
Oracle® Essbase
Calculation and Query Reference for Oracle
Essbase

F17644-13
August 2024

Oracle Essbase Calculation and Query Reference for Oracle Essbase,

F17644-13

Copyright © 2019, 2024, Oracle and/or its affiliates.

Primary Author: Essbase Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Calculation and Query Reference Overview

About the Calculation and Query Reference 1-1

What You Should Know Before You Start 1-1

Syntax Conventions 1-1

About Aggregate Storage Cubes 1-2

2 Calculation Functions

Calculation and Member Hierarchy 2-1

Function Parameters 2-2

Calculation Operators 2-5

Mathematical Operators 2-5

Conditional and Logical Operators 2-6

Cross-Dimensional Operator 2-6

Operation Results on #MISSING Values and Zero (0) Values 2-7

Calculation Function Categories 2-8

Boolean Functions 2-8

Relationship Functions 2-9

Mathematical Functions 2-10

Member Set Functions 2-11

Range and Financial Functions 2-14

Allocation Functions 2-18

Forecasting Functions 2-18

Statistical Functions 2-19

Date & Time Functions 2-20

Miscellaneous Functions 2-20

Calculation Function List 2-20

@ABS 2-22

@ACCUM 2-22

@ALLANCESTORS 2-23

@ALIAS 2-25

@ALLOCATE 2-26

@ANCEST 2-29

@ANCESTORS 2-30

iii

@ANCESTVAL 2-31

@ATTRIBUTE 2-32

@ATTRIBUTEBVAL 2-34

@ATTRIBUTESVAL 2-35

@ATTRIBUTEVAL 2-37

@AVG 2-38

@AVGRANGE 2-39

@BETWEEN 2-40

@CALCMODE 2-42

@CHILDREN 2-48

@COMPOUND 2-49

@COMPOUNDGROWTH 2-51

@CONCATENATE 2-52

@CORRELATION 2-53

@COUNT 2-56

@CREATEBLOCK 2-58

@CURGEN 2-60

@CURLEV 2-61

@CURRMBR 2-62

@CURRMBRRANGE 2-63

@DATEDIFF 2-66

@DATEPART 2-67

@DATEROLL 2-69

@DECLINE 2-70

@DESCENDANTS 2-72

@DISCOUNT 2-73

@ENUMVALUE 2-75

@EQUAL 2-76

@EXP 2-77

@EXPAND 2-78

@FACTORIAL 2-80

@FORMATDATE 2-81

@GEN 2-82

@GENMBRS 2-83

@GRIDTUPLES 2-84

@GROWTH 2-84

@IALLANCESTORS 2-86

@IANCESTORS 2-87

@ICHILDREN 2-88

@IDESCENDANTS 2-89

@ILANCESTORS 2-90

@ILDESCENDANTS 2-92

iv

@ILSIBLINGS 2-94

@INT 2-95

@INTEREST 2-96

@INTERSECT 2-98

@IRDESCENDANTS 2-99

@IRR 2-100

@IRREX 2-102

@IRSIBLINGS 2-104

@ISACCTYPE 2-105

@ISANCEST 2-105

@ISATTRIBUTE 2-106

@ISCHILD 2-107

@ISDESC 2-107

@ISGEN 2-108

@ISIANCEST 2-109

@ISIBLINGS 2-109

@ISICHILD 2-110

@ISIDESC 2-111

@ISIPARENT 2-111

@ISISIBLING 2-112

@ISLEV 2-113

@ISMBR 2-113

@ISMBRUDA 2-114

@ISMBRWITHATTR 2-115

@ISPARENT 2-116

@ISRANGENONEMPTY 2-117

@ISSAMEGEN 2-118

@ISSAMELEV 2-118

@ISSIBLING 2-119

@ISUDA 2-120

@LANCESTORS 2-121

@LDESCENDANTS 2-123

@LEV 2-125

@LEVMBRS 2-125

@LIKE 2-126

@LIST 2-128

@LN 2-129

@LOG 2-130

@LOG10 2-131

@LSIBLINGS 2-131

@MATCH 2-132

@MAX 2-133

v

@MAXRANGE 2-134

@MAXS 2-135

@MAXSRANGE 2-136

@MBRCOMPARE 2-138

@MBRPARENT 2-141

@MDALLOCATE 2-142

@MDANCESTVAL 2-146

@MDPARENTVAL 2-147

@MDSHIFT 2-149

@MEDIAN 2-150

@MEMBER 2-152

@MEMBERAT 2-152

@MERGE 2-153

@MIN 2-155

@MINRANGE 2-156

@MINS 2-157

@MINSRANGE 2-158

@MOD 2-160

@MODE 2-160

@MOVAVG 2-162

@MOVMAX 2-164

@MOVMED 2-166

@MOVMIN 2-167

@MOVSUM 2-169

@MOVSUMX 2-171

@NAME 2-173

@NEXT 2-175

@NEXTS 2-176

@NEXTSIBLING 2-178

@NONEMPTYTUPLE 2-179

@NOTEQUAL 2-180

@NPV 2-182

@PARENT 2-183

@PARENTVAL 2-184

@POWER 2-186

@PREVSIBLING 2-186

@PRIOR 2-187

@PRIORS 2-189

@PTD 2-190

@QUERYBOTTOMUP 2-192

@RANGE 2-193

@RANGEFIRSTVAL 2-194

vi

@RANGELASTVAL 2-196

@RANK 2-197

@RDESCENDANTS 2-200

@RELATIVE 2-202

@RELXRANGE 2-203

@REMAINDER 2-205

@REMOVE 2-206

@RETURN 2-207

@ROUND 2-208

@RSIBLINGS 2-210

@SANCESTVAL 2-211

@SHARE 2-213

@SHIFT 2-213

@SHIFTMINUS 2-215

@SHIFTPLUS 2-217

@SHIFTSIBLING 2-219

@SIBLINGS 2-220

@SLN 2-221

@SPARENTVAL 2-223

@SPLINE 2-224

@STDEV 2-228

@STDEVP 2-230

@STDEVRANGE 2-231

@SUBSTRING 2-233

@SUM 2-234

@SUMRANGE 2-235

@SYD 2-236

@TODATE 2-237

@TODATEEX 2-238

@TODAY 2-241

@TREND 2-241

@TRUNCATE 2-252

@UDA 2-252

@VAR 2-253

@VARPER 2-254

@VARIANCE 2-255

@VARIANCEP 2-257

@WEIGHTEDSUMX 2-259

@WITHATTR 2-261

@XRANGE 2-263

@XREF 2-266

@XWRITE 2-269

vii

Custom-Defined Calculation Functions 2-271

Java Code Examples 2-272

MaxL Registration Scripts 2-302

register.mxl Sample Code 2-302

reglobal.mxl Sample Code 2-315

drop.mxl Sample Code 2-329

Custom-Defined Macros 2-331

Custom-Defined Macro Input Parameters 2-331

Using Argument Values in Macro Definitions 2-333

Directives Used in Custom-Defined Macros 2-334

Macro Reference 2-334

@@x 2-335

@@S 2-335

@@SHx 2-336

@@ERROR 2-337

@@Lx 2-337

@@IFSTRCMP 2-339

@@ELSE 2-339

@@ENDIF 2-340

Functions Supported in Hybrid Mode 2-341

3 Calculation Commands

Calculation Commands Overview 3-1

Calculation Operators 3-1

Mathematical Operators 3-2

Conditional and Logical Operators 3-2

Cross-Dimensional Operator 3-3

Calculation Command Groups 3-3

Conditional Commands 3-3

Control Flow Commands 3-4

Data Declaration Commands 3-4

Functional Commands 3-4

Member Formulas 3-5

Calculation Command List 3-6

& (ampersand) 3-8

AGG 3-8

ARRAY 3-9

CALC ALL 3-10

CALC AVERAGE 3-11

CALC DIM 3-12

CALC FIRST 3-13

viii

CALC LAST 3-13

CALC TWOPASS 3-14

CCONV 3-14

CLEARBLOCK 3-16

CLEARCCTRACK 3-18

CLEARDATA 3-18

DATACOPY 3-19

DATAEXPORT 3-20

DATAEXPORTCOND 3-24

DATAIMPORTBIN 3-26

DATAMERGE 3-27

ELSE 3-28

ELSEIF 3-29

ENDIF 3-30

EXCLUDE…ENDEXCLUDE 3-32

FIX…ENDFIX 3-34

FIXPARALLEL...ENDFIXPARALLEL 3-37

IF 3-40

LOOP...ENDLOOP 3-42

POSTFIXPARALLEL 3-43

SET Commands 3-44

SET AGGMISSG 3-45

SET CACHE 3-45

SET CALCDIAGNOSTICS 3-47

SET CALCPARALLEL 3-50

SET CALCTASKDIMS 3-50

SET CCTRACKCALC 3-51

SET CLEARUPDATESTATUS 3-52

SET COPYMISSINGBLOCK 3-55

SET CREATENONMISSINGBLK 3-56

SET CREATEBLOCKONEQ 3-58

SET DATAEXPORTOPTIONS 3-60

SET DATAIMPORTIGNORETIMESTAMP 3-69

SET EMPTYMEMBERSETS 3-70

SET FRMLBOTTOMUP 3-71

SET FRMLRTDYNAMIC 3-72

SET HYBRIDBSOINCALCSCRIPT 3-73

SET MSG 3-74

SET NOTICE 3-77

SET REMOTECALC 3-78

SET RUNTIMESUBVARS 3-79

SET SCAPERSPECTIVE 3-81

ix

SET TRACE 3-82

SET UPDATECALC 3-84

SET UPTOLOCAL 3-84

THREADVAR 3-85

USE_MDX_INSERT 3-86

VAR 3-87

4 MDX

Overview of MDX 4-1

MDX Query Format 4-2

MDX Syntax and Grammar Rules 4-3

Understanding BNF Notation 4-3

MDX Grammar Rules 4-5

MDX Syntax for Specifying Duplicate Member Names and Aliases 4-21

MDX Axis Specifications 4-23

MDX Slicer Specification 4-26

MDX Cube Specification 4-27

MDX Set Specification 4-28

MDX With Section 4-29

MDX Dimension Specification 4-34

MDX Layer Specification 4-34

MDX Member Specification 4-36

MDX Hierarchy Specification 4-37

MDX Tuple Specification 4-37

MDX Create Set / Delete Set 4-38

MDX Sub Select 4-40

MDX Insert Specification 4-41

MDX Export Specification 4-48

MDX Operators 4-51

About MDX Properties 4-53

MDX Intrinsic Properties 4-54

MDX Custom Properties 4-54

MDX Property Expressions 4-55

MDX Optimization Properties 4-56

Querying for Member Properties in MDX 4-58

The Value Type of MDX Properties 4-60

MDX NULL Property Values 4-60

MDX Comments 4-61

MDX Query Limits 4-62

Aggregate Storage and MDX Outline Formulas 4-65

MDX Function Return Values 4-87

x

MDX Functions that Return a Member 4-88

MDX Functions that Return a Set 4-89

MDX Functions that Return a Tuple 4-91

MDX Functions that Return a Number 4-91

MDX Functions that Return a Dimension 4-93

MDX Functions that Return a Layer 4-93

MDX Functions that Return a Boolean 4-93

MDX Functions that Return a Date 4-94

MDX Functions that Return a String 4-94

MDX Function List 4-95

Abs 4-96

Aggregate 4-97

Ancestor 4-99

Ancestors 4-101

Attribute 4-102

AttributeEx 4-102

Avg 4-104

BottomCount 4-106

BottomPercent 4-107

BottomSum 4-109

Case 4-110

CellValue 4-113

Children 4-114

ClosingPeriod 4-116

CoalesceEmpty 4-118

Concat 4-118

Contains 4-119

Count 4-119

Cousin 4-120

CrossJoin 4-122

CrossJoinAttribute 4-125

CurrentAxisMember 4-126

CurrentMember 4-126

CurrentTuple 4-127

DateDiff 4-128

DatePart 4-129

DateRoll 4-131

DateToMember 4-132

DefaultMember 4-134

Descendants 4-134

Distinct 4-139

Dimension 4-140

xi

DrilldownByLayer 4-141

DrilldownMember 4-142

DrillupByLayer 4-144

DrillupMember 4-145

DTS 4-147

EnumText 4-148

EnumValue 4-149

Except 4-149

Exp 4-151

Extract 4-152

Factorial 4-153

Filter 4-153

FirstChild 4-158

FirstSibling 4-159

FormatDate 4-160

Generate 4-162

Generation 4-163

Generations 4-164

GetFirstDate 4-165

GetFirstDay 4-165

GetLastDate 4-167

GetLastDay 4-167

GetNextDay 4-169

GetRoundDate 4-170

Head 4-171

Hierarchize 4-173

IIF 4-176

InStr 4-178

InString 4-179

Int 4-179

Intersect 4-180

Is 4-183

IsAccType 4-184

IsAncestor 4-184

IsChild 4-186

IsEmpty 4-187

