Oracle® NoSQL Database
Java Direct Driver Developer's Guide

Release 20.2
E85378-12
October 2020

ORACLE"

Oracle NoSQL Database Java Direct Driver Developer's Guide, Release 20.2
E85378-12
Copyright © 2011, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Conventions Used in This Book viii

1 Developing for Oracle NoSQL Database

Configuring Logging 1-2
Obtaining a KVStore Handle 1-2
Using the KVStoreConfig Class 1-3
Using the Authentication APIs 1-4
Configuring SSL 1-4
Identifying the Trust Store 1-4

Setting the SSL Transport Property 1-5
Authentication using a LoginCredentials Instance 1-5
Renewing Expired Login Credentials 1-7
Authentication using Kerberos 1-9
Authentication using Kerberos and JAAS 1-11
Unauthorized Access 1-13

2 Introduction to Oracle KVLite

Starting KVLite 2-1
Stopping and Restarting KVLite 2-2
Verifying the Installation 2-2
kvlite Utility Command Line Parameter Options 2-3
3 Introducing Oracle NoSQL Database Tables and Indexes
Defining Tables 3-1
Executing DDL Statements From the Admin CLI 3-3
Supported Table Data Types 3-4
Record Fields 3-4
Defining Child Tables 3-5
Defining Multi-Region Tables 3-6

ORACLE iii

Table Evolution 3-6

Defining Tables With an IDENTITY Column 3-7
Sequence Generator Attributes 3-8
Creating Tables With an IDENTITY Column 3-10
Adding an IDENTITY Column to an Existing Table 3-12
Altering or Dropping an IDENTITY Column 3-13
Inserting IDENTITY Values from the SQL CLI 3-15
Inserting IDENTITY Values Programmatically 3-18

Creating Indexes 3-23

4 Introducing Oracle NoSQL Database Namespaces

Creating Namespaces 4-2

Granting Authorization Access to Namespaces 4-3

Using and Setting Namespaces 4-4

Showing and Describing Namespaces 4-5

Dropping Namespaces 4-6

5 Primary and Shard Key Design

Primary Keys 5-1
Data Type Limitations 5-2
Partial Primary Keys 5-2
Shard Keys 5-3

Row Data 5-3

6 Writing and Deleting Table Rows

Write Exceptions 6-1
Writing Rows to a Table in the Store 6-1
Writing Rows to a Child Table 6-3
Other put Operations 6-4
Bulk Put Operations 6-4
Using Time to Live 6-7
Specifying a TTL Value 6-7
Updating a TTL Value 6-8
Deleting TTL Expiration 6-9
Setting Default Table TTL Values 6-10
Deleting Rows from the Store 6-10
Using multiDelete() 6-11

ORACLE iv

7 Reading Table Rows

Read Exceptions 7-1
Retrieving a Single Row 7-2

Retrieve a Child Table 7-3
Using multiGet() 7-4
Iterating over Table Rows 7-6
Specifying Field Ranges 7-9
Iterating with Nested Tables 7-11
Reading Indexes 7-15
Parallel Scans 7-19
Bulk Get Operations 7-20

8 Using Data Types

Using Arrays 8-1
Using Binary 8-2
Using Enums 8-3
Using Fixed Binary 8-4
Using JSON 8-6
Using Maps 8-7
Using Embedded Records 8-8

O Indexing Non-Scalar Data Types

Indexing Arrays 9-1
Indexing JSON Fields 9-2
Indexing Maps 9-4
Indexing by Map Keys 9-4
Indexing by Map Values 9-6
Indexing by a Specific Map Key Name 9-8
Indexing by Map Key and Value 9-9
Indexing Embedded Records 9-11

10 Using Row Versions

11 Consistency Guarantees

Specifying Consistency Policies 11-1
Using Simple Consistency 11-2

ORACLE" Y

Using Time-Based Consistency 11-3
Using Version-Based Consistency 11-4

12 Durability Guarantees

Setting Acknowledgment-Based Durability Policies 12-2
Setting Synchronization-Based Durability Policies 12-2
Setting Durability Guarantees 12-3

13 Executing a Sequence of Operations

Sequence Errors 13-1
Creating a Sequence 13-1
Executing a Sequence 13-4

14 Introduction to SQL for Oracle NoSQL Database

Running a simple query 14-1
Using binding variables 14-2
Accessing metadata 14-3
Using a query to update data 14-4

A JSON By Example

Sample Data A-2
UpdateJSON A-5
UpdateJSON.run() A-6
UpdateJSON.defineTable() A-7
UpdateJSON.createlndex() A-8
UpdateJSON.runDDL() A-8
UpdateJSON.updateTableWithoutQuery() A-9
UpdateJSON.updateTableWithindex() A-10
UpdateJSON.updateTableUsingSQLQuery() A-11
UpdateJSON.updateZipCode() A-12
UpdateJSON.loadTable() A-12
UpdateJSON.displayTable() A-14
UpdateJSON.displayResult() A-15
UpdateJSON.parseArgs() A-16

B Table Data Definition Language Overview

Name Constraints B-1

ORACLE vi

DDL Comments
CREATE TABLE
Field Definitions
Supported Data Types
Field Constraints
Integer Serialized Constraints
COMMENT
DEFAULT
IDENTITY
NOT NULL
USING TTL
Table Creation Examples
Modify Table Definitions
ALTER TABLE ADD field
ALTER TABLE DROP Option
ALTER TABLE USING TTL
ALTER TABLE ADD REGIONS
ALTER TABLE DROP REGIONS
DROP TABLE
CREATE INDEX
Indexable Field Types
Simple Indexes
Multi-Key Indexes
Multi-Key Index Restrictions
JSON Indexes
CREATE FULL TEXT INDEX
DROP INDEX
DESCRIBE AS JSON TABLE
DESCRIBE AS JSON INDEX
SHOW TABLES
SHOW INDEXES

ORACLE

B-2
B-2
B-4
B-4
B-5
B-5

B-6

B-6

B-8

B-8

B-8
B-10
B-10
B-10
B-11
B-11
B-11
B-11
B-13
B-13
B-14
B-14
B-15
B-17
B-18
B-18
B-19
B-20
B-20
B-20

Vii

Preface

Preface

There are two different APIs that can be used to write Oracle NoSQL Database
applications: the original Key/Value API, and the Table API. In addition, the Key/Value
APl is available in Java and C. The Table APl is available in Java, C, node.js
(Javascript), Python, and C#. This document describes how to write Oracle NoSQL
Database applications using the Table API in Java.

" Note:

Most application developers should use one of the Table drivers because the
Table API offers important features not found in the Key/Value API. The Key/
Value API will no longer be enhanced in future releases of Oracle NoSQL
Database.

This document provides the concepts surrounding Oracle NoSQL Database, data
schema considerations, as well as introductory programming examples.

This document is aimed at the software engineer responsible for writing an Oracle
NoSQL Database application.

Conventions Used in This Book

ORACLE

The following typographical conventions are used within in this manual:

Class names are represented in nonospaced font, as are net hod names. For example:
"The KVSt or eConfi g() constructor returns a KVSt or eConf i g class object.”

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME
directory."

Program examples are displayed in a nonospaced font on a shaded background. For
example:

i mport oracle. kv. KVStore;
i mport oracl e. kv. KVSt oreConfi g;

KVSt oreConfi g kconfig = new KVSt oreConfig("exanpl eStore",
"nodel. exanpl e. or g: 5088, node2. exanpl e. org: 4129");
KVStore kvstore = null;

viii

ORACLE

Preface

In some situations, programming examples are updated from one chapter to the next.
When this occurs, the new code is presented in monospaced bold font. For example:

i mport oracle. kv. KVSt ore;
i mport oracl e. kv. KVSt oreConfi g
import oracle.kv_KVStoreFactory;

KVSt oreConfi g kconfig = new KVSt oreConfig("exanpl eStore",
"nodel. exanpl e. or g: 5088, node2. exanpl e. org: 4129");
KVStore kvstore = nul |

try {
kvstore = KVStoreFactory.getStore(kconfig);

} catch (FaultException fe) {
// Some internal error occurred. Either abort your application
// or retry the operation.

" Note:

Finally, notes of special interest are represented using a note block such as
this.

Developing for Oracle NoSQL Database

You access the data in the Oracle NoSQL Database KVStore using Java drivers that
are provided for the product. In addition to the Java drivers, several other drivers are
also available. They are:

Java Key/Value Driver
C Table Driver

C Key/Value Driver
Python Table Driver
node.js Table Driver
C# Table Driver

o o p W NP

Note:

New users should use one of the Table drivers unless they require a feature
only available in the Key/Value API (such as Large Object support). The Key/
Value API will no longer be enhanced in future releases of Oracle NoSQL
Database.

The Java and C Key/Value driver provides access to store data using key/value pairs.
All other drivers provide access using tables. Also, the Java Key/Value driver provides
Large Object (LOB) support that as of this release does not appear in the other
drivers. However, users of the Java Tables driver can access the LOB API, even
though the LOB API is accessed using the Key/Value interface.

Finally, the Java driver provides access to SQL for Oracle NoSQL Database, so you
can run queries. For more information see Introduction to SQL for Oracle NoSQL
Database.

Users of the Table drivers are able to create and use secondary indexing. The Java
and C Key/Value drivers do not provide this support.

To work, the C Table, Python Table, node.js Table, and C# Table drivers require use

of a proxy server which translates network activity between the driver and the Oracle
NoSQL Database store. The proxy is written in Java, and can run on any machine

that is network accessible by both your client code and the Oracle NoSQL Database
store. However, for performance and security reasons, Oracle recommends that you
run the proxy on the same local host as your driver, and that the proxy be used ina 1:1
configuration with your drivers (that is, each instance of the proxy should be used with
just a single driver instance).

Regardless of the driver you decide to use, the provided classes and methods allow
you to write data to the store, retrieve it, and delete it. You use these APIs to define
consistency and durability guarantees. It is also possible to execute a sequence of
store operations atomically so that all the operations succeed, or none of them do.

ORACLE 1-1

Chapter 1
Configuring Logging

The rest of this book introduces the Java APIs that you use to access the store, and
the concepts that go along with them.

Configuring Logging

The Oracle NoSQL Database Java drivers use standard Java logging to capture
debugging output using loggers in the "oracle.kv" hierarchy. These loggers are
configured to use a oracl e. kv. util. Consol eHandl er class, and to ignore any
handlers for loggers above or acl e. kv in the logger hierarchy. As a result, logging
will be performed to the console at whatever logging levels are configured for the
various loggers and for the oracl e. kv. uti | . Consol eHandl er class. You can adjust
what console output appears for these loggers by modifying the logging levels for the
loggers and the logging handler in their application's logging configuration file.

You can also configure additional logging handlers for all loggers used by the Java
driver by specifying handlers for the or acl e. kv logger.

For example, if you want to enable file output for Java driver logging at the INFO level
or above, add the following to your application's configuration file (that is, the file you
identify using the j ava. util .l oggi ng. config.fil e system property):

Set the logging level for the FileHandl er |ogging handl er to | NFO
java.util.logging.Fil eHandl er. | evel =I NFO

Set the logging level for all Java driver loggers to INFO
oracl e. kv. | evel =I NFO

Specify that Java driver |oggers should supply log output to the
standard file handler
oracl e. kv. handl ers=j ava. util .| oggi ng. Fi | eHandl er

For information on managing logging in a Java application, see the
java.util.loggi ng Javadoc.

Obtaining a KVStore Handle

ORACLE

To acccess the store for any reason, you must first obtain a KVSt or e handle, using the
KVSt or eFact ory. get St ore() method.

When you get a KVSt or e handle, provide a KVSt or eConf i g object to the handle.

The configuration object identifies important properties about the store that you are
accessing. This section describes the KVSt or eConfi g class. Minimally, use this class
to identify the following information:

e The store name. The name you provide must be identical to the name used when
you installed the store.

e The network contact information for one or more helper hosts. Such contact
information consists of the network name and port information for hosts currently
belonging to the store. Identify multiple hosts using an array of strings, from one
element to several. We recommend using multiple hosts, since any host can be
down temporarily, and other hosts are then useful.

In addition to the KVSt or eConfi g class object, you can also provide a
Passwor dCr edent i al s class object to KVSt or eFact ory. get St ore() . Do this if you are

1-2

Chapter 1
Obtaining a KVStore Handle

using a store configured to require authentication, which is recommended. See Using
the Authentication APIs for more information.

For a store that does not require authentication, get a store handle like this:

package kvstore. basi cExanpl e;

i mport oracl e. kv. KVSt or e;
i mport oracle. kv. KVSt oreConfi g;
i mport oracl e. kv. KVSt or eFact ory;

String[] hhosts = {"nl. exanpl e.org: 5088", "n2.exanple.org:4129"};
KVSt oreConfi g kconfig = new KVSt oreConfi g("exanpl eStore", hhosts);
KVStore kvstore = KVStoreFactory. get Store(kconfig);

Using the KVStoreConfig Class

ORACLE

Use the KVSt or eConf i g class to describe properties about a KVSt or e handle. Most
of the properties are optional, and those that are required are provided when you
construct a class instance.

The properties that you can provide using KVSt or eConf i g are as follows:

e Consistency

Consistency is a property describing how likely it is that a record read from a
replica node is identical to the same record stored on a master node. For more
information, see Consistency Guarantees.

e Durability

Durability is a property describing how likely it is that a write operation performed
on the master node will not be lost if the master node is lost or is shut down
abnormally. For more information, see Durability Guarantees.

e Helper Hosts

Helper hosts are hostname and port pairs that identify how to contact helper
nodes within the store. Use an array of strings to identify multiple helper hosts .
Typically, you will obtain these hostname and port pairs from the store's deployer
or administrator. For example:

String[] hhosts = {"nl.exanple.org:3333", "n2.exanple.org:3333"};

* Request Timeout

Configures the amount of time the KVSt or e handle will wait for an operation to
complete before it times out.

e Store name
Identifies the name of the store.
e Password credentials and optionally a reauthentication handler

See the next section on authentication.

1-3

Chapter 1
Using the Authentication APIs

Using the Authentication APIs

You can install Oracle NoSQL Database so that your client code does not have to
authenticate to the store. (For the sake of clarity, most of the examples in this book
do not perform authentication.) However, if you want your store to operate securely,
you can require authentication. Requiring authentication incurs a performance cost,
due to the overhead of using SSL and authentication. While we recommend that your
production store requires authentication over SSL, some sites that are particularly
performance sensitive can forgo that level of security.

Authentication involves sending username/password credentials to the store at the
time a store handle is acquired.

If you configure your store to support authentication, it is automatically configured
to communicate with clients using SSL. The use of SSL ensures privacy of the
authentication and other sensitive information. To use SSL, you must install SSL
certificates on the machines where your client code runs, to validate that the store
being accessed is trustworthy.

Be aware that you can authenticate to the store in several different ways.

You can use Kerberos, or you can specify a Logi nCr edent i al s implementation
instance to KVSt or eFact ory. get St ore() . (Oracle NoSQL Database provides the
Passwor dCredent i al s class as a Logi nCredenti al s implementation.) If you use
Kerberos, you can either use security properties that Oracle NoSQL Database
understands to provide necessary Kerberos information, or you can use the Java
Authentication and Authorization Service (JAAS) programming framework.

For information on using Logi nCr edent i al s, see Authentication using a
LoginCredentials Instance. For information on using Kerberos, see Authentication
using Kerberos. For information on using JAAS with Kerberos, see Authentication
using Kerberos and JAAS.

For information on configuring a store for authentication, see Configuring
Authentication in the Security Guide.

Configuring SSL

If you are using a secure store, then all communications between your client code
and the store is transported over SSL, including authentication credentials. You must
therefore configure your client code to use SSL. To do this, you identify where the
SSL certificate data is, and you also separately indicate that the SSL transport is to be
used.

|dentifying the Trust Store

ORACLE

When an Oracle NoSQL Database store is configured to use the SSL transport, a
series of security files are generated using a security configuration tool. One of these
files is the cl i ent. trust file, which must be copied to any machine running Oracle
NoSQL Database client code.

For information on using the security configuration tool, see Security Configuration in
the Security Guide.

Your code must be told where the cl i ent. trust file can be found because it
contains the certificates necessary to establish an SSL connection with the store.

1-4

Chapter 1
Using the Authentication APIs

You indicate where this file is physically located on your machine using the
oracl e. kv. ssl.trust St ore property. There are two ways to set this property:

1. Identify the location of the trust store by using a Properties
object to set the or acl e. kv. ssl . trust St or e property. You then use
KVSt or eConf i g. set SecurityProperties() to pass the Properties object to your
KVSt or e handle.

When you use this method, you use
KVSecuri tyConst ants. SSL_TRUSTSTORE_FI LE_PROPERTY as the property name.

2. Usetheoracle.kv.security property to refer to a properties file, such as the
client.trust file. In that file, set the oracl e. kv. ssl . trust St ore property.

Setting the SSL Transport Property

In addition to identifying the location of the cl i ent . trust file, you must also tell your
client code to use the SSL transport. You do this by setting the oracl e. kv. t ransport
property. There are two ways to set this property:

1. ldentify the location of the trust store by using a Properties
object to set the oracl e. kv. transport property. You then use
KVSt or eConfi g. set SecurityProperties() to pass the Properties object to your
KVSt or e handle.

When you use this method, you use KVSecuri t yConst ant s. TRANSPORT PROPERTY
as the property name, and KVSecurit yConst ant s. SSL_TRANSPORT _NAME as the
property value.

2. Usetheoracle. kv.security property to refer to a properties file, such as the
client.trust file. In that file, set the oracl e. kv. transport property.

Authentication using a LoginCredentials Instance

ORACLE

You can authenticate to the store by specifying a Logi nCr edent i al s implementation
instance to KVSt or eFact ory. get St or e() . Oracle NoSQL Database provides the
Passwor dCredent i al s class as a Logi nCredenti al s implementation. If your store
requires SSL to be used as the transport, configure that prior to performing the
authentication. (See the previous section for details.)

Your code should be prepared to handle a failed authentication attempt.

KVSt or eFact ory. get St or e() will throw Aut henti cati onFai | ure in the event of a
failed authentication attempt. You can catch that exception and handle the problem
there.

The following is a simple example of obtaining a store handle for a secured store. The
SSL transport is used in this example.

import java.util.Properties;

i mport oracle. kv. Aut henti cationFail ure;
i mport oracl e. kv. Passwor dCr edenti al s;

i mport oracl e. kv. KVSecurityConstants;

i mport oracl e. kv. KVSt oreConfi g;

i mport oracl e. kv. KVSt or eFact ory;

1-5

ORACLE

Chapter 1
Using the Authentication APIs

KVStore store = null;
try {
/*
* storeName, hostName, port, username, and password are all
* strings that would come from somewhere el se in your
* application.
*/
KVSt oreConfig kconfig =
new KVSt oreConfi g(storeName, hostName + ":" + port);

[* Set the required security properties */
Properties secProps = new Properties();
secProps. set Property(KVSecurityConst ant s. TRANSPORT _PROPERTY,
KVSecurityConst ants. SSL_TRANSPORT _NAME) ;
secProps. set Property
(KVSecurityConstants. SSL_TRUSTSTORE_FI LE_PROPERTY,
"/ home/ kv/client.trust");
kconfi g. set SecurityProperties(secProps);

store =
KVSt or eFact ory. get St ore(kconfi g,
new Passwor dCr edent i al s(user nane,
password.toCharArray(),
nul | /* ReauthenticateHandl er */));
} catch (AuthenticationFailureException afe) {
/*
* Could potentially retry the login, possibly with different
* credentials, but in this sinple exanple, we just fail the
* attenpt.
*/
Systemout. println("authentication failed!");
return;

}

Another way to handle the login is to place your authentication credentials in a flat
text file that contains all the necessary properties for authentication. In order for this to
work, a password store must have been configured for your Oracle NoSQL Database
store. See the Security Guide for information on setting up password stores.

For example, suppose your store has been configured to use a password file
password store and it is contained in a file called | ogi n. pwd. In that case, you might
create a login properties file called | ogi n. t xt that looks like this:

oracl e. kv. aut h. user name=cl i ent Ul D1

oracl e. kv.auth. pwdfile.file=/hone/nosql/login.pwd
oracl e. kv. transport=ssl

oracl e. kv. ssl.trust Store=/home/ nosql /client.trust

In this case, you can perform authentication in the following way:

inport oracle.kv.AuthenticationFailure;
i nport oracle. kv. PasswordCredenti al s;
i nport oracle. kv. KVSt oreConfi g;

1-6

Chapter 1
Using the Authentication APIs

i mport oracl e. kv. KVSt or eFact ory;

/* the client gets login credentials fromthe login.txt file */

/* can be set on command line as well */

System set Property("oracle. kv.security", "/honme/nosql/login.txt");

KVStore store = null;

try {
/*
* storeName, hostName, port are all strings that would come
* from somewhere el se in your application.
*
* Notice that we do not pass in any login credentials.
* Al of that information comes froml ogin.txt
*

/

mySt or eHandl e =

KVSt or eFact ory. get St or e(
new KVSt oreConfi g(st oreName, hostNane + ":" + port))

} catch (AuthenticationFailureException afe) {

/*

* Could potentially retry the login, possibly with different

* credentials, but in this sinple exanple, we just fail the

* attenpt.

*/

Systemout. println("authentication failed!")

return;

Renewing Expired Login Credentials

ORACLE

It is possible for an authentication session to expire. This can happen for several
reasons. One is that the store's administrator has configured the store to not allow
session extension and the session has timed out. These properties are configured
using sessi onExt endAl | owand sessi onTi meout .

Reauthentication might also be required if some kind of a major disruption has
occurred to the store which caused the authentication session to become invalidated.
This is a pathological condition which you should not see with any kind of frequency in
a production store. Stores which are installed in labs might exhibit this condition more,
especially if the stores are frequently restarted.

An application can encounter an expired authentication session at any point in its
lifetime, so robust code that must remain running should always be written to respond
to authentication session expirations.

When an authentication session expires, by default the method which is attempting
store access will throw Aut hent i cat i onRequi r edExcept i on. Upon seeing this, your
code needs to reauthenticate to the store, and then retry the failed operation.

You can manually reauthenticate to the store by using the KVSt ore. | ogi n() method.
This method requires you to provide the login credentials via a Logi nCredenti al s
class instance (such as Passwor dCr edent i al s):

try {

1-7

ORACLE

Chapter 1
Using the Authentication APIs

/* Store access code happens here */

} cai;:lh (Aut henti cati onRequi redException are) {
*
/* myStoreHandl e is a KVStore class instance.
*
* pwCreds is a PasswordCredentials class instance, obtained
* from somewhere el se in your code.
*
rry/St or eHandl e. | ogi n(pwCr eds) ;

Note that this is not required if you use the or acl e. kv. aut h. user nane and
oracle. kv.auth. pwdfile.file properties, as shown in the previous section. In
that case, your Oracle NoSQL Database client code will automatically and silently
reauthenticate your client using the values specified by those properties.

A third option is to create a Reaut hent i cat i onHandl er class implementation that
performs your reauthentication for you. This option is only necessary if you provided
a Logi nCredenti al s implementation instance (that is, Passwor dCr edenti al s) in a call
to KVSt or eFact ory. get St ore(), and you want to avoid a subsequent need to retry
operations by catching Aut hent i cat i onRequi redExcept i on.

A truly robust example of a Reaut henti cat i onHandl er implementation is beyond
the scope of this manual (it would be driven by highly unique requirements that
are unlikely to be appropriate for your site). Still, in the interest of completeness,
the following shows a very simple and not very elegant implementation of

Reaut hent i cati onHandl er:

package kvstore. basi cExanpl e

i mport oracl e. kv. Reaut henti cati onHandl er;
i mport oracl e. kv. Passwor dCr edenti al s;

public class M/Reaut hHandl er inpl ements Reaut henticationHandl er {
public void reauthenticate(KVStore reauthStore) {

/*
* The code to obtain the usernane and password strings woul d
* go here. This should be consistent with the code to perform
* sinple authentication for your client.
*/

Passwor dCredential s cred = new PasswordCredenti al s(user nane,

password.toCharArray());

reaut hStore. | ogin(cred);

You would then supply a MyReaut hHandl er instance when you obtain your store
handle:

import java.util.Properties;

i mport oracle. kv. Aut henti cationFail ure;

1-8

i mport
i mport
i mport
i mport

i mport

Chapter 1
Using the Authentication APIs

oracl e. kv. Passwor dCr edenti al s;
oracl e. kv. KVSecuri tyConst ant s;
oracl e. kv. KVSt oreConfi g;

oracl e. kv. KVSt or eFact ory;

kvst or e. basi cExanpl e. MyReaut hHandl er;

KVStore store = null;

try {
/

*
*
*
*
*
*

*/

storeNane, hostNane, port, username, and password are all
strings that would come from somewhere el se in your
application. The code you use to obtain your username
and password shoul d be consistent with the code used to
obtain that information in MyReaut hHandl er.

KVSt oreConfig kconfig =

/*

new KVSt oreConfi g(storeName, hostName + ":" + port);

Set the required security properties */

Properties secProps = new Properties();
secProps. set Property(KVSecurityConst ant s. TRANSPORT _PROPERTY,

KVSecurityConst ant s. SSL_TRANSPORT _NAME) ;

secProps. set Property

(KVSecurityConstants. SSL_TRUSTSTORE_FI LE_PROPERTY,
"/ home/kv/client.trust");

kconfi g. set SecurityProperties(secProps);

store =

KVSt or eFact ory. get St ore(kconfi g,
new Passwor dCredent i al s(user nane,
password.toCharArray()));
new MyReaut hHandl er());

} catch (AuthenticationFailureException afe) {

/*

* Could potentially retry the login, possibly with different
* credentials, but in this sinple exanple, we just fail the
* attenpt.

*/

Systemout. println("authentication failed!'")

return;

Authentication using Kerberos

You can authenticate to the store by using Kerberos. To do this, you must already have
installed Kerberos and obtained the necessary login and service information.

ORACLE

The following is a simple example of obtaining a store handle for a secured store, and
using Kerberos to authenticate. Information specific to Kerberos, such as the Kerberos

1-9

ORACLE

Chapter 1
Using the Authentication APIs

user name, is specified using KVSecur i t yConst ant s that are set as properties to the
KVSt or eConf i g instance which is used to create the store handle.

import java.util.Properties;

i mport oracl e. kv. KVSecuri tyConst ants;
i mport oracle. kv. KVSt ore;

i mport oracl e. kv. KVSt oreConfi g;

i mport oracl e. kv. KVSt or eFact ory;

KVStore store
/*
* storeName, hostNane, port, username, and password are all
* strings that would come from somewhere el se in your
* application.
*/
KVSt oreConfi g kconfig =
new KVSt oreConfi g(storeName, hostNanme + ":" + port);

nul | ;

/* Set the required security properties */
Properties secProps = new Properties();

/* Set the user name */
secProps. set Property(KVSecurityConstants. AUTH USERNAVE PROPERTY,
"krbuser");

/* Use Kerberos */
secProps. set Property(KVSecurityConstants. AUTH EXT MECH PROPERTY,
"kerberos");

/* Set SSL for the wire level encryption */
secProps. set Property(KVSecurityConst ants. TRANSPORT PROPERTY,
KVSecurityConst ants. SSL_TRANSPORT NAME) ;

/* Set the location of the public trust file for SSL */
secProps. set Property
(KVSecurityConstants. SSL_TRUSTSTORE FI LE PROPERTY,
"/ home/kv/client.trust");

/* Set the service principal associated with the hel per host */
final String servicesDesc =

"l ocal host: oracl enosql /| ocal host @XAMPLE. COM';
secProps. set Property(

KVSecurityConst ants. AUTH KRB_SERVI CES_PROPERTY,

servi cesDesc) ;

/*
* Set the default realmnanme to pernmit using a short nane for the
* user principal
*/
secProps. set Property(KVSecurityConstants. AUTH KRB_REALM PROPERTY,
" EXAMPLE. COM') ;

/* Specify the client keytab file location */
secProps. set Property(KVSecurityConstants. AUTH KRB_KEYTAB PROPERTY,

1-10

Chapter 1
Using the Authentication APIs

"/t mp/ krbuser. keytab");
kconfi g. set SecurityProperties(secProps);

store = KVStoreFactory. get St ore(kconfig);

Authentication using Kerberos and JAAS

ORACLE

You can authenticate to the store by using Kerberos and the Java Authentication and
Authorization Service (JAAS) login API. To do this, you must already have installed
Kerberos and obtained the necessary login and service information.

The following is a simple example of obtaining a store handle for a secured store, and
using Kerberos with JAAS to authenticate.

To use JAAS, you create a configuration file that contains required Kerberos
configuration information. For example, the following could be placed in the file named
jaas. config:

oracl enosqgl {
com sun. security. aut h. nodul e. Krb5Logi nMbdul e required
princi pal ="krbuser”
useKeyTab="true"
keyTab="/t np/ kr buser. keyt ab";

b

To identify this file to your application, set the Java property
java. security. auth.login.config using the - D option when you run your
application.

Beyond that, you use KVSecuri t yConst ant s to specify necessary properties, such
as the SSL transport. You can also specify hecessary Kerberos properties, such
as the Kerberos user name, using KVSecur i t yConst ant s, or you can use the

Ker ber osCredenti al s class to do this.

import java.security.PrivilegedActionException;
import java.security.PrivilegedExceptionAction;
import java.util.Properties;

i mport javax.security.auth. Subject;
i mport javax.security.auth.login.Logi nContext;
i mport javax.security.auth.login.Logi nException;

i mport oracle. kv. KerberosCredenti al s;
i mport oracle. kv. KVSecurityConstants;
i mport oracle. kv. KVStore;

i mport oracle. kv. KVSt oreConfi g;

i mport oracle. kv. KVSt oreFactory;

/*

* storeName, hostName, port, usernane, and password are all
* strings that woul d come from somewhere el se in your

* application.

*/

1-11

ORACLE

Chapter 1
Using the Authentication APIs

final KVStoreConfig kconfig =
new KVSt oreConfi g(storeName, hostNanme + ":" + port);

/* Set the required security properties */
Properties secProps = new Properties();

/* Set SSL for the wire |level encryption */
secProps. set Property(KVSecurityConst ant s. TRANSPORT _PROPERTY,
KVSecurityConst ants. SSL_TRANSPORT _NAME) ;

/* Set the location of the public trust file for SSL */
secProps. set Property
(KVSecurityConstants. SSL_TRUSTSTORE FI LE _PROPERTY,
"/home/ kv/client.trust");

/* Use Kerberos */
secProps. set Property(KVSecurityConstants. AUTH EXT_MECH PROPERTY,
"kerberos");

/* Set Kerberos properties */
final Properties krbProperties = new Properties();

/* Set the service principal associated with the hel per host */
final String servicesPpal =
"l ocal host : oracl enosql /| ocal host @XAMPLE. COM';
krbProperties. set Property(KVSecurityConstants. AUTH KRB_SERVI CES_PROPERTY

host Name + ":" + servicesPpal);

/* Set default real mnane, because the short name

* for the user principal is used.

*/

krbProperties. set Property(KVSecurityConstants. AUTH KRB_REALM PROPERTY,
" EXAMPLE. COM') ;

/* Specify Kerberos principal */
final KerberosCredentials krbCreds =
new Ker berosCredential s("krbuser”, krbProperties);

try {
[* CGet a login context */

final Subject subj = new Subject();
final LoginContext |Ic = new Logi nContext("oraclenosqgl", subj);

[* Attenpt to log in */
[c.login();

/* CGet the store using the credentials specified in the subject */
kconfi g. set SecurityProperties(secProps);

store = Subject. doAs(
subj, new Privil egedExceptionAction<kKVStore>() {

@verride
public KVStore run() throws Exception {
return KVStoreFactory. get Store(kconfig, krbCreds, null);

1-12

Chapter 1
Using the Authentication APIs

}
1)

} catch (Logi nException le) {

/'l Logi nException handling goes here
} catch (PrivilegedActionException pae) {

/'l PrivilegedActionException handling goes here
} catch (Exception e) {

Il CGeneral Exception handling goes here

}

Unauthorized Access

ORACLE

Clients which must authenticate to a store are granted some amount of access

to the store. This could range from a limited set of privileges to full, complete
access. The amount of access is defined by the roles and privileges granted to the
authenticating user. Therefore, a call to the Oracle NoSQL Database API could fail
due to not having the authorization to perform the operation. When this happens,
Unaut hori zedExcept i on will be thrown.

When Unaut hori zedExcept i on is seen, the operation should not be retried. Instead,
the operation should either be abandoned entirely, or your code could attempt to
reauthenticate using different credentials that would have the required permissions
necessary to perform the operation. Note that a client can log out of a store using
KVSt or e. | ogout () . How your code logs back in is determined by how your store is
configured for access, as described in the previous sections.

/1 Open a store handl e, and perform authentication as you do
/1 as described earlier in this section.

try {
/1 When you attenpt sone operation (such as a put or delete)

Il to a secure store, you should catch UnauthorizedException
Il in case the user credentials you are using do not have the
/'l privileges necessary to performthe operation
} catch (UnauthorizedException ue) {
/*
* \When you see this, either abandon the operation entirely,
* or log out and log back in with credentials that night
* have the proper permissions for the operation
*/
Systemout.printlin("authorization failed!")
return;

1-13

Introduction to Oracle KVLite

KVLite is a single-node, single shard store. It usually runs in a single process and is
used to develop and test client applications. KVLite is installed when you install Oracle
NoSQL Database.

Starting KVLite

ORACLE

You start KVLite by using the kvl i t e utility, which can be found in KYHOW/ | i b/
kvstore.jar. If you use this utility without any command line options, then KVLite
will run with the following default values:

e The store name is kvst or e.
e The hostname is the local machine.
e The registry port is 5000.

* The directory where Oracle NoSQL Database data is placed (known as KVROOT)
is ./ kvroot.

e The administration process is turned on.
e Security is turned on.

This means that any processes that you want to communicate with KVLite can only
connect to it on the local host (127.0.0.1) using port 5000. If you want to communicate
with KVLite from some machine other than the local machine, then you must start

it using non-default values. The command line options are described later in this
chapter.

For example:

> java - Xnx64m - Xms64m -jar KVHOVE/ | i b/ kvstore.jar kvlite

Note:

To avoid using too much heap space, you should specify the - Xnx and - X
flags for Java when running administrative and utility commands.

When KVLite has started successfully, it writes one of two statements to stdout,
depending on whether it created a new store or is opening an existing store (the
following assumes security is enabled):

Cenerat ed password for user admin: password
User login file: ./kvroot/security/user.security
Created new kvlite store with args:

2-1

Chapter 2
Stopping and Restarting KVLite

-root ./kvroot -store <kvstore> -host |ocal host -port 5000
-secure-config enable

Note:

The password is randomly generated.

or

Opened existing kvlite store with config:
-root ./kvroot -store <kvstore nane> -host <l ocal host> -port 5000
-secure-config enabl e

where <kvst ore name> is the name of the store and <localhost> is the name of the
local host. It takes about 10 - 60 seconds before this message is issued, depending on
the speed of your machine.

Note that you will not get the command line prompt back until you stop KVLite.

Stopping and Restarting KVLite

To stop KVLite, use ~C from within the shell where KVLite is running.

To restart the process, simply run the kvl i t e utility without any command line options.
Do this even if you provided non-standard options when you first started KVLite. This
is because KVLite remembers information such as the port value and the store name
in between run times. You cannot change these values by using the command line
options.

If you want to start over with different options than you initially specified, delete the
KVROOT directory (. / kvr oot , by default), and then re-run the kvl i t e utility with
whatever options you desire. Alternatively, specify the - r oot command line option,
making sure to specify a location other than your original KVROOT directory, as well
as any other command line options that you want to change.

Verifying the Installation

ORACLE

There are several things you can do to verify your installation, and ensure that KVLite
iS running:

e Start another shell and run:

jps -m

The output should show KVLite (and possibly other things as well, depending on
what you have running on your machine).

* Runthe kvclient test application:
1. cd KVHOME

2. java -Xmx64m -Xms64m -jar lib/kvclient.jar

2-2

Chapter 2
kvlite Utility Command Line Parameter Options

This should write the release to stdout:

12cR1.MN. QO ..

» Download the examples package and unpack it so that the examples directory is

in KYHOME. You can obtain the examples package from the same place as you
obtained your server download package.

