
Oracle® NoSQL Database
SQL Beginner's Guide

Release 20.2
E85380-14
October 2020

Oracle NoSQL Database SQL Beginner's Guide, Release 20.2

E85380-14

Copyright © 2011, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Conventions Used in This Book vi

1 Introduction to SQL for Oracle NoSQL Database

2 Simple SELECT Queries

SQLBasicExamples Script 2-1

Starting the SQL Shell 2-2

Choosing column data 2-2

Substituting column names for a query 2-3

Computing values for new columns 2-4

Identifying tables and their columns 2-4

Filtering Results 2-5

Grouping Results 2-7

Ordering Results 2-7

Limiting and Offsetting Results 2-9

Using External Variables 2-10

3 Working with complex data

SQLAdvancedExamples Script 3-1

Working with Timestamps 3-4

Working With Arrays 3-5

Working with Records 3-11

Using ORDER BY to Sort Results 3-12

Working With Maps 3-13

Using the size() Function 3-16

4 Working with JSON

SQLJSONExamples Script 4-1

iii

Basic Queries 4-4

Using WHERE EXISTS with JSON 4-6

Seeking NULLS in Arrays 4-7

Examining Data Types JSON Columns 4-8

Using Map Steps with JSON Data 4-11

Casting Datatypes 4-12

Using Searched Case 4-13

5 Working With GeoJSON Data

Geodetic Coordinates 5-1

GeoJSON Data Definitions 5-2

Searching GeoJSON Data 5-5

6 Working With Indexes

Basic Indexing 6-1

Using Index Hints 6-2

Complex Indexes 6-3

Multi-Key Indexes 6-4

Indexing JSON Data 6-9

7 Working with Table Rows

Adding Table Rows using INSERT and UPSERT 7-1

Modifying Table Rows using UPDATE Statements 7-4

Example Data 7-4

Changing Field Values 7-4

Modifying Array Values 7-6

Adding Elements to an Array 7-6

Changing an Existing Element in an Array 7-9

Removing Elements from Arrays 7-9

Modifying Map Values 7-12

Removing Elements from a Map 7-13

Adding Elements to a Map 7-14

Updating Existing Map Elements 7-16

Managing Time to Live Values 7-20

Avoiding the Read-Modify-Write Cycle 7-22

A Introduction to the SQL for Oracle NoSQL Database Shell

Running the SQL Shell A-1

iv

Configuring the shell A-2

Shell Utility Commands A-3

connect A-3

consistency A-3

describe A-4

durability A-5

exit A-5

help A-6

history A-6

import A-6

load A-7

mode A-7

output A-11

page A-12

show faults A-12

show mrtable-agent-statistics A-12

show namespaces A-18

show query A-19

show roles A-19

show tables A-19

show users A-21

timeout A-21

timer A-22

verbose A-22

version A-22

v

Preface

This document is intended to provide a rapid introduction to the SQL for Oracle
NoSQL Database and related concepts. SQL for Oracle NoSQL Database is an
easy to use SQL-like language that supports read-only queries and data definition
(DDL) statements. This document focuses on the query part of the language. For a
more detailed description of the language (both DDL and query statements), see SQL
Reference Guide.

This book is aimed at developers who are looking to manipulate Oracle NoSQL
Database data using a SQL-like query language. Knowledge of standard SQL is not
required but it does allow you to easily learn SQL for Oracle NoSQL Database.

Conventions Used in This Book
The following typographical conventions are used within this manual:

Information that you are to type literally is presented in monospaced font.

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME
directory."

Case-insensitive keywords, like SELECT, FROM, WHERE, ORDER BY, are presented
in UPPERCASE.

Case sensitive keywords, like the function size(item) are presented in lowercase.

Note:

Finally, notes of special interest are represented using a note block such as
this.

Preface

vi

1
Introduction to SQL for Oracle NoSQL
Database

Welcome to SQL for Oracle NoSQL Database. This language provides a SQL-like
interface to Oracle NoSQL Database that can be used from a command line interface,
scripts, or from the Oracle NoSQL Database Java Table Driver. The SQL for Oracle
NoSQL Database data model supports flat relational data, hierarchical typed (schema-
full) data, and schema-less JSON data. SQL for Oracle NoSQL Database is designed
to handle all such data in a seamless fashion without any "impedance mismatch"
among the different sub models.

For information on the command line shell you can use to run SQL for Oracle NoSQL
Database queries, see Introduction to the SQL for Oracle NoSQL Database Shell. For
information on executing SQL queries from the Oracle NoSQL Database Java Table
Driver, see Java Direct Driver Developer's Guide .

1-1

2
Simple SELECT Queries

This section presents examples of simple queries for relational data. To follow
along with the examples, get the Examples download from here and run the
SQLBasicExamples script found in the sql folder. The script creates the table as shown,
and imports the data.

SQLBasicExamples Script
The script SQLBasicExamples creates the following table:

CREATE TABLE Users (
 id integer,
 firstname string,
 lastname string,
 age integer,
 income integer,
 primary key (id)
);

The script also load data into the Users table with the following rows (shown here in
JSON format):

{
 "id":1,
 "firstname":"David",
 "lastname":"Morrison",
 "age":25,
 "income":100000,
}

{
 "id":2,
 "firstname":"John",
 "lastname":"Anderson",
 "age":35,
 "income":100000,
}

{
 "id":3,
 "firstname":"John",
 "lastname":"Morgan",
 "age":38,
 "income":null,
}

{

2-1

 "id":4,
 "firstname":"Peter",
 "lastname":"Smith",
 "age":38,
 "income":80000,
}

{
 "id":5,
 "firstname":"Dana",
 "lastname":"Scully",
 "age":47,
 "income":400000,
}

You run the SQLBasicExamples script using the load command:

> cd <installdir>/examples/sql
> java -jar <KVHOME>/lib/sql.jar -helper-hosts <host>:<port> \
-store <storename> load \
-file <KVHOME>/examples/sql/SQLBasicExamples.cli

Starting the SQL Shell
You can run SQL queries and execute DDL statements directly from the SQL shell.
This is described in Introduction to the SQL for Oracle NoSQL Database Shell. To run
the queries shown in this document, start the SQL shell as follows:

java -jar KVHOME/lib/sql.jar
-helper-hosts node01:5000 -store kvstore
sql->

Note:

This document shows examples displayed in COLUMN mode, although the
default output type is JSON. Use the mode command to toggle between
COLUMN and JSON (or JSON pretty) output.

Choosing column data
You can choose columns from a table. To do so, list the names of the desired table
columns after SELECT in the statement, before noting the table after the FROM
clause.

The FROM clause can name only one table. To retrieve data from a child table, use
dot notation, such as parent.child.

Chapter 2
Starting the SQL Shell

2-2

To choose all table columns, use the asterisk (*) wildcard character as follows:

sql-> SELECT * FROM Users;

The SELECT statement displays these results:

 +----+-----------+----------+-----+--------+
 | id | firstname | lastname | age | income |
 +----+-----------+----------+-----+--------+
3	John	Morgan	38	NULL
4	Peter	Smith	38	80000
2	John	Anderson	35	100000
5	Dana	Scully	47	400000
1	David	Morrison	25	100000
 +----+-----------+----------+-----+--------+

5 rows returned

To choose specific column(s) from the table Users, include the column names as a
comma-separated list in the SELECT statement:

sql-> SELECT firstname, lastname, age FROM Users;
 +-----------+----------+-----+
 | firstname | lastname | age |
 +-----------+----------+-----+
John	Morgan	38
David	Morrison	25
Dana	Scully	47
Peter	Smith	38
John	Anderson	35
 +-----------+----------+-----+

5 rows returned

Substituting column names for a query
You can use a different name for a column during a SELECT statement. Substituting
a name in a query does not change the column name, but uses the substitute in the
returned data returned. In the next example, the query substitutes Surname for the
actual column name lastname, by using the actual-name AS substitute-name clause,
in the SELECT statement.

sql-> SELECT lastname AS Surname FROM Users;
 +----------+
 | Surname |
 +----------+
 | Scully |
 | Smith |
 | Morgan |
 | Anderson |
 | Morrison |

Chapter 2
Substituting column names for a query

2-3

 +----------+

5 rows returned

Computing values for new columns
The SELECT statement can contain computational expressions based on the values
of existing columns. For example, in the next statement, you select the values of one
column, income, divide each value by 12, and display the output in another column.
The SELECT statement can use almost any type of expression. If more than one value
is returned, the items are inserted into an array.

This SELECT statement uses the yearly income values divided by 12 to calculate the
corresponding values for monthlysalary:

sql-> SELECT id, lastname, income, income/12
AS monthlysalary FROM users;
 +----+----------+--------+---------------+
 | id | lastname | income | monthlysalary |
 +----+----------+--------+---------------+
2	Anderson	100000	8333
1	Morrison	100000	8333
5	Scully	400000	33333
4	Smith	80000	6666
3	Morgan	NULL	NULL
 +----+----------+--------+---------------+

5 rows returned

This SELECT statement performs an addition operation that adds a bonus of 5000 to
income to return salarywithbonus:

sql-> SELECT id, lastname, income, income+5000
AS salarywithbonus FROM users;
 +----+----------+--------+-----------------+
 | id | lastname | income | salarywithbonus |
 +----+----------+--------+-----------------+
4	Smith	80000	85000
1	Morrison	100000	105000
5	Scully	400000	405000
3	Morgan	NULL	NULL
2	Anderson	100000	105000
 +----+----------+--------+-----------------+

5 rows returned

Identifying tables and their columns
The FROM clause can contain one table only (that is, joins are not supported). The
table is specified by its name, which may be followed by an optional alias. The table
can be referenced in the other clauses either by its name or its alias. As we will see
later, sometimes the use of the table name or alias is mandatory. However, for table

Chapter 2
Computing values for new columns

2-4

columns, the use of the table name or alias is optional. For example, here are three
ways to write the same query:

sql-> SELECT Users.lastname, age FROM Users;
 +----------+-----+
 | lastname | age |
 +----------+-----+
Scully	47
Smith	38
Morgan	38
Anderson	35
Morrison	25
 +----------+-----+

5 rows returned

To identify the table Users with the alias u:

sql-> SELECT lastname, u.age FROM Users u ;

The keyword AS can optionally be used before an alias. For example, to identify the
table Users with the alias People:

sql-> SELECT People.lastname, People.age FROM Users AS People;

Filtering Results
You can filter query results by specifying a filter condition in the WHERE clause.
Typically, a filter condition consists of one or more comparison expressions connected
through logical operators AND or OR. The comparison operators are also supported:
=, !=, >, >=, <, and <= .

This query filters results to return only users whose first name is John:

sql-> SELECT id, firstname, lastname FROM Users WHERE firstname =
"John";
 +----+-----------+----------+
 | id | firstname | lastname |
 +----+-----------+----------+
 | 3 | John | Morgan |
 | 2 | John | Anderson |
 +----+-----------+----------+

2 rows returned

To return users whose calculated monthlysalary is greater than 6000:

sql-> SELECT id, lastname, income, income/12 AS monthlysalary
FROM Users WHERE income/12 > 6000;
 +----+----------+--------+---------------+
 | id | lastname | income | monthlysalary |
 +----+----------+--------+---------------+

Chapter 2
Filtering Results

2-5

5	Scully	400000	33333
4	Smith	80000	6666
2	Anderson	100000	8333
1	Morrison	100000	8333
 +----+----------+--------+---------------+

5 rows returned

To return users whose age is between 30 and 40 or whose income is greater than
100,000:

sql-> SELECT lastname, age, income FROM Users
WHERE age >= 30 and age <= 40 or income > 100000;
 +----------+-----+--------+
 | lastname | age | income |
 +----------+-----+--------+
Smith	38	80000
Morgan	38	NULL
Anderson	35	100000
Scully	47	400000
 +----------+-----+--------+

4 rows returned

You can use parenthesized expressions to alter the default precedence among
operators. For example:

To return the users whose age is greater than 40 and either their age is less than 30 or
their income is greater or equal than 100,000:

sql-> SELECT id, lastName FROM Users WHERE
(income >= 100000 or age < 30) and age > 40;
 +----+----------+
 | id | lastName |
 +----+----------+
 | 5 | Scully |
 +----+----------+

1 row returned

You can use the IS NULL condition to return results where a field column value is set
to SQL NULL (SQL NULL is used when a non-JSON field is set to null):

sql-> SELECT id, lastname from Users WHERE income IS NULL;
 +----+----------+
 | id | lastname |
 +----+----------+
 | 3 | Morgan |
 +----+----------+

1 row returned

Chapter 2
Filtering Results

2-6

You can use the IS NOT NULL condition to return column values that contain non-null
data:

sql-> SELECT id, lastname from Users WHERE income IS NOT NULL;
 +----+----------+
 | id | lastname |
 +----+----------+
4	Smith
1	Morrison
5	Scully
2	Anderson
 +----+----------+

4 rows returned

Grouping Results
Use the GROUP BY clause to group the results by one or more table columns.
Typically, a GROUP BY clause is used in conjunction with an aggregate expression
such as COUNT, SUM, and AVG.

Note:

You can use the GROUP BY clause only if there exists an index that sorts
the rows by the grouping columns.

For example, this query returns the average income of users, based on their age.

sql-> SELECT age, AVG(income) FROM Users GROUP BY age;
 +-------+-------------+
 | age | AVG(income) |
 +-------+-------------+
25	100000
35	100000
38	80000
47	400000
 +-------+-------------+

4 rows returned

Ordering Results
Use the ORDER BY clause to order the results by a primary key column or a non-
primary key column.

Chapter 2
Grouping Results

2-7

Note:

You can use ORDER BY only if you are selecting by the table's primary key,
or if there is an index that sorts the table's rows in the desired order.

To order by using a primary key column (id), specify the sort column in the ORDER BY
clause:

sql-> SELECT id, lastname FROM Users ORDER BY id;
 +----+----------+
 | id | lastname |
 +----+----------+
1	Morrison
2	Anderson
3	Morgan
4	Smith
5	Scully
 +----+----------+

5 rows returned

To order by a non-primary key column, first create an index on the column of interest.
For example, to use column lastname for ordering, create an index on that column,
before using it in your ORDER BY clause:

sql-> CREATE INDEX idx1 on Users(lastname);
Statement completed successfully
sql-> SELECT id, lastname FROM Users ORDER BY lastname;
 +----+----------+
 | id | lastname |
 +----+----------+
2	Anderson
3	Morgan
1	Morrison
5	Scully
4	Smith
 +----+----------+

5 rows returned

Using this example data, you can order by more than one column if you create an
index on the columns. (If our table had used more than one column for its primary key,
then you can order by multiple columns using the primary keys.) For example, to order
users by age and income.

sql-> CREATE INDEX idx2 on Users(age, income);
Statement completed successfully
sql-> SELECT id, lastname, age, income FROM Users ORDER BY age, income;
 +----+----------+-----+--------+
 | id | lastname | age | income |
 +----+----------+-----+--------+

Chapter 2
Ordering Results

2-8

1	Morrison	25	100000
2	Anderson	35	100000
4	Smith	38	80000
3	Morgan	38	NULL
5	Scully	47	400000
 +----+----------+-----+--------+

5 rows returned

Creating a single index from two columns in the order you use them (age, income in
this example), has some limits. The first column name (age) becomes the main sort
item for the new index. You can use idx2 index to order by age only, but neither by
income only, nor by income first and age second.

sql-> SELECT id, lastname, age from Users ORDER BY age;
 +----+----------+-----+
 | id | lastname | age |
 +----+----------+-----+
1	Morrison	25
2	Anderson	35
4	Smith	38
3	Morgan	38
5	Scully	47
 +----+----------+-----+

5 rows returned

To learn more about indexes see Working With Indexes.

By default, sorting is performed in ascending order. To sort in descending order use
the DESC keyword in the ORDER BY clause:

sql-> SELECT id, lastname FROM Users ORDER BY id DESC;
 +----+----------+
 | id | lastname |
 +----+----------+
5	Scully
4	Smith
3	Morgan
2	Anderson
1	Morrison
 +----+----------+

5 rows returned

Limiting and Offsetting Results
Use the LIMIT clause to limit the number of results returned from a SELECT
statement. For example, if there are 1000 rows in the Users table, limit the number

Chapter 2
Limiting and Offsetting Results

2-9

of rows to return by specifying a LIMIT value. For example, this statement returns the
first four ID rows from the table:

sql-> SELECT * from Users ORDER BY id LIMIT 4;
 +----+-----------+----------+-----+--------+
 | id | firstname | lastname | age | income |
 +----+-----------+----------+-----+--------+
1	David	Morrison	25	100000
2	John	Anderson	35	100000
3	John	Morgan	38	NULL
4	Peter	Smith	38	80000
 +----+-----------+----------+-----+--------+

4 rows returned

To return only results 3 and 4 from the 10000 rows use the LIMIT clause to indicate 2
values, and the OFFSET clause to specify where the offset begins (after the first two
rows). For example:

sql-> SELECT * from Users ORDER BY id LIMIT 2 OFFSET 2;
 +----+-----------+----------+-----+--------+
 | id | firstname | lastname | age | income |
 +----+-----------+----------+-----+--------+
 | 3 | John | Morgan | 38 | NULL |
 | 4 | Peter | Smith | 38 | 80000 |
 +----+-----------+----------+-----+--------+

2 rows returned

Note:

We recommend using LIMIT and OFFSET with an ORDER BY clause.
Otherwise, the results are returned in a random order, producing
unpredictable results.

Using External Variables
Using external variables lets a query to written and compiled once, and then run
multiple times with different values for the external variables. Binding the external
variables to specific values is done through APIs, which you use before executing the
query.

You must declare external variables in your SQL query before referencing them in the
SELECT statement. For example:

DECLARE $age integer;
SELECT firstname, lastname, age
FROM Users
WHERE age > $age;

Chapter 2
Using External Variables

2-10

If the variable $age is set to value 39, the result of the above query is:

+-----------+----------+-----+
| firstname | lastname | age |
+-----------+----------+-----+
| Dana | Scully | 47 |
+-----------+----------+-----+

Chapter 2
Using External Variables

2-11

3
Working with complex data

In this chapter, we present query examples that use complex data types (arrays,
maps, records). To follow along with the examples, get the Examples download from
here and run the SQLAdvancedExamples script found in the sql folder. This script
creates the table and imports the data used.