IsGeneration 4-188

IsLeaf 4-188

IsLevel 4-189

IsMatch 4-190

IsSibling 4-192

IsUda 4-193

xii

IsValid 4-194

Item 4-195

JulianDate 4-197

Lag 4-198

LastChild 4-200

LastPeriods 4-201

LastSibling 4-202

Lead 4-203

Leaves 4-205

Left 4-208

Len 4-208

Level 4-208

Levels 4-209

LinkMember 4-210

Ln 4-212

Log 4-213

Log10 4-213

Lower 4-213

LTrim 4-214

Max 4-214

Median 4-215

MemberRange 4-216

Members 4-218

Min 4-219

Mod 4-220

NextMember 4-221

NonEmptyCount 4-223

NonEmptySubset 4-225

NTile 4-227

NumToStr 4-227

OpeningPeriod 4-228

Order 4-229

Ordinal 4-230

ParallelPeriod 4-231

Parent 4-232

Percentile 4-234

PeriodsToDate 4-234

Power 4-236

PrevMember 4-236

Rank 4-238

RealValue 4-240

RelMemberRange 4-241

xiii

Remainder 4-242

Right 4-243

Round 4-244

RTrim 4-244

Siblings 4-244

Stddev 4-246

Stddevp 4-248

StrToMbr 4-249

StrToNum 4-250

Subset 4-251

Substring 4-252

Sum 4-253

Tail 4-254

Todate 4-258

TodateEx 4-259

Today 4-261

TopCount 4-262

TopPercent 4-263

TopSum 4-264

Truncate 4-266

TupleRange 4-266

Uda 4-267

Union 4-269

UnixDate 4-270

Upper 4-271

Value 4-271

WithAttr 4-273

WithAttrEx 4-274

xTD 4-276

xiv

Accessibility and Support

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

15

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Calculation and Query Reference Overview

You can use a wide variety of commands and functions to calculate and query Essbase cubes.
This reference is intended for advanced users who need detailed information and examples
about Essbase calculation functions, calculation commands, and MDX.

• About the Calculation and Query Reference

• About Aggregate Storage Cubes

About the Calculation and Query Reference
The Calculation and Query Reference describes commands and functions you can use to
calculate and query Oracle Essbase cubes. This reference is intended for advanced users who
need detailed information and examples about calculation functions, calculation commands,
and MDX.

This document provides examples based mostly on the Sample Basic cube, provided with
Essbase as a template you can build into a cube. The Sample application, as well as more
samples you can build, are available in the Applications > Demo Samples section of the
gallery. The gallery is available in the Files section of Essbase. See Explore the Gallery
Templates.

• What You Should Know Before You Start

• Syntax Conventions

What You Should Know Before You Start
To use this document, you need the following:

• A working knowledge of the operating system.

• An understanding of Essbase concepts and features.

• An understanding of the typical database administration requirements and tasks, including
calculation, querying, security, and maintenance.

Syntax Conventions
This document uses several formatting styles to indicate actions you should take or types of
information you need.

Table 1-1 Syntax Conventions

Syntax Purpose Example

UPPERCASE Calculation command or function names
in syntax.

DATAEXPORT

italic Terms, such as parameters, that you
replace with a value

AGG (dimlist);

1-1

Table 1-1 (Cont.) Syntax Conventions

Syntax Purpose Example

" " Double quotation marks enclose text
parameters or single parameters that
include a space

@CHILDREN ("New York")

() Parentheses are used in a couple of
ways:

• To enclose function parameters
• To show the order of execution of

the enclosed operations

@POWER (14,3)
(a + b) * c

/* ... */ Comment markers in calculation scripts.
The /* ... */ comment markers indicate
the enclosed text should be ignored in
processing.

/*Get results*/

; Statement terminator
AGG ("Product");

[] Brackets enclose optional parameters in
syntax . Used with OR symbol | if there
is more than one optional parameter. Do
not type brackets or the OR symbol |.

@RANGE (mbrName [,
rangeList])

[, numeric]
[, "text"]

Indicates an optional numeric (no
quotes) or character (quoted) parameter
and the comma which must precede the
optional parameter. Do not type the
brackets.

[, year]
[, "columnName"]

| Syntax: OR. Separates alternatives from
which you choose only one. Do not type
the OR symbol.

SET AGGMISSG ON | OFF

@ Essbase calculation functions: Precedes
many function names

@ABS

-> Essbase calculation functions: Cross-
dimensional operator (a hyphen
followed by a greater-than sign) points
to data values of specific member
combinations -> (cross-dimensional
operator)

Price -> West = AVGRANGE

About Aggregate Storage Cubes
Consider using Essbase aggregate storage (ASO) cubes if data in your business is large and
sparse, and requires frequent aggregation, but not so frequent updates.

This topic explains how calculation and query considerations of your data model might lead
you to select aggregate storage option (ASO) for your Essbase database.

Consider using aggregate storage if the following is true:

• Your cube is sparse and has many dimensions, and/or the dimensions have many levels of
members.

• The cube is used primarily for read-only purposes, with few or no data updates.

Chapter 1
About Aggregate Storage Cubes

1-2

• The outline contains no formulas except in the dimension tagged as Accounts.

• Calculation of the cube is frequent, is based mainly on summation of the data, and does
not rely on calculation scripts.

Note the applicability of the following elements for aggregate storage cubes:

• MDX—Used for querying on block storage and aggregate storage cubes. Additionally,
MDX numeric-value expressions can be used for developing formulas on aggregate
storage outlines. For more information, see Aggregate Storage and MDX Outline
Formulas.

• Calculation commands—Not supported, because calculation scripts are not relevant to
aggregate storage.

• Calculation functions—Not relevant to aggregate storage cubes. Instead, MDX formulas
can be written using MDX numeric-value expressions. Only the Accounts dimension can
have formulas in aggregate storage cubes.

Chapter 1
About Aggregate Storage Cubes

1-3

2
Calculation Functions

Using the Essbase calculation language with its flexible library of functions, you can analyze
complex business scenarios and data relationships.

• Calculation and Member Hierarchy

• Function Parameters

• Calculation Operators

• Calculation Function Categories

• Calculation Function List

• Custom-Defined Calculation Functions

• Custom-Defined Macros

• Functions Supported in Hybrid Mode

Calculation and Member Hierarchy
Essbase provides a suite of functions and calculation operators to facilitate the definition and
application of complex member formulas.

Many Essbase functions identify a member in the database by its position in the database
outline. The outline structure represents a hierarchical tree; every dimension represents a
subsection of the database tree. Generations and levels provide position references for all
database members within the tree. Position references are required because many
applications must be able to determine the location of members within the database structure.

The terms "generation" and "level" denote the distance from either the "root" or the "leaves" of
the dimension. Thus, you can determine the location of any member within a database tree.
You can also specify relationships between groups of related members.

Generations specify the distance of members from the root of their dimension. All members in
a database that are the same number of branches from their root have the same generation
number. The dimension is generation 1, its children are generation 2, and so on.

Levels measure the number of branches between a member and the lowest member below it,
that is, the number of branches between a member and the "leaf" of its hierarchy within the
database structure. Level 0 specifies the bottom-most members of a dimension and thus
provides ready access to the raw data stored in a database. Leaf members are level 0, then
their parents are level 1, and so on up the hierarchy.

You might note that when all sibling members have the same generation number but not
necessarily the same level number.

For example, the members in this hierarchy:

Dim1
 m11
 m111
 m112

2-1

 m12
 m121
 m122
 m13

have the following generation and level numbers:

Dim1 Gen 1, Level 2
 m11 Gen 2, Level 1
 m111 Gen 3, Level 0
 m112 Gen 3, Level 0
 m12 Gen 2, Level 1
 m121 Gen 3, Level 0
 m122 Gen 3, Level 0
 m13 Gen 2, Level 0

See also: Relationship Functions

Function Parameters
The following table provides a brief description of some of the common parameters used in
various functions.

