
Oracle® NoSQL Database
C Key-Value Driver API Reference

Release 20.2
E91468-10
August 2020

Oracle NoSQL Database C Key-Value Driver API Reference, Release 20.2

E91468-10

Copyright © 2011, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or “commercial computer software documentation” pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Conventions Used in this Book viii

1 Introduction to Oracle NoSQL Database C API

Library Installation 1-1

Library Usage 1-1

Thread Safety 1-2

2 Store and Library Functions

kv_close_store() 2-2

kv_config_add_host_port() 2-3

kv_config_add_read_zone() 2-3

kv_config_get_lob_suffix() 2-4

kv_config_get_lob_timeout() 2-4

kv_config_get_lob_verification_bytes() 2-5

kv_config_get_read_zones() 2-5

kv_config_set_consistency() 2-6

kv_config_set_durability() 2-6

kv_config_set_lob_suffix() 2-7

kv_config_set_lob_timeout() 2-7

kv_config_set_request_limits() 2-8

kv_config_set_security_properties() 2-9

kv_config_set_timeouts() 2-10

kv_config_set_verification_bytes() 2-10

kv_create_config() 2-11

kv_create_jni_impl() 2-12

kv_create_jni_impl_from_jvm() 2-12

kv_create_password_credentials() 2-13

kv_create_properties() 2-14

kv_get_impl_type() 2-14

kv_get_open_error() 2-15

iii

kv_open_store() 2-15

kv_open_store_login() 2-16

kv_release_config() 2-17

kv_release_credentials() 2-17

kv_release_impl() 2-17

kv_release_properties() 2-18

kv_set_property() 2-18

kv_store_login() 2-20

kv_store_logout() 2-20

kv_version() 2-21

kv_version_c() 2-21

3 Data Operation Functions

kv_create_delete_op() 3-3

kv_create_delete_with_options_op() 3-4

kv_create_operations() 3-5

kv_create_put_op() 3-5

kv_create_put_with_options_op() 3-6

kv_delete() 3-7

kv_delete_with_options() 3-8

kv_execute() 3-9

kv_get() 3-10

kv_get_with_options() 3-11

kv_init_key_range() 3-12

kv_init_key_range_prefix() 3-13

kv_iterator_next() 3-13

kv_iterator_next_key() 3-14

kv_iterator_size() 3-15

kv_lob_delete() 3-15

kv_lob_get_for_read() 3-16

kv_lob_get_for_write() 3-17

kv_lob_get_version() 3-18

kv_lob_put_from_file() 3-19

kv_lob_read() 3-19

kv_lob_release_handle() 3-20

kv_multi_delete() 3-20

kv_multi_get() 3-21

kv_multi_get_iterator() 3-23

kv_multi_get_iterator_keys() 3-24

kv_multi_get_keys() 3-26

iv

kv_operation_get_abort_on_failure() 3-27

kv_operation_get_key() 3-27

kv_operation_get_type() 3-28

kv_operation_results_size() 3-29

kv_operations_set_copy() 3-29

kv_operations_size() 3-30

kv_parallel_scan_iterator_next() 3-31

kv_parallel_scan_iterator_next_key() 3-31

kv_parallel_store_iterator() 3-32

kv_parallel_store_iterator_keys() 3-33

kv_put() 3-35

kv_put_with_options() 3-36

kv_release_iterator() 3-37

kv_release_operation_results() 3-38

kv_release_operations() 3-38

kv_release_parallel_scan_iterator() 3-38

kv_result_get_previous_value() 3-39

kv_result_get_previous_version() 3-40

kv_result_get_success() 3-40

kv_result_get_version() 3-41

kv_store_iterator() 3-41

kv_store_iterator_keys() 3-43

4 Key/Value Pair Management Functions

kv_copy_version() 4-2

kv_create_key() 4-2

kv_create_key_copy() 4-4

kv_create_key_from_uri() 4-5

kv_create_key_from_uri_copy() 4-6

kv_create_value() 4-8

kv_create_value_copy() 4-9

kv_get_key_major() 4-9

kv_get_key_minor() 4-10

kv_get_key_uri() 4-10

kv_get_value() 4-11

kv_get_value_size() 4-11

kv_get_version() 4-11

kv_release_key() 4-12

kv_release_value() 4-13

v

kv_release_version() 4-13

5 Durability and Consistency Functions

kv_create_durability() 5-1

kv_create_simple_consistency() 5-2

kv_create_time_consistency() 5-3

kv_create_version_consistency() 5-4

kv_get_consistency_type() 5-5

kv_get_default_durability() 5-6

kv_get_durability_master_sync() 5-6

kv_get_durability_replica_ack() 5-6

kv_get_durability_replica_sync() 5-7

kv_is_default_durability() 5-7

kv_release_consistency() 5-8

6 Statistics Functions

kv_detailed_metrics_list_get_name() 6-2

kv_detailed_metrics_list_get_record_count() 6-2

kv_detailed_metrics_list_get_scan_time() 6-3

kv_detailed_metrics_list_size() 6-4

kv_get_node_metrics() 6-4

kv_get_num_nodes() 6-5

kv_get_num_operations() 6-5

kv_get_operation_metrics() 6-6

kv_get_stats() 6-7

kv_parallel_scan_get_partition_metrics() 6-7

kv_parallel_scan_get_shard_metrics() 6-8

kv_release_detailed_metrics_list() 6-9

kv_release_stats() 6-9

kv_stats_string() 6-9

7 Error Functions

kv_get_last_error() 7-1

A Data Types

Data Operations Data Types A-1

kv_depth_enum A-1

kv_direction_enum A-2

vi

kv_presence_enum A-2

kv_return_value_version_enum A-2

Durability and Consistency Data Types A-3

kv_ack_policy_enum A-3

kv_consistency_enum A-3

kv_sync_policy_enum A-4

Store Operations Data Types A-5

kv_api_type_enum A-5

kv_error_t A-5

kv_store_iterator_config_t A-6

B Third Party Licenses

vii

Preface

This document describes the Oracle NoSQL Database C API.

This book is aimed at software engineers responsible for building Oracle NoSQL
Database applications.

Conventions Used in this Book
The following typographical conventions are used within this manual:

Information that you are to type literally is presented in monospaced font.

Variable or non-literal text is presented in italics. For example: "Go to
your KVHOME directory."

Note:

Finally, notes of special interest are represented using a note block such as
this.

Preface

viii

1
Introduction to Oracle NoSQL Database C
API

Welcome to the Oracle NoSQL Database C API. This API is intended for use with
C and C++ applications that want to access and manage data which is placed in an
Oracle NoSQL Database Key-Value Store (KV Store).

This manual describes version 12.1.4.2 of the C API library. This version of the library
is intended for use with Oracle NoSQL Database version 11.2.2.0.

Library Installation
This API is a wrapper around the native Java NoSQL Database interfaces. This means
that in order for you to use the API, you must have a Java virtual machine configured
for the machine where your client will run.

For information on how to build the library, see Build Instructions.

Library Usage
Examples of how to use these APIs are included with your distribution. See
the <package>/examples directory. In particular, hello.c illustrates the basic API
usage to a store tjat does not require authentication, while hello_secured.c shows
similar usage working with a secure store.

At a high level, you’ll complete these steps to use this library:

1. Initialize the Java Native Interface framework (JNI) using kv_create_jni_impl().

2. Create a store configuration using kv_create_config().

3. If you are using a store that requires authentication,
define the security properties and the authentication
credentials using these APIs kv_create_properties(), kv_set_property(),
andkv_config_set_security_properties(). You create authentication credentials
using kv_create_password_credentials().

4. Obtain a handle to the store using kv_open_store() or kv_open_store_login().

5. Perform data read and write operations using a variety of functions described
in Data Operation Functions. Sometimes, these functions will require durability and
consistency structures, and key/value structures. Functions used to create and
manage such structures are described in Durability and Consistency Functions
and Key/Value Pair Management Functions.

If you are operating with a store that requires authentication, be prepared
to handle KV_AUTH_FAILURE errors. When you see these errors, reauthenticate
using kv_store_login().

1-1

https://apexapps.oracle.com/pls/apex/f?p=44785:112:::::P112_CONTENT_ID:22400

6. Once you have finished accessing the store, close your store handle
using kv_close_store(). If you logged the handle into the store, this will log your
handle out.

7. Release your store configuration structure using kv_release_config().

8. Release your JNI implementation using kv_release_impl().

Notice that in this list of basic steps, you are responsible for allocating or initializing
structures, and for release such structures once your complete your operations. You
use some kinde of create and release functions to accomplish these tasks. This
pattern of responsibility repeats throughout the API, with few exceptions. For example,
creating a key requires kv_create_key() and to releasing it uses kv_release_key().
You are responsible for releasing any resources that you acquire through the use of
these APIs.

Thread Safety
In all but a few cases, the data structures you create and use from this library are not
thread-safe. Therefore, do not share these across threads.

The exceptions to this are kv_impl_t and kv_store_t, which are thread-safe after
you create them. However, be careful to create and release these in a single-threaded
manner.

kv_impl_t is created using kv_create_jni_impl() and released
using kv_release_impl(). kv_store_t is created using kv_open_store() and released
using kv_close_store().

Chapter 1
Thread Safety

1-2

2
Store and Library Functions

This chapter describes high-level KV Store functions, which are used to operate on the
store handle itself. Other operations operate on the data in the store. There are also
functions used to examine the KV Store C library that is in use.

Store Operations Functions

Store Operations Functions Description

kv_close_store() Close an Oracle NoSQL Database store

kv_get_open_error() Returns the error encountered opening the store, if any

kv_open_store() Open an Oracle NoSQL Database store

kv_open_store_login() Open an Oracle NoSQL Database store and
authenticate

kv_store_login() Update the login credentials

kv_store_logout() Log out of the store

Store Configuration Functions

Store Configuration Functions Description

kv_config_add_host_port() Identifies an additional helper host

kv_config_add_read_zone(),
kv_config_get_read_zones()

Adds a zone used for read operations

kv_config_set_consistency() Sets the default consistency

kv_config_set_durability() Sets the default durability policy

kv_config_set_security_properties() Sets security properties

kv_config_set_request_limits() Sets store request limits

kv_config_set_timeouts() Sets store request timeouts

kv_create_config() Create a store configuration

kv_create_password_credentials() Creates username/password credentials for store
authentication

kv_create_properties() Create a properties structure

kv_release_config() Release the store configuration

kv_release_credentials() Release store authentication credentials

kv_release_properties() Release a properties structure

kv_set_property() Sets a property

2-1

Large Object Configuration Functions

Large Object Configuration
Functions

Description

kv_config_set_lob_suffix(),
kv_config_get_lob_suffix()

Sets/gets the suffix used by LOB keys

kv_config_set_lob_timeout(),
kv_config_get_lob_timeout()

Sets/gets the LOB chunk timeout value

kv_config_set_verification_bytes(),
kv_config_get_lob_verification_byte
s()

Sets/gets the number of bytes used to verify a resumed
LOB put operation

Library Operations Functions

Library Operations Functions Description

kv_create_jni_impl() Initialize the JNI layer

kv_create_jni_impl_from_jvm() Initialize the JNI layer using a pointer to a JVM

kv_get_impl_type() Return the C API implementation type

kv_release_impl() Release the JNI structures

kv_version() Return the library version number

kv_version_c() Return the version number for the C library

kv_close_store()
#include <kvstore.h>

kv_error_t
kv_close_store(kv_store_t *store)

Closes the store handle, releasing all resources that the handle was
using. If authentication was performed for this store handle (that is,
if kv_open_store_login() was used), then this API logs out the client before releasing
the handle's resources. After calling this function, never use the handle again, even if
an error is returned from this function.

You open store handles using kv_open_store() or kv_open_store_login().

Parameters

• store

The store parameter is the store handle you want to close.

See Also

• Store and Library Operations

Chapter 2
kv_close_store()

2-2

kv_config_add_host_port()
#include <kvstore.h>

kv_error_t
kv_config_add_host_port(kv_config_t *config,
 const char *host,
 int port);

Adds an additional host and port pair to the store's configuration. The host/port pair
identified here must be for an active node in the store because it is used by the
application as a helper host when the application first starts up. Usage of this function
is optional. At least one helper host is required, but that helper host is identified when
you create the store's configuration using kv_create_config().

Parameters

• config

The config parameter points to the configuration structure to which you want to
add a helper host. This structure was initially created using kv_create_config().

• host

The host parameter is the network name of a node belonging to the store.

• port

The port parameter is the helper host's port number.

See Also

• Store and Library Operations

kv_config_add_read_zone()
#include <kvstore.h>

kv_error_t
kv_config_add_read_zone(kv_config_t *config,
 const char *read_zone);

Adds a read zone. All nodes that are to be used for read operations must be located
in the read zone. Before you call this function to create the read zone, then all read
operations can be performed on nodes in any zone.

The specified read zone must exist at the time that this configuration is used to open
a store handle, or KV_INVALID_ARGUMENT is returned when you attempt to open the
handle.

Zones specified for read operations can include primary and secondary zones. If the
master is not located in any of the specified zones, either because the zones are all
secondary zones or because the master node is not currently in one of the specified
primary zones, then read operations configured for absolute consistency will fail.

Chapter 2
kv_config_add_host_port()

2-3

Parameters

• config

The config parameter points to the configuration structure for which you want to
set the read zone.

• read_zone

The read_zone parameter is the name of the zone used to service read requests.

See Also

• Store and Library Operations

kv_config_get_lob_suffix()
#include <kvstore.h>

const char *
kv_config_get_lob_suffix(kv_config_t *config);

Retrieves the suffix associated with Large Object (LOB) keys, after you set the LOB
suffix using kv_config_set_lob_suffix().

Keys associated with LOBs must have a trailing suffix string at the end of their final
Key component. This requirement permits non-LOB methods to check for inadvertent
modifications to LOB objects.

Parameters

• config

The config parameter points to the configuration structure from which you want to
retrieve the LOB suffix.

See Also

• Store and Library Operations

kv_config_get_lob_timeout()
#include <kvstore.h>

kv_timeout_t
kv_config_get_lob_timeout(const kv_config_t *config);

Returns the default timeout value (in ms) associated with chunk access during Large
Objects operations. LOBs are read from the store in chunks, and each such chunk
must be retrieved within the timeout period identified by this function or an error is
returned on the read attempt.

Parameters

• config

Chapter 2
kv_config_get_lob_suffix()

2-4

The config parameter points to the configuration structure from which you want to
retrieve the LOB timeout value.

See Also

• Store and Library Operations

kv_config_get_lob_verification_bytes()
#include <kvstore.h>

kv_long_t
kv_config_get_lob_verification_bytes(const kv_config_t *config);

Returns the number of trailing bytes of a partial LOB. The partial LOB must be verified
against a user-supplied LOB stream upon resuming a LOB put operation. This value is
set using the kv_config_set_verification_bytes().

Parameters

• config

The config parameter is a pointer to the configuration structure from which you
retrieve the verification bytes value.

See Also

• Store and Library Operations

kv_config_get_read_zones()
#include <kvstore.h>

kv_read_zones_t *
kv_config_get_read_zones(kv_config_t *config)

Retrieves the structure containing the read zones used by this configuration object. A
node must belong to one of the zones identified in the kv_read_zones_t structure if it
is to be used to service read requests. If NULL is returned, any node in any zone can
be used to service read requests.

The structure returned by this function is as follows:

typedef struct {
 kv_int_t kz_num_zones;
 char **kz_zones;
} kv_read_zones_t;

You add read zones using kv_config_add_read_zone().

Parameters

• config

Chapter 2
kv_config_get_lob_verification_bytes()

2-5

The config parameter points to the configuration structure from which you want to
retrieve the read zones.

See Also

• Store and Library Operations

kv_config_set_consistency()
#include <kvstore.h>

kv_error_t
kv_config_set_consistency(kv_config_t *config,
 kv_consistency_t *consistency);

Identifies the default consistency policy to be used by this process. Note that this
default can be overridden on a per-operation basis.

Parameters

• config

The config parameter points to the configuration structure for which you
want to set the default consistency. This structure was initially created
using kv_create_config().

• consistency

The consistency parameter identifies the consistency policy to
be used as the default. Consistency policies are created
using kv_create_simple_consistency(), kv_create_time_consistency(), and
kv_create_version_consistency().

See Also

• Store and Library Operations

kv_config_set_durability()
#include <kvstore.h>

kv_error_t
kv_config_set_durability(kv_config_t *config,
 kv_durability_t durability);

Identifies the default durability policy to be used by this process. Note that this default
can be overridden on a per-operation basis.

Parameters

• config

The config parameter points to the configuration structure for which you
want to set the default durability. This structure was initially created
using kv_create_config().

Chapter 2
kv_config_set_consistency()

2-6

• durability

The durability parameter identifies the durability policy to be used as the default.
Durability policies are created using kv_create_durability().

See Also

• Store and Library Operations

kv_config_set_lob_suffix()
#include <kvstore.h>

kv_error_t
kv_config_set_lob_suffix(kv_config_t *config,
 const char *suffix);

Sets the suffix associated with Large Object (LOB) keys. Keys associated with LOBs
must have a trailing suffix string at the end of their final key component. This
requirement permits non-LOB methods to check for inadvertent modifications to LOB
objects.

Parameters

• config

The config parameter points to the configuration structure for which you want to
set the LOB suffix.

• suffix

The suffix parameter identifies the suffix you want to use. By default ".lob" is used.

See Also

• Store and Library Operations

kv_config_set_lob_timeout()
#include <kvstore.h>

kv_error_t
kv_config_set_lob_timeout(kv_config_t *config,
 kv_timeout_t timeout_ms);

Sets the default timeout value associated with chunk access during Large Object
operations. LOBs are read from the store in chunks, and each such chunk must be
retrieved within the timeout period defined by this function or an error is returned on
the read attempt.

Parameters

• config

Chapter 2
kv_config_set_lob_suffix()

2-7

The config parameter points to the configuration structure for which you want to
set the chunk timeout value.

• timeout_ms

The timeout_ms parameter is the timeout in milliseconds used for LOB chunk
reads.

See Also

• Store and Library Operations

kv_config_set_request_limits()
#include <kvstore.h>

kv_error_t
kv_config_set_request_limits(kv_config_t *config,
 kv_int_t max_active_requests,
 kv_int_t request_threshold_percent,
 kv_int_t node_limit_percent);

Configures the maximum number of requests that the client can have active for a node
in the KVStore. Limiting requests in this way helps minimize the possibility of thread
starvation in situations where one or more nodes in the store exhibits long service
times. As a result, nodes retain threads, making them unavailable to service requests
to other reachable and healthy nodes.

The long service times can be due to problems at the node itself, or in the network
path to that node. Whenever possible, the KVS request dispatcher will minimize use
of nodes with long service times automatically, by re-routing requests to other nodes
that can handle them. So the mechanism provided by this function offers an additional
margin of safety when re-routing requests is not possible.

The request limiting mechanism of this function is activated only when
the number of active requests exceeds the threshold specified by the
parameter request_threshold_percent. Both the threshold and limit parameters that
you provide to this function are expressed as a percentage of max_active_requests.

The limits that this function sets are applicable only if the client is mult-threaded.

When the mechanism is active, the number of active requests to a node is not allowed
to exceed node_limit_percent. Any new requests that would exceed this limit are
rejected and the function making the request returns with an error.

For example, consider a configuration with max_active_requests=10,
request_threshold_percent=80 and node_limit_percent=50. If 8 requests are already
active at the client, and a 9th request is received that would be directed at a node
which already has 5 active requests, the latest request would cause an error. If only 7
requests were active at the client, the 8th request would be directed at the node with 5
active requests. The request would then be processed normally.

