-shard
<shardId[,shardId]*> | -store}

The –request-type ALL option re-enables write operations on the store or on a
specific shard.

Example

Let us consider a store with 1x3 topology, hitting a disk limit exception. Perform the
following steps to increase the storage directory size of all Replication Nodes in the
store from 16 GB to 25 GB.

1. Stop the write operations on the store level:

kv-> plan enable-requests –request-type READONLY –store;

2. Ping the store to analyze the state of one or more Replication Nodes.

kv-> ping
Pinging components of store istore based upon topology sequence #11
3 partitions and 3 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
Shard Status: healthy:0 writable-degraded:0 read-only:1 offline:0
total:1
Admin Status: healthy
Zone [name=dc1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:1 offline:2 Storage Node [sn1] on node21:port1
Zone: [name=dc1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id:
a72484b8b33c
 Admin [admin1] Status: RUNNING,MASTER
 Rep Node [rg1-rn1] Status: RUNNING,MASTER (non-
authoritative)
 sequenceNumber:27,447,667 haPort:5011 available storage
size:12 GB
Storage Node [sn2] on node22:port1
Zone: [name=dc1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id:
a72484b8b33c
 Rep Node [rg1-rn2] Status: RUNNING,UNKNOWN
 sequenceNumber:27,447,667 haPort:5010 available storage
size:10 GB delayMillis:? catchupTimeSecs:?
Storage Node [sn3] on node23:port1
Zone: [name=dc1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id:

Chapter 7
Managing Storage Directory Sizes

7-95

a72484b8b33c
 Rep Node [rg1-rn3] Status: RUNNING,UNKNOWN
 sequenceNumber:27,447,667 haPort:5010 available storage
size:9 GB delayMillis:? catchupTimeSecs:?

The example shows that the Replication Nodes are in RUNNING, UNKNOWN state
and Master Replication Node is in RUNNING, MASTER(non-authoritative) state.

3. View the current, deployed topology.

kv-> show topology -verbose
store=istore numPartitions=3 sequence=11
 zn: id=zn1 name=dc1 repFactor=3 type=PRIMARY allowArbiters=false \
 masterAffinity=false

 sn=[sn1] zn:[id=zn1 name=dc1] node21:port1 capacity=1 RUNNING
 [rg1-rn1] RUNNING /scratch/kvroot 16 GB
 single-op avg latency=36.866146 ms multi-op avg
latency=0.0 ms
 [rg1-rn1] RUNNING /scratch/kvroot 16 GB
 single-op avg latency=36.866146 ms multi-op avg
latency=0.0 ms
 sn=[sn2] zn:[id=zn1 name=dc1] node22:port1 capacity=1 RUNNING
 [rg1-rn2] RUNNING /scratch/kvroot 16 GB
 single-op avg latency=0.0 ms multi-op avg
latency=0.0 ms
 [rg1-rn2] RUNNING /scratch/kvroot 16 GB
 single-op avg latency=0.0 ms multi-op avg
latency=0.0 ms
 sn=[sn3] zn:[id=zn1 name=dc1] node23:port1 capacity=1 RUNNING
 [rg1-rn3] RUNNING /scratch/kvroot 16 GB
 single-op avg latency=0.0 ms multi-op avg
latency=0.0 ms
 [rg1-rn3] RUNNING /scratch/kvroot 16 GB
 single-op avg latency=0.0 ms multi-op avg
latency=0.0 ms

 numShards=1
 shard=[rg1] num partitions=3
 [rg1-rn1] sn=sn1 haPort=node21:port2
 [rg1-rn2] sn=sn2 haPort=node22:port3
 [rg1-rn3] sn=sn3 haPort=node23:port3
 partitions=1-3

You see that 16 GB of disk space is assigned as the storage directory size for
each Replication Node.

4. Reduce the JE free disk space from 5 GB to 2 GB for all Replication Nodes in the
store.

kv-> plan change-parameters -all-rns -params \
"configProperties=je.freeDisk=2147483648";
Started plan 70. Use show plan -id 70 to check status.
To wait for completion, use plan wait -id 70

Chapter 7
Managing Storage Directory Sizes

7-96

5. For each Replication Node, increase the storage directory size to 25 GB.

kv-> plan change-storagedir -wait -sn sn1 -storagedir /scratch/
kvroot \
-add -storagedirsize 25_GB -wait
Executed plan 72, waiting for completion...
Plan 72 ended successfully

kv-> plan change-storagedir -wait -sn sn2 -storagedir /scratch/
kvroot \
-add -storagedirsize 25_GB -wait
Executed plan 73, waiting for completion...
Plan 73 ended successfully

kv-> plan change-storagedir -wait -sn sn3 -storagedir /scratch/
kvroot \
-add -storagedirsize 25_GB -wait
Executed plan 74, waiting for completion...
Plan 74 ended successfully

6. View the topology again to verify that the new value is assigned to
storagedirsize.

kv-> show topology -verbose
store=istore numPartitions=3 sequence=11
 zn: id=zn1 name=dc1 repFactor=3 type=PRIMARY allowArbiters=false \
masterAffinity=false

 sn=[sn1] zn:[id=zn1 name=dc1] node21:port1 capacity=1 RUNNING
 [rg1-rn1] RUNNING /scratch/kvroot 25 GB
 single-op avg latency=0.0 ms multi-op avg
latency=0.0 ms
 sn=[sn2] zn:[id=zn1 name=dc1] node22:port1 capacity=1 RUNNING
 [rg1-rn2] RUNNING /scratch/kvroot 25 GB
 single-op avg latency=552.51996 ms multi-op avg
latency=0.0 ms
 sn=[sn3] zn:[id=zn1 name=dc1] node23:port1 capacity=1 RUNNING
 [rg1-rn3] RUNNING /scratch/kvroot 25 GB
 single-op avg latency=14.317171 ms multi-op avg
latency=0.0 ms

 numShards=1
 shard=[rg1] num partitions=3
 [rg1-rn1] sn=sn1 haPort=node21:port2
 [rg1-rn2] sn=sn2 haPort=node22:port3
 [rg1-rn3] sn=sn3 haPort=node23:port3
 partitions=1-3

The example now shows that 25 GB is assigned as the storage directory size for
each Replication Node.

Chapter 7
Managing Storage Directory Sizes

7-97

7. Reset the JE free disk space to 5 GB and enable write operations back on the
store.

kv-> plan change-parameters [-all-rns|-service -rgx-rgy] \
-params "configProperties=je.freeDisk=5368709120"

kv-> plan enable-requests –request-type READONLY –store;

Adding a New Shard
Apart from increasing the storage directory size, you can also handle disk limit
exceptions by adding a new shard and expanding your store.

The following example demonstrates adding three new Storage Nodes (Storage
Nodes 21, 22, and 23) and deploying the new store to recover from disk limit
exception:

1. Disable write operations on the store.

kv-> plan enable-requests -request-type READONLY -store;

Here, -request-type READONLY disables write operations on a store and allows
only read operations.

2. Reduce the JE free disk space to 2 GB on all nodes and increase the
je.cleaner.minUtilization configuration parameter from 40 (the default in a
KVStore) to 60.

kv-> plan change-parameters -all-rns \
-params "configProperties=je.cleaner.minUtilization 60; \
je.freeDisk 2147483648";

Executing this command creates more free space for store expansion. Replication
Nodes will be stopped, parameters will be updated, and the Replication Nodes will
be restarted with the new parameters.

3. Create, start, and configure the new nodes for expanding the store.

• Create the new node. Run the makebookconfig utility to configure each
Storage Node in the store:

java -Xmx256m -Xms256m -jar KVHOME/kvstore.jar makebootconfig \
-root sn1/KVROOT \
-store-security none -capacity 1 \
-port port1 -host node21 \
-harange 5010,5020 \
-storagedir /scratch/sn1/u01 –storagedirsize 20-Gb

java -Xmx256m -Xms256m -jar KVHOME/kvstore.jar makebootconfig \
-root sn2/KVROOT \
-store-security none -capacity 1 \
-port port1 -host node22 \

Chapter 7
Managing Storage Directory Sizes

7-98

-harange 5010,5020 \
-storagedir /scratch/sn2/u01 –storagedirsize 20-Gb

java -Xmx256m -Xms256m -jar KVHOME/kvstore.jar makebootconfig \
-root sn3/KVROOT \
-store-security none -capacity 1 \
-port port1 -host node23 \
-harange 5010,5020 \
-storagedir /scratch/sn3/u01 –storagedirsize 20-Gb

• Restart the Storage Node Agent (SNA) on each of the Oracle NoSQL
Database nodes using the start utility:

kv-> nohup java -Xmx256m -Xms256m -jar \
KVHOME/lib/kvstore.jar start -root KVROOT &

• Configure the new store:

java -Xmx256m -Xms256m -jar KVHOME/lib/kvstore.jar runadmin \
-port port1 -host node21

java -Xmx256m -Xms256m -jar KVHOME/lib/kvstore.jar runadmin \
-port port1 -host node22

java -Xmx256m -Xms256m -jar KVHOME/lib/kvstore.jar runadmin \
-port port1 -host node23

4. Redistribute the store according to its new configuration.

kv-> java -Xmx256m -Xms256m -jar KVHOME/lib/kvstore.jar runadmin \
-port port1 -host host1

kv-> plan deploy-sn -zn zn1 -host node21 -port port1 -wait
Executed plan 7, waiting for completion...
Plan 7 ended successfully
kv-> plan deploy-sn -zn zn1 -host node22 -port port1 -wait
Executed plan 8, waiting for completion...
Plan 8 ended successfully
kv-> plan deploy-sn -zn zn1 -host node23 -port port1 -wait
Executed plan 9, waiting for completion...
Plan 9 ended successfully
Plan 11 ended successfully

kv-> pool join -name ExamplePool -sn sn4
Added Storage Node(s) [sn4] to pool ExamplePool
kv-> pool join -name ExamplePool -sn sn5
Added Storage Node(s) [sn5] to pool ExamplePool

Chapter 7
Managing Storage Directory Sizes

7-99

kv-> pool join -name ExamplePool -sn sn6
Added Storage Node(s) [sn6] to pool ExamplePool

kv-> topology clone -current -name newTopo
Created newTopo

kv-> topology redistribute -name newTopo -pool ExamplePool
Redistributed: newTopo

kv-> plan deploy-topology -name newTopo -wait
Executed plan 11, waiting for completion...

5. Restore the Replication Nodes to its original configuration.

plan change-parameters -all-rns \
-params "configProperties=je.cleaner.minUtilization 40; \
je.freeDisk 5368709120";

6. Enable write operations back on the store.

kv-> plan enable-requests -request-type ALL -store;

Here, —request-type ALL enables both read and write operations on the store.

Managing Admin Directory Size
You should specify a sufficient directory size for the Admin database when you initially
install your store, using the makebootconfig admindirsize parameter. If you do not
specify a value, the system allocates a default of 3 GB as the size of the Admin
directory. See Configuring Your KVStore Installation and makebootconfig for details.

Specify the value for the -admindirsize parameter as a long, optionally followed by
a unit string. Accepted unit strings are: KB, MB, and GB, corresponding to 1024,
1024², and 1024³ respectively. Acceptable strings are case insensitive. Valid delimiters
between the long value and the unit string are " ", "-", or "_".

Also, if the admin directory fills up its allotted storage space with reserved files, see
Managing Disk Thresholds for more information.

If the Admin completely uses up its storage space, it will not be able to start. This
condition is unlikely to occur, but in the event that your Admin cannot start, you should
check its available disk space. If the directory is full, then you should increase the
available disk space to the Admin. For the Admin to completely fill its storage space
with actual data files, the store would have to be configured in some unexpected way
— such as with an extraordinarily large number of tables, or have been allotted a very
small Admin directory size.

The procedure that you use to change an Admin's allocated disk space differs
depending on whether the Admin is in working condition.

Chapter 7
Managing Admin Directory Size

7-100

Admin is Working
To increase or decrease the Admin's disk space when the Admin is functional, use the
CLI to execute the following plan:

plan change-parameters -all-admins -params \
"configProperties=je.maxDisk=<size>"

where <size> is the desired storage size in bytes.

Admin is not Working
To increase or decrease the Admin's disk space when the Admin is not functional:

1. Set the value of je.maxDisk to the desired value in config.xml for all Admins
manually:

a. For each Storage Node that is hosting an Admin, locate the config.xml file in
the Storage Node's root directory:

<kvroot dir>/<store name>/<SN name>/config.xml

and edit it as follows.

b. Locate the admin section of the config.xml file. This is the section that begins
with:

<component name="ADMIN-NAME" type="adminParams" validate="true">
 ...
</component>

c. Add the following line to the admin section of each config.xml file:

<propertyname="configProperties" value="je.maxDisk=<size>"
type="STRING"/>

where <size> is the desired storage size in bytes for your Admin.

2. Stop/start these Storage Nodes one by one, using the following commands:

Note:

Before starting the SNA, on each node, set the environment variable
MALLOC_ARENA_MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

java -Xmx64m -Xms64m \
-jar kvstore.jar stop -root <root dir> \
-config <config file name>

Chapter 7
Managing Admin Directory Size

7-101

java -Xmx64m -Xms64m \
-jar kvstore.jar start -root <root dir> \
-config <config file name>

3. Wait for the status of these Storage Nodes to change to RUNNING. You can use
the ping command to get the Storage Node status:

java -Xmx64m -Xms64m \
-jar kvstore.jar runadmin -host <host name> -port <port> ping

4. If any Admins are unreachable (you cannot get a response using the ping
command), start them from the CLI using the following command:

kv-> plan start-service -service <ADMIN_NAME> -wait

5. Once all the Admins are running, execute the following command using the CLI:

plan change-parameters -all-admins -params \
"configProperties=je.maxDisk=<size>"

where <size> is the desired storage size in bytes for your Admin. This value
should match the value you provided in the config.xml file.

Disabling Storage Node Agent Hosted Services
To disable all services associated with a stopped SNA use the -disable-services
flag. This helps isolate failed services to avoid hard rollbacks during a failover. Also, in
this way, the configuration can be updated during recovery after a failover. The usage
is:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar {start | stop | restart}
[-disable-services] [-verbose]
-root KVROOT [-config <bootstrapFileName>]

where:

• start -disable-services

Starts an Oracle NoSQL Database Storage Node Agent with all of its hosted
services disabled. If the SNA is already running, the command will fail.

• stop -disable-services

Stops an Oracle NoSQL Database Storage Node Agent, marking all of its services
disabled so that they will not start when starting up the SNA in the future or until
the services are reenabled.

• restart -disable-services

Restarts an Oracle NoSQL Database Storage Node Agent with all of its hosted
services disabled.

Chapter 7
Disabling Storage Node Agent Hosted Services

7-102

Verifying the Store
Use the Admin CLI verify command to complete these tasks:

• Perform general troubleshooting of the store.

The verify command inspects all store components. It also checks whether all
store services are available. For the available store services, the command also
checks for any version or metadata mismatches.

• Check the status of a long-running plan

Some plans require many steps and may take some time to execute. The
administrator can verify plans to check on the plan progress. For example, you
can verify a plan deploy–sn command while it is running against many Storage
Nodes. The verify command can report at each iteration to confirm that additional
nodes have been created and come online.

For more about managing plans, see Plans.

• Get additional information to help diagnose a plan in an ERROR state.

You verify your store using the verify command in the CLI. The command requires no
parameters, and runs in verbose mode, by default. For example:

kv-> verify configuration
Verify: starting verification of store MetroArea based upon
topology sequence #117
100 partitions and 6 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
See node01:Data/virtualroot/datacenter1/kvroot/MetroArea/
 log/MetroArea_{0..N}.log for
 progress messages
Verify: Shard Status: healthy:2 writable-degraded:0
 read-only:0 offline:0
Verify: Admin Status: healthy
Verify: Zone [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 RN Status: online:2 offline: 0 maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: Zone [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
 RN Status: online:2 offline: 0 maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: Zone [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]
 RN Status: online:2 offline: 0
Verify: == checking storage node sn1 ==
Verify: Storage Node [sn1] on node01:5000
 Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin1] Status: RUNNING,MASTER
Verify: Rep Node [rg1-rn2] Status: RUNNING,REPLICA
 sequenceNumber:127 haPort:5011 available storage size:14 GB
delayMillis:1 catchupTimeSecs:0
Verify: == checking storage node sn2 ==

Chapter 7
Verifying the Store

7-103

Verify: Storage Node [sn2] on node02:6000
 Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn2] Status: RUNNING,REPLICA
 sequenceNumber:127 haPort:6010 available storage size:24 GB
delayMillis:1 catchupTimeSecs:0
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03:7000
 Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin2] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn3] Status: RUNNING,REPLICA
 sequenceNumber:127 haPort:7011 available storage size:22 GB
delayMillis:1 catchupTimeSecs:0
Verify: == checking storage node sn4 ==
Verify: Storage Node [sn4] on node04:8000
 Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn3] Status: RUNNING,REPLICA
 sequenceNumber:127 haPort:8010 available storage size:24 GB
delayMillis:1 catchupTimeSecs:0
Verify: == checking storage node sn5 ==
Verify: Storage Node [sn5] on node05:9000
 Zone: [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin3] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn1] Status: RUNNING,MASTER
 sequenceNumber:127 haPort:9011 available storage size:18 GB
Verify: == checking storage node sn6 ==
Verify: Storage Node [sn6] on node06:10000
 Zone: [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn1] Status: RUNNING,MASTER
 sequenceNumber:127 haPort:10010 available storage size:16 GB

Verification complete, no violations.

Use the optional –silent mode to show only problems or completion.

kv-> verify configuration -silent
Verify: starting verification of store MetroArea based upon
topology sequence #117
100 partitions and 6 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2

Chapter 7
Verifying the Store

7-104

See node01:Data/virtualroot/datacenter1/kvroot/MetroArea/
 log/MetroArea_{0..N}.log for progress
messages
Verification complete, no violations.

The verify command clearly reports any problems with the store. For example, if a
Storage Node is unavailable, using –silent mode displays that problem as follows:

kv-> verify configuration -silent
Verify: starting verification of store MetroArea based upon
topology sequence #117
100 partitions and 6 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
See node01:Data/virtualroot/datacenter1/kvroot/MetroArea/
 log/MetroArea_{0..N}.log for progress
messages
Verification complete, 2 violations, 0 notes found.
Verification violation: [rg2-rn2] ping() failed for rg2-rn2 :
Unable to connect to the storage node agent at host node02, port 6000,
which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: node02;
 nested exception is:
 java.net.ConnectException: Connection refused
Verification violation: [sn2] ping() failed for sn2 : Unable to
connect
 to the storage node agent at host node02, port 6000,
 which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: node02;
 nested exception is:
 java.net.ConnectException: Connection refused

Using the default mode (verbose), verify configuration shows the same problem as
follows:

kv-> verify configuration
Verify: starting verification of store MetroArea based upon
topology sequence #117
100 partitions and 6 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
See node01:Data/virtualroot/datacenter1/kvroot/MetroArea/
 log/MetroArea_{0..N}.log for progress
messages
Verify: Shard Status: healthy:1 writable-degraded:1
 read-only:0 offline:0
Verify: Admin Status: healthy
Verify: Zone [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 RN Status: online:1 offline: 1 maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: Zone [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
 RN Status: online:2 offline: 0 maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: Zone [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]
 RN Status: online:2 offline: 0

Chapter 7
Verifying the Store

7-105

Verify: == checking storage node sn1 ==
Verify: Storage Node [sn1] on node01:5000
 Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin1] Status: RUNNING,MASTER
Verify: Rep Node [rg1-rn2] Status: RUNNING,REPLICA
 sequenceNumber:127 haPort:5011 available storage size:18 GB
delayMillis:1 catchupTimeSecs:0
Verify: == checking storage node sn2 ==
Verify: sn2: ping() failed for sn2 :
Unable to connect to the storage node agent at host node02, port 6000,
which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: node02;
 nested exception is:
 java.net.ConnectException: Connection refused
Verify: Storage Node [sn2] on node02:6000
 Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 UNREACHABLE
Verify: rg2-rn2: ping() failed for rg2-rn2 :
Unable to connect to the storage node agent at host node02, port 6000,
which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: node02;
 nested exception is:
 java.net.ConnectException: Connection refused
Verify: Rep Node [rg2-rn2] Status: UNREACHABLE
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03:7000
 Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin2] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn3] Status: RUNNING,REPLICA
 sequenceNumber:127 haPort:7011 available storage size:12 GB
delayMillis:1 catchupTimeSecs:0
Verify: == checking storage node sn4 ==
Verify: Storage Node [sn4] on node04:8000
 Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn3] Status: RUNNING,REPLICA
 sequenceNumber:127 haPort:8010 available storage size:11 GB
delayMillis:0 catchupTimeSecs:0
Verify: == checking storage node sn5 ==
Verify: Storage Node [sn5] on node05:9000
 Zone: [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin3] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn1] Status: RUNNING,MASTER

Chapter 7
Verifying the Store

7-106

 sequenceNumber:127 haPort:9011 available storage size:14 GB
Verify: == checking storage node sn6 ==
Verify: Storage Node [sn6] on node06:10000
 Zone: [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn1] Status: RUNNING,MASTER
 sequenceNumber:127 haPort:10010 available storage size:16 GB

Verification complete, 2 violations, 0 notes found.
Verification violation: [rg2-rn2] ping() failed for rg2-rn2 :
Unable to connect to the storage node agent at host node02, port 6000,
which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: node02;
 nested exception is:
 java.net.ConnectException: Connection refused
Verification violation: [sn2] ping() failed for sn2 :
Unable to connectto the storage node agent at host node02, port 6000,
which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: node02;
 nested exception is:
 java.net.ConnectException: Connection refused

Note:

The verify output is only displayed in the shell after the command is
complete. Use tail, or grep the Oracle NoSQL Database log file to get a
sense of how the verification is progressing. Look for the string Verify. For
example:

grep Verify /KVRT1/mystore/log/mystore_0.log

Monitoring the Store
You can obtain Information about the performance and availability of your store from
both server side and client side perspectives:

• Your Oracle NoSQL Database applications can obtain performance statistics using
the oracle.kv.KVStore.getStats() class. This provides a client side view of the
complete round trip performance for Oracle NoSQL Database operations.

• Oracle NoSQL Database automatically captures Replication Node performance
statistics into a log file that you can into into spreadsheet software for analysis.
The store tracks, logs, and writes statistics at a user specified interval to a CSV
file. The file is je.stat.csv, located in the Environment directory. Logging occurs
per-Environment when the Environment is opened in read/write mode.

Configuration parameters control the size and number of rotating log files to use
(similar to java logging, see java.util.logging.FileHandler). For a rotating set of files,
as each file reaches a given size limit, it is closed, rotated out, and a new file is

Chapter 7
Monitoring the Store

7-107

opened. Successively older files are named with an incrementing numeric suffix to
the file name. The name format is je.stat[version].csv.

• The Oracle NoSQL Database administrative service collects and aggregates
status information, alerts, and performance statistics components that the store
generates. This provides a detailed view of the behavior and performance of the
Oracle NoSQL Database server.

• Each Oracle NoSQL Database Storage Node maintains detailed logs of trace
information from the services that the node supports. The administrative service
presents an aggregated, store-wide view of these component logs. Logs are
available on each Storage Node in the event that the administrative service is
not available, or if it is more convenient to examine individual Storage Node logs.

• Oracle NoSQL Database supports the optional Java Management Extensions
(JMX) agents for monitoring. The JMX interfaces allow you to poll the Storage
Nodes for information about the storage node and any replication nodes that
it hosts. For more information on JMX monitoring, see Standardized Monitoring
Interfaces . For information on using JMX securely, see Guidelines for using JMX
securely in the Security Guide.

You can monitor the status of the store by verifying it from within the CLI. See Verifying
the Store. You can also use the CLI to examine events.

Events
Events are special messages that inform you of the state of your system. As events
are generated, they are routed through the monitoring system so that you can see
them. There are four types of events that the store reports:

1. State Change events are issued when a service starts up or shuts down.

2. Performance events report statistics about the performance of various services.

3. Log events are records produced by the various system components to provide
trace information about debugging. These records are produced by the standard
java.util.logging package.

4. Plan Change events record the progress of plans as they execute, are interrupted,
fail or are canceled.

Note:

Some events are considered critical. These events are recorded in the
administration service's database, and can be retrieved and viewed using
the CLI.

You cannot view Plan Change events directly through Oracle NoSQL Database's
administrative interfaces. However, State Change events, Performance events, and
Log events are recorded using the EventRecorder facility, which is internal to the
Admin. Only events considered critical are recorded, and the criteria for being
designated as such varies with the event type. These are the events considered
critical:

• All state changes.

• Log events classified as SEVERE.

Chapter 7
Monitoring the Store

7-108

• Any performance events reported as below a certain threshold.

You can view all of these critical events using the Admin CLI show events and show
event commands.

Use the CLI show events command with no arguments to see all of the unexpired
events in the database. Use the -from and -to arguments to limit the range of events
that display. Use the -type or -id arguments to filter events by type or id, respectively.

For example, this is part of the output from a show events command:

kv-> show events
idarpdfbS STAT 2015-08-13 22:18:39.287 UTC sn1 RUNNING sev1
idarpeg0S STAT 2015-08-13 22:18:40.608 UTC sn2 RUNNING sev1
idarphmuS STAT 2015-08-13 22:18:44.742 UTC rg1-rn1 RUNNING sev1
idarpjLLS STAT 2015-08-13 22:18:47.289 UTC rg1-rn2 RUNNING sev1
idartfcuS STAT 2015-08-13 22:21:48.414 UTC rg1-rn2 UNREACHABLE sev2
 (reported by admin1)

This result shows four service state change events (sev1) and one log event
(UNREACHABLE), classified as sev2. Tags at the beginning of each line are individual
event record identifiers. To see detailed information for a particular event, use the
show event command, which takes an event record identifier, such as idartfcuS as its
argument:

kv-> show event -id idartfcuS
idartfcuS STAT 2015-08-13 22:21:48.414 UTC rg1-rn2 UNREACHABLE sev2
 (reported by admin1)

Using this method of event identifiers, you can see a complete stack trace.

Events are removed from the system if the total number of events is greater than a
set maximum number, or if the Event is older than a set period. The default maximum
number of events is 10,000, while the default time period is 30 days.

Both Sev1 and Sev2 flags are associated with specific service state change events.
Sev1 flags report the current state. Sev2 flags report errors during attempted state
changes, as follows:

Sev1 Flags Sev2 Flags

STARTING ERROR_RESTARTING

WAITING_FOR_DEPLOY ERROR_NO_RESTART

RUNNING UNREACHABLE

STOPPING

STOPPED

Setting Store Parameters
The three Oracle NoSQL Database service types, Admin, Storage Node, and
Replication Node, have configuration parameters. You can modify some parameters

Chapter 7
Setting Store Parameters

7-109

after deploying the service. Use the following Admin CLI command to see the
parameter values that you can change:

show parameters -service <>

You identify an Admin, Storage Node, or Replication service using a valid string. The
show parameters –service command displays service parameters and state for any
of the three services. Use the optional -policy flag to show global policy parameters.

Changing Parameters
All of the CLI commands used for creating parameter-changing plans share a similar
syntax:

plan change-parameters -service <id>...

All such commands can have multiple ParameterName=NewValue assignment
arguments on the same command line. If NewValue contains spaces, then the entire
assignment argument must be quoted within double quote marks. For example, to
change the Admin parameter collectorPollPeriod, you would issue the command:

kv-> plan change-parameters -all-admins -params \
 "collectorPollPeriod=20 SECONDS">

If your configProperties for all Replication Nodes is set to:

"configProperties=je.cleaner.minUtilization=40;">

And you want to add new settings for configProperties, you would issue the following
command:

kv-> plan change-parameters -all-rns -params \
 "configProperties=je.cleaner.minUtilization=40;\
 je.env.runVerifier=false;">

If for some reason, different Replication Nodes have different configProperties
parameter values, then the change-parameters command will need to be tailored for
each Replication Node.

The following commands are used to change service parameters:

• plan change-parameters -service <shardId-nodeId> -params [assignments]

This command is used to change the parameters of a single Replication Node,
which must be identified using the shard and node numbers. The shardId-nodeId
identifier must be given as a single argument with one embedded hyphen and no
spaces. The shardId identifier is represented by rgX, where X refers to the shard
number.

• plan change-parameters -all-rns -params [assignments]

This command is used to change the parameters of all Replication Nodes in a
store. No Replication Node identifier is needed in this case.

Chapter 7
Setting Store Parameters

7-110

• plan change-parameters -service <storageNodeId> -params [assignments]

This command is used to change the parameters of a single Storage Node
instance. The storageNodeId is a simple integer.

• plan change-parameters -all-admins -params [assignments]

This command is used to change Admin parameters. Because each instance
of Admin is part of the same replicated service, all instances of the Admin are
changed at the same time, so no Admin identifier is needed in this command.

If an Admin parameter change requires the restarting of the Admin service,
KVAdmin loses its connection to the server. Under normal circumstances,
KVAdmin automatically reconnects after a brief pause, when the next command
is given. At this point the plan is in the INTERRUPTED state, and must be completed
manually by issuing the plan execute command.

• plan change-parameters -security <id>

This command is used to change security parameters. The parameters are applied
implicitly and uniformly across all SNs, RNs and Admins.

In all cases, you can choose to create a plan and execute it; or to create the plan and
execute it in separate steps by using the -noexecute option of the plan command.

Setting Store Wide Policy Parameters
Most admin, Storage Node, and replication node parameters are assigned to default
values when a store is deployed. It can be inconvenient to adjust them after
deployment, so Oracle NoSQL Database provides a way to set the defaults that are
used during deployment. These defaults are called store-wide Policy parameters.

You can set policy parameters in the CLI by using this command:

change-policy -params [name=value]

The parameters to change follow the -params flag and are separated by spaces.
Parameter values with embedded spaces must be separated by spaces. Parameter
values with embedded spaces must be quoted. For example: name = "value with
spaces". If the optional dry-run flag is specified, the new parameters are returned
without changing them.

Admin Parameters
You can set the following parameters for the Admin service:

• adminLogFileCount=<Integer>

Sets the number of log files that are kept. This value defaults to "20". It is used to
control the amount of disk space devoted to logging history.

• adminLogFileLimit=<Integer>

Limits the size of log files. After reaching this limit, the logging subsystem switches
to a new log file. This value defaults to "4,000,000" bytes. The limit specifies an
approximate maximum amount to write (in bytes) to any one file. If the value is
zero, then there is no limit.

• collectorPollPeriod=<Long TimeUnit>

Chapter 7
Setting Store Parameters

7-111

Sets the Monitor subsystem's delay for polling the various services for status
updates. This value defaults to "20" seconds. Units are supplied as a string in
the change-parameters command, for example: -params collectorPollPeriod="2
MINUTES"

• loggingConfigProps=<String>

Property settings for the Logging subsystem in the Admin process. Its format is
property=value;property=value.... Standard java.util.logging properties can be
set by this parameter.

• eventExpiryAge=<Long TimeUnit>

You can use this parameter to adjust how long the Admin stores critical event
history. The default value is "30 DAYS".

• configProperties=<String>

This is an omnibus string of property settings for the underlying BDB JE
subsystem. Its format is property=value;property=value....

• javaMiscParams=<String>

This is an omnibus string that is added to the command line when the Admin
process is started. It is intended for setting Java VM properties, such as -Xmx and
-Xms to control the heap size. If the string is not a valid sequence of tokens for the
JVM command line, the Admin process fails to start.

Changing Admin JVM Memory Parameters
Admin processes can run out of memory. One of the most likely reasons is that
the default memory setting was insufficient for the Admin services to represent
all of the metadata associated with the store. Metadata includes information about
tables, security information about users and roles, and information about incomplete
plans. Stores with large amounts of metadata may need to increase the memory
setting for Admin services if the activity logs show that Admin services are failing
with OutOfMemoryError. This topic describes increasing the memory setting of the
javaMiscParams.

Initially, JVM memory for an Admin process is set as part of the javaMiscParams
parameter. This occurs when starting an Admin process to set the Java VM properties.

To change the javaMiscParams requires a comprehensive all or nothing change. You
cannot change individual parameters within the set. To change any setting, declare
them all in the plan change-parameters command, described next.

To determine the current settings of javaMiscParams and configProperties, enter the
Admin CLI show parameters -service name command as follows:

kv-> show parameters -service rg1-rn1;
cacheSize=0
collectEnvStats=true
configProperties=je.cleaner.threads 1;
je.rep.insufficientReplicasTimeout 100 ms;
je.env.runEraser true;
je.erase.deletedDatabases true;
je.erase.extinctRecords true;
je.erase.period 6 days;
je.env.runBackup false;

Chapter 7
Setting Store Parameters

7-112

je.backup.schedule 0 8 * * *;
je.backup.copyClass
oracle.nosql.objectstorage.backup.BackupObjectStorageCopy;
je.backup.copyConfig /var/lib/andc/config/params/
backup.copy.properties;
je.backup.locationClass
oracle.nosql.objectstorage.backup.BackupObjectStorageLocation;
je.backup.locationConfig /var/lib/andc/config/params/
backup.location.properties;
je.rep.electionsOpenTimeout=2 s;
je.rep.electionsReadTimeout=2 s;
je.rep.feederTimeout=3 s;
je.rep.heartbeatInterval=500;
je.rep.replicaTimeout=3 s;
je.rep.repstreamOpenTimeout=2 s;
disabled=false
hideUserData=true
javaMiscParams=-Xms96M -Xmx128M -XX:ParallelGCThreads=6
latencyCeiling=0
loggingConfigProps=
maxTrackedLatency=1000 MILLISECONDS
repNodeId=rg1-rn1
rnCachePercent=70
rnKVIndexCreationPermitLease=500000 MILLISECONDS
rnKVIndexCreationPermitTimeout=1 MINUTES
rnKVStorageStatsPermitLease=1000000 MILLISECONDS
rnKVStorageStatsPermitTimeout=10 SECONDS
rnLogMountPoint=/RNLOG00
rnLogMountPointSize=0
rnMountPoint=/DATA00
rnMountPointSize=2791728742400
rnStatisticsEnabled=true
rnStatisticsGatherInterval=1 HOURS
rnStatisticsLeaseDuration=10 MINUTES
rnStatisticsSleepWaitDuration=60 SECONDS
rnStatisticsTTL=60 DAYS
storageNodeId=4
throughputFloor=0

In this example, the javaMiscParams parameters that specify the Admin JVM memory
show the default values: 96 MB for the initial minimum size (-Xms), and 128 MB for the
maximum size (-Xmx):

javaMiscParams=-Xms96M -Xmx128M -XX:ParallelGCThreads=6

To increase Admin JVM memory when Admins are operational, use the plan change-
parameters command from the Admin CLI, as follows:

kv-> plan change-parameters -wait -all-admins -params \
javaMiscParams="-Xms2048m -Xmx2048m\
-XX:ParallelGCThreads=4"

Chapter 7
Setting Store Parameters

7-113

Specifying these new values changes the Java heap size from the default values to 2
GB for both.

Make sure that you locate the existing javaMiscParams from the Admin CLI as shown
above, and update the individual entries. The javaMiscParams setting must represent
all desired flags, not just new ones, so be sure to include any previously existing flag
values that you want to retain.

If the Admin loses quorum, then you must use the Admin CLI repair-admin-quorum
command.

Storage Node Parameters
You can set the following Storage Node parameters:

• serviceLogFileCount=<Integer>

Sets the number of log files kept by this Storage Node, and for all the Replication
Nodes it hosts. This default value is 20. Limiting the number of log files controls
the amount of disk space devoted to logging history.

• serviceLogFileLimit=<Integer>

Limits the size of each log file. After reaching this size, the logging subsystem
starts a new log file. This setting applies to the Storage Node and to all
Replication Nodes that it hosts. The default value is 2,000,000 bytes. The limit
specifies an approximate maximum amount of bytes written to any one file. Setting
serviceLogFileLimit to zero indicates that it has no size limit.

• haPortRange=<String>

Defines the range of port numbers available for assigning to Admins and
Replication Nodes that this Storage Node hosts. Each time you deploy a
Replication Node or Admin for this Storage Node, the system allocates a port from
the specified range. Enter the range value for this parameter as “lowport,highport".

• haHostname=<String>

Sets the name of the network interface used by the HA subsystem. A valid string
for a hostname can be a DNS name or an IP address.

• capacity=<Integer>

Sets the number of Replication Nodes that this Storage Node can host. This value
informs decisions about where to place new Replication Nodes. The default value
is 1. You can set the capacity level to greater than 1 if the Storage Node has
sufficient disk, CPU, and memory resources to support multiple Replication Nodes.

Setting the Storage Node capacity to 0 indicates that the Storage Node can be
used to host Arbiter Nodes. The pool of Storage Nodes in a zone configured to
host Arbiter Nodes is used for Arbiter Node allocation. See Deploying an Arbiter
Node Enabled Topology.

• memoryMB=<Integer>

Sets the amount of memory (in megabytes) available on this Storage Node. The
default value is 0, which indicates that the amount of memory is unknown. The
store determines the amount of memory automatically as the total amount of RAM
available on the machine.

Chapter 7
Setting Store Parameters

7-114

You should not need to change this parameter. If the machine has other
applications running on it, reserve some memory for those applications, and set
the memoryMB parameter value with a memory allowance for application needs.
Having other applications running on a Storage Node is not a recommended
configuration.

• numCPUs=<Integer>

Sets the number of CPUs known to be available on this Storage Node. Default
value: 1.

• rnHeapPercent=<Integer>

Sets the percentage of a Storage Node's memory reserved for heap space for all
RN processes that the SN hosts. Default value: 68.

• jvmOverheadPercent=<Integer>

Sets the percentage of Java heap size, for additional memory used by JVM
overhead. Default value: 25. In standard memory allocation, 85% of the SN's
memory is for Java heap and JVM overhead: 68% for Java heap (rnHeapPercent),
25% (jvmOverheadPercent) * 68 (rnHeapPercent) = 17% for JVM overhead, and
68% + 17% = 85%.

• rnHeapMaxMB=<Integer>

Sets a hard limit for the maximum size of the Replication Node's Java VM heap.
The default value is 0, which means the VM-specific limit is used. The default
is roughly 32 GB, which represents the largest heap size that can make use of
compressed object references.

Do not set this value to greater than 32 GB. Doing so can adversely impact your
Replication Node's performance.

Settings larger than the maximum size that supports compressed object
references will maintain the default limit unless the size is large enough that
the heap can reference a larger number of objects given the increased memory
requirements for uncompressed object references. Using larger heap sizes is not
recommended.

• systemPercent=<Integer>

Sets the percentage of the Storage Node's memory that will be used for operating
system purposes. This memory is used by the operating system for purposes such
as the file system cache, page mapping tables, file system handles, thread stacks,
and so forth.

If this parameter is set to a value less than 10, then the off-heap cache might
be used if memory remains after allowing for the heap and system use. See
Managing Off-heap Cache. Default value is 10.

• mgmtClass=<String>

The name of the class that provides the Management Agent implementation. See
Standardized Monitoring Interfaces . The port cannot be a privileged port number
(<1024).

• servicePortRange=<String>

Sets the range of ports used for communication among administrative services
running on a Storage Node and its managed services. This parameter is optional.
By default the services use anonymous ports. The format of the value string is
"startPort,endPort."

Chapter 7
Setting Store Parameters

7-115

The range needs to be large enough to accommodate the Storage Node, all the
Replication Nodes (as defined by the capacity parameter), Admin and Arbiter
services hosted on the machine, and JMX, if enabled. The number of ports
required also depends on whether the system is configured for security, which is
the default. For a non-secure system, the Storage Node consumes 1 port (shared
with the port assigned separately for the Registry Service, if it overlaps the service
port range), and each Replication Node consumes 1 port in the range. An Admin,
if configured, consumes 1 port. Arbiters consume 1 port each. If JMX is enabled,
that consumes 1 additional port. On a secure system, two additional ports are
required for the Storage Node, and two for the Admin. As a general rule, we
recommend that you specify a range significantly larger than the minimum. More
available ports allows for increases in Storage Node capacity, or network problems
that can render ports temporarily unavailable.

The ports that you specify in the servicePortRange should not overlap with the
Admin port or with haPortRange. The service port range can include the registry
port, so the registry and Storage Node share a port.

For deploying a secure Oracle NoSQL Database, use the following formula to
estimate the port range size number, adding an additional port for each Storage
Node, Replication Node or the Admin (if configured):

 3 (Storage Nodes) +
capacity (the number of Replication Nodes) +
Arbiters (the number of Arbiter Nodes) +
3 (if the Storage Node is hosting an admin) +
1 (if the Storage node is running JMX)

For more information on configuring Oracle NoSQL Database securely, see
Security Guide.

For a non-secure system, use the following formula to estimate the port range size
number:

1 (Storage Node) +
capacity (the number of Replication Nodes) +
Arbiters (the number of Arbiter Nodes) +
1 (if the Storage Node is hosting an admin) +
1 (if the Storage Node is running JMX)

For example, if a Storage Node has capacity 1, is hosting an Admin process,
and neither Arbiters nor JMX are in use, the range size must be at least 3. You
can increase the range size beyond this minimum, for safety and Storage Node
expansion. Then, if you expand the Storage Node, you will not need to make
changes to this parameter. If capacity is 2, the range size must be greater than or
equal to 4.

• rootDirPath=<path>

The path to the Storage Node's root directory.

• rootDirSize=<Long Unit_String>

Sets the storage size of the root directory. However, no run-time checks are
performed to verify that the actual directory size is greater than or equal to the
size you specify. Use this setting for heterogeneous installation environments
where some Storage Nodes have more disk capacity than others. Then, use this

Chapter 7
Setting Store Parameters

7-116

parameter only for those Storage Nodes that store data in the root directory (not
recommended).

• The value that you specify for this parameter must be a long, followed optionally
by a unit string. Accepted unit strings are: KB, MB, GB, and TB, corresponding
to 1024, 1024^2, 1024^3, 1024^4, respectively. Acceptable strings are case
insensitive. Valid delimiters between the long value and the unit string are " ",
"-", or "_".

Note:

The rootDirSize parameter is intended for backward compatibility
with older installations that were created without specifying the -
storagedir parameter. We strongly recommend not storing data in
your root directory. See Managing Storage Directory Sizes. However,
if you do specify a -rootDirPath parameter, you must also specify
-rootDirSize. If you are trying to change parameter settings (plan
change-parameters), and do not specify both parameters, a warning is
displayed.

• Do not use the rootDir parameter if a Storage Nodes uses some other directory
(such as you can specify using plan change-storagedir).

Replication Node Parameters
The following parameters can be set for Replication Nodes:

• collectEnvStats=<Boolean>

If true, then the underlying BDB JE subsystem dumps statistics into the .stat file.
This information is useful for tuning JE performance. Oracle Support may request
these statistics to aid in tuning or to investigate a problem.

• maxTrackedLatency=<Long TimeUnit>

The highest latency that is included in the calculation of latency percentiles.

• configProperties=<String>

Contains property settings for the underlying BDB JE subsystem. Its format is
property=value;property=value....

• javaMiscParams=<String>

A string that is added to the command line when the Replication Node process is
started. It is intended for setting Java VM properties, such as -Xmx and -Xms to
control the heap size. If the string is not a valid sequence of tokens for the JVM
command line, the Admin process fails to start.

• loggingConfigProps=<String>

Contains property settings for the Logging subsystem. The format of this string is
like that of configProperties, above. Standard java.util.logging properties can be
set by this parameter.

• cacheSize=<Long>

Sets the cache size in the underlying BDB JE subsystem. The units are bytes.
The size is limited by the java heap size, which in turn is limited by the amount

Chapter 7
Setting Store Parameters

7-117

of memory available on the machine. You should only ever change this low level
parameter under explicit directions from Oracle support.

• latencyCeiling=<Integer>

If the Replication Node's average latency exceeds this number of milliseconds, it
is considered an "alertable" event. If JMX monitoring is enabled, the event also
causes an appropriate notification to be sent.

• throughputFloor=<Integer>

Similar to latencyCeiling, throughputFloor sets a lower bound on Replication Node
throughput. Lower throughput reports are considered alertable. This value is given
in operations per second.

• rnCachePercent=<Integer>

The portion of an RN's memory set aside for the JE environment cache.

Global Parameters
The following store-wide non-security parameters can be implicitly and uniformly set
across all Storage Nodes, Replication Nodes and Admins:

collectorInterval =<Long TimeUnit>

Sets the collection period for latency statistics at each component. This value defaults
to "20" seconds. Values like average interval latencies and throughput are averaged
over this period of time.

Security Parameters
The following store-wide security parameters can be implicitly and uniformly set across
all Storage Nodes, Replication Nodes and Admins:

• sessionTimeout=<Long TimeUnit>

Specifies the length of time for which a login session is valid, unless extended.
The default value is 24 hours.

• sessionExtendAllowed=<Boolean>

Indicates whether session extensions should be granted. Default value is true.

• accountErrorLockoutThresholdInterval=<Long TimeUnit>

Specifies the time period over which login error counts are tracked for account
lockout monitoring. The default value is 10 minutes.

• accountErrorLockoutThresholdCount=<Integer>

Number of invalid login attempts for a user account from a particular host address
over the tracking period needed to trigger an automatic account lockout for a host.
The default value is 10 attempts.

• accountErrorLockoutTimeout=<Long TimeUnit>

Time duration for which an account will be locked out once a lockout has been
triggered. The default value is 30 minutes.

• loginCacheTimeout=<Long TimeUnit>

Chapter 7
Setting Store Parameters

7-118

Time duration for which KVStore components cache login information locally to
avoid the need to query other servers for login validation on every request. The
default value is 5 minutes.

The following password security parameters can be set:

Parameter Name Value Range and Type Description

passwordAllowedSpecial Sub set or full set of
#$%&'()*+,-./:; <=>?@[]^_`{|}
(string)~

Lists the allowed special
characters.

passwordComplexityCheck [true|false] (boolean) Whether to enable
the password complexity
checking. The default value is
true.

passwordMaxLength 1 - 2048 (integer) The maximum length of a
password. The default value is
256.

passwordMinDigit 0 - 2048 (integer) The minimum required number
of numeric digits. The default
value is 2.

passwordMinLength 1 - 2048 (integer) The Minimum length of a
password. The default value is
9.

passwordMinLower 0 - 2048 (integer) The minimum required number
of lower case letters. The
default value is 2.

passwordMinSpecial 0 - 2048 (integer) The minimum required number
of special characters. The
default value is 2.

passwordMinUpper 0 - 2048 (integer) The minimum required number
of upper case letters. The
default value is 2.

passwordNotStoreName [true|false] (boolean) If true, password should not
be the same as current store
name, nor is it the store name
spelled backwards or with
the numbers 1–100 appended.
The default value is true.

passwordNotUserName [true|false] (boolean) If true, password should not
be the same as current user
name, nor is it the user name
spelled backwards or with
the numbers 1-100 appended.
The default value is true.

passwordProhibited list of strings separated by
comma (string)

Simple list of words that
are not allowed to be
used as a password. The
default reserved words are:
oracle,password,user,nosql.

passwordRemember 0 - 256 (integer) The maximum number of
passwords to be remembered
that are not allowed to be
reused when setting a new
password. The default value is
3.

Chapter 7
Setting Store Parameters

7-119

For more information on top-level, transport, and password security parameters see
the Security Guide.

Admin Restart
Changes to the following Oracle NoSQL Database parameters will result in a Admin
restart by the Storage Node Agent:

Admin parameters:

• adminLogFileCount

• adminLogFileLimit

• configProperties

• javaMiscParams

• loggingConfigProps

• adminHttpPort

For example:

kv-> plan change-parameters -all-admins
-params adminLogFileCount=10
Started plan 14. Use show plan -id 14 to check status.
 To wait for completion, use plan wait -id 14
kv-> show plan -id 14
Plan Change Admin Params (14)
Owner: null
State: INTERRUPTED
Attempt number: 1
Started: 2013-08-26 20:12:06 UTC
Ended: 2013-08-26 20:12:06 UTC
Total tasks: 4
 Successful: 1
 Interrupted: 1
 Not started: 2
Tasks not started
 Task StartAdmin start admin1
 Task WaitForAdminState waits for Admin admin1 to reach RUNNING state
kv-> plan execute -id 14
Started plan 14. Use show plan -id 14 to check status.
 To wait for completion, use plan wait -id 14
kv-> show plan -id 14
Plan Change Admin Params (14)
State: SUCCEEDED
Attempt number: 1
Started: 2013-08-26 20:20:18 UTC
Ended: 2013-08-26 20:20:18 UTC
Total tasks: 2
 Successful: 2

Chapter 7
Setting Store Parameters

7-120

Note:

When you change a parameter that requires an Admin restart using the plan
change-parameters command, the plan ends in an INTERRUPTED state. To
transition it to a SUCCESSFUL state, re-issue the plan a second time using the
plan execute -id <id> command.

Replication Node Restart
Changes to the following Oracle NoSQL Database parameters will result in a
Replication Node restart by the Storage Node Agent:

Storage Node parameters:

• serviceLogFileCount

• serviceLogFileLimit

• servicePortRange

Replication Node parameters:

• configProperties

• javaMiscParams

• loggingConfigProps

Removing an Oracle NoSQL Database Deployment
There are no scripts or tools available to completely remove an Oracle NoSQL
Database installation from your hardware. However, the procedure is simple. On each
node (machine) comprising your store:

1. Shut down the Storage Node:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop -root KVROOT

Note that if an Admin process is running on the machine, this command also stops
that process.

2. Physically remove the entire contents of KVROOT:

> rm -rf KVROOT

3. Empty the contents of all the storage directories configured for the KVStore. For
example, if you configured three storage directories using the makebootconfig
utility, you must clean up all the three storage directories.

cd /disk1
rm -rf *

Chapter 7
Removing an Oracle NoSQL Database Deployment

7-121

Once you have performed this procedure on every machine comprising your store,
you have completely removed the Oracle NoSQL Database deployment from your
hardware.

Modifying Storage Node HA Port Ranges
When you initially configured your installation, you defined a range of ports for the
nodes to use when communicating between themselves. (You did this in Installation
Configuration Parameters.) This range of ports is called the HA port range, where HA
is an acronym for High Availability, and indicates your store’s replication factor.

If you inadvertently used invalid values for the HA Port Range, you cannot deploy a
Replication Node (RN) or a secondary Administration process (Admin) on any Storage
Node. You will discover the problem when you first attempt to deploy a store with a
Replication node. Following are indications that the Replication Node did not come up
on the Storage Node:

• The Admin logs include an error that the Replication Node is in the
ERROR_RESTARTING state. After a number of retries, the warning error changes to
ERROR_NO_RESTART. You can find the Replication Node state in the ping command
output.

• The plan enters an ERROR state. Using the CLI's show plan <planID> command to
get more history details includes an error message like this:

Attempt 1
 state: ERROR
 start time: 10-03-11 22:06:12
 end time: 10-03-11 22:08:12
 DeployOneRepNode of rg1-rn3 on sn3/farley:5200 [RUNNING]
 failed. Failed to attach to RepNodeService for rg1-
rn3,
 see log, /KVRT3/<storename>/log/rg1-rn3*.log, on host
 farley for more information.

• The critical events mechanism, accessible through the Admin CLI show events
command, includes an alert containing the same error information from the plan
history.

• The store’s runtime or boot logs for the Storage Node and/or Admin shows a port
specific error message, such as:

[rg1-rn3] Process exiting
java.lang.IllegalArgumentException: Port number 1 is invalid because
the port must be outside the range of "well known" ports

You can address incorrect HA port ranges in a configuration by completing the
following steps. Steps that require you to execute them on the physical node hosting
the Oracle NoSQL Database Storage Node, begin with the directive On the Storage
Node. You can execute other steps from any node that can access the Admin CLI.

1. Using the Admin CLI, cancel the plan deploy-sn or plan deploy-admin
command that includes invalid HA Port Range values.

2. On the Storage Node, kill the existing, incorrectly configured
StorageNodeAgentImpl process and all of its Managed Processes. You can

Chapter 7
Modifying Storage Node HA Port Ranges

7-122

distinguish managed processes from other processes because they have the
parameter -root <KVROOT>.

3. On the Storage Node, remove all files from the KVROOT directory.

4. On the Storage Node, recreate the storage node bootstrap configuration file in the
KVROOT directory. For directions, see Installation Configuration Parameters.

5. On the Storage Node, restart the storage node using this Java command:

java -Xmx64m -Xms64m
-jar KVHOME/lib/kvstore.jar restart

6. Using the Admin CLI, you can now create and execute a deploy-sn or deploy-
admin plan, using the same parameters as the initial plan, but with the correct HA
range.

Modifying Storage Node Service Port Ranges
This section explains how to modify your Storage Node service port ranges after an
initial configuration and deployment.

When you initially configure your installation, you specify a range of ports that
your Storage Node's Replication Nodes and Admin services use. These ports are
collectively called the service port ranges. Configuring them at installation time was
optional. If you did not configure them, the configuration scripts automatically selected
a range of ports for you.

The process of modifying your service port range depends on whether the Storage
Node has already been deployed. You can determine whether a Storage Node has
been deployed by using the Command Line Interface (CLI) to run the show topology
command. (See show topology for details). The show topology command lists the
Storage Node, along with the host and port if it has been deployed.

Storage Node Not Deployed
Use this process to modify your Service Port Ranges if the Storage Node has been
configured but not deployed.

Execute the following steps on the Storage Node host:

1. Kill the existing Storage Node process. You can find the ID of this process by
using:

ps -af | grep -e "kvstore.jar.*start.*<KVROOT>"

Kill the process using:

kill <storage node id>

2. Remove all the files from the <KVROOT> directory.

rm -rf <KVROOT>/*

Chapter 7
Modifying Storage Node Service Port Ranges

7-123

3. Recreate the Storage Node bootstrap configuration file with the updated service
port ranges, being sure to specify the -servicerange parameter. For example:

java -Xmx64m -Xms64m \
-jar <KVHOME>/lib/kvstore.jar makebootconfig -root <KVROOT> \
-port <port> -host <host> -harange <harange> \
-servicerange <startPort, endPort>

See makebootconfig for details on using this utility.

4. Restart the Storage Node:

Note:

Before starting the SNA, on each node, set the environment variable
MALLOC_ARENA_MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar restart

You can proceed to deploy the Storage Node using the Admin CLI. It will use the newly
specified service port range.

Storage Node Deployed
Use this process to modify your Service Port Ranges if the Storage Node has been
deployed.

1. Using the Admin CLI, modify the service port range using the plan change-
parameters command. Specify servicePortRange while you do. For example:

plan change-parameters -service <id> \
-params servicePortRange=<startPort,endPort>

servicePortRange is described in Storage Node Parameters.

2. Restart the Storage Node process and its services. The Replication Nodes and
any admin services for the Storage Node can be stopped in an orderly fashion
using the CLI. Use the show topology command (show topology) to list all the
services associated with the Storage Node.

Stop each of these services using the plan stop-service command. See plan
stop-service for details on this command. Note that when you stop a service, you
must use the services ID, which you can find from the output of the show topology
command. Keep track of these IDs because you will need them when you restart
the Storage Node.

Repeat until all services for the Storage Node have been stopped.

Chapter 7
Modifying Storage Node Service Port Ranges

7-124

3. Kill the existing Storage Node process. You can find the ID of this process by
going to the Storage Node host and issuing:

ps -af | grep -e "kvstore.jar.*start.*<KVROOT>"

Kill the process using:

kill <storage node id>

Note:

Avoid killing all Replication Nodes in your store at the same time, as
doing so will result in unexpected errors.

4. Restart the Storage Node by going to the Storage Node host and issuing:

Note:

Before starting the SNA, on each node, set the environment variable
MALLOC_ARENA_MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar restart

5. Restart the Storage Node services by using plan start-service for each service
on the Storage Node. See plan start-service for details.

6. When the Storage Node is restarted and all its Replication Nodes and any admin
services are running, the services will be using the updated service port range.
You can check by first locating the process ID of the Storage Node services using
this command:

ps -af | grep -e "ManageService.*<KVROOT>"

and then check the ports the services are listening to by using this command:

netstat -tlpn | grep <id>

One of the listening ports is the service port and it should be within the new range.

Chapter 7
Modifying Storage Node Service Port Ranges

7-125

8
Availablity, Failover and Switchover
Operations

Availability and Failover
Oracle NoSQL Database is a data storage product with enormous scalability
and performance benefits. Additionally, Oracle NoSQL Database offers excellent
availability mechanisms. These mechanisms are designed to provide your applications
access to data contained in the store in the event of localized hardware and network
failures.

This document describes the mechanisms Oracle NoSQL Database uses to ensure
your data remains available, along with the various failover algorithms that Oracle
NoSQL Database employs. In addition, this document describes application design
patterns you can use to best make use of Oracle NoSQL Database's availability
mechanisms. In some cases, tradeoffs exist between ensuring data is highly available,
and achieving optimal performance. This document explores these tradeoffs.

The intended audience for this document includes system architects, engineers, and
others who want to understand the concepts and issues surrounding data availability
when using Oracle NoSQL Database. In addition, software engineers responsible for
writing code that interacts with an Oracle NoSQL Database store should also read this
document.

We recommend that you read and get familiar with the following contents before
continuing.

• SQL Reference Guide

This document introduces terms and concepts you need to know before reading
this document.

• Durability Guarantees in the Java Direct Driver Developer's Guide

This section includes concepts that lead to issues surrounding write availability.

• Consistency Guarantees in the Java Direct Driver Developer's Guide

This section includes concepts that lead to issues surrounding read availability.

Replication Overview
To ensure data durability and availability, Oracle NoSQL Database uses a single-
master replication strategy. Using a single machine to perform write operations, Oracle
NoSQL Database then broadcasts those operations to multiple read-only replicas.

The Concepts Guide describes a shard as a collection of replication nodes, associated
with a single master node and multiple replicas. Your store contains multiple shards,
and your data is spread evenly across all of the shards that your store uses.

8-1

When you perform a write operation in your store, Oracle NoSQL Database completes
the write operation on the master node in use by the shard containing your data. The
master node performs this write according to whatever durability guarantees are in
place at the time. If you set a strong durability guarantee, the master requires the
participation of some or all of the replicas in the shard to complete the write operation.

If the master node of the shard becomes unavailable for any reason, the replica nodes
in primary zones hold an election to determine which of the remaining replication
nodes should take over as the master node. The replication node with the most
up-to-date data wins the election.

The election is decided based on a simple majority vote. This means that a majority of
the nodes in the shard in primary zones must be available to participate in the election
to select a new master.

Loss of a Read-Only Replica Node
A common fail over case is losing a replica node due to a problem with the machine
upon which it is running. This loss can be due to something as common as a hard
drive failure.

In this case, the only shard that is affected is the one using the replica. By default, the
effect on the shard is reduced read throughput capacity. The shard itself is capable of
continuing normal operations. However, losing a single Replication Node reduces its
capacity to service read requests by whatever read throughput a single host machine
offers your store. Whether you detect this reduction in read throughput capacity
depends on how heavy a read load your shard is experiencing. The shard could
have a low enough read load that losing the replica results in a minor performance
reduction.

Such a small performance reduction assumes that a single host machine contains
only one Replication Node. If you configure your store so that multiple Replication
Nodes run on a single host, then the loss of throughput capacity increases accordingly.
It is likely that the loss of a machine running multiple Replication Nodes will affect
the throughput capacity of more than one shard, because it is unlikely that all the
Replication Nodes on that machine will belong to the same shard. Again, whether you
notice any performance reduction from the loss of the Storage Node depends on how
heavy a read load the individual affected shards are experiencing.

In this scenario, with one exception, the shard will continue servicing write requests,
and may be able to do so with no changes to its write throughput capacity. The master
itself is not affected, so it can continue performing writes and replicating them to the
remaining replicas in the shard. There can be reduced write throughput capacity if:

• there is such a heavy read load on the shard that the loss of one replica saturates
the remaining replica(s); and

• the master requires an acknowledgement before finishing a write commit.

In this scenario, write performance capacity can be reduced either because the master
is continually waiting for the replica to acknowledge commits, or because the master
itself is expending resources responding to read requests. In either case, you may see
degraded write throughput, but the level of degradation depends on how heavy the
read/write load actually is on the shard. Again, it is possible that you will never detect
any write throughput reduction, because the write load on the shard is low.

In addition, the loss of a single read-only replica can cause all write operations at that
shard to fail with a DurabilityException exception. This happens if you are using

Chapter 8
Loss of a Read-Only Replica Node

8-2

a durability guarantee that requires acknowledgements from all replicas in the shard
in primary zones. In this case, writes at that shard will fail until either that replica is
brought back online, or you place a less strict durability guarantee into use.

Using durability guarantees that require acknowledgements from all replicas in primary
zones offer you the strongest data durability possible (by making certain that your
writes are replicated to every machine in a shard). At the same time, they have the
potential to lose write capabilities for an entire shard from a single hardware failure.
Consequently, be sure to balance your durability requirements against your availability
requirements, and configure your store and related code accordingly.

Loss of a Read/Write Master
If you lose a host machine containing a shard's master, the shard will be incapable of
responding to write requests, momentarily. The lack of write request response is so
brief that it may not be detected by your client code. Only the shard containing the
master is affected by this outage. All other shards continue to perform as normal.

In this case, the shard's replicas in primary zones will quickly notice the master is
missing and call for an election. Typically this will occur within a few milliseconds after
losing the master.

The replica nodes will conduct an election, and the replica in a primary zone with the
most up-to-date set of data will be elected master. To be elected master requires a
simple majority vote from the other machines in the shard hosting nodes in primary
zones. Keep in mind that this simple majority requirement has implications if many
machines are lost from your store.

Once a new master is elected, the shard will continue operations, reducing its
read throughput capacity by one machine. As with the loss of a single replica (see
the previous section), all write operations can continue as long as your durability
guarantee does not require acknowledgements from all replicas in primary zones.

Your client code will not notice the missing master if the new master is elected
and services the write request within the timeout value used for the write operation.
However, we recommend that your production code include ways to guard against
timeout problems. In the event of a timeout, your code should include a decision policy
about what to do next. For example, your policy could:

• Retry the write operation immediately,

• Retry the write operation after a defined wait,

• Abandon the write operation entirely.

Unplanned Network Partitions
A shard can be split into two, non-communicating networks. Such an event can occur
when a piece of network hardware, such as a router, fails in some way that divides the
shard. The store’s response to such an event depends on how the network partition
divides the shard’s Replication Nodes as in these three cases:

A single Replication Node is isolated from the rest of the shard. If the Replication Node
is a read-only replica, the shard continues operating as normal, but without the read
throughput capacity caused by the loss of a single machine. See Loss of a Read-Only
Replica Node for more details.

Chapter 8
Loss of a Read/Write Master

8-3

A single Replication Node becomes isolated from the rest of the shard. If the
Replication Node is a master, the shard handles the event in the same way as if it had
lost a master. The shard holds an election to select a new master and then continues
operating as normal. See Loss of a Read/Write Master for further information.

The new network partition divides the shard into two or more groups of machines. In
this case, there will be at least one minority node partition. A minority node partition
contains less than a majority of the Replication Nodes in the shard. There could also
be a majority node partition. A majority node partition has the majority of nodes in
the shard —. However, a majority node partition is not a given, especially if the new
network partition creates more than two sets of Replication Nodes.

How failover is handled in this scenario depends on whether a majority node partition
does exist, and if the master exists in that partition. There are also other issues to
consider, such as the durability and consistency policies that were in use at the time
the new network partition was created.

Master is in the Majority Node Partition
Suppose the shard is divided into two partitions. Partition A contains a simple majority
of the Replication Nodes in primary zones, including the master. Partition B has the
remaining nodes.

• Partition A continues to service read and write requests as normal, but with a
reduced read throughput from the loss of however many Replication Nodes are
in Partition B. A caveat in this situation is what durability policy is in use at the
time. If Partition A does not have enough replicas from primary zones to meet the
durability policy requirements, it could be prevented from servicing write requests.
If the durability policy requires a simple majority, or less, of replicas, then the shard
will be able to service write requests.

• Partition B continues to service read requests as normal, but with increasingly
stale data. Depending on the consistency guarantee in place, Partition B might
cease to service read requests. If a version-based consistency is in use,
then Partition B will probably encounter ConsistencyException exceptions soon
after the network partition occurs, due to its inability to obtain version tokens
from the master. Similarly, if a time-based consistency policy is in use, then
ConsistencyException exceptions will occur as soon as the replica lags too far
behind the master, from which it is no longer receiving write updates. By default,
a consistency guarantee is not required to service read requests. So unless you
explicitly create and use a consistency policy, Partition B can continue to service
read requests through the entire network outage.

Partition B will attempt to elect a new master, but will be unable to do so because
it does not contain the simple majority of Replication Nodes required to hold an
election.

Further, if the partition is such that your client code can reach Partition A but not
Partition B, then the shard will continue to service read and write requests as normal,
but with a reduced read capacity.

However, if the partition is such that your client code can read Partition B but not
Partition A, then the shard will be unable to service any write requests. This is because
Partition A contains the master, and Partition B does not include enough Replication
Nodes to elect a new master.

Chapter 8
Unplanned Network Partitions

8-4

Master is in the Minority Node Partition
Suppose the shard is divided into two partitions. Partition A contains a simple majority
of the Replication Nodes from primary zones, but NOT the master. Partition B has the
remaining nodes, including the master.

Assuming both partitions are network accessible by your client code, then:

• Partition A will notice that it no longer has a master. Because Partition A has at
least a simple majority of the Replication Nodes in primary zones, it will be able to
elect a new master. It will do this quickly, and the shard will continue operations as
normal.

Whether Partition A can service write requests is determined by the durability
policy in use. As long as the durability policy requires a simple majority, or less, of
replicas, then the shard is able to service write requests.

• Partition B will continue to operate as normal, believing that it has a valid master.
However, the only way Partition B can service write requests is if the durability
policy in use requires no participation from the shard's replicas. If a majority of
nodes in primary zones must acknowledge the write operation, or if all nodes in
primary zones must acknowledge the write, then the partitions will be unable to
service writes because not enough nodes are available to satisfy the durability
policy.

If durability NONE is in use, then for the period of time that it takes to resolve
the network partition, the shard will operate with two masters. When the partition
is resolved, the shard will recognize the problem and correct it. Because Partition
A held a valid election, writes performed there will be kept. Any writes performed
in Partition B will be discarded. The old master in Partition B will be demoted to
a simple replica, and the replicas in Partition B will all be synced with the new
master.

Note:

Because of the potential for loss of data in this scenario, Oracle strongly
recommends that you do NOT use durability NONE. The only time you
should use that durability setting is if you want to absolutely maximize
write throughput, and do not care if you lose the data.

Further, if the partition is such that your client code can reach Partition A but not
Partition B, then the shard will continue to service read and write requests as normal,
but only after an election is held, and then with a reduced read capacity.

However, if the partition is such that your client code can read Partition B but not
Partition A, then the shard will be unable to service write requests at all, unless
you use the weakest durability policy available. This is because Partition B does not
include enough Replication Nodes to satisfy anything other than the weakest available
durability policy.

No Majority Node Partition
Suppose the shard is divided into multiple partitions, and no partition contains a
majority of the Replication Nodes in the shard. In this case, the shard's partitions can

Chapter 8
Unplanned Network Partitions

8-5

service read requests, so long as the consistency policy in use for the read supports it.
If the read requires tight consistency with the master, and the master is not available to
ensure the consistency can be met, then the read will fail.

The partition containing the master can service write requests only if you are using the
weakest available durability policy, in which no acknowledgements from replicas are
required. If acknowledgements are required, then there will not be enough replicas to
satisfy the durability policy and no write operations can occur.

Once the network partition is resolved, the shard will elect a new master, synchronize
all replicas with it, and continue operations as normal.

Failover and Switchover Operations
Optimal use of available physical datacenters is achieved by deploying your store
across multiple zones. This provides fault isolation as each zone has a copy of your
complete store, including a copy of all the shards. With this configuration, when a zone
fails, write availability is automatically reestablished as long as quorum is maintained.

Note:

To achieve other levels of fault isolation, best practices for data center design
should be applied. For example, site location, building selection, floor layout,
mechanical design, electrical system design, modularity, etc.

However, if quorum is lost, manual procedures such as failovers can be used instead
to recover from zone failures. For more information on quorum, see Concepts Guide.

A failover is typically performed when the primary zone fails or has become
unreachable and one of the secondary zones is transitioned to take over the primary
role. Failover can also be performed to reduce the quorum to the available primary
zones. Failover may or may not result in data loss.

Switchovers can be used after performing a failover (to restore the original
configuration) or for planned maintenance.