Note:

Member names that are also keywords, such as IF, THEN, ELSE, and RETURN,
must be enclosed in quotation marks. Best practice is to always enclose member
names in quotation marks.

Table 2-1 Function Parameters

Parameter Description

attDimName A single attribute dimension name specification.

@WITHATTR(Ounces,"<",16)

attMbrName A single attribute member name specification.

@ATTRIBUTE(Can)
@ATTRIBUTEVAL(Ounces)
@WITHATTR("Pkg Type","= =",Can)

dimName A single dimension name specification.

@CURLEV(Accounts)
@CURGEN(Year)
@PARENT(Measures,Sales)

Chapter 2
Function Parameters

2-2

Table 2-1 (Cont.) Function Parameters

Parameter Description

expList A comma-delimited list of member names, variable
names, functions, and numeric expressions, all of
which return numeric values.

@MAX(Jan,Feb,100,Apr-May)
@MIN(Oct:Dec)
@COUNT(SKIPNONE,@RANGE(Sales,@CHILDRE
N(Product)))

expression Any mathematical or numeric expression that is
valid within Essbase and that, when calculated,
returns a numeric value. This definition of
expression also includes parameters such as
numDigits, generation, and level, and other similar
parameters for the financial group of functions,
such as rateMbrConst and lifeMbrConst.

@ABS(Actual-Budget)
@ROUND(Sales / 10.0 + 100)

genLevName Generation or level name specification.

@DESCENDANTS(Market,Regions)
@RELATIVE(Qtr1,Month)

genLevNum An integer value that defines the number of a
generation or level. A positive integer defines a
generation number. A value of 0 or a negative
integer defines a level number.

@ANCESTORS(Sales,-2)
@SANCESTVAL(Product,2,Sales)

mbrList A comma-delimited list of members.

@ISMBR(New_York,Boston,Chicago)

Chapter 2
Function Parameters

2-3

Table 2-1 (Cont.) Function Parameters

Parameter Description

mbrName Any valid single member name or member
combination, or a function that returns a single
member or member combination. This definition
also includes similar parameters, such as
balanceMbrName, costMbr, and cashflowMbr, for
the financial group of functions.

@GEN(Actual)
@CHILDREN(Product)
@MAXRANGE(@ANCESTORS(Qtr4),Jan:Dec)

For functions that expect a single member name
(for example, @DESCENDANTS and
@CHILDREN), if a member combination is
provided, Essbase uses the first member in the
combination. For example, if mbrName is Utah-
>Sales, Essbase uses Utah.

n A positive or negative integer value.

@NEXT(2,Jan:Dec)
@SHIFT(3)

propertyName Dimension property name.

@PROPERTY(Market,Size)
@ISPROPERTY([Market].[New
York],Size,Medium)

propertyValue Optional. Member property value. The value must
match the data type of the dimension property
specified in propertyName.

@PROPERTY(Market,Size,Medium)
@PROPERTYBVAL(“New York”,Color)

rangeList A valid member name, a comma-delimited list of
member names, member set functions, and range
functions from the same dimension. If rangeList is
optional and is not specified, Essbase uses the
level 0 members from the dimension tagged as
Time. If no dimension is tagged as Time and this
parameter is omitted, Essbase reports a syntax
error. This definition of rangeList also includes
mbrList.

@ACCUM(Q189:Q491)
@MAXRANGE(Sales,@CHILDREN(Qtr1))

Chapter 2
Function Parameters

2-4

Table 2-1 (Cont.) Function Parameters

Parameter Description

tag Any valid account tag defined in the current
database including First, Last, Average, Expense,
and Two-Pass.

@ISACCTYPE("EXPENSE")

To ensure that the tag is resolved as a string rather
than a member name, enclose the tag in quotation
marks.

XrangeList Similar to rangeList, but supports cross
dimensional members.

A valid member name, a comma-delimited list of
member names, cross dimension members, or a
member set function or range function (including
@XRANGE) that returns a list of members from the
same dimension. If XrangeList is not specified,
Essbase uses the level 0 members from the
dimension tagged as Time.

See also Range List Parameters.

Calculation Operators
Essbase calculation operators (mathematical, conditional and logical, and cross-dimensional)
help you define equations for member formulas and calc scripts.

• Mathematical Operators are for common arithmetic operations.

• Conditional and Logical Operators are for building conditional tests.

• The Cross-Dimensional Operator is for referencing data intersections.

Mathematical Operators
Mathematical operators help you perform common arithmetic operations in your Essbase
calculation scripts.

Table 2-2 Mathematical Operators

Operator Description

+ Adds

- Subtracts

* Multiplies

/ Divides

% Evaluates percentage, for example:

Member1%Member2 evaluates Member1 as a
percentage of Member2.

() Controls the order of calculations and nests
equations and formulas

Chapter 2
Calculation Operators

2-5

Conditional and Logical Operators
Conditional operators in Essbase calculations help you build logical conditions into your
calculation scripts.

Table 2-3 Conditional and Logical Operators

Operator Description

IF | ELSE | ELSEIF | ENDIF Tests conditions and calculates a formula based on
the success or failure of the test

> Data value is greater than

>= Data value is greater than or equal to

< Data value is less than

<= Data value is less than or equal to

= = If data value is equal to

< > or != Data value is not equal to

AND Logical AND linking operator for multiple value
tests. Result is TRUE if both conditions are TRUE.
Otherwise the result is FALSE.1

OR Logical OR linking operator for multiple value tests.
Result is TRUE if either condition is TRUE.
Otherwise the result is FALSE.2

NOT Logical NOT operator. Result is TRUE if condition
is FALSE. Result is FALSE if condition is TRUE.3

1 The logical constants TRUE and FALSE are interpreted as 1 (TRUE) and 0 (FALSE) where appropriate.
2 The logical constants TRUE and FALSE are interpreted as 1 (TRUE) and 0 (FALSE) where appropriate.
3 The logical constants TRUE and FALSE are interpreted as 1 (TRUE) and 0 (FALSE) where appropriate.

Cross-Dimensional Operator
The cross-dimensional operator is an Essbase calculation notation for pointing to data values
of specific member combinations.

To include a cross-dimensional operator in a calculation, create it using a hyphen (-) and a
right angle bracket (>), with no space between them.

->

The following example uses the CLEARDATA command to clear budget data for the Colas
product family.

CLEARDATA Budget->Colas;

The following example uses a cross-dimensional operator between two member functions to
calculate the average of the children of a member across two dimensions.

@AVGRANGE(SKIPBOTH,"Sales",@CHILDREN(@CURRMBR("Product"))-
>@CHILDREN(@CURRMBR("Market")));

Chapter 2
Calculation Operators

2-6

Operation Results on #MISSING Values and Zero (0) Values
If a data value does not exist for a unique combination of members, Essbase gives the
combination a value of #MISSING. A #MISSING value is different from a zero (0) value.
Therefore, Essbase treats #MISSING values differently from 0 values.

The following tables shows how Essbase calculates #MISSING values. In this table, X
represents any number.

Table 2-4 How Essbase Calculates Missing Values

Calculation/Operation Result

X + #MISSING X

X – #MISSING
#MISSING – X

X

-X

X * #MISSING #MISSING
X / #MISSING
#MISSING / X

X / 0

#MISSING
#MISSING
#MISSING

X % #MISSING
#MISSING % X

X % 0

#MISSING
#MISSING
#MISSING

X == #MISSING False, unless X is #MISSING
X != #MISSING
X <> #MISSING

True, unless X is #MISSING
True, unless X is #MISSING

(X <= #MISSING) (X <=0)

(X >= #MISSING) (X >=0) or (X == #MISSING)

(X > #MISSING) (X > 0)

(X < #MISSING) (X < 0)

X AND #MISSING:

1 AND #MISSING (1 represents any nonzero value)

0 AND #MISSING
#MISSING AND #MISSING

#MISSING
0

#MISSING

X OR #MISSING:

1 OR #MISSING (1 represents any nonzero value)

0 OR #MISSING
#MISSING OR #MISSING

1

#MISSING
#MISSING

IF (#MISSING) IF (0)

f (#MISSING) #MISSING for any Essbase function of one variable

f (X) #MISSING for any X not in the domain of f, and any
Essbase function of more than one variable (except
where specifically noted)

Chapter 2
Operation Results on #MISSING Values and Zero (0) Values

2-7

Calculation Function Categories
This section lists all of the Essbase calculation functions, grouped by function type.

• Conditional and Logical Operators

• Boolean Functions

• Relationship Functions

• Calculation Operators

• Mathematical Functions

• Member Set Functions

• Range and Financial Functions

• Allocation Functions

• Forecasting Functions

• Statistical Functions

• Date & Time Functions

• Custom-Defined Calculation Functions

• Miscellaneous Functions

Boolean Functions
A Boolean function returns TRUE or FALSE (1 or 0, respectively). Boolean functions are
generally used in conjunction with the IF command to provide a conditional test. Because they
generate a numeric value, however, Boolean functions can also be used as part of a member
formula.

Boolean functions are useful because they can determine which formula to apply based on
characteristics of the current member combination. For example, you may want to restrict a
calculation to those members in a dimension that contain input data. In this case, you preface
the calculation with an IF test that is based on @ISLEV (dimName, 0).

If one of the function parameters is a cross-dimensional member; for example, @@ISMBR
(Sales->Budget), all parts of the cross-dimensional member must match all parts of the current
cell to return a value of TRUE.

In the following quick-reference table, "the current member" means the member that is
currently being calculated by the function. Words in italics, such as member, loosely indicate
information you supply to the function. For details, see the individual function topics.

Table 2-5 Boolean Functions

Function Condition Tested

@ISACCTYPE Whether the current member has a particular
accounts tag.

@ISANCEST Whether the current member is an ancestor of
member.

@ISCHILD Whether the current member is a child of member.

@ISDESC Whether the current member is a descendant of
member.

Chapter 2
Calculation Function Categories

2-8

Table 2-5 (Cont.) Boolean Functions

Function Condition Tested

@ISGEN Whether the current member of dimension is in
generation.