* Compile and run the example program:
1. cd KVYHOME

2. Compile the example:

javac -g -cp lib/kvclient.jar:exanpl es exanpl es/ hello/*.java
3. Run the example using all default parameters:

java - Xmk64m - Xms64m \

- Doracl e. kv. securi t y=<KVROOT>/ security/user.security \
-cp lib/kvclient.jar:exanples hello.Hell oBi gDat aWr | d

Or run it using non-default parameters, if you started KVLite using non-default
values:

java - Xmx64m - Xms64m \
-cp lib/kvclient.jar:exanples hello.HelloBigDataWwrld \
-host <host name> -port <hostport> -store <kvstore name>

kvlite Utility Command Line Parameter Options

ORACLE

This section describes the command line options that you can use with the kvl ite
utility.

Note that you can only specify these options the first time KVLite is started. Most

of the parameter values specified here are recorded in the KVHOME directory, and
will be used when you restart the KVLite process regardless of what you provide as
command line options. If you want to change your initial values, either delete your
KVHOME directory before starting KVLite again, or specify the - r oot option (with a
different KVHOME location than you initially used) when you provide the new values.

e -help
Print a brief usage message, and exit.
e -host <hostnanme>
Identifies the name of the host on which KVLite is running.

If you want to access this instance of KVLite from remote machines, supply the
local host's real hostname. Otherwise, specify | ocal host for this option.

e -noadmn
If this option is not specified, the administration user interface is started.

e -port <port>

2-3

ORACLE

Chapter 2
kvlite Utility Command Line Parameter Options

Identifies the port on which KVLite is listening for client connections. Use this
option ONLY if you are creating a new store.

-root <path>

Identifies the path to the Oracle NoSQL Database home directory. This is the
location where the store's database files are contained. The directory identified
here must exist. If the appropriate database files do not exist at the location
identified by the option, they are created for you.

-secure-config <enabl e| di sabl e>

If enabled, causes security to be enabled for the store. This means all clients
connecting to the store must present security credentials. Security is enabled by
default.

-store <storenane>

Identifies the name of a new store. Use this option ONLY if you are creating a new
store.

For information on configuring your client code to connect to a secure store, see
Using the Authentication APIs .

2-4

Introducing Oracle NoSQL Database
Tables and Indexes

Using the Table API (in one of the supported languages) is the recommended method
of developing an Oracle NoSQL Database client application. Table APIs let you
manipulate data using a tables metaphor, in which data is organized in multiple
columns of data. The table APIs support an unlimited number of subtables. You can
also create indexes to improve query performance against your tables.

If you have a mix of clients accessing your store using both Table and Key/Value APIs,
a remote chance exists that keys from different clients could collide. To avoid any
possible conflict between keys, however unlikely, make sure that every KV key has
either only:

» Asingle component

e Asingle major component

Note:

Throughout this manual, examples call Tabl eAPI . get Tabl e() . The cost of
calling this APl is relatively high, because doing so requires a round trip
to the store to fulfill the request. For optimal performance, call this method
sparingly in your code.

Defining Tables

ORACLE

Before an Oracle NoSQL Database client can read or write to a table in the store,
you must first create the tables. There are several ways to do this, but this document
focuses on using Table DDL statements. You can submit these statements to the
store directly using both the Admin command line interface (CLI), with the execut e
command), or the SQL CLI. However, the recommended approach is to submit DDL
statements to the store programmatically. This section describes both direct and
programmatic methods.

The DDL language that you use to define tables is described in Table Data Definition
Language Overview. This section provides a brief overview of how to use that
language.

As an introductory example, suppose you want to create a table called nyTabl e with
four columns: i t em descri ption, count, and per cent age. To create your table, use
the following statement from the SQL CLI:

sql -> CREATE TABLE nyTabl e (
i tem STRI NG
description STRI NG
count | NTEGER,

3-1

ORACLE

Chapter 3
Defining Tables

per cent age DOUBLE,
PRI MARY KEY (item) // Every table must have a primry key
);

Statement conpl eted successfully

Note:

Primary keys are a concept that have not yet been introduced. See Primary
and Shard Key Design for a complete explanation of what they are, and how
you should use them. For now, be sure a primary key exists for every table
you create, just as the previous example illustrates.

Executing DDL Statements Programmatically

To add the table definition to the store programmatically use the KVSt or e. execut e()
or KVSt or e. execut eSync() methods. (The latter method executes the statement
synchronously.)

For example:

package kvstore. basi cExanpl e;

i mport oracle. kv. Faul t Excepti on;
i nport oracle.kv. StatenentResul t;
i nport oracle. kv. KVStore;

i mport oracle. kv.tabl e. Tabl eAPI;

/1 store handle creation and open onitted

Statement Result result = null;
String statement = null;

public void createTable() {
StatenmentResult result = null;
String statement = null;

try {
/*
* Add a table to the database.
* Execute this statement asynchronously.
*/
statement =
"CREATE TABLE nyTable (" +
"item STRING " +
"description STRING" +
"count |NTEGER " +
"percentage DOUBLE," +
"PRIMARY KEY (item)"; // Required"
result = store.executeSync(statenent);

di spl ayResul t (result, statenent);

3-2

Chapter 3
Defining Tables

} catch (I11egal Argunent Exception e) {
Systemout.printIn("Invalid statement:\n" + e.getMessage());
} catch (Fault Exception e) {
Systemout. println

("Statement couldn't be executed, please retry: " + e);
}
}
private void displayResult(StatementResult result, String statenent) {
Systemout. println(" ");
if (result.isSuccessful()) {
Systemout . println("Statement was successful :\n\t" +
statenent);
Systemout.printIn("Results:\n\t" + result.getlnfo());
} else if (result.isCancelled()) {
Systemout. println("Statement was cancelled:\n\t" +
statenent);
} else {
/*
* statement was not successful: may be in error, or may still
* be in progress.
*/
if (result.isDone()) {
Systemout.printin("Statement failed:\n\t" + statenent);
Systemout.printin("Problem\n\t" +
resul t.get ErrorMessage());
} else {
Systemout.printin("Statement in progress:\n\it" +
statenent);
Systemout.printin("Status:\n\t" + result.getlinfo());
}
}
}

Executing DDL Statements From the Admin CLI

You can execute DDL statements using the Admin CLI's execut e command. This
executes DDL statements synchronously. For example:

kv-> execute "CREATE TABLE nyTabl e (
i tem STRI NG

description STRING

count | NTEGER,

per cent age DOUBLE,

PRI MARY KEY (item)"

Statenent conpl eted successful ly
kv->

V V. V V V

ORACLE 3-3

Supported Table Data Types

Chapter 3
Defining Tables

You specify schema for each column in an Oracle NoSQL Database table. This
schema can be a primitive data type, or complex data types that are handled as

objects.

Oracle NoSQL Database tables support the following data types:

Data Type Description

Array An array of values, all of the same type.

Binary Implemented as a byte array with no predetermined fixed size.

Boolean

Double

Enum An enumeration, represented as an array of strings.

Fixed Binary Implemented as a byte array with no predetermined fixed size.

Float

Integer

Json Any valid JSON data.

Long

Number A numeric type capable of handling any type of number or any
value or precision.

Map An unordered map type, where all entries are constrained by a
single type.

Records See the following section.

String

Timestamp An absolute timestamp encapsulating a date and, optionally, a

time value.

Record Fields

As described in Defining Child Tables, you can create child tables to hold subordinate
information, such as addresses in a contacts database, or vendor contact information
for an inventory system. When you do this, you can create an unlimited number of
rows in the child table, and you can index the fields in the child table's rows.

ORACLE

However, you do not need to create child tables to organize subordinate data. If you
have simple requirements for subordinate data, you can use record fields, instead of
child tables. In general, you can use record fields instead of child tables if you want
only a fixed, small number of instances of the record for each parent table row. For
anything beyond trivial cases, use child tables.

" Note:

There is no downside to using child tables for even trivial cases.

The assumption when using record fields is that you have a fixed, known number of
records to manage (unless you organize them as arrays). For example, in a contacts
database, child tables let you have an unlimited number of addresses associated

3-4

Chapter 3
Defining Tables

for each user. By using records, rather than child tables, you can associate a fixed
number of addresses by creating a record field for each supported address (home and
work, for example).

For example:

CREATE TABLE nyCont actsTabl e (
uid STRING
surname STRI NG
fam |iarNane STRING
honePhone STRI NG,
wor kPhone STRI NG
honeAddress RECORD (street STRING city STRING state STRING

zip I NTEGER),
wor kAddress RECORD (street STRING city STRING state STRING
zip I NTEGER),

PRI MARY KEY(ui d))

Alternatively, you can create an array of record fields. This lets you create an unlimited
number of address records per field. In general, however, you should use child tables
in this case.

CREATE TABLE myCont actsTabl e (
uid STRI NG
surname STRI NG
fanmi|iarName STRING
homePhone STRI NG
wor kPhone STRI NG
addresses ARRAY(RECORD (street STRING city STRING state STRING
zip INTEGER))),
PRI MARY KEY(ui d))

Defining Child Tables

ORACLE

Oracle NoSQL Database tables can be organized in a parent/child hierarchy. There is
no limit to how many child tables you can create, nor is there a limit to how deep the
child table nesting can go.

By default, child tables are not retrieved when you retrieve a parent table, nor is the
parent retrieved when you retrieve a child table.

To create a child table, you name the table using the format:
<parentTableName>.<childTableName>. For example, suppose you had the trivial
table called nyl nventory:

CREATE TABLE nylnventory (
i tenCategory STRING
description STRING
PRI MARY KEY (itentCategory)

)

3-5

Chapter 3
Defining Tables

We can create a child table called i t enDet ai | s in the following way:

CREATE TABLE nylnventory.itenDetails (
i temSKU STRI NG
i temDescription STRING
price FLOAT,
i nvent oryCount | NTEGER,
PRI MARY KEY (it enBSKU)

Note that when you do this, the child table inherits the parent table's primary key. In
this trivial case, the child table's primary key is actually two fields: i t enCat egory and
i t enBKU. This has several ramifications, one of which is that the parent's primary key
fields are retrieved when you retrieve the child table. See Retrieve a Child Table for
more information.

Defining Multi-Region Tables

A Multi-Region Table or MR Table is a global logical table that is stored and maintained
in different regions or installations. It is a read-anywhere and write-anywhere table that
lives in multiple regions.

Consider an Oracle NoSQL Database with three regions, Frankfurt, London, and
Dublin. To create a table called user s that stores user details for all the three regions,
you must create an MR table on each KVStore in the connected graph, and specify the
list of regions that the table should span.

For example, to create the user s table in all the three regions, you must execute the
following command from each region separately:

CREATE TABLE users (
id I NTEGER
firstName STRING
[ast Name STRI NG
age | NTECER
prinary key (id)
) INREGONS fra, Ind, dub;

For information about MR Tables, see Life Cycle of MR Tables in the Concepts Guide.

Table Evolution

ORACLE

As your application is used over time, it's often necessary to update your tables to
either add new fields or remove existing fields that are no longer required. Table
evolution is the term used to update table definitions, adding or removing fields, or
changing field properties, such as a default value. You may even add a particular kind
of column, like an IDENTITY column, to increment some value automatically. Only
tables that already exist in the store are candidates for table evolution.

Use the ALTER TABLE statement to perform table evolution. See Modify Table
Definitions.

3-6

Chapter 3
Defining Tables With an IDENTITY Column

< Note:

You cannot remove a field if it is a primary key field, or if it participates in an
index. You also cannot add primary key fields during table evolution.

For example, the following statements evolve the table that was created in the
previous section. In this example, you would submit each statement to the store
consecutively, using either the API or the CLI.

ALTER TABLE nylnventory.itenDetails (ADD sal ePrice FLOAT)

ALTER TABLE nylnventory.itenDetails (DROP inventoryCount)

Defining Tables With an IDENTITY Column

ORACLE

You can create an IDENTITY column to auto-increment a value each time you add a
row.

You create an IDENTITY column as part of a CREATE TABLE nane DDL statement,
or add an IDENTITY column to an existing table with an ALTER TABLE name DDL
statement.

Only one IDENTITY column can exist per table. It must be an | NTEGER, LONG, or NUVBER
datatype.

Every IDENTITY column is part of a table, and cannot exist as an independent object.
For more information about adding IDENTITY columns, see Altering or Dropping an
IDENTITY Column .

An IDENTITY column requires an associated Sequence Generator (SG). The SG

is the table’s manager for tracking the IDENTITY column’s current, next, and total
number of values. An SG has several attributes that define its behavior, such as the
starting value for its IDENTITY column, or the number of values stored in cache. You
can optionally define some SG attributes when you create an IDENTITY column, or
use all default values. For more information about the Sequence Generator attributes,
see Sequence Generator Attributes .

" Note:

Using an IDENTITY column in any table does not force uniqueness. If your
application requires unique values for every row of an IDENTITY column,
you must create the column as GENERATED ALWAYS AS IDENTITY, and
never permit any use of the CYCLE SG attribute.

If more than one client accesses a table with an IDENTITY column defined for unique
values this way, each client is assigned contiguous value sets to its SG cache. These
sets do not overlap with other client sets. For example, T i ent 1 is assigned values
0001 - 1000, while Ci ent2 has 1001 - 2000, and so on. Thus, as each client adds
rows to the table, the IDENTITY values can run as 0001, 1001, 0002, 1002, 1003, and

3-7

Chapter 3
Defining Tables With an IDENTITY Column

S0 on, as both clients use their own cache when adding rows. The IDENTITY column
values are guaranteed to be unique, but not necessarily contiguous, because each
client has its own set of cache values, and adds rows at different speeds and times.

You can add, remove, or change rows of an IDENTITY column, though certain
limitations exist on such updates, depending on how you create the IDENTITY column,
and whether it is a Primary Key. These specifics are described later in this section.

You can also create an index on a table IDENTITY column.

Note:

Dropping a table that was created with an IDENTITY column also removes
the Sequence Generator.

Users require table privileges to create tables with an IDENTITY column. For a
description of user privileges, see KVStore Required Privileges in the Security Guide.

Sequence Generator Attributes

ORACLE

Every IDENTITY column you add to a table requires its own Sequence Generator
(SG). The SG is responsible for several tasks, including obtaining and supplying
values to the IDENTITY column as necessary.

Each IDENTITY column requires an associated, dedicated Sequence Generator (SG).
When you add an IDENTITY column, the system creates an SG that's runs on the
client with the application. Information about all attributes for every SG is added to a
system table, SYS$SGAt t ri but esTabl e. You can see the contents of this system table
using a simple query such as this:

SELECT * FROM SYS$SGAttri but esTabl e

For other commands:

Differences in Commands Description

SHOW TABLES Returns a list of tables

DESCRI BE TABLE nanel Shows the schema of table namel
SELECT * FROM t abl e_nane Shows the data rows of table_name

The Sequence Generator for an IDENTITY field has several responsibilities. One of
the first tasks for the SG when you create or add an IDENTITY to a table is to create

a cache of values on the client, and to set the Current Val ue. From the cache, the SG
assigns values to the IDENTITY field when new rows are added. By default, if you do
not specify a value for the Cache attribute, the client stores 1000 values, starting at

1. You can increase or decrease this size when you create the IDENTITY, or after the
table exists if the cache value does not meet your requirements. By storing IDENTITY
values at the client, the application does not need to access the server each time it
requires another value.

If you specify the Cycle attribute, all of the existing values for the IDENTITY column
are used again, potentially overwriting current values in place. Creating a column as

3-8

Chapter 3
Defining Tables With an IDENTITY Column

CGENERATED ALWAYS AS | DENTI TY, and using the SG NO CYCLE attribute is the only way
to maintain unique IDENTITY column values.

Following are the SG attributes that you can optionally specify when you create an
IDENTITY column, or change later using the ALTER TABLE statement.

Attribute

Type

Description

Start Wth

Number

Default: 1 The first value in the sequence. Zero (0)
is permitted as a Start Wt h value, but not for an
I ncrement By setting.

I ncrenment By

Long

Default: 1 The value to increment the current value, which
can be a positive or a negative number. Zero (0) is not
permitted as an | ncrement By value. Specifying a negative
number for | ncrement By decrements values from the
Start Wt h value.

M nVal ue

Number

Default: The minimum value of the field data type. The
lower bound of the IDENTITY values that the SG supplies.
You can specify M nVal ue, or No M nVal ue, but not both.

No M nVal ue

Nunber

Default: Specifies the lower bound of the field values is
the lowest value for the field data type. You can specify No
M nVal ue, or M nVal ue, but not both.

MaxVal ue

Nunber

Default: The maximum value of the field data type. The
upper bound of the IDENTITY values that the SG supplies.
If you do not specify this attribute, SG uses the maximum
value of the field data type. You can specify MaxVal ue, or
No MaxVal ue, but not both.

No MaxVal ue

Number

Default: Specifies that there is no upper bound of the
IDENTITY values that the SG supplies, other than the
maximum value of the field data type. If you do not specify
this attribute, SG uses the maximum value of the field data
type. You can specify No MaxVal ue, or MaxVal ue, but not
both.

Cache

Long

Default: 1000 The number of values stored in local client
cache to use for the next IDENTITY value. When the set of
values is exhausted, the SG requests another set of values
from the server to store in local cache.

Cycle | NoCycle Bool ean

Default: NoCycl e determines whether to reuse the set
of all possible values for the datatype of the IDENTITY.
The Cycle attribute is tied to the total number of values
that can be generated for an IDENTITY of a specific
datatype (INTEGER, LONG, or NUMBER). unless you
specify MaxVal ue to set a different limit. If you do not
specify Cycl e, Oracle NoSQL Database guarantees that
each IDENTITY value in the column is unique, but not
necessarily sequential. For example, if you set MaxVal ue
as 10000, and multiple clients add rows to the table, each
client is assigned a certain amount of values to use.

ORACLE

Following are internal SG attributes. You cannot specify any of these when you create
or add an IDENTITY column. Each is derived from how you create the IDENTITY field.
For example, one internal attribute is SGNane, which is the column name you give the

IDENTITY field.

3-9

Chapter 3
Defining Tables With an IDENTITY Column

Attribute Type Description

SGType String [INTERNAL | EXTERNAL]. The | DENTI TY column you
create, or add to a table with a DDL statement. The default
is | NTERNAL.

SGNane String Name of the IDENTITY field you create and with which the
SG is associated.

Dat at ype String Sequence Generator datatype that you specified as part of

the CREATE TABLE statement for the IDENTITY column.
Each IDENTITY column can be any numeric type: | NTEGER,
LONG, or NUMBER.

SGAt t r Ver si on

Long This is an internal attribute that you cannot set. It is here for
future usage.

Creating Tables With an IDENTITY Column

ORACLE

You can create an IDENTITY column when you create a table, or change an existing
table to add an IDENTITY column using ALTER TABLE...ADD. In either case, choose
one of the IDENTITY statements described below. This section describes creating a
table with an IDENTITY column.

Here is the formal syntax for creating a table with an IDENTITY column:

GENERATED (ALWAYS | (BY DEFAULT [ON NULL])) AS IDENTITY
[sequence_options,...]

The optional sequence_opt i ons refer to all of the Sequence Generator attributes you
can supply.

IDENTITY Column Statement Description

CENERATED ALWAYS AS | DENTI TY The sequence generator always supplies an
IDENTITY value. You cannot specify a value
for the column.

GENERATED BY DEFAULT AS | DENTITY The sequence generator supplies an
IDENTITY value any time you do not supply
a column value.

CGENERATED BY DEFAULT ON NULL AS The sequence generator supplies the next
| DENTI TY IDENTITY value if you specify a NULL
columnn value.

To create a table with a column GENERATED ALWAYS AS | DENTI TY from the SQL CLI:

sql -> CREATE TABLE I F NOT EXI STS tnanel (

i dVal ue | NTEGER GENERATED ALWAYS AS | DENTI TY,
acct Nunber | NTECGER,

name STRI NG

PRI MARY KEY (acct Nurber));

St atement conpl eted successfully

sql ->

3-10

Chapter 3
Defining Tables With an IDENTITY Column

For this table, t namel, each time you add a row to the table, the Sequence Generator
(SG) updates the i dval ue from its cache. You cannot specify a value for i dVal ue. If
you do not specify any sequence generator attributes, the SG uses its default values.

To create a table with a column GENERATED BY DEFAULT ON NULL AS IDENTITY:

sql -> CREATE TABLE I F NOT EXI STS tnane2 (

i dval ue | NTEGER GENERATED BY DEFAULT ON NULL AS | DENTI TY,
acct Nunber | NTEGER,

nane STRI NG

PRI MARY KEY (acct Nurber));

Statenment conpl eted successfully

sql ->

For this table, t name2, each time you add a row, the SG inserts the next available
value from its cache if no value is supplied for the i dval ue column, the supplied value
for the i dval ue column is NULL.

To create a table with a column GENERATED BY DEFAULT AS IDENTITY:

sql -> CREATE TABLE I F NOT EXI STS tnane3 (

i dval ue | NTEGER GENERATED BY DEFAULT AS | DENTI TY,
acct Nunber | NTEGER,

nane STRI NG

PRI MARY KEY (acct Nurber));

St atement conpl eted successfully

sql ->

For this table, t name3, each time you add a row, the SG inserts the next available
value from its cache if no value is supplied for the i dval ue column.

To create a new table, sg_at t s, with several SG attributes:

sql -> CREATE Table sg_atts (

i d | NTEGER GENERATED ALWAYS AS | DENTI TY
(START WTH 2

| NCREMENT BY 2

MAXVALUE 200

NO CYCLE),

name STRI NG

PRI MARY KEY (id));

St atement conpl eted successfully

sql ->

The table sg_att s specifies that the integer IDENTITY field (i d) is generated always.

SG Attribute Description
start with 2 Start the sequence value at 2.
i ncrenent by 2 Increment the sequence value by 2 for each row.

ORACLE 3-11

Chapter 3
Defining Tables With an IDENTITY Column

SG Attribute Description

maxval ue 200 Specifies the maximum IDENTITY value. What you specify
overrides the default value maxvalue, which is the upper bound
of the IDENTITY datatype in use. Once the IDENTITY column
reaches this value, 200, the SG will not generate any more
IDENTITY values. The maximum value has been reached and
the no cycle attribute is in use.

no cycle Do not restart from 2 or with any value at all, once the column
reaches the nmaxval ue.

To create another table, sg_sone_att s, with some SG attributes:

sql -> CREATE Tabl e sg_sone_atts (

i d LONG GENERATED BY DEFAULT AS | DENTITY
(START WTH 1

| NCREMENT BY 1

CYCLE

CACHE 200),

account _id | NTEGER,

name STRI NG

PRI MARY KEY (account_id));

For the sg_sone_att s table, specify an i d column GENERATED BY DEFAULT AS
| DENTI TY, but which is not the primary key.

SG Attribute or Other Description
Detail
CYCLE Specifying CYCLE indicates that the SG should supply IDENTITY

values up to either the MAXVALUE attribute you specify, or the
default MAXVALUE. When the IDENTITY reaches the MAXVALUE
value, the SG restarts the values over, beginning with M NVALUE,
if it is specified, or with the default M NVALUE for the data type.
CYCLE is orthogonal to the CACHE attribute, which indicates only
how many values to store in local cache for swift access. You

can set CACHE value to closely reflect the maximum value of the
datatype, but we do not recommend this, due to the client cache
size.

CACHE 200 The number of values that each client stores in its cache for
fast retrieval. When the IDENTITY reaches the last number in
the cache, the SG gets another set of values from the server
automatically.

START WTH 1 The SG generates values 1, 2, 3 and so on, until it reaches the
maximum value for a LONG data type.
I NCREMENT BY 1 The SG increments each new IDENTITY value for every new row.

For a full list of all sequence generator attributes, see Sequence Generator Attributes .

Adding an IDENTITY Column to an Existing Table

ORACLE

Use ALTER TABLE to add an IDENTITY column to an existing table.

3-12

Chapter 3
Defining Tables With an IDENTITY Column

Create a table, test _al t er, without an IDENTITY column:

sql -> CREATE Table test_alter
(id I NTEGER,
nanme STRI NG
PRI MARY KEY (id));
Statement conpl eted successfully
sql ->

Use ALTER TABLE to add an IDENTITY column to t est _al t er. Also specify several
Sequence Generator (SG) attributes for the associated new i d IDENTITY column, but
do not use the IDENTITY column as a PRIMARY KEY:

sql -> ALTER Tabl e Test alter
(ADD new_ i d | NTEGER GENERATED ALWAYS AS | DENTI TY
(START WTH 1
| NCREMENT BY 2
MAXVALUE 100
CACHE 10
CYCLE));
Statement conpl eted successfully
sql ->

Note:

To add an IDENTITY column to a table, the table must be at a top level.

You cannot add an IDENTITY column as the column of a deeply embedded
structured datatype. Adding a column does not affect the existing rows in the
table, which get populated with the new column’s default value (or NULL).

Altering or Dropping an IDENTITY Column

Use the ALTER TABLE. . . MODI FY clause to change one or more attributes of a table's
IDENTITY column and its Sequence Generator (SG) options.

Each IDENTITY column is generated in one of the following ways:

IDENTITY Column Statement Description

CENERATED ALWAYS AS | DENTI TY The sequence generator always supplies an
IDENTITY value. You cannot specify a value
for the column.

GENERATED BY DEFAULT AS | DENTITY The sequence generator supplies an
IDENTITY value any time you do not supply
a column value.

CGENERATED BY DEFAULT ON NULL AS The sequence generator supplies the next
| DENTITY IDENTITY value if you specify a NULL
columnn value.

ORACLE 3-13

ORACLE

Chapter 3
Defining Tables With an IDENTITY Column

The IDENTITY column may have one or more attributes further defining its Sequence
Generator (SG) behavior.

This section presents ways to change or drop an IDENTITY column from a table. The
ALTER TABLE statement lets you add, remove, or alter a field in any table definition.
Use the ALTER TABLE statement to modify an IDENTITY field.

Note:

The MXDI FY clause in an ALTER TABLE. . . statement is supported only on
IDENTITY columns.

The next example adds an IDENTITY field to a new table, t est _al t er, created without
an IDENTITY. The example also specifies several attributes for the associated SG for
test alter:

CREATE Tabl e Test alter
(id I NTEGER
nane STRI NG

PRI MARY KEY (id));

ALTER Tabl e Test alter

(ADD new_ i d | NTEGER GENERATED ALWAYS AS | DENTI TY
(START WTH 1

| NCREMENT BY 2

MAXVALUE 100

CACHE 10

CYCLE));

To remove the IDENTITY column, so no such field remains, use ALTER TABLE with a
DROP i d clause:

CREATE Tabl e Test _alter (

id | NTEGER GENERATED ALWAYS AS | DENTI TY(
START WTH 1

| NCREMENT BY 2

MAXVALUE 100

CACHE 10

CYCLE),

nane STRI NG

PRI MARY KEY (name));

ALTER TABLE Test _alter (DROP id);

To keep the i d column, but remove its IDENTITY definition, use ALTER TABLE with a
MODI FY id DROP | DENTI TY clause:

CREATE Tabl e Test _alter (

i d | NTEGER GENERATED ALWAYS AS | DENTI TY(
START WTH 1

| NCREMENT BY 2

3-14

Chapter 3
Defining Tables With an IDENTITY Column

MAXVALUE 100
CACHE 10

CYCLE),

nane STRI NG

PRI MARY KEY (id));

ALTER TABLE Test_alter (MODIFY id DROP | DENTITY);

You can change the SG attributes. The new values take effect on subsequent client
calls to access the SG attributes. For example, this happens when the cache has no
more values, or when the attributes stored at the client have timed out.

To change the basic property of an IDENTITY column being GENERATED ALWAYS to
CGENERATED BY DEFAULT, see the next ALTER TABLE example. The example also shows
how to change the SG attributes from their original definitions, START W TH, | NCREMENT
BY, MAXVALUE, CACHE and CYCLE.

CREATE Tabl e Test _alter (
id | NTEGER GENERATED ALWAYS AS | DENTI TY
(START WTH 1

| NCREMENT BY 2

MAXVALUE 100

CACHE 10

CYCLE) ,
name STRING PRI MARY KEY (id)

)

ALTER TABLE Test _alter (MODIFY id GENERATED BY DEFAULT AS | DENTI TY
(START W TH 1000
| NCREMENT BY 3
MAXVALUE 5000
CACHE 1
CYCLE)
)

¢ Note:

The client has a time-based cache to store the SG Attributes. The client
connects to the server to refresh this cache after it expires. The default
timeout is 5 minutes. Change this default by setting sgAt t r sCacheTi meout in
KVStoreConfig.

Inserting IDENTITY Values from the SQL CLI

ORACLE

You can insert values into IDENTITY fields, regardless of whether you specified it as
GENERATED ALWAYS OR GENERATED BY DEFAULT, using DDL statements and
API calls.

Each IDENTITY field you create uses one of these syntax choices:

3-15

ORACLE

Chapter 3
Defining Tables With an IDENTITY Column

« GENERATED ALWAYS AS IDENTITY
» GENERATED BY DEFAULT AS IDENTITY
* GENERATED BY DEFAULT ON NULL AS IDENTITY

How you create an IDENTITY field affects what happens when you INSERT values.
You cannot change the IDENTITY value of a column that is a primary key.

As an example, you create the following table with an IDENTITY field as GENERATED
ALWAYS. The IDENTITY field is not a primary key:

sgl -> CREATE Tabl e Test_SGSql I nsert 2(
id | NTECER
nane STRI NG
dept I d | NTEGER GENERATED ALWAYS AS | DENTITY (CACHE 1),
PRI MARY KEY(id));
Statenent conpl eted successful ly

To successfully insert values into this table, always specify DEFAULT as the value of the
dept | D | DENTI TY field, so that the SG generates the next value.

sql ->

> | NSERT | NTO Test _SGSql I nsert2 VALUES (148, 'sally', DEFAULT);
> | NSERT | NTO Test _SGSql I nsert2 VALUES (250, 'joe', DEFAULT);

> | NSERT | NTO Test _SGSgl I nsert2 VALUES (346, 'dave', DEFAULT);
{"NumRows| nserted": 1}

1 row returned

{"NumRows| nserted": 1}

1 row returned

{"NumRows| nserted": 1}

1 row returned

The preceding | NSERT statements add the following rows, with the SG getting the next
available IDENTITY value each time you specify DEFAULT.

sql -> select * from Test SGSqgl I nsert 2;
{"id":148,"nane": "sal | y", "deptld": 1}
{"id":250,"name":"joe", "deptld": 2}
{"id":346,"name": "dave", "dept|d": 3}

3 rows returned

To get the value of the generated dept | d for future reference in one statement, use the
returning deptld clause as follows:

I NSERT | NTO Test _SGSql I nsert2 VALUES (600, 'jabba', DEFAULT) returning
dept I d;

{"dept1d": 6}

I NSERT | NTO Test _SGSql I nsert2 VALUES (700, 'bubba', DEFAULT) returning

3-16

ORACLE

Chapter 3
Defining Tables With an IDENTITY Column

dept I d;
{"deptld": 7}

Using the following | NSERT statement, indicating a value rather than DEFAULT, causes
an exception. You cannot specify any value for any IDENTITY field you define as
GENERATED BY DEFAULT AS | DENTITY:

sql -> I NSERT | NTO Test SGSqgl I nsert2 VALUES (1, 'joe', 200) ;

Error handling command | NSERT | NTO Test SGSql | nsert2 VALUES (1, 'joe',
200) :

Error: at (1, 48) Cenerated always identity colum nust use DEFAULT
construct.

As another example, create a table with a Dept | D integer field, GENERATED BY DEFAULT
AS | DENTI TY, and make it the primary and shard key:

sql -> CREATE TABLE Test SGSql I nsert_Defaul t (
> | D | NTEGER,

> NAME STRI NG

> Dept|D | NTEGER GENERATED BY DEFAULT AS | DENTITY (
> START WTH 1

> | NCREMENT BY 1

> MAXVALUE 100),

> PRI MARY KEY (SHARD(DeptID), 1D));

Statement conpl eted successfully

The following statements show how to insert values into table
Test _SGSql I nsert _Def aul t. In this case, since the column ID is not an IDENTITY,
you can assign integer values to the field:

sql ->

> | NSERT | NTO Test _SGSql I nsert_Default VALUES (100, 'tim, DEFAULT);
> | NSERT | NTO Test _SGSql I nsert_Default VALUES (200, 'dave', 210);
> | NSERT | NTO Test _SGSql I nsert_Default VALUES (300, 'sami, 310);

> | NSERT | NTO Test _SGSql I nsert _Default VALUES (400, 'Jennifer",
DEFAULT) ;

> | NSERT | NTO Test _SGSql I nsert _Default VALUES (500, 'Barbara', 2);
{"NumRows| nserted": 1}

1 row returned

{"NumRows| nserted": 1}

1 row returned

{"NumRows| nserted": 1}

1 row returned

{"NumRows| nserted": 1}

1 row returned

{"NumRows| nserted": 1}

1 row returned

3-17

Chapter 3
Defining Tables With an IDENTITY Column

These sample statements insert the following rows into the database.

sgl-> select * from Test_SGSqgl I nsert_Defaul t;
{"1D":300,"NAME": "sant, "Dept | D': 310}

{"I'D": 100, "NAME": "tint,"DeptID": 1}

{"1D": 400, "NAME": "Jennifer", "Dept|D': 2}
{"1D":500,"NAME": "Bar bara", "Dept | D": 2}

{"1D": 200, "NAME": "dave", "Dept| D': 210}

5 rows returned

Since you specified two values as DEFAULT in your | NSERT statements, the SG supplies
them, as 1 and 2. The other values are inserted as you specify (210, 310, and 2).

Each value is acceptable, even though one results in two Dept | D values the same (2
supplied from a DEFAULT, and 2 as a value you supply).

Because you defined the IDENTITY column as GENERATED BY DEFAULT AS | DENTI TY,
the SG supplies a value only when you do not specify a value. Specifying values 210,
310, or 2 is correct. The system neither checks for duplicates, nor enforces uniqueness
for GENERATED BY DEFAULT AS | DENTI TY column values. It is the application’s
responsibility to ensure that there are no duplicate values if that is a requirement.

Inserting IDENTITY Values Programmatically

ORACLE

Special considerations arise when you are inserting values into an IDENTITY column
programmatically. This section presents the issues that exist, and how to work around
them using put () and other methods.

You create each IDENTITY column in a table with one of these choices:
° GENERATED ALWAYS AS IDENTITY

GENERATED BY DEFAULT AS IDENTITY

° GENERATED BY DEFAULT ON NULL AS IDENTITY

Additionally, an identity column can be a primary key, which prevents you from
changing the IDENTITY value.

Each of the ways in which you create your identity column affects activities when you
add rows using the put function, with one of its variants:

e put (unconditional)
e put if absent (only if the row does not have values)
e put if present (only if the row has values)

This section describes the different effects of inserting and updating IDENTITY
columns.

For example, create the following table with a column defined with GENERATED
ALWAYS AS IDENTITY. The IDENTITY field is a primary key:

CREATE Tabl e foo(
i dVal ue | NTEGER GENERATED ALWAYS AS | DENTI TY
(START WTH 1 | NCREMENT BY 1 MAXVALUE 2 NO CYCLE),

3-18

ORACLE

Chapter 3
Defining Tables With an IDENTITY Column

name STRI NG
PRI MARY KEY(i dVal ue));

Insert a row into the IDENTITY Column

To insert a row into the f oo table, here's what to do in your application:

L1: Tabl eAPl api = store.getTableAPl(); // Gets the TableAPl for the
store

L2: Table table = api.getTable("fo00"); // Gets the Table foo instance
L3: Rowrow = table.createRow(); // constructs an enpty Row row for
Tabl e foo.

L4: row. put("name", "joe"); // populates the values for the Row row
L5: api.put(row, null /* previous-row */, null /* wite-options */);

/1 The client driver recognizes that the systemnust generate the id
val ues and \

generates value 1 for the id field in the row before putting it in the
DB.

L6: Systemout.println("Value of idvalue: " + row get("idvalue")); // 1
L7: row put("name", "snith");

L8: api.put(row, null /* previous-row */, null /* wite-options */);

[l driver sets id field to 2

L9: System.out.printIn("Value of id: " + row.get("idvalue™)); // 2

" Note:

To get the value of a generated IDENTITY column, use a get () call to the
IDENTITY column, as shown in L6 and L9.

Also, to return the i dVal ue use the RETURNI NG i dVal ue clause, as follows:

Statenent Result sr = store.executeSync("INSERT INTO foo " + "(name)
VALUES (' foe")

RETURNING idvalue");

int id=sr.iterator().next().get("idvalue").aslnteger().get();

Updating an IDENTITY Column
When you define a column as GENERATED ALWAYS AS | DENTI TY you cannot supply a
value for the IDENTITY column, because the SG must always supply the next value.