A switchover is typically a role reversal between a primary zone and one of the
secondary zones of the store. A switchover can also be performed to convert one or
more zones to another type for maintenance purposes. Switchover requires quorum
and guarantees no data loss. It is typically done for planned maintenance of the
primary system.

In this chapter, we explain how failover and switchover operations are performed.

Note:

Arbiters are not currently supported during failover and switchover
operations.

Chapter 8
Failover and Switchover Operations

8-6

Repairing a Failed Zone
If a zone fails but quorum is maintained, you have the option to repair the failed zone
with new hardware by following the procedure described in Repairing a Failed Zone by
Replacing Hardware.

Another option is to convert the failed zone to a secondary zone. In some cases, this
approach can improve the high availability characteristics of the store by reducing the
quorum requirements.

For example, suppose a store consists of two primary zones: zone 1 with a replication
factor of three and zone 2, with a replication factor of two. Additionally, suppose zone
2 fails. In this case, quorum is maintained because you would have 3 out of the 5
replicas, but any additional failure would result in a loss of quorum.

Converting zone 2 to a secondary zone would reduce the primary replication factor to
3, meaning that each shard could tolerate an additional failure.

You should determine if switching zone types would actually improve availability. If so,
then decide if it is worth doing in the current circumstances.

Performing a Failover
If quorum is maintained, you do not need to do anything because the store is still
performing normally.

In situations where a zone fails but quorum is lost, your only option is to perform a
failover.

For example, suppose a store consists of two primary zones, "Manhattan" and
"JerseyCity", each deployed in its own physical data center.

Note:

For simplicity, this example uses a store with a replication factor of two. In
general, a Primary Replication Factor of 3 is adequate for most applications
and is a good starting point, because 3 replicas allow write availability if a
single primary zone fails.

Additionally, suppose that the "Manhattan" zone fails, resulting in the failure of all of
the associated Storage Nodes and a loss of quorum. In this case, if the host hardware
of "Manhattan" was irreparably damaged or the problem will take too long to repair you
may choose to initiate a failover.

The following steps walk you through the process of verifying failures, isolating
Storage Nodes, and reducing admin quorum to perform a failover operation. This
process allows service to be continued in the event of a zone failure.

Chapter 8
Failover and Switchover Operations

8-7

1. Connect to the store. To do this, connect to an admin running in the JerseyCity
zone:

java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar \
runadmin -host jersey1 -port 6000 \
-security USER/security/admin.security

Note:

This assumes that you must have followed the steps as mentioned in
Configuring Security with Remote Access.

2. Use the verify configuration command to confirm the failures:

kv-> verify configuration
Connected to Admin in read-only mode
Verify: starting verification of store mystore based upon
topology sequence #207
200 partitions and 2 storage nodes.
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
See jersey1:/kvroot/mystore/log/mystore_{0..N}.log
 for progress messages
Verify: Shard Status: healthy:0 writable-degraded:0
 read-only:1
offline:0
Verify: Admin Status: read-only
Verify: Zone [name=Manhattan id=zn1 type=PRIMARY
allowArbiters=false masterAffinity=false]
RN Status: online:0 offline:1
Verify: Zone [name=JerseyCity id=zn2 type=PRIMARY
allowArbiters=false masterAffinity=false]
RN Status: online:1 offline:0
Verify: == checking storage node sn1 ==
Verify: sn1: ping() failed for sn1 :
Unable to connect to the storage node agent at host nyc1,
port 5000, which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
 nyc1; nested exception is:
 java.net.ConnectException: Connection refused
Verify: Storage Node [sn1] on nyc1:5000
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 UNREACHABLE
Verify: admin1: ping() failed for admin1 :
Unable to connect to the storage node agent at host nyc1,
port 5000, which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
 nyc1; nested exception is:
 java.net.ConnectException: Connection refused
Verify: Admin [admin1] Status: UNREACHABLE
Verify: rg1-rn1: ping() failed for rg1-rn1 :
Unable to connect to the storage node agent at host nyc1,

Chapter 8
Failover and Switchover Operations

8-8

port 5000, which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
 nyc1; nested exception is:
 java.net.ConnectException: Connection refused
Verify: Rep Node [rg1-rn1] Status: UNREACHABLE
Verify: == checking storage node sn2 ==
Verify: Storage Node [sn2] on jersey1:6000
Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin2]
Status: RUNNING,MASTER (non-authoritative)
Verify: Rep Node [rg1-rn2]
Status: RUNNING,MASTER (non-authoritative)
 sequenceNumber:217 haPort:6003
available storage size:12 GB
Verification complete, 4 violations, 0 notes found.
Verification violation: [admin1] ping() failed for admin1 :
Unable to connect to the storage node agent at host nyc1,
port 5000,which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
 nyc1; nested exception is:
 java.net.ConnectException: Connection refused
Verification violation: [rg1-rn1] ping() failed for rg1-rn1 :
Unable to connect to the storage node agent at host nyc1,
port 5000, which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
 nyc1; nested exception is:
 java.net.ConnectException: Connection refused
Verification violation: [sn1] ping() failed for sn1 :
Unable to connect to the storage node agent at host nyc1,
port 5000, which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
 nyc1; nested exception is:
 java.net.ConnectException: Connection refused

In this case, the Storage Node Agent at host nyc1 is confirmed unavailable.

3. To prevent a hard rollback and data loss, isolate failed nodes (Manhattan) from
the rest of the system. Make sure all failed nodes are prevented from rejoining the
store until their configurations have been updated.

To do this, you can:

• Disconnect the network physically or use a firewall.

• Modify the start-up sequence on failed nodes to prevent SNAs from starting.

4. To make changes to the store, you first need to reduce admin quorum. To do this,
use the repair-admin-quorum command, specifying the available primary zone:

kv-> repair-admin-quorum -znname JerseyCity
Connected to admin in read-only mode
Repaired admin quorum using admins: [admin2]

Chapter 8
Failover and Switchover Operations

8-9

Now you can perform administrative procedures using the remaining admin
service with the temporarily reduced quorum.

5. Use the plan failover command to update the configuration of the store with the
available zones.

kv-> plan failover -znname \
JerseyCity -type primary \
-znname Manhattan -type offline-secondary -wait
Executing plan 8, waiting for completion...
Plan 8 ended successfully

The plan failover command fails if it is executed while other plans are still
running. You should cancel or interrupt the plans, before executing this plan.

For example, suppose the topology redistribute is in progress. If you run the
plan failover command, it will fail. For it to succeed, you need to first cancel or
interrupt the topology redistribute command.

To do this, first use the show plans command to learn the plan ID of the topology
redistribute command. In this case, 9. Then, cancel the topology redistribute
command using the plan cancel command:

kv-> plan cancel -id 9

After performing the failover, confirm that the zone type of Manhattan has been
changed to secondary using the ping command.

kv-> ping
Pinging components of store mystore based upon topology sequence
#208
200 partitions and 2 storage nodes
Time: 2018-10-18 07:39:03 UTC Version: 18.3.2
Shard Status: healthy:0 writable-degraded:1 read-only:0 offline:0
Admin Status: writable-degraded
Zone [name=Manhattan id=zn1 type=SECONDARY allowArbiters=false
masterAffinity=false]
RN Status: online:0 offline:1
Zone [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:1 offline:0
Storage Node [sn1] on nyc1:5000
Zone: [name=Manhattan id=zn1 type=SECONDARY allowArbiters=false
masterAffinity=false]
 UNREACHABLE
 Admin [admin1] Status: UNREACHABLE
 Rep Node [rg1-rn1] Status: UNREACHABLE
Storage Node [sn2] on jersey1:6000
Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
 Admin [admin2] Status: RUNNING,MASTER
 Rep Node [rg1-rn2]

Chapter 8
Failover and Switchover Operations

8-10

 Status: RUNNING,MASTER sequenceNumber:427 haPort:6011
available storage size:12 GB

6. The failover operation is now complete. Write availability in the store is
reestablished using zone 2 as the only available primary zone. Zone 1 is offline.
Any data that was not propagated from zone 1 prior to the failure will be lost.

Note:

In this case, the store has only a single working copy of its data, so
single node failures in the surviving zone will prevent read and write
access, and, if the failure is a permanent one, may produce permanent
data loss.

If the problems that led to the failover have been corrected and the original data from
the previously failed nodes (Manhattan) is still available, you can return the old nodes
to service by performing a switchover. To do this, see the next section.

Performing a Switchover
To continue from the example of the previous section, after performing the failover, you
can return the old nodes to service by performing the following switchover procedure:

1. After the failed zones are repaired, restart all the Storage Nodes of the failed
zones without starting any services (avoids hard rollback):

Note:

Before starting the SNA, on each node, set the environment variable
MALLOC_ARENA_MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar restart -disable-services \
-root nyc1/KVROOT &

Note:

When performing planned maintenance, there is no need to isolate
nodes or disable services prior to bringing nodes back online.

2. Reestablish network connectivity or reenable the standard startup sequence of the
previously failed zones.

Chapter 8
Failover and Switchover Operations

8-11

3. Repair the topology so that the topology for the newly restarted Storage Nodes
can be updated with changes made by the failover.

java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar runadmin \
-host jersey1 -port 5000 \
-security USER/security/admin.security

kv-> plan repair-topology -wait
Executed plan 10, waiting for completion...
Plan 10 ended successfully

Note:

This assumes that you must have followed the steps as mentioned in
Configuring Security with Remote Access.

Note:

This command will also restart services on the previously failed nodes.

Use the verify configuration command to confirm that there are no
configuration problems.

4. Run the ping command. The "maxCatchupTimeSecs" value will be used for the
-timeout flag of the await-consistency command.

Use the timeout flag to specify an estimate of how long the switchover will take.
For example, if the nodes have been offline for a long time it might take many
hours for them to catch up so that they can be converted back to primary nodes.

kv-> ping
Pinging components of store mystore based upon topology sequence
#208
200 partitions and 2 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
Shard Status: healthy:1 writable-degraded:0 read-only:0 offline:0
Admin Status: healthy
Zone [name=Manhattan id=zn1 type=SECONDARY allowArbiters=false
masterAffinity=false]
RN Status: online:1 offline:0 maxDelayMillis:120000

maxCatchupTimeSecs:1800
Zone [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:1 offline:0
Storage Node [sn1] on nyc1:5000
Zone: [name=Manhattan id=zn1 type=SECONDARY allowArbiters=false
masterAffinity=false]
Status: RUNNING
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Chapter 8
Failover and Switchover Operations

8-12

 Admin [admin1] Status: RUNNING,REPLICA
 Rep Node [rg1-rn1] Status: RUNNING,REPLICA
 sequenceNumber:434 haPort:5011 available storage size:18 GB
delayMillis:0 catchupTimeSecs:0
Storage Node [sn2] on jersey1:6000
Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
 Admin [admin2] Status: RUNNING,MASTER
 Rep Node [rg1-rn2]
 Status: RUNNING,MASTER sequenceNumber:434 haPort:6011
available storage size:16 GB

In this case, 1800 seconds (30 minutes) is the value to be used.

5. Use the await-consistency command to specify the wait time (1800 seconds)
used for the secondary zones to catch up with their masters.

The system will only wait five minutes for nodes to catch up when attempting to
change a zone's type. If the nodes do not catch up in that amount of time, the plan
will fail.

If the nodes will take more than five minutes to catch up, you should run the
await-consistency command, specifying a longer wait time using the -timeout
flag. In this case, the wait time (1800 seconds) is used:

kv-> await-consistent -timeout 1800 -znname Manhattan
The specified zone is consistent

By default, nodes need to have a delay of no more than 1 second to be considered
caught up. You can change this value by specifying the -replica-delay-threshold
flag. You should do this if network delays prevent the nodes from catching up
within 1 second of their masters.

Note:

If you do not want the switchover to wait for the nodes to catch up, you
can use the -no-replica-delay threshold flag. In that case, nodes will be
converted to primary nodes even if they are behind. You should evaluate
whether this risk is worth taking.

6. Perform the switchover to convert the previously failed zone back to a primary
zone.

kv-> topology clone -current -name newTopo
kv-> topology change-zone-type -name newTopo \
-znname Manhattan -type primary
Changed zone type of zn1 to PRIMARY in newTopo
kv-> plan deploy-topology -name newTopo -wait
Executed plan 11, waiting for completion...
Plan 11 ended successfully

Chapter 8
Failover and Switchover Operations

8-13

Confirm the zone type change of the Manhattan zone to PRIMARY by running the
ping command.

kv-> ping
Pinging components of store mystore based upon topology sequence
#208
200 partitions and 2 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
Shard Status: healthy:1 writable-degraded:0 read-only:0 offline:0
Admin Status: healthy
Zone [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:1 offline:0 maxDelayMillis:120000

maxCatchupTimeSecs:1800
Zone [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:1 offline:0
Storage Node [sn1] on nyc1:5000
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
 Admin [admin1] Status: RUNNING,REPLICA
 Rep Node [rg1-rn1] Status: RUNNING,REPLICA
 sequenceNumber:434 haPort:5011 available storage size:18 GB
delayMillis:0 catchupTimeSecs:0
Storage Node [sn2] on jersey1:6000
Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
 Admin [admin2] Status: RUNNING,MASTER
 Rep Node [rg1-rn2]
 Status: RUNNING,MASTER sequenceNumber:434 haPort:6011
available storage size:12 GB

Zone Failover
Zones allow you to spread your data store across various physical installation
locations. The different locations can be anything from different physical buildings
near each other, to different racks in the same building. The basic goal of spreading
your store across locations is to guard against large-scale infrastructure disruptions,
such as power outages or major storm damage, by placing the nodes in your store
physically as far apart as possible.

Oracle NoSQL Database provides support for two kinds of zones. Primary zones
contain nodes which can serve as masters or replicas. Zones are created as primary
zones by default. Secondary zones contain nodes which can serve only as replicas.
Secondary zones can be used to make a copy of the data available at a distant
location, or to maintain an extra copy of the data to increase redundancy or read
capacity.

Chapter 8
Zone Failover

8-14

Both types of zones require high throughput network connections to transmit the
replication data required to keep replicas up-to-date. Failing to provide sufficient
network capacity will result in nodes in poorly connected zones falling farther and
farther behind. Locations connected by low throughput network connections are not
suitable for use with zones.

For primary zones, in addition to a high throughput network, the network
connections with other primary zones should provide highly reliable and low latency
communication. These capabilities make it possible to perform master elections for
quick master failovers, and to provide acknowledgments to meet write request timeout
requirements. Primary zones are not, therefore, suitable for use with an unreliable or
slow wide area network.

For secondary zones, the nodes do not participate in master elections or
acknowledgments. For this reason, the system can tolerate reduced reliability or
increased latency for connections between secondary and primary zones. The network
connections still need to provide sufficient throughput to support replication, and must
provide sufficient reliability that temporary interruptions do not interfere with network
throughput.

If you deploy your store across multiple zones, then Oracle NoSQL Database tries to
physically place at least one Replication Node from each shard in each zone. Whether
Oracle NoSQL Database can do this depends on the number of shards in use in
your store, the number of zones, the number of Replication Nodes, and the number
of physical machines available in each zone. Still, Oracle NoSQL Database makes
a best-effort to spread Replication Nodes across available zones. Doing so guards
against losing entire shards should the zone become unavailable for any reason.

All of the failover descriptions covered here apply to zones. Failover works across
zones in the same way as it does if all nodes are contained within a single zone.
Zones offer you the ability for your data to remain available in the event of a large
outage. However, read and write capability for any given shard is still gated by whether
the remaining zone(s) constitute a majority node partition, and the durability and
consistency policies in use for your store activities.

Durability Summary
This document has described how durability guarantees affect a shard's write
availability in the event of hardware or network failures. In summary:

• A durability guarantee that requires no acknowledgements from the shard's
replicas gives you the best chance that the shard can continue servicing write
requests in the event of an outage. However, this durability guarantee can also
result in the shard operating with two masters, which leads to data loss once
hardware problems are resolved. This is not a recommended configuration.

• A durability guarantee requiring a simple majority of primary zone replicas to
acknowledge the write operation guards against two masters accidently operating
at one time. However, it also means that the shard will be incapable of servicing
write requests if more than a majority of the replicas are offline due to a hardware
failure.

• A durability guarantee requiring all primary zone replicas to acknowledge the write
operation guards against any possibility of data loss. However, it also means that
the shard will be unable to service write requests if even one of the replicas is
unavailable for any reason.

Chapter 8
Durability Summary

8-15

Consistency Summary
In most cases, replicas can continue to service read requests as long as the
underlying hardware remains functional. In its default configuration, there is nothing
that stops a replica from doing this, even if it is the only node running after some
catastrophic failure.

However, is is possible for a replica to stop servicing read requests following a network
failure, if the consistency policy requires either version information, or disallows stale
data relative to the master. Whether this happens depends on how your Replication
Nodes are exactly partitioned as a result of the failure, and how long it takes
to establish a new master. The replica's ability to service read requests is also
determined by the consistency policy in use for each request. If the read requires tight
consistency with the master, and the master is not available to ensure the consistency
can be met, then the read will fail.

Chapter 8
Consistency Summary

8-16

9
Monitoring Oracle NoSQL Database

There are several important aspects to maintaining a highly available NoSQL
Database that can service requests with predictable latency and throughput. This book
outlines these aspects and describes how to maintain NoSQL Database to achieve
these goals by focusing on the following topics:

• How to monitor the hardware and software in a NoSQL Database cluster.

• How to detect hardware and software failures.

• How to diagnose a hardware or software failure.

• How to restore a component, or set of components, once a failure has been
detected and resolved.

The following chapters focus on the management and monitoring aspects of the
Oracle NoSQL Database. The purpose here is to monitor, detect, diagnose, and
resolve run-time issues that may occur with the NoSQL Database and the underlying
hardware.

Though the guide briefly touches on guidelines and best practices for the application
layer's role in monitoring and diagnosis, it does not provide any specific guidance
as this will be dictated by the application and its requirements as set forth by the
business.

Software Monitoring
Being a distributed system, the Oracle NoSQL Database is composed of several
software components and each expose unique metrics that can be monitored,
interpreted, and utilized to understand the general health, performance, and
operational capability of the Oracle NoSQL Database cluster.

This section focuses on best practices for monitoring the Oracle NoSQL software
components. While there are several software dependencies for the Oracle NoSQL
Database itself (for example, Java virtual machine, operating system, NTP), this
section focuses solely on the NoSQL components.

There are four basic mechanisms for monitoring the health of the Oracle NoSQL
Database:

• System Log File Monitoring – Oracle NoSQL Database uses the java.util.logging
package to write all trace, information, and error messages to the log files for each
component of the store. These files can be parsed using the typical log file probing
mechanism supported by the leading system management solutions.

• System Monitoring Agents – Oracle NoSQL Database publishes MIBs for
integration with Java Management Extensions (JMX) Management Beans for
integration with JMX based monitoring solutions.

• Application Monitoring – A good proxy for the “health” of the Oracle NoSQL
Database rests with application level metrics. Metrics like average and 90th
percentile response times, average and 90th percentile throughput, as well

9-1

average number of timeout exceptions encountered from NoSQL API calls are
all potential indicators that something may be wrong with a component in the
NoSQL cluster. In fact, sampling these metrics and looking for deviations from
mean values can be the best way to know that something may be wrong with your
environment.

• Oracle Enterprise Manager (OEM) – The integration of Oracle NoSQL Database
with OEM primarily takes the form of an EM plug-in. The plug-in allows monitoring
store components, their availability, performance metrics, and operational
parameters through Enterprise Manager. For more information on OEM, see About
IntelliJ Plugin.

The following sections discuss details of each of these monitoring techniques (except
OEM) and illustrate how each of them can be utilized to detect failures in Oracle
NoSQL Database components.

System Log File Monitoring
The Oracle NoSQL Database is composed of the following components, and each
component produces log files that can be monitored:

• Replication Nodes (RN) – Service read and write requests from API calls.
Replication Nodes for a particular shard are laid out on different Storage Nodes
(physical servers) by the topology manager, so the log files for the nodes in each
shard are spread across multiple machines.

• Storage Node Agents (SNA) – Manage the Replication Nodes that are running
on each Storage Node (SN). The Storage Node Agent maintains its own log
regarding the state of each replication node it is managing. You can think of the
Storage Node Agent log as a high level log of the Replication Node activity on a
particular Storage Node.

• Administration (Admin) Nodes – Administrative Nodes handle the execution of
commands from the administrative command line interface. Long running plans
are also staged from the administrative nodes. Administrative Nodes also maintain
a consolidated log of all the other logs in the Oracle NoSQL cluster.

All of the above mentioned log files can be found in the following directory structure
KVROOT/kvstore/log on the machine where the component is running. The following
steps can be used to find the machines that are running the components of the cluster:

1. java -Xmx64m -Xms64m -jar kvstore.jar ping -host <any machine in the
cluster> -port <the port number used to initialize the KVStore>

2. Each Storage Node (snXX) is listed in the output of the ping command, along
with a list of Replication nodes (rgXX-rnXX) running on the host listed in the ping
output. XX denotes the unique number assigned to that component by NoSQL
Database. For Replication Nodes, rg denotes the shard number and stands for
replication group, while rn denotes the Replication Node number within that shard.

3. Administration (Admin) Nodes – Identifying the nodes in the cluster that are
running administrative services is a bit more challenging. To identify these nodes,
a script would run ps axww on every host in the cluster and grep for kvstore.jar
and -class Admin.

The Oracle NoSQL Database maintains a single consolidated log of every node in the
cluster, and this can be found on any of the nodes running an administrative service.
While this is a convenient and easy single place to monitor for errors, it is not 100%
guaranteed. The single consolidated view is aggregated by getting log messages over

Chapter 9
Software Monitoring

9-2

the network, and transient network failures, packet loss, and high network utilization
can cause this consolidated log to either be out of date, or have missing entries.
Therefore, we recommend monitoring each host in the cluster as well as monitoring
each type of log file on each host in the cluster.

Generally speaking, any log message with a level of SEVERE should be considered a
potentially critical event and worthy of generating a systems management notification.
The sections in the later part of this document illustrate how to correlate specific
SEVERE exceptions with hardware component failure.

Java Management Extensions (JMX) Monitoring
Oracle NoSQL Database is also monitored through JMX based system management
tools. For JMX based tools, the Oracle NoSQL MIB is found in lib directory of the
installation along with the JAR files for the product. For more information on JMX, see
Standardized Monitoring Interfaces .

Monitoring for Storage Nodes (SN)
A Storage Node is a physical (or virtual) machine with its own local storage, which
houses the Replication Node. For more information, see Architecture in the Concepts
Guide.

See the following sections:

• Metrics for Storage Nodes

• Java Management Extensions (JMX) Notifications

Metrics for Storage Nodes
• snServiceStatus – The current status of the Storage Node Agent running on the

host. The Storage Node Agent manages all the Replication Nodes running on the
Storage Node (host). The textual representation along with the enumeration ID are
shown below:

– starting (1) – The Storage Node Agent is booting up.

– waitingForDeploy (2) – The Storage Node Agent is waiting for the initial
deploy-SN command to be run.

– running(3) – The Storage Node Agent is running.

– stopping(4) – The Storage Node Agent is in the process of shutting down. It
may be in the process of shutting down Replication Nodes that it manages.

– stopped(5) – An intentional clean shutdown.

– errorRestarting(6) – Although this state exists in the category, it is typically
never seen for storage node agents.

– errorNoRestart(7) – Although this state exists in the category, it is typically
never seen for storage node agents.

– unreachable(8) – The Storage Node Agent is unreachable by the admin
service.

Chapter 9
Software Monitoring

9-3

Note:

If a Storage Node is UNREACHABLE, or a Replication Node is
having problems and its Storage Node is UNREACHABLE, first
check the network connectivity between the Admin and the Storage
Node. If the managing Storage Node Agent is reachable, but the
managed Replication Node is not, the problem most likely lies
somewhere other than the network.

– expectedRestarting(9) – This state is rare for Storage Node Agents.

• snHostName – The name of the host where the Storage Node agent has been
deployed.

• snRegistryPort – The TCP/IP port on which Oracle NoSQL Database should be
contacted.

• snHAHostName – If the HA host name has been configured through the boot
parameters then this is returned, otherwise the name of the host running the
Storage Node agent is returned. This value represents the network interface name
that the replication subsystem uses for internode communication. The HA host
name is specified using the -hahost flag to the makebootconfig command, and
it corresponds to the haHostname Storage Node parameter, in the Setting Store
Parameters. If users encounter a problem indicating that the HA host name has
been specified incorrectly, first check that they have used the correct value in the
call to the makebootconfig command. The user can change the value later by
modifying the haHostname parameter. For more information, see makebootconfig.

• snHaPortRange – The range of ports that replication nodes use to communicate
among themselves.

• snStoreName – The name of the KVStore that this storage node agent is
servicing.

• snRootDirPath – The fully qualified path to the root of the directory structure where
the Oracle NoSQL Database installation files exist.

• snLogFileCount – A logging config parameter that represents the maximum
number of log files that are retained by the Storage Node Agent.

• snLogFileLimit – A logging config parameter that represents the maximum size of
a single log file in bytes.

• snCapacity – The current capacity of the Storage Node. This parameter essentially
describes the number of persistent storage devices on the Storage Node and is
typically set at store initialization time, but can be modified by the administrator if
the hardware configuration is changed after the store is initialized.

• snMountPoints – A list of one or more fully qualified paths to the data files that
reside on this storage node.

• snMemory – The current memory configuration for this Storage Node in
megabytes. This parameter is typically set at store initialization time, but can be
modified by the administrator if the hardware configuration is changed after the
store is initialized.

• snCPUs – The current number of CPUs configured for this Storage Node. This
parameter is typically set at store initialization time. The administrator can modify
the number if the hardware configuration changes after the store is initialized.

Chapter 9
Software Monitoring

9-4

• snCollectorInterval – The interval that all nodes are using for aggregate statistics.

Java Management Extensions (JMX) Notifications
Mbean Object Name: Oracle NoSQL Database:type=StorageNode

• New operation performance metrics are available as follows:

– Type: oracle.kv.repnode.opmetric

– User Data: Contains a full listing of performance metrics for a given
RN. The statistics are a string in JSON form, and are obtained via
Notification.getUserData().

These metrics contain statistics of each type of API operation. And each
operation statistics is calculated by interval and cumulative statistics. Interval
statistics cover a single measurement period, cumulative statistics cover the
duration of this repNode's uptime. Statistics follows the following naming
convention:

[Operation]_[Interval|Cumulative]_[Metric]

[Operation] has following user operations: Gets, Puts, PutIfAbsent,
PutIfPresent, PutIfVersion, Deletes, DeleteIfVersion, MultiGets, MultiGetKeys,
MultiGetIterator, MultiGetKeysIterator, StoreIterator, StoreKeysIterator,
MultiDeletes, Executes, IndexIterator, IndexKeysIterator, QuerySinglePartition,
QueryMultiPartition, QueryMultiShard, BulkPut, BulkGet, BulkGetKeys,
BulkGetTable, BulkGetTableKeys

AllSingleKeyOperations are Gets, Puts, PutIfAbsent, PutIfPresent, PutIfVersion,
Deletes, DeleteIfVersion

AllMultiKeyOperations are MultiGetKeys, MultiGetIterator, MultiGetKeysIterator,
StoreIterator, StoreKeysIterator, MultiDeletes, Executes, IndexIterator,
IndexKeysIterator, QuerySinglePartition, QueryMultiPartition, QueryMultiShard,
BulkPut, BulkGet, BulkGetKeys, BulkGetTable, BulkGetTableKeys

Read operations are Gets, MultiGets, MultiGetKeys, MultiGetIterator,
MultiGetKeysIterator, StoreIterator, StoreKeysIterator, IndexIterator,
IndexKeysIterator, QuerySinglePartition, QueryMultiPartition, QueryMultiShard,
BulkGet, BulkGetKeys, BulkGetTable, BulkGetTableKeys

Write operation are Puts, PutIfAbsent, PutIfPresent, PutIfVersion, Deletes,
DeleteIfVersion, MultiDeletes, Executes, BulkPut

[Metric] has the following types:

– TotalReq: The total number of operation requests.

– TotalOps: The total number of records returned or processed. Single
operation requests only apply to one record, but the multi, iterate, query, bulk
or execute operation requests will work on multiple records.

– PerSec: Operation throughput per second, that is [TotalOps] / [Interval]

– Min: minimum latency

– Max: maximum latency

– Avg: average latency

– 95th: The maximum value within the bottom 95% of latency values.

Chapter 9
Software Monitoring

9-5

– 99th: The maximum value within the bottom 99% of latency values.

The average latency tells users how long to expect calls to take when considering
a large number of calls. The 95th and 99th percentile latency numbers provide
information about how much call times vary in cases where calls took longer than
the average amount of time to complete. 95% of calls completed within the time
specified by the 95th percentile number; 5% of calls took at least that long to
complete. 99% of calls completed within the time specified by the 99th percentile
number; 1% of calls took at least that long to complete.

For example, consider the following latency values:

– Avg: 1 ms

– 95th: 3 ms

– 99th: 10 ms

If these were the measurements for 1000 calls to the store, then the average
means that, overall, the 1000 calls took a total of 1000 ms (1000 x 1 ms), with
a mix of call times, some less than 1 ms and some greater. The 95% and 99%
values give some sense of how the call times varied over the set of calls. A 95%
value of 3 ms means that, out of 1000 calls, 950 (95% of 1000) took less than 3
ms, and 50 (5% of 1000) took 3 ms or longer. A 99% value of 10 ms means that,
out of 1000 calls, 990 (99% of 1000) took less than 10 ms, and 10 (1% of 1000)
took 10 ms or longer.

The MultiGets_Interval_TotalOps stats tells how many records were read
through MultiGets operations in the last interval. MultiGets_Cumulative_TotalOps
stats tells how many records were read through MultiGets operations in the whole
Replication Node lifetime.

A sample operation performance metrics:

{
 "resource": "rg1-rn1",
 "shard": "rg1",
 "reportTime": 1481031260001,
 "AllSingleKeyOperations_Interval_TotalOps": 154571,
 "AllSingleKeyOperations_Interval_TotalReq": 154571,
 "AllSingleKeyOperations_Interval_PerSec": 7728,
 "AllSingleKeyOperations_Interval_Min": 0,
 "AllSingleKeyOperations_Interval_Max": 72,
 "AllSingleKeyOperations_Interval_Avg": 0.09015835076570511,
 "AllSingleKeyOperations_Interval_95th": 0,
 "AllSingleKeyOperations_Interval_99th": 0,
 "AllSingleKeyOperations_Cumulative_TotalOps": 27916089,
 "AllSingleKeyOperations_Cumulative_TotalReq": 27916089,
 "AllSingleKeyOperations_Cumulative_PerSec": 854,
 "AllSingleKeyOperations_Cumulative_Min": 0,
 "AllSingleKeyOperations_Cumulative_Max": 5124,
 "AllSingleKeyOperations_Cumulative_Avg": 0.1090782955288887,
 "AllSingleKeyOperations_Cumulative_95th": 0,
 "AllSingleKeyOperations_Cumulative_99th": 0,
 "AllMultiKeyOperations_Interval_TotalOps": 6002,
 "AllMultiKeyOperations_Interval_TotalReq": 6002,
 "AllMultiKeyOperations_Interval_PerSec": 300,
 "AllMultiKeyOperations_Interval_Min": 0,
 "AllMultiKeyOperations_Interval_Max": 29,

Chapter 9
Software Monitoring

9-6

 "AllMultiKeyOperations_Interval_Avg": 0.14758114516735077,
 "AllMultiKeyOperations_Interval_95th": 0,
 "AllMultiKeyOperations_Interval_99th": 1,
 "AllMultiKeyOperations_Cumulative_TotalOps": 1105133,
 "AllMultiKeyOperations_Cumulative_TotalReq": 1105133,
 "AllMultiKeyOperations_Cumulative_PerSec": 33,
 "AllMultiKeyOperations_Cumulative_Min": 0,
 "AllMultiKeyOperations_Cumulative_Max": 956,
 "AllMultiKeyOperations_Cumulative_Avg": 0.16301529109477997,
 "AllMultiKeyOperations_Cumulative_95th": 0,
 "AllMultiKeyOperations_Cumulative_99th": 1,
 "Gets_Interval_TotalOps": 154571,
 "Gets_Interval_TotalReq": 154571,
 "Gets_Interval_PerSec": 7728,
 "Gets_Interval_Min": 0,
 "Gets_Interval_Max": 72,
 "Gets_Interval_Avg": 0.08909573405981064,
 "Gets_Interval_95th": 0,
 "Gets_Interval_99th": 0,
 "Gets_Cumulative_TotalOps": 27916089,
 "Gets_Cumulative_TotalReq": 27916089,
 "Gets_Cumulative_PerSec": 854,
 "Gets_Cumulative_Min": 0,
 "Gets_Cumulative_Max": 5124,
 "Gets_Cumulative_Avg": 0.10803056508302689,
 "Gets_Cumulative_95th": 0,
 "Gets_Cumulative_99th": 0,
 "Puts_Interval_TotalOps": 0,
 "Puts_Interval_TotalReq": 0,
 "Puts_Interval_PerSec": 0,
 "Puts_Interval_Min": 0,
 "Puts_Interval_Max": 0,
 "Puts_Interval_Avg": 0,
 "Puts_Interval_95th": 0,
 "Puts_Interval_99th": 0,
 "PutIfAbsent_Interval_TotalOps": 0,
 "PutIfAbsent_Interval_TotalReq": 0,
 "PutIfAbsent_Interval_PerSec": 0,
 "PutIfAbsent_Interval_Min": 0,
 "PutIfAbsent_Interval_Max": 0,
 "PutIfAbsent_Interval_Avg": 0,
 "PutIfAbsent_Interval_95th": 0,
 "PutIfAbsent_Interval_99th": 0,
 "PutIfPresent_Interval_TotalOps": 0,
 "PutIfPresent_Interval_TotalReq": 0,
 "PutIfPresent_Interval_PerSec": 0,
 "PutIfPresent_Interval_Min": 0,
 "PutIfPresent_Interval_Max": 0,
 "PutIfPresent_Interval_Avg": 0,
 "PutIfPresent_Interval_95th": 0,
 "PutIfPresent_Interval_99th": 0,
 "PutIfVersion_Interval_TotalOps": 0,
 "PutIfVersion_Interval_TotalReq": 0,
 "PutIfVersion_Interval_PerSec": 0,
 "PutIfVersion_Interval_Min": 0,

Chapter 9
Software Monitoring

9-7

 "PutIfVersion_Interval_Max": 0,
 "PutIfVersion_Interval_Avg": 0,
 "PutIfVersion_Interval_95th": 0,
 "PutIfVersion_Interval_99th": 0,
 "Puts_Cumulative_TotalOps": 0,
 "Puts_Cumulative_TotalReq": 0,
 "Puts_Cumulative_PerSec": 0,
 "Puts_Cumulative_Min": 0,
 "Puts_Cumulative_Max": 0,
 "Puts_Cumulative_Avg": 0,
 "Puts_Cumulative_95th": 0,
 "Puts_Cumulative_99th": 0,
 "PutIfAbsent_Cumulative_TotalOps": 0,
 "PutIfAbsent_Cumulative_TotalReq": 0,
 "PutIfAbsent_Cumulative_PerSec": 0,
 "PutIfAbsent_Cumulative_Min": 0,
 "PutIfAbsent_Cumulative_Max": 0,
 "PutIfAbsent_Cumulative_Avg": 0,
 "PutIfAbsent_Cumulative_95th": 0,
 "PutIfAbsent_Cumulative_99th": 0,
 "PutIfPresent_Cumulative_TotalOps": 0,
 "PutIfPresent_Cumulative_TotalReq": 0,
 "PutIfPresent_Cumulative_PerSec": 0,
 "PutIfPresent_Cumulative_Min": 0,
 "PutIfPresent_Cumulative_Max": 0,
 "PutIfPresent_Cumulative_Avg": 0,
 "PutIfPresent_Cumulative_95th": 0,
 "PutIfPresent_Cumulative_99th": 0,
 "PutIfVersion_Cumulative_TotalOps": 0,
 "PutIfVersion_Cumulative_TotalReq": 0,
 "PutIfVersion_Cumulative_PerSec": 0,
 "PutIfVersion_Cumulative_Min": 0,
 "PutIfVersion_Cumulative_Max": 0,
 "PutIfVersion_Cumulative_Avg": 0,
 "PutIfVersion_Cumulative_95th": 0,
 "PutIfVersion_Cumulative_99th": 0,
 "Deletes_Interval_TotalOps": 0,
 "Deletes_Interval_TotalReq": 0,
 "Deletes_Interval_PerSec": 0,
 "Deletes_Interval_Min": 0,
 "Deletes_Interval_Max": 0,
 "Deletes_Interval_Avg": 0,
 "Deletes_Interval_95th": 0,
 "Deletes_Interval_99th": 0,
 "DeleteIfVersion_Interval_TotalOps": 0,
 "DeleteIfVersion_Interval_TotalReq": 0,
 "DeleteIfVersion_Interval_PerSec": 0,
 "DeleteIfVersion_Interval_Min": 0,
 "DeleteIfVersion_Interval_Max": 0,
 "DeleteIfVersion_Interval_Avg": 0,
 "DeleteIfVersion_Interval_95th": 0,
 "DeleteIfVersion_Interval_99th": 0,
 "Deletes_Cumulative_TotalOps": 0,
 "Deletes_Cumulative_TotalReq": 0,
 "Deletes_Cumulative_PerSec": 0,

Chapter 9
Software Monitoring

9-8

 "Deletes_Cumulative_Min": 0,
 "Deletes_Cumulative_Max": 0,
 "Deletes_Cumulative_Avg": 0,
 "Deletes_Cumulative_95th": 0,
 "Deletes_Cumulative_99th": 0,
 "DeleteIfVersion_Cumulative_TotalOps": 0,
 "DeleteIfVersion_Cumulative_TotalReq": 0,
 "DeleteIfVersion_Cumulative_PerSec": 0,
 "DeleteIfVersion_Cumulative_Min": 0,
 "DeleteIfVersion_Cumulative_Max": 0,
 "DeleteIfVersion_Cumulative_Avg": 0,
 "DeleteIfVersion_Cumulative_95th": 0,
 "DeleteIfVersion_Cumulative_99th": 0,
 "MultiGets_Interval_TotalOps": 0,
 "MultiGets_Interval_TotalReq": 0,
 "MultiGets_Interval_PerSec": 0,
 "MultiGets_Interval_Min": 0,
 "MultiGets_Interval_Max": 0,
 "MultiGets_Interval_Avg": 0,
 "MultiGets_Interval_95th": 0,
 "MultiGets_Interval_99th": 0,
 "MultiGetKeys_Interval_TotalOps": 0,
 "MultiGetKeys_Interval_TotalReq": 0,
 "MultiGetKeys_Interval_PerSec": 0,
 "MultiGetKeys_Interval_Min": 0,
 "MultiGetKeys_Interval_Max": 0,
 "MultiGetKeys_Interval_Avg": 0,
 "MultiGetKeys_Interval_95th": 0,
 "MultiGetKeys_Interval_99th": 0,
 "MultiGetIterator_Interval_TotalOps": 0,
 "MultiGetIterator_Interval_TotalReq": 0,
 "MultiGetIterator_Interval_PerSec": 0,
 "MultiGetIterator_Interval_Min": 0,
 "MultiGetIterator_Interval_Max": 0,
 "MultiGetIterator_Interval_Avg": 0,
 "MultiGetIterator_Interval_95th": 0,
 "MultiGetIterator_Interval_99th": 0,
 "MultiGetKeysIterator_Interval_TotalOps": 0,
 "MultiGetKeysIterator_Interval_TotalReq": 0,
 "MultiGetKeysIterator_Interval_PerSec": 0,
 "MultiGetKeysIterator_Interval_Min": 0,
 "MultiGetKeysIterator_Interval_Max": 0,
 "MultiGetKeysIterator_Interval_Avg": 0,
 "MultiGetKeysIterator_Interval_95th": 0,
 "MultiGetKeysIterator_Interval_99th": 0,
 "MultiGets_Cumulative_TotalOps": 0,
 "MultiGets_Cumulative_TotalReq": 0,
 "MultiGets_Cumulative_PerSec": 0,
 "MultiGets_Cumulative_Min": 0,
 "MultiGets_Cumulative_Max": 0,
 "MultiGets_Cumulative_Avg": 0,
 "MultiGets_Cumulative_95th": 0,
 "MultiGets_Cumulative_99th": 0,
 "MultiGetKeys_Cumulative_TotalOps": 0,
 "MultiGetKeys_Cumulative_TotalReq": 0,

Chapter 9
Software Monitoring

9-9

 "MultiGetKeys_Cumulative_PerSec": 0,
 "MultiGetKeys_Cumulative_Min": 0,
 "MultiGetKeys_Cumulative_Max": 0,
 "MultiGetKeys_Cumulative_Avg": 0,
 "MultiGetKeys_Cumulative_95th": 0,
 "MultiGetKeys_Cumulative_99th": 0,
 "MultiGetIterator_Cumulative_TotalOps": 0,
 "MultiGetIterator_Cumulative_TotalReq": 0,
 "MultiGetIterator_Cumulative_PerSec": 0,
 "MultiGetIterator_Cumulative_Min": 0,
 "MultiGetIterator_Cumulative_Max": 0,
 "MultiGetIterator_Cumulative_Avg": 0,
 "MultiGetIterator_Cumulative_95th": 0,
 "MultiGetIterator_Cumulative_99th": 0,
 "MultiGetKeysIterator_Cumulative_TotalOps": 0,
 "MultiGetKeysIterator_Cumulative_TotalReq": 0,
 "MultiGetKeysIterator_Cumulative_PerSec": 0,
 "MultiGetKeysIterator_Cumulative_Min": 0,
 "MultiGetKeysIterator_Cumulative_Max": 0,
 "MultiGetKeysIterator_Cumulative_Avg": 0,
 "MultiGetKeysIterator_Cumulative_95th": 0,
 "MultiGetKeysIterator_Cumulative_99th": 0,
 "StoreIterator_Interval_TotalOps": 0,
 "StoreIterator_Interval_TotalReq": 0,
 "StoreIterator_Interval_PerSec": 0,
 "StoreIterator_Interval_Min": 0,
 "StoreIterator_Interval_Max": 0,
 "StoreIterator_Interval_Avg": 0,
 "StoreIterator_Interval_95th": 0,
 "StoreIterator_Interval_99th": 0,
 "StoreKeysIterator_Interval_TotalOps": 0,
 "StoreKeysIterator_Interval_TotalReq": 0,
 "StoreKeysIterator_Interval_PerSec": 0,
 "StoreKeysIterator_Interval_Min": 0,
 "StoreKeysIterator_Interval_Max": 0,
 "StoreKeysIterator_Interval_Avg": 0,
 "StoreKeysIterator_Interval_95th": 0,
 "StoreKeysIterator_Interval_99th": 0,
 "StoreIterator_Cumulative_TotalOps": 0,
 "StoreIterator_Cumulative_TotalReq": 0,
 "StoreIterator_Cumulative_PerSec": 0,
 "StoreIterator_Cumulative_Min": 0,
 "StoreIterator_Cumulative_Max": 0,
 "StoreIterator_Cumulative_Avg": 0,
 "StoreIterator_Cumulative_95th": 0,
 "StoreIterator_Cumulative_99th": 0,
 "StoreKeysIterator_Cumulative_TotalOps": 0,
 "StoreKeysIterator_Cumulative_TotalReq": 0,
 "StoreKeysIterator_Cumulative_PerSec": 0,
 "StoreKeysIterator_Cumulative_Min": 0,
 "StoreKeysIterator_Cumulative_Max": 0,
 "StoreKeysIterator_Cumulative_Avg": 0,
 "StoreKeysIterator_Cumulative_95th": 0,
 "StoreKeysIterator_Cumulative_99th": 0,
 "MultiDeletes_Interval_TotalOps": 0,

Chapter 9
Software Monitoring

9-10

 "MultiDeletes_Interval_TotalReq": 0,
 "MultiDeletes_Interval_PerSec": 0,
 "MultiDeletes_Interval_Min": 0,
 "MultiDeletes_Interval_Max": 0,
 "MultiDeletes_Interval_Avg": 0,
 "MultiDeletes_Interval_95th": 0,
 "MultiDeletes_Interval_99th": 0,
 "MultiDeletes_Cumulative_TotalOps": 0,
 "MultiDeletes_Cumulative_TotalReq": 0,
 "MultiDeletes_Cumulative_PerSec": 0,
 "MultiDeletes_Cumulative_Min": 0,
 "MultiDeletes_Cumulative_Max": 0,
 "MultiDeletes_Cumulative_Avg": 0,
 "MultiDeletes_Cumulative_95th": 0,
 "MultiDeletes_Cumulative_99th": 0,
 "Executes_Interval_TotalOps": 0,
 "Executes_Interval_TotalReq": 0,
 "Executes_Interval_PerSec": 0,
 "Executes_Interval_Min": 0,
 "Executes_Interval_Max": 0,
 "Executes_Interval_Avg": 0,
 "Executes_Interval_95th": 0,
 "Executes_Interval_99th": 0,
 "Executes_Cumulative_TotalOps": 0,
 "Executes_Cumulative_TotalReq": 0,
 "Executes_Cumulative_PerSec": 0,
 "Executes_Cumulative_Min": 0,
 "Executes_Cumulative_Max": 0,
 "Executes_Cumulative_Avg": 0,
 "Executes_Cumulative_95th": 0,
 "Executes_Cumulative_99th": 0,
 "NOPs_Interval_TotalOps": 0,
 "NOPs_Interval_TotalReq": 0,
 "NOPs_Interval_PerSec": 0,
 "NOPs_Interval_Min": 0,
 "NOPs_Interval_Max": 0,
 "NOPs_Interval_Avg": 0,
 "NOPs_Interval_95th": 0,
 "NOPs_Interval_99th": 0,
 "NOPs_Cumulative_TotalOps": 0,
 "NOPs_Cumulative_TotalReq": 0,
 "NOPs_Cumulative_PerSec": 0,
 "NOPs_Cumulative_Min": 0,
 "NOPs_Cumulative_Max": 0,
 "NOPs_Cumulative_Avg": 0,
 "NOPs_Cumulative_95th": 0,
 "NOPs_Cumulative_99th": 0,
 "IndexIterator_Interval_TotalOps": 6002,
 "IndexIterator_Interval_TotalReq": 6002,
 "IndexIterator_Interval_PerSec": 300,
 "IndexIterator_Interval_Min": 0,
 "IndexIterator_Interval_Max": 29,
 "IndexIterator_Interval_Avg": 0.14662425220012665,
 "IndexIterator_Interval_95th": 0,
 "IndexIterator_Interval_99th": 1,

Chapter 9
Software Monitoring

9-11

 "IndexKeysIterator_Interval_TotalOps": 0,
 "IndexKeysIterator_Interval_TotalReq": 0,
 "IndexKeysIterator_Interval_PerSec": 0,
 "IndexKeysIterator_Interval_Min": 0,
 "IndexKeysIterator_Interval_Max": 0,
 "IndexKeysIterator_Interval_Avg": 0,
 "IndexKeysIterator_Interval_95th": 0,
 "IndexKeysIterator_Interval_99th": 0,
 "IndexIterator_Cumulative_TotalOps": 1105133,
 "IndexIterator_Cumulative_TotalReq": 1105133,
 "IndexIterator_Cumulative_PerSec": 33,
 "IndexIterator_Cumulative_Min": 0,
 "IndexIterator_Cumulative_Max": 956,
 "IndexIterator_Cumulative_Avg": 0.1620502769947052,
 "IndexIterator_Cumulative_95th": 0,
 "IndexIterator_Cumulative_99th": 1,
 "IndexKeysIterator_Cumulative_TotalOps": 0,
 "IndexKeysIterator_Cumulative_TotalReq": 0,
 "IndexKeysIterator_Cumulative_PerSec": 0,
 "IndexKeysIterator_Cumulative_Min": 0,
 "IndexKeysIterator_Cumulative_Max": 0,
 "IndexKeysIterator_Cumulative_Avg": 0,
 "IndexKeysIterator_Cumulative_95th": 0,
 "IndexKeysIterator_Cumulative_99th": 0,
 "QuerySinglePartition_Interval_TotalOps": 0,
 "QuerySinglePartition_Interval_TotalReq": 0,
 "QuerySinglePartition_Interval_PerSec": 0,
 "QuerySinglePartition_Interval_Min": 0,
 "QuerySinglePartition_Interval_Max": 0,
 "QuerySinglePartition_Interval_Avg": 0,
 "QuerySinglePartition_Interval_95th": 0,
 "QuerySinglePartition_Interval_99th": 0,
 "QueryMultiPartition_Interval_TotalOps": 0,
 "QueryMultiPartition_Interval_TotalReq": 0,
 "QueryMultiPartition_Interval_PerSec": 0,
 "QueryMultiPartition_Interval_Min": 0,
 "QueryMultiPartition_Interval_Max": 0,
 "QueryMultiPartition_Interval_Avg": 0,
 "QueryMultiPartition_Interval_95th": 0,
 "QueryMultiPartition_Interval_99th": 0,
 "QueryMultiShard_Interval_TotalOps": 0,
 "QueryMultiShard_Interval_TotalReq": 0,
 "QueryMultiShard_Interval_PerSec": 0,
 "QueryMultiShard_Interval_Min": 0,
 "QueryMultiShard_Interval_Max": 0,
 "QueryMultiShard_Interval_Avg": 0,
 "QueryMultiShard_Interval_95th": 0,
 "QueryMultiShard_Interval_99th": 0,
 "QuerySinglePartition_Cumulative_TotalOps": 0,
 "QuerySinglePartition_Cumulative_TotalReq": 0,
 "QuerySinglePartition_Cumulative_PerSec": 0,
 "QuerySinglePartition_Cumulative_Min": 0,
 "QuerySinglePartition_Cumulative_Max": 0,
 "QuerySinglePartition_Cumulative_Avg": 0,
 "QuerySinglePartition_Cumulative_95th": 0,

Chapter 9
Software Monitoring

9-12

 "QuerySinglePartition_Cumulative_99th": 0,
 "QueryMultiPartition_Cumulative_TotalOps": 0,
 "QueryMultiPartition_Cumulative_TotalReq": 0,
 "QueryMultiPartition_Cumulative_PerSec": 0,
 "QueryMultiPartition_Cumulative_Min": 0,
 "QueryMultiPartition_Cumulative_Max": 0,
 "QueryMultiPartition_Cumulative_Avg": 0,
 "QueryMultiPartition_Cumulative_95th": 0,
 "QueryMultiPartition_Cumulative_99th": 0,
 "QueryMultiShard_Cumulative_TotalOps": 0,
 "QueryMultiShard_Cumulative_TotalReq": 0,
 "QueryMultiShard_Cumulative_PerSec": 0,
 "QueryMultiShard_Cumulative_Min": 0,
 "QueryMultiShard_Cumulative_Max": 0,
 "QueryMultiShard_Cumulative_Avg": 0,
 "QueryMultiShard_Cumulative_95th": 0,
 "QueryMultiShard_Cumulative_99th": 0,
 "BulkPut_Interval_TotalOps": 0,
 "BulkPut_Interval_TotalReq": 0,
 "BulkPut_Interval_PerSec": 0,
 "BulkPut_Interval_Min": 0,
 "BulkPut_Interval_Max": 0,
 "BulkPut_Interval_Avg": 0,
 "BulkPut_Interval_95th": 0,
 "BulkPut_Interval_99th": 0,
 "BulkPut_Cumulative_TotalOps": 0,
 "BulkPut_Cumulative_TotalReq": 0,
 "BulkPut_Cumulative_PerSec": 0,
 "BulkPut_Cumulative_Min": 0,
 "BulkPut_Cumulative_Max": 0,
 "BulkPut_Cumulative_Avg": 0,
 "BulkPut_Cumulative_95th": 0,
 "BulkPut_Cumulative_99th": 0,
 "BulkGet_Interval_TotalOps": 0,
 "BulkGet_Interval_TotalReq": 0,
 "BulkGet_Interval_PerSec": 0,
 "BulkGet_Interval_Min": 0,
 "BulkGet_Interval_Max": 0,
 "BulkGet_Interval_Avg": 0,
 "BulkGet_Interval_95th": 0,
 "BulkGet_Interval_99th": 0,
 "BulkGetKeys_Interval_TotalOps": 0,
 "BulkGetKeys_Interval_TotalReq": 0,
 "BulkGetKeys_Interval_PerSec": 0,
 "BulkGetKeys_Interval_Min": 0,
 "BulkGetKeys_Interval_Max": 0,
 "BulkGetKeys_Interval_Avg": 0,
 "BulkGetKeys_Interval_95th": 0,
 "BulkGetKeys_Interval_99th": 0,
 "BulkGetTable_Interval_TotalOps": 0,
 "BulkGetTable_Interval_TotalReq": 0,
 "BulkGetTable_Interval_PerSec": 0,
 "BulkGetTable_Interval_Min": 0,
 "BulkGetTable_Interval_Max": 0,
 "BulkGetTable_Interval_Avg": 0,

Chapter 9
Software Monitoring

9-13

 "BulkGetTable_Interval_95th": 0,
 "BulkGetTable_Interval_99th": 0,
 "BulkGetTableKeys_Interval_TotalOps": 0,
 "BulkGetTableKeys_Interval_TotalReq": 0,
 "BulkGetTableKeys_Interval_PerSec": 0,
 "BulkGetTableKeys_Interval_Min": 0,
 "BulkGetTableKeys_Interval_Max": 0,
 "BulkGetTableKeys_Interval_Avg": 0,
 "BulkGetTableKeys_Interval_95th": 0,
 "BulkGetTableKeys_Interval_99th": 0,
 "BulkGet_Cumulative_TotalOps": 0,
 "BulkGet_Cumulative_TotalReq": 0,
 "BulkGet_Cumulative_PerSec": 0,
 "BulkGet_Cumulative_Min": 0,
 "BulkGet_Cumulative_Max": 0,
 "BulkGet_Cumulative_Avg": 0,
 "BulkGet_Cumulative_95th": 0,
 "BulkGet_Cumulative_99th": 0,
 "BulkGetKeys_Cumulative_TotalOps": 0,
 "BulkGetKeys_Cumulative_TotalReq": 0,
 "BulkGetKeys_Cumulative_PerSec": 0,
 "BulkGetKeys_Cumulative_Min": 0,
 "BulkGetKeys_Cumulative_Max": 0,
 "BulkGetKeys_Cumulative_Avg": 0,
 "BulkGetKeys_Cumulative_95th": 0,
 "BulkGetKeys_Cumulative_99th": 0,
 "BulkGetTable_Cumulative_TotalOps": 0,
 "BulkGetTable_Cumulative_TotalReq": 0,
 "BulkGetTable_Cumulative_PerSec": 0,
 "BulkGetTable_Cumulative_Min": 0,
 "BulkGetTable_Cumulative_Max": 0,
 "BulkGetTable_Cumulative_Avg": 0,
 "BulkGetTable_Cumulative_95th": 0,
 "BulkGetTable_Cumulative_99th": 0,
 "BulkGetTableKeys_Cumulative_TotalOps": 0,
 "BulkGetTableKeys_Cumulative_TotalReq": 0,
 "BulkGetTableKeys_Cumulative_PerSec": 0,
 "BulkGetTableKeys_Cumulative_Min": 0,
 "BulkGetTableKeys_Cumulative_Max": 0,
 "BulkGetTableKeys_Cumulative_Avg": 0,
 "BulkGetTableKeys_Cumulative_95th": 0,
 "BulkGetTableKeys_Cumulative_99th": 0
}

• New detailed statistics of single environment and replicated environment are
available as follows:

– Type: oracle.kv.repnode.envmetric

– User Data: contains a full listing of detailed statistics for a given RN.
The statistics are a string in JSON form, and are obtained through
Notification.getUserData(). See the javadoc for EnvironmentStats and
ReplicatedEnvironmentStats for more information about the meaning of the
statistics.

Chapter 9
Software Monitoring

9-14

An example stat is: getReplicaVLSNLagMap() – Returns a map from replica
node name to the lag, in VLSNs, between the replication state of the replica
and the master, if known. Returns an empty map if this node is not the master.

A sample statistics of single environment and replicated environment:

{
 "resource": "rg1-rn1",
 "shard": "rg1",
 "reportTime": 1498021100001,
 "FeederManager_nMaxReplicaLag": -1,
 "FeederManager_replicaLastCommitTimestampMap":
 "rg1-rn2=1498021098996;rg1-rn3=1498021096989",
 "FeederManager_nFeedersShutdown": 0,
 "FeederManager_nFeedersCreated": 2,
 "FeederManager_nMaxReplicaLagName": "rg1-rn2",
 "FeederManager_replicaVLSNLagMap": "rg1-rn2=0;rg1-rn3=2",
 "FeederManager_replicaVLSNRateMap": "rg1-rn2=472;rg1-rn3=472",
 "FeederManager_replicaDelayMap": "rg1-rn2=0;rg1-rn3=2007",
 "FeederManager_replicaLastCommitVLSNMap": "rg1-rn2=836;rg1-
rn3=834",
 "FeederTxns_txnsAcked": 77,
 "FeederTxns_lastCommitVLSN": 848,
 "FeederTxns_totalTxnMS": 228,
 "FeederTxns_lastCommitTimestamp": 1498021099030,
 "FeederTxns_vlsnRate": 439,
 "FeederTxns_txnsNotAcked": 0,
 "FeederTxns_ackWaitMS": 115,
 "Replay_nAborts": 0,
 "Replay_nGroupCommits": 0,
 "Replay_nNameLNs": 0,
 "Replay_nElapsedTxnTime": 0,
 "Replay_nMessageQueueOverflows": 0,
 "Replay_nGroupCommitMaxExceeded": 0,
 "Replay_nCommitSyncs": 0,
 "Replay_nCommitNoSyncs": 0,
 "Replay_maxCommitProcessingNanos": 0,
 "Replay_nGroupCommitTxns": 0,
 "Replay_nCommitWriteNoSyncs": 0,
 "Replay_minCommitProcessingNanos": 0,
 "Replay_nCommitAcks": 0,
 "Replay_nLNs": 0,
 "Replay_nCommits": 0,
 "Replay_latestCommitLagMs": 0,
 "Replay_totalCommitLagMs": 0,
 "Replay_totalCommitProcessingNanos": 0,
 "Replay_nGroupCommitTimeouts": 0,
 "ConsistencyTracker_nVLSNConsistencyWaitMS": 0,
 "ConsistencyTracker_nLagConsistencyWaits": 0,
 "ConsistencyTracker_nLagConsistencyWaitMS": 0,
 "ConsistencyTracker_nVLSNConsistencyWaits": 0,
 "BinaryProtocol_nMaxGroupedAcks": 0,
 "BinaryProtocol_messagesWrittenPerSecond": 19646,
 "BinaryProtocol_nEntriesOldVersion": 0,
 "BinaryProtocol_bytesReadPerSecond": 0,

Chapter 9
Software Monitoring

9-15

 "BinaryProtocol_bytesWrittenPerSecond": 1057385,
 "BinaryProtocol_nMessagesWritten": 344,
 "BinaryProtocol_nGroupAckMessages": 0,
 "BinaryProtocol_nMessagesRead": 0,
 "BinaryProtocol_nReadNanos": 0,
 "BinaryProtocol_nMessageBatches": 24,
 "BinaryProtocol_nAckMessages": 0,
 "BinaryProtocol_nWriteNanos": 17509221,
 "BinaryProtocol_nBytesRead": 0,
 "BinaryProtocol_nGroupedAcks": 0,
 "BinaryProtocol_nMessagesBatched": 48,
 "BinaryProtocol_messagesReadPerSecond": 0,
 "BinaryProtocol_nBytesWritten": 18514,
 "VLSNIndex_nHeadBucketsDeleted": 0,
 "VLSNIndex_nBucketsCreated": 0,
 "VLSNIndex_nMisses": 0,
 "VLSNIndex_nTailBucketsDeleted": 0,
 "VLSNIndex_nHits": 19,
 "I/O_nRepeatFaultReads": 0,
 "I/O_nRandomReads": 0,
 "I/O_nLogIntervalExceeded": 0,
 "I/O_nTempBufferWrites": 0,
 "I/O_nWriteQueueOverflowFailures": 0,
 "I/O_nGroupCommitWaits": 0,
 "I/O_nGroupCommitRequests": 0,
 "I/O_nWritesFromWriteQueue": 0,
 "I/O_nSequentialWrites": 4,
 "I/O_nGrpCommitTimeouts": 0,
 "I/O_nFileOpens": 0,
 "I/O_nRandomWrites": 0,
 "I/O_bufferBytes": 4404016,
 "I/O_nSequentialReadBytes": 0,
 "I/O_endOfLog": 135573,
 "I/O_nSequentialWriteBytes": 16693,
 "I/O_nFSyncTime": 114,
 "I/O_nSequentialReads": 0,
 "I/O_nLogFSyncs": 1,
 "I/O_nNoFreeBuffer": 0,
 "I/O_nFSyncs": 0,
 "I/O_nCacheMiss": 0,
 "I/O_nWriteQueueOverflow": 0,
 "I/O_nRandomWriteBytes": 0,
 "I/O_nReadsFromWriteQueue": 0,
 "I/O_nBytesReadFromWriteQueue": 0,
 "I/O_nBytesWrittenFromWriteQueue": 0,
 "I/O_nNotResident": 21,
 "I/O_nFSyncRequests": 0,
 "I/O_nRandomReadBytes": 0,
 "I/O_nOpenFiles": 1,
 "I/O_nLogBuffers": 16,
 "I/O_nLogMaxGroupCommitThreshold": 0,
 "I/O_nFSyncMaxTime": 114,
 "Cache_nBytesEvictedCACHEMODE": 0,
 "Cache_nINSparseTarget": 85,
 "Cache_nINNoTarget": 81,

Chapter 9
Software Monitoring

9-16

 "Cache_dataAdminBytes": 48800,
 "Cache_nBINsFetchMiss": 0,
 "Cache_nNodesEvicted": 0,
 "Cache_cacheTotalBytes": 5125248,
 "Cache_nSharedCacheEnvironments": 0,
 "Cache_nEvictionRuns": 0,
 "Cache_lruMixedSize": 90,
 "Cache_nLNsEvicted": 0,
 "Cache_nBINsFetch": 92,
 "Cache_nNodesMovedToDirtyLRU": 0,
 "Cache_nLNsFetch": 1761,
 "Cache_nBytesEvictedDAEMON": 0,
 "Cache_nDirtyNodesEvicted": 0,
 "Cache_nUpperINsFetchMiss": 0,
 "Cache_nCachedBINs": 90,
 "Cache_nNodesMutated": 0,
 "Cache_nNodesStripped": 0,
 "Cache_dataBytes": 686704,
 "Cache_nFullBINsMiss": 0,
 "Cache_nBINsFetchMissRatio": 0,
 "Cache_nRootNodesEvicted": 0,
 "Cache_nCachedBINDeltas": 0,
 "Cache_nBytesEvictedMANUAL": 0,
 "Cache_nNodesSkipped": 0,
 "Cache_nUpperINsFetch": 0,
 "Cache_nBinDeltaBlindOps": 0,
 "Cache_nBytesEvictedCRITICAL": 0,
 "Cache_lruDirtySize": 0,
 "Cache_nLNsFetchMiss": 21,
 "Cache_adminBytes": 589,
 "Cache_nBINDeltasFetchMiss": 0,
 "Cache_nThreadUnavailable": 0,
 "Cache_nCachedUpperINs": 84,
 "Cache_sharedCacheTotalBytes": 0,
 "Cache_nNodesPutBack": 0,
 "Cache_nBytesEvictedEVICTORTHREAD": 0,
 "Cache_DOSBytes": 0,
 "Cache_lockBytes": 33936,
 "Cache_nNodesTargeted": 0,
 "Cache_nINCompactKey": 7,
 "OffHeap_offHeapCriticalNodesTargeted": 0,
 "OffHeap_offHeapDirtyNodesEvicted": 0,
 "OffHeap_offHeapNodesSkipped": 4,
 "OffHeap_offHeapLNsEvicted": 44,
 "OffHeap_offHeapAllocOverflow": 0,
 "OffHeap_offHeapCachedLNs": 0,
 "OffHeap_offHeapNodesStripped": 44,
 "OffHeap_offHeapLruSize": 0,
 "OffHeap_offHeapLNsStored": 44,
 "OffHeap_offHeapLNsLoaded": 22,
 "OffHeap_offHeapTotalBytes": 0,
 "OffHeap_offHeapTotalBlocks": 0,
 "OffHeap_offHeapNodesEvicted": 0,
 "OffHeap_offHeapCachedBINDeltas": 0,
 "OffHeap_offHeapNodesMutated": 0,

Chapter 9
Software Monitoring

9-17

 "OffHeap_offHeapNodesTargeted": 48,
 "OffHeap_offHeapCachedBINs": 0,
 "OffHeap_offHeapAllocFailure": 0,
 "OffHeap_offHeapBINsLoaded": 0,
 "OffHeap_offHeapThreadUnavailable": 63,
 "OffHeap_offHeapBINsStored": 0,
 "Cleaning_nBINDeltasMigrated": 0,
 "Cleaning_minUtilization": 68,
 "Cleaning_nLNsMigrated": 0,
 "Cleaning_nINsCleaned": 0,
 "Cleaning_nPendingLNsProcessed": 0,
 "Cleaning_nToBeCleanedLNsProcessed": 0,
 "Cleaning_nLNsLocked": 0,
 "Cleaning_nRevisalRuns": 0,
 "Cleaning_nPendingLNsLocked": 0,
 "Cleaning_nTwoPassRuns": 0,
 "Cleaning_nBINDeltasObsolete": 0,
 "Cleaning_maxUtilization": 68,
 "Cleaning_nLNsMarked": 0,
 "Cleaning_pendingLNQueueSize": 0,
 "Cleaning_nMarkLNsProcessed": 0,
 "Cleaning_nRepeatIteratorReads": 0,
 "Cleaning_nLNsExpired": 0,
 "Cleaning_nCleanerRuns": 0,
 "Cleaning_nBINDeltasDead": 0,
 "Cleaning_nCleanerDisksReads": 0,
 "Cleaning_protectedLogSizeMap": "",
 "Cleaning_nCleanerDeletions": 0,
 "Cleaning_nCleanerEntriesRead": 0,
 "Cleaning_availableLogSize": 48942137344,
 "Cleaning_nLNsDead": 0,
 "Cleaning_nINsObsolete": 0,
 "Cleaning_activeLogSize": 112716,
 "Cleaning_nINsDead": 0,
 "Cleaning_nINsMigrated": 0,
 "Cleaning_totalLogSize": 112716,
 "Cleaning_nBINDeltasCleaned": 0,
 "Cleaning_nLNsObsolete": 0,
 "Cleaning_nLNsCleaned": 0,
 "Cleaning_nLNQueueHits": 0,
 "Cleaning_reservedLogSize": 0,
 "Cleaning_protectedLogSize": 0,
 "Cleaning_nClusterLNsProcessed": 0,
 "Node Compression_processedBins": 0,
 "Node Compression_splitBins": 0,
 "Node Compression_dbClosedBins": 0,
 "Node Compression_cursorsBins": 0,
 "Node Compression_nonEmptyBins": 0,
 "Node Compression_inCompQueueSize": 0,
 "Checkpoints_lastCheckpointInterval": 670,
 "Checkpoints_nDeltaINFlush": 0,
 "Checkpoints_lastCheckpointStart": 670,
 "Checkpoints_lastCheckpointEnd": 1342,
 "Checkpoints_nFullBINFlush": 0,
 "Checkpoints_lastCheckpointId": 1,

Chapter 9
Software Monitoring

9-18

 "Checkpoints_nFullINFlush": 0,
 "Checkpoints_nCheckpoints": 0,
 "Environment_nBinDeltaInsert": 0,
 "Environment_nBinDeltaUpdate": 0,
 "Environment_nBinDeltaGet": 0,
 "Environment_btreeRelatchesRequired": 0,
 "Environment_nBinDeltaDelete": 0,
 "Environment_environmentCreationTime": 1498021055255,
 "Locks_nWaiters": 0,
 "Locks_nRequests": 142,
 "Locks_nLatchAcquiresSelfOwned": 0,
 "Locks_nWriteLocks": 0,
 "Locks_nTotalLocks": 303,
 "Locks_nReadLocks": 303,
 "Locks_nLatchAcquiresNoWaitSuccessful": 0,
 "Locks_nOwners": 303,
 "Locks_nLatchAcquiresWithContention": 0,
 "Locks_nLatchAcquireNoWaitUnsuccessful": 0,
 "Locks_nLatchReleases": 0,
 "Locks_nLatchAcquiresNoWaiters": 0,
 "Locks_nWaits": 0,
 "Op_secSearchFail": 0,
 "Op_priDelete": 0,
 "Op_priSearchFail": 14,
 "Op_secPosition": 0,
 "Op_priInsertFail": 0,
 "Op_priDeleteFail": 0,
 "Op_secSearch": 0,
 "Op_priSearch": 54,
 "Op_priPosition": 2,
 "Op_secDelete": 0,
 "Op_secUpdate": 0,
 "Op_secInsert": 0,
 "Op_priUpdate": 11,
 "Op_priInsert": 66
}

• Announce a change in this RepNode's replication state.

