
Oracle® NoSQL Database
C# Driver Developer's Guide

Release 20.2
E87793-11
August 2020

Oracle NoSQL Database C# Driver Developer's Guide, Release 20.2

E87793-11

Copyright © 2011, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or “commercial computer software documentation” pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

iii

Preface

This document describes how to get started with Oracle NoSQL Database C# Driver
for Tables.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Documentation Accessibility

4

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Introduction

This document provides a quick introduction to the Oracle NoSQL Database C# driver.
This driver provides native C# applications access to data stored in Oracle NoSQL
Database tables. It can be used to perform basic database operations such as get,
put, and search. Search operations can be executed in synchronous or asynchronous
manner.

The driver is thin and asynchronous.

It is termed thin as it requires use of a proxy server which translates network activity
between the C# client and the Oracle NoSQL Database store. The proxy is written in
Java, and can run on any machine that is network accessible by both your C# client
code and the Oracle NoSQL Database store. However, for performance and security
reasons, Oracle recommends that you run the proxy on the same local host as your
driver, and the proxy be used in a 1:1 configuration with your drivers (that is, each
instance of the proxy should be used with just a single driver instance). The driver
does not use any caching while iterating over potentially large datasets.

It is termed asynchronous as it has the capability to call driver operations in a
non-blocking manner and receive results of the operation via asynchronous callback
functions.

This quick start guide assumes that you have read and understood the concepts
described in the Java Direct Driver Developer's Guide. The entirety of the API used by
the C# driver is described in the C# Driver API Reference.

5

Installation

Both the C# driver and the proxy are available in a packaged assembly in NuGet
Package Manager. The C# driver communicates with the proxy using Thrift protocol
and the proxy further communicates with the Oracle NoSQL Database KVStore using
Java RMI (Remote Method Invocation) protocol.

To install the C# driver into your project, download and install the
Oracle.nosql.driver.4.x.x by using the NuGet Package Manager window or
console. The package includes the following:

• All jar files required to run the proxy server in the lib/java directory

• The driver.dll file in the lib/net46 directory

• Documentation on driver usage in the doc directory

To use the proxy, you must have an Oracle NoSQL Database server installation.

See Also:

"NuGet Package Manager"

6

Connecting to the Store

To perform any store operations, you must establish a network connection between
your client code and the store. There are two pieces of information that you must
provide:

1. Identify the host name, port number, and store name of any machine hosting a
node in the store. (Because the store is comprised of many hosts, there should be
multiple host/port pairs for you to choose from.)

You create the KVDriver object by using KVDriver.Create(). Then you get the
store information by using driver.GetStore() and store it in the KVStore variable.

2. Identify the path of your proxy server. By default, it is located inside the C# driver
package in the lib/java directory.

The PROXY_CLASSPATH must point to the location of the jar files. A Dictionary
variable is created to store this value and it is used in KVDriver.Create() as a
parameter.

For example, suppose you have an Oracle NoSQL Database store named
“MyNoSQLStore” and it has a node running on n1.example.org at port 5000. Then
you would connect to the store in the following way:

using oracle.kv.client;
using oracle.kv.client.config;
using oracle.kv.client.option;
...
static void Main(string[] args) {
 Dictionary<Option, object> dict = new Dictionary<Option, object>();
 //the relative path to the jar files.
 //In this example, 4.5.12 is used for driver version. Replace it
with the version you are using.
 dict.Add(Options.PROXY_CLASSPATH, "..\\..\\..\\packages\
\Oracle.nosql.driver.4.5.12\\lib\\java*");

 //Connecting to the NoSQL Database
 IKVDriver driver = KVDriver.Create("nosql://n1.example.org:5000/
MyNoSQLStore", dict);
 //If you store is running on the localhost, the host name, port
number, and store name need not be specified. Below is an example:
 //IKVDriver driver = KVDriver.Create(dict);
 //Fetch store details from the NoSQL Database
 IKVStore store = driver.GetStore();
}

PROXY_MANAGED is set to true by default. The default value can be overridden by
adding the PROXY_MANAGED value in the Dictionary variable. In the above example,
PROXY_MANAGED is not specified and the C# Driver automatically manages the proxy
server. It starts the proxy server when the application starts and stops it when the
application stops.

7

The proxy listens to a port randomly selected between 8000 and 9000. The
default port range can be overridden by adding the PROXY_PORT_RANGE_START and
PROXY_PORT_RANGE_END values in the Dictionary variable.

Note:

In the above example, the proxy server is managed by the application. If you
want to start a proxy server which is independent of the driver, see Using
the Proxy Server. To connect to an independently running proxy server, see
Connecting to the Proxy Server.

If you are using a secure store then the configuration must also include the user name
to login to the secured store. This can be specified by either of the following methods:

1. dict.Add(Options.STORE_SECURITY_FILE, “path_to_the_security_file”);

“path_to_the_security_file” identifies the security file used to log into the
store.