The following example illustrates what happens when you try to specify a value for the
IDENTITY column. The first additions, j oe and j ohn are fine, and the SG supplies an
i dval ue for both:

CREATE TABLE f oo(
i dVal ue | NTEGER GENERATED ALWAYS AS | DENTI TV,

3-19

ORACLE

Chapter 3
Defining Tables With an IDENTITY Column

name STRING PRI MARY KEY (i dVal ue))
api . put(‘joe')

api . put (‘john")

get (i dval ue, nanme) or
select * from foo

1, joe

2, john

Trying to update with any of the put() methods causes the following errors when a
column is defined as GENERATED ALWAYS AS | DENTI TY:

api . put(2,'dave’) // error — cannot specify a value for \
a columm defined as GENERATED ALWAYS AS | DENTITY

api . putlfPresent (2, ‘dave’) -- The followi ng error occurs first in the
code pat h,
even though idvValue = 2 is present
/] error — user cannot specify a value for \
| DENTI TY col um defined as GENERATED ALWAYS

api . putlfPresent (3,'cezar’) -- The followi ng error occurs, first in
the code path
even though idvalue = 3 is NOT present
/] error - user cannot specify a value for \
| DENTI TY col um defined as GENERATED ALWAYS

api . putlfPresent (‘henma’)
[lerror — a primary key is not provided to | ook up the record

put|fAbsent (10, joe) -— is an insert
/] error - user cannot specify a value for \
| DENTI TY col um defined as GENERATED ALWAYS

To use UPDATE on a column defined as GENERATED ALWAYS AS | DENTI TY:

Create table foo(idValue | NTEGER GENERATED ALWAYS AS | DENTI TY,
name STRI NG
PRI MARY KEY (i dVal ue))

UPDATE foo SET idValue = 10 WHERE name=joe
/1l error - user cannot set a value for an IDENTITY col um defined as
CGENERATED ALWAYS
UPDATE foo SET name=hema WHERE idValue=2
/1 Success! By using the Primary Key value (idValue=2)to locate its
name record,
/1 you can update the value and hema replaces john
select * fromfoo
1, joe
2, hema

3-20

ORACLE

Chapter 3
Defining Tables With an IDENTITY Column

To use put, put | f Present, and put | f Absent on an IDENTITY column that is not a
PRIMARY KEY:

Create table Foo(idVal ue | NTEGER GENERATED ALWAYS AS | DENTI TY
acct Nunber | NTEGER,

nane STRI NG

PRI MARY KEY (acct Number))

[/ Put two acctNunber and nane val ues
api.put(100, ‘joe’)
api.put (200, ‘john")

/1SGincrenments the | DENTITY values, 1 and 2
api . get (i dval ue, acctNunber, nane)

1, 100, joe

2, 200, john

[/ Attenpt to put an idval ue

api.put (2, 200, dave)

/1 error — Cannot specify a value for IDENTITY colum defined as
GENERATED ALWAYS

api.putlfPresent(3, 200, cezar)
[lerror — Cannot specify a value for IDENTITY col urm defined as
GENERATED ALWAYS

api.putlfPresent (400, cezar) // not IDENTITY col utm val ue error
[l error - Cannot specify a primary key (400) that is not present

api.putlFPresent (200, cezar)

1, 100, joe

2, 200, cezar

/1 Success! The IDENTITY val ue is updated.

The system generates a value on putlfPresent as the APl senantics are
to update

the entire record, and not update fields within the record selectively.

api.putlfAbsent (300, henm)

/1 Success! IDENTITY idVal ue was generated (3), and 300, henma were
absent

get (i dVal ue, acctNumber, nane)

1, 100, joe

2, 200, cezar

3, 300, hemmn

api.putlfAbsent (20, 300, hemm)
/'l error — user cannot specify a value for IDENTITY col um defined as
CGENERATED ALWAYS

api.putlfAbsent (300, henm)
[lerror - no rowwth primary key = 300 is present

api.putlfAbsent (3,400, henm)

3-21

ORACLE

Chapter 3
Defining Tables With an IDENTITY Column

/] error — user cannot specify a value for IDENTITY col um defined as
GENERATED ALWAYS

To use UPDATE on an IDENTITY column that is not a PRIMARY KEY:

Create table Foo(idVal ue | NTEGER GENERATED ALWAYS AS | DENTI TY
acct Nunber | NTEGER,

nane STRI NG

PRI MARY KEY (acct Nunber))

select * fromfoo
1, 100, joe

2, 200, cezar

3, 300, hema

UPDATE foo set name= dave, where PRIMARY KEY = 200
/1 replaces (2, 200, cezar) with (2, 200, dave)

select * fromfoo
1, 100, joe

2, 200, dave

3, 300, hema

UPDATE foo set name=george, where acctNumber=100
/'l acctNumber is the PRI MARY KEY

/1 replaces (1, 100, joe) with (1, 100, george)
select * from foo

1, 100, george

2, 200, dave

3, 300, hema

UPDATE foo set idValue=10, where acctNumber=100

/] acctNumber is the PRI MARY KEY

/] error - Cannot specify a value for IDENTITY colum defined as
GENERATED ALWAYS

To use put () on a column defined as GENERATED BY DEFAULT AS IDENTITY,
which is a PRIMARY KEY, review the following examples. In this case, not specifying
a value for the IDENTITY column causes the SG to generate a value. Specifying a
value, the system uses what you supply.

Create table foo(idValue | NTEGER GENERATED BY DEFAULT AS | DENTI TY,
name STRI NG
PRI MARY KEY (i dVal ue))

api . put(‘joe)
api . put (“john")

/1Since you supplied no idValue, SG supplies them
get (i dVval ue, nane)

1, joe

2, john

3-22

Chapter 3
Creating Indexes

//You supply 4 as the idValue, so systemuses it
api . put (4, george)

get (i dVval ue, nane)

1, joe
2, john
4, george

api.put (2, sam // replaces (2, john) with (2, sam
get (i dVval ue, nane)

1, joe

2, sam

4, george

To use UPDATE() on the column:

select * fromfoo;
1, joe

2, sam

4, george

UPDATE foo SET idVal ue=3 where nanme=sam

/1 Updates idValue 2 (2, sam) with 3, so becomes 3, sam
select * fromfoo

1, joe

3, sam

4, george

Deleting an IDENTITY Column
Deleting a row with an IDENTITY column follows the existing delete logic in the
product. There is no change.

Creating Indexes

Indexes represent an alternative way of retrieving table rows. Normally you retrieve
table rows using the row's primary key. By creating an index, you can retrieve rows
with dissimilar primary key values, but which share some other characteristic.

You can create indexes on any field that has a data type capable of indexing, including
primary key fields. You can index table IDENTITY fields. For information on the types
of fields that can be indexed, see Indexable Field Types.

For example, if you had a table representing types of automobiles, the primary keys
for each row might be the automobile's manufacturer and model type. However, if you
wanted to be able to query for all red automobiles, regardless of the manufacturer or
model type, you could create an index on the field containing color information.

ORACLE 3-23

ORACLE

Chapter 3
Creating Indexes

< Note:

Indexes can take a long time to create because Oracle NoSQL Database
must examine all of the data contained in the relevant table in your store.
The smaller the data contained in the table, the faster index creation will
complete. Conversely, if a table contains a lot of data, then it can take a long
time to create indexes for it.

CREATE TABLE nylnventory.itenDetails (
i temBKU STRI NG
i temDescription STRING
price FLOAT,
i nvent oryCount | NTEGER,
PRI MARY KEY (it enBSKU)

To create an index, use the CREATE | NDEX statement. See CREATE INDEX. For
example:

CREATE | NDEX i nventoryldx on nylnventory.itenDetail s(inventoryCount)

Similarly, to remove an index, use the DROP | NDEX statement. See DROP INDEX. For
example:

DROP | NDEX i nventoryldx on nylnventory.itenDetails

Be aware that adding and dropping indexes can be time consuming. You may want to
run drop index operations asynchronously using the KVSt or e. execut e() method.

package kvstore. basi cExanpl e;

import java.util.concurrent.ExecutionException;
import java.util.concurrent. Ti meUnit;
import java.util.concurrent. Ti meout Exception;

i mport oracl e. kv. Executi onFut ure;
i mport oracle. kv. Faul t Excepti on;
i mport oracle. kv. Statement Resul t;
i mport oracle. kv. KVStore;

i mport oracle. kv. KVSt oreConfi g;

i mport oracl e. kv. KVSt or eFact ory;
i mport oracle. kv.tabl e. Tabl eAPI ;

/1 Store open skipped

public void createlndex() {
Tabl eAPI tabl eAPI = store. get Tabl eAPI ();
ExecutionFuture future = null;

3-24

Chapter 3
Creating Indexes

StatenentResult result = null;
String statement = null;

try {

statenent = "CREATE | NDEX i nventoryldx on " +
"mylnventory.itenmDetail s(inventoryCount)"

future = store. execute(statenent);

di spl ayResul t (future. getlLastStatus(), statenent);

/*

* Linmit the anpunt of time to wait for the
* operation to finish.

*/

result = future.get(3, TimeUnit.SECONDS);
di spl ayResul t (result, statenent);

} catch (I11egal Argunent Exception e) {
Systemout.printIn("Invalid statement:\n" + e.getMessage());
} catch (Fault Exception e) {
Systemout. println
("Statenment couldn't be executed, please retry:
cl eanupQperation(future);
} catch (ExecutionException e) {
Systemout. println
("Problemdetected while waiting for a DDL statement: " +
e. get Cause());
cl eanupQperation(future);
} catch (InterruptedException e) {
Systemout. println

+e);

("Interrupted while waiting for a DDL statement: " + e);
cl eanupQperation(future);
} catch (Timeout Exception e) {
Systemout . println("Statement execution took too long: " + e);

cl eanupQperation(future);

}

private void cleanupQperation(ExecutionFuture future) {
if (future == null) {
/* nothing to do */
return;

}

Systemout.printin("Statement:");
Systemout . println(future.getStatenent());
Systemout. println("has status: ");
Systemout. println(future. getlLastStatus());

if (!future.isDone()) {

future. cancel (true);
Systemout. printIn("Statement is cancelled");

ORACLE 3-25

Chapter 3
Creating Indexes

private void displayResult(StatementResult result, String statenent) {

Systemout. println(" ");

if (result.isSuccessful()) {
Systemout . println("Statement was successful :\n\t" +

statenent);

Systemout.printIn("Results:\n\t" + result.getlnfo());

} else if (result.isCancelled()) {
Systemout . println("Statement was cancelled:\n\t" +

statenent);
} else {
/*
* statement wasn't successful: may be in error, or may still be
* in progress.
*/

if (result.isDone()) {
Systemout.printin("Statement failed:\n\t" + statenent);

Systemout.printin("Problem\n\t" +
resul t.get ErrorMessage());

} else {
Systemout.printIn("Statement in progress:\n\it" +

statenent);
Systemout.printin("Status:\n\t" + result.getlinfo());
}

For examples of how to index supported non-scalar types, see Indexing Non-Scalar
Data Types.

ORACLE 3-26

Introducing Oracle NoSQL Database
Namespaces

ORACLE

You can create one or more global namespaces to extend table identification.
Namespaces permit tables with the same name to exist in your database store.

To access such tables from the command line, or with DDL commands, use a fully-
qualified table name with the table preceded by its namespace, followed with a colon
(:), such as nsl: tabl el.

As with tables, you grant authorization permissions to determine who can access
both the namespace and the tables within them. After your namespaces exist, you
can create any number of parent and child tables within the namespace, such as
nsl:tabl el. chil dl.

There is a default Oracle NoSQL Database namespace, called sysdef aul t . For

new installations, all tables are assigned to the default sysdef aul t namespace,

until or unless you create other namespaces, and create new tables within them.
After upgrading from an earlier Oracle NoSQL Database release, all existing tables
become part of the default sysdef aul t namespace automatically. You cannot change
an existing table’s namespace.

Tables in the sysdef aul t namespace do not require further qualification for

existing queries. For example, using a basic SQL table query does not require

the default namespace prefix (sysdef aul t : t abl enane), for SQL access. Also, the

Tabl eAPI . get Tabl e() method does not require any updates at existing sites, since it
accepts one argument for table name, or two when you are ready to use namespaces.
For information see Using and Setting Namespaces.

sel ect * from sal esi ncomne;

Referencing a table name without a namespace prefix (namespace:) implies that
the table is part of the default, sysdef aul t namespace. However, by creating
namespaces, and then tables within them, you can have same name tables, such
as the following for a support _ti cket table:

e support_ticket

e acne:support _ticket

e international abc:support ticket
e international xyz:support_ticket

No additional permissions are required for tables in the default sysdef aul t
namespace, so existing authentication remains. For example, if you grant user Joe
permission to access tablest 1,t3, and t 4, but nott 2, Joe can still access all tables
except t 2 after they are subsumed into the sysdef aul t namespace.

4-1

Chapter 4
Creating Namespaces

Creating Namespaces

ORACLE

You can add and one or more namespaces to your store. Then, create tables within
the namespaces, and grant various permissions to users to access namespaces
and tables. For the security administrator, several new permissions are available for
namespaces, described in Granting Authorization Access to Namespaces .

You create a new namespace by using a CREATE NAMESPACE DDL statement, as
follows, with whatever name you choose.

sql -> CREATE NAMESPACE [I F NOT EXI STS] nanespace_nane;

All namespace names use standard identifiers, with the same restrictions as tables
and indexes:

* Names must begin with an alphabetic character (a-z, A-Z).
* Remaining characters are alphanumeric (a-z, A-Z, 0-9).
* Name characters can include period (.), and underscore (_) characters.

* The maximum name length for a namespace is 128 characters.

" Note:

You cannot use the prefix sys for any namespaces. The sys prefix is
reserved. No other keywords are restricted.

Following is the namespace syntax showing the identifier rules similar to a table name:

table_nanme : (namespace ':')? id_path;
-namespace : id_path ;

id_path : id (DOT id)* ;
id: (...] ID);
ID: ALPHA (ALPHA | DIG T | UNDER)* ;

Here are a couple of examples using DDL statements in the SQL CLI. The SHOV
NAMESPACES directive in the SQL CLI lists the namespaces that currently exist:

sql -> CREATE NAMESPACE nsl;
Statenent conpl eted successful ly

sql - > CREATE NAMESPACE | F NOT EXI STS ns2;
Statenent conpl eted successful ly

sql - > SHOWN NAMESPACES
namespaces

nsil

sysdefaul t

ns2

4-2

Chapter 4
Granting Authorization Access to Namespaces

Granting Authorization Access to Namespaces

You can add and one or more namespaces to your store, create tables within them,
and grant permission for users to access namespaces and tables. These are the
applicable permissions to supply developers and other users:

Privilege

Description

CREATE_ANY_NANVESPACE
DROP_ANY_NAVESPACE

Grant permission to a role to create or drop any namespace:

GRANT CREATE_ANY_NAMESPACE TO user _rol e;
GRANT DROP_ANY_NAMESPACE TO user _rol e;

CREATE_TABLE_| N_NAVESPACE
DROP_TABLE_| N_NAVESPACE
EVOLVE_TABLE_| N_NANMESPACE

Grant permission to a role to create, drop, or evolve tables in a
specific namespace:

GRANT CREATE_TABLE_| N_NAMESPACE ON NAMVESPACE
nanespace TO user_role;

GRANT DROP_TABLE_| N_NANESPACE ON NAVESPACE
nanespace TO user_role;

GRANT EVOLVE_TABLE_| N_NAMESPACE ON NAVESPACE
nanespace TO user_role;

CREATE_| NDEX_I N_NAVESPACE
DROP_| NDEX_| N_NAVESPACE

Grant permission to a role to create or drop an index in a specific
namespace:

GRANT CREATE | NDEX_| N_NAMESPACE ON NAMESPACE
nanmespace TO user _role;

GRANT DROP_I NDEX_| N_NAMESPACE ON NAMESPACE
nanespace TO user _role;

READ_| N_NAVESPACE
| NSERT_| N_NAVESPACE
DELETE_| N_NAVESPACE

Grant permission to a role to read, insert, or delete items in
a specific namespace. Currently, this applies only to tables in
namespaces, but could apply to other objects in future releases::

GRANT READ | N_NAMESPACE ON NAMESPACE nanespace TO
user _role;

GRANT | NSERT_I N_NAMESPACE ON NAMESPACE nanespace
TO user _rol e;

GRANT DELETE_| N_NAMESPACE ON NAMESPACE nanespace
TO user _rol e;

MODI FY_I N_NAVMESPACE

Grant or revoke permission to a role to all DDL privileges for a
specific namespace:

GRANT MODI FY_I N_NAMESPACE ON NAMESPACE nanespace
TO user _rol e;

REVOKE MODI FY_I N_NAMESPACE ON NAMESPACE namespace
TO user _rol e;

ORACLE

4-3

Chapter 4
Using and Setting Namespaces

Using and Setting Namespaces

ORACLE

Once you have created one or more namespaces, and tables within them, you can
fully qualify table names in any references. If your store has tables with the same
name, the namespace differentiates them from each other.

Here is the syntax for specifying a fully qualified table, or child table name from the
CLI:

nanespace: t abl enane
nanespace: t abl ename. chi | d1

To reference a table in a namespace in a SELECT statement:

SELECT * FROM ns1l:tabl el;

Set Namespace for Method Execution

You can use the Execut eOpti ons. set Nanmespace method to set a default namespace
for the duration of a KVSt or e. execut e() method. While set, you do not need to qualify
table and other object references. If you do not use set Namespace, or fully qualify table
names, the store uses sysdef aul t as the default namespace.

Execut eOpti ons. set Namespace("nsl");
SELECT * FROM tabl el,;

Determine Table Namespace

To find out which hamespace was set on an option object, use the
Execut eOpt i ons. get Namespace method.

Get a Table in a Specific Namespace

You can call Tabl eAPI . get Tabl e() with two arguments:

Tabl eAPI . get Tabl e(String nanespace, String tableFul | Narme);

Here, the first argument for Tabl eAPI . get Tabl e method, namespace, is the
namespace in which you created the table. If this argument is NULL, the method uses
the default sysdef aul t namespace. This case is equivalent to calling the function with
a single argument, described next.

The second argument, tableFullName, is the full table name. This interface
retrieves only top-level tables, without parent tables. To retrieve child tables, use
Tabl eAPI . get Chi | dTabl e().

Get a Fully-Qualified Table

You can call Tabl eAPI . get Tabl e() with one argument:

Tabl eAPI . get Tabl e(String ful | NanespaceNane) ;

4-4

Chapter 4
Showing and Describing Namespaces

The f ul | NamespaceName argument indicates the full name or namespace-qualified
name of the target table. If you supply an unqualified name, the method uses the
sysdef aul t namespace. If you supply a namespace that contains a table name
prefixed with a namespace followed with a colon (namespace:), this usage is
equivalent to calling the function as get Tabl e(String, String) with the namespace,
and TableFullName described above.

Showing and Describing Namespaces

ORACLE

You can use the following ways to show namespaces and their tables from the SQL
CLL:

e SHOW
» DESCRI BE

The next example shows creating a namespace (nsl), a table within that namespace
(ns1: f 00), and using SHONnamespaces and SHON t abl e ns1:f oo to see the table
hierarchy (that the table was created in the ns1 namespace). Finally, using DESCRI BE
tabl e nsl:foo to see more table details:

sql -> create nanespace nsl;
Statement conpl eted successfully

sql-> create table nsl:foo (id integer, primry key (id));
Statement conpl eted successfully

sgl -> show namespaces;
namespaces

nsl

sysdef aul t

sql -> show tabl e nsl:foo;
t abl eH erarchy(namespace nsl)
foo

sql -> describe table nsi:foo;

=== |nformation ===

Fomme ek E S [pp—— [Fommm e e Fom e Fommee s

Fom o [oo a - +

| nanespace | nane | ttl | owner | sysTable | r2conpat | parent
children | indexes | description

Fomme ek E S [pp—— [Fommm e e Fom e Fommee s

Fom o [oo a - +

| nsl | foo | | | N | N

| | | |

Fomme ek E S [pp—— [Fommm e e Fom e Fommee s

Fom o [oo a - +

=== Fields ===

B Fommmea s Fom o Fom e oo S
Fom o +

| id| name | type | nullable | default | shardKey | primryKey
identity

B Fommmea s Fom o Fom e oo S

4-5

Chapter 4
Dropping Namespaces

| 1] id | Integer | N | NullValue | Y | Y

Dropping Namespaces

ORACLE

You can drop a hamespace only if you have been granted the
DROP_ANY_NAMESPACE privilege, and the namespace has no associated tables.
Also, you must have the appropriate privileges.

To drop a namespace:

DROP NAMESPACE [F EXI STS] namespace_nane [CASCADE]

Using the CASCADE option with DROP NAMESPACE lets you extend the activity to
tables and other objects within the NAMESPACE.

Dropping a namespace is not an atomic operation, and completes the following steps:

» First check to make sure privileges to drop a namespace exist. Continue if
privileges are in place.

* If no privileges exist, stop process with an error.

» If privileges are in place and CASCADE is not specified, check for tables, or other
objects in the namespace. Drop the namespace if no objects exist.

» If tables or other objects exist in the namespace, stop process with an error.

» If privileges are in place to drop the namespace and CASCADE is specified, the
statement drops the namespace, removing all tables, indexes related to the tables,
and table privileges.

" Note:

You cannot drop the default namespace, sysdefaul t .

4-6

Primary and Shard Key Design

Primary keys and shard keys are important concepts for your table design. What
you use for primary and shard keys has implications in terms of your ability to read
multiple rows at a time. But beyond that, your key design has important performance
implications.

Primary Keys

ORACLE

Every table must have one or more fields designated as the primary key. This
designation occurs at the time that the table is created, and cannot be changed after
the fact. A table's primary key uniquely identifies every row in the table. In the simplest
case, it is used to retrieve a specific row so that it can be examined and/or modified.

For example, a table might have five fields: pr oduct Nane, pr oduct Type, col or, si ze,
and i nvent oryCount . To retrieve individual rows from the table, it might be enough
to just know the product's name. In this case, you would set the primary key field

as product Name and then retrieve rows based on the product name that you want to
examine/manipulate.

In this case, the table statement you use to define this table is:

CREATE TABLE myProducts (
product Nane STRI NG
product Type STRING
col or ENUM (bl ue, green, red),
si ze ENUM (smal I, nedi um | ar ge),
i nvent oryCount | NTEGER,
Il Define the primary key. Every table nust have one.
PRI MARY KEY (product Name)

However, you can use multiple fields for your primary keys. For example:

CREATE TABLE nyProducts (
product Nane STRI NG
product Type STRI NG
col or ENUM (bl ue, green, red),
si ze ENUM (smal I, nedi um | arge),
i nvent oryCount | NTEGER,
Il Define the primary key. Every table nust have one.
PRI MARY KEY (product Narme, product Type)

On a functional level, doing this allows you to delete multiple rows in your table in
a single atomic operation. In addition, multiple primary keys allows you to retrieve a
subset of the rows in your table in a single atomic operation.

5-1

Chapter 5
Primary Keys

We describe how to retrieve multiple rows from your table in Reading Table Rows. We
show how to delete multiple rows at a time in Using multiDelete() .

" Note:

If the primary key field is an INTEGER data type, you can apply a serialized
size constraint to it. See Integer Serialized Constraints.

Data Type Limitations

Fields can be designated as primary keys only if they are declared to be one of the
following types:

* Integer
e Long

* Number
* Float

* Double
e String

e Timestamp

e Enum

Partial Primary Keys

ORACLE

Some of the methods you use to perform multi-row operations allow, or even require, a
partial primary key. A partial primary key is, simply, a key where only some of the fields
comprising the row's primary key are specified.

For example, the following example specifies three fields for the table's primary key:

CREATE TABLE nyProducts (
product Nane STRI NG
product Type STRI NG
product d ass STRI NG,
col or ENUM (bl ue, green, red),
si ze ENUM (snal I, nedi um | ar ge),
i nvent oryCount | NTEGER,
/1 Define the primary key. Every table nust have one.
PRI MARY KEY (product Narme, product Type, productd ass)

In this case, a full primary key would be one where you provide value for all three
primary key fields: pr oduct Nare, pr oduct Type, and pr oduct d ass. A partial primary
key would be one where you provide values for only one or two of those fields.

Note that order matters when specifying a partial key. The partial key must be a subset
of the full key, starting with the first field specified and then adding fields in order. So
the following partial keys are valid:

5-2

Shard Keys

Row Data

ORACLE

Chapter 5
Row Data

e product Name
e product Name, product Type

Shard keys identify which primary key fields are meaningful in terms of shard
storage. That is, rows which contain the same values for all the shard key fields are
guaranteed to be stored on the same shard. This matters for some operations that
promise atomicity of the results. (See Executing a Sequence of Operations for more
information.)

For example, suppose you set the following primary keys:

PRI MARY KEY (product Type, productNane, productC ass)

You can guarantee that rows are placed on the same shard using the values set for
the product Type and pr oduct Nane fields like this:

PRI MARY KEY (SHARD(pr oduct Type, product Narme), productd ass)

Note that order matters when it comes to shard keys. The keys must be specified
in the order that they are defined as primary keys, with no gaps in the key list.

In other words, given the above example, it is impossible to set product Type and
product O ass as shard keys without also specifying pr oduct Nane as a shard key.

There are no restrictions on the size of your rows, or the amount of data that you store
in a field. However, you should consider your store's performance when deciding how
large you are willing to allow your individual tables and rows to become. As is the case
with any data storage scheme, the larger your rows, the longer it takes to read the
information from storage, and to write the information to storage.

On the other hand, every table row carries with it some amount of overhead. Also, as
the number of your rows grows very large, search times may be adversely affected. As
a result, choosing to use a large number of tables, each of which use rows with just a
small handful of fields, can also harm your store's performance.

Therefore, when designing your tables' content, you must find the appropriate balance
between a small number of tables, each of which uses very large rows; and a large
number of tables, each of which uses very small rows. You should also consider how
frequently any given piece of information will be accessed.

For example, suppose your table contains information about users, where each user
is identified by their first and last names (surname and familiar name). There is a set
of information that you want to maintain about each user. Some of this information

is small in size, and some of it is large. Some of it you expect will be frequently
accessed, while other information is infrequently accessed.

Small properties are:

e name

e gender

5-3

ORACLE

Chapter 5
Row Data

* address

e phone number

Large properties are:

* image file

* public key 1

* public key 2

* recorded voice greeting

There are several possible ways you can organize this data. How you should do it
depends on your data access patterns.

For example, suppose your application requires you to read and write all of the
properties identified above every time you access a row. (This is unlikely, but it does
represent the simplest case.) In that event, you might create a single table with
rows containing fields for each of the properties you maintain for the users in your
application.

However, the chances are good that your application will not require you to access all
of a user's properties every time you access his information. While it is possible that
you will always need to read all of the properties every time you perform a user look
up, it is likely that on updates you will operate only on some properties.

Given this, it is useful to consider how frequently data will be accessed, and its size.
Large, infrequently accessed properties should be placed in tables other than that
used by the frequently accessed properties.

For example, for the properties identified above, suppose the application requires:

« all of the small properties to always be used whenever the user's record is
accessed.

» all of the large properties to be read for simple user look ups.

* on user information updates, the public keys are always updated (written) at the
same time.

* The image file and recorded voice greeting can be updated independently of
everything else.

In this case, you might store user properties using a table and a child table. The parent
table holds rows containing all the small properties, plus public keys. The child table
contains the image file and voice greeting.

CREATE TABLE userInfo (
surname STRI NG
fam i arName STRI NG
gender ENUM (mal e, femal e),
street STRI NG,
city STRING
state STRI NG
zi pcode STRING
user Phone STRI NG,
publ i ckeyl Bl NARY,
publ i ckey2 Bl NARY,

5-4

ORACLE

Chapter 5
Row Data

PRI MARY KEY (SHARD(surnane), fanmiliarName)

CREATE TABLE userlInfo.largeProps (
propType STRI NG
voi ceGreeting Bl NARY,
i mageFi [e Bl NARY,
PRI MARY KEY (propType)

Because the parent table contains all the data that is accessed whenever user data is
accessed, you can update that data all at once using a single atomic operation. At the
same time, you avoid retrieving the big data values whenever you retrieve a row by
splitting the image data and voice greeting into a child table.

5-5

Writing and Deleting Table Rows

This chapter discusses two different write operations: putting table rows into the store,
and then deleting them.

Write Exceptions

There are many exceptions that you should handle whenever you perform a write
operation to the store. Some of the more common exceptions are described here. For
simple cases where you use default policies or are not using a secure store, you can
probably avoid explicitly handling these. However, as your code complexity increases,
so too will the desirability of explicitly managing these exceptions.

The first of these is Dur abi | i t yExcept i on. This exception indicates that the operation
cannot be completed because the durability policy cannot be met. For more
information, see Durability Guarantees.

The second is Request Ti meout Except i on. This simply means that the operation could
not be completed within the amount of time provided by the store's timeout property.
This probably indicates an overloaded system. Perhaps your network is experiencing a
slowdown, or your store's nodes are overloaded with too many operations (especially
write operations) coming in too short of a period of time.

To handle a Request Ti meout Except i on, you could simply log the error and move on,
or you could pause for a short period of time and then retry the operation. You could
also retry the operation, but use a longer timeout value. (There is a version of the
Tabl eAPI . put () method that allows you to specify a timeout value for that specific
operation.)

You can also receive an | | | egal Ar gunent Except i on, which will be thrown if a Row that
you are writing to the store does not have a primary key or is otherwise invalid.

You can also receive a general Faul t Except i on, which indicates that some exception
occurred which is neither a problem with durability nor a problem with the request
timeout. Your only recourse here is to either log the error and move along, or retry the
operation.

Finally, if you are using a secure store that requires authentication, you can receive
Aut henti cati onFai | ureExcepti on or Aut henti cati onRequi r edExcepti on if you do
not provide the proper authentication credentials. When using a secure store, you can
also see Unaut hori zedExcept i on, which means you are attempting an operation for
which the authenticated user does not have the proper permissions.

Writing Rows to a Table in the Store

ORACLE

Writing a new row to a table in the data store, and updating an existing row are similar
operations. Later in this section, we describe methods that work only if a row is being
updated, or only if you are creating a row. You can write data to a table only after it has
been added to the store. See Introducing Oracle NoSQL Database Tables and Indexes
for detalils.

6-1

ORACLE

Chapter 6
Writing Rows to a Table in the Store

To write a row to a table in the store:

1.

Construct a handle for the table to which are writing data. You do this by retrieving
a Tabl eAPI interface instance using KVSt or e. get Tabl eAPI () . Use that instance to
retrieve a handle for the table using the Tabl eAPI . get Tabl e() , which then returns
a Tabl e interface instance.

" Note:

The Tabl eAPI . get Tabl e() method is an expensive call requiring server
side access. For best performance, do not call this method each time
you need a table handle. If possible, call this method for all relevant
tables in the set up section of your code. Then, reuse the handles
throughout your application.

Use the Tabl e. cr eat eRow() method to create a Row interface instance, using the
Tabl e instance you retrieved in the previous step.

Using the Row. put () method, write to each field in the row.
To write a NULL value, use Row. put Nul | (), rather than Row. put ().

Write the new row to the store using Tabl eAPI . put () .

Note:

If the table you are writing to contains an IDENTITY column, the
generated value from the sequence generator will be available in the
row. For more information, see Defining Tables With an IDENTITY
Column.

You can also load rows into the store using special purpose streams. For more
information, see Bulk Put Operations.

The following example shows how to write a row to the store, assuming that you have
already created the KVSt or e handle.

package kvstore. basi cExanpl e;

i mport oracle. kv. KVSt ore;

i mport oracl e. kv.tabl e. Row;

i mport oracle. kv.tabl e. Tabl e;

i mport oracle. kv.tabl e. Tabl eAPI ;

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

/1 The name you give get Table() nust be identical
/1 to the name of the table when you created it with

6-2

Chapter 6
Writing Rows to a Table in the Store

/1 the CREATE TABLE DDL statement (nyTable in this exanple).
Tabl e nyTabl e = tabl eH. get Tabl e("nyTabl e");

/] CGet a Row instance
Row row = nyTabl e. creat eRow() ;

/1 Use row.put to put all of the cells into the row.
/1 This does NOT actually wite the data to the store.

row. put("itent, "Bolts");

row. put ("description”, "Hex head, stainless");
row. put ("count", 5);

row. put (" percentage", 0.2173913);

/1l Nowwite the table to the store.

[/ "item is the rows primary key. If we had not set that key and its
val ue,

/1 this operation will result in an IIlegal Argument Excepti on.

tableH put(row, null, null);

Writing Rows to a Child Table

ORACLE

To write to a child table, complete the tasks that you do for a parent table, except using
the two-part table name, such as parent-table.child-table.

For example, in Defining Child Tables we showed how to create a child table. To write
data to that table, do this:

package kvstore. basi cExanpl e;

i mport oracle. kv. KVSt ore;

i mport oracle. kv.tabl e. Row,

i mport oracle. kv.tabl e. Tabl e;

i mport oracle. kv.tabl e. Tabl eAPI;

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

/1 Get the corresponding child table
Tabl e myChi | dTabl e = tabl eH. get Tabl e("nylnventory.itenDetails");

/] Get a row instance
Row chi | dRow = myChi | dTabl e. creat eRow() ;

/1 Popul ate the rows. Because the parent table's "itenCategory"”
/I fieldis a primary key, this nust be populated in addition
/1 to all of the child table's rows

chi | dRow. put ("itenCategory", "Bolts");

chi | dRow. put ("itenSKU', "1392610");

6-3

Chapter 6
Bulk Put Operations

chi | dRow. put ("itenDescription", "1/4-20 x 1/2 G ade 8 Hex");
chi | dRow. put ("price", new Float(11.99));
chi | dRow. put ("i nvent oryCount", 1457);

Other put Operations

Beyond the very simple usage of the Tabl eAPI . put () method illustrated above, there
are three other put operations that you can use:

e Tabl eAPI. put | f Absent ()

This method will only put the row if the row's primary key value DOES NOT
currently exist in the table. That is, this method is successful only if it results in a
create operation.

e Tabl eAPI. put|fPresent()

This method will only put the row if the row's primary key value already exists in
the table. That is, this method is only successful if it results in an update operation.

o Tabl eAPI. put | f Versi on()

This method will put the row only if the value matches the supplied version
information. For more information, see Using Row Versions .

Bulk Put Operations

ORACLE

Bulk put operations allow you to load records supplied by special purpose streams into
the store.

The bulk loading of the entries is optimized to make efficient use of hardware
resources. As a result, this operation can achieve much higher throughput when
compared with single put APIs.

The behavior of the bulk put operation with respect to duplicate entries contained
in different streams is thus undefined. If the duplicate entries are just present in
a single stream, then the first entry will be inserted (if it is not already present)
and the second entry and subsequent entries will result in the invocation of
EntryStream keyExi st s(E) method. If duplicates exist across streams, then the
first entry to win the race is inserted and subsequent duplicates will result in

Ent ryStream keyExi st s(E) being invoked on them.

To use bulk put, use one of the Tabl eAPI . put () methods that provide bulk put. These
accept a set of streams to bulk load data. The rows within each stream may be
associated with different tables.

When using these methods, you can also optionally specify a Bul kWit eOpti ons
class instance which allows you to specify the durability, timeout, and timeout unit
to configure the bulk put operation.