@ISIANCEST Whether the current member is the same member
or an ancestor of member.

@ISICHILD Whether the current member is the same member
or a child of member.

@ISIDESC Whether the current member is the same member
or a descendant of member.

@ISIPARENT Whether the current member is the same member
or the parent of member.

@ISISIBLING Whether the current member is the same member
or a sibling of member.

@ISLEV Whether the current member of dimension is in
level.

@ISMBR Whether the current member is member, or is
found in member list, or is found in a range
returned by another function.

@ISMBRUDA Whether the specified user-defined attribute string
exists for the specified member.

@ISPARENT Whether the current member is the parent of
member.

@ISRANGENONEMPTY Whether data values exist for a specified range.

@ISSAMEGEN Whether the current member is in the same
generation as member.

@ISSAMELEV Whether the current member is in the same level
as member.

@ISSIBLING Whether the current member is a sibling of
member.

@ISUDA Whether the current member of dimension has a
particular user-defined attribute string.

Relationship Functions
Relationship functions look up specific values within the database based on current cell
location and a series of parameters. You can use these functions to refer to another value in a
data series. Relationship functions have an implicit current member argument; that is, these
functions are dependent on the current member's position.

In the following quick-reference table, words in italics loosely represent information you supply
to the function. For details, see the individual function topics.

Table 2-6 Relationship Functions

Function Return Value

@ANCESTVAL Ancestor values of a specified one-dimensional
member combination.

@ATTRIBUTEBVAL Associated attribute value from a Boolean attribute
dimension.

Chapter 2
Calculation Function Categories

2-9

Table 2-6 (Cont.) Relationship Functions

Function Return Value

@ATTRIBUTESVAL Associated attribute value from a text attribute
dimension.

@ATTRIBUTEVAL Associated attribute value from a numeric or date
attribute dimension.

@CURGEN Generation number of the current member in
dimension.

@CURLEV Level number of the current member in dimension.

@GEN Generation number of member.

@LEV Level number of member.

@MDANCESTVAL Ancestor values for any number of
multidimensional member combinations.

@MDPARENTVAL Parent values for any number of multidimensional
member combinations.

@PARENTVAL Parent values for member in dimension.

@SANCESTVAL Ancestor values for shared members at a certain
depth under a root member.

@SPARENTVAL Parent values for shared members under a root
member.

@WEIGHTEDSUMX Aggregates all members in a member list,
depending on the unit weight of each member.

@XREF Values from a different database than the one
being calculated.

@XWRITE Writes values to a different database than the one
being calculated.

Mathematical Functions
These functions perform specific mathematical calculations. Mathematical functions define and
return values that are based on selected member expressions. These functions cover many
basic statistical functions and return numeric results that are based on supplied member
values. Advanced statistical functions are included in the statistical functions category.

In the following quick-reference table, words in italics loosely represent information you supply
to the function. For details, see the individual function topics.

Table 2-7 Mathematical Functions

Function Return Value

@ABS Absolute value of expression.

@AVG Average of all values in expList.

@EXP e (base of natural logarithms) raised to the power
of expression.

@FACTORIAL Factorial of expression.

@INT Next lowest integer value of expression.

@LN e (base of natural logarithms) of expression.

@LOG Any base logarithm of expression.

@LOG10 Base-10 logarithm of expression.

@MAX Maximum value found in cells of an expression list.

Chapter 2
Calculation Function Categories

2-10

Table 2-7 (Cont.) Mathematical Functions

Function Return Value

@MAXS Maximum value found in cells of an expression list,
optionally skipping empty values.

@MIN Minimum value found in cells of expression list.

@MINS Minimum value found in cells of an expression list,
optionally skipping empty values.

@MOD Modulus of a division operation between two
members.

@POWER Expression raised to power.

@REMAINDER Remainder value of expression.

@ROUND Expression rounded to numDigits.

@SUM Sum of values found in cells of an expression list.

@TRUNCATE Expression with fractional part removed, returning
an integer.

@VAR Variance between two members.

@VARPER Percent variance between two members.

Member Set Functions
Member set functions return a list of members. This list is based on the member specified and
the function used. You can use operators to specify Generation and Level Range Operators for
Member Set Functions with member set functions.

When a member set function is called as part of a formula, the list of members is generated
before the calculation begins. The list never varies because it is based on the specified
member and is independent of the current member.

If a member set function (for example, @CHILDREN or @SIBLINGS) is used to specify the list
of members to calculate in a calculation script, Essbase bypasses the calculation of any
Dynamic Calc or Dynamic Calc and Store members in the resulting list.

Only the @ATTRIBUTE and @WITHATTR functions can use attribute members or members of
the Attribute Calculations dimension as parameters in member set functions.

You can use cross-dimension expressions such as ("1998":"2001" -> @Levmbrs (Year, 0)).
The cross-dimensional operator is associative (x -> y) -> z=x -> (y -> z), but not commutative
because x -> y = y -> x is a set, but the order of elements is different.

Table 2-8 Member Set Functions

Function Return Value

@ALLANCESTORS All ancestors of member, including ancestors of
shared member.

@ANCEST Ancestor at distance from the current member or
an explicitly specified member.

@ANCESTORS All ancestors of member, or those ancestors up to
a specified distance.

@ATTRIBUTE All base members associated with attribute
member name.

@BETWEEN All members whose name string value fall between,
and are inclusive of, two specified string tokens.

Chapter 2
Calculation Function Categories

2-11

Table 2-8 (Cont.) Member Set Functions

Function Return Value

@CHILDREN Children of member.

@CURRMBR Member currently being calculated in the specified
dimension.

@DESCENDANTS All descendants of member, or those descendants
down to a specified distance.

@EQUAL Member names that match the specified token
name.

@EXPAND Expands a member search by calling a member set
function for each member in a member list.

@GENMBRS Members of dimension that are at generation.

@IALLANCESTORS Member and ancestors of member, including
ancestors of shared member.

@IANCESTORS Member, and either all member ancestors or those
ancestors up to a specified distance.

@ICHILDREN Member and its children.

@IDESCENDANTS Member, and either all member descendants or
those descendants down to a specified distance.

@ILANCESTORS Members of the specified list of members, and
either all ancestors of the specified list of members
or those ancestors up to a specified distance.

@ILDESCENDANTS Members of the specified list of members, and
either all descendants of the specified list of
members or those descendants down to a
specified distance.

@ILSIBLINGS Member and its left siblings.

@INTERSECT Members that are at the intersection of two
specified lists of members.

@IRSIBLINGS Member and its right siblings.

@IRDESCENDANTS Member and all its descendants, or those
descendants down to a specified distance,
including descendants of shared member.

@ISIBLINGS Member and its siblings.

@LANCESTORS All ancestors of the specified list of members, or
those ancestors up to a specified distance.

@LDESCENDANTS All descendants of the specified list of members, or
those descendants down to a specified distance.

@LEVMBRS Members of dimension that are at level.

@LIST A single list compiled from arguments, and can be
used for functions requiring an expression list, a
member list, or a range list.

@LSIBLINGS Left siblings of member.

@MATCH Members that match a pattern search performed
over a generation, a level, or a member and its
descendants.

@MBRCOMPARE Member names that match the comparison criteria.

@MBRPARENT Parent of the specified member.

@MEMBER Member with name string.

@MEMBERAT Member at the specified location in a list.

@MERGE Merged list from two lists.

Chapter 2
Calculation Function Categories

2-12

Table 2-8 (Cont.) Member Set Functions

Function Return Value

@NEXTSIBLING Next, or right-most, sibling of member.

@NOTEQUAL Member names that do not match the specified
token name.

@PARENT Parent of the current member being calculated in
dimension, optionally crossed with another
member.

@PREVSIBLING Previous, or left-most, sibling of member.

@RANGE Member list that crosses a member from one
dimension with a range from another dimension.

@RDESCENDANTS All descendants of member, or those down to a
specified distance, including descendants of
shared member.

@RELATIVE All members that are at distance from member.

@REMOVE List1, with anything that is also in list2 removed.

@RSIBLINGS Right siblings of member.

@SHIFTSIBLING Sibling at specified distance from member.

@SIBLINGS Siblings of member.

@UDA Members of dimension that have UDA.

@WITHATTR Base members from dimension that are associated
with an attribute meeting a condition.

@XRANGE Range of members between (and inclusive of) two
members at the same level.

Generation and Level Range Operators for Member Set Functions

The operators : and :: can be used with member set functions, which return a list of members.
The : operator returns level-based ranges and the :: operator returns generation-based ranges.
For example, Jan:Dec and Jan::Dec both return all members between and inclusive of Jan and
Dec.

The difference is that Jan:Dec returns all members at the same level and Jan::Dec returns all
members at the same generation.

For example, if we have the outline:

 Q1 - Jan
 Feb
 Mar
 Q2 - Apr
 May
 Jun
 Q3
 Q4 - Oct
 Nov
 Dec

The function @MOVAVG(Sales, 3, Jan:Dec) computes @MOVAVG(Sales, 3, Jan, Feb, Mar,
Apr, May, Jun, Q3, Oct, Nov, Dec).

Chapter 2
Calculation Function Categories

2-13

The function @MOVAVG(Sales, 3, Jan::Dec) computes @MOVAVG(Sales, 3, Jan, Feb, Mar,
Apr, May, Jun, Oct, Nov, Dec).

Range and Financial Functions
Range functions take a range of members as an argument. Rather than return a single value,
these functions calculate a series of values internally based on the range specified.

Financial functions execute specialized financial calculations.

Table 2-9 Range and Financial Functions

Function Return Value

@ACCUM The sum of values of a specified member across a
range

@AVGRANGE The average of values of a specified member
across a range

@COMPOUND The compound interest of values of a specified
member across a range, calculated at a specified
rate

@COMPOUNDGROWTH A series of values that represent the compound
growth of the specified member across a range of
members, calculated at a specified rate

@CURRMBRRANGE A range of members that is based on the relative
position of the member combination Essbase is
currently calculating

@DECLINE Depreciation of a member over a specified period,
calculated using the declining balance method

@DISCOUNT Discounted values of a specified member,
calculated at a specified rate, across a range of
values from the time dimension

@GROWTH A series of values that represents the linear growth
of the specified value

@INTEREST A series of values that represent the linear growth
of a specified member, calculated at a specified
rate, across a range of members from the time
dimension

@IRR The Internal Rate of Return on a cash flow that is
calculated across the time dimension or a specified
range of members and must contain at least one
investment (negative) and one income (positive).
Includes an initial guess of 0.07 (the initial guess
cannot be configured).