2. dict.Add(Options.STORE_USER_NAME, “user_name_to_login”);

“user_name_to_login” specifies the user name used when authenticating to the
store.

8

Creating a Table

Before you can write data to tables in your store, you must define your tables using
table DDL statements. You can also use DDL statements to define indexes.

If you want to submit table DDL statements to the store from your C# client code, use
store.ExecuteSQL(). The table DDL is described in detail in the Java Direct Driver
Developer's Guide.

Note:

C# Driver supports DDL statements only, so you can create and modify
tables, but cannot use SQL queries to manage data.

Here is an example of how to create a table:

public static void createTable(IKVStore store, String tableName)
{
 string sql = @"CREATE TABLE IF NOT EXISTS " + tableName
 + " (id INTEGER"
 + ", loginId STRING"
 + ", password STRING"
 + ", PRIMARY KEY(loginId))";
 if (store.ExecuteSQL(sql))
 Console.WriteLine("Table created successfully!");
}

9

Creating a Table with an IDENTITY
Column

You can create a table with an IDENTITY column using C# client code.

The following is an example of how to create a table with IDENTITY Column (the store
connection is skipped for brevity):

public static void createTableWithIdentity(IKVStore store, String
tableName)
{
 string sql = @"CREATE TABLE IF NOT EXISTS " + tableName
 + " (id INTEGER GENERATED ALWAYS AS IDENTITY " +
 + " (START WITH 1 INCREMENT BY 1 NO CYCLE)" +
 + ", name STRING"
 + ", PRIMARY KEY(id))";

 if (store.ExecuteSQL(sql))
 Console.WriteLine("Table created successfully!");
}

For complete details on IDENTITY column, see Creating Tables With an IDENTITY
Column.

10

https://docs.oracle.com/en/database/other-databases/nosql-database/19.1/java-driver-table/creating-tables-identity-column.html
https://docs.oracle.com/en/database/other-databases/nosql-database/19.1/java-driver-table/creating-tables-identity-column.html

Writing to a Table Row

Once you have defined a table in the store, use store.CreateRow() to create an
empty table row. Populate the values that you wish to write in the empty table row, and
then use the store.Put() method to populate the row in the table.

For example, for a table designed like this:

CREATE TABLE users (id INTEGER,
 loginId STRING,
 password STRING,
 PRIMARY KEY(loginId)
)

You can write a row of table data in the following fashion (the store connection is
skipped for brevity):

public static void putRow(IKVStore store, String tableName, int id,
String loginId, String password)
{
 IRow insertedRow = null;
 var row = store.CreateRow(tableName);
 row["id"] = id;
 row["loginId"] = loginId;
 row["password"] = password;
 insertedRow = store.Put(row);
 Console.WriteLine(insertedRow); //prints the inserted row in JSON
format
}

There are other versions of store.Put() that allow you to provide options and version
information, such as:

• store.PutIfAbsent()

• store.PutIfPresent()

• store.PutIfVersion()

11

Writing Rows to a Table with an IDENTITY
Column

You can write new rows into a table that has an IDENTITY Column using C# client
code.

To create a table with an IDENTITY column, see Creating a Table with an IDENTITY
Column.

Use store.CreateRow() to create an empty table row. Use the store.Put() method
to populate the row in the table. Then, use row.Get() method to get the generated
identity value.

The example below explains how to write data into a table with an IDENTITY column
using the C# driver code (the store connection is skipped for brevity):

public static void putIdentityRow(IKVStore store, String tableName,
String name) {
 IRow row = store.CreateRow(tableName);
 row["name"] = name;
 store.Put(row);
 int returnid = row.Get("id", Convert.ToInt32);
 Console.WriteLine("Identity Row: " + returnid);
}

Note:

A column of NUMBER type in Oracle NoSQL database is mapped to C#
DECIMAL type. So in C# driver, identity values of NUMBER type are limited
to the range that a C# DECIMAL could represent, which is approximately: 1.0
x 10^-28 to 7.9228 x 10^28.

12

Deleting a Table Row

Use store.CreateRow() to create an empty table row. Populate the empty row with at
least the primary key(s) of the rows you wish to delete. Then use store.Delete() to
delete the row in the table.

public static void deleteRow(IKVStore store, String tableName, String
loginId)
{
 IRow deletedRow = null;
 var row = store.CreateRow(tableName);
 row["loginId"] = loginId;
 deletedRow = store.Delete(row, null);
 Console.WriteLine(deletedRow); //prints the deleted row in JSON
format
}

There are other version of store.Delete() that allows you to provide options and
version information, such as:

• store.DeleteAll()

• store.DeleteIfVersion()

13

Reading a Single Table Row

To read a single table row, use store.CreateRow() to create an empty table row.
Populate the empty table row with at least the primary key(s) of the row you wish to
read. Then, create an IRow variable that you will use to hold the retrieved row. The row
is then retrieved using the store.Get() method and stored in the IRow variable.