Parameters

• config

Chapter 2
kv_config_set_request_limits()

2-8

The config parameter points to the configuration structure for which you want to
set request limits. This structure was initially created using kv_create_config().

• max_active_requests

The max_active_requests parameter is the maximum number of active requests
permitted by the KV client. This number is typically derived from the maximum
number of threads that the client has set aside for processing requests. The
default is 100. Note that the KVStore does not actually enforce this maximum
directly. Instead, it uses this parameter only as the basis for calculating the request
limits to be enforced at a node.

• request_threshold_percent

The request_threshold_percent parameter is the threshold computed as a
percentage of max_active_requests at which requests are limited. The default
is 90.

• node_limit_percent

The node_limit_percent parameter determines the maximum number of active
requests that can be associated with a node when the request limiting mechanism
is active. The default is 80.

See Also

• Store and Library Operations

kv_config_set_security_properties()
#include <kvstore.h>

kv_error_t
kv_config_set_security_properties(kv_config_t *config,
 kv_properties_t *props)

Sets the security properties for use by the client for authentication to the store. The
properties are set to the properties structure using kv_set_property().

Use this function only if you are opening a handle to a secure store
using kv_open_store_login().

Parameters

• config

The config parameter is the configuration structure that you want to configure.

• props

The props parameter is the properties structure which contains the security
properties that you want to set for the store handle.

See Also

• Store and Library Operations

Chapter 2
kv_config_set_security_properties()

2-9

kv_config_set_timeouts()
#include <kvstore.h>

kv_error_t
kv_config_set_timeouts(kv_config_t *config,
 kv_long_t socket_read_timeout,
 kv_long_t request_timeout,
 kv_long_t socket_open_timeout);

Configures default timeout values that are used for when this client performs store
data access. All timeout values are specified in milliseconds.

Parameters

• config

The config parameter points to the configuration structure for which you want to
set request timeouts. This structure was initially created using kv_create_config().

• socket_read_timeout

The socket_read_timeout parameter configures the read timeout associated
with sockets used to make client requests. It applies to both read and write
requests, and represents the amount of time the client will wait for a response
from the store. Shorter timeouts result in more rapid failure detection and recovery.
However, this timeout should be sufficiently long so as to allow for the longest
timeout associated with a request.

• request_timeout

The request_timeout parameter configures the default request timeout. That
is, client read and write requests must fully complete within the period of time
identified on this parameter, or the request fails with an error.

• socket_open_timeout

The socket_open_timeout parameter configures the amount of time the client will
wait when opening a socket to the store. Shorter timeouts result in more rapid
failure detection and recovery.

See Also

• Store and Library Operations

kv_config_set_verification_bytes()
#include <kvstore.h>

kv_error_t
kv_config_set_lob_verification_bytes(kv_config_t *config,
 kv_long_t num_bytes);

Sets the number of trailing bytes of a partial LOB that must be verified against the user
supplied LOB stream when resuming a LOB put operation.

Chapter 2
kv_config_set_timeouts()

2-10

Parameters

• config

The config parameter points to the configuration structure for which you want to
set the number of LOB verification bytes.

• num_bytes

The num_bytes parameter identifies the number of trailing bytes used to verify a
resumed LOB put operation. This number of bytes is taken from the partial LOB
that exists from suspending the put operation, and is compared to your LOB input
stream.

See Also

• Store and Library Operations

kv_create_config()
#include <kvstore.h>

kv_error_t
kv_create_config(kv_config_t **config,
 const char *store_name,
 const char *host,
 int port)

Creates a configuration structure to be used with kv_open_store(). You release the
resources used by this structure using kv_release_config(), but only if your application
encounters an error when kv_open_store()is called or when this function returns an
error.

Note that you must identify at least one helper host when you call this function,
using the host and port parameters. The helper host is used by the application
to locate other nodes in the store. Additional helper hosts can be identified
using kv_config_add_host_port().

This function defines default client behavior. All of the defaults that you can configure
using this function can be overridden on a per-operation basis using the appropriate
parameters to this API's put/get/delete functions.

You can define default store behavior only before opening the store handle; changing
these configuration options after open time has no effect on store behavior.

Parameters

• config

The config parameter references memory into which a pointer to the allocated
configuration structure is copied.

• store_name

The store_name parameter is the name of the KV Store. The store name is used
to guard against accidental use of the wrong host or port. The store name must
consist entirely of upper or lowercase, letters and digits.

Chapter 2
kv_create_config()

2-11

• host

The host parameter is the network name of a node belonging to the store. The
node must be currently active because it is used by the application as a helper
host to locate other nodes in the store.

• port

The port parameter is the helper host's port number.

See Also

• Store and Library Operations

kv_create_jni_impl()
#include <kvstore.h>

kv_error_t
kv_create_jni_impl(kv_impl_t **impl,
 const char *classpath)

Creates a JNI implementation structure. This object initializes the Java Native
Interface layer. Programs written using this implementation will use JNI, and so require
a Java runtime to be available in order for the program to run.

The implementation structure is used with kv_open_store().

You release the implementation structure using kv_release_impl().

Parameters

• impl

The impl parameter references memory into which a pointer to the allocated
implementation structure is placed.

• classpath

The classpath parameter provides a path to the kvclient.jar file, which is required
in order to use this library.

See Also

• Store and Library Operations

kv_create_jni_impl_from_jvm()
#include <kvstore.h>

kv_error_t
kv_create_jni_impl_from_jvm(kv_impl_t **impl, void *jvm)

Creates a JNI implementation structure based on a JVM instantiation created by the
application.. This object initializes the Java Native Interface layer. Programs written

Chapter 2
kv_create_jni_impl()

2-12

using this implementation will use JNI, and so require a Java runtime to be available in
order for the program to run.

The implementation structure is used with kv_open_store().

You release the implementation structure using kv_release_impl().

Parameters

• impl

The impl parameter references memory into which a pointer to the allocated
implementation structure is placed.

• jvm

The jvm parameter is a pointer to a Java Virtual Machine that was created by the
application.

See Also

• Store and Library Operations

kv_create_password_credentials()
#include <kvstore.h>

kv_error_t
kv_create_password_credentials(kv_impl_t *impl,
 const char *username,
 const char *password,
 kv_credentials_t **creds)

Creates a credentials structure with the username/password pair that
you want to use to authenticate a store. These credentials are used
with kv_open_store_login() or kv_store_login().

Release these credentials using kv_release_credentials().

Parameters

• impl

The impl parameter is the implementation structure you are using for the library. It
is created using kv_create_jni_impl().

• username

The username parameter is the username you want to use for store
authentication.

• password

The password parameter is the password parameter is the user's password.

• creds

The creds parameter references memory into which is passed the
allocated kv_credentials_t structure.

Chapter 2
kv_create_password_credentials()

2-13

See Also

• Store and Library Operations

kv_create_properties()
#include <kvstore.h>

kv_error_t
kv_create_properties(kv_impl_t *impl,
 kv_properties_t **props)

Creates and allocates resources for a properties structure. Use kv_set_property() to
set a property to the structure allocated here. Use kv_release_properties() to release
the structure.

The properties you can set here control the behavior of the underlying Java code.
At present, you can use only the Oracle NoSQL Database security properties.
See kv_set_property() for details. These are set for the store configuration
using kv_config_set_security_properties().

Parameters

• impl

The impl parameter is the implementation structure you are using for the library. It
is created usingkv_create_jni_impl().

• props

The props parameter references memory into which is placed the
initialized kv_properties_t structure.

See Also

• Store and Library Operations

kv_get_impl_type()
#include <kvstore.h>

kv_api_type_enum
kv_get_impl_type(kv_impl_t *impl)

Returns the type of implementation in use by the KVStore C Library. Currently, there is
only one possible implementation type: KV_JNI.

Parameters

• impl

The impl parameter is the implementation structure whose type you want to
examine.

Chapter 2
kv_create_properties()

2-14

https://docs.oracle.com/cd/NOSQL/html/driver_kv_c/doc/c_ref/storeops_datatype.html#kv_api_type_enum

See Also

• Store and Library Operations

kv_get_open_error()
#include <kvstore.h>

const char *
kv_get_open_error(kv_impl_t *impl);

Returns a descriptive string of any error that was encountered opening the store. This
method is not thread-safe.

Parameters

• impl

The impl parameter is the implementation structure containing the open error that
you want to examine.

See Also

• Store and Library Operations

kv_open_store()
#include <kvstore.h>

kv_error_t
kv_open_store(const kv_impl_t *impl,
 kv_store_t **store,
 kv_config_t *config)

Opens a KV Store handle (structure). Call kv_close_store() to release the resources
allocated for this structure.

The config parameter is donated upon success, and so upon a successful open your
application should ignore the kv_config_t structure. If this function fails, you must
call kv_release_config() (it is only when an error occurs on store open that you should
explicitly release the configuration structure). Upon failure, you might be able to obtain
error information using kv_get_open_error().

This function is not thread-safe; it must not be called concurrently on the
same kv_impl_t instance.

Parameters

• impl

The impl parameter is the implementation structure you are using for the library. It
is created usingkv_create_jni_impl().

• store

Chapter 2
kv_get_open_error()

2-15

The store parameter references memory into which a pointer to the allocated
store handle (structure) is copied.

• config

The config parameter is the configuration structure that you want to use to
configure this handle. It is created using kv_create_config().

See Also

• Store and Library Operations

kv_open_store_login()
#include <kvstore.h>

kv_error_t
kv_open_store_login(const kv_impl_t *impl,
 kv_store_t **store,
 kv_config_t *config,
 kv_credentials_t *creds)

Opens a KV Store handle (structure) and authenticates to the store using the supplied
authentication credentials. Call kv_close_store() to log out of the store and release
the resources allocated for this structure. Note that you can also log out of the store
using kv_store_logout().

The config parameter is donated upon success, and so upon a successful open your
application should ignore the kv_config_t structure. If this function fails, you must
call kv_release_config() (it is only when an error occurs on store open that you should
explicitly release the configuration structure). Upon failure, you might be able to obtain
error information using kv_get_open_error().

This function is not thread-safe; it must not be called concurrently on the
same kv_impl_t instance.

Parameters

• impl

The impl parameter is the implementation structure you are using for the library. It
is created using kv_create_jni_impl().

• store

The store parameter references memory into which a pointer to the allocated
store handle (structure) is copied.

• config

The config parameter is the configuration structure that you want to use to
configure this handle. It is created using kv_create_config().

• creds

The creds parameter is the credentials structure that you want to use to login to
the store. You create this structure using kv_create_password_credentials().

Chapter 2
kv_open_store_login()

2-16

See Also

• Store and Library Operations

kv_release_config()
#include <kvstore.h>

kv_error_t
kv_release_config(kv_config_t **config)

Releases the resources used by a KV Store configuration object. This function should
only be called if an error occurs when kv_open_store() or kv_open_store_login() is
called. The kv_config_t structure was initially allocated using kv_create_config().

Parameters

• config

The config parameter is the configuration structure that you want to release.

See Also

• Store and Library Operations

kv_release_credentials()
#include <kvstore.h>

void
kv_release_credentials(kv_credentials_t **creds)

Releases password credentials created using kv_create_password_credentials()

Parameters

• creds

The creds parameter references the password credentials you want to release.

See Also

• Store and Library Operations

kv_release_impl()
#include <kvstore.h>

void
kv_release_impl(kv_impl_t **impl)

Releases the implementation structure created by kv_create_jni_impl().

Chapter 2
kv_release_config()

2-17

Parameters

• impl

The impl parameter is the implementation structure whose resources you want to
release.

See Also

• Store and Library Operations

kv_release_properties()
#include <kvstore.h>

void
kv_release_properties(kv_properties_t **props)

Releases a properties structure created using kv_create_properties().

Parameters

• props

The props parameter references the properties you want to release.

See Also

• Store and Library Operations

kv_set_property()
#include <kvstore.h>

kv_error_t
kv_set_property(kv_properties_t* props,
 const char* prop_name,
 const char* prop_value)

Sets a Java property to the kv_properties_t structure. At present,
only the Oracle NoSQL Database security properties can be set. The
resulting properties structure is assigned to the store configuration structure
using kv_config_set_security_properties().

Parameters

• props

The props parameter references the properties structure on which you want to set
the properties.

• props_name

The props_name parameter must be a property name. Supported properties are
defined in kvstore.h:

Chapter 2
kv_release_properties()

2-18

– KV_SEC_SECURITY_FILE_PROPERTY

Identifies a security property configuration file to be read when
a KVStoreConfig is created, as a set of overriding property definitions.

– KV_SEC_TRANSPORT_PROPERTY

If set to ssl, enables the use of SSL/TLS communications.

– KV_SEC_SSL_CIPHER_SUITES_PROPERTY

Controls what SSL/TLS cipher suites are acceptable for use. The property
value is a comma-separated list of SSL/TLS cipher suite names. Refer to your
Java documentation for the list of valid values.

– KV_SEC_SSL_PROTOCOLS_PROPERTY

Controls what SSL/TLS protocols are acceptable for use. The property value
is a comma-separated list of SSL/TLS protocol names. Refer to your Java
documentation for the list of valid values.

– KV_SEC_SSL_HOSTNAME_VERIFIER_PROPERTY

Specifies a verification step to be performed when connecting to a NoSQL DB
server when using SSL/TLS. The only verification step currently supported is
the dnmatch verifier.

The dnmatch verifier must be specified in the form dnmatch(distinguished-
name), where distinguished-name must be the NoSQL DB server
certificate's distinguished name. For a typical secure deployment this should
be dnmatch(CN=NoSQL).

– KV_SEC_SSL_TRUSTSTORE_FILE_PROPERTY

Identifies the location of a Java truststore file used to validate the SSL/TLS
certificates used by the Oracle NoSQL Database server. This property must be
set to an absolute path for the file. If this property is not set, a system property
setting of javax.net.ssl.trustStore is used.

– KV_SEC_SSL_TRUSTSTORE_TYPE_PROPERTY

Identifies the type of Java truststore that is referenced by
the KV_SEC_SSL_TRUSTSTORE_FILE_PROPERTY property. This is only needed if
using a non-default truststore type. The specified type must be supported by
your Java implementation.

– KV_SEC_SSL_AUTH_USERNAME_PROPERTY

Specifies the username used for authentication.

– KV_SEC_SSL_AUTH_WALLET_PROPERTY

Identifies an Oracle Wallet directory containing the password of the user to
authenticate. This is only used in the Enterprise Edition of the product.

– KV_SEC_SSL_AUTH_PWDFILE_PROPERTY

Identifies a password store file containing the password of the user to
authenticate

• prop_value

The prop_value parameter must be the property's value.

Chapter 2
kv_set_property()

2-19

See Also

• Store and Library Operations

kv_store_login()
#include <kvstore.h>

kv_error_t
kv_store_login(kv_store_t *store,
 kv_credentials_t *creds)

Updates the login credentials used by the store handle. Use this function under one of
the two following circumstances:

1. The application returns KV_AUTH_FAILURE. Calling this function causes the handle
to attempt to re-establish the authentication to the store. The credentials used in
this case must be for the handle's currently logged in user.

2. If the handle is currently logged out due to a call to kv_store_logout(), then this
function can be used to log in to the store. In that case, login credentials for any
valid user can be used.

You create a credentials structure using kv_create_password_credentials().

Parameters

• store

The store parameter references the store handle that you want to use for
authentication or reauthentication.

• creds

The creds parameter is the authentication credentials structure you want to use
for this log in attempt.

See Also

• Store and Library Operations

kv_store_logout()
#include <kvstore.h>

kv_error_t
kv_store_logout(kv_store_t *store)

Logs the store handle out of the store. The handle remains valid, but you should not
use it with any functions except kv_close_store() or kv_store_login(). Once logged out,
all other functions will return KV_AUTH_FAILURE.

Parameters

• store

Chapter 2
kv_store_login()

2-20

The store parameter references the store handle that you want to log out.

See Also

• Store and Library Operations

kv_version()
#include <kvstore.h>

kv_error_t
kv_version(kv_impl_t *impl, kv_int_t *major,
 kv_int_t *minor, kv_int_t *patch)

Identifies the Oracle NoSQL Database version information. Versions consist of major,
minor and patch numbers.

Parameters

• impl

The impl is the implementation structure used to open the KV Store. It is created
using kv_create_jni_impl().

• major

The major parameter identifies the store's major release number.

• minor

The minor parameter identifies the store's minor release number.

• patch

The patch parameter identifies the store's patch release number.

See Also

• Store and Library Operations

kv_version_c()
#include <kvstore.h>

void
kv_version_c(kv_int_t *major, kv_int_t *minor, kv_int_t *patch)

Identifies the version information for the C API library. Versions consist of major, minor
and patch numbers.

Parameters

• major

The major parameter identifies the store's major release number.

• minor

Chapter 2
kv_version()

2-21

The minor parameter identifies the store's minor release number.

• patch

The patch parameter identifies the store's patch release number.

See Also

• Store and Library Operations

Chapter 2
kv_version_c()

2-22

3
Data Operation Functions

This chapter describes the functions used to perform data read and writes on the
store. Functions are described that allow single records to be read or written at a time,
and for many records to be read and written in a single operation. Functions that return
iterators are also described. These allow you to walk over some or all of the records
contained in the store.

This chapter also describes functions used to perform multiple write operations that
are organized in a single sequence of operations. That is, you can in one atomic
unit perform several put operations that create new records, then put operations that
update those records, and/or delete those records. These sequences are performed
under a single transaction that effectively offers serializable isolation.

Data Operations Functions

Data Operations Functions Description

kv_delete() Delete the key/value pair associated with the key

kv_delete_with_options() Delete the key/value pair using options

kv_get() Get the value associated with the key

kv_get_with_options() Get the value that matches the options

kv_put() Put a key/value pair, inserting or overwriting as
appropriate

kv_put_with_options() Put the key/value pair using options

Multiple-Key Operations Functions

Multiple-Key Operations
Functions

Description

kv_init_key_range() Create and initialize a key range for use in multiple-key
operations

kv_init_key_range_prefix() Create and initialize a key range using prefix information

kv_iterator_next() Return the next key/value pair from a store iterator

kv_iterator_next_key() Return the next key from a store iterator

kv_iterator_size() Return the number of elements in the store iterator

kv_multi_delete() Delete all descendant key/value pairs associated with
the parent key

kv_multi_get() Return all descendant key/value pairs associated with
the parent key

kv_multi_get_iterator() Returns an iterator that provides traversal of descendant
key/value pairs

kv_multi_get_iterator_keys() Returns an iterator that provides traversal of descendant
keys

3-1

Multiple-Key Operations
Functions

Description

kv_multi_get_keys() Return the descendant keys associated with the parent
key

kv_parallel_scan_iterator_next() Return the next key/value pair from a parallel scan
iterator

kv_parallel_scan_iterator_next_key() Return the next key from a parallel scan iterator

kv_parallel_store_iterator() Return a parallel scan store iterator

kv_parallel_store_iterator_keys() Return an parallel scan iterator providing traversal of
store keys

kv_release_iterator() Release the store iterator

kv_release_parallel_scan_iterator() Release the parallel scan iterator

kv_store_iterator() Return an iterator that provides traversal of all store key/
value pairs

kv_store_iterator_keys() Return an iterator that provides traversal of all store keys

Multi-Step Operations Functions

Multi-Step Operations Functions Description

kv_create_delete_op() Create a delete operation to be used with an operation
sequence

kv_create_delete_with_options_op() Create a delete operation, with parameters, to be used
with an operation sequence

kv_create_operations() Creates and initializes a structure used to contain a
sequence of store operations

kv_create_put_op() Create a put operation to be used with an operation
sequence

kv_create_put_with_options_op() Create a put operation, with parameters, to be used with
an operation sequence

kv_execute() Execute the operation

kv_operation_get_abort_on_failure() Returns whether the entire operation aborts in the event
of an execution failure

kv_operation_get_key() Returns the Key associated with the operation

kv_operation_get_type() Returns the operation type

kv_operation_results_size() Returns the size of the operation's result set

kv_operations_set_copy() Configures a list of operations to copy user-supplied
structures and buffers

kv_operations_size() Returns the number of operations in the operation
structure

kv_release_operation_results() Release the results obtained by executing an operation

kv_release_operations() Release the operation structure

kv_result_get_previous_value() For a put or delete operation, returns the previous value
associated with the key

kv_result_get_previous_version() For a put or delete operation, returns the version or the
previous value associated with the Key

Chapter 3

3-2

Multi-Step Operations Functions Description

kv_result_get_success() Returns whether the operation was successful

kv_result_get_version() For a put operation, returns the Version of the new key/
value pair

Large Object Operations Functions

Large Object Operations
Functions

Description

kv_lob_delete() Delete the LOB

kv_lob_get_for_read() Open a LOB handle for read operations

kv_lob_get_for_write() Open a LOB handle for write operations

kv_lob_get_version() Returns the Version of the LOB key/value pair

kv_lob_put_from_file() Put a LOB key/value pair, inserting or overwriting as
appropriate

kv_lob_read() Read a LOB from the store

kv_lob_release_handle() Release the LOB handle

kv_create_delete_op()
#include <kvstore.h>

kv_error_t
kv_create_delete_op(kv_operations_t *list,
 const kv_key_t *key,
 kv_int_t abort_on_failure)

Creates a simple delete operation suitable for use as part of a multi-step operation to
be run using kv_execute(). The semantics of the returned operation when executed
are identical to that of kv_delete().