SQLAdvancedExamples Script
The SQLAdvancedExamples script creates the following table:

CREATE TABLE Persons (
 id integer,
 firstname string,
 lastname string,
 age integer,
 income integer,
 lastLogin timestamp(4),
 address record(street string,
 city string,
 state string,
 phones array(record(type enum(work, home),
 areacode integer,
 number integer
)
)
),
 connections array(integer),
 expenses map(integer),
 primary key (id)
);

The script also imports the following table rows:

{
 "id":1,
 "firstname":"David",
 "lastname":"Morrison",
 "age":25,
 "income":100000,
 "lastLogin" : "2016-10-29T18:43:59.8319",
 "address":{"street":"150 Route 2",
 "city":"Antioch",
 "state":"TN",
 "zipcode" : 37013,
 "phones":[{"type":"home", "areacode":423,
 "number":8634379}]

3-1

 },
 "connections":[2, 3],
 "expenses":{"food":1000, "gas":180}
}

{
 "id":2,
 "firstname":"John",
 "lastname":"Anderson",
 "age":35,
 "income":100000,
 "lastLogin" : "2016-11-28T13:01:11.2088",
 "address":{"street":"187 Hill Street",
 "city":"Beloit",
 "state":"WI",
 "zipcode" : 53511,
 "phones":[{"type":"home", "areacode":339,
 "number":1684972}]
 },
 "connections":[1, 3],
 "expenses":{"books":100, "food":1700, "travel":2100}
}

{
 "id":3,
 "firstname":"John",
 "lastname":"Morgan",
 "age":38,
 "income":100000000,
 "lastLogin" : "2016-11-29T08:21:35.4971",
 "address":{"street":"187 Aspen Drive",
 "city":"Middleburg",
 "state":"FL",
 "phones":[{"type":"work", "areacode":305,
 "number":1234079},
 {"type":"home", "areacode":305,
 "number":2066401}
]
 },
 "connections":[1, 4, 2],
 "expenses":{"food":2000, "travel":700, "gas":10}
}

{
 "id":4,
 "firstname":"Peter",
 "lastname":"Smith",
 "age":38,
 "income":80000,
 "lastLogin" : "2016-10-19T09:18:05.5555",
 "address":{"street":"364 Mulberry Street",
 "city":"Leominster",
 "state":"MA",
 "phones":[{"type":"work", "areacode":339,
 "number":4120211},

Chapter 3
SQLAdvancedExamples Script

3-2

 {"type":"work", "areacode":339,
 "number":8694021},
 {"type":"home", "areacode":339,
 "number":1205678},
 {"type":"home", "areacode":305,
 "number":8064321}
]
 },
 "connections":[3, 5, 1, 2],
 "expenses":{"food":6000, "books":240, "clothes":2000, "shoes":1200}
}

{
 "id":5,
 "firstname":"Dana",
 "lastname":"Scully",
 "age":47,
 "income":400000,
 "lastLogin" : "2016-11-08T09:16:46.3929",
 "address":{"street":"427 Linden Avenue",
 "city":"Monroe Township",
 "state":"NJ",
 "phones":[{"type":"work", "areacode":201,
 "number":3213267},
 {"type":"work", "areacode":201,
 "number":8765421},
 {"type":"home", "areacode":339,
 "number":3414578}
]
 },
 "connections":[2, 4, 1, 3],
 "expenses":{"food":900, "shoes":1000, "clothes":1500}
}

You run the SQLAdvancedExamples script using the load command:

> cd <installdir>/examples/sql
> java -jar <KVHOME>/lib/sql.jar -helper-hosts <host>:<port> \
-store <storename> load \
-file <KVHOME>/examples/sql/SQLAdvancedExamples.cli

Chapter 3
SQLAdvancedExamples Script

3-3

Note:

The Persons table schema models people that can be connected to other
people in the table. All connections are stored in the "connections" column,
which consists of an array of integers. Each integer is an ID of a person
with whom the subject is connected. The entries in the "connections" array
are sorted in descending order, indicating the strength of the connection. For
example, looking at the record for person 3, we see that John Morgan has
these connections: [1, 4, 2]. The order of the array elements specifies that
John is most strongly connected with person 1, less connected with person
4, and least connected with person 2.

Records in the Persons table also include an "expenses" column, declared
as an integer map. For each person, the map stores key-value pairs of string
item types and integers representing money spent on the item. For example,
one record has these expenses: {"food":900, "shoes":1000, "clothes":1500},
other records have different items. One benefit of modelling expenses as a
map type is to facilitate the categories being different for each person. Later,
we may want to add or delete categories dynamically, without changing the
table schema, which maps readily support. An item to note about this map
is that it is an integer map always contains key-value pairs, and keys are
always strings.

Working with Timestamps
To specify a timestamp value in a query, provide it as a string, and cast it to a
Timestamp data type. For example:

sql-> SELECT id, firstname, lastname FROM Persons WHERE
lastLogin = CAST("2016-10-19T09:18:05.5555" AS TIMESTAMP);
 +----+-----------+----------+
 | id | firstname | lastname |
 +----+-----------+----------+
 | 4 | Peter | Smith |
 +----+-----------+----------+

1 row returned

Timestamp queries often involve a range of time, which requires multiple casts:

sql-> SELECT id, firstname, lastname, lastLogin FROM Persons WHERE
lastLogin > CAST("2016-11-01" AS TIMESTAMP) AND
lastLogin < CAST("2016-11-30" AS TIMESTAMP);
 +----+-----------+----------+--------------------------+
 | id | firstname | lastname | lastLogin |
 +----+-----------+----------+--------------------------+
3	John	Morgan	2016-11-29T08:21:35.4971
2	John	Anderson	2016-11-28T13:01:11.2088
5	Dana	Scully	2016-11-08T09:16:46.3929
 +----+-----------+----------+--------------------------+

Chapter 3
Working with Timestamps

3-4

3 rows returned

You can also use various Timestamp functions to return specific time and date values
from the Timestamp data. For example:

sql-> SELECT id, firstname, lastname,
 year(lastLogin) AS Year,
 month(lastLogin) AS Month,
 day(lastLogin) AS Day,
 hour(lastLogin) AS Hour,
 minute(lastLogin) AS Minute
FROM Persons;
 +----+-----------+----------+------+-------+-----+------+--------+
 | id | firstname | lastname | Year | Month | Day | Hour | Minute |
 +----+-----------+----------+------+-------+-----+------+--------+
3	John	Morgan	2016	11	29	8	21
2	John	Anderson	2016	11	28	13	1
4	Peter	Smith	2016	10	19	9	18
5	Dana	Scully	2016	11	8	9	16
1	David	Morrison	2016	10	29	18	43
 +----+-----------+----------+------+-------+-----+------+--------+

Alternatively, use the EXTRACT function:

sql-> SELECT id, firstname, lastname,
 EXTRACT(YEAR FROM lastLogin) AS Year,
 EXTRACT(MONTH FROM lastLogin) AS Month,
 EXTRACT(DAY FROM lastLogin) AS Day,
 EXTRACT(HOUR FROM lastLogin) AS Hour,
 EXTRACT(MINUTE FROM lastLogin) AS Minute
FROM Persons;
 +----+-----------+----------+------+-------+-----+------+--------+
 | id | firstname | lastname | Year | Month | Day | Hour | Minute |
 +----+-----------+----------+------+-------+-----+------+--------+
3	John	Morgan	2016	11	29	8	21
4	Peter	Smith	2016	10	19	9	18
1	David	Morrison	2016	10	29	18	43
2	John	Anderson	2016	11	28	13	1
5	Dana	Scully	2016	11	8	9	16
 +----+-----------+----------+------+-------+-----+------+--------+

5 rows returned
sql->

Working With Arrays
You can use slice or filter steps to select elements out of an array. We start with some
examples using slice steps.

Chapter 3
Working With Arrays

3-5

To select and display the second connection of each person, we use this query:

sql-> SELECT lastname, connections[1]
AS connection FROM Persons;
 +----------+------------+
 | lastname | connection |
 +----------+------------+
Scully	2
Smith	4
Morgan	2
Anderson	2
Morrison	2
 +----------+------------+

5 rows returned

In the example, the slice step [1] is applied to the connections array. Since array
elements start with 0, 1 selects the second connection value.

You can also use a slice step to select all array elements whose positions are within a
range: [low:high], where low and high are expressions to specify the range boundaries.
You can omit low and high expressions if you do not require a low or high boundary.

For example, the following query returns the lastname and the first 3 connections of
person 5 as strongconnections:

sql-> SELECT lastname, [connections[0:2]]
AS strongconnections FROM Persons WHERE id = 5;
 +----------+-------------------+
 | lastname | strongconnections |
 +----------+-------------------+
Scully	2
	4
	1
 +----------+-------------------+

1 row returned

In the above query for Person 5, the path expression connections[0:2] returns the
person's first 3 connections. Here, the range is [0:2], so 0 is the low expression
and 2 is the high. The path expression returns its result as a list of 3 items. The
list is converted to an array (a single item) by enclosing the path expression in an
array-constructor expression ([]). The array constructor creates a new array containing
the three connections. Notice that although the query shell displays the elements of
this constructed array vertically, the number of rows returned by this query is 1.

Use of the array constructor in the select clause is optional. If no array constructor is
used, an array will still be constructed, but only if the select-clause expression does
indeed return more than one item. If exactly one item is returned, the result will contain
just that one item. If the expression returns nothing (an empty result), NULL is used as
the result. This behavior is illustrated in the next example, which we will run with and
without an array constructor.

As mentioned above, you can omit the low or high expression when specifying the
range for a slice step. For example the following query specifies a range of [3:] which

Chapter 3
Working With Arrays

3-6

returns all connections after the third one. Notice that for persons having only 3
connections or less, an empty array is constructed and returned due to the use of the
array constructor.

To fully illustrate this behavior, we display this output in mode JSON because the
COLUMN mode does not differentiate between a single item and an array containing a
single item.

sql-> mode JSON
Query output mode is JSON
sql-> SELECT id, [connections[3:]] AS weakConnections FROM Persons;
{"id":3,"weakConnections":[]}
{"id":4,"weakConnections":[2]}
{"id":2,"weakConnections":[]}
{"id":5,"weakConnections":[3]}
{"id":1,"weakConnections":[]}

5 rows returned

Now we run the same query, but without the array constructor. Notice how single items
are not contained in an array, and for rows with no match, NULL is returned instead of
an empty array.

sql-> SELECT id, connections[3:] AS weakConnections FROM Persons;
{"id":2,"weakConnections":null}
{"id":3,"weakConnections":null}
{"id":4,"weakConnections":2}
{"id":5,"weakConnections":3}
{"id":1,"weakConnections":null}

5 rows returned
sql-> mode COLUMN
Query output mode is COLUMN
sql->

As a last example of slice steps, the following query returns the last 3 connections of
each person. In this query, the slice step is [size($)-3:]. In this expression, the $ is
an implicitly declared variable that references the array that the slice step is applied to.
In this example, $ references the connections array. The size() built-in function returns
the size (number of elements) of the input array. So, in this example, size($) is the size
of the current connections array. Finally, size($)-3 computes the third position from the
end of the current connections array.

sql-> SELECT id, [connections[size($)-3:]]
AS weakConnections FROM Persons;
 +----+-------------------+
 | id | weakConnections |
 +----+-------------------+
5	4
	1
	3
+----+-------------------+	
4	5
	1

Chapter 3
Working With Arrays

3-7

 | | 2 |
 +----+-------------------+
3	1
	4
	2
+----+-------------------+	
2	1
	3
+----+-------------------+	
1	2
	3
 +----+-------------------+

5 rows returned

We now turn our attention to filter steps on arrays. Like slice steps, filter steps also
use the square brackets ([]) syntax. However, what goes inside the [] is different. With
filter steps there is either nothing inside the [] or a single expression that acts as a
condition (returns a boolean result). In the former case, all the elements of the array
are selected (the array is "unnested"). In the latter case, the condition is applied to
each element in turn, and if the result is true, the element is selected, otherwise it is
skipped. For example:

The following query returns the id and connections of persons who are connected to
person 4:

sql-> SELECT id, connections
FROM Persons p WHERE p.connections[] =any 4;
 +----+-------------+
 | id | connections |
 +----+-------------+
3	1
	4
	2
+----+-------------+	
5	2
	4
	1
	3
 +----+-------------+

2 rows returned

In the above query, the expression p.connections[] returns all the connections of a
person. Then, the =any operator returns true if this sequence of connections contains
the number 4.

The following query returns the id and connections of persons who are connected with
any person having an id greater than 4:

sql-> SELECT id, connections FROM Persons p
WHERE p.connections[] >any 4;
 +----+-------------+
 | id | connections |

Chapter 3
Working With Arrays

3-8

 +----+-------------+
4	3
	5
	1
	2
 +----+-------------+

1 row returned

The following query returns, for each person, the person's last name and the phone
numbers with area code 339:

sql-> SELECT lastname,
[p.address.phones[$element.areacode = 339].number]
AS phoneNumbers FROM Persons p;
 +----------+--------------+
 | lastname | phoneNumbers |
 +----------+--------------+
 | Scully | 3414578 |
 +----------+--------------+
Smith	4120211
	8694021
	1205678
+----------+--------------+	
Morgan	
+----------+--------------+	
Anderson	1684972
+----------+--------------+	
Morrison	
 +----------+--------------+

5 rows returned

In the above query, the filter step [$element.areacode = 339] is applied
to the phones array of each person. The filter step evaluates the
condition $element.areacode = 339 on each element of the array. This condition
expression uses the implicitly declared variable $element, which references the
current element of the array. An empty array is returned for persons that do not have
any phone number in the 339 area code. If we wanted to filter out such persons from
the result, we would write the following query:

sql-> SELECT lastname,
[p.address.phones[$element.areacode = 339].number]
AS phoneNumbers FROM Persons p WHERE p.address.phones.areacode =any 339;
 +----------+--------------+
 | lastname | phoneNumbers |
 +----------+--------------+
 | Scully | 3414578 |
 +----------+--------------+
Smith	4120211
	8694021
	1205678
+----------+--------------+	
Anderson	1684972

Chapter 3
Working With Arrays

3-9

 +----------+--------------+

3 rows returned

The previous query contains the path expression p.address.phones.areacode. In that
expression, the field step .areacode is applied to an array field (phones). In this
case, the field step is applied to each element of the array in turn. In fact, the path
expression is equivalent to p.address.phones[].areacode.

In addition to the implicitly-declared $ and $element variables, the condition inside a
filter step can also use the $pos variable (also implicitly declared). $pos references the
position within the array of the current element (the element on which the condition is
applied). For example, the following query selects the "interesting" connections of each
person, where a connection is considered interesting if it is among the 3 strongest
connections and connects to a person with an id greater or equal to 4.

sql-> SELECT id, [p.connections[$element >= 4 and $pos < 3]]
AS interestingConnections FROM Persons p;
 +----+------------------------+
 | id | interestingConnections |
 +----+------------------------+
 | 5 | 4 |
 +----+------------------------+
 | 4 | 5 |
 +----+------------------------+
 | 3 | 4 |
 +----+------------------------+
 | 2 | |
 +----+------------------------+
 | 1 | |
 +----+------------------------+

5 rows returned

Finally, two arrays can be compared with each other using the usual comparison
operators (=, !=, >, >=, >, and >=). For example the following query constructs the
array [1,3] and selects persons whose connections array is equal to [1,3].

sql-> SELECT lastname FROM Persons p
WHERE p.connections = [1,3];
 +----------+
 | lastname |
 +----------+
 | Anderson |
 +----------+

1 row returned

Chapter 3
Working With Arrays

3-10

Working with Records
You can use a field step to select the value of a field from a record. For example, to
return the id, last name, and city of persons who reside in Florida:

sql-> SELECT id, lastname, p.address.city
FROM Persons p WHERE p.address.state = "FL";
 +----+----------+------------+
 | id | lastname | city |
 +----+----------+------------+
 | 3 | Morgan | Middleburg |
 +----+----------+------------+

1 row returned

In the above query, the path expression p.address.state consists of 2 field
steps: .address selects the address field of the current row (rows can be viewed as
records, whose fields are the row columns), and .state selects the state field of the
current address.

The example record contains an array of phone numbers. You can form queries
against that array using a combination of path steps and sequence comparison
operators. For example, to return the last name of persons who have a phone number
with area code 423:

sql-> SELECT lastname FROM Persons
p WHERE p.address.phones.areacode =any 423;
 +----------+
 | lastname |
 +----------+
 | Morrison |
 +----------+

1 row returned

In the above query, the path expression p.address.phones.areacode returns all the
area codes of a person. Then, the =any operator returns true if this sequence of area
codes contains the number 423. Notice also that the field step .areacode is applied to
an array field (phones). This is allowed if the array contains records or maps. In this
case, the field step is applied to each element of the array in turn.

The following example returns all the persons who had three connections. Notice the
use of [] after connections: it is an array filter step, which returns all the elements of the
connections array as a sequence (it is unnesting the array).

sql-> SELECT id, firstName, lastName, connections from Persons where
connections[] =any 3 ORDER BY id;
 +----+-----------+----------+-------------+
 | id | firstName | lastName | connections |
 +----+-----------+----------+-------------+
 | 1 | David | Morrison | 2 |
 | | | | 3 |

Chapter 3
Working with Records

3-11

 +----+-----------+----------+-------------+
 | 2 | John | Anderson | 1 |
 | | | | 3 |
 +----+-----------+----------+-------------+
4	Peter	Smith	3
			5
			1
			2
+----+-----------+----------+-------------+			
5	Dana	Scully	2
			4
			1
			3
 +----+-----------+----------+-------------+

4 rows returned

This query can use ORDER BY to sort the results because the sort is being performed
on the table's primary key. The next section shows sorting on non-primary key fields
through the use of indexes.

For more examples of querying against data contained in arrays, see Working With
Arrays.

Using ORDER BY to Sort Results
To sort the results from a SELECT statement using a field that is not the table's
primary key, you must first create an index for the column of choice. For example,
for the next table, to query based on a Timestamp and sort the results in descending
order by the timestamp, create an index:

sql-> SELECT id, firstname, lastname, lastLogin FROM Persons;
 +----+-----------+----------+--------------------------+
 | id | firstname | lastname | lastLogin |
 +----+-----------+----------+--------------------------+
3	John	Morgan	2016-11-29T08:21:35.4971
4	Peter	Smith	2016-10-19T09:18:05.5555
2	John	Anderson	2016-11-28T13:01:11.2088
5	Dana	Scully	2016-11-08T09:16:46.3929
1	David	Morrison	2016-10-29T18:43:59.8319
 +----+-----------+----------+--------------------------+

5 rows returned

sql-> CREATE INDEX tsidx1 on Persons (lastLogin);
Statement completed successfully
sql-> SELECT id, firstname, lastname, lastLogin
FROM Persons ORDER BY lastLogin DESC;
 +----+-----------+----------+--------------------------+
 | id | firstname | lastname | lastLogin |
 +----+-----------+----------+--------------------------+
3	John	Morgan	2016-11-29T08:21:35.4971
2	John	Anderson	2016-11-28T13:01:11.2088
5	Dana	Scully	2016-11-08T09:16:46.3929

Chapter 3
Using ORDER BY to Sort Results

3-12

 | 1 | David | Morrison | 2016-10-29T18:43:59.8319 |
 | 4 | Peter | Smith | 2016-10-19T09:18:05.5555 |
 +----+-----------+----------+--------------------------+

5 rows returned

SQL for Oracle NoSQL Database can also sort query results by the values of nested
records. To do so, create an index of the nested field (or fields). For example, you can
create an index of address.state from the Persons table, and then order by state:

sql-> CREATE INDEX indx1 on Persons (address.state);
Statement completed successfully
sql-> SELECT id, $p.address.state FROM
Persons $p ORDER BY $p.address.state;
 +----+-------+
 | id | state |
 +----+-------+
3	FL
4	MA
5	NJ
1	TN
2	WI
 +----+-------+

5 rows returned

To learn more about indexes, see Working With Indexes.

Working With Maps
The path steps applicable to maps are field and filter steps. Slice steps do not make
sense for maps, because maps are unordered, and as a result, their entries do not
have any fixed positions.