For example, to retrieve a table row that uses the primary key ‘loginId’:

public static void getRow(IKVStore store, String tableName, String
loginId)
{
 IRow fetchedRow = null;
 var row = store.CreateRow(tableName);
 row["loginId"] = loginId;
 fetchedRow = store.Get(row);
 Console.WriteLine(fetchedRow); //prints the fetched row in JSON
format
}

store.GetAll() is a version of store.Get() that can be used for reading multiple
table rows.

14

Reading Multiple Table Rows

Use store.GetAll() or store.Search() to read multiple rows from a table at a time.
These functions require you to create an empty row by using store.CreateRow() that
serves as the lookup key. Different restrictions apply to the key you provide, depending
on the function that you use.

The example provided here uses Store.GetAll() which requires that the provided key
at least contains all the table’s shard keys. If all of the shard keys are not present, then
the function returns an exception. store.GetAll() populates a List, which you iterate
to retrieve the row available for each position in the result set.

For example, suppose you design a table like this:

CREATE TABLE university_data (
 university STRING,
 course STRING,
 studentID STRING,
 studentName STRING,
 studentAddress STRING,
 studentEmail STRING,
 PRIMARY KEY (SHARD(university, course), studentID)
)

And you populate it with data like this:

using oracle.kv.client;
using oracle.kv.client.config;
...
static void Main(string[] args) {
 ... //connecting to the store and creating the table is skipped for
brevity
 putRow(store, "XYZ University", "Science", "14SC123", "John Doe",
"US", "john.doe@example.com");
 putRow(store, "XYZ University", "Science", "14SC124", "Mike Ruben",
"China", "mike.ruben@example.com");
 putRow(store, "ABC University", "Arts", "14AR101", "Ram Paul",
"India", "ram.paul@example.com");
 putRow(store, "ABC University", "Arts", "14AR102", "Edward Snow",
"UK", "edward.snow@example.com");
 getMultiRows(store, "XYZ University", "Science")
 getAllRows(store, "university_data");
}

public static void putRow(IKVStore store, String university, String
course, String studentID, String studentName, String studentAddress,
String studentEmail)
{
 String tableName = "university_data";
 var row = store.CreateRow(tableName);
 IRow insertedRow = null;
 row["university"] = university;

15

 row["course"] = course;
 row["studentID"] = studentID;
 row["studentName"] = studentName;
 row["studentAddress"] = studentAddress;
 row["studentEmail"] = studentEmail;
 insertedRow = store.Put(row);
 Console.WriteLine(insertedRow); //prints the inserted row in JSON
format
}

Now you can retrieve data of all students studying Science at XYZ University by
providing just the shard keys.

public static void getMultiRows(IKVStore store, String university,
String course)
{
 String tableName = "university_data";
 List<IRow> fetchedRow = null;
 var row = store.CreateRow(tableName);
 row["university"] = university;
 row["course"] = course;
 fetchedRow = store.GetAll(row, null);
 fetchedRow.ForEach(Console.WriteLine); //prints the fetched row in
JSON format
}

store.GetAllKeys() is a version of store.GetAll() that can be used for displaying
only the keys of the fetched rows, in this example the university, course, and
studentID fields.

If you want to display all the rows in the table, you use Store.Search() with an empty
row for the key parameter.

public static void getAllRows(IKVStore store, String tableName)
{
 var row = store.CreateRow(tableName);
 var fetchedRows = store.Search(row, null);
 foreach (IRow fetchedRow in fetchedRows)
 Console.WriteLine(fetchedRow);
}

store.SearchAsync() is a version of store.Search() that can be used for searching
rows asynchronously.

16

Reading Using Indexes

Use store.SearchByIndex() to read table rows based on a specified index. To use
this function, the index must first be created using the CREATE INDEX statement.

There are two ways to identify the index values you want the results set based
on. The first way is to create a row using store.CreateRow() that represents
the indexed field(s) and value(s) that you want retrieved. The second way is to
create a FetchOptions object structure and setting FieldRange.StartValue and
FieldRange.EndValue that identifies starting and ending index values that you want
returned. The store.CreateRow() method and FetchOptions structure can be used
together to restrict the return set values.

If both store.CreateRow() and FetchOptions values are NULL, then every row in the
table is contained in the return set.