Parameters

• list

The list parameter is the operation sequence to which this delete operation is
appended. The list is allocated using kv_create_operations().

• key

The key parameter identifies the Key portion of the record to be deleted.

Note that all of the operations performed under a single call to kv_execute() must
share the same major key path, and that major key path must be complete.

• abort_on_failure

The abort_on_failure parameter indicates whether the entire operation should
abort if this delete operation fails. Specify 1 if you want the operation to abort upon
deletion failure.

Chapter 3
kv_create_delete_op()

3-3

See Also

• Data Operations and Related Functions

kv_create_delete_with_options_op()
#include <kvstore.h>

kv_error_tkv_create_delete_with_options_op(kv_operations_t *list,
 const kv_key_t *key,
 const kv_version_t
*version,kv_return_value_version_enum return_info,
 kv_int_t abort_on_failure)

Create a complex delete operation suitable for use as part of a multi-step operation
to be run using kv_execute(). The semantics of the returned operation when executed
are identical to that ofkv_delete_with_options().

Parameters

• list

The list parameter is the operation sequence to which this delete operation is
appended. The sequence is allocated using kv_create_operations().

• key

The key parameter identifies the Key portion of the record to be deleted.

Note that all of the operations performed under a single call to kv_execute() must
share the same major key path, and that major key path must be complete.

• version

The version parameter indicates the Version that the record must match before it
can be deleted. The Version is obtained using the kv_get_version() function.

• return_info

The return_info parameter indicates what information should be
returned to the kv_execute() results list by this operation.
See kv_return_value_version_enum for a description of the options accepted by
this parameter.

• abort_on_failure

The abort_on_failure parameter indicates whether the entire operation should
abort if this delete operation fails. Specify 1 if you want the operation to abort upon
deletion failure.

See Also

• Data Operations and Related Functions

Chapter 3
kv_create_delete_with_options_op()

3-4

kv_create_operations()
#include <kvstore.h>

kv_error_t
kv_create_operations(kv_store_t *store,
 kv_operations_t **operations)

Allocates a structure containing a multi-step sequence of operations to be
performed by kv_execute(). Release the resources used by this sequence
using kv_release_operations().

Immediately upon calling this function, you might want to
call kv_operations_set_copy(). See that function's description for details.

Parameters

• store

The store parameter is the handle to the store in which you want to run the
sequence of operations.

• ;operations

The operations parameter references memory into which a pointer to the
allocated operations structure is copied.

See Also

• Data Operations and Related Functions

kv_create_put_op()
#include <kvstore.h>

kv_error_t
kv_create_put_op(kv_operations_t *list,
 const kv_key_t *key,
 const kv_value_t *value,
 kv_int_t abort_on_failure)

Creates a simple put operation suitable for use as part of a multi-step operation to be
run using kv_execute(). The semantics of the returned operation when executed are
identical to that of kv_put().

Parameters

• list

The list parameter operation sequence to which this put operation is appended.
The sequence is allocated using kv_create_operations().

• key

Chapter 3
kv_create_operations()

3-5

The key parameter is the Key portion of the Key/Value pair that you want to write
to the store.

Note that all of the operations performed under a single call to kv_execute() must
share the same major key path, and that major key path must be complete.

• value

The value parameter is the Value portion of the Key/Value pair that you want to
write to the store.

• abort_on_failure

The abort_on_failure parameter indicates whether the entire operation should
abort if this put operation fails. Specify 1 if you want the operation to abort upon
put failure.

See Also

• Data Operations and Related Functions

kv_create_put_with_options_op()
#include <kvstore.h>

kv_error_tkv_create_put_with_options_op(kv_operations_t *list,
 const kv_key_t *key,
 const kv_value_t *value,
 const kv_version_t
*version,kv_presence_enumif_presence,kv_return_value_version_enum return_info,
 kv_int_t abort_on_failure)

Creates a complex put operation suitable for use as part of a multi-step operation to be
run using kv_execute(). The semantics of the returned operation when executed are
identical to that of kv_put().

Parameters

• list

The list parameter operation sequence to which this put operation is appended.
The sequence is allocated using kv_create_operations().

• key

The key parameter is the Key portion of the Key/Value pair that you want to write
to the store.

Note that all of the operations performed under a single call to kv_execute() must
share the same major key path, and that major key path must be complete.

• value

The value parameter is the Value portion of the Key/Value pair that you want to
write to the store.

• version

The version parameter indicates that the record should be put only if the existing
value matches the version supplied to this parameter. Use this parameter when

Chapter 3
kv_create_put_with_options_op()

3-6

updating a value to ensure that it has not changed since it was last read. The
version is obtained using the kv_get_version() function.

• if_presence

The if_presence parameter describes the conditions under which the record
can be put, based on the presence or absence of the record in the store. For
example, KV_IF_PRESENT means that the record can only be written to the store if a
version of the record already exists there.

For a list of all the available presence options, see kv_presence_enum.

• return_info

The return_info parameter indicates what information should be
returned to the kv_execute() results list by this operation.
See kv_return_value_version_enum for a description of the options accepted by
this parameter.

• abort_on_failure

The abort_on_failure parameter indicates whether the entire operation should
abort if this put operation fails. Specify 1 if you want the operation to abort upon
put failure.

See Also

• Data Operations and Related Functions

kv_delete()
#include <kvstore.h>

kv_error_t
kv_delete(kv_store_t *store,
 const kv_key_t *key)

Delete the key/value pair associated with the key.

Deleting a key/value pair with this method does not automatically delete its
children or descendant key/value pairs. To delete children or descendants,
use kv_multi_delete() instead.

This function uses the default durability and default request timeout. Default
durabilities are set usingkv_config_set_durability(). The default request timeout is set
using kv_config_set_timeouts().

Possible outcomes when calling this method are:

• The KV pair was deleted and the number of records deleted is returned. For this
function, a successful return value will always be 0 or 1.

• The KV pair was not guaranteed to be deleted successfully. A non-
success kv_error_t error is returned; that is, a negative integer is returned.

Parameters

• store

Chapter 3
kv_delete()

3-7

The store parameter is the handle to the store in which you want to perform the
delete operation.

• key

The key parameter is the key used to look up the key/value pair to be deleted.

See Also

• Data Operations and Related Functions

kv_delete_with_options()
#include <kvstore.h>

kv_error_tkv_delete_with_options(kv_store_t *store,
 const kv_key_t *key,
 const kv_version_t *if_version,
 kv_value_t
**previous_value,kv_return_value_version_enum return_info,
 kv_durability_t durability,
 kv_timeout_t timeout_ms)

Delete the key/value pair associated with the key.

Deleting a key/value pair with this method does not automatically delete its
children or descendant key/value pairs. To delete children or descendants,
use kv_multi_delete() instead.

Possible outcomes when calling this method are:

• The KV pair was deleted and the number of records deleted is returned. For this
function, a successful return value will always be 0 or 1.

• The KV pair was not guaranteed to be deleted successfully. A non-
success kv_error_t error is returned; that is, a negative integer is returned.

Parameters

• store

The store parameter is the handle to the store in which you want to perform the
delete operation.

• key

The key parameter is the key used to look up the key/value pair to be deleted.

• if_version

The if_version parameter indicates the Version that the record must match before
it can be deleted. The Version is obtained using the kv_get_version() function.

• previous_value

The previous_value parameter references memory into which is copied the Value
portion of the Key/Value pair that this function deleted.

• return_info

Chapter 3
kv_delete_with_options()

3-8

The return_info parameter indicates what information should be
returned to the kv_execute() results list by this operation.
See kv_return_value_version_enum for a description of the options accepted by
this parameter.

• durability

The durability parameter provides the durability guarantee to be used with this
delete operation. Durability guarantees are created using kv_create_durability().

• timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit.
If zero, the default request timeout is used. The default request timeout is set
using kv_config_set_timeouts().

See Also

• Data Operations and Related Functions

kv_execute()
#include <kvstore.h>

kv_error_t
kv_execute(kv_store_t *store,
 const kv_operations_t *list,
 kv_operation_results_t **result,
 kv_durability_t durability,
 kv_timeout_t timeout_ms)

Executes a sequence of operations. The operations list is created
using kv_create_operations(), and individual steps in the operation sequence are
created using functions such as kv_create_delete_op() and kv_create_put_op().

Each operation created for this sequence operates on a single key and
matches the corresponding Oracle NoSQL Database operation. For example, the
operation generated by the kv_create_put_with_options_op() function corresponds to
the kv_put_with_options() function. The argument pattern for creating each operation
is similar, but they differ in the following respects:

• The durability argument is not passed to the operations created for this sequence,
because that argument applies to the execution of the entire batch of operations
and is passed to this function.

• Each individual operation indicates whether the entire sequence of operations
should abort if the individual operation is unsuccessful.

Note that all of the operations performed under a single call to kv_execute() must
share the same major key path, and that major key path must be complete.

Parameters

• store

The store parameter is the store handle in which you want to run this sequence of
operations.

Chapter 3
kv_execute()

3-9

• list

The list parameter is the list of operations. This list structure is allocated
using kv_create_operations().

• result

The result parameter is a list of operations result. Each element in the results
list describes the results of executing one of the operations in the sequence of
operations.

Use kv_operation_results_size() to discover how many elements are in the
operation results set.

To determine if a given operation was successful, using kv_result_get_success().
To determine the version of the key/value pair operated upon by the operation,
use kv_result_get_version(). To determine the previous version of the key/value
pair before the operation was executed, use kv_result_get_previous_version().
To determine the value of the key/value pair prior to executing the operation,
use kv_result_get_previous_value().

To release the resources used by the results list,
use kv_release_operation_results().

• durability

The durability parameter identifies the durability policy in use when this sequence
of operations is executed. All the operations contained within the specified
sequence are executed within the scope of a single transaction that effectively
provides serializable isolation. The transaction is started and either committed or
aborted by this function. This means the operations are all atomic in nature: either
they all succeed or the store is left in a state as if none of them had ever been run
at all.

Durability policies are created using kv_create_durability().

If this parameter is NULL, the store's default durability policy is used.

• timeout_ms

The timeout_ms parameter identifies the upper bound on the time interval, in
milliseconds, for processing the sequence of operations. A best effort is made not
to exceed the specified limit. If zero, the default request timeout is used.

See Also

• Data Operations and Related Functions

kv_get()
#include <kvstore.h>

kv_error_t
kv_get(kv_store_t *store,
 const kv_key_t *key,
 kv_value_t **valuep)

Get the value associated with the key. This function uses the store's default
consistency policy and timeout value. To use values other than the defaults,
use kv_get_with_options() instead.

Chapter 3
kv_get()

3-10

Parameters

• store

The store parameter is the handle to the store from which you want to retrieve the
value.

• key

The key parameter is the key portion of the record that you want to read.

• valuep

The valuep parameter references memory into which is copied the value
portion of the retrieved record. Release the resources used by this structure
using kv_release_value().

This parameter must either be 0, or it must point to a previously used, not-yet-
released kv_value_t structure.

See Also

• Data Operations and Related Functions

kv_get_with_options()
#include <kvstore.h>

kv_error_t
kv_get_with_options(kv_store_t *store,
 const kv_key_t *key,
 kv_value_t **valuep,
 kv_consistency_t *consistency,
 kv_timeout_t timeout_ms)

Get the value associated with the key. This function allows you to use a non-default
consistency policy and timeout value.

Parameters

• store

The store parameter is the handle to the store from which you want to retrieve the
value.

• key

The key parameter is the key you want to use to look up the key/value pair.

• valuep

The valuep parameter references memory into which is copied the value
portion of the retrieved record. Release the resources used by this structure
using kv_release_value().

• consistency

The consistency parameter is the consistency policy you want to use with this
operation. You create the consistency policy

Chapter 3
kv_get_with_options()

3-11

using kv_create_simple_consistency(), kv_create_time_consistency() orkv_create
_version_consistency().

If NULL, the store's default consistency policy is used.

• timeout_ms

The timeout_ms parameter identifies the upper bound on the time interval, in
milliseconds, for processing the get operation. A best effort is made not to exceed
the specified limit. If zero, the default request timeout is used.

See Also

• Data Operations and Related Functions

kv_init_key_range()
#include <kvstore.h>

void
kv_init_key_range(kv_key_range_t *key_range,
 const char *start, kv_int_t start_inclusive,
 const char *end, kv_int_t end_inclusive)

Creates a key range to be used in multiple-key operations and iterations.

The key range defines a range of string values for the key components immediately
following the last component of a parent key that is used in a multiple-key operation.
In terms of a tree structure, the range defines the parent key's immediate children that
are selected by the multiple-key operation.

Parameters

• key_range

The key_range parameter is the handle to the key range structure.

The kv_key_range_t structure contains a series of const char * and int data
members owned by you. For this reason, a release function is not needed for this
structure. However, you should not free the strings until you are done using the
key range.

• start

The start parameter defines the lower bound of the key range. If NULL, no lower
bound is enforced.

You must not free this string until you are done with the key_range created by this
function.

• start_inclusive

The start_inclusive parameter indicates whether the value specified to start is
included in the range. Specify 1 if it is included; 0 otherwise.

• end

The end parameter defines the upper bound of the key range. If NULL, no upper
bound is enforced.

Chapter 3
kv_init_key_range()

3-12

You must not free this string until you are done with the key_range created by this
function.

• end_inclusive

The end_inclusive parameter indicates whether the value specified to end is
included in the range. Specify 1 if it is included; 0 otherwise.

See Also

• Data Operations and Related Functions

kv_init_key_range_prefix()
#include <kvstore.h>

void
kv_init_key_range_prefix(kv_key_range_t *key_range,
 const char *prefix)

Creates a key range based on a single string that defines the range's prefix. Using this
function is the equivalent to using the kv_init_key_range() function like this:

kv_init_key_range(key_range_p, prefix_str, 1, prefix_str, 1);

The key range defined here is for use with multiple-key operations and iterations.

Parameters

• key_range

The key_range parameter is the handle to the key range structure.

The kv_key_range_t structure contains a series of const char * and int data
members owned by you. For this reason, a release function is not needed for this
structure. However, you should not free the strings until you are done using the
key range.

• prefix

The prefix parameter is the string that defines both the lower and upper bounds,
inclusive, of the key range.

You must not free this string until you are done with the key_range created by this
function.

See Also

• Data Operations and Related Functions

kv_iterator_next()
#include <kvstore.h>

kv_error_t
kv_iterator_next(kv_iterator_t *iterator,

Chapter 3
kv_init_key_range_prefix()

3-13

 const kv_key_t **key,
 const kv_value_t **value)

Returns the iterator's next record. If another record exists, this function
returns KV_SUCCESS, and the keyand value parameters are populated. If there are no
more records, the return value is KV_NO_SUCH_OBJECT. If the return value is something
other than KV_SUCCESS or KV_NO_SUCH_OBJECT, there was an operational failure.

Parameters

• iterator

The iterator parameter is the handle to the iterator. It is allocated using one of
functions that performs multiple reads of the store (such as kv_multi_get()). It is
released using kv_release_iterator().

• key

The key parameter references memory in which a pointer to the next key is
copied.

Note, you should not release this key structure. The resources used here will be
released when the iterator is released.

• value

The value parameter references memory in which a pointer to the next value is
copied.

Note, you should not release this value structure. The resources used here will be
released when the iterator is released.

See Also

• Data Operations and Related Functions

kv_iterator_next_key()
#include <kvstore.h>

kv_error_t
kv_iterator_next_key(kv_iterator_t *iterator,
 const kv_key_t **key)

Returns the iterator's next key. If another key exists, this function returns KV_SUCCESS,
and the key parameter is populated. If there are no more keys, the
return value is KV_NO_SUCH_OBJECT. If the return value is something other
than KV_SUCCESS or KV_NO_SUCH_OBJECT, there was an operational failure.

Parameters

• store

The store parameter is the handle to the store to which the iterator belongs.

• iterator

Chapter 3
kv_iterator_next_key()

3-14

The iterator parameter is the handle to the iterator. It is allocated using one of
functions that performs multiple reads of the store (such as kv_multi_get()). It is
released using kv_release_iterator().

• key

The key parameter references memory in which a pointer to the next key is
copied.

Note, you should not release this key structure. The resources used here will be
released when the iterator is released.

See Also

• Data Operations and Related Functions

kv_iterator_size()
#include <kvstore.h>

kv_int_t
kv_iterator_size(const kv_iterator_t *iterator)

Returns the number of items contained in the iterator. This function can only be used
with iterators returned by the kv_multi_* line of functions. The iterators returned by
other functions, such as kv_store_iterator(), are not usable by this function.

Parameters

• store

The store parameter is the handle to the store to which the iterator belongs.

• iterator

The iterator parameter is the handle to the iterator for which you want sizing
information.

See Also

• Data Operations and Related Functions

kv_lob_delete()
#include <kvstore.h>

kv_int_t
kv_lob_delete(kv_store_t *store,
 const kv_key_t *key,
 kv_durability_t durability,
 kv_timeout_t timeout_ms);

Deletes the Large Object record from the store.

Chapter 3
kv_iterator_size()

3-15

Parameters

• store

The store parameter is the handle to the store from which you want to delete the
LOB.

• key

The key parameter is the key used to look up the key/value pair to be deleted.

• durability

The durability parameter provides the durability guarantee to be used with this
delete operation. Durability guarantees are created using kv_create_durability().

• timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit.
If zero, the default request timeout is used. The default request timeout is set
using kv_config_set_timeouts().

See Also

• Data Operations and Related Functions

kv_lob_get_for_read()
#include <kvstore.h>

kv_error_t
kv_lob_get_for_read(kv_store_t *store,
 const kv_key_t *key,
 kv_lob_handle_t **handle,
 kv_consistency_t *consistency,
 kv_timeout_t timeout_ms);

Allocates and configures a LOB handle for reading a Large Object from the store. If
the handle is successfully created, KV_SUCCESS is returned; otherwise, KV_NO_MEMORY.