You can use a field step to select the value of a field from a map. For example, to
return the lastname and the food expenses of all persons:

sql-> SELECT lastname, p.expenses.food
FROM Persons p;
 +----------+------+
 | lastname | food |
 +----------+------+
Morgan	2000
Morrison	1000
Scully	900
Smith	6000
Anderson	1700
 +----------+------+

5 rows returned

Chapter 3
Working With Maps

3-13

In the above query, the path expression p.expenses.food consists of 2 field
steps: .expenses selects the expenses field of the current row and .food selects the
value of the food field/entry from the current expenses map.

To return the lastname and amount spent on travel for each person who spent less
than $3000 on food:

sql-> SELECT lastname, p.expenses.travel
FROM Persons p WHERE p.expenses.food < 3000;
 +----------+--------+
 | lastname | travel |
 +----------+--------+
Scully	NULL
Morgan	700
Anderson	2100
Morrison	NULL
 +----------+--------+

4 rows returned

Notice that NULL is returned for persons who did not have any travel expenses.

Filter steps are performed using either the .values() or .keys() path steps. To
select values of map entries, use .values(<cond>). To select keys of map entries,
use .keys(<cond>). If no condition is used in these steps, all the values or keys of the
input map are selected. If the steps do contain a condition expression, the condition
is evaluated for each entry, and the value or key of the entry is selected/skipped if the
result is true/false.

The implicitly-declared variables $key and $value can be used inside a map filter
condition. $key references the key of the current entry and $value references the
associated value. Notice that, contrary to arrays, the $pos variable can not be be used
inside map filters (because map entries do not have fixed positions).

To show, for each user, their id and the expense categories where they spent more
than $1000:

sql-> SELECT id, p.expenses.keys($value > 1000) as Expenses
from Persons p;
 +----+---------------------+
 | id | Expenses |
 +----+---------------------+
4	clothes
	food
	shoes
+----+---------------------+	
3	food
+----+---------------------+	
2	food
	travel
+----+---------------------+	
5	clothes
+----+---------------------+	
1	NULL
 +----+---------------------+

Chapter 3
Working With Maps

3-14

To return the id and the expense categories in which the user spent more than they
spent on clothes, use the following filter step expression. In this query, the context-item
variable ($) appearing in the filter step expression [$value > $.clothes] refers to the
expenses map as a whole.

sql-> SELECT id, p.expenses.keys($value > $.clothes) FROM Persons p;
 +----+---------------------+
 | id | Column_2 |
 +----+---------------------+
 | 3 | NULL |
 +----+---------------------+
 | 2 | NULL |
 +----+---------------------+
 | 5 | NULL |
 +----+---------------------+
 | 1 | NULL |
 +----+---------------------+
 | 4 | food |
 +----+---------------------+

To return the id and expenses data of any person who spent more on any category
than what they spent on food:

sql-> SELECT id, p.expenses
FROM Persons p
WHERE p.expenses.values() >any p.expenses.food;
 +----+---------------------+
 | id | expenses |
 +----+---------------------+
5	clothes	1500
	food	900
	shoes	1000
+----+---------------------+		
2	books	100
	food	1700
	travel	2100
 +----+---------------------+

2 rows returned

To return the id of all persons who consumed more than $2000 in any category other
than food:

sql-> SELECT id FROM Persons p
WHERE p.expenses.values($key != "food") >any 2000;
 +----+
 | id |
 +----+
 | 2 |
 +----+

1 row returned

Chapter 3
Working With Maps

3-15

Using the size() Function
The size function can be used to return the size (number of fields/entries) of a complex
item (record, array, or map). For example:

To return the id and the number of phones that each person has:

sql-> SELECT id, size(p.address.phones)
AS registeredphones FROM Persons p;
 +----+------------------+
 | id | registeredphones |
 +----+------------------+
5	3
3	2
4	4
2	1
1	1
 +----+------------------+

5 rows returned

To return the id and the number of expenses categories for each person: has:

sql-> SELECT id, size(p.expenses) AS
categories FROM Persons p;
 +----+------------+
 | id | categories |
 +----+------------+
4	4
3	3
2	3
1	2
5	3
 +----+------------+

5 rows returned

To return for each person their id and the number of expenses categories for which the
expenses were more than 2000:

sql-> SELECT id, size([p.expenses.values($value > 2000)]) AS
expensiveCategories FROM Persons p;
 +----+---------------------+
 | id | expensiveCategories |
 +----+---------------------+
3	0
2	1
5	0
1	0
4	1
 +----+---------------------+

Chapter 3
Using the size() Function

3-16

5 rows returned

Chapter 3
Using the size() Function

3-17

4
Working with JSON

This chapter provides examples on working with JSON data. If you want to follow
along with the examples, get the Examples download from here and run the
SQLJSONExamples script found in the sqlfolder. This creates the table and imports the
data used.

JSON data is written to JSON data columns by providing a JSON object. This object
can contain any valid JSON data. The input data is parsed and stored internally as
Oracle NoSQL Database datatypes:

• When numbers are encountered, they are converted to integer, long, or double
items, depending on the actual value of the number (float items are not used for
JSON).

• Strings in the input text are mapped to string items.

• Boolean values are mapped to boolean items.

• JSON nulls are mapped to JSON null items.

• When an array is encountered in the input text, an array item is created whose
type is Array(JSON). This is done unconditionally, no matter what the actual
contents of the array might be.

• When a JSON object is encountered in the input text, a map item is created whose
type is Map(JSON), unconditionally.

Note:

There is no JSON equivalent to the TIMESTAMP datatype, so if input text
contains a string in the TIMESTAMP format it is simply stored as a string
item in the JSON column.

The remainder of this chapter provides an overview to querying JSON data.

SQLJSONExamples Script
The SQLJSONExample is available to illustrate JSON usage. This script creates the
following table:

create table if not exists JSONPersons (
 id integer,
 person JSON,
 primary key (id)
);

4-1

The script imports the following table rows. Notice that the content for the person
column, which is of type JSON contains a JSON object. That object contains a series
of fields which represent our person. We have deliberately included inconsistent
information in this example so as to illustrate how to handle various queries when
working with JSON data.

{
 "id":1,
 "person" : {
 "firstname":"David",
 "lastname":"Morrison",
 "age":25,
 "income":100000,
 "lastLogin" : "2016-10-29T18:43:59.8319",
 "address":{"street":"150 Route 2",
 "city":"Antioch",
 "state":"TN",
 "zipcode" : 37013,
 "phones":[{"type":"home", "areacode":423,
 "number":8634379}]
 },
 "connections":[2, 3],
 "expenses":{"food":1000, "gas":180}
 }
}

{
 "id":2,
 "person" : {
 "firstname":"John",
 "lastname":"Anderson",
 "age":35,
 "income":100000,
 "lastLogin" : "2016-11-28T13:01:11.2088",
 "address":{"street":"187 Hill Street",
 "city":"Beloit",
 "state":"WI",
 "zipcode" : 53511,
 "phones":[{"type":"home", "areacode":339,
 "number":1684972}]
 },
 "connections":[1, 3],
 "expenses":{"books":100, "food":1700, "travel":2100}
 }
}

{
 "id":3,
 "person" : {
 "firstname":"John",
 "lastname":"Morgan",
 "age":38,
 "income":100000000,
 "lastLogin" : "2016-11-29T08:21:35.4971",
 "address":{"street":"187 Aspen Drive",

Chapter 4
SQLJSONExamples Script

4-2

 "city":"Middleburg",
 "state":"FL",
 "phones":[{"type":"work", "areacode":305,
 "number":1234079},
 {"type":"home", "areacode":305,
 "number":2066401}
]
 },
 "connections":[1, 4, 2],
 "expenses":{"food":2000, "travel":700, "gas":10}
 }
}
{
 "id":4,
 "person": {
 "firstname":"Peter",
 "lastname":"Smith",
 "age":38,
 "income":80000,
 "lastLogin" : "2016-10-19T09:18:05.5555",
 "address":{"street":"364 Mulberry Street",
 "city":"Leominster",
 "state":"MA",
 "phones":[{"type":"work", "areacode":339,
 "number":4120211},
 {"type":"work", "areacode":339,
 "number":8694021},
 {"type":"home", "areacode":339,
 "number":1205678},
 null,
 {"type":"home", "areacode":305,
 "number":8064321}
]
 },
 "connections":[3, 5, 1, 2],
 "expenses":{"food":6000, "books":240, "clothes":2000,
 "shoes":1200}
 }
}

{
 "id":5,
 "person" : {
 "firstname":"Dana",
 "lastname":"Scully",
 "age":47,
 "income":400000,
 "lastLogin" : "2016-11-08T09:16:46.3929",
 "address":{"street":"427 Linden Avenue",
 "city":"Monroe Township",
 "state":"NJ",
 "phones":[{"type":"work", "areacode":201,
 "number":3213267},
 {"type":"work", "areacode":201,
 "number":8765421},

Chapter 4
SQLJSONExamples Script

4-3

 {"type":"home", "areacode":339,
 "number":3414578}
]
 },
 "connections":[2, 4, 1, 3],
 "expenses":{"food":900, "shoes":1000, "clothes":1500}
 }
}

{
 "id":6,
 "person" : {
 "mynumber":5,
 "myarray":[1,2,3,4]
 }
}

{
 "id":7,
 "person" : {
 "mynumber":"5",
 "myarray":["1","2","3","4"]
 }
}

You run the SQLJSONExamples script using the load command:

> cd <installdir>/examples/sql
> java -jar <KVHOME>/lib/sql.jar -helper-hosts <host>:<port> \
-store <storename> load \
-file <KVHOME>/examples/sql/SQLJSONExamples.cli

Basic Queries
Because JSON is parsed and stored internally in native data formats with Oracle
NoSQL Database, querying JSON data is no different than querying data in other
column types. See Simple SELECT Queries and Working with complex data for
introductory examples of how to form these queries.

In our JSONPersons example, all of the data for each person is contained in a column
of type JSON called person. This data is presented as a JSON object, and mapped
internally into a Map(JSON) type. You can query information in this column as you
would query a Map of any other type. For example:

sql-> SELECT id, j.person.lastname, j.person.age FROM JSONPersons j;
 +----+---------------------+------------+
 | id | lastname | age |
 +----+---------------------+------------+
 | 3 | Morgan | 38 |
 +----+---------------------+------------+
 | 2 | Anderson | 35 |
 +----+---------------------+------------+

Chapter 4
Basic Queries

4-4

 | 5 | Scully | 47 |
 +----+---------------------+------------+
 | 1 | Morrison | 25 |
 +----+---------------------+------------+
 | 4 | Smith | 38 |
 +----+---------------------+------------+
 | 6 | NULL | NULL |
 +----+---------------------+------------+
 | 7 | NULL | NULL |
 +----+---------------------+------------+

7 rows returned

The last two rows in returned from this query contain all NULLs. This is because
those rows were populated using JSON objects that are different than the objects used
to populate the rest of the table. This capability of JSON is both a strength and a
weakness. As a plus, you can modify your schema easily. However, if you are not
careful, you can end up with tables containing dissimilar data in both large and small
ways.

Because the JSON object is stored as a map, you can use normal map step functions
on the column. For example:

sql-> SELECT id, j.person.expenses.keys($value > 1000) as Expenses
from JSONPersons j;
+----+---------------------+
 | id | Expenses |
 +----+---------------------+
 | 3 | food |
 +----+---------------------+
 | 2 | food |
 | | travel |
 +----+---------------------+
4	clothes
	food
	shoes
+----+---------------------+	
6	NULL
+----+---------------------+	
5	clothes
+----+---------------------+	
7	NULL
+----+---------------------+	
1	NULL
 +----+---------------------+

7 rows returned

Here, id 1 is NULL because that user had no expenses greater than $1000, while id 6
and 7 are NULL because they have no j.person.expenses field.

Chapter 4
Basic Queries

4-5

Using WHERE EXISTS with JSON
As we saw in the previous section, different rows in the same table can have
dissimilar information in them when a column type is JSON. To identify whether
desired information exists for a given JSON column, use the EXISTS operator.

For example, some of the JSON persons have a zip code entered for their address,
and others do not. Use this query to see all the users with a zipcode:

sql-> SELECT id, j.person.address AS Address FROM JSONPersons j
WHERE EXISTS j.person.address.zipcode;
 +----+--------------------------------+
 | id | Address |
 +----+--------------------------------+
2	city	Beloit
	phones	
	areacode	339
	number	1684972
	type	home
	state	WI
	street	187 Hill Street
	zipcode	53511
+----+--------------------------------+		
1	city	Antioch
	phones	
	areacode	423
	number	8634379
	type	home
	state	TN
	street	150 Route 2
	zipcode	37013
 +----+--------------------------------+

2 rows returned

When querying data for inconsistencies, it is often more useful to see all rows where
information is missing by using WHERE NOT EXISTS:

sql-> SELECT * FROM JSONPersons j WHERE NOT EXISTS j.person.lastname;
 +----+-------------------+
 | id | person |
 +----+-------------------+
7	myarray	
	1	
	2	
	3	
	4	
	mynumber	5
+----+-------------------+		
6	myarray	
	1	
	2	
	3	

Chapter 4
Using WHERE EXISTS with JSON

4-6

 | | 4 |
 | | mynumber | 5 |
 +----+-------------------+

1 row returned

Seeking NULLS in Arrays
All arrays found in a JSON input stream are stored internally as ARRAY(JSON). This
means that it is possible for the array to have inconsistent types for its members.

In our example, the phones array for user id 4 contains a null element:

sql-> SELECT j.person.address.phones FROM JSONPersons j WHERE j.id=4;
 +--------------------+
 | phones |
 +--------------------+
areacode	339
number	4120211
type	work
areacode	339
number	8694021
type	work
areacode	339
number	1205678
type	home
null	
areacode	305
number	8064321
type	home
 +--------------------+

A way to discover this in your table is to examine the phones array for null values:

sql-> SELECT id, j.person.address.phones FROM JSONPersons j
WHERE j.person.address.phones[] =any null;
 +----+--------------------+
 | id | phones |
 +----+--------------------+
4	areacode	339
	number	4120211
	type	work
	areacode	339
	number	8694021
	type	work
	areacode	339
	number	1205678

Chapter 4
Seeking NULLS in Arrays

4-7

	type	home
	null	
	areacode	305
	number	8064321
	type	home
 +----+--------------------+

1 row returned

Notice the use of the array filter step ([]) in the previous query. This is needed to
unpack the array into a sequence so that the =any comparison operator can be used
with it.

Examining Data Types JSON Columns
The example data contains a couple of rows with unusual data:

{
 "id":6,
 "person" : {
 "mynumber":5,
 "myarray":[1,2,3,4]
 }
}

{
 "id":7,
 "person" : {
 "mynumber":"5",
 "myarray":["1","2","3","4"]
 }
}

You can locate them using the query:

sql-> SELECT * FROM JSONPersons j WHERE EXISTS j.person.mynumber;
 +----+-------------------+
 | id | person |
 +----+-------------------+
6	myarray	
	1	
	2	
	3	
	4	
	mynumber	5
+----+-------------------+		
7	myarray	
	1	
	2	
	3	
	4	
	mynumber	5

Chapter 4
Examining Data Types JSON Columns

4-8

 +----+-------------------+

2 rows returned

However, notice that these two rows actually contain numbers stored as different
types. ID 6 stores integers while ID 7 stores strings. You can select a row based on its
type:

sql-> SELECT * FROM JSONPersons j
WHERE j.person.mynumber IS OF TYPE (integer);
 +----+-------------------+
 | id | person |
 +----+-------------------+
6	myarray	
	1	
	2	
	3	
	4	
	mynumber	5
 +----+-------------------+

Notice that if you use IS NOT OF TYPE then every row in the table is returned except id
6. This is because for all the other rows, j.person.mynumber evaluates to jnull, which
is not an integer.

sql-> SELECT id FROM JSONPersons j
WHERE j.person.mynumber IS NOT OF TYPE (integer);
 +----+
 | id |
 +----+
 | 3 |
 | 2 |
 | 5 |
 | 4 |
 | 1 |
 | 7 |
 +----+

6 rows returned

To solve this problem, also check for the existence of j.person.mynumber:

sql-> SELECT id from JSONPersons j WHERE EXISTS j.person.mynumber
and j.person.mynumber IS NOT OF TYPE (integer);
 +----+
 | id |
 +----+
 | 7 |
 +----+

1 row returned

Chapter 4
Examining Data Types JSON Columns

4-9

You can also perform type checking based on the type of data contained in the array.
Recall that our rows contain arrays with integers and arrays with strings. You can
return the row with just the array of strings using:

sql-> SELECT id, j.person.myarray FROM JSONPersons j
WHERE j.person.myarray[] IS OF TYPE (string+);
 +----+-------------------+
 | id | myarray |
 +----+-------------------+
7	1
	2
	3
	4
 +----+-------------------+

1 row returned

Here, we use the array filter step ([]) in the WHERE clause to unpack the array into
a sequence. This allows is-of-type to iterate over the sequence, checking the type of
each element. If every element in the sequence matches the identified type (string, in
this case), then the is-of-type returns true.

Also notice that the query uses the + cardinality modifier. This means that is-of-type
will return true only if the input sequence (myarray[], in this case) contains ONE OR
MORE elements that match the identified type (string). If we used *, then 0 or more
elements would have to match the identified type in order for true to return. Because
our table contains a mix of rows with different schema, the result is that every row
except id 6 is returned:

sql-> SELECT id, j.person.myarray FROM JSONPersons j
WHERE j.person.myarray[] IS OF TYPE (string*);
 +----+-------------------+
 | id | myarray |
 +----+-------------------+
 | 3 | NULL |
 +----+-------------------+
 | 5 | NULL |
 +----+-------------------+
 | 1 | NULL |
 +----+-------------------+
7	1
	2
	3
	4
+----+-------------------+	
4	NULL
+----+-------------------+	
2	NULL
 +----+-------------------+

6 rows returned

Chapter 4
Examining Data Types JSON Columns

4-10

Finally, if we do not provide a cardinality modifier at all, then is-of-type returns true if
ONE AND ONLY one member of the input sequence matches the identified type. In
this example, the result is that no rows are returned.

sql-> SELECT id, j.person.myarray FROM JSONPersons j
WHERE j.person.myarray[] IS OF TYPE (string);

0 row returned

Using Map Steps with JSON Data
On import, Oracle NoSQL Database stores JSON objects as MAP(JSON). This means
you can use map filter steps with your JSON objects.

For example, if you want to visually examine the JSON fields in use by your rows:

sql-> SELECT id, j.person.keys() FROM JSONPersons j;
 +----+------------------------+
 | id | Column_2 |
 +----+------------------------+
4	address
	age
	connections
	expenses
	firstname
	income
	lastLogin
	lastname
+----+------------------------+	
6	myarray
	mynumber
+----+------------------------+	
3	address
	age
	connections
	expenses
	firstname
	income
	lastLogin
	lastname
+----+------------------------+	
5	address
	age
	connections
	expenses
	firstname
	income
	lastLogin
	lastname
+----+------------------------+	
1	address
	age
	connections
	expenses

Chapter 4
Using Map Steps with JSON Data

4-11

	firstname
	income
	lastLogin
	lastname
+----+------------------------+	
7	myarray
	mynumber
+----+------------------------+	
2	address
	age
	connections
	expenses
	firstname
	income
	lastLogin
	lastname
 +----+------------------------+

7 rows returned

Casting Datatypes
You can cast one data type to another using the cast expression.