For example, suppose you have a table defined like this:

CREATE TABLE student_data (
 id STRING,
 firstName STRING,
 lastName STRING,
 email STRING,
 dateOfBirth STRING,
 PRIMARY KEY(SHARD(firstName, lastName), id)
)

With this index:

// Index is created with name "dob"
CREATE INDEX dob ON student_data (dateOfBirth)

And you populate the table with data like this:

using oracle.kv.client;
using oracle.kv.client.config;
...
static void Main(string[] args) {
 ... //connecting to the store and creating the table is skipped for
brevity
 putRow(store, "14SC123", "John", "Doe", "john.doe@example.com",
"1996-01-19");
 putRow(store, "14SC124", "Mike", "Ruben", "mike.ruben@example.com",
"1997-02-27");
 putRow(store, "14SC125", "Ram", "Paul", "ram.paul@example.com",
"1997-12-31");
 readUsingIndexes(store);
}
public static void putRow(IKVStore store, String id, String firstName,
String lastName, String email, String dateOfBirth)
{
 String tableName = "student_data";

17

 var row = store.CreateRow(tableName);
 IRow insertedRow = null;
 row["id"] = id;
 row["firstName"] = firstName;
 row["lastName"] = lastName;
 row["email"] = email;
 row["dateOfBirth"] = dateOfBirth;
 insertedRow = store.Put(row);
 Console.WriteLine(insertedRow); //prints the inserted row in JSON
format
}

Then you read data using the dob index using the following function. In the following
example, BLOCK 1 (see the comments in the code) is commented out, because its
usage with BLOCK 2 throws an exception. Comment both BLOCK 1 and BLOCK 2 in order
to print the entire table.

public static void readUsingIndexes(IKVStore store)
{
 String tableName = "student_data";
 var row = store.CreateRow(tableName);
 FetchOptions fetchoptions = new FetchOptions();

 // BLOCK 1:
 // Uncomment this block to look up only table rows with a
 // dateOfBirth field set to "1997-02-27". If this
 // block and BLOCK 2 are both used, then the result set
 // will be empty.
 //row["dateOfBirth"] = "1997-02-27";

 // BLOCK 2:
 // This field range restricts the results set to only
 // those rows with a dateOfBirth field value between
 // "1996-01-01" and "1997-12-31", inclusive.
 fetchoptions.FieldRange.FieldName = "dateOfBirth";
 fetchoptions.FieldRange.StartValue = "1996-01-01";
 fetchoptions.FieldRange.StartIsInclusive = true;
 fetchoptions.FieldRange.EndValue = "1997-12-31";
 fetchoptions.FieldRange.EndIsInclusive = true;

 // "dob" is the name of the index
 var fetchedRows = store.SearchByIndex(row, "dob",
fetchoptions);
 foreach (IRow fetchedRow in fetchedRows)
 Console.WriteLine(fetchedRow);
}

store.SearchByIndexAsync() is a version of store.SearchByIndex() that can be
used for searching rows asynchronously.

18

Reading Asynchronously

Use store.SearchAsync() or store.SearchByIndexAsync() for reading rows
asynchronously. When you read asynchronously, the reading function returns the
control immediately and permits other processing to continue, while a read operation
is running in the background. The time between the initiation of asynchronous read
operation and its completion can be used to do something useful.

This non-blocking mechanism can be achieved by implementing the IObserver
interface in a class which provides a mechanism for receiving the output
asynchronously. This class should override the following callback functions for
receiving and handling the output:

• void OnNext(IRow) — This function is invoked everytime a row is read from the
table.

• void OnCompleted() — This function is invoked after the asynchronous read
operation is complete.

• void OnError(Exception) — If an exception is raised during the asynchronous
read operation, this function is invoked.

The following code example shows basic implementation of a subscriber:

//the following class overrides the callback functions
class AsyncSubscriber : IObserver<IRow>
{
 // driver calls back for each result
 public void OnNext(IRow value)
 {
 Console.WriteLine("Received search result:" +
value.ToJSONString());
 }

 // driver calls back when search completes
 public void OnCompleted()
 {
 Console.WriteLine("Search complete...");
 }

 // driver calls back if an error occurs
 public void OnError(Exception error)
 {
 Console.WriteLine("Error receiving search results...");
 Console.WriteLine(error.StackTrace);
 }
}

To perform an asynchronous read operation, create an object of the class that
implements the IObserver interface and overrides the callback functions. Then, use
the callback class object as a parameter in store.SearchAsync() to invoke the
asynchronous read operation.

19

For example, the code fragment shown in Reading Multiple Table Rows for reading all
rows can be rewritten to use asynchronous read in the following way:

public static void getAllRowsAsync(IKVStore store, String tableName)
{
 var row = store.CreateRow(tableName);
 //an object of the class overriding the callback functions is
created
 AsyncSubscriber asyncsubscriber = new AsyncSubscriber();
 //the callback class object is used as the parameter
 store.SearchAsync(row, null, asyncsubscriber);
}

The above example retrieves all the rows. To restrict the results, you must provide a
row as a search key, similar to synchronous search. See Reading Multiple Table Rows.