– Type: oracle.kv.repnode.replicationstate

– User Data: RN replication state change event. The event is a string in JSON
form, and is obtained via Notification.getUserData().

For example:

{"resource":"rg1-rn3","shard":"rg1","reportTime":1476980297641,
"replication_state":"MASTER"}

• Announce a change in this RepNode's service status.

– Type: oracle.kv.repnode.status

– User Data: RN service status change event. The event is a string in JSON
form, and is obtained via Notification.getUserData().

Chapter 9
Software Monitoring

9-19

For example:

{"resource":"rg3-rn3","shard":"rg3","reportTime":1476981010202,
"service_status":"ERROR_RESTARTING"}

• Announce a plan state change.

– Type: oracle.kv.plan.status

– User Data: Plan status change event. The event is a string in JSON form, and
is obtained via Notification.getUserData().

For example:

{"planId":7,"planName":"Change Global Params
(7)","reportTime":1477272558763,"state":"SUCCEEDED","attemptNumber":
1,
"message":"Plan finished."}

Monitoring for Replication Nodes (RN)
Each Storage Node hosts one or more Replication Nodes which stores the data
in key-value pairs. For more information, see Replication Nodes and Shards in the
Concepts Guide.

See the following section:

• Metrics for Replication Node

Metrics for Replication Node
• repNodeServiceStatus – The current status of the Replication Node. They are as

follows:

– starting (1) – The storage node agent is booting up.

– waitingForDeploy (2) – The Replication Node is waiting to be registered with
the Storage Node Agent.

– running(3) – The replication node is running.

– stopping(4) – The replication node is in the process of shutting down.

– stopped(5) – An intentional clean shutdown.

– errorRestarting(6) – The Replication Node is restarting after encountering an
error.

– errorNoRestart(7) – Service is in an error state, will not restart automatically,
and the service requires Administrative intervention. The user can search for
SEVERE entries in both the log file for the Replication Node and the log file of
the SNA controlling the failed service. The service's log in Monitoring for RN
section is RN log:

<kvroot>/<storename>/log/rg*-rn*_*.log

Chapter 9
Software Monitoring

9-20

where, <kvroot> and <storename> are user inputs and * represents the
number of the log. For example: rg3-rn2_0.log is the latest log, rg3-rn2_1.log
is previous log.

Note that the kvroot and storename will be different for every installation.
Similarly, to find the log file for SNA, use:

<kvroot>/<storename>/log/sn*_*.log

Examples of SN logs can be: sn1_0.log, sn1_1.log.
You can search SEVERE keyword in these log files, and then read the
searched messages to fix the errors, or you may require help from Oracle
NoSQL Database support. The action to take depends on the nature of the
failure and can vary from stopping and restarting the service explicitly (easy)
to the need to replace the service instance entirely (not easy and slow). The
issues can be any of the following:

* Resource issue – Some type of necessary resource for example, disk
space, memory, or network is not available.

* Configuration problem – Some configuration-related issues which needs a
fix.

* Software bug – Bugs in the code which needs Oracle NoSQL Database
support.

* On disk corruption – Something in persistent storage has been corrupted.

Note that the corruption situations are difficult to handle, but this is rare and
require help from Oracle NoSQL Database support.

– unreachable(8) – The Replication Node is unreachable by the admin service.

Note:

If a Storage Node is UNREACHABLE, or a Replication Node is
having problems and its Storage Node is UNREACHABLE, the first
thing to check is the network connectivity between the Admin and
the Storage Node. However, if the managing Storage Node Agent is
reachable and the managed Replication Node is not, we can guess
that the network is OK and the problem lies elsewhere.

– expectedRestarting(9) – The Replication Node is executing an expected
restart as some plan CLI commands causes a component to restart. This is
an expected restart, that is different from errorRestarting(6) (which is a restart
after encountering an error).

The following metrics can be monitored to get a sense for the performance of each
Replication Node in the cluster. There are two flavors of metric granularity:

• Interval – By default, each node in the cluster will sample performance data
every 20 seconds and aggregate the metrics to this interval. This interval may
be changed using the admin plan change-parameters - global and supplying the
collectorInterval parameter with a new value (see Changing Parameters).

• Cumulative – Metrics that have been collected and aggregated since the node has
started.

Chapter 9
Software Monitoring

9-21

The metrics are further broken down into measurements for operations over single
keys versus operations over multiple keys.

Note:

All timestamp metrics are in UTC, therefore appropriate conversion to a time
zone relevant to where the store is deployed is necessary.

• repNodeIntervalStart – The start timestamp of when this sample of single key
operation measurements were collected.

• repNodeIntervalEnd –The start timestamp of when this sample of single key
operation measurements were collected.

• repNodeIntervalTotalOps – Total number of single key operations (get, put, delete)
processed by the Replication Node in the interval being measured.

• repNodeIntervalThroughput – Number of single key operations (get, put, delete)
per second completed during the interval being measured.

• repNodeIntervalLatMin – The minimum latency sample of single key operations
(get, put, delete) during the interval being measured.

• repNodeIntervalLatMax – The maximum latency sample of single key operations
(get, put, delete) during the interval being measured.

• repNodeIntervalLatAvg – The average latency sample of single key operations
(get, put, delete) during the interval being measured (returned as a float).

• repNodeIntervalPct95 – The 95th percentile of the latency sample of single key
operations (get, put, delete) during the interval being measured.

• repNodeIntervalPct99 – The 95th percentile of the latency sample of single key
operations (get, put, delete) during the interval being measured.

• repNodeCumulativeStart – The start timestamp of when the replication started
collecting cumulative performance metrics (all the below metrics that are
cumulative).

• repNodeCumulativeEnd – The end timestamp of when the replication ended
collecting cumulative performance metrics (all the below metrics that are
cumulative).

• repNodeCumulativeTotalOps – The total number of single key operations that
have been processed by the Replication Node.

• repNodeCumulativeThroughput – The sustained operations per second of single
key operations measured by this node since it has started.

• repNodeCumulativeLatMin – The minimum latency of single key operations
measured by this node since it has started.

• repNodeCumulativeLatMax – The maximum latency of single key operations
measured by this node since it has started.

• repNodeCumulativeLatAvg – The average latency of single key operations
measured by this node since it has started (returned as a float).

• repNodeCumulativePct95 – The 95th percentile of the latency of single key
operations (get, put, delete) since it has started.

Chapter 9
Software Monitoring

9-22

• repNodeCumulativePct99 – The 99th percentile of the latency of single key
operations (get, put, delete) since it has started.

• repNodeMultiIntervalStart – The start timestamp of when this sample of multiple
key operation measurements were collected.

• repNodeMultiIntervalEnd – The end timestamp of when this sample of multiple key
operation measurements were collected.

• repNodeMultiIntervalTotalOps – Total number of multiple key operations (execute)
processed by the replication node in the interval being measured.

• repNodeMultiIntervalThroughput – Number of multiple key operations (execute)
per second completed during the interval being measured.

• repNodeMultiIntervalLatMin – The minimum latency sample of multiple key
operations (execute) during the interval being measured.

• repNodeMultiIntervalLatMax – The maximum latency sample of multiple key
operations (execute) during the interval being measured.

• repNodeMultiIntervalLatAvg – The average latency sample of multiple key
operations (execute) during the interval being measured (returned as a float).

• repNodeMultiIntervalPct95 – The 95th percentile of the latency sample of multiple
key operations (execute) during the interval being measured.

• repNodeMultiIntervalPct99 – The 95th percentile of the latency sample of multiple
key operations (execute) during the interval being measured.

• repNodeMultiIntervalTotalRequests – The total number of multiple key operations
(execute) during the interval being measured.

• repNodeMultiCumulativeStart – The start timestamp of when the Replication Node
started collecting cumulative multiple key performance metrics (all the below
metrics that are cumulative).

• repNodeMultiCumulativeEnd – The end timestamp of when the Replication Node
started collecting cumulative multiple key performance metrics (all the below
metrics that are cumulative).

• repNodeMultiCumulativeTotalOps – The total number of single multiple operations
that have been processed by the Replication Node since it has started.

• repNodeMultiCumulativeThroughput – The sustained operations per second of
multiple key operations measured by this node since it has started.

• repNodeMultiCumulativeLatMin – The minimum latency of multiple key operations
(execute) measured by this node since it has started.

• repNodeMultiCumulativeLatMax – The maximum latency of multiple key
operations (execute) measured by this node since it has started.

• repNodeMultiCumulativeLatAvg – The average latency of multiple key operations
(execute) measured by this node since it has started (returned as a float).

• repNodeMultiCumulativePct95 – The 95th percentile of the latency of multiple key
operations (execute) since it has started.

• repNodeMultiCumulativePct99 – The 99th percentile of the latency of multiple key
operations (execute) since it has started.

• repNodeMultiCumulativeTotalRequests – The total number of multiple key
operations measured by this node since it has started.

Chapter 9
Software Monitoring

9-23

• repNodeCommitLag – The average commit lag (in milliseconds) for a given
Replication Node's update operations during a given time interval.

• repNodeCacheSize – The size in bytes of the replication node's cache of B-tree
nodes, which is calculated using the DBCacheSize utility.

• repNodeConfigProperties – The set of configuration name/value pairs that the
Replication Node is currently running with. Each parameter is a constant
which has a string value. The string value is used to set the parameter in
KVSTORE. For example, the parameter CHECKPOINTER_BYTES_INTERVAL
has je.checkpointer.bytesInterval string value in the javadoc (see, here). The
document also details on the data type, minimum, maximum time, etc.

• repNodeCollectEnvStats – True or false depending on whether the Replication
Node is currently collecting performance statistics.

• repNodeStatsInterval – The interval (in seconds) that the Replication Node is
utilizing for aggregate statistics.

• repNodeMaxTrackedLatency – The maximum number of milliseconds for which
latency statistics will be tracked. For example, if this parameter is set to 1000,
then any operation at the repnode that exhibits a latency of 1000 or greater
milliseconds is not put into the array of metric samples for subsequent reporting.

• repNodeJavaMiscParams – The value of the -Xms, -Xmx, and -
XX:ParallelGCThreads= as encountered when the Java VM running this
Replication Node was booted.

• repNodeLoggingConfigProps – The value of the loggingConfigProps parameter as
encountered when the Java VM running this Replication Node was booted.

• repNodeHeapMB – The size of the Java heap for this Replication Node, in MB.

• repNodeMountPoint – The path to the file system mount point where this
Replication Node's files are stored.

• repNodeMountPointSize – The size of the file system mount point where this
Replication Node's files are stored.

• repNodeHeapSize – The current value of –Xmx for this Replication Node.

• repNodeLatencyCeiling – The upper bound (in milliseconds) at which latency
samples may be gathered at this Replication Node before an alert is generated.
For example, if this is set to 3, then any latency sample above 3 generates an
alert.

• repNodeCommitLagThreshold – If the average commit lag (in milliseconds) for a
given Replication Node during a given time interval exceeds the value returned by
this method, an alert is generated.

• repNodeReplicationState – The replication state of the node.

• repNodeThroughputFloor – The lower bound (in operations per second) at which
throughput samples may be gathered at this Replication Node before an alert is
generated. For example, if this is set to 300,000, then any throughput calculation
at this Replication Node that is lower than 300,000 operations per seconds
generates an alert.

Chapter 9
Software Monitoring

9-24

Monitoring for Arbiter Nodes
An Arbiter Node is a lightweight process that participates in electing a new master
when the old master becomes unavailable. For more information, see Arbiter Nodes in
the Concepts Guide.

See the following section:

• Metrics for Arbiter Nodes

Metrics for Arbiter Nodes
• arbNodeServiceStatus – The current status of the Arbiter Node. They are as

follows:

– starting (1) – The Storage Node Agent is booting up.

– waitingForDeploy (2) – The Arbiter Node is waiting to be registered with the
Storage Node Agent.

– running(3) – The Arbiter Node is running.

– stopping(4) – The Arbiter Node is in the process of shutting down.

– stopped(5) – An intentional clean shutdown.

– errorRestarting(6) – The Arbiter Node is restarting after encountering an error.

– errorNoRestart(7) – Service is in an error state and will not be automatically
restarted. Administrative intervention is required. The user can search for
SEVERE entries in both the service's log file and the log file of the SNA
controlling the failed service. The service's log in Monitoring for Arbiter section
is Arbiter log:

<kvroot>/<storename>/log/rg*_an1_*.log

where, <kvroot> and <storename> are user inputs and * represents the
number of the log.

Note that the kvroot and storename will be different for every installation.
Similarly, to find the log file for SNA, use:

<kvroot>/<storename>/log/sn*_*.log

Examples of SN logs can be: sn1_0.log, sn1_1.log.

You can search SEVERE keyword in these log files, and then read the
searched messages to fix the errors, or you may require help from Oracle
NoSQL Database support. The action to take depends on the nature of the
failure and can vary from stopping and restarting the service explicitly (easy)
to the need to replace the service instance entirely (not easy and slow). The
issues can be any of the following:

* Resource issue – Some type of necessary resource for example, disk
space, memory, or network is not available.

* Configuration problem – Some configuration-related issues which needs a
fix.

Chapter 9
Software Monitoring

9-25

* Software bug – Bugs in the code which needs Oracle NoSQL Database
support.

* On disk corruption – Something in persistent storage has been corrupted.

Note that the corruption situations are difficult to handle, but this is rare and
require help from Oracle NoSQL Database support.

– unreachable(8) – The Arbiter Node is unreachable by the admin service.

Note:

If a Storage Node is UNREACHABLE, or an Admin Node is having
problems and its Storage Node is UNREACHABLE, the first thing
to check is the network connectivity between the Admin and the
Storage Node. However, if the managing Storage Node Agent is
reachable and the managed Arbiter Node is not, we can guess that
the network is OK and the problem lies elsewhere.

– expectedRestarting(9) – The Arbiter Node is executing an expected restart
as some plan CLI commands causes a component to restart. This is an
expected restart, that is different from errorRestarting(6) (which is a restart
after encountering an error).

Note:

All timestamp metrics are in UTC, therefore appropriate conversion to a
time zone relevant to where the store is deployed is necessary.

• arbNodeConfigProperties – The set of configuration name/value pairs that the
Arbiter Node is currently running with. This is analogous to the Replication Node.

• arbNodeJavaMiscParams – The value of the -Xms, -Xmx, and -
XX:ParallelGCThreads= as encountered when the Java VM running this Arbiter
Node was booted.

• arbNodeLoggingConfigProps – The value of the loggingConfigProps parameter as
encountered when the Java VM running this Arbiter Node was booted.

• arbNodeCollectEnvStats – True or false depending on whether the Arbiter Node is
currently collecting performance statistics.

• arbNodeStatsInterval – The interval (in seconds) that the Arbiter Node is utilizing
for aggregate statistics.

• arbNodeHeapMB – The size of the Java heap for this Arbiter Node, in MB.

• arbNodeAcks – The number of transactions acked.

• arbNodeMaster – The current master.

• arbNodeState – The replication state of the node. An Arbiter has an associated
replication state (analogous to the replication node state). The state diagram is
UNKNOWN <-> REPLICA -> DETACHED.

Chapter 9
Software Monitoring

9-26

• arbNodeVLSN – The current acked VLSN. Arbiters track the VLSN/DTVLSN of the
transaction commit that the Arbiter acknowledges. This is the highest VLSN value
that the Arbiter acknowledged.

• arbNodeReplayQueueOverflow – The current replayQueueOverflow value. The
arbNodeReplayQueueOverflow statistic is incremented when the Arbiter is
not able to process acknowledgement requests fast enough to prevent the
thread reading from the network to wait for free space in the queue. The
RepParms.REPLICA_MESSAGE_QUEUE_SIZE is used to specify the maximum
number of entries that the queue can hold. The default is 1000 entries. A high
arbNodeReplayQueueOverflow value may indicate that the queue size is too small
or that the Arbiter is not able to process requests as fast as the system load
requires.

Monitoring for Administration (Admin) Nodes
The Administrative (Admin) Node is a process running in the Storage Node, that is
used to configure, deploy, monitor, and change store components. The Administrative
Node handles the execution of commands from the Administrative Command Line
Interface (CLI). For more information, see Administration in the Concepts Guide.

See the following section:

• Metrics for Admin Nodes

Metrics for Admin Nodes
The following metrics are accessible through JMX for monitoring Administrative Nodes
in the Oracle NoSQL Database cluster.

• adminId – The unique ID for the Admin Node.

• adminServiceStatus – The status of the administrative service. It can be one of the
follows:

– unreachable(0) – The Admin Node is unreachable. This can be due to a
network error or the Admin Node maybe down.

– starting (1) – The Admin Node agent is booting up.

– waitingForDeploy (2) – Indicates a bootstrap admin that has not been
configured, that is, it has not been given a store name. Configuring the admin
triggers the creation of the Admin database, and changes its status from
"WAITING_FOR_DEPLOY" to "RUNNING".

– running(3) – The Admin Node is running.

– stopping(4) – The Admin Node in the process of shutting down.

– stopped(5) – An intentional clean shutdown of the Admin Node.

– errorRestarting(6) – The Storage Node tried to start the admin several times
without success and gave up.

– errorNoRestart(7) – Service is in an error state and will not be automatically
restarted. Administrative intervention is required. The user can start looking
for SEVERE entries in both the service's log file and the log file of the SNA

Chapter 9
Software Monitoring

9-27

controlling the failed service. The service's log in Monitoring for Admin section
is Admin log:

<kvroot>/<storename>/log/admin*_*.log

where, <kvroot> and <storename> are user inputs and * represents the
number of the log.

Note that the kvroot and storename will be different for every installation.
Similarly, to find the log file for SNA, use:

<kvroot>/<storename>/log/sn*_*.log

Examples of SN logs can be: sn1_0.log, sn1_1.log.
You can search SEVERE keyword in these log files, and then read the
searched messages to fix the errors, or you may require help from Oracle
NoSQL Database support. The action to take depends on the nature of the
failure and can vary from stopping and restarting the service explicitly (easy)
to the need to replace the service instance entirely (not easy and slow). The
issues can be any of the following:

* Resource issue – Some type of necessary resource for example, disk
space, memory, or network is not available.

* Configuration problem – Some configuration-related issues which needs a
fix.

* Software bug – Bugs in the code which needs Oracle NoSQL Database
support.

* On disk corruption – Something in persistent storage has been corrupted.

In the rare case that you discover disk corruption, you must get help from
Oracle NoSQL Database support.

– expectedRestarting(9) – The Admin Node is executing an expected restart
as some plan CLI commands causes a component to restart. This is an
expected restart, that is different from errorRestarting(6) (which is a restart
after encountering an error).

• adminLogFileCount – A logging config parameter that represents the maximum
number of log files that are retained by the Admin Node. Users can change the
value of this parameter, and also the adminLogFileLimit parameter, if they want
to reduce the amount of disk space used by debug log files. Note that reducing
the amount of debug log data saved may make it harder to debug problems if
debug information is deleted before the problem is noticed. For more information
on adminLogFileCount, see Admin Parameters and Admin Restart.

• adminLogFileLimit – A logging config parameter that represents the maximum size
of a single log file in bytes. For more information on adminLogFileLimit, see
Admin Parameters and Admin Restart.

• adminPollPeriod – The frequency by which the Admin polls agents (Replication
Node and Storage Node Agent) for statistics. This polling receives service status
changes, performance metrics, and log messages. This period is reported in units
of milliseconds.

• adminEventExpiryAge – Tells how long critical events are saved in the admin
database. This value is reported in units of hours.

Chapter 9
Software Monitoring

9-28

• adminIsMaster – A Boolean value which indicates whether or not this Admin Node
is the master node for the admin group.

Hardware Monitoring
While software component monitoring is central to insuring that high availability service
levels are met, hardware monitoring, fault isolation, and ultimately the replacement of
a failed component and how to recover from that failure are equally important. The
following sections cover guidelines on what to monitor and how to detect potential
hardware failures. It also discusses the replacement procedures of replacing failed
hardware components and how to bring the Oracle NoSQL Database components
(that were utilizing the components that were replaced) back online.

Monitoring for Hardware Faults
There are several different hardware scenarios/failures that are considered when
monitoring the environment for Oracle NoSQL Database. The sections below cover
the monitoring of network, disk, and machine failures as well as the correlation of
these failures with log events in the Oracle NoSQL Database. Finally, it discusses how
to recover from these failure scenarios.

The Network
Monitoring packet loss, round trip average latencies, and network utilization provides
a glimpse into critical network activity that can affect the performance as well as the
ongoing functioning of the Oracle NoSQL Database. There are two critical types of
network activity in the Oracle NoSQL Database. The client driver will utilize Java RMI
over TCP/IP to communicate between the machine running the application, and the
machines running the nodes of the NoSQL Database cluster. Secondly, each node in
the cluster must be able to communicate with each other. Replication Nodes will utilize
Java RMI over TCP/IP and will also utilize streams based communication over TCP/IP.
Administrative nodes and Storage Node agents will only utilize RMI over TCP/IP. The
key issue in insuring an operational store that is able to maintain predictable latencies
and throughput is to monitor the health of the network through which all of these nodes
communicate.

The following tools are recommended for monitoring the health of the network
interfaces that the Oracle NoSQL Database relies on:

• Sar, ping, iptraf – These operating system tools display critical network statistics
such as # of packets lost, round trip latency, and network utilization. It is
recommended to use ping in a scripted fashion to monitor round trip latency as
well as packet loss and use either sar or iptraf in a scripted fashion to monitor
network utilization. A good rule of thumb is to raise an alert if network utilization
goes above 80%.

• Oracle NoSQL Ping command – The ping command attempts to contact each
node of the cluster. Directions on how to run and script this command can be
found here: CLI Command Reference.

Correlating Network Failure to NoSQL Log Events
Network failures that affect the runtime operation of NoSQL Database is ultimately
logged as instances of Java runtime exceptions. Using log file monitoring, the following
exception strings are added to a list of regular expressions that are recognized as

Chapter 9
Hardware Monitoring

9-29

critical events. Correlating the timestamps of these events with the timestamps of
whatever network monitoring tool is being utilized.

Note:

While searching the log file for any of the exceptions stated below, the
log level must also be checked such that only log levels of SEVERE is
considered. These exceptions are logged at a level of INFO which indicates
no errors will be encountered by the application.

• UnknownHostException – A DNS lookup of a node in the NoSQL Database
failed due to either a misconfigured NoSQL Database or a DNS error.
Encountering this error after a NoSQL cluster has been operational for some time
indicates a network failure between the application and the DNS server.

• ConnectException – The client driver cannot open a connection to the NoSQL
Database node. Either the node is not listening on the port being contacted or the
port is blocked by a firewall.

• ConnectIOException – Indicates a possible handshake error between the client
and the server or an I/O error from the network layer.

• MarshalException – Indicates a possible I/O error from the network layer.

• UnmarshalException – Indicates a possible I/O error from the network layer.

• NoSuchObjectException – Indicates a possible I/O error from the network layer.

• RemoteException – Indicates a possible I/O error from the network layer.

Recovering from Network Failure
In general, the NoSQL Database will retry and recover from network failures and no
intervention at the database level is necessary. It is possible that a degraded level
of service is encountered due to the network failure; however, the failure of network
partitions will not cause the NoSQL Database to fail.

Persistent Storage
One of the most common failure scenarios you can expect to encounter while
managing a deployed Oracle NoSQL Database instance (sometimes referred to as
KVStore) is a disk that fails and needs to be replaced; where the disk is typically
a hard disk drive (HDD), or a solid state drive (SSD). Because HDDs employ many
moving parts that are continuously in action when the store performs numerous writes
and reads, moving huge numbers of bytes on and off the disk, parts of the disk can
easily wear out and fail. With respect to SSDs, although the absence of moving parts
makes SSDs a bit less failure prone than HDDs, when placed under very heavy load,
SSDs will also generally fail with regularity. As a matter of fact, when such stores
scale to a very large number of nodes (machines), a point can be reached where disk
failure is virtually guaranteed; much more than other hardware components making
up a node. For example, disks associated with such systems generally fail much
more frequently than the system's mother board, memory chips, or even the network
interface cards (NICs).

Chapter 9
Hardware Monitoring

9-30

Since disk failures are so common, a well-defined procedure is provided for replacing
a failed disk while the store continues to run; providing data availability.

Detecting and Correlating Persistent Storage Failures to NoSQL Log Events
There are many vendor specific tools for detecting the failure of persistent storage
devices. It is beyond the scope of this book to recommend any vendor specific
mechanism. There are however, some general things that can be done to identify
a failed persistent storage device;

Note:

Using log file monitoring, the following exception string is to a list of regular
expressions that should be recognized as critical events. Correlating the
timestamps of these events with the timestamps of whatever storage device
monitoring tool is being utilized. When searching the log file for any of the
exception stated below, the log level must also be checked such that only log
levels of SEVERE is considered.

• I/O errors in /var/log/messages – Monitoring /var/log/messages for I/O errors
indicate that something is wrong with the device and it may be failing.

• Smartctl – If available, the smartctl tool detects a failure with a persistent storage
device and displays the serial number of the specific device that is failing.

• EnvironmentFailureException – The storage layer of NoSQL Database
(Berkeley DB Java Edition) converts Java IOExceptions detected from the storage
device into an EnvironmentFailureException and this exception is written to the log
file.

Resolving Storage Device Failures
The sections below describe that procedure for two common machine configurations.

In order to understand how a failed disk can be replaced while the KVStore is running,
review what and where data is stored by the KVStore; which is dependent on each
machine's disk configuration, as well as how the store's capacity and storage directory
location is configured. Suppose a KVStore is distributed among 3 machines – or
Storage Nodes (SNs) — and is configured with replication factor (RF) equal to 3,
each SN's capacity equal to 2, KVROOT equal to /opt/ondb/var/kvroot, and store name
equal to "store-name". Since the capacity or each SN is 2, each machine will host 2
Replication Nodes (RNs). That is, each SN will execute 2 Java VMs and each run
a software service (an RN service) responsible for storing and retrieving a replicated
instance of the key/value data maintained by the store.

Suppose in one deployment, the machines themselves (the SNs) are each configured
with 3 disks; whereas in another deployment, the SNs each have only a single disk
on which to write and read data. Although the second (single disk) scenario is fine
for experimentation and "tire kicking", that configuration is strongly discouraged for
production environments, where it is likely to have disk failure and replacement. In
particular, one rule deployers are encouraged to follow in production environments
is that multiple RN services should never be configured to write data to the same
disk. That said, there may be some uncommon circumstances in which a deployer
may choose to violate this rule. For example, in addition to being extremely reliable

Chapter 9
Hardware Monitoring

9-31

(for example, a RAID device), the disk may be a device with such high performance
and large capacity that a single RN service would never be able to make use of
the disk without exceeding the recommended 32GB heap limit. Thus, unless the
environment consists of disks that satisfy such uncommon criteria, deployers always
prefer environments that allow them to configure each RN service with its own disk;
separate from all configuration and administration information, as well as the data
stored by any other RN services running on the system.

As explained below, to configure a KVStore use multiple disks on each SN, the
storagedir parameter must be employed to exploit the separate media that is available.
In addition to encouraging deployers to use the storagedir parameter in the multi-disk
scenario, this note is also biased toward the use of that parameter when discussing
the single disk scenario; even though the use of that parameter in the single disk
case provides no substantial benefit over using the default location (other than the
ability to develop common deployment scripts). To understand this, first compare the
implications of using the default storage location with a non-default location specified
with the storagedir parameter.

Thus, suppose the KVStore is deployed – in either the multi-disk scenario or the single
disk scenario – using the default location; that is, the storagedir parameter is left
unspecified. This means that data will be stored in either scenario under the KVROOT;
which is /opt/ondb/var/kvroot in the examples below. For either scenario, a directory
structure like the following is created and populated:

 - Machine 1 (SN1) - - Machine 2 (SN2) - - Machine 3 (SN3) -
/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 log files log files log files
 /store-name /store-name /store-name
 /log /log /log
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml
 /admin1 /admin2 /admin3
 /env /env /env

 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /env /env /env

 /rg2-rn1 /rg2-rn2 /rg2-rn3
 /env /env /env

Compare this with the structure that is created when a KVStore is deployed to the
multi-disk machines; where each machine's 3 disks are named /opt, /disk1, and/disk2.
Assume that the makebootconfig utility (described in Chapter 2 of the Oracle NoSQL
Database Administrator's Guide, section, "Installation Configuration") is used to create
an initial boot config with parameters such as the following:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -port 5000 \
 -host <host-ip>
 -harange 5010,5020 \
 -num_cpus 0 \
 -memory_mb 0 \
 -capacity 2 \

Chapter 9
Hardware Monitoring

9-32

 -admindir /opt/ondb/var/admin \
 -storagedir /disk1/ondb/data \
 -storagedir /disk2/ondb/data \
 -rnlogdir /disk1/ondb/rnlog \
 -storagedir /disk2/ondb/rnlog

With a boot config such as that shown above, the directory structure that is created
and populated on each machine would then be:

 - Machine 1 (SN1) - - Machine 2 (SN2) - - Machine 3 (SN3) -
/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 log files log files log files
 /store-name /store-name /store-name
 /log /log /log
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml
 /admin1 /admin2 /admin3
 /env /env /env

/disk1/ondb/data /disk1/ondb/data /disk1/ondb/data
 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /env /env /env

/disk2/ondb/data /disk2/ondb/data /disk2/ondb/data
 /rg2-rn1 /rg2-rn2 /rg2-rn3
 /env /env /env

In this case, the configuration information and administrative data is stored in a
location that is separate from all of the replication data. Furthermore, the replication
data itself is stored by each distinct RN service on separate, physical media as well.
That is, the data stored by a given member of each replication group (or shard) is
stored on a disk that separate from the disks employed by the other members of the
group.

Note:

Storing the data in these different locations as described above, provides for
failure isolation and will typically make disk replacement less complicated
and less time consuming. That is, by using a larger number of smaller
disks, it is possible to recover much more quickly from a single disk failure
because of the reduced amount of time it will take to repopulate the smaller
disk. This is why both this note and Chapter 2 of the Oracle NoSQL
Database Administrator's Guide, section, "Installation Configuration" strongly
encourage configurations like that shown above; configurations that exploit
separate physical media or disk partitions.

Even when a machine has only a single disk, nothing prevents the deployer from
using the storagedir parameter in a manner similar to the multi-disk case; storing the
configuration and administrative data under a parent directory that is different than
the parent(s) under which the replicated data is stored. Since this non-default strategy
may allow to create deployment scripts that can be more easily shared between single

Chapter 9
Hardware Monitoring

9-33

disk and multi-disk systems, some may prefer this strategy over using the default
location (KVROOT); or may simply view it as a good habit to follow. Employing this
non-default strategy is simply a matter of taste, and provides no additional benefit
other than uniformity with the multi-disk case.

Hence, such a strategy applied to a single disk system will not necessarily make
disk replacement less complicated; because, if that single disk fails and needs to be
replaced, not only is all the data written by the RN(s) unavailable, but the configuration
(and admin) data is also unavailable. As a result, since the configuration information
is needed during the (RN) recovery process after the disk has been replaced, that
data must be restored from a previously captured backup; which can make the disk
replacement process much more complicated. This is why multi-disk systems are
generally preferred in production environments; where, because of sheer use, the data
disks are far more likely to fail than the disk holding only the configuration and other
system data.

Procedure for Replacing a Failed Persistent Storage Device
Suppose a KVStore has been deployed to a set of machines, each with 3 disks, using
the 'storagedir' parameter as described above. Suppose that disk2 on SN3 fails and
needs to be replaced. In this case, the administrator would do the following:

1. Execute the KVStore administrative command line interface (CLI), connecting via
one of the healthy admin services.

2. From the CLI, execute the following command:

kv-> plan stop-service-service rg2-rn3

This stops the service so that attempts by the system to communicate with that
particular service are no longer necessary; resulting in a reduction in the amount
of error output related to a failure the administrator is already aware of.

3. Remove disk2, using whatever procedure is dictated by the OS, the disk
manufacture, and/or the hardware platform.

4. Install a new disk using the appropriate procedures.

5. Format the new disk to have the same storage directory as before; that is, /disk2/
ondb/var/kvroot

6. From the CLI, execute the following commands; where the verify configuration
command simply verifies that the desired RN is now up and running:

kv-> plan start-service -service rg2-rn3 -wait
kv-> verify configuration

7. Verify that the recovered RN data file(s) have the expected content; that is, /
disk2/ondb/var/kvroot/rg2-rn3/env/*.jdb

In step 2, the RN service with id equal to 3, belonging to the replication group with id2,
is stopped (rg2-rn3). To determine which specific RN service to stop when using the
procedure outlined above, the administrator combines knowledge of which disk has
failed on which machine with knowledge about the directory structure created during
deployment of the KVStore. For this particular case, the administrator has first used
standard system monitoring and management mechanisms to determine that disk2
has failed on the machine corresponding to the SN with id equal to 3 and needs to
be replaced. Then, given the directory structure shown previously, the administrator

Chapter 9
Hardware Monitoring

9-34

knows that – for this deployment – the store writes replicated data to disk2 on the
SN3 machine using files located under, /disk2b/data/rg2-rn3/en. As a result, the
administrator determined that the RN service with name equal to rg2-rn3 must be
stopped before replacing the failed disk.

In step 6, if the RN service that was previously stopped has successfully restarted
when the verify configuration command is executed, and although the command's
output indicates that the service is up and healthy, it is not necessary that the restarted
RN has completely repopulated the new disk with that RN's data. This is because,
it could take a considerable amount of time for the disk to recover all its data;
depending on the amount of data that previously resided on the disk before failure.
The system may encounter additional network traffic and load while the new disk is
being repopulated.

Finally, it should be noted that step 7 is just a sanity check, and therefore optional.
That is, if the RN service is successfully restarted and the verify configuration
command reports RN as healthy, the results of that command is viewed as sufficient
evidence for declaring the disk replacement a success. As indicated above, even if
some data is not yet available on the new disk, that data will continue to be available
via the other members of the recovering RN's replication group (shard), and will
eventually be replicated to, and available from, the new disk as expected.

Example
Below, an example is presented that allows you to gain some practical experience with
the disk replacement steps presented above. This example is intended to simulate
the multi-disk scenario using a single machine with a single disk. Thus, no disks
will actually fail or be physically replaced. But you should still feel how the data is
automatically recovered when a disk is replaced.

For simplicity, assume that the KVStore is installed under /opt/ondb/kv; that is,
KVHOME=/opt/ondb/kv, and that KVROOT=/opt/ondb/var/kvroot; that is, if you have
not done so already, create the directory:

> mkdir -p /opt/ondb/var/kvroot

To simulate the data disks, create the following directories:

> mkdir -p /tmp/sn1/disk1/ondb/data
> mkdir -p /tmp/sn1/disk2/ondb/data

> mkdir -p /tmp/sn2/disk1/ondb/data
> mkdir -p /tmp/sn2/disk2/ondb/data

> mkdir -p /tmp/sn3/disk1/ondb/data
> mkdir -p /tmp/sn3/disk2/ondb/data

Next, open 3 windows; Win_A, Win_B, and Win_C, which will represent the 3
machines (SNs). In each window, execute the makebootconfig command, creating
a different, but similar, boot config for each SN that will be configured.

On Win_A

java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \

Chapter 9
Hardware Monitoring

9-35

 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config1.xml \
 -port 13230 \
 -harange 13232,13235 \
 -memory_mb 100 \
 -capacity 2 \
 -admindir /opt/ondb/var/admin \
 -storagedir /tmp/sn1/disk1/ondb/data \
 -storagedir /tmp/sn1/disk2/ondb/data

On Win_B

java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config2.xml \
 -port 13240 \
 -harange 13242,13245 \
 -memory_mb 100 \
 -capacity 2 \
 -admindir /opt/ondb/var/admin \
 -storagedir /tmp/sn2/disk1/ondb/data \
 -storagedir /tmp/sn2/disk2/ondb/data

On Win_C

java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config3.xml \
 -port 13250 \
 -harange 13252,13255 \
 -memory_mb 100 \
 -capacity 2 \
 -admindir /opt/ondb/var/admin \
 -storagedir /tmp/sn3/disk1/ondb/data \
 -storagedir /tmp/sn3/disk2/ondb/data

This will produce 3 configuration files:

/opt/ondb/var/kvroot
 /config1.xml
 /config2.xml
 /config3.xml

Using the different configurations just generated, start a corresponding instance of the
KVStore Storage Node Agent (SNA) from each window.

Chapter 9
Hardware Monitoring

9-36

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

On Win_A

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot -config config1.xml &

On Win_B

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot -config config2.xml &

On Win_C

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot -config config3.xml &

Finally, from any window (Win_A, Win_B, Win_C, or a new window), use the KVStore
administrative CLI to configure and deploy the store.

To start the administrative CLI, execute the following command:

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar runadmin \
 -host <host-ip> -port 13230

To configure and deploy the store, type the following commands from the
administrative CLI prompt (remembering to substitute the actual IP address or
hostname for the string <host-ip>):

configure -name store-name
plan deploy-zone -name Zone1 -rf 3 -wait
plan deploy-sn -zn 1 -host <host-ip> -port 13230 -wait
plan deploy-admin -sn 1 -port 13231 -wait
pool create -name snpool
pool join -name snpool -sn sn1
plan deploy-sn -zn 1 -host <host-ip> -port 13240 -wait
plan deploy-admin -sn 2 -port 13241 -wait
pool join -name snpool -sn sn2
plan deploy-sn -zn 1 -host <host-ip> -port 13250 -wait
plan deploy-admin -sn 3 -port 13251 -wait
pool join -name snpool -sn sn3
change-policy -params "loggingConfigProps=oracle.kv.level=INFO;"

Chapter 9
Hardware Monitoring

9-37

change-policy -params cacheSize=10000000
topology create -name store-layout -pool snpool -partitions 100
plan deploy-topology -name store-layout -plan-name RepNode-Deploy -wait

Note:

The CLI command prompt (kv->) was excluded from the list of commands
above to facilitate cutting and pasting the commands into a CLI load script.

When the above commands complete (use show plans), the store is up and running
and ready for data to be written to it. Before proceeding, verify that a directory like that
shown above for the multi-disk scenario has been laid out. That is:

 - Win_A - - Win_B - - Win_C -

/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 log files log files log files
 /example-store /example-store /example-store
 /log /log /log
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml
 /admin1 /admin2 /admin3
 /env /env /env
/tmp/sn1/disk1/ondb/data /tmp/sn2/disk1/ondb/data /tmp/sn3/disk1/ondb/
data
 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /env /env /env
 00000000.jdb 00000000.jdb 00000000.jdb

When a key/value pair is written to the store, it is stored in each of the (rf=3) files
named, 00000000.jdb that belong to a given replication group (shard); for example,
when a single key/value pair is written to the store, that pair would be stored in either
these files:

/tmp/sn1/disk2/ondb/data/rg2-rn1/env/00000000.jdb
/tmp/sn2/disk2/ondb/data/rg2-rn2/env/00000000.jdb
/tmp/sn3/disk2/ondb/data/rg2-rn3/env/00000000.jdb

Or in these files:

/tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb
/tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
/tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb

At this point, each file should contain no key/value pairs. Data can be written to the
store in the most convenient way. But a utility that is quite handy for doing this is the
KVStore client shell utility; which is a process that connects to the desired store and
then presents a command line interface that takes interactive commands for putting

Chapter 9
Hardware Monitoring

9-38

and getting key/value pairs. To start the KVStore shell, type the following from a
window:

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar runadmin\
 -host <host-ip> -port 13230 -store store-name

kv-> get -all
 0 Record returned.

kv-> put -key /FIRST_KEY -value "HELLO WORLD"
 Put OK, inserted.

kv-> get -all
 /FIRST_KEY
 HELLO WORLD

A quick way to determine which files the key/value pair was stored in is to simply
grep for the string "HELLO WORLD"; which should work with binary files on most linux
systems. Using the grep command in this way is practical for examples that consist of
only a small amount of data.

> grep "HELLO WORLD" /tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb
> grep "HELLO WORLD" /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
> grep "HELLO WORLD" /tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb

> grep "HELLO WORLD" /tmp/sn1/disk2/ondb/data/rg2-rn1/env/00000000.jdb
 Binary file /tmp/sn1/disk2/ondb/data/rg2-rn1/env/00000000.jdb matches
> grep "HELLO WORLD" /tmp/sn2/disk2/ondb/data/rg2-rn2/env/00000000.jdb
 Binary file /tmp/sn2/disk2/ondb/data/rg2-rn2/env/00000000.jdb matches
> grep "HELLO WORLD" /tmp/sn3/disk2/ondb/data/rg2-rn3/env/00000000.jdb
 Binary file /tmp/sn3/disk2/ondb/data/rg2-rn3/env/00000000.jdb matches

In the example above, the key/value pair that was written to the store was stored
by each RN belonging to the second shard; that is, each RN is a member of the
replication group with id equal to 2 (rg2-rn1, rg2-rn2, and rg2-rn3).

Note:

With which shard a particular key is associated depends on the key's value
(specifically, the hash of the key's value) as well as the number of shards
maintained by the store. It is also worth noting that although this example
shows log files with the name 00000000.jdb, those files are only the first of
possibly many such log files containing data written by the corresponding RN
service.

As the current log file reaches its maximum capacity, a new file is created to
receive all new data written. That new file's name is derived from the previous
file by incrementing the prefix of the previous file. For example, you might
see files with names such as, "..., 00000997.jdb, 00000998.jdb, 00000999.jdb,
00001000.jdb,00001001.jdb, ...".

Chapter 9
Hardware Monitoring

9-39

After the data has been written to the store, a failed disk can be simulated, and the
disk replacement process can be performed. To simulate a failed disk, pick one of
the storage directories where the key/value pair was written and, from a command
window, delete the storage directory. For example:

> rm -rf /tmp/sn3/disk2

At this point, if the log file for SN3 is examined, you should see repeated exceptions
being logged. That is:

> tail /opt/ondb/var/kvroot/store-name/log/sn3_0.log

rg2-rn3: ProcessMonitor: java.lang.IllegalStateException: Error occurred
accessing statistic log file
 /tmp/sn3/disk2/ondb/data/rg2-rn3/env/je.stat.csv.
.......

But if the client shell is used to retrieve the previously stored key/value pair, the store
is still operational, and the data that was written is still available. That is:

kvshell-> get -all
 /FIRST_KEY
 HELLO WORLD

The disk replacement process can now be performed. From the command window in
which the KVStore administrative CLI is running, execute the following (step 2 from
above):

kv-> plan stop-service -service rg2-rn3
 Executed plan 9, waiting for completion...
 Plan 9 ended successfully

kv-> verify configuration

 Rep Node [rg2-rn3] Status: UNREACHABLE

If you attempt to restart the RN service that was just stopped, the attempt would not
succeed. This can be seen via the contents of SN3's log file/opt/ondb/var/kvroot/
store-name/log/sn3_0.log. The contents of that file indicate repeated attempts to
restart the service, but due to the missing directory – that is, because of the "failed"
disk – each attempt to start the service fails, until the process reaches an ERROR
state; for example:

kv-> show plans
 1 Deploy Zone (1) SUCCEEDED

 9 Stop RepNodes (9) SUCCEEDED
 10 Start RepNodes (10) ERROR

Chapter 9
Hardware Monitoring

9-40

Now, the disk should be "replaced". To simulate disk replacement, we must create the
original parent directory of rg2-rn3; which is intended to be analogous to installing and
formatting the replacement disk:

> mkdir -p /tmp/sn3/disk2/ondb/data

From the administrative CLI, attempt to restart the RN service should succeed since
the disk has been "replaced".

kv-> plan start-service -service rg2-rn3 -wait
 Executed plan 11, waiting for completion...
 Plan 11 ended successfully

kv-> verify configuration

 Rep Node [rg2-rn3] Status: RUNNING,REPLICA at sequence
 number 327 haPort:13254

To verify that the data has been recovered as expected, grep for "HELLO WORLD"
again.

> grep "HELLO WORLD" /tmp/sn3/disk2/ondb/data/rg2-rn3/env/00000000.jdb
 Binary file /tmp/sn3/disk2/ondb/data/rg2-rn3/env/00000000.jdb matches

To see why the disk replacement process outlined above might be more complicated
for the default – and by extension, the single disk – case than it is for the multi-disk
case, try running the example above using default storage directories; that is, remove
the storagedir parameters from the invocation of the makebootconfig command
above. This will result in a directory structure such as:

/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 log files log files log files
 /store-name /store-name /store-name
 /log /log /log
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml
 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /rg2-rn1 /rg2-rn2 /rg2-rn3

In a similar example, to simulate a failed disk in this case, you would delete the
directory /opt/ondb/var/kvroot/sn3; which is the parent of the /admin3 database,
the /rg1-rn3 database, and the /rg2-rn3 database.

It is important to note that the directory also contains the configuration for SN3.
Since SN3's configuration information is contained under the same parent – which
is analogous to that information stored on the same disk – as the replication node
databases; when the "failed" disk is "replaced" as it was in the previous example, the
step where the RN service(s) are restarted will fail because SN3's configuration is no
longer available. While the replicated data can be automatically recovered from the
other nodes in the system when a disk is replaced, the SN's configuration information
cannot. That data must be manually restored from a previously backed up copy. This
extends to the non-default, single disk case in which different storagedir parameters
are used to separate the KVROOT location from the location of each RN database.

Chapter 9
Hardware Monitoring

9-41

In that case, even though the replicated data is stored in separate locations, that data
is still stored on the same physical disk. Therefore, if that disk fails, the configuration
information is still not available on restart, unless it has been manually reinstalled on
the replacement disk.

Servers
Although not as common as a failed disk, it is not unusual for an administrator to
need to replace one of the machines hosting services making up a given KVStore
deployment (an SN). There are two common scenarios where a whole machine
replacement may occur. The first is when one or more hardware components fail and
it is more convenient or cost effective to simply replace the whole machine than it is
to replace the failed components. The second is when a working, healthy machine is
to be upgraded to a machine that is bigger and robust; for example, a machine with
larger disks and better performance characteristics. The procedures presented in this
section are intended to describe the steps for preparing a new machine to replace an
existing machine, and the steps for retiring the existing machine.

Detecting and Correlating Server Failures to NoSQL Log Events
In a distributed such as Oracle NoSQL Database, it is generally difficult to distinguish
between network outages and machine failure. The HA components of the NoSQL
Database detects when a replication node is unreachable and logs this as an event
in the admin log - however grepping for this log event produces false positives.
Therefore it is recommended to utilize a systems monitoring package like JMX to
detect machine/server failure.

Resolving Server Failures
Two replacement procedures are presented below. Both procedures essentially
achieve the same results, and both will result in one or more network restore
processes being performed (see below).

The first procedure presented replaces the old machine with a machine that – to all
interested parties – looks exactly like the original machine. That is, the new machine
has the same hostname, IP address, port, and SN id. Compare this with the second
procedure; where the old machine is removed from the store's topology and replaced
with a machine that appears to be a different machine - different hostname, IP
address, SN id – but the behavior is identical to the behavior of the replaced machine.
That is, the new machine runs the same services, and manages the exact same data,
as the original machine; it just happens to have a different network and SN identity.
Thus, the first case can be viewed as a replacement of only the hardware; that is,
from the point of view of the store, the original SN was temporarily taken down and
then restarted. The new hardware is not reflected in the store's topology. In the other
case, the original SN is removed, and a different SN takes over the original's duties.
Although the store's content and behavior hasn't changed, the change in hardware is
reflected in the store's new topology.

When determining which procedure to use when replacing a Storage Node, the
decision is left to the discretion of the store administrator. Some administrators
prefer to always use only one of the procedures, never the other. And some
administrators establish a policy that is based on some preferred criteria. For example,
you might imagine a policy where the first procedure is employed whenever SN
replacement must be performed because the hardware has failed; whereas the
second procedure is employed whenever healthy hardware is to be upgraded with

Chapter 9
Hardware Monitoring

9-42

newer/better hardware. In the first case, the failed SN is down and unavailable during
the replacement process. In the second case, the machine to be replaced can remain
up and available while the new machine is being prepared for migration; after which
the old machine can be shut down and removed from the topology.

Terminology Review
It may be useful to review some of the terminology introduced in the Oracle
NoSQL Database Getting Started Guide as well as the Oracle NoSQL Database
Administrator's Guide. Recall from those documents that the physical machine on
which the processes of the KVStore run is referred to as a Storage Node, or SN;
where a typical KVStore deployment generally consists of a number of machines –
that is, a number of SNs – that execute the processes and software services provided
by the Oracle NoSQL Database KVStore. Recall also that when the KVStore software
is initially started on a given SN machine, a process referred to as the "Storage
Node Agent" (or the SNA) is started. Then, once the SNA is started, the KVStore
administrative CLI is used to configure the store and deploy a "topology"; which results
in the SNA executing and managing the lifecycle of one or more "services" referred to
as "replication nodes" (or RN services). Finally, in addition to starting and managing
RN services, the SNA also optionally (depending on the configuration) starts and
manages another service type referred to as the "admin" service.

Because of the 1-to-1 correspondence between the machines making up a given
KVStore deployment and the SNA process initially started on each machine when
installing and deploying a store, the terms "Storage Node", "SN", or "SNx" (where x
is a positive integer) are often used interchangeably in the Oracle NoSQL Database
documents – including this note – when referring to either the machine on which the
SNA is running, or the SNA process itself. Which concept is intended should be clear
from the context in which the term is used in a given discussion. For example, when
the terms SN3 or sn3 are used below as part of a discussion about hardware issues
such as machine failure and recovery, that term refers to the physical host machine
running an SNA process that has been assigned the id value 3 and is identified in the
store's topology with the string "sn3". In other contexts, for example when the behavior
of the store's software is being discussed, the term SN3 and/or sn3 would refer to the
actual SNA process running on the associated machine.

Although not directly pertinent to the discussion below, the following terms are
presented not only for completeness, but also because it may be useful to understand
their implications when trying to determine which SN replacement procedure to
employ.

First, recall from the Oracle NoSQL Database documents that the RN service(s) that
are started and managed by each SNA are represented in the store's topology by their
service identification number (a positive integer), in conjunction with the identification
number of the replication group – or "shard" – in which the service is a member.
For example, a given store's topology may reference a particular RN service with
the string, "rg3-rn2"; which represents the RN service having id equal to 2 that is a
member of the replication group (that is, the shard) with id 3. The capacity then, of a
given SN machine that is operating as part of a given KVStore cluster is the number of
RN services that will be started and managed by the SNA process deployed to that SN
host. Thus, if the capacity of a given SN is 1, only a single RN service will be started
and managed by that SN. On the other hand, if the capacity is 3 (for example), then 3
RN services will be started and managed by that SN, and each RN will typically belong
to a different replication group (share).

Chapter 9
Hardware Monitoring

9-43

With respect to the SN host machines and resident SNA processes that are deployed
to a given KVStore, two concepts to understand are the concept of a "zone", and
the concept of a "pool" of Storage Nodes. Both concepts correspond to mechanisms
that are used to organize the SNs of the store into groups. As a result, the distinction
between the two concepts is presented below.

When configuring a KVStore for deployment, it is a requirement that at least one
"zone" be deployed to the store before deploying any Storage Nodes. Then, when
deploying each SNA process, in addition to specifying the desired host, one of the
previously deployed zones must also be specified; which, with respect to the store's
topology, will "contain" that SNA, as well as the services managed by that SNA. Thus,
the KVStore deployment process produces a a store consisting of one or more zones,
where a distinct set of storage nodes belongs to (is a member of) one – and only one –
of those zones.

In contrast to a zone, rather than being "deployed" to the store, one or more Storage
Node "pools" can be (optionally) "created" within the store. Once such a "pool" is
created, any deployed Storage Node can then be configured to "join" that pool, as well
as any other pool that has been created. This means that, unlike zones, where the
store consists of one or more zones containing disjoint sets of the deployed SNs, the
store can also consist of one or more "pools", where there is no restriction on which,
or how many, pools a given SN joins. Every store is automatically configured with a
default pool named, "AllStorageNodes"; which all deployed Storage Nodes join. The
creation of any additional pools is optional, and left to the discretion of the deployer; as
is the decision about which pools a given Storage Node joins.

Besides the differences described above, there are additional conceptual differences
to understand when using zones and pools to group sets of Storage Nodes. Although
zones can be used to represent logical groupings of a store's nodes, crossing physical
boundaries, deployers generally map them to real, physical locations. For example,
although there is nothing to prevent the deployment of multiple SNA processes to a
single machine, where each SNA is deployed to a different zone, more likely than not,
a single SNA will be deployed to a single machine, and the store's zones along with
the SN machines within each zone will generally be defined to correspond to physical
locations that provide some form of fault isolation. For example, each zone may be
defined to correspond to a separate floor of a building; or to separate buildings, a few
miles apart (or even across the country).

Compare how zones are used with how pools are generally used. A single pool
may represent all of the Storage Nodes across all zones; where the default pool
is one such pool. On the other hand, multiple pools may be specified; in some
cases with no relation between the pools and zones, and in other cases with each
pool corresponding to a zone and containing only the nodes belonging to that zone.
Although there may be reasons to map a set of Storage Node pools directly to the
store's zones, this is not the primary intent of pools. Whereas the intent of zones is
to enable better fault isolation and geographic availability via physical location of the
storage nodes, the primary purpose of a pool is to provide a convenient mechanism for
referring to a group of storage nodes when applying a given administrative operation.
That is, the administrative store operations that take a pool argument can be called
once to apply the desired operation to all Storage Nodes belonging to the specified
pool, avoiding the need to execute the operation multiple times; once for each Storage
Node.

Associated with zones, another term to understand is "replication factor" (or "rf").
Whenever a zone is deployed to a KVStore, the "replication factor" of that zone must
be specified; which represents the number of copies (or "replicas") of each key/value
pair to write and maintain on the nodes of the associated zone. Note that whereas

Chapter 9
Hardware Monitoring

9-44

"capacity" is a per/SN concept that specifies the number of RN services to manage on
a given machine, the "replication factor" is a concept whose scope is per/zone, and is
used to determine the number of RN services that belong to each shard (or "replication
group") created and managed within the associated zone.

Finally, a "network restore" is a process whereby the store automatically recovers all
data previously written by a given RN service; retrieving replicas of the data from one
or more RN services running on different SNs and then transferring that data (across
the network) to the RN whose database is being restored. It is important to understand
the implications this process may have on system performance; as the process can
be quite time consuming, and can add significant network traffic and load while the
data store of the restored RN is being repopulated. Additionally, with respect to SN
replacement, these implications can be magnified when the capacity of the SN to be
replaced is greater than 1; as this will result in multiple network restorations being
performed.

Assumptions
When presenting the two procedures below, for simplicity, assume that a KVStore is
initially deployed to 3 machines, resulting in a cluster of 3 Storage Nodes; sn1, sn2,
sn3 on hosts with names, host-sn1, host-sn2, and host-sn3 respectively. Assume that:

• Each machine has a disk named /opt and a disk named /disk1; where each SN
will store its configuration and admin database under /opt/ondb/var/kvroot, but
will store the data that is written on the other, separate disk under /disk1/ondb/
data.

• The KVStore is installed on each machine under /opt/ondb/kv; that
is,KVHOME=/opt/ondb/kv.

• The KVStore is deployed with KVROOT=/opt/ondb/var/kvroot.

• The KVStore is named "example-store".

• One zone – named "Zone1" and configured with rf=3 – is deployed to the store.

• Each SN is configured with capacity=1.

• After deploying each SN to the zone named "Zone1", each SN joins the pool
named "snpool".

• In addition to the SNA and RN services, an admin service is also deployed to each
machine; that is, admin1 is deployed to host-sn1 , admin2 is deployed to host-sn2,
and admin3 is deployed to host-sn3, each listening on port 13230.

Using specific values such as those reflected in the Assumptions described above
enables to follow the steps of each procedure. Using this administrators can
generalize and extend those steps to their own particular deployment scenario,
substituting the values specific to the given environment where necessary.

Replacement Procedure 1: Replace SN with Identical SN
The procedure presented in this section describes how to replace the desired SN with
a machine having an identical network and SN identity. A number of requirements
must be satisfied before executing this procedure; which are:

• An admin service must be running and accessible somewhere in the system.

• The id of the SN to be replaced must be known.

Chapter 9
Hardware Monitoring

9-45

• The SN to be replaced must be taken down – either administratively or via failure –
before starting the new SN.

An admin service is necessary so that the current configuration of the SN to be
replaced can be retrieved from the admin service's database and packaged for
installation on the new SN. Thus, before proceeding, the administrator must know the
location (hostname or IP address) of the admin service, along with the port on which
that service is listening for requests. Additionally, since this process requires the id of
the SN to be replaced, the administrator must also know that value before initiating the
procedure below; for example, something like, sn1, sn2, sn3, etc.

Finally, if the SN to be replaced has failed, and is down, the last requirement above is
automatically satisfied. On the other hand, if the SN to be replaced is up, then at some
point before starting the new SN, the old SN must be down so that that SN and the
replacement SN do not conflict.

With respect to the requirement related to the admin service, if the system is running
multiple instances of the admin, it is not important which instance is used in the steps
below; just that the admin is currently running and accessible. This means that if the
SN to be replaced is not only up but is also running an admin service, then that admin
service can be used to retrieve and package that SN's current configuration. But if that
SN has failed or is down or inaccessible for some reason, then any admin service on
that SN is also down and/or inaccessible - which means an admin service running on
one of the other SNs in the system must be used in the procedure below. This is why
the Oracle NoSQL Database documents strongly encourage administrators to deploy
multiple admin services; where the number deployed should make quorum loss less
likely.

For example, it is obvious that if only 1 admin service was specified when deploying
the store, and that service was deployed to the SN to be replaced, and that SN has
failed or is otherwise inaccessible, then the loss of that single admin service makes
it very difficult to replace the failed SN using the procedure presented here. Even if
multiple admins are deployed – for example, 2 admins – and the failure of the SN
causes just one of those admins to also fail and thus lose quorum, even though a
working admin remains, it will still require additional work to recover quorum so that
the admin service can perform the necessary duties to replace the failed SN.

Suppose a KVStore has been deployed as described in the section Assumptions.
Also, suppose that the sn2 machine (whose hostname is, "host-sn2") has failed in
some way and needs to be replaced. If the administrator wishes to replace the
failed SN with an identical but healthy machine, then the administrator would do the
following:

1. If, for some reason, host-sn2 is running, shut it down.

2. Log into host-sn1 (or host-sn3).

3. From the command line, execute the generateconfig utility to produce a ZIP file
named "sn2-config.zip" that contains the current configuration of the failed SN
(sn2):

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar generateconfig \
 -host host-sn1 -port 13230 \
 -sn sn2 -target /tmp/sn2-config

which creates and populates the file, /tmp/sn2-config.zip.

Chapter 9
Hardware Monitoring

9-46

4. Install and provision a new machine with the same network configuration as the
machine to be replaced; specifically, the same hostname and IP address.

5. Install the KVStore software on the new machine under KVHOME=/opt/ondb/kv.

6. If the directory KVROOT=/opt/ondb/var/kvroot exists, then make sure it's empty;
otherwise, create it:

> rm -rf /opt/ondb/var/kvroot
> mkdir -p /opt/ondb/var/kvroot

7. Copy the ZIP file from host-sn1 to the new host-sn.

> scp /tmp/sn2-config.zip host-sn2:/tmp

8. On the new host-sn2, install the contents of the ZIP file just copied.

> unzip /tmp/sn2-config.zip -d /opt/ondb/var/kvroot

9. Restart the sn2 Storage Node on the new host-sn2 machine, using the old sn2
configuration that was just installed:

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config.xml&

which, after starting the SNA, RN, and admin services, will initiate a (possibly
time-consuming) network restore, to repopulate the data stores managed by this
new sn2.

Replacement Procedure 2: New SN Takes Over Duties of Removed SN
The procedure presented in this section describes how to deploy a new SN, having a
network and SN identity different than all current SNs in the store, that will effectively
replace one of the current SNs by taking over that SN's duties and data. Unlike the
previous procedure, the only prerequisite that must be satisfied when executing this
second procedure is the existence of a working quorum of admin service(s). Also,
whereas in the previous procedure the SN to be replaced must be down prior to
powering up the replacement SN (because the two SNs share an identity), in this
case, the SN to be replaced can remain up and running until the migration step of
the process; where the replacement SN finally takes over the duties of the SN being
replaced. Thus, although the SN to be replaced can be down throughout the whole
procedure if desired, that SN can also be left up so that it can continue to service
requests while the replacement SN is being prepared.

Chapter 9
Hardware Monitoring

9-47

Suppose a KVStore has been deployed as described in the section Assumptions.
Also, suppose that the sn2 machine is currently up, but needs to be upgraded to
a new machine with more memory, larger disks, and better overall performance
characteristics. The administrator would then do the following:

1. From a machine with the Oracle NoSQL Database software installed that has
network access to one of the machines running an admin service for the deployed
KVStore, start the administrative CLI; connecting it to that admin service. The
machine on which the CLI is run can be any of the machines making up the store
– even the machine to be replaced – or a separate client machine. For example,
if the administrative CLI is started on the sn1 Storage Node, and one wishes to
connect that CLI to the admin service running on that same sn1 host, the following
would be typed from a command prompt on the host named, host-sn1:

> java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar runadmin \
 -host host-sn1 -port 13230

2. From the administrative CLI just started, execute the show pools command to
determine the Storage Node pool the new Storage Node will need to join after
deployment; for example,

kv-> show pools

which, given the initial assumptions, should produce output that looks like the
following:

AllStorageNodes: sn1 sn2 sn3
snpool: sn1 sn2 sn3

where, from this output, one should note that the name of the pool the
new Storage Node should join below is "snpool"; and the pool named
"AllStorageNodes" is the pool that all Storage Nodes join by default when
deployed.

3. From the administrative CLI just started, execute the show topology command to
determine the zone to use when deploying the new Storage Node; for example,

kv-> show topology

which, should produce output that looks like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] host-sn1 capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] host-sn2 capacity=1 RUNNING
 [rg1-rn2] RUNNING

 sn=[sn3] zn:[id=1 name=Zone1] host-sn3 capacity=1 RUNNING

Chapter 9
Hardware Monitoring

9-48

 [rg1-rn3] RUNNING

where, from this output, one should then note that the id of the zone to use when
deploying the new Storage Node is "1".

4. Install and provision a new machine with a network configuration that is different
than each of the machines currently known to the deployed KVStore. For example,
provision the new machine with a hostname such as, host-sn4, and an IP address
unique to the store's members.

5. Install the KVStore software on the new machine under KVHOME=/opt/ondb/kv.

6. Create the new Storage Node's KVROOT directory; for example:

> mkdir -p /opt/ondb/var/kvroot

7. Create the new Storage Node's data directory on a separate disk than KVROOT;
for example:

> mkdir -p /disk1/ondb/data

Note:

The path used for the data directory of the replacement SN must be
identical to the path used by the SN to be replaced.

8. From the command prompt of the new host-sn4 machine, use the makebootconfig
utility (described in Chapter 2 of the Oracle NoSQL Database Administrator's
Guide, section, "Installation Configuration") to create an initial configuration for the
new Storage Node that is consistent with the Assumptions specified above; for
example:

> java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -port 13230 \
 -host host-sn4
 -harange 13232,13235 \
 -num_cpus 0 \
 -memory_mb 0 \
 -capacity 1 \
 -admindir /opt/ondb/var/admin \
 -admindirsize 3_gb \
 -storagedir /disk1/ondb/data \
 -rnlogdir /disk1/ondb/rnlog

which produces the file named config.xml, under KVROOT=/opt/ondb/var/kvroot.

9. Using the configuration just created, start the KVStore software (the SNA and its
managed services) on the new host-sn4 machine; for example,

Chapter 9
Hardware Monitoring

9-49

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config.xml &

10. Using the information associated with the sn2 Storage Node (the SN to replace)
that was gathered from the show topology and show pools commands above,
use the administrative CLI to deploy the new Storage Node and join the desired
pool; that is,

kv-> plan deploy-sn -znname Zone1 -host host-sn4 -port 13230 -wait
kv-> pool join -name snpool -sn sn4

For an SN to join a pool, the SN must have been successfully deployed and the
id of the deployed SN must be specified in the pool join command; for example,
"sn4" above. But upon examination of the plan deploy-sn, command you can see
that the id to assign to the SN being deployed is not specified. This is because
it is the KVStore itself – not the administrator – that determines the id to assign
to a newly deployed SN. Thus, given that it was assumed that only 3 Storage
Nodes were initially deployed in the example used to demonstrate this procedure,
when deploying the next Storage Node, the system will increment by 1 the integer
component of the id assigned to the most recently deployed SN – "sn3" or 3 in
this case – and use the result to construct the id to assign to the next SN that
is deployed. Hence, "sn4" was assumed to be the id to specify to the pool join
command above. But if you want to ascertain the assigned id, then before joining
the pool, execute the show topology command which will display the id that was
constructed and assigned to the newly deployed SN.

11. Since the old SN must not be running when the migrate operation is performed
(see the next step), if the SN to be replaced is still running at this point,
programmatically shut it down, and then power off and disconnect the associated
machine. This step can be performed at any point prior to performing the next
step. Thus, to shut down the SN to be replaced, type the following from the
command prompt of the machine hosting that SN:

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar stop \
 -root /opt/ondb/var/kvroot

On completion, the associated machine can then be powered down and
disconnected if desired.

12. After the new Storage Node has been deployed, joined the desired pool, and the
SN to be replaced is no longer running, use the administrative CLI to migrate
that old SN to the new SN. This means, in this case, that the SNA, and RN
associated with sn4 will take over the duties previously performed in the store by

Chapter 9
Hardware Monitoring

9-50

the corresponding services associated with sn2; and the data previously stored by
sn2 will be moved – via the network – to the storage directory for sn4. To perform
this step then, execute the following command from the CLI:

kv-> plan migrate-sn -from sn2 -to sn4 [-wait]

The -wait argument is optional in the command above. If -wait is used, then the
command will not return until the full migration has completed; which, depending
on the amount of data being migrated, can take a long time. If -wait is not
specified, then the show plan -id <migration-plan-id> command is used to
track the progress of the migration; allowing other administrative tasks to be
performed during the migration.

13. After the migration process completes, remove the old SN from the store's
topology. You can do this by executing the plan remove-sn command from the
administrative CLI. For example,

kv-> plan remove-sn -sn sn2 -wait

At this point, the store should have a structure similar to its original structure;
except that the data that was originally stored by sn2 on the host named host-sn2
via that node's rg1-rn2 service, is now stored on host-sn4 by the sn4 Storage
Node (via the migrated service named rg1-rn2 that sn4 now manages).

Examples
In this section, two examples are presented that should allow you to gain some
practical experience with the SN replacement procedures presented above. Each
example uses the same initial configuration, and is intended to simulate a 3-node
KVStore cluster using a single machine with a single disk. Although no machines will
actually fail or be physically replaced, you should still get a feel for how the cluster and
the data stored by a given SN is automatically recovered when that Storage Node is
replaced using one of the procedures described above.

Assume that a KVStore is deployed in a manner similar to the section Assumptions
Specifically, assume that a KVStore is initially deployed using 3 Storage Nodes -
named sn1, sn2, and sn3 – on a single host with IP address represented by the
string, <host-ip> where the host's actual IP address (or hostname) is substituted for
<host-ip> when running either example. Additionally, since your development system
will typically not contain a disk named /disk1 (as specified in the Assumptions section),
rather than provisioning such a disk, assume instead that the data written to the
store will be stored under /tmp/sn1/disk1, /tmp/sn2/disk1, and /tmp/sn3/disk1
respectively. Finally, since each Storage Node runs on the same host, assume each
Storage Node is configured with different ports for the services and admins run by
those nodes; otherwise, all other assumptions are as stated above in the Assumptions
section.