Upon opening this handle, you perform the actual read operation using kv_lob_read().

The LOB handle allocated by this function must be released
using kv_lob_release_handle().

Parameters

• store

The store parameter is the handle to the store from which you want to read the
LOB record.

• key

The key parameter is the LOB record's key. Note that the final path
component used here must specify the LOB suffix configured for the store,
or the read operation will fail. The LOB suffix is configured for your store
using kv_config_set_lob_suffix().

Chapter 3
kv_lob_get_for_read()

3-16

• handle

The handle parameter references memory into which a pointer to the allocated
LOB handle (structure) is copied.

• consistency

The consistency parameter is the consistency policy you want to use with this
read operation. You create the consistency policy
using kv_create_simple_consistency(), kv_create_time_consistency() orkv_create
_version_consistency().

If NULL, the store's default consistency policy is used.

• timeout_ms

The timeout_ms parameter identifies the upper bound on the time interval, in
milliseconds, for processing the get operation. A best effort is made not to exceed
the specified limit. If zero, the default request timeout is used.

See Also

• Data Operations and Related Functions

kv_lob_get_for_write()
#include <kvstore.h>

kv_error_t
kv_lob_get_for_write(kv_store_t *store,
 const kv_key_t *key,
 kv_lob_handle_t **handle,
 kv_presence_enum if_presence,
 kv_durability_t durability,
 kv_timeout_t timeout_ms);

Allocates and configures a LOB handle for writing a Large Object to the store. If the
handle is successfully created, KV_SUCCESS is returned; otherwise, KV_NO_MEMORY.

Upon opening this handle, you perform the actual write operation
using kv_lob_put_from_file() . Note that no method currently exists for writing a large
object directly from memory.

The LOB handle allocated by this function must be released
using kv_lob_release_handle().

Parameters

• store

The store parameter is the handle to the store where you want to write the Large
Object.

• key

The key parameter is the LOB record's key. Note that the final path
component used here must specify the LOB suffix configured for the store,
or the write operation will fail. The LOB suffix is configured for your store
using kv_config_set_lob_suffix().

Chapter 3
kv_lob_get_for_write()

3-17

• handle

The handle parameter references memory into which a pointer to the allocated
LOB handle (structure) is copied.

• if_presence

The if_presence parameter describes the conditions under which the record can
be written to the store, based on the presence or absence of the record in the
store. For example, KV_IF_PRESENT means that the record can only be written to
the store if a version of the record already exists there.

For a list of all the available presence options, see kv_presence_enum.

• durability

The durability parameter provides the durability guarantee to be used with this
write operation. Durability guarantees are created using kv_create_durability().

• timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
writing each chunk of the LOB. (Large Objects are written to the store in
multiple chunks.) A best effort is made not to exceed the specified limit. If zero,
the default LOB timeout value defined for the store is used. This value is set
usingkv_config_set_lob_timeout().

See Also

• Data Operations and Related Functions

kv_lob_get_version()
#include <kvstore.h>

kv_error_t
kv_lob_get_version(kv_lob_handle_t *handle,
 kv_version_t **version);

Returns the record's version. The version is owned by the handle and
must not be released independently of the handle. If no version is
available, KV_INVALID_ARGUMENT is returned.

The record's version is available immediately upon handle creation
using kv_lob_get_for_read(). If kv_lob_get_for_write() is used, the version is available
only after the LOB has been written to the store (using kv_lob_put_from_file()).

Parameters

• handle

The handle parameter is the LOB handle from which you want to retrieve the
record's version.

• version

The version parameter references memory into which the value is copied.
Release the resources used by this value using kv_release_version().

Chapter 3
kv_lob_get_version()

3-18

See Also

• Data Operations and Related Functions

kv_lob_put_from_file()
#include <kvstore.h>

kv_error_t
kv_lob_put_from_file(kv_lob_handle_t *handle,
 const char *path_to_file);

Writes the Large Object stored in path_to_file to the store. The key
used for the resulting record is the key that was used to create
the kv_lob_handle_t (using kv_lob_get_for_write()). The handle must have been open
for writing, or KV_INVALID_ARGUMENT is returned.

If the put is successful, KV_SUCCESS is returned.

The object is written to the store in chunks. Each chunk must be written to the store
within the timeout period defined when the kv_lob_handle_t was created, or the put
will fail.

When the handle is created, it is possible to specify restrictions on the write depending
on whether the LOB currently exists in the store (using the if_presence parameter
for kv_lob_get_for_write()). If KV_IF_PRESENT was specified and the key does not
exist, KV_KEY_NOT_FOUND is returned. If KV_IF_ABSENT was specified and the key
exists, KV_KEY_EXISTS is returned.

Parameters

• handle

The handle parameter is the handle to the store where you want to write the LOB.

• path_to_file

The path_to_file parameter is the filesystem path to the file that contains the LOB
value that you want to write to the store.

See Also

• Data Operations and Related Functions

kv_lob_read()
#include <kvstore.h>

kv_int_t
kv_lob_read(kv_lob_handle_t *handle,
 kv_long_t offset,
 kv_int_t num_bytes_to_read,
 unsigned char *buffer);

Chapter 3
kv_lob_put_from_file()

3-19

Performs a read of a single chunk, or portion, of a LOB from the store into a buffer.
The kv_lob_handle_t must have been opened for read (using kv_lob_get_for_read())
or KV_INVALID_ARGUMENT is returned. Otherwise, the number of bytes read is returned.
The end of the LOB is indicated by a return value of 0. A negative return value
indicates an error on the read.

Parameters

• handle

The handle parameter is the LOB handle that you want to use to perform the read.
It must have been created using kv_lob_get_for_read().

• offset

The offset parameter is the offset into the LOB where this read is to begin.

• num_bytes_to_read

The num_bytes_to_read parameter is the number of bytes you want to read from
the LOB.

• buffer

The buffer parameter is the user-supplied buffer into which the LOB chunk is
placed. This buffer must be at least num_bytes_to_read bytes in size.

See Also

• Data Operations and Related Functions

kv_lob_release_handle()
#include <kvstore.h>

void
kv_lob_release_handle(kv_lob_handle_t **handle);

Release a LOB handle that was allocated
by kv_lob_get_for_read() or kv_lob_get_for_write().

Parameters

• handle

The handle parameter is the LOB handle that you want to release.

See Also

• Data Operations and Related Functions

kv_multi_delete()
#include <kvstore.h>

kv_int_t
kv_multi_delete(kv_store_t *store, const kv_key_t *parent_key,

Chapter 3
kv_lob_release_handle()

3-20

 const kv_key_range_t *key_range,kv_depth_enum depth,
kv_durability_t durability,
 kv_timeout_t timeout_ms)

Deletes the descendent key/value pairs associated with the parent_key. Returns the
total number of keys deleted. If an error, returns an integer value less than zero.

All of the deletions performed as a result of this operation are performed within the
context of a single transaction. This means that either all matching key/value pairs are
deleted, or none of them are.

Parameters

• store

The store parameter is the handle to the store in which you want to perform the
delete operation.

• parent_key

The parent_key parameter is the parent key whose "child" records are to be
deleted. It must not be NULL. The major key path must be complete. The minor
key path may be omitted or may be a partial path.

You construct a key using kv_create_key().

• key_range

The key_range parameter further restricts the range under the parent_key to the
minor path components in this key range. It may be NULL.

You construct a key range using kv_init_key_range().

• depth

The depth parameter specifies how deep the deletion can go. You can allow only
children to be deleted, the parent and all the children, all descendants, and so
forth. See kv_depth_enum for a description of all your depth options.

• durability

The durability parameter identifies the durability to be used for this write
operation. Durability guarantees are created using kv_create_durability().

• timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit.
If zero, the default request timeout is used. The default request timeout is set
using kv_config_set_timeouts().

See Also

• Data Operations and Related Functions

kv_multi_get()
#include <kvstore.h>

kv_error_tkv_multi_get(kv_store_t *store,
 const kv_key_t *parent_key,

Chapter 3
kv_multi_get()

3-21

 kv_iterator_t **return_iterator,
 const kv_key_range_t *sub_range,kv_depth_enum depth,
 kv_consistency_t *consistency,
 kv_timeout_t timeout_ms)

Returns the descendant key/value pairs associated with the parent_key.
The sub_range and the deptharguments can be used to further limit the key/value
pairs that are retrieved. The key/value pairs are fetched within the scope of a single
transaction that effectively provides serializable isolation.

This API should be used with caution because it could result in errors due to running
out of memory, or excessive garbage collection activities in the underlying Java
virtual machine, if the results cannot all be held in memory at one time. Consider
using kv_multi_get_iterator() instead.

This function only allows fetching key/value pairs that are descendants of
a parent_key that has a complete major path. To fetch the descendants of
a parent_key with a partial major path, use kv_store_iterator() instead.

Parameters

• store

The store parameter is the handle to the store from which you want to retrieve
key/value pairs.

• parent_key

The parent_key parameter is the parent key whose "child" records are to be
retrieved. It must not be NULL. The major key path must be complete. The minor
key path may be omitted or may be a partial path.

• return_iterator

The return_iterator parameter references memory into which is copied the results
set. Release the resources used by this iterator using kv_release_iterator().

The iterator returned here is transactional, which means the contents of the
iterator will be static (isolated) until such a time as the iterator is released.

• sub_range

The sub_range parameter further restricts the range under the parent_key to the
minor path components in this key range. It may be NULL.

You construct a key range using kv_init_key_range().

• depth

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so
forth. See kv_depth_enum for a description of all your depth options.

• consistency

The consistency parameter identifies the consistency policy
to use for this read operation. Consistency policies are
created using kv_create_simple_consistency(), kv_create_time_consistency(),
orkv_create_version_consistency().

• timeout_ms

Chapter 3
kv_multi_get()

3-22

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit.
If zero, the default request timeout is used. The default request timeout is set
using kv_config_set_timeouts().

See Also

• Data Operations and Related Functions

kv_multi_get_iterator()
#include <kvstore.h>

kv_error_tkv_multi_get_iterator(kv_store_t *store,
 const kv_key_t *parent_key,
 kv_iterator_t **return_iterator,
 const kv_key_range_t
*sub_range,kv_depth_enumdepth,kv_direction_enum direction,
 int batch_size,
 kv_consistency_t *consistency,
 kv_timeout_t timeout_ms)

Returns an iterator that permits an ordered traversal of the descendant key/value
pairs associated with the parent_key. It is useful when the expected result set is
too large to fit in memory. Note that the result is not transactional and the operation
effectively provides read-committed isolation. The implementation batches the fetching
of key/value pairs in the iterator, to minimize the number of network round trips, while
not monopolizing the available bandwidth.

This function requires the parent_key to not be NULL, and to have a complete major
key path. If you want to obtain an iterator based on a NULL key, or on a key with a
partial major key path, use kv_store_iterator() instead.

Parameters

• store

The store parameter is the handle to the store for which you want an iterator.

• parent_key

The parent_key parameter is the parent key whose "child" records are to be
retrieved. It must not be NULL. The major key path must be complete. The minor
key path may be omitted or may be a partial path.

• return_iterator

The return_iterator parameter references memory into which is copied the results
set. Release the resources used by this iterator using kv_release_iterator().

• sub_range

The sub_range parameter further restricts the range under the parent_key to the
minor path components in this key range. It may be NULL.

You construct a key range using kv_init_key_range().

• depth

Chapter 3
kv_multi_get_iterator()

3-23

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so
forth. See kv_depth_enum for a description of all your depth options.

• direction

The direction parameter specifies the order in which records are returned by the
iterator. Only
kv_direction_enum.KV_DIRECTION_FORWARD and kv_direction_enum.KV_DIRECTI
ON_REVERSE are supported by this function.

• batch_size

The batch_size parameter specifies the suggested number of keys to fetch during
each network round trip. If only the first or last key-value pair is desired, passing a
value of one (1) is recommended. If zero, an internally determined default is used.

• consistency

The consistency parameter identifies the consistency policy
to use for this read operation. Consistency policies are
created using kv_create_simple_consistency(), kv_create_time_consistency(),
orkv_create_version_consistency().

• timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit.
If zero, the default request timeout is used. The default request timeout is set
using kv_config_set_timeouts().

See Also

• Data Operations and Related Functions

kv_multi_get_iterator_keys()
#include <kvstore.h>

kv_error_tkv_multi_get_iterator_keys(kv_store_t *store,
 const kv_key_t *parent_key,
 kv_iterator_t **return_iterator,
 const kv_key_range_t
*sub_range,kv_depth_enumdepth,kv_direction_enum direction,
 int batch_size,
 kv_consistency_t *consistency,
 kv_timeout_t timeout_ms)

Returns an iterator that permits an ordered traversal of the descendant keys
associated with the parent_key. It is useful when the expected result set is too large
to fit in memory. Note that the result is not transactional and the operation effectively
provides read-committed isolation. The implementation batches the fetching of key/
value pairs in the iterator, to minimize the number of network round trips, while not
monopolizing the available bandwidth.

This function requires the parent_key to not be NULL, and to have a complete major
key path. If you want to obtain an iterator based on a NULL key, or on a key with a
partial major key path, use kv_store_iterator_keys() instead.

Chapter 3
kv_multi_get_iterator_keys()

3-24

Parameters

• store

The store parameter is the handle to the store for which you want an iterator.

• parent_key

The parent_key parameter is the parent key whose "child" keys are to be
retrieved. It must not be NULL. The major key path must be complete. The minor
key path may be omitted or may be a partial path.

• return_iterator

The return_iterator parameter references memory into which is copied the results
set. Release the resources used by this iterator using kv_release_iterator().

• sub_range

The sub_range parameter parameter further restricts the range under the
parent_key to the minor path components in this key range. It may be NULL.

You construct a key range using kv_init_key_range().

• depth

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so
forth. See kv_depth_enum for a description of all your depth options.

• direction

The direction parameter specifies the order in which keys are returned by the
iterator. Only
kv_direction_enum.KV_DIRECTION_FORWARD and kv_direction_enum.KV_DIRECTI
ON_REVERSE are supported by this function.

• batch_size

The batch_size parameter specifies the suggested number of keys to fetch during
each network round trip. If only the first or last key is desired, passing a value of
one (1) is recommended. If zero, an internally determined default is used.

• consistency

The consistency parameter identifies the consistency policy
to use for this read operation. Consistency policies are
created using kv_create_simple_consistency(),kv_create_time_consistency(),
or kv_create_version_consistency().

• timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit.
If zero, the default request timeout is used. The default request timeout is set
using kv_config_set_timeouts().

See Also

• Data Operations and Related Functions

Chapter 3
kv_multi_get_iterator_keys()

3-25

kv_multi_get_keys()
#include <kvstore.h>

kv_error_tkv_multi_get_keys(kv_store_t *store,
 const kv_key_t *parent_key,
 kv_iterator_t **return_iterator,
 const kv_key_range_t *sub_range,kv_depth_enum depth,
 kv_consistency_t *consistency,
 kv_timeout_t timeout_ms)

Returns the descendant keys associated with the parent_key. The sub_range and
the depth arguments can be used to further limit the keys that are retrieved. The
keys are fetched within the scope of a single transaction that effectively provides
serializable isolation.

This API should be used with caution because it could result in errors due to running
out of memory, or excessive garbage collection activities in the underlying Java
virtual machine, if the results cannot all be held in memory at one time. Consider
using kv_multi_get_iterator_keys() instead.

This function only allows fetching keys that are descendants of a parent_key that has
a complete major path. To fetch the descendants of a parent_key with a partial major
path, use kv_store_iterator_keys() instead.

Parameters

• store

The store parameter is the handle to the store from which you want to retrieve
keys.

• parent_key

The parent_key parameter is the parent key whose "child" keys are to be
retrieved. It must not be NULL. The major key path must be complete. The minor
key path may be omitted or may be a partial path.

• return_iterator

The return_iterator parameter references memory into which is copied the results
set. Release the resources used by this iterator using kv_release_iterator().

• sub_range

The sub_range parameter further restricts the range under the parent_key to the
minor path components in this key range. It may be NULL.

You construct a key range using kv_init_key_range().

• depth

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so
forth. See kv_depth_enum for a description of all your depth options.

• consistency

Chapter 3
kv_multi_get_keys()

3-26

The consistency parameter identifies the consistency policy
to use for this read operation. Consistency policies are
created using kv_create_simple_consistency(),kv_create_time_consistency(),
or kv_create_version_consistency().

• timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit.
If zero, the default request timeout is used. The default request timeout is set
using kv_config_set_timeouts().

See Also

• Data Operations and Related Functions

kv_operation_get_abort_on_failure()
#include <kvstore.h>

kv_int_t
kv_operation_get_abort_on_failure(const kv_operations_t *operations,
 kv_int_t index)

Returns whether a failure for the identified operation causes the entire sequence
of operations to fail. If the entire sequence will fail, then this function returns 1. If
the index parameter is out of range, this function returns KV_NO_SUCH_OBJECT.

Parameters

• operations

The operations parameter is the operation sequence to which the operation in
question belongs.

• index

The index parameter identifies the exact operation in the sequence that you want
to examine.

See Also

• Data Operations and Related Functions

kv_operation_get_key()
#include <kvstore.h>

const kv_key_t *
kv_operation_get_key(const kv_operations_t *operations,
 kv_int_t index)

Returns the key associated with the operation. If the index parameter is out of range,
this function returns NULL.

Chapter 3
kv_operation_get_abort_on_failure()

3-27

Parameters

• operations

The operations parameter is the operation sequence to which the operation in
question belongs.

• index

The index parameter identifies the exact operation in the sequence that you want
to examine.

See Also

• Data Operations and Related Functions

kv_operation_get_type()
#include <kvstore.h>

kv_operation_enum
kv_operation_get_type(const kv_operations_t *operations,
 kv_int_t index)

Returns the type of operation being performed in a particular step in an operation
sequence. This function can return one of the following values:

• KV_NO_SUCH_OBJECT

The index parameter is out of range.

• KV_OP_DELETE

The operation was created using kv_create_delete_op().

• KV_OP_DELETE_IF_VERSION

The operation was created using kv_create_delete_with_options_op().

• KV_OP_PUT

The operation was created using kv_create_put_op().

• KV_OP_PUT_WITH_OPTIONS

The operation was created using kv_create_put_with_options_op().

Parameters

• operations

The operations parameter is the operation sequence to which the operation in
question belongs.

• index

The index parameter identifies the exact operation in the sequence that you want
to examine.

Chapter 3
kv_operation_get_type()

3-28

See Also

• Data Operations and Related Functions

kv_operation_results_size()
#include <kvstore.h>

kv_int_t
kv_operation_results_size(const kv_operation_results_t *results)

Returns the number of results in the results set created by running kv_execute().

Parameters

• results

The results parameter is the results set whose size you want to obtain.

See Also

• Data Operations and Related Functions

kv_operations_set_copy()
#include <kvstore.h>

kv_error_t
kv_operations_set_copy(kv_operations_t **operations)

Configures the supplied kv_operations_t so that user-supplied buffers, strings and
structures are copied. Normally, buffers, text strings, and structures provided to this
API are owned by the application. (The API simply points to the memory in question
when making use of it.) This is highly efficient for short-lived user-supplied memory
because it avoids memory allocation/copying of the memory's content.

However, if there is a need to retain the data supplied by the user for longer periods
of time (beyond which the user-supplied memory might go out of scope, or otherwise
be reused or even deallocated), then call this function immediately after creating the
operations list. Doing so will cause the API to copy the contents of all user-supplied
memory to memory owned by the API. In this way, the application can do whatever is
appropriate with the memory it supplies, while the API is able to retain the contents of
that memory for however long it needs that content.