Similarly, the code fragment shown for Reading Using Indexes can be rewritten to use
asynchronous read in the following way:

public static void readUsingIndexesAsync(IKVStore store)
{
 String tableName = "student_data";
 var row = store.CreateRow(tableName);
 // an object of the class overriding the callback functions is
created
 AsyncSubscriber asynsubscriber = new AsyncSubscriber();
 FetchOptions fetchoptions = new FetchOptions();

 // BLOCK 1:
 // Uncomment this block to look up only table rows with a
 // dateOfBirth field set to "1997-02-27". If this
 // block and BLOCK 2 are both used, then the result set
 // will be empty.
 //row["dateOfBirth"] = "1997-02-27";

 // BLOCK 2:
 // This field range restricts the results set to only
 // those rows with a dateOfBirth field value between
 // "1996-01-01" and "1997-12-31", inclusive.
 fetchoptions.FieldRange.FieldName = "dateOfBirth";
 fetchoptions.FieldRange.StartValue = "1996-01-01";
 fetchoptions.FieldRange.StartIsInclusive = true;
 fetchoptions.FieldRange.EndValue = "1997-12-31";
 fetchoptions.FieldRange.EndIsInclusive = true;

 // "dob" is the name of the index
 // the callback class object is used as the parameter
 store.SearchByIndexAsync(row, "dob", fetchoptions, AsyncSubscriber);
}

20

Setting Consistency Guarantees

By default, read operations are performed with a consistency guarantee of
NONE_REQUIRED. Use one of the following to create a consistency guarantee that
overrides this default:

1. SimpleConsistency

2. VersionConsistency

3. TimeConsistency

To set consistency guarantees for reading a single table row, create a ReadOptions
object by using new ReadOptions(). Then, create a consistency object and include it in
the ReadOptions object.

Finally, use store.Get(), with the ReadOptions object as the parameter, to perform
single table row read operation in the store.

For example, the code fragment shown in Reading a Single Table Row can be
rewritten to use a consistency policy in the following way:

public static void getRow(IKVStore store, String tableName, String
loginId)
{
 IRow fetchedRow = null;
 ReadOptions readoptions = new
ReadOptions(SimpleConsistency.ABSOLUTE, 500L);
 var row = store.CreateRow(tableName);
 row["loginId"] = loginId;
 fetchedRow = store.Get(row, readoptions);
 Console.WriteLine(fetchedRow); //prints the fetched row in JSON
format
}

To set consistency guarantees for reading multiple table rows, you must use
FetchOptions.

For example, the code fragment shown in Reading Multiple Table Rows for reading all
rows can be rewritten to use a consistency policy in the following way:

public static void getAllRows(IKVStore store, String tableName)
{
 FetchOptions fetchoptions = new FetchOptions();
 TimeConsistency timeconsistency = new TimeConsistency(10, 400L);
 fetchoptions.ReadOptions.Consistency = timeconsistency;
 var row = store.CreateRow(tableName);
 var fetchedRows = store.Search(row, fetchoptions);
 foreach (IRow fetchedRow in fetchedRows)
 Console.WriteLine(fetchedRow);
}

21

To set consistency guarantees for all single and multiple rows read operations,
add the following in the code fragment for Connecting to the Store (before
KVDriver.Create()):

ReadOptions readoptions = new ReadOptions(SimpleConsistency.ABSOLUTE,
300L); //for reading single table row
FetchOptions fetchoptions = new FetchOptions(Read); //for reading
multiple table rows
fetchoptions.ReadOptions = readoptions;
dict.Add(Options.OPTIONS_FETCH_DEFAULT, fetchoptions);
dict.Add(Options.OPTIONS_READ_DEFAULT, readoptions);

The driver uses ReadOptions, FetchOptions, and WriteOptions for read, search, and
write operations respectively. When null is specified for these options, it implies
default values. The default value for read, fetch, and write options can also be
obtained by using IKVDriver.DefaultReadOptions, IKVDriver.DefaultFetchOptions,
and IKVDriver.DefaultWriteOptions respectively.

For example, if you want to use the default value for ReadOptions, but want to use a
non-default value for a particular operation, you could do the following:

//Connecting to the store is skipped for brevity
//Similar approach can be followed for FetchOptions and WriteOptions
ReadOptions readoptions = new ReadOptions();
readoptions = driver.DefaultReadOptions;
readoptions.Consistency = new TimeConsistency(100, 10);

The read options when modified (as in the above example), does not modify the
default value for the driver.

22

Setting Durability Guarantees

By default, write operations are performed with a durability guarantee of
COMMIT_NO_SYNC. You can override this by creating and using a durability guarantee.

Use new Durability() to create a Durability object. Create a WriteOptions object
by using new WriteOptions() and then include the durability policy in it.

Finally, use the store.Put() method, with the WriteOptions object as the parameter,
to perform a write operation in the store.