@IRREX The Internal Rate of Return on a cash flow that is
calculated across the time dimension or a specified
range of members and must contain at least one
investment (negative) and one income (positive).
Includes functionality to configure the initial guess
and the number of iterations the algorithm can
make.

@MAXRANGE The maximum value of a member across a range
of members

@MAXSRANGE The maximum value of a member across a range
of members, with the ability to skip zero and
#MISSING values

Chapter 2
Calculation Function Categories

2-14

Table 2-9 (Cont.) Range and Financial Functions

Function Return Value

@MDSHIFT The next or nth member in a range of members,
retaining all other members identical to the current
member across multiple dimensions

@MINRANGE The minimum value of a member across a range of
members

@MINSRANGE The minimum value of a member across a range of
members, with the ability to skip zero and
#MISSING values

@NEXT The next or nth member in a range of members

@NEXTS The next or nth member in a range of members,
with the option to skip #MISSING, zero, or both
values

@NPV The Net Present Value of an investment based on
a series of payments and income values

@PTD The period-to-date values of members in the time
dimension

@PRIOR A list of the previous or nth previous members in a
range of members

@PRIORS A list of the previous or nth previous members in a
range of members, with the option to skip
#MISSING, zero, or both values

@RANGE A member list that crosses the specified member
from one dimension with the specified member
range from another dimension

@RANGEFIRSTVAL The first value in a range (with options for how to
handle zero and #MISSING).

@RANGELASTVAL The last value in a range (with options for how to
handle zero and #MISSING).

@SHIFT

@SHIFTPLUS

@SHIFTMINUS

A list of the next or nth members in a range of
members, retaining all other members identical to
the current member and in the specified dimension

@SLN Depreciation amounts, across a range period, that
an asset in the current period may be depreciated,
calculated using the straight-line depreciation
method

@SUMRANGE A list of summarized values of all specified
members across a range of members

@SYD Depreciation amounts, across a range of periods,
of an asset in the current period, calculated using
the sum of the year's digits depreciation method

@XRANGE A list of a range of members between specified
members at the same level

Range List Parameters

Some range and forecasting functions recognize the optional parameter rangeList or
XrangeList as the last parameter. rangeList is a range of members restricted to one dimension;
XrangeList is a range of members that can be from one or multiple dimensions. XrangeList
helps you incorporate time continuum navigation for the calculation functions you use.

Chapter 2
Calculation Function Categories

2-15

If rangeList or XrangeList are not given, the level 0 (leaf) members from the dimension tagged
as Time become the default range. If no dimension is tagged as Time and the last parameter is
not given, Essbase reports a syntax error.

Examples of rangeList

The following examples are based on Sample Basic.

@CHILDREN(West) is a rangeList that returns the following list:

California
Oregon
Washington
Utah
Nevada

@CHILDREN(Product) is a rangeList that returns the following list:

Colas
Root Beer
Cream Soda
Fruit Soda
Diet Drinks

As you can see from the above examples, rangeList is a list of members from a single
dimension only.

Examples of XrangeList

The following examples are based on Sample Basic.

The following example uses simple members to return the range between Jan and Mar:

@XRANGE(Jan:Mar)

and returns the following members:

Jan
Feb
Mar

The following example uses cross dimensional members to return the range between Actual,
Jan and Budget, Mar:

@XRANGE (Actual->Jan, Budget->Mar)

and returns the following members:

Actual, Jan
Actual, Feb
Actual, Mar
Actual, Apr
Actual, May
Actual, Jun

Chapter 2
Calculation Function Categories

2-16

Actual, Jul
Actual, Aug
Actual, Sep
Actual, Oct
Actual, Nov
Actual, Dec
Budget, Jan
Budget, Feb
Budget, Mar

The following example is not based on the Sample Basic database. It is based on database
that contains a dimension called Year that contains members for each year, from 2001 to 2003.
The following formula computes the average sales for all months between Mar of 2000 and
Jan of 2001:

SalesAvg= @MOVAVG(Sales, 3, @XRANGE("2001"->Mar, "2003"->Jan));

and returns the following members:

 Colas New York Actual
 Sales SalesAvg
 ===== ========
2000
 Mar 678 678
 Apr 645 645
 May 675 666
 Jun 712 677.3
 Jul 756 714.3
 Aug 890 786
 Sep 924 856.7
 Oct 914 909.3
 Nov 912 916.7
 Dec 723 849.7
2001
 Jan 647 760.7

As you can see from the above examples, XrangeList is a range of members from one or more
dimensions, and can help you incorporate time continuum navigation.

More Examples of rangeList and XrangeList

The following table provides more examples of valid values for rangeList or XrangeList.

Table 2-10 Valid Values for rangeList and XrangeList

Example Description

Mar99 A single member

Mar99, Apr99, May99 A comma-delimited list of members.

Jan99:Dec99 A level range.

A level range includes all members on the same
level between and including the members defining
the range.

Chapter 2
Calculation Function Categories

2-17

Table 2-10 (Cont.) Valid Values for rangeList and XrangeList

Example Description

Q1_99::Q4_2000 A generation range.

A generation range includes the members defining
the range and all members that are within the
range and of the same generation.

Q1_99::Q4_2000, FY98, FY99, FY2000 A generation range and a comma-delimited list

@SIBLINGS(Dept01), Dept65:Dept73, Total_Dept A member set function and one or more range lists

The following table provides examples of valid values for XrangeList.

Table 2-11 Valid Values for XrangeList

Example Description

Jan->Actual->Sales, Dec->Actual->Sales A comma-delimited list of members from one or
more dimensions.

Actual->Jan, @XRANGE(Actual->December,
Budget->Mar);

A comma-delimited list and a range.

@XRANGE(Jan->Actual,Dec->Budget); A @XRANGE function.

@CHILDREN("Colas"),@CHILDREN("West") A member set function as part of a range list.

Financial functions never return a value; rather, they internally calculate a series of values
based on the range specified and write the results to a range of cells. Thus, you cannot apply
any operator directly to the function.

Allocation Functions
These functions allocate values that are input at the parent level. The values are allocated
across child members in one or more dimensions, based on specified criteria. These functions
consolidate the common tasks that are required to perform allocations in Essbase.

Table 2-12 Allocation Functions

Function Allocation Type

@ALLOCATE Allocates values to lower-level members in one
level.

@MDALLOCATE Allocates values to lower-level members in multiple
dimensions.

Forecasting Functions
Forecasting functions manipulate data for the purpose of smoothing, interpolating, or
calculating future values. Forecasting functions are often used in planning, analysis, and
modeling applications. Some forecasting functions recognize the optional Range List
Parameters rangeList or XrangeList).

Chapter 2
Calculation Function Categories

2-18

Table 2-13 Forecasting Functions

Function Data Manipulation

@MOVAVG Applies a moving average to a data set, replacing
each term in the list with a trailing average. This
function modifies the data set for smoothing
purposes.

@MOVMAX Applies a moving maximum to a data set, replacing
each term in the list with a trailing maximum. This
function modifies the data set for smoothing
purposes.

@MOVMED Applies a moving median to a data set, replacing
each term in the list with a trailing median. This
function modifies the data set for smoothing
purposes.

@MOVMIN Applies a moving minimum to a data set, replacing
each term in the list with a trailing minimum. This
function modifies the data set for smoothing
purposes.

@MOVSUM Applies a moving sum to a data set. This function
modifies the data set for smoothing purposes.

@MOVSUMX Applies a moving sum to a data set, enabling
specification of values for trailing members. This
function modifies the data set for smoothing
purposes.

@SPLINE Applies a smoothing spline to a set of data points.
A spline is a mathematical curve that is used to
smooth or interpolate data.

@TREND Calculates future values, basing the calculation on
curve-fitting to historical values

Statistical Functions
Statistical functions calculate advanced statistical values, such as correlation or variance.
These functions are often used in sales and marketing applications.

Table 2-14 Statistical Functions

Function Return Value

@CORRELATION The correlation coefficient between two parallel
data sets

@COUNT The number of data values in the specified data set

@MEDIAN The median (middle value) of the specified data set

@MODE The mode (the most frequently occurring value) in
the specified data set

@RANK The rank (position in the sorted data set) of the
specified members or the specified value among
the values in the specified data set.

@STDEV The standard deviation of the specified data set

@STDEVP The standard deviation of the specified data set,
calculated over the entire population

Chapter 2
Calculation Function Categories

2-19

Table 2-14 (Cont.) Statistical Functions

Function Return Value

@STDEVRANGE The standard deviation of all values of the specified
member across the specified data set. The
specified mbrName is crossed with a range list to
obtain the sample across which the standard
deviation is calculated.

@VARIANCE The statistical variance of the specified data set
(expList), based upon a sample of a population

@VARIANCEP The statistical variance of the specified data set
(expList), based upon the entire population

Date & Time Functions
Some Essbase calculation functions help you perform calculations based on calendar dates or
date-type strings.

@TODATE converts date strings to numbers that can be processed in calculation formulas.

If your cube uses date measures, you can also use the following functions.

• @DATEDIFF

• @DATEPART

• @DATEROLL

• @FORMATDATE

• @TODATEEX

• @TODAY

Miscellaneous Functions
• @CALCMODE—This function enables you to specify whether a formula is calculated in

cell mode or block mode and whether a formula is calculated bottom-up or top-down

• @CONCATENATE, @SUBSTRING, and @NAME—These functions enable manipulation
of character strings.

• @RETURN—This function enables termination of a calculation, with a custom error
message.

• @CREATEBLOCK—This function populates cells with values or #MISSING.

Calculation Function List
Essbase includes powerful calculation features for demanding analytic requirements. A rich
library of calculation functions makes it easy to define advanced and sophisticated business
logic and relationships.

Click here for a categorical list.