In JSON, casting is particularly useful for timestamp information because JSON has
no equivalent to the Oracle NoSQL Database Timestamp data type. Instead, the
timestamp information is carried in a JSON object as a string. To work with it as a
Timestamp, use cast.

In Working with Timestamps we showed how to work with the timestamp data type.
In this case, what you do is no different except you must cast both sides of the
expression. Also, because the left side of the expression is a sequence, you must
specify a type quantifier (* in this case):

sql-> SELECT id,
 j.person.firstname, j.person.lastname, j.person.lastLogin
 FROM JSONPersons j
 WHERE CAST(j.person.lastLogin AS TIMESTAMP*) >
 CAST("2016-11-01" AS TIMESTAMP) AND
 CAST(j.person.lastLogin AS TIMESTAMP*) <
 CAST("2016-11-30" AS TIMESTAMP);
 +----+------------+--------------+----------------------------+
 | id | firstname | lastname | lastLogin |
 +----+------------+--------------+----------------------------+
 | 3 | John | Morgan | 2016-11-29T08:21:35.4971 |
 +----+------------+--------------+----------------------------+
 | 2 | John | Anderson | 2016-11-28T13:01:11.2088 |
 +----+------------+--------------+----------------------------+
 | 5 | Dana | Scully | 2016-11-08T09:16:46.3929 |
 +----+------------+--------------+----------------------------+

3 rows returned

Chapter 4
Casting Datatypes

4-12

As another example, you can cast to an integer and then operate on that number:

sql-> SELECT id, j.person.mynumber,
 CAST(j.person.mynumber as integer) * 10 AS TenTimes
 FROM JSONPersons j WHERE EXISTS j.person.mynumber;
 +----+---------------------+----------+
 | id | mynumber | TenTimes |
 +----+---------------------+----------+
 | 7 | 5 | 50 |
 +----+---------------------+----------+
 | 6 | 5 | 50 |
 +----+---------------------+----------+

If you want to operate on just the row that contains the number as a string, use IS OF
TYPE:

sql-> SELECT id, j.person.mynumber,
 CAST(j.person.mynumber as integer) * 10 AS TenTimes
 FROM JSONPersons j WHERE EXISTS j.person.mynumber
 AND j.person.mynumber IS OF TYPE (string);
 +----+---------------------+----------+
 | id | mynumber | TenTimes |
 +----+---------------------+----------+
 | 7 | 5 | 50 |
 +----+---------------------+----------+

Using Searched Case
A searched case expression can be helpful in identifying specific problems with the
JSON data in your JSON columns. The example data we have been using in this
chapter sometimes provides a JSONPersons.address field, and sometimes it does
not. When an address is present, sometimes it provides a zipcode, and sometimes it
does not. We can use a searched case expression to identify and describe the specific
problem with each row.

sql-> SELECT id,
CASE
 WHEN NOT EXISTS j.person.address
 THEN j.person.keys()
 WHEN NOT EXISTS j.person.address.zipcode
 THEN "No Zipcode"
 ELSE j.person.address.zipcode
END
FROM JSONPersons j;
 +----+-----------------------+
 | id | Column_2 |
 +----+-----------------------+
 | 4 | No Zipcode |
 +----+-----------------------+
 | 3 | No Zipcode |
 +----+-----------------------+
 | 5 | No Zipcode |
 +----+-----------------------+

Chapter 4
Using Searched Case

4-13

 | 1 | 37013 |
 +----+-----------------------+
 | 7 | myarray |
 | | mynumber |
 +----+-----------------------+
 | 6 | myarray |
 | | mynumber |
 +----+-----------------------+
 | 2 | 53511 |
 +----+-----------------------+

7 rows returned

We can improve the report by adding a third column that uses a second searched case
expression:

sql-> SELECT id,
CASE
 WHEN NOT EXISTS j.person.address
 THEN "No Address"
 WHEN NOT EXISTS j.person.address.zipcode
 THEN "No Zipcode"
 ELSE j.person.address.zipcode
END,
CASE
 WHEN NOT EXISTS j.person.address
 THEN j.person.keys()
 ELSE j.person.address
END
FROM JSONPersons j;
 +----+-----------------------+------------------------------------+
 | id | Column_2 | Column_3 |
 +----+-----------------------+------------------------------------+
3	No Zipcode	city	Middleburg
		phones	
		areacode	305
		number	1234079
		type	work
		areacode	305
		number	2066401
		type	home
		state	FL
		street	187 Aspen Drive
+----+-----------------------+------------------------------------+			
2	53511	city	Beloit
		phones	
		areacode	339
		number	1684972
		type	home
		state	WI
		street	187 Hill Street
		zipcode	53511
 +----+-----------------------+------------------------------------+

Chapter 4
Using Searched Case

4-14

5	No Zipcode	city	Monroe Township
		phones	
		areacode	201
		number	3213267
		type	work
		areacode	201
		number	8765421
		type	work
		areacode	339
		number	3414578
		type	home
		state	NJ
		street	427 Linden Avenue
+----+-----------------------+------------------------------------+			
1	37013	city	Antioch
		phones	
		areacode	423
		number	8634379
		type	home
		state	TN
		street	150 Route 2
		zipcode	37013
+----+-----------------------+------------------------------------+			
7	No Address	myarray	
		mynumber	
+----+-----------------------+------------------------------------+			
4	No Zipcode	city	Leominster
		phones	
		areacode	339
		number	4120211
		type	work
		areacode	339
		number	8694021
		type	work
		areacode	339
		number	1205678
		type	home
		null	
		areacode	305
		number	8064321
		type	home
		state	MA
		street	364 Mulberry Street
+----+-----------------------+------------------------------------+			
6	No Address	myarray	
		mynumber	
 +----+-----------------------+------------------------------------+

7 rows returned

Chapter 4
Using Searched Case

4-15

Finally, it is possible to nest search case expressions. Our sample data also has a
spurious null in the phones array (see id 4). We can report that in the following way
(output is modified slightly to fit in the space allowed):

sql-> SELECT id,
CASE
 WHEN EXISTS j.person.address
 THEN
 CASE
 WHEN EXISTS j.person.address.zipcode
 THEN
 CASE
 WHEN j.person.address.phones[] =any null
 THEN "Zipcode exists but null in the phones array"
 ELSE j.person.address.zipcode
 END
 WHEN j.person.address.phones[] =any null
 THEN "No zipcode and null in phones array"
 ELSE "No zipcode"
 END
 ELSE "No Address"
END,
CASE
 WHEN NOT EXISTS j.person.address
 THEN j.person.keys()
 ELSE j.person.address
END
FROM JSONPersons j;
 +----+------------------------+------------------------------------+
 | id | Column_2 | Column_3 |
 +----+------------------------+------------------------------------+
3	No zipcode	city	Middleburg
		phones	
		areacode	305
		number	1234079
		type	work
		areacode	305
		number	2066401
		type	home
		state	FL
		street	187 Aspen Drive
+----+------------------------+------------------------------------+			
2	53511	city	Beloit
		phones	
		areacode	339
		number	1684972
		type	home
		state	WI
		street	187 Hill Street
		zipcode	53511
+----+------------------------+------------------------------------+			
5	No zipcode	city	Monroe Township
		phones	
		areacode	201

Chapter 4
Using Searched Case

4-16

		number	3213267
		type	work
		areacode	201
		number	8765421
		type	work
		areacode	339
		number	3414578
		type	home
		state	NJ
		street	427 Linden Avenue
+----+------------------------+------------------------------------+			
1	37013	city	Antioch
		phones	
		areacode	423
		number	8634379
		type	home
		state	TN
		street	150 Route 2
		zipcode	37013
+----+------------------------+------------------------------------+			
7	No Address	myarray	
		mynumber	
+----+------------------------+------------------------------------+			
4	No zipcode and null	city	Leominster
	in phones array	phones	
		areacode	339
		number	4120211
		type	work
		areacode	339
		number	8694021
		type	work
		areacode	339
		number	1205678
		type	home
		null	
		areacode	305
		number	8064321
		type	home
		state	MA
		street	364 Mulberry Street
+----+------------------------+------------------------------------+			
6	No Address	myarray	
		mynumber	
 +----+------------------------+------------------------------------+

7 rows returned

Chapter 4
Using Searched Case

4-17

5
Working With GeoJSON Data

The GeoJSON specification (https://tools.ietf.org/html/rfc7946) defines the structure
and content of JSON objects representing geographical shapes on earth (called
geometries). Oracle NoSQL Database implements several functions that interpret
JSON geometry objects. The functions also let you search table rows containing
geometries that satisfy certain conditions. Search is made efficient through the use of
special indexes, as described in the SQL Reference Guide.

Note:

Support for GeoJson data is available only in the Oracle NoSQL Database
Enterprise Edition.

Geodetic Coordinates
As described, all kinds of geometries are specified in terms of a set of positions.
However, for line strings and polygons, the actual geometrical shape is formed by
lines connecting their positions. The GeoJSON specification defines a line between
two points as the straight line that connects the points in the (flat) cartesian coordinate
system, whose horizontal and vertical axes are the longitude and latitude, respectively.
More precisely, the coordinates of every point on a line that does not cross the
antimeridian between a point P1 = (lon1, lat1) and P2 = (lon2, lat2) can be calculated
as:

 P = (lon, lat) = (lon1 + (lon2 - lon1) * t, lat1 + (lat2 - lat1) * t)

with t being a real number, greater than or equal to 0, and less than or equal to 1.

Unlike the GeoJSON specification, the Oracle NoSQL Database uses a geodetic
coordinate system, as defined in the World Geodetic System, WGS84, (https://
gisgeography.com/wgs84-world-geodetic-system). A geodetic line between two points
is the shortest line that can be drawn between the two points on the ellipsoidal surface
of the earth.

5-1

GeoJSON Data Definitions
The GeoJSON specification (https://tools.ietf.org/html/rfc7946) states that for a JSON
object to be a geometry, it requires two fields, type and coordinates. The value of the
type field specifies the kind of geometric shape the object describes. The value of
the type field must be one of the following strings, corresponding to different kinds of
geometries:

• Point

• LineSegment

• Polygon

• MultiPoint

• MultiLineString

• MultiPolygon

• GeometryCollection

The coordinates value is an array with elements that define the geometrical shape.
An exception to this is the GeometryCollection type, which is described below. The
coordinates value depends on the geometric shape, but in all cases, specifies a
number of positions. A position defines a position on the surface of the earth as an
array of two double numbers, where the first number is the longitude and the second
number is the latitude. Longitude and latitude are specified as degrees and must range
between -180 – +180 and -90 – +90, respectively.

Note:

The GeoJSON specification allows a third coordinate for the altitude of the
position, but Oracle NoSQL Database does not support altitudes.

Chapter 5
GeoJSON Data Definitions

5-2

The kinds of geometries are defined as follows, each with an example of such an
object:

Point — For type Point, the coordinates field is a single position:

{ "type" : "point", "coordinates" : [23.549, 35.2908] }

LineString — A LineString is one or more connected lines, with the end-point of one
line being the start-point of the next. The coordinates field is an array of two or more
positions. The first position is the start point of the first line, and each subsequent
position is the end point of the previous line and the start of the next line. Lines can
cross each other.

{
"type" : "LineString",
"coordinates" : [
[-121.9447, 37.2975],
[-121.9500, 37.3171],
[-121.9892, 37.3182],
[-122.1554, 37.3882],
[-122.2899, 37.4589],
[-122.4273, 37.6032],
[-122.4304, 37.6267],
[-122.3975, 37.6144]
]
}

Polygon — A polygon defines a surface area by specifying its outer perimeter and the
perimeters of any potential holes inside the area. More precisely, a polygon consists
of one or more linear rings, where (a) a linear ring is a closed LineString with four or
more positions, (b) the first and last positions are equivalent, and they must contain
identical values, (c) a linear ring is the boundary of a surface or the boundary of a hole
in a surface, and (d) a linear ring must follow the right-hand rule with respect to the
area it bounds. That is, positions for exterior rings must be ordered counterclockwise,
and positions for holes must be ordered clockwise. Then, the coordinates field of a
polygon must be an array of linear ring coordinate arrays, where the first must be the
exterior ring, and any others must be interior rings.

The exterior ring bounds the surface, and the interior rings (if present) bound holes
within the surface. The example below shows a polygon with no holes.

{
"type" : "polygon",
"coordinates" : [[
[23.48, 35.16],
[24.30, 35.16],
[24.30, 35.50],
[24.16, 35.61],
[23.74, 35.70],
[23.56, 35.60],
[23.48, 35.16]
]
]
}

Chapter 5
GeoJSON Data Definitions

5-3

MultiPoint — For type MultiPoint, the coordinates field is an array of two or more
positions:

{
"type" : "MultiPoint",
"coordinates" : [
[-121.9447, 37.2975],
[-121.9500, 37.3171],
[-122.3975, 37.6144]
]
}

MultiLineString — For type MultiLineString, the coordinates member is an array of
LineString coordinate arrays.

{
"type": "MultiLineString",
"coordinates": [
[[100.0, 0.0], [01.0, 1.0]],
[[102.0, 2.0], [103.0, 3.0]]
]
}

MultiPolygon — For type MultiPolygon, the coordinates member is an array of
Polygon coordinate arrays.

 {
"type": "MultiPolygon",
"coordinates": [
[
[
[102.0, 2.0],
[103.0, 2.0],
[103.0, 3.0],
[102.0, 3.0],
[102.0, 2.0]
]
],

[
[
[100.0, 0.0],
[101.0, 0.0],
[101.0, 1.0],
[100.0, 1.0],
[100.0, 0.0]
]
]
]
}

GeometryCollection — Instead of a coordinates field, a GeometryCollection has a
geometries” field. The value of geometries is an array. Each element of this array is

Chapter 5
GeoJSON Data Definitions

5-4

a GeoJSON object whose kind is one of the six kinds defined above. In general, a
GeometryCollection is a heterogeneous composition of smaller geometries.

{ "type": "GeometryCollection",
"geometries": [
{
"type": "Point",
"coordinates": [100.0, 0.0]
},
{"type": "LineString",
"coordinates": [[101.0, 0.0], [102.0, 1.0]]
}
]
}

Note:

The GeoJSON specification defines two additional kinds of entities, Feature
and FeatureCollection. The Oracle NoSQL Database does not support these
entities.

Searching GeoJSON Data
The Oracle NoSQL Database has the following functions to use for searching
GeoJSON data that has some relationship with a search geometry.

• boolean geo_intersect(any*, any*)

• boolean geo_inside(any*, any*)

• boolean geo_within_distance(any*, any*, double)

• boolean geo_near(any*, any*, double)

In addition to the search functions, two other functions are available, and listed as the
last two rows of the table:

Function Type Details

geo_intersect(any*, any*) boolea
n

Raises an error at compile time if the function can detect that any
operand will not return a single valid GeoJson object. Otherwise,
the runtime behavior is as follows:
• Returns false if any operand returns 0 or more than 1 items.
• Returns NULL if any operand returns NULL.
• Returns false if any operand returns an item that is not a valid

GeoJson object.
• Finally, if both operands return a single GeoJson object,

returns true if the two geometries have any points in common.
Otherwise, returns false.

Chapter 5
Searching GeoJSON Data

5-5

Function Type Details

geo_inside(any*, any*) boolea
n

Raises an error at compile time if the function can detect that any
operand will not return a single valid GeoJson object. Otherwise,
the runtime behavior is as follows:
• Returns false if any operand returns 0 or more than 1 item.
• Returns NULL if any operand returns NULL.
• Returns false if any operand returns an item that is not a valid

GeoJson object.
• Finally, if both operands return a single GeoJson object and

the second GeoJson is a polygon, the function returns true if
the first geometry is completely contained inside the second
polygon, with all of its points belonging to the interior of the
polygon. The interior of a polygon is all the points in the
polygon, except the points of the linear rings that define the
polygon’s boundary. Otherwise, returns false.

geo_within_distance(any*,
any*, double)

boolea
n

Raises an error at compile time if the function detects that the
first two operands will not return a single valid GeoJson object.
Otherwise, the runtime behavior is as follows:
• Returns false if any of the first two operands returns 0 or more

than 1 item.
• Returns NULL if any of the first two operands returns NULL.
• Returns false if any of the first two operands returns an item

that is not a valid GeoJson object.
• Finally, if both of the first two operands return a single

GeoJson object, the function returns true if the first geometry
is within a distance of N meters from the second geometry,
where N is the number returned by the third operand. The
distance between 2 geometries is defined as the minimum
among the distances of any pair of points where the first point
belongs to the first geometry, and the second point to the
second geometry. Otherwise, returns false.

geo_near(any*, any*, double) boolea
n

The geo_near funcion is converted internally to a
geo_within_distance function, with an an (implicit) order by the
distance between the two geometries. However, if the query has
an (explicit) order-by already, the function performs no ordering by
distance. The geo_near function can appear only in the WHERE
clause, and must be a top-level predicate. The geo_near function
cannot be nested under an OR or NOT operator.

geo_distance(any*, any*) double Raises an error at compile time if the function detects that an
operand will not return a single valid GeoJson object. Otherwise,
the runtime behavior is as follows:
• Returns -1 if any of the operands returns zero or more than 1

item.
• Returns -1 if any of the operands is not a geometry.
• Returns NULL if any operand returns NULL.
• Otherwise the function returns the geodetic distance between

the 2 input geometries. The returned distance is the minimum
among the distances of any pair of points, where the first
point belongs to the first geometry and the second point to the
second geometry. Between two such points, their distance is
the length of the geodetic line that connects the points.

geo_is_geometry(any*) boolea
n

• Returns false if an operand returns zero or more than 1 item.
• Returns NULL if an operand returns NULL.
• Returns true if the input is a single valid GeoJson object.

Otherwise, false.

Chapter 5
Searching GeoJSON Data

5-6

6
Working With Indexes

The SQL for Oracle NoSQL Database query processor can detect which of the
existing indexes on a table can be used to optimize the execution of a query. This
chapter provides a brief examples-based introduction to index creation, and queries
using indexes. For a more detailed description of index creation and usage, see SQL
Reference Guide.

To make it possible to fit the example output on the page, the examples in this chapter
use mode LINE.