As an example, suppose you were creating an operations list by iterating over records
in the store, like this:

// Create an operation
// Store open skipped for brevity
kv_create_operations(store, &operations);

// Tell the operations list to copy keys/values
kv_operations_set_copy(operations);

Chapter 3
kv_operation_results_size()

3-29

// Create a store iterator that walks over every record in the store
err = kv_store_iterator(store, NULL, &iter, NULL, 0,
 KV_DIRECTION_UNORDERED, 0, NULL, 0);
if (err != KV_SUCCESS) {
 fprintf(stderr, "Error obtaining store iterator: %d\n", err);
 goto done;
}

// Step through the iterator, doing work on each record's value.
// If kv_operations_set_copy() had not been called, iter_key and
// iter_value would go out of scope with each step through the store
// iterator. This would cause unpredictable results when it came time
// to execute the sequence of operations.
while (kv_iterator_next(iter,
 (const kv_key_t **)&iter_key,
 (const kv_value_t **)&iter_value)
 == KV_SUCCESS) {
 // Do some work to iter_value
 kv_create_put_op(operations, iter_key, iter_value, 0);
}

if (iter)
 kv_release_iterator(&iter);

kv_execute(store, operations, &results, 0, 0);

Parameters

• operations

The operations parameter references the operations list which you want to
configure for copy.

See Also

• Data Operations and Related Functions

kv_operations_size()
#include <kvstore.h>

kv_int_t
kv_operations_size(const kv_operations_t *operations)

Returns the number of operations in the operation sequence.

Parameters

• operations

The operations parameter is the operation sequence whose size you want to
obtain.

Chapter 3
kv_operations_size()

3-30

See Also

• Data Operations and Related Functions

kv_parallel_scan_iterator_next()
#include <kvstore.h>

kv_error_t
kv_parallel_scan_iterator_next(kv_parallel_scan_iterator_t *iterator,
 const kv_key_t **key,
 const kv_value_t **value)

Returns the iterator's next record. If another record exists, this function
returns KV_SUCCESS, and the key and value parameters are populated. If there are no
more records, the return value is KV_NO_SUCH_OBJECT. If the return value is something
other than KV_SUCCESS or KV_NO_SUCH_OBJECT, there was an operational failure.

Parameters

• iterator

The iterator parameter is the handle to the iterator. It
is allocated using kv_parallel_store_iterator(). It is released
using kv_release_parallel_scan_iterator().

• key

The key parameter references memory in which a pointer to the next key is
copied.

Note, you should not release this key structure. The resources used here will be
released when the iterator is released.

• value

The value parameter references memory in which a pointer to the next value is
copied.

Note, you should not release this value structure. The resources used here will be
released when the iterator is released.

See Also

• Data Operations and Related Functions

kv_parallel_scan_iterator_next_key()
#include <kvstore.h>

kv_error_t
kv_parallel_scan_iterator_next_key(
 kv_parallel_scan_iterator_t *iterator,
 const kv_key_t **key)

Chapter 3
kv_parallel_scan_iterator_next()

3-31

Returns the iterator's next key. If another key exists, this function returns KV_SUCCESS,
and the key parameter is populated. If there are no more keys, the
return value is KV_NO_SUCH_OBJECT. If the return value is something other
than KV_SUCCESS or KV_NO_SUCH_OBJECT, there was an operational failure.

Parameters

• iterator

The iterator parameter is the handle to the iterator. It is allocated using one of
functions that performs multiple reads of the store (such as kv_multi_get()). It is
released using kv_release_iterator().

• key

The key parameter references memory in which a pointer to the next key is
copied.

Note, you should not release this key structure. The resources used here will be
released when the iterator is released.

See Also

• Data Operations and Related Functions

kv_parallel_store_iterator()
#include <kvstore.h>

kv_error_tkv_parallel_store_iterator(kv_store_t *store,
 const kv_key_t *parent_key,
 kv_parallel_scan_iterator_t **return_parallel_scan_iterator,
 const kv_key_range_t
*sub_range,kv_depth_enumdepth,kv_direction_enumdirection,
 int batch_size,
 kv_consistency_t *consistency,
 kv_timeout_t timeout_ms,kv_store_iterator_config_t
*store_iterator_config)

Creates a parallel scan iterator which iterates over all key/value pairs in unsorted
order. The result is not transactional and the operation effectively provides read-
committed isolation. The implementation batches the fetching of key/value pairs in
the iterator, to minimize the number of network round trips, while not monopolizing the
available bandwidth.

Parameters

• store

The store parameter is the handle to the store for which you want an iterator.

• parent_key

The parent_key parameter is the parent key whose "child" records are to be
retrieved. May be NULL, or may have only a partial major key path.

• return_parallel_scan_iterator

Chapter 3
kv_parallel_store_iterator()

3-32

The return_parallel_scan_iterator parameter references memory into which
is copied the results set. Release the resources used by this iterator
using kv_release_parallel_scan_iterator().

• sub_range

The sub_range parameter further restricts the range under the parent_key to the
minor path components in this key range. It may be NULL.

You construct a key range using kv_init_key_range().

• depth

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so
forth. See kv_depth_enum for a description of all your depth options.

• direction

The direction parameter specifies the order in which records are returned by the
iterator. Only kv_direction_enum.KV_DIRECTION_UNORDERED is supported by this
function.

• batch_size

The batch_size parameter provides the suggested number of records to fetch
during each network round trip. If only the first or last key/value pair is desired,
passing a value of one (1) is recommended. If zero, an internally determined
default is used.

• consistency

The consistency parameter identifies the consistency policy
to use for this read operation. Consistency policies are
created using kv_create_simple_consistency(),kv_create_time_consistency(),
or kv_create_version_consistency().

• timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit.
If zero, the default request timeout is used. The default request timeout is set
using kv_config_set_timeouts().

• store_iterator_config

The store_iterator_config parameter configures the parallel scan operation. Both
the maximum number of requests and the maximum number of results batches
can be specified using akv_store_iterator_config_t structure.

See Also

• Data Operations and Related Functions

kv_parallel_store_iterator_keys()
#include <kvstore.h>

kv_error_t kv_parallel_store_iterator_keys(kv_store_t *store,
 const kv_key_t *parent_key,
 kv_parallel_scan_iterator_t **return_parallel_scan_iterator,
 const kv_key_range_t *sub_range,kv_depth_enum

Chapter 3
kv_parallel_store_iterator_keys()

3-33

depth,kv_direction_enum direction,
 int batch_size,
 kv_consistency_t *consistency,
 kv_timeout_t timeout_ms,
 kv_store_iterator_config_t *store_iterator_config)

Creates a parallel scan iterator which iterates over all keys in the store in unsorted
order. The result is not transactional and the operation effectively provides read-
committed isolation. The implementation batches the fetching of keys in the iterator,
to minimize the number of network round trips, while not monopolizing the available
bandwidth.

Parameters

• store

The store parameter is the handle to the store for which you want an iterator.

• parent_key

The parent_key parameter is the parent key whose "child" keys are to be
retrieved. May be NULL, or may have only a partial major key path.

• return_iterator

The return_parallel_scan_iterator parameter references memory into which
is copied the results set. Release the resources used by this iterator
using kv_release_parallel_scan_iterator().

• sub_range

The sub_range parameter further restricts the range under the parent_key to the
minor path components in this key range. It may be NULL.

You construct a key range using kv_init_key_range().

• depth

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so
forth. See kv_depth_enum for a description of all your depth options.

• direction

The direction parameter specifies the order in which records are returned by the
iterator. Only kv_direction_enum.KV_DIRECTION_UNORDERED is supported by this
function.

• batch_size

The batch_size parameter provides the suggested number of keys to fetch during
each network round trip. If only the first or last key is desired, passing a value of
one (1) is recommended. If zero, an internally determined default is used.

• consistency

The consistency parameter identifies the consistency policy
to use for this read operation. Consistency policies are
created using kv_create_simple_consistency(),kv_create_time_consistency(),
or kv_create_version_consistency().

• timeout_ms

Chapter 3
kv_parallel_store_iterator_keys()

3-34

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit.
If zero, the default request timeout is used. The default request timeout is set
using kv_config_set_timeouts().

• store_iterator_config

The store_iterator_config parameter configures the parallel scan operation. Both
the maximum number of requests and the maximum number of results batches
can be specified using akv_store_iterator_config_t structure.

See Also

• Data Operations and Related Functions

kv_put()
#include <kvstore.h>

kv_error_t
kv_put(kv_store_t *store,
 const kv_key_t *key,
 const kv_value_t *value,
 kv_version_t **new_version)

Writes the key/value pair to the store, inserting or overwriting as appropriate.

This is the simplified version of the function that uses default values for most of
put options. For a more complete version that lets you use non-default values,
use kv_put_with_options().

Parameters

• store

The store parameter is the handle to the store where you want to write the key/
value pair.

• key

The key parameter is the key that you want to write to the store. It is created
using kv_create_key() or kv_create_key_from_uri().

• value

The value parameter is the value that you want to write to the store. It is created
using kv_create_value().

• new_version

The new_version parameter references memory into which is copied the key/
value pair's new version information. This pointer will be NULL if this function
produces a non-zero return code.

You release the resources used by the version data structure
using kv_release_version().

See Also

• Data Operations and Related Functions

Chapter 3
kv_put()

3-35

kv_put_with_options()
#include <kvstore.h>

kv_error_t
kv_put_with_options(kv_store_t *store,
 const kv_key_t *key,
 const kv_value_t *value,
 const kv_version_t *if_version,kv_presence_enum
if_presence,
 kv_version_t **new_version,
 kv_value_t
**previous_value,kv_return_value_version_enum return_info,
 kv_durability_t durability,
 kv_timeout_t timeout_ms)

Writes the key/value pair to the store, inserting or overwriting as appropriate.

Parameters

• store

The store parameter is the handle to the store where you want to write the key/
value pair.

• key

The key parameter is the key that you want to write to the store. It is created
using kv_create_key() or kv_create_key_from_uri().

• value

The value parameter is the value that you want to write to the store. It is created
using kv_create_value().

• if_version

The if_version parameter indicates that the record should be put only if the
existing value matches the version supplied to this parameter. Use this parameter
when updating a value to ensure that it has not changed since it was last read.
The version is obtained using the kv_get_version() function.

• if_presence

The if_presence parameter describes the conditions under which the record
can be put, based on the presence or absence of the record in the store. For
example, KV_IF_PRESENT means that the record can only be written to the store if a
version of the record already exists there.

For a list of all the available presence options, see kv_presence_enum.

• new_version

The new_version parameter references memory into which is copied
the key/value pair's new version information. This pointer will be NULL
if this function produces a non-zero return code, or if return_info is
not KV_RETURN_VALUE_ALL or KV_RETURN_VALUE_VERSION.

Chapter 3
kv_put_with_options()

3-36

You release the resources used by the version data structure
using kv_release_version().

• previous_value

The previous_value parameter references memory into which is copied
the previous value associated with the given key. Returns NULL
if there was no previous value (the operation is inserting a new
record, rather than updating an existing one); or if return_info is not
KV_RETURN_VALUE_ALL or KV_RETURN_VALUE_VALUE.

You release the resources used by this parameter using kv_release_value().

• return_info

The return_info parameter indicates what version and value information should
be returned as a part of this operation. See kv_return_value_version_enum for a
list of possible options.

• durability

The durability parameter provides the durability guarantee to be used with this
write operation. Durability guarantees are created using kv_create_durability().

• timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit.
If zero, the default request timeout is used. The default request timeout is set
using kv_config_set_timeouts().

See Also

• Data Operations and Related Functions

kv_release_iterator()
#include <kvstore.h>

void
kv_release_iterator(kv_iterator_t **iterator)

Releases the resources used by the iterator. Iterators are created using multiple-key
operations, such as is performed using kv_multi_get_iterator().

Parameters

• iterator

The iterator parameter is the iterator that you want to release.

See Also

• Data Operations and Related Functions

Chapter 3
kv_release_iterator()

3-37

kv_release_operation_results()
#include <kvstore.h>

void
kv_release_operation_results(kv_operation_results_t **results)

Releases the results list created by running kv_execute().

Parameters

• store

The store parameter is the handle to the store to which the results list belongs.

• results

The results parameter is the results list that you want to release.

See Also

• Data Operations and Related Functions

kv_release_operations()
#include <kvstore.h>

void
kv_release_operations(kv_operations_t **operations)

Releases a multi-step, sequence of operations that was initially created
using kv_create_operations().

Parameters

• operations

The operations parameter is the multi-step operation that you want to release.

See Also

• Data Operations and Related Functions

kv_release_parallel_scan_iterator()
#include <kvstore.h>

void
kv_release_parallel_scan_iterator(
 kv_parallel_scan_iterator_t **iterator)

Chapter 3
kv_release_operation_results()

3-38

Releases the resources used by the iterator, which was created
using kv_parallel_store_iterator() orkv_parallel_store_iterator_keys().

Parameters

• iterator

The iterator parameter is the iterator that you want to release.

See Also

• Data Operations and Related Functions

kv_result_get_previous_value()
#include <kvstore.h>

kv_error_t
kv_result_get_previous_value(const kv_operation_results_t *res,
 kv_int_t index,
 const kv_value_t **value)

Returns the previous value that existed before a put operation was run as
a part of multi-step, sequence of operations. A previous value will only exist
if the provided index in the operation contains a put operation as created
by kv_create_put_with_options_op(), and if that function's return_info parameter
is KV_RETURN_VALUE_ALL or KV_RETURN_VALUE_VALUE.

If the index parameter is out of range, this function returns KV_NO_SUCH_OBJECT.

Parameters

• res

The res parameter is the operation results list that contains the previous value you
want to examine.

• index

The index parameter is the index in the results list which holds the information you
want to retrieve.

• value

The value parameter references memory to which is copied the previous value.
Release the resources used by this value using kv_release_value().

This parameter will be NULL if the indexed result was not generated by put
operation that was configured to return previous values.

See Also

• Data Operations and Related Functions

Chapter 3
kv_result_get_previous_value()

3-39

kv_result_get_previous_version()
#include <kvstore.h>

kv_error_t
kv_result_get_previous_version(const kv_operation_results_t *res,
 kv_int_t index,
 const kv_version_t **version)

Returns the value's version that existed before a put operation was run as a
part of multi-step, sequence of operations. A previous version will only exist
if the provided index in the operation contains a put operation as created
by kv_create_put_with_options_op(), and if that function's return_info parameter
is KV_RETURN_VALUE_ALL or KV_RETURN_VALUE_VERSION.

If the index parameter is out of range, this function returns KV_NO_SUCH_OBJECT.

Parameters

• res

The res parameter is the operation results list that contains the previous version
you want to examine.

• index

The index parameter is the index in the results list which holds the information you
want to retrieve.

• version

The version parameter references memory to which is copied the previous
version. Release the resources used by this value using kv_release_version().

This parameter will be NULL if the indexed result was not generated by put
operation that was configured to return previous versions.

See Also

• Data Operations and Related Functions

kv_result_get_success()
#include <kvstore.h>

kv_int_t
kv_result_get_success(const kv_operation_results_t *res,
 kv_int_t index)

Identifies whether the operation at the provided index was successful.
Returns KV_TRUE if it was successful; KV_FALSE otherwise. If the index parameter is
out of range, this function returns KV_NO_SUCH_OBJECT.

Chapter 3
kv_result_get_previous_version()

3-40

Parameters

• res

The res parameter is the operation results list containing the operation result that
you want to examine.

• index

The index parameter is the index in the results list which hold the information you
want to retrieve.

See Also

• Data Operations and Related Functions

kv_result_get_version()
#include <kvstore.h>

kv_error_t
kv_result_get_version(const kv_operation_results_t *res,
 kv_int_t index,
 const kv_version_t **version)

Returns the value's version. The version information is stored at the
identified index in the results list as a consequence of successfully executing
either kv_create_put_op() or kv_create_put_with_options_op(). If the index parameter
is out of range, this function returns KV_NO_SUCH_OBJECT.

Parameters

• res

The res parameter is the operation results list that contains the version information
you want to examine.

• index

The index parameter is the index in the results list which holds the information you
want to retrieve.

• version

The version parameter references memory to which is copied the version
information. Release the resources used by this value using kv_release_version().

See Also

• Data Operations and Related Functions

kv_store_iterator()
#include <kvstore.h>

kv_error_t

Chapter 3
kv_result_get_version()

3-41

kv_store_iterator(kv_store_t *store,
 const kv_key_t *parent_key,
 kv_iterator_t **return_iterator,
 const kv_key_range_t *sub_range,
 kv_depth_enum depth,
 kv_direction_enum direction,
 int batch_size,
 kv_consistency_t *consistency,
 kv_timeout_t timeout_ms)

Creates an iterator which iterates over all key/value pairs in unsorted order. The result
is not transactional and the operation effectively provides read-committed isolation.
The implementation batches the fetching of key/value pairs in the iterator, to minimize
the number of network round trips, while not monopolizing the available bandwidth.

This function differs from kv_multi_get_iterator() in that it allows the parent_key to be
NULL, or to have only a partial major key path.

Parameters

• store

The store parameter is the handle to the store for which you want an iterator.

• parent_key

The parent_key parameter is the parent key whose "child" records are to be
retrieved.

• return_iterator

The return_iterator parameter references memory into which is copied the results
set. Release the resources used by this iterator using kv_release_iterator().

• sub_range

The sub_range parameter further restricts the range under the parent_key to the
minor path components in this key range. It may be NULL.

You construct a key range using kv_init_key_range().

• depth

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so
forth. See kv_depth_enum for a description of all your depth options.

• direction

The direction parameter specifies the order in which records are returned by the
iterator. Only kv_direction_enum.KV_DIRECTION_UNORDERED is supported by this
function.

• batch_size

The batch_size parameter provides the suggested number of records to fetch
during each network round trip. If only the first or last key/value pair is desired,
passing a value of one (1) is recommended. If zero, an internally determined
default is used.

• consistency

Chapter 3
kv_store_iterator()

3-42

The consistency parameter identifies the consistency policy
to use for this read operation. Consistency policies are
created using kv_create_simple_consistency(),kv_create_time_consistency(),
or kv_create_version_consistency().

• timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit.
If zero, the default request timeout is used. The default request timeout is set
using kv_config_set_timeouts().

See Also

• Data Operations and Related Functions

kv_store_iterator_keys()
#include <kvstore.h>

kv_error_t
kv_store_iterator_keys(kv_store_t *store,
 const kv_key_t *parent_key,
 kv_iterator_t **return_iterator,
 const kv_key_range_t *sub_range,
 kv_depth_enum depth,
 kv_direction_enum direction,
 int batch_size,
 kv_consistency_t *consistency,
 kv_timeout_t timeout_ms)

Creates an iterator which iterates over all keys in the store in unsorted order. The
result is not transactional and the operation effectively provides read-committed
isolation. The implementation batches the fetching of keys in the iterator, to minimize
the number of network round trips, while not monopolizing the available bandwidth.

This function differs from kv_multi_get_iterator_keys() in that it allows
the parent_key to be NULL, or to have only a partial major key path.

Parameters

• store

The store parameter is the handle to the store for which you want an iterator.

• parent_key

The parent_key parameter is the parent key whose "child" keys are to be
retrieved.

• return_iterator

The return_iterator parameter references memory into which is copied the results
set. Release the resources used by this iterator using kv_release_iterator().

• sub_range

The sub_range parameter further restricts the range under the parent_key to the
minor path components in this key range. It may be NULL.