Alphabetical List of Calculation Functions

@ABS @EXP @ISMBR @MINRANGE @RETURN

Chapter 2
Calculation Function List

2-20

Alphabetical List of Calculation Functions

@ACCUM @EXPAND @ISMBRUDA @MINS @ROUND

@ALLANCESTOR
S

@FACTORIAL @ISMBRWITHATT
R

@MINSRANGE @RSIBLINGS

@ALIAS @FORMATDATE @ISPARENT @MOD @SANCESTVAL

@ALLOCATE @GEN @ISRANGENONE
MPTY

@MODE @SHARE

@ANCEST @GENMBRS @ISSAMEGEN @MOVAVG @SHIFT

@ANCESTORS @GRIDTUPLES @ISSAMELEV @MOVMAX @SHIFTMINUS

@ANCESTVAL @GROWTH @ISSIBLING @MOVMED @SHIFTPLUS

@ATTRIBUTE @IALLANCESTOR
S

@ISUDA @MOVMIN @SHIFTSIBLING

@ATTRIBUTEBVA
L

@IANCESTORS @LANCESTORS @MOVSUM @SIBLINGS

@ATTRIBUTESVA
L

@ICHILDREN @LDESCENDANT
S

@MOVSUMX @SLN

@ATTRIBUTEVAL @IDESCENDANT
S

@LEV @NAME @SPARENTVAL

@AVG @ILANCESTORS @LEVMBRS @NEXT @SPLINE

@AVGRANGE @ILDESCENDANT
S

@LIKE @NEXTS @STDEV

@BETWEEN @ILSIBLINGS @LIST @NEXTSIBLING @STDEVP

@CALCMODE @INT @LN @NONEMPTYTUP
LE

@STDEVRANGE

@CHILDREN @INTEREST @LOG @NOTEQUAL @SUBSTRING

@COMPOUND @INTERSECT @LOG10 @NPV @SUM

@COMPOUNDGR
OWTH

@IRDESCENDAN
TS

@LSIBLINGS @PARENT @SUMRANGE

@CONCATENATE @IRR @MATCH @PARENTVAL @SYD

@CORRELATION @IRREX @MAX @POWER @TODATE

@COUNT @IRSIBLINGS @MAXRANGE @PREVSIBLING @TODATEEX

@CREATEBLOCK @ISACCTYPE @MAXS @PRIOR @TODAY

@CURGEN @ISANCEST @MAXSRANGE @PRIORS @TREND

@CURLEV @ISATTRIBUTE @MBRCOMPARE @PTD @TRUNCATE

@CURRMBR @ISCHILD @MBRPARENT @QUERYBOTTO
MUP

@UDA

@CURRMBRRAN
GE

@ISDESC @MDALLOCATE @RANGE @VAR

@DATEDIFF @ISGEN @MDANCESTVAL @RANGEFIRSTVA
L

@VARPER

@DATEPART @ISIANCEST @MDPARENTVAL @RANGELASTVA
L

@VARIANCE

@DATEROLL @ISIBLINGS @MDSHIFT @RANK @VARIANCEP

@DECLINE @ISICHILD @MEDIAN @RDESCENDANT
S

@WEIGHTEDSUM
X

@DESCENDANTS @ISIDESC @MEMBER @RELATIVE @WITHATTR

@DISCOUNT @ISIPARENT @MEMBERAT @RELXRANGE @XRANGE

@ENUMVALUE @ISISIBLING @MERGE @REMAINDER @XREF

@EQUAL @ISLEV @MIN @REMOVE @XWRITE

Chapter 2
Calculation Function List

2-21

@ABS
The @ABS calculation function for Essbase returns an absolute value.

This function returns the absolute value of expression. The absolute value of a number is that
number less its sign. A negative number becomes positive, while a positive number remains
positive.

Syntax

@ABS (expression)

Parameters

expression
Member name or mathematical expression that generates a numeric value.

Example

The following example is based on the Demo Basic database. In this example, Variance needs
to be presented as a positive number. The @ABS function is used because otherwise some
combinations of Actual - Budget would return negative values.

Variance=@ABS(Actual-Budget);

This example produces the following report:

Sales VCR San_Francisco
 Jan Feb Mar
 === ===
===
Actual 1,323 1,290 1,234
Budget 1,200 1,100 1,100
Variance 123 190 134

@ACCUM
The @ACCUM calculation function for Essbase accumulates the values of a member across a
range.

Syntax

This function accumulates the values of mbrName within rangeList, up to the current member
in the dimension of which rangeList is a part.

@ACCUM (mbrName [, rangeList])

Parameters

mbrName
Any valid single member name (or a function that returns a single member) whose value is to
be accumulated.

Chapter 2
Calculation Function List

2-22

rangeList
Optional comma-delimited list of members, member set functions, or range functions, across
which the accumulation occurs. If rangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

• Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

• @ACCUM accepts the @ATTRIBUTE member set function as a member range.

• If you use an Essbase member set function to generate a member list for the rangeList
parameter (for example, @SIBLINGS), to ensure correct results, consider the order in
which Essbase sorts the generated member list.

• You cannot apply an operator (for example divide or multiply) to @Accum. For example,
the formula Budget=@ACCUM(Actual, Jan:Feb)/2 is not valid.

Example

In this example, Accum Asset is calculated using the following formula:

"Accum Asset" = @ACCUM(Asset, FY1997:FY2002);

This example produces the following report. This report shows that the values for Asset are
accumulated starting with FY1997 and the yearly accumulation value is placed in Accum Asset
for FY1997 through FY2002:

 FY1997 FY1998 FY1999 FY2000 FY2001 FY2002
 ======= ======= ======= ======= ======= =======
Asset 9,000 0 1,000 0 2 ,500 1,500
Residual 750 0 0 0 #MISSING #MISSING
Life 5 0 3 0 #MISSING #MISSING
Accum Asset #MISSING #MISSING 1,000 1,000 3,500 5,000

The value of Accum Asset is #MISSING for FY1997 because that is the starting year. The
value of Accum Asset is #MISSING for FY1998 because there was no accumulation that year.
For FY1999, the value of the asset grew by 1,000, so Accum Asset has a value of 1000.

@ALLANCESTORS
The @ALLANCESTORS calculation function for Essbase returns all ancestors of a member.

This function returns all ancestors of the specified member, including ancestors of any
occurrences of the specified member as a shared member. This function excludes the
specified member.

Syntax

@ALLANCESTORS (mbrName)

Chapter 2
Calculation Function List

2-23

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Notes

• Essbase sorts the generated list of members in ascending order of the member number in
the outline. Using Sample Basic as an example, if you specify 100-20 for mbrName, 100,
Diet, and Product are returned (in that order). However, the order in which shared
ancestors are returned is not guaranteed. This order is important to consider when you use
the @ALLANCESTORS member set function with certain forecasting and statistical
functions.

• You can use @ALLANCESTORS as a parameter of another function, where that
parameter is a list of members.

Example

The following example is based on the Sample Basic cube. Sample Basic has a shared level of
diet drinks, which includes 100-20 (Diet Cola). So 100-20 (Diet Cola) is a descendant of 100
(Colas) and is a shared member descendant of Diet:

100
 100-10
 100-20
 …
Diet
 100-20 (Shared Member)
 …

The following calculation script increases by 5% the Budget->Sales values of all ancestors of
100-20, including Diet.

FIX(Budget,@ALLANCESTORS("100-20"))
Sales = Sales * 1.05;
ENDFIX

This example produces the following report. This report shows that the Budget->Sales values
for 100, Diet, and Product (the ancestors of 100-20) have been increased by 5%. The original
values were 8980, 8260, and 28480, respectively.

 Jan
 Actual Budget
 Sales Sales
 ===== =====
Market 100-10 4860 5200
 100-20 2372 2610
 100-30 1082 1170
 100 8314 9429 *
 100-20 2372 2610
 200-20 3122 3090
 300-30 2960 2560

Chapter 2
Calculation Function List

2-24

 Diet 8454 8673 *
 Product 31538 30954 *

See Also

• @IALLANCESTORS

• @ILANCESTORS

• @LANCESTORS

@ALIAS
The @ALIAS calculation function for Essbase returns an alias name.

This function for returns the alias name for the input member name, as a string.

Syntax

@ALIAS (mbrName [, altName])

Parameters

mbrName
Any valid member name, or a function returning a member.

altName
Optional. Alias table name. This parameter is case insensitive.

Notes

• If no alias name is found, this function returns an empty string.

• Because functions that take strings as arguments may not function correctly if the string
matches a member alias, use the function @ALIAS to pass member alias names as
strings, for example when passing alias names as strings to functions such as @ISUDA,
@UDA, @CONCATENATE, @SUBSTRING, @MATCH, or @NAME.

Example

The following example returns the alias of member "US$" from the alias table "Long Names."

IF(@ISUDA(@ALIAS("US$", "Long Names")))
...
ENDIF

In the following example, assume "Book_Inventory" is a dimension name, and there are four
alias tables in the outline ("Long Names" is one of them). The example code checks if the
current member being calculated in the "Title" dimension has an alias name in "Long Names"
that matches with the UDA associated with the "Book_Inventory" dimension’s currently
calculating member.

@ISUDA("Book_Inventory",@ALIAS(@NAME(@CURRMBR("Title")), "Long Names"))

Chapter 2
Calculation Function List

2-25

@ALLOCATE
The @ALLOCATE calculation function for Essbase allocates values from a member, a cross-
dimensional member, or a value across a member list. The allocation is based on a variety of
criteria.

This function allocates values that are input at an upper level to lower-level members. The
allocation is based upon a specified share or spread of another variable. For example, you can
allocate values loaded to a parent member to all of that member's children. You can specify a
rounding parameter for allocated values and account for rounding errors.

Syntax

@ALLOCATE (amount, allocationRange, basisMbr, [roundMbr],method [,
methodParams] [, round [, numDigits][, roundErr]])

Parameters

amount
A value, member, or cross-dimensional member that contains the value to be allocated into
allocationRange. The value may also be a constant.

• If amount is a member, the member must be from the dimension to which allocationRange
belongs.

• If amount is a cross-dimensional member, at least one of its members must be from the
dimension to which allocationRange belongs.

• If no member or cross-dimensional member is from the dimension to which
allocationRange belongs, a warning message is displayed.