Setup
As indicated above, the initial configuration and setup is the same for each example
presented below. Thus, if not done so already, first create the KVROOT directory; that is,

> mkdir -p /opt/ondb/var/kvroot

Chapter 9
Hardware Monitoring

9-51

Then, to simulate the data disk, create the following directories:

> mkdir -p /tmp/sn1/disk1/ondb/data
> mkdir -p /tmp/sn2/disk1/ondb/data
> mkdir -p /tmp/sn3/disk1/ondb/data

Next, open 3 windows; Win_A, Win_B, and Win_C, which will represent the 3
machines running each Storage Node. In each window, execute the makebootconfig
command (remembering to substitute the actual IP address or hostname for the
string <host-ip>) to create a different, but similar, boot config for each SN that will
be configured.

On Win_A

java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config1.xml \
 -port 13230 \
 -harange 13232,13235 \
 -memory_mb 100 \
 -capacity 1 \
 -admindir /opt/ondb/var/admin \
 -admindirsize 2000-Mb \
 -storagedir /tmp/sn1/disk1/ondb/data \
 -rnlogdir /tmp/sn1/disk1/ondb/rnlog

On Win_B

java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config2.xml \
 -port 13240 \
 -harange 13242,13245 \
 -memory_mb 100 \
 -capacity 1 \
 -admindir /opt/ondb/var/admin \
 -admindirsize 2000-Mb \
 -storagedir /tmp/sn1/disk2/ondb/data \
 -rnlogdir /tmp/sn1/disk2/ondb/rnlog

On Win_C

java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config3.xml \
 -port 13250 \
 -harange 13252,13255 \

Chapter 9
Hardware Monitoring

9-52

 -memory_mb 100 \
 -capacity 1 \
 -admindir /opt/ondb/var/admin \
 -admindirsize 2000-Mb \
 -storagedir /tmp/sn1/disk3/ondb/data \
 -rnlogdir /tmp/sn1/disk3/ondb/rnlog

This will produce 3 configuration files:

/opt/ondb/var/kvroot
 /config1.xml
 /config2.xml
 /config3.xml

Next, using the different configurations just generated, from each window, start a
corresponding instance of the KVStore Storage Node agent (SNA); which, based on
the specific configurations generated, will start and manage an admin service and an
RN service.

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

Win_A

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config1.xml &

Win_B

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config2.xml &

Win_C

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config3.xml &

Finally, from any window (Win_A, Win_B, Win_C, or a new window), start the KVStore
administrative CLI and use it to configure and deploy the store. For example, to start

Chapter 9
Hardware Monitoring

9-53

an administrative CLI connected to the admin service that was started above using the
configuration employed in Win_A, you would execute the following command:

> java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar runadmin \
 -host <host-ip> -port 13230

To configure and deploy the store, type the following commands from the
administrative CLI prompt (remembering to substitute the actual IP address or
hostname for the string <host-ip>):

configure -name example-store
plan deploy-zone -name Zone1 -rf 3 -wait
plan deploy-sn -znname Zone1 -host <host-ip> -port 13230 -wait
plan deploy-admin -sn 1 -port 13231 -wait
pool create -name snpool
pool join -name snpool -sn sn1
plan deploy-sn -znname Zone1 -host <host-ip> -port 13240 -wait
plan deploy-admin -sn 2 -port 13241 -wait
pool join -name snpool -sn sn2
plan deploy-sn -znname Zone1 -host <host-ip> -port 13250 -wait
plan deploy-admin -sn 3 -port 13251 -wait
pool join -name snpool -sn sn3
change-policy -params "loggingConfigProps=oracle.kv.level=INFO;"
change-policy -params cacheSize=10000000
topology create -name store-layout -pool snpool -partitions 300
plan deploy-topology -name store-layout -plan-name RepNode-Deploy -wait

Note:

The CLI command prompt (kv->) was excluded from the list of commands
above to facilitate cutting and pasting the commands into a CLI load script.

When the commands above complete (use show plans to verify each plan's
completion), the store is up and running and ready for data to be written to it. Before
proceeding though, verify that directories like those shown below have been created
and populated:

 - Win_A - - Win_B - - Win_C -

 /opt/ondb/var/ /opt/ondb/var/ /opt/ondb/var/
 admin admin admin
/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 log files log files log files
 /example-store /example-store /example-store
 /log /log /log
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml
 /admin1 /admin2 /admin3
 /env /env /env

Chapter 9
Hardware Monitoring

9-54

/tmp/sn1/disk1/ondb/data /tmp/sn2/disk1/ondb/data /tmp/sn3/disk1/ondb/
data
 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /env /env /env
 00000000.jdb 00000000.jdb 00000000.jdb

Because rf=3 for the deployed store, and capacity=1 for each SN in that store, when a
key/value pair is initially written to the store, the pair is stored by each of the replication
nodes – rn1, rn2, and rn3 – in their corresponding data file named "00000000.jdb";
where each replication node is a member of the replication group – or shard – named
rg1; that is, the key/value pair is stored in:

/tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb
/tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
/tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb

At this point in the setup, each file should contain no key/value pairs. Data can be
written to the store in a way most convenient. But a utility that is quite handy for doing
this is the KVStore client shell utility; which is a process that connects to the desired
store and then presents a command line interface that takes interactive commands
for putting and getting key/value pairs. To start the KVStore client shell, type the
following from a command window (remembering to substitute the actual IP address or
hostname for the string <host-ip>):

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar runadmin\
 -host <host-ip> -port 13230 -store example-store

kv-> get -all
 0 Record returned.

kv-> put -key /FIRST_KEY -value "HELLO WORLD"
 Put OK, inserted.

kv-> get -all
 /FIRST_KEY
 HELLO WORLD

Although simplistic and not very programmatic, a quick way to verify that the key/value
pair was stored by each RN service is to simply grep for the string "HELLO WORLD" in
each of the data files; which should work with binary files on most linux systems. Using
the "grep" command in this way is practical for examples that consist of only a small
amount of data.

> grep "HELLO WORLD" /tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb
 Binary file /tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb matches
> grep "HELLO WORLD" /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
 Binary file /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb matches
> grep "HELLO WORLD" /tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb
 Binary file /tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb matches

Based on the output above, the key/value pair that was written to the store was stored
by each RN service belonging to the shard rg1; that is, each RN service that is a

Chapter 9
Hardware Monitoring

9-55

member of the replication group with id equal to 1 (rg1-rn1, rg1-rn2, and rg1-rn3). With
which shard a particular key is associated depends on the key's value (specifically, the
hash of the key's value) as well as the number of shards maintained by the store (1
in this case). It is also worth noting that although this example shows log files with
the name 00000000.jdb, those files are only the first of possibly many such log files
containing data written by the corresponding RN service. Over time, as the current log
file reaches its maximum capacity, a new file will be created to receive all new data
being written. That new file has a name derived from the previous file by incrementing
the prefix of the previous file. For example, you might see files with names such as,
"..., 00000997.jdb, 00000998.jdb, 00000999.jdb, 00001000.jdb, 00001001.jdb, ...".

Now that data has been written to the store, a failed storage node can be simulated,
and an example of the first SN replacement procedure can be performed.

Example 1: Replace a Failed SN with an Identical SN
To simulate a failed Storage Node, pick one of the Storage Nodes started above,
programmatically stop it's associated processes, and delete all files and directories
associated with that process. For example, suppose sn2 is the "failed" Storage Node.
But before stopping the sn2 Storage Node, you might first (optionally) identify the
processes that are running as part of the deployed store; that is:

> jps -m
408 kvstore.jar start -root /opt/ondb/var/kvroot -config config1.xml
833 ManagedService -root /opt/ondb/var/kvroot -class Admin -service
BootstrapAdmin.13230 -config config1.xml
1300 ManagedService -root /opt/ondb/var/kvroot/example-store/sn1 -store
example-store -class RepNode -service rg1-rn1
....
563 kvstore.jar start -root /opt/ondb/var/kvroot -config config2.xml
1121 ManagedService -root /opt/ondb/var/kvroot/example-store/sn2
-store example-store -class Admin -service admin2
1362 ManagedService -root /opt/ondb/var/kvroot/example-store/sn2
-store example-store -class RepNode -service rg1-rn2
....
718 kvstore.jar start -root /opt/ondb/var/kvroot -config config3.xml
1232 ManagedService -root /opt/ondb/var/kvroot/example-store/sn3 -store
example-store -class Admin -service admin3
1431 ManagedService -root /opt/ondb/var/kvroot/example-store/sn3 -store
example-store -class RepNode -service rg1-rn3
....

The output above was manually re-ordered for readability. In reality, each process
listed may appear in a random order. But it should be noted that each SN from the
example deployment corresponds to 3 processes:

• The SNA process, which is characterized by the string "kvstore.jar start", and
identified by the corresponding configuration file; for example, config1.xml for
sn1, config2.xml for sn2, and config3.xml for sn3.

• An admin service is characterized by the string -class Admin , and either a string
of the form -service BootstrapAdmin.<port> or a string of the form -service
admin<id> (see the explanation below).

• An RN service characterized by the string -class RepNode along with a string of
the form -service rg1-rn<id>; where "<id>" is 1, 2, etc. and maps to the SN

Chapter 9
Hardware Monitoring

9-56

hosting the given RN service, and where for a given SN, if the capacity of that SN
is N>1, then for that SN, there will be N processes listed that reference a different
RepNode service.

Note:

With respect to the line in the process list above that references the string
-service BootstrapAdmin.<port>, some explanation may be useful. When
an SNA starts up and the -admin argument is specified in the configuration,
the SNA will initially start what is referred to as a bootstrap admin.
Because this example specified the -admin argument in the configuration
of all 3 Storage Nodes, each SNA in the example starts a corresponding
bootstrap admin. The fact that the process list above contains only one entry
referencing a BootstrapAdmin is explained below.

Recall that Oracle NoSQL Database requires the deployment of at least 1 admin
service. If more than 1 such admin is deployed, the admin that is deployed first takes
on a special role within the KVStore. In this example, any of the 3 bootstrap admins
that were started by the corresponding Storage Node Agent can be that first deployed
admin service. After configuring the store and deploying the zone, the deployer must
choose one of the Storage Nodes that was started and use the plan deploy-sn
command to deploy that Storage Node to the desired zone within the store. After
deploying that first Storage Node, the admin service corresponding to that Storage
Node must then be deployed, using the plan deploy-admin command.

Until that first admin service is deployed, no other storage nodes or admins can be
deployed. When that first admin service is deployed to the machine running the first
SN (sn1 in this case), the bootstrap admin running on that machine continues running,
and takes on the role of the very first admin service in the store. This is why the
BootstrapAdmin.<port> process continues to appear in the process list; whereas, as
explained below, the processes associated with the other Storage Nodes are identified
by admin2 and admin3 rather than BootstrapAdmin.<port>. It is only after this first
admin is deployed that the other Storage Nodes (and admins) can be deployed.

Upon deployment of any of the other Storage Nodes, the BootstrapAdmin process
associated with each such Storage Node is shut down and removed from the RMI
registry. This is because there is no longer a need for the bootstrap admin on these
additional Storage Nodes. The existence of a bootstrap admin is an indication that the
associated Storage Node Agent can host the first admin if desired. But once the first
Storage Node is deployed and its corresponding bootstrap admin takes on the role of
the first admin, the other Storage Nodes can no longer host that first admin; and so,
upon deployment of each additional Storage Node, the corresponding BootstrapAdmin
process is stopped. Additionally, if that first process referencing the BootstrapAdmin is
stopped and restarted at some point after the store has been deployed, then the new
process will be identified in the process list with the string -class Admin, just like the
other admin processes.

Finally, recall that although a store can be deployed with only 1 admin service, it
is strongly recommended that multiple admin services be run for greater availability;
where the number of admins deployed should be large enough that quorum loss is
unlikely in the event of failure of an SN. Thus, as this example demonstrates, after
each additional Storage Node is deployed (and the corresponding bootstrap admin is
stopped), a new admin service should then be deployed that will coordinate with the

Chapter 9
Hardware Monitoring

9-57

first admin service to replicate the administrative information that is persisted. Hence,
the admin service associated with sn1 in the process list above is identified as a
BootstrapAdmin (the first admin service), and the other admin services are identified
as simply admin2 and admin3.

Thus, to simulate a "failed" Storage Node, sn2 should be stopped; which is
accomplished by typing the following at the command prompt:

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar stop \
 -root /opt/ondb/var/kvroot \
 -config config2.xml

Optionally, use the jps command to examine the processes that remain; that is,

> jps -m

408 kvstore.jar start -root /opt/ondb/var/kvroot
-config config1.xml
833 ManagedService -root /opt/ondb/var/kvroot
-class Admin -service BootstrapAdmin.13230 -config config1.xml
1300 ManagedService -root /opt/ondb/var/kvroot/
example-store/sn1 -store example-store -class RepNode -service rg1-rn1
....
718 kvstore.jar start -root /opt/ondb/var/
kvroot -config config3.xml
1232 ManagedService -root /opt/ondb/var/kvroot/example-store/
sn3 -store example-store -class Admin -service admin3
1431 ManagedService -root /opt/ondb/var/kvroot/example-store/
sn3 -store example-store -class RepNode -service rg1-rn3
....

where the processes previously associated with sn2 are no longer running. Next, since
the sn2 processes have stopped, the associated files can be deleted as follows:

> rm -rf /tmp/sn2/disk1/ondb/data/rg1-rn2
> rm -rf /opt/ondb/var/kvroot/example-store/sn2

> rm -f /opt/ondb/var/kvroot/config2.xml
> rm -f /opt/ondb/var/kvroot/config2.xml.log
> rm -f /opt/ondb/var/kvroot/snaboot_0.log.1*

> rm -r /opt/ondb/var/kvroot/example-store/log/admin2*
> rm -r /opt/ondb/var/kvroot/example-store/log/rg1-rn2*
> rm -r /opt/ondb/var/kvroot/example-store/log/sn2*
> rm -r /opt/ondb/var/kvroot/example-store/log/config.rg1-rn2
> rm -r /opt/ondb/var/kvroot/example-store/log/example-store_0.*.1*

where the files above that contain a suffix component of "1" (for example,
snaboot_0.log.1 and example-store_0.log.1, example-store_0.perf.1,example-
store_0.stat.1, etc.) are associated with the sn2 Storage Node.

Executing the above commands should then simulate a catastrophic failure of the
"machine" to which sn2 was deployed; where the configuration and data associated

Chapter 9
Hardware Monitoring

9-58

with sn2 is now completely unavailable, and is only recoverable via the deployment of
a "new" – and in this example, identical – sn2 Storage Node. To verify this, execute the
show topology command from the administrative CLI previously started; that is,

kv-> show topology

which should produce output that looks like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] <host-ip> capacity=1 UNREACHABLE
 [rg1-rn2] UNREACHABLE

 sn=[sn3] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn3] RUNNING

where the actual IP address or hostname appears instead of the string <host-ip>, and
observe that sn2 is now UNREACHABLE.

At this point, the first 2 steps of the SN replacement procedure have been executed.
That is, because the sn2 processes have been stopped and their associated files
deleted, from the point of view of the store's other nodes, the corresponding "machine"
is inaccessible and so has been effectively "shut down" (step 1). Additionally, because
a single machine is being used in this simulation, we are already logged in to the sn1
(and sn3) host (step 2). Thus, step 3 of the procedure can now be performed. That
is, to retrieve the sn2 configuration from one of the store's remaining healthy nodes,
execute the following command using the port for one of those remaining nodes (and
remembering to substitute the actual IP address or hostname for the string <host-ip>):

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar generateconfig \
 -host <host-ip> -port 13230 \
 -sn sn2 -target /tmp/sn2-config

Verify that the command above produced the expected zip file:

> ls -al /tmp/sn2-config.zip
-rw-rw-r-- 1 <group> <owner> 2651 2013-07-08 12:53 /tmp/sn2-config.zip

where the contents of /tmp/sn2-config.zip should look something like:

> unzip -t /tmp/sn2-config.zip

Archive: /tmp/sn2-config.zip
testing: kvroot/config.xml OK
testing: kvroot/example-store/sn2/config.xml OK
testing: kvroot/example-store/security.policy OK

Chapter 9
Hardware Monitoring

9-59

testing: kvroot/security.policy OK
No errors detected in compressed data of /tmp/sn2-config.zip

Next, because this example is being run on a single machine, steps 4, 5, 6, and 7 of
the SN replacement procedure have already been performed. Thus, the next step to
perform is to install the contents of the ZIP file just generated; that is,

> unzip /tmp/sn2-config.zip -d /opt/ondb/var

which will overwrite kvroot/security.policy and kvroot/example-store/
security.policy with identical versions of that file.

When the store was originally deployed, the names of the top-level configuration files
were not identical; that is, config1.xml for sn1, config2.xml for the originally deployed
sn2, and config3.xml for sn3. This was necessary because, for convenience, all three
SNs were deployed using the same KVROOT; which would have resulted in conflict
among sn1, sn2, and sn3, had identical names been used for those files. With this
in mind, it should then be observed that the generateconfig command executed
above produces a top-level configuration file for the new sn2 that has the default
name (config.xml), rather than config2.xml. Because both names – config2.xml and
config.xml – are unique relative to the names of the configuration files for the store's
other nodes, either name can be used in the next step of the procedure (see below).
But to be consistent with the way sn2 was originally deployed, the original file name
will also be used when deploying the replacement. Thus, before proceeding with the
next step of the procedure, the name of the kvroot/config.xml file is changed to
kvroot/config2.xml; that is,

> mv /opt/ondb/var/kvroot/config.xml /opt/ondb/var/kvroot/config2.xml

Finally, the last step of the first SN replacement procedure can be performed. That is,
a "new" but identical sn2 is started using the old sn2 configuration:

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config2.xml &

Verification
To verify that sn2 has been successfully replaced, first execute the show topology
command from the administrative CLI; that is,

kv-> show topology

Chapter 9
Hardware Monitoring

9-60

which should produce output that looks like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn2] RUNNING

 sn=[sn3] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn3] RUNNING

where the actual IP address or hostname appears instead of the string <host-ip>, and
observe that sn2 is again RUNNING.

In addition to executing the show topology command, you can also verify that the
previously removed sn2 directory structure has been recreated and repopulated; that
is, directories and files like the following should again exist:

/opt/ondb/var/kvroot

 config2.xml*

 /example-store
 /log

 admin2*
 rg1-rn2*
 sn2*
 config.rg1-rn2

 /sn2
 config.xml
 /admin2
 /env

/tmp/sn2/disk1/ondb/data
 /rg1-rn2
 /env
 00000000.jdb

And finally, verify that the data stored previously by the original sn2 has been
recovered; that is,

> grep "HELLO WORLD" /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
 Binary file /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb matches

Chapter 9
Hardware Monitoring

9-61

Example 2: New SN Takes Over Duties of Existing SN
In this example, the second replacement procedure described above will be employed
to replace/upgrade an existing, healthy storage node (sn2 in this case) with a new
Storage Node that will take over the duties of the old Storage Node. As indicated
previously, the assumptions and setup for this example are identical to the first
example's assumptions and setup. Thus, after setting up this example as previously
specified, start an administrative CLI connected to the admin service associated with
the sn1 Storage Node; that is, substituting the actual IP address or hostname for the
string <host-ip>, execute the following command:

> java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar runadmin \
 -host <host-ip> -port 13230

Then, from the administrative CLI just started, execute the show pools and show
topology commands; that is,

kv-> show pools
kv-> show topology

which should, respectively, produce output that looks something like:

AllStorageNodes: sn1 sn2 sn3
snpool: sn1 sn2 sn3

and

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn: [id=1 name=Zone1] host-sn1 capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] host-sn2 capacity=1 RUNNING
 [rg1-rn2] RUNNING

 sn=[sn3] zn:[id=1 name=Zone1] host-sn3 capacity=1 RUNNING
 [rg1-rn3] RUNNING

Note:

At this point, the pool to join is named "snpool", and the id of the zone to
deploy to is "1".

Next, recall that in a production environment, where the old and new SNs run on
separate physical machines, the old SN would typically remain up – servicing requests

Chapter 9
Hardware Monitoring

9-62

– until the last step of the procedure. In this example though, the old and new
SNs run on a single machine, where the appearance of separate machines and
file systems is simulated. Because of this, the next step to perform in this example
is to programmatically shut down the sn2 Storage Node by executing the following
command:

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar stop \
 -root /opt/ondb/var/kvroot \
 -config config2.xml

After stopping the sn2 Storage Node, you might (optionally) execute the show
topology command and observe that the sn2 Storage Node is no longer RUNNING;
rather, it is UNREACHABLE, but will continue to be referenced in the topology until
the node is explicitly removed from the topology (see below). For example, from the
administrative CLI, execute the following command:

kv-> show topology

which should produce output that looks like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] host-sn1 capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] host-sn2 capacity=1 UNREACHABLE
 [rg1-rn2] UNREACHABLE

 sn=[sn3] zn:[id=1 name=Zone1] host-sn3 capacity=1 RUNNING
 [rg1-rn3] RUNNING

At this point, preparation of the new, replacement sn4 storage node can begin; where
steps 4, 5, and 6 of the procedure have already been completed, since a single
machine hosts both the old and new SN in this example.

With respect to the next step (7), recall that when employing this procedure, step 7
requires that the path of the replacement SN's data directory must be identical to the
path used by the SN to be replaced. But in this example, the same disk and file system
is used for the location of the data stored by each SN. Therefore, the storage directory
that would be created for the new sn4 Storage Node in step 7 already exists and has
been populated by the old sn2 Storage Node. Thus, to perform step 7 in this example's
simulated environment, as well as to support verification (see below), after shutting
down sn2 above, the storage directory used by that node should be renamed; which
makes room for the storage directory that needs to be provisioned in step 7 for sn4.
That is, type the following at the command line:

> mv /tmp/sn2 /tmp/sn2_old

Chapter 9
Hardware Monitoring

9-63

Note:

The renaming step above is performed only for this example, and would
never be performed in a production environment.

Next, provision the storage directory that sn4 will use; where the path specified must
be identical to the original path of the storage directory used by sn2. That is,

> mkdir -p /tmp/sn2/disk1/ondb/data

The next step to perform when preparing the replacement SN is to generate a boot
configuration for the new Storage Node by executing the makebootconfig command
(remember to substitute the actual IP address or hostname for the string <host-ip>):

java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config4.xml \
 -port 13260 \
 -harange 13262,13265 \
 -memory_mb 100 \
 -capacity 1 \
 -admindir /opt/ondb/var/admin \
 -admindirsize 2000 MB \
 -storagedir /tmp/sn2/disk1/ondb/data \
 -rnlogdir /tmp/sn2/disk1/ondb/rnlog

which will produce a configuration file for the new Storage Node; /opt/ondb/var/
kvroot/config4.xml.

After creating the configuration above, use that new configuration to start a new
instance of the KVStore Storage Node Agent (SNA), along with its managed services;
that is,

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config4.xml &

Chapter 9
Hardware Monitoring

9-64

After executing the command above, use the administrative CLI to deploy a new
Storage Node by executing the following command (with the actual IP address or
hostname substituted for the string <host-ip>):

kv-> plan deploy-sn -znname Zone1 -host <host-ip> -port 13260 -wait

As explained previously, because "sn3" was the id assigned (by the store) to the most
recently deployed storage node, the next Storage Node that is deployed – that is, the
storage node deployed by the command above – will be given "sn4" as its assigned id.
After deploying the sn4 Storage Node above, you might then (optionally) execute the
show pools command from the administrative CLI and observe that the new Storage
Node has joined the default pool named "AllStorageNodes"; for example:

kv-> show pools

which should produce output that looks like the following:

AllStorageNodes: sn1 sn2 sn3 sn4
snpool: sn1 sn2 sn3

where upon deployment, although sn4 has joined the pool named "AllStorageNodes",
it has not yet joined the pool named "snpool".

Next, after successfully deploying the sn4 Storage Node, use the CLI to join the pool
named "snpool"; that is:

kv-> pool join -name snpool -sn sn4

After deploying the new Storage Node and joining the pool named "snpool", using
the administrative CLI, you might (optionally) execute the show topology command
followed by the show pools command; and then observe that the new Storage Node
has been deployed to the store and has joined the pool named "snpool"; for example,

kv-> show topology
kv-> show pools

which, given the initial assumptions, should produce output that looks like the
following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] host-sn1 capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] host-sn2 capacity=1 UNREACHABLE
 [rg1-rn2] UNREACHABLE

 sn=[sn3] zn:[id=1 name=Zone1] host-sn3 capacity=1 RUNNING
 [rg1-rn3] RUNNING

Chapter 9
Hardware Monitoring

9-65

 sn=[sn4] zn:[id=1 name=Zone1] host-sn4 capacity=1 RUNNING

and

AllStorageNodes: sn1 sn2 sn3 sn4
snpool: sn1 sn2 sn3 sn4

The output above shows that the sn4 Storage Node has been successfully deployed
(is RUNNING) and is now a member of the pool named "snpool". But it does not yet
include an RN service corresponding to sn4. Such a service will not appear in the
store's topology until sn2 is migrated to sn4 (see below).

At this point, after the sn4 Storage Node is deployed and has joined the pool named
"snpool", and the old sn2 Storage Node has been stopped, sn4 is ready to take over
the duties of sn2. This is accomplished by migrating the sn2 services and data to
sn4 by executing the following command from the administrative CLI (remembering to
substitute the actual IP address or hostname for the string<host-ip>):

kv-> plan migrate-sn -from sn2 -to sn4 -wait

After migrating sn2 to sn4 you might (optionally) execute the show topology command
again and observe that the rg1-rn2 service has moved from sn2 to sn4 and is now
RUNNING; that is,

kv-> show topology

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] host-sn1 capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] host-sn2 capacity=1 UNREACHABLE

 sn=[sn3] zn:[id=1 name=Zone1] host-sn3 capacity=1 RUNNING
 [rg1-rn3] RUNNING

 sn=[sn4] zn:[id=1 name=Zone1] host-sn4 capacity=1 RUNNING
 [rg1-rn2] RUNNING

Finally, after the migration process is complete, remove the old sn2 Storage Node from
the store's topology; which can be accomplished by executing the plan remove-sn
command from the administrative CLI in the following way:

kv-> plan remove-sn -sn sn2 -wait

Chapter 9
Hardware Monitoring

9-66

Verification
To verify that sn2 has been successfully replaced/upgraded by sn4, first execute the
show topology command from the previously started administrative CLI; that is,

kv-> show topology

The output is like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn3] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn3] RUNNING

 sn=[sn4] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn2] RUNNING

Here the actual IP address or hostname appears instead of the string <host-ip>, and
only sn4 appears in the output rather than sn2.

In addition to executing the show topology command, you can also verify that the
expected sn4 directory structure is created and populated; that is, directories and files
like the following should exist:

/opt/ondb/var/kvroot

 config4.xml

 /example-store
 /log

 sn4*

 /sn4
 config.xml
 /admin2
 /env

/tmp/sn2/disk1/ondb/data
 /rg1-rn2
 /env
 00000000.jdb

Chapter 9
Hardware Monitoring

9-67

You can also verify that the data stored previously by sn2 has been migrated to sn4;
that is:

> grep "HELLO WORLD" /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
 Binary file /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb matches

Note:

Although sn2 was stopped and removed from the topology, the data files
created and populated by sn2 in this example were not deleted. They were
moved under the /tmp/sn2_old directory. Thus, the old sn2 storage directory
and data files can still be accessed. That is:

/tmp/sn2_old/disk1/ondb/data
 /rg1-rn2
 /env
 00000000.jdb

And the original key/value pair should still exist in the old sn2 data file; that
is,

> grep "HELLO WORLD" \
 /tmp/sn2_old/disk1/ondb/data/rg1-rn2/env/00000000.jdb
 Binary file
 /tmp/sn2_old/disk1/ondb/data/rg1-rn2/env/00000000.jdb
 matches

Finally, the last verification step that can be performed is intended to show that the
new sn4 Storage Node has taken over the duties of the old sn2 Storage Node. This
step consists of writing a new key/value pair to the store and then verifying that the
new pair has been written to the data files of sn1, sn3, and sn4, as was originally done
with sn1, sn3, and sn2 prior to replacing sn2. To perform this step, you can use the
KVStore client shell utility in the same way as described in Setup , when the first key/
value pair was initially inserted. That is, you can execute the following (remembering to
substitute the actual IP address or hostname for the <host-ip> string):

> java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar runadmin\
 -host <host-ip> -port 13230 -store example-store

kv-> get -all
 /FIRST_KEY
 HELLO WORLD

kv-> put -key /SECOND_KEY -value "HELLO WORLD 2"
 Put OK, inserted.

kv-> get -all
 /SECOND_KEY
 HELLO WORLD 2

Chapter 9
Hardware Monitoring

9-68

 /FIRST_KEY
 HELLO WORLD

After performing the insertion, use the "grep" command to verify that the new key/value
pair was written by sn1, sn3, and sn4; and of course, the old sn2 data file still only
contains the first key/value pair. That is,

> grep "HELLO WORLD 2" /tmp/sn1/dsk1/ondb/data/rg1-rn1/env/00000000.jdb
 Binary file /tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb matches
> grep "HELLO WORLD 2" /tmp/sn2/dsk1/ondb/data/rg1-rn2/env/00000000.jdb
 Binary file /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb matches
> grep "HELLO WORLD 2" /tmp/sn3/dsk1/ondb/data/rg1-rn3/env/00000000.jdb
 Binary file /tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb matches
> grep "HELLO WORLD 2"
 /tmp/sn2_old/dsk1/ondb/data/rg1-rn2/env/00000000.jdb

Chapter 9
Hardware Monitoring

9-69

10
Standardized Monitoring Interfaces

In addition to the native monitoring provided by the Admin CLI, Oracle NoSQL
Database allows Java Management Extensions (JMX) agents to be optionally
available for monitoring. These agents provide interfaces on each storage node that
allow management clients to poll them for information about the status, performance
metrics, and operational parameters of the storage node and its managed services,
including replication nodes, and admin instances. You can also use JMX to monitor
Arbiter Nodes.

Both of these management agents can also be configured to push notifications about
status changes of any services, and for violations of preset performance limits.

You can enable the JMX interface in either the Community Edition or the Enterprise
Edition.

The JMX service exposes MBeans for the three types of components. These MBeans
are the java interfaces StorageNodeMBean, RepNodeMBean, and AdminMBean in the
package oracle.kv.impl.mgmt.jmx. For more information about the status reported for
each component, see the javadoc for these interfaces.

Note:

For information on using JMX securely, see Guidelines for using JMX
securely in the Security Guide.

Java Management Extensions (JMX)
JMX agents in Oracle NoSQL Database are read-only interfaces. These interfaces
let you poll Storage Nodes for information about the storage node and about
any replication nodes or Admins that the Storage Node hosts. The information
available from polling includes the service status (RUNNING, STOPPED, and so on),
operational parameters, and performance metrics.

JMX agents also deliver event traps and notifications for particular events. For
example, JMX sends notifications for every service status state change, and any
performance limits that the store exceeds.

Enabling JMX Monitoring
You can enable monitoring on a per-storage node basis in two different ways:

• In the boot configuration file.

• Change the mgmtClass parameter.

10-1

In the Bootfile
You can specify that you want to enable JMX in the boot configuration file for the
Storage Node.

Note:

When you specify -mgmt jmx, a storage node's JMX agent uses the RMI
registry at the same port number as it uses for all other RMI services that the
Storage Node manages.

By Changing Storage Node Parameters
You can enable JMX after you deploy a store by changing the storage node parameter
mgmtClass.

The mgmtClass parameter value may be one of the following class names:

• To enable JMX:

oracle.kv.impl.mgmt.jmx.JmxAgent

• To disable JMX:

oracle.kv.impl.mgmt.NoOpAgent

Displaying the Oracle NoSQL Database MBeans
You can view the Oracle NoSQL Database JMX MBeans in a monitoring tool such
as JConsole. In the JConsole, use the Remote Process option and connect using
hostname and registry port for each Storage Node that you would like to view.

Note:

You should not choose Local Process option to connect to Oracle NoSQL
database.

For example, in the following case, in the JConsole New Connection window, you
should choose the Remote Process option and specify localhost:5000 to connect to
Oracle NoSQL Database.

Chapter 10
Java Management Extensions (JMX)

10-2

Chapter 10
Java Management Extensions (JMX)

10-3

11
Using ELK to Monitor Oracle NoSQL
Database

“ELK” is the acronym for three open source projects: Elasticsearch, Logstash, and
Kibana.

Elasticsearch is a search and analytics engine. Logstash is a server-side data
processing pipeline that ingests data from multiple sources simultaneously, transforms
it, and then send it to a “stash” like Elasticsearch. Kibana lets users visualize data
with charts and graphs in Elasticsearch. The ELK stack can be used to monitor Oracle
NoSQL Database.

Note:

For a Storage Node Agent (SNA) to be discovered and monitored, it must be
configured for JMX. JMX is not enabled by default. You can tell whether JMX
is enabled on a deployed SNA issuing the show parameters command and
checking the reported value of the mgmtClass parameter. If the value is not
oracle.kv.impl.mgmt.jmx.JmxAgent, then you need to issue the change-
parameters plan command to enable JMX.

For example:

plan change-parameters -service sn1 -wait \
-params mgmtClass=oracle.kv.impl.mgmt.jmx.JmxAgent

For more information, see Standardized Monitoring Interfaces .

Enabling the Collector Service
Follow the steps below to enable collector service in Oracle NoSQL Database:

1. Set the collectorEnabled parameter across the store to true.

plan change-parameter -global -params collectorEnabled=true -wait

2. Set an appropriate value for collectorInterval. Low interval value collects more
details and requires more storage. High interval value comparatively collects
lesser details and requires lesser storage.

plan change-parameter -global -params collectorInterval="30 s" -wait

11-1

3. Provide an appropriate storage size for collectorStoragePerComponent. The data
collected by each component (each SN and RN) is stored in a buffer. This buffer
size can be changed by setting this parameter.

plan change-parameter -global -params
collectorStoragePerComponent="50 MB" -wait

Setting Up Elasticsearch
Follow the steps below to setup Elasticsearch:

1. Download and decompress Elasticsearch-5.6.4.

2. Modify the $ELASTICSEARCH/config/elasticsearch.yml file as per your
configuration.

For example: Set values for path.data and path.logs to store data and logs in
the specified location.

3. Startup Elasticsearch.

$ cd $ELASTICSEARCH
$ sudo sysctl -q -w vm.max_map_count=262144;
$ nohup bin/elasticsearch &

For more information, see Elasticsearch Reference guide.

Setting Up Kibana
Follow the steps below to setup Kibana:

1. Download and decompress Kibana-5.6.4.

2. Modify the $KIBANA/config/kibana.yml file as per your configuration.

For example: If Elasticsearch is not deployed on the same machine as Kibana,
add line elasticsearch.url:”<your_es_hostname>:9200”. This sets Kibana to
connect to the Elasticsearch address specified instead of 127.0.0.1:9200.

3. Startup Kibana.

$ cd $KIBANA
$ nohup bin/kibana &

For more information, see Kibana Reference guide.

Setting Up Logstash
Follow the steps below to setup Logstash:

1. Download and decompress Logstash-5.6.4.

2. Place the logstash.config file in the same directory where Logstash is
decompressed. Modify the logstash.config file as per your configuration.

Chapter 11
Setting Up Elasticsearch

11-2

For example: If Elasticsearch is not deployed on the same machine
as Logstash, change the Elasticsearch hosts from localhost:9200 to
<your_es_hostname>:9200.

3. Place the templates (kvevents.template, kvpingstats.template,
kvrnenvstats.template, kvrnjvmstats.template, kvrnopstats.template) in
the same directory where Logstash is decompressed. Modify the templates as
per your configuration.

4. Switch to the $LOGSTASH directory . Verify that the directory contains the Logstash
setup files, configuration file, and all the templates. Then, startup Logstash.

$ cd $LOGSTASH
$ logstash-5.6.4/bin/logstash -f logstash.config &

For more information, see Logstash Reference guide.

Setting Up Filebeat on Each Storage Node
Follow the steps below to setup Filebeat on each storage node:

1. Download and decompress Filebeat-5.6.4.

2. Replace the existing filebeat.yml with filebeat.yml. Edit the file and replace all
occurrences of /path/of/kvroot with the actual KVROOT path of this SN. Also,
replace LOGSTASH_HOST with the actual IP of Logstash.

3. Startup Filebeat.

$ cd $FILEBEAT
$./filebeat &

4. Repeat the above steps in all the storage nodes of the cluster.

For more information, see Filebeat Reference guide.

Using Kibana for Analyzing Oracle NoSQL Database
This example demonstrates how to visualize the data by creating indexes in Kibana.

Index patterns tell Kibana which Elasticsearch indices you want to explore. An index
pattern can match the name of a single index, or include a wildcard (*) to match
multiple indices.

If you use the template files provided above, then the following indexes are available:

1. kvrnjvmstats-*

2. kvrnenvstats-*

3. kvpingstats-*

4. kvrnopstats-*

5. kvrnopstats-* — This index may not exist if the store is brand new as no events
would have occurred.

Chapter 11
Setting Up Filebeat on Each Storage Node

11-3

Creating Index Patterns
You will need to configure index patterns before using Kibana. Create the above
indexes in Kibana:

Analyzing the Data
In this example, you create a visualization using index kvpingstats-* to find out the
95thLatency in the cluster.

1. Choose the visualizing type. In this example, you choose Timelion.

2. Input the Timelion Expression to aggregate the data. The following expression is
used in this example:

.es(index=kvrnopstats-*, timefield='@timestamp',
metric='max:SingleKeyReadOperations_Interval_95th').label('read-
single').legend("sw",2).title("95thLatency"),.es(index=kvrnopstats-
*, timefield='@timestamp',
metric='max:SingleKeyWriteOperations_Interval_95th').label('write-
single').legend("sw",2).title("95thLatency")

Chapter 11
Using Kibana for Analyzing Oracle NoSQL Database

11-4

3. Save the visualization and add it to the dashboard of your choice.

Chapter 11
Using Kibana for Analyzing Oracle NoSQL Database

11-5

12
Using Plugins for Development

Get familiar with the plugins available for developing NoSQL applications in the Oracle
NoSQL Database from external integrated development environments or IDEs.

Topics

• About Oracle Enterprise Manager (OEM) Plugin

• About IntelliJ Plugin

• About Eclipse plugin

About Oracle Enterprise Manager (OEM) Plugin
The monitoring of a store in Oracle NoSQL Database can be done through its
native command-line interface (CLI). The monitoring data is available through Java
Management Extensions (JMX) interfaces allowing customers to build their own
monitoring solutions. For more information on monitoring data, see Standardized
Monitoring Interfaces .

In this current release, the integration of Oracle’s Enterprise Manager (OEM) with
Oracle NoSQL Database provides a graphical management interface tool to discover
and monitor a deployed store.

The integration of Oracle NoSQL Database with OEM primarily takes the form of
an EM plugin. The plugin allows monitoring through Enterprise Manager of the
Oracle NoSQL Database store components, their availability, performance metrics,
and operational parameters. The current 12.1.0.9.0 version of the plugin is compatible
with multiple versions of the Oracle Enterprise Manager Cloud Control (EM 13.x
versions). See Oracle Enterprise Manager Cloud Control Administrator's Guide.

Note:

For a Storage Node Agent (SNA) to be discovered and monitored, it must be
configured for JMX. JMX is not enabled by default. You can tell whether JMX
is enabled on a deployed SNA issuing the show parameters command and
checking the reported value of the mgmtClass parameter. If the value is not
oracle.kv.impl.mgmt.jmx.JmxAgent, then you need to issue the change-
parameters plan command to enable JMX.

For example:

plan change-parameters -service sn1 -wait \
-params mgmtClass=oracle.kv.impl.mgmt.jmx.JmxAgent

Also, the EM agent process must have read permission on the contents of $KVROOT.

12-1

Importing and Deploying the EM Plug-in
Follow the steps below to import and deploy the EM plug-in:

1. Import the file (.opar) into the Enterprise Manager before deploying it. The
plug-in is delivered to the user as a file inside the release package: lib/
12.1.0.9.0;_oracle.nosql.snab;_2000_0.opar

See Importing Plug-In Archives in the Oracle Enterprise Manager Cloud Control
Administrator's Guide.

2. Copy the .opar file to the host where Oracle Management Service (OMS) is
running. Import the plugin into OEM and deploy the plugin on the server hosting
OEM, via the following commands:

$emcli import_update -file=/home/guy/
12.1.0.9.0;_oracle.nosql.snab;_2000_0.opar -omslocal

3. Deploy the plug-in to the Oracle Management Service (OMS). You can deploy
multiple plug-ins to an OMS instance in graphical interface or command line
interface. See Deploying Plug-Ins to Oracle Management Service in the Oracle
Enterprise Manager Cloud Control Administrator's Guide.

CLI Example:

$emcli deploy_plugin_on_server -plugin
=oracle.nosql.snab:12.1.0.9.0 -sys_password=password

4. Deploy the agent on the server hosting Oracle NoSQL Database. See Deploying
Agent .

5. Deploy the plug-in to the EM Agents where Oracle NoSQL Database components
are running. See step 4 in Deploying Plug-Ins on Oracle Management Agent in the
Oracle Enterprise Manager Cloud Control Administrator's Guide.

CLI Example:

$emcli deploy_plugin_on_agent -agent_names=agent1.example.com:3872;
agent2.example.com:3872 -plugin=oracle.nosql.snab:12.1.0.9.0

6. Add Oracle NoSQL Database targets. See Adding NoSQL Database Targets .

Note:

The plugin components are now installed and can be configured.

Deploying Agent
Follow the steps below to deploy agent on the server hosting Oracle NoSQL
Database:

1. Click Setup -> Add Target -> Add Targets Manually on Oracle Enterprise
Manager Cloud.

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

12-2

2. Click Install Agent on Host.

Installing Agent on Host

3. Add the host name of the machine running Oracle NoSQL Database and select
the operating system type and click Next.

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

12-3

4. Enter the directory where agent files should be stored and the credential
information to login to the machine and click Next.

5. Click Deploy.

Adding NoSQL Database Targets
Run the plug-in's discovery program on each host where a Storage Node Agent (SNA)
is running, to add the components of a store as monitoring targets.

Follow the steps below to add NoSQL Database targets:

1. Select “Add Targets” from the “Setup” menu, then choose “Add Targets Manually”.

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

12-4

2. Select “Add Using Guided Process” on the “Add Targets Manually” page.

3. Select “Discover NoSQL SNA System Targets” in the “Target Types” drop-down
list.

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

12-5

4. Select an agent on which you can run the discovery program. "Choose Agent"
(Select Agent to Run Discovery On) in the first page of the program displays a list
of all available EM agents.

Select Agent to Run Discovery On

5. Click “Next”. This takes you to the “Components” (Manage NoSQL Database
Targets: Select Store Components) page. This shows all the NoSQL Database
components that were found on the agent's host. To be found, an SNA must be
running when the discovery program runs. The SNA's configuration reports the
SNA's managed components, such as Replication Nodes and Admins.

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

12-6

For each component, two attributes are listed:

• Discovered

• Currently Managed

Each attribute can have a value of “Yes” or “No”. For each component found, one
of two actions is available:

• add target

• remove target

The action is enabled by means of a check box. The recommended action for a
component is shown by the state of its check box.

• If the box is checked, then the action is recommended. The user can override
the recommended action by checking or un-checking the box.

• If a component has Discovered = YES, it means that an instance of that
component was found on the host.

• If a component has Currently Managed = YES, it means that the component is
already configured for monitoring by EM.

• If a component is Discovered and not Currently Managed, then it is a
candidate for being added as a target. For such components, the available
action is "add target", which is the recommended action.

• If a component is Discovered and Currently Managed, it means that the
component has already been discovered and added as a monitoring target.
For such components, the available action is "remove target", but the
recommended action is to do nothing, because the discovery report is in sync
with EM's configuration.

• If a component is Currently Managed and not Discovered, it means that EM
is configured to monitor a component that was unexpectedly not found on the
agent's host. This could be so because the component no longer resides on
the host; or it could reflect a temporary unavailability of the Storage Node
Agent. For such components, the recommended action is "remove target".

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

12-7

Note:

In most cases, the default recommended action is the correct action, and
no checkboxes need to be altered.

6. Click “Next” once the desired configuration is set up on the “Components” page.
This takes you to the “Confirm” (Manage NoSQL Database Targets: Confirm
Changes) page, which shows a list of all the chosen actions.

7. Click “Next” to go to the “Summary” (Add SNA Targets: Apply Changes) page. This
shows a report of success or failure of each action.

8. At this point, you may exit Discovery, or you may click on "Choose Agent", near
the top of the page, to return to the first page of the program, to re-start and run
discovery on a new agent.

Once all of the components of a store have been discovered and added, EM's
model of the store's topology is complete.

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

12-8

Components of a NoSQL Store
Components of a NoSQL Database Store include the Store itself, Storage Node
Agents, Replication Nodes, Admins, and Shards. Of these, Stores and Shards are
abstract components that do not correspond to a particular service running on a
host. Shards are implied by the existence of Replication Nodes that implement
them, and a Store is implied by the existence of the components that belong to it.
These components are discovered when components that imply their existence are
discovered.

For example, the first time discovery is run on an agent where components belonging
to a Store are running, the Store itself will appear as a Discovered and not Managed
component to be added. After the Store is added, subsequent runs of discovery
on other agents where the existence of the Store is implied will show that the
Store is Discovered and Managed, with a recommended action to do nothing. Newly
discovered components belonging to the Store will be added as Members of the Store.

Likewise, Shards may appear to be discovered on multiple hosts, but a single Shard
need be added only once.

Store Targets
The name of the Store target will be the name of the Store as configured in the NoSQL
Database CLI's "configure" command. For more information, see configure. This name
must be unique across all instances of NoSQL Database that will be monitored by a
given instance of EM.

Member components of the store have target names made up of their component
IDs appended to the store name. For example, in a store named myStore, a Storage
Node Agent with an id of "sn1" will have the target name "myStore-sn1", a Replication
Node with an id of "rg1-rn1" will have the target name "myStore-rg1-rn1", and so
forth. The undeployed StorageNodes will be "UNREGISTERED-hostname-port", for
example, “UNREGISTERED-example1.example.com-5050". Once the components of
a store have been added, you can find the page representing the store by searching
for the store name in the “Search Target Name” box in the upper right part of EM's
home page. You can also find it via Targets->All Targets or Targets->Systems.

Store Page
Clicking on the Store's name in any of the lists will take you to the Store's target page.

• The page has two large graphs showing the:

– Average Latency Averaged over all Replication Nodes in the Store

– Total Throughput for all Replication Nodes

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

12-9

• In the lower right is a list of “Undeployed Storage Node” agents.

• In the lower middle is a list of “Incidents and Problems” related to the store.

• On the left side of the page is the “Store Navigation” panel. This panel presents
the topology of the store in three different ways:

– Types

“By Types” groups targets by their target types; so all Replication Nodes are
listed together, all Storage nodes are together, and so forth.

– StorageNodes

“By StorageNodes” shows the hierarchy of Store->Storage Node-
>Replication Node. Each Replication Node is managed by a Storage Node
Agent, and always resides on the same host. A Storage Node Agent may
manage more than one Replication Node, and this is reflected in the tree
layout of the navigation panel.

– Shard

“By Shards” shows the hierarchy of Store->Shard->Replication Node.

• Each component in the navigation panel has a status "up" or "down", or "unknown"
and a link to the target page (labeled "Home Page") for that component. The
status can be "unknown" if the targets have yet to be reported for the first time, or
if OMS cannot contact the EM Agent.

• The “Store” page, (under menu item Members->Topology) shows the layout of the
store as a graph, which is an overview of the "Configuration Topology".

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

12-10

Storage Node Page
On the “Storage Node” page, you see the same graphs of “Average Latency” and
“Throughput”. Here, the graphs show aggregate information for the Replication Nodes
that are managed by the Storage Node. The graphs display either discrete series, with
one line per Replication Node; or it can combine the series into a single line. The
choice is made using the radio buttons at the bottom of the graph.

This page also shows the operational parameters for the Storage Node Agent.

Shard Page
The “Shard” page is similar to the "Storage Node" page. It shows metrics collected
from multiple Replication Nodes. These Replication Nodes are the ones that serve as
the replication group for the Shard.

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

12-11

Replication Node Page
The “Replication Node” page shows metrics for a single replication node. This page
also shows the Replication Node's operational parameters.

On this page you can view a variety of metrics by choosing Replication Node-
>Monitoring->All Metrics. It also shows different time ranges.

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

12-12

From here you can examine and graph any of the numerous metric values that are
collected from the Replication Node.

About IntelliJ Plugin
Browse tables and execute queries on your Oracle NoSQL Database KVStore from
IntelliJ.

The Oracle NoSQL Database IntelliJ plugin connects to a running instance of Oracle
NoSQL Database KVStore and allows you to:

• Quickly get started with Oracle NoSQL Database by using the examples available
with the plugin.

• View the tables in your Oracle NoSQL Database KVStore.

Chapter 12
About IntelliJ Plugin

12-13

• Retrieve columns, indexes, primary keys, and shard keys for each table.

• Build and test your SQL queries on a table and obtain results in a tabular format.

• View the data in each column in the JSON format.

Topics:

• Setting Up IntelliJ Plug-in

• Creating a NoSQL Project in IntelliJ

• Connecting to Oracle NoSQL Database from IntelliJ

• Managing Tables Using the IntelliJ Plugin

Setting Up IntelliJ Plug-in
Learn how to set up the IntelliJ plug-in for Oracle NoSQL Database KVStore.

Perform the following steps:

1. Download and extract Oracle NoSQL Java SDK. See About the Oracle NoSQL
Java SDK.

2. Install the IntelliJ plugin, and restart the IDE.

You have two options to install the plugin:

• Search the Oracle NoSQL Database Connector in the JetBrains plug-in
repository, and install it, or

• Download the IntelliJ plugin from Oracle Technology Network, and install the
plugin from disk.

Tip:

Don't extract the downloaded plugin zip file. Select the plugin in the zip
format while installing it from disk.

After you successfully set up your IntelliJ plugin, create a NoSQL project, and connect
it to your Oracle NoSQL Database KVStore.

Creating a NoSQL Project in IntelliJ
Learn how to create a NoSQL project in IntelliJ.

Perform the following steps:

1. Open IntelliJ IDEA. Click File > New > Project.

2. Select Oracle NoSQL examples from the explorer window, and click Next.

3. Browse to the location where you extracted Oracle NoSQL Java SDK on your
hard-disk, and click OK.

For example, if you extracted the Oracle NoSQL Java SDK in your D:\ drive, the
path looks like D:\oracle-nosql-java-sdk-5.2.11

4. Click Next.

5. Enter a value for Project Name and Project Location, and click Finish.

Chapter 12
About IntelliJ Plugin

12-14

6. Once your NoSQL project is created, you can browse the example java files from
the Project Explorer window.

After you successfully create a NoSQL project in IntelliJ, connect your project to your
Oracle NoSQL Database KVStore.

Connecting to Oracle NoSQL Database from IntelliJ
Learn how to connect your NoSQL project to Oracle NoSQL Database KVStore using
the IntelliJ plugin.

Prerequisites:
To create a successful connection to your Oracle NoSQL Database KVStore, ensure
that:

• The KVStore is deployed and running.

• The Oracle NoSQL Database Proxy is started. See Configuring the Proxy. Starting
the release 19.5, Proxy is bundled along with the Oracle NoSQL Database
download package.

Perform the following steps:

1. Open your NoSQL project in IntelliJ.

2. Click the wrench icon in the Schema Explorer window to open the Settings
dialog for the plugin.

3. Expand Tools > Oracle NoSQL in the Settings Explorer, and click Connections.

4. Select Onprem from the drop-down menu for the connection type.

5. Enter values for the following connection parameters, and click OK.

Table 12-1 Connection Parameters

Parameter Description

Proxy URL http://
<proxy_host>:<proxy_http_port>
or https://
<proxy_host>:<proxy_http_port>
where:
• http or https indicates the store

security. For a secure KVStore, the
proxy URL begins with https.

• proxy_host is the host name of the
machine to host the proxy service. This
should match the host you configured
earlier.

See Configuring the Proxy.

SDK Path Complete path to the directory where
you extracted the Oracle NoSQL Java
SDK. For example, D:\oracle-nosql-
java-sdk-5.2.11

Chapter 12
About IntelliJ Plugin

12-15

Table 12-1 (Cont.) Connection Parameters

Parameter Description

Security Select SSL for secure KVStores. In case,
you are creating connection to a non-secure
KVStore, select None. The default value is
SSL.

Note:

In case of secure KVStores,
the proxy URL must begin with
https.

Username User name to connect to the secure store.
This value is required only if you select SSL
for the Security parameter.

Password Password to connect to the secure store.
This value is required only if you select SSL
for the Security parameter.

TrustStore Browse to the location where the certificate
trust file is placed. See Using the Proxy in a
Secure kvstore.

6. The Intellij plugin connects your project to the Oracle NoSQL Database KVStore
and displays its schema in the Schema Explorer window.

After you successfully connect your project to your Oracle NoSQL Database KVStore,
you can manage the tables and data in your schema.

Managing Tables Using the IntelliJ Plugin
Learn how to create tables and view table data in Oracle NoSQL Database KVStore
from IntelliJ.

After connecting to the Oracle NoSQL Database, you can execute the examples
downloaded with Oracle NoSQL Java SDK to create a sample table. With the help
of the IntelliJ Plugin, you can view the tables and their data in the Schema Explorer
window.

To execute an example program:

1. Open the NoSQL project connected to your Oracle NoSQL Database.

2. Locate and click BasicTableExample in the Project Explorer window. By looking at
the code, you can notice that this program creates a table called audienceData,
puts two rows into this table, queries the inserted rows, deletes the inserted rows,
and finally drops the audienceData table.

3. To pass the required arguments, click Run > Edit Configurations. Enter the
following program arguments, and click OK.

Chapter 12
About IntelliJ Plugin

12-16

Table 12-2 Program Arguments

Program Arguments More Information

http://
<proxy_host>:<proxy_http_port>
-useKVProxy

For example, if your Proxy URL
is http://<proxy_host>:8080, the
program argument must be http://
<proxy_host>:8080 -useKVProxy.

4. To execute this program, click Run > Run 'BasicExampleTable' or press Shift +
10.

5. Verify the logs in the terminal to confirm that the code executed successfully. You
can see the display messages that indicate table creation, rows insertion, and so
on.

Tip:

As the BasicExampleTable deletes the inserted rows and drops the
audienceData table, you can't view this table in the Schema Explorer.
If you want to see the table in the Schema Explorer, comment the
code that deletes the inserted rows and drops the table, and rerun the
program.

6. To view the tables and their data:

a. Locate the Schema Explorer, and click the Refresh icon to reload the schema.

b. Locate the audienceData table under your tenant identifier, and expand it to
view its columns, primary key, and shard key details.

c. Double-click the table name to view its data. Alternatively, you can right-click
the table and select Browse Table.

d. A record viewer window appears in the main editor. Click Execute to run the
query and display table data.

Note:

As of the current release, only SELECT queries are supported on the
NoSQL tables from the Schema Explorer.

e. To view individual cell data separately, double-click the cell.

About Eclipse plugin
Build and run your Oracle NoSQL Database applications quickly from the Eclipse IDE.

To enhance your experience of building an Oracle NoSQL Database application, a
plugin is available in Eclipse. This plugin connects to a running instance Oracle
NoSQL Database KVStore and allows you to:

• Quickly get started with Oracle NoSQL Database by using the examples available
with the plugin.

• Explore development/test date from tables in your Oracle NoSQL Database
KVStore.

Chapter 12
About Eclipse plugin

12-17

• Build and test your queries.

• Retrieve columns, indexes, primary keys, and shard keys for each table.

• Build and test your SQL queries on a table and obtain results in a tabular format.

• View the date in each column in the JSON format.

To use the Eclipse plugin:

1. Download the eclipse plugin from Oracle Technology Network.

2. Follow the instructions given in the README file and install the plugin.

3. After installing the Eclipse plugin, you can connect to your Oracle NoSQL
Database KVStore and execute the code to read/write the tables. For more details,
you can access the help content embedded within Eclipse.
To access the help content:

a. Click Help Contents from the Help menu.

b. Locate and expand the Oracle NoSQL Plugin Help Contents section. This
lists all the help topics available for Oracle NoSQL Plugin.

c. Refer the help topic as per your requirement.

Note:

The Oracle NoSQL Database Eclipse plugin works with Eclipse Neon 4.6
and later.

Chapter 12
About Eclipse plugin

12-18

13
Oracle NoSQL Database Proxy and Driver

Learn about how to set up Oracle NoSQL Database Proxy and access it using the
Oracle NoSQL Database Driver.

Topics:

• Oracle NoSQL Database Proxy

• Oracle NoSQL Database Java Driver

• Oracle NoSQL Database Python Driver

Oracle NoSQL Database Proxy
Learn how to set up Oracle NoSQL Database Proxy in Oracle NoSQL Database.

Topics:

• About the Oracle NoSQL Database Proxy

• Configuring the Proxy

• Using the Proxy in a Non-Secure kvstore

• Using the Proxy in a Secure kvstore

About the Oracle NoSQL Database Proxy
The Oracle NoSQL Database Proxy is a middle-tier component that lets the Oracle
NoSQL Database drivers communicate with the Oracle NoSQL Database cluster. The
Oracle NoSQL Database drivers are available in various programming languages that
are used in the client application. Currently, Java, Python, and Node.js language
drivers are supported.

The Oracle NoSQL Database Proxy is a server that accepts requests from Oracle
NoSQL Database drivers and processes them using the Oracle NoSQL Database.
The Oracle NoSQL Database drivers can be used to access either the Oracle
NoSQL Database Cloud Service or an on-premises installation via the Oracle NoSQL
Database Proxy. Since the drivers and APIs are identical, applications can be moved
between these two options. However, an application connecting simultaneously to both
the on-premises and Oracle NoSQL Database Cloud Service is not recommended.

For example, you can deploy a local Oracle NoSQL Database store first for a
prototype project, and move forward to Oracle NoSQL Database Cloud Service for
a production project.

13-1

Figure 13-1 Oracle NoSQL Database Proxy and Driver

The JAR file for the Oracle NoSQL Database Proxy is included in the Enterprise
Edition distribution and the Community Edition distribution of Oracle NoSQL Database.
Users can download the JAR for the Oracle NoSQL Database Proxy from the Oracle
Technology Network.

Configuring the Proxy
The Oracle NoSQL Database Proxy should be configured after deploying a kvstore.
See Installing and Configuring a Non-secure Store for non-secure kvstore deployment.
See Configuring the KVStore for secure kvstore deployment.

The following information should be obtained from the secure kvstore deployment:

• kvstore's store name. See ping.

• kvstore's helper host:port list. See Obtaining a KVStore Handle in the Java Direct
Driver Developer's Guide.

Proxy Parameters

The following parameters can be provided as the command line arguments to start up
the proxy.

Parameter Requir
ed ?

Default
Value

Description

-helperHosts Require
d.

Helper hosts are hostname and port pairs that
identify how to contact helper nodes within
the store. Use an array of strings to identify
multiple helper hosts . Typically, you will get
these hostname and port pairs from the store's
deployer or administrator. Example pattern is
"hostname1:port1,hostname2:port2,...hostnameX:portX"
Confirm that the ports in helper host list are left open by
the firewall rules for connection between the proxy and
kvstore server.

-storeName Require
d.

Name of kvstore. This name is obtained from kvstore
deployment process.

Chapter 13
Oracle NoSQL Database Proxy

13-2

Parameter Requir
ed ?

Default
Value

Description

-hostname No localhos
t

The host name of the machine which is starting up the
proxy instance.

-httpPort No 80 The HTTP port of the proxy machine which will be used
by the proxy to accept non-secure connections from
HTTP requests. This parameter is mutually exclusive
with the -httpsPort parameter. Only one of these
parameters can be specified.
Confirm that the port is left open by the firewall rules for
connection between the proxy and the driver.

-httpsPort No 443 The HTTPS port of the proxy machine which will be
used by the proxy to accept secure connections from
HTTPS requests. This parameter is mutually exclusive
with the -httpPort parameter. Only one of these
parameters can be specified.
Confirm that the port is left open by the firewall rules for
connection between the proxy and the driver.

-
numAcceptThrea
ds

No 3 This value determines the thread pool size for
the threads that are used to handle the incoming
connections to the proxy.

-
numRequestThre
ads

No 32 This value determines the thread pool size for the
threads that are used to handle the request input/
output traffic, after the connection has been registered
by the "AcceptThread" and handed over to the
"RequestThread".

-verbose No false Displays the proxy start-up information. Can take either
"true" or "false" as values.

-sslCertificate Require
d for
secure
proxy
only.

Path to the SSL certificate file in pem file format.
You can either generate a self-signed certificate using
OpenSSL, or send a request to a public CA to generate
a certificate. See Generating Certificate and Private Key
for the Oracle NoSQL Database Proxy in the Security
Guide.

-sslPrivateKey Require
d for
secure
proxy
only.

Path to the SSL private key file. You can either generate
a private key using OpenSSL, or send a request to a
public CA to generate a private key. See Generating
Certificate and Private Key for the Oracle NoSQL
Database Proxy in the Security Guide.

-
sslPrivateKeyPas
s

Require
d for
secure
proxy
only.

Password for the private key, if the private key is
encrypted. This parameter is not required if the private
key is not encrypted.

-storeSecurityFile Require
d for
secure
proxy
only.

Path to the security login file which is generated by
the client user of the kvstore. The client user of the
kvstore should be a non-admin proxy bootstrap user.
To generate a login file, see Configuring Security with
Remote Access.

Chapter 13
Oracle NoSQL Database Proxy

13-3

Using the Proxy in a Non-Secure kvstore
Starting up the Proxy

Use the following command to start up the proxy for a non-secure kvstore.

java -jar lib/httpproxy.jar \
-storeName <kvstore_name> \
-helperHosts <kvstore_helper_host> \
[-hostname <proxy_host>] \
[-httpPort <proxy_http_port>]

where,

• kvstore_name is the kvstore's store name obtained from the kvstore deployment.
See ping.

• kvstore_helper_host is the kvstore's helper host:port list obtained from the
kvstore deployment. See Obtaining a KVStore Handle in the Java Direct Driver
Developer's Guide.

• proxy_host is the hostname of the machine to host the proxy service. If the proxy
is to be accessed from machines other than the one on which it is started this
should be the hostname of the machine running the proxy. This parameter is
optional and defaults to localhost .

• proxy_http_port is the port on which the proxy is watching for requests on its
host machine. This is an optional parameter and defaults to 80.

Note:

Use of port 80 may require additional privileges, depending on your
machine.

Connect to the Proxy using Java

The Oracle NoSQL Database Java Driver contains the jar files that enable a Java
application to communicate with the proxy.

Install the Java driver in the application's classpath and use the following code to
connect to the proxy.

String endpoint = "http://<proxy_host>:<proxy_http_port>";
StoreAccessTokenProvider atProvider = new StoreAccessTokenProvider();
NoSQLHandleConfig config = new NoSQLHandleConfig(endpoint);
config.setAuthorizationProvider(atProvider);
NoSQLHandle handle = NoSQLHandleFactory.createNoSQLHandle(config);

where,

• proxy_host is the hostname of the machine to host the proxy service. This should
match the host you configured earlier.

Chapter 13
Oracle NoSQL Database Proxy

13-4

• proxy_http_port is the port on which the proxy is watching for requests on its
host machine. This should match the http port you configured earlier.

Connect to the Proxy using Python

The Oracle NoSQL Database Python Driver contains the files that enable a Python
application to communicate with the proxy.

See Connect to the Proxy Using Python for more information.

Connect to the Proxy using Go

The Oracle NoSQL Database Go SDK contains the files that enable a Go application
to communicate with the proxy.

See Connect to the Proxy using Go for more information.

Connect to the Proxy using Node.js

The Oracle NoSQL Database Node.js SDK contains the files that enable a Node.js
application to communicate with the proxy.

See Connect to the Proxy using Node.js for more information.

Example

In the following example you start a proxy instance on the local machine called myhost
using HTTP port 8080. It will connect to an Oracle NoSQL Database instance name
kvstore that is running on 2 hosts, kvhost1 and kvhost2, both on port 5000.

Start up a non-secure kvstore

1. Start the proxy in the localhost using 8080 as the httpPort.

java -jar lib/httpproxy.jar \
 -storeName kvstore \
 -helperHosts kvhost1:5000,kvhost2:5000 \
 -httpPort 8080 \
 -verbose true

2. In the application, run the following code to connect to the proxy.

String endpoint = "http://localhost:8080";
 StoreAccessTokenProvider atProvider = new
StoreAccessTokenProvider();
 NoSQLHandleConfig config = new NoSQLHandleConfig(endpoint);
 config.setAuthorizationProvider(atProvider);
 NoSQLHandle handle =
NoSQLHandleFactory.createNoSQLHandle(config);

3. See Oracle NoSQL Database Java Driver to add CRUD operations for the
example as needed.

Chapter 13
Oracle NoSQL Database Proxy

13-5

Using the Proxy in a Secure kvstore
Starting up the Proxy

The Oracle NoSQL Database Proxy can be started on a secure kvstore using the
following steps.

1. A secure proxy connection should be bootstrapped. Before you start up the
proxy, you need to create a bootstrap user in the secure kvstore for the proxy to
bootstrap its security connection. In SQL shell, the following command will create
a bootstrap user for the proxy. See Introduction to the SQL for Oracle NoSQL
Database Shell in the SQL Beginner's Guide.

sql-> CREATE USER <proxy_user> IDENTIFIED BY "<proxy_password>";

where,

• proxy_user is the user name.

• proxy_password is the password for the proxy_user.

Note:

The default privilege is sufficient for a bootstrap user. It is not
recommended to grant admin privilege or any other additional privileges
to the bootstrap user.

Note:

Any user-supplied name can be given for the bootstrap user.

2. Create a directory ./proxy where the proxy related files can be stored.

3. Create a login file ./proxy/proxy.login for the bootstrap user with the following
information in it.

oracle.kv.auth.username=<proxy_user>
oracle.kv.auth.pwdfile.file=proxy.passwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=client.trust

where,

• proxy.passwd is the file to store the password value of the proxy_user user.

• client.trust is the certificate trust file obtained from the kvstore deployment.

See Configuring Security with Remote Access to know how to generate the
proxy.passwd and client.trust files in kvstore client machine. In this case, the
proxy runs as a kvstore client. These files must exist in order for the proxy.login
to work properly.

Chapter 13
Oracle NoSQL Database Proxy

13-6

4. Create a certificate.pem file and key-pkcs8.pem file for the proxy and driver
to configure and establish a secure communication. If the Java driver is used,
the driver.trust file should also be generated. See Generating Certificate and
Private Key for the Oracle NoSQL Database Proxy in the Security Guide.

5. Use the following command to start up the proxy for a secure kvstore:

java -jar lib/httpproxy.jar \
-storeName <kvstore_name> \
-helperHosts <kvstore_helper_host> \
[-hostname <proxy_host>] \
[-httpsPort <proxy_https_port>] \
-storeSecurityFile proxy/proxy.login \
-sslCertificate certificate.pem \
-sslPrivateKey key-pkcs8.pem \
-sslPrivateKeyPass <privatekey_password> \
[-verbose true]

where,

• kvstore_name is the kvstore's store name obtained from the kvstore
deployment. See ping.

• kvstore_helper_host is the kvstore's helper host:port list obtained from the
kvstore deployment. See Obtaining a KVStore Handle in the Java Direct Driver
Developer's Guide.

• proxy_host is the hostname of the machine to host the proxy service. If the
proxy is to be accessed from machines other than the one on which it is
started this should be the hostname of the machine running the proxy. This
parameter is optional and defaults to localhost which means that the proxy
will only be available from the machine running the proxy.

• proxy_https_port is the port on which the proxy is watching for requests on
its host machine. This is an optional parameter and defaults to 443.

Note:

Use of port 80 may require additional privileges, depending on your
machine.

• proxy.login is the security login file generated in the earlier step for
accessing the secure kvstore.

• certificate.pem is the certificate file generated in the previous step.

• key-pkcs8.pem is the private key file generated in the previous step.

• privatekey_password is the password for the encrypted key-pkcs8.pem file.

Chapter 13
Oracle NoSQL Database Proxy

13-7

Note:

The proxy start-up only accepts private key file in PKCS#8 format. If your
private key is already in PKCS#8 (start with -----BEGIN ENCRYPTED
PRIVATE KEY----- or -----BEGIN PRIVATE KEY-----), you don't need
any additional conversion. Otherwise, you can use OpenSSL to do the
conversion.