For example, the code fragment shown in Writing to a Table Row can be rewritten to
use a durability policy in the following way:

public void putRow(IKVStore store, String tableName, int id, String
loginId, String password)
{
 Durability durability = new Durability(
 SyncPolicy.SYNC, //Master sync
 SyncPolicy.NO_SYNC, //Replica sync
 ReplicaAckPolicy.SIMPLE_MAJORITY //Ack policy
);
 WriteOptions writeoptions = new WriteOptions(durability,
 3 //0 is the default timeout
);
 IRow insertedRow = null;
 var row = store.CreateRow(tableName);
 row["id"] = id;
 row["loginId"] = loginId;
 row["password"] = password;
 insertedRow = store.Put(row, writeoptions);
 Console.WriteLine(insertedRow);
}

To set durability guarantees for all Put transactions, add the following in the code
fragment for Connecting to the Store (before KVDriver.Create()):

Durability durability = new Durability(
 SyncPolicy.SYNC, //Master sync
 SyncPolicy.NO_SYNC, //Replica sync
 ReplicaAckPolicy.SIMPLE_MAJORITY //Ack policy
);
WriteOptions writeoptions = new WriteOptions(durability,
 3 //0 is the default timeout
);
dict.Add(Options.OPTIONS_WRITE_DEFAULT, writeoptions);

23

Using the Proxy Server

The proxy server is a Java application that accepts network traffic from the Table C#
API, translates it into requests that the Oracle NoSQL Database store can understand,
and then forwards the translated request to the store. The proxy also provides the
reverse translation service by interpreting store responses and forwarding them to the
client.

The proxy server can be managed or unmanaged:

• Managed Proxy Server: When the proxy server is set to managed, the driver
itself manages the proxy server based on the configuration specified in the
application. A user does not need to start or configure the proxy server. By default,
the proxy server is managed. See Connecting to the Store.

• Unmanaged Proxy Server: In unmanaged, the proxy server must be running on
any network-accessible machine before your C# client can access the store. It has
minimal resource requirements and, in many cases, can run on the same machine
as the client code is running.

It requires a set of jar files to be in its class path, either by using the java -cp
command line option, or by using the CLASSPATH environment variable. The jar files
are included with the driver and can be found in the following location:

– PathToYourC#ProjectFolder\packages\Oracle.nosql.driver.4.x.x\lib\java*

The proxy server itself is started using the oracle.kv.proxy.KVProxy command.
At a minimum, the following information is required when you start the proxy
server:

– -helper-hosts

This is a list of one or more host:port pairs representing Oracle NoSQL
Database storage nodes that the proxy server can use to connect to the store.

– -port

The port on which the store listens to the proxy server.

– -store

The name of the store to which the proxy server is connecting.

A range of other command line options are available. In particular, if you are using
the proxy server with a secure store, you must provide authentication information
to the proxy server. In addition, you will probably have to identify a store name to
the proxy server. For a complete description of the proxy server and its command
line options, see Proxy Server Reference in the Python Driver Developer's Guide.

The simple examples provided in this quick start guide were written to work with
a proxy server that is connected to a kvlite instance which was started with
secure-config disabled and all other values as default. The location of the jar
files were provided using a CLASSPATH environment variable. The command line
call used to start the proxy server was:

java oracle.kv.proxy.KVProxy -port 7010 -helper-hosts
localhost:5000 -store kvstore

24

Connecting to the Proxy Server
The C# driver can connect to an independently running proxy server. Since the proxy
is not managed by the driver, it is termed Unmanaged Proxy Server.

When the proxy is set to unmanaged, the following options and their respective object
values should be added to the Dictionary variable:

• PROXY_MANAGED: This should be set to false.

• PROXY_HOST: The name or IP of the node running the proxy server.

• PROXY_PORT: The port on which the proxy server is listening.

For example, suppose you have a proxy server running on n1.example.org at
port 7010. Further, suppose you have an Oracle NoSQL Database store named
"MyNoSQLStore" running on the same node at port 5000. Then you would modify the
code fragment shown in Connecting to the Store to use an unmanaged proxy service
in the following way:

using oracle.kv.client;
using oracle.kv.client.config;
...
static void Main(string[] args) {
 //Setting Proxy Parameters. In this case the proxy server is
running independently.
 Dictionary<Option, object> dict = new Dictionary<Option, object>();
 //proxy server is not managed by the application
 dict.Add(Options.PROXY_MANAGED, false);
 dict.Add(Options.PROXY_HOST, "n1.example.org");
 dict.Add(Options.PROXY_PORT, Convert.ToInt32(7010));

 //The host name, port number, and store name need not be specified
as the proxy server and the store is running on the same node.
 IKVDriver driver = KVDriver.Create(dict); //Connecting to the store
 //Fetch store details from the NoSQL Database
 IKVStore store = (KVStore)driver.GetStore();
}

Note:

It is recommended to have the proxy server and the store deployed on the
same node.

If you are using a secure store then the configuration must also include the user name
to login to the secured store. This can be specified by either of the following methods:

1. dict.Add(Options.STORE_SECURITY_FILE, “path_to_the_security_file”);

“path_to_the_security_file” identifies the security file used to log into the
store.