If the amount parameter is a loaded value, it cannot be a Dynamic Calc member.

allocationRange
A comma-delimited list of members, member set functions, or range functions, into which
value(s) from amount are allocated. allocationRange should be from only one level (for
example, @CHILDREN(Total Expenses) rather than from multiple levels (for example,
@DESCENDANTS(Product)).

basisMbr
A value, member, or cross-dimensional member that contains the values that provide the
basis for the allocation. The method you specify determines how the basis data is used.

roundMbr
Optional. The member or cross-dimensional member to which rounding errors are added. The
member (or at least one member of a cross-dimensional member) must be included in
allocationRange.

method
The expression that determines how values are allocated. One of the following:

• share:

Chapter 2
Calculation Function List

2-26

Uses basisMbr to calculate a percentage share. The percentage share is calculated by
dividing the value in basisMbr for the current member in allocationRange by the sum
across the allocationRange for that basis member:

amount * (@CURRMBR()->basisMbr/@SUM(allocationRange-> basisMbr)
• spread:

Spreads amount across allocationRange:

amount * (1/@COUNT(SKIP, allocationRange))
SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH: Values to be ignored during
calculation of the spread. You must specify a SKIP parameter only for spread.

– SKIPNONE: Includes all cells.

– SKIPMISSING: Excludes all #MISSING values in basisMbr, and stores #MISSING for
values in allocationRange for which the basisMbr is missing.

– SKIPZERO: Excludes all zero (0) values in basisMbr, and stores #MISSING for values
in allocationRange for which the basisMbr is zero.

– SKIPBOTH: Excludes all zero (0) values and all #MISSING values, and stores
#MISSING for values in allocationRange for which the basisMbr is zero (0) or #MISSING.

• percent: Takes a percentage value from basisMbr for each member in allocationRange
and applies the percentage value to amount:
amount * (@CURRMBR()->basisMbr * .01)

• add: Takes the value from basisMbr for each member of allocationRange and adds the
value to amount:
amount + @CURRMBR()->basisMbr

• subtract: Takes the value from basisMbr for each member of allocationRange and
subtracts the value from amount:
amount - @CURRMBR()->basisMbr

• multiply: Takes the value from basisMbr for each member of allocationRange and
multiplies the value by amount:
amount * @CURRMBR()->basisMbr

• divide: Takes the value from basisMbr for each member of allocationRange and divides
the value by amount:
amount/@CURRMBR()->basisMbr

round
Optional. One of the following:

• noRound: No rounding. noRound is the default.

• roundAmt: Indicates that you want to round the allocated values. If you specify roundAmt,
you also must specify numDigits to indicate the number of decimal places to round to.

numDigits
An integer that represents the number of decimal places to round to. You must specify
numDigits if you specify roundAmt.

• If numDigits is 0, the allocated values are rounded to the nearest integer. The default
value for numDigits is 0.

Chapter 2
Calculation Function List

2-27

• If numDigits is greater than 0, the allocated values are rounded to the specified number of
decimal places.

• If numDigits is a negative value, the allocated values are rounded to a power of 10.

If you specify roundAmt, you also can specify a roundErr parameter.

roundErr
Optional. An expression that specifies where rounding errors should be placed. You must
specify roundAmt in order to specify roundErr. If you do not specify roundErr, rounding errors
are discarded.
To specify roundErr, choose from one of the following:

• errorsToHigh: Adds rounding errors to the member with the highest allocated value. If
allocated values are identical, adds rounding errors to the first value in allocationRange.
(For this option, Essbase does not distinguish between #MI and zero values.)

• errorsToLow: Adds rounding errors to the member with the lowest allocated value. If
allocated values are identical, adds rounding errors to the first value in allocationRange.
#MISSING is treated as the lowest value in a list; if multiple values are #MISSING, rounding
errors are added to the first #MISSING value in the list.

• errorsToMbr: Adds rounding errors to the specified roundMbr, which must be included in
allocationRange.

Notes

• When you use @ALLOCATE in a calculation script, use it within a FIX statement; for
example, FIX on the member to which the allocation amount is loaded. Although FIX is not
required, using it may improve calculation performance.

• If you use @ALLOCATE in a member formula, your formula should look like this:

Member Name = @ALLOCATE (...)

This is because allocation functions never return a value; rather, they calculate a series of
values internally based on the range specified.

• For an example that explains the use of rounding error processing with the @ALLOCATE
function, see Allocating Values within a Dimension.

Example

Consider the following example from the Sample Basic cube. The example assumes that the
Scenario dimension contains an additional member, PY Actual, for the prior year's actual
expenses. Data values of 7000 and 8000 are loaded into Budget->Total Expenses for Jan and
Feb, respectively. (For this example, assume that Total Expenses is not a Dynamic Calc
member.)

You need to allocate values to each expense category (to each child of Total Expenses). The
allocation for each of child of Total Expenses is based on the child's share of actual expenses
for the prior year (PY Actual).:

FIX("Total Expenses")
Budget = @ALLOCATE(Budget->"Total Expenses",@CHILDREN("Total Expenses"),
"PY Actual",,share);
ENDFIX

Chapter 2
Calculation Function List

2-28

This example produces the following report:

 Product Market
 PY Actual Budget
 Jan Feb Jan Feb
 === === ===
===
Marketing 5223 5289 3908.60 4493.63
Payroll 4056 4056 3035.28 3446.05
Misc 75 71 56.13 60.32
 Total Expenses 9354 9416 7000 8000

See Also

• @CREATEBLOCK

• @MDALLOCATE

@ANCEST
The @ANCEST calculation function for Essbase returns an ancestor member.

This function returns the ancestor at the specified generation or level of the current member
being calculated in the specified dimension. If you specify the optional mbrName, that ancestor
is combined with the specified member.

This member set function can be used as a parameter of another function, where that
parameter is a member or list of members.

Syntax

@ANCEST (dimName, genLevNum [, mbrName])

Parameters

dimName
Single dimension name specification.

genLevNum
An integer value that defines the generation or level number from which the ancestor value is
returned. A positive integer defines a generation number. A value of 0 or a negative integer
defines a level number.

mbrName
Optional. Any valid single member name, or a function that returns a single member. This
member is crossed with the ancestor returned.

Notes

• You cannot use the @ANCEST function in a FIX statement.

• You can use the @ANCEST function on both the left-hand and right-hand sides of a
formula. If you use this function on the left-hand side of a formula in a calculation script,
associate it with a member. For example:

Sales(@ANCEST(Product) = 5;);

Chapter 2
Calculation Function List

2-29

• In some cases, the @ANCEST function is equivalent to the @ANCESTVAL function,
except in terms of calculation performance. For example, the following two formulas are
equivalent:

Sales = @ANCEST(Product,2);

Sales = @ANCESTVAL(Product,2);

In this case, using the latter formula results in better calculation performance. In general,
use @ANCEST as a member rather than as an implied value of a cell. For example:

Sales = @AVG(SKIPMISSING, @ISIBLINGS(@ANCEST(Product,2)));

• The time required for retrieval and calculation may be significantly longer if this function is
in a formula attached to a member tagged as Dynamic Calc or Dynamic Calc and Store.

Example

In the Sample Basic database:

Function Generated List

@ANCEST(Product,2,Sales) Colas->Sales, if the current member of Product
being calculated is Diet Cola.

@ANCEST(Measures,3,East) Total Expenses->East, if the current member of
Measures being calculated is Payroll.

See Also

• @ANCESTORS

• @CHILDREN

• @DESCENDANTS

@ANCESTORS
The @ANCESTORS calculation function for Essbase returns ancestor members.

This function returns all ancestors of the specified member (mbrName), or, those up to a
specified generation or level. You can use this member set function as a parameter of another
function, where that parameter is a list of members.

Syntax

@ANCESTORS (mbrName [, genLevNum | genLevName])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Chapter 2
Calculation Function List

2-30

genLevNum
Optional. An integer value that defines the absolute generation or level number up to which to
select the members. A positive integer defines a generation number. A value of 0 or a
negative integer defines a level number.

genLevName
Optional. Level name or generation name up to which to select the members.

Notes

The generated list of members is sorted starting with the nearest ancestor of the member,
followed by the next nearest ancestor of the member, and so on. Using Sample Basic as an
example, if you specify @ANCESTORS(200-30), Essbase returns 200, Product (in that order).
This order is important to consider when you use the @ANCESTORS member set function
with certain forecasting and statistical functions.

Example

In the Sample Basic database:

@ANCESTORS("New York")

returns East, Market (in that order).

@ANCESTORS(Qtr4)

returns Year.

@ANCESTORS("100-10",1)

returns 100, Product (in that order).

@ANCESTORS(Sales,-2)

returns Margin, Profit (in that order).

See Also

• @CHILDREN

• @DESCENDANTS

• @IANCESTORS

• @ILANCESTORS

• @ISANCEST

• @LANCESTORS

• @SIBLINGS

@ANCESTVAL
The @ANCESTVAL calculation function for Essbase returns ancestor values.

This function returns the ancestor data values of the specified member combination.

Chapter 2
Calculation Function List

2-31

Syntax

@ANCESTVAL (dimName, genLevNum [, mbrName])

Parameters

dimName
A single dimension name that defines the focus dimension of ancestor values.

genLevNum
Integer value that defines the generation or level number from which the ancestor values are
to be returned. A positive integer defines a generation reference. A negative number or value
of 0 defines a level reference.
To use this function or any other ancestor value function in a ragged hierarchy, use generation
references instead of level references to avoid unexpected results. See Hierarchy Shapes.

mbrName
Optional. Any valid single member name or member combination (or a function that returns a
single member or member combination).

Example

In this example, SKU Share is derived by taking Sales in each SKU as a percentage of its
product family. Families are at generation 2; therefore, each descendant of family is calculated
as a percentage its respective ancestor. Consolidated results must be calculated for Sales by
Product before the SKU Share calculation occurs.

"SKU Share" = Sales % @ANCESTVAL(Product,2,Sales);

This example produces the following report:

 Sales SKU Share
 ===== =========
SKU101 510 26.0
SKU102 520 26.5
 Group01 1030 52.5
SKU120 430 21.9
SKU123 500 25.5
 Group02 930 47.4
 Family1 1960 100.00

See Also

• @MDANCESTVAL

• @SANCESTVAL

@ATTRIBUTE
The @ATTRIBUTE calculation function for Essbase returns base members associated with an
attribute.

This function lists all base members that are associated with the specified attribute member
(attmbrName). This function can be used as a parameter of another function, where that
parameter is a member or list of members.

Chapter 2
Calculation Function List

2-32

Syntax

@ATTRIBUTE (attmbrName)

Parameters

attMbrName
Single attribute member name.