Connect to the Proxy using Java Driver

The Oracle NoSQL Database Java Driver contains the jar files that enables an
application to communicate with the Oracle NoSQL Database Proxy. You can connect
to the proxy using the following steps.

1. Create a user for the driver which is used by the application to access the kvstore
through the proxy.

sql-> CREATE USER <driver_user> IDENTIFIED BY "<driver_password>"
 sql-> GRANT READWRITE TO USER <driver_user>

where, the driver_user is the username and driver_password is the password
for the driver_user user. In this example, the user driver_user is granted
readwrite role, which allows the application to perform only read and write
operation. See Configuring Authorization in the Security Guide.

Note:

If the user needs to create, drop, or alter tables or indexes, the
driver_user should be granted dbadmin role, which allows the
application to perform DDL operations.

sql-> GRANT DBADMIN TO USER <driver_user>

2. Install the Oracle NoSQL Database Java Driver in the application's classpath and
use the following code to connect to the proxy.

String endpoint = "https://<proxy_host>:<proxy_https_port>";
StoreAccessTokenProvider atProvider =
 new
StoreAccessTokenProvider("<driver_user>","<driver_password>".toCharA
rray());
NoSQLHandleConfig config = new NoSQLHandleConfig(endpoint);
config.setAuthorizationProvider(atProvider);
NoSQLHandle handle = NoSQLHandleFactory.createNoSQLHandle(config);

where,

• proxy_host is the hostname of the machine to host the proxy service. This
should match the proxy host you configured earlier.

Chapter 13
Oracle NoSQL Database Proxy

13-8

• proxy_https_port is the port on which the proxy is watching for requests on
its host machine. This should match the proxy https port configured earlier.

• driver_user is the driver username. This should match the user created in the
previous step.

• driver_password is the password of the driver user.

3. Start-up the application program and set the driver.trust file's path to the Java
trust store by using the following command. This is required as the proxy is
already set up using the certificate.pem and key-pkcs8.pem files.

java -Djavax.net.ssl.trustStore=driver.trust \
-javax.net.ssl.trustStorePassword=<password of driver.trust> \
-cp .:lib/nosqldriver.jar application_program

The driver.trust contains the certificate.pem or rootCA.crt certificate. If the
certificate certificate.pem is in a chain signed by a trusted CA that is listed
in JAVA_HOME/jre/lib/security/cacerts, then you don't need to append Java
environment parameter -Djavax.net.ssl.trustStore in the Java command.

Connect to the Proxy using Python

The Oracle NoSQL Database Python Driver contains the files that enable a Python
application to communicate with the proxy.

See Connect to the Proxy Using Python for more information.

Connect to the Proxy using Go

The Oracle NoSQL Database Go SDK contains the files that enable a Go application
to communicate with the proxy.

See Connect to the Proxy using Go for more information.

Connect to the Proxy using Node.js

The Oracle NoSQL Database Node.js SDK contains the files that enable a Node.js
application to communicate with the proxy.

See Connect to the Proxy using Node.js for more information.

Example

Run the Oracle NoSQL Database Java Driver and connect to the proxy using the
following steps. In this example, we will deploy a secure one-node Oracle NoSQL
Database server on the same host as the proxy. This example will start a proxy
instance on the local machine called myhostusing HTTPS port 443. It will connect to
a secure Oracle NoSQL Database instance name kvstore that is running on 2 hosts,
kvhost1 and kvhost2, both on port 5000. In order to perform the administrative steps
required to create users and assign privilege you must have access to an identity
with administrative privilege. In this example, the identity with administrative privilges is
provided in the file KVROOT/security.

Chapter 13
Oracle NoSQL Database Proxy

13-9

1. Create a proxy_user user using the following command in the Oracle NoSQL
Database SQL shell.

java -jar lib/sql.jar \
-helper-hosts kvhost1:5000,kvhost2:5000 -store kvstore \
-security kvroot/security/user.security

sql-> CREATE USER proxy_user IDENTIFIED BY "ProxyPass@@123";

exit

2. Create a directory ./proxy where the proxy related files can be stored.

3. Create a ./proxy/proxy.passwd file and set the proxy password for user proxy
in the proxy.passwd file. In this example, the proxy is in the same machine as
kvstore. So, we create the files related to proxy in the ./proxy directory.

java -jar lib/kvstore.jar securityconfig pwdfile create -file proxy/
proxy.passwd
java -jar lib/kvstore.jar securityconfig pwdfile secret -file proxy/
proxy.passwd -set -alias proxy_user -secret "ProxyPass@@123"

4. Copy the client.trust file from kvstore to the /proxy directory for the proxy to
use it.

cp kvroot/security/client.trust proxy/client.trust

5. Create a login file proxy.login for the bootstrap user in the ./proxy directory with
the following information in it.

oracle.kv.auth.username=proxy_user
oracle.kv.auth.pwdfile.file=proxy.passwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=client.trust

6. Generate a self-signed certificate and a private key.

openssl req -x509 -days 365 -newkey rsa:4096 \
-keyout key.pem -out certificate.pem \
-subj "/C=US/ST=CA/L=San/CN=localhost/
emailAddress=localhost@oracle.com"

The below conversion can be skipped if openssl by default
generate PKCS#8 key.
openssl pkcs8 -topk8 \
-inform PEM -outform PEM \
-in key.pem -out key-pkcs8.pem

Note:

Provide 123456 for all the password prompts.

Chapter 13
Oracle NoSQL Database Proxy

13-10

Note:

Provide the hostname of the machine for the parameter CN if you are not
running in localhost.

Note:

The below conversion should be done if your key is encrypted
with the PKCS#5 v2.0 algorithm. Otherwise, you might encounter
IllegalArgumentException exception that indicates the file does not
contain a valid private key due to the unsupported algorithm. The
encryption algorithm can be converted via OpenSSL pkcs8 utility by
specifying PKCS#5 v1.5 or PKCS#12 algorithms with -v1 flag. The
following command converts the encryption algorithm of a key to PBE-
SHA1-3DES.

openssl pkcs8 -topk8 -in <PKCS#5v2.0_key_file> -out
<new_key_file> -v1 PBE-SHA1-3DES

7. Import the certificate into the Java trust store.

keytool -import -alias example \
-keystore driver.trust -file certificate.pem

8. Start the proxy on the local machine, myhost, using 443 as the httpsPort

java -jar lib/httpproxy.jar \
-storeName kvstore \
-helperHosts kvhost1:5000,kvhost2:5000 \
-httpsPort 443 \
-storeSecurityFile proxy/proxy.login \
-sslCertificate certificate.pem \
-sslPrivateKey key-pkcs8.pem \
-sslPrivateKeyPass 123456 \
-verbose true

9. Create a driver_user user. In this example, the driver_user is granted
readwrite role, which allows the application to perform only read and write
operations. To run table DDLs like CREATE TABLE, the driver_user should be
granted more roles. See Configuring Authorization in the Security Guide.

java -jar lib/sql.jar \
-helper-hosts kvhost1:5000,kvhost2:5000 -store kvstore \
-security kvroot/security/user.security

sql-> CREATE USER driver_user IDENTIFIED BY "DriverPass@@123";
sql-> GRANT READWRITE TO USER driver_user;

exit

Chapter 13
Oracle NoSQL Database Proxy

13-11

10. In the application program, run the following code to connect to the proxy. Add
JVM parameter -Djavax.net.ssl.trustStore=driver.trust when starting up the
example program.

String endpoint = "https://localhost:8089";
StoreAccessTokenProvider atProvider =
 new
StoreAccessTokenProvider("driver_user","DriverPass@@123".toCharArra
y());

NoSQLHandleConfig config = new NoSQLHandleConfig(endpoint);
config.setAuthorizationProvider(atProvider);

NoSQLHandle handle = NoSQLHandleFactory.createNoSQLHandle(config);

11. See Oracle NoSQL Database Java Driver to add CRUD operations for the
example as needed.

Oracle NoSQL Database Java Driver
Learn about how to access the Oracle NoSQL Database Proxy using Oracle NoSQL
Database Java Driver.

Topics:

• About the Oracle NoSQL Java SDK

• Creating NoSQLHandle

• Creating Tables and Indexes

• Adding Data

• Adding JSON Data

• Reading Data

• Using Queries

• Deleting Data

• Modifying Tables

• Drop Tables and Indexes

• Handling Errors

About the Oracle NoSQL Java SDK
Learn about the Oracle NoSQL Java SDK.

You can run operations on an Oracle NoSQL Database from an application through
the Oracle NoSQL Database Proxy.

The Oracle NoSQL Database Java Driver contains the jar files that enable an
application to communicate with the on-premises Oracle NoSQL Database or the
Oracle NoSQL Database Cloud Service or the Oracle NoSQL Database Cloud
Simulator.

Chapter 13
Oracle NoSQL Database Java Driver

13-12

The client applications need to include the Oracle NoSQL Database Java Driver in
JVM classpath in order to use the driver API to send CRUD requests through the
Oracle NoSQL Database Proxy. To facilitate this, you need to first configure and
start-up an Oracle NoSQL Database Proxy instance. See Oracle NoSQL Database
Proxy.

Download and unpack the Java SDK from . Extracting the Oracle NoSQL Java
SDK provides you with all the Java classes, methods, interfaces, examples, and
documentation.

Creating NoSQLHandle
In your application, create NoSQLHandle which will be your connection to the
Oracle NoSQL Database Proxy. Using this NoSQLHandle you could access
the Oracle NoSQL Database tables and execute Oracle NoSQL Database
operations. To instantiate NoSQLHandle, pass a reference of NoSQLHandleConfig
class to the NoSQLHandleFactory.CreateNoSQLHandle method. Provide the Oracle
NoSQL Database Proxy URL as a parameterized constructor to instantiate the
NoSQLHandleConfig class.

You could configure the proxy in the Oracle NoSQL Database server in either
non-secure or secure mode. The NoSQLHandleConfig class allows an application to
specify the security configuration information which is to be used by the handle.
For non-secure access, create an instance of the StoreAccessTokenProvider class
with the no-argument constructor. For secure access, create an instance of the
StoreAccessTokenProvider class with the parameterized constructor. Provide the
reference of StoreAccessTokenProvider class to the NoSQLHandleConfig class to
establish the appropriate connection.

The following is an example of creating NoSQLHandle that connects to a non-secure
proxy.

// Service URL of the proxy
String endpoint = "http://localhost:5000";

// Create a default StoreAccessTokenProvider for accessing the proxy
StoreAccessTokenProvider provider = new StoreAccessTokenProvider();

// Create a NoSQLHandleConfig
NoSQLHandleConfig config = new NoSQLHandleConfig(endpoint);

// Setup authorization provider using StoreAccessTokenProvider
config.setAuthorizationProvider(provider);

// Create NoSQLHandle using the information provided in the config
NoSQLHandle handle = NoSQLHandleFactory.createNoSQLHandle(config);

The following is an example of creating NoSQLHandle that connects to a secure proxy.

// Service URL of the secure proxy
String endpoint = "https://localhost:5000";

// Username of kvstore
String userName = "driver_user";

Chapter 13
Oracle NoSQL Database Java Driver

13-13

// Password of the driver user
String password = "DriverPass@@123";

//Construct StoreAccessTokenProvider with username and password
StoreAccessTokenProvider provider =
 new StoreAccessTokenProvider(userName, password.toCharArray());

// Create a NoSQLHandleConfig
NoSQLHandleConfig config = new NoSQLHandleConfig(endpoint);

// Setup authorization provider using StoreAccessTokenProvider
config.setAuthorizationProvider(provider);

// Create NoSQLHandle using the information provided in the config
NoSQLHandle handle = NoSQLHandleFactory.createNoSQLHandle(config);

For secure access, the StoreAccessTokenProvider parameterized constructor takes
the following arguments.

• username is the username of the kvstore.

• password is the password of the kvstore user.

Note:

The client driver program should include a driver.trust file path in its
JVM environment parameter javax.net.ssl.trustStore to make the secure
connection work. The driver.trust should be distributed when the proxy is
configured and started. This file is to allow the client driver to certify the proxy
server's identity to make a secured connection.

User should generate driver.trust file for the java driver to access the secure proxy.
See Generating Certificate and Private Key for the Oracle NoSQL Database Proxy in
the Security Guide.

Following is an example of adding the driver.trust file to the client program:

java -Djavax.net.ssl.trustStore=driver.trust -cp .:/lib/nosqldriver.jar
Example

A handle has memory and network resources associated with it. Therefore, invoke
the NoSQLHandle.close method to free up the resources when the application finishes
using the handle.

To minimize network activity, and resource allocation and deallocation overheads,
it's best to avoid repeated creation and closing of handles. For example, creating
and closing a handle around each operation would incur large resource allocation
overheads resulting in poor application performance. A handle permits concurrent
operations, so a single handle is sufficient to access tables in a multi-threaded
application. The creation of multiple handles incurs additional resource overheads
without providing any performance benefit.

Chapter 13
Oracle NoSQL Database Java Driver

13-14

Creating Regions
Learn how to create a region in a Multi-Region Oracle NoSQL Database.

To create a region, use the CREATE REGION DDL statement. For example:

/* Create the region named us_east */
CREATE REGION us_east;

To drop a region from your application, you use the KVStore class to pass the DDL
statement to the executeSync method. For example to create the us_east region:

KVStore.executeSync(“CREATE REGION us_east”);

Creating Tables and Indexes
Learn how to create tables and indexes.

Creating a table is the first step of developing your application. You use the
TableRequest class and methods to execute all DDL statements, such as, creating,
modifying, and dropping tables.

The TableRequest class lets you pass a DDL statement to the
TableRequest.setStatement method. Examples of DDL statements are:

/* Create a new table called users */
CREATE IF NOT EXISTS users(id INTEGER,
 name STRING,
 PRIMARY KEY(id));

/* Create a new table called users and set the TTL value to 4 days */
CREATE IF NOT EXISTS users(id INTEGER,
 name STRING,
 PRIMARY KEY(id))
USING TTL 4 days;

/* Create a new multi-region table called users with two regions, and
set the TTL value to 4 days */
CREATE TABLE users(
 id INTEGER,
 name STRING,
 team STRING,
 primary key(id))
USING TTL 4 DAYS IN REGIONS fra, lnd;

/* Create a new index called nameIdx on the name field in the users
table */
CREATE INDEX IF NOT EXISTS nameIdx ON users(name);

Chapter 13
Oracle NoSQL Database Java Driver

13-15

To create a table and index using the TableRequest and its methods:

/* Create a simple table with an integer key and a single json data
 * field and set your desired table capacity.
 * Set the table TTL value to 3 days.
 */
String createTableDDL = "CREATE TABLE IF NOT EXISTS users " +
 "(id INTEGER, name STRING, " +
 "PRIMARY KEY(id)) USING TTL 3 days";

TableRequest treq = new TableRequest().setStatement(createTableDDL);
// start the asynchronous operation
TableResult tres = handle.tableRequest(treq);

// The table request is asynchronous, so wait for the table to become
active.
TableResult.waitForState(handle, tres.getTableName(),
 TableResult.State.ACTIVE,
 60000, // wait for 60 sec
 1000); // delay in ms for poll

// Create an index called nameIdx on the name field in the users table.
treq = new TableRequest().setStatement("CREATE INDEX
 IF NOT EXISTS nameIdx ON users(name)
 ");

// start the asynchronous operation
 handle.tableRequest(treq);

Adding Data
Add rows to your table.

When you store data in table rows, your application can easily retrieve, add to, or
delete information from a table.
The PutRequest class represents the input to a
NoSQLHandle.put(oracle.nosql.driver.ops.PutRequest) operation. This request
can be used to perform unconditional and conditional puts to:

• Overwrite any existing row. Overwrite is the default functionality.

• Succeed only if the row does not exist. Use the PutRequest.Option.IfAbsent
method in this case.

• Succeed only if the row exists. Use the PutRequest.Option.IfPresent method in
this case.

• Succeed only if the row exists and the version matches a specific
version. Use the PutRequest.Option.IfVersion method for this case and the
setMatchVersion(oracle.nosql.driver.Version) method to specify the version
to match.

Chapter 13
Oracle NoSQL Database Java Driver

13-16

Note:

First, connect your client driver to Oracle NoSQL Database to get a handle
and then complete other steps. This topic omits the steps for connecting your
client driver and creating a table. If you do not yet have a table, see Creating
Tables and Indexes.

To add rows to your table:

/* use the MapValue class and input the contents of a new row */
MapValue value = new MapValue().put("id", 1).put("name", "myname");

/* create the PutRequest, setting the required value and table name */
PutRequest putRequest = new PutRequest().setValue(value)
 .setTableName("users");

/* use the handle to execute the PUT request
 * on success, PutResult.getVersion() returns a non-null value
 */
PutResult putRes = handle.put(putRequest);
if (putRes.getVersion() != null) {
 // success
} else {
 // failure
}

You can perform a sequence of PutRequest operations on a table that share the
shard key using the WriteMultipleRequest class. If the operation is successful, the
WriteMultipleResult.getSuccess() method returns true.
You can also add JSON data to your table. You can either convert JSON data into a
record for a fixed schema table or you can insert JSON data into a column whose data
type is of type JSON. See Adding JSON Data.

Adding JSON Data
Learn how to add JSON data to a fixed schema table.

Note:

First, connect your client driver to Oracle NoSQL Database to get a handle
and then complete other steps. This topic omits the steps for connecting your
client driver and creating a table. If you do not yet have a table, see Creating
Tables and Indexes.

Table rows are added to the table by using APIs which let you individually specify each
table field value. For example, you use the MapValue.put() method to fill in each field
value for a row, before inserting the entire row into the table.

Chapter 13
Oracle NoSQL Database Java Driver

13-17

The PutRequest class also provides the setValueFromJson method which takes a
JSON string and uses that to populate a row to insert into the table. The JSON string
should specify field names that correspond to the table field names.

To add JSON data to your table:

/* Construct a simple row, specifying the values for each
 * field. The value for the row is this:
 *
 * {
 * "cookie_id": 123,
 * "audience_data": {
 * "ipaddr": "10.0.00.xxx",
 * "audience_segment": {
 * "sports_lover": "2018-11-30",
 * "book_reader": "2018-12-01"
 * }
 * }
 * }
 */
MapValue segments = new MapValue()
 .put("sports_lover", new TimestampValue("2018-11-30"))
 .put("book_reader", new TimestampValue("2018-12-01"));
MapValue value = new MapValue()
 .put("cookie_id", 123) // fill in cookie_id field
 .put("ipaddr", "10.0.00.xxx")
 .put("audience_segment", segments);
PutRequest putRequest = new PutRequest()
 .setValue(value)
 .setTableName(tableName);
PutResult putRes = handle.put(putRequest);

The same row can be inserted into the table as a JSON string:

/* Construct a simple row in JSON */
String jsonString = "{\"cookie_id\":123,\"ipaddr\":\"10.0.00.xxx\",
 \"audience_segment\":
{\"sports_lover\":\"2018-11-30\",
 \"book_reader\":\"2018-12-01\"}}";
PutRequest putRequest = new PutRequest()
 .setValueFromJson(jsonString, null) // no options
 .setTableName(tableName);
PutResult putRes = handle.put(putRequest);

Reading Data
Learn how to read data from your table.

You can read data from your application by using the NoSQLHandle.get() method.
This method allows you to retrieve a record based on a single primary key value, or by
using queries. The GetRequest class provides a simple and powerful way to read data,
while queries can be used for more complex read requests.

Chapter 13
Oracle NoSQL Database Java Driver

13-18

To read data from a table, specify the target table and target key using the GetRequest
class and use NoSQLHandle.get() to execute your request. The result of the operation
is available in GetResult.

To read data from your table:

/* GET the row, first create the row key */
MapValue key = new MapValue().put("id", 1);
GetRequest getRequest = new GetRequest().setKey(key)
 .setTableName("users");
GetResult getRes = handle.get(getRequest);

/* on success, GetResult.getValue() returns a non-null value */
if (getRes.getValue() != null) {
 // success
} else {
 // failure
}

Note:

By default, all read operations are eventually consistent. You can change
the default Consistency for a NoSQLHandle instance by using the
NoSQLHandleConfig.setConsistency(oracle.nosql.driver.Consistency)
and GetRequest.setConsistency() methods.

Using Queries
Learn about some aspects of using queries to your application in Oracle NoSQL
Database.

Oracle NoSQL Database provides a rich query language to read and update data. See
SQL Reference Guide for a full description of the query language.

To execute your query, you use the NoSQLHandle.query() API.

To execute a SELECT query to read data from your table:

/* QUERY a table named "users", using the primary key field "name".
 * The table name is inferred from the query statement.
 */
QueryRequest queryRequest = new QueryRequest().
setStatement("SELECT * FROM users WHERE name = \"Taylor\"");

/* Queries can return partial results. It is necessary to loop,
 * reissuing the request until it is "done"
 */

do {
 QueryResult queryResult = handle.query(queryRequest);

 /* process current set of results */
 List<MapValue> results = queryResult.getResults();

Chapter 13
Oracle NoSQL Database Java Driver

13-19

 for (MapValue qval : results) {
 //handle result
 }
} while (!queryRequest.isDone());

When using queries, be aware of the following considerations:

• You can use prepared queries when you want to run the same query multiple
times. When you use prepared queries, the execution is more efficient than
starting with a query string every time. The query language and API support query
variables to assist with the reuse.

•

For example, to execute a SELECT query to read data from your table using a prepared
statement:

/* Perform the same query using a prepared statement. This is more
 * efficient if the query is executed repeatedly and required if
 * the query contains any bind variables.
 */
String query = "DECLARE $name STRING; " +
 "SELECT * from users WHERE name = $name";

PrepareRequest prepReq = new PrepareRequest().setStatement(query);

/* prepare the statement */
PrepareResult prepRes = handle.prepare(prepReq);

/* set the bind variable and set the statement in the QueryRequest */
prepRes.getPreparedStatement()
 .setVariable("$name", new StringValue("Taylor"));
QueryRequest queryRequest = new
QueryRequest().setPreparedStatement(prepRes);

/* perform the query in a loop until done */
do {
 QueryResult queryResult = handle.query(queryRequest);
 /* handle result */
} while (!queryRequest.isDone());

Deleting Data
Learn how to delete rows from your table.

After you insert or load data into a table, you can delete the table rows when they are
no longer required.

Chapter 13
Oracle NoSQL Database Java Driver

13-20

Note:

First, connect your client driver to Oracle NoSQL Database to get a handle
and then complete other steps. This topic omits the steps for connecting your
client driver and creating a table. If you do not yet have a table, see Creating
Tables and Indexes.

To delete a row from a table:

/* identify the row to delete */
MapValue delKey = new MapValue().put("id", 2);

/* construct the DeleteRequest */
DeleteRequest delRequest = new DeleteRequest().setKey(delKey)
 .setTableName("users");

/* Use the NoSQL handle to execute the delete request */
DeleteResult del = handle.delete(delRequest);

/* on success DeleteResult.getSuccess() returns true */
if (del.getSuccess()) {
 // success, row was deleted
} else {
 // failure, row either did not exist or conditional delete failed
}

You can perform a sequence of DeleteRequest operations on a table using the
MultiDeleteRequest class.

Modifying Tables
Learn how to modify tables.

You modify a table to:

• Add new fields to an existing table

• Delete currently existing fields in a table

• To change the default TTL value

Note:

First, connect your client driver to Oracle NoSQL Database to get a handle
and then complete other steps. This topic omits the steps for connecting your
client driver and creating a table. If you do not yet have a table, see Creating
Tables and Indexes.

Chapter 13
Oracle NoSQL Database Java Driver

13-21

Examples of DDL statements are:

/* Add a new field to the table */
ALTER TABLE users (ADD age INTEGER);

/* Drop an existing field from the table */
ALTER TABLE users (DROP age);

/* Modify the default TTL value*/
ALTER TABLE users USING TTL 4 days;

Following is an example of altering a table:

/* set the table TTL value to 4 days. */
String alterTableDDL = "ALTER TABLE users USING TTL 4 days";
TableRequest treq = new TableRequest().setStatement(alterTableDDL);
TableResult tres = handle.tableRequest(treq);

Drop Tables and Indexes
Learn how to delete a table or index that you have created in Oracle NoSQL
Database.

To drop a table or index, use the DROP TABLE or DROP INDEX DDL statements. For
example:

/* Drop the table named users */
DROP TABLE users;

/* Drop the index called nameIndex on the table users */
DROP INDEX IF EXISTS nameIndex ON users;

You can drop an MR Table using the DROP statement in the same manner as you drop
any other Oracle NoSQL Database table. If you choose to drop an MR Table in a
particular region, it continues to remain an MR Table in the other participating regions.
In a case where you want to drop a particular MR Table from multiple regions, you
must execute the DROP TABLE statement in each region separately.

Note:

If you drop an MR Table in all the regions except one, it becomes an MR
Table linked with a single region. The difference between an MR Table with
a single region and a local table is that you can add new regions to the MR
Table with a single region in the future.

To drop a table or index from your application, you use the TableRequest class. For
example to drop the users table:

/* Drop the table identified by the tableName */
final String dropStatement = "drop table " + users;

Chapter 13
Oracle NoSQL Database Java Driver

13-22

/* Pass the dropStatement string to the TableRequest.setStatement
method */
TableRequest tableRequest = new
TableRequest().setStatement(dropStatement);

/* Wait for the table state to change to DROPPED. */
TableResult tres = handle.tableRequest(tableRequest);
tres = TableResult.waitForState(handle,tres.getTableName(),
 TableResult.State.DROPPED,
 30000, /* wait 30 sec */
 1000); /* delay ms for poll */

Drop Regions
Learn how to delete a region that you have created in a Multi-Region Oracle NoSQL
Database.

Even though you can drop a region directly in a multi-region environment, it is
recommended that you isolate the region to be dropped from other participating
regions before dropping it. To learn more about isolating a region, see

To drop a region, use the DROP REGION DDL statement. For example:

/* Drop the region named us_east */
DROP REGION us_east;

To create a region from your application, you use the KVStore class to pass the DDL
statement to the executeSync method. For example to drop the us_east region:

KVStore.executeSync(“DROP REGION us_east”);

Handling Errors
Learn how to handle errors and exceptions.

Java errors are thrown as exceptions when you build or run your application.
The NoSQlException class is the base for most exceptions thrown by the
driver. However, the driver throws exceptions directly for some classes, such as
IllegalArgumentException and NullPointerException.

In general, NoSQL exception instances are split into two broad categories:

• Exceptions that may be retried with the expectation that they may succeed on
retry.

These exceptions are instances of the RetryableException class. These
exceptions usually indicate resource consumption violations.

• Exceptions that will fail even after retry.

Examples of exceptions that should not be retried are IllegalArgumentException,
TableNotFoundException, and any other exception indicating a syntactic or
semantic error.

Chapter 13
Oracle NoSQL Database Java Driver

13-23

Oracle NoSQL Database Python Driver
Learn how to create, update, and delete tables from your Python application.

Oracle NoSQL Database provides a Python SDK that enables your Python application
to create, update, and drop tables as well as add, read, and delete data in the tables.
See Oracle NoSQL Database Python SDK.

Chapter 13
Oracle NoSQL Database Python Driver

13-24

A
Installing and Configuring a Non-secure
Store

This appendix provides information about installing and configuring a non-secure
store. For detailed information on installation and configuration see:

• Installing Oracle NoSQL Database

• Configuring the KVStore

Installation Configuration
To install Oracle NoSQL Database, complete the prerequisite and installation steps in
chapter Installing Oracle NoSQL Database. After completing those steps, determine
the configuration parameters for each Storage Node in the store (see Installation
Configuration Parameters section for a description of the parameters). Then, complete
the following tasks to configure your store.

While configuring a non-secure store is similar to configuring a secure store, the
following steps note any differences that exist:

1. Use the makebootconfig utility to create the initial bootconfig file. You must
perform this task on each Oracle NoSQL Storage Node.

Note:

Using the makebootconfig command to create the configuration file is
integrated with the Storage Node on which you run the command. Such
integration checks and validates all parameters and their values against
the SN environment before generating the boot configuration files. To
bypass verifying any parameters for the boot configuration files, use the
-force flag (makebootconfig -force).

2. For a non-secure configuration, specify the –store-security none parameter to
the makebootconfig options:

> mkdir -p KVROOT (if it does not already exist)
> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig -root KVROOT \
-port 5000 \
-host <hostname> \
-harange 5010,5020 \
-store-security none \
-capacity 1 \
-admindir /export/admin01 \
-storagedir /export/data1 \

A-1

-storagedirsize 1_tb \
-rnlogdir /export/rnlog01

Note:

It is best if the directory path of -admindir resolves to a separate disk.
This is typically accomplished by creating suitable entries in the /etc/
fstab directory. It attaches the file system on a disk to an appropriate
location in the overall directory hierarchy.

Placing the admin environment on a distinct disk ensures that the admin
is not competing for Input/Output resources. It also isolates the impact of
a disk failure to a single environment.

3. Start the Oracle NoSQL Database Storage Node Agent (SNA) on each of the
Oracle NoSQL Database nodes. You can use the start command as follows:

Note:

Before starting the SNA, on each node, set the environment variable
MALLOC_ARENA_MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT &

4. Use the ping command to ensure that the Oracle NoSQL Database client library
can contact the Oracle NoSQL Database Storage Node Agent (SNA). You do not
need to use the –security flag and an argument for a non-secure setup:

java -Xmx64m -Xms64m \
-jar kvstore.tmp/kvstore.jar ping \
-host node01 -port 5000
SNA at hostname: node01, registry port: 5000 is not registered.
No further information is available
Can't find store topology:
Could not contact any RepNode at: [node01:5000]

5. If the Storage Nodes do not start up, you can look through the adminboot and
snaboot logs in the KVROOT directory to identify the problem. You can also use
the -host option to check an SNA on a remote host. You do not need to use the
–security flag and an argument for a non-secure setup:

> java -Xmx64m -Xms64m
-jar KVHOME/lib/kvstore.jar ping
-port 5000 -host node02
SNA at hostname: node02, registry port: 5000 is not registered.
No further information is available

Appendix A
Installation Configuration

A-2

Can't find store topology:
Could not contact any RepNode at: [node02:5000]

Assuming the Storage Nodes all started successfully, you can configure the KVStore.
To do this, you use the CLI command. Start runadmin:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin \
-port 5000 -host node01

Follow the steps below:

• Name your KVStore

The name of your store is essentially used to form a path to records kept in the
store. For example:

kv-> configure -name mystore
Store configured: mystore

• Create a Zone

Once you have started the command line interface and configured a store name,
you can create at least one zone. The usage is:

plan deploy-zone -name <zone name>
-rf <replication factor>
[-type [primary | secondary]]
[-arbiters | -no-arbiters]
[-json]
[-plan-name <name>] [-wait] [-noexecute] [-force]

• Create an Administration Process on a Specific Host

Every KVStore has an administration database. You must deploy the Storage
Node to which the command line interface is currently connecting to, and then
deploy an Administration process on that same node, to proceed to configure this
database. Use the deploy-sn and deploy-admin commands to complete this step.
For more information, see Create an Administration Process on a Specific Host.

• Create a Storage Node Pool

Once you have created your Administration process, you can create a Storage
Node Pool. This pool is used to contain all the Storage Nodes in your store. You
use the pool create command to create this pool. Then you join Storage Nodes
to the pool using the pool join command. For more information, see Create a
Storage Node Pool.

• Create the Remainder of your Storage Node

After creating storage node pool, you can create the remainder of your Storage
Nodes. Storage Nodes host the various & processes for each of the nodes in the
store. You must use deploy-sn command in the same way as you did in Create
an Administration Process on a Specific Host for each node that you use in your
store. For more information, see Create the Remainder of your Storage Nodes.

• Create and Deploy Replication Nodes

Appendix A
Installation Configuration

A-3

This final step of the configuration process creates Replication Nodes on every
node in your store. You use the the topology create and plan deploy-topology
commands in its place. For more information, see Create and Deploy Replication
Nodes.

Appendix A
Installation Configuration

A-4

B
Admin CLI Reference

This appendix describes the following commands:

• aggregate

• await-consistent

• change-policy

• configure

• connect

• delete

• execute

• exit

• get

• help

• hidden

• history

• load

• logtail

• namespace

• page

• ping

• plan

• pool

• put

• repair-admin-quorum

• show

• snapshot

• table

• table-size

• timer

• topology

• verbose

• verify

B-1

The Command Line Interface (CLI) is run interactively or used to run single
commands. The general usage to start the CLI is:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin \
-host <hostname> -port <port> [single command and arguments]
-security KVROOT/security/client.security

If you want to run a script file, you can use the "load" command on the command line:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin -host <hostname> -port <port> \
-security \
KVROOT/securtiy/client.security \
load -file <path-to-script>

If none of the optional arguments are passed, it starts interactively. If additional
arguments are passed they are interpreted as a single command to run, then return.
The interactive prompt for the CLI is:

"kv-> "

Upon successful completion of the command, the CLI's process exit code is zero. If
there is an error, the exit code will be non-zero.

The CLI comprises a number of commands, some of which have subcommands.
Complex commands are grouped by general function, such as "show" for displaying
information or "ddl" for manipulating schema. All commands accept the following flags:

• -help

Displays online help for the command or subcommand.

• ?

Synonymous with -help. Displays online help for the command or subcommand.

• -verbose

Enables verbose output for the command.

CLI commands have the following general format:

1. All commands are structured like this:

"kv-> command [sub-command] [arguments]

2. All arguments are specified using flags which start with "-"

3. Commands and subcommands are case-insensitive and match on partial
strings(prefixes) if possible. The arguments, however, are case-sensitive.

Inside a CLI script file, you can use # to designate a comment. Also, you can terminate
a line with a backslash \ to continue a command onto the next line.

Appendix B

B-2

aggregate
Performs simple data aggregation operations on numeric fields like count, sum,
average, keys, start and end. The aggregate command iterates matching keys or rows
in the store so, depending on the size of the specified key or row, it may take a very
long time to complete.

aggregate table is an aggregate subcommand.

aggregate table

aggregate table -name <name>
 [-count] [-sum <field[,field,..]>]
 [-avg <field[,field,..]>]
 [-index <name>]
 [-field <name> -value <value>]*
 [-field <name> [-start <value>] [-end <value>]]
 [-json <string>]

Performs simple data aggregation operations on numeric fields of the table.

where:

• -name

Specifies the table for the operation.

• -count

Returns the count of matching records.

• -sum

Returns the sum of the values of matching fields.

• -avg

Returns the average of the values of matching fields.

• -index

Specifies the name of the index to use. When an index is used, the fields named
must belong to the specified index and the aggregation is performed over rows
with matching index entries.

• -field and -value pairs are used to specify the field values of the primary key to
use to match for the aggregation, or you can use an empty key to match the entire
table.

• The -field flat, along with its -start and -end flags, can be used for restricting
the range used to match rows.

• -json

Specifies the fields and values to use for the aggregation as a JSON input string.

Appendix B
aggregate

B-3

See the example below:

Create a table 'user_test' with an index on user_test(age):
kv-> execute 'CREATE TABLE user_test (id INTEGER,
firstName STRING, lastName STRING, age INTEGER, PRIMARY KEY (id))'
Statement completed successfully

kv-> execute 'CREATE INDEX idx1 on user_test (age)'
Statement completed successfully

Insert 3 rows:
kv-> put table -name user_test -json
'{"id":1,"firstName":"joe","lastName":"wang","age":21}'
Operation successful, row inserted.
kv-> put table -name user_test -json
'{"id":2,"firstName":"jack","lastName":"zhao","age":32}'
Operation successful, row inserted.
kv-> put table -name user_test -json
'{"id":3,"firstName":"john","lastName":"gu","age":43}'
Operation successful, row inserted.

Get count(*), sum(age) and avg(age) of rows in table:
kv-> aggregate table -name user_test -count -sum age -avg age
Row count: 3
Sum:
 age(3 values): 96
Average:
 age(3 values): 32.00

Get count(*), sum(age) and avg(age) of rows where
age >= 30, idx1 is utilized to filter the rows:
kv-> aggregate table -name user_test -count -sum age
-avg age -index idx1 -field age -start 30
Row count: 2
Sum:
 age(2 values): 75
Average:
 age(2 values): 37.50

await-consistent
await-consistent -timeout <timeout-secs> [-zn <id> | -znname <name>]...
[-replica-delay-threshold <time-millis>]

Waits for up to the specified number of seconds for the replicas in one or more zones,
or in the entire store, to catch up with the masters in their associated shards. Prints
information about whether consistency was achieved or, if not, details about which
nodes failed to become consistent.

where:

• -timeout

Appendix B
await-consistent

B-4

Specifies the number of seconds for the replicas to catch up with the masters in
their associated shards.

• -zn <id>

Specifies the zone name to restrict the zones whose replicas need to satisfy the
requested consistency requirements. If this option is not specified, all replicas
must meet the consistency requirements.

• -znname <name>

Specifies the zone name to restrict the zones whose replicas need to satisfy the
requested consistency requirements. If this option is not specified, all replicas
must meet the consistency requirements.

• -replica-delay-threshold <time-millis>

Specifies the maximum number of milliseconds that a replica may be behind the
master and be considered caught up. The default if 1000 milliseconds (1 second).

When performing a switchover, you can use this command to wait for secondary
nodes to catch up with their masters, and to obtain information about progress towards
reaching consistency.

change-policy
change-policy [-dry-run] -params [name=value]*

Modifies store-wide policy parameters to services you have not yet deployed. Specify
the parameters to change after the -params flag, separating each parameter with a
space character.

To specify parameter values that include embedded spaces, use quotation marks (")
around the value, like this:

name="value with spaces"

If you use -dry-run, the command returns the parameters you specify without
changing them.

For more information on setting policy parameters, see Setting Store Wide Policy
Parameters.

configure
configure -name <storename> -json

Configures a new store. This call must be made before any other administration can
be performed.

Use the -name option to specify the name of the KVStore that you want to configure.
The name is used to form a path to records kept in the store. For this reason, you
should avoid using characters in the store name that might interfere with its use within

Appendix B
change-policy

B-5

a file path. The command line interface does not allow an invalid store name. Valid
characters are alphanumeric, '-', '_', and '.'.

kv-> configure -name mystore -json{
"operation" : "configure",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "storeName" : "mystore"
 }
}

connect
Encapsulates commands that connect to the specified host and registry port to
perform administrative functions or connect to the specified store to perform data
access functions.

The current store, if any, will be closed before connecting to another store. If there is
a failure opening the specified KVStore, the following warning is displayed: "Warning:
You are no longer connected to KVStore".

The subcommands are as follows:

• connect admin

• connect store

connect admin

connect admin -host <hostname> -port <registry port>
[-username <user>] [-security <security-file-path>]

Connects to the specified host and registry port to perform administrative functions. An
Admin service must be active on the target host. If the instance is secured, you may
need to provide login credentials.

where:

• -host <hostname>

Identifies the host name of a node in your store.

• -port <registry port>

The TCP/IP port on which Oracle NoSQL Database should be contacted. This port
should be free (unused) on each node. It is sometimes referred to as the registry
port.

• -username <user>

Specifies a username to log on as in a secure deployment.

• -security <security-file-path>

In a secured deployment, specifies a path to the security file. If not specified in a
secure store, updating the sn-target-list will fail.

Appendix B
connect

B-6

connect store

connect store [-host <hostname>] [-port <port>]
-name <storename> [-timeout <timeout ms>]
[-consistency <NONE_REQUIRED(default)
 | ABSOLUTE| NONE_REQUIRED_NO_MASTER>]
[-durability <COMMIT_SYNC(default)
 | COMMIT_NO_SYNC | COMMIT_WRITE_NO_SYNC>]
[-username <user>] [-security <security-file-path>]

Connects to a KVStore to perform data access functions. If the instance is secured,
you may need to provide login credentials.

Use the timeout, consistency and durability flags to override the default connect
configuration.

where:

• -host <hostname>

Identifies the host name of a node in your store.

• -port <port>

The TCP/IP port on which Oracle NoSQL Database should be contacted. This port
should be free (unused) on each node.

• -name <storename>

Identifies the name of the store.

• -timeout <timeout ms>

Specifies the store request timeout in milliseconds.

• -consistency

Specifies the store request consistency. The default value is NONE_REQUIRED.

• -durability

Specifies the store request durability. The default value is COMMIT_SYNC.

• -username <user>

Specifies a username to log on as in a secure deployment.

• -security <security-file-path>

In a secured deployment, specifies a path to the security file.

delete
Encapsulates commands that delete key/value pairs from store or rows from table.
The subcommands are as follows:

• delete kv

• delete table

Appendix B
delete

B-7

delete kv

delete kv [-key <key>] [-start prefixString] [-end prefixString] [-all]

Deletes one or more keys. If -all is specified, delete all keys starting at the specified
key. If no key is specified, delete all keys in the store. The -start and -end flags can
be used for restricting the range used for deleting.

For example, to delete all keys in the store starting at root:

kv -> delete kv -all
301 Keys deleted starting at root

delete table

kv-> delete table -name <table_name>
 [-field <name> -value <value>]*
 [-field <name> [-start <value>] [-end <value>]]
 [-ancestor <name>]* [-child <child_name>]*
 [-json <string>] [-delete-all]

Deletes one or multiple rows from the named table.

• -name
Identifies a table name, which can be any of the following:

– table_name – The target table is a top level table created in the default
namespace, sysdefault. The default namespace (sysdefault:) prefix is not
required to identify such tables.

– table_name.child_name – The target table is the child of a parent table.
Identify the child table by preceding it with the parent table_name, followed
by a period (.) separator before child_name.

– namespace_name:table_name – The target table was not created in the
default (sysdefault) namespace. Identify table_name by preceding it with its
namespace_name, followed by a colon (:).

– namespace_name:table_name.child_name – The target table is the child of
a parent table that was created in a namespace. Identify child_name by
preceding it with both namespace_name: and the parent table_name, , followed
by a period (.) separator.

• -field and -value

Pairs specify the field values of the primary key or, use an empty key to delete all
rows from the table.

• -field , -start, and -end

Use these flags to restrict the sub-range for deletion associated with the parent
key.

• -ancestor and -child

Appendix B
delete

B-8

Use to delete rows from a specific ancestor or descendant tables, in addition to the
target table.

• -json

Indicates that the key field values are in JSON format.

• -delete-all

Indicates to delete all rows in a table.

execute
execute <statement> [-json] [-wait]

Oracle NoSQL Database provides a way to run Data Definition Language (DDL)
statements used to form table and index statements. Using the execute command
runs each statement you specify synchronously. You must enclose each DDL
statement in single or double quotes. You must connect to a database store before
using the execute command.

Note:

All DDL commands from the Admin CLI, including execute, are deprecated.
Use the SQL for Oracle NoSQL Database Shell to execute this command.
For more information, see Appendix A Introduction to the SQL for Oracle
NoSQL Database Shell.

For example:

kv-> plan execute -id 19 -json -wait
{
 "operation" : "plan deploy-zone -name zn6 -rf 1 -type PRIMARY -no-
arbiters -no-master-affinity",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "id" : 19,
 "name" : "Deploy Zone",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:35:31 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 09:35:31 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0

Appendix B
execute

B-9

 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 19 [Deploy Zone] task [DeployDatacenter
zone=zn6]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:35:31 UTC",
 "end" : "2017-09-28 09:35:31 UTC"
 }],
 "running" : [],
 "pending" : []
 },
 "planId" : 19,
 "zoneName" : "zn6",
 "zoneId" : "zn4",
 "type" : "PRIMARY",
 "rf" : 1,
 "allowArbiters" : false,
 "masterAffinity" : false
 }
 }

exit
exit | quit

Exits the interactive command shell.

get
Encapsulates commands that get key/value pairs from store or get rows from table.
The subcommands are as follows:

• get kv

• get table

get kv

get kv [-key <keyString>] [-file <output>] [-all] [-keyonly]
[-valueonly] [-start <prefixString>] [-end <prefixString>]

Perform a simple get operation using the specified key. The obtained value is printed
out if it contains displayable characters, otherwise the bytes array is encoded using
Base64 for display purposes. "[Base64]" is appended to indicate this transformation.
The arguments for the get command are:

• -key <keyString>

Indicates the full or the prefix key path to use. If <keyString> is a full key path, it
returns a single value information. The format of this get command is: get -key
<keyString>. If <keyString> is a prefix key path, it returns multiple key/value

Appendix B
exit

B-10

pairs. The format of this get command is: get -key <keyString> -all. Key can
be composed of both major and minor key paths, or a major key path only. The
<keyString> format is: "major-key-path/-/minor-key-path". Additionally, in the case
of the prefix key path, a key can be composed of the prefix part of a major key
path.

For example, with some sample keys in the KVStore:

/group/TC/-/user/bob
/group/TC/-/user/john
/group/TC/-/dep/IT
/group/SZ/-/user/steve
/group/SZ/-/user/diana

A get command with a key containing only the prefix part of the major key path
results in:

kv -> get kv -key /group -all -keyonly
/group/TC/-/user/bob
/group/TC/-/user/john
/group/TC/-/dep/IT
/group/SZ/-/user/steve
/group/SZ/-/user/diana

A get command with a key containing a major key path results in:

kv -> get kv -key /group/TC -all -keyonly
/group/TC/-/user/bob
/group/TC/-/user/john
/group/TC/-/dep/IT

Get commands with a key containing major and minor key paths results in:

kv -> get kv -key /group/TC/-/user -all -keyonly
/group/TC/-/user/bob
/group/TC/-/user/john
kv -> get kv -key /group/TC/-/user/bob
{
 "name" : "bob.smith",
 "age" : 20,
 "email" : "bob.smith@example.com",
 "phone" : "408 555 5555"
}

• -file <output>

Specifies an output file, which is truncated, replacing all existing content with new
content.

In the following example, records from the key /Smith/Bob are written to the file
"data.out".

kv -> get kv -key /Smith/Bob -all -file ./data.out

Appendix B
get

B-11

In the following example, contents of the file "data.out" are replaced with records
from the key /Wong/Bill.

kv -> get kv -key /Wong/Bill -all -file ./data.out

• -all

Specified for iteration starting at the specified key. If the key argument is not
specified, the entire store will be iterated.

• -keyonly

Specified with -all to return only keys.

• -valueonly

Specified with -all to return only values.

• -start <prefixString> and -end <prefixString>

Restricts the range used for iteration. This is particularly helpful when getting a
range of records based on a key component, such as a well-formatted string. Both
the -start and -end arguments are inclusive.

Note:

-start and -end only work on the key component specified by -key
<keyString>. The value of <keyString> should be composed of simple
strings and cannot have multiple key components specified.

For example, a log where its key structure is:

/log/<year>/<month>/-/<day>/<time>

puts all log entries for the same day in the same partition, but splits the days
across shards. The time format is: "hour.minute".

In this way, you can do a get of all log entries in February and March, 2013 by
specifying:

kv-> get kv -all -keyonly -key /log/2013 -start 02 -end 03
/log/2013/02/-/01/1.45
/log/2013/02/-/05/3.15
/log/2013/02/-/15/10.15
/log/2013/02/-/20/6.30
/log/2013/02/-/28/8.10
/log/2013/03/-/01/11.13
/log/2013/03/-/15/2.28
/log/2013/03/-/22/4.52
/log/2013/03/-/31/11.55

Appendix B
get

B-12

You can be more specific to the get command by specifying a more complete key
path. For example, to display all log entries from April 1st to April 4th:

kv-> get kv -all -keyonly -key /log/2013/04 -start 01 -end 04
/log/2013/04/-/01/1.03
/log/2013/04/-/01/4.05
/log/2013/04/-/02/7.22
/log/2013/04/-/02/9.40
/log/2013/04/-/03/4.15
/log/2013/04/-/03/6.30
/log/2013/04/-/03/10.25
/log/2013/04/-/04/4.10
/log/2013/04/-/04/8.35

See the subcommand get table

get table

kv-> get table -name <table_name> [-index <name>]
 [-field <name> -value <value>]+
 [-field <name> [-start <value>] [-end <value>]]
 [-ancestor <name>]+ [-child <name>]+
 [-json <string>] [-file <output>] [-keyonly]
 [-pretty] [-report-size]

Identifies a table name, which can be any of the following:

• -name
Identifies any of the following tables:

– table_name – The target table is a top level table created in the default
namespace, sysdefault. The default namespace (sysdefault:) prefix is not
required to identify such tables.

– table_name.child_name – The target table is the child of a parent table.
Identify the child table by preceding it with the parent table_name, followed
by a period (.) separator before child_name.

– namespace_name:table_name – The target table was not created in the
default (sysdefault) namespace. Identify table_name by preceding it with its
namespace_name, followed by a colon (:).

– namespace_name:table_name.child_name – The target table is the child of
a parent table that was created in a namespace. Identify child_name by
preceding it with both namespace_name: and the parent table_name, , followed
by a period (.) separator.

-field and -value pairs are used to specify the field values of the primary key or
index key if using an index, specified by -index, or with an empty key to iterate the
entire table.

• -field flag, along with its -start and -end flags, can be used to define a value
range for the last field specified.

• -ancestor and -child flags are used to return results from specific ancestor
and/or descendant tables as well as the target table.

Appendix B
get

B-13

• -json indicates that the key field values are in JSON format.

• -file is used to specify an output file, which is truncated.

• -keyonly is used to restrict information to keys only.

• -pretty is used for a nicely formatted JSON string with indentation and carriage
returns.

• -report-size is used to show key and data size information for primary keys, data
values, and index keys for matching records. When -report-size is specified no
data is displayed.

help
help [command [sub-command]] [-include-deprecated]

Prints help messages. With no arguments the top-level shell commands are listed.
With additional commands and sub-commands, additional detail is provided.

kv-> help load
Usage: load -file <path to file>
 Load the named file and interpret its contents as a script of
 commands to be executed. If any command in the script fails
 execution will end.

Use -include-deprecated to show deprecated commands.

For example:

kv-> help show -include-deprecated
Encapsulates commands that display the state of the store and its
components.
Usage: show admins |
 datacenters |
 events |
 faults |
 indexes |
 parameters |
 perf |
 plans |
 pools |
 schemas |
 snapshots |
 tables |
 topology |
 upgrade-order |
 users |
 versions |
 zones

Appendix B
help

B-14

hidden
hidden [on|off]

Toggles visibility and setting of parameters that are normally hidden. Use these
parameters only if advised to do so by Oracle Support.

history
history [-last <n>] [-from <n>] [-to <n>]

Displays command history. By default all history is displayed. Optional flags are used
to choose ranges for display.

load
load -file <path to file>

Loads the named file and interpret its contents as a script of commands to be
executed. If any of the commands in the script fail, execution will stop at that point.

For example, users of the Table API can use the load command to define a table and
insert data using a single script. Suppose you have a table defined like this:

create table IF NOT EXISTS Users (
 id integer,
 firstname string,
 lastname string,
 age integer,
 income integer,
 primary key (id)
);

Then sample data for that table can be defined using JSON like this:

{
"id":1,
"firstname":"David",
"lastname":"Morrison",
"age":25,
"income":100000
}
{
"id":2,
"firstname":"John",
"lastname":"Anderson",
"age":35,
"income":100000

Appendix B
hidden

B-15

}
{
"id":3,
"firstname":"John",
"lastname":"Morgan",
"age":38,
"income":200000
}
{
"id":4,
"firstname":"Peter",
"lastname":"Smith",
"age":38,
"income":80000
}
{
"id":5,
"firstname":"Dana",
"lastname":"Scully",
"age":47,
"income":400000
}

Assume that the sample data is contained in a file called Users.json. Then you can
define the table and load the sample data using a script that looks like this (file name
loadTable.txt) :

Begin Script
execute "create table IF NOT EXISTS Users (\
 id integer, \
 firstname string, \
 lastname string, \
 age integer, \
 income integer, \
 primary key (id) \
)"

put table -name Users -file users.json

Then, the script can be run by using the load command:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin -host node01 -port 5000 \
-security \
KVROOT/securtiy/client.security \
-store mystore
kv-> load -file ./loadTable.txt
Statement completed successfully
Loaded 5 rows to Users

kv->

Appendix B
load

B-16

If you are using the Key/Value API, first you create schema in the store:

{
 "type": "record",
 "name": "ContactInfo",
 "namespace": "example",
 "fields": [
 {"name": "phone", "type": "string", "default": ""},
 {"name": "email", "type": "string", "default": ""},
 {"name": "city", "type": "string", "default": ""}
]
}

Then you can collect the following commands in the script file load-contacts-5.txt:

Begin Script
put -key /contact/Bob/Walker -value "{\"phone\":\"857-431-9361\", \
\"email\":\"Nunc@Quisque.com\",\"city\":\"Turriff\"}" \
-json example.ContactInfo
put -key /contact/Craig/Cohen -value "{\"phone\":\"657-486-0535\", \
\"email\":\"sagittis@metalcorp.net\",\"city\":\"Hamoir\"}" \
-json example.ContactInfo
put -key /contact/Lacey/Benjamin -value "{\"phone\":\"556-975-3364\", \
\"email\":\"Duis@laceyassociates.ca\",\"city\":\"Wasseiges\"}" \
-json example.ContactInfo
put -key /contact/Preston/Church -value "{\"phone\":\"436-396-9213\", \
\"email\":\"preston@mauris.ca\",\"city\":\"Helmsdale\"}" \
-json example.ContactInfo
put -key /contact/Evan/Houston -value "{\"phone\":\"028-781-1457\", \
\"email\":\"evan@texfoundation.org\",\"city\":\"Geest-G\"}" \
-json example.ContactInfo
exit
End Script

The script can be run by using the load command:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin -host node01 -port 5000 \
-security \
KVROOT/securtiy/client.security \
-store mystore
kv-> load -file ./load-contacts-5.txt
Operation successful, record inserted.
Operation successful, record inserted.
Operation successful, record inserted.
Operation successful, record inserted.
Operation successful, record inserted.

For more information on using the load command, see Using a Script to Configure the
Store.

Appendix B
load

B-17

logtail
Monitors the store-wide log file until interrupted by an "enter" key press.

namespace
namespace [namespace_name]

Sets namespace_name as the default namespace for table operations and queries. For
example:

kv-> namespace ns1
Namespace is ns1

Entering the command without namespace_name returns to the default namespace:

kv-> namespace
Namespace is sysdefault

page
page [on|<n>|off]

Turns query output paging on or off. If specified, n is used as the page height.

If n is 0, or "on" is specified, the default page height is used. Setting n to "off" turns
paging off.

ping
ping [-json] [-shard <shardId>]

The ping and verify commands return information about the runtime entities of a data
store. The command accesses components and Admin services available from the
topology, returning information about the state of various components.

• -json

Displays output in JSON format.

• –shard <shardId>

Displays a subset of status information about the specific shard ID you supply.

Here is a basic example of calling ping from the Admin CLI:

kv-> ping
Pinging components of store mystore based upon topology sequence #308
300 partitions and 3 storage nodes

Appendix B
logtail

B-18

Time: 2019-01-03 20:19:27 UTC Version: 19.1.0
Shard Status: healthy:1 writable-degraded:0 read-only:0 offline:0
total:1 Admin Status: healthy
Zone [name=1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:3 read-only:0 offline:0
maxDelayMillis:0 maxCatchupTimeSecs:0
Storage Node [sn1] on localhost:13230
Zone: [name=1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 19.1.0 2019-01-03 08:17:52 UTC Build id:
12641466031c Edition: Enterprise
Admin [admin1] Status: RUNNING,MASTER
Rep Node [rg1-rn1] Status: RUNNING,MASTER sequenceNumber:633
haPort:13233
available storage size:109 GB
Storage Node [sn2] on localhost:13240
Zone: [name=1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 19.1.0 2019-01-03 08:17:52 UTC Build id:
12641466031c Edition: Enterprise
Admin [admin2] Status: RUNNING,REPLICA
 Rep Node [rg1-rn2] Status: RUNNING,REPLICA sequenceNumber:633
haPort:13243 available storage size:109 GB delayMillis:0
catchupTimeSecs:0
Storage Node [sn3] on localhost:13250 Zone: [name=1 id=zn1
type=PRIMARY allowArbiters=false masterAffinity=false] Status:
RUNNING Ver: 19.1.0 2019-01-03 08:17:52 UTC Build id: 12641466031c
Edition: Enterprise
 Admin [admin3] Status: RUNNING,REPLICA
 Rep Node [rg1-rn3] Status: RUNNING,REPLICA sequenceNumber:633
haPort:13253 available storage size:109 GB delayMillis:0
catchupTimeSecs:0

About Shard and Admin Status
After running a ping command, you should understand what is most useful (or
troubling) about the system health. The most important content is the Shard Status
entry. The following ping output details indicate one shard (total:1) that is healthy
(healthy:1). All of the status types you'd prefer not to see (writable-degraded, read-
only, and offline are zero (0), indicating nothing has one of those states. Everything
is good.

Shard Status: healthy:1
writable-degraded:0
read-only:0
offline:0
total:1

What exactly does a healthy shard indicate? A healthy shard is one with all of its RNs
running. Thus, if all shards in the topology are healthy, then all RNs are running, and
no failures exist. Why are RNs so important? Because they are the components that
perform read and write data operations.

Appendix B
ping

B-19

Checking the Admin nodes status is also useful. In this simple example, only one
Admin shard exists, so there is a single result: Admin Status: healthy. Other
possible states are: writable-degraded, read-only, or offline.

For both RN shards and admins, these are what each result indicates:

Result Meaning

healthy All nodes are running, and the system is fully operational.

writable-degraded A majority of the nodes are running. All operations are
supported, but a minority of the nodes are offline or don't
support writes. If you are using RF=3, this state is one step
closer to being unable to support all operations. For example,
with one node offline, losing another node means quorum will
be lost, and the shard becomes read-only. Most people use
RF=3, so this is typically what writable-degraded means.

read-only Only a minority of the nodes are running. Read operations are
supported, but write operations are not.

offline No nodes are running, so no operations are supported.

About Zone Status

The next information from ping is about zones:

Zone [name=1 id=zn1
type=PRIMARY
allowArbiters=false
masterAffinity=false]
RN Status: online:3 read-only:0 offline:0
maxDelayMillis:0
maxCatchupTimeSecs:0

For stores with multiple zones, this information provides the status of nodes in different
locations. For example, if a store was deployed using three zones, with the machines
for each zone in a separate building, this information gives a quick summary status
for machines in each building. In this simple example, there is only one zone, so
that status information is similar to that for the entire store. The maxDelayMillis
and maxCatchupTimeSecs entries provide information about data replication to replicas
located in the zone. In our example, both values are zero (0). However, having large
numbers for these entries could suggest that there are hardware problems with the
machines in the zone, or problems with the network that connects that zone to other
zones. Such information would be used only for more detailed debugging.

About Storage Nodes

Next, there is information about the nodes associated with a particular storage node:

Storage Node [sn1] on localhost:13230 Zone:
[name=1 id=zn1 type=PRIMARY allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 19.1.0 2019-01-03 08:17:52 UTC Build id:
12641466031c
Edition: Enterprise
Admin [admin1] Status: RUNNING,MASTER
Rep Node [rg1-rn1] Status: RUNNING,MASTER
sequenceNumber:633 haPort:13233 available storage size:109 GB

Appendix B
ping

B-20

The Status: entry for the SN can have several possible values:

Status Description

STARTING The storage node is starting up.

WAITING_FOR_DEPLOY The storage node is running but is waiting to be
deployed in a new store.

RUNNING The storage node is running -- this is the usual state.

STOPPING The storage node is in the process of stopping, but is
not yet in a STOPPED status.

STOPPED The storage node is stopped.

UNREACHABLE The storage node is not reachable, either because the
SN service is down, the host machine is offline, or the
machine is not reachable over the network.

About RNs and Admins on the Storage Node

The next entries provide status information about RNs and any Admin processes
that are running on the storage node. Not all storage nodes have admin nodes. The
number of RNs running on the storage node depends on the SN capacity.

Admin [admin1] Status: RUNNING,MASTER Rep Node [rg1-rn1]
Status: RUNNING,MASTER sequenceNumber:633 haPort:13233 available
storage size:109 GB

The Status: entry for both admin nodes and RNs, can have the following values:

Status Description

STARTING The node is starting up.

RUNNING,MASTER The node is up and is the master. The master
is in contact with a majority of nodes in
the shard, and can perform writes requiring
acknowledgment. This is the first of two normal
states.

RUNNING,REPLICA The node is up and is a replica. This is the
second of two normal states.

RUNNING,MASTER (non-authoritative) The node is up and is the master, but is not in
contact with a majority of nodes in the shard.
A non-authoritative master can perform only
writes that do not require acknowledgment.

STOPPING The node is stopping.

UNREACHABLE The node could not be contacted over the
network. The node is either stopped, failed, or
there is a problem with the network connection
to the machine.

Additional status values that can be appended
to the status line to provide more information:

readonly requests enabled The node is running in read-only mode
because the plan enable-requests
command was run to set the node into read-
only user operations mode.

Appendix B
ping

B-21

Status Description

requests disabled The node is running with all user operation
requests disabled, because the plan
enable-requests command was run to
disable all requests on the node. The
plan enable-requests command disables
requests on a per-shard basis, so it will
prevent writes or all operations on all data in
the shard.

While not shown in the initial example, the ping and verify commands can display
one of the following states for RNs and shards. The table describes their effects and
outcomes:

Displayed State Effects Outcome

Unknown Masters go down. Represents the read-only
state of the RNs and shards
still running. Currently, we do
not support read-only status
for any RN.

Non-Authoritative
Master

Replica nodes go down. After Replica nodes are down,
remaining RNs and shards are
in read-only mode. Currently,
we do not support read-only
status for any RN.

Out of disk space Masters and replica nodes
go down. Replicas are left in
the RUNNING, UNKNOWN state,
and the masters are in the
Non-Authoritative state.

When masters and replica
nodes go down, any remaining
RNs and shards are in read-
only mode. Currently, we do
not support read-only status
for any RN.

Write requests disabled RNs and shard health are
in read-only enabled request
state.

RNs and shards are unable to
accept any user requests, and
are marked offline.

Both the ping and verify commands detect these states. Following is the output of a
ping command on a shard (rg2), in a normal state, showing how results are returned:

kv-> ping -shard rg2
Pinging components of store mystore based upon topology sequence #2376
shard rg2 500 partitions and 3 storage nodes Time: 2018-09-28 07:06:46
UTC Version: 18.3.2
Shard Status: healthy: Admin Status: healthy Zone [name=shardzone
id=zn1 type=PRIMARY
allowArbiters=false masterAffinity=false]
RN Status: online:3 offline:0 maxDelayMillis:0 maxCatchupTimeSecs:0
Storage Node [sn10] on nodeA:5000 Zone: [name=shardzone id=zn1
type=PRIMARY
allowArbiters=false masterAffinity=false] Status: RUNNING Ver: 18.3.2
2018-09-17 09:33:45 UTC
Build id: a72484b8b33c Edition: Enterprise
 Rep Node [rg2-rn1]
 Status: RUNNING,MASTER sequenceNumber:71,166 haPort:5010

Appendix B
ping

B-22

 available storage size:8 GB Storage Node [sn11] on nodeB:5000
 Zone: [name=shardzone id=zn1 type=PRIMARY
 allowArbiters=false masterAffinity=false] Status: RUNNING
Ver: 18.3.2 2018-09-17 09:33:45 UTC
 Build id: a72484b8b33c Edition: Enterprise
 Rep Node [rg2-rn2]
 Status: RUNNING,REPLICA sequenceNumber:71,166 haPort:5011
 available storage size:4 GB delayMillis:0 catchupTimeSecs:0
Storage Node [sn12] on nodeC:5000 Zone: [name=shardzone id=zn1
type=PRIMARY
allowArbiters=false masterAffinity=false] Status: RUNNING Ver: 18.3.2
2018-09-17 09:33:45 UTC
Build id: a72484b8b33c Edition: Enterprise
 Rep Node [rg2-rn3]
 Status: RUNNING,REPLICA sequenceNumber:71,166 haPort:5012
 available storage size:6 GB delayMillis:0 catchupTimeSecs:0

Following are examples of return information when different states occur.

• Shard status becomes writable-degraded and is read-only:

kv-> ping
Pinging components of store concurrent plan store based upon topology
sequence #1082
 1000 partitions and 9 storage nodes
Time: 2018-11-06 05:12:36 UTC Version: 18.3.8
 Shard Status: healthy:2 writable-degraded:12 read-only:4
offline:0 total:18
Admin Status: healthy
Zone [name=dc1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:30 read-only:24 offline:0 maxDelayMillis:0
maxCatchupTimeSecs:0
Storage Node [sn1] on slcao397:5000
Zone: [name=dc1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING
Ver: 18.3.8 2018-10-26 11:36:43 UTC Build id: 6259xxxxxxxx Edition:
Enterprise

• RNs can have the RUNNING,UNKNOWN state for more than one reason, including
reaching a disk limit, or when the RN is down:

Storage Node [sn4] on slcao400:5000 Zone: [name=dc1 id=zn1 type=PRIMARY
allowArbiters=false masterAffinity=false] Status: RUNNING Ver: 18.3.8
2018-10-26 11:36:43 UTC
Build id: 6259xxxxxxxx Edition: Enterprise
 Rep Node [rg7-rn1] Status: RUNNING,UNKNOWN
sequenceNumber:173,717,825 haPort:5020
 available storage size:-3 GB delayMillis:? catchupTimeSecs:?
 Rep Node [rg8-rn1] Status: RUNNING,UNKNOWN
sequenceNumber:173,555,937 haPort:5021
 available storage size:-3 GB delayMillis:? catchupTimeSecs:?
 Rep Node [rg9-rn1] Status: RUNNING,MASTER
sequenceNumber:173,697,007 haPort:5022 available storage size:-3 GB

Appendix B
ping

B-23

 Rep Node [rg10-rn1] Status: RUNNING,UNKNOWN
sequenceNumber:173,293,747 haPort:5023
 available storage size:-3 GB delayMillis:? catchupTimeSecs:?
 Rep Node [rg11-rn1] Status: RUNNING,UNKNOWN
sequenceNumber:170,561,758 haPort:5024 available storage size:-3 GB
 delayMillis:? catchupTimeSecs:?
 Rep Node [rg12-rn1] Status: RUNNING,MASTER
sequenceNumber:170,410,483 haPort:5025 available storage size:-3 GB

• A running out of disk space error results in the master becoming non-
authoritative:

 Storage Node [sn6] on slcao402:5000 Zone: [name=dc1 id=zn1
type=PRIMARY allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 18.3.8 2018-10-26 11:36:43
UTC Build id: 6259xxxxxxxx
Edition: Enterprise
Rep Node [rg7-rn3] Status: RUNNING,MASTER (non-authoritative)
sequenceNumber:173,754,579 haPort:5020 available storage size:45 GB
Rep Node [rg8-rn3] Status: RUNNING,REPLICA sequenceNumber:173,555,937
haPort:5021 available storage size:46 GB
delayMillis:0 catchupTimeSecs:0
Rep Node [rg9-rn3] Status: RUNNING,REPLICA
sequenceNumber:173,697,007 haPort:5022 available storage size:45 GB
delayMillis:0 catchupTimeSecs:0
Rep Node [rg10-rn3] Status: RUNNING,MASTER (non-authoritative)
sequenceNumber:173,293,747 haPort:5023 available storage size:45 GB
Rep Node [rg11-rn3] Status: RUNNING,REPLICA sequenceNumber:170,561,758
haPort:5024 available storage size:45 GB delayMillis:0
catchupTimeSecs:0
Rep Node [rg12-rn3] Status: RUNNING,REPLICA sequenceNumber:170,410,483
haPort:5025
available storage size:46 GB delayMillis:0 catchupTimeSecs:0

Finally, here is a basic example of calling ping -json:

kv-> ping -json
{
 "operation" : "ping",
 "returnCode" : 5000,
 "description" : "No errors found",
 "returnValue" : {
 "topology" : {
 "storeName" : "OurStore",
 "sequenceNumber" : 104,
 "numPartitions" : 100,
 "numStorageNodes" : 1,
 "time" : 1546801860520,
 "version" : "18.3.4"
 },
 "adminStatus" : "healthy",
 "shardStatus" : {
 "healthy" : 1,
 "writable-degraded" : 0,

Appendix B
ping

B-24

 "read-only" : 0,
 "offline" : 0,
 "total" : 1
 },
 "zoneStatus" : [{
 "resourceId" : "zn1",
 "name" : "OurZone",
 "type" : "PRIMARY",
 "allowArbiters" : false,
 "masterAffinity" : false,
 "rnSummaryStatus" : {
 "online" : 1,
 "offline" : 0,
 "read-only" : 0,
 "hasReplicas" : false
 }
 }],
 "snStatus" : [{
 "resourceId" : "sn1",
 "hostname" : "OurHost",
 "registryPort" : 5000,
 "zone" : {
 "resourceId" : "zn1",
 "name" : "OurZone",
 "type" : "PRIMARY",
 "allowArbiters" : false,
 "masterAffinity" : false
 },
 "serviceStatus" : "RUNNING",
 "version" : "18.4.0 2018-12-06 09:21:03 UTC Build id:
fbfbd1541004 Edition: Enterprise",
 "adminStatus" : {
 "resourceId" : "admin1",
 "status" : "RUNNING",
 "state" : "MASTER",
 "authoritativeMaster" : true
 },
 "rnStatus" : [{
 "resourceId" : "rg1-rn1",
 "status" : "RUNNING",
 "requestsEnabled" : "ALL",
 "state" : "MASTER",
 "authoritativeMaster" : true,
 "sequenceNumber" : 381,
 "haPort" : 5013,
 "availableStorageSize" : "97 GB"
 }],
 "anStatus" : []
 }],
 "exitCode" : 0
 }
}

Appendix B
ping

B-25

You can also access the ping utility through Admin utility tools, available in
kvtool.jar. For more information see ping.

plan
Encapsulates operations, or jobs that modify store state. All subcommands with the
exception of interrupt and wait change persistent state. Plans are asynchronous jobs
so they return immediately unless -wait is used. Plan status can be checked using
show plans. The optional arguments for all plans include:

• -wait

Wait for the plan to complete before returning.