Chapter 3
kv_store_iterator_keys()

3-43

You construct a key range using kv_init_key_range().

• depth

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so
forth. See kv_depth_enum for a description of all your depth options.

• direction

The direction parameter specifies the order in which records are returned by the
iterator. Only kv_direction_enum.KV_DIRECTION_UNORDERED is supported by this
function.

• batch_size

The batch_size parameter provides the suggested number of keys to fetch during
each network round trip. If only the first or last key is desired, passing a value of
one (1) is recommended. If zero, an internally determined default is used.

• consistency

The consistency parameter identifies the consistency policy
to use for this read operation. Consistency policies are
created using kv_create_simple_consistency(), kv_create_time_consistency(),
orkv_create_version_consistency().

• timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit.
If zero, the default request timeout is used. The default request timeout is set
using kv_config_set_timeouts().

See Also

• Data Operations and Related Functions

Chapter 3
kv_store_iterator_keys()

3-44

4
Key/Value Pair Management Functions

This chapter describes the functions used to manage keys and values. Both are
used to describe a single entry (or record) in the KV Store. In addition, this chapter
describes functions used to manage versions; that is, data structures that identify the
key-value pair's specific version.

Key Functions

Key Functions Description

kv_create_key() Allocate and initialize a key structure using major and
minor path components

kv_create_key_copy() Allocate and initialize a key structure using major and
minor path components

kv_create_key_from_uri() Allocate and initialize a key structure using a URI string

kv_create_key_from_uri_copy() Allocate and initialize a key structure using a URI string

kv_get_key_major() Return the major path components for the key

kv_get_key_minor() Return the minor path components for the key

kv_get_key_uri() Return the key's major and minor path components as a
URI

kv_release_key() Release the key structure, freeing all associated
memory

Value Functions

Value Functions Description

kv_create_value() Allocate and initialize a value structure

kv_create_value_copy() Allocate and initialize a value structure

kv_get_value() Returns the value as a string

kv_get_value_size() Returns the value's size

kv_release_value() Release a value structure

Version Functions

Version Functions Description

kv_copy_version() Copies a version structure

kv_get_version() Returns a value's version

kv_release_version() Release a version structure

4-1

kv_copy_version()
#include <kvstore.h>

kv_error_t
kv_copy_version(const kv_version_t *from, kv_version_t **to)

Copies a version structure.

Parameters

• from

The from parameter is the version structure you want to copy. Normally, these are
created using kv_get_version().

• to

The to parameter references memory into which a pointer to the allocated
version structure is copied. Release the resources used by this structure
using kv_release_version().

See Also

• Key/Value Pair Management Functions

kv_create_key()
#include <kvstore.h>

kv_error_t
kv_create_key(kv_store_t *store,
 kv_key_t **key,
 const char **major,
 const char **minor)

Creates a key in the key/value store. To release the resources used by this structure,
use kv_release_key().

This function differs from kv_create_key_copy() in that it does not copy the contents of
the strings passed to the function. Therefore, these strings should not be released or
modified until the kv_key_t structure created by this function is released.

A key represents a path to a value in a hierarchical namespace. It consists of a
sequence of string path component names, and each component name is used to
navigate the next level down in the hierarchical namespace. The complete sequence
of string components is called the full key path.

The sequence of string components in a full key path is divided into two groups or
sub-sequences: The major key path is the initial or beginning sequence, and the minor
key path is the remaining or ending sequence. The Full Path is the concatenation
of the Major and Minor Paths, in that order. The Major Path must have at least one
component, while the Minor path may be empty (have zero components).

Chapter 4
kv_copy_version()

4-2

Each path component must be a non-null String. Empty (zero length) Strings are
allowed, except that the first component of the major path must be a non-empty String.

Given a key, finding the location of a key/value pair is a two step process:

1. The major path is used to locate the node on which the key/value pair can be
found.

2. The full path is then used to locate the key/value pair within that node.

Therefore all key/value pairs with the same major path are clustered on the same
node.

Keys which share a common major path are physically clustered by the KVStore and
can be accessed efficiently via special multiple-operation APIs, e.g. kv_multi_get().
The APIs are efficient in two ways:

1. They permit the application to perform multiple-operations in single network round
trip.

2. The individual operations (within a multiple-operation) are efficient since the
common-prefix keys and their associated values are themselves physically
clustered.

Multiple-operation APIs also support ACID transaction semantics. All the operations
within a multiple-operation are executed within the scope of a single transaction.

Parameters

• store

The store parameter is the handle to the store in which the key is used. The store
handle is obtained using kv_open_store().

• key

The key parameter references memory into which a pointer to the allocated key is
copied.

• major

The major parameter is an array of strings, each element of which represents a
major path component.

Note that the string used here is not copied. You must not release or modify this
memory until the structure in which it is used is released.

• minor

The minor parameter is an array of strings, each element of which represents a
minor path component.

Note that the string used here is not copied. You must not release or modify this
memory until the structure in which it is used is released.

See Also

• Key/Value Pair Management Functions

Chapter 4
kv_create_key()

4-3

kv_create_key_copy()
#include <kvstore.h>

kv_error_t
kv_create_key_copy(kv_store_t *store,
 kv_key_t **key,
 const char **major,
 const char **minor)

Creates a key in the key/value store. To release the resources used by this structure,
use kv_release_key().

This function differs from kv_create_key() in that it copies the contents of the strings
passed to the function, so that those strings can be released, or modified and then
reused in whatever way is required by the application.

A key represents a path to a value in a hierarchical namespace. It consists of a
sequence of string path component names, and each component name is used to
navigate the next level down in the hierarchical namespace. The complete sequence
of string components is called the full key path.

The sequence of string components in a full key path is divided into two groups or
sub-sequences: The major key path is the initial or beginning sequence, and the minor
key path is the remaining or ending sequence. The Full Path is the concatenation
of the Major and Minor Paths, in that order. The Major Path must have at least one
component, while the Minor path may be empty (have zero components).

Each path component must be a non-null String. Empty (zero length) Strings are
allowed, except that the first component of the major path must be a non-empty String.

Given a key, finding the location of a key/value pair is a two step process:

1. The major path is used to locate the node on which the key/value pair can be
found.

2. The full path is then used to locate the key/value pair within that node.

Therefore all key/value pairs with the same major path are clustered on the same
node.

Keys which share a common major path are physically clustered by the KVStore and
can be accessed efficiently via special multiple-operation APIs, e.g. kv_multi_get().
The APIs are efficient in two ways:

1. They permit the application to perform multiple-operations in single network round
trip.

2. The individual operations (within a multiple-operation) are efficient since the
common-prefix keys and their associated values are themselves physically
clustered.

Multiple-operation APIs also support ACID transaction semantics. All the operations
within a multiple-operation are executed within the scope of a single transaction.

Chapter 4
kv_create_key_copy()

4-4

Parameters

• store

The store parameter is the handle to the store in which the key is used. The store
handle is obtained using kv_open_store().

• key

The key parameter references memory into which a pointer to the allocated key is
copied.

• major

The major parameter is an array of strings, each element of which represents a
major path component.

Note that the string used here is copied. You may release or modify this memory
as needed because the contents of this memory is copied to memory owned by
the kv_key_t structure.

• minor

The minor parameter is an array of strings, each element of which represents a
minor path component.

Note that the string used here is copied. You may release or modify this memory
as needed because the contents of this memory is copied to memory owned by
the kv_key_t structure.

See Also

• Key/Value Pair Management Functions

kv_create_key_from_uri()
#include <kvstore.h>

kv_error_t
kv_create_key_from_uri(kv_store_t *store,
 kv_key_t **key,
 const char *uri)

Creates a key in the key/value store based on a URI. To release the resources used
by this structure, use kv_release_key().

This function differs from kv_create_key_from_uri_copy() in that it does not copy the
contents of the URI string passed to the function. Therefore, the URI strings should
not be released or modified until the kv_key_t structure created by this function is
released.

The key path string format used here is designed to work with URIs and URLs. It is
intended to be used as a general purpose string identifier. The key path components
are separated by slash (/) delimiters. A special slash-hyphen-slash delimiter (/-/) is
used to separate the major and minor paths. Characters that are not allowed in a
URI path are encoded using URI syntax (%XX where XX are hexadecimal digits). The
string always begins with a leading slash to prevent it from begin treated as a URI
relative path. Some examples are below.

Chapter 4
kv_create_key_from_uri()

4-5

• /SingleComponentMajorPath

• /MajorPathPart1/MajorPathPart2/-/MinorPathPart1/MinorPathPart2

• /HasEncodedSlash:%2F,Zero:%00,AndSpace:%20

Example 1 demonstrates the simplest possible path. Note that a leading slash is
always necessary.

Example 2 demonstrates the use of the /-/ separator between the major and minor
paths. If a key happens to have a path component that is nothing but a hyphen,
to distinguish it from that delimiter it is encoded as %2D. For example: /major/%2d/
path/-/minor/%2d/path.

Example 3 demonstrates encoding of characters that are not allowed in a path
component. For URI compatibility, characters that are encoded are the ASCII space
and other Unicode separators, the ASCII and Unicode control characters, and the
following 15 ASCII characters: (" # % / < > ? [\] ^ ` { | }). The hyphen (-) is also
encoded when it is the only character in the path component, as described above.

Note that although any Unicode character may be used in a key path component,
in practice it may be problematic to include control characters because web user
agents, proxies, and so forth, may not be tolerant of all characters. Although it will
be encoded, embedding a slash in a path component may also be problematic. It is
the responsibility of the application to use characters that are compatible with other
software that processes the URI.

Parameters

• store

The store parameter is the handle to the store in which the key is used. The store
handle is obtained using kv_open_store().

• key

The key parameter references memory into which a pointer to the allocated key is
copied.

• uri

The uri parameter is the full key path, both major and minor components,
described as a string. See the description at the beginning of this page for how
that string should be formatted.

Note that the string used here is not copied. You must not release or modify this
memory until the structure in which it is used is released.

See Also

• Key/Value Pair Management Functions

kv_create_key_from_uri_copy()
#include <kvstore.h>

kv_error_t
kv_create_key_from_uri_copy(kv_store_t *store,

Chapter 4
kv_create_key_from_uri_copy()

4-6

 kv_key_t **key,
 const char *uri)

Creates a key in the key/value store based on a URI. To release the resources used
by this structure, use kv_release_key().

This function differs from kv_create_key_from_uri() in that it copies the contents of the
URI string passed to the function, so that the string can be released, or modified and
then reused in whatever way is required by the application.

The key path string format used here is designed to work with URIs and URLs. It is
intended to be used as a general purpose string identifier. The key path components
are separated by slash (/) delimiters. A special slash-hyphen-slash delimiter (/-/) is
used to separate the major and minor paths. Characters that are not allowed in a
URI path are encoded using URI syntax (%XX where XX are hexadecimal digits). The
string always begins with a leading slash to prevent it from begin treated as a URI
relative path. Some examples are below.

• /SingleComponentMajorPath

• /MajorPathPart1/MajorPathPart2/-/MinorPathPart1/MinorPathPart2

• /HasEncodedSlash:%2F,Zero:%00,AndSpace:%20

Example 1 demonstrates the simplest possible path. Note that a leading slash is
always necessary.

Example 2 demonstrates the use of the /-/ separator between the major and minor
paths. If a key happens to have a path component that is nothing but a hyphen,
to distinguish it from that delimiter it is encoded as %2D. For example: /major/%2d/
path/-/minor/%2d/path.

Example 3 demonstrates encoding of characters that are not allowed in a path
component. For URI compatibility, characters that are encoded are the ASCII space
and other Unicode separators, the ASCII and Unicode control characters, and the
following 15 ASCII characters: (" # % / < > ? [\] ^ ` { | }). The hyphen (-) is also
encoded when it is the only character in the path component, as described above.

Note that although any Unicode character may be used in a key path component,
in practice it may be problematic to include control characters because web user
agents, proxies, and so forth, may not be tolerant of all characters. Although it will
be encoded, embedding a slash in a path component may also be problematic. It is
the responsibility of the application to use characters that are compatible with other
software that processes the URI.

Parameters

• store

The store parameter is the handle to the store in which the key is used. The store
handle is obtained using kv_open_store().

• key

The key parameter references memory into which a pointer to the allocated key is
copied.

• uri

Chapter 4
kv_create_key_from_uri_copy()

4-7

The uri parameter is the full key path, both major and minor components,
described as a string. See the description at the beginning of this page for how
that string should be formatted.

Note that the string used here is copied. You may release or modify this memory
as needed because the contents of this memory is copied to memory owned by
the kv_key_t structure.

See Also

• Key/Value Pair Management Functions

kv_create_value()
#include <kvstore.h>

kv_error_t
kv_create_value(kv_store_t *store,
 kv_value_t **value,
 const unsigned char *data,
 int data_len)

Creates the value in a key/value store. To release the resources used by this structure,
use kv_release_value().

This function differs from kv_create_value_copy() in that it does not copy the contents
of the data buffer passed to the function. Therefore, the data buffer should not
be released or modified until the kv_value_t structure created by this function is
released.

Parameters

• store

The store parameter is the handle to the store in which the value is stored. The
store handle is obtained using kv_open_store().

• value

The value parameter references memory into which a pointer to the allocated
value is copied.

• data

The data parameter is a buffer containing the data to be contained in the value.

Note that the buffer used here is not copied. You must not release or modify this
memory until the structure in which it is used is released.

• data_len

The data_len parameter indicates the size of the data buffer.

See Also

• Key/Value Pair Management Functions

Chapter 4
kv_create_value()

4-8

kv_create_value_copy()
#include <kvstore.h>

kv_error_t
kv_create_value_copy(kv_store_t *store,
 kv_value_t **value,
 const unsigned char *data,
 int data_len)

Creates the value in a key/value store. To release the resources used by this structure,
use kv_release_value().

This function differs from kv_create_value() in that it copies the contents of the data
buffer passed to the function, so that the buffer can be released, or modified and then
reused in whatever way is required by the application.

Parameters

• store

The store parameter is the handle to the store in which the value is stored. The
store handle is obtained using kv_open_store().

• value

The value parameter references memory into which a pointer to the allocated
value is copied.

• data

The data parameter is a buffer containing the data to be contained in the value.

Note that the buffer used here is copied. You may release or modify this memory
as needed because the contents of this memory is copied to memory owned by
the kv_value_t structure.

• data_len

The data_len parameter indicates the size of the data buffer.

See Also

• Key/Value Pair Management Functions

kv_get_key_major()
#include <kvstore.h>

const char **
kv_get_key_major(const kv_key_t *key)

Returns the major path components used by the provided key.

Note that the string returned by this function is owned by the key structure, and is valid
until the key is released.

Chapter 4
kv_create_value_copy()

4-9

Parameters

• key

The key parameter is the key structure from which you want to obtain the major
path components.

See Also

• Key/Value Pair Management Functions

kv_get_key_minor()
#include <kvstore.h>

const char **
kv_get_key_minor(const kv_key_t *key)

Returns the minor path components used by the provided key.

Note that the string returned by this function is owned by the key structure, and is valid
until the key is released.

Parameters

• key

The key parameter is the key structure from which you want to obtain the minor
path components.

See Also

• Key/Value Pair Management Functions

kv_get_key_uri()
#include <kvstore.h>

const char *
kv_get_key_uri(const kv_key_t *key)

Returns a string representing the key's major and minor path components. See
kv_create_key_from_uri() for a description of the string's syntax.

Note that the string returned by this function is owned by the key structure, and is valid
until the key is released.

Parameters

• key

The key parameter is the key structure from which you want to obtain the path
URI.

Chapter 4
kv_get_key_minor()

4-10

See Also

• Key/Value Pair Management Functions

kv_get_value()
#include <kvstore.h>

const unsigned char *
kv_get_value(const kv_value_t *value)

Returns the value as a string.

Note that the string returned by this function is owned by the value structure, and is
valid until the value is released.

Parameters

• value

The value parameter is the value structure from which you want to extract its
contents as a string.

See Also

• Key/Value Pair Management Functions

kv_get_value_size()
#include <kvstore.h>

kv_int_t
kv_get_value_size(const kv_value_t *value)

Returns the size of the value, in bytes.

Parameters

• value

The value parameter is the value structure for which you want its size.

See Also

• Key/Value Pair Management Functions

kv_get_version()
#include <kvstore.h>

const kv_version_t *
kv_get_version(const kv_value_t *value)

Chapter 4
kv_get_value()

4-11

Creates a version structure, which refers to a specific version of a key-value pair. Note
that the kv_version_t structure returned by this function is owned by the kv_value_t
structure from which is was obtained. As such, you should not explicitly release the
version structure returned by this function; it will be automatically released when the
value structure is released.

When a key-value pair is initially inserted in the KV Store, and each time it is updated,
it is assigned a unique version token. The version is associated with the version
portion of the key-value pair. The version is important for two reasons:

• When an update or delete is to be performed, it may be important to only
perform the update or delete if the last known value has not changed. For
example, if an integer field in a previously known value is to be incremented, it
is important that the previous value has not changed in the KV Store since it
was obtained by the client. This can be guaranteed by passing the version of the
previously known value to the if_version parameter of the kv_put_with_options()
or kv_delete_with_options() functions. If the version specified does not match the
current version of the value in the KV Store, these functions will not perform
the update or delete operation and will return an indication of failure. Optionally,
they will also return the current version and/or value so the client can retry the
operation or take a different action.

• When a client reads a value that was previously written, it may be important
to ensure that the KV Store node servicing the read operation has been
updated with the information previously written. This can be accomplished
by using a version-based consistency policy with the read operation. See
kv_create_version_consistency() for more information.

Be aware that the system may infrequently assign a new version to a key-value
pair; for example, when migrating data for better resource usage. Therefore, when
using kv_put_with_options() or kv_delete_with_options(), do not assume that the
version will remain constant until it is changed by the application.

Parameters

• value

The value parameter is the value structure from which you want to extract version
information.

See Also

• Key/Value Pair Management Functions

kv_release_key()
#include <kvstore.h>

void
kv_release_key(kv_key_t **key)

Releases the resources used by a key. The structure was intially allocated using
kv_create_key() or kv_create_key_from_uri().

Chapter 4
kv_release_key()

4-12

Parameters

• key

The key parameter references the kv_key_t structure that you want to release.

See Also

• Key/Value Pair Management Functions

kv_release_value()
#include <kvstore.h>

void
kv_release_value(kv_value_t **value

Releases the resources used by a value. The value was initially created using
kv_create_value(), or it may have been created as a return value from some data
operation function.

Parameters

• value

The value parameter is the kv_value_t structure that you want to release.

See Also

• Key/Value Pair Management Functions

kv_release_version()
#include <kvstore.h>

void
kv_release_version(kv_version_t **version)

Releases a version structure. The version structure was initially created using
kv_get_version(), or through some store write operation such as is performed by
kv_put_with_options().

Parameters

• version

The value parameter is the kv_version_t structure that you want to release.

See Also

• Key/Value Pair Management Functions

Chapter 4
kv_release_value()

4-13

5
Durability and Consistency Functions

This chapter describes the functions used to manage durability and consistency
policies. Durability policies are used with write operations to manage how likely your
data writes are to persist in the event of a catastrophic failure, be it in your hardware
or software layers. By default, your writes are highly durable. So managing durability
policies is mostly about relaxing your durability guarantees in an effort to improve your
write throughput.

Consistency policies are used with read operations to describe how likely it is that
the data on your replicas will be identical to, or consistent with, the data on your
master server. The most stringent consistency policy requires that the read operation
be performed on the master server. In general, the stricter your consistency policy, the
slower your store's read throughput.