For example, suppose you are loading 1000 rows with 3 input streams:

inport java.util.ArraylList;

inport java.util.List;

i mport java.util.concurrent. atonic. Atonm cLong;
i nport oracle.kv.Bul kWiteOptions;

i mport oracle.kv. EntryStream

6-4

Chapter 6
Bulk Put Operations

i mport oracle. kv. Faul t Excepti on;
i mport oracle.kv.KVStore;

i mport oracle. kv. KVSt oreConfi g;

i mport oracle. kv. KVSt or eFact ory;
i mport oracle.kv.tabl e. Row,

i mport oracle.kv.tabl e. Tabl e;

i mport oracle.kv.tabl e. Tabl eAPI ;

Il KVStore handle creation is omtted for brevity

Integer streanParallelism= 3;

I nteger perShardParallelism= 3;

I nt eger heapPercent = 30;

Il Inthis case, sets the amount of 1000 rows to |oad
int nLoad = 1000;

Bul kWiteOptions bul kWiteOptions =
new Bul kWiteOptions(null, 0, null);
Il Set the nunber of streams. The default is 1 stream
bul kWiteOptions.setStreanParal | elismstreanParallelism;
Il Set the nunber of witer threads per shard.
Il The default is 3 witer threads.
bul kWiteOptions. set Per ShardParal | el i sn(per ShardParal [el i sm;
Il Set the percentage of max nenmory used for bulk put.
Il The default is 40 percent.
bul kWiteOptions. set Bul kHeapPer cent (heapPercent);

Systemerr.printin("Loading rows to " + TABLE NAME + "...");

final List<EntryStream<Row>> streans =
new ArraylLi st <EntryStreankRow>>(streanParal | elism;
final int num= (nLoad + (streamParallelism- 1)) /
streanParal | el i sm
for (int i =0; i < streanParallelisnm i++) {
final int min=num* i;
final int max = Math.mn((mn + nunm , nlLoad);
streans. add(new LoadRowStrean(i, mn, max));

}

final Tabl eAPl tablelnpl = store.getTabl eAPI ();
tabl el npl . put (streams, bul kWiteOptions);

long total = 0;
 ong keyExists = 0;
for (EntryStreankRow> stream streams) {

total += ((LoadRowStream)strean). getCount();

keyExi sts += ((LoadRowStreamn) strean) . get KeyExi st sCount ();
}
final String fmt = "Loaded %d rows to %, %d pre-existing.";
Systemerr.printIn(String.format(fnt, total, TABLE NAME,

keyExi sts));

ORACLE 6-5

ORACLE

Chapter 6
Bulk Put Operations

You should implement the stream interface that supplies the data to be batched and
loaded into the store. Entries are supplied by a list of Ent r ySt r eaminstances. Each
stream is read sequentially, that is, each Ent rySt r eam get Next () is allowed to finish
before the next operation is issued. The load operation typically reads from these
streams in parallel as determined by Bul kWit eOptions. get StreanParal | el isn().

private class LoadRowStreaminpl enents EntryStreankRow> {

private final String nane;

private final |ong index;

private final |ong max;

private final long mn;

private long id;

private |ong count;

private final Atom cLong keyExistsCount;

LoadRowSt rean(String name, long index, long mn, long max) {
this.index = index;
this.mx = max;
this.min=m

n;
t hi s. name = nane;
id=mn;
count = 0;
keyExi st sCount = new Atoni cLong();
1
@verride

public String name() {
return name + "-"
}

@verride
public Row get Next () {
if (id++ == max) {
return null;
}

final Row row = userTabl e. creat eRow();
row. put ("id", id);

+index +": " + mn+ "~" + max;

row. put ("nane", "nanme" + id);
row. put ("age", 20 + id %50);
count ++;
return row

}

@verride

public void conpleted() {
Systemerr.println(name() +
}

@erride

public void keyExi sts(Row entry) {
keyExi st sCount . i ncrement AndGet () ;

}

@verride

n n

conpl eted, |oaded: + count);

6-6

Chapter 6
Using Time to Live

public void cat chException(RuntimeException exception, Row entry) {
Systemerr.printin(nane() + " catch exception: " +
exception. get Message() + ": " +
entry.todsonString(false));
t hrow exception;

}

public long getCount() {
return count;

}

public | ong get KeyExi stsCount () {
return keyExi stsCount.get();

}

Using Time to Live

Time to Live (TTL) is a mechanism that allows you to automatically expire table rows.
TTL is expressed as the amount of time data is allowed to live in the store. Data
which has reached its expiration timeout value can no longer be retrieved, and will not
appear in any store statistics. Whether the data is physically removed from the store is
determined by an internal mechanism that is not user-controllable.

TTL represents a minimum guaranteed time to live. Data expires on hour or day
boundaries. This means that with a one hour TTL, there can be as much as two hours
worth of unexpired data. For example (using a time format of hour:minute:second),
given a one hour TTL, data written between 00:00:00.000 and 00:59:59.999 will expire
at 02:00:00.000 because the data is guaranteed to expire no less than one hour from
when it is written.

In case of MR Tables with TTL value defined, the rows replicated to other regions carry
the expiration time when the row was written. This can be either the default table level
TTL value or a row level override that is set by your application. Therefore, this row will
expire in all the regions at the same time, irrespective of when they were replicated.

Expired data is invisible to queries and store statistics, but even so it is using disk
space until it has been purged. Here, store statistics refer to the statistics related to
your store's performance and availability. See Monitoring the Store. The expired data
is purged from disk at some point in time after its expiration date. The exact time when
the data is purged is driven by internal mechanisms and the workload on your store.

The TTL value for a table row can be updated at any time before the expiration value
has been reached. Data that has expired can no longer be modified, and this includes
its TTL value.

TTL is more efficient than manual user-deletion of the row because it avoids the
overhead of writing a database log entry for the data deletion. The deletion also does
not appear in the replication stream.

Specifying a TTL Value

TTL values are specified on a row by row basis using Row. set TTL() . This method
accepts a Ti neToLi ve class instance, which allows you to identify the number of days
or hours the row will live in the store before expiring. A duration interval specified in

ORACLE .

Chapter 6
Using Time to Live

days is recommended because this results in the least amount of storage consumed in
the store. However, if you want a TTL value that is not an even multiple of days, then
specify the TTL value in hours.

The code example from Writing Rows to a Table in the Store can be extended to
specify a TTL value of 5 days like this:

package kvstore. basi cExanpl e;

i mport oracle. kv. KVSt ore;

i mport oracle. kv.tabl e. Row;

i mport oracle. kv.tabl e. Tabl e;

import oracle.kv.table.Table.TimeToLive;
i mport oracle. kv.tabl e. Tabl eAPI ;

/1 KVStore handle creation is omtted for brevity

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Get a Row instance
Row row = nyTabl e. creat eRow() ;

// Add a TTL value to the row
row.setTTL(TimeToLive.ofDays(5));

/1 Now put all of the cells in the row

row. put("itent, "Bolts");

row. put ("description", "Hex head, stainless");
row. put ("count", 5);

row. put (" percentage", 0.2173913);

/1 Nowwite the table to the store.
tabl eH put(row, null, null);

Updating a TTL Value

ORACLE

To update the expiration time for a table row, you write the row as normal, and at

the same time specify the new expiration time. However, you must also indicate that
the expiration time is to be updated. By default, you can modify the row data and the
expiration time will not be modified, even if you specify a new TTL value for the row.

To indicate that the the expiration time is to be updated, specify t r ue to the
WiteQptions. set Updat eTTL() method. For example, using the previous example, to
change the TTL value to 10 days, do the following:

package kvstore. basi cExanpl e;

i mport oracle. kv. KVSt ore;

6-8

Chapter 6
Using Time to Live

i mport oracle. kv.tabl e. Row,

i mport oracle. kv.tabl e. Tabl e;

i mport oracle. kv.tabl e. Tabl e. Ti neToLi ve;
i mport oracle. kv.tabl e. Tabl eAPI;

import oracle_kv._table.WriteOptions;

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tableH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/] CGet a Row instance
Row row = nyTabl e. creat eRow() ;

// Change the TTL value for the row from 5 days to 10.
row.setTTL(TimeToLive.ofDays(10));

/1 Now put all of the cells in the row

row. put("itent, "Bolts");

row. put ("description”, "Hex head, stainless");
row. put ("count", 5);

row. put (" percentage", 0.2173913);

[l Now wite the table to the store.
tabl eH put (row, null, new WriteOptions().setUpdateTTL(true));

Deleting TTL Expiration

ORACLE

If you have set a TTL value for a row and you later decide you do not want
it to ever automatically expire, you can turn off TTL by setting a TTL value of
Ti meToLi ve. DO_NOT_EXPI RE:

package kvstore. basi cExanpl e;

i nport oracle. kv. KVStore;

i mport oracle. kv.tabl e. Row,

inport oracle.kv.table. Table;

inport oracle.kv.table. Tabl e. Ti meToLi ve;
i mport oracle. kv.tabl e. Tabl eAPI;

inport oracle.kv.table. WiteQptions;

/1 KVStore handle creation is onitted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

6-9

Chapter 6
Deleting Rows from the Store

/] CGet a Row instance
Row row = nyTabl e. creat eRow() ;

// Vodify the row"s TTL so that it will never expire
row.setTTL(TimeToLive.DO_NOT_EXPIRE);

/1 Now put all of the cells in the row

row. put ("itent, "Bolts");

row. put ("description”, "Hex head, stainless");
row. put ("count", 5);

row. put (" percentage", 0.2173913);

[l Now wite the table to the store.
tableH put(row, null, new WiteOptions().setUpdateTTL(true));

Setting Default Table TTL Values

You can set a default TTL value for the table when you define the table using the

USI NG TTL DDL statement. It may be optionally applied when a table is created using
CREATE TABLE or when a table is modified using one of the ALTER TABLE statements.
See USING TTL for details on this statement.

For example:

CREATE TABLE nyTabl e (

i tem STRI NG,

description STRI NG

count | NTECER,

per cent age DOUBLE,

PRIMARY KEY (item) // Every table nmust have a primary key
) USING TTL 5 days

At program run time, you can examine the default TTL value for a table using the
Tabl e. get Def aul t TTL() method.

Deleting Rows from the Store

ORACLE

You delete a single row from the store using the Tabl eAPI . del et e() method.

Rows are deleted based on a Pri mar yKey, which you obtain using the

Tabl e. creat ePri mar yKey() method. You can also require a row to match a specified
version before it will be deleted. To do this, use the Tabl eAPI . del et el f Ver si on()
method. Versions are described in Using Row Versions .

When you delete a row, you must handle the same exceptions as occur when you
perform any write operation on the store. See Write Exceptions for a high-level
description of these exceptions.

package kvstore. basi cExanpl e;
i mport oracle. kv. KVSt ore;

i mport oracle. kv.tabl e. PrinaryKey;
i mport oracle. kv.tabl e. Tabl e;

6-10

Chapter 6
Deleting Rows from the Store

i mport oracle. kv.tabl e. Tabl eAPI;
/1 KVStore handle creation is omtted for brevity

Tabl eAPl tableH = kvstore. get Tabl eAPI ();

/1 The name you give to getTable() nust be identical

[/ to the name that you gave the table when you created
/1 the table using the CREATE TABLE DDL statenent.

Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/1 CGet the primary key for the row that we want to delete
PrimaryKey primaryKey = nyTabl e. creat ePri maryKey();
primaryKey. put ("itent, "Bolts");

Il Delete the row
/1 This performs a store wite operation
t abl eH. del ete(pri maryKey, null, null);

Using multiDelete()

You can delete multiple rows at once in a single atomic operation, as long as they
all share the shard key values. Recall that shard keys are at least a subset of your
primary keys. This results in using a partial primary key, which is the shard key, to
perform a multi-delete.

To delete multiple rows at once, use the Tabl eAPI . mul ti Del et e() method.

For example, suppose you create a table like this:

CREATE TABLE nyTabl e (
i tenfType STRI NG
i tenCat egory STRING
i tenC ass STRI NG,
i tenCol or STRI NG,
itenBi ze STRING
price FLOAT,
i nvent oryCount | NTEGER,
PRI MARY KEY (SHARD(itenflype, itentCategory, itenC ass), itenColor,
i tenti ze)

With tables containing data like this:
* Row1l:

— itemType: Hats

— itemCategory: baseball

— itemClass: longbill

ORACLE 6-11

ORACLE

itemColor: red
itemSize: small
price: 12.07
inventoryCount: 127

e Row2:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: medium
price: 13.07
inventoryCount: 201

¢ Row 3:

itemType: Hats
itemCategory: baseball
itemClass: longbill
itemColor: red
itemSize: large

price: 14.07
inventoryCount: 39

Chapter 6
Deleting Rows from the Store

In this case, you can delete all the rows sharing the partial primary key Hat s,
basebal |, I ongbi | | as follows:

package kvstore. basi cExanpl e;

i mport
i mport
i mport
i mport

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

/1 The name you give to getTable() nust be identical

oracl e. kv. KVSt or e;

oracl e. kv. tabl e. Pri naryKey;
oracl e. kv. tabl e. Tabl g;
oracl e. kv. t abl e. Tabl eAPI ;

/1 to the name that you gave the table when you created

/1 it using the CREATE TABLE DDL statenent.
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

[l Get the primary key for the row that we want to delete

PrimaryKey primaryKey = myTabl e. creat ePri maryKey();

6-12

ORACLE

pri maryKey. put ("itenfType", "Hats");

pri maryKey. put ("itenCategory", "baseball");

pri maryKey. put ("itenC ass", "longbill");

/1 Exception handling onitted

tableH mul tiDel ete(primryKey, null, null);

Chapter 6
Deleting Rows from the Store

6-13

Reading Table Rows

There are several ways to retrieve table rows from the store. You can:

1. Retrieve a single row at a time using the Tabl eAPI . get () method.

2. Retrieve rows associated with a shard key (which is based on at
least part of your primary keys) using either the Tabl eAPI . nul ti Get () or
Tabl eAPI . mul ti Get I terator() methods.

3. Retrieve table rows that share a shard key, or an index key, using the
Tabl eAPI . tabl el terator () method.

4. Retrieve and process records from each shard in parallel using a single
key as the retrieval criteria. Use one of the Tabl eAPI . tabl elterator() or
Tabl eAPI . t abl eKeysl t erat or () methods that provide parallel scans.

5. Retrieve and process records from each shard in parallel using a set of
keys as the retrieval criteria. Use one of the Tabl eAPI . tabl el terator() or
Tabl eAPI . t abl eKeysl t er at or () methods that provide bulk retrievals.

Each of these are described in the following sections.

Read Exceptions

ORACLE

Several exceptions can occur when you attempt a read operation in the store. The first
of these is Consi st encyExcept i on. This exception indicates that the operation cannot
be completed because the consistency policy cannot be met. For more information,
see Consistency Guarantees.

The second exception is Request Ti meout Except i on. This means that the operation
could not be completed within the amount of time provided by the store's timeout
property. This probably indicates a store that is attempting to service too many read
requests all at once. Remember that your data is partitioned across the shards in your
store, with the partitioning occurring based on your shard keys. If you designed your
keys such that a large number of read requests are occurring against a single key, you
could see request timeouts even if some of the shards in your store are idle.

A request timeout could also be indicative of a network problem that is causing the
network to be slow or even completely unresponsive.

To handle a Request Ti meout Except i on, you could simply log the error and move on,
or you could pause for a short period of time and then retry the operation. You could
also retry the operation, but use a longer timeout value.

You can also receive an | | | egal Argurrent Except i on, which will be thrown if a Row that
you are writing to the store does not have a primary key or is otherwise invalid.

You can also receive a general Faul t Except i on, which indicates that some exception
occurred which is neither a problem with consistency nor a problem with the request
timeout. Your only recourse here is to either log the error and move along, or retry the
operation.

7-1

Chapter 7
Retrieving a Single Row

You can also receive a Met adat aNot FoundExcept i on, which indicates that a client's
metadata may be out of sync. It extends Faul t Except i on and can be caught by
applications to trigger the need for a refresh of their metadata, and in particular, Table
handles obtained via TableAPl.getTable().

Finally, if you are using a secure store that requires authentication, you can receive
Aut henti cati onFai | ureExcepti on or Aut henti cati onRequi r edExcepti on if you do
not provide the proper authentication credentials. When using a secure store, you can
also see Unaut hori zedExcept i on, which means you are attempting an operation for
which the authenticated user does not have the proper permissions.

Retrieving a Single Row

ORACLE

To retrieve a single row from the store:

1. Construct a handle for the table from which you want to read. You do this by
retrieving a Tabl eAPI class instance using KVSt or e. get Tabl eAPI () . You then use
that instance to retrieve the desired table handle using Tabl eAPI . get Tabl e() . This
returns a Tabl e class instance.

< Note:

Tabl eAPI . get Tabl e() is an expensive call that requires server side
access. From a performance point of view, it is a mistake to call this
method whenever you need a table handle. Instead, call this method for
all relevant tables in the set up section of your code, and then reuse
those handles throughout your application.

2. Use the Tabl e instance retrieved in the previous step to create a Pri mar yKey class
instance. In this case, the key you create must be the entire primary key.

3. Retrieve the row using Tabl eAPI . get () . This performs a store read operation.
4. Retrieve individual fields from the row using the Row. get () method.

For example, in Writing Rows to a Table in the Store we showed a trivial example of
storing a table row to the store. The following trivial example shows how to retrieve
that row.

package kvstore. basi cExanpl e;

i mport oracle. kv. KVSt or e;

i mport oracle. kv.tabl e. PrinaryKey;
i mport oracle. kv.tabl e. Row,

i mport oracle. kv.tabl e. Tabl e;
i mport oracle. kv.tabl e. Tabl eAPI ;

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

7-2

Chapter 7
Retrieving a Single Row

/1 The name you give to getTable() nust be identical

/1 to the name that you gave the table when you created
/1 the table using the CREATE TABLE DDL statenent.

Tabl e nyTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Construct the PrinmaryKey. This is driven by your table
/1 design, which designated one or nore fields as

/1 being part of the table's primary key. In this

/1 case, we have a single field primary key, which is the
/1 "item field. Specifically, we want to retrieve the
[l row where the "item field contains 'Bolts'.

Pri maryKey key = nyTabl e. creat ePri maryKey();
key.put("itent, "Bolts");

/] Retrieve the row. This perforns a store read operation.
/1 Exception handling is skipped for this trivial exanple.
Row row = tabl eH. get (key, null);

Il Now retrieve the individual fields fromthe row

String item= row get("iten).asString().get();

String description = row get("description").asString().get();
I nteger count = row. get("count").aslnteger().get();

Doubl e percentage = row. get ("percentage").asDoubl e().get();

Retrieve a Child Table

ORACLE

In Writing Rows to a Child Table we showed how to populate a child table with data. To
retrieve that data, you must specify the primary key used for the parent table row, as
well as the primary key for the child table row. For example:

package kvstore. basi cExanpl e;

i mport oracle. kv. KVSt ore;

i mport oracl e. kv.tabl e. PrinaryKey;
i mport oracl e. kv.tabl e. Row;

i mport oracle. kv.tabl e. Tabl e;

i mport oracle. kv. tabl e. Tabl eAPI ;

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

/I W omit retrieval of the parent table because it is not required.
Tabl e myChi | dTabl e = tabl eH. get Tabl e("nyl nventory.itenDetails");

/1 Construct the PrinaryKey. This key nust contain the primry key
/1 fromthe parent table row, as well as the primary key fromthe
/1 child table row that you want to retrieve.

Pri maryKey key = nyChil dTabl e. creat ePri maryKey();

7-3

Chapter 7
Using multiGet()

key. put ("itenCategory", "Bolts");
key. put ("itenSKU', "1392610");

/] Retrieve the row. This perforns a store read operation.
/1 Exception handling is skipped for this trivial exanple.
Row row = tabl eH. get (key, null);

/1 Now retrieve the individual fields fromthe row

String description = row get("itenDescription").asString().get();
Float price = row. get("price").asFloat().get();

I nteger invCount = row. get("inventoryCount").aslnteger().get();

For information on how to iterate over nested tables, see Iterating with Nested Tables.

Using multiGet()

ORACLE

Tabl eAPI . nul ti Get () allows you to retrieve multiple rows at once, so long as they alll
share the same shard keys. You must specify a full set of shard keys to this method.

Use Tabl eAPI . mul ti Get () only if your retrieval set will fit entirely in memory.

For example, suppose you have a table that stores information about products, which
is designed like this:

CREATE TABLE nyTabl e (
i tenType STRING
i tenCategory STRING
i tenCl ass STRI NG
i tenCol or STRI NG
i tenSi ze STRING
price FLOAT,
i nvent oryCount | NTEGER,
PRI MARY KEY (SHARD(itenflype, itentCategory, itenC ass), itenColor,
i tensize)

With tables containing data like this:

* Rowl:
— itemType: Hats
— itemCategory: baseball
— itemClass: longhbill
— itemColor: red
— itemSize: small
— price: 12.07
— inventoryCount: 127
* Row2:
— itemType: Hats

— itemCategory: baseball

7-4

Chapter 7
Using multiGet()

— itemClass: longhill
— itemColor: red
— itemSize: medium

— price: 13.07

inventoryCount: 201
* Row3:
— itemType: Hats
— itemCategory: baseball
— itemClass: longhill
— itemColor: red
— itemSize: large

— price: 14.07

inventoryCount: 39

In this case, you can retrieve all of the rows with their i t enType field set to Hat s and
their i t enCat egory field set to basebal | . Notice that this represents a partial primary
key, because i t enCl ass, i t enCol or and it enSi ze are not used for this query.

package kvstore. basi cExanpl e;

inport java.util.List;

inport java.util.lterator;

i nport oracle. kv. Consi st encyExcepti on;

i nport oracle. kv. KVStore;

i mport oracl e. kv. Request Ti neout Excepti on;
i nport oracle.kv.table.PrimaryKey;

i mport oracle. kv.tabl e. Row,

i nport oracle.kv.table. Tabl e;

i mport oracle. kv.tabl e. Tabl eAPI;

/1 KVStore handle creation is onitted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI () ;

/1 The name you give to getTable() nust be identical

/1 to the name that you gave the table when you created
/1 the table using the CREATE TABLE DDL statenent.

Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Construct the PrinmaryKey. In this case, we are
/] using a partial primry key.

PrimaryKey key = nyTabl e. createPrimryKey();

key. put ("itenfype", "Hats");

ORACLE e

Chapter 7
Iterating over Table Rows

key. put ("itenCategory", "baseball");
key. put ("itenC ass", "longbill");

Li st <Row> nmyRows = nul | ;

try {
myRows = tabl eH nultiGet(key, null, null);

} catch (ConsistencyException ce) {
/'l The consi stency guarantee was not net

} catch (Request Ti meout Exception re) {
Il The operation was not conpleted within the
Il timeout value

You can then iterate over the resulting list as follows:

for (Row theRow. myRows) {
String itenType = theRow. get ("itenType").asString().get();
String itenCategory = theRow. get("itenCategory").asString().get();
String itenC ass = theRow get ("itenC ass").asString().get();
String itenColor = theRow. get("itenColor").asString().get();
String itenSize = theRow. get ("itentize").asString().get();
Fl oat price = theRow. get("price").asFloat().get();
Integer price = theRow. get("itemCount").aslnteger().get();

lterating over Table Rows

ORACLE

Tabl eAPI . tabl el terator () provides non-atomic table iteration. Use this method to
iterate over indexes. This method performs a parallel scan of your tables if you set a
concurrent request size other than 1.

Tabl eAPI . tabl el terator () does not return the entire set of rows all at once. Instead,
it batches the fetching of rows in the iterator, to minimize the number of network round
trips, while not monopolizing the available bandwidth. Also, the rows returned by this
method are in unsorted order.

Note that this method does not result in a single atomic operation. Because the
retrieval is batched, the return set can change over the course of the entire retrieval
operation. As a result, you lose the atomicity of the operation when you use this
method.

This method provides for an unsorted traversal of rows in your table. If you do not
provide a key, then this method will iterate over all of the table's rows.

When using this method, you can optionally specify:

A MiIltiRowOptions class instance. This class allows you to specify a field range,
and the ancestor and parent tables you want to include in this iteration.

 ATablelteratorQOptions class instance. This class allows you to identify the
suggested number of keys to fetch during each network round trip. If you provide a
value of 0, an internally determined default is used. You can also use this class to
specify the traversal order (FORWARD, REVERSE, and UNORDERED are supported).

7-6

ORACLE

Chapter 7
Iterating over Table Rows

This class also allows you to control how many threads are used to perform the
store read. By default this method determines the degree of concurrency based
on the number of available processors. You can tune this concurrency by explicitly
stating how many threads to use for table retrieval. See Parallel Scans for more
information.

Finally, you use this class to specify a consistency policy. See Consistency
Guarantees for more information.

Note:

When using Tabl eAPI . tabl el terator (), it is important to call

Tabl el terator. cl ose() when you are done with the iterator to avoid
resource leaks. This is especially true for long-running applications,
especially if you do not iterate over the entire result set.

For example, suppose you have a table that stores information about products, which
is designed like this:

CREATE TABLE nyTabl e (

i tenfType STRI NG

i tenCategory STRING

itenC ass STRING

i tenCol or STRI NG

itenBi ze STRING

price FLOAT,

i nvent oryCount | NTEGER,

PRI MARY KEY (SHARD(itenflype, itenCategory, itenC ass), itentColor,
i tenSize)

With tables containing data like this:

Row 1:

— itemType: Hats

— itemCategory: baseball
— itemClass: longhill

— itemColor: red

— itemSize: small

— price: 12.07

— inventoryCount: 127
Row 2:

— itemType: Hats

— itemCategory: baseball
— itemClass: longhill

— itemColor: red

7-7

ORACLE

Chapter 7
Iterating over Table Rows

— itemSize: medium

— price: 13.07

— inventoryCount: 201
* Row3:

— itemType: Hats

— itemCategory: baseball

— itemClass: longhill

— itemColor: red

— itemSize: large

— price: 14.07

— inventoryCount: 39
* Rown:

— itemType: Coats

— itemCategory: Casual

— itemClass: Winter

— itemColor: red

— itemSize: large

— price: 247.99

— inventoryCount: 9

Then in the simplest case, you can retrieve all of the rows related to 'Hats' using

Tabl eAPI . tabl el terator () as follows. Note that this simple example can also be
accomplished using the Tabl eAPI . mul ti Get () method. If you have a complete shard
key, and if the entire results set will fit in memory, then nul ti Get () will perform much
better than t abl el t er at or () . However, if the results set cannot fit entirely in memory,
or if you do not have a complete shard key, then t abl el terat or () is the better choice.
Note that reads performed using t abl el t erat or () are non-atomic, which may have
ramifications if you are performing a long-running iteration over records that are being
updated.

package kvstore. basi cExanpl e;

i mport oracle. kv. KVSt ore;

i mport oracle. kv.table.PrinaryKey;

i mport oracle. kv.tabl e. Row,

i mport oracle. kv.tabl e. Tabl e;

i mport oracle. kv.tabl e. Tabl eAPI;

i mport oracle.kv.table. Tablelterator;

/1 KVStore handle creation is omtted for brevity

7-8

Chapter 7
Specifying Field Ranges

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

/1 The name you give to getTable() nust be identical

/1 to the name that you gave the table when you created
/1 the table using the CREATE TABLE DDL statenent.

Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/] Construct the PrinmaryKey. In this case, we are
/1 using a partial primry key.

Pri maryKey key = nyTabl e. creat ePri maryKey();

key. put ("iteniType", "Hats");

/1 Exception handling is omtted, but in production code
/1 Consi stencyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.
Tablelterator<Row> iter = tableH tablelterator(key, null, null);
try {
while (iter.hasNext()) {
Row row = iter.next();
/1 Exanmine your row s fields here

}
} finally {
if (iter '=null) {
iter.close();
}

Specifying Field Ranges

ORACLE

When performing multi-key operations in the store, you can specify a range of rows to
operate upon. You do this using the Fi el dRange class, which is accepted by any of the
methods which perform bulk reads. This class is used to restrict the selected rows to
those matching a range of field values.

For example, suppose you defined a table like this:

CREATE TABLE nyTabl e (
surname STRI NG
fam |iarName STRI NG
user| D STRI NG
phonenunber STRI NG
address STRI NG
emai | STRI NG
dateOf Birth STRI NG
PRI MARY KEY (SHARD(surnane, famliarNane), userlD)

The sur nane contains a person's family name, such as Smi th. The fami | i ar Name
contains their common name, such as Bob, Pat ri ci a, Robert, and so forth.

Given this, you could perform operations for all the rows related to users with a
surname of Smi t h, but we can limit the result set to just those users with familiar
names that fall alphabetically between Bob and Pat ri ci a by specifying a field range.

7-9

ORACLE

Chapter 7
Specifying Field Ranges

A Fi el dRange is created using Tabl e. cr eat eFi el dRange() . This method takes just
one argument — the name of the primary key for which you want to set the range.

In this case, we will define the start of the key range using the string "Bob" and the end
of the key range to be "Patricia". Both ends of the key range will be inclusive.

In this example, we use Tabl el t er at or, but we could just as easily use this
range on any multi-row read operation, such as the Tabl eAPI . mul ti Get () or
Tabl eAPI . mul ti Get Keys() methods. The Fi el dRange object is passed to these
methods using a Ml t i RowOpt i ons class instance, which we construct using the
Fi el dRange. creat eMul ti RowOpt i ons() convenience method.

package kvstore. basi cExanpl e;

i mport oracle. kv. KVSt ore;

i mport oracl e. kv.tabl e. Fi el dRange;

i mport oracle. kv.table. Ml ti RowOpti ons;
i mport oracl e. kv.tabl e. PrinaryKey;

i mport oracle. kv.tabl e. Row

i mport oracle. kv.tabl e. Tabl e;

i mport oracle. kv.tabl e. Tabl eAPI ;

i mport oracle.kv.table. Tablelterator;

/1 KVStore handle creation is omtted for brevity

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();

/1 The name you give to getTable() nust be identical

/1 to the name that you gave the table when you created
/1 the table using the CREATE TABLE DDL statenent.

Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Construct the PrinaryKey. In this case, we are
[l using a partial primary key.

PrimaryKey key = nyTabl e. creat ePri maryKey();

key. put ("surnane", "Smth");

/Il Create the field range

FieldRange fh = myTable.createFieldRange("'familiarName™);
fh.setStart("'Bob", true);

th_setEnd("Patricia"™, true);

MultiRowOptions mro = fh.createMultiRowOptions();

/1 Exception handling is omtted, but in production code

/1 Consi stencyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.

Tablelterator<Row> iter = tableH tablelterator(key, mro, null);

try {
while (iter.hasNext()) {

7-10

Chapter 7
Iterating with Nested Tables

Row row = iter.next();
/1 Exanmine your row s fields here

}
} finally {
if (iter '=null) {
iter.close();
}
}

lterating with Nested Tables

ORACLE

When you are iterating over a table, or performing a multi-get operation, by default
only rows are retrieved from the table on which you are operating. However, you can
use Ml ti RowOpt i ons to specify that parent and child tables are to be retrieved as
well.

When you do this, parent tables are retrieved first, then the table you are operating on,
then child tables. In other words, the tables' hierarchical order is observed.

The parent and child tables retrieved are identified by specifying a Li st of Tabl e
objects to the ancest or s and chi | dren parameters on the class constructor. You
can also specify these using the Mil ti RowOpt i ons. set | ncl udedChi | dTabl es() or
Mul ti RowOpt i ons. set | ncl udedPar ent Tabl es() methods.

When operating on rows retrieved from multiple tables, it is your responsibility to
determine which table the row belongs to.

For example, suppose you create a table with a child and grandchild table like this:

CREATE TABLE prodTabl e (
prodType STRI NG
typeDescription STRI NG
PRI MARY KEY (prodType)

CREATE TABLE prodTabl e. prodCat egory (
cat egoryName STRI NG
cat egoryDescription STRI NG
PRI MARY KEY (categoryNane)

CREATE TABLE prodTabl e. prodCat egory.item (
i tenSKU STRI NG
i tenDescription STRING
itenPrice FLOAT,
vendor U D STRI NG
i nvent oryCount | NTEGER,
PRI MARY KEY (it enBKU)

With tables containing data like this:

* Row1:

7-11

ORACLE

— prodType: Hardware

— typeDescription: Equipment, tools and parts

— Row1.1:

* categoryName: Bolts

* categoryDescription: Metric & US Sizes

* Row 1.1.1:
itemSKU: 1392610

*
*
*
*

*

e Row2:

itemDescription: 1/4-20 x 1/2 Grade 8 Hex

itemPrice: 11.99
vendorUID: ASLN99

inventoryCount: 1457

— prodType: Tools

— typeDescription: Hand and power tools

— Row 2.1:

* categoryName: Handtools

* categoryDescription: Hammers, screwdrivers, saws

* Row 2.1.1:
itemSKU: 1582178

*

*

*

*

*

itemDescription: Acme 20 ounce claw hammer

itemPrice: 24.98
vendorUID: D6BQ27

inventoryCount: 249

Chapter 7
Iterating with Nested Tables

In this case, you can display all of the data contained in these tables in the following

way.

Start by getting all our table handles:

package kvstore.tabl eExanpl e;

import java.util.Arrays;

i mport oracle.
i mport oracle.
i mport oracle.

i mport oracle.
i mport oracle.
i mport oracle.
i mport oracle.

i mport oracle.
i mport oracle.

kv.
kv.
kv.

kv.
kv.
kv.
kv.

kv.
kv.

KVSt or e;
KVSt or eConfi g;
KVSt or eFact ory;

tabl e. Pri mar yKey;
t abl e. Row,

t abl e. Tabl e;

t abl e. Tabl eAPI ;

tabl e. Tabl el terator;
tabl e. Mul ti RowOpti ons;

7-12

ORACLE

Chapter 7
Iterating with Nested Tables

private static Table prodTabl e;
private static Table categoryTabl e;
private static Table iteniable;

private static Tabl eAPl tabl eH
/1 KVStore handle creation is omtted for brevity

tabl eH = kvstore. get Tabl eAPI ();

prodTabl e = tabl eH. get Tabl e("prodTabl e");

categoryTabl e = tabl eH. get Tabl e(" prodTabl e. pr odCat egory");
i tenfabl e = tabl eH. get Tabl e("prodTabl e. prodCat egory.itent);

Now we need the Pri mar yKey and the Mul t i RowOpt i ons that we will use to iterate over
the top-level table. Because we want all the rows in the top-level table, we create an
empty Pri naryKey.

The Mul ti RowOpt i ons identifies the two child tables in the constructor's chi | d
parameter. This causes the iteration to return all the rows from the top-level table,
as well as all the rows from the nested children tables.

/1 Construct a primary key
PrimaryKey key = prodTabl e. createPri maryKey();

/1l Get a Multi RowOptions and tell it to ook at both the child
/] tables
Mil ti RowOptions nro = new Mil ti RowOptions(null, null,

Arrays. asLi st (categoryTabl e, itenTable));

Now we perform the iteration:

/1 Get the table iterator
/1 Exception handling is omtted, but in production code
/1 Consi st encyException, RequestTi neException, and Faul t Exception
/1 woul d have to be handl ed.
Tablelterator<Row> iter = tableH tablelterator(key, nro, null);
try {

while (iter.hasNext()) {

Row row = iter.next();

di spl ayRow(r ow) ;

}
} finally {
if (iter '=null) {
iter.close();
}

7-13

ORACLE

Chapter 7
Iterating with Nested Tables

Our di spl ayRow() method is used to determine which table a row belongs to, and then
display it in the appropriate way.

private static void displayRow Row row) {
/1 Display the row depending on which table it belongs to
if (row getTable().equal s(prodTable)) {
di spl ayPr odTabl eRow(r ow) ;
} else if (row. getTable().equal s(categoryTable)) {
di spl ayCat egor yTabl eRow(r ow) ;
} else {
di spl ayl t eniTabl eRow(r ow) ;

}

Finally, we just need the methods used to display each row. These are trivial, but in a
more sophisticated application they could be used to do more complex things, such as
construct HTML pages or write XSL-FO for the purposes of generating PDF copies of
a report.

private static void displayProdTabl eRow(Row row) {
Systemout. println("\nType: " +
row. get ("prodType").asString().get());
Systemout. println("Description: " +
row. get ("typeDescription").asString().get());

}

private static void displayCategoryTabl eRowm Row row) {
Systemout. println("\tCategory: " +
row. get ("categoryNane").asString().get());
Systemout. println("\tDescription: " +
row. get ("categoryDescription").asString().get());

}

private static void displaylteniTabl eRow Row row) {

Systemout.printin("\t\tSKU " +

row. get ("itenSKU").asString().get());
Systemout.printin("\t\tDescription: " +

row. get ("itemDescription").asString().get());
Systemout.printin("\t\tPrice: " +

row. get("itenPrice").asFloat().get());
Systemout.printin("\t\tVendorUuD: " +

row. get ("vendorU D').asString().get());
Systemout.printin("\t\tlnventory count: " +

row. get ("inventoryCount").aslnteger().get());
Systemout. println("\n");

Note that the retrieval order remains the top-most ancestor to the lowest child, even if
you retrieve by lowest child. For example, you can retrieve all the Bolts, and all of their
parent tables, like this:

/1 Get all the table handles
prodTabl e = tabl eH. get Tabl e("prodTabl e");

7-14

Chapter 7
Reading Indexes

categoryTabl e = tabl eH. get Tabl e(" prodTabl e. pr odCat egory");
i tenfabl e = tabl eH. get Tabl e("prodTabl e. prodCat egory.itent);

/1 Construct a primary key

Pri maryKey key = itenfabl e.createPrimryKey();
key. put (" prodType", "Hardware");

key. put (" cat egoryNane", "Bolts");

/] Get a Milti RowOptions and tell it to look at both the ancestor
/'l tables
Miul ti RowOptions nro = new Mul ti RowOptions(null,

Arrays. asLi st (prodTabl e, categoryTable), null);

Il Get the table iterator
/1 Exception handling is omtted, but in production code
/1 Consi stencyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.
Tablelterator<Row> iter = tableH tablelterator(key, nro, null);
try {

while (iter.hasNext()) {

Row row = iter.next();

di spl ayRow(r ow) ;

}
} finally {
if (iter '=null) {
iter.close();
}

Reading Indexes

ORACLE

You use Tabl el t erat or to retrieve table rows using a table's indexes. Just as when
you use Tabl el t er at or to read table rows using a table's primary key(s), when
reading using indexes you can set options such as field ranges, traversal direction,
and so forth. By default, index scans return entries in forward order.