• -plan-name

The name for a plan. These are not unique.

• -noexecute

Do not execute the plan. If specified, the plan can be run later using plan
execute.

• -force

Used to force plan execution and plan retry.

• -json | -json-v1

Displays the plan output as json or json-v1. The -json flag can be used to output
in the new json format. The -json-v1 flag can be used to output in the json-v1
format. If you have an existing script that relies on an older version of JSON
output, you may want to consider using -json-v1 flag so that your existing scripts
continue to function.

The subcommands are as described below.

• plan add-index

• plan add-table

• plan cancel

• plan change-parameters

• plan change-storagedir

• plan change-user

• plan create-user

• plan deploy-admin

• plan deploy-datacenter

• plan deploy-sn

• plan deploy-topology

• plan deploy-zone

• plan deregister-es

• plan drop-user

• plan enable-requests

Appendix B
plan

B-26

• plan evolve-table

• plan execute

• plan failover

• plan grant

• plan interrupt

• plan migrate-sn

• plan network-restore

• plan register-es

• plan remove-admin

• plan remove-datacenter

• plan remove-index

• plan remove-sn

• plan remove-table

• plan remove-zone

• plan repair-topology

• plan revoke

• plan start-service

• plan stop-service

• plan verify-data

• plan wait

plan add-index

plan add-index -name <name> -table <name> [-field <name>]*
 [-desc <description>]
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Adds an index to a table in the store.

where:

• -name

Specifies the name of the index to add to a table.

• -table

Specifies the table name where the index will be added. The table name is a
dot-separated name with the format tableName[.childTableName]*.

• -field

Specifies the field values of the primary key.

Appendix B
plan

B-27

plan add-table

plan add-table -name <name>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Adds a new table to the store. The table name is a dot-separated name with the format
tableName[.childTableName]*.

Before adding a table, first use the table create command to create the named table.
The following example defines a table (creates a table by name, adds fields and other
table metadata).

Enter into table creation mode
table create -name user -desc "A sample user table"
user->
user-> help
Usage: add-array-field |
add-field |
add-map-field |
add-record-field |
cancel |
exit |
primary-key |
remove-field |
set-description |
shard-key |
show
Now add the fields
user-> help add-field
Usage: add-field -type <type> [-name <field-name>] [-not-required]
[-nullable] [-default <value>] [-max <value>] [-min <value>]
[-max-exclusive] [-min-exclusive] [-desc <description>]
[-size <size>] [-enum-values <value[,value[,...]]
<type>: INTEGER, LONG, DOUBLE, FLOAT, STRING, BOOLEAN, DATE, BINARY, FIX
ED_BINARY, ENUM
Adds a field. Ranges are inclusive with the exception of String,
which will be set to exclusive.
user-> add-field -type Integer -name id
user-> add-field -type String -name firstName
user-> add-field -type String -name lastName
user-> help primary-key
Usage: primary-key -field <field-name> [-field <field-name>]*
Sets primary key.
user-> primary-key -field id
Exit table creation mode
user-> exit
Table User built.

Appendix B
plan

B-28

Use table list -create to see the list of tables that can be added. The following
example lists and displays tables that are ready for deployment.

kv-> table list
Tables to be added:
User -- A sample user table
kv-> table list -name user
Add table User:
{
 "type" : "table",
 "name" : "User",
 "id" : "User",
 "description" : "A sample user table",
 "shardKey" : ["id"],
 "primaryKey" : ["id"],
 "fields" : [{
 "name" : "id",
 "type" : "INTEGER"
 }, {
 "name" : "firstName",
 "type" : "STRING"
 }, {
 "name" : "lastName",
 "type" : "STRING"
 }]
}

The following example adds the table to the store.

Add the table to the store.
kv-> help plan add-table
kv-> plan add-table -name user -wait
Executed plan 5, waiting for completion...
Plan 5 ended successfully
kv-> show tables -name user
{
 "type" : "table",
 "name" : "User",
 "id" : "r",
 "description" : "A sample user table",
 "shardKey" : ["id"],
 "primaryKey" : ["id"],
 "fields" : [{
 "name" : "id",
 "type" : "INTEGER"
 }, {
 "name" : "firstName",
 "type" : "STRING"
 }, {
 "name" : "lastName",
 "type" : "STRING"
 }]
 }

Appendix B
plan

B-29

For more information and examples on table design, see Table Management in the
SQL Reference Guide.

plan cancel

plan cancel -id <plan id> | -last - json

Cancels a plan that is not running. A running plan must be interrupted before it can be
canceled.

Use show plans to list all plans that have been created along with their corresponding
plan IDs and status.

Use the -last option to reference the most recently created plan.

kv-> plan cancel -id 23 -json
{
"operation" : "plan cancel|interrupt",
"returnCode" : 5000,
"description" : "Plan 23 was canceled",
"returnValue" : null
}

plan change-parameters

plan change-parameters -security | -service <id> |
 -all-rns [-zn <id> | -znname <name>] | -all-ans [-zn <id> |
 -znname <name>] | -all-admins [-zn <id> | -znname <name>]
 [-dry-run] [-plan-name <name>]
 [-json] [-wait] [-noexecute] [-force] -params [name=value]*

Changes parameters for either the specified service, or for all service instances of the
same type that are deployed to the specified zone or all zones.

The -security flag allows changing store-wide global security parameters, and should
never be used with other flags.

The -service flag allows a single instance to be affected; and should never be used
with either the -zn or -znname flag.

The -all-* flags can be used to change all instances of the service type. The
parameters to change follow the -params flag and are separated by spaces. The
parameter values with embedded spaces must be quoted; for example, name="value
with spaces".

One of the -all-* flags can be combined with the -zn or -znname flag to change all
instances of the service type deployed to the specified zone; leaving unchanged, any
instances of the specified type deployed to other zones. If one of the -all-* flags is used
without also specifying the zone, then the desired parameter change will be applied to
all instances of the specified type within the store, regardless of zone.

Appendix B
plan

B-30

If -dry-run is specified, the new parameters are returned without changing them. Use
the command show parameters to see what parameters can be modified. For more
information, see show parameters.

For more information on changing parameters in the store, see Setting Store
Parameters.

Note:

The plan change-parameters updates the store metadata database even if
the component is not available. The component's configuration will be made
consistent when the KVStore system detects an inconsistency.

kv-> plan change-parameters -service rg1-rn2 -json -wait -params
loggingConfigProps="oracle.kv.level=DEBUG"
{
 "operation" : "Change RepNode Params",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "id" : 20,
 "owner" : "root(id:u1)",
 "name" : "Change RepNode Params",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:31:05 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 05:31:10 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 4,
 "successful" : 4,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 20 [Change RepNode Params] task
[WriteNewParams rg1-rn2]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:31:05 UTC",
 "end" : "2017-09-28 05:31:06 UTC"
 }, {
 "taskNum" : 2,
 "name" : "Plan 20 [Change RepNode Params] task [StopNode
rg1-rn2]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:31:06 UTC",
 "end" : "2017-09-28 05:31:07 UTC"
 }, {

Appendix B
plan

B-31

 "taskNum" : 3,
 "name" : "Plan 20 [Change RepNode Params] task [StartNode]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:31:07 UTC",
 "end" : "2017-09-28 05:31:07 UTC"
 }, {
 "taskNum" : 4,
 "name" : "Plan 20 [Change RepNode Params] task
[WaitForNodeState rg1-rn2 to reach RUNNING]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:31:07 UTC",
 "end" : "2017-09-28 05:31:10 UTC"
 }],
 "running" : [],
 "pending" : []
 }
 }
}

plan change-storagedir

plan change-storagedir -sn <id> -storagedir <path> -add | -remove
 [-storagedirsize <size>] [-plan-name <name>] [-json] [-wait] [-
noexecute]
 [-force]

Adds or removes a storage directory on a Storage Node, for storing a Replication
Node.

where:

• -sn

Specifies the Storage Node where the storage directory is added or removed.

• -storagedir

Specifies the path to the storage directory on a Storage Node for storing a
Replication Node.

• -add | -remove

Specifies to add (-add) the storage dir.

Specifies to remove (-remove) the storage dir.

• -storagedirsize

Specifies the size of the directory specified in -storagedir. This parameter is
optional; however, it is an error to specify this parameter for some, but not all,
storage directories.

Use of this parameter is recommended for heterogeneous installation
environments where some hardware has more storage capacity than other
hardware. If this parameter is specified for all storage directories, then the store's
topology will place more data on the shards that offer more storage space. If this
parameter is not used, then data is spread evenly across all shards.

Appendix B
plan

B-32

The value specified for this parameter must be a long, optionally followed by a
unit string. Accepted unit strings are: KB, MB, GB, and TB, corresponding to 1024,
1024^2, 1024^3, 1024^4 respectively. Acceptable strings are case insensitive.
Valid delimiters between the long value and the unit string are " ", "-", or "_".

-storagedirsize 200 MB
-storagedirsize 4_tb
-storagedirsize 5000-Mb

kv-> plan change-storagedir -sn sn2 -storagedir /tmp/kvroot -add
-json -wait
{
"operation" : "Change Storage Node Params",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "id" : 21,
 "owner" : "root(id:u1)",
 "name" : "Change Storage Node Params",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:33:14 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 05:33:14 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 21 [Change Storage Node Params] task
[WriteNewSNParams sn2]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:33:14 UTC",
 "end" : "2017-09-28 05:33:14 UTC"
 }],
"running" : [],
"pending" : []
 }
 }
}

plan change-user

plan change-user -name <user name>
 [-disable | -enable] [-set-password [-password <new password>]

Appendix B
plan

B-33

 [-retain-current-password]] [-clear-retained-password]
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Change a user with the specified name in the store. The -retain-current-password
argument option causes the current password to be remembered during the -set-
password operation as a valid alternate password for configured retention time or until
cleared using -clear-retained-password. If a retained password has already been set
for the user, setting password again will cause an error to be reported.

This command is deprecated. For more information see User Modification in the
Security Guide.

plan create-user

plan create-user -name <user name>
 [-admin] [-disable] [-password <new password>]
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Create a user with the specified name in the store. The -admin argument indicates that
the created user has full administrative privileges.

This command is deprecated. For more information, see User Creation in the Security
Guide.

plan deploy-admin

plan deploy-admin -sn <id> [-plan-name <name>]
 [-wait] [-noexecute] [-force]

Deploys an Admin to the specified Storage Node. The admin type (PRIMARY/
SECONDARY) is the same type as the zone the Storage Node is in.

For more information on deploying an admin, see Create an Administration Process on
a Specific Host.

kv-> plan deploy-admin -sn sn1 -json -wait
"operation" : "plan deploy-admin -sn 1",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "id" : 22,
 "owner" : "root(id:u1)",
 "name" : "Deploy Admin Service",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:34:26 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 05:34:27 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 4,

Appendix B
plan

B-34

 "successful" : 4,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 22 [Deploy Admin Service] task [DeployAdmin
admin1 on sn1]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:34:26 UTC",
 "end" : "2017-09-28 05:34:27 UTC"
 }, {
 "taskNum" : 2,
 "name" : "Plan 22 [Deploy Admin Service] task
[WaitForAdminState admin1 to reach RUNNING]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:34:27 UTC",
 "end" : "2017-09-28 05:34:27 UTC"
 }, {
 "taskNum" : 3,
 "name" : "Plan 22 [Deploy Admin Service] task
[UpdateAdminHelperHost admin1]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:34:27 UTC",
 "end" : "2017-09-28 05:34:27 UTC"
 }, {
 "taskNum" : 4,
 "name" : "Plan 22 [Deploy Admin Service] task
[NewAdminParameters refresh admin1 parameter state
 without restarting]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:34:27 UTC",
 "end" : "2017-09-28 05:34:27 UTC"
 }],
 "running" : [],
 "pending" : []
 },
 "planId" : 22,
 "resourceId" : "admin1",
 "snId" : "sn1"
 }
}

plan deploy-datacenter
Deprecated. See plan deploy-zone instead.

plan deploy-sn

plan deploy-sn -zn <id> | -znname <name> -host <host> -port <port>
 [-plan-name <name>] [-json] [-wait] [-noexecute] [-force]

Appendix B
plan

B-35

Deploys the Storage Node at the specified host and port into the specified zone.

where:

• -sn

Specifies the Storage Node to deploy.

• -zn <id> | -znname <name>

Specifies the Zone where the Storage Node is going to be deployed.

• -host

Specifies the host name where the Storage Node is going to be deployed.

• -port

Specifies the port number of the host.

For more information on deploying your Storage Nodes, see Create the Remainder of
your Storage Nodes.

kv-> plan deploy-sn -zn 1 -json -host localhost -port 10000 -wait
{
"operation" : "plan deploy-sn -zn 1 -host localhost -port 10000",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "id" : 25,
 "owner" : "root(id:u1)",
 "name" : "Deploy Storage Node",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:40:50 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 05:40:51 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 25 [Deploy Storage Node] task [DeploySN
sn4(localhost:10000)]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:40:50 UTC",
 "end" : "2017-09-28 05:40:51 UTC"
 }],
 "running" : [],
 "pending" : []
 },
 "planId" : 25,

Appendix B
plan

B-36

 "resourceId" : "sn4",
 "zoneId" : "zn1",
 "host" : "localhost",
 "port" : 10000
 }
}

plan deploy-topology

plan deploy-topology -name <topology name> [-plan-name <name>]
 [-json] [-wait] [-noexecute] [-force]

Deploys the specified topology to the store. The KVStore size determines how
long the command takes to deploy replication and arbiter nodes to become fully
functional shard members. The plan deploy-topology command does not wait for
this command to finish.

After running the plan deploy-topology command, use the verify configuration
command to check the running state of the components in the topology. See Deploy
the Topology Candidate.

kv-> plan deploy-topology -name MyStoreLayout -json -wait
{
"operation" : "plan deploy-topology -name MyStoreLayout",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "id" : 26,
 "owner" : "root(id:u1)",
 "name" : "Deploy Topo",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:56:25 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 05:56:26 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 6,
 "successful" : 6,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
"finished" : [{
 "taskNum" : 1,
 "name" : "Plan 26 [Deploy Topo] task [UpdateDatacenterV2 zone=zn1]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:56:25 UTC",
 "end" : "2017-09-28 05:56:25 UTC"
 }, {
 "taskNum" : 2,

Appendix B
plan

B-37

 "name" : "Plan 26 [Deploy Topo] task [UpdateDatacenterV2 zone=zn2]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:56:25 UTC",
 "end" : "2017-09-28 05:56:25 UTC"
 }, {
 "taskNum" : 3,
 "name" : "Plan 26 [Deploy Topo] task [UpdateDatacenterV2 zone=zn3]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:56:25 UTC",
 "end" : "2017-09-28 05:56:25 UTC"
 }, {
 "taskNum" : 4,
 "name" : "Plan 26 [Deploy Topo] task [BroadcastTopo]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:56:25 UTC",
 "end" : "2017-09-28 05:56:26 UTC"
 }, {
 "taskNum" : 5,
 "name" : "Plan 26 [Deploy Topo] task [BroadcastMetadata]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:56:26 UTC",
 "end" : "2017-09-28 05:56:26 UTC"
 }, {
 "taskNum" : 6,
 "name" : "Plan 26 [Deploy Topo] task [BroadcastTopo]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:56:26 UTC",
 "end" : "2017-09-28 05:56:26 UTC"
 }],
 "running" : [],
 "pending" : []
 },
 "planId" : 26,
 "topoName" : "MyStoreLayout"
 }
}

plan deploy-zone

plan deploy-zone -name <zone name>
 -rf <replication factor>
 [-type [primary | secondary]]
 [-arbiters | -no-arbiters]
 [-json]
 [–master-affinity | –no-master-affinity]
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Deploys the specified zone to the store and creates a primary zone if you do not
specify a -type.

where:

• -name

Appendix B
plan

B-38

Specifies the name of the zone to deploy.

• -rf

Specifies the replication factor of the zone.

• -type

Specifies the type of the zone to deploy. It can be a primary or a secondary zone.
If -type is not specified, a primary zone is deployed.

• -json

Formats the command output in JSON.

• -arbiters | -no-arbiters

If you specify -arbiters, you can allocate Arbiter Nodes on the Storage Node in
the zone. You can specify this flag only on a primary zone.

Specifying -no-arbiters precludes allocating Arbiter Nodes on the Storage Node
in the zone.
The default value is -no-arbiters.

• -master—affinity | -no-master-affinity

Specifying -master-affinity indicates that this zone can host a master.

Specifying -no-master-affinity indicates that this zone cannot host a master.
The default value is -no-master-affinity.

For more information on creating a zone, see Create a Zone.

kv-> plan deploy-zone -name zn6 -rf 1 -json -wait
{
 "operation" : "plan deploy-zone -name zn6 -rf 1 -type PRIMARY -no-
arbiters -no-master-affinity",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "id" : 27,
 "owner" : "root(id:u1)",
 "name" : "Deploy Zone",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:57:29 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 05:57:29 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,

Appendix B
plan

B-39

 "name" : "Plan 27 [Deploy Zone] task [DeployDatacenter
zone=zn6]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:57:29 UTC",
 "end" : "2017-09-28 05:57:29 UTC"
 }],
 "running" : [],
 "pending" : []
 },
 "planId" : 27,
 "zoneName" : "zn6",
 "zoneId" : "zn4",
 "type" : "PRIMARY",
 "rf" : 1,
 "allowArbiters" : false,
 "masterAffinity" : false
 }
}

plan deregister-es

plan deregister-es

Deregisters the Elasticsearch cluster from the Oracle NoSQL Database store, using
the deregister-es plan command. This is allowed only if all full text indexes are first
removed using the plan remove-index command, see plan remove-index.

For example:

kv-> plan deregister-es
Cannot deregister ES because these text indexes exist:
mytestIndex
JokeIndex

For more information, see Integration with Elastic Search for Full Text Search in the
Integrations Guide.

plan drop-user

plan drop-user -name <user name>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Drop a user with the specified name in the store. A logged-in user may not drop itself.

This command is deprecated. For more information, see User Removal in the Security
Guide.

Appendix B
plan

B-40

plan enable-requests
This command will change the type of user requests supported by a set of shards or
the entire store.

plan enable-requests
 -request-type {all|readonly|none}
 {-shards <shardId[,shardId]*> | -store}
 [-plan-name <name>] [-wait]
 [-noexecute] [-force]
 [-json|-json-v1]

Limit the type of requests enabled for specific shards or the whole store.

The -request-type flag configures the read and write requests. The following request
types can be configured by this command.

• all means the store or shards can process both read and write requests;

• readonly makes the store or shards only respond to read requests;

• none means no read or write requests will be processed by the store or shards.

The -shards flag specifies the list of shards that should be configured, if you want the
configuration to be done on one or more shards. You can get details about the shardid
by executing the show topology command. The rgXX portion in the show topology
output denotes the shardid. See show topology.

The -store flag specifies that the configuration to be done on the entire store.

You should specify either the -shard flag or the -store flag.

Example B-1 plan enable-requests

For example, If you want to put the shard rg1 in readonly mode, you would specify rg1
as the shardid and readonly as the request-type.

kv-> plan enable-requests
 -request-type readonly -shards rg1
Started plan 25. Use show plan -id 25 to check status.
 To wait for completion, use plan wait -id 25

Example B-2 plan enable-requests

For example, If you want to put the whole store in readonly mode and to get the
output in json format, you would specify the store attribute, request-type attribute as
readonly and json attribute.

kv-> plan enable-requests
 -request-type readonly -store -json
{
 "operation" : "plan enable-requests",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "planId" : 26

Appendix B
plan

B-41

 }
}

Example B-3 plan enable-requests

For example, If you want to put the whole store in readonly mode and to get the output
in json v1 format, you would specify the store attribute, request-type attribute as
readonly and json-v1 attribute.

kv-> plan enable-requests
 -request-type readonly -store -json-v1
{
 "operation" : "plan enable-requests",
 "return_code" : 5000,
 "description" : "Operation ends successfully",
 "return_value" : {
 "plan_id" : 27
 }
}

plan evolve-table

plan evolve-table -name <name>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Evolves a table in the store. The table name is a dot-separate with the format
tableName[.childTableName]*.

Use the table evolve command to evolve the named table. The following example
evolves a table.

Enter into table evolution mode
kv-> table evolve -name User
kv-> show
{
 "type" : "table",
 "name" : "User",
 "id" : "r",
 "description" : "A sample user table",
 "shardKey" : ["id"],
 "primaryKey" : ["id"],
 "fields" : [{
 "name" : "id",
 "type" : "INTEGER"
 }, {
 "name" : "firstName",
 "type" : "STRING"
 }, {
 "name" : "lastName",
 "type" : "STRING"
 }]
}
Add a field

Appendix B
plan

B-42

kv-> add-field -type String -name address
Exit table creation mode
kv-> exit
Table User built.
kv-> plan evolve-table -name User -wait
Executed plan 6, waiting for completion...
Plan 6 ended successfully
kv-> show tables -name User
{
 "type" : "table",
 "name" : "User",
 "id" : "r",
 "description" : "A sample user table",
 "shardKey" : ["id"],
 "primaryKey" : ["id"],
 "fields" : [{
 "name" : "id",
 "type" : "INTEGER"
 }, {
 "name" : "firstName",
 "type" : "STRING"
 }, {
 "name" : "lastName",
 "type" : "STRING"
 }, {
 "name" : "address",
 "type" : "STRING"
 }]
}

Use table list -evolve to see the list of tables that can be evolved. For more
information, see plan add-table .

plan execute

plan execute -id <id> | -last
 [-plan-name <name>] [-json] [-wait] [-noexecute] [-force]

Executes an existing plan that has not yet been executed. The plan must have been
previously created using the -noexecute flag .

Use the -last option to reference the most recently created plan.

kv-> plan execute -id 19 -json -wait
{
 "operation" : "plan deploy-zone -name zn6 -rf 1 -type PRIMARY -no-
arbiters -no-master-affinity",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "id" : 19,
 "name" : "Deploy Zone",
 "isDone" : true,

Appendix B
plan

B-43

 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:35:31 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 09:35:31 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 19 [Deploy Zone] task [DeployDatacenter
zone=zn6]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:35:31 UTC",
 "end" : "2017-09-28 09:35:31 UTC"
}],
"running" : [],
"pending" : []
},
"planId" : 19,
"zoneName" : "zn6",
"zoneId" : "zn4",
"type" : "PRIMARY",
"rf" : 1,
"allowArbiters" : false,
"masterAffinity" : false
}
}

plan failover

plan failover { [-zn <zone-id> | -znname <zone-name>]
 -type [primary | offline-secondary] }...
 [-plan-name <name>] [-wait] [-noexecute] [-force]

where:

• -zn <zone-id> | -znname <zone-name>

Specifies a zone either by zone ID or by name.

• -type [primary | offline-secondary]

Specifies the new type for the associated zone.

Changes zone types to failover to either Primary or Secondary zones, whenever
a primary zone failure results in a loss of quorum. Arbiters will not be created
or removed from the topology. This command can introduce violations if a zone

Appendix B
plan

B-44

that contains Arbiters is specified as secondary-offline. Use the force flag if arbiter
violations are introduced.

Zones whose new type is primary are taking over from failed primary zones to
reestablish quorum. For these zones, a quorum of storage nodes in each shard in
the zone must be available and responding to requests.

Zones whose new type is offline-secondary represent primary zones that are currently
offline, resulting in the current loss of quorum. For these zones, all of the storage
nodes in the zones must currently be unavailable. No zone type changes can be
performed if these requirements are not met when the command starts.

Note:

Arbiter nodes are not currently supported during failover and switchover
operations.

To correct any violations after the topology components are repaired, the plan
failover command executes a rebalance command. To successfully deploy the new
topology after a rebalance, the Storage Nodes hosting topology components must
be running. If a Storage Node in a zone that failed over to a Secondary zone that
contained an Arbiter, when the SN restarts, the Arbiter rejoins the shard.

You cannot execute this command when other plans are in progress for the data store.
Before executing this plan, cancel or interrupt any other plans.

plan grant

plan grant [-role <role name>]* -user <user_name>

Allows granting roles to users.

where:

• -role <role name>

Specifies the roles that will be granted. The role names should be the system-
defined roles (except public) listed in the Security Guide.

• -user <user_name>

Specifies the user who the role will be granted from.

This command is deprecated. For more information see Grant Roles or Privileges in
the Security Guide.

plan interrupt

plan interrupt -id <plan id> | -last [-json]

Appendix B
plan

B-45

Interrupts a running plan. An interrupted plan can only be re-executed or canceled.
Use -last to reference the most recently created plan.

kv-> plan interrupt -id 20 -json
{
"operation" : "plan cancel|interrupt",
"returnCode" : 5000,
"description" : "Plan 20 was interrupted",
"returnValue" : null
}

plan migrate-sn

plan migrate-sn -from <id> -to <id>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Migrates the services from one Storage Node to another. The old node must not be
running.

where:

• -from

Specifies the Storage Node (old) that you are migrating from.

• -to

Specifies the Storage Node (new) that you are migrating to.

For example, assuming that you are migrating from Storage Node 25 to 26, you would
use:

kv-> plan migrate-sn -from sn25 -to sn26

Before executing the plan migrate-sn command, you can stop any running old
Storage Node by using -java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar stop
-root KVROOT.

plan network-restore

plan network-restore -from <id> -to <id> -retain-logs
 [-plan-name <name>] [-wait] [-noexecute] [-force] [-json|-json-v1]

The plan network-restore command restores a replication node (RN) with updates
that the RN missed after losing networking connectivity. Use this only if the RN cannot
be restored through the automatic procedures described here.

When a replication node becomes disconnected for any reason, it misses updates that
occur while it was not connected. Oracle NoSQL Database uses two ways to update
the recovered RN after it comes back online.

One way occurs within the RN's replication group. When the recovered RN returns, the
replication group's master node streams all missed updates from the time the time the
RN became disconnected, to the time it resumed operations.

Appendix B
plan

B-46

Another way to restore a reconnected RN is over a network connection. Performing
a network restore copies a complete set of data log files (*.jdb) from a peer,
supplying the recovered RN with a comprehensive data set. The content contains
many intermediate changes that are not reflected in the current store contents. This is
because the data log files (*.jdb), which the recipient RN ingests, contain all changes,
including any intermediate ones.

Do not confuse the data *.jdb log files, which contain data store activities, with the
debug log files (*.log), which are used for debugging purposes.

If neither of the automatic Oracle NoSQL Database RN repopulation attempts
succeed, it can be due to unforeseen circumstances, or a catastrophic situation that
destroys data on multiple hosts. In this case, you can execute plan network-restore
manually from the Admin CLI. However, doing so requires you to specify the RN that
will supply the updated data.

You can attempt a network restore using the plan network-restore command from
the admin CLI:

kv-> plan network-restore -help
Usage: plan network-restore -from <id> -to <id> [-retain-logs] \
[-plan-name <name>] [-wait] [-noexecute] [-force] [-json | json-v1]
Network restore a RepNode from another one in their replication group.

where:

• -from flag – Specifies the Replication Node ID from the same replication group
(matching rgX). The -from node must be fully up to date, and able to supply the
*.dbd log files to the destination RN. For example, if the -to recipient RN ID
is rg1-rn3, and the ping output shows that rg1-rn2 is the master, then that ID
(rg1-rn2) is a good choice for the -from value.

• -to flag – Specifies the ID (rgX-rnY) of the recipient RN.

• -retain-logs flag – Retains obsolete log files on the lagging replica. The system
renames the files, rather than deleting them. It is generally unnecessary to use this
flag, unless you suspect that log files are corrupted on the recovering RN.

plan register-es

plan register-es -clustername <name> -host <host>
 -port <transport port> [-force]

Registers the Elasticsearch cluster with the Oracle NoSQL Database store, using the
register-es plan command. It is only necessary to register one node of the cluster, as
the other nodes in the cluster will be found automatically.

where:

• -clustername

Specifies the name of the Elasticsearch cluster.

• -host

Specifies the host name of a node in the cluster.

Appendix B
plan

B-47

• -port

Specifies the transport port of a node in the cluster.

For more information, see Integration with Elastic Search for Full Text Searchin the
Integrations Guide.

plan remove-admin

plan remove-admin -admin <id> | -zn <id> | -znname <name>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Removes the desired Admin instances; either the single specified instance, or all
instances deployed to the specified zone.

If you use the -admin flag and there are 3 or fewer Admins running in the store, or if
you use the -zn or -znname flag and the removal of all Admins from the specified zone
would result in only one or two Admins in the store, then the desired Admins will be
removed only if you specify the -force flag.

Also, if you use the -admin flag and there is only one Admin in the store, or if you use
the -zn or -znname flag and the removal of all Admins from the specified zone would
result in the removal of all Admins from the store, then the desired Admins will not be
removed.

plan remove-datacenter

plan remove-datacenter

This command is deprecated. See plan remove-zone instead.

plan remove-index

plan remove-index -name <name> -table <name>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Removes an index from a table.

where:

• -name

Specifies the name of the index to remove.

• -table

Specifies the table name to remove the index from. The table name is a dot-
separated name with the format tableName[.childTableName]*.

plan remove-sn

plan remove-sn -sn <id>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Appendix B
plan

B-48

Removes the specified Storage Node from the topology. The Storage Node is
automatically stopped before removal.

This command is useful when removing unused, old Storage Nodes from the store. To
do this, see Replacing a Failed Storage Node.

If the Storage Node is being removed as part of removing a secondary zone then,

• any replication nodes must first be removed using the topology change-
replication-factor and plan deploy-topology commands, and

• any Admin Nodes must first be removed using plan remove-admin command.

plan remove-table

plan remove-table -name <name> [-keep-data]
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Removes a table from the store. The named table must exist and must not have any
child tables. Indexes on the table are automatically removed. By default data stored
in this table is also removed. Table data may be optionally saved by specifying the
-keep-data flag. Depending on the indexes and amount of data stored in the table this
may be a long-running plan.

The following example removes a table.

Remove a table.
kv-> plan remove-table -name User
Started plan 7. Use show plan -id 7 to check status.
To wait for completion, use plan wait -id 7.
kv-> show tables
No table found.

plan remove-zone

plan remove-zone -zn <id> | -znname <name>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Removes the specified zone from the store.

Before running this command, all Storage Nodes that belong to the specified zone
must first be removed using the plan remove-sn command.

plan repair-topology

plan repair-topology
 [-plan-name <name>] [-wait] [-json] [-noexecute] [-force]

Inspects the store's deployed, current topology for inconsistencies in location metadata
that may have arisen from the interruption or cancellation of previous deploy-topology

Appendix B
plan

B-49

or migrate-sn plans. Where possible, inconsistencies are repaired. This operation can
take a while, depending on the size and state of the store.

kv-> plan repair-topology -json -wait
{
"operation" : "Repair Topology",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "id" : 25,
 "name" : "Repair Topology",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:43:06 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 09:43:06 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 25 [Repair Topology] task [VerifyAndRepair]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:43:06 UTC",
 "end" : "2017-09-28 09:43:06 UTC"
 }],
 "running" : [],
 "pending" : []
 }
 }
}

plan revoke

plan revoke [-role <role name>]* -user <user_name>

Allows revoking roles to users.

where:

• -role <role name>

Specifies the roles that will be revoked. The role names should be the system-
defined roles (except public) listed in the Security Guide.

• -user <user_name>

Specifies the user who the role will be revoked from.

Appendix B
plan

B-50

This command is deprecated. For more information see Revoke Roles or Privileges in
the Security Guide.

plan start-service

plan start-service {-service <id> | -all-rns [-zn <id> |
 -znname <name>] | -all-ans [-zn <id> | -znname <name>] |
 -zn <id> | -znname <name> } [-plan-name <name>]
 [-json] [-wait] [-noexecute] [-force]

Starts the specified service(s). The service may be a Replication Node, an Arbiter
Node, or Admin service, as identified by any valid string.

For example, to identify a Replication Node, use -service shardId-nodeId, where
shardId-nodeId must be given as a single argument with one embedded hyphen and
no spaces. The shardId identifier is represented by rgX, where X refers to the shard
number.

where:

• -service

Specifies the name of the service to start.

• -all-rns

If specified, starts the services of all Replication Nodes in a store.

• -all-ans

If specified, starts all the Arbiter Nodes in the specified zone.

Appendix B
plan

B-51

Note:

This plan cannot be used to start a Storage Node. Further, you cannot restart
the Storage Node's services without first starting the Storage Node itself. To
start the Storage Node, go to the Storage Node host and enter the following
command:

nohup java -Xmx64m -Xms64m \
-jar <KVHOME>/lib/kvstore.jar start -root <KVROOT> &

kv-> plan start-service -service rg1-rn3 -json -wait
{
 "operation" : "Start Services",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "id" : 21,
 "name" : "Start Services",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:50:54 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 09:50:57 UTC",
 "error" : null,"executionDetails" : {
 "taskCounts" : {
 "total" : 2,
 "successful" : 2,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 21 [Start Services] task [StartNode]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:50:54 UTC",
 "end" : "2017-09-28 09:50:55 UTC"
 }, {
 "taskNum" : 2,
 "name" : "Plan 21 [Start Services] task [WaitForNodeState
rg1-rn3 to reach RUNNING]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:50:55 UTC",
 "end" : "2017-09-28 09:50:57 UTC"
 }],
 "running" : [],
 "pending" : []
 }
 }
}

Appendix B
plan

B-52

plan stop-service

plan stop-service {-service <id> |
 -all-rns [-zn <id> | -znname <name>] | -all-ans [-zn <id> |
 -znname <name>] | -zn <id> | -znname <name> }
 [-plan-name <name>] [-json] [-wait] [-noexecute] [-force]

Stops the specified service(s). The service may be a Replication Node, an Arbiter
Node, or Admin service as identified by any valid string.

For example, to identify a Replication Node, use -service shardId-nodeId, where
shardId-nodeId must be a single string with an embedded hyphen (-) and no spaces.
The shardId identifier is represented as rgX, where X represents the shard number.

Other options to specify after -service include:

• -all-rns

Stops the services of all Replication Nodes in a store.

• -all-ans

Stops the services of all Arbiter Nodes in the specified zone.

Use this command to stop any affected services so that any attempts by the system
to communicate with the services are no longer accepted. Stopping communication
to one or more services reduces the amount of error output about a failure you are
already aware of.

Whenever you execute the plan stop-service command, the system automatically
initiates a health check. The health check determines if stopping an indicated service
will result in losing quorum. There are no further checks performed, only whether
quorum will be lost if you stop the service. To avoid losing quorum, the plan stop-
service fails to execute if the health check fails, and outputs detailed health check
information such as the following:

One of the groups is not healthy enough for the operation:
[rg1] Only 1 primary nodes are running such that a simple
majority cannot be formed which requires 2 primary nodes.
The shard is vulnerable and will not be able to elect a new master.
Nodes not running: [rg1-rn1]. Nodes to stop: {rg1=[rg1-rn2]}
...

If you cannot stop a service because it will result in lost quorum, you should determine
what problem is occurring before trying to stop the service.

If, on the other hand, you understand that stopping a service will result in losing
quorum, but such an event is necessary to make some important change, you can
force the plan stop-service command to execute by appending the -force flag.

Appendix B
plan

B-53

Note:

If you forcefully stop the Admin service and Admin quorum is lost, you cannot
use the start-service plan to bring up the Admin services anymore. All
plan operations will also fail thereafter.

The plan stop-service command is also useful during disk replacement process.
Use the command to stop the affected service prior removing the failed disk. For more
information, see Replacing a Failed Disk.

Note:

• This plan cannot be used to stop a Storage Node. To stop a Storage
Node, first stop all services running on it. Then, find the ID of the
Storage Node process by going to the Storage Node host and issuing
this command:

ps -af | grep -e "kvstore.jar.*start.*<KVROOT>"

Kill the process using:

kill <storage node id>

• Also, because the plan stop-service -all-rns command always
results in losing quorum, executing plan stop-service with this option
skips running a health check. Further, you do not need to use the -force
flag is when using the -all-rns option.

plan verify-data

plan verify-data
 [-verify-log <enable|disable> [-log-read-delay <milliseconds>]]
 [-verify-btree <enable|disable> [-btree-batch-delay <milliseconds>]
 [-index <enable|disable>] [-datarecord <enable|disable>]]
 [-valid-time <time>]
 [-show-corrupt-files <enable|disable>]
 -service <id> | -all-services [-zn <id> | -znname <name>] |
 -all-rns [-zn <id> | -znname <name>] |
 -all-admins [-zn <id> | -znname <name>]
 [-plan-name <name>] [-wait] [-noexecute] [-force] [-json|-json-v1]

Verifies and controls certain elements (such as log files and indexes), as presented in
this section. Here is a description for each of the verify-data parameters and options:

Appendix B
plan

B-54

Option Description

-verify-log Verifies the checksum of each data record in the JE log
file of JE. The Berkeley DB Java Edition (JE) is the data
storage engine of Oracle NoSQL Database.

It is enabled by default.

-log-read-delay Configures the delay time between file reads.

The default value is 100 milliseconds.

-verify-btree Verifies that the B-tree of the database in memory contains
a valid reference to each data record on disk. You can
combine -verify-btree with -datarecord and -index.

It is enabled by default.

-btree-batch-delay Configures the delay time, in milliseconds, between
batches.

The default delay value is 10 milliseconds.

-datarecord Reads and verifies data records from disk, if the data
record is not in cache. The -datarecord option takes
longer than verifying records only in cache, and results in
more read I/O.

It is disabled by default.

-index Verifies indexes. Using the -index option alone verifies
only the reference from the index to the primary table, not
the reference from the primary table to index. To verify both
references from index to primary table, and primary table to
index, specify the -datarecord and -index options.

It is enabled by default.

-valid-time Specifies the amount of time for which an existing
verification will be considered valid and not be rerun. The
format is 'number unit' where the unit can be minutes or
seconds. The unit is case insensitive and can be separated
from the number by a space, "-" or "_".

The default is '10 minutes'.

-show-corrupt-files Specifies whether to show corrupt files, including missing
files and reserved files that are referenced.

It is disabled by default.

-service id Runs verification on the specified service (id)

-all-services [-zn id | -
znname name]

Runs verification on all services, both RNs and Admins, in
the specified zone, or in all zones if none is specified.

| -all-rns [-zn id | -
znname name]

Runs verification on all RNs in the specified zone, or in all
zones if none is specified.

| -all-admins [-zn id | -
znname name]

Runs verification on all Admins in the specified zone, or in
all zones if none is specified.

[-plan-name name] Runs the named plan that you have saved to execute plan
verify-data and its available options.

[-wait] Runs a plan synchronously, so that the command line
prompt returns after the command completes.

[-noexecute] Lets you create a plan but delay its execution. Conversely,
use the plan execute command to run the plan.

[-force] Runs the plan as you enter it on the CLI, without validating
the flags.

Appendix B
plan

B-55

Option Description

[-json|-json-v1] Displays the plan output as json or json-v1.

Executing verify-data
The plan verify-data command is available to verify both primary table and
secondary indexes. The command lets you verify either a checksum of data records,
or the B-tree of the database.

Note:

Since Oracle NoSQL Database uses Oracle Berkeley DB Java Edition (JE)
as its underlying storage engine, verifying data using plan verify-data
depends on several low-level JE features that are neither described here, nor
visible. Throughout this section, terms or concepts related to Oracle Berkeley
DB Java Edition (JE) are indicated by the term Berkeley, indicating their
origination. For more information about Oracle Berkeley DB Java Edition,
start here: Oracle Berkeley DB Java Edition.

The plan verify-data has two parts for verifications:

• Log record integrity on disk

• B-tree integrity

To verify the integrity of log records on disk, verify-data accesses and verifies
each record's checksum. Since this procedure includes disk reads, it consumes I/O
resources and is relatively time consuming. To reduce the performance effects of
verification, you can configure a longer delay time between reading each batch of log
files. While increasing the delay time increases operation time overall, it consumes
fewer I/O activities. If that choice is preferable for your requirements, use -btree-
batch-delay to increase the delay between log file integrity checks during peak I/O
operations.

When verifying B-tree integrity, the plan verify-data process verifies in-memory
integrity. The basic verification checks only if the LSN (Berkeley) for each data record
in primary tables is valid. You can configure the verification to include data records on
disk, as well as secondary index integrity.

If you do not enable data record verification, the secondary index verification checks
only the reference from secondary index to primary table, but not from primary table to
index. Since basic verification checks only in-memory data structures, it is significantly
faster and less resource intensive than verification involving disk reads.

plan wait

plan wait -id <id> | -last [-seconds <timeout in seconds>] [-json]

Waits indefinitely for the specified plan to complete, unless the optional timeout is
specified.

Appendix B
plan

B-56

Use the -seconds option to specify the time to wait for the plan to complete.

The -last option references the most recently created plan.

kv-> plan wait -id 26 -json
{
 "operation" : "plan wait",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "planId" : 26,
 "state" : "CANCELED"
 }
}

pool
Encapsulates commands that manipulates Storage Node pools, which are used for
resource allocations. The subcommands are as follows:

• pool clone

• pool create

• pool join

• pool leave

• pool remove

pool clone

pool clone -name <name> -from <source pool name> [-json]

Clone an existing Storage Node pool to a new Storage Node pool to be used for
resource distribution when creating or modifying a store.

For more information on using a cloned Storage Node pool when contracting a
topology, see Contracting a Topology.

kv-> pool clone -name mypool from snpool -json{
"operation" : "pool clone",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "poolName" : "mypool"
 }
}

pool create

pool create -name <name> -json

Appendix B
pool

B-57

Creates a new Storage Node pool to be used for resource distribution when creating
or modifying a store.

For more information on creating a Storage Node pool, see Create a Storage Node
Pool.

kv-> pool create -name newPool -json{
"operation" : "pool create",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "storeName" : "newPool"
 }
}

pool join

pool join -name <name> [-sn <snX>]* [-json]

Adds Storage Nodes to an existing Storage Node pool.

kv-> pool join -name newPool -sn sn1 -json{
"operation" : "pool join",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "storeName" : "newPool"
 }
}

pool leave

pool leave -name <name> [-sn <snX>]* [-json]

Remove Storage Nodes from an existing Storage Node pool.

kv-> pool leave -name newPool -sn sn1 -json{
"operation" : "pool leave",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "storeName" : "newPool"
 }
}

pool remove

pool remove -name <name>

Appendix B
pool

B-58

Removes a Storage Node pool.

kv-> pool remove -name newPool -json{
"operation" : "pool remove",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "storeName" : "newPool"
 }
}

put
Encapsulates commands that put key/value pairs to the store or put rows to a table.
The subcommands are as follows:

• put kv

• put table

put kv

put kv -key <keyString> -value <valueString> [-file]
 [-hex] [-if-absent] [-if-present]

Put the specified key/value pair into the store. The following arguments apply to the
put command:

• -key<keyString>

Specifies the name of the key to be put into the store. Key can be composed of
both major and minor key paths, or a major key path only. The <keyString> format
is: "major-key-path/-/minor-key-path".

For example, a key containing major and minor key paths:

kv-> put kv -key /Smith/Bob/-/email -value
"{\"id\": 1,\"email\":\"bob.smith@example.com\"}"

For example, a key containing only a major key path:

kv-> put kv -key /Smith/Bob -value"{\"name\":
 \"bob.smith\", \"age\": 20, \"phone\":\"408 555 5555\", \"email\":
 \"bob.smith@example.com\"}"

• -value <valueString>

If -file is not specified, the <valueString> is treated as a raw bytes array.

For example:

kv-> put kv -key /Smith/Bob/-/phonenumber -value "408 555 5555"

Appendix B
put

B-59

Note:

The mapping of the raw arrays to data structures (serialization and
deserialization) is left entirely to the application.

• -file

Indicates that the value is obtained from a file. The file to use is identified by the
value parameter.

For example:

kv-> put kv -key /Smith/Bob -value ./smith-bob-info.txt
 -file

• -hex

Indicates that the value is a BinHex encoded byte value with base64 encoding.

• -if-absent

Indicates that a key/value pair is put only if no value for the given key is present.

• -if-present

Indicates that a key/value pair is put only if a value for the given key is present.

put table

kv-> put table -name table_name [if-absent | -if-present]
 [-json string] [-file file_name] [-exact] [-update]

Puts one or more rows into the named table.

• -name
Specifies a table name, which can identify different types of tables:

– table_name – The table is a top level table created in the default namespace,
sysdefault. The default sysdefault: namespace prefix is not required.

– table_name.child_name – The table is a child table. Always precede a
child_name table with its parent table_name, followed by a period (.)
separator.

– namespace_name:table_name – The table was created in the namespace you
specify. Always precede table_name with its namespace_name, followed by a
colon (:).

– namespace_name:table_name.child_name – The table is a child table of a
parent table created in a namespace. Specify child_name by preceding it with
both namespace_name: and its parent table_name, , followed by a period (.)
separator.

• -if-absent

Indicates to put a row only if the row does not exist.

• -if-present

Appendix B
put

B-60

Indicates to put a row only if the row already exists.

• -json

Indicates that the value is a JSON string.

• -file

Use to load a file of JSON strings.

• -exact

Indicates that the input JSON string or file must contain values for all columns in
the table and cannot contain extraneous fields.

• -update

Can be used to partially update the existing record.

repair-admin-quorum
repair-admin-quorum {-zn <id> | -znname <name> | -admin <id>}...

Restores Admin quorum after it is lost by reducing membership of the admin group
to the admins in the specified zones, or to the specific admins you can list. Use this
command when attempting to recover from a failure that has resulted in losing admin
quorum. This command can result in data loss.

After obtaining a working admin by using the repair-admin-quorum command, call the
plan failover command to failover to the zones that remain available after a failure,
and to update the topology to match the changes made to the admins.

The arguments specify which admins to use as the new set of primary admins, either
by specifying all of the admins in one or more zones, or by identifying specific admins.
The specified set of admins must not be empty, must contain only currently available
admins, and must include all currently available primary admins. It may also include
secondary admins, if desired, to increase the admin replication factor or because no
primary admins are available.

Note:

You can repeat this command if a temporary network or component failure
results in the initial command invocation to fail.

show
Encapsulates commands that display the state of the store and its components or
schemas. The subcommands are as follows:

• show admins

• show datacenters

• show events

• show faults

Appendix B
repair-admin-quorum

B-61

• show indexes

• show mrtable-agent-statistics

• show parameters

• show perf

• show plans

• show pools

• show snapshots

• show regions

• show tables

• show topology

• show upgrade-order

• show users

• show versions

• show zones

show admins

show admins [-json]

Displays basic information about Admin services.

kv-> show admins -json
{
 "operation" : "show admins",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "admins" : [{
 "id" : "admin1",
 "storageNode" : "sn1",
 "type" : "PRIMARY",
 "connected" : true,
 "adminStatus" : "RUNNING",
 "replicationState" : "MASTER",
 "authoritative" : true
 }, {
 "id" : "admin2",
 "storageNode" : "sn2",
 "type" : "PRIMARY",
 "connected" : false,
 "adminStatus" : "RUNNING",
 "replicationState" : "REPLICA",
 "authoritative" : true
 }]
 }
}

Appendix B
show

B-62

show datacenters

show datacenters

Deprecated. See show zones instead.

show events

show events [-id <id>] | [-from <date>] [-to <date>]
 [-type <stat | log | perf>] [-json]

Displays event details or list of store events. The status events indicate changes in
service status.

Log events are noted if they require attention.

Performance events are not usually critical but may merit investigation. Events marked
"SEVERE" should be investigated.

The following date/time formats are accepted. They are interpreted in the local time
zone.

• MM-dd-yy HH:mm:ss:SS

• MM-dd-yy HH:mm:ss

• MM-dd-yy HH:mm

• MM-dd-yy

• HH:mm:ss:SS

• HH:mm:ss

• HH:mm

For more information on events, see Events.

kv-> show events -json
{
 "operation" : "show events",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "events" : [{
 "event" : "j84a16s3S STAT 2017-09-28 09:48:12.819 UTC sn1
RUNNING sev1"
 }, {
 "event" : "j84a17j0S STAT 2017-09-28 09:48:13.788 UTC sn2
RUNNING sev1"
 }, {
 "event" : "j84a19xoS STAT 2017-09-28 09:48:16.908 UTC sn3
RUNNING sev1"
 }, {
 "event" : "j84a1cznS STAT 2017-09-28 09:48:20.867 UTC rg1-
rn1 RUNNING sev1"

Appendix B
show

B-63

 }, {
 "event" : "j84a1f75S STAT 2017-09-28 09:48:23.729 UTC rg1-
rn2 RUNNING sev1"
 }, {
 "event" : "j84a1h7xS STAT 2017-09-28 09:48:26.349 UTC rg1-
rn3 RUNNING sev1"
 }, {
 "event" : "j84a3i9rS STAT 2017-09-28 09:50:01.023 UTC rg1-
rn3 STOPPED sev1 (reported by sn3)"
 }, {
 "event" : "j84a4oquS STAT 2017-09-28 09:50:56.070 UTC rg1-
rn3 RUNNING sev1"
 }, {
 "event" : "j84a5hfeS STAT 2017-09-28 09:51:33.242 UTC rg1-
rn3 STOPPED sev1 (reported by sn3)"
 }, {
 "event" : "j84aw53tS STAT 2017-09-28 10:12:16.985 UTC sn3
UNREACHABLE sev2 (reported by
 admin1)"
 }, {
 "event" : "j84b585yL LOG 2017-09-28 10:19:20.854 UTC SEVERE
[admin1] Plan 24 [Remove Admin
 Replica] task [DestroyAdmin admin3] of plan 24 ended in
state ERROR with java.rmi.ConnectException:
 Unable to connect to the storage node agent at host
localhost, port 22000, which may not be running;
 nested exception is: "
 }, {
 "event" : "j84b585zL LOG 2017-09-28 10:19:20.854 UTC SEVERE
[admin1] Plan [null] failed. Attempt 1
 [RUNNING] start=2017-09-28 10:19:20 UTC end=2017-09-28
10:19:20 UTC "
 }]
 }
}

show faults

show faults [-last] [-command <command index>] [-json]

Displays faulting commands. By default all available faulting commands are displayed.
Individual fault details can be displayed using the -last and -command flags.

kv-> show faults -json
{
 "operation" : "show faults",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "faultCommands" : [{
 "faultCommand" : "503 plan remove-admin -admin 3 -json -
wait: class
 oracle.kv.util.shell.ShellException"

Appendix B
show

B-64

 }, {
 "faultCommand" : "526 topology create -name mytopo -pool
snpool -json -partitions 300 -json: class
 java.lang.NullPointerException"
 }]
 }
}

show indexes

show indexes [-table <name>] [-name <name>] [-json]

Displays index metadata. By default the indexes metadata of all tables are listed.

If a specific table is named, its indexes metadata are displayed. If a specific index
of the table is named, its metadata is displayed. For more information, see plan
add-index.

Use SHOW INDEX statement to indicate the index type (TEXT, SECONDARY) when you
enable text-searching capability to Oracle NoSQL Database, in-concert with the tables
interface.

For example:

kv-> show index
Indexes on table Joke
JokeIndex (category, txt), type: TEXT

For more information, see Integration with Elastic Search for Full Text Search in the
Integrations Guide.

kv-> show indexes -json
{
 "operation" : "show indexes",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "tables" : [{
 "table" : {
 "tableName" : "t1",
 "indexes" : [{
 "name" : "idx1",
 "fields" : ["id1", "id2"],
 "type" : "SECONDARY",
 "description" : null
 }, {
 "name" : "idx2",
 "fields" : ["id2"],
 "type" : "SECONDARY",
 "description" : null
 }]
},
 "childTable" : [{

Appendix B
show

B-65

 "tables" : []
 }]
 }]
 }
}

show mrtable-agent-statistics

show mrtable-agent-statistics [-agent <agentID>][-table <tableName>][-
json]

Shows the latest statistics as of the last one minute for multi-region table agents. With
no arguments, this command shows combined statistics over all regions the MR Table
spans.

Input Parameters

Optionally, you can enable the following flags with appropriate parameters with this
command:

Table B-1 Input Parameters

Flag Parameter Description

- agent agentID Limits the statistics to the
agent ID specified. You can
find the agent ID from the
JSON config file created while
configuring your agent. See
Configure XRegion Service.

- table tableName Limits the statistics to the MR
Table specified.

- json - Returns the complete statistics
in JSON format. Even though
the statistics are returned
in JSON format by default,
specifying this flag adds
additional information in the
output such as operation,
return code, and the return
code's description.

Output Statistics

The statistics reported by the show mrtable-agent-statistics can be categorized as
those used to:

• Monitor streams from other regions

Table B-2 Output Statistics 1

Statistic Description

completeWriteOps Number of complete write operations per
region.

Appendix B
show

B-66

Table B-2 (Cont.) Output Statistics 1

Statistic Description

lastMessageMs Timestamp when the agent sees the
last message from a remote region, in
milliseconds.

If this statistic information is not available, -1
is printed as its output value.

lastModificationMs Timestamp of the last operation performed
in each remote region, in milliseconds.

If this statistic information is not available, -1
is printed as its output value.

laggingMs (avg, max, min) In a multi-region KVStore, each shard in a
region pushes all the operations performed
on all its tables to the agent's queue.
The agent replicates the contents of its
queue, in event order, to all other regions.
The lagging statistic represents the time
difference between an event being pushed
into the queue and replicated to the other
regions by the agent. If this value is high,
it indicates that the queue is getting backed
up. A smaller value indicates that the agent
is able to keep up with the number of
events coming from remote regions. The
lagging statistics are reported as average,
minimum, and maximum in milliseconds for
each remote region.

If this statistic information is not available, -1
is printed as its output value.

latencyMs (avg, max, min) In MR tables, the latency statistic indicates
the time taken in milliseconds for each
operation to travel from its origin (remote)
region to the target (local) region.
The latency is computed as T2 - T1, where:
– T1 is the timestamp when an operation

is performed in the remote region, and
– T2 is the timestamp when the agent

persisted the replicated operation to the
local region.

For each remote region, the latency
statistics are reported as the average,
minimum, and maximum latency for all the
operations from that region.

If this statistic information is not available, -1
is printed as its output value.

• Check the persistence of remote data

Table B-3 Output Statistics 2

Statistic Description

puts Number of write operations received.

dels Number of delete operations received.

Appendix B
show

B-67

Table B-3 (Cont.) Output Statistics 2

Statistic Description

streamBytes Total bytes replicated from a remote region.

persistStreamBytes Reports the total number of bytes that
are successfully committed in the local
region. This is different from the total bytes
replicated from a remote region because in
case of any conflicts with operations from
other regions, some of the operations may
not persist if they fail the built-in conflict
resolution rule.

winPuts Number of write operations performed
successfully. More specifically, this statistic
excludes the writes that failed to win the
conflict resolution rule, in case of a conflict
with writes in other regions.

winDels Number of delete operations performed
successfully. More specifically, this statistic
excludes the deletes that failed to win the
conflict resolution rule, in case of a conflict
with deletes in other regions.

incompatibleRows Number of operations that did not persist
because of incompatible table schemas.
This can happen when there is a schema
mismatch between the origin region and the
region that is trying to replicate the row to its
local data store.

• Monitor the interaction between admin and the agent

Table B-4 Output Statistics 3

Statistic Description

requests All the DDL commands executed by the user
on an MR table are converted into requests
to the agent by the admin. This statistic
reports the number of requests posted by
the admin.

responses Number of requests processed and
responded by the agent.

• Monitor multi-region tables
When you execute the show mrtable-agent-statistics command with the -
table flag, it returns the table level statistics indicating:

1. Persistence of remote data in the local region: This includes the statistics
such as puts, dels, winPuts, winDels, streamBytes, persistStreamBytes,
and incompatibleRows discussed above.

2. Progress of table initialization in each remote region: This is indicated by
the state attribute under the Initialization statistics in the output. The
table below lists the different possible values for state and their meaning.

Appendix B
show

B-68

Table B-5 Table Initialization States

State Description

NOT_START MR table initialization has not started, or
there is no need to do initialization. For
example, if the agent resumes the stream
from an existing checkpoint successfully,
there is no need to re-initialize the MR
table.

IN_PROGRESS MR table initialization is ongoing, that
is, the MR table initialization has started
and the data is being replicated from the
remote regions.

COMPLETE MR table initialization is complete and
table transfer is done. The agent is
streaming from the remote region.

ERROR MR table initialization cannot complete
because of an irrecoverable error. You can
view the error severity in the agent log as
WARNING or SEVERE. The agent log can
be found in the directory specified in the
JSON config file. See Configure XRegion
Service.

SHUTDOWN MR table initialization cannot complete
because the service is shut down.

3. Persistence of the table data per remote region:

Table B-6 Output Statistics 4

Statistic Description

transferStartMs Timestamp of the initiation of table
initialization, in milliseconds.

If this statistic information is not available,
-1 is printed as its output value.

transferCompleteMs Timestamp of the completion of table
initialization, in milliseconds.

If this statistic information is not available,
-1 is printed as its output value.

elapsedMs The time elapsed from the start of the
table initialization until its completion.

elapsedMs = transferCompleteMs -
transferStartMs

This statistic is reported in milliseconds.
Before the transfer completion, it reports
-1 indicating the unavailability of this
statistic.

transferBytes Number of bytes transferred from the
remote (origin or source) region to the
local (target) region.

transferRows Number of rows transferred from the
remote region to the local region
successfully.

Appendix B
show

B-69

Table B-6 (Cont.) Output Statistics 4

Statistic Description

expireRows Number of rows expired before
transferring from the remote region.
Because of their TTL value, some rows
might expire during the replication. Such
rows expire by the time they reach the
agent. This statistic counts such expired
rows.

persistBytes Reports the total number of bytes that
are successfully committed in the local
region. This excludes the rows that are
not committed in the local region because
they failed the built-in conflict resolution
rule. In case of row updates, the entire
row is counted for this statistic.

persistRows Reports the total number of rows that are
successfully committed in the local region.
Similar to the above statistic, the rows
that are not committed in the local region
because of the built-in conflict resolution
rule are excluded for this count.

Example

Below are a few examples of the statistics returned by the show mrtable-agent-
statistics command with different input parameters.

Note:

If any of the statistics information is not available, -1 is reported as the value
for that statistic parameter in the output.

MR table agent statistics for a specific agent
kv-> show mrtable-agent-statistics -agent 0 -json
{
 "operation": "show mrtable-agent-statistics",
 "returnCode": 5000,
 "description": "Operation ends successfully",
 "returnValue": {
 "XRegionService-1_0": {
 "timestamp": 1592901180001,
 "statistics": {
 "agentId": "XRegionService-1_0",
 "beginMs": 1592901120001,
 "dels": 1024,
 "endMs": 1592901180001,
 "incompatibleRows": 100,
 "intervalMs": 60000,
 "localRegion": "slc1",
 "persistStreamBytes": 524288,
 "puts": 2048,

Appendix B
show

B-70

 "regionStat": {
 "lnd": {
 "completeWriteOps": 10,
 "laggingMs": {
 "avg": 512,
 "max": 998,
 "min": 31
 },
 "lastMessageMs": 1591594977587,
 "lastModificationMs": 1591594941686,
 "latencyMs": {
 "avg": 20,
 "max": 40,
 "min": 10
 }
 },
 "dub": {
 "completeWriteOps": 20,
 "laggingMs": {
 "avg": 535,
 "max": 1024,
 "min": 45
 },
 "lastMessageMs": 1591594978254,
 "lastModificationMs": 1591594956786,
 "latencyMs": {
 "avg": 30,
 "max": 45,
 "min": 15
 }
 }
 },
 "requests": 12,
 "responses": 12,
 "streamBytes": 1048576,
 "winDels": 1024,
 "winPuts": 2048
 }
 }
 }
}

MR table agent statistics for a specific MR table
kv-> show mrtable-agent-statistics -table users -json
{
 "operation": "show mrtable-agent-statistics",
 "returnCode": 5000,
 "description": "Operation ends successfully",
 "returnValue": {
 "XRegionService-1_0": {
 "tableID": 12,
 "tableName": "users",
 "timestamp": 1592901300001,
 "statistics": {

Appendix B
show

B-71

 "agentId": "XRegionService-1_0",
 "beginMs": 1592901240001,
 "dels": 1000,
 "endMs": 1592901300001,
 "expiredPuts": 200,
 "incompatibleRows": 100,
 "initialization": {
 "lnd": {
 "elapsedMs": 476,
 "expireRows": 100,
 "persistBytes": 6492160,
 "persistRows": 6340,
 "state": "COMPLETE",
 "transferBytes": 8115200,
 "transferCompleteMs": 1592822625333,
 "transferRows": 7925,
 "transferStartMs": 1592822624857
 },
 "dub": {
 "transferStartMs": 0,
 "transferCompleteMs": 0,
 "elapsedMs": -1,
 "transferRows": 0,
 "persistRows": 0,
 "expireRows": 0,
 "transferBytes": 0,
 "persistBytes": 0,
 "state": "NOT_START"
 }
 },
 "intervalMs": 60000,
 "localRegion": "fra",
 "persistStreamBytes": 104960000,
 "puts": 100000,
 "streamBytes": 115200000,
 "tableId": 12,
 "tableName": "users",
 "winDels": 745,
 "winPuts": 90000
 }
 }
 }
}

show parameters

show parameters -policy | -service <name>

Displays service parameters and state for the specified service. The service may be
a Replication Node, Storage Node, or Admin service, as identified by any valid string,

Appendix B
show

B-72

for example rg1-rn1, sn1, admin2, etc. Use the -policy flag to show global policy
parameters. Use the -security flag to show global security parameters.

show parameters -service sn1

When you enable text-searching capability to Oracle NoSQL Database, in-concert
with the tables interface, the show parameter command also provides information
on the Elasticsearch cluster name and transport port as values for the parameters
searchClusterMembers and searchClusterName.

For more information, see Integration with Elastic Search for Full Text Search in the
Integrations Guide.

show perf

show perf

Displays recent performance information for each Replication Node.

show plans

show plans [-last] [-id <id>] [-from <date>] [-to <date>][-num
<howMany>]

Shows details of the specified plan or list all plans that have been created along with
their corresponding plan IDs and status.

• The -last option shows details of the most recently created plan.

• The -id <n> option details the plan with the given id. If -num <n> is also given, list
<n> plans, starting with plan #<id>.

• The -num <n> option sets the number of plans to the list. The default is 10.

• The -from <date> option lists plans after <date>.

• The -to <date> option lists plans before <date>.

Combining -from with -to describes the range between the two dates. Otherwise -num
applies.

The following date formats are accepted. They are interpreted in the UTC time zone.

• yyyy-MM-dd HH:mm:ss.SSS

• yyyy-MM-dd HH:mm:ss

• yyyy-MM-dd HH:mm

• yyyy-MM-dd

• MM-dd-yyyy HH:mm:ss.SSS

• MM-dd-yyyy HH:mm:ss

• MM-dd-yyyy HH:mm

• MM-dd-yyyy

Appendix B
show

B-73

• HH:mm:ss.SSS

• HH:mm:ss

• HH:mm

For more information on plan review, see Reviewing Plans.

show pools

show pools

Lists the Storage Node pools.

show snapshots

show snapshots [-sn <id>]

Lists snapshots on the specified Storage Node. If no Storage Node is specified, one is
chosen from the store. You can use this command to view the existing snapshots.

show regions

show regions

Displays the list of all the remote regions included in a Multi-Region Oracle NoSQL
Database setup.

kv-> execute 'show regions'
regions
 DEN

show tables

show tables -name table_name

Displays the table information. Use -original flag to show the original table
information if you are building a table for evolution. The flag is ignored for building
table for addition. For more information, see plan add-table and plan evolve-table

Use show table -name table_name statement to list the full text index. This command
provides the table structure including the indexes that have been created for that table.
For more information, see Creating FTI in the Integrations Guide.

show topology

show topology [-zn] [-rn] [-an] [-sn] [-store] [-status] [-json] [-
verbose]

Appendix B
show

B-74

Displays the current, deployed topology. By default it shows the entire topology,
including the number of shards. The first set of optional flags restrict the display to
one or more zones, Replication Nodes, Storage Nodes, Arbiter Nodes, store name,
or to specify service status. Use –json to display the results in JSON format. If you
specify -verbose, then additional information will be displayed, including Replication
Node storage directories, storage directory sizes, log directories, and JE HA ports.

You can also obtain the zone ID to which you can deploy Storage Nodes.

kv-> show topology
store=mystore numPartitions=1000 sequence=2376
 zn: id=zn1 name=myzone repFactor=3 type=PRIMARY allowArbiters=false
masterAffinity=false
 sn=[sn1] zn:[id=zn1 name=myzone] nodeA:5000 capacity=1 RUNNING
 [rg1-rn1] RUNNING
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 sn=[sn2] zn:[id=zn1 name=myzone] nodeB:5000 capacity=1 RUNNING
 [rg1-rn2] RUNNING
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 sn=[sn3] zn:[id=zn1 name=myzone] nodeC:5000 capacity=1 RUNNING
 [rg1-rn3] RUNNING
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 sn=[sn4] zn:[id=zn1 name=myzone] nodeD:5000 capacity=1 RUNNING
 [rg2-rn1] RUNNING
 No performance info available
 sn=[sn5] zn:[id=zn1 name=myzone] nodeE:5000 capacity=1 RUNNING
 [rg2-rn2] RUNNING
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 sn=[sn6] zn:[id=zn1 name=myzone] nodeF:5000 capacity=1 RUNNING
 [rg2-rn3] RUNNING
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms

 numShards=2
 shard=[rg1] num partitions=500
 [rg1-rn1] sn=sn1
 [rg1-rn2] sn=sn2
 [rg1-rn3] sn=sn3
 shard=[rg2] num partitions=500
 [rg2-rn1] sn=sn4
 [rg2-rn2] sn=sn5
 [rg2-rn3] sn=sn6

show upgrade-order

show upgrade-order [-json]

Lists the Storage Nodes which need to be upgraded in an order that prevents
disruption to the store's operation.

This command displays one or more Storage Nodes on a line. Multiple Storage Nodes
on a line are separated by a space. If multiple Storage Nodes appear on a single line,
then those nodes can be safely upgraded at the same time. When multiple nodes are
upgraded at the same time, the upgrade must be completed on all nodes before the
nodes next on the list can be upgraded.

Appendix B
show

B-75

If at some point you lose track of which group of nodes should be upgraded next, you
can always run the show upgrade-order command again.

kv-> show upgrade-order -json
{
 "operation" : "show upgrade-order",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "singleTextResult" : "Calculating upgrade order, target version:
12.2.4.6.0, prerequisite:
 12.1.3.0.5\nUnable to contact sn3 Unable to connect to the storage
node agent at host localhost, port
 22000, which may not be running; nested exception is:
\n\tjava.rmi.ConnectException: Connection refused
 to host: localhost; nested exception is:
\n\tjava.net.ConnectException: Connection refused (Connection
 refused)\nThere are no nodes that need to be upgraded"
 }
}

show users

show users -name <name>

Lists the names of all users, or displays information about a specific user. If no user is
specified, lists the names of all users. If a user is specified using the -name option, then
lists detailed information about the user.

show versions

show versions [-json]

Lists the client and server version information.