Consistency Functions

Consistency Functions Description

kv_create_simple_consistency() Create and initialize a Consistency structure

kv_create_time_consistency() Create and initialize a Consistency structure using time
information

kv_create_version_consistency() Create and initialize a Consistency structure using a
Version

kv_get_consistency_type() Return the Consistency type

kv_release_consistency() Release the Consistency structure

Durability Functions

Durability Functions Description

kv_create_durability() Allocate and initialize a Durability structure

kv_get_default_durability() Return the store's default Durability

kv_get_durability_master_sync() Return the transaction synchronization policy used on
the Master

kv_get_durability_replica_ack() Return the replica's acknowledgement policy

kv_get_durability_replica_sync() Return the transaction synchronization policy used on
the replica

kv_is_default_durability() Return whether the durability is the store's default

kv_create_durability()
#include <kvstore.h>

kv_durability_t

5-1

kv_create_durability(kv_sync_policy_enum master,
 kv_sync_policy_enum replica,
 kv_ack_policy_enum ack)

Creates a durability policy, which is then used for store write operations such as
kv_put_with_options() or kv_delete_with_options(). The durability policy can also be
used with a set of operations performed in a single transaction, using kv_execute().

The overall durability is a function of the sync policy in effect for the master, the sync
policy in effect for each replica, and the replication acknowledgement policy in effect
for the replication group.

Parameters

• master

The master parameter defines the synchronization policy in effect for the master
in this replication group for this durability guarantee. See kv_sync_policy_enum for
a list of the synchronization policies that you can set.

• replica

The replica parameter defines the synchronization policy in effect for the replicas
in this replication group for this durability guarantee. See kv_sync_policy_enum for
a list of the synchronization policies that you can set.

• ack

The ack parameter defines the acknowledgement policy to be used for this
durability guarantee. The acknowledgment policy describes how many replicas
must respond to, or acknowledge a transaction commit before the master
considers the transaction completed. See kv_ack_policy_enum for a list of the
possible acknowledgement policies.

See Also

• Durability and Consistency Management Functions

kv_create_simple_consistency()
#include <kvstore.h>

kv_error_tkv_create_simple_consistency(kv_consistency_t **consistency,
 kv_consistency_enum type)

Creates a simple consistency guarantee used for read operations.

In general, read operations may be serviced either at a master or replica node. When
reads are serviced at the master node, consistency is always absolute. For reads
that might be performed at a replica, you can specify ABSOLUTE consistency to force
the operation to be serviced at the master. For other types of consistency, when
the operation is serviced at a replica, the read transaction will not begin until the
consistency policy is satisfied.

Consistency policies can be used for read operation performed in the store, such as
with kv_get_with_options() or kv_store_iterator().

Chapter 5
kv_create_simple_consistency()

5-2

You release the memory allocated for the consistency structure using
kv_release_consistency().

Parameters

• consistency

The consistency parameter references memory into which a pointer to the
allocated consistency policy is copied.

• type

The type parameter defines the type of consistency you want to use. See
kv_consistency_enum for a list of the simple consistency policies that you can
specify.

See Also

• Durability and Consistency Management Functions

kv_create_time_consistency()
#include <kvstore.h>

kv_error_t
kv_create_time_consistency(kv_consistency_t **consistency,
 kv_timeout_t time_lag,
 kv_timeout_t timeout_ms)

Creates a consistency policy which describes the amount of time the replica is allowed
to lag the master. The application can use this policy to ensure that the replica node
sees all transactions that were committed on the master before the lag interval.

You release the memory allocated for the consistency structure using
kv_release_consistency().

Effective use of this policy requires that the clocks on the master and replica are
synchronized by using a protocol like NTP.

Parameters

• consistency

The consistency parameter references memory into which a pointer to the
allocated consistency policy is copied.

• time_lag

The time_lag parameter specifies the time interval, in milliseconds, by which
the replica may be out of date with respect to the master when a transaction is
initiated on the replica.

• timeout_ms

The timeout_ms parameter describes how long a replica may wait for the desired
consistency to be achieved before giving up.

To satisfied the consistency policy, the KVStore client driver implements a read
operation by choosing a node (usually a replica) from the proper replication group,

Chapter 5
kv_create_time_consistency()

5-3

and sending it a request. If the replica cannot guarantee the desired Consistency
within the Consistency timeout, it replies to the request with a failure indication.
If there is still time remaining within the operation timeout, the client driver picks
another node and tries the request again (transparent to the application).

KVStore operations which accept a consistency policy also accept a separate
operation timeout. It makes sense to think of the operation timeout as the
maximum amount of time the application is willing to wait for the operation to
complete. On the other hand, the consistency timeout is like a performance hint
to the implementation, suggesting that it can generally expect a healthy replica to
become consistent within the given amount of time, and that if it does not, then
it is probably more likely worth the overhead of abandoning the request attempt
and retrying with a different replica. Note that for the consistency timeout to be
meaningful, it must be smaller than the operation timeout.

Choosing a value for the operation timeout depends on the needs of the
application. Finding a good consistency timeout value is more likely to depend
on observations made of real system performance.

See Also

• Durability and Consistency Management Functions

kv_create_version_consistency()
#include <kvstore.h>

kv_error_t
kv_create_version_consistency(kv_consistency_t **consistency,
 const kv_version_t *version,
 kv_timeout_t timeout_ms)

Creates a consistency policy which ensures that the environment on a replica node
is at least as current as denoted by the specified version. The version is created by
providing a Value portion of a Key/Value pair to kv_get_version(), or is obtained from
the result set provided to kv_result_get_version() or kv_result_get_previous_version().
Versions are also returned in the new_version parameter of the kv_put_with_options()
function.

The version of a Key-Value pair represents a point in the serialized transaction
schedule created by the master. In other words, the version is like a bookmark,
representing a particular transaction commit in the replication stream. The replica
ensures that the commit identified by the version has been executed before allowing
the transaction on the replica to proceed.

For example, suppose the application is a web application. Each request to the web
server consists of an update operation followed by read operations (say from the
same client). The read operations naturally expect to see the data from the updates
executed by the same request. However, the read operations might have been routed
to a replica node that did not execute the update.

In such a case, the update request would generate a version, which would be
resubmitted by the browser, and then passed with subsequent read requests to the
KV Store. The read request may be directed by the KV Store's load balancer to any
one of the available replicas. If the replica servicing the request is already current (with

Chapter 5
kv_create_version_consistency()

5-4

regards to the version token), it will immediately execute the transaction and satisfy
the request. If not, the transaction will stall until the replica replay has caught up and
the change is available at that node.

You release the memory allocated for the consistency structure using
kv_release_consistency().

Parameters

• consistency

The consistency parameter references memory into which a pointer to the
allocated consistency policy is copied.

• version

The version parameter identifies the version that must be seen at the replica in
order to consider it current. This value is created by providing a Value portion of
a Key/Value pair to kv_get_version(), or is obtained from the result set provided to
kv_result_get_version() or kv_result_get_previous_version().

• timeout_ms

The timeout_ms parameter describes how long a replica may wait for the desired
consistency to be achieved before giving up.

To satisfied the consistency policy, the KVStore client driver implements a read
operation by choosing a node (usually a replica) from the proper replication group,
and sending it a request. If the replica cannot guarantee the desired Consistency
within the Consistency timeout, it replies to the request with a failure indication.
If there is still time remaining within the operation timeout, the client driver picks
another node and tries the request again (transparent to the application).

KVStore operations which accept a consistency policy also accept a separate
operation timeout. It makes sense to think of the operation timeout as the
maximum amount of time the application is willing to wait for the operation to
complete. On the other hand, the consistency timeout is like a performance hint
to the implementation, suggesting that it can generally expect a healthy replica to
become consistent within the given amount of time, and that if it does not, then
it is probably more likely worth the overhead of abandoning the request attempt
and retrying with a different replica. Note that for the consistency timeout to be
meaningful, it must be smaller than the operation timeout.

Choosing a value for the operation timeout depends on the needs of the
application. Finding a good consistency timeout value is more likely to depend
on observations made of real system performance.

See Also

• Durability and Consistency Management Functions

kv_get_consistency_type()
#include <kvstore.h>

kv_consistency_enum
kv_get_consistency_type(kv_consistency_t *consistency)

Chapter 5
kv_get_consistency_type()

5-5

Identifies the consistency policy type used by the provided policy. See
kv_consistency_enum for a list of possible consistency policy types.

Parameters

• consistency

The consistency parameter points to the consistency policy for which you want to
identify the type.

See Also

• Durability and Consistency Management Functions

kv_get_default_durability()
#include <kvstore.h>

kv_durability_t
kv_get_default_durability()

Returns the default durability policy in use by the KV Store. You set the default
durability policy using kv_config_set_consistency().

See Also

• Durability and Consistency Management Functions

kv_get_durability_master_sync()
#include <kvstore.h>

kv_sync_policy_enum
kv_get_durability_master_sync(kv_durability_t durability)

Returns the sync policy in use by the Master for the given durability policy. See
kv_sync_policy_enum for a list of the possible sync policies.

Parameters

• durability

The durability parameter identifies the durability policy to be examined.

See Also

• Durability and Consistency Management Functions

kv_get_durability_replica_ack()
#include <kvstore.h>

Chapter 5
kv_get_default_durability()

5-6

kv_ack_policy_enum
kv_get_durability_replica_ack(kv_durability_t durability)

Returns the acknowledgement policy in use for the given durability policy. The
acknowledgement policy identifies how many replicas must acknowledge a transaction
commit before the master considers the transaction to be completed. See
kv_ack_policy_enum for a list of the possible sync policies.

Parameters

• durability

The durability parameter identifies the durability policy to be examined.

See Also

• Durability and Consistency Management Functions

kv_get_durability_replica_sync()
#include <kvstore.h>

kv_sync_policy_enum
kv_get_durability_replica_sync(kv_durability_t durability)

Returns the sync policy in use by the replicas for the given durability policy. See
kv_sync_policy_enum for a list of the possible sync policies.

Parameters

• durability

The durability parameter identifies the durability policy to be examined.

See Also

• Durability and Consistency Management Functions

kv_is_default_durability()
#include <kvstore.h>

kv_error_t
kv_is_default_durability(kv_durability_t durability)

Returns whether the identified durability policy is identical to the default durability
policy. KV_SUCCESS indicates that the provided durability is equal to the default
durability.

You set the default durability using kv_config_set_durability().

Parameters

• durability

Chapter 5
kv_get_durability_replica_sync()

5-7

The durability parameter identifies the durability policy to be examined.

See Also

• Durability and Consistency Management Functions

kv_release_consistency()
#include <kvstore.h>

void
kv_release_consistency(kv_consistency_t **consistency)

Releases (or frees) the memory allocated for thekv_consistency_t structure.
This structure is initially created using kv_create_simple_consistency(),
kv_create_time_consistency(), or kv_create_version_consistency().

Parameters

• consistency

The consistency structure to release.

See Also

• Durability and Consistency Management Functions

Chapter 5
kv_release_consistency()

5-8

6
Statistics Functions

This chapter describes functions used to retrieve and examine statistical information.
There are two types of statistics described here: statistics related to store operations
and state, and statistics related to parallel scan operations.

For store-related statistics, metrics can be obtained on a per-node or per-operation
basis. All statistical information is contained within a structure that you allocate
using kv_get_stats(). You release the resources allocated for this structure
using kv_release_stats().

In many cases, statistical information is reported for a time interval. For example,
this happens when information is retrieved that reports on maximum, minimum and
average numbers. In this case, the reporting interval can be restarted by calling
kv_get_stats() with a value of 1 for the clear parameter.

For parallel scan statistics, the statistics are retrieved from a
parallel scan iterator using either kv_parallel_scan_get_partition_metrics()
or kv_parallel_scan_get_shard_metrics(). This returns a structure that you can
examine using a number of different functions. You release this structure
using kv_release_detailed_metrics_list().

Statistics Functions

Statistics Functions Description

kv_get_node_metrics() Returns metrics associated with each node in the KV
Store

kv_get_num_nodes() Return the number of nodes contained in the KV Store

kv_get_num_operations() Return the number of operations that were executed

kv_get_operation_metrics() Aggregates the metrics associated with a KV Store
operation

kv_get_stats() Return statistics associated with the KV Store

kv_release_stats() Release the statistics structure

kv_stats_string() Returns a descriptive string containing metrics for each
operation

Parallel Scan Statistics Functions

Parallel Scan Statistics Functions Description

kv_detailed_metrics_list_size() Returns the size of the detailed metrics list

kv_detailed_metrics_list_get_record
_count()

Returns the number of records in the detailed metrics
list

kv_detailed_metrics_list_get_scan_ti
me()

Returns the time used to perform the parallel scan

kv_detailed_metrics_list_get_name() Returns the name of the shard or partition used by the
parallel scan

6-1

Parallel Scan Statistics Functions Description

kv_parallel_scan_get_partition_metri
cs()

Returns parallel scan metrics for the partition

kv_parallel_scan_get_shard_metric
s()

Returns parallel scan metrics for the partition

kv_release_detailed_metrics_list() Releases the detailed metrics list

kv_detailed_metrics_list_get_name()
#include <kvstore.h>

kv_error_t
kv_detailed_metrics_list_get_name(
 const kv_detailed_metrics_list_t *res,
 kv_int_t index,
 char **name)

Returns the name of the partition or shard which was examined by the parallel scan.

Parameters

• res

The res parameter is the detailed metrics list for which you want the partition
or shard name. It is created using either kv_parallel_scan_get_partition_metrics()
or kv_parallel_scan_get_shard_metrics().

• index

The index parameter is the point in the scan from which you want to return the
partition or shard name.

• name

The name parameter references memory into which is placed the shard or
partition name.

See Also

• Statistics and Related Functions

kv_detailed_metrics_list_get_record_count()
#include <kvstore.h>

kv_error_t
kv_detailed_metrics_list_get_record_count(
 const kv_detailed_metrics_list_t *res,
 kv_int_t index,
 kv_long_t *count)

Returns the record count for the shard or partition.

Chapter 6
kv_detailed_metrics_list_get_name()

6-2

Parameters

• res

The res parameter is the detailed metrics list for which you want the
record count. It is created using either kv_parallel_scan_get_partition_metrics()or
kv_parallel_scan_get_shard_metrics().

• index

The index parameter is the point in the scan to which you want to examine the
record count.

• count

The count parameter references memory into which is placed the record count up
to the point in the scan identified by index.

See Also

• Statistics and Related Functions

kv_detailed_metrics_list_get_scan_time()
#include <kvstore.h>

kv_error_t
kv_detailed_metrics_list_get_scan_time(
 const kv_detailed_metrics_list_t *res,
 kv_int_t index,
 kv_long_t *time)

Returns the time in milliseconds used to scan the partition or shard.

Parameters

• res

The res parameter is the detailed metrics list for which you want the
scan time. It is created using either kv_parallel_scan_get_partition_metrics()or
kv_parallel_scan_get_shard_metrics().

• index

The index parameter is the point in the scan up to which you want to examine the
scan time.

• time

The time parameter references memory into which is placed the time in
milliseconds taken to perform the scan up to the point identified by index.

See Also

• Statistics and Related Functions

Chapter 6
kv_detailed_metrics_list_get_scan_time()

6-3

kv_detailed_metrics_list_size()
#include <kvstore.h>

kv_int_t
kv_detailed_metrics_list_size(
 const kv_detailed_metrics_list_t *result)

Returns the size of the detailed metrics list, as created by
kv_parallel_scan_get_partition_metrics()and kv_parallel_scan_get_shard_metrics().

Parameters

• result

The result parameter is the detailed metrics list for which you want size
information.

See Also

• Statistics and Related Functions

kv_get_node_metrics()
#include <kvstore.h>

kv_node_metrics_t *
kv_get_node_metrics(kv_stats_t *stats,
 kv_int_t index)

Returns a list of metrics associated with each node in the store. The information
is returned using a kv_node_metrics_t structure, which includes the following data
members:

• kv_int_t avg_latency_ms

Returns the trailing average latency (in ms) over all requests made to this node.

• kv_int_t max_active_request_count

Returns the number of requests that were concurrently active for this node at this
Oracle NoSQL Database client.

• kv_long_t request_count

Returns the total number of requests processed by the node.

• kv_int_t is_active

Returns 1 if the node is currently active. That is, it is reachable and can service
requests.

• kv_int_t is_master

Returns 1 if the node is currently a master.

• const char *node_name

Chapter 6
kv_detailed_metrics_list_size()

6-4

Returns the internal name associated with the node.

• const char *zone_name;

Returns the name of the zone which hosts the node.

Note that if the index parameter is out of range, then this functions returns NULL.

Parameters

• stats

The stats parameter is the statistics structure containing the node metrics
information. This structure is allocated using kv_get_stats(), and is released using
kv_release_stats().

• index

The index parameter is the integer designation of the node for which you want
to retrieve statistical information. You can discover the total number of nodes for
which statistical information is available using kv_get_num_nodes().

See Also

• Statistics and Related Functions

kv_get_num_nodes()
#include <kvstore.h>

kv_int_t
kv_get_num_nodes(const kv_stats_t *stats)

Returns the total number of nodes currently in the store, active and inactive.

Parameters

• stats

The stats parameter is the structure containing the statistical information that you
want to examine. This structure is allocated using kv_get_stats(), and is released
using kv_release_stats().

See Also

• Statistics and Related Functions

kv_get_num_operations()
#include <kvstore.h>

kv_int_t
kv_get_num_operations(const kv_stats_t *stats)

Returns the total number of store operations described by the provided statistics
structure.

Chapter 6
kv_get_num_nodes()

6-5

Parameters

• stats

The stats parameter is the statistics structure containing the node metrics
information. This structure is allocated using kv_get_stats(), and is released using
kv_release_stats().

See Also

• Statistics and Related Functions

kv_get_operation_metrics()
#include <kvstore.h>

kv_operation_metrics_t *
kv_get_operation_metrics(kv_stats_t *stats,
 kv_int_t index)

Aggregates the metrics associated with an Oracle NoSQL Database operation. The
information is returned using a kv_operation_metrics_t structure, which includes the
following data members:

• kv_float_t avg_latency_ms

Returns the average latency associated with the operation in milliseconds.

• kv_int_t max_latency_ms

Returns the maximum latency associated with the operation in milliseconds.

• kv_int_t min_latency_ms

Returns the minimum latency associated with the operation in milliseconds.

• kv_int_t total_operations

Returns the number of operations that were executed.

• const char *operation_name

Returns the name of the Oracle NoSQL Database operation associated with the
metrics.

Note that if the index parameter is out of range, then this functions returns NULL.

Parameters

• stats

The stats parameter is the statistics structure containing the operation metrics
information. This structure is allocated using kv_get_stats(), and is released
using kv_release_stats().

• index

The index parameter is the integer designation of the operation for
which you want to retrieve statistical information. You can discover the

Chapter 6
kv_get_operation_metrics()

6-6

total number of operations for which statistical information is available
using kv_get_num_operations().

See Also

• Statistics and Related Functions

kv_get_stats()
#include <kvstore.h>

kv_error_t
kv_get_stats(kv_store_t *store,
 kv_stats_t **stats,
 kv_int_t clear)

Returns a statistics structure, which you can then examine
using kv_get_node_metrics(), kv_get_operation_metrics(), or kv_stats_string(). You
release the resources allocated for the statistics structure using kv_release_stats().

Parameters

• store

The store parameter is the handle to the store for which you want to examine
statistical information.

• stats

The stats parameter references memory into which a pointer to the allocated
statistics structure is copied.

• clear

The clear parameter resets all counters within the statistics structure to zero.
Setting this value to 1 creates a new reporting interval for which minimum,
maximum, average, and total values are computed.