In this case, rather than provide Tabl el t er at or with a Pri mar yKey instance, you use
an instance of | ndexKey.

For example, suppose you defined a table like this:

CREATE TABLE nyTabl e (
surname STRI NG
fam |iarName STRI NG
user| D STRI NG
phonenunber STRI NG
address STRI NG
emai | STRING
dateOf Birth STRI NG
PRI MARY KEY (SHARD(surnane, famliarNane), userlD)

CREATE | NDEX DoB ON nyTabl e (dateOfBirth)

7-15

ORACLE

Chapter 7
Reading Indexes

This creates an index named DoB for table nmyTabl e based on the value of the
dat eX Bi rt h field. To read using that index, you use Tabl e. get I ndex() to retrieve the
index named Dob. You then create an | ndexKey from the | ndex object. For example:

package kvstore. basi cExanpl e;

i nport oracle. kv. KVStore;

i mport oracle. kv.table. | ndex;

i nport oracle.kv.table.|ndexKey;

i mport oracle. kv.tabl e. Row,

inport oracle.kv.table. Tabl e;

i mport oracle. kv.tabl e. Tabl eAPI;

i mport oracle.kv.table. Tablelterator;

/1 KVStore handle creation is onitted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Construct the IndexKey. The name we gave our index when
Il we created it was 'DoB' .

I ndex dobldx = nmyTabl e. get | ndex(" DoB");

I ndexKey dobl dxKey = dobl dx. creat el ndexKey();

/1 Exception handling is omtted, but in production code
/1 Consi stencyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.
Tabl el terator<Row> iter = tabl eH. tablelterator(dobldxKey, null, null);
try {
while (iter.hasNext()) {
Row row = iter.next();
/1 Exanine your row s fields here

}
} finally {
if (iter !'=null) {
iter.close();
}
}

If you want to return entries that match a specific field name and field value, then use
the I ndexKey. put () method:

/] Construct the IndexKey. The name we gave our index when
Il we created it was 'DoB'.

I ndex dobldx = myTabl e. get | ndex(" DoB");

I ndexKey dobl dxKey = dobl dx. creat el ndexKey();

// Return only those entries with a dateOfBirth equal to

7-16

ORACLE

Chapter 7
Reading Indexes

// "1991-08-23"
dobldxKey . put("'dateOfBirth”, "1991-08-23");

/1 Exception handling is omtted, but in production code
/' Consi stencyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.
Tabl elterator<Row> iter = tableH. tablelterator(dobldxKey, null, null);
try {
while (iter.hasNext()) {
Row row = iter.next();
/1 Examine your row s fields here

}
} finally {
if (iter '=null) {
iter.close();
}

If you want to return all the entries with a null value for the field, use the
I ndexKey. put Nul | () method:

/1 Construct the IndexKey. The name we gave our index when
/1 we created it was 'DoB'.

I ndex dobl dx = myTabl e. get | ndex("DoB");

I ndexKey dobl dxKey = dobl dx. creat el ndexKey() ;

// Return only those entries with a NULL dateOfBirth

// value.

dobldxKey.putNull (""dateOfBirth™);

/1 Exception handling is omtted, but in production code
/1 Consi st encyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.
Tabl el terator<Row> iter = tableH. tablelterator(dobldxKey, null, null);
try {
while (iter.hasNext()) {
Row row = iter.next();
/1 Exanine your row s fields here

}
} finally {
if (iter '=null) {
iter.close();
}

In the previous example, the code examines every row indexed by the DoB index.

A more likely, and useful, example in this case would be to limit the rows returned
through the use of a field range. You do that by using | ndex. cr eat eFi el dRange() to
create a Fi el dRange object. When you do this, you must specify the field to base the
range on. Recall that an index can be based on more than one table field, so the field
name you give the method must be one of the indexed fields.

For example, if the rows hold dates in the form of yyyy- rm dd, you could
retrieve all the people born in the month of May, 1994 in the following way.

7-17

ORACLE

Chapter 7
Reading Indexes

This index only examines one field, dat eOf Bi rt h, so we give that field name to
I ndex. creat eFi el dRange():

package kvstore. basi cExanpl e;

i mport oracle. kv. KVSt ore;

i mport oracle. kv. tabl e. Fi el dRange

i mport oracle. kv.tabl e. | ndex

i mport oracle. kv. tabl e. | ndexKey;

i mport oracle. kv.tabl e. Ml ti RowOpti on;
i mport oracle. kv. tabl e. Row,

i mport oracle. kv.tabl e. Tabl e

i mport oracle. kv. tabl e. Tabl eAPI

i mport oracle.kv.table. Tabl elterator

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Construct the IndexKey. The name we gave our index when
/1 we created it was 'DoB'.

I ndex dobldx = myTabl e. get | ndex(" DoB");

I ndexKey dobl dxKey = dobl dx. creat el ndexKey();

/Il Create the field range

FieldRange fh = dobldx.createFieldRange(*'dateOfBirth™);
fh.setStart("'1994-05-01", true);
fth.setEnd('1994-05-30", true);

MultiRowOptions mro = fh.createMultiRowOptions();

/1 Exception handling is omtted, but in production code
/'l Consi stencyException, RequestTi meException, and Faul t Exception
/1 would have to be handl ed
Tabl el terat or<Row> iter = tableH tablelterator(dobldxKey, mro, null);
try {
while (iter.hasNext()) {
Row row = iter.next();
/1 Exanmine your rows fields here

}
} finally {
if (iter '=null) {
iter.close()
}
}

7-18

Chapter 7
Parallel Scans

Parallel Scans

ORACLE

By default, store reads are performed using multiple threads, the number of which

is chosen by the number of cores available to your code. You can configure the
maximum number of client-side threads to be used for the scan, as well as the
number of results per request and the maximum number of result batches that the
Oracle NoSQL Database client can hold before the scan pauses. To do this, use

the Tabl el t er at or Opt i ons class. You pass this to Tabl eAPI . tabl el terator (). This
creates a Tabl el t er at or that uses the specified parallel scan configuration.

" Note:

You cannot configure the number of scans you use for your reads if you are
using indexes.

For example, to retrieve all of the records in the store using 5 threads in parallel, you
would do this:

package kvstore. basi cExanpl e;

i mport oracl e. kv. Consi st ency;

i mport oracle.kv.Direction;

i mport oracle. kv. KVSt ore;

i mport oracl e. kv.tabl e. Fi el dRange;

i mport oracle. kv.tabl e. PrinaryKey;

i mport oracle. kv.table. Mil ti RowOpti on;
i mport oracl e. kv. tabl e. Row;

i mport oracle. kv.tabl e. Tabl e;

i mport oracle. kv. tabl e. Tabl eAP! ;

i mport oracle.kv.table. Tablelterator;
i mport oracle. kv.tabl e. Tabl el terator Opti ons;

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");
/1 Construct the PrinaryKey.

Pri maryKey key = nyTabl e. creat ePri maryKey();
key. put ("itenType", "Hats");

key. put ("itenCategory", "baseball");

TablelteratorOptions tio =

7-19

Chapter 7

Bulk Get Operations
new TablelteratorOptions(Direction.UNORDERED,

Consistency.NONE_REQUIRED,
0, // timeout
null, // timeout units
5, // number of concurrent

// threads
0 // results per request

0); // max result sets
/1 Exception handling is omtted, but in production code
/1 Consi stencyException, RequestTi meException, and Faul t Exception
/1 woul d have to be handl ed.
Tabl el terat or<Row> iter =
tabl eH tablelterator(key, null, tio);
try {
while (iter.hasNext()) {
Row row = iter.next();
/1 Exanmine your row s fields here

}
} finally {
if (iter '=null) {
iter.close();
}

Bulk Get Operations

Bulk get operations allow you to retrieve and process records from each shard in
parallel, like a parallel scan, but using a set of keys instead of a single key as retrieval
criteria.

A bulk get operation does not return the entire set of rows all at once. Instead, it
batches the fetching of rows in the iterator, to minimize the number of network round
trips, while not monopolizing the available bandwidth. Batches are fetched in parallel
across multiple Replication Nodes. If more threads are specified on the client side,
then the user can expect better retrieval performance — until processor or network
resources are saturated.

To use bulk get, use one of the Tabl eAPI . tabl el terator () or

Tabl eAPI . t abl eKeysl t erat or () methods that provide bulk retrievals. These accept
a set of keys instead of a single key as the retrieval criteria. The set is provided using
either an | t er at or <Key> or Li st <l t er at or <Key>> value.

The methods retrieve the rows or primary keys matching the keys supplied by the
iterator(s).

Note:

If the iterator yields duplicate keys, the row associated with the duplicate
keys will be returned at least once and potentially multiple times.

The supplied keys should follow these rules:

ORACLE 7-20

ORACLE

Chapter 7
Bulk Get Operations

All supplied primary keys should belong to the same table.
The input key must be a complete shard key.

If a field range is specified, then the partial primary keys should be uniform. That
is, they should have the same number of components. Also, the field range must
be the first unspecified field of the supplied key.

When using these methods, you can also optionally specify:

A Ml ti RowOpt i ons class instance which allows you to specify a field range, as
well as the ancestor and parent tables you want to include in the iteration.

The number of keys to fetch during each network round trip using a

Tabl el terat or Opti ons class instance. If you provide a value of 0, an internally
determined default is used. You can also specify the traversal order (UNORDERED is
supported).

You can control how many threads are used to perform the store read using the
MaxConcur r ent Request s parameter.

Finally, you can specify a consistency policy. See Consistency Guarantees for
more information.

For example, suppose you have a table that stores information about products, which
is designed like this:

CREATE TABLE nyTabl e (

i tenfType STRI NG

i tenCat egory STRING

i tenCl ass STRI NG

i tenCol or STRI NG

itenBi ze STRING

price FLOAT,

i nvent oryCount | NTEGER,

PRI MARY KEY (SHARD(itenflype, itentCategory), itenC ass, itenColor,
i tentize))

With tables containing data like this:

Row 1:

— itemType: Hats

— itemCategory: baseball
— itemClass: longbill

— itemColor: red

— itemSize: small

— price: 12.07

inventoryCount: 127
Row 2:

— itemType: Hats

— itemCategory: baseball

— itemClass: longbill

7-21

ORACLE

itemColor:

red

itemSize: medium

price: 13.07

inventoryCount: 201

e Row 3:

itemType: Pants

itemCategory: baseball

itemClass:

itemColor:

Summer

red

itemSize: large

price: 14.07

inventoryCount: 39
* Row4:

itemType: Pants

itemCategory: baseball

itemClass:

Winter

itemColor: white

itemSize: large

price: 16.99

inventoryCount: 9

e Rown:

itemType: Coats

itemCategory: Casual

itemClass:

itemColor:

Winter

red

itemSize: large

price: 247.99

inventoryCount: 13

Chapter 7
Bulk Get Operations

If you want to locate all the Hats and Pants used for baseball, using nine threads in

parallel, you can retrieve all of the records as follows:

package kvstore. basi cExanpl e;

i mport
i mport
i mport
i mport
i mport
i mport
i mport

java. util
java. util
oracl e. kv
oracl e. kv
oracl e. kv
oracl e. kv
oracl e. kv

.Arraylist;

. List;

. Consi st ency;
.Direction;

.tabl e. Pri maryKey;
.tabl e. Row,

.tabl e. Tabl eAPI ;

7-22

ORACLE

Chapter 7
Bulk Get Operations

i mport oracle.kv.table. Tablelterator;
i mport oracle.kv.table. Tabl el terator Opti ons;

/1 KVStore handle creation is omtted for brevity

/1 Construct the Table Handle
Tabl eAPI tableH = store. get Tabl eAPI ();
Tabl e table = tabl eH. get Tabl e("nmyTabl e");

/1 Use multi-threading for this store iteration and linit the number
/1 of threads (degree of parallelism to 9.
final int maxConcurrent Requests = 9;
final int batchResultsSize = 0;
final TablelteratorQptions tio =
new Tabl el terat or Opti ons(Di recti on. UNORDERED,
Consi st ency. NONE_REQUI RED,
0, null,
maxConcur r ent Request s,
bat chResul t sSi ze);

/1 Create retrieval keys

PrimaryKey nyKey = table. createPrimryKey();
nyKey. put ("itenType", "Hats");

nyKey. put ("itenCat egory", "baseball");
PrimaryKey otherKey = table.createPrimryKey();
ot her Key. put ("itenType", "Pants");

ot her Key. put ("itenCat egory", "baseball");

Li st <Pri maryKey> searchKeys = new ArrayLi st<Pri maryKey>();

/1 Add the retrieval keys to the list.
sear chKeys. add(nyKey) ;
sear chKeys. add(ot her Key) ;

final Tablelterator<Row> iterator = tableH. tablelterator(
searchKeys.iterator(), null, tio);

/1 Now retrieve the records.

try {
while (iterator.hasNext()) {
Row row = (Row) iterator.next();
/1 Do some work with the Row here

}

} finally {
if (iterator !'=null) {

iterator.close();

}

7-23

Using Data Types

Many of the types that Oracle NoSQL Database offers are easy to use. Examples
of their usage has been scattered throughout this manual. However, some types are
a little more complicated to use because they use container methods. This chapter
describes their usage.

The types described in this chapter are: Arrays, Maps, Records, Enums, and Byte
Arrays. This chapter shows how to read and write values of each of these types.

Using Arrays

ORACLE

Arrays are a sequence of values all of the same type.
When you declare a table field as an array, you use the ARRAY() statement.

To define a simple two-field table where the primary key is a UID and the second field
contains array of strings, you use the following DDL statement:

CREATE TABLE nyTabl e (
ui d | NTEGER
myArray ARRAY(STRI NG,
PRI MARY KEY(ui d)

DEFAULT and NOT NULL constraints are not supported for arrays.

To write the array, use Row. put Array(), which returns an ArrayVal ue class instance.
You then use ArrayVal ue. put () to write elements to the array:

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

Row row = nyTabl e. creat eRow() ;
row. put ("uid", 12345);

ArrayVal ue av = row. put Array("myArray");
av.add("One");

av.add(" Two");

av.add("Three");

tableH put(row, null, null);

Note that ArrayVal ue has methods that allow you to add multiple values to the array
by appending an array of values to the array. This assumes the array of values

8-1

Chapter 8
Using Binary

matches the array's schema. For example, the previous example could be done in the
following way:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

Row row = nyTabl e. creat eRow() ;
row. put ("uid", 12345);

ArrayVal ue av = row. put Array("nyArray");
String nyStrings[] = {"One", "Two", "Three"};
av.add(nyStrings);

tabl eH put (row, null, null);

To read the array, use Row. get (). asArray(). This returns an ArrayVal ue class
instance. You can then use ArrayVal ue. get () to retrieve an element of the array
from a specified index, or you can use ArrayVal ue. t oLi st () to return the array
as a Java Li st . In either case, the retrieved values are returned as a Fi el dVal ue,
which allows you to retrieve the encapsulated value using a cast method such as
Fi el dval ue. asString().

For example, to iterate over the array created in the previous example:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nyTabl e = tabl eH. get Tabl e("nyTabl e");

/[* Create a primary key for user id 12345 and get a row */
PrimaryKey key = nyTabl e. creat ePri maryKey();

key. put ("uid", 12345);

Row row = tabl eH. get (key, null);

/* lterate over the array, displaying each elenment as a string */

ArrayVal ue av = row. get ("nyArray").asArray();

for (Fieldvalue fv: av.toList()) {
Systemout.println(fv.asString().get()); }

Using Binary

ORACLE

You can declare a field as binary using the Bl NARY statement. You then read and write
the field value using a Java byte array.

If you want to store a large binary object, then you should use the LOB APIs rather
than a binary field.

Note that fixed binary should be used over the binary datatype any time you know that
all the field values will be of the same size. Fixed binary is a more compact storage
format because it does not need to store the size of the array. See Using Fixed Binary
for information on the fixed binary datatype.

8-2

Chapter 8
Using Enums

To define a simple two-field table where the primary key is a UID and the second field
contains a binary field, you use the following statement:

CREATE TABLE nyTabl e (
ui d | NTEGER,
nyByt eArray Bl NARY,
PRI MARY KEY(ui d)

DEFAULT and NOT NULL constraints are not supported for binary values.

To write the byte array, use Row. put () .
Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

Row row = nyTabl e. creat eRow() ;
row. put ("uid", 12345);

String aString = "The quick brown fox.";

try {

row. put ("nyByteArray", aString.getBytes("UTF-8"));
} catch (UnsupportedEncodi ngException uee) {

uee. print StackTrace();
}

tableH put(row, null, null);

To read the binary field, use Row. get (). asBi nary() . This returns a Bi nar yVal ue class
instance. You can then use Bi naryVal ue. get () to retrieve the stored byte array.

For example:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();

Tabl e nyTabl e = tabl eH. get Tabl e("nyTabl e");

/[* Create a primary key for user id 12345 and get a row */
Pri maryKey key = nyTabl e. creat ePri maryKey();

key. put ("uid", 12345);

Row row = tabl eH. get (key, null);

byte[] b = row get("nmyByteArray").asBinary().get();

String aString = new String(b);
Systemout.printIn("aString: " + aString);

Using Enums

Enumerated types are declared using the ENUM) statement. You must declare the
acceptable enumeration values when you use this statement.

ORACLE 8-3

Chapter 8
Using Fixed Binary

To define a simple two-field table where the primary key is a UID and the second field
contains an enum, you use the following DDL statement:

CREATE TABLE nyTabl e (
ui d | NTEGER,
myEnum ENUM (Appl e, Pear s, Oranges),
PRI MARY KEY (ui d)

DEFAULT and NOT NULL constraints are supported for enumerated fields. See DEFAULT
for more information.

To write the enum, use Row. put Enun{() . If the enumeration value that you use with this
method does not match a value defined on the - enum val ues parameter during table
definition, an I | | egal Ar gument Except i on is thrown.

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

Row row = nyTabl e. creat eRow() ;
row. put ("uid", 12345);

row. put Enun(" nyEnunt', "Pears");

tableH put(row, null, null);

To read the enum, use Row. get (). asEnun() . This returns a EnunVal ue class instance.
You can then use EnunVal ue. get () to retrieve the stored enum value's name as a
string. Alternatively, you can use EnunVal ue. get | ndex() to retrieve the stored value's
index position.

For example:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

[* Create a primary key for user id 12345 and get a row */
PrimaryKey key = nyTabl e. creat ePri maryKey();

key. put ("uid", 12345);

Row row = tabl eH. get (key, null);

EnunVal ue ev = row. get ("test Enunt'). asEnum();

Systemout.printin("enumas string: " +
ev.get()); // returns "Pears"

Systemout. println("enumindex: " +
ev.getindex()); // returns '1'

Using Fixed Binary

You can declare a fixed binary field using the Bl NARY() statement. When you do this,
you must also specify the field's size in bytes. You then read and write the field value

ORACLE 8-4

ORACLE

Chapter 8
Using Fixed Binary

using Java byte arrays. However, if the byte array does not equal the specified size,
then Il | egal Ar gunent Excepti on is thrown when you attempt to write the field. Write
the field value using a Java byte array.

If you want to store a large binary object, then you should use the LOB APIs rather
than a binary field.

Fixed binary should be used over the binary datatype any time you know that all
the field values will be of the same size. Fixed binary is a more compact storage
format because it does not need to store the size of the array. See Using Binary for
information on the binary datatype.

To define a simple two-field table where the primary key is a UID and the second field
contains a fixed binary field, you use the following DDL statement:

CREATE TABLE nyTabl e (
ui d | NTEGER
myByt eArray Bl NARY(20),
PRI MARY KEY (uid)

DEFAULT and NOT NULL constraints are not supported for binary values.

To write the byte array, use Row. put Fi xed() . Again, if the byte array does not match
the size defined for this field, then | | | egal Argunent Excepti on is thrown.

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

Row row = nyTabl e. creat eRow() ;
row. put ("uid", 12345);

String aString = "The quick brown fox.";

try {

row. put Fi xed(" nyByteArray", aString.getBytes("UTF-8"));
} catch (UnsupportedEncodi ngException uee) {

uee. print StackTrace();

}

tabl eH put (row, null, null);

To read the fixed binary field, use Row. get () . asFi xedBi nary() . This returns a
Fi xedBi nar yVal ue class instance. You can then use Fi xedBi nar yVal ue. get () to
retrieve the stored byte array.

For example:

Tabl eAPl tableH = kvstore. get Tabl eAPI ();

Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/* Create a primary key for user id 12345 and get a row */

Pri maryKey key = nyTabl e. creat ePri maryKey();
key. put ("uid", 12345);

8-5

Chapter 8
Using JSON

Row row = tabl eH. get (key, null);
byte[] b = row get("nyByteArray"). asFi xedBi nary().get();

String aString = new String(b);
Systemout.printin("aString: " + aString);

Using JSON

ORACLE

The JSON datatype cannot be used as part of a primary or shard key.

To define a simple two-field table where the primary key is a UID and the second field
contains a JSON data field, you use the following DDL statement:

CREATE TABLE myJsonTabl e (
ui d | NTEGER
myJSON JSON,
PRI MARY KEY (uid)

The data that you write for this datatype can be any valid JSON stored as a string. For
example, all of the following are valid:

final String jsonNunber = "2";

final String jsonString = "\"a json string\"";

final String jsonCbject_null = "{}";

final String jsonCbject = "{\"a\": 1.006, \"b\": null," +
“\"bool\" : true, \"map\": {\"nL\": 5}," +
"\"ar\" : [1,2.7,3]}";

final String jsonNull = "null";

To store a JSON value in the table that we defined, above:

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();

Tabl e nyJsonTabl e = tabl eH. get Tabl e("nyJsonTabl e");
Row row = nyTabl e. creat eRow() ;

row. put ("uid", 12345);

String jsonArray="[1,5,11.1,88]";

row. put Json("myJSON', jsonArray);

tabl eH put(row, null, null);

To retrieve it:

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();

Tabl e nyTabl e = tabl eH. get Tabl e("nmyJsonTabl e");
Pri maryKey pkey = nyTabl e. createPrimaryKey();
pkey. put ("uid", 12345);

Row row = tabl eH. get (pkey, null);

int uid = row.get("uid").aslnteger().get();
String jsonStr = row. get("nyJSON').toString();

8-6

Chapter 8
Using Maps

Systemout.printin("uid: " +uid + " JSO\: " + jsonStr);

Be aware that a version of Row. put Json() exists that allows you to use Java Readers
to stream JSON data from 1/O locations (such as files on disk). For example, to stream
a small file from disk use j ava. i 0. Fi | eReader :

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyJsonTabl e");

Row row = nyTabl e. creat eRow() ;
row. put ("uid", 666);

try {
Fil eReader fr = new Fil eReader ("nyJsonFile.txt");
row. put Json("nyJson", fr);
tabl eH put (row, null, null);

} catch (Fil eNot FoundException fnfe) {
Systemout.printIn("File not found: " + fnfe);

}

For a more complete example of using JSON data fields, see JSON By Example.

Using Maps

ORACLE

All map entries must be of the same type. Regardless of the type of the map's values,
its keys are always strings.

The string "[]" is reserved and must not be used for key names.

When you declare a table field as a map, you use the MAP() statement. You must also
declare the map element's data types.

To define a simple two-field table where the primary key is a UID and the second field
contains a map of integers, you use the following DDL statement:

CREATE TABLE nyTabl e (
ui d | NTEGER

nyMap MAP(| NTEGER)
PRI MARY KEY (ui d)

DEFAULT and NOT NULL constraints are not supported for map fields.

To write the map, use Row. put Map(), which returns a MapVal ue class instance. You
then use MapVal ue. put () to write elements to the map:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI () ;
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

Row row = nyTabl e. creat eRow() ;

8-7

Chapter 8
Using Embedded Records

row. put ("uid", 12345);

MapVal ue nv = row. put Map(" nyMap");
nv.put("fieldl", 1);
nv.put ("field2", 2);
nv.put ("field3", 3);

tableH put(row, null, null);

To read the map, use Row. get (). asMap() . This returns a MapVal ue class instance. You
can then use MapVal ue. get () to retrieve an map value. The retrieved value is returned
as a Fi el dval ue, which allows you to retrieve the encapsulated value using a cast
method such as Fi el dVal ue. asl nteger ().

For example, to retrieve elements from the map created in the previous example:

Tabl eAPl tableH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/* Create a primary key for user id 12345 and get a row */
Pri maryKey key = nyTabl e. creat ePri maryKey();

key. put ("uid", 12345);

Row row = tabl eH. get (key, null);

MapVal ue nv = row. get ("test Map").asMap();
Fieldvalue fv = nv.get("field3");
Systemout.printIn("fv: " + fv.aslnteger().get());

Using Embedded Records

ORACLE

A record entry can contain fields of differing types. However, embedded records
should be used only when the data is relatively static. In general, child tables provide
a better solution over embedded records, especially if the child dataset is large or is
likely to change in size.

Use the RECORD() statement to declare a table field as a record.

To define a simple two-field table where the primary key is a UID and the second field
contains a record, you use the following DDL statement:

CREATE TABLE nyTabl e (
ui d | NTEGER
myRecord RECORD(firstField STRING secondField | NTEGER),
PRI MARY KEY (uid)

DEFAULT and NOT NULL constraints are not supported for embedded record fields.
However, these constraints can be applied to the individual fields in an embedded
record. See Field Constraints for more information.

8-8

ORACLE

Chapter 8
Using Embedded Records

To write the record, use Row. put Recor d(), which returns a Recor dVal ue class
instance. You then use Recor dVal ue. put () to write fields to the record:

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

Row row = nyTabl e. creat eRow() ;
row. put ("uid", 12345);

RecordVval ue rv = row. put Record("myRecord");
rv.put("firstField", "An enbedded record STRING field");
rv.put ("secondFiel d', 3388);

tabl eH put(row, null, null);

To read the record, use Row. get (). asRecor d() . This returns a Recor dVal ue class
instance. You can then use Recor dVal ue. get () to retrieve a field from the record.
The retrieved value is returned as a Fi el dVal ue, which allows you to retrieve the

encapsulated value using a cast method such as Fi el dVal ue. asl nt eger () .

For example, to retrieve field values from the embedded record created in the previous
example:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/[* Create a primary key for user id 12345 and get a row */
Pri maryKey key = nyTabl e. creat ePri maryKey();

key. put ("uid", 12345);

Row row = tabl eH. get (key, null);

RecordVal ue rv = row. get ("nyRecord").asRecord();
Fieldvalue fv = rv.get("firstField");
Systemout.printin("firstField: " + fv.asString().get());
fv = rv.get("secondField");
Systemout . println("secondFi el d:

+ fv.aslnteger().get());

8-9

Indexing Non-Scalar Data Types

We describe how to index scalar data types in Creating Indexes, and we show how to
read using indexes in Reading Indexes. However, non-scalar data types (Arrays, Maps
and Records) require more explanation, which we give here.

Index creation is accomplished using the CREATE | NDEX statement. See CREATE
INDEX for details on this statement.

Indexing Arrays

ORACLE

You can create an index on an array field so long as the array contains scalar data, or
contains a record with scalar fields.

" Note:

You cannot index a map or array that is nested beneath another map or
array. This is not allowed because of the potential for an excessively large
number of index entries.

Be aware that indexing an array potentially results in multiple index entries for each
row, which can lead to very large indexes.

To create the index, first create the table:

CREATE TABLE nyArrayTabl e (
ui d | NTEGER,
test Array ARRAY(STRI NG,
PRI MARY KEY(ui d)

Once the table has been added to the store, create the index. Be sure to use [] with
the field name to indicate that it is an array:

CREATE | NDEX arrayFi el dl ndex on nyArrayTable (testArray[])

In the case of arrays, the field can be indexed only if the array contains values that are
of one of the other indexable types. For example, you can create an index on an array
of Integers. You can also create an index on a specific record in an array of records.
Only one array should participate in an index, otherwise the size of the index can grow
exponentially because there is an index entry for each array entry.

9-1

Chapter 9
Indexing JSON Fields

To retrieve data using an index of arrays, you first retrieve the index using its name,
and create an instance of | ndexKey that you will use to perform the index lookup:

I ndex arraylndex = nyTabl e. get | ndex("arrayFi el dl ndex");
I ndexKey i ndexKey = arrayl ndex. creat el ndexKey();

Next you assign the array field name and its value to the | ndexKey that you created
using the | ndexKey. put () method:

i ndexKey. put ("testArray[]", "One");

When you perform the index lookup, the only records that will be returned will be those
which have an array with at least one item matching the value set for the | ndexKey
object. For example, if you have individual records that contain arrays like this:

Record 1. ["One," "Two", "Three"]
Record 2: ["Two", "Three", "One"]
Record 3: ["One", "Three", "One"]
Record 4: ["Two", "Three", "Four"]

and you then perform an array lookup on the array value "One", then Records 1 - 3 will
be returned, but not 4.

After that, you retrieve the matching table rows, and iterate over them in the same way
you would any other index type. For example:

Tablelterator<Row> iter = tableH. tablelterator(indexKey, null, null);
Systemout.printIn("Results for Array value 'One' : ");
try {
while (iter.hasNext()) {
Row rowRet = iter.next();
int uid = rowRet.get("uid").aslnteger().get();
Systemout.printIn("uid: " + uid);
ArrayVal ue avRet = rowRet.get("testArray").asArray();
for (Fieldvalue fv: avRet.toList()) {
Systemout. printin(fv.asString().get());

}
}
} finally {
if (iter '=null) {
iter.close();

}

Indexing JSON Fields

ORACLE

You can create an index on a JSON field. To create the index, specify it as you would
any other index, except that you must define the data type of the JSON field you are
indexing.

Note that there are some restrictions on the data type of the JSON field that you can
index. See JSON Indexes for more information.

9-2

ORACLE

Chapter 9
Indexing JSON Fields

To create the index, first create the table:

CREATE Tabl e JSONPersons (
i d | NTEGER,
person JSON,
PRI MARY KEY (id)

To create the index, you must specify the JSON field to be indexed using dot notation.
Suppose your table rows look like this:

"id" 1,
"person" : {
“firstname": " David",
"l astnane":"Morrison",
"age": 25,
"i ncome": 100000,
“lastLogin" : "2016-10-29T18: 43: 59. 8319",
"address":{"street":"150 Route 2",
"city":"Antioch",
"state":"TN',
"zipcode" : 37013,
"phones": [{"type":"home", "areacode": 423,
"nunber": 8634379}]
}s
"connections":[2, 3],
"expenses":{"food": 1000, "gas": 180}

Then once the table has been added to the store, you can create an index for one of
the JSON fields like this:

CREATE | NDEX i dx_j son_i ncone on JSONPersons (person.income AS integer)

To retrieve data using a JSON index, you first retrieve the index using its name, and
create an instance of | ndexKey that you will use to perform the index lookup. The
following is used to retrieve all table rows where the per son. i ncone field is 100000:

I ndex jsonlndex = nyTable.getlndex("idx_json_income");
I ndexKey i ndexKey = jsonl ndex. createl ndexKey();
i ndexKey. put (" person.inconme", 100000);

When you perform the index lookup, the only rows returned will be those which have
a JSON field with the specified field value. You then retrieve the matching table rows,
and iterate over them in the same way you would any other index type. For example:

Tablelterator<Row> iter = tableH. tablelterator(indexKey, null, null);
Systemout. printlIn("Results for person.incone, value 100000: ");
try {
while (iter.hasNext()) {
Row rowRet = iter.next();
int id=rowRet.get("id").aslnteger().get();

9-3

Chapter 9
Indexing Maps

Systemout.printin("id: " +id);
MapVal ue mapRet = rowRet. get (" person").asMap();
Systemout. println("person: " + mapRet.toString());

}
} finally {
if (iter '=null) {
iter.close();
}

For a more complete example of using JSON data fields, including a JSON index, see
JSON By Example.

Indexing Maps

You can create an index on a map field so long as the map contains scalar data, or
contains a record with scalar fields.

" Note:

You cannot index a map or array that is nested beneath another map or
array. This is not allowed because of the potential for an excessively large
number of index entries.

To create the index, define the map as normal. Once the map is defined for the table,
there are several different ways to index it:

e Based on the map's keys without regard to the actual key values.
e Based on the map's values, without regard to the actual key used.

* By a specific map key. To do this, you specify the name of the map field and the
name of a map key using dot notation. If the map key is ever created using your
client code, then it will be indexed.

- Based on the map's key and value without identifying a specific value (such as is
required by the previous option in this list).

Indexing by Map Keys

ORACLE

You can create indexes based on a map's keys without regard to the corresponding
values.

Be aware that creating an index like this can potentially result in multiple index entries
for each row, which can lead to very large indexes.

First create the table:

CREATE TABLE nyMapTabl e (
ui d | NTEGER,
test Map MAP(| NTEGER),
PRI MARY KEY(ui d)

9-4

ORACLE

Chapter 9
Indexing Maps

Once the table has been added to the store, create the index using the . keys() path
step:

CREATE | NDEX mapKeyl ndex on nyMapTabl e (testMap. keys())

Data is retrieved if the table row contains the identified map with the identified key. So,
for example, if you create a series of table rows like this:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nyTabl e = tabl eH. get Tabl e("myMapTabl e");

Row row = nyTabl e. creat eRow() ;

row. put ("uid", 12345);

MapVal ue nv = row. put Map("test Map");
mv. put(“fieldl", 1);

mv. put("field2", 2);

nv.put ("field3", 3);

tabl eH put (row, null, null);

row = myTabl e. creat eRow() ;

row. put ("uid", 12);

mv = row. put Map("test Map");
mv. put(“fieldl", 1);

mv. put("field2", 2);

tabl eH put (row, null, null);

row = myTabl e. creat eRow() ;
row. put ("uid", 666);

mv = row. put Map("test Map");
mv. put(“fieldl", 1);

mv. put("field3", 4);

tabl eH put (row, null, null);

then you can retrieve any table rows that contain the map with any key currently in use
by the map. For example, "field3".

To retrieve data using a map index, you first retrieve the index using its name, and
create an instance of | ndexKey that you will use to perform the index lookup:

I ndex maplndex = nyTabl e. get | ndex(" mapKeyl ndex");
I ndexKey i ndexKey = mapl ndex. creat el ndexKey();

Next, you populate the | ndexKey instance with the field name that you want to retrieve.
Use the keys() path step to indicate that you want to retrieve using the field name
without regard for the field value. When you perform the index lookup, the only records
that will be returned will be those which have a map with the specified key name:

i ndexKey. put ("test Map. keys()", "field3");

9-5

Chapter 9
Indexing Maps

After that, you retrieve the matching table rows, and iterate over them in the same way
you would any other index type. For example:

Tabl el terator<Row> iter = tableH tablelterator(indexKey, null, null);
Systemout. printIn("Results for testMp field3: ");

try {
while (iter.hasNext()) {
Row rowRet = iter.next();
int uid = rowRet.get("uid").aslnteger().get();
Systemout.printin("uid: " + uid);
MapVal ue mapRet = rowRet. get ("testMap").asMap();
Systemout.printin("testMap: " + mapRet.toString());
}
} finally {
if (iter '=null) {
iter.close();
}
}

Indexing by Map Values

ORACLE

You can create indexes based on the values contained in a map without regard to the
keys in use.

Be aware that creating an index like this can potentially result in multiple index entries
for each row, which can lead to very large indexes.