For example

kv-> show versions
Client version: 12.1.3.4.0
Server version: 12.1.3.4.0

kv-> show versions -json
{
 "operation" : "show version",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "clientVersion" : "12.2.4.6.0",
 "serverVersion" : "12.2.4.6.0"
 }
}

Appendix B
show

B-76

show zones

show zones [-zn <id>] | -znname <name>] [-json]

Lists the names of all zones, or display information about a specific zone.

Use the -zn or the -znname flag to specify the zone that you want to show additional
information; including the names of all of the Storage Nodes in the specified zone, and
whether that zone is a primary of secondary zone.

kv-> show zones -json
{
 "operation" : "show zone",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "zones" : [{
 "zone" : {
 "id" : "zn1",
 "name" : "1",
 "repfactor" : 1,
 "type" : "PRIMARY",
 "allowArbiters" : false
 }
 }, {
 "zone" : {
 "id" : "zn2",
 "name" : "2",
 "repfactor" : 1,
 "type" : "PRIMARY",
 "allowArbiters" : false
 }
 }, {
 "zone" : {
 "id" : "zn3",
 "name" : "3",
 "repfactor" : 1,
 "type" : "PRIMARY",
 "allowArbiters" : false
 }
 }]
 }
}

snapshot
Encapsulates commands that create and delete snapshots, which are used for backup
and restore. The subcommands are as follows:

• snapshot create

• snapshot remove

Appendix B
snapshot

B-77

snapshot create

snapshot create -name <name>

Creates a new snapshot using the specified name as the prefix.

Use the -name option to specify the name of the snapshot that you want to create.

Snapshots should not be taken while any configuration (topological) changes are
being made, because the snapshot might be inconsistent and not usable.

snapshot remove

snapshot remove -name <name> | -all

Removes the named snapshot. If -all is specified, remove all snapshots.

Use the -name option to specify the name of the snapshot that you want to remove.

If the -all option is specified, remove all snapshots.

To create a backup of your store using a snapshot see Taking a Snapshot.

To recover your store from a previously created snapshot you can use the load utility
or restore directly from a snapshot. For more information, see Using the Load Program
or Restoring Directly from a Snapshot.

table
Deprecated with exception of table-size. See execute instead.

table-size
table-size -name <name> -json <string>
 [-rows <num> [[-primarykey | -index <name>] -keyprefix <size>]]

Calculates key and data sizes for the specified table using the row input, optionally
estimating the NoSQL DB cache size required for a specified number of rows of the
same format. Running this command on multiple sample rows can help determine the
necessary cache size for desired store performance.

• -json specifies a sample row used for the calculation.

• -rows specifies the number of rows to use for the cache size calculation

• Use the -index or -primarykey and -keyprefix to specify the expected commonality
of index keys in terms of number of bytes.

This command mainly does the following:

1. Calculates the key and data size based on the input row in JSON format.

Appendix B
table

B-78

2. Estimates the DB Cache size required for a specified number of rows in the same
JSON format.

The output contains both detailed size info for primary key/index and the total size;
internally it calls JE's DbCacheSize utility to calculate the cache size required for
primary key and indexes with the input parameters:

java -jar $KVHOME/dist/lib/je.jar DbCacheSize
-records <num> -key <size> -data <size> -keyprefix
<size> -outputproperties -replicated <JE properties...>
-duplicates]

where:

• -records <num>: The number of rows specified by -row <num>.

• -key <size>: The size of key get from step 1.

• -data <size>: The size of data get from step1.

• -keyprefix <size>: The expected commonality of keys, specified using -
primarykey | -index <name> -keyprefix <size>

• -duplicates: Used only for table index.

• -<JE properties...>: The JE configuration parameters used in kvstore.

For example:

kv-> execute "create table user (id integer, address string,
zip_code string, primary key(id))"
kv-> execute "create index idx1 on user (zip_code)"

See the following cases:

1. Calculates the key size and data size based on the input row in JSON.

kv-> table-size -name user -json '{"id":1,
"address": "Oracle Building ZPark BeiJing China",
"zip_code":"100000"}'

=== Key and Data Size ===

 Name Number of Bytes
----------------- ---------------
Primary Key 8
Data 47
Index Key of idx1 7

2. Calculates the key/data size and the cache size of the table with 10000 rows.

kv-> table-size -name user -json '{"id":1,
"address": "Oracle Building ZPark BeiJing China",
"zip_code":"100000"}'
-rows 10000
=== Key and Data Size ===

 Name Number of Bytes

Appendix B
table-size

B-79

----------------- ---------------
Primary Key 8
Data 47
Index Key of idx1 7

=== Environment Cache Overhead ===

16,798,797 minimum bytes

=== Database Cache Sizes ===

Name Number of Bytes Description
----- --------------- ----------------------------------
 1,024,690 Internal nodes only
Table 1,024,690 Internal nodes and record versions
 1,024,690 Internal nodes and leaf nodes
----- --------------- ----------------------------------
 413,728 Internal nodes only
idx1 413,728 Internal nodes and record versions
 413,728 Internal nodes and leaf nodes
----- --------------- ----------------------------------
 1,438,418 Internal nodes only
Total 1,438,418 Internal nodes and record versions
 1,438,418 Internal nodes and leaf nodes

For more information, see the DbCacheSize javadoc.

Appendix B
table-size

B-80

Note:

The cache size is calculated in the following way:

• Cache size of table

java -jar KVHOME/lib/je.jar DbCacheSize -records
 10000 key 8 -data 47 -outputproperties -replicated
 <JE properties...>

The parameters are:

– Record number: 10000

– Primary key size: 8

– Data size: 47

• Cache size of table

 java -jar KVHOME/lib/je.jar DbCacheSize -records
 10000 -key 7 -data 8 -outputproperties -replicated
 <JE properties...> -duplicates

The parameters are:

– Record number: 10000

– Index key size: 7

– Data size: 8. The primary key size is used here, since the data of
secondary index is the primary key.

– Use -duplicates for index.

• Total size = cache size of table + cache size of idx1.

3. Calculates the cache size with a key prefix size for idx1

kv-> table-size -name user -json
'{"id":1, "address":"Oracle Building ZPark BeiJing China",
"zip_code":"100000"}' -rows 10000 -index idx1 -keyprefix 3

=== Key and Data Size ===

 Name Number of Bytes
----------------- ---------------
Primary Key 8
Data 47
Index Key of idx1 7

=== Environment Cache Overhead ===

16,798,797 minimum bytes

=== Database Cache Sizes ===

Appendix B
table-size

B-81

Name Number of Bytes Description
----- --------------- ----------------------------------
 1,024,690 Internal nodes only
Table 1,024,690 Internal nodes and record versions
 1,024,690 Internal nodes and leaf nodes
----- --------------- ----------------------------------
 413,691 Internal nodes only
idx1 413,691 Internal nodes and record versions
 413,691 Internal nodes and leaf nodes
----- --------------- ----------------------------------
 1,438,381 Internal nodes only
Total 1,438,381 Internal nodes and record versions
 1,438,381 Internal nodes and leaf nodes

For more information, see the DbCacheSize javadoc.

Note:

A key prefix size is provided for idx1, the idx1's cache size is calculated
like this:

java -jar KVHOME/lib/je.jar DbCacheSize -records
10000 -key 7 -data 8 -keyprefix 3 -outputproperties
-replicated <JE properties...> -duplicates

The above examples show that the cache size of idx1 is 413,691 and is
smaller than 413,728 of case 2. For more information about the usage of
keyprefix, see JE DbCacheSize document.

timer
timer [on|off]

Turns the measurement and display of execution time for commands on or off.

topology
Encapsulates commands that manipulate store topologies. Examples are
redistribution/rebalancing of nodes or changing replication factor. Topologies are
created and modified using this command. They are then deployed by using the
plan deploy-topology command. For more information, see plan deploy-topology.
The subcommands are as follows:

• topology change-repfactor

• topology change-zone-arbiters

• topology change-zone-type

• topology clone

Appendix B
timer

B-82

• topology contract

• topology create

• topology delete

• topology list

• topology preview

• topology rebalance

• topology redistribute

• topology validate

• topology view

topology change-repfactor

topology change-repfactor -name <name> -pool <pool name>
 -zn <id> | -znname <name> -rf <replication factor>

Modifies the topology to change the replication factor of the specified zone to a new
value. The replication factor may be decreased for secondary zones, but decreasing it
for primary zones is not currently supported.

When increasing the replication factor, the command may create Replication Nodes
or Arbiter Nodes and may remove Arbiter Nodes only in the zone specified in the
command. If the change in replication factor increases the total primary replication
factor equal to two and the zone is configured to allow Arbiters, then Arbiters are
created in that zone. If the change in replication factor increases the total primary
replication factor from two to a number greater than two and if the zone contained
Arbiters, then the Arbiters are removed from the zone. If some other zone contained
Arbiters, a topology rebalance must be performed to remove the Arbiters from the
topology.

For more information on increasing the replication factor, see Increase Replication
Factor.

When decreasing the replication factor for a secondary zone, the command will
remove the replication nodes from the zone.

If you want to remove a secondary zone, then the replication factor for that secondary
zone should be reduced to zero.

After reducing the replication factor to zero, do the following steps to remove the
secondary zone:

1. Remove any admins in the zone using plan remove-admin command

2. Remove the Storage Nodes in the zone using plan remove-sn command

3. Remove the zone using plan remove-zone command

topology change-zone-arbiters

topology change-zone-arbiters -name <name>
 {-zn <id> | -znname <name>} {-arbiter | -no-arbiter}

Appendix B
topology

B-83

Modifies the topology to change the Arbiter Node attribute of the specified zone.

topology change-zone-master-affinity

topology change-zone-master-affinity -name <name>
 -zn <{-no-master-affinity | -master-affinity}

Modifies the topology of the existing specified zone to –no-master-affinity, or to
–master-affinity. For example:

topology change-zone-master-affinity -name new-topo -zn zn1 -no-master-
affinity

Use this command after initially deploying a topology (plan deploy-zone).

topology change-zone-type

topology change-zone-type -name <name>
 {-zn <id> | -znname <name>} -type {primary | secondary}

Modifies the topology to change the type of the specified zone to a new type.

If one or more zones have their type changed and the resulting topology is deployed
using the plan deploy-topology command, the following rules apply:

• The plan waits for up to five minutes for secondary nodes that are being converted
to primary nodes to catch up with their masters.

• The plan will fail, and print details about lagging zones and nodes, if a quorum
of secondary nodes in each shard fails to catch up within the required amount
of time. This behavior helps to reduce the time that a newly added primary node
cannot become a master, and so is not able to contribute to availability.

• Because this command can only be performed successfully if quorum can be
maintained, it does not result in data loss.

topology clone

topology clone -from <from topology> -name <to topology>

or

topology clone -current -name <to topology>

Clones an existing topology so as to create a new candidate topology to be used for
topology change operations.

Appendix B
topology

B-84

topology contract

topology contract -name <name> -pool <pool name>

Modifies the named topology to contract storage nodes. For more information, see
Contracting a Topology.

topology create

topology create -name <candidate name> -pool <pool name> [-json]
 -partitions <num>

Creates a new topology with the specified number of partitions using the specified
storage pool.

You should avoid using the dollar sign ('$') character in topology candidate names. The
CLI displays a warning when trying to create or clone topologies whose names contain
the reserved character.

If the primary replication factor is equal to two, the topology create command will
allocate Arbiter Nodes on the Storage Nodes in a zone that supports hosting Arbiter
Nodes. During topology deployment, an error is issued if there are not enough Storage
Nodes for Arbiter Node distribution. A valid Arbiter Node distribution is one in which
the Arbiter Node is hosted on a Storage Node that does not contain other members of
its Replication Group.

For more information on creating the first topology candidate, see Make the Topology
Candidate.

kv-> topology create -name mytopo -pool snpool -json -partitions 20
{
 "operation" : "topology create",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "store" : "mystore",
 "numPartitions" : 20,
 "sequence" : 32,
 "zone" : [{
 "id" : "zn1",
 "name" : "1",
 "repfactor" : 1,
 "type" : "PRIMARY"
 }, {
 "id" : "zn2",
 "name" : "2",
 "repfactor" : 1,
 "type" : "PRIMARY"
 }, {
 "id" : "zn3",
 "name" : "3",
 "repfactor" : 1,

Appendix B
topology

B-85

 "type" : "PRIMARY"
 }],
 "sns" : [{
 "id" : "sn1",
 "zone_id" : "zn1",
 "host" : "localhost",
 "port" : 20000,
 "capacity" : 1,
 "rns" : ["rg1-rn1"],
 "ans" : []
 }, {
 "id" : "sn2",
 "zone_id" : "zn2",
 "host" : "localhost",
 "port" : 21000,
 "capacity" : 1,
 "rns" : ["rg1-rn2"],
 "ans" : []
 }, {
 "id" : "sn3",
 "zone_id" : "zn3",
 "host" : "localhost",
 "port" : 22000,
 "capacity" : 1,
 "rns" : ["rg1-rn3"],
 "ans" : []
 }],
 "shards" : [{
 "id" : "rg1",
 "numPartitions" : 20,
 "rns" : ["rg1-rn1", "rg1-rn2", "rg1-rn3"],
 "ans" : []
 }],
 "name" : "mytopo"
 }
}

topology delete

topology delete -name <name>

Deletes a topology.

topology list

topology list

Lists existing topologies.

Appendix B
topology

B-86

topology preview

topology preview -name <name> [-start <from topology>]

Describes the actions that would be taken to transition from the starting topology to
the named, target topology. If -start is not specified, the current topology is used. This
command should be used before deploying a new topology.

topology rebalance

topology rebalance -name <name> -pool <pool name>
 [-zn <id> | -znname <name>]

Modifies the named topology to create a balanced topology. If the optional -zn flag is
used, only Storage Nodes from the specified zone are used for the operation.

This command may also add, move or remove Arbiter Nodes. Arbiter Nodes are
added if the new topology supports Arbiter Nodes and the old topology does not.
Arbiter Nodes are removed if the old topology supported Arbiter Nodes and the new
one does not. Arbiter Nodes may be moved to a zero Replication Factor datacenter if
the Arbiter Nodes are hosted in a non zero Replication Factor datacenter.

For more information on balancing a non-compliant topology, see Balance a Non-
Compliant Topology.

topology redistribute

topology redistribute -name <name> -pool <pool name>

Modifies the named topology to redistribute resources to more efficiently use those
available.

For more information on redistributing resources to enhance write throughput, see
Increase Data Distribution.

topology validate

topology validate [-name <name>]

Validates the specified topology. If no topology is specified, the current topology is
validated. Validation generates violations and notes.

Violations are issues that can cause problems and should be investigated.

Notes are informational and highlight configuration oddities that can be potential
issues or may be expected.

For more information, see Validate the Topology Candidate.

Appendix B
topology

B-87

topology view

topology view -name <name>

Displays details of the specified topology. Also displays any available Arbiter Node
information.

verbose
verbose [on|off]

Toggles or sets the global verbosity setting. This property can also be set on a per-
command basis using the -verbose flag.

verify
Encapsulates commands to check various store parameters. Specify one of the
subcommands, optionally with -silent or -json:

verify {configuration | prerequisite | upgrade} [-silent] [-json]

• verify configuration

• verify prerequisite

• verify upgrade

Invoking verify without a subcommand or flag, the returns a deprecated message:

kv-> verify
The command:

 verify [-silent]

is deprecated and has been replaced by:

 verify configuration [-silent]

verify configuration

verify configuration [-silent] [-json]

Verifies the store configuration by iterating over components and checking their state
against what the Admin database contains. On a large store, this command can be
time consuming.

The -json option specifies that the command display all output in JSON format.

Appendix B
verbose

B-88

The -silent option suppresses verbose verification messages as verification
proceeds. Using the -silent option displays only the initial startup messages and the
final verification message. This option has no effect when the -json option is specified.

In some situations, the verify configuration command can generate violations and
notes. For example, if:

• The disk reaches a limit exception.

• The available storage size is less than 5 GB.

• The shard has no partitions.

• A replication node or a storage node is not running.

verify prerequisite

verify prerequisite [-silent] [-sn snX]*

Verifies that the storage nodes are at or above the prerequisite software version
needed to upgrade to the current version. This call may take a while on a large store.

As part of the verification process, this command displays the components which do
not meet the prerequisites or cannot be contacted. It also checks for illegal downgrade
situations where the installed software is of a newer minor release than the current
version.

When using this command, the current version is the version of the software running
the command line interface.

Use the -sn option to specify those storage nodes that you want to verify. If no storage
nodes are specified, all the nodes in the store are checked.

The -silent option suppresses verbose verification messages that are displayed as
the verification is proceeding. Instead, only the initial startup messages and the final
verification message is displayed.

verify upgrade

verify upgrade [-silent] [-sn snX]*

Verifies the storage nodes (and their managed components) are at or above the
current version. This call may take a while on a large store.

As part of the verification process, this command displays the components which have
not yet been upgraded or cannot be contacted.

When using this command, the current version is the version of the software running
the command line interface.

Use the -sn option to specify those storage nodes that you want to verify. If no storage
nodes are specified, all the nodes in the store are checked.

The -silent option suppresses verbose verification messages that are displayed as
the verification is proceeding. Instead, only the initial startup messages and the final
verification message is displayed.

Appendix B
verify

B-89

C
Admin Utility Command Reference

This appendix describes the following Admin utility commands:

• export

• generateconfig

• help

• import

• load admin metadata

• makebootconfig

• ping

• restart

• runadmin

• start

• status

• stop

• version

Oracle NoSQL Database utility commands are stand-alone utilities that do not require
the use of the Oracle NoSQL Database Command Line Interface. They are available
using one of two jar files. In some cases, kvstore.jar is used. In others, kvtool.jar is
required. Both are packaged with the server libraries.

export
java -jar KVHOME/lib/kvtool.jar export
-export-all | -table table_names | -namespace namespaces
-store storeName
-helper-hosts helper_hosts
-config config_file_name
[-format BINARY | JSON]
[-username user]
[-security security-file-path]
[-verbose]

Export Utility Command Line Parameters
• -export-all causes the entire store to be exported. If this option is specified, then

-table and -namespace cannot be specified.

• -table is the name of the table or tables you want to export. If you want to export
multiple tables, then specify a comma-delimited list of table names.

C-1

If this parameter is specified, then -export-all and -namespace cannot be
specified.

Note:

If you wish to export a child table, you must specify the fully qualified
path from the parent to that child table. For example: To export the
table grandchild1, the following fully qualified path must be specified:
parent1.child1.grandhchild1.

Note:

If you are using namespaces, you must specify fully qualified tables
names in the -table flag. For example: namespace1:userProfiles.

• -namespace is the name of the namespace or namespaces you want to export. If
you want to export multiple namespaces, then specify a comma-delimited list of
namespaces.
If this parameter is specified, then -table or -export-all cannot be specified.

• -store is the name of the store you want to export data from the Oracle NoSQL
Database.

Note:

This parameter is required and case-sensitive.

• -helper-hosts is a list of hostname and registry port pairs in hostname:port
format. Comma-delimit each item in this list. At least one helper host must be
specified.

• -config is the name of the configuration file to use.

Note:

This parameter is required.

• -format BINARY | JSON When data is read from the Oracle NoSQL Database,
the -format flag indicates the format of how the data is stored in the sink. If not
specified, then the format is BINARY.

• -username is the name of the user you want to use to export data. This parameter
is required if your store is configured to require authentication.

Note:

This parameter is case-sensitive.

Appendix C
export

C-2

• -security is the client security configuration file. This parameter is required if
your store is configured to require authentication. A fully qualified path to a file
containing security information can be specified or a file name can be specified.
If not fully qualified, then the export utility will look in the current working directory
for the security file. For information on the parameters contained in this file, see
Configuring SSL in the Java Direct Driver Developer's Guide. For example:

oracle.kv.auth.username=clientUID1
oracle.kv.auth.pwdfile.file=/home/nosql/login.pwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=/home/nosql/client.trust

If you are using Kerberos, then this file would look something like this:

oracle.kv.auth.kerberos.keytab=kerberos/mykeytab
oracle.kv.auth.username=krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=node01:oraclenosql/
node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

Note:

This parameter is case-sensitive.

• -verbose causes trace, debugging, and progress messages to be printed to
standard output. This option can be useful in tracking the progress of an export
operation, particularly for very large tables or data-sets.

Note:

For more information about import/export utility, see Using the Import and
Export Utilities.

Export Utility Configuration File
Configuration files are specified in JSON format. For running export, the configuration
file format is below:

{
 "configFileVersion": <version>,
 "abortOnError": [false | true],
 "errorOutput": <error-dir>,
 "errorFileSizeMB": <error-file-chunk-size-mb>,
 "errorFileCount": <error-file-chunk-count>,
 "checkpointOutput": <checkpoint-dir>,
 "requestTimeoutMs": <read-request-timeout-ms>,
 "path": <local-output-directory>,
 "fileSizeMB": <file-chunk-size-MB>,

Appendix C
export

C-3

 "pretty": [false | true]
}

Note that all configuration parameters are case-insensitive unless specified below.

• configFileVersion – Optional. This field represents the version of the config file.
The only supported value for this configuration option is 1.

• abortOnError – Optional. If true, the utility exits upon the first encountered
error. Note that the target storage type containing exported data will be at an
intermediate state, containing whatever data has been extracted from Oracle
NoSQL Database prior to the error. If false, the export continues and errors are
logged to files located in the configured errorOutput directory. Defaults to true.

• errorOutput – Optional, case-sensitive. The directory where the utility creates
error log files that contain error messages along with any data from Oracle NoSQL
Database associated with the error. A fully qualified directory or a directory name
can be used. If directory name is used, it is relative to the current working directory
where the import/export utility is being executed. If not specified, then this defaults
to <path>/errors.
A sub-directory, each containing a set of log files, is created for each table
being exported. For example, if you export table1, table2, and table3, and
errorOutput directory is set to /users/oracle/nosql, you see the following set
of files created by export:

/users/oracle/nosql/table1.err*
/users/oracle/nosql/table2.err*
/users/oracle/nosql/table3.err*

Error files are of size errorFileSize (see below) and is numbered starting from 0.

• errorFileSize – Optional. The maximum size, in megabytes, of a single error
file. Once this limit is hit, the utility creates another error file. Defaults to 500mb.

• errorFileCount – Optional. The maximum number of error files to create for each
table being exported. Once this limit is hit, the utility exits and export is terminated.
Defaults to 5.
For example, if errorFileCount is 2 and you are exporting 3 tables, then the
maximum number of error files that will be created is 6. Two error files for each
table.

• checkpointOutput – Optional, case-sensitive. If specified, it depicts the directory
where the utility stores its checkpoint information and logs the progress status of
the export operation. A fully qualified directory or a directory name can be used.
If directory name is used, it is relative to the current working directory where the
import/export utility is being executed. If not specified, checkpointing is disabled.

• requestTimeoutMs – Optional. Specifies the maximum amount of time in
milliseconds to wait for read operation from Oracle NoSQL Database. Defaults
to 5 seconds.

• path – Required, case-sensitive. The directory where the export package is
stored. A fully qualified directory or a directory name can be used. If directory
name is used, it is relative to the current working directory where the import/export
utility is being executed.

Appendix C
export

C-4

• fileSizeMB – Optional. Describes the maximum size of a "chunk" of table data
to be stored at the sink. During export, a table is split into fileSizeMB chunks
and each chunk is written as a separate file to the sink. The default value for this
parameter is 1 Gigabyte.

• pretty – Optional, for use with JSON format only. If true, the export utility
formats JSON output to increase readability. The default value for this option is
false.

Monitoring Export Progress
Use the -verbose flag to track the progress of export. Redirect the standard output
of the command to a file or pipe it to the Unix command, tail -f. Note that errors
are sent to standard error when -verbose is used. Optionally, you can configure the
errorOuput directory to log the progress and error messages into this directory.

Running Concurrent Exports

Multiple export jobs may be run concurrently. However, it is highly recommended that
each running instance of export runs with a different "path", so that none of the files
being written by the export utility overwrite each other.

How Export Checkpoints Work

Checkpoints during an export operation work at the granularity of a table. That is, as
each table exports successfully, a checkpoint record is written. If the export operation
fails before completing, and the export operation is re-run, the checkpoint file is
inspected and any completed table is skipped. Hence, when exporting multiple tables,
using checkpoints is recommended.

Export Package Structure
After exporting data from Oracle NoSQL Database to the file system, the following
"export" package directory structure is created. There are two parts to the directory
structure:

• Common – This portion of the directory structure is always created irrespective of
the options specified to the export utility.

• Export-all – This portion of the directory structure contains any large object data
or raw key/value data that you may have in your Oracle NoSQL Database store
and can only be exported when the export utility is run with the -export-all
option.

Note:

The portion of this subtree denoted as "Other" contains the raw key/
value data from your Oracle NoSQL Database store.

Appendix C
export

C-5

Other

OtherData<chunk1>.data

LOB

LOB1

LOB1<chunk1>.txt

LOB1<chunk2>.txt

Data

Schema Definition

Path (example: /usr/local/nosql_export/)

Table

SchemaDefinition-<chunk1>.txt

SchemaDefinition-<chunk1>.txt

Table1

Table1<chunk1>.txt

Table1<chunk2>.txt

Generated only
for export-all

Common -
Always generated

Schema Management
Your store's schema may change during a long-running export process. The export
utility handles schema changes in the following way:

• If the schema evolves during the export process, the process uses the latest
version available at the beginning of the process. In the event that this data is later
re-imported to the store, all the imported data will be compatible with this version
of the schema.

In this event, the export utility emits a warning at the end of the export process
which indicates that the schema changed during export. A metadata diff is
provided to identify how the schema changed.

• If a table is removed during the export process, the process continues without
complaint. In this event, the export utility emits a warning at the end of the export
process which indicates that the table, or tables, were deleted during the export.

• If a new table is added to the store during the export process, it is ignored. Only
those tables which existed at the start of the export process are exported.

Export Exit Codes
You may have a requirement to script the exporting of data and have it run as a
scheduled job. When scripting the execution of the import/export utility, the script can

Appendix C
export

C-6

examine the exit code from import/export to determine the status of the run. The
following exit codes are defined for the export phase of the import/export utility:

Name Code Description

EXIT_OK 0 No errors found.

EXIT_USAGE 100 Illegal export command usage.

EXIT_EXPSTR_NOCONNECT 102 The source store could not be accessed using
the service connection parameters.

EXIT_NOCONNECT 103 The source store could not be connected
using the given store name and helper host.

EXIT_UNEXPECTED 104 The utility experienced an unexpected error.

EXIT_NOWRITE 105 The export package has no write permissions.

EXIT_NO_EXPORT_FOLDER 108 Export folder with the given name does not
exist.

EXIT_SECURITY_ERROR 110 Error loading security files.

EXIT_NOSQL_PERM 111 User has no read permissions on the object.

generateconfig
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar generateconfig [-verbose]
-host <hostname> -port <port>
 -sn <StorageNodeId> -target <zipfile>
[-username <user >]
[-security <security-file-path>]
 [-secdir <overriden security directory>]

This command generates configuration files for any Storage Node identifier (value of
"sn" parameter) specified in the command.

Parameter Required Default value Description

host Yes The host name of
the Storage Node for
which the config file is
generated.

Appendix C
generateconfig

C-7

Parameter Required Default value Description

port Yes The registry port of
the Storage Node for
which the config file is
generated.

N

o

t

e

:

T
h
e
u
s
e
r
c
a
n
u
s
e
t
h
e
A
d
m
i
n
C
L
I
p
i
n
g command, to get the registry port of any Storage Node.

Appendix C
generateconfig

C-8

Parameter Required Default value Description

sn Yes Identifier of the
Storage Node.

N

o

t

e

:

T
h
e
u
s
e
r
c
a
n
u
s
e
t
h
e
A
d
m
i
n
C
L
I
p
i
n
g command, to get the Storage Node Identifier of any Storage Node.

target Yes Full path of the zip file
to be created.

username No The name of the
user to log in to
the secured store.
This parameter is
only required if your
store is configured to
require authentication.

Appendix C
generateconfig

C-9

Parameter Required Default value Description

security No The client security
configuration file. This
parameter is only
required if your store
is secure. A fully
qualified path to a
file containing security
information can be
specified.

secdir No security The name of the
directory within the
KVROOT that will
hold the security
configuration.

help
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar help <commandName>

Prints usage info. With no arguments the top-level shell commands are listed. With a
command name, additional detail is provided.

import
java -jar KVHOME/lib/kvtool.jar import
-import-all | -table table_names | -namespace namespaces | -external
-store storeName
-helper-hosts helper_hosts
-config config_file_name
[-status status_file]
[-format BINARY | JSON | MONGODB_JSON]
[-username user]
[-security security-file-path]
[-verbose]

Import Utility Command Line Parameters
• -import-all causes the entire export package to be imported. If this option is

specified, then -table and -namespace cannot be specified. This parameter can
only be used to import from a package created by the Oracle NoSQL Database
export utility.
Use the –external option to load data that has been generated from a non-Oracle
NoSQL Database source.

• -table is the name of the table or tables you want to import. To import multiple
tables, specify a comma-delimited list of table names. This parameter can only be
used to import one or more specific tables from a package created by the Oracle
NoSQL Database export utility.

Appendix C
help

C-10

Use the –external option to load data that has been generated from a non-Oracle
NoSQL Database source.

If this parameter is specified, then -import-all and -namespace cannot be
specified.

Note:

If you are importing a child table, the name to the child table
must be fully qualified through its parent. For example: To import
the table grandchild1, who has a parent table child1, whose
parent table is parent1, you must specify the following full path:
parent1.child1.grandchild1.

Note:

When importing a child table, all of the parent tables in the path to that
child table must either be part of the import or must already exist in the
target Oracle NoSQL Database store.

Note:

If you are using namespaces, you must specify fully qualified tables
names in the -table flag. For example: namespace1:userProfiles.

• -namespace is the name of the namespace or namespaces you want to import.
If you want to import multiple namespaces, then specify a comma-delimited list
of namespaces. This parameter can only be used to import the tables residing in
one or more namespaces from a package created by the Oracle NoSQL Database
export utility. Use the -external option to load data that has been generated from
a non-Oracle NoSQL Database source.
If this parameter is specified, then -import-all and -table cannot be specified.

• -external specifies that the data to import has been generated by a source
other than Oracle NoSQL Database. Hence, this flag indicates that the directory
structure being read by the import utility is not in the "export package" format.
If this parameter is specified, then -import-all, -table, and -namespace cannot
be specified. These must be specified in the config file.

• -store is the name of the Oracle NoSQL Database store you want to import data
into. The import utility must be able to connect to the running nodes in this Oracle
NoSQL Database store.

Note:

This parameter is required and case-sensitive.

Appendix C
import

C-11

• -helper-hosts is a list of hostname and registry port pairs in hostname:port
format. Comma-delimit each item in this list. At least one helper host must be
specified.

• -config is the name of the configuration file to use. This parameter is required.
See Import Utility Configuration File for information on the configuration file for this
utility.

• -status is an optional parameter and is equivalent to the checkpointOutput
configuration parameter for export. This parameter specifies a directory for
the import checkpointing feature to store checkpoint information. The specified
directory can be a fully qualified directory or a single directory name. If not fully
qualified, it is considered relative to the current working directory where the import
utility is being executed. If the import fails before completing, a subsequent re-start
of import can start from where it left by using the checkpoint information in the
status file.
If this parameter is not specified and there is a failure, then a subsequent re-start
of import must start over, importing any files that have already been imported. See
the overwrite config parameter below for a description of import’s behavior in this
scenario.

• -username is the name of the user you want to use to import data. This parameter
is required if your store is configured to require authentication.

Note:

This parameter is case-sensitive.

• -security is the client security configuration file. This parameter is required if
your store is configured to require authentication. A fully qualified path to a file
containing security information can be specified or a file name can be specified.
If not fully qualified, then the import utility will look in the current working directory
for the security file. For information on the parameters contained in this file, see
Configuring SSL in the Java Direct Driver Developer's Guide. For example:

oracle.kv.auth.username=clientUID1
oracle.kv.auth.pwdfile.file=/home/nosql/login.pwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=/home/nosql/client.trust

If you are using Kerberos, then this file would look something like this:

oracle.kv.auth.kerberos.keytab=kerberos/mykeytab
oracle.kv.auth.username=krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=node01:oraclenosql/
node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

Note:

This parameter is case-sensitive.

Appendix C
import

C-12

• -verbose causes trace, debugging, and progress messages to be printed to
standard output. This option can be useful in tracking the progress of an import
operation, particularly for very large tables or data-sets.

Note:

For more information about import/export utility, see Using the Import and
Export Utilities.

Import Utility Configuration File
You can import data in three formats, BINARY, JSON, and MONGODB JSON.
Depending on the format of data that is being imported, certain configuration options
will be relevant. For example, when importing JSON data, the charset configuration
option can be used to describe the character set of the JSON data to be imported.
The configuration options that are format relevant are listed in bold type below and
explained in detail in the associated bulleted list.

{
 "configFileVersion": <version>,
 "abortOnError": [false | true],
 "errorOutput": <error-dir>,
 "errorFileSizeMB": <error-file-chunk-size-mb>,
 "errorFileCount": <error-file-count>,
 "path": <dir-or-file>,
 "namespace": <namespace>,
 "tableName": <table-name>,
 "ignoreFields": [<field1>, <field2>, ...],
 "renameFields": {
 <old-name>:<new-name>,
 ...
 }
 "charset": <charset-name>,
 "ddlSchemaFile": <file>,
 "continueOnDdlError": <false | true>,
 "overwrite": <false | true>,
 "ttlRelativeDate": <date-to-use in UTC>,
 "dateTimeToLong": <true | false>
 }

• configFileVersion – Optional. This field represents the version of the config file.
The only supported value for this configuration option is 1.

• abortOnError – Optional. If true, the utility exits upon the first encountered error.
Note that the target Oracle NoSQL Database data store will be at an intermediate
state, containing whatever data is imported prior to the error. If false, the import
continues and errors are logged to files located in the configured errorOutput
directory. Defaults to true.

• errorOutput – Optional, case-sensitive. The directory where the utility creates
error log files that contain error messages along with any data from Oracle NoSQL
Database associated with the error. All records that are rejected during the import
is stored in log files in this directory. A fully qualified directory or a directory name

Appendix C
import

C-13

can be used. If directory name is used, it is relative to the current working directory
where the import/export utility is being executed. If not specified, then this defaults
to <path>/errors.
A sub-directory, each containing a set of log files, is created for each table
being imported. For example, if you import table1, table2, and table3, and
errorOutput directory is set to /users/oracle/nosql, you see the following set
of files created by import:

/users/oracle/nosql/table1.err*
/users/oracle/nosql/table2.err*
/users/oracle/nosql/table3.err*

Error files are of size errorFileSize (see below) and are numbered starting from
0.

• errorFileSize – Optional. The maximum size, in megabytes, of a single error
file. Once this limit is hit, the utility creates another error file. Defaults to 500mb.

• errorFileCount – Optional. The maximum number of error files to create for each
table being imported. Once this limit is hit, the utility exits and import is terminated.
Defaults to 5.
For example, if errorFileCount is 2 and you are importing 3 tables, then the
maximum number of error files that will be created is 6. Two error files for each
table.

• path – Required, case-sensitive. This is the only required parameter for import.
If you import a structure that was created by export, then this path should be
the directory path to the root of the "export package" directory structure. A fully
qualified directory or a directory name can be used. If directory name is used, it
is relative to the current working directory where the import/export utility is being
executed.
Alternatively, this path can point to a single file to be imported, or it can point to
a directory of JSON text files to import into a single table. If files are being used,
then the directory must be flat. Import does not recursively descend a directory
structure not created by export.

• namespace – Optional, for use with the -external flag. If supplied, then the table
being imported will be qualified by the supplied namespace when the imported
data is written to Oracle NoSQL Database.

Note:

The configuration options that require the –external flag are silently
ignored if the –external flag is not used.

• tableName – Optional, for use with the -external flag. The name of the target
table in Oracle NoSQL Database to write the imported data. If not supplied, the
import tool uses the leaf level name of the directory specified by "path" as the
name of the table.
For example, if you are loading JSON and your "path" is set to /usr/
local/mydata/profile_data, the name of the table used during the import is
profile_data.

• ignoreFields – Optional, for use with the -external flag. An array of JSON
attributes that indicate attributes to be ignored when importing data into Oracle

Appendix C
import

C-14

NoSQL Database. If any of these attributes exist in any of the documents to be
imported, they are ignored.

Note:

You can supply only top level document attributes.

• renameFields – Optional, for use with the -external flag. A comma separated
list of name value pairs. The "old-name" is a JSON attribute that when written to
Oracle NoSQL Database, is renamed to the value specified in "new-name".

Note:

You can supply only top level document attributes.

• charset – Optional, for use with the -external flag. The following formats
can be supplied: US-ASCII, ISO-8859-1, UTF-8, UTF-16, UTF-16BE, UTF-16LE.
Defaults to UTF-8.

• ddlSchemaFile – Optional. If specified, this file contains DDL that is executed
prior to importing data into Oracle NoSQL Database. Any valid DDL statement
(see Defining Tables in the Java Direct Driver Developer's Guide) can be specified.
The import/export tool supports no more than one DDL statement per line in the
ddlSchemaFile.

Note:

If ddlSchemaFile is not used, the import utility creates a table with an
id column and auto-generates values for id during import. If the JSON
data being imported already contains a top level attribute for id, an error
occurs. To avoid this error, you must use ddlSchemaFile to specify the
tables to be created for import.

• continueOnDdlError – Optional. If true, the import ignores (and logs) any error
encountered when issuing DDL that is specified in the ddlSchemaFile. Defaults to
false.

• overwrite – Optional. If true, the import/export utility automatically overwrites
any record that already exists in Oracle NoSQL Database during import. Defaults
to false.

• ttlRelativeDate - Optional, for use with BINARY format only. A UTC date
in the form YYYY-MM-DD HH:MM:SS that can be used to adjust the TTL expiry
of records as they are imported into Oracle NoSQL Database. If records in
the exported data expired as TTL expiration already occurred, you can set
ttlRelativeDate to a date prior to the expiration time of the records in the
exported data. This parameter defaults to the current time of the import operation.
Example: A TTL value on a particular table indicates that records will expire in 7
days from 1-Jan-2019 (data will expire on 8-Jan-2019). You have exported this
table on 5-Jan-2019. On 7-Jan-2019 you run into an issue with your table and you
decide to import the data from the export package. Since it is now 7-Jan-2019 (the
current date), the records in the export package will expire in 1 day (expired date

Appendix C
import

C-15

minus the default value ttlRelativedate, which is the current date). You can use
the ttlRelativeDate parameter to extend the life of these records by choosing
an earlier date for ttlRelativeDate. In this example, to modify the expiry of
the records and extend the life of these records by 7 days, you would specify
1-Jan-2019 for ttlRelativeDate and import will modify the time to live expiry of
every record to: 7 days (8-Jan-2019 minus 1-Jan-2019).

• dateTimeToLong - Optional, for use with MONGODB_JSON format only. If
true, the date value from a MongoDB export is converted to a long value (ticks
since the epoch) during the import operation. Defaults to false in which case all
date values are treated as ISO-8601 string formats.

MONGODB_JSON Format - Automatic Table Creation
When you run the import utility to load data from a MongoDB export package, tables
can be automatically created for you. If ddlSchemaFile is not utilized and the format
for import is MONGODB_JSON, import automatically issues the following DDL to create the
table structure for import:

create table if not exists tableName(
 id STRING,
 document JSON,
 primary key(id)
)

During import, each record in the table is populated by extracting the "_id" attribute of
the MongoDB document and populating the id attribute of the record in Oracle NoSQL
Database with the value from the "_id" attribute.

Monitoring Import Progress
For long running import operations where dataset is large, it is useful to track the
progress of the running import utility. You can track the progress of import by using the
-verbose flag and redirecting the standard output of the command to a file or piping it
to the Unix command, tail -f.

How Import Checkpoints Work

The granularity of checkpoints for import is at the file level. Recall that you can supply
a directory containing many files, each in turn containing fragments of data to be
imported into one or more tables residing in Oracle NoSQL Database (note that
multiple table imports are only supported when importing from an "export package"
written by export) . As the import operation completes loading each file, it updates
the checkpoint file with its progress. If the import operation fails and is re-run, the
import/export utility consults the checkpoint file and ignore any files that have already
been loaded into Oracle NoSQL Database, effectively picking up where the operation
left off. Hence it is advisable to try and break up very large files into smaller, more
manageable chunks of data, making the granularity of checkpoint smaller so that
restarting after a failure is a faster import operation.

Data Corruption Detection During Import

When importing binary formatted data that has been exported from Oracle NoSQL
Database, the import utility computes the checksum of each record and attempts to

Appendix C
import

C-16

match that checksum against the checksum that is stored with the record in the file
being imported. If the checksums do not match, the record is rejected and written to
the errorOutput file.

Import Exit Codes

Name Code Description

EXIT_OK 0 No errors found.

EXIT_USAGE 100 Illegal import command usage.

EXIT_NOCONNECT 103 The source store could not be connected
using the given store name and helper host.

EXIT_UNEXPECTED 104 The utility experienced an unexpected error.

EXIT_NOREAD 106 The import utility does not have permission to
read the export package.

EXIT_SECURITY_ERROR 110 Error loading security files.

EXIT_NOEXPPACKAGE 112 The export package required for import cannot
be found at the identified location.

Valid JSON Files
When you import a JSON file, ensure that your JSON file meets the following criteria:

• The JSON file to import must contain 1 or multiple JSON records.

• The JSON record must be a collection of key/value pairs surrounded by a pair of
curly brackets.

• The JSON record can be in a single line or formatted in multiple lines with
indentation and carriage returns.
Example:

{"id" : 1, "lastName" : "Anderson", "firstName" : "Nick",
"phones" : {"home" : "800-555-9201", "work" : "877-123-8811"}}

or:

{
 "id" : 1,
 "lastName" : "Anderson",
 "firstName" : "Nick",
 "phone" : {
 "home" : "800-555-9201",
 "work" : "877-123-8811"
 }
}

• Multiple JSON records in the file can be in separated JSON documents or in a
JSON array.

Appendix C
import

C-17

Separated JSON documents:

$ cat users.json
{"id" : 1, "lastName" : "Anderson", "firstName" : "Nick", "age" :
30}
{"id" : 2, "lastName" : "John", "firstName" : "Anderson", "age" :
31}
{"id" : 3, "lastName" : "Peter", "firstName" : "smith", "age" : 32}

JSON array:

$ cat users.json
[
 {"id" : 1, "lastName" : "Anderson", "firstName" : "Nick",
"age" : 30},
 {"id" : 2, "lastName" : "John", "firstName" : "Anderson",
"age" : 30},
 {"id" : 3, "lastName" : "Peter", "firstName" : "smith", "age" :
30}
]

load admin metadata
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar load -store <storeName>
-host <hostname> -port <port> -load-admin
-source <admin-backup-dir> [-force]
[-username <user>] [-security <security-file-path>]

Loads the admin metadata from the snapshot to the new store. In this case the
-source directory must point to the environment directory of the admin node from
the snapshot. The store must not be available for use by users at the time of this
operation.

where:

• -load-admin Specifies that only admin metadata will be loaded into the store.

Note:

This option should not be used on a store unless that store is being
restored from scratch. If -force is specified in conjunction with -load-
admin, any existing metadata in the store, including tables and security
metadata, will be overwritten. See Using the Load Program for more
information.

• -host <hostname> Identifies the host name of a node in your store.

• -port <port> Identifies the registry port in use by the store's Node.

• -security <security-file-path> Identifies the security file used to specify
properties for login.

Appendix C
load admin metadata

C-18

• -source <admin-backup-dir> The admin snapshot directory containing the
contents of the admin metadata that is to be loaded into the store.

• -store <storeName> Identifies the new store which is the target of the load.

• -username <user> Identifies the name of the user to login to the secured store.

load store data
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar load [-verbose]
-store <storeName> -host <hostname> -port <port>
-source <shard-backup-dir>[, <shard-backup-dir>]*
[-checkpoint <checkpoint-files-directory>]
[-username <user>] [-security <security-file-path>]

Loads data into a store from backup directories. The bulk put API is used by this utility
to load data into the target store. To recreate the complete contents of the store, you
must specify one directory per shard for each shard associated with the store.

The load utility is highly parallelized. To further boost load performance, you can
choose to run multiple concurrent invocations of the load utility on different machines,
and assign each invocation a non-overlapping subset of the shard directories,
using the -source argument. The use of these additional machine resources could
significantly decrease overall elapsed load times.

Note:

Creating multiple processes on the same machine is unlikely to be beneficial
and could be detrimental, since the two processes are likely to be contending
for the same CPU and network resources.

where:

• -checkpoint <checkpoint-files-directory> The utility used this directory to
checkpoint its progress on a periodic basis. If the load process is interrupted for
some reason, the progress checkpoint information is used to skip data that had
already been loaded when the load utility is subsequently re-executed with the
same arguments. If the -checkpoint flag is not specified, progress will not be
checkpointed and all the data in the partitions that were already loaded will be
reread.

• -host <hostname> Identifies the host name of a node in your store.

• -port <port> Identifies the registry port in use by the store's node.

• -security <security-file-path> Identifies the security file used to specify
properties for login.

• -source <shard-backup-dir>[,<shard-backup-dir>]* These backup directories
typically represent the contents of snapshots created using the snapshot
commands described at Taking a Snapshot.

• -store <storeName> Identifies the name of the store.

Appendix C
load store data

C-19

• -username <user> Identifies the name of the user to login to the secured store.

makebootconfig
java -Xmx64m -Xms64m
-jar KVHOME/lib/kvstore.jar makebootconfig [-verbose]
-root <rootDirectory> -host <hostname> -harange <startPort,endPort>
-port <port> [-config <configFile>]
[-store-security <none | configure | enable>]
[-noadmin]
[-admindir <directory path>]
[-admindirsize <directory size>]
[-storagedir <directory path>]
[-storagedirsize <directory size>]
[-rnlogdir <directory path>]
[-capacity <n_rep_nodes>]
[-num_cpus <ncpus>][-memory_mb <memory_mb>]
[-servicerange <startPort,endPort>]
[-admin-web-port <admin web service port>]
[-hahost <haHostname>]
[-secdir <security dir>] [-pwdmgr {pwdfile | wallet | <class-name>}]
[-kspwd <password>]
[-external-auth {kerberos}]
 [-krb-conf <kerberos configuration>]
 [-kadmin-path <kadmin utility path>]
 [-instance-name <database instance name>]
 [-admin-principal <kerberos admin principal name>]
 [-kadmin-keytab <keytab file>]
 [-kadmin-ccache <credential cache file>]
 [-princ-conf-param <param=value>]*
[-security-param <param=value>]*
[-mgmt {jmx|none}]
[-dns-cachettl <time in sec>]
 [-force]

where:

• -capacity <n_rep_nodes> The total number of Replication Nodes a Storage Node
can support. The value defaults to "1".

If capacity is set to 0, then this Storage Node may be used to host Arbiter Nodes.

• -config <configFile> Only specified if more than one Storage Node Agent
process will share the same root directory. This value defaults to config.xml.

• -dns-cachettl <time in sec> Specifies the number of seconds that Replication
Nodes should cache host name to IP address mappings. The default value is
-1, which means mappings should be cached indefinitely. A value of 0 means
mappings should not be cached. The value of this flag is used to set the
networkaddress.cache.ttl and networkaddress.cache.negative.ttl security
properties.

• -external-auth {kerberos} Specifies Kerberos as an external authentication
service. If no keytab or credential cache has been specified on the command line,
an interactive version of the securityconfig utility will run.

Appendix C
makebootconfig

C-20

This flag is only permitted when the value of the -store-security flag is specified
as configure or enable.

To remove Kerberos authentication from a running store, set the value of the
userExternalAuth security.xml parameter to NONE.

For more information on Kerberos, see Kerberos Authentication Service in the
Security Guide.

where -external-auth can have the following flags:

– -admin-principal <kerberos admin principal name>

Specifies the principal used to login to the Kerberos admin interface. This
is required while using kadmin keytab or password to connect to the admin
interface.

– -kadmin-ccache <credential cache file>

Specifies the complete path name to the Kerberos credentials cache file that
should contain a service ticket for the kadmin/ADMINHOST. ADMINHOST is the
fully-qualified hostname of the admin server or kadmin/admin service.

If not specified, the user is prompted to enter the password for principal
while logging to the Kerberos admin interface. This flag cannot be specified
in conjunction with the -kadmin-keytab flag.

– -kadmin-keytab <keytab file>

Specifies the location of a Kerberos keytab file that stores Kerberos admin
user principals and encrypted keys. The security configuration tool will use the
specified keytab file to login to the Kerberos admin interface.

The default location of the keytab file is specified by the Kerberos
configuration file. If the keytab is not specified there, then the system looks
for the file user.home/krb5.keytab.

You need to specify the -admin-principal flag when using keytab to login
to the Kerberos admin, otherwise the correct admin principal will not be
recognized. This flag cannot be specified in conjunction with the -kadmin-
ccache flag.

– -kadmin-path <kadmin utility path>

Indicates the absolute path of the Kerberos kadmin utility. The default value
is /usr/kerberos/sbin/kadmin.

– -krb-conf <kerberos configuration>

Specifies the location of the Kerberos configuration file that contains the
default realm and KDC information. If not specified, the default value is /etc/
krb5.conf.

– -princ-conf-param <param=value>*

A repeatable argument that allows configuration defaults to be overridden.

Use the krbPrincValidity parameter to specify the expiration date of the
Oracle NoSQL Database Kerberos service principal.

Use the krbPrincPwdExpire parameter to specify the password expiration
date of the Oracle NoSQL Database Kerberos service principal.

Use the krbKeysalt parameter to specify the list of encryption types and salt
types to be used for any new keys created.

Appendix C
makebootconfig

C-21

• -force Optionally specified to force generating the boot configuration files even if
boot config verification finds any invalid parameters.

• -hahost <haHostname> Can be used to specify a separate network interface for
store replication traffic. This defaults to the hostname specified using the -host
flag.

The host name specified here must be resolvable using DNS or the /etc/hosts
file on any machine running client code that wants to connect to the node.

• -harange <startPort,endPort> A range of free ports that the Replication Nodes
and Admins use to communicate among themselves. These ports should be
sequential. You must assign at least as many ports as the specified capacity for
this node, plus an additional port if the node hosts an Admin.

• -host <hostname> Identifies a host name associated with the node on which
the command is run. This hostname identifies the network interface used for
communication with this node.

The host name specified here must be resolvable using DNS or the /etc/hosts
file on any machine running client code that wants to connect to the node.

• -kspwd<password> For script-based configuration you can use this option to allow
tools to specify the keystore password on the command line. If it is not specified,
the user is prompted to enter the password.

• -memory_mb <memory_mb> The total number of megabytes of memory available
in the machine. If the value is 0, the store attempts to determine the amount of
memory on the machine, but the value is only available when the JVM used is the
Oracle Hotspot JVM. The default value is "0".

For best results, do not specify this parameter. Oracle NoSQL Database will
determine the proper value by default. This parameter should be used sparingly,
and only for exceptional situations.

• -num_cpus <ncpus> The total number of processors on the machine available to
the Replication Nodes. If the value is 0, the system attempts to query the Storage
Node to determine the number of processors on the machine. This value defaults
to "0".

For best results, do not specify this parameter. Oracle NoSQL Database will
determine the proper value by default. This parameter should be used sparingly,
and only for exceptional situations.

• -port <port> The TCP/IP port on which Oracle NoSQL Database should be
contacted. Sometimes referred to as the registry port. This port must be free on
the node on which this command is run.

• -pwdmgr [pwdfile | wallet]

Indicates the password manager mechanism used to hold passwords that are
needed for access to keystores, and so on.

where -pwdmgr has the following options:

– -pwdmgr pwdfile

Indicates that the password store is a read-protected clear-text password file.
This is the only available option for Oracle NoSQL Database CE deployments.
You can specify an alternate implementation.

– -pwdmgr wallet

Appendix C
makebootconfig

C-22

Specifies Oracle Wallet as the password storage mechanism. This option is
only available in the Oracle NoSQL Database EE version.

• -root <rootDirectory> Identifies where the root directory should reside.

• -secdir <security dir>

Specifies the name of the directory within the KVROOT that will hold the security
configuration. This must be specified as a name relative to the specified secroot. If
not specified, the default value is security.

• -security-param <param=value>*

A repeatable argument that allows configuration defaults to be overridden.

Use the krbServiceName parameter to specify the service name of the Oracle
NoSQL Database Kerberos service principal.

Use the krbServiceKeytab parameter to specify the keytab file name in security
directory of the Oracle NoSQL Database Kerberos service principal.

• -servicerange <startPort,endPort> A range of ports that may be used for
communication among administrative services running on a Storage Node and
its managed services. This parameter is optional and is useful when services on
a Storage Node must use specific ports for firewall or other security reasons.
By default the services use anonymous ports. The format of the value string is
"startPort,endPort."

• -admin-web-port <admin web service port> The TCP/IP port on which the
admin web service should be started. If not specified, the default port value is
–1. If a positive integer number is not specified for -admin-web-port, then admin
web service does not start up along with the admin service. See REST API for
Administering Oracle NoSQL Database.

• -noadmin Specifies to disable the bootstrap admin service for SNA.

• -admindir <path> Specify a path to the directory to be used to store the
environment associated with an Admin Node. If no directory is specified, Admin
Nodes use a directory under the root directory.

• -admindirsize <directory size> Specify the size of the admin storage directory
identified by -admindir. This parameter is optional. See Managing Admin
Directory Size.

The value specified for this parameter must be a long, followed optionally by a unit
string. Accepted unit strings are: KB, MB, and GB, corresponding to 1024, 1024^2,
and 1024^3 respectively. Acceptable strings are case insensitive. Valid delimiters
between the long value and the unit string are " ", "-", or "_".

For example:

-admindirsize 200 MB
-admindirsize 1_gb
-admindirsize 3000-Mb

• -storagedir <path> Specifies a path to the directory that a Replication Node will
use for storage. If your Storage Node will host more than one (1) replication node,
specify this argument once for each Replication Node, being sure that the number
of arguments does not exceed the Storage Node capacity.

If you do not specify a storage directory explicitly, Replication Nodes use a
directory under the root directory. Be sure to match the number of -storagedir

Appendix C
makebootconfig

C-23

arguments to the value of the capacity argument. For example, if your Storage
Node hosts four disks, and you are using one disk for each replication node,
specify a capacity of four, and have four -storagedir arguments, each with a
corresponding -storagedirsize <directory size> value.

• -storagedirsize <directory size> Specifies the size of the directory
identified by each -storagedir argument. While this parameter is optional, we
strongly recommend that you specify its value, since the system takes the -
storagedirsize <directory size> into consideration when determining store
topology. For example, if you have some Storage Nodes each with smaller disk
capacity than other store SNs, the system arranges to store less data on those
SNs by adjusting partition distribution to shards to match the storage capacity. See
Managing Storage Directory Sizes for details.

Further, it is an error to specify the -storagedirsize <directory size>
parameter for some named storage directories, but not all.

Specify the -storagedirsize <directory size> value as a long, optionally
followed by a unit string. The accepted unit strings are: KB, MB, GB, and TB,
corresponding to 1024, 1024^2, 1024^3, 1024^4, respectively. Acceptable strings
are case insensitive. Valid delimiter characters between the long value and the unit
string are " ", "-", or "_".

For example:

-storagedirsize 200 MB
-storagedirsize 4_tb
-storagedirsize 5000-Mb

Note:

If you specify the -storagedir parameter, but not -storagedirsize,
makebootconfig displays a warning. We strongly recommend specifying
both parameters.

• -storageDirStorageType [hard drive | SSD | NVMe] Specifies the type of disk
on which storage directories reside.

• -rnlogdir <path> Specify a path to the directory to be used for storing the
Replication Node log files. This flag may be used more than once in the command
to specify multiple Replication Node log directories, but the number should not
exceed the capacity for the node.

If no directory is specified, by default, the logs are stored under the root directory.

• -store-security [none | configure | enable] Specifies if security will
be used or not. If -store-security none is specified, no security will be in
use. If -store-security configure is specified, security will be used, and
the makebootconfig process invokes the security configuration utility as part
processing. If -store-security enable is specified, security will be used. You
will need to configure security either by utilizing the security configuration utility or
by copying a previously created configuration from another system.

Appendix C
makebootconfig

C-24

Note:

The -store-security command is optional. Even if the user does not
specify –store-security, security is enabled by default. The user must
run securityconfig utility to create the security folder before starting up
the storage node agent.

• -mgmt {jmx|none}
Specifies the type of monitoring to be enabled for the Storage Node . This
parameter is optional. The default value is none when monitoring is disabled. Use
this parameter to make Java Management Extensions (JMX) agents available for
monitoring.

If you specify jmx, JMX interfaces will be used for monitoring the Storage Node
and any NoSQL components like Replication Nodes, Admin Node and Storage
Node Agent hosted on that Storage Node. JMX agents in Oracle NoSQL Database
are read-only interfaces. These interfaces let you poll a Storage Node for
information about the Storage Node and about any Replication Nodes or Admins
that the Storage Node hosts. The information available from polling includes
the service status (RUNNING, STOPPED, UNREACHABLE etc.), operational
parameters, and performance metrics. Also, JMX can be used to monitor Arbiter
Nodes.

JMX agents also deliver event traps and notifications for particular events. For
example, JMX sends notifications for every service status state change, and
any performance limits that the store exceeds. You can get the total number of
operation requests using the metric TotalReq and the metric TotalOps gives the
total number of records returned or processed. See Monitoring for Storage Nodes
(SN) for the definitions of the events available for monitoring .

Creates a configuration file used to start a not-yet-deployed Storage Node to be used
in an instance of Oracle NoSQL Database. The file cannot pre-exist. To create the
initial "boot config" file used to configure the installation see Installation Configuration
Parameters.

You can change parameters after setting them with the makebootconfig utility. The
commands to use are change-policy —params and plan change-parameters –
params. Changing parameters may require restarting a node. For more information,
see CLI Command Reference.

ping
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar ping [-verbose] [-json] [-shard <shardId>]
-host <hostname> -port <port> or
-helper-hosts <host:port>[,host:port]*>
-username <user>
-security <security-file-path>

Attempts to contact a store to get status of running services. This utility provides
both a concise summary of the health of a store, as well as detailed information
about the topology of the store. It can signal a red/yellow/green status, to let you
know whether the store is in full health, whether the store has experienced some

Appendix C
ping

C-25

failures but is operational, or whether the store has critical problems. ping uses the
nodes specified by the -helper-hosts or -host/-port arguments to locate topology
metadata describing the store. Using that topology, ping contacts all the RNs, SNs,
Arbiters, and Admin services associated with a store. You can also indicate a specific
shard to return its status information.

Specify the -helper-hosts flag as an alternative to the existing -host and -port flags.
If multiple helper hosts are in use, this utility has multiple nodes it can use to make an
initial point of contact with the store, and will have a greater chance of success if some
nodes of the store are unavailable.

Specify –shard <shardId> to return a subset of information.

Ping Command Line Parameters
The ping utility's command line parameters are:

• -host identifies the name of a specific host in the store. Use this option to check
whether the SNA on that particular host can be contacted.

If this parameter is specified, then -port must also be specified. Further, if the
-host and -port parameters are specified, then the -helper-hosts must not be
specified.

• -port identifies the listening port for a specific host in the store. Use this
parameter only if you are also using the -host parameter.

• -helper-hosts identifies a comma-separated list of one or more host:port pairs in
the store. Use this parameter to check the health of the entire store.

Using the –helper-hosts parameter precludes specifying the -host and -port
flags.

If multiple helper hosts are provided, this utility has multiple nodes it can use
to make an initial point of contact with the store, and thus a greater chance of
success if some nodes of the store are unavailable. For example:

-helper-hosts hst1:5000,hst2:5100, hst3:5100

• -username is the name of the user that you want to ping the store as. This
parameter is required if your store is configured to require authentication. This
user should have at least SYSVIEW access to the store. The built-in dbadmin role is
sufficient.

• -security is the client security configuration file. This parameter is required if your
store is configured to require authentication. For information on the parameters
contained in this file, see Configuring SSL in the Java Direct Driver Developer's
Guide. For example:

oracle.kv.auth.username=clientUID1
oracle.kv.auth.pwdfile.file=/home/nosql/login.pwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=/home/nosql/client.trust

Appendix C
ping

C-26

If you are using Kerberos, then this file would look something like this:

oracle.kv.auth.kerberos.keytab = kerberos/mykeytab
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=
node01:oraclenosql/node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

• -verbose is optional. It causes the ping utility to provide additional information
about the utility's current actions.

• -json causes the ping utility to write its output in JSON format.

• -shard <shardId> is optional and returns a subset of status information about the
specific shard ID you supply. .

For example:

bash-4.1$ java -jar $KVHOME/lib/kvstore.jar ping -host
mynode.mycompany.com
-port 5000 -shard rg2 Pinging components of store mystore based
upon topology
sequence #2376 shard rg2
500 partitions and 3 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
Shard Status: healthy
Admin Status: healthy
Zone [name=myshardzone id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:3 offline:0 maxDelayMillis:0 maxCatchupTimeSecs:0
Storage Node [sn10] on nodeA:5000 Zone: [name=myshardzone id=zn1
type=PRIMARY allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 18.3.2 2018-09-17 09:33:45 UTC
Build id: a72484b8b33c Edition: Enterprise
 Rep Node [rg2-rn1] Status: RUNNING,MASTER
sequenceNumber:71,166
haPort:5010 available storage size:12 GB
Storage Node [sn11] on nodeB:5000 Zone: [name=myshardzone id=zn1
type=PRIMARY allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 18.3.2 2018-09-17 09:33:45 UTC
Build id: a72484b8b33c Edition: Enterprise
 Rep Node [rg2-rn2] Status: RUNNING,REPLICA
sequenceNumber:71,166
haPort:5011 available storage size:14 GB delayMillis:0
catchupTimeSecs:0
Storage Node [sn12] on nodeC:5000 Zone: [name=myshardzone id=zn1
type=PRIMARY allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 18.3.2 2018-09-17 09:33:45 UTC
Build id: a72484b8b33c Edition: Enterprise
 Rep Node [rg2-rn3] Status: RUNNING,REPLICA
sequenceNumber:71,166
haPort:5012 available storage size:24 GB delayMillis:0
catchupTimeSecs:0

Appendix C
ping

C-27

Ping Exit Codes
The following exit codes can be returned by this utility. Exit codes can be returned both
as a process exit code, and as part of the JSON output.

Name Code Description

EXIT_OK 0 All services in the store
could be located and are
in a known, good state (for
example, RUNNING).

EXIT_OPERATIONAL 1 One or more services in the
store could not be reached,
or are in an unknown or
not usable state. In this
case the store should support
all data operations across
all shards, as well as all
administrative operations, but
may be in a state of degraded
performance. Some action
should be taken to find and fix
the problem before part of the
store becomes unavailable.

EXIT_NO_ADMIN_QUORUM 2 The Admin Service replication
group does not have quorum
or is not available at all,
and it is not possible
to execute administrative
operations which modify
store configuration. The store
supports all normal data
operations despite the loss
of admin quorum, but this
state requires immediate
attention to restore full store
capabilities.

EXIT_NO_SHARD_QUORUM 3 One or more of the
shards does not have
quorum and either cannot
accept write requests, or
is completely unavailable.
This state requires immediate
attention to restore store
capabilities. The exit code
takes precedence over
EXIT_NO_ADMIN_QUORUM, so
if this exit code is used,
it is possible that the
administrative capabilities are
also reduced or unavailable.

EXIT_USAGE 100 Illegal ping command usage.

Appendix C
ping

C-28

Name Code Description

EXIT_TOPOLOGY_FAILURE 101 ping was unable to find a
topology in order to operate.
This could be a store problem,
a network problem, or it could
be a usage problem with the
parameters passed to ping.
For example, the specified -
host/-port pair are not part
of the store, or none of the
hosts specified on -helper-
hosts can be contacted.

EXIT_UNEXPECTED 102 The utility has experienced an
unexpected error.

Note:

Exit codes 1 through 3 may indicate a network connectivity issue that should
be checked first before concluding that any services have a problem.

Ping Report Text Output
By default, the ping utility reports store health in human readable format. For example:

Note:

Extra line breaks have been added so that the command output fits in the
available space.

$ java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar ping -host nodeA
-port 1310
Pinging components of store mystore based upon topology sequence #108
100 partitions and 3 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
Shard Status: healthy:1 writable-degraded:0 read-only:0 offline:0
Admin Status: healthy
Zone [name=MyDC id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:3 offline:0 maxDelayMillis:0 maxCatchupTimeSecs:0
Storage Node [sn1] on nodeA:13100
Zone: [name=MyDC id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 18.3.2 2018-09-17 09:33:45 UTC
Build id: a72484b8b33c
 Admin [admin1] Status: RUNNING,MASTER
 Rep Node [rg1-rn1] Status: RUNNING,MASTER
 sequenceNumber:227 haPort:13117 available storage size:16 GB

Appendix C
ping

C-29

Storage Node [sn2] on nodeB:13200
 Zone: [name=MyDC id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING Ver: 18.3.2 2018-09-17 09:33:45 UTC
 Build id: a72484b8b33c
 Admin [admin2] Status: RUNNING,REPLICA
 Rep Node [rg1-rn2] Status: RUNNING,REPLICA
 sequenceNumber:227 haPort:13217 available storage size:14
GB delayMillis:0
 catchupTimeSecs:0
Storage Node [sn3] on nodeC:13300
 Zone: [name=MyDC id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING Ver: 18.3.2 2018-09-17 09:33:45 UTC
 Build id: a72484b8b33c
 Admin [admin3] Status: RUNNING,REPLICA
 Rep Node [rg1-rn3] Status: RUNNING,REPLICA
 sequenceNumber:227 haPort:13317 available storage size:24
GB delayMillis:0
 catchupTimeSecs:0

Ping Report JSON Output
When the -json command line parameter is specified, this utility provides its report in
JSON formatting.

Note:

Extra line breaks have been introduced to allow this output to fit in the
available space.

bash-3.2$ java -Xmx64m -Xms64m \
-jar dist/lib/kvstore.jar ping -host node01 \
-port 5000 -json
{
 "operation" : "ping",
 "returnCode" : 5000,
 "description" : "No errors found",
 "returnValue" : {
 "topology" : {
 "storeName" : "orcl",
 "sequenceNumber" : 9,
 "numPartitions" : 0,
 "numStorageNodes" : 2,
 "time" : 1539857069504,
 "version" : "18.3.2"
 },
 "adminStatus" : "healthy",
 "shardStatus" : {
 "healthy" : 1,
 "writable-degraded" : 1,

Appendix C
ping

C-30

 "read-only" : 0,
 "offline" : 0,
 "total" : 2
 },
 "zoneStatus" : [{
 "resourceId" : "zn1",
 "name" : "Atlanta",
 "type" : "PRIMARY",
 "allowArbiters" : false,
 "masterAffinity" : false,
 "rnSummaryStatus" : {
 "online" : 2,
 "offline" : 0,
 "read-only" : 0,
 "hasReplicas" : false
 }
 }, {
 "resourceId" : "zn2",
 "name" : "Boston",
 "type" : "SECONDARY",
 "allowArbiters" : false,
 "masterAffinity" : false,
 "rnSummaryStatus" : {
 "online" : 1,
 "offline" : 0,
 "read-only" : 0,
 "hasReplicas" : true,
 "maxDelayMillis" : 0,
 "maxCatchupTimeSecs" : 0
 }
 }],
 "snStatus" : [{
 "resourceId" : "sn1",
 "hostname" : "node01",
 "registryPort" : 5000,
 "zone" : {
 "resourceId" : "zn1",
 "name" : "Atlanta",
 "type" : "PRIMARY",
 "allowArbiters" : false,
 "masterAffinity" : false
 },
 "serviceStatus" : "RUNNING",
 "version" : "18.3.2 2018-09-17 09:33:45 UTC Build id:
a72484b8b33c Edition: Enterprise",
 "adminStatus" : {
 "resourceId" : "admin1",
 "status" : "RUNNING",
 "state" : "MASTER",
 "authoritativeMaster" : true
 },
 "rnStatus" : [{
 "resourceId" : "rg1-rn1",
 "status" : "RUNNING",
 "requestsEnabled" : "ALL",

Appendix C
ping

C-31

 "state" : "MASTER",
 "authoritativeMaster" : true,
 "sequenceNumber" : 23,
 "haPort" : 5002,
 "availableStorageSize" : "3 GB"
 }, {
 "resourceId" : "rg2-rn1",
 "status" : "RUNNING",
 "requestsEnabled" : "ALL",
 "state" : "MASTER",
 "authoritativeMaster" : true,
 "sequenceNumber" : 23,
 "haPort" : 5003,
 "availableStorageSize" : "3 GB"
 }],
 "anStatus" : []
 }, {
 "resourceId" : "sn2",
 "hostname" : "node02",
 "registryPort" : 6000,
 "zone" : {
 "resourceId" : "zn2",
 "name" : "Boston",
 "type" : "SECONDARY",
 "allowArbiters" : false,
 "masterAffinity" : false
 },
 "serviceStatus" : "RUNNING",
 "version" : "18.3.2 2018-09-17 09:33:45 UTC Build id:
a72484b8b33c Edition: Enterprise",
 "adminStatus" : {
 "resourceId" : "admin2",
 "status" : "RUNNING",
 "state" : "REPLICA"
 },
 "rnStatus" : [{
 "resourceId" : "rg1-rn2",
 "status" : "RUNNING",
 "requestsEnabled" : "ALL",
 "state" : "REPLICA",
 "sequenceNumber" : 23,
 "haPort" : 6003,
 "availableStorageSize" : "3 GB",
 "networkRestoreUnderway" : false,
 "delayMillis" : 0,
 "catchupTimeSecs" : 0,
 "catchupRateMillisPerMinute" : 0
 }],
 "anStatus" : []
 }],
 "exitCode" : 0
 }
}

Appendix C
ping

C-32

restart
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar restart
[-disable-services] [-verbose]
-root <rootDirectory> [-config <bootstrapFileName>]

Note:

Before restarting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

Stops and then starts the Oracle NoSQL Database Storage Node Agent and services
related to the root directory.