Basic Indexing
This section builds on the examples that you began in Working with complex data.

sql-> mode LINE
Query output mode is LINE
sql-> create index idx_income on Persons (income);
Statement completed successfully
sql-> create index idx_age on Persons (age);
Statement completed successfully
sql-> SELECT * from Persons
WHERE income > 10000000 and age < 40;

 > Row 0
 +-------------+--+
 | id | 3 |
 +-------------+--+
 | firstname | John |
 +-------------+--+
 | lastname | Morgan |
 +-------------+--+
 | age | 38 |
 +-------------+--+
 | income | 100000000 |
 +-------------+--+
 | lastLogin | 2016-11-29T08:21:35.4971 |
 +-------------+--+
 | address | street | 187 Aspen Drive |
 | | city | Middleburg |
 | | state | FL |
 | | zipcode | NULL |
 | | phones |
 | | type | work |
 | | areacode | 305 |
 | | number | 1234079 |
 | | |
 | | type | home |
 | | areacode | 305 |

6-1

 | | number | 2066401 |
 +-------------+--+
connections	1
	4
	2
+-------------+--+	
expenses	food
	gas
	travel
 +-------------+--+

1 row returned

Using Index Hints
In the previous section, both indexes are applicable. For index idx_income, the query
condition income > 10000000 can be used as the starting point for an index scan that
will retrieve only the index entries and associated table rows that satisfy this condition.
Similarly, for index idx_age, the condition age < 40 can be used as the stopping point
for the index scan. SQL for Oracle NoSQL Database has no way of knowing which
of the 2 predicates is more selective, and it assigns the same "value" to each index,
eventually picking the one whose name is first alphabetically. In the previous example,
idx_age was used. To choose the idx_income index instead, the query should be
written with an index hint:

sql-> SELECT /*+ FORCE_INDEX(Persons idx_income) */ * from Persons
WHERE income > 10000000 and age < 40;

> Row 0
 +-------------+--+
 | id | 3 |
 +-------------+--+
 | firstname | John |
 +-------------+--+
 | lastname | Morgan |
 +-------------+--+
 | age | 38 |
 +-------------+--+
 | income | 100000000 |
 +-------------+--+
 | lastLogin | 2016-11-29T08:21:35.4971 |
 +-------------+--+
 | address | street | 187 Aspen Drive |
 | | city | Middleburg |
 | | state | FL |
 | | zipcode | NULL |
 | | phones |
 | | type | work |
 | | areacode | 305 |
 | | number | 1234079 |
 | | |
 | | type | home |
 | | areacode | 305 |
 | | number | 2066401 |

Chapter 6
Using Index Hints

6-2

 +-------------+--+
connections	1
	4
	2
+-------------+--+	
expenses	food
	gas
	travel
 +-------------+--+

1 row returned

As shown above, hints are written as a special kind of comment that must be placed
immediately after the SELECT keyword. What distinguishes a hint from a regular
comment is the "+" character immediately after (without any space) the opening "/*".

Complex Indexes
The following example demonstrates indexing of multiple table fields, indexing of
nested fields, and the use of "filtering" predicates during index scans.

sql-> create index idx_state_city_income on
Persons (address.state, address.city, income);
Statement completed successfully
sql-> SELECT * from Persons p WHERE p.address.state = "MA"
and income > 79000;

> Row 0
 +-------------+--+
 | id | 4 |
 +-------------+--+
 | firstname | Peter |
 +-------------+--+
 | lastname | Smith |
 +-------------+--+
 | age | 38 |
 +-------------+--+
 | income | 80000 |
 +-------------+--+
 | lastLogin | 2016-10-19T09:18:05.5555 |
 +-------------+--+
 | address | street | 364 Mulberry Street |
 | | city | Leominster |
 | | state | MA |
 | | zipcode | NULL |
 | | phones |
 | | type | work |
 | | areacode | 339 |
 | | number | 4120211 |
 | | |
 | | type | work |
 | | areacode | 339 |
 | | number | 8694021 |
 | | |

Chapter 6
Complex Indexes

6-3

	type	home
	areacode	339
	number	1205678
	type	home
	areacode	305
	number	8064321
+-------------+--+		
connections	3	
	5	
	1	
	2	
+-------------+--+		
expenses	books	240
	clothes	2000
	food	6000
	shoes	1200
 +-------------+--+

1 row returned

Index idx_state_city_income is applicable to the above query. Specifically, the state =
"MA" condition can be used to establish the boundaries of the index scan (only index
entries whose first field is "MA" will be scanned). Further, during the index scan, the
income condition can be used as a "filtering" condition, to skip index entries whose
third field is less or equal to 79000. As a result, only rows that satisfy both conditions
are retrieved from the table.

Multi-Key Indexes
A multi-key index indexes all the elements of an array, or all the elements and/or all
the keys of a map. For such indexes, for each table row, the index contains as many
entries as the number of elements/entries in the array/map that is being indexed. Only
one array/map may be indexed.

sql-> create index idx_areacode on
Persons (address.phones[].areacode);
Statement completed successfully
sql-> SELECT * FROM Persons p WHERE
p.address.phones.areacode =any 339;

 > Row 0
 +-------------+--+
 | id | 2 |
 +-------------+--+
 | firstname | John |
 +-------------+--+
 | lastname | Anderson |
 +-------------+--+
 | age | 35 |
 +-------------+--+
 | income | 100000 |
 +-------------+--+
 | lastLogin | 2016-11-28T13:01:11.2088 |

Chapter 6
Multi-Key Indexes

6-4

 +-------------+--+
address	street	187 Hill Street
	city	Beloit
	state	WI
	zipcode	53511
	phones	
	type	home
	areacode	339
	number	1684972
+-------------+--+		
connections	1	
	3	
+-------------+--+		
expenses	books	100
	food	1700
	travel	2100
 +-------------+--+

 > Row 1
 +-------------+--+
 | id | 4 |
 +-------------+--+
 | firstname | Peter |
 +-------------+--+
 | lastname | Smith |
 +-------------+--+
 | age | 38 |
 +-------------+--+
 | income | 80000 |
 +-------------+--+
 | lastLogin | 2016-10-19T09:18:05.5555 |
 +-------------+--+
 | address | street | 364 Mulberry Street |
 | | city | Leominster |
 | | state | MA |
 | | zipcode | NULL |
 | | phones |
 | | type | work |
 | | areacode | 339 |
 | | number | 4120211 |
 | | |
 | | type | work |
 | | areacode | 339 |
 | | number | 8694021 |
 | | |
 | | type | home |
 | | areacode | 339 |
 | | number | 1205678 |
 | | |
 | | type | home |
 | | areacode | 305 |
 | | number | 8064321 |
 +-------------+--+
 | connections | 3 |
 | | 5 |

Chapter 6
Multi-Key Indexes

6-5

 | | 1 |
 | | 2 |
 +-------------+--+
expenses	books	240
	clothes	2000
	food	6000
	shoes	1200
 +-------------+--+

 > Row 2
 +-------------+--+
 | id | 5 |
 +-------------+--+
 | firstname | Dana |
 +-------------+--+
 | lastname | Scully |
 +-------------+--+
 | age | 47 |
 +-------------+--+
 | income | 400000 |
 +-------------+--+
 | lastLogin | 2016-11-08T09:16:46.3929 |
 +-------------+--+
 | address | street | 427 Linden Avenue |
 | | city | Monroe Township |
 | | state | NJ |
 | | zipcode | NULL |
 | | phones |
 | | type | work |
 | | areacode | 201 |
 | | number | 3213267 |
 | | |
 | | type | work |
 | | areacode | 201 |
 | | number | 8765421 |
 | | |
 | | type | home |
 | | areacode | 339 |
 | | number | 3414578 |
 +-------------+--+
 | connections | 2 |
 | | 4 |
 | | 1 |
 | | 3 |
 +-------------+--+
 | expenses | clothes | 1500 |
 | | food | 900 |
 | | shoes | 1000 |
 +-------------+--+

3 rows returned

In the above example, a multi-key index is created on all the area codes in the
Persons table, mapping each area code to the persons that have a phone number with

Chapter 6
Multi-Key Indexes

6-6

that area code. The query is looking for persons who have a phone number with area
code 339. The index is applicable to the query and so the key 339 will be searched for
in the index and all the associated table rows will be retrieved.

sql-> create index idx_expenses on
Persons (expenses.keys(), expenses.values());
Statement completed successfully
sql-> SELECT * FROM Persons p WHERE p.expenses.food > 1000;

 > Row 0
 +-------------+--+
 | id | 2 |
 +-------------+--+
 | firstname | John |
 +-------------+--+
 | lastname | Anderson |
 +-------------+--+
 | age | 35 |
 +-------------+--+
 | income | 100000 |
 +-------------+--+
 | lastLogin | 2016-11-28T13:01:11.2088 |
 +-------------+--+
 | address | street | 187 Hill Street |
 | | city | Beloit |
 | | state | WI |
 | | zipcode | 53511 |
 | | phones |
 | | type | home |
 | | areacode | 339 |
 | | number | 1684972 |
 +-------------+--+
 | connections | 1 |
 | | 3 |
 +-------------+--+
 | expenses | books | 100 |
 | | food | 1700 |
 | | travel | 2100 |
 +-------------+--+

 > Row 1
 +-------------+--+
 | id | 3 |
 +-------------+--+
 | firstname | John |
 +-------------+--+
 | lastname | Morgan |
 +-------------+--+
 | age | 38 |
 +-------------+--+
 | income | 100000000 |
 +-------------+--+
 | lastLogin | 2016-11-29T08:21:35.4971 |
 +-------------+--+
 | address | street | 187 Aspen Drive |

Chapter 6
Multi-Key Indexes

6-7

	city	Middleburg
	state	FL
	zipcode	NULL
	phones	
	type	work
	areacode	305
	number	1234079
	type	home
	areacode	305
	number	2066401
+-------------+--+		
connections	1	
	4	
	2	
+-------------+--+		
expenses	food	2000
	gas	10
	travel	700
 +-------------+--+

> Row 2
 +-------------+--+
 | id | 4 |
 +-------------+--+
 | firstname | Peter |
 +-------------+--+
 | lastname | Smith |
 +-------------+--+
 | age | 38 |
 +-------------+--+
 | income | 80000 |
 +-------------+--+
 | lastLogin | 2016-10-19T09:18:05.5555 |
 +-------------+--+
 | address | street | 364 Mulberry Street |
 | | city | Leominster |
 | | state | MA |
 | | zipcode | NULL |
 | | phones |
 | | type | work |
 | | areacode | 339 |
 | | number | 4120211 |
 | | |
 | | type | work |
 | | areacode | 339 |
 | | number | 8694021 |
 | | |
 | | type | home |
 | | areacode | 339 |
 | | number | 1205678 |
 | | |
 | | type | home |
 | | areacode | 305 |
 | | number | 8064321 |

Chapter 6
Multi-Key Indexes

6-8

 +-------------+--+
connections	3
	5
	1
	2
+-------------+--+	
expenses	books
	clothes
	food
	shoes
 +-------------+--+

3 rows returned

In the above example, a multi-key index is created on all the expenses entries in the
Persons table, mapping each category C and each amount A associated with that
category to the persons that have an entry (C, A) in their expenses map. The query is
looking for persons who spent more than 1000 on food. The index is applicable to the
query and so only the index entries whose first field (the map key) is equal to "food"
and second key (the amount) is greater than 1000 will be scanned and the associated
rows retrieved.

Indexing JSON Data
An index is a JSON index if it indexes at least one field that is contained inside JSON
data.

Because JSON is schema-less, it is possible for JSON data to differ in type across
table rows. However, when indexing JSON data, the data type must be consistent
across table rows or the index creation will fail. Further, once one or more JSON
indexes have been created, any attempt to write data of an incorrect type will fail.

With the exception of the previous restriction, indexing JSON data and working with
JSON indexes behaves in much the same way as indexing non-JSON data. To create
the index, specify a path to the JSON field using dot notation. You must also specify
the data's type, using the AS keyword.

The following examples are built on the examples shown in Working with JSON.

sql-> create index idx_json_income on JSONPersons (person.income
as integer);
Statement completed successfully
sql-> create index idx_json_age on JSONPersons (person.age as integer);
Statement completed successfully
sql->

You can then run a query in the normal way, and the index idx_json_income will be
automatically used. But as shown at the beginning of this chapter (Basic Indexing), the
query processor will not know which index to use. To require the use of a particular
index provide an index hint as normal:

sql-> SELECT /*+ FORCE_INDEX(JSONPersons idx_json_income) */ *
from JSONPersons j WHERE j.person.income > 10000000 and
j.person.age < 40;

Chapter 6
Indexing JSON Data

6-9

 > Row 0
 +-----------+---+
 | id | 3 |
 +-----------+---+
 | person | address | |
 | | city | Middleburg |
 | | phones |
 | | areacode | 305 |
 | | number | 1234079 |
 | | type | work |
 | | |
 | | areacode | 305 |
 | | number | 2066401 |
 | | type | home |
 | | state | FL |
 | | street | 187 Aspen Drive |
 | | age | 38 |
 | | connections |
 | | 1 |
 | | 4 |
 | | 2 |
 | | expenses |
 | | food | 2000 |
 | | gas | 10 |
 | | travel | 700 |
 | | firstname | John |
 | | income | 100000000 |
 | | lastLogin | 2016-11-29T08:21:35.4971 |
 | | lastname | Morgan |
 +-----------+---+

1 row returned
sql->

Finally, when creating a multi-key index on a JSON map, a type must not be given for
the .keys() expression. This is because the type will always be String. However, a
type declaration is required for the .values() expression:

sql-> create index idx_json_expenses on JSONPersons
(person.expenses.keys(), person.expenses.values() as integer);
Statement completed successfully
sql-> SELECT * FROM JSONPersons j WHERE j.person.expenses.food > 1000;

 > Row 0
 +-----------+---+
 | id | 2 |
 +-----------+---+
 | person | address | |
 | | city | Beloit |
 | | phones |
 | | areacode | 339 |
 | | number | 1684972 |
 | | type | home |

Chapter 6
Indexing JSON Data

6-10

	state	WI
	street	187 Hill Street
	zipcode	53511
	age	35
	connections	
	1	
	3	
	expenses	
	books	100
	food	1700
	travel	2100
	firstname	John
	income	100000
	lastLogin	2016-11-28T13:01:11.2088
	lastname	Anderson
 +-----------+---+

 > Row 1
 +-----------+---+
 | id | 3 |
 +-----------+---+
 | person | address | |
 | | city | Middleburg |
 | | phones |
 | | areacode | 305 |
 | | number | 1234079 |
 | | type | work |
 | | |
 | | areacode | 305 |
 | | number | 2066401 |
 | | type | home |
 | | state | FL |
 | | street | 187 Aspen Drive |
 | | age | 38 |
 | | connections |
 | | 1 |
 | | 4 |
 | | 2 |
 | | expenses |
 | | food | 2000 |
 | | gas | 10 |
 | | travel | 700 |
 | | firstname | John |
 | | income | 100000000 |
 | | lastLogin | 2016-11-29T08:21:35.4971 |
 | | lastname | Morgan |
 +-----------+---+

 > Row 2
 +-----------+---+
 | id | 4 |
 +-----------+---+
 | person | address | |
 | | city | Leominster |
 | | phones |

Chapter 6
Indexing JSON Data

6-11

	areacode	339
	number	4120211
	type	work
	areacode	339
	number	8694021
	type	work
	areacode	339
	number	1205678
	type	home
	null	
	areacode	305
	number	8064321
	type	home
	state	MA
	street	364 Mulberry Street
	age	38
	connections	
	3	
	5	
	1	
	2	
	expenses	
	books	240
	clothes	2000
	food	6000
	shoes	1200
	firstname	Peter
	income	80000
	lastLogin	2016-10-19T09:18:05.5555
	lastname	Smith
 +-----------+---+

3 rows returned
sql->

Be aware that all the other constraints that apply to a non-JSON multi-keyed index
also apply to a JSON multi-keyed index.

Chapter 6
Indexing JSON Data

6-12

7
Working with Table Rows

This chapter provides examples on how to insert and update table rows using SQL for
Oracle NoSQL Database INSERT and UPDATE statements.

Adding Table Rows using INSERT and UPSERT
This topic provides examples on how to add table rows using the SQL for Oracle
NoSQL Database INSERT and UPSERT statements.

You use the INSERT statement to insert or update a single row in an existing table.

Examples:

If you executed the SQLBasicExamples Script, you should already have created the
table named Users. The table had this definition:

CREATE TABLE Users
(
 id integer,
 firstname string,
 lastname string,
 age integer,
 income integer,
 primary key (id)
);
sql-> describe table Users;
 === Information ===
 +-------+-----+-------+----------+----------+--------+----------
+---------+-------------+
 | name | ttl | owner | sysTable | r2compat | parent | children |
indexes | description |
 +-------+-----+-------+----------+----------+--------+----------
+---------+-------------+
 | Users | | | N | N | |
| | |
 +-------+-----+-------+----------+----------+--------+----------
+---------+-------------+

 === Fields ===
 +----+-----------+---------+----------+-----------+----------
+------------+----------+
 | id | name | type | nullable | default | shardKey |
primaryKey | identity |
 +----+-----------+---------+----------+-----------+----------
+------------+----------+
 | 1 | id | Integer | N | NullValue | Y |
Y | |
 +----+-----------+---------+----------+-----------+----------

7-1

+------------+----------+
 | 2 | firstname | String | Y | NullValue |
| | |
 +----+-----------+---------+----------+-----------+----------
+------------+----------+
 | 3 | lastname | String | Y | NullValue |
| | |
 +----+-----------+---------+----------+-----------+----------
+------------+----------+
 | 4 | age | Integer | Y | NullValue |
| | |
 +----+-----------+---------+----------+-----------+----------
+------------+----------+
 | 5 | income | Integer | Y | NullValue |
| | |
 +----+-----------+---------+----------+-----------+----------
+------------+----------+

To insert a new row into the Users table, use the INSERT statement as follows.
Because you are adding values to all table columns, you do not need to specify
column names explicitly:

sql-> INSERT INTO Users VALUES (10, "John", "Smith", 22, 45000);
{"NumRowsInserted":1}
1 row returned
sql-> select * from Users;
{"id":10,"firstname":"John","lastname":"Smith","age":22,"income":45000}

To insert data into some, but not all, table columns, specify the column names
explicitly in the INSERT statement. Any columns that you do not specify are assigned
either NULL or the default value supplied when you created the table:

sql-> INSERT INTO Users (id, firstname, income)
VALUES (11, "Mary", 5000);
{"NumRowsInserted":1}
1 row returned

sql-> select * from Users;
{"id":11,"firstname":"Mary","lastname":null,"age":null,"income":5000}
{"id":10,"firstname":"John","lastname":"Smith","age":22,"income":45000}
2 rows returned

Using the UPSERT Statement

The word UPSERT combines UPDATE and INSERT, describing it statement's function. Use
an UPSERT statement to insert a row where it does not exist, or to update the row with
new values when it does.

For example, if you already inserted a new row as described in the previous section,
executing the next statement updates user John’s age to 27, and income to 60,000.

Chapter 7
Adding Table Rows using INSERT and UPSERT

7-2

If you did not execute the previous INSERT statement, the UPSERT statement inserts a
new row with user id 10 to the Users table.

sql-> UPSERT INTO Users VALUES (10, "John", "Smith", 27, 60000);
{"NumRowsInserted":0}
1 row returned
sql-> UPSERT INTO Users VALUES (11, "Mary", "Brown", 28, 70000);
{"NumRowsInserted":0}
1 row returned

sql-> select * from Users;
{"id":10,"firstname":"John","lastname":"Smith","age":22,"income":60000}
{"id":11,"firstname":"Mary","lastname":"Brown","age":28,"income":70000}
2 rows returned

Using an IDENTITY Column

You can use IDENTITY columns to automatically generate values for a table column
each time you insert a new table row. See Identity Column in the SQL Reference
Guide.