First create the table:

CREATE TABLE nyMapTabl e (
ui d | NTEGER,
test Map MAP(| NTEGER),
PRI MARY KEY(ui d)

Once the table has been added to the store, create the index using the . val ues() path
step:

CREATE | NDEX mapEl enent | ndex on nyMapTabl e (test Map. val ues())

Data is retrieved if the table row contains the identified map with the identified value.
So, for example, if you create a series of table rows like this:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nyTabl e = tabl eH. get Tabl e("myMapTabl e");

Row row = nyTabl e. creat eRow() ;

row. put ("uid", 12345);

MapVal ue nv = row. put Map("t est Map");
nv.put("fieldl", 1);
nv.put("field2", 2);

nv.put ("field3", 3);

9-6

ORACLE

Chapter 9
Indexing Maps

tabl eH put (row, null, null);

row = myTabl e. creat eRow() ;
row. put ("uid*, 12);

nv = row. put Map("test Map");
nv.put("fieldl", 1);

nv.put ("field2", 2);
tabl eH put (row, null, null);

row = myTabl e. createRow() ;
row. put ("uid", 666);

nv = row. put Map("test Map");
nv.put("fieldl", 1);

nv.put ("field3", 4);

tabl eH put (row, null, null);

then you can retrieve any table rows that contain the map with any value currently in
use by the map. For example, a value of "2".

To retrieve data using a map index, you first retrieve the index using its name, and
create an instance of | ndexKey that you will use to perform the index lookup:

I ndex maplndex = nyTabl e. get | ndex(" mapEl enent | ndex");
I ndexKey i ndexKey = mapl ndex. creat el ndexKey();

Next, you populate the | ndexKey instance with the field value (2) that you want to
retrieve. Use the val ues() path step with the field name to indicate that you want to
retrieve entries based on the value only. When you perform the index lookup, the only
records that will be returned will be those which have a map with a value of 2.

i ndexKey. put ("t est Map. val ues()", 2);

After that, you retrieve the matching table rows, and iterate over them in the same way
you would any other index type. For example:

Tablelterator<Row> iter = tableH. tablelterator(indexKey, null, null);

Systemout.printIn("Results for testMap value 2: ");

try {

while (iter.hasNext()) {

Row rowRet = iter.next();
int uid = rowRet.get("uid").aslnteger().get();
Systemout.printin("uid: " + uid);
MapVal ue nmapRet = rowRet. get ("testMap").asMap();
Systemout.printIn("testMap: " + mapRet.toString());

}
} finally {
if (iter '=null) {
iter.close();
}

9-7

Chapter 9
Indexing Maps

Indexing by a Specific Map Key Name

ORACLE

You can create an index based on a specified map key name. Any map entries
containing the specified key name are indexed. This can create a small and very
efficient index because the index does not contain every key/value pair contained by
the map fields. Instead, it just contains those map entries using the identified key,
which results in at most a single index entry per row.

To create the index, first create the table:

CREATE TABLE nyMapTabl e (
ui d | NTEGER
test Map MAP(I NTEGER),
PRI MARY KEY(ui d)

Once the table has been added to the store, create the index by specifying the key
name you want indexed using dot notation. In this example, we will index the key
name of "field3":

CREATE | NDEX mapFi el d31 ndex on nyMapTabl e (testMap.field3)

Data is retrieved if the table row contains the identified map with the indexed key and a
specified value. So, for example, if you create a series of table rows like this:

Tabl eAPl tableH = kvstore. get Tabl eAPI ();
Tabl e nyTabl e = tabl eH. get Tabl e(" myMapTabl e");

Row row = nyTabl e. creat eRow() ;

row. put ("uid", 12345);

MapVal ue nv = row. put Map("test Map");
mv.put(“fieldl", 1);

mv. put("field2", 2);

nv.put ("field3", 3);

tabl eH put(row, null, null);

row = nmyTabl e. creat eRow() ;

row. put ("uid", 12);

nmv = row. put Map("test Map");
mv.put("fieldl", 1);

mv. put("field2", 2);

tableH put(row, null, null);

row = nmyTabl e. creat eRow() ;

row. put ("uid", 666);

nmv = row. put Map("test Map");
mv.put("fieldl", 1);

mv. put("field3", 4);

tableH put(row, null, null);

9-8

Chapter 9
Indexing Maps

then you can retrieve any table rows that contain the map with key “field3" (because
that is what you indexed) when "field3" maps to a specified value — such as "3". If you
try to do an index lookup on, for example, "field2" then that will fail because you did not
index "“field2".

To retrieve data using a map index, you first retrieve the index using its name and
create an instance of | ndexKey that you will use to perform the index lookup:

I ndex maplndex = nyTabl e. get | ndex(" mapFi el d3I ndex");
I ndexKey i ndexKey = mapl ndex. creat el ndexKey();

Then you populate the map field name (using dot notation) and the desired value
using | ndexKey. put () . When you perform the index lookup, the only records that
will be returned will be those which have a map with the matching key name and

corresponding value.

i ndexKey. put ("test Map. fiel d3", 3);

After that, you retrieve the matching table rows, and iterate over them in the same way
you would any other index type. For example:

Tablelterator<Row> iter = tableH. tablelterator(indexKey, null, null);

Systemout.printIn("Results for testMap field3, value 3: ");

try {

while (iter.hasNext()) {

Row rowRet = iter.next();
int uid = rowRet.get("uid").aslnteger().get();
Systemout.printin("uid: " + uid);
MapVal ue nmapRet = rowRet. get ("testMap").asMap();
Systemout.printin("testMap: " + mapRet.toString());

}
} finally {
if (iter '=null) {
iter.close();
}
}

Indexing by Map Key and Value

In the previous section, we showed how to create a map index by specifying a pre-
determined key name. This allows you to perform map index look ups by providing
both key and value, but the index lookup will only be successful if the specified key is
the key that you indexed.

You can do the same thing in a generic way by indexing every key/value pair in your
map. The result is a more flexible index, but also an index that is potentially much
larger than the previously described method. It is likely to result in multiple index
entries per row.

ORACLE 9-9

ORACLE

Chapter 9
Indexing Maps

To create an index based on every key/value pair used by the map field, first create
the table:

CREATE TABLE nyMapTabl e (
ui d | NTEGER,
test Map MAP(| NTEGER),
PRI MARY KEY(ui d)

Once the table has been added to the store, create the index by using the . keys()
and . val ues() path steps:

CREATE | NDEX mapKeyVal uel ndex on nyMapTabl e
(testMap. keys(), test Map. val ues())

Data is retrieved if the table row contains the identified map with the identified key and
the identified value. So, for example, if you create a series of table rows like this:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nyTabl e = tabl eH. get Tabl e("myMapTabl e");

Row row = nyTabl e. creat eRow() ;

row. put ("uid", 12345);

MapVal ue nv = row. put Map("t est Map");
nv.put("fieldl", 1);

nv.put ("field2", 2);

nv.put ("field3", 3);

tabl eH put (row, null, null);

row = myTabl e. creat eRow() ;

row. put ("uid", 12);

nmv = row. put Map("test Map");
nv.put("fieldl", 1);

nv.put ("field2", 2);

tabl eH put (row, null, null);

row = myTabl e. creat eRow() ;
row. put ("uid", 666);

mv = row. put Map("test Map");
nv.put("fieldl", 1);

mv. put("field3", 4);

tabl eH put (row, null, null);

then you can retrieve any table rows that contain the map with specified key/value
pairs — for example, key "field3" and value "3".

To retrieve data using a map index, you first retrieve the index using its name and
create an instance of | ndexKey that you will use to perform the index lookup:

I ndex maplndex = nyTabl e. get | ndex(" mapKeyVal uel ndex") ;
I ndexKey i ndexKey = mapl ndex. creat el ndexKey();

9-10

Chapter 9
Indexing Embedded Records

Next, you populate the | ndexKey class instance with the field name and value you
want to retrieve. In this case, you must specify two sets of information, using two calls
to | ndexKey. put () :

e The name of the field. Here, use the keys() path step with the field name.

* The field value you want to retrieve. Here, use the val ues() path step the field
name.

For example:

i ndexKey. put ("t est Map. keys()", "field3");
i ndexKey. put ("t est Map. val ues()", 3);

When you perform the index lookup, the only records that will be returned will be those
which have a map with the matching key/value pair. Once you have performed the
index lookup, you retrieve the matching table rows, and iterate over them in the same
way you would any other index type. For example:

Tablelterator<Row> iter = tableH tablelterator(indexKey, null, null);
Systemout.printin("Results for testMap field3, value 3: ");

try {
while (iter.hasNext()) {
Row rowRet = iter.next();
int uid = rowRet.get("uid").aslnteger().get();
Systemout.printin("uid: " + uid);
MapVal ue mapRet = rowRet. get ("testMap").asMap();
Systemout.printIn("testMap: " + mapRet.toString());
}
} finally {
if (iter '=null) {
iter.close();
}
}

Indexing Embedded Records

ORACLE

You can create an index on an embedded record field so long as the record field
contains scalar data. To create the index, define the record as normal. To index the
field, you specify the name of the embedded record and the name of the field using dot
notation.

To create the index, first create the table:

CREATE Tabl e nmyRecordTabl e (
ui d | NTEGER,
myRecord RECORD (firstField STRING secondField | NTEGER),
PRI MARY KEY (ui d)

Once the table has been added to the store, create the index:

CREATE | NDEX recor dFi el dl ndex on nyRecordTabl e (nyRecord. secondFi el d)

9-11

ORACLE

Chapter 9
Indexing Embedded Records

Data is retrieved if the table row contains the identified record field with the specified
value. So, for example, if you create a series of table rows like this:

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("myRecor dTabl e");

Row row = nyTabl e. creat eRow() ;

row. put ("uid", 12345);

Recordval ue rv = row. put Record("myRecord");
rv.put("firstField', "String field for 12345");
rv.put ("secondFiel d', 3388);

tabl eH put (row, null, null);

row = myTabl e. createRow();

row. put ("uid", 345);

rv = row. put Record("myRecord");
rv.put("firstField', "String field for 345");
rv.put ("secondFiel d', 3388);

tabl eH put (row, null, null);

row = myTabl e. createRow();

row. put ("uid", 111);

rv = row. put Record("myRecord");
rv.put("firstField', "String field for 111");
rv.put("secondField", 12);

tabl eH. put(row, null, null);

then you can retrieve any table rows that contain the embedded record where
"secondField" is set to a specified value. (The embedded record index that we
specified, above, indexed myRecord.secondField.)

To retrieve data using a record index, you first retrieve the index using its name, and
create an instance of | ndexKey that you will use to perform the index lookup:

I ndex recordl ndex = nyTabl e. getlndex("recordFiel dl ndex");
I ndexKey i ndexKey = recordl ndex. creat el ndexKey();
i ndexKey. put (“nyRecor d. secondFi el d*, 3388);

When you perform the index lookup, the only records returned will be those which
have an embedded record with the specified field and field value. You then retrieve the
matching table rows, and iterate over them in the same way you would any other index
type. For example:

Tablelterator<Row> iter = tableH. tablelterator(indexKey, null, null);
Systemout. printIn("Results for testRecord.secondField, value 3388: ");

try {
while (iter.hasNext()) {
Row rowRet = iter.next();
int uid = rowRet.get("uid").aslnteger().get();
Systemout.printIn("uid: " + uid);
RecordVal ue recordRet = rowRet. get("myRecord").asRecord();
Systemout . println("nmyRecord: " + recordRet.toString());
}
} finally {

9-12

Chapter 9
Indexing Embedded Records

if (iter '=null) {
iter.close();

}

ORACLE" 9-13

Using Row Versions

ORACLE

When a row is initially inserted in the store, and each time it is updated, it is assigned
a unigue version token. The version is always returned by the method that wrote to
the store (for example, Tabl eAPI . put ()). The version information is also returned by
methods that retrieve rows from the store.

There are two reasons why versions might be important.

1.

When an update or delete is to be performed, it may be important to perform the
operation only if the row's value has not changed. This is particularly interesting

in an application where there can be multiple threads or processes simultaneously
operating on the row. In this case, read the row, examining its version when you
do so. You can then perform a put operation, but only allow the put to proceed if
the version has not changed (this is often referred to as a Compare and Set (CAS)
or Read, Modify, Write (RMW) operation). You use Tabl eAPI . put | f Versi on() or
Tabl eAPI . del et el f Ver si on() to guarantee this.

When a client reads data that was previously written, it may be important to
ensure that the Oracle NoSQL Database node servicing the read operation has
been updated with the information previously written. This can be accomplished by
passing the version of the previously written data as a consistency parameter to
the read operation. For more information on using consistency, see Consistency
Guarantees.

Versions are managed using the Ver si on class. In some situations, it is returned as
part of another encapsulating class, such as the Row class.

The following code fragment retrieves a row, and then writes that row back to the store
only if the version has not changed:

package kvstore. basi cExanpl e;

i mport oracle. kv. Version;

i mport oracle. kv. KVSt ore;

i mport oracle. kv.tabl e. | ndex;

i mport oracle. kv.tabl e. | ndexKey;

i mport oracle. kv.tabl e. Row,

i nport oracle.kv.table. Tabl e;

i mport oracle. kv.tabl e. Tabl eAPI;

i mport oracle.kv.table. Tablelterator;

/!l Retrieve the row. Note that we do not show the creation of
/] the kvstore handl e here.

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

10-1

ORACLE

Chapter 10

/] Construct the IndexKey. The name we gave our index when
Il we created it was 'DoB'.

I ndex dobldx = myTabl e. get | ndex(" DoB");

I ndexKey dobl dxKey = dobl dx. creat el ndexKey();

Tabl elterator<Row> iter =
tabl eH. tabl el t erat or (dobl dxKey, null, null);

while (iter.hasNext()) {
Row aRow = iter.next();

Il Retrieve the row s version information
Ver sion rowversion = aRow. get Version();

FILLEEELEELE i irrrr
/1 Do work on the row here
FILLEEELEELE i irrrr

Il Put if the version is correct. Notice that here we exanine
Il the return code. If it is null, that nmeans that the put was
/'l unsuccessful, probably because the row was changed el sewhere

Version newersion =
tabl eH. put | f Versi on(row, rowversion, null, null);
if (newersion == null) {
/1 Unsuccessful. Someone el se probably nodified the record.

}

10-2

Consistency Guarantees

A Oracle NoSQL Database store is built from some number of computers (generically
referred to as nodes) that are working together using a network. All data in your store

is first written to a master node. The master node then copies that data to other nodes
in the store. Nodes which are not master nodes are referred to as replicas.

Because of the nature of distributed systems, there is a possibility that, at any given
moment, a write operation that was performed on the master node will not yet have
been performed on some other node in the store.

Consistency, then, is the policy describing whether it is possible for a row on Node A
to be different from the same row on Node B.

When there is a high likelihood that a row stored on one node is identical to the

same row stored on another node, we say that we have a high consistency guarantee.
Likewise, a low consistency guarantee means that there is a good possibility that a
row on one node differs in some way from the same row stored on another node.

You can control how high you want your consistency guarantee to be. Note that the
trade-off in setting a high consistency guarantee is that your store's read performance
might not be as high as if you use a low consistency guarantee.

There are several different forms of consistency guarantees that you can use. They
are described in the following sections.

Note that by default, Oracle NoSQL Database uses the lowest possible consistency
possible.

Specifying Consistency Policies

ORACLE

To specify a consistency policy, you use one of the static instances of the Consi st ency
class, or one of its nested classes.

Once you have selected a consistency policy, you can put it to use in one of

two ways. First, you can use it to define a default consistency policy using the

KVSt or eConf i g. set Consi st ency() method. Specifying a consistency policy in this way
means that all store operations will use that policy, unless they are overridden on an
operation by operation basis.

The second way to use a consistency policy is to override the default policy using a
ReadOpt i on class instance you provide to the Tabl eAPI method that you are using to
perform the store read operation.

The following example shows how to set a default consistency policy for the store. We
will show the per-operation method of specifying consistency policies in the following
sections.

package kvstore. basi cExanpl e;

i mport oracl e. kv. Consi st ency;

11-1

Chapter 11
Using Simple Consistency

i mport oracle. kv. KVSt ore;
i mport oracl e. kv. KVSt oreConfi g;
i mport oracl e. kv. KVSt or eFact ory;

KVSt oreConfi g kconfig = new KVSt oreConfig("exanpl eStore",
"nodel. exanpl e. or g: 5088, node2. exanpl e. org: 4129");

kconfi g. set Consi st ency(Consi st ency. NONE_REQUI RED) ;

KVStore kvstore = KVStoreFactory. get Store(kconfig);

Using Simple Consistency

ORACLE

You can use static instances of the Consi st ency base class to specify certain rigid
consistency guarantees. There are three such instances that you can use:

1. Consi stency. ABSOLUTE

Requires that the operation be serviced at the master node. In this way, the row(s)
will always be consistent with the master.

This is the strongest possible consistency guarantee that you can require, but it
comes at the cost of servicing all read and write requests at the master node.

If you direct all your traffic to the master node (which is just one machine for
each partition), then you will not be distributing your read operations across your
replicas. You also will slow your write operations because your master will be
busy servicing read requests. For this reason, you should use this consistency
guarantee sparingly.

2. Consi stency. NONE_REQUI RED

Allows the store operation to proceed regardless of the state of the replica relative
to the master. This is the most relaxed consistency guarantee that you can require.
It allows for the maximum possible store performance, but at the high possibility
that your application will be operating on stale or out-of-date information.

3. Consi stency. NONE_REQUI RED_NO _MASTER

Requires read operations to be serviced on a replica; never the Master. When this
policy is used, the read operation will not be performed if the only node available is
the Master.

Where possible, this consistency policy should be avoided in favor of the
secondary zones feature.

For example, suppose you are performing a critical read operation that you know must
absolutely have the most up-to-date data. Then do this:

package kvstore. basi cExanpl e;

i nport oracl e. kv. Consi st ency;

i nport oracle. kv. Consi st encyExcepti on;
i mport oracl e. kv. KVSt ore;

i nport oracle.kv.table.PrimaryKey;

i nport oracle.kv.tabl e. ReadOpti ons;

i mport oracle. kv.tabl e. Row;

11-2

Chapter 11
Using Time-Based Consistency

i mport oracle. kv.tabl e. Tabl e;
i mport oracle. kv.tabl e. Tabl eAPI;

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tableH = kvstore. get Tabl eAPI ();

/1 The name you give to getTable() nust be identical

[/ to the name that you gave the table when you created
/1 the table using the CREATE TABLE DDL statenent.

Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/1 Construct the PrinmaryKey.
Pri maryKey key = nyTabl e. creat ePri maryKey();
key.put("itent, "Bolts");

/] Create the ReadOption with our Consistency policy
ReadOptions ro = new ReadOpti ons(Consi st ency. ABSOLUTE,
0, /1 Timeout paraneter.
/1 0 means use the default.
null); // Timeout units. Null because
/1 the Timeout is O.

/] Retrieve the row. This perforns a store read operation.
/1 Exception handling is skipped for this trivial exanple.
try {

Row row = tabl eH get (key, ro);
} catch (ConsistencyException ce) {

/'l The consistency guarantee was not net

}

Using Time-Based Consistency

ORACLE

A time-based consistency policy describes the amount of time that a replica node is
allowed to lag behind the master node. If the replica's data is more than the specified
amount of time out-of-date relative to the master, then a Consi st encyExcepti on is
thrown. In that event, you can either abandon the operation, retry it immediately, or
pause and then retry it.

In order for this type of a consistency policy to be effective, the clocks on all the nodes
in the store must be synchronized using a protocol such as NTP.

In order to specify a time-based consistency policy, you use the Consi st ency. Ti ne
class. The constructor for this class requires the following information:

e permssiblelag

Al ong that describes the number of Ti neUni t s the replica is allowed to lag behind
the master.

e permssiblelLagUnits

11-3

Chapter 11
Using Version-Based Consistency

A Ti meUni t that identifies the units used by per m ssi bl eLag. For example:
Ti meUni t. M LLI SECONDS.

e timeout

A | ong that describes how long the replica is permitted to wait in an attempt to
meet the permissible lag limit. That is, if the replica cannot immediately meet the
permissible lag requirement, then it will wait this amount of time to see if it is
updated with the required data from the master. If the replica cannot meet the
permissible lag requirement within the timeout period, a Consi st encyException is
thrown.

e timeoutUnit

A Ti meUni t that identifies the units used by ti meout . For example:
Ti meUni t . SECONDS.

The following sets a default time-based consistency policy of 2 seconds. The timeout
is 4 seconds.

package kvstore. basi cExanpl e;

i mport oracl e. kv. Consi st ency;

i mport oracl e. kv. KVSt ore;

i mport oracl e. kv. KVSt oreConfi g;
i mport oracl e. kv. KVSt or eFact ory;

import java.util.concurrent. Ti meUnit;

KVSt oreConfi g kconfig = new KVSt oreConfig("exanpl eStore",
"nodel. exanpl e. or g: 5088, node2. exanpl e. org: 4129");

Consi stency. Tine cpolicy =
new Consi stency. Ti me(2, Ti meUnit. SECONDS,
4, TinmeUnit. SECONDS);
kconfi g. set Consi st ency(cpolicy);

KVStore kvstore = KVStoreFactory. get Store(kconfig);

Using Version-Based Consistency

ORACLE

Version-based consistency is used on a per-operation basis. It ensures that a read
performed on a replica is at least as current as some previous write performed on the
master.

An example of how this might be used is a web application that collects some
information from a customer (such as her name). It then customizes all subsequent
pages presented to the customer with her name. The storage of the customer's name
is a write operation that can only be performed by the master node, while subsequent
page creation is performed as a read-only operation that can occur at any node in the
store.

Use of this consistency policy might require that version information be transferred
between processes in your application.

11-4

ORACLE

Chapter 11
Using Version-Based Consistency

To create a version-based consistency policy, use the Consi st ency. Ver si on class.
When you do this, you must provide the following information:

e version

The Ver si on that the read must match. The value returned is either equal or newer
than the version specified in the policy.

e timeout

A | ong that describes how long the replica is permitted to wait in an attempt to
meet the version requirement. That is, if the replica cannot immediately meet the
version requirement, then it will wait this amount of time to see if it is updated
with the required data from the master. If the replica cannot meet the requirement
within the timeout period, a Consi st encyExcept i on is thrown.

e timeoutUnit

A Ti meUni t that identifies the units used by ti meout . For example:
Ti meUni t . SECONDS.

For example, the following code performs a store write, collects the version
information, then uses it to construct a version-based consistency policy.

package kvstore. basi cExanpl e;

i mport oracle. kv. KVSt ore;

i mport oracle. kv.tabl e. Row,

i mport oracle. kv.tabl e. Tabl e;

i mport oracle. kv.tabl e. Tabl eAPI;
i mport oracl e. kv. Version;

/1 KVStore handle creation is omtted for brevity

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nyTabl e = tabl eH. get Tabl e("nyTabl e");

/] Get a Row instance
Row row = nyTabl e. creat eRow() ;

/1 Now put all of the cells in the row
row. put("itent, "Bolts");

row. put ("count1", 5);

row. put ("count 2", 23);

row. put (" percentage", 0.2173913);

/1 Nowwite the table to the store, capturing the
/1 Version information as we do.

Version matchVersion = tableH put(row, null, null);

Ver si on mat chVersion = kvstore. put (nyKey, nyVal ue);

11-5

Chapter 11
Using Version-Based Consistency

At some other point in this application's code, or perhaps in another application
entirely, we use the mat chVer si on captured above to create a version-based
consistency policy.

package kvstore. basi cExanpl e;

i mport oracl e. kv. Consi st ency;

i mport oracl e. kv. Consi st encyExcepti on;
i mport oracl e. kv. KVSt ore;

i mport oracle. kv.tabl e. PrinaryKey;

i mport oracle. kv.tabl e. ReadOpti ons;

i mport oracle. kv.tabl e. Row,

i mport oracle. kv.tabl e. Tabl e;

i mport oracle. kv.tabl e. Tabl eAPI;

import java.util.concurrent. Ti meUnit;

/1 KVStore handle creation is omtted for brevity

/1 Construct the PrinmaryKey.

Pri maryKey key = nyTabl e. creat ePri maryKey();
key. put("itent, "Bolts");

/1 Create the consistency policy, using the
/1 Version object we captured, above.
Consi st ency. Versi on versi onConsi stency =
new Consi st ency. Ver si on(mat chVer si on,
200,
Ti meUni t . NANOSECONDS) ;

/] Create a ReadOptions using our new consistency policy.
ReadOptions ro = new ReadOpti ons(versionConsistency, 0, null);

/1 Now performthe read.
try {

Row row = tabl eH get (key, ro);

Il Do work with the row here
} catch (ConsistencyException ce) {
/'l The consistency guarantee was not net

}

ORACLE 11-6

Durability Guarantees

Writes are performed in the Oracle NoSQL Database store by performing the write
operation (be it a creation, update, or delete operation) on a master node. As a part
of performing the write operation, the master node will usually make sure that the
operation has made it to stable storage before considering the operation complete.

The master node will also transmit the write operation to the replica nodes in its shard.
It is possible to ask the master node to wait for acknowledgments from its replicas
before considering the operation complete.

Note:

If your store is configured such that secondary zones are in use, then write
acknowledgements are never required for the replicas in the secondary
zones. That is, write acknowledgements are only returned by replicas in
primary zones. For more information on zones, see Administrator's Guide.

The replicas, in turn, will not acknowledge the write operation until they have applied
the operation to their own database.

A durability guarantee, then, is a policy which describes how strongly persistent your
data is in the event of some kind of catastrophic failure within the store. (Examples of
a catastrophic failure are power outages, disk crashes, physical memory corruption, or
even fatal application programming errors.)

A high durability guarantee means that there is a very high probability that the write
operation will be retained in the event of a catastrophic failure. A low durability
guarantee means that the write is very unlikely to be retained in the event of a
catastrophic failure.

The higher your durability guarantee, the slower your write-throughput will be in the
store. This is because a high durability guarantee requires a great deal of disk and
network activity.

Usually you want some kind of a durability guarantee, although if you have highly
transient data that changes from run-time to run-time, you might want the lowest
possible durability guarantee for that data.

Durability guarantees include two types of information: acknowledgment guarantees
and synchronization guarantees. These two types of guarantees are described in the
next sections. We then show how to set a durability guarantee.

Note that by default, Oracle NoSQL Database uses a low durability guarantee.

ORACLE 12-1

Chapter 12
Setting Acknowledgment-Based Durability Policies

Setting Acknowledgment-Based Durability Policies

Whenever a master node performs a write operation (create, update or delete), it must
send that operation to its various replica nodes. The replica nodes then apply the write
operation(s) to their local databases so that the replicas are consistent relative to the
master node.

Upon successfully applying write operations to their local databases, replicas in
primary zones send an acknowledgment message back to the master node. This
message simply says that the write operation was received and successfully applied
to the replica's local database. Replicas in secondary zones do not send these
acknowledgement messages.

" Note:

The exception to this are replicas in secondary zones, which will never
acknowledge write operations.

An acknowledgment-based durability policy describes whether the master node
will wait for these acknowledgments before considering the write operation to

have completed successfully. You can require the master node to not wait for
acknowledgments, or to wait for acknowledgments from a simple majority of replica
nodes in primary zones, or to wait for acknowledgments from all replica nodes in
primary zones.

The more acknowledgments the master requires, the slower its write performance will
be. Waiting for acknowledgments means waiting for a write message to travel from the
master to the replicas, then for the write operation to be performed at the replica (this
may mean disk I/O), then for an acknowledgment message to travel from the replica
back to the master. From a computer application's point of view, this can all take a long
time.

When setting an acknowledgment-based durability policy, you can require
acknowledgment from:

* Allreplicas. That is, all of the replica nodes in the shard that reside in a primary
zone. Remember that your store has more than one shard, so the master node is
not waiting for acknowledgments from every machine in the store.

* No replicas. In this case, the master returns with normal status from the write
operation as soon as it has met its synchronization-based durability policy. These
are described in the next section.

* A simple majority of replicas in primary zones. That is, if the shard has 5 replica
nodes residing in primary zones, then the master will wait for acknowledgments
from 3 nodes.

Setting Synchronization-Based Durability Policies

Whenever a node performs a write operation, the node must know whether it should
wait for the data to be written to stable storage before successfully returning from the
operation.

ORACLE 12-2

Chapter 12
Setting Durability Guarantees

As a part of performing a write operation, the data modification is first made to an
in-memory cache. It is then written to the filesystem's data buffers. And, finally, the
contents of the data buffers are synchronized to stable storage (typically, a hard drive).

You can control how much of this process the master node will wait to complete before
it returns from the write operation with a normal status. There are three different levels
of synchronization durability that you can require:

- NO_SYNC

The data is written to the host's in-memory cache, but the master node does not
wait for the data to be written to the file system's data buffers, or for the data to
be physically transferred to stable storage. This is the fastest, but least durable,
synchronization policy.

- WRITE_NO_SYNC

The data is written to the in-memory cache, and then written to the file system's
data buffers, but the data is not necessarily transferred to stable storage before
the operation completes normally.

* SYNC

The data is written to the in-memory cache, then transferred to the file system's
data buffers, and then synchronized to stable storage before the write operation
completes normally. This is the slowest, but most durable, synchronization policy.

Notice that in all cases, the data is eventually written to stable storage (assuming
some failure does not occur to prevent it). The only question is, how much of this
process will be completed before the write operation returns and your application can
proceed to its next operation.

See the next section for an example of setting durability policies.

Setting Durability Guarantees

ORACLE

To set a durability guarantee, use the Dur abi | i ty class. When you do this, you must
provide three pieces of information:

e The acknowledgment policy.
* A synchronization policy at the master node.
* A synchronization policy at the replica nodes.

The combination of policies that you use is driven by how sensitive your application
might be to potential data loss, and by your write performance requirements.

For example, the fastest possible write performance can be achieved through a
durability policy that requires:

* No acknowledgments.
* NO_SYNC at the master.
* NO_SYNC at the replicas.

However, this durability policy also leaves your data with the greatest risk of loss due
to application or machine failure between the time the operation returns and the time
when the data is written to stable storage.

On the other hand, if you want the highest possible durability guarantee, you can use:

12-3

ORACLE

Chapter 12
Setting Durability Guarantees

* All replicas must acknowledge the write operation.
* SYNC at the master.
* SYNC at the replicas.

Of course, this also results in the slowest possible write performance.

Most commonly, durability policies attempt to strike a balance between write
performance and data durability guarantees. For example:

e Simple majority (> 50%) of replicas must acknowledge the write.
* SYNC at the master.
e NO_SYNC at the replicas.

Note that you can set a default durability policy for your KVSt or e handle, but you can
also override the policy on a per-operation basis for those situations where some of
your data need not be as durable (or needs to be MORE durable) than the default.

For example, suppose you want an intermediate durability policy for most of your data,
but sometimes you have transient or easily re-created data whose durability really is
not very important. Then you would do something like this:

First, set the default durability policy for the KVSt or e handle:

package kvstore. basi cExanpl e;

i mport oracle.kv.Durability;

i mport oracle. kv. KVSt ore;

i mport oracl e. kv. KVSt oreConfi g;
i mport oracl e. kv. KVSt or eFact ory;

KVSt oreConfi g kconfig = new KVSt oreConfi g("exanpl eStore",
"nodel. exanpl e. or g: 5088, node2. exanpl e. org: 4129");

Durability defaultDurability =
new Durabi | ity(Durability.SyncPolicy. SYNC, /1 Master sync
Durability. SyncPolicy. NO SYNC, // Replica sync
Durabi lity. ReplicaAckPolicy.SI MPLE MAIORI TY);
kconfig.setDurability(defaultDurability);

KVStore kvstore = KVStoreFactory. get Store(kconfig);

In another part of your code, for some unusual write operations, you might then want
to relax the durability guarantee so as to speed up the write performance for those
specific write operations:

package kvstore. basi cExanpl e;

i mport oracle.kv.Durability;
i mport oracle. kv. DurabilityException;
i mport oracle. kv. KVSt ore;

12-4

ORACLE

Chapter 12
Setting Durability Guarantees

i mport oracle. kv.tabl e. Row,
i mport oracle. kv.tabl e. Tabl e;
i mport oracle. kv.tabl e. Tabl eAPI;

Tabl eAPl tableH = kvstore. get Tabl eAPI ();

/1 The name you give to getTable() nust be identical

[/ to the name that you gave the table when you created
/1 the table using the CREATE TABLE DDL statenent.

Tabl e nmyTabl e = tabl eH. get Tabl e("nyTabl e");

/] CGet a Row instance
Row row = nyTabl e. creat eRow() ;

/1 Now put all of the cells in the row

row. put("itent, "Bolts");

row. put ("description”, "Hex head, stainless");
row. put ("count", 5);

row. put (" percentage", 0.2173913);

/1 Construct a durability policy
Durability durability =
new Durability(Durability.SyncPolicy.NO SYNC, // Master sync
Durability. SyncPolicy. NO SYNC, // Replica sync
Durabi lity. ReplicaAckPolicy. NONE);

/] Construct a WiteOptions object using the durability policy.
WiteOptions wo = new WiteOptions(durability, 0, null);

// Now wite the table to the store using the durability policy

/1 defined, above.
tabl eH put(row, null, wo);

12-5

Executing a Sequence of Operations

You can execute a sequence of write operations as a single atomic unit so long as all
the rows that you are operating upon share the same shard key. By atomic unit, we
mean all of the operations will execute successfully, or none of them will.

Also, the sequence is performed in isolation. This means that if you have a thread
running a particularly long sequence, then another thread cannot intrude on the

data in use by the sequence. The second thread will not be able to see any of the
modifications made by the long-running sequence until the sequence is complete. The
second thread also will not be able to modify any of the data in use by the long-running
sequence.

Be aware that sequences only support write operations. You can perform puts and
deletes, but you cannot retrieve data when using sequences.

When using a sequence of operations:

» All of the keys in use by the sequence must share the same shard key.

e Operations are placed into a list, but the operations are not necessarily executed
in the order that they appear in the list. Instead, they are executed in an internally
defined sequence that prevents deadlocks.

The rest of this chapter shows how to use Tabl eQper at i onFact ory and
Tabl eAPI . execut e() to create and run a sequence of operations.

Sequence Errors

If any operation within the sequence experiences an error, then the entire operation is
aborted. In this case, your data is left in the same state it would have been in if the
sequence had never been run at all — no matter how much of the sequence was run
before the error occurred.

Fundamentally, there are two reasons why a sequence might abort:

1. An internal operation results in an exception that is considered a fault. For
example, the operation throws a Dur abi | i t yExcept i on. Also, if there is an internal
failure due to message delivery or a networking error.

2. Anindividual operation returns normally but is unsuccessful as defined by the
particular operation. (For example, you attempt to delete a row that does not
exist). If this occurs AND you specified t r ue for the abort | f Unsuccessf ul
parameter when the operation was created using TableOperationFactory, then
an Qper ati onExecut i onExcepti on is thrown. This exception contains information
about the failed operation.

Creating a Sequence

You create a sequence by using the Tabl eQper at i onFact ory class to create
Tabl eQper at i on class instances, each of which represents exactly one operation

ORACLE 13-1

ORACLE

Chapter 13
Creating a Sequence

in the store. You obtain an instance of Tabl eOper ati onFact ory by using

Tabl eAPI . get Tabl eQper ati onFactory().

For example, suppose you are using a table defined like this:

CREATE TABLE nyTabl e (

i tenfType STRI NG

i tenCategory STRING

i tenC ass STRI NG,

i tenCol or STRI NG,
itenBi ze STRING

price FLOAT,

i nvent oryCount | NTEGER,

PRI MARY KEY (SHARD(itenilype, itenCategory,

itenti ze)

With tables containing data like this:

Row 1:

— itemType: Hats

— itemCategory: baseball
— itemClass: longbill

— itemColor: red

— itemSize: small

— price: 12.07

— inventoryCount: 127
Row 2:

— itemType: Hats

— itemCategory: baseball
— itemClass: longbill

— itemColor: red

— itemSize: medium

— price: 13.07

— inventoryCount: 201
Row 3:

— itemType: Hats

— itemCategory: baseball
— itemClass: longbill

— itemColor: red

— itemSize: large

— price: 14.07

— inventoryCount: 39

itenCl ass), itentCol or,

13-2

ORACLE

Chapter 13
Creating a Sequence

And further suppose that this table has rows that require an update (such as a price
and inventory refresh), and you want the update to occur in such a fashion as to
ensure it is performed consistently for all the rows.