2. dict.Add(Options.STORE_USER_NAME, “user_name_to_login”);

Connecting to the Proxy Server

25

“user_name_to_login” specifies the user name used when authenticating to the
store.

Connecting to the Proxy Server

26

Driver Configuration

This section lists all the options supported by the driver along with it’s data type,
default values, and a short description.

Options

Option Type Default Description

ITERATOR_E
XPIRATION

Integer 300000 Timeout in millisecond to close an idle table iterator. In
unmanaged proxy mode, the value should match the value
used by the proxy service.

ITERATOR_M
AX_BATCH_S
IZE

Integer 100 Maximum number of results to fetch in a single iterator call.
In unmanaged proxy mode, the value should match the value
used by the proxy service.

ITERATOR_M
AX_OPEN

Integer 10000 Maximum number of iterators that can be opened
concurrently. In unmanaged proxy mode, the value should
match the value used by the proxy service.

ITERATOR_M
AX_RESULTS
_BATCHES

Integer 0 The maximum number of result batches that can be held in
the proxy per iterator. In unmanaged proxy mode, the value
should match the value used by the proxy service.

LATENCY_TR
ACKING_CEI
LING

Integer 10000 Threshold for logging higher than expected latency in
milliseconds per request. Logged at WARNING level. In
unmanaged proxy mode, the value should match the value
used by the proxy service.

LATENCY_TR
ACKING_THR
ESHOLD

Integer 10000 Maximum threshold for tracking latency in milliseconds. In
unmanaged proxy mode, the value should match the value
used by the proxy service.

LOGGING String
read-
only

N.A. Produces verbose logging message.

OPTIONS_FE
TCH_DEFAUL
T

FetchO
ptions

N.A. Default options for fetch operations. Only used in managed
proxy mode.

OPTIONS_RE
AD_DEFAULT

ReadO
ptions

N.A. Default options for read operations. Only used in managed
proxy mode.

OPTIONS_WR
ITE_DEFAUL
T

WriteOp
tions

N.A. Default options for write operations. Only used in managed
proxy mode.

PERF_STATS Boolean False Enable performance statistics into default logger. Statistics
are logged at FINE level. In unmanaged proxy mode, the
value should match the value used by the proxy service.

PROXY_CLAS
SPATH

String C:\Prog
ram
Files
(x86)\kv
proxy*
or /usr/
local/lib/
kv.proxy
/*

The classpath to start the proxy service in managed proxy
mode. The classpath is used as-it-is to invoke a Java
program in localhost. The wildcard can be used for Java
classpath.

27

Option Type Default Description

PROXY_EXEC
UTABLE

String java Java executable to start proxy service in managed proxy
mode. The executable refers to a path in the same host
where this driver is running.

PROXY_HOST String localhos
t

The host where driver would connect to the proxy service
in unmanaged proxy mode. It is not used in managed proxy
mode as managed proxy runs on localhost.

PROXY_MANA
GED

Boolean True If true, manages own proxy service.

PROXY_PORT Integer 5010 The port where driver would connect to a Proxy Service in
unmanaged proxy mode. It is not used in managed proxy
mode, a managed proxy listens to a randomly selected port.

PROXY_PORT
_RANGE_END

Integer 9000 End of port range for managed proxy process. Only used in
managed proxy mode.

PROXY_PORT
_RANGE_STA
RT

Integer 8000 Start of port range for managed proxy process. Only used in
managed proxy mode.

PROXY_STAR
T_ATTEMPT

Integer
read-
only

2 Number of attempts made to spawn a proxy process. Only
used in managed proxy mode.

PROXY_STAR
TUP_WAIT_T
IME_MS

Integer 5000 Wait time in millisecond for a managed proxy service to start.
Used only in managed proxy mode.

REQUEST_MA
X_ACTIVE

Integer 100 Maximum number of active requests to data store. In
unmanaged proxy mode, the value should match the value
used by the proxy service.

REQUEST_PE
RCENT_LIMI
T_PER_NODE

Integer 80 Limit on the number of requests per node, as a percentage
of requested maximum active requests. In unmanaged proxy
mode, the value should match the value used by the proxy
service.

REQUEST_PE
RCENT_THRE
SHOLD

Integer 90 Threshold for activating request throttling, as a percentage
of the requested maximum active requests. In unmanaged
proxy mode, the value should match the value used by the
proxy service.

REQUEST_TI
MEOUT

Long 5000 The default request timeout in milliseconds. In unmanaged
proxy mode, the value should match the value used by the
proxy service.

REQUST_MAX
_CONCURREN
T_PER_ITER
ATOR

Integer 8 The maximum number of concurrent requests per iterator. In
unmanaged proxy mode, the value should match the value
used by the proxy service.

SCHEMA_RES
OURCE

String
read-
only

N.A. Name of a schema descriptor file. The file must exists in an
application domain.

SOCKET_OPE
N_TIMEOUT

Long 3000 Timeout in millisecond to open a socket connection to data
store. In unmanaged proxy mode, the value should match the
value used by the proxy service.