Here are a few examples for how to use the INSERT statements for both flavors of an
IDENTITY column:

• GENERATED ALWAYS AS IDENTITY

• GENERATED BY DEFAULT [ON NULL] AS IDENTITY

Create a table named Employee_test using one column, DeptId, as GENERATED
ALWAYS AS IDENTITY. This IDENTITY column is not the primary key. Insert a few
rows into the table.

sql-> CREATE TABLE EmployeeTest
(
 Empl_id INTEGER,
 Name STRING,
 DeptId INTEGER GENERATED ALWAYS AS IDENTITY (CACHE 1),
 PRIMARY KEY(Empl_id)
);

INSERT INTO Employee_test VALUES (148, 'Sally', DEFAULT);
INSERT INTO Employee_test VALUES (250, 'Joe', DEFAULT);
INSERT INTO Employee_test VALUES (346, 'Dave', DEFAULT);

The INSERT statement inserts the following rows with the system generates values 1,
2, and 3 for the IDENTITY column DeptId.

Empl_id Name DeptId

148 Sally 1

250 Joe 2

346 Dave 3

You cannot specify a value for the DeptId IDENTITY column when inserting a row to
the Employee_test table, because you defined that column as GENERATED ALWAYS AS

Chapter 7
Adding Table Rows using INSERT and UPSERT

7-3

IDENTITY. Specifying DEFAULT as the column value, the system generates the next
IDENTITY value. Conversely, trying to execute the following SQL statement causes an
exception, because you supply a value (200) for the DeptId column.

sql-> INSERT INTO Employee_test VALUES (566, 'Jane', 200);

If you create the column as GENERATED BY DEFAULT AS IDENTITY for the
Employee_test table, the system generates a value only if you fail to supply one. For
example, if you define the Employee_test table as follows, then execute the INSERT
statement as above, the statement inserts the value 200 for the employee’s DeptId
column.

CREATE Table Employee_test
(
 Empl_id INTEGER,
 Name STRING,
 DeptId INTEGER GENERATED BY DEFAULT AS IDENTITY (CACHE 1),
 PRIMARY KEY(Empl_id)
);

Modifying Table Rows using UPDATE Statements
This topic provides examples of how to update table rows using SQL for Oracle
NoSQL Database UPDATE statements. These are an efficient way to update table
row data, because UPDATE statements make server-side updates directly, without
requiring a Read/Modify/Write update cycle.

Note:

You can use UPDATE statements to update only an existing row. You cannot
use UPDATE to either create new rows, or delete existing rows. An UPDATE
statement can modify only a single row at a time.

Example Data
This chapter's examples uses the data loaded by the SQLJSONExamples script, which
can be found in the Examples download package. For details on using this script,
the sample data it loads, and the Examples download, see See SQLJSONExamples
Script.

Changing Field Values
In the simplest case, you can change the value of a field using the Update Statement
SET clause. The JSON example data set has a row which contains just an array and
an integer. This is row ID 6:

sql-> mode column
Query output mode is COLUMN
sql-> SELECT * from JSONPersons j WHERE j.id = 6;

Chapter 7
Modifying Table Rows using UPDATE Statements

7-4

 +----+-------------------+
 | id | person |
 +----+-------------------+
6	myarray	
	1	
	2	
	3	
	4	
	mynumber	5
 +----+-------------------+

1 row returned

You can change the value of mynumber in that row using the following statement:

sql-> UPDATE JSONPersons j
 SET j.person.mynumber = 100
 WHERE j.id = 6;
 +----------+
 | Column_1 |
 +----------+
 | 1 |
 +----------+

1 row returned
sql-> SELECT * from JSONPersons j WHERE j.id = 6;
 +----+-------------------+
 | id | person |
 +----+-------------------+
6	myarray	
	1	
	2	
	3	
	4	
	mynumber	100
 +----+-------------------+

1 row returned

In the previous example, the results returned by the Update statement was not very
informative, so we were required to reissue the Select statement in order to view
the results of the update. You can avoid that by using a RETURNING clause. This
functions exactly like a Select statement:

sql-> UPDATE JSONPersons j
 SET j.person.mynumber = 200
 WHERE j.id = 6
 RETURNING *;
 +----+-------------------+
 | id | person |
 +----+-------------------+
6	myarray
	1
	2

Chapter 7
Modifying Table Rows using UPDATE Statements

7-5

	3	
	4	
	mynumber	200
 +----+-------------------+

1 row returned
sql->

You can further limit and customize the displayed results in the same way that you can
do so using a SELECT statement:

sql-> UPDATE JSONPersons j
 SET j.person.mynumber = 300
 WHERE j.id = 6
 RETURNING id, j.person.mynumber AS MyNumber;
 +----+---------------------+
 | id | MyNumber |
 +----+---------------------+
 | 6 | 300 |
 +----+---------------------+

1 row returned
sql->

It is normally possible to update the value of a non-JSON field using the SET clause.
However, you cannot change a field if it is a primary key. For example:

sql-> UPDATE JSONPersons j
 SET j.id = 1000
 WHERE j.id = 6
 RETURNING *;
Error handling command UPDATE JSONPersons j
SET j.id = 1000
WHERE j.id = 6
RETURNING *: Error: at (2, 4) Cannot update a primary key column
Usage:

Unknown statement

sql->

Modifying Array Values
You use the Update statement ADD clause to add elements into an array. You use a
SET clause to change the value of an existing array element. And you use a REMOVE
clause to remove elements from an array.

Adding Elements to an Array
The ADD clause requires you to identify the array position that you want to operate on,
followed by the value you want to set to that position in the array. If the index value

Chapter 7
Modifying Table Rows using UPDATE Statements

7-6

that you set is 0 or a negative number, the value that you specify is inserted at the
beginning of the array.

If you do not provide an index position, the array value that you specify is appended to
the end of the array.

sql-> SELECT * from JSONPersons j WHERE j.id = 6;
 +----+-------------------+
 | id | person |
 +----+-------------------+
6	myarray	
	1	
	2	
	3	
	4	
	mynumber	300
 +----+-------------------+

1 row returned
sql-> UPDATE JSONPersons j
 ADD j.person.myarray 0 50,
 ADD j.person.myarray 100
 WHERE j.id = 6
 RETURNING *;
 +----+-------------------+
 | id | person |
 +----+-------------------+
6	myarray	
	50	
	1	
	2	
	3	
	4	
	100	
	mynumber	300
 +----+-------------------+

1 row returned
sql->

Notice that multiple ADD clauses are used in the query above.

Array values get appended to the end of the array, even if you provide an array
position that is larger than the size of the array. You can either provide an arbitrarily
large number, or make use of the size() function:

sql-> UPDATE JSONPersons j
 ADD j.person.myarray (size(j.person.myarray) + 1) 400
 WHERE j.id = 6
 RETURNING *;
 +----+-------------------+
 | id | person |
 +----+-------------------+
 | 6 | myarray |
 | | 50 |

Chapter 7
Modifying Table Rows using UPDATE Statements

7-7

	1	
	2	
	3	
	4	
	100	
	400	
	mynumber	300
 +----+-------------------+

1 row returned
sql->

You can append values to the array using the built-in seq_concat() function:

sql-> UPDATE JSONPersons j
 ADD j.person.myarray seq_concat(66, 77, 88)
 WHERE j.id = 6
 RETURNING *;
 +----+-------------------+
 | id | person |
 +----+-------------------+
6	myarray	
	50	
	1	
	2	
	3	
	4	
	100	
	400	
	66	
	77	
	88	
	mynumber	300
 +----+-------------------+

1 row returned
sql->

If you provide an array position that is between 0 and the array's size, then the value
you specify will be inserted into the array before the specified position. To determine
the correct position, start counting from 0:

UPDATE JSONPersons j
 ADD j.person.myarray 3 250
 WHERE j.id = 6
 RETURNING *;
 +----+-------------------+
 | id | person |
 +----+-------------------+
6	myarray
	50
	1
	2
	250

Chapter 7
Modifying Table Rows using UPDATE Statements

7-8

	3	
	4	
	100	
	400	
	66	
	77	
	88	
	mynumber	300
 +----+-------------------+

1 row returned
sql->

Changing an Existing Element in an Array
To change an existing value in an array, use the SET clause and identify the value's
position using []. To determine the value's position, start counting from 0:

sql-> UPDATE JSONPersons j
 SET j.person.myarray[3] = 1000
 WHERE j.id = 6
 RETURNING *;
 +----+-------------------+
 | id | person |
 +----+-------------------+
6	myarray	
	50	
	1	
	2	
	1000	
	3	
	4	
	100	
	400	
	66	
	77	
	88	
	mynumber	300
 +----+-------------------+

1 row returned
sql->

Removing Elements from Arrays
To remove an existing element from an array, use the REMOVE clause. To do this,
you must identify the position of the element in the array that you want to remove. To
determine the value's position, start counting from 0:

sql-> UPDATE JSONPersons j
 REMOVE j.person.myarray[3]
 WHERE j.id = 6
 RETURNING *;

Chapter 7
Modifying Table Rows using UPDATE Statements

7-9

 +----+-------------------+
 | id | person |
 +----+-------------------+
6	myarray	
	50	
	1	
	2	
	3	
	4	
	100	
	400	
	66	
	77	
	88	
	mynumber	300
 +----+-------------------+

1 row returned
sql->

It is possible for the array position to be identified by an expression. For example, in
our sample data, some records include an array of phone numbers, and some of those
phone numbers include a work number:

sql-> SELECT * FROM JSONPersons j WHERE j.id = 3;
 +----+---+
 | id | person |
 +----+---+
3	address	
	city	Middleburg
	phones	
	areacode	305
	number	1234079
	type	work
	areacode	305
	number	2066401
	type	home
	state	FL
	street	187 Aspen Drive
	age	38
	connections	
	1	
	4	
	2	
	expenses	
	food	2000
	gas	10
	travel	700
	firstname	John
	income	100000000
	lastLogin	2016-11-29T08:21:35.4971
	lastname	Morgan
 +----+---+

Chapter 7
Modifying Table Rows using UPDATE Statements

7-10

1 row returned
sql->

We can remove the work number from the array in one of two ways. First, we can
directly specify its position in the array (position 0), but that only removes a single
element at a time. If we want to remove all the work numbers, we can do it by using
the $element variable. To illustrate, we first add another work number to the array:

sql-> UPDATE JSONPersons j
 ADD j.person.address.phones 0
 {"type":"work", "areacode":415, "number":9998877}
 WHERE j.id = 3
 RETURNING *;
 +----+---+
 | id | person |
 +----+---+
3	address	
	city	Middleburg
	phones	
	areacode	415
	number	9998877
	type	work
	areacode	305
	number	1234079
	type	work
	areacode	305
	number	2066401
	type	home
	state	FL
	street	187 Aspen Drive
	age	38
	connections	
	1	
	4	
	2	
	expenses	
	food	2000
	gas	10
	travel	700
	firstname	John
	income	100000000
	lastLogin	2016-11-29T08:21:35.4971
	lastname	Morgan
 +----+---+

1 row returned
sql->

Chapter 7
Modifying Table Rows using UPDATE Statements

7-11

Now we can remove all the work numbers as follows:

sql-> UPDATE JSONPersons j
 REMOVE j.person.address.phones[$element.type = "work"]
 WHERE j.id = 3
 RETURNING *;
 +----+---+
 | id | person |
 +----+---+
3	address	
	city	Middleburg
	phones	
	areacode	305
	number	2066401
	type	home
	state	FL
	street	187 Aspen Drive
	age	38
	connections	
	1	
	4	
	2	
	expenses	
	food	2000
	gas	10
	travel	700
	firstname	John
	income	100000000
	lastLogin	2016-11-29T08:21:35.4971
	lastname	Morgan
 +----+---+

1 row returned
sql->

Modifying Map Values
To write a new field to a map, use the PUT clause. You can also use the PUT clause to
change an existing map value. To remove a map field, use the REMOVE clause.

For example, consider the following two rows from our sample data:

sql-> SELECT * FROM JSONPersons j WHERE j.id = 6 OR j.id = 3;
 +----+---+
 | id | person |
 +----+---+
3	address	
	city	Middleburg
	phones	
	areacode	305
	number	2066401
	type	home
	state	FL
	street	187 Aspen Drive

Chapter 7
Modifying Table Rows using UPDATE Statements

7-12

	age	38
	connections	
	1	
	4	
	2	
	expenses	
	food	2000
	gas	10
	travel	700
	firstname	John
	income	100000000
	lastLogin	2016-11-29T08:21:35.4971
	lastname	Morgan
+----+---+		
6	myarray	
	50	
	1	
	2	
	3	
	4	
	100	
	400	
	66	
	77	
	88	
	mynumber	300
 +----+---+

 2 rows returned
 sql->

These two rows look nothing alike. Row 3 contains information about a person, while
row 6 contains, essentially, random data. This is possible because the person column
is of type JSON, which is not strongly typed. But because we interact with JSON
columns as if they are maps, we can fix row 6 by modifying it as a map.

Removing Elements from a Map
To begin, we remove the two existing elements from row six (myarray and mynumber).
We do this with a single UPDATE statement, which allows us to execute multiple
update clauses so long as they are comma-separated:

sql-> UPDATE JSONPersons j
 REMOVE j.person.myarray,
 REMOVE j.person.mynumber
 WHERE j.id = 6
 RETURNING *;
 +----+-----------------+
 | id | person |
 +----+-----------------+
 | 6 | |
 +----+-----------------+

Chapter 7
Modifying Table Rows using UPDATE Statements

7-13

1 row returned
sql->

Adding Elements to a Map
Next, we add person data to this table row. We could do this with a single UPDATE
statement by specifying the entire map with a single PUT clause, but for illustration
purposes we do this in multiple steps.

To begin, we specify the person's name. Here, we use a single PUT clause that
specifies a map with multiple elements:

sql-> UPDATE JSONPersons j
 PUT j.person {"firstname" : "Wendy",
 "lastname" : "Purvis"}
 WHERE j.id = 6
 RETURNING *;
 +----+--------------------+
 | id | person |
 +----+--------------------+
 | 6 | firstname | Wendy |
 | | lastname | Purvis |
 +----+--------------------+

1 row returned
sql->

Next, we specify the age, connections, expenses, income, and lastLogin fields using
multiple PUT clauses on a single UPDATE statement:

sql-> UPDATE JSONPersons j
 PUT j.person {"age" : 43},
 PUT j.person {"connections" : [2,3]},
 PUT j.person {"expenses" : {"food" : 1100,
 "books" : 210,
 "travel" : 50}},
 PUT j.person {"income" : 80000},
 PUT j.person {"lastLogin" : "2017-06-29T16:12:35.0285"}
 WHERE j.id = 6
 RETURNING *;
 +----+--+
 | id | person |
 +----+--+
6	age	43
	connections	
	2	
	3	
	expenses	
	books	210
	food	1100
	travel	50
	firstname	Wendy
	income	80000
	lastLogin	2017-06-29T16:12:35.0285

Chapter 7
Modifying Table Rows using UPDATE Statements

7-14

 | | lastname | Purvis |
 +----+--+

1 row returned
sql->

We still need an address. Again, we could do this with a single PUT clause, but for
illustration purposes we will use multiple clauses. Our first PUT creates the address
element, which uses a map as a value. Our second PUT adds elements to the
address map:

sql-> UPDATE JSONPersons j
 PUT j.person {"address" : {"street" : "479 South Way Dr"}},
 PUT j.person.address {"city" : "St. Petersburg",
 "state" : "FL"}
 WHERE j.id = 6
 RETURNING *;
 +----+--+
 | id | person |
 +----+--+
6	address	
	city	St. Petersburg
	state	FL
	street	479 South Way Dr
	age	43
	connections	
	2	
	3	
	expenses	
	books	210
	food	1100
	travel	50
	firstname	Wendy
	income	80000
	lastLogin	2017-06-29T16:12:35.0285
	lastname	Purvis
 +----+--+

1 row returned
sql->

Finally, we provide phone numbers for this person. These are specified as an array of
maps:

sql-> UPDATE JSONPersons j
 PUT j.person.address {"phones" :
 [{"type":"work", "areacode":727, "number":8284321},
 {"type":"home", "areacode":727, "number":5710076},
 {"type":"mobile", "areacode":727, "number":8913080}
]
 }
 WHERE j.id = 6
 RETURNING *;
 +----+---+

Chapter 7
Modifying Table Rows using UPDATE Statements

7-15

 | id | person |
 +----+---+
6	address	
	city	St. Petersburg
	phones	
	areacode	727
	number	8284321
	type	work
	areacode	727
	number	5710076
	type	home
	areacode	727
	number	8913080
	type	mobile
	state	FL
	street	479 South Way Dr
	age	43
	connections	
	2	
	3	
	expenses	
	books	210
	food	1100
	travel	50
	firstname	Wendy
	income	80000
	lastLogin	2017-06-29T16:12:35.0285
	lastname	Purvis
 +----+---+

1 row returned
sql->

Updating Existing Map Elements
To update an existing element in a map, you can use the PUT clause in exactly the
same way as you add a new element to map. For example, to update the lastLogin
time:

sql-> UPDATE JSONPersons j
 PUT j.person {"lastLogin" : "2017-06-29T20:36:04.9661"}
 WHERE j.id = 6
 RETURNING *;
 +----+---+
 | id | person |
 +----+---+
6	address	
	city	St. Petersburg
	phones	
	areacode	727
	number	8284321
	type	work

Chapter 7
Modifying Table Rows using UPDATE Statements

7-16

	areacode	727
	number	5710076
	type	home
	areacode	727
	number	8913080
	type	mobile
	state	FL
	street	479 South Way Dr
	age	43
	connections	
	2	
	3	
	expenses	
	books	210
	food	1100
	travel	50
	firstname	Wendy
	income	80000
	lastLogin	2017-06-29T20:36:04.9661
	lastname	Purvis
 +----+---+

1 row returned
sql->

Alternatively, use a SET clause:

sql-> UPDATE JSONPersons j
 SET j.person.lastLogin = "2017-06-29T20:38:56.2751"
 WHERE j.id = 6
 RETURNING *;
 +----+---+
 | id | person |
 +----+---+
6	address	
	city	St. Petersburg
	phones	
	areacode	727
	number	8284321
	type	work
	areacode	727
	number	5710076
	type	home
	areacode	727
	number	8913080
	type	mobile
	state	FL
	street	479 South Way Dr
	age	43
	connections	

Chapter 7
Modifying Table Rows using UPDATE Statements

7-17

	2	
	3	
	expenses	
	books	210
	food	1100
	travel	50
	firstname	Wendy
	income	80000
	lastLogin	2017-06-29T20:38:56.2751
	lastname	Purvis
 +----+---+

1 row returned
sql->

If you want to set the timestamp to the current time, use the current_time() built-in
function.

sql-> UPDATE JSONPersons j
 SET j.person.lastLogin = cast(current_time() AS String)
 WHERE j.id = 6
 RETURNING *;
 +----+--+
 | id | person |
 +----+--+
6	address	
	city	St. Petersburg
	phones	
	areacode	727
	number	8284321
	type	work
	areacode	727
	number	5710076
	type	home
	areacode	727
	number	8913080
	type	mobile
	state	FL
	street	479 South Way Dr
	age	43
	connections	
	2	
	3	
	expenses	
	books	210
	food	1100
	travel	50
	firstname	Wendy
	income	80000
	lastLogin	2017-06-29T04:40:15.917
	lastname	Purvis
 +----+--+

Chapter 7
Modifying Table Rows using UPDATE Statements

7-18

1 row returned
sql->

If an element in the map is an array, you can modify it in the same way as you would
any array. For example:

sql-> UPDATE JSONPersons j
 ADD j.person.connections seq_concat(1, 4)
 WHERE j.id = 6
 RETURNING *;
 +----+---+
 | id | person |
 +----+---+
6	address	
	city	St. Petersburg
	phones	
	areacode	727
	number	8284321
	type	work
	areacode	727
	number	5710076
	type	home
	areacode	727
	number	8913080
	type	mobile
	state	FL
	street	479 South Way Dr
	age	43
	connections	
	2	
	3	
	1	
	4	
	expenses	
	books	210
	food	1100
	travel	50
	firstname	Wendy
	income	80000
	lastLogin	2017-06-29T04:40:15.917
	lastname	Purvis
 +----+---+

1 row returned

If you are unsure of an element being an array or a map, you can use both ADD and
PUT within the same UPDATE statement. For example:

sql-> UPDATE JSONPersons j
 ADD j.person.connections seq_concat(5, 7),
 PUT j.person.connections seq_concat(5, 7)

Chapter 7
Modifying Table Rows using UPDATE Statements

7-19

 WHERE j.id = 6
 RETURNING *;
 +----+---+
 | id | person |
 +----+---+
6	address	
	city	St. Petersburg
	phones	
	areacode	727
	number	8284321
	type	work
	areacode	727
	number	5710076
	type	home
	areacode	727
	number	8913080
	type	mobile
	state	FL
	street	479 South Way Dr
	age	43
	connections	
	2	
	3	
	1	
	4	
	5	
	7	
	expenses	
	books	210
	food	1100
	travel	50
	firstname	Wendy
	income	80000
	lastLogin	2017-06-29T04:40:15.917
	lastname	Purvis
 +----+---+

1 row returned

If the element is an array, the ADD gets applied and the PUT is a noop. If it is a map,
then the PUT gets applied and ADD is a noop. In this example, since the element is an
array, the ADD gets applied.