Then you can create a sequence in the following way:

package kvstore. basi cExanpl e;
import java.util.ArraylList;

i mport oracle. kv. KVSt ore;
i mport oracl e. kv. KVSt oreConfi g;
i mport oracl e. kv. KVSt or eFact ory;

i mport oracle. kv. DurabilityException;

i mport oracl e. kv. Faul t Excepti on;

i mport oracl e. kv. Qperati onExecuti onExcepti on;
i mport oracl e. kv. Request Ti neout Excepti on;

i mport oracle. kv.tabl e. PrinaryKey;

i mport oracle. kv. tabl e. Row;

i mport oracle. kv.tabl e. Tabl e;

i mport oracle. kv. tabl e. Tabl eAPI ;

i mport oracle. kv.tabl e. Tabl eCperati onFactory;
i mport oracl e. kv. tabl e. Tabl eCperati on;

/1 kvstore handl e creation omtted.

Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e myTabl e = tabl eH. get Tabl e("nyTabl e");

/1 W use Tabl eQperationFactory to create items for our
/'l sequence.
Tabl eQperati onFactory tof = tabl eH. get Tabl eQperati onFactory();

/1 This ArrayList is used to contain each itemin our sequence.
ArrayLi st <Tabl eOperati on> opLi st = new ArrayLi st<Tabl eQperati on>();

/1 Update each row, adding each to the opList as we do.
Row row = nyTabl e. creat eRow() ;

row. put ("itenfype", "Hats");

row. put ("itenCategory", "baseball");

row. put ("itenC ass", "longbill");

row. put ("itenColor", "red");

row. put ("itentize", "small");

row. put ("price", new Float(13.07));

row. put ("i nventoryCount", 107);

oplLi st.add(tof.createPut(row, null, true));

row = nmyTabl e. creat eRow() ;

13-3

Chapter 13
Executing a Sequence

row. put ("itenfype", "Hats");

row. put ("itenCategory", "baseball");

row. put ("itenC ass", "longbill");

row. put ("itenColor", "red");

row. put ("itentize", "mediunt);

row. put ("price", new Float(14.07));

row. put ("inventoryCount", 198);

oplLi st. add(tof.createPut(row, null, true));

row = myTabl e. creat eRow() ;
row. put ("itenfype", "Hats");
row. put ("itenCategory", "baseball");

row. put ("itenC ass", "longbill");
row. put ("itenColor", "red");
row. put ("itentize", "large");

row. put ("price", new Float(15.07));
row. put ("inventoryCount", 139);
oplLi st.add(tof.createPut(row, null, true));

Note in the above example that we update only those rows that share the same shard
key. In this case, the shard key includes the i t eniType, i t enCat egory, and i t enCCl ass
fields. If the value for any of those fields is different from the others, we could not
successfully execute the sequence.

Executing a Sequence

ORACLE

To execute the sequence we created in the previous section, use the
Tabl eAPI . execut e() method:

package kvstore. basi cExanpl e;

try {
t abl eH. execut e(opList, null);

} catch (OperationExecutionException oee) {
/1 Sonme error occurred that prevented the sequence
/1 fromexecuting successfully. Use
/'l oee. getFail edOperationlndex() to determne which
Il operation failed. Use oee.getFail edOperationResult()
/1 to obtain an QperationResult object, which you can
Il use to troubleshoot the cause of the execution
/'l exception.

} catch (I11legal Argunent Exception iae) {
/1 An operation in the list was null or enpty.

/I O at |east one operation operates on a row
Il with a shard key that is different
Il than the others.

/1 O nore than one operation uses the sane key.
} catch (DurabilityException de) {
/1 The durability guarantee could not be net.
} catch (Request Ti meout Exception rte) {
/'l The operation was not conpleted inside of the
/1 default request timeout limt.
} catch (Faul t Exception fe) {

13-4

ORACLE

Chapter 13
Executing a Sequence

Il A generic error occurred

Note that if any of the above exceptions are thrown, then the entire sequence is
aborted, and your data will be in the state it would have been in if you had never
executed the sequence at all.

Tabl eAPI . execut e() can optionally take a Wit eQOpti ons class instance. This class
instance allows you to specify:

* The durability guarantee that you want to use for this sequence. If you want to use
the default durability guarantee, pass nul | for this parameter.

* Atimeout value that identifies the upper bound on the time interval allowed for
processing the entire sequence. If you provide 0, the default request timeout value
is used.

e ATineUnit that identifies the units used by the timeout value. For example:
Ti meUni t. M LLI SECONDS.

For an example of using Wit eOpt i ons, see Durability Guarantees.

13-5

Introduction to SQL for Oracle NoSQL
Database

SQL for Oracle NoSQL Database is an easy to use SQL-like language that supports
read-only queries and data definition (DDL) statements. This chapter focuses on the
query part of the language.

For a detailed description of the language (both DDL and query statements), see SQL
Reference Guide.

To follow along query examples run with the interactive shell, see SQL Beginner's
Guide.

This section talks about using SQL through the JAVA API.

Running a simple query

Before running a query, perform store access as usual by obtaining a KVSt or e handle
using the KVSt or eFact ory. get St ore() method and a KVSt or eConfi g object.

To create the query, use KVSt or e. execut eSync() This returns a St at enent Resul t
instance, which represents the result of an execution of a statement. There are two
types of results, results of DDL statements and results of DML statements. DDL
statements modify the database schema. CREATE TABLE, ALTER TABLE, and DROP
TABLE are examples of DDL statements. DDL statements do not return data records,
soiterator() and next () will return as if there was an empty result.

DML statements are non-updating queries. SQL SELECT-FROM-WHERE(SFW)
statements are an example of a DML statement. DML statements may contain a set
of records. Objects of St at enent Resul t are not intended to be used across several
threads.

For example, to run a simple query:

/1 Setup Store

String[] hhosts = {"nl.exanpl e.org:5088", "n2.exanple.org:4129"};
KVSt oreConfi g kconfig = new KVSt oreConfi g("exanpl eStore", hhosts);
KVStore store = KVStoreFactory. get Store(kconfig);

/1 Conpile and Execute the SELECT statenent
StatenmentResult result = store.executeSync("SELECT first Nane,
age FROM Users");

Il Get the results

for(RecordVal ue record : result) {
Systemout.printin("naneFirst: " +
record.get("firstName").asString().get());
Systemout.printlin("age: " +

ORACLE 14-1

Chapter 14
Using binding variables

record. get("age").aslnteger().get());

where the query SELECTS the firstname and age from the table Users. Then, the
results are displayed.

Using binding variables

ORACLE

To declare a binding variable, you need to create an instance of Prepar edSt at enent .
An instance of PreparedStatement can be created through the KVSt or e. pr epar e()
method.

You can specify zero or more variable declarations. The syntax for a variable is:

DECLARE $varnane vartype;

If the DML statement contains external variables, the PreparedStatement can be
executed multiple times by creating an instance of BoundSt at enent . The external
variables must be bound to specific values before the statement can be executed. To
allow for the potentially concurrent execution of the same PreparedStatement multiple
times with different bind values each time, binding of external variables must be done
through one or more instances of BoundSt at enent . Such instances are created using
the cr eat eBoundSt at ement () method.

This instance can then be executed multiple times using the KVSt or e. execut e() or
KVSt or e. execut eSync() methods.

For example:

/]l store handle creation omtted.

/1 Conpile the statenent.

PreparedStatenent pStnt = store. prepare(
"DECLARE $mi nAge integer; $maxAge integer; " +
"SELECT id, firstName FROM Users WHERE
age >= $minAge and age < $maxAge ");

Il 1terate decades
for(int age = 0; age <= 100; age = age + 10) {

int naxAge = age + (age < 100 ? 10 : 1000);
Systemout. println("Persons wth ages between
" and " + nmaxAge + ".");

/1 Bind variables, reuse the same pStnt
BoundSt at ement bStnt = pStnt.createBoundStatenent();
bStnt . set Vari abl e("$mi nAge", age);

bStnt . set Vari abl e(" $maxAge", maxAge);

+ age +

Il Execute the statenent
Statenent Result result = store.executeSync(bStnt);

Il CGet the results in the current decade

14-2

Chapter 14
Accessing metadata

for(RecordValue record : result) {

Systemout.printin("id: " +
record.get("id").aslnteger().get());
Systemout.printin("firstName: " +
record.get("firstName").asString().get());

}

Accessing metadata

ORACLE

You can access the metadata of a BoundStatement, PreparedStatement or
StatementResult by using the get Resul t Def () method.

Additionally, you can use the get Fi el ds(). si ze(), get Fi el dsNarme(), and get Fi el d()
Recor dDef methods to obtain the number of fields, field name, and field type
respectively.

For example:

/] store handle creation omtted.

/1 Access netadata on PreparedStatenent or BoundStat ement
PreparedStatenent pStnt = store. prepare(
"DECLARE $mi nAge integer; $maxAge integer; " +
"SELECT id, firstName FROM users WHERE age >= $m nAge
and age < $maxAge ");

Recor dDef recodDef = pStnt.getResultDef();
int noOfFields = recodDef. getFields().size();

String fieldName = recodDef. get Fi el dName(0); // fieldNane is "$ni nAge";
Fi el dDef fiel dType = recodDef. getFiel d(0); /1 feldType is Integer Def

/'l Access netadata on StatenentResult
Statement Result result = store.executeSync("SELECT * FROM Users WHERE
(age > 18 and age < 30)");

recordDef = result.getResultDef();

Note:

DDL operations do not have metadata.

14-3

Chapter 14
Using a query to update data

Using a query to update data

You can form queries to UPDATE a row in an Oracle NoSQL Database table. The
WHERE clause must specify an exact primary key as only single row updates are
allowed.

For example, to update a field using the UPDATE statement:

/]l store handle creation omtted.

Tabl eAPI tabl eAPI = store. getTabl eAPI ();
Tabl e table = tabl eAPI. get Tabl e("Users");

/1 Updates the age for User with id=2

StatementResult result = store.executeSync("UPDATE Users SET age=20
VWHERE i d=2");

To update multiple rows, you must first form a query to SELECT records. You then use
the result of the SELECT query to update or insert data.

For example, to update a field using a result record from the SELECT statement:

/1l store handle creation omtted.

Tabl eAPI tabl eAPI = store. get Tabl eAPI ();
Tabl e table = tabl eAPI. get Tabl e("Users");

StatementResult result = store.executeSync("SELECT * FROM Users WHERE
(age > 13 and age < 17)");

for(RecordValue record : result) {
/1 Update a field

record. put ("age", record.get("age").aslnteger().get() + 1);
t abl eAPI . put (record.asRow(), null, null);

ORACLE 14-4

JSON By Example

ORACLE

This appendix contains a complete Java example of how to use JSON data in a Oracle
NoSQL Database store.

The example loads a series of table rows, using JSON objects to represent each row.
The example then updates all table rows that contain a home address in Boston so
that the zip code for that address is updated from 02102 to 02102- 1000.

Our sample data deliberately contains some table rows with null and missing fields so
as to illustrate some (but by no means all) of the error handling that is required when
working with JSON data. It is possible to be endlessly creative when providing broken
JSON to the store. Any production code would have to be a great deal more robust
than what is shown here.

The update operation is shown three different ways in the following example. While the
actual update is always the same (see the UpdateJSON.updateZipCode() method),
there are three different ways to seek out rows with a home address in Boston:

* No query.

This simply iterates over the entire table, examining each row in turn. See
UpdateJSON.updateTableWithoutQuery().

e With an index.

This uses a JSON index to retrieve all table rows where the home address is in
Boston. See UpdateJSON.updateTableWithindex().

* With a SQL Query.

This uses a SQL statement with a execut eSync() method to retrieve all relevant
table rows. See UpdateJSON.updateTableUsingSQLQuery().

The next section shows some of the sample data used by this example. The
description of the example itself begins with UpdateJSON.

If you want to follow along with the example, and see all of the sample data, you can
find this example in the Exanpl es download from here. The example and its sample
data can be found in the Tabl e folder.

When compiling the example, make sure that kvcl i ent.jar is in your classpath. For
example:

javac -d . -cp <KVHOME>/lib/kvclient.jar UpdateJSON. java

You can run this program against a store or a kvlite instance that does not have
security enabled.

java -cp .:<KVHOMVE>/|ib/kvclient.jar table.UpdateJSON

By default, this example uses | ocal host : 5000, but you can set the helper host and
port at the command line using the - host port parameter.

A-1

Appendix A
Sample Data

Sample Data

ORACLE

Our sample data is contained in per son_cont act s. j son. We use it create a simple
two-column table to hold our JSON data.

The first column is an account ID, and it serves as the primary key. At a minimum,
every table will always have a single non-JSON field that serves as the primary key. If
you wish to use compound primary keys, or one or more shard keys, then the number
of non-JSON fields will expand.

Our second field is a JSON field. Like all such fields, it can contain any valid JSON
data. This provides extreme flexibility for your table schema, which is particularly
useful when it is necessary to evolve your data's schema. However, it comes at the
cost of requiring more error checking to ensure that your JSON contains the data you
expect it to contain.

CREATE TABLE personContacts (account | NTECGER
person JSON,
PRI MARY KEY(account))

We load this table with 23 rows, some of which are deliberately incomplete. Each
row is represented as a single JSON object. We show a representative section of the
sample data file, below, for your reference.

In the following listing, notice that Account 3 only provides a work address — there is
no home address. Account 4 provides no address information at all. Account 5 fails

to provide any data at all for the per son field. Account 22 explicitly sets the address
object to nul | . Account 23 explicitly sets both the home and work addresses to null. All
of this is valid JSON and all of it should be handled by our code.

{
“account" : 1,
"person" : {
"l ast Nane" : "Jones",
“firstName" : "Joe"
"address" : {
"home" : {
"street" : "15 El nf,
"city" : "Lakeville",
"zip" . "12345"
b
"work" : {
"street" : "12 Main",
"city" : "Lakeville",
"zip" . "12345"
}
¥
“phone" : {
“hone" : "800-555-1234",
"work" : "877-123-4567"
}
1
}

A-2

Appendix A
Sample Data

{
“account" : 2,
"person" : {
"l ast Nane" : "Anderson"
“firstName" : "N ck"
"address" @ {
"home" : {
"street" : "4032 Kenwood Drive",
"city" : "Boston",
"zip" @ "02102"
¥
"work" : {
"street" : "541 Bronx Street",
"city" : "Boston",
"zip" @ "02102"
}
¥
“phone" : {
“home" : "800-555-9201",
"work" : "877-123-8811"
}
}
}
{
“account" : 3,
"person" : {
"l ast Nane" : "Long"
“firstName" : "Betty",
"address" @ {
"work" : {
"street" : "10 Crcle Drive",
"city" : "M nneapolis",
"zip" : "55111"
}
¥
“phone" : {
“home" : "800-555-2701",
"work" : "877-181-4912"
}
1
}
{
“account" : 4,
"person" : {
"l ast Nange" : "Brown",
"firstName" : "Harrison"
“phone" : {
“home" : "800-555-3838",
"work" : "877-753-4110"
}
1
}

ORACLE A-3

ORACLE

{
"account" : 5
}
{
"account" : 6,
"person" : {
"l ast Nane" : "Abranms",
“firstName" : "Cynthia"
"address" @ {
"home" : {
"street" : "2 Fairfield Drive",
"city" : "San Jose"
"zip" . "95054"
}
b
“phone" : {
"hone" : "800-528-4897",
"work" : "877-180-5287"
}
}
}
..
sanple data renmoved for the book. See person_contact
#in/exanples/table for the conplete data
file.
..
{
"account" : 21,
"person" : {
"l ast Nane" : "Bl ase",
“firstName" : "Lisa",
"address" @ {
"home" : {
"street" : "72 Rutland Circle",
"city" : "Boston",
"zip" . "02102"
b
"work" : {
"street" : "541 Bronx Street",
"city" : "Boston",
"zip" . "02102"
}
b
“phone" : {
"hone" : "800-555-4404"
"work" : "877-123-2277"
}
}

.json

Appendix A
Sample Data

A-4

“account" : 22,
"person" : {
"address" :
"phone" :
“home" :
"work" :
}
}
}
{
“account" : 23,
"person" : {
"address" :
“home" :
"work" :
b
"phone" :
“home" :
"work" :
}
}
}

UpdateJSON

The example program is called Updat eJSON. We deliberately avoid using Java
JSON APIs in this example so as to show how to perform these operations using
Oracle NoSQL Database APIs only. Our imports are therefore limited to or acl e. kv,

ORACLE

oracle.kv.table,java.io,andjava. util.

package tabl e;

i mport oracle.
i mport oracle.
i mport oracle.
i mport oracle.
i mport oracle.

i mport oracle.
i mport oracle.
i mport oracle.
i mport oracle.
i mport oracle.
i mport oracle.
i mport oracle.
i mport oracle.
i mport oracle.
i mport oracle.

kv.
kv.
kv.
kv.
kv.

kv

kv.
kv.

kv

kv.
kv.

kv

kv.
kv.

kv

nul I,

{

"800- 555-1234",
"877-123-4567"

{

nul I,
nul |

{

"800- 555-1234",
"877-123-4567"

.table.
tabl e.
tabl e.
.table.
tabl e.
tabl e.
.table.
tabl e.
tabl e.
.table.

Faul t Excepti on;
KVSt or e;

KVSt or eConfi g;
KVSt or eFact ory;
St at ement Resul t;

Fi el dval ue;

| ndex;

| ndexKey;
MapVal ue;

Pri maryKey;
Recor dVal ue;
Row,

Tabl e;

Tabl eAPI ;

Tabl el terator;

i mport java.io.BufferedReader;
i mport java.io.FileNotFoundExcepti on;
i mport java.io.FileReader;

Appendix A
UpdateJSON

A-5

i mport java.

i mport java.

Appendix A
UpdateJSON.run()

i 0.1 CException;

util.ArraylList;

public class Updat eJSON {

private
private
private
private

private
Stri
meg
meg
meg
meg
meg
meg
meg
meg
meg
meg
meg
meg
meg
meg
meg

String dataFile = "person_contacts.json";
String defaul thost = "l ocal host:5000";
String hel perhosts[];

String storeNane = "kvstore";

static void usage() {

ng meg = "Creates a table and loads data into it fromn";
+= "an external file containing one or nore JSON\n";

+= "objects. The objects nmust conformto the table\n";
+= "schema. Table rows are then updated so that\n";

+= "zipcodes for all home addresses in Boston are\n";

+= "nodi fied updated. Update is performed 3 different\n";
+= "ways so as to illustrate the ways to query JSOMn";
+= "data in Oracle NoSQL Database.\n";

+= "\nCommand |ine options: \n";

+= "-store <storenane>\n";

+= "\tName of the store. Defaults to 'kvstore'\n";

+= "-host port <hostname>: <port>\n";

+= "\tStore location. Defaults to 'local host:5000"\n";

+= "-file <filenane>\n";

+= "\tFile containing row data. Defaults to ";
+= "person_contacts. json";

System out. println(nsg);
System exit(0);

}

public static void main(String args[]) {
Updat eJSON uj = new Updat eJSON();

uj.run(args);

UpdateJSON.run()

The Updat eJSON. run() method parses our command line arguments, sets up and
opens our KVSt or e handle, and then calls each of the methods that provide individual
steps in this example.

ORACLE

Notice that there are three different updat eTabl e. . . methods. Each provides the
same functionality as the next, but reads are performed in different ways. Once
data is loaded into the table, they can be run independently of the others.

A-6

Appendix A
UpdateJSON.defineTable()

The only other dependency is that UpdateJSON.createlndex() must be run before
UpdateJSON.updateTableWithindex() is run.

private void run(String args[]) {
parseArgs(args);

KVSt oreConfi g kconfig =
new KVSt or eConfi g(st or eNane,
hel perhosts);
KVStore kvstore = KVStoreFactory. get Store(kconfig);

defineTabl e(kvstore);

| oadTabl e(kvstore, dataFile);

di spl ayTabl e(kvstore);

updat eTabl eW t hout Query(kvstore);
createl ndex(kvstore);

updat eTabl eWt hl ndex(kvstore);
updat eTabl eUsi ngSQLQuer y(kvstore);
di spl ayTabl e(kvstore);

UpdateJSON.defineTable()

ORACLE

The defi neTabl e() method drops (deletes) the per sonCont act s table if it exists.
Dropping a table deletes all of the table data from the store. The defi neTabl e()
method then creates the new table without data.

As always, we can write no data to the store until the table has been defined in the
store using the appropriate DDL statement.

This method relies on the UpdateJSON.runDDL() method, which we show later in this
appendix.

/1 Drops the exanple table if it exists. This renmoves all table
Il data and indexes. The table is then created in the store.
/1 The | oadTabl e() method is used to popul ate the newly created
Il table with data.
private void defineTabl e(KVStore kvstore) {
Systemout.printIn("Dropping table....");
String statenent = "DROP TABLE | F EXI STS personCont acts";
bool ean success = runDDL(kvstore, statement);

if (success) {
statement =
"CREATE TABLE personContacts (" +
“account | NTEGER " +
"person JSON, " +
"PRI MARY KEY(account))";
Systemout.printin("Creating table....");
success = runDDL(kvstore, statenent);
if (!success) {
Systemout.printIn("Table creation failed.");
Systemexit(-1);

A-7

Appendix A
UpdateJSON.createlndex()

UpdateJSON.createlndex()

The Updat eJSON. cr eat el ndex() method creates a JSON index in the store. It must be
run before UpdateJSON.updateTableWithindex() is run.

For information on JSON indexes, see JSON Indexes.

Il Creates a JSON index. This nethod nmust be

/'l run before updateTabl eWthlndex() is run.

private void createlndex(KVStore kvstore) {
Systemout.printin("Creating index....");
String statenent = "CREATE I NDEX | F NOT EXI STS “;
statenent += "idx_hone_city on personContacts ";
statenent += "(person. address. hone.city AS String)";

runDDL(kvstore, statenent);

UpdateJSON.runDDL()

The Updat eJSON. runDDL() method is a utility that executes DDL statements against
the store using KVSt or e. execut eSync() .

This method relies on the UpdateJSON.displayResult() method, which simply writes
the results of the DDL execution to the command line. It is shown later in this example.

/1l Executes DDL statements (such as are found in defineTable()
/1 and createlndex()) in the store.
private bool ean runDDL(KVStore kvstore, String statenent) {
StatenentResult result = null;
bool ean success = fal se;

try {
result = kvstore. executeSync(statenent);

di spl ayResul t(result, statement);
success = true;
} catch (Illegal Argunent Exception e) {
Systemout.printin("Invalid statement:\n" + e.getMessage());
} catch (Faul t Exception e) {
Systemout.println
("Statenent couldn't be executed, please retry:

+e);

}

return success;

ORACLE A-8

Appendix A
UpdateJSON.update TableWithoutQuery()

UpdateJSON.updateTableWithoutQuery()

ORACLE

The Updat eJSON. updat eTabl eW t hout Query() method iterates over every row in our
table looking for the proper rows to update.

This is by far the most complicated of the update methods due to the requirement
to continually check for null fields. Notice that all of the following code is

used to simply retrieve table rows. The actual update operation is performed by
UpdateJSON.updateZipCode().

[l Wility method. Gven a MapValue and a field nane,
Il return the field as a MapVal ue. Used by
/'l updat eTabl eW t hout Query()
private MapVal ue get W(MapVal ue mv, String field) {
Fieldvalue fv = null;
if ((fv = mv.get(field)) !'=null)
return fv.asMap();
return nul l;

}

/'l Update the zip code found on all Boston home addresses
[/ to "02102-1000"
I
/'l Because we are not using an index, we nmust iterate over
Il every rowin the table, nodifying the rows with Boston home
Il addresses.
private void updateTabl eWthout Query(KVStore kvstore) {
Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e(" per sonCont act s");

Pri maryKey pkey = nyTabl e. createPrinaryKey();
Tabl elterator<Row> iter =
tabl eH tabl elterator(pkey, null, null);
try {
while (iter.hasNext()) {
int account = 0;
Row row = iter.next();
Fieldvalue fv = null;
try {
account = row. get("account").aslnteger().get();
MapVal ue nv = row. get (" person").asMap();

MapVal ue nvaddress = get W(mv, "address");
if (mvaddress !'= null) {
MapVal ue nvhone = get W(nvaddress, "hone");
if (mvhome != null) {
fv = mvhome. get("city");
if (fv!=null) {
if (fv.toString()
. equal sl gnor eCase("Boston"))
updat eZi pCode(t abl eH,
row,
"home",

A-9

Appendix A
UpdateJSON.updateTableWithindex()

"02102-1000");

}
}
} catch (O assCastException cce) {
Systemout.printin("Data error: ");
Systemout . println("Account " + account +
"has a missing or inconplete person field");
[l 1f this is thrown, then the "person" field
/] doesn't exist for the row

}
}
} finally {
if (iter '=null) {
iter.close();

}
}

Systemout. println("Updated a table without using a query.");

UpdateJSON.updateTableWithIndex()

ORACLE

The Updat eJSON. updat eTabl eW't hl ndex() method performs the update using an
index.

This read operation is considerably easier to implement than the previous method
because we do not need to perform all the error checking. This method is also more
efficient because only the table rows identified by the index are returned, resulting in
less network traffic and fewer rows for our code to examine. However, if the required
index does not exist, then this method will fail.

/1 Update the zip code found on all Boston home addresses
I/ to "02102-1000"
/1
/'l Because we have an index available to us, we only have to | ook
/1 at those rows which have person. address. horme. city = Boston
/1 Al'l other rows are skipped during the read operation
private void updateTabl eWthl ndex(KVStore kvstore) {
Tabl eAPI tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e(" per sonCont acts");

/1 Construct the |ndexKey.
I ndex homeCityldx = myTabl e. getlndex("idx_home _city");
I ndexKey honeCityl dxKey = null;

{1 1f Null PointerException is thrown by createl ndexKey(),
/1 it neans that the required i ndex has not been created.
/1 Run the createlndex() nethod before running this method.
honeCi tyl dxKey = honeCGityl dx. creat el ndexKey();

/1 Return only those entries with a horme city of "Boston"
honeCi tyl dxKey. put (" per son. addr ess. hone. city", "Boston");

A-10

Appendix A
UpdateJSON.update TableUsingSQLQuery()

Il lterate over the returned table rows. Because we're
/1 using an index, we're guaranteed that
/1 person. address. hone.city exists and equal s Boston
/1 for every table row seen here.
Tabl elterator<Row> iter =
tabl eH tabl elterator(homeC tyl dxKey, null, null);
try {
while (iter.hasNext()) {
Row row = iter.next();
updat eZi pCode(tabl eH, row, "home", "02102-1000");

}
} finally {
if (iter '=null) {
iter.close();
}
}

Systemout . println("Updated a table using an index.");

UpdateJSON.updateTableUsingSQLQuery()

The Updat eJSON. updat eTabl eUsi ngSQLQuer y() method uses a Oracle NoSQL
Database SQL query to retrieve the required table rows.

ORACLE

This third and final query method is the easiest to implement, and it has the advantage
of not requiring an index. If an appropriate index is available, it will be used — with all
the advantages that an index offers — but the index is not required as it was for the
previous method.

1
1
1
1
1
I
I
Iy

Update the zip code found on all Boston home addresses
to "02102-1000"

This query works with or without an index. If an index is
available, it is automatically used. For |arger datasets,
the read operation will be faster with an index because only
the rows where person. address. hone. city=Boston are returned
for the read.

private void updateTabl eUsi ngSQLQuery(KVStore kvstore) {

Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e(" per sonCont acts");

String query = "select * from personContacts p “;
query += "where p.person. address. hone. ci ty=\"Boston\"";

StatenmentResult result = kvstore. executeSync(query);

for (RecordValue rv : result) {
Row row = nyTabl e. cr eat eRowFromJson(rv.toString(),
fal se);
updat eZi pCode(tabl eH, row, "hone", "02102-1000");

}
Systemout. printIn("Updated a table using a SQL Query to " +

A-11

Appendix A
UpdateJSON.updateZipCode()

"read.");

UpdateJSON.updateZipCode()

The Updat eJSON. updat eZi pCode() method performs the actual update operation in the
store.

Because JSON can be returned as a MapVal ue, it is simple and efficient to update the
JSON data field.

/'l Updates the zipcode for the proper address (either "home"
[l or "work" in this exanple).
I
/1 The calling nmethod nust guarantee that this row contains a
/'l home address which refers to the correct city.
private void updateZ pCode(Tabl eAPI tableH Row row,

String addr Type, String newzip) {

MapVal ue hormeaddr = row. get ("person").asMap()

. get ("address"). asMap()

. get (addr Type) . asMap() ;
[l 1f the zip field does not exist in the honme address,
[l it is created with the newzip value. If it currently
[l exists, it is updated with the new val ue.
honeaddr . put ("zi p", newzip);

/1 Wite the updated row back to the store.

/1 Note that if this was production code, we

/'l shoul d be using putlfVersion() when

/1 performing this wite to ensure that the row

/1 has not been changed since it was originally read.
tabl eH put (row, null, null);

UpdateJSON.loadTable()

ORACLE

The Updat eJSON. | oadTabl () method loads our sample date into the Oracle NoSQL
Database store.

As Sample Data shows, all of our table rows are represented as JSON data in a

single text file. Each row is a single JSON object in the file. Typically JSON files are
expected to contain one and only one JSON object. While there are third party libraries
which will iterate over multiple JSON objects found in a stream, we do not want to rely
on them for this example. (In the interest of simplicity, we avoid adding a third party
dependency.) Consequently, this method provides a primitive custom parser to load
the example data into the store.

/'l Loads the contents of the sanple data file into

/'l the personContacts table. The defineTabl e() nethod
Il nust have been run at least once (either in this
[l runtine, or in one before it) before this method
Il is run.

A-12

ORACLE

I
I
I
I
I
I
I

Appendix A
UpdateJSON.loadTable()

JSON parsers ordinarily expect one JSON Object per file.
Qur sanple data contains multiple JSON Objects, each of
whi ch represents a single table row. So this nethod

i npl ements a sinple, custom not particularly robust
parser to read the input file, collect JSON Qvjects,

and load theminto the table.

private void | oadTabl e(KVStore kvstore, String file2load) {

Tabl eAPl tableH = kvstore. get Tabl eAPI ();
Tabl e nyTabl e = tabl eH. get Tabl e(" per sonCont act s");

Buf f eredReader br = null;
Fil eReader fr = null;

try {
String jGoj = "";
String currlLine;
int pCount = 0;

bool ean buil dObj = fal se;
bool ean beganParsing = fal se;

fr
br

new Fi | eReader (fil e2l oad);
new Buf f er edReader (fr);

/1 Parse the exanple data file, |oading each JSON obj ect
[l found there into the table.
while ((currLine = br.readLine()) !'= null) {

pCount += countParens(currlLine, '{");

[l Enpty line in the data file
if (currLine.length() == 0)
conti nue;

/1 Comments nust start at colum 0 in the
/1l data file.
if (currLine.charAt(0) =="#")

conti nue;

/1 1f we've found at |east one open paren, it's time to
/] start collecting data
if (pCount > 0) {

bui | doj = true;

beganParsing = true;

}

if (buildj) {
j Gbj += currlLine;

}

/1 1f our open and closing parens bal ance (the count
[l is zero) then we've collected an entire object
pCount -= countParens(currlLine, '}");
if (pCount < 1)

bui | dOoj = fal se;
/] 1f we started parsing data, but buildOoj is false

A-13

Appendix A
UpdateJSON.displayTable()

/1 then that neans we've reached the end of a JSON
/] object inthe input file. So wite the object
/] to the table, which neans it is witten to the
/] store.
if (beganParsing &% !buildoj) {
Row row = nyTabl e. cr eat eRowFr omJson(j Cbj, fal se);
tableH put(row, null, null);
jaj =

}

Systemout. println("Loaded sanple data " + file2load);

} catch (FileNot FoundException fnfe) {
Systemout.printin("File not found: " + fnfe);
Systemexit(-1);

} catch (I CException ioe) {

Systemout. println("l CException: " + ioe);
Systemexit(-1);

} finally {
try {
if (br '=null)
br.close();
if (fr '=null)
fr.close();

} catch (I CException iox) {
Systemout . println("I CException on close: " + io0x);

}
}

Il Used by | oadTable() to know when a JSON obj ect
/'l begins and ends in the input data file.
private int countParens(String line, char p) {

int ¢ =0;
for(int i=0; i < line.length(); i++) {
if(line.charAt(i) ==p) {
C++;
}
}
return c;

UpdateJSON.displayTable()

The Updat eJSON. di spl ayTabl e() method simply writes the entire table to the
command line.

ORACLE A-14

Appendix A
UpdateJSON.displayResult()

This method does not format the table's contents in any significant way. It is simply
provided as a convenience to allow the user to see that data has in fact been modified
in the store.

/1 Dunps the entire table to the command line.
/1 Qutput is unformatted.
private void displayTabl e(KVStore kvstore) {
Tabl eAPl tabl eH = kvstore. get Tabl eAPI ();
Tabl e nmyTabl e = tabl eH. get Tabl e(" per sonCont act s");

Pri maryKey pkey = nyTabl e. createPrinaryKey();
Tabl el terator<Row> iter = tableH tablelterator(pkey, null,
null);
try {
while (iter.hasNext()) {
Row row = iter.next();
Systemout. println("\nAccount: " +
row. get ("account").aslnteger());
if (row get("person").isNull()) {
Systemout.printin("No person field");
} else {
Systemout . println(row. get("person").asMap());

}
}
} finally {
if (iter '=null) {
iter.close();
}

UpdateJSON.displayResult()

The Updat eJSON. di spl ayResul t () method shows the contents of a St at enent Resul t
object returned by a KVSt or e. execut eSync() method call. It is used by this example
as a convenience to help the user see that a DDL statement has executed correctly in
the store.

Il Displays the results of an executeSync() call.
private void displayResult(StatementResult result,
String statement) {
Systemout. println(" ");
if (result.isSuccessful()) {
Systemout. println("Statement was successful :\n\t" +
statenent);
Systemout.printin("Results:\n\t" + result.getlnfo());
} else if (result.isCancelled()) {
Systemout. println("Statement was cancel led:\n\t" +

statenent);
} else {
Il statenment wasn't successful: nmay be in error, or may
Il still be in progress.

if (result.isDone()) {

ORACLE A-15

Appendix A
UpdateJSON.parseArgs()

Systemout.printIn("Statement failed:\n\t" +
statenent);

Systemout. printIn("Problem\n\t" +
resul t.get ErrorMessage());

} else {

Systemout.printIn("Statement in progress:\n\t" +
statenent);

Systemout.printIn("Status:\n\t" +
result.getinfo());

UpdateJSON.parseArgs()

The Updat eJSON. par seAr gs() method is used to parse the command line arguments
used with this class at run time.

It is unlikely that this method holds any surprises for Java programmers. It is included
here purely for the sake of completeness.

/'l Parse command |ine arguments
private void parseArgs(String[] args)
{

final int nArgs = args.|ength;

int argc = 0;

ArrayLi st<String> hhosts

new ArrayList<String>();

while (argc < nArgs) {
final String thisArg

args[argc++];

if (thisArg.equals("-store")) {
if (argc < nArgs) {
storeNane = args[argc++];
} else {
usage();
}

} else if (thisArg.equals("-hostport")) {
if (argc < nArgs) {
hhost's. add(args[argc++]);
} else {

usage();
}

} else if (thisArg.equals("-file")) {
if (argc < nArgs) {
dataFile = args[argc++];
} else {
usage();
}

} else if (thisArg.equals("?") ||
t hi sArg. equal s("hel p")) {
usage();
} else {
usage();

ORACLE A-16

Appendix A
UpdateJSON.parseArgs()

}

if (hhosts.isEnpty()) {
hel perhosts = new String [] {defaulthost}
} else {
hel perhost s
hel perhost s

new String[hhosts.size()];
hhost s. t oArray(hel perhosts);

ORACLE A-17

Table Data Definition Language Overview

Before you can write data to tables in the store, you must provide a definition of the
tables you want to use. This definition includes information such as the table's name,
the name of its various rows and the data type contained in those rows, identification
of the primary and (optional) shard keys, and so forth. To perform these definitions,
Oracle NoSQL Database provides a Data Definition Language (DDL) that you use to
form table and index statements. The best way to run DDL statements is from the SQL
Shell as described in Running the SQL Shell in the SQL Beginner's Guide.

From the SQL, you can use these statements:

* Define tables and sub-tables.

* Modify table definitions.

* Delete table definitions.

* Define indexes.

* Delete index definitions.

* Set and modify default Time-to-Live values for tables.