SOCKET_REA
D_TIMEOUT

Long 30000 Timeout in millisecond for reading from a socket connection
to data store. In unmanaged proxy mode, the value should
match the value used by the proxy service.

28

Option Type Default Description

STATISTICS
_INTERVAL

Integer 60 Interval of logging performance statistics in seconds. In
unmanaged proxy mode, the value should match the value
used by the proxy service.

STORE_HOST
PORT

String localhos
t:5000

Host and port of data store server. In managed proxy
mode, the proxy service connects to the store of the same
location. In unmanaged proxy mode, the value must match
the location used by the unmanaged proxy service

STORE_NAME String kvstore The name of the data store. In managed proxy mode, the
proxy service connects to a store of the same name. In
unmanaged proxy mode, the value must match the store
name used by the unmanaged proxy service.

STORE_READ
_ZONES

String[] (null) List of read zone names separated by comma. In
unmanaged proxy mode, the value must match the value
used by the proxy service. Otherwise, an exception is raised.

STORE_SECU
RITY_FILE

String (null) The security file used to specify properties for login. Required
for connecting to a secure store. In unmanaged proxy mode,
the value must match the value used by the proxy service.
Otherwise an exception is raised.

STORE_USER
_NAME

String (null) The name of the user to login to the secured store. Required
for connecting to a secure data store. In unmanaged proxy
mode, the value must match the value used by the proxy
service. Otherwise, an exception is raised.

THREAD_POO
L_SIZE

Integer 20 Maximum number of threads in a pool to connect to data
store. In unmanaged proxy mode, the value should match the
value used by the proxy service.

THROUGHPUT
_FLOOR

Integer 0 Threshold for logging lower than expected throughput
in request per second. Logged at WARNING level. In
unmanaged proxy mode, the value should match the value
used by the proxy service.

Usage

All the options above can be set by using the following syntax:

Dictionary<Option, object> dict = new Dictionary<Option, object>();
dict.Add(Options.<option>, <value>);

Examples

The following is an example for setting the STORE_NAME, PROXY_HOST, and PROXY_PORT:

Dictionary<Option, object> dict = new Dictionary<Option, object>();
dict.Add(Options.STORE_NAME, "nosqlstore");
dict.Add(Options.PROXY_HOST, "n1.example.com");
dict.Add(Options.PROXY_PORT, "7001");

29

Third Party Licenses

The Oracle NoSQL Database Client is licensed under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with the License. You
may obtain a copy of the License at:.

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

The following applies to this Oracle NoSQL client as well as all other products under
the Apache 2.0 license.

Apache License Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities
that control, are controlled by, or are under common control with that entity. For
the purposes of this definition, "control" means (i) the power, direct or indirect,
to cause the direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding
shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in
or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original
work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

30

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/

"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed
by, or on behalf of, the Licensor for the purpose of discussing and improving the
Work, but excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf
of whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and distribute the Work
and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable (except as stated in this section) patent license
to make, have made, use, offer to sell, sell, import, and otherwise transfer the
Work, where such license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement,
then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or
Object form, provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of
this License; and

b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

c. You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from the
Source form of the Work, excluding those notices that do not pertain to any
part of the Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works,
if and wherever such third-party notices normally appear. The contents of
the NOTICE file are for informational purposes only and do not modify the

31

License. You may add Your own attribution notices within Derivative Works
that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may
provide additional or different license terms and conditions or use, reproduction,
or distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required
for reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions)
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS
FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks
associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory whether in tort
(including negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for,
acceptance of support, warranty, indemnity, or other liability obligations and/or
rights consistent with this License. However, in accepting such obligations, You
may act only on Your own behalf and on Your sole responsibility, not on behalf of
any other Contributor, and only if You agree to indemnify, defend, and hold each
Contributor harmless for any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets "[]" replaced with your own identifying information.
(Don't include the brackets!) The text should be enclosed in the appropriate comment
syntax for the file format. We also recommend that a file or class name and description

32

of purpose be included on the same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Licensing terms for SLF4J

SLF4J source code and binaries are distributed under the MIT license.

Copyright © 2004, 2013 QOS.ch. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:

• The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

• THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

33

http://www.apache.org/licenses/LICENSE-2.0

	Contents
	Preface
	Documentation Accessibility
	Conventions

	Introduction
	Installation
	Connecting to the Store
	Creating a Table
	Creating a Table with an IDENTITY Column
	Writing to a Table Row
	Writing Rows to a Table with an IDENTITY Column
	Deleting a Table Row
	Reading a Single Table Row
	Reading Multiple Table Rows
	Reading Using Indexes
	Reading Asynchronously
	Setting Consistency Guarantees
	Setting Durability Guarantees
	Using the Proxy Server
	Connecting to the Proxy Server

	Driver Configuration
	Third Party Licenses