Managing Time to Live Values
Time to Live (TTL) values indicate how long data can exist in a table before it expires.
Expired data can no longer be returned as part of a query.

Default TTL values can be set on either a table-level or a row level when the table is
first defined. Using UPDATE statements, you can change the TTL value for a single
row.

Chapter 7
Modifying Table Rows using UPDATE Statements

7-20

You can see a row's TTL value using the remaining_hours(), remaining_days() or
expiration_time() built-in functions. These TTL functions require a row as input. We
accomplish this by using the $ as part of the table alias. This causes the table alias to
function as a row variable.

sql-> SELECT remaining_days($j) AS Expires
 FROM JSONPersons $j WHERE id = 6;
 +---------+
 | Expires |
 +---------+
 | -1 |
 +---------+

1 row returned
sql->

The previous query returns -1. This means that the row has no expiration time. We
can specify an expiration time for the row by using an UPDATE statement with a
set TTL clause. This clause computes a new TTL by specifying an offset from the
current expiration time. If the row never expires, then the current expiration time is
1970-01-01T00:00:00.000. The value you provide to set TTL must specify units of
either HOURS or DAYS.

sql-> UPDATE JSONPersons $j
 SET TTL 1 DAYS
 WHERE id = 6
 RETURNING remaining_days($j) AS Expires;
 +---------+
 | Expires |
 +---------+
 | 1 |
 +---------+

1 row returned
sql->

To see the new expiration time, we can use the built-in expiration_time() function.
Because we specified an expiration time based on a day boundary, the row expires at
midnight of the following day (expiration rounds up):

sql-> SELECT current_time() AS Now,
 expiration_time($j) AS Expires
 FROM JSONPersons $j WHERE id = 6;
 +-------------------------+-------------------------+
 | Now | Expires |
 +-------------------------+-------------------------+
 | 2017-07-03T21:56:47.778 | 2017-07-05T00:00:00.000 |
 +-------------------------+-------------------------+

1 row returned
sql->

Chapter 7
Modifying Table Rows using UPDATE Statements

7-21

To turn off the TTL so that the row will never expire, specify a negative value, using
either HOURS or DAYS as the unit:

sql-> UPDATE JSONPersons $j
 SET TTL -1 DAYS
 WHERE id = 6
 RETURNING remaining_days($j) AS Expires;
 +---------+
 | Expires |
 +---------+
 | 0 |
 +---------+

1 row returned
sql->

Notice that the RETURNING clause provides a value of 0 days. This indicates that
the row will never expire. Further, if we look at the remaining_days() using a SELECT
statement, we will once again see a negative value, indicating that the row never
expires:

sql-> SELECT remaining_days($j) AS Expires
 FROM JSONPersons $j WHERE id = 6;
 +---------+
 | Expires |
 +---------+
 | -1 |
 +---------+

1 row returned
sql->

Avoiding the Read-Modify-Write Cycle
An important aspect of UPDATE Statements is that you do not have to read a value in
order to update it. Instead, you can blindly modify a value directly in the store without
ever retrieving (reading) it. To do this, you refer to the value you want to modify using
the $ variable.

For example, we have a row in JSONPersons that looks like this:

sql-> SELECT * FROM JSONPersons WHERE id=6;
 +----+--+
 | id | person |
 +----+--+
6	address	
	city	St. Petersburg
	phones	
	areacode	727
	number	8284321
	type	work
	areacode	727

Chapter 7
Modifying Table Rows using UPDATE Statements

7-22

	number	5710076
	type	home
	areacode	727
	number	8913080
	type	mobile
	state	FL
	street	479 South Way Dr
	age	43
	connections	
	2	
	3	
	1	
	4	
	expenses	
	books	210
	food	1100
	travel	50
	firstname	Wendy
	income	80000
	lastLogin	2017-07-25T22:50:06.482
	lastname	Purvis
 +----+--+

1 row returned

We can blindly update the value of the person.expenses.books field by referencing $.
In the following statement, no read is performed on the store. Instead, the write
operation is performed directly at the store.

sql-> UPDATE JSONPersons j
 -> SET j.person.expenses.books = $ + 100
 -> WHERE id = 6;
 +----------------+
 | NumRowsUpdated |
 +----------------+
 | 1 |
 +----------------+

1 row returned

To see that the books expenses value has indeed been incremented by 100, we
perform a second SELECT statement.

sql-> SELECT * FROM JSONPersons WHERE id=6;
 +----+--+
 | id | person |
 +----+--+
6	address	
	city	St. Petersburg
	phones	
	areacode	727
	number	8284321
	type	work

Chapter 7
Modifying Table Rows using UPDATE Statements

7-23

	areacode	727
	number	5710076
	type	home
	areacode	727
	number	8913080
	type	mobile
	state	FL
	street	479 South Way Dr
	age	43
	connections	
	2	
	3	
	1	
	4	
	expenses	
	books	310
	food	1100
	travel	50
	firstname	Wendy
	income	80000
	lastLogin	2017-07-25T22:50:06.482
	lastname	Purvis
 +----+--+

1 row returned

Chapter 7
Modifying Table Rows using UPDATE Statements

7-24

A
Introduction to the SQL for Oracle NoSQL
Database Shell

This appendix describes how to configure, start and use the SQL for Oracle NoSQL
Database shell to execute SQL statements. This section also describes the available
shell commands.

You can directly execute DDL, DML, user management, security, and informational
statements using the SQL shell.

Running the SQL Shell
You can run the SQL shell interactively or use it to run single commands. Here is the
general usage to start the shell:

java -jar KVHOME/lib/sql.jar
 -helper-hosts <host:port[,host:port]*> -store <storeName>
 [-username <user>] [-security <security-file-path>]
 [-timeout <timeout ms>]
 [-consistency <NONE_REQUIRED(default) |
 ABSOLUTE | NONE_REQUIRED_NO_MASTER>]
 [-durability <COMMIT_SYNC(default) |
 COMMIT_NO_SYNC | COMMIT_WRITE_NO_SYNC>]
 [single command and arguments]

where:

• -consistency

Configures the read consistency used for this session.

• -durability

Configures the write durability used for this session.

• -helper-hosts

Specifies a comma-separated list of hosts and ports.

• -store

Specifies the name of the store.

• -timeout

Configures the request timeout used for this session.

• -username

Specifies the username to login as.

A-1

For example, you can start the shell like this:

java -jar KVHOME/lib/sql.jar
-helper-hosts node01:5000 -store kvstore
sql->

This command assumes that a store kvstore is running at port 5000. After the SQL
starts succcessfully, you execute queries. In the next part of this document, you will
find an introduction to SQL for Oracle NoSQL Database and how to create query
statements.

If you want to import records from a file in either JSON or CSV format, you can use the
import command. For more information see import.

If you want to run a script, use the load command. For more information see load.

For a complete list of utility commands accessed through "java -jar" <kvhome>/lib/
sql.jar <command> see Shell Utility Commands.

Configuring the shell
You can also set the shell start-up arguments by modifying the configuration
file .kvclirc found in your home directory.

Arguments can be configured in the .kvclirc file using the name=value format. This
file is shared by all shells, each having its named section. [sql] is used for the Query
shell, while [kvcli] is used for the Admin Command Line Interface (CLI).

For example, the .kvclirc file would then contain content like this:

[sql]
helper-hosts=node01:5000
store=kvstore
timeout=10000
consistency=NONE_REQUIRED
durability=COMMIT_NO_SYNC
username=root
security=/tmp/login_root

[kvcli]
host=node01
port=5000
store=kvstore
admin-host=node01
admin-port=5001
username=user1
security=/tmp/login_user
admin-username=root
admin-security=/tmp/login_root
timeout=10000
consistency=NONE_REQUIRED
durability=COMMIT_NO_SYNC

Appendix A
Configuring the shell

A-2

Shell Utility Commands
The following sections describe the utility commands accessed through "java -jar"
<kvhome>/lib/sql.jar <command>".

The interactive prompt for the shell is:

sql->

The shell comprises a number of commands. All commands accept the following flags:

• -help

Displays online help for the command.

• ?

Synonymous with -help. Displays online help for the command.

The shell commands have the following general format:

1. All commands are structured like this:

sql-> command [arguments]

2. All arguments are specified using flags that start with "-"

3. Commands and subcommands are case-insensitive and match on partial
strings(prefixes) if possible. The arguments, however, are case-sensitive.

connect

connect -host <hostname> -port <port> -name <storeName>
[-timeout <timeout ms>]
[-consistency <NONE_REQUIRED(default) |
 ABSOLUTE | NONE_REQUIRED_NO_MASTER>]
[-durability <COMMIT_SYNC(default) |
 COMMIT_NO_SYNC | COMMIT_WRITE_NO_SYNC>]
[-username <user>] [-security <security-file-path>]

Connects to a KVStore to perform data access functions. If the instance is secured,
you may need to provide login credentials.

consistency

consistency [[NONE_REQUIRED | NONE_REQUIRED_NO_MASTER |
ABSOLUTE] [-time -permissible-lag <time_ms> -timeout <time_ms>]]

Configures the read consistency used for this session.

Appendix A
Shell Utility Commands

A-3

describe

describe | desc [as json]
 {table table_name [field_name[,...]] |
 index index_name on table_name
 }

Describes information about a table or index, optionally in JSON format.

Specify a fully-qualified table_name as follows:

Entry specification Description

table_name Required. Specifies the full table name. Without
further qualification, this entry indicates a table
created in the default namespace (sysdefault),
which you do not have to specify.

parent-table.child-table Specifies a child table of a parent. Specify the
parent table followed by a period (.) before the child
name. For example, if the parent table is Users,
specify the child table named MailingAddress as
Users.MailingAddress.

namespace-name:table-name Specifies a table created in the non-default
namespace. Use the namespace followed by a
colon (:). For example, to reference table Users,
created in the Sales namespace, enter table_name
as Sales:Users.

Following is the output of describe for table ns1:t1:

sql-> describe table ns1:t1;
 === Information ===
 +-----------+------+-----+-------+----------+----------+--------
+----------+---------+-------------+
 | namespace | name | ttl | owner | sysTable | r2compat | parent |
children | indexes | description |
 +-----------+------+-----+-------+----------+----------+--------
+----------+---------+-------------+
 | ns1 | t1 | | | N | N |
| | | |
 +-----------+------+-----+-------+----------+----------+--------
+----------+---------+-------------+

 === Fields ===
 +----+------+---------+----------+-----------+----------+------------
+----------+
 | id | name | type | nullable | default | shardKey | primaryKey |
identity |
 +----+------+---------+----------+-----------+----------+------------
+----------+
 | 1 | id | Integer | N | NullValue | Y | Y
| |

Appendix A
Shell Utility Commands

A-4

 +----+------+---------+----------+-----------+----------+------------
+----------+
 | 2 | name | String | Y | NullValue | |
| |
 +----+------+---------+----------+-----------+----------+------------
+----------+

sql->

This example shows using describe as json for the same table:

sql-> describe as json table ns1:t1;
{
 "json_version" : 1,
 "type" : "table",
 "name" : "t1",
 "namespace" : "ns1",
 "shardKey" : ["id"],
 "primaryKey" : ["id"],
 "fields" : [{
 "name" : "id",
 "type" : "INTEGER",
 "nullable" : false,
 "default" : null
 }, {
 "name" : "name",
 "type" : "STRING",
 "nullable" : true,
 "default" : null
 }]
}

durability

durability [[COMMIT_WRITE_NO_SYNC | COMMIT_SYNC |
COMMIT_NO_SYNC] | [-master-sync <sync-policy> -replica-sync <sync-
policy>
-replica-ask <ack-policy>]] <sync-policy>: SYNC, NO_SYNC, WRITE_NO_SYNC
<ack-policy>: ALL, NONE, SIMPLE_MAJORITY

Configures the write durability used for this session.

exit

exit | quit

Exits the interactive command shell.

Appendix A
Shell Utility Commands

A-5

help

help [command]

Displays help message for all shell commands and sql command.

history

history [-last <n>] [-from <n>] [-to <n>]

Displays command history. By default all history is displayed. Optional flags are used
to choose ranges for display.

import

import -table table_name -file file_name [JSON | CSV]

Imports records from the specified file into table table_name.

Specify a fully-qualified table_name as follows:

Entry specification Description

table_name Required. Specifies the full table name. Without
further qualification, this entry indicates a table
created in the default namespace (sysdefault),
which you do not have to specify.

parent-table.child-table Specifies a child table of a parent. Specify the
parent table followed by a period (.) before the child
name. For example, if the parent table is Users,
specify the child table named MailingAddress as
Users.MailingAddress.

namespace-name:table-name Specifies a table created in the non-default
namespace. Use the namespace followed by a
colon (:). For example, to reference table Users,
created in the Sales namespace, enter table_name
as Sales:Users.

Use -table to specify the name of a table into which the records are loaded. The
alternative way to specify the table is to add the table specification "Table: table_name"
before its records in the file.

For example, this file contains the records to insert into two tables, users and email:

Table: users
<records of users>
...
Table: emails
<record of emails>
...

Appendix A
Shell Utility Commands

A-6

The imported records can be either in JSON or CSV format. If you do not specify the
format, JSON is assumed.

load

load -file <path to file>

Load the named file and interpret its contents as a script of commands to be executed.
If any command in the script fails execution will end.

For example, suppose the following commands are collected in the script file
test.sql:

Begin Script
load -file test.ddl
import -table users -file users.json
End Script

Where the file test.ddl would contain content like this:

DROP TABLE IF EXISTS users;
CREATE TABLE users(id INTEGER, firstname STRING, lastname STRING,
age INTEGER, primary key (id));

And the file users.json would contain content like this:

{"id":1,"firstname":"Dean","lastname":"Morrison","age":51}
{"id":2,"firstname":"Idona","lastname":"Roman","age":36}
{"id":3,"firstname":"Bruno","lastname":"Nunez","age":49}

Then, the script can be run by using the load command in the shell:

> java -jar KVHOME/lib/sql.jar -helper-hosts node01:5000 \
-store kvstore
sql-> load -file ./test.sql
Statement completed successfully.
Statement completed successfully.
Loaded 3 rows to users.

mode

mode [COLUMN | LINE | JSON [-pretty] | CSV]

Sets the output mode of query results. The default value is JSON.

For example, a table shown in COLUMN mode:

sql-> mode column;
sql-> SELECT * from users;
 +-----+-----------+-----------+-----+

Appendix A
Shell Utility Commands

A-7

 | id | firstname | lastname | age |
 +-----+-----------+-----------+-----+
8	Len	Aguirre	42
10	Montana	Maldonado	40
24	Chandler	Oneal	25
30	Pascale	Mcdonald	35
34	Xanthus	Jensen	55
35	Ursula	Dudley	32
39	Alan	Chang	40
6	Lionel	Church	30
25	Alyssa	Guerrero	43
33	Gannon	Bray	24
48	Ramona	Bass	43
76	Maxwell	Mcleod	26
82	Regina	Tillman	58
96	Iola	Herring	31
100	Keane	Sherman	23
 +-----+-----------+-----------+-----+
 ...

100 rows returned

Empty strings are displayed as an empty cell.

sql-> mode column;
sql-> SELECT * from tab1 where id = 1;
 +----+------+----+------+
 | id | s1 | s2 | s3 |
 +----+------+----+------+
 | 1 | NULL | | NULL |
 +----+------+----+------+

1 row returned

For nested tables, identation is used to indicate the nesting under column mode:

sql-> SELECT * from nested;
+----+-------
+--+
| id |
name | details |
+----+-------
+--+
| 1 |
one | address |
| |
| city | Waitakere |
| |
| country | French Guiana |
| |
| zipcode | 7229 |
| |
| attributes |
| |

Appendix A
Shell Utility Commands

A-8

| color | blue |
| |
| price | expensive |
| |
| size | large |
| |
| phone | [(08)2435-0742, (09)8083-8862, (08)0742-2526]|
+----+-------
+--+
| 3
| three | address |
| |
| city | Viddalba |
| |
| country | Bhutan |
| |
| zipcode | 280071 |
| |
| attributes |
| |
| color | blue |
| |
| price | cheap |
| |
| size | small |
| |
| phone | [(08)5361-2051, (03)5502-9721, (09)7962-8693]|
+----+-------
+--+
...