Table and index statements take the form of ordinary strings, which are then
transmitted to the Oracle NoSQL Database store using the appropriate method or
function. For example, to define a simple user table, the table statement might look like
this:

SQL- > CREATE TABLE Users (
i d | NTEGER,
firstName STRING
| ast Nane STRI NG
contactlnfo JSON,
PRI MARY KEY (i d)

For information on how to transmit these statements to the store, see Introducing
Oracle NoSQL Database Tables and Indexes.

For overview information on primary and shard keys, see Primary and Shard Key
Design.

For overview information on indexes, see Creating Indexes.

The remainder of this appendix describes in detail the DDL statements that you use to
manipulate table and index definitions in the store.

Name Constraints

Throughout this document, and elsewhere in the documentation, using uppercase
text signifies DDL keywords (such as STRING, CREATE TABLE, and so on).
These keywords are actually case-insensitive and you can enter them in lowercase

ORACLE B-1

Appendix B
DDL Comments

characters. However, all DDL keywords shown here are reserved words. You cannot
use keywords as table, index, or field names.

Table, index, and field names are case-preserving, but case-insensitive. For example,
you can create a field named MY_NAME, and later reference it as nmy_name without error.
However, whenever you display the field name, it displays in the way you created it,
MY_NAME, in this case.

Table names are limited to 256 characters. Namespace names, index names, and field
names are limited to 64 characters. All table, index, and field names must begin with

a letter (A-Z, a-z), and are restricted to alphanumeric characters (A-Z, a-z, 0-9), plus
underscore () and a period (.) character.

DDL Comments

You can include comments in your DDL statements using one of the following
constructs:

id INTEGER, /* this is a coment */
firstName STRING // this is a comrent
| astName STRING # this is a comment

CREATE TABLE

ORACLE

To create a table definition, use a CREATE TABLE statement, as follows:

CREATE TABLE [IF NOT EXI STS] [namespace:]tabl e- name
[COWENT "coment string"]
(field-definition, field-definition-2 [,...]
PRI MARY KEY (field-name, field-nanme-2 [,...]),
) [USING TTL ttl]
[I'N REG ONS regi on-nane, region-nane-2 [,...]]

where:
e |F NOT EXISTS

Optional clause. If you use this clause and a table of the same name and definition
already exists in the current namespace, the statement neither creates a new
table, nor returns an error. No action occurs.

If you do not use | F NOT EXI STS, and a table of the same name and definition
already exists in the current namespace, the statement attempts to create

the table, and fails. You cannot have two tables with the same name in one
namespace.

e table-nanme

Required. Specifies the full table name, regardless of where it exists in the table
hierarchy. A table can be a top-level table created in the default namespace
(sysdef aul t), a table in a non-default namespace, or a child or grandchild table of
a parent table. Specify a fully-qualified table name as follows:

— parent-tabl e.chil d-tabl e — Specifies a new child table of an existing parent.
To create a child table, specify the parent table followed by a period (.) before

B-2

ORACLE

Appendix B
CREATE TABLE

the child name. For example, if the parent table is User s, define a child table
named Mai | i ngAddr ess as Users. Mai | i ngAddr ess.

— parent-table.child-tabl e.grandchil d-tabl e — Specifies a child table of
an existing table. You must also specify the parent table, for example
Users. Mai | i ngAddr ess. Zi p.

— namespace- nane: t abl e- name — Identifies a new table in a specific namespace,
either user-created or in the default namespace (sysdef aul t:). Use the
namespace followed by a colon (:) as a prefix to the new table name. For
a new child table of a table in a namespace, or any further generation,
use a fully qualified table name such as Sal es: Users. Mai | i ngAddr ess, or
Sal es: Users. Mai | i ngAddr ess. Zi p.

COMMENT

Optional. Use a comment to provide a brief description of the table. The comment
is not interpreted at runtime, but becomes part of the table's metadata.
field-definition

Required. A comma-separated list of fields. One of the columns can be an
IDENTITY, as described in Defining Tables With an IDENTITY Column. There are
one or more field definitions for every table. Field definitions are described next in
this section.

PRI MARY KEY

Required for every table. Identifies at least one field in the table that is the primary
key. For information on primary keys, see Primary Keys.

¢ Note:

If the primary key field is an INTEGER data type, you can apply a
serialized size constraint to it. See Integer Serialized Constraints for
details.

To optionally define a shard key, use the SHARD keyword within the primary key
statement. For information on shard keys, see Shard Keys.

For example:

PRI MARY KEY (SHARD(id), I astNane)

USING TTL

Optional. Defines a default time-to-live value for the table's rows. See USING TTL
for information on this clause.

IN REG ONS

Optional. In case, the table being created is an MR Table, this parameter lists
all the regions that the table should span. You must mention at least one remote
region in this clause to create the table as an MR Table. For information on MR
Tables, see Life Cycle of MR Tables in the Concepts Guide.

B-3

Appendix B
CREATE TABLE

Field Definitions

When defining a table, field definitions take the form:

field-nane type [constraints] [COMVENT "comrent-string"]

where:

field-name is the name of the field. For example: i d or fam | i ar Nane. Every field
must have a name.

type describes the field's data type. This can be a simple type such as INTEGER
or STRING, or it can be a complex type such a RECORD. The list of allowable
types is described in the next section.

constraints describes any limits placed on the data contained in the field. That
is, allowable ranges or default values. Ann IDENTITY field, to be created by a
sequence generator, is also permissable. This information is optional. See Field
Constraints for more information.

COMMENT is optional. You can use this to provide a brief description of the field. The
comment will not be interpreted but it is included in the table's metadata.

Supported Data Types

The following data types are supported for table fields:

ORACLE

ARRAY

An array of data. All elements of the array must be of the same data type, and this
type must be declared when you define the array field. For example, to define an
array of strings:

nmyArray ARRAY(STRI NG

Bl NARY

Binary data.

Bl NARY(| engt h)

Fixed-length binary field of size length (in bytes).

BOCLEAN

A boolean data type.

DOUBLE

A double.

ENUM

An enumerated list. The field definition must provide the list of allowable

enumerated values. For example:

frui t Name ENUM appl e, pear, orange)

FLOAT

B-4

Appendix B
CREATE TABLE

A float.
e INTEGER
An integer.
* JSIN
A JSON-formatted string.
« LONG
A long.
* MAP

A data map. All map keys are strings, but when defining these fields you must
define the data type of the data portion of the map. For example, if your keys map
to integer values, then you define the field like this:

myMap MAP(| NTEGER)

* Number
A numeric type capable of handling any type of number of any value or precision.
e RECORD

An embedded record. This field definition must define all the fields contained in the
embedded record. All of the same syntax rules apply as are used for defining an
ordinary table field. For example, a simple embedded record might be defined as:

nyEmbeddedRecord RECORD(firstField STRING secondField | NTEGER)

Data constraints, default values, and so forth can also be used with the embedded
record's field definitions.

» STRING
A string.
e TI MESTAMP(<preci si on>)
Represents a point in time as a date and, optionally, a time value.

Timestamp values have a precision (0 - 9) which represents the fractional seconds
to be held by the timestamp. A value of 0 means that no fractional seconds are
stored, 3 means that the timestamp stores milliseconds, and 9 means a precision
of nanoseconds. When declaring a timestamp field, the precision is required.

Field Constraints

Field constraints define information about the field, such as whether the field can be
NULL, or what a row's default value should be. Not all data types support constraints,
and individual data types do not support all possible constraints.

Integer Serialized Constraints

You can put a serialized size constraint on an INTEGER data type, provided the
INTEGER is used for a primary key field. Doing this can reduce the size the keys in
your store.

ORACLE B-5

COMMENT

DEFAULT

IDENTITY

ORACLE

Appendix B
CREATE TABLE

To do this, use (n) after the primary key field name, where n is the number of bytes
allowed for the integer. The meaningful range for nis 1 - 4. For example:

create table nyld (id integer, primary key(id(3)))

The number of bytes allowed defines how large the integer can be. The range is from
negative to positive.

< Note:

Specifying an integer constraint value for number of bytes on an IDENTITY
field is not permitted.

Number of Allowed Integer Values
Bytes

1 -63 to 63

2 -8191 to 8191

3 -1048575 to 1048575

4 -134217727 to 134217727
5 Any integer value

All data types can accept a COMMENT as part of their constraint. COMMENT strings
are not parsed, but do become part of the table's metadata. For example:

nyRec RECORD(a STRING b I NTEGER) COMMENT " Commrent string"

All fields can accept a DEFAULT constraint, except for ARRAY, BINARY, MAP, and
RECORD. The value specified by DEFAULT is used in the event that the field data is
not specified when the table is written to the store.

For example:

id I NTEGER DEFAULT -1,

description STRING DEFAULT "NONE",

size ENUM smal |, medi um | arge) DEFAULT medi um
i nSt ock BOOLEAN DEFAULT FALSE

You can define one IDENTITY field per table. All IDENTITY fields must have a numeric
type: INTEGER. LONG, or NUMBER. An IDENTITY field can optionally be a primary
key.

B-6

Appendix B
CREATE TABLE

There are two ways to define an IDENTITY field. You can optionally specify one or
more Sequence Generator attributes for the Sequence Generator (SG) associated
with the IDENTITY. These are the options:

« GENERATED ALWAYS AS IDENTITY
» GENERATED BY DEFAULT AS IDENTITY

These are the Sequence Generator attributes you can define:

Attribute Type Default Value and Description

StartWth Nunber Default: 1 The first value in the sequence. Zero (0) is not
permitted.

I ncr enent By Long Default: 1 The value to increment the current value, which
can be a positive or a negative number. Specifying a
negative number for | ncr enent By decrements values from
the Start W t h value.

M nVal ue Nunber Default: The minimum value of the field data type. The
lower bound of the IDENTITY values that the SG supplies.

MaxVal ue Nunber Default: The maximum value of the field data type. The
upper bound of the IDENTITY values that the SG supplies.
If you do not specify this attribute, SG uses the maximum
value of the field data type.

Cache Long Default: 1000 The number of values stored in cache on the
client to use for the next IDENTITY value. When the set of
values is exhausted, the SG requests another set to store in
the local cache (unless you specify the Cycl e attribute).

Cycle | NoCycle Bool ean Default: NoCycl e Determines whether to reuse the set of
stored values in cache. For example, if the cache stores
1024 integers for the IDENTITY column, and you specify
Cycl e, when the IDENTITY value reaches 1023, the next
row value is 0001. If you do not specify Cycl e, Oracle
NoSQL Database guarantees that each IDENTITY value in
the column is unique, but not necessarily sequential.

For example:
CREATE Table T (id | NTEGER GENERATED ALWAYS AS | DENTI TY
(START WTH 2 I NCREMENT BY 2 MAXVALUE 200),
name STRI NG
PRI MARY KEY (id));
CREATE Tabl e T_DEFAULT (id LONG GENERATED BY DEFAULT AS | DENTITY
(START WTH 1 I NCREMENT BY 1 CYCLE CACHE 200),
account _id | NTEGER,
name STRI NG
PRI MARY KEY (account id));
ORACLE B-7

NOT NULL

USING TTL

Appendix B
CREATE TABLE

NOT NULL indicates that the field cannot be NULL. This constraint requires that
you also specify a DEFAULT value. Order is unimportant for these constraints. For
example:

id INTEGER NOT NULL DEFAULT -1,
description STRI NG DEFAULT "NONE" NOT NULL

USI NG TTL is an optional statement that defines a default time-to-live value for a table's
rows. See Using Time to Live for information on TTL.

If specified, this statement must provide a tt/ value, which is an integer greater than or
equal to 0, followed by a space, followed by time unit designation which is either hours
or days. For example:

USING TTL 5 days

If 0 is specified, then either days or hour s can be used. A value of 0 causes table rows
to have no expiration time. Note that 0 is the default if a default TTL has never been
applied to a table schema. However, if you previously applied a default TTL to a table
schema, and then want to turn it off, use 0 days or 0 hours.

USING TTL 0 days

Be aware that if you altering an existing table, you can not both add/drop a field and
alter the default TTL value for the field using the same ALTER TABLE statement. These
two operations must be performed using separate statements.

Table Creation Examples

ORACLE

The following are provided to illustrate the concepts described above.

CREATE TABLE users
COWENT "This comment applies to the table itself" (
i d | NTECER,
firstName STRING
| ast Name STRI NG,
age | NTECER
PRI MARY KEY (i d),

)

CREATE TABLE tenporary
COWMENT "These rows expire after 3 days" (
sku STRING
id STRING
price FLOAT,
count | NTECGER,

B-8

ORACLE

)

Appendix B
CREATE TABLE

PRI MARY KEY (sku),
USING TTL 3 days

CREATE TABLE Users
COWMVENT "This is an MR table"(

)

id I NTEGER

firstName STRING

| ast Name STRI NG

age | NTECER

primry key (id)

IN REG ONS us_east, us_west;

CREATE TABLE usersNold (

)

firstName STRING

[ast Name STRI NG COVWMENT "This comment applies to this field only",
age | NTECER

ssn STRING NOT NULL DEFAULT "xxx-yy-zzzz",

PRI MARY KEY (SHARD(| ast Nane), firstNane)

CREATE TABLE users. address (

street Number | NTECER,

streetName STRING, // this coment is ignored by the DDL parser
city STRING

[* this comrent is ignored */

zi p | NTEGER,

addr Type ENUM (hone, work, other),

PRI MARY KEY (addr Type)

CREATE TABLE conpl ex
COWMENT "this comment goes into the table nmetadata" (

id | NTEGER,

PRI MARY KEY (id), # this comment is just syntax

nest edMap MAP(RECORD(m MAP(FLOAT), a ARRAY(RECORD(age I NTEGER)))),

address RECORD (street INTEGER, streetName STRING city STRING \
zip I NTEGER COMMENT "zip comment"),

friends MAP (STRING),

float Array ARRAY (FLOAT),

aFi xedBi nary BI NARY(5),

days ENUM non, tue, wed, thur, fri, sat, sun) NOT NULL DEFAULT tue

CREATE TABLE nyJSON (

recordl D | NTECGER,
j sonData JSON,
PRI MARY KEY (recordl D)

B-9

Appendix B
Modify Table Definitions

Modify Table Definitions

Use ALTER TABLE statements to either add new fields to a table definition, or delete
a currently existing field definition. You can also use an ALTER TABLE statement to
change the default Time-to-Live (TTL) value for a table, and to add an IDENTITY
column to a table.

ALTER TABLE ADD field

To add a field to an existing table, use the ADD statement:

ALTER TABLE tabl e-name (ADD fiel d-definition)

See Field Definitions for a description of what should appear in field-definitions, above.
For example:

ALTER TABLE Users (ADD age | NTEGER)

You can also add fields to nested records. For example, if you have the following table
definition:

CREATE TABLE u (id | NTEGER,

info record(firstNane String)),
PRI MARY KEY(id))

then you can add a field to the nested record by using dot notation to identify the
nested table, like this:

ALTER TABLE u(ADD i nfo. | ast Nane STRI NG

ALTER TABLE DROP Option

ORACLE

To delete a field from an existing table, use the DROP option:

ALTER TABLE t abl e-nane (DRCP fiel d-nane)

For example, to drop the age field from the User s table:

ALTER TABLE Users (DROP age)

" Note:

You cannot drop a field if it is the primary key, or if it participates in an index.

You can also us the ALTER TABLE MODI FY FI ELD clause to add, drop, or modify an
IDENTITY column in a table.

B-10

Appendix B
DROP TABLE

ALTER TABLE USING TTL

To change the default Time-to-Live (TTL) value for an existing table, use the USI NG
TTL statement:

ALTER TABLE tabl e-nane USING TTL ttl

For example:

ALTER TABLE Users USING TTL 4 days

In case of MR Tables, you can not use the USI NG TTL clause along with the I N
REG ONS clause. That is, you can not alter an MR table's TTL value and regions in a
single statement.

For more information on the USI NG TTL statement, see USING TTL.

ALTER TABLE ADD REGIONS

The add regi ons clause lets you link an existing multi-region table (MR Table) with
new regions in a multi-region Oracle NoSQL Database environment.

The add regi ons clause is used in expanding MR Tables to new regions. See Use
Case 2: Expand a Multi-Region Table in the Administrator's Guide.

To add a region to an existing MR Table, use the ADD REG ONS option:

ALTER TABLE <t abl e name> ADD REG ONS <coma separated |ist of regions>

See Add New Region to Existing Regions for the example code.

ALTER TABLE DROP REGIONS

The drop regi ons clause lets you disconnect an existing multi-region table (MR Table)
from a participating region in a multi-region Oracle NoSQL Database environment.

The drop regi ons clause is used in contracting MR Tables to fewer regions. See Use
Case 3: Contract a Multi-Region Table in the Administrator's Guide.

To drop a region from an MR Table, use the DROP REG ONS option:

ALTER TABLE <t abl e name> DROP REG ONS <comma separated |ist of regions>

See Alter the MR Table to Drop Regions for the example code.

DROP TABLE

To delete a table definition, use the DROP TABLE statement:

DROP TABLE [I F EXI STS] tabl e-nane

ORACLE B-11

ORACLE

Appendix B
DROP TABLE

where:

| F EXI STS is optional. If you use this option and the specified table does not exist,
the system returns a message:

sql-> drop table if exists foo;
Statement did not require execution

If you do not specify | F EXI STS, and the table does not currently exist, the DROP
statement returns as follows:

sql-> drop table foo;

Error handling command drop table foo:

Error: User error in query: DROP TABLE failed for table foo:
Tabl e does not exist: foo

If you specify | F EXI STS, and the table exists, the DROP statement executes
successfully:

sql-> create table foo (first string, second integer, primary key
(second));

Statenent conpl eted successful ly

sql-> drop table if exists foo;

Statenent conpl eted successful ly

table-name is the name of the table you want to drop.

As soon as you execute the DROP TABLE statement, users can no longer access the
deleted table or its data. Deleting all of the table data occurs asynchronously in the
background after you execute the DROP TABLE statement.

If you choose to drop an MR Table in a particular region, it still continues to remain

an MR Table in the other participating regions. In a case where you want to drop a
particular MR Table from multiple regions, you must execute the DROP TABLE statement
in each region separately.

¢ Note:

In a case where an MR Table is dropped in all remote regions but still exists
in local region, it still continues to be an MR Table linked with a single region.
Such an MR Table with a single region can be expanded to more regions in
future. That is, you can add new regions to this table in future, as needed.

If the table to drop has child tables, you must drop those first. For example, if you have
these tables:

myTable
myTable.childTablel
myTable.childTable2

B-12

Appendix B
CREATE INDEX

You must first drop myTabl e. chi | dTabl el and nyTabl e. chi | dTabl e2 before you can
drop the parent nyTabl e. If you try to drop the parent, the statement returns an error.

CREATE INDEX

To add an index definition to the store, use a CREATE | NDEX statement. It can be used
to create simple indexes and multi-key indexes. It can also be used to create JSON
indexes.

Indexable Field Types

Fields can be indexed only if they are declared to be one of the following types. For
all complex types (arrays, maps, and records), the field can be indexed if the ultimate
target of the index is a scalar datatype. So a complex type that contains a nested
complex type (such as an array of records, for example) can be indexed if the index's
target is a scalar datatype contained by the embedded record.

ORACLE

Integer
Long
Number
Float
Double
Json

Note that there are some differences and restrictions on indexing Json data versus
other data types. See JSON Indexes for more information.

String
Enum
Array

In the case of arrays, the field can be indexed only if the array contains values that
are of one of the other indexable scalar types. For example, you can create an
index on an array of Integers. You can also create an index on a specific record in
an array of records. Only one array can participate in an index, otherwise the size
of the index can grow exponentially because there is an index entry for each array
entry.

Maps

As is the case with Arrays, you can index a map if the map contains scalar types,
or if the map contains a record that contains scalar types.

Records

Like Arrays and Maps, you can index fields in an embedded record if the field
contains scalar data.

B-13

Appendix B
CREATE INDEX

Simple Indexes

An index is simple if it does not index any maps or arrays. To create a simple index:

CREATE | NDEX [I F NOT EXI STS] index-name ON tabl e-name
(path_list)

where:

e | F NOT EXI STSis optional, and it causes the CREATE | NDEX statement to be
ignored if an index by that name currently exists. If this phrase is not specified,
and an index using the specified name does currently exist, then the CREATE | NDEX
statement will fail with an error.

* index-name is the name of the index you want to create.
* table-name is the name of the table that you want to index.

* path_listis a comma-separated list of one or more name_paths. A name_path
refers to an element of a table. Normally these are schema fields — that is,
field names that appear in the CREATE TABLE expression used to create the
associated table.

However, if the table contains a record, then the name_path may be record keys
that use dot-notation to identify a record field. For example:

CREATE TABLE exanpl e (
id I NTEGER,
nmyRecord RECORD(field one STRING field two STRING,
PRI MARY KEY (i d)

An index can then be created on field_one by using the name_path of
nmyRecord. fi el d_one. See Indexing Embedded Records for a more detailed
explanation of indexing records.

For example, if table User s has a field called | ast Nane, then you can index that field
with the following statement:

CREATE | NDEX surnanel ndex ON Users (| ast Name)

Note that depending on the amount of data in your store, creating indexes can take
a long time. This is because index creation requires Oracle NoSQL Database to
examine all the data in the store.

Multi-Key Indexes

ORACLE

Multi-key indexes are used to index all the elements of an array. They are also used to
index all of the elements and/or values of a map.

For each table row, a multi-key index contains as many entries as the number of
elements/entries in the array/map that is being indexed (although duplicate entries are
not represented in the index). To avoid an explosion in the number of index entries,
only one array/map may be contained in a single multi-key index.

B-14

Appendix B
CREATE INDEX

To create a multi-key index, use one of the following forms:

CREATE I NDEX [I F NOT EXI STS] index-name ON tabl e-name (nane-path. keys())

or

CREATE I NDEX [I F NOT EXI STS] index-name ON tabl e-name (nane-
pat h. val ues())

or

CREATE I NDEX [I F NOT EXI STS] index-name ON tabl e-nanme \
(name- pat h. keys(), name- pat h. val ues())

or

CREATE I NDEX [I F NOT EXI STS] index-name ON tabl e-name (nane-path[])

The syntax shown, above, is identical to that described in Simple Indexes, with the
following additions:

e . keys()

The index is created on the keys in a map. If used, name-path must be a map.
e .values()

The index is created on the values in a map. If used, name-path must be a map.
< 1l

The index is created on an array. If used, name-path must be array.

For each of the previously identified forms, a comma-seperated list of name-paths may
be provided. Some restrictions apply.

Multi-Key Index Restrictions

ORACLE

The following restrictions apply to multi-key indexes:

e There is at least one name-path that uses a multi-key step (. keys(), . val ues(),
or []). Any such path is called a multi-key path, and the associated index field a
multi-key field. The index definition may contain more than one multi-key path, but
all multi-key paths must use the same name-path before their multi-key step.

* Any non-multi-key paths must be simple paths.

* The combined path specified for the index must contain at least one map and/or
array. These must contain indexable atomic items, or record items, or map items.
That is, an index of an array of arrays is not supported, nor is an index of maps
containing arrays.

For example, given the following table definition:

create table Foo (
id | NTEGER,
conpl ex1 RECORD(mapFi el d MAP(ARRAY(MAP(| NTEGER)))),

B-15

ORACLE

Appendix B
CREATE INDEX

conpl ex2 RECORD(mat ri x ARRAY(ARRAY(RECORD(a LONG, b LONG)))
primry key(id)
)

The path expression conpl ex2. mat ri x[] is not valid, because the result of
this path expression is a sequence of arrays, not atomic items. Neither is
conpl ex2. matrix[][].a valid, because you cannot index arrays inside other
arrays (in fact this path will raise a syntax error, because the syntax allows at
most one [] per index path).

On the other hand, the path conpl ex1. mapFi el d. soneKey[]. soneQ her Key is
valid. In this case, the path conpl ex1. mapFi el d. soneKey specifies an array
containing maps, which is valid. Notice that in this index path, someKey and
soneQ her Key are map-entry keys. So, although we are indexing arrays that are
contained inside maps, and the arrays being indexed contain maps, the path is
valid, because it is selecting specific entries from the map, rather than indexing all
the map entries in addition to all the array entries.

If the index is indexing an array-valued field:
— If the array contains indexable atomic items:

* There must be a single multi-key index path of the form M] (without any
name_path following after the []). Again, this implies that you cannot index
more than one array in the same index.

* For each table row (R), a number of index entries are created as follows:
The simple index paths (if any) are computed on R.

Then, M[] is computed (as if it were a query path expression), returning
either NULL, or EMPTY, or all the elements of the array returned by M.

Finally, for each value (V) returned by M[], an index entry is created whose
field values are V and the values of the simple paths.

* Any duplicate index entries (having equal field values and the same
primary key) created by the above process are eliminated.

— If the array contains records or maps:

* All of the multi-key paths must be of the form M] . name_pat h. Each
name_path appearing after M[] in the multi-key index path must return
at most one indexable atomic item.

* For each table row (R), a number of index entries are created as follows:
The simple index paths (if any) are computed on R.

Then, M[] is computed (as if it were a query path expression), returning
either NULL, or EMPTY, or all the elements of the array returned by M.

Next, for each value (V) returned by M[], one index entry is created as
follows:

The elements contained in each V are computed. This returns a single
indexable atomic item (which may be the NULL or EMPTY item). An index
entry is created for each of these, whose field values are the values of the
simple index paths plus the values found for element contained in V.

* Any duplicate index entries (having equal field values and the same
primary key) created by the above process are eliminated.

B-16

Appendix B
CREATE INDEX

— If the index is indexing a map-valued field, the index may be indexing only
map keys, or only map elements, or both keys and elements. In all cases, the
definition of map indexes can be given in terms of array indexes, by viewing
maps as arrays containing records with 2 fields: a field with name “key” and
value a map key, and a field named “element” and value the corresponding
map element (that is, MAP(T) is viewed as ARRAY(RECORD(key STRING,
element T))). Then, the 2 valid kinds for map indexes are:

1. A single multi-key index path using a keys() step. Using the array view of
maps, M.keys() is equivalent to M[].key.

2. One or more multi-key index paths, all using a .values() step. If Ri
is an value contained in the map, then each of these has the form
M.values().Ri. Using the array view of maps, each M.values().Ri path is
equivalent to M[].element.Ri.

JSON Indexes

ORACLE

An index is a JSON index if it indexes at least one field that is contained inside JSON
data.

Because JSON is schema-less, it is possible for JSON data to differ in type across
table rows. However, when indexing JSON data, the data type must be consistent
across table rows or the index creation will fail. Further, once or more JSON indexes
have been created, any attempt to write data of an incorrect type will fail.

Indexing JSON data and working with JSON indexes is performed in much the same
way as indexing non-JSON data. To create the index, specify a path to the JSON field
using dot notation.

When creating JSON indexes, you must specify the data's type, using the AS keyword.
The data type must be atomic, and cannot be a float. That is, only integer, long,
double, number, string, and boolean are supported types for JSON indexes. Note that
arrays and maps can be indexed so long as they contain these atomic values.

CREATE I NDEX [I F NOT EXI STS] index-name ON tabl e-name \
(JSONRow. JSONFi el d AS data_type)

When creating a multi-key index on a JSON map, a type must not be given for

the . keys() expression because the type will always be St ri ng. However, a type
declaration is required for the . val ues() expression. Beyond that, all the constraints
described in Multi-Key Index Restrictions also apply to a JSON multi-keyed index.

CREATE I NDEX [I F NOT EXI STS] index-name ON tabl e-name \
(JSONRow. JSONFi el d. keys(),\
JSONRow. JSONFi el d. val ues() AS data_type)

For an example of using JSON indexes, see Indexing JSON Fields.

For additional examples of using JSON indexes, see Indexing JSON Data in the SQL
Beginner's Guide.

B-17

Appendix B
CREATE FULL TEXT INDEX

CREATE FULL TEXT INDEX

To create a text index on that table that indexes the category and txt columns, use
CREATE FULLTEXT | NDEX statement:

CREATE FULLTEXT INDEX [if not exists] <index-name> ON <tabl e-name>
(<field-name> [<mapping-spec>1], ...)
[ES_ SHARDS = <n>] [ES_REPLI CAS = <n>]

For example:

kv-> execute ' CREATE FULLTEXT | NDEX Jokel ndex
ON Joke (category, txt)'
Statenent conpl eted successful ly

While creating index, CREATE FULLTEXT | NDEX statement uses the OVERRI DE flag,
which allows to delete any index existing in Elasticsearch by the same name as would
be created by the command.

CREATE FULLTEXT INDEX [IF NOT EXI STS] index_name ON table nane
(field_name [{mapping_spec}] [, field_name [{mapping_spec}]]...)

[ES_SHARDS = val ue] [ES _REPLI CAS = val ue]
[OVERRI DE] [COMMENT conmment]

For example:

CREATE | NDEX Jokel ndex on Joke (category, txt) OVERRIDE

For more information, see Creating Full Text Index and Mapping a Full Text Index Field
to an Elasticsearch Field in the Integrations Guide.

DROP INDEX

ORACLE

To delete an index definition from the store, use a DROP | NDEX statement. Its form
when deleting an index is:

DROP I NDEX [I F EXI STS] index-name ON tabl e-nane

where:

* | F EXI STSis optional, and it causes the DROP | NDEX statement to be ignored if
an index by that name does not exist. If this phrase is not specified, and an index
using the specified name does not exist, then the DROP | NDEX statement will fail
with an error.

e index-name is the name of the index you want to drop.

» table-name is the name of the table containing the index you want to delete.

B-18

Appendix B
DESCRIBE AS JSON TABLE

For example, if table User s has an index called sur namel ndex, then you can delete it
using the following statement:

DROP | NDEX | F EXI STS surnanel ndex ON Users

Use DROP | NDEX on a text index to stop the population of the index from NoSQL
Database shards, and removes the mapping and all related documents from
Elasticsearch. See the following statement:

DROP INDEX [IF EXI STS] index_name ON tabl e _nane

For example:

kv-> execute ' DROP | NDEX Jokel ndex on Joke'
Statenent conpl eted successful ly

While deleting index, you can use the OVERRI DE flag. The DROP | NDEX statement uses
the OVERRI DE flag to enable overriding of the default constraints:

DROP INDEX [IF EXI STS] index_name ON tabl e _nane [OVERRI DE]

For example:

DROP | NDEX Jokel ndex on Joke OVERRI DE

For more information, see Deleting FTI in the Integrations Guide.

DESCRIBE AS JSON TABLE

ORACLE

You can retrieve a JSON representation of a table by using the DESCRI BE AS JSON
TABLE statement:

DESCRI BE AS JSON TABLE tabl e name [(field-name, field-name2, ...)]

or

DESC AS JSON TABLE table_name [(field-nane, field-nane2, ...)]

where:

» table_name is the name of the table you want to describe.

» field-name is O or more fields defined for the table that you want described. If
specified, the output is limited to just the fields listed here.

For Map and Array fields, use [] to restrict the JSON representation to just the
map or array element.

B-19

Appendix B
DESCRIBE AS JSON INDEX

DESCRIBE AS JSON INDEX

You can retrieve a JSON representation of an index by using the DESCRI BE AS JSON
| NDEX statement:

DESCRI BE AS JSON | NDEX i ndex_name ON tabl e _nane

where:

* index_name is the name of the index you want to describe.

» table_name is the name of the table to which the index is applied.

SHOW TABLES

You can retrieve a list of all tables currently defined in the store using the SHOW TABLES
statement:

SHOW [AS JSON] TABLES

where AS JSON is optional and causes the resulting output to be JSON-formatted.

SHOW INDEXES

You can retrieve a list of all indexes currently defined for a table using the SHOV
| NDEXES statement:

SHOW [AS JSON] | NDEXES ON tabl e_name

where:

e AS JSON is optional and causes the resulting output to be JSON-formatted.

e table_name is the name of the table for which you want to list all the indexes.

ORACLE B-20

	Contents
	Preface
	Conventions Used in This Book

	1 Developing for Oracle NoSQL Database
	Configuring Logging
	Obtaining a KVStore Handle
	Using the KVStoreConfig Class

	Using the Authentication APIs
	Configuring SSL
	Identifying the Trust Store
	Setting the SSL Transport Property

	Authentication using a LoginCredentials Instance
	Renewing Expired Login Credentials
	Authentication using Kerberos
	Authentication using Kerberos and JAAS
	Unauthorized Access

	2 Introduction to Oracle KVLite
	Starting KVLite
	Stopping and Restarting KVLite
	Verifying the Installation
	kvlite Utility Command Line Parameter Options

	3 Introducing Oracle NoSQL Database Tables and Indexes
	Defining Tables
	Executing DDL Statements From the Admin CLI
	Supported Table Data Types
	Record Fields
	Defining Child Tables
	Defining Multi-Region Tables
	Table Evolution

	Defining Tables With an IDENTITY Column
	Sequence Generator Attributes
	Creating Tables With an IDENTITY Column
	Adding an IDENTITY Column to an Existing Table
	Altering or Dropping an IDENTITY Column
	Inserting IDENTITY Values from the SQL CLI
	Inserting IDENTITY Values Programmatically

	Creating Indexes

	4 Introducing Oracle NoSQL Database Namespaces
	Creating Namespaces
	Granting Authorization Access to Namespaces
	Using and Setting Namespaces
	Showing and Describing Namespaces
	Dropping Namespaces

	5 Primary and Shard Key Design
	Primary Keys
	Data Type Limitations
	Partial Primary Keys
	Shard Keys

	Row Data

	6 Writing and Deleting Table Rows
	Write Exceptions
	Writing Rows to a Table in the Store
	Writing Rows to a Child Table
	Other put Operations

	Bulk Put Operations
	Using Time to Live
	Specifying a TTL Value
	Updating a TTL Value
	Deleting TTL Expiration
	Setting Default Table TTL Values

	Deleting Rows from the Store
	Using multiDelete()

	7 Reading Table Rows
	Read Exceptions
	Retrieving a Single Row
	Retrieve a Child Table

	Using multiGet()
	Iterating over Table Rows
	Specifying Field Ranges
	Iterating with Nested Tables
	Reading Indexes
	Parallel Scans
	Bulk Get Operations

	8 Using Data Types
	Using Arrays
	Using Binary
	Using Enums
	Using Fixed Binary
	Using JSON
	Using Maps
	Using Embedded Records

	9 Indexing Non-Scalar Data Types
	Indexing Arrays
	Indexing JSON Fields
	Indexing Maps
	Indexing by Map Keys
	Indexing by Map Values
	Indexing by a Specific Map Key Name
	Indexing by Map Key and Value

	Indexing Embedded Records

	10 Using Row Versions
	11 Consistency Guarantees
	Specifying Consistency Policies
	Using Simple Consistency
	Using Time-Based Consistency
	Using Version-Based Consistency

	12 Durability Guarantees
	Setting Acknowledgment-Based Durability Policies
	Setting Synchronization-Based Durability Policies
	Setting Durability Guarantees

	13 Executing a Sequence of Operations
	Sequence Errors
	Creating a Sequence
	Executing a Sequence

	14 Introduction to SQL for Oracle NoSQL Database
	Running a simple query
	Using binding variables
	Accessing metadata
	Using a query to update data

	A JSON By Example
	Sample Data
	UpdateJSON
	UpdateJSON.run()
	UpdateJSON.defineTable()
	UpdateJSON.createIndex()
	UpdateJSON.runDDL()
	UpdateJSON.updateTableWithoutQuery()
	UpdateJSON.updateTableWithIndex()
	UpdateJSON.updateTableUsingSQLQuery()
	UpdateJSON.updateZipCode()
	UpdateJSON.loadTable()
	UpdateJSON.displayTable()
	UpdateJSON.displayResult()
	UpdateJSON.parseArgs()

	B Table Data Definition Language Overview
	Name Constraints
	DDL Comments
	CREATE TABLE
	Field Definitions
	Supported Data Types
	Field Constraints
	Integer Serialized Constraints
	COMMENT
	DEFAULT
	IDENTITY
	NOT NULL

	USING TTL
	Table Creation Examples

	Modify Table Definitions
	ALTER TABLE ADD field
	ALTER TABLE DROP Option
	ALTER TABLE USING TTL
	ALTER TABLE ADD REGIONS
	ALTER TABLE DROP REGIONS

	DROP TABLE
	CREATE INDEX
	Indexable Field Types
	Simple Indexes
	Multi-Key Indexes
	Multi-Key Index Restrictions

	JSON Indexes

	CREATE FULL TEXT INDEX
	DROP INDEX
	DESCRIBE AS JSON TABLE
	DESCRIBE AS JSON INDEX
	SHOW TABLES
	SHOW INDEXES