To disable all services associated with a stopped SNA use the -disable-services
flag. For more information, see Disabling Storage Node Agent Hosted Services

runadmin
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin
-host <hostname> -port <port> | -helper-hosts <host:port[,host:port]*>
[-store <storeName>]
[-username <user>] [-security <security-file-path>]
[-admin-username <adminUser>]
[-admin-security <admin-security-file-path>]
[-timeout <timeout ms>]
[-consistency <NONE_REQUIRED(default) | ABSOLUTE |
 NONE_REQUIRED_NO_MASTER>]
[-durability <COMMIT_SYNC(default) | COMMIT_NO_SYNC |
 COMMIT_WRITE_NO_SYNC>]
[-dns-cachettl <time in sec>]
[-registry-open-timeout <time in ms>]
[-registry-read-timeout <time in ms>]

The runadmin command starts the Admin command line interface (CLI) utility on the
host Storage Node (SN) of your choice. You use the CLI to perform configuration
activities for your store.

You can start the CLI on a single host, using the following flags. You can specify any
storage node as a single host, including an Admin-only host without any replica nodes:

-host <hostname> –port <port>

Appendix C
restart

C-33

To have more than one host support the Admin command line interface, use the
–helper-hosts option with two or more hosts:

-helper-hosts <host:port[,host:port]*>

Note:

The runadmin –admin-host <adminHost> –admin-port <adminPort>
options are deprecated. Entering either option results in an error. If you
are using these options in scripts, replace them with either the –host or
–helper-hosts options (and their port specifications), as noted in the syntax
statement.

Use the –timeout, –consistency, and –durability flags to override the connect
configuration settings.

where:

• -timeout

Specifies the store request time-out in milliseconds. There is no default.

• -consistency

Indicates the store request consistency. The default value is NONE_REQUIRED.

• -durability

Indicates the store request durability. The default value is COMMIT_SYNC.

start
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start
[-disable-services] [-verbose]
-root <rootDirectory>
[-config <bootstrapFileName>][-restore-from-snapshot]<snapshot-
time_snapshot-dir-name> [-update-config {true | false}]

Starts the Oracle NoSQL Database Storage Node Agent (and if configured, store) in
the root directory.

To disable all services associated with a stopped SNA use the -disable-services
flag. For more information, see Disabling Storage Node Agent Hosted Services.

You can optionally start from an existing snapshot, instead of using –config
<bootstrapFileName>.

To start from a snapshot, use the –restore-from-snapshot option, followed by the
snapshot directory name with its snapshot-time prefix. Specify –update-config true
to override the existing configuration as part of restoring snapshot data.

Appendix C
start

C-34

status
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar status
-root <rootDirectory> [-config <bootstrapFileName>]
[-verbose] [-disable-services]

Attempts to connect to a running Oracle NoSQL Database Storage Node Agent and
prints out its status.

For example:

java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar \
status -root KVROOT
SNA Status : RUNNING

stop
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop
[-disable-services] [-verbose]
-root <rootDirectory> [-config <bootstrapFileName>]

Stops the Oracle NoSQL Database Storage Node Agent and services related to the
root directory.

To disable all services associated with a stopped SNA use the -disable-services
flag. For more information, see Disabling Storage Node Agent Hosted Services

version
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar version

Prints version.

Appendix C
status

C-35

D
Initial Capacity Planning

To deploy a store, you must specify a replication factor, the desired number of
partitions, and the Storage Nodes on which to deploy the store. The following sections
describe how to calculate these values based on your application's requirements and
the characteristics of the hardware available to host the store.

The resource estimation is a two step process:

1. Determine the storage and I/O throughput capacity of a representative shard,
given the characteristics of the application, the disk configuration on each
machine, and the disk throughput. As part of this step, you should also estimate
the amount of physical memory that each machine requires, and its network
throughput capacity.

2. Use the shard level storage and I/O throughput capacities as a basis for
extrapolating throughput from one shard to the required number of shards and
machines, given the storewide application requirements.

Oracle NoSQL Database distribution includes a spreadsheet for you to use in the
capacity planning process. The spreadsheet is located here: <KVHOME>/doc/misc/
InitialCapacityPlanning.xls.

The spreadsheet has two main sections:

• 1. Shard Capacity

• 2. Store Sizing

The two main sections both have some required parameters for you to complete, as
well as parameters with default options.

The next sections in this appendix correspond to named columns in the spreadsheet:

• Column A lists cell names associated with the values in column B.

• Dark purple, bold text labels represent required values for you to provide as input.

• Dark blue, bold text labels indicate default values that you can optionally change.
The supplied default values are adequate for most estimates.

• Column C has descriptions of the value or computation associated with the value
in column B.

• The first three sections cover Shard Capacity: Application Characteristics,
Hardware Characteristics Machine Physical Memory contain required inputs.

The spreadsheet computes all other cells using the following formulas.

• After filling in the required inputs, the StoreMachines cell indicates how many
Storage Nodes should be available in the Storage Node pool.

• The StorePartitions cell indicates how many partitions to specify when creating the
store.

The spreadsheet calculations also account for JVM overhead. Keep in mind that these
computations yield estimates. The underlying model used as a basis for the estimation

D-1

makes certain simple assumptions. These assumptions are necessary because it is
difficult to provide a simple single underlying model that works well under a wide range
of application requirements. Use these estimates only as an initial starting point, and
refine them as necessary under a simulated or actual load.

Shard Capacity
To determine the shard capacity, first determine the application and hardware
characteristics described in this section. Having determined these characteristics,
enter them into the accompanying spreadsheet. The spread sheet will then calculate
the capacity of a shard on the basis of the supplied application and hardware
characteristics.

Application Characteristics

Replication Factor
In general, a Primary Replication Factor of 3 is adequate for most applications and is a
good starting point, because 3 replicas allow write availability if a single primary zone
fails. It can be refined if performance testing suggests some other number works better
for the specific workload. Do not select a Primary Replication Factor of 2 because
doing so means that even a single failure results in too few sites to elect a new master.
This is not the case if you have an Arbiter Node, as a new master can still be elected
if the Replication Factor is two and you lose a Replication Node. However, if you have
multiple failures before both Replication Nodes are caught up, you may not be able
to elect a new master. A Primary Replication Factor of 1 is to be avoided in general
since Oracle NoSQL Database has just a single copy of the data; if the storage device
hosting the data were to fail the data could be lost.

Larger Primary Replication Factor provide two benefits:

1. Increased durability to better withstand disk or machine failures.

2. Increased read request throughput, because there are more nodes per shard
available to service those requests.

However, the increased durability and read throughput has costs associated with it:
more hardware resources to host and serve the additional copies of the data and
slower write performance, because each shard has more nodes to which updates
must be replicated.

Note:

Only the Primary Replication Factor affects write availability, but both Primary
and Secondary Replication Factors, and therefore the Store Replication
Factor, have an effect on read availability.

The Primary Replication Factor is defined by the cell RF.

Average Key Size
Use knowledge of the application's key schema and the relative distributions of the
various keys to arrive at an average key length. The length of a key on disk is the

Appendix D
Shard Capacity

D-2

number of UTF-8 bytes needed to represent the components of the key, plus the
number of components, minus one.

This value is defined by the cell AvgKeySize.

Average Value Size
Use knowledge of the application to arrive at an average serialized value size. The
value size will vary depending upon the particular serialization format used by the
application.

This value is defined by the cell AvgValueSize.

Read and Write Operation Percentages
Compute a rough estimate of the relative frequency of store level read and write
operations on the basis of the KVS API operations used by the application.

At the most basic level, each KVS get() call results in a store level read operation
and each put() operation results in a store level write operation. Each KVS multi key
operation (KVStore.execute(), multiGet(), or multiDelete()) can result in multiple store
level read/write operations. Again, use application knowledge about the number of
keys accessed in these operations to arrive at an estimate.

Express the estimate as a read percentage, that is, the percentage of the total
operations on the store that are reads. The rest of the operations are assumed to
be write operations.

This value is defined by the cell ReadOpsPercent.

Estimate the percentage of read operations that will likely be satisfied from the file
system cache. The percentage depends primarily upon the application's data access
pattern and the size of the file system cache. Sizing Advice contains a discussion of
how this cache is used.

This value is defined by the cell ReadCacheHitPercent.

Hardware Characteristics
Determine the following hardware characteristics based on a rough idea of the type of
the machines that will be used to host the store:

• The number of disks per machine that will be used for storing KV pairs. This value
is defined by the cell DisksPerMachine. The number of disks per machine typically
determines the Storage Node Capacity as described in Storage Node Parameters.

• The usable storage capacity of each disk. This value is defined by the cell
DiskCapacityGB.

• The IOPs capacity of each disk. This information is typically available in the disk
spec sheet as the number of sustained random IO operations/sec that can be
delivered by the disk. This value is defined by the cell DiskIopsPerSec.

The following discussion assumes that the system will be configured with one RN per
disk.

Appendix D
Shard Capacity

D-3

Shard Storage and Throughput Capacities
There are two types of capacity that are relevant to this discussion: 1) Storage
Capacity 2) Throughput Capacity. The following sections describe how these
two measures of capacity are calculated. The underlying calculations are done
automatically by the attached spreadsheet based upon the application and hardware
characteristics supplied earlier.

Shard Storage Capacity
The storage capacity is the maximum number of KV pairs that can be stored in a
shard. It is calculated by dividing the storage actually available for live KV pairs (after
accounting for the storage set aside as a safety margin and cleaner utilization) by the
storage (including a rough estimation of Btree overheads) required by each KV pair.

The KV Storage Capacity is computed by the cell: MaxKVPairsPerShard.

Shard I/O Throughput capacity
The throughput capacity is a measure of the read and write ops that can be supported
by a single shard. In the calculations below, the logical throughput capacity is derived
from the disk IOPs capacity based upon the percentage of logical operations that
actually translate into disk IOPs after allowing for cache hits. The Machine Physical
Memory section contains more detail about configuring the caches used by Oracle
NoSQL Database.

For logical read operations, the shard-wide IOPs is computed as:

(ReadOpsPercent * (1 - ReadCacheHitPercent))

Note that all percentages are expressed as fractions.

For logical write operations, the shard-wide IOPs is computed as:

(((1 - ReadOpsPercent) / WriteOpsBatchSize) * RF)

The writeops calculations are very approximate. Write operations make a much
smaller contribution to the IOPs load than do the read ops due to the sequential writes
used by the log structured storage system. The use of WriteOpsBatchSize is intended
to account for the sequential nature of the writes to the underlying JE log structured
storage system. The above formula does not work well when there are no reads in the
workload, that is, under pure insert or pure update loads. Under pure insert, the writes
are limited primarily by acknowledgement latency which is not modeled by the formula.
Under pure update loads, both the acknowledgement latency and cleaner performance
play an important role.

The sum of the above two numbers represents the percentage of logical operations
that actually result in disk operations (the DiskIopsPercent cell). The shard's logical
throughput can then be computed as:

(DiskIopsPerSec * RF)/DiskIopsPercent

Appendix D
Shard Capacity

D-4

and is calculated by the cell OpsPerShardPerSec.

Memory and Network Configuration
Having established the storage and throughput capacities of a shard, the amount of
physical memory and network capacity required by each machine can be determined.
Correct configuration of physical memory and network resources is essential for the
proper operation of the store. If your primary goal is to determine the total size of the
store, skip ahead to Estimate total Shards and Machines but make sure to return to
this section later when it is time to finalize the machine level hardware requirements.

Note:

You can also set the memory size available for each Storage Node in your
store, either through the memory_mb parameter of the makebootconfig utility
or through the memorymb Storage Node parameter. For more information,
see Installation Configuration Parameters and Storage Node Parameters
respectively.

Machine Physical Memory
The shard storage capacity (computed by the cell MaxKVPairsPerShard) and the
average key size (defined by the cell AvgKeySize cell) can be used to estimate the
physical memory requirements of the machine. The physical memory on the machine
backs up the caches used by Oracle NoSQL Database.

Sizing the in-memory cache correctly is essential for meeting store's performance
goals. Disk I/O is an expensive operation from a performance point of view; the more
operations that can be serviced from the cache, the better the store's performance.

Before continuing, it is worth noting that there are two caches that are relevant to this
discussion:

1. The JE cache. The underlying storage engine used by Oracle NoSQL Database
is Berkeley DB Java Edition (JE). JE provides an in-memory cache. For the most
part, this is the cache size that is most important, because it is the one that is
simplest to control and configure.

2. The file system (FS) cache. Modern operating systems attempt to improve their
I/O subsystem performance by providing a cache, or buffer, that is dedicated to
disk I/O. By using the FS cache, read operations can be performed very quickly if
the reads can be satisfied by data that is stored there.

Sizing Advice
JE uses a Btree to organize the data that it stores. Btrees provide a tree-like
data organization structure that allows for rapid information lookup. These structures
consist of interior nodes (INs) and leaf nodes (LNs). INs are used to navigate to data.
LNs are where the data is actually stored in the Btree.

Because of the very large data sets that an Oracle NoSQL Database application is
expected to use, it is unlikely that you can place even a small fraction of the data into
JE's in-memory cache. Therefore, the best strategy is to size the cache such that it is

Appendix D
Shard Capacity

D-5

large enough to hold most, if not all, of the database's INs, and leave the rest of the
node's memory available for system overhead (negligible) and the FS cache.

Both INs and LNs can take advantage of the FS cache. Because INs and LNs do not
have Java object overhead when present in the FS cache (as they would when using
the JE cache), they can make more effective use of the FS cache memory than the JE
cache memory.

Of course, in order for the FS cache to be truly effective, the data access patterns
should not be completely random. Some subset of your key-value pairs must be
favored over others in order to achieve a useful cache hit rate. For applications where
the access patterns are not random, the high file system cache hit rates on LNs
and INs can increase throughput and decrease average read latency. Also, larger file
system caches, when properly tuned, can help reduce the number of stalls during
sequential writes to the log files, thus decreasing write latency. Large caches also
permit more of the writes to be done asynchronously, thus improving throughput.

Determine JE Cache Size
To determine an appropriate JE cache size, use the
com.sleepycat.je.util.DbCacheSize utility. This utility requires as input the number
of records and the size of the application keys. You can also optionally provide other
information, such as the expected data size. The utility then provides a short table of
information. The number you want is provided in the Cache Size column, and in the
Internal nodes and leaf nodes: MAIN cache row.

For example, to determine the JE cache size for an environment consisting of 100
million records, with an average key size of 12 bytes, and an average value size of
1000 bytes, invoke DbCacheSize as follows:

java -Xmx64m -Xms64m \
-d64 -XX:+UseCompressedOops -jar je.jar DbCacheSize \
-key 12 -data 1000 -records 100000000 -replicated -offheap

 === Environment Cache Overhead ===

 3,164,485 minimum bytes

 To account for JE daemon operation, record locks, HA network
 connections, etc, a larger amount is needed in practice.

 === Database Cache Size ===

 Number of Bytes Description
 --------------- -----------
 3,885,284,944 Internal nodes only: MAIN cache
 0 Internal nodes only: OFF-HEAP cache
 3,885,284,944 Internal nodes and leaf nodes: MAIN cache
 104,002,733,216 Internal nodes and leaf nodes: OFF-HEAP cache

Please make note of the following jvm arguments (they have a special meaning when
supplied to DbCacheSize):

1. The -d64 argument is used to ensure that cache sizes account for a 64-bit JVM.
Only 64-bit JVMs are supported by NoSQL DB.

Appendix D
Shard Capacity

D-6

2. The -XX:+UseCompressedOops causes cache sizes to account for
CompressedOops mode, which is used by NoSQL DB by default. This mode uses
more efficient 32 bit pointers in a 64-bit JVM thus permitting better utilization of the
JE cache.

3. The -replicated is used to account for memory usage in a JE
ReplicatedEnvironment, which is always used by NoSQL DB.

4. The -offheap is specified to use a JE off-heap cache, which is configured by
default in NoSQL DB. This causes DbCacheSize to print values for the main
(in-heap) cache and off-heap cache separately.

These arguments when supplied to Database Cache Size serve as an indication
that the JE application will also be supplied these arguments and Database Cache
Size adjusts its calculations appropriately. The arguments are used by Oracle NoSQL
Database when starting up the Replication Nodes which uses these caches.

The output indicates that a cache size of 3.6 GB is sufficient to hold all the internal
nodes representing the Btree in the JE cache. With a JE cache of this size, the IN
nodes will be fetched from the JE cache and the LNs will be fetched from the off-heap
cache or the disk.

For more information on using the DbCacheSize utility, see this Javadoc page. Note
that in order to use this utility, you must add the <KVHOME>/lib/je.jar file to your Java
classpath. <KVHOME> represents the directory where you placed the Oracle NoSQL
Database package files.

Having used DbCacheSize to obtain the JE cache size, the heap size can be calculated
from it. To do this, enter the number obtained from DbCacheSize into the cell named
DbCacheSizeMB making sure to convert the units from bytes to MB. The heap size is
computed by the cell RNHeapMB as below:

(DBCacheSizeMB/RNCachePercent)

where RNCachePercent is the percentage of the heap that is used for the JE cache.
The computed heap size should not exceed 32GB, so that the java VM can use its
efficient CompressedOops format to represent the java objects in memory. Heap sizes
with values exceeding 32GB will appear with a strikethrough in the RNHeapMB cell
to emphasize this requirement. If the heap size exceeds 32GB, try to reduce the size
of the keys to reduce the JE cache size in turn and bring the overall heap size below
32GB.

The heap size is used as the basis for computing the memory required by the machine
as below:

(RNHeapMB * DisksPerMachine)/SNRNHeapPercent

where SNRNHeapPercent is the percentage of the physical memory that is available
for use by the RN's hosted on the machine. The result is available in the cell
MachinePhysicalMemoryMB.

Machine Network Throughput
We need to ensure that the NIC attached to the machine is capable of delivering
the application I/O throughput as calculated earlier in Shard I/O Throughput capacity,
because otherwise it could prove to be a bottleneck.

Appendix D
Shard Capacity

D-7

The number of bytes received by the machine over the network as a result of write
operations initiated by the client is calculated as:

(OpsPerShardPerSec * (1 - ReadOpsPercent) *
 (AvgKeySize + AvgValueSize)) * DisksPerMachine

and is denoted by ReceiveBytesPerSec in the spreadsheet. Note that whether a node
is a master or a replica does not matter for the purposes of this calculation; the
inbound write bytes come from the client for the master and from the masters for the
replicas on the machine.

The number of bytes received by the machine as a result of read requests is computed
as:

((OpsPerShardPerSec * ReadOpsPercent)/RF) *
 (AvgKeySize + ReadRequestOverheadBytes) * DisksPerMachine

where ReadRequestOverheadBytes is a fixed constant overhead of 100 bytes.

The bytes sent out by the machine over the network as a result of the read operations
has two underlying components:

1. The bytes sent out in direct response to application read requests and can be
expressed as:

((OpsPerShardPerSec * ReadOpsPercent)/RF) *
 (AvgKeySize + AvgValueSize) * DisksPerMachine

2. The bytes sent out as replication traffic by the masters on the machine expressed
as:

(OpsPerShardPerSec * (1 - ReadOpsPercent) *
 (AvgKeySize + AvgValueSize) * (RF-1)) * MastersOnMachine

The sum of the above two values represents the total outbound traffic denoted by
SendBytesPerSec in the spreadsheet.

The total inbound and outbound traffic must be comfortably within the NIC's capacity.
The spreadsheet calculates the kind of network card, GigE or 10GigE, which is
required to support the traffic.

Estimate total Shards and Machines
Having calculated the per shard capacity in terms of storage and throughput, the
total number of shards and partitions can be estimated on the basis of the maximum
storage and throughput required by the store as a whole using a simple extrapolation.
The following inputs must be supplied for this calculation:

1. The maximum number of KV pairs that will stored in the initial store. This value
is defined by the cell MaxKVPairs. This initial maximum value can be increased
subsequently by using the topology transformation commands described in
Transforming the Topology Candidate.

2. The maximum read/write mixed operation throughput expressed as operations/sec
for the entire store. The percentage of read operations in this mix must be the

Appendix D
Estimate total Shards and Machines

D-8

same as that supplied earlier in the ReadOpsPercent cell. This value is defined by
the cell MaxStorewideOpsPerSec.

The required number of shards is first computed on the basis of storage requirements
as below:

MaxKVPairs/MaxKVPairsPerShard

This value is calculated by the cell StorageBasedShards.

The required number of shards is then computed again based upon IO throughput
requirements as below:

MaxStorewideOpsPerSec/OpsPerShardPerSec

This value is calculated by the cell named OpsBasedShards.

The maximum of the shards computed on the basis of storage and throughput above
is sufficient to satisfy both the total storage and throughput requirements of the
application.

The value is calculated by the cell StoreShards. To highlight the basis on which
the choice was made, the smaller of the two values in StorageBasedShards or
OpsBasedShards has its value crossed out.

Having determined the number of required shards, the number of required machines is
calculated as:

MAX(RF, (StoreShards*RF)/DisksPerMachine)

Number of Partitions
Every shard in the store must contain at least one partition, but it is best to configure
the store so that each shard always contains more than one partition. The records in
the KVStore are spread evenly across the KVStore partitions, and as a consequence
they are also spread evenly across shards. The total number of partitions that the
store should contain is determined when the store is initially created. This number
is static and cannot be changed over the store's lifetime, so it is an important initial
configuration parameter.

The number of partitions must be more than the largest number of shards the store
will contain. It is possible to add shards to the store, and when you do, the store is
re-balanced by moving partitions between shards (and with them, the data that they
contain). Therefore, the total number of partitions is actually a permanent limit on the
total number of shards your store is able to contain.

Note that there is some overhead in configuring an excessively large number of
partitions. That said, it does no harm to select a partition value that provides plenty
of room for growing the store. It is not unreasonable to select a partition number that is
10 times the maximum number of shards.

The number of partitions is calculated by the cell StorePartitions.

StoreShards * 10

Appendix D
Estimate total Shards and Machines

D-9

E
Tuning

The default tuning parameters available for the Oracle NoSQL Database software
should in general be acceptable for production systems, and so do not require any
tuning. However, the underlying operating system will have default values for various
kernel parameters which require modification in order to achieve the best possible
performance for your store's installation.

This appendix identifies the kernel parameters and other system tuning that you
should manage when installing a production store. By this, we mean any store whose
performance is considered critical. Evaluation systems installed into a lab environment
probably do not need this level of tuning unless you are using those systems to
measure the store's performance.

Note:

Oracle NoSQL Database is most frequently installed on Linux systems, and
so that is what this appendix focuses on.

Turn off the swap
For best performance on a dedicated Oracle NoSQL Database server machine, turn
off the swap on the machine. Oracle NoSQL Database processes are careful in their
management of the memory they use to ensure that they do not exceed the RAM
available on the machine.

The performance gains come from two sources:

1. The I/O overhead due to swap is eliminated. This is especially important if the disk
normally used for swap also holds the store's log files used to persist data.

2. Reduces the CPU overhead associated with kswapd.

To turn off the swap, do not mount any swap partitions at boot time. You do this by
eliminating all swap related mount entries from /etc/fstab. These are all the rows
with the entry "swap" in their mount point (column 2) and file system type (column 3)
entries.

You can verify that no swap space is being used by running the free command. Do
this after the /etc/fstab has been modified and the machine has been rebooted:

-bash-4.1$ free -m
 total used free shared buffers cached
Mem: 72695 72493 202 0 289 2390
-/+ buffers/cache: 69813 2882
Swap: 0 0 0

The Swap/total cell in the above table should read 0.

E-1

Linux Page Cache Tuning
Tune your page cache to permit the OS to write asynchronously to disk whenever
possible. This allows background writes, which minimize the latency resulting from
serial write operations such as fsync. This also helps with write stalls which occur
when the file system cache is full and needs to be flushed to disk to make room
for new writes. We have observed significant speedups (15-20%) on insert-intensive
benchmarks when these parameters are tuned as described below.

Place the following commands in /etc/sysctl.conf. Run

sysctl -p

to load the new settings so they can take effect without needing to reboot the machine.

Set vm.dirty_background_bytes to 10MB to ensure that
on a 40MB/sec hard disk a fsync never takes more than 250ms and takes
just 125ms on average. The value of vm.dirty_background_bytes
should be increased on faster SSDs or I/O subsytems with higher
throughput. You should increase this setting by the same proportion
as the relative increase in throughput. For example, for a typical
SSD
with a throughput of 160MB/sec, vm.dirty_background_bytes should be
set
to 40MB so fsync takes ~250ms. In this case, the value was increased
by
a factor of 4.
vm.dirty_background_bytes=10485760

IO calls effectively become synchronous(waiting for the underlying
device to complete them). This setting helps minimize the
possibility of a write request stalling in JE while holding the
write log latch.
vm.dirty_ratio=40

Ensures that data does not hang around in memory longer than
necessary. Given JE's append-only style of writing, there is
typically little benefit from having an intermediate dirty page
hanging around, because it is never going to be modified. By
evicting the dirty page earlier, its associated memory is readily
available for reading or writing new pages, should that become
necessary.
vm.dirty_expire_centisecs=1000

Earlier versions of the Linux kernel may not support vm.dirty_background_bytes. On
these older kernels you can use vm.dirty_background_ratio instead. Pick the ratio
that gets you closest to 10MB. On some systems with a lot of memory this may not be
possible due to the large granularity associated with this configuration knob. A further
impediment is that a ratio of 5 is the effective minimum in some kernels.

vm.dirty_background_ratio=5

Appendix E
Linux Page Cache Tuning

E-2

Use sysctl -a to verify that the parameters described here are set as expected.

OS User Limits
When running a large Oracle NoSQL Database store, the default OS limits may be
insufficient. The following sections list limits that are worth reviewing.

File Descriptor Limits
Use ulimit -n to determine the maximum number of files that can be opened by a
user. The number of open file descriptors may need to be increased if the defaults are
too low. It's worth keeping in mind that each open network connection also consumes
a file descriptor. Machines running clients as well as machines running RNs may need
to increase this limit for large stores with 100s of nodes.

Add entries like the ones below in /etc/security/limits.conf to change the file
descriptor limits:

$username soft nofile 10240
$username hard nofile 10240

where $username is the username under which the Oracle NoSQL Database software
runs.

Note that machines hosting multiple replication nodes; that is, machines configured
with a capacity > 1; will need larger limits than what is identified here.

Process and Thread Limits
Use ulimit -u to determine the maximum number of processes (threads are counted
as processes under Linux) that the user is allowed to create. Machines running clients
as well as machines running RNs may need to increase this limit to accommodate
large numbers of concurrent requests.

Add entries like the ones below in /etc/security/limits.conf to change the thread
limits:

$username soft nproc 8192
$username hard nproc 8192

where $username is the username under which the Oracle NoSQL Database software
runs.

Note that machines hosting multiple replication nodes; that is, machines configured
with a capacity > 1; will need larger limits than what is identified here.

Linux Network Configuration Settings
Before continuing, it is worth checking that the network interface card is configured
as expected during the initial setup of each SN, because it is harder to debug these
problems later when such configuration problems show up under load.

Appendix E
OS User Limits

E-3

Use the following command to determine which network interface is being used to
access a particular subnet on each host. This command is particularly useful for
machines with multiple NICs:

$ ip addr ls to 192.168/16
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
 state UP qlen 1000
 inet 192.168.1.19/24 brd 192.168.1.255 scope global eth0

Use the following command to get information about the configuration of the NIC:

$ ethtool -i eth2
driver: enic
version: 2.1.1.13
firmware-version: 2.0(2g)
bus-info: 0000:0b:00.0

Use the following command to get information about the NIC hardware:

$ lspci -v | grep "Ethernet controller"
00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit
Ethernet Controller (rev 02)

Use the following command to get information about the network speed. Note that this
command requires sudo:

$ sudo ethtool eth0 | grep Speed
 Speed: 1000Mb/s

You may want to consider using 10 gigabit Ethernet, or other fast network
implementations, to improve performance for large clusters.

Server Socket Backlog
The typical default maximum server socket backlog, typically set at 128, is too small
for server style loads. It should be at least 1K for server applications and even a 10K
value is not unreasonable for large stores.

Set the net.core.somaxconn property in sysctl.conf to modify this value.

Isolating HA Network Traffic
If the machine has multiple network interfaces, you can configure Oracle NoSQL
Database to isolate HA replication traffic on one interface, while client request traffic
uses another interface. Use the -hahost parameter of the makebootconfig command
to specify the interface to be used by HA as in the example below:

java -Xmx64m -Xms64m \
-jar kvstore.jar makebootconfig -root /disk1/kvroot \
-host sn10.example.com -port 5000 -harange 5010,5020 \

Appendix E
Linux Network Configuration Settings

E-4

-admindir /disk2/admin -admindirsize 2 GB
-storagedir /disk2/kv -hahost sn10-ha.example.com

In this example, all client requests will use the interface associated with
sn10.example.com, while HA traffic will use the interface associated with sn10-
ha.example.com.

Receive Packet Steering
When multiple RNs are located on a machine with a single queue network device,
enabling Receive Packet Steering (RPS) can help performance by distributing the
CPU load associated with packet processing (soft interrupt handling) across multiple
cores. Multi-queue NICs provide such support directly and do not need to have RPS
enabled.

Note that this tuning advice is particularly appropriate for customers using Oracle Big
Data Appliance.

You can determine whether a NIC is multi-queue by using the following command:

sudo ethtool -S eth0

A multi-queue NIC will have entries like this:

 rx_queue_0_packets: 271623830
 rx_queue_0_bytes: 186279293607
 rx_queue_0_drops: 0
 rx_queue_0_csum_err: 0
 rx_queue_0_alloc_failed: 0
 rx_queue_1_packets: 273350226
 rx_queue_1_bytes: 188068352235
 rx_queue_1_drops: 0
 rx_queue_1_csum_err: 0
 rx_queue_1_alloc_failed: 0
 rx_queue_2_packets: 411500226
 rx_queue_2_bytes: 206830029846
 rx_queue_2_drops: 0
 rx_queue_2_csum_err: 0
 rx_queue_2_alloc_failed: 0
...

For a 32 core Big Data Appliance using Infiniband, use the following configuration to
distribute receive packet processing across all 32 cores:

echo ffffffff > /sys/class/net/eth0/queues/rx-0/rps_cpus

where ffffffff is a bit mask selecting all 32 cores.

For more information on RPS please consult:

1. About the Unbreakable Enterprise Kernel

2. Receive packet steering

Appendix E
Linux Network Configuration Settings

E-5

Managing Off-heap Cache
Each Replication Node in the store divides the memory available to it between
memory containing store objects, memory used by the host operating system (which
includes the file system cache), and the in-memory cache used to contain frequently
accessed store data. You can configure the amount of memory used by the cache
using the rnHeapPercent parameter. The value for this parameter is expressed as
a percentage of the total memory available to the Replication Node (RN). In turn,
memory available to the RN is determined by the amount of memory available to the
Java VM. By default, 70% of the memory available to the Replication Node is reserved
for in-memory cache.

However, this can and probably will fill up. When that happens, objects are evicted
from the cache based on a Least-Recently-Used (LRU) algorithm. The LRU algorithm
guarantees that the most commonly accessed objects remain in the cache.

You can configure your Replication Node so that the in-memory cache is very large,
and therefore, less likely to overflow. However, several drawbacks occur when the
cache is too large. Most importantly, a large cache decreases the Java Garbage
Collection performance. In turn, this adversely affects overall performance for your
Replication Node. As a general good practice, keep the heap size to less than 32 GB.
Doing so limits in-memory cache to about 22.4 GB.

Note:

Oracle NoSQL Database actually limits your maximum heap size to a default
value of 32 GB to prevent you from inadvertently creating an excessively
large cache. The value of the maximum heap size is managed with the
rnHeapMaxMB parameter, described later in this section.

When you decrease the heap size of a Replication Node, you can configure the
system so that any unused heap memory is used by the operating system and
file system cache. A large file system cache has performance benefits, as well as
drawbacks:

1. Significant redundancy exists between the main cache and file system cache
because all data and Btree information written by the Replication Node appears in
the file system and can also appear in the main cache.

2. It is not possible for dirty Btree information to be placed in the file system cache
without logging it. Such logging may be unnecessary, and will create additional
work for internal cleaner threads.

To avoid problems caused by excessively large in-memory and file system caches, the
default configuration for your Replication Node uses an off-heap cache. The off-heap
cache holds record data and Btree nodes when they are evicted from the main cache
because it overflows. When off-heap cache overflows, eviction occurs according to the
same LRU algorithm used by the main cache.

If off-heap allocations (or others) fail because there is no available memory, the
process is likely to die without throwing an exception. In one test on Linux, for

Appendix E
Managing Off-heap Cache

E-6

example, the process was killed abruptly by the OS. The only indication of the problem
was the following shown by dmesg.

 Out of memory: Kill process 28768 (java) score 974 or sacrifice child
 Killed process 28768 (java)
 total-vm:278255336kB, anon-rss:257274420kB, file-rss:0kB

Note:

Before modifying the caches in use by your production store, always
complete performance tests first.

Configuring the Off-heap Cache
You do not directly control the amount of memory available to the off-heap cache.
Instead, you make memory available to it mainly by limiting the amount of memory
available to the operating system. You might also need to control the size of the
Java heap, which in turn controls the size of the in-memory cache. Any Storage
Node memory that remains once the heap, JVM overhead, and operating system
requirements are met is used for the off-heap cache. Any Replication Node memory
that remains once the heap and operating system requirements are met is used for the
off-heap cache. If no memory remains, the off-heap cache is not used.

The parameters you use to (indirectly) configure the off-heap cache are:

• systemPercent – Defines the percentage of memory available to the Storage
Node that is available for operating system use after the heap requirement is
subtracted. By default, this value is 10%. Configuring this value to a number that
is greater than 10% but less than 100% might leave room for the off-heap cache
(depending on the memory on your Storage Node and the value chosen for this
parameter). If room is available for the off-heap cache, it will be turned on.
For most production systems, if you are using the off-heap cache, a default value
of 10% should be sufficient.

• rnHeapMaxMB – The maximum amount of memory available for the Java heap. (The
heap is where the in-memory cache is contained.) The size of your heap will be
the lesser of this value, or the size arrived at using the rnHeapPercent parameter
value:

total SN memory * rnHeapPercent = Heap Size

The default rnHeapPercent size is 68%. So if your Storage Node has 32GB
memory, then the heap size will be 32 * 0.68 = 21.76 GB. However, if you set
your rnHeapMaxMB to 20,480 (20 * 1024), then your heap size will be 20GB instead.
Remember, that the heap size is not the same as the in-memory cache size. The
in-memory cache size is expressed as a percentage of the heap size. By default,
this is 70% (configurable using the rnCachePercent parameter). So, if your heap
size is 21.76 GB, then your in-memory cache size ends up being 15.23 GB (21.76
* 0.7).

Appendix E
Managing Off-heap Cache

E-7

Note:

Regardless of the values provided to the parameters described here,
and the actual memory available for the heap, your heap size is limited
to a maximum size of 32 GB.

• jvmOverheadPercent – Defines the percentage of the Java heap that is available
for JVM overhead (outside the Java heap). By default, this value is 25%, and heap
and JVM overhead would take away 85% (68 + 68 * 0.25) of the Storage Node
memory.

For example, if your Storage Node has 80 GB of memory, and just one Replication
Node, then by default:

• The heap size is 32 GB (80 * .68 = 54.4, which is greater than the 32 GB
maximum).

• The in-memory cache size is 22.4 GB (32 * 0.7).

• The JVM overhead memory size is 8 GB (32 * 0.25).

• A system memory size of 8 GB (80 * 0.1).

• An off-heap cache size of 32 GB. This is the amount of memory that remains after
the heap, JVM overhead, and system requirements have been met.

Figure E-1 SN Memory With Off-heap Cache

Appendix E
Managing Off-heap Cache

E-8

If you want to eliminate the off-heap cache, then set system memory to 100%. Do this
for each Storage Node in your store. Use the following commands:

• If the store has not been deployed:

kv-> change-policy -params systemPercent=100

• If the store has been deployed:

kv-> plan change-parameters -service sn1 -wait -params
systemPercent=100

Note:

The Replication Node (RN) does not re-start by default. You need to re-start
the RN (or RNs if the capacity is greater than 1) by using the following
commands:

kv-> plan stop-service -all-rns -wait;
Executed plan 7, waiting for completion...
Plan 7 ended successfully
kv-> plan start-service -all-rns -wait;
Executed plan 8, waiting for completion...
Plan 8 ended successfully

This yields:

• A heap size of 32 GB and in-memory cache size of 22.4 GB, JVM overhead
memory size of 8GB. Nothing has changed from the default configuration. ·

• The system memory is 40 GB. System memory is 100% of what remains when the
heap and JVM overhead are taken away, as follows: 80 GB (total available) - 32
GB (heap size) - 8 GB (JVM overhead) = 40 GB for the operating system and file
system cache.

Appendix E
Managing Off-heap Cache

E-9

Figure E-2 SN Memory Without Off-heap Cache

Check AES Intrinsics Settings
While most modern hardware systems enable AES Intrinsics by default, you can check
these settings yourself to confirm their use.

An Oracle NoSQL Database installation using the SSL/TLS encryption gets better
performance if it can take advantage of hardware acceleration available on the host
machine.

Most SSL cipher suites use the AES encryption algorithm, and most modern
processors support hardware acceleration for AES. To confirm that a Java installation
is taking advantage of AES hardware acceleration, check to see if AES intrinsics
are enabled. You can get that information by printing flag values for the Java virtual
machine from your terminal using the -XXPrintFlagsFinal flag, as follows. Then,
search for the two boolean flags UseAES, and UseAESIntrinsics. In this example,
results show that AES intrinsics are enabled.

java -XX:+PrintFlagsFinal -version | grep 'AES\|Intrinsics'
bool UseAES = true {product} {default}
bool UseSSE42Intrinsics = true {ARCH product} {default}
java version "10.0.2" 2018-07-17
Java(TM) SE Runtime Environment 18.3 (build 10.0.2+13)
Java HotSpot(TM) 64-Bit Server VM 18.3 (build 10.0.2+13, mixed mode)

Setting AES Intrinsics

Appendix E
Check AES Intrinsics Settings

E-10

For best performance, enable AES intrinsics on all machines that support them. If
not enabled when you run the check just described, you must specify -XX:+UseAES
and -XX:+UseAESIntrinsics for every JVM command line that uses SSL, using these
flags:

java -XX:+UseAES -XX:+UseAESIntrinsics [...]

You can add these two flags to the JVM options for RNs by setting the
configProperties parameter. See Replication Node Parameters .

Client applications that make calls to the NoSQL API, should specify these system
properties on the Java command line for the application.

Viewing Key Distribution Statistics
As you might already know, Oracle NoSQL Database stores the data by distributing
the rows across all the partitions by hashing each row’s shard key. Based on the
activity in your store's tables, Oracle NoSQL Database collects the key distribution
data into internally managed system tables. As needed, you can access these
statistics by querying these system tables.

As an Oracle NoSQL Database administrator, you may encounter many situations
where you need to view the key distribution statistics. To discuss one such use-
case, consider a situation where you are not able achieve the expected amount of
throughput for your Oracle NoSQL Database in spite of having multiple shards in
your cluster. This might happen if the data in your store is not distributed across the
shards evenly. In order to confirm if this is the reason behind low throughput, you need
a mechanism to understand how the data is distributed across the Oracle NoSQL
Database cluster. The Key Distribution Statistics provided by the Oracle NoSQL
Database can help you understand the data distribution across multiple partitions and
shards in your store.

The two system tables into which the Oracle NoSQL Database collects the key
distribution statistics are:

• SYS$TableStatsPartition

• SYS$TableStatsIndex

Oracle NoSQL Database manages and maintains these system tables internally.
When you enable security on your store, these system tables are read-only.
Regardless of security, the schema for system tables is immutable. The name of
system tables is defined with the prefix SYS$. You are not allowed to create any other
table name using this reserved prefix.

SYS$TableStatsPartition
This table stores the table key statistics at the partition level. It contains a row for each
partition for every table. For example, if you created a store with 100 partitions, this
table contains 100 rows for every table in your store. The statistics stored per partition
for each table in your store are:

1. The number of rows stored

2. The average size of keys in bytes

3. The size in bytes consumed by the rows

The structure of the SYS$TableStatsPartition table is as below:

Appendix E
Viewing Key Distribution Statistics

E-11

Column Data Type Description

tableName string Name of the table whose
Key Distribution Statistics are
being stored.

partitionId integer Partition ID

shardId integer Shard ID

count long Number of rows stored.

avgKeySize integer The average size of keys in
bytes.

tableSize long The size in bytes consumed
by the rows.

SYS$TableStatsIndex
This table stores the index key statistics at the shard level. This table contains a row
for each shard for every index. You do not have direct control over the number of
shards created in your store, but you can always view the store topology to know how
many shards are created in your store. For more information, see show topology

The statistics stored per shard for each table in your store are:

1. The number of index rows

2. The average size of the index keys in bytes

3. The size in bytes consumed by the index rows

The structure of SYS$TableStatsIndex system table is as below:

Column Data Type Description

tableName string Name of the table whose
Key Distribution Statistics are
being stored.

indexName string Name of the index

shardId integer Shard ID

count long Number of index rows stored.

avgKeySize integer Average size of index keys in
bytes.

indexSize long The size in bytes consumed
by the index rows.

Gathering the Key Distribution Statistics
The gathering of the key distribution statistics into the system tables is determined by
two parameters:

• rnStatisticsEnabled:
In Oracle NoSQL Database, the Key Distribution Statistics are disabled by default
for all newly created stores. You can enable the capturing of these statistics by
executing the following command from Admin Command Line Interface (CLI):

plan change-parameters -wait -all-rns -params
"rnStatisticsEnabled=true"

• rnStatisticsGatherInterval:

Appendix E
Viewing Key Distribution Statistics

E-12

In Oracle NoSQL Database, the default time interval between two consecutive
updates on SYS$TableStatsPartition and SYS$TableStatsIndex is 24 hours. You
can change the time interval between the capture of these statistics by modifying
the rnStatisticsGatherInterval parameter. The time unit specified must be in
days, hours, or minutes.

For example, to instruct Oracle NoSQL Database to collect the Key Distribution
Statistics after every minute, execute the following command from Admin
Command Line Interface (CLI):

plan change-parameters -wait -all-rns -params
"rnStatisticsGatherInterval=1 min"

Note:

Enabling the Key Distribution Statistics does not immediately trigger the
collection of statistics. Oracle NoSQL Database initiates the statistics
collection at a time based on the collection interval defined by the
rnStatisticsGatherInterval parameter.

rnStatisticsGatherInterval

Reading the Key Distribution Statistics
You can query the system tables to get key distribution data or review the gathering
process.

In order to get a complete set of statistics for a given table, you must aggregate
the per-partition values stored for that table in the SYS$TableStatsPartition system
table.

For example, to get the total number of rows in a table named myTable, you must sum
the values in the count column for all the rows in the SYS$TableStatsPartition table
where tableName = myTable.

Example Query:

sql-> select * from SYS$TableStatsPartition where tableName = 'myTable';

Result:

{"tableName":"myTable","partitionId":8,"shardId":3,"count":0,"avgKeySize
":0,"tableSize":0}
{"tableName":"myTable","partitionId":9,"shardId":4,"count":0,"avgKeySize
":0,"tableSize":0}
{"tableName":"myTable","partitionId":1,"shardId":1,"count":0,"avgKeySize
":0,"tableSize":0}
{"tableName":"myTable","partitionId":4,"shardId":2,"count":0,"avgKeySize
":0,"tableSize":0}
{"tableName":"myTable","partitionId":7,"shardId":3,"count":50,"avgKeySiz
e":15,"tableSize":0}
{"tableName":"myTable","partitionId":10,"shardId":4,"count":50,"avgKeySi
ze":15,"tableSize":0}
{"tableName":"myTable","partitionId":5,"shardId":2,"count":0,"avgKeySize

Appendix E
Viewing Key Distribution Statistics

E-13

":0,"tableSize":0}
{"tableName":"myTable","partitionId":6,"shardId":2,"count":0,"avgKeySize
":0,"tableSize":0}
{"tableName":"myTable","partitionId":2,"shardId":1,"count":0,"avgKeySize
":0,"tableSize":0}
{"tableName":"myTable","partitionId":3,"shardId":1,"count":0,"avgKeySize
":0,"tableSize":0}

In the above result, observe that there are 50 keys each in
"partitionId":7,"shardId":3 and "partitionId":10,"shardId":4 whereas all the
other partitions and shards are empty. This shows that the key data is not distributed
evenly across all the partitions and shards.

Similarly, you can query the SYS$TableStatsIndex system table to read the index key
distribution statistics for a given table at the shard level.

For example, to get the total number of index rows in a table named myTable,
you must sum the values in the count column for all the index rows in the
SYS$TableStatsIndex table where tableName = myTable.

Example Query:

sql-> select * from SYS$TableStatsIndex where tableName = 'myTable';

Result:

{"tableName":"myTable","indexName":"idx_shard_key","shardId":3,"count":5
0,"avgKeySize":1,"indexSize":0}
{"tableName":"myTable","indexName":"idx_shard_key","shardId":4,"count":5
0,"avgKeySize":1,"indexSize":0}
{"tableName":"myTable","indexName":"idx_shard_key","shardId":1,"count":0
,"avgKeySize":0,"indexSize":0}
{"tableName":"myTable","indexName":"idx_shard_key","shardId":2,"count":0
,"avgKeySize":0,"indexSize":0}

As you can see from the above result, there are 50 index keys each in "shardId":3
and "shardId":4 whereas all the other shards are empty. This shows that the index
key data is not distributed evenly across all the shards.

Retention of the Key Distribution Statistics
After collecting the key distribution statistics, they are retained in the system tables for
a fixed time period. This value is determined by the rnStatisticsTTL parameter. By
default, these statistics are retained for 60 days. However, you can change this value
by executing the change-parameters plan from the Admin CLI. The time unit specified
must be in days or hours.

For example, execute the following command from Admin Command Line Interface
(CLI) to retain the Key Data Statistics in the system tables for 90 days:

plan change-parameters -wait -all-rns -params "rnStatisticsTTL=90 days"

Few points to note are:

Appendix E
Viewing Key Distribution Statistics

E-14

• Any changes that you make to the rnStatisticsTTL parameter will not be applied
to the existing rows in the SYS$TableStatsPartition and SYS$TableStatsIndex
tables. They will take effect only after the next gathering scan.

• If you disable the collection of Key Distribution Statistics, all the rows present in
the system tables will expire after the current Time to Live (TTL) period.

• If you drop any tables or indexes in your store, their statistics rows present in the
system tables will also expire after the TTL period.

• Even if you change the rnStatisticsTTL to a value less than
rnStatisticsGatherInterval, all the existing statistics rows will only expire as
the TTL value defined during the last scan.

• rnStatisticsTTL can be set to 0 days. However, this is not recommended as it
disables automatic removal of the statistics rows.

Examples: Key Distribution Statistics
Key distribution statistics can also be used to provide estimates of other information
about tables that may prove useful.

Example E-1 Key Distribution Statistics

To estimate the number of elements in each table, perform the following query:

SELECT tableName,
 sum(count) AS count
FROM SYS$TableStatsPartition
WHERE NOT contains (tableName, "$")
GROUP BY tableName

The clause WHERE NOT CONTAINS (tableName, "$") filters out system tables by only
including tables whose names do not contain the "$" character.

The clause GROUP BY tableName is what causes the sums to be computed over all of
the partition entries for the same table.

Example E-2 Key Distribution Statistics

To estimate the average key size for each table, perform the following query:

SELECT tableName,
 CASE WHEN sum(count) = 0
 THEN 0
 ELSE sum(avgKeySize*count)/sum(count)
 END AS avgKeySize
FROM SYS$TableStatsPartition
WHERE NOT contains(tableName, "$")
GROUP BY tableName

The case clause skips entries whose count is zero, and otherwise weights each entry
by the element count, dividing the result by the total count.

Appendix E
Viewing Key Distribution Statistics

E-15

Example E-3 Key Distribution Statistics

To estimate the number of elements in each index, perform the following query:

SELECT tableName,
 indexName,
 sum(count) AS count
FROM SYS$TableStatsIndex
WHERE NOT contains(tableName, "$")
GROUP BY tableName, indexName

Example E-4 Key Distribution Statistics

To estimate the average key size for each index, perform the following query:

SELECT tableName,
 indexName,
 CASE WHEN sum(count) = 0
 THEN 0
 ELSE sum(avgKeySize*count)/sum(count)
 END AS avgKeySize
FROM SYS$TableStatsIndex
WHERE NOT contains(tableName, "$")
GROUP BY tableName, indexName

Appendix E
Viewing Key Distribution Statistics

E-16

F
Solid State Drives (SSDs)

If you are planning on using Solid State Drives (SSDs) for your Oracle NoSQL
Database deployment, a special consideration should be taken. Because of how SSDs
work, I/O latency can become an issue with SSDs over time. Correct configuration and
use of trim can help minimize these latency issues.

Trim requirements
In general, for TRIM to be effective, the following requirements must be met:

• The SSD itself must support trim.

• Linux-kernel 2.6.33 or later.

• Filesystem ext4 (ext3 does not support trim).

Enabling Trim
The trim support must be explicitly enabled for the ext4 file system. You should mount
the file system with trim enabled.

F-1

G
Diagnostics Utility

In order to catch configuration errors early, you can use this tool when troubleshooting
your KVStore. Also, you can use this tool to package important information and files to
send them to Oracle Support, for example.

The usage for the utility is:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar diagnostics {setup | collect} [args]

Setting up the tool
You should first run the diagnostics setup command in order to setup the tool.
This command generates the configuration file sn-target-list with the Storage Node
target list, which contains the IP/hostname, registry ports, and root directory of SNAs
in the remote machines.

The usage of this command is:

diagnostics setup {-add |
-list |
-delete |
-clear} [args]

where:

• -add

Adds the specified information of each SNA to the sn-target-list. The usage is:

setup -add -store <store name>
-sn <SN name>
-host <host>
-rootdir <kvroot directory>
[-sshusername <SSH username>]
[-configdir <directory of configuration>]

In the sn-target-list, the SNA information has the following format:

<store name>|<sn name>|<SSH username@host>|<root directory>

For example:

mystore|sn3|lroot@localhost|/scratch/tests/kvroot

G-1

Note:

You can also create and edit the sn-target-list manually in your
preferred text editor to add or delete any SNA information.

• -list

Lists and tests the SNAs information of the sn-target-list. The usage is:

setup -list [-configdir <configuration file directory>]
 [-sshusername <SSH username>]

This command checks if:

– The host name is reachable or not.

– The root directory exists or not.

• -delete

Specified to delete the information of the specified SNA from the sn-target-list.

The usage of this command is:

diagnostics setup -delete
[-store <store name>]
[-sn <SN name>]
[-host <host>]
[-rootdir kvroot directory>]
[-sshusername <SSH username>]
[-configdir <configuration file directory>]

• -clear

Specified to clear all the SNA information in the sn-target-list.

The usage of this command is:

diagnostics setup -clear [-configdir <configuration file
directory>]

• -configdir

Optionally specified to change the default directory where the sn-target-list file
is saved. If the flag is not specified, the default directory is the working directory.

Packaging Information and Files
After completing the diagnostics setup, you can use the diagnostics collect tool
to package important information and files to be able to send them to Oracle Support,
for example.

The usage of this command is:

diagnostics collect -logfiles
[-host <host name of a SN in topology>]

Appendix G
Packaging Information and Files

G-2

[-port <registry port of a SN in topology>]
[-sshusername <SSH username>]
[-username <store username>]
[-security <security-file-path>]
[-configdir <location of Storage Node target file>]
[-savedir <destination directory for log files>]
[-nocompress]

where:

• -logfiles

Specified to gather log files of KVStore and pack them up into a compressed
file. These files can be a part of the KVROOT directory or the rnlogdir directory,
depending on what was specified when running the makebootconfig file.

Note:

In old servers, je.[info, config, stat] files will still be a part of the
environment directory.

Available disk space in all the hosting machines and the client machine is
required. If available disk space is not enough, an error message is prompted.
Log files are helpful to analyze some sophisticated issues.

• -host

Specifies the host of a Storage Node. If specified, it detects a running topology
in order to update the sn-target-list without having to run diagnostics setup
first. It needs to be specified with -port.

• -port

Specifies the host of a Storage Node. If specified, it detects a running topology
in order to update the sn-target-list without having to run diagnostics setup
first. It needs to be specified with -host.

• -sshusername

Specifies a SSH username to log on as in a Storage Node.

• -username

Specifies a username to log on as in a secure deployment.

• -security

In a secured deployment, specifies a path to the security file. If not specified in a
secure store, updating the sn-target-list will fail.

• -configdir

Specifies the directory which contains the sn-target-list. If the flag is not
specified, the default directory is the working directory.

• -savedir

Optionally used to specify the path of the directory to contain all the log files. If the
flag is not specified, the default directory is the working directory.

• -nocompress

Appendix G
Packaging Information and Files

G-3

Specifies that log files should be copied directly instead of being compressed. If
the log files size is large, copying can take a while. You should use -nocompress
if the remote servers do not have an unzip tool or if compress mode encounters
errors.

Verifying Storage Node configuration
You can use the diagnostics verify tool to verify the configuration of the specified
Storage Nodes. You can also check if the configuration of each Storage Node is
consistent with other members of the cluster.

The usage of this command is:

diagnostics verify { -checkLocal | -checkMulti }
[-host <host name of a SN in topology>]
[-port <registry port of a SN in topology>]
[-sshusername <SSH username>]
[-username <store username>]
[-security <security-file-path>]
[-configdir <location of Storage Node target file>]

where:

• -checkLocal

If specified, verifies the configuration of the specified Storage Nodes.

• -checkMulti

If specified, verifies that the configuration of each Storage Node is consistent with
other members of the cluster.

• -host

Specifies the host of a Storage Node. If specified, it detects a running topology
in order to update the sn-target-list without having to run diagnostics setup
first. It needs to be specified with -port.

• -port

Specifies the host of a Storage Node. If specified, it detects a running topology
in order to update the sn-target-list without having to run diagnostics setup
first. It needs to be specified with -host.

• -sshusername

Specifies a SSH username to log on as in a Storage Node.

• -username

Specifies a username to log on as in a secure deployment.

• -security

In a secured deployment, specifies a path to the security file. If not specified in a
secure store, updating the sn-target-list will fail.

• -configdir

Specifies the directory which contains the sn-target-list. If the flag is not
specified, the default directory is the working directory.

Appendix G
Verifying Storage Node configuration

G-4

	Contents
	Preface
	Conventions Used in This Book

	1 Installing Oracle NoSQL Database
	Installation Prerequisites
	Installation
	Installation Configuration Parameters
	Configuring Your KVStore Installation

	Configuring the Firewall

	2 Upgrading an Existing Oracle NoSQL Database Deployment
	Preparing to Upgrade
	General Upgrade Notes
	Upgrade to a New Release from an Existing Release
	Using a Script to Upgrade to a New Release

	3 Plans
	Using Plans
	Tracking Plan Progress

	Plan States
	Reviewing Plans
	Plan Ownership
	Pruning Plans

	4 Configuring the KVStore
	Configuration Overview
	Start the Administration CLI
	The plan Commands

	Configure and Start a Set of Storage Nodes
	Name your KVStore
	Create a Zone
	Create an Administration Process on a Specific Host
	Create a Storage Node Pool
	Create the Remainder of your Storage Nodes
	Create Additional Admin Processes
	Create and Deploy Replication Nodes
	Configuring Security with Remote Access
	Configuring with Multiple Zones
	Adding Secondary Zone to the Existing Topology
	Using Master Affinity Zones
	Benefits of Master Affinity Zones
	Adding a Master Affinity Zone
	Losing a Master Affinity Zone Node

	Using a Script to Configure the Store
	Smoke Testing the System
	Troubleshooting
	Where to Find Error Information
	Service States
	Useful Commands

	5 Configuring Multi-Region KVStores
	Use Case 1: Set up Multi-Region Environment
	Deploy KVStore
	Set Local Region Name
	Configure XRegion Service
	Start XRegion Service
	Create Remote Regions
	Create Multi-Region Tables
	Access and Manipulate Multi-Region Tables
	Stop XRegion Service

	Use Case 2: Expand a Multi-Region Table
	Prerequisites
	Create MR Table in New Region
	Add New Region to Existing Regions
	Access MR Table in New and Existing Regions

	Use Case 3: Contract a Multi-Region Table
	Alter MR Table to Drop Regions

	Use Case 4: Drop a Region
	Prerequisites
	Isolate the Region
	Drop MR Tables in the Isolated Region
	Drop the Isolated Region

	6 Determining Your Store's Configuration
	Steps for Changing the Store's Topology
	Make the Topology Candidate
	Transforming the Topology Candidate
	Increase Data Distribution
	Increase Replication Factor
	Balance a Non-Compliant Topology
	Contracting a Topology

	View the Topology Candidate
	Validate the Topology Candidate
	Preview the Topology Candidate
	Deploy the Topology Candidate
	Verify the Store's Current Topology

	Deploying an Arbiter Node Enabled Topology

	7 Administrative Procedures
	Backing Up the Store
	Taking a Snapshot
	Snapshot Activities
	Managing Snapshots

	Recovering the Store
	Using the Load Program
	Load Program and Metadata

	Restoring Directly from a Snapshot

	Recovering from Data Corruption
	Detecting Data Corruption
	Data Corruption Recovery Procedure

	Replacing a Failed Disk
	Replacing a Failed Storage Node
	Using a New Storage Node
	Task for an Identical Node

	Repairing a Failed Zone by Replacing Hardware
	Using Oracle NoSQL Migrator
	Overview
	Terminology used with NoSQL Data Migrator

	Using Oracle NoSQL Data Migrator
	Sources and Sinks
	Supported Sources and Sinks
	Source Configuration Templates
	JSON File
	MongoDB-Formatted JSON File
	Oracle NoSQL Database
	Oracle NoSQL Database Cloud Service

	Sink Configuration Templates
	JSON File
	Oracle NoSQL Database
	Oracle NoSQL Database Cloud Service

	Transformation Configuration Templates
	ignoreFields
	renameFields
	aggregateFields

	Use Case Demonstrations
	Migrate from Oracle NoSQL Database Cloud Service to a JSON file
	Migrate from Oracle NoSQL Database On-Premise to Oracle NoSQL Database Cloud Service
	Migrate from MongoDB-Formatted JSON file to an Oracle NoSQL Database Cloud Service

	Troubleshooting the NoSQL Data Migrator
	Oracle NoSQL Data Migrator Vs. Import/Export Utility
	Transitioning from Import/Export to NoSQL Data Migrator

	Using the Import and Export Utilities
	Import and Export Functionality
	Understanding Data Sources and Data Targets (Sinks)
	Importing Data
	Exporting Data
	Examples

	Increasing Storage Node Capacity
	Managing Storage Directory Sizes
	Managing Disk Thresholds
	Specifying Storage Directory Sizes
	Specifying Differing Disk Capacities
	Monitoring Disk Usage
	Handling Disk Limit Exception
	Increasing Storage Directory Size
	Adding a New Shard

	Managing Admin Directory Size
	Admin is Working
	Admin is not Working

	Disabling Storage Node Agent Hosted Services
	Verifying the Store
	Monitoring the Store
	Events

	Setting Store Parameters
	Changing Parameters
	Setting Store Wide Policy Parameters
	Admin Parameters
	Changing Admin JVM Memory Parameters
	Storage Node Parameters
	Replication Node Parameters
	Global Parameters
	Security Parameters
	Admin Restart
	Replication Node Restart

	Removing an Oracle NoSQL Database Deployment
	Modifying Storage Node HA Port Ranges
	Modifying Storage Node Service Port Ranges
	Storage Node Not Deployed
	Storage Node Deployed

	8 Availablity, Failover and Switchover Operations
	Availability and Failover
	Replication Overview
	Loss of a Read-Only Replica Node
	Loss of a Read/Write Master
	Unplanned Network Partitions
	Master is in the Majority Node Partition
	Master is in the Minority Node Partition
	No Majority Node Partition

	Failover and Switchover Operations
	Repairing a Failed Zone
	Performing a Failover
	Performing a Switchover

	Zone Failover
	Durability Summary
	Consistency Summary

	9 Monitoring Oracle NoSQL Database
	Software Monitoring
	System Log File Monitoring
	Java Management Extensions (JMX) Monitoring

	Monitoring for Storage Nodes (SN)
	Metrics for Storage Nodes
	Java Management Extensions (JMX) Notifications

	Monitoring for Replication Nodes (RN)
	Metrics for Replication Node

	Monitoring for Arbiter Nodes
	Metrics for Arbiter Nodes

	Monitoring for Administration (Admin) Nodes
	Metrics for Admin Nodes

	Hardware Monitoring
	Monitoring for Hardware Faults
	The Network
	Correlating Network Failure to NoSQL Log Events
	Recovering from Network Failure

	Persistent Storage
	Detecting and Correlating Persistent Storage Failures to NoSQL Log Events
	Resolving Storage Device Failures
	Procedure for Replacing a Failed Persistent Storage Device
	Example

	Servers
	Detecting and Correlating Server Failures to NoSQL Log Events
	Resolving Server Failures
	Terminology Review
	Assumptions
	Replacement Procedure 1: Replace SN with Identical SN
	Replacement Procedure 2: New SN Takes Over Duties of Removed SN
	Examples
	Setup
	Example 1: Replace a Failed SN with an Identical SN
	Verification

	Example 2: New SN Takes Over Duties of Existing SN
	Verification

	10 Standardized Monitoring Interfaces
	Java Management Extensions (JMX)
	Enabling JMX Monitoring
	In the Bootfile
	By Changing Storage Node Parameters

	Displaying the Oracle NoSQL Database MBeans

	11 Using ELK to Monitor Oracle NoSQL Database
	Enabling the Collector Service
	Setting Up Elasticsearch
	Setting Up Kibana
	Setting Up Logstash
	Setting Up Filebeat on Each Storage Node
	Using Kibana for Analyzing Oracle NoSQL Database
	Creating Index Patterns
	Analyzing the Data

	12 Using Plugins for Development
	About Oracle Enterprise Manager (OEM) Plugin
	Importing and Deploying the EM Plug-in
	Deploying Agent
	Adding NoSQL Database Targets
	Components of a NoSQL Store
	Store Targets
	Store Page
	Storage Node Page
	Shard Page
	Replication Node Page

	About IntelliJ Plugin
	Setting Up IntelliJ Plug-in
	Creating a NoSQL Project in IntelliJ
	Connecting to Oracle NoSQL Database from IntelliJ
	Managing Tables Using the IntelliJ Plugin

	About Eclipse plugin

	13 Oracle NoSQL Database Proxy and Driver
	Oracle NoSQL Database Proxy
	About the Oracle NoSQL Database Proxy
	Configuring the Proxy
	Using the Proxy in a Non-Secure kvstore
	Using the Proxy in a Secure kvstore

	Oracle NoSQL Database Java Driver
	About the Oracle NoSQL Java SDK
	Creating NoSQLHandle
	Creating Regions
	Creating Tables and Indexes
	Adding Data
	Adding JSON Data
	Reading Data
	Using Queries
	Deleting Data
	Modifying Tables
	Drop Tables and Indexes
	Drop Regions
	Handling Errors

	Oracle NoSQL Database Python Driver

	A Installing and Configuring a Non-secure Store
	Installation Configuration

	B Admin CLI Reference
	aggregate
	aggregate table

	await-consistent
	change-policy
	configure
	connect
	connect admin
	connect store

	delete
	delete kv
	delete table

	execute
	exit
	get
	get kv
	get table

	help
	hidden
	history
	load
	logtail
	namespace
	page
	ping
	plan
	plan add-index
	plan add-table
	plan cancel
	plan change-parameters
	plan change-storagedir
	plan change-user
	plan create-user
	plan deploy-admin
	plan deploy-datacenter
	plan deploy-sn
	plan deploy-topology
	plan deploy-zone
	plan deregister-es
	plan drop-user
	plan enable-requests
	plan evolve-table
	plan execute
	plan failover
	plan grant
	plan interrupt
	plan migrate-sn
	plan network-restore
	plan register-es
	plan remove-admin
	plan remove-datacenter
	plan remove-index
	plan remove-sn
	plan remove-table
	plan remove-zone
	plan repair-topology
	plan revoke
	plan start-service
	plan stop-service
	plan verify-data
	Executing verify-data

	plan wait

	pool
	pool clone
	pool create
	pool join
	pool leave
	pool remove

	put
	put kv
	put table

	repair-admin-quorum
	show
	show admins
	show datacenters
	show events
	show faults
	show indexes
	show mrtable-agent-statistics
	show parameters
	show perf
	show plans
	show pools
	show snapshots
	show regions
	show tables
	show topology
	show upgrade-order
	show users
	show versions
	show zones

	snapshot
	snapshot create
	snapshot remove

	table
	table-size
	timer
	topology
	topology change-repfactor
	topology change-zone-arbiters
	topology change-zone-master-affinity
	topology change-zone-type
	topology clone
	topology contract
	topology create
	topology delete
	topology list
	topology preview
	topology rebalance
	topology redistribute
	topology validate
	topology view

	verbose
	verify
	verify configuration
	verify prerequisite
	verify upgrade

	C Admin Utility Command Reference
	export
	Export Utility Command Line Parameters
	Export Utility Configuration File
	Monitoring Export Progress
	Export Package Structure
	Schema Management
	Export Exit Codes

	generateconfig
	help
	import
	Import Utility Command Line Parameters
	Import Utility Configuration File
	MONGODB_JSON Format - Automatic Table Creation
	Monitoring Import Progress
	Import Exit Codes
	Valid JSON Files

	load admin metadata
	load store data
	makebootconfig
	ping
	Ping Command Line Parameters
	Ping Exit Codes
	Ping Report Text Output
	Ping Report JSON Output

	restart
	runadmin
	start
	status
	stop
	version

	D Initial Capacity Planning
	Shard Capacity
	Application Characteristics
	Replication Factor
	Average Key Size
	Average Value Size
	Read and Write Operation Percentages
	Hardware Characteristics

	Shard Storage and Throughput Capacities
	Shard Storage Capacity
	Shard I/O Throughput capacity

	Memory and Network Configuration
	Machine Physical Memory
	Sizing Advice
	Determine JE Cache Size
	Machine Network Throughput

	Estimate total Shards and Machines
	Number of Partitions

	E Tuning
	Turn off the swap
	Linux Page Cache Tuning
	OS User Limits
	File Descriptor Limits
	Process and Thread Limits

	Linux Network Configuration Settings
	Server Socket Backlog
	Isolating HA Network Traffic
	Receive Packet Steering

	Managing Off-heap Cache
	Configuring the Off-heap Cache

	Check AES Intrinsics Settings
	Viewing Key Distribution Statistics
	Examples: Key Distribution Statistics

	F Solid State Drives (SSDs)
	Trim requirements
	Enabling Trim

	G Diagnostics Utility
	Setting up the tool
	Packaging Information and Files
	Verifying Storage Node configuration