See Also

• Statistics and Related Functions

kv_parallel_scan_get_partition_metrics()
#include <kvstore.h>

kv_error_t
kv_parallel_scan_get_partition_metrics(
 const kv_parallel_scan_iterator_t *iterator,
 kv_detailed_metrics_list_t **result)

Gets the per-partition metrics for this parallel scan. This may be called at any time
during the iteration in order to obtain metrics to that point or it may be called at the end
to obtain metrics for the entire scan.

Chapter 6
kv_get_stats()

6-7

Parameters

• iterator

The iterator parameter is the iterator for which you
want to return statistics. This iterator is allocated using
kv_parallel_store_iterator() or kv_parallel_store_iterator_keys()

• result

The result parameter is the list of parallel scan partition metrics. Use
kv_detailed_metrics_list_get_record_count(),
kv_detailed_metrics_list_get_scan_time(), and
kv_detailed_metrics_list_get_name()to examine this list. Return the size of this list
using kv_detailed_metrics_list_size(). Release this list using
kv_release_detailed_metrics_list().

See Also

• Statistics and Related Functions

kv_parallel_scan_get_shard_metrics()
#include <kvstore.h>

kv_error_t
kv_parallel_scan_get_shard_metrics(
 const kv_parallel_scan_iterator_t *iterator,
 kv_detailed_metrics_list_t **result)

Gets the per-shard metrics for this parallel scan. This may be called at any time during
the iteration in order to obtain metrics to that point or it may be called at the end to
obtain metrics for the entire scan.

Parameters

• iterator

The iterator parameter is the iterator for which you
want to return statistics. This iterator is allocated using
kv_parallel_store_iterator() or kv_parallel_store_iterator_keys()

• result

The result parameter is the list of parallel scan shard metrics. Use
kv_detailed_metrics_list_get_record_count(),
kv_detailed_metrics_list_get_scan_time(), and
kv_detailed_metrics_list_get_name()to examine this list. Return the size of this list
using . Release this list using kv_release_detailed_metrics_list().

See Also

• Statistics and Related Functions

Chapter 6
kv_parallel_scan_get_shard_metrics()

6-8

kv_release_detailed_metrics_list()
#include <kvstore.h>

void
kv_release_detailed_metrics_list(kv_detailed_metrics_list_t **results)

Releases the resources used by the detailed metrics
list, as created by kv_parallel_scan_get_partition_metrics()
and kv_parallel_scan_get_shard_metrics().

Parameters

• results

The results parameter is the detailed metrics list that you want to release.

See Also

• Statistics and Related Functions

kv_release_stats()
#include <kvstore.h>

void
kv_release_stats(kv_stats_t **stats)

Releases all the resources allocated for the provided statistics structure. The statistics
structure is initially allocated using kv_get_stats().

Parameters

• stats

The stats parameter is the statistics structure that you want to release.

See Also

• Statistics and Related Functions

kv_stats_string()
#include <kvstore.h>

const char *
kv_stats_string(kv_store_t *store,
 const kv_stats_t *stats)

Returns a descriptive string containing metrics for each operation that was actually
performed during the statistics gathering interval, one per line.

Chapter 6
kv_release_detailed_metrics_list()

6-9

Parameters

• store

The store parameter the handle to the store for which you want to examine
statistical information.

• stats

The stats parameter is the structure containing the statistical information.
This structure is allocated using kv_get_stats(), and is released
using kv_release_stats().

See Also

• Statistics and Related Functions

Chapter 6
kv_stats_string()

6-10

7
Error Functions

This chapter contains functions used to investigate and examine error returns obtained
from the C API functions described in this manual.

Most methods in this library return an enumeration, kv_error_t, indicating success
or failure. Because of the need to also return integer and "boolean-like" values
in some cases, all actual error values are negative. 0 (KV_SUCCESS) indicates
no error. Valid integer return values are non-negative. When an error is returned
the kv_get_last_error() method may have additional information about the error.

Error Functions

Error Functions Description

kv_get_last_error() Return a string explaining the last error

kv_get_last_error()
#include <kvstore.h>

const char *
kv_get_last_error(kv_store_t *store)

Returns a string explaining the last error. This string is only useful immediately
following an error return; otherwise it may indicate an older, irrelevant error. This value
is maintained per-thread and is not valid across threads.

Parameters

• store

The store parameter is the handle to the store in which an operation returned an
error.

See Also

• Error Functions

7-1

A
Data Types

This appendix describes the enum datatypes used by the various Oracle NoSQL
Database functions:

• Data Operations Data Types

• Durability and Consistency Data Types

• Store Operations Data Types

Data Operations Data Types
This section defines the data types used by the functions described in this appendix.

kv_depth_enum

typedef enum {
 KV_DEPTH_DEFAULT = 0,
 KV_DEPTH_CHILDREN_ONLY,
 KV_DEPTH_DESCENDANTS_ONLY,
 KV_DEPTH_PARENT_AND_CHILDREN,
 KV_DEPTH_PARENT_AND_DESCENDANTS
} kv_depth_enum;

Used with multiple-key and iterator operations to specify whether to select (return or
operate on) the key-value pair for the parent key, and the key-value pairs for only
immediate children or all descendants.

Options are:

• KV_DEPTH_DEFAULT

No depth constraints are placed on the operation.

• KV_DEPTH_CHILDREN_ONLY

Select only immediate children, do not select the parent.

• KV_DEPTH_DESCENDANTS_ONLY

Select all descendants, do not select the parent.

• KV_DEPTH_PARENT_AND_CHILDREN

Select immediate children and the parent.

• KV_DEPTH_PARENT_AND_DESCENDANTS

Select all descendants and the parent.

A-1

kv_direction_enum

typedef enum {
 KV_DIRECTION_FORWARD,
 KV_DIRECTION_REVERSE,
 KV_DIRECTION_UNORDERED
} kv_direction_enum;

Used with iterator operations to specify the order that keys are returned.

• KV_DIRECTION_FORWARD

Iterate in ascending key order.

• KV_DIRECTION_REVERSE

Iterate in descending key order.

• KV_DIRECTION_UNORDERED

Iterate in no particular key order.

kv_presence_enum

typedef enum {
 KV_IF_DONTCARE = 0,
 KV_IF_ABSENT,
 KV_IF_PRESENT
} kv_presence_enum;

Defines under what circumstances a Key/Value record will be put into the store
if kv_put_with_options() is in use.

• KV_IF_DONTCARE

The record is put into the store without constraint.

• KV_IF_ABSENT

Put the record into the store only if a value for the the supplied key does not
currently exist in the store.

• KV_IF_PRESENT

Put the record into the store only if a value for the supplied key does currently exist
in the store.

kv_return_value_version_enum

typedef enum {
 KV_RETURN_VALUE_NONE = 0,
 KV_RETURN_VALUE_ALL,
 KV_RETURN_VALUE_VALUE,
 KV_RETURN_VALUE_VERSION
} kv_return_value_version_enum;

Appendix A
Data Operations Data Types

A-2

Used with put and delete operations to define what to return as part of the operations.

• KV_RETURN_VALUE_NONE

Do not return the value or the version.

• KV_RETURN_VALUE_ALL

Return both the value and the version.

• KV_RETURN_VALUE_VALUE

Return the value only.

• KV_RETURN_VALUE_VERSION

Return the version only.

Durability and Consistency Data Types
This section defines the data types used to support durability and consistency policies.

kv_ack_policy_enum

typedef enum {
 KV_ACK_ALL = 1,
 KV_ACK_NONE = 2,
 KV_ACK_MAJORITY = 3
} kv_ack_policy_enum;

A replicated environment makes it possible to increase an application's transaction
commit guarantees by committing changes to its replicas on the network. This
enumeration defines the policy for how such network commits are handled.

Ack policies are set as a part of defining a durability guarantee. You create a durability
guarantee using kv_create_durability().

Possible ack policies are:

• KV_ACK_ALL

All replicas must acknowledge that they have committed the transaction.

• KV_ACK_NONE

No transaction commit acknowledgments are required and the master will never
wait for replica acknowledgments.

• KV_ACK_MAJORITY

A simple majority of replicas must acknowledge that they have committed the
transaction.

kv_consistency_enum

typedef enum {
 KV_CONSISTENCY_ABSOLUTE = 0,
 KV_CONSISTENCY_NONE,
 KV_CONSISTENCY_TIME,

Appendix A
Durability and Consistency Data Types

A-3

 KV_CONSISTENCY_VERSION,
 KV_CONSISTENCY_NONE_NO_MASTER
} kv_consistency_enum;

Enumeration that is used to define the consistency guarantee used for read
operations. Values are:

• KV_CONSISTENCY_ABSOLUTE

A consistency policy that requires a read transaction be serviced on the Master so
that consistency is absolute.

• KV_CONSISTENCY_NONE

A consistency policy that allows a read transaction performed at a Replica to
proceed regardless of the state of the Replica relative to the Master.

• KV_CONSISTENCY_TIME

A consistency policy which describes the amount of time
the Replica is allowed to lag the Master. This policy
cannot be specified using kv_create_simple_consistency(). Instead,
use kv_create_time_consistency().

• KV_CONSISTENCY_VERSION

A consistency policy which ensures that the environment on a Replica node is at
least as current as that used by the Value provided to kv_get_version(), or by the
result set provided to kv_result_get_version() or kv_result_get_previous_version().

This policy cannot be specified using kv_create_simple_consistency(). Instead,
usekv_create_version_consistency().

• KV_CONSISTENCY_NONE_NO_MASTER

A consistency policy that requires a read operation be serviced on a replica; never
the Master. When this consistency policy is used, the read operation will not be
performed if the only node available is the Master.

For read-heavy applications (ex. analytics), it may be desirable to reduce the load
on the master by restricting the read requests to only the replicas in the store.
Use of the secondary zones feature is preferred over this consistency policy as the
mechanism for achieving this sort of read isolation. But for cases where the use
of secondary zones is either impractical or not desired, this consistency policy can
be used to achieve a similar effect; without employing the additional resources that
secondary zones may require.

kv_sync_policy_enum

typedef enum {
 KV_SYNC_NONE = 1,
 KV_SYNC_FLUSH = 2,
 KV_SYNC_WRITE_NO_SYNC = 3
} kv_sync_policy_enum;

Defines the synchronization policy to be used when committing a transaction. High
levels of synchronization offer a greater guarantee that the transaction is persistent to
disk, but trade that off for lower performance.

Appendix A
Durability and Consistency Data Types

A-4

Sync policies are set as a part of defining a durability guarantee. You create a
durability guarantee using kv_create_durability().

Possible sync policies are:

• KV_SYNC_NONE

Do not write or synchronously flush the log on transaction commit.

• KV_SYNC_FLUSH

Write and synchronously flush the log on transaction commit.

• KV_SYNC_WRITE_NO_SYNC

Write but do not synchronously flush the log on transaction commit.

Store Operations Data Types
This section defines data types that are by the store or API at a high level, or data
types that are commonly used by all areas of the API.

kv_api_type_enum

typedef enum {
 KV_JNI
} kv_api_type_enum;

Structure used to describe the API implementation type. Currently only one option is
available: KV_JNI.

kv_error_t

typedef enum {
 KV_SUCCESS = 0,
 KV_NO_MEMORY = -1,
 KV_NOT_IMPLEMENTED = -2,
 KV_ERROR_JVM = -3,
 KV_KEY_NOT_FOUND = -4,
 KV_KEY_EXISTS = -5,
 KV_NO_SUCH_VERSION = -6,
 KV_NO_SUCH_OBJECT = -7,
 KV_INVALID_OPERATION = -8,
 KV_INVALID_ARGUMENT = -9,
 KV_TIMEOUT = -10,
 KV_CONSISTENCY = -11,
 KV_DURABILITY = -12,
 KV_FAULT = -13,
 KV_AUTH_FAILURE = -15,
 KV_AUTH_REQUIRED = -16,
 KV_ACCESS_DENIED = -17,
 KV_ERROR_JAVA_UNKNOWN = -99,
 KV_ERROR_UNKNOWN = -100
} kv_error_t

Appendix A
Store Operations Data Types

A-5

#define KV_FALSE 0
#define KV_TRUE 1

All non-void API methods return kv_error_t. With few exceptions a return value of
KV_SUCCESS (or 0) means no error and a negative value means an error.

The exceptions are the methods that return integer values. In these cases a negative
return means an error and a non-negative return is the correct value.

kv_store_iterator_config_t

typedef struct {
 kv_int_t max_conc_req;
 kv_int_t max_res_batches;
} kv_store_iterator_config_t;

Used to configure a parallel scan of the store.

max_conc_req identifies the maximum number of concurrent requests the parallel
scan will make. That is, this is the maximum number of client-side threads that are
used to perform this scan. Setting this value to 1 causes the store iteration to be
performed using only the current thread. Setting it to 0 lets the KV Client determine the
number of threads based on topology information (up to a maximum of the number of
available processors). Values less than 0 are reserved for some future use and cause
an error to be returned.

max_res_batches specifies the maximum number of results batches that can be held
in the Oracle NoSQL Database client process before processing on the Replication
Node pauses. This ensures that client side memory is not exceeded if the client cannot
consume results as fast as they are generated by the Replication Nodes. The default
value is the value specified for max_conc_req.

Appendix A
Store Operations Data Types

A-6

B
Third Party Licenses

The Oracle NoSQL Database Client is licensed under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with the License. You
may obtain a copy of the License at:.

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

The following applies to this Oracle NoSQL client as well as all other products under
the Apache 2.0 license.

Apache License Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities
that control, are controlled by, or are under common control with that entity. For
the purposes of this definition, "control" means (i) the power, direct or indirect,
to cause the direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding
shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in
or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original

B-1

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/

work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed
by, or on behalf of, the Licensor for the purpose of discussing and improving the
Work, but excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf
of whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and distribute the Work
and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable (except as stated in this section) patent license
to make, have made, use, offer to sell, sell, import, and otherwise transfer the
Work, where such license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement,
then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or
Object form, provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of
this License; and

b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

c. You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from the
Source form of the Work, excluding those notices that do not pertain to any
part of the Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the

Appendix B

B-2

Derivative Works; or, within a display generated by the Derivative Works,
if and wherever such third-party notices normally appear. The contents of
the NOTICE file are for informational purposes only and do not modify the
License. You may add Your own attribution notices within Derivative Works
that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may
provide additional or different license terms and conditions or use, reproduction,
or distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required
for reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions)
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS
FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks
associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory whether in tort
(including negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for,
acceptance of support, warranty, indemnity, or other liability obligations and/or
rights consistent with this License. However, in accepting such obligations, You
may act only on Your own behalf and on Your sole responsibility, not on behalf of
any other Contributor, and only if You agree to indemnify, defend, and hold each
Contributor harmless for any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Appendix B

B-3

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets "[]" replaced with your own identifying information.
(Don't include the brackets!) The text should be enclosed in the appropriate comment
syntax for the file format. We also recommend that a file or class name and description
of purpose be included on the same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Appendix B

B-4

http://www.apache.org/licenses/LICENSE-2.0

	Contents
	Preface
	Conventions Used in this Book

	1 Introduction to Oracle NoSQL Database C API
	Library Installation
	Library Usage
	Thread Safety

	2 Store and Library Functions
	kv_close_store()
	kv_config_add_host_port()
	kv_config_add_read_zone()
	kv_config_get_lob_suffix()
	kv_config_get_lob_timeout()
	kv_config_get_lob_verification_bytes()
	kv_config_get_read_zones()
	kv_config_set_consistency()
	kv_config_set_durability()
	kv_config_set_lob_suffix()
	kv_config_set_lob_timeout()
	kv_config_set_request_limits()
	kv_config_set_security_properties()
	kv_config_set_timeouts()
	kv_config_set_verification_bytes()
	kv_create_config()
	kv_create_jni_impl()
	kv_create_jni_impl_from_jvm()
	kv_create_password_credentials()
	kv_create_properties()
	kv_get_impl_type()
	kv_get_open_error()
	kv_open_store()
	kv_open_store_login()
	kv_release_config()
	kv_release_credentials()
	kv_release_impl()
	kv_release_properties()
	kv_set_property()
	kv_store_login()
	kv_store_logout()
	kv_version()
	kv_version_c()

	3 Data Operation Functions
	kv_create_delete_op()
	kv_create_delete_with_options_op()
	kv_create_operations()
	kv_create_put_op()
	kv_create_put_with_options_op()
	kv_delete()
	kv_delete_with_options()
	kv_execute()
	kv_get()
	kv_get_with_options()
	kv_init_key_range()
	kv_init_key_range_prefix()
	kv_iterator_next()
	kv_iterator_next_key()
	kv_iterator_size()
	kv_lob_delete()
	kv_lob_get_for_read()
	kv_lob_get_for_write()
	kv_lob_get_version()
	kv_lob_put_from_file()
	kv_lob_read()
	kv_lob_release_handle()
	kv_multi_delete()
	kv_multi_get()
	kv_multi_get_iterator()
	kv_multi_get_iterator_keys()
	kv_multi_get_keys()
	kv_operation_get_abort_on_failure()
	kv_operation_get_key()
	kv_operation_get_type()
	kv_operation_results_size()
	kv_operations_set_copy()
	kv_operations_size()
	kv_parallel_scan_iterator_next()
	kv_parallel_scan_iterator_next_key()
	kv_parallel_store_iterator()
	kv_parallel_store_iterator_keys()
	kv_put()
	kv_put_with_options()
	kv_release_iterator()
	kv_release_operation_results()
	kv_release_operations()
	kv_release_parallel_scan_iterator()
	kv_result_get_previous_value()
	kv_result_get_previous_version()
	kv_result_get_success()
	kv_result_get_version()
	kv_store_iterator()
	kv_store_iterator_keys()

	4 Key/Value Pair Management Functions
	kv_copy_version()
	kv_create_key()
	kv_create_key_copy()
	kv_create_key_from_uri()
	kv_create_key_from_uri_copy()
	kv_create_value()
	kv_create_value_copy()
	kv_get_key_major()
	kv_get_key_minor()
	kv_get_key_uri()
	kv_get_value()
	kv_get_value_size()
	kv_get_version()
	kv_release_key()
	kv_release_value()
	kv_release_version()

	5 Durability and Consistency Functions
	kv_create_durability()
	kv_create_simple_consistency()
	kv_create_time_consistency()
	kv_create_version_consistency()
	kv_get_consistency_type()
	kv_get_default_durability()
	kv_get_durability_master_sync()
	kv_get_durability_replica_ack()
	kv_get_durability_replica_sync()
	kv_is_default_durability()
	kv_release_consistency()

	6 Statistics Functions
	kv_detailed_metrics_list_get_name()
	kv_detailed_metrics_list_get_record_count()
	kv_detailed_metrics_list_get_scan_time()
	kv_detailed_metrics_list_size()
	kv_get_node_metrics()
	kv_get_num_nodes()
	kv_get_num_operations()
	kv_get_operation_metrics()
	kv_get_stats()
	kv_parallel_scan_get_partition_metrics()
	kv_parallel_scan_get_shard_metrics()
	kv_release_detailed_metrics_list()
	kv_release_stats()
	kv_stats_string()

	7 Error Functions
	kv_get_last_error()

	A Data Types
	Data Operations Data Types
	kv_depth_enum
	kv_direction_enum
	kv_presence_enum
	kv_return_value_version_enum

	Durability and Consistency Data Types
	kv_ack_policy_enum
	kv_consistency_enum
	kv_sync_policy_enum

	Store Operations Data Types
	kv_api_type_enum
	kv_error_t
	kv_store_iterator_config_t

	B Third Party Licenses