For example, a table shown in LINE mode, where the result is displayed vertically and
one value is shown per line:

sql-> mode line;
sql-> SELECT * from users;

 > Row 1
 +-----------+-----------+
 | id | 8 |
 | firstname | Len |
 | lastname | Aguirre |
 | age | 42 |
 +-----------+-----------+

 > Row 2
 +-----------+-----------+
 | id | 10 |
 | firstname | Montana |
 | lastname | Maldonado |
 | age | 40 |
 +-----------+-----------+

 > Row 3

Appendix A
Shell Utility Commands

A-9

 +-----------+-----------+
id	24
firstname	Chandler
lastname	Oneal
age	25
 +-----------+-----------+
 ...
100 rows returned

Just as in COLUMN mode, empty strings are displayed as an empty cell:

sql-> mode line;
sql-> SELECT * from tab1 where id = 1;

 > Row 1
 +---------+------+
 | id | 1 |
 | s1 | NULL |
 | s2 | |
 | s3 | NULL |
 +---------+------+

1 row returned

For example, a table shown in JSON mode:

sql-> mode json;
sql-> SELECT * from users;
{"id":8,"firstname":"Len","lastname":"Aguirre","age":42}
{"id":10,"firstname":"Montana","lastname":"Maldonado","age":40}
{"id":24,"firstname":"Chandler","lastname":"Oneal","age":25}
{"id":30,"firstname":"Pascale","lastname":"Mcdonald","age":35}
{"id":34,"firstname":"Xanthus","lastname":"Jensen","age":55}
{"id":35,"firstname":"Ursula","lastname":"Dudley","age":32}
{"id":39,"firstname":"Alan","lastname":"Chang","age":40}
{"id":6,"firstname":"Lionel","lastname":"Church","age":30}
{"id":25,"firstname":"Alyssa","lastname":"Guerrero","age":43}
{"id":33,"firstname":"Gannon","lastname":"Bray","age":24}
{"id":48,"firstname":"Ramona","lastname":"Bass","age":43}
{"id":76,"firstname":"Maxwell","lastname":"Mcleod","age":26}
{"id":82,"firstname":"Regina","lastname":"Tillman","age":58}
{"id":96,"firstname":"Iola","lastname":"Herring","age":31}
{"id":100,"firstname":"Keane","lastname":"Sherman","age":23}
{"id":3,"firstname":"Bruno","lastname":"Nunez","age":49}
{"id":14,"firstname":"Thomas","lastname":"Wallace","age":48}
{"id":41,"firstname":"Vivien","lastname":"Hahn","age":47}
...
100 rows returned

Empty strings are displayed as "".

sql-> mode json;
sql-> SELECT * from tab1 where id = 1;

Appendix A
Shell Utility Commands

A-10

{"id":1,"s1":null,"s2":"","s3":"NULL"}

1 row returned

Finally, a table shown in CSV mode:

sql-> mode csv;
sql-> SELECT * from users;
8,Len,Aguirre,42
10,Montana,Maldonado,40
24,Chandler,Oneal,25
30,Pascale,Mcdonald,35
34,Xanthus,Jensen,55
35,Ursula,Dudley,32
39,Alan,Chang,40
6,Lionel,Church,30
25,Alyssa,Guerrero,43
33,Gannon,Bray,24
48,Ramona,Bass,43
76,Maxwell,Mcleod,26
82,Regina,Tillman,58
96,Iola,Herring,31
100,Keane,Sherman,23
3,Bruno,Nunez,49
14,Thomas,Wallace,48
41,Vivien,Hahn,47
...
100 rows returned

Like in JSON mode, empty strings are displayed as "".

sql-> mode csv;
sql-> SELECT * from tab1 where id = 1;
1,NULL,"","NULL"

1 row returned

Note:

Only rows that contain simple type values can be displayed in CSV format.
Nested values are not supported.

output

output [stdout | file]

Enables or disables output of query results to a file. If no argument is specified, it
shows the current output.

Appendix A
Shell Utility Commands

A-11

page

page [on | <n> | off]

Turns query output paging on or off. If specified, n is used as the page height.

If n is 0, or "on" is specified, the default page height is used. Setting n to "off" turns
paging off.

show faults

show faults [-last] [-command <index>]

Encapsulates commands that display the state of the store and its components.

show mrtable-agent-statistics

show mrtable-agent-statistics [-agent <agentID>][-table <tableName>][-
json]

Shows the latest statistics as of the last one minute for multi-region table agents. With
no arguments, this command shows combined statistics over all regions the MR Table
spans.

Input Parameters

Optionally, you can enable the following flags with appropriate parameters with this
command:

Table A-1 Input Parameters

Flag Parameter Description

- agent agentID Limits the statistics to the
agent ID specified. You can
find the agent ID from the
JSON config file created while
configuring your agent. See
Configure XRegion Service.

- table tableName Limits the statistics to the MR
Table specified.

- json - Returns the complete statistics
in JSON format. Even though
the statistics are returned
in JSON format by default,
specifying this flag adds
additional information in the
output such as operation,
return code, and the return
code's description.

Appendix A
Shell Utility Commands

A-12

Output Statistics

The statistics reported by the show mrtable-agent-statistics can be categorized as
those used to:

• Monitor streams from other regions

Table A-2 Output Statistics 1

Statistic Description

completeWriteOps Number of complete write operations per
region.

lastMessageMs Timestamp when the agent sees the
last message from a remote region, in
milliseconds.

If this statistic information is not available, -1
is printed as its output value.

lastModificationMs Timestamp of the last operation performed
in each remote region, in milliseconds.

If this statistic information is not available, -1
is printed as its output value.

laggingMs (avg, max, min) In a multi-region KVStore, each shard in a
region pushes all the operations performed
on all its tables to the agent's queue.
The agent replicates the contents of its
queue, in event order, to all other regions.
The lagging statistic represents the time
difference between an event being pushed
into the queue and replicated to the other
regions by the agent. If this value is high,
it indicates that the queue is getting backed
up. A smaller value indicates that the agent
is able to keep up with the number of
events coming from remote regions. The
lagging statistics are reported as average,
minimum, and maximum in milliseconds for
each remote region.

If this statistic information is not available, -1
is printed as its output value.

latencyMs (avg, max, min) In MR tables, the latency statistic indicates
the time taken in milliseconds for each
operation to travel from its origin (remote)
region to the target (local) region.
The latency is computed as T2 - T1, where:
– T1 is the timestamp when an operation

is performed in the remote region, and
– T2 is the timestamp when the agent

persisted the replicated operation to the
local region.

For each remote region, the latency
statistics are reported as the average,
minimum, and maximum latency for all the
operations from that region.

If this statistic information is not available, -1
is printed as its output value.

Appendix A
Shell Utility Commands

A-13

• Check the persistence of remote data

Table A-3 Output Statistics 2

Statistic Description

puts Number of write operations received.

dels Number of delete operations received.

streamBytes Total bytes replicated from a remote region.

persistStreamBytes Reports the total number of bytes that
are successfully committed in the local
region. This is different from the total bytes
replicated from a remote region because in
case of any conflicts with operations from
other regions, some of the operations may
not persist if they fail the built-in conflict
resolution rule.

winPuts Number of write operations performed
successfully. More specifically, this statistic
excludes the writes that failed to win the
conflict resolution rule, in case of a conflict
with writes in other regions.

winDels Number of delete operations performed
successfully. More specifically, this statistic
excludes the deletes that failed to win the
conflict resolution rule, in case of a conflict
with deletes in other regions.

incompatibleRows Number of operations that did not persist
because of incompatible table schemas.
This can happen when there is a schema
mismatch between the origin region and the
region that is trying to replicate the row to its
local data store.

• Monitor the interaction between admin and the agent

Table A-4 Output Statistics 3

Statistic Description

requests All the DDL commands executed by the user
on an MR table are converted into requests
to the agent by the admin. This statistic
reports the number of requests posted by
the admin.

responses Number of requests processed and
responded by the agent.

• Monitor multi-region tables
When you execute the show mrtable-agent-statistics command with the -
table flag, it returns the table level statistics indicating:

1. Persistence of remote data in the local region: This includes the statistics
such as puts, dels, winPuts, winDels, streamBytes, persistStreamBytes,
and incompatibleRows discussed above.

Appendix A
Shell Utility Commands

A-14

2. Progress of table initialization in each remote region: This is indicated by
the state attribute under the Initialization statistics in the output. The
table below lists the different possible values for state and their meaning.

Table A-5 Table Initialization States

State Description

NOT_START MR table initialization has not started, or
there is no need to do initialization. For
example, if the agent resumes the stream
from an existing checkpoint successfully,
there is no need to re-initialize the MR
table.

IN_PROGRESS MR table initialization is ongoing, that
is, the MR table initialization has started
and the data is being replicated from the
remote regions.

COMPLETE MR table initialization is complete and
table transfer is done. The agent is
streaming from the remote region.

ERROR MR table initialization cannot complete
because of an irrecoverable error. You can
view the error severity in the agent log as
WARNING or SEVERE. The agent log can
be found in the directory specified in the
JSON config file. See Configure XRegion
Service.

SHUTDOWN MR table initialization cannot complete
because the service is shut down.

3. Persistence of the table data per remote region:

Table A-6 Output Statistics 4

Statistic Description

transferStartMs Timestamp of the initiation of table
initialization, in milliseconds.

If this statistic information is not available,
-1 is printed as its output value.

transferCompleteMs Timestamp of the completion of table
initialization, in milliseconds.

If this statistic information is not available,
-1 is printed as its output value.

elapsedMs The time elapsed from the start of the
table initialization until its completion.
elapsedMs = transferCompleteMs -
transferStartMs

This statistic is reported in milliseconds.
Before the transfer completion, it reports
-1 indicating the unavailability of this
statistic.

transferBytes Number of bytes transferred from the
remote (origin or source) region to the
local (target) region.

Appendix A
Shell Utility Commands

A-15

Table A-6 (Cont.) Output Statistics 4

Statistic Description

transferRows Number of rows transferred from the
remote region to the local region
successfully.

expireRows Number of rows expired before
transferring from the remote region.
Because of their TTL value, some rows
might expire during the replication. Such
rows expire by the time they reach the
agent. This statistic counts such expired
rows.

persistBytes Reports the total number of bytes that
are successfully committed in the local
region. This excludes the rows that are
not committed in the local region because
they failed the built-in conflict resolution
rule. In case of row updates, the entire
row is counted for this statistic.

persistRows Reports the total number of rows that are
successfully committed in the local region.
Similar to the above statistic, the rows
that are not committed in the local region
because of the built-in conflict resolution
rule are excluded for this count.

Example

Below are a few examples of the statistics returned by the show mrtable-agent-
statistics command with different input parameters.

Note:

If any of the statistics information is not available, -1 is reported as the value
for that statistic parameter in the output.

MR table agent statistics for a specific agent
kv-> show mrtable-agent-statistics -agent 0 -json
{
 "operation": "show mrtable-agent-statistics",
 "returnCode": 5000,
 "description": "Operation ends successfully",
 "returnValue": {
 "XRegionService-1_0": {
 "timestamp": 1592901180001,
 "statistics": {
 "agentId": "XRegionService-1_0",
 "beginMs": 1592901120001,
 "dels": 1024,
 "endMs": 1592901180001,
 "incompatibleRows": 100,
 "intervalMs": 60000,

Appendix A
Shell Utility Commands

A-16

 "localRegion": "slc1",
 "persistStreamBytes": 524288,
 "puts": 2048,
 "regionStat": {
 "lnd": {
 "completeWriteOps": 10,
 "laggingMs": {
 "avg": 512,
 "max": 998,
 "min": 31
 },
 "lastMessageMs": 1591594977587,
 "lastModificationMs": 1591594941686,
 "latencyMs": {
 "avg": 20,
 "max": 40,
 "min": 10
 }
 },
 "dub": {
 "completeWriteOps": 20,
 "laggingMs": {
 "avg": 535,
 "max": 1024,
 "min": 45
 },
 "lastMessageMs": 1591594978254,
 "lastModificationMs": 1591594956786,
 "latencyMs": {
 "avg": 30,
 "max": 45,
 "min": 15
 }
 }
 },
 "requests": 12,
 "responses": 12,
 "streamBytes": 1048576,
 "winDels": 1024,
 "winPuts": 2048
 }
 }
 }
}

MR table agent statistics for a specific MR table
kv-> show mrtable-agent-statistics -table users -json
{
 "operation": "show mrtable-agent-statistics",
 "returnCode": 5000,
 "description": "Operation ends successfully",
 "returnValue": {
 "XRegionService-1_0": {
 "tableID": 12,

Appendix A
Shell Utility Commands

A-17

 "tableName": "users",
 "timestamp": 1592901300001,
 "statistics": {
 "agentId": "XRegionService-1_0",
 "beginMs": 1592901240001,
 "dels": 1000,
 "endMs": 1592901300001,
 "expiredPuts": 200,
 "incompatibleRows": 100,
 "initialization": {
 "lnd": {
 "elapsedMs": 476,
 "expireRows": 100,
 "persistBytes": 6492160,
 "persistRows": 6340,
 "state": "COMPLETE",
 "transferBytes": 8115200,
 "transferCompleteMs": 1592822625333,
 "transferRows": 7925,
 "transferStartMs": 1592822624857
 },
 "dub": {
 "transferStartMs": 0,
 "transferCompleteMs": 0,
 "elapsedMs": -1,
 "transferRows": 0,
 "persistRows": 0,
 "expireRows": 0,
 "transferBytes": 0,
 "persistBytes": 0,
 "state": "NOT_START"
 }
 },
 "intervalMs": 60000,
 "localRegion": "fra",
 "persistStreamBytes": 104960000,
 "puts": 100000,
 "streamBytes": 115200000,
 "tableId": 12,
 "tableName": "users",
 "winDels": 745,
 "winPuts": 90000
 }
 }
 }
}

show namespaces

show [AS JSON] namespaces

Shows a list of all namespaces in the system.

Appendix A
Shell Utility Commands

A-18

For example:

sql-> show namespaces
namespaces
 ns1
 sysdefault
sql-> show as json namespaces
{"namespaces" : ["ns1","sysdefault"]}

show query

show query <statement>

Displays the query plan for a query.

For example:

sql-> show query SELECT * from Users;
RECV([6], 0, 1, 2, 3, 4)
[
 DistributionKind : ALL_PARTITIONS,
 Number of Registers :7,
 Number of Iterators :12,
 SFW([6], 0, 1, 2, 3, 4)
 [
 FROM:
 BASE_TABLE([5], 0, 1, 2, 3, 4)
 [Users via primary index] as $$Users

 SELECT:
 *
]
]

show roles

show [as json] roles | role <role_name>

Shows either all the roles currently defined for the store, or the named role.

show tables

show [as json] {tables | table table_name}

Shows either all tables in the data store, or one specific table, table_name.

Specify a fully-qualified table_name as follows:

Appendix A
Shell Utility Commands

A-19

Entry specification Description

table_name Required. Specifies the full table name. Without
further qualification, this entry indicates a table
created in the default namespace (sysdefault),
which you do not have to specify.

parent-table.child-table Specifies a child table of a parent. Specify the
parent table followed by a period (.) before the child
name. For example, if the parent table is Users,
specify the child table named MailingAddress as
Users.MailingAddress.

namespace-name:table-name Specifies a table created in the non-default
namespace. Use the namespace followed by a
colon (:). For example, to reference table Users,
created in the Sales namespace, enter table_name
as Sales:Users.

The following example indicates how to list all tables, or just one table. The empty
tableHierarchy field indicates that table t1 was created in the default namespace:

sql-> show tables
tables
 SYS$IndexStatsLease
 SYS$PartitionStatsLease
 SYS$SGAttributesTable
 SYS$TableStatsIndex
 SYS$TableStatsPartition
 ns10:t10
 parent
 parent.child
 sg1
 t1

sql-> show table t1
tableHierarchy
 t1

To show a table created in a namespace, as shown in the list of all tables, fully-qualify
table_name as follows. In this case, tableHierarchy field lists namespace ns1 in
which table t1 was created. The example also shows how the table is presented as
json:

sql-> show tables;
tables
 SYS$IndexStatsLease
 SYS$PartitionStatsLease
 SYS$SGAttributesTable
 SYS$TableStatsIndex
 SYS$TableStatsPartition
 ns1:foo
 ns1:t1

sql-> show table ns1:t1;

Appendix A
Shell Utility Commands

A-20

tableHierarchy(namespace ns1)
 t1
sql-> show as json table ns1:t1;
{"namespace": "ns1"
"tableHierarchy" : ["t1"]}

show users

show [as json] users | user <user_name>

Shows either all the users currently existing in the store, or the named user.

timeout

timeout [<timeout_ms>]

The timeout command configures or displays the request timeout for this session in
milliseconds(ms).

The request timeout is the amount of time that the client will wait to get a response to a
request that it has sent.

If the optional timeout_ms attribute is specified, then the request timeout is set to the
specified value.

If the optional timeout_ms attribute is not specified, then the current value of request
timeout is displayed.

Example A-1 timeout

The following example gets the current value of the request timeout.

sql-> timeout
Request timeout used: 5,000ms

Example A-2 timeout

The following example set the request timeout value to 20000 milliseconds (20
seconds).

sql-> timeout 20000
Request timeout used: 20,000ms

Appendix A
Shell Utility Commands

A-21

Note:

A shell command may require multiple requests to a server or servers. The
timeout applies to each such individual request. A shell command sends
out multiple requests and has to wait for each of them to return before the
command is finished. As a result, a shell command may have to wait for
longer time than the specified timeout and this total wait could be greater
than the wait time of the individual request.

timer

timer [on | off]

Turns the measurement and display of execution time for commands on or off. If not
specified, it shows the current state of timer. For example:

sql-> timer on
sql-> SELECT * from users where id <= 10 ;
 +----+-----------+-----------+-----+
 | id | firstname | lastname | age |
 +----+-----------+-----------+-----+
8	Len	Aguirre	42
10	Montana	Maldonado	40
6	Lionel	Church	30
3	Bruno	Nunez	49
2	Idona	Roman	36
4	Cooper	Morgan	39
7	Hanae	Chapman	50
9	Julie	Taylor	38
1	Dean	Morrison	51
5	Troy	Stuart	30
 +----+-----------+-----------+-----+

10 rows returned

Time: 0sec 98ms

verbose

verbose [on | off]

Toggles or sets the global verbosity setting. This property can also be set on a per-
command basis using the -verbose flag.

version

version

Appendix A
Shell Utility Commands

A-22

Display client version information.

Appendix A
Shell Utility Commands

A-23

	Contents
	Preface
	Conventions Used in This Book

	1 Introduction to SQL for Oracle NoSQL Database
	2 Simple SELECT Queries
	SQLBasicExamples Script
	Starting the SQL Shell
	Choosing column data
	Substituting column names for a query
	Computing values for new columns
	Identifying tables and their columns
	Filtering Results
	Grouping Results
	Ordering Results
	Limiting and Offsetting Results
	Using External Variables

	3 Working with complex data
	SQLAdvancedExamples Script
	Working with Timestamps
	Working With Arrays
	Working with Records
	Using ORDER BY to Sort Results
	Working With Maps
	Using the size() Function

	4 Working with JSON
	SQLJSONExamples Script
	Basic Queries
	Using WHERE EXISTS with JSON
	Seeking NULLS in Arrays
	Examining Data Types JSON Columns
	Using Map Steps with JSON Data
	Casting Datatypes
	Using Searched Case

	5 Working With GeoJSON Data
	Geodetic Coordinates
	GeoJSON Data Definitions
	Searching GeoJSON Data

	6 Working With Indexes
	Basic Indexing
	Using Index Hints
	Complex Indexes
	Multi-Key Indexes
	Indexing JSON Data

	7 Working with Table Rows
	Adding Table Rows using INSERT and UPSERT
	Modifying Table Rows using UPDATE Statements
	Example Data
	Changing Field Values
	Modifying Array Values
	Adding Elements to an Array
	Changing an Existing Element in an Array
	Removing Elements from Arrays

	Modifying Map Values
	Removing Elements from a Map
	Adding Elements to a Map
	Updating Existing Map Elements

	Managing Time to Live Values
	Avoiding the Read-Modify-Write Cycle

	A Introduction to the SQL for Oracle NoSQL Database Shell
	Running the SQL Shell
	Configuring the shell
	Shell Utility Commands
	connect
	consistency
	describe
	durability
	exit
	help
	history
	import
	load
	mode
	output
	page
	show faults
	show mrtable-agent-statistics
	show namespaces
	show query
	show roles
	show tables
	show users
	timeout
	timer
	verbose
	version