Notes

When used with a non-level 0 member of an attribute dimension, this function returns all base
members that are associated with the children of the attribute member. For example, in the
Sample Basic database, @ATTRIBUTE(Large) returns all base members that fall into one of the
population ranges for the attribute parent Large.

If you specify the name of a Boolean attribute dimension (for example, Caffeinated), this
function returns all base members that are associated with either Caffeinated member (for
example, True or False). To return only one, specify the member name (for example,
@ATTRIBUTE(Caffeinated_True)).

You may have duplicate Boolean, date, and numeric attribute member names in your outline.
For example, 12 can be the attribute value for the size (in ounces) of a product as well as the
value for the number of packing units for a product. To distinguish duplicate member names,
specify the full attribute member name (for example, @ATTRIBUTE(Ounces_12)).

The generated list of members is sorted in ascending order from the database outline. This
order is important to consider when you use this function with certain forecasting and statistical
functions.

Example

In the Sample Basic database,

@ATTRIBUTE(Can);

returns all base members with the Can attribute: Cola, Diet Cola, and Diet Cream.

Consider the following two calculation scripts, which are based on the Sample Basic database:

/* To increase the marketing budget for markets with large populations */
FIX (@ATTRIBUTE(Large))
Marketing = Marketing * 1.1;
ENDFIX

/* To calculate the average sales of bottled products */
"Bottle Sales" = @AVG(SKIPBOTH,@ATTRIBUTE(Bottle));

See Also

• @ATTRIBUTEVAL

• @WITHATTR

Chapter 2
Calculation Function List

2-33

@ATTRIBUTEBVAL
The @ATTRIBUTEBVAL calculation function for Essbase returns a member's Boolean attribute
value.

This function returns, for the current member being calculated, the associated attribute value
from the specified Boolean attribute dimension.

Syntax

@ATTRIBUTEBVAL (attDimName)

Parameters

attDimName
The name of a Boolean attribute dimension.

Notes

• This function works only with Boolean attribute dimensions. To return values from numeric
or date attribute dimensions, use @ATTRIBUTEVAL. To return values from text attribute
dimensions, use @ATTRIBUTESVAL.

• If no attribute is associated with the member being calculated or if the attribute associated
with the member is a text, numeric, or date attribute, this function returns #MISSING.

• Only level 0 members of attribute dimensions can be associated as attributes of members
of a base dimension.

Example

This example is based on the Sample Basic database.

The Product dimension is associated with the Caffeinated Boolean attribute dimension, as
shown in the following example:

Product {Caffeinated}
 100
 100-10 {Caffeinated:True}
 100-20 {Caffeinated:True}
 100-30 {Caffeinated:False}
 200
 200-10 {Caffeinated:True}
 200-20 {Caffeinated:True}
 200-30 {Caffeinated:False}
 200-40 {Caffeinated:False}
Caffeinated Attribute {Type: Boolean}
 True
 False

For the current member of the base dimension Product, the function
@ATTRIBUTEBVAL(Caffeinated) returns the associated attribute value from the Boolean
attribute dimension, Caffeinated. The following table shows the value that would be returned.

Chapter 2
Calculation Function List

2-34

Table 2-15 Value Returned by @ATTRIBUTEBVAL(Caffeinated) Function

Current Member Return Value

100-10 True

100-20 True

100-30 False

100 #MISSING

200-10 True

200-20 True

200-30 False

200-40 False

200 #MISSING

Product #MISSING

For any member that does not have an associated attribute, #MISSING is returned. Only one
value is returned at a time.

See Also

• @ATTRIBUTEVAL

• @ATTRIBUTESVAL

@ATTRIBUTESVAL
The @ATTRIBUTESVAL calculation function for Essbase returns a member's text attribute
value.

This function returns, for the current member being calculated, the associated attribute value
from the specified text attribute dimension.

Syntax

@ATTRIBUTESVAL (attDimName)

Parameters

attDimName
The name of a text attribute dimension.

Notes

• This function works only with text attribute dimensions. To return values from numeric or
date attribute dimensions, use @ATTRIBUTEVAL. To return values from Boolean attribute
dimensions, use @ATTRIBUTEBVAL.

• If no attribute is associated with the member being calculated or if the attribute associated
with the member is a numeric, Boolean, or date attribute, this function returns an empty
string.

• Only level 0 members of attribute dimensions can be associated as attributes of members
of a base dimension.

Chapter 2
Calculation Function List

2-35

Example

This example is based on the Sample Basic database.

The Product dimension is associated with the Pkg Type text attribute dimension, as shown in
the following example:

Product {Pkg Type}
 100
 100-10 {Pkg Type:Can}
 100-20 {Pkg Type:Can}
 100-30 {Pkg Type:Bottle}
 200
 200-10 {Pkg Type:Bottle}
 200-20 {Pkg Type:Bottle}
 200-30 {Pkg Type:Bottle}
 200-40 {Pkg Type:Bottle}
Pkg Type Attribute {Type: Text}
 Bottle
 Can

For the current member of the base dimension, Product, @ATTRIBUTESVAL("Pkg Type") returns
the associated attribute value from the text attribute dimension, Pkg Type. The following table
shows the value that would be returned:

Table 2-16 Values Returned for @ATTRIBUTESVAL("Pkg Type") Function

Current Member Return Value

100-10 Can

100-20 Can

100-30 Bottle

100 (empty string)

200-10 Bottle

200-20 Bottle

200-30 Bottle

200-40 Bottle

200 (empty string)

Product (empty string)

For any member that does not have an associated attribute, an empty string is returned.

See Also

• @ATTRIBUTEVAL

• @ATTRIBUTEBVAL

Chapter 2
Calculation Function List

2-36

@ATTRIBUTEVAL
The @ATTRIBUTEVAL calculation function for Essbase returns a member's numeric or date
attribute value.

This function returns, for the current member being calculated, the associated attribute value
from the specified numeric or date attribute dimension.

Syntax

@ATTRIBUTEVAL (attDimName)

Parameters

attDimName
Single dimension specification for a numeric or date attribute dimension.

Notes

• This function works only with numeric and date attribute dimensions. To return values from
text attribute dimensions, use @ATTRIBUTESVAL. To return values from Boolean attribute
dimensions, use @ATTRIBUTEBVAL.

• Only level 0 members of attribute dimensions can be associated as attributes of members
of a base dimension.

• If a text attribute, or no attribute, is associated with the member being calculated, this
function returns #MISSING.

• When this function is used with a date attribute dimension, it converts the date string to the
number of seconds elapsed since midnight, January 1, 1970.

Example

Example 1

The following example is based on the Sample Basic database:

"Profit Per Ounce" = Profit/@ATTRIBUTEVAL(@NAME(Ounces));

In this formula, for the current member being calculated, @ATTRIBUTEVAL returns the
associated attribute from the Ounces numeric attribute dimension. For example, if the member
being calculated is Cola and if the Ounces attribute value associated with Cola is 12,
@ATTRIBUTEVAL returns 12. The value returned is then divided into Profit to yield Profit Per
Ounce.

Note:

@NAME is required to process the string “Ounces” before passing it to
@ATTRIBUTEVAL.

Chapter 2
Calculation Function List

2-37

This example produces the following report:

 Actual Year West
 Profit Profit Per Ounce
 ======== ================
Cola 4593 382.75

Example 2

The following MaxL execute calculation statement applies a formula to members that are 16
Oz products:

execute calculation
'Misc
 (IF
 (@ATTRIBUTEVAL(Ounces) == 16)
 Misc = .5;
 ENDIF;
);'
on sample.basic;

@AVG
The @AVG calculation function for Essbase returns the average from a list of numeric values.

Syntax

This function returns the average value among the results of the expressions in expList.

@AVG (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameters

SKIPNONE
Includes all cells specified in the average operation regardless of their content.

SKIPMISSING
Excludes all values that are #MISSING in the average operation.

SKIPZERO
Excludes values of zero from the average calculation.

SKIPBOTH
Excludes all values of zero or #MISSING from the average calculation.

expList
Comma-delimited list of member names, variable names, functions, or numeric expressions.
expList provides a list of numeric values across which the average is calculated.

Chapter 2
Calculation Function List

2-38

Example

The following example is based on the Sample Basic database. The calculation averages the
values for the individual states making up the western region and places the results in West:

FIX(Sales)
West=@AVG(SKIPBOTH,California:Nevada);
ENDFIX

This example produces the following report:

 Sales Jan Actual
 Cola Diet Cola Caffeine Free Cola
 ==== =========
==================
California 678 118 145
Oregon 160 140 150
Washington 130 190 #MI
Utah 130 190 170
Nevada 76 62 #MI
 West 234.8 140 155

See Also

@AVGRANGE

@AVGRANGE
The @AVGRANGE calculation function for Essbase returns a member's average value across
a range.

This function returns the average value of the specified member (mbrName) across the
specified range (XrangeList).

Syntax

@AVGRANGE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrName [,
XrangeList])

Parameters

SKIPNONE
Includes all cells specified in the average operation regardless of their content.

SKIPMISSING
Excludes all values that are #MISSING in the average operation.

SKIPZERO
Excludes values of zero from the average calculation.

SKIPBOTH
Excludes all values of zero or #MISSING from the average calculation.

Chapter 2
Calculation Function List

2-39

mbrName
Any valid single member.

XrangeList
Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

This function accepts @ATTRIBUTE as a member range.

Example

The following example is based on the Sample Basic database. The calculation script
determines the average sales of Colas in the West.

FIX(Sales)
West=@AVGRANGE(SKIPNONE,Sales,@CHILDREN(West));
ENDFIX

This example produces the following report:

 Sales Colas Actual
 Jan Feb Mar
 === === ===
California 941 899 927
Oregon 450 412 395
Washington 320 362 377
Utah 490 488 476
Nevada 138 137 138
 West 467.8 459.6 462.6

The following example uses a cross-dimensional operator between two member functions to
calculate the average of the children of a member across two dimensions.

@AVGRANGE(SKIPBOTH,"Sales",@CHILDREN(@CURRMBR("Product"))-
>@CHILDREN(@CURRMBR("Market")));

See Also

@AVG

@BETWEEN
The @BETWEEN calculation function for Essbase returns member names between two
strings.

This function returns a member set of all members whose name string value fall between, and
are inclusive of, the two specified string tokens. Member names are evaluated
alphanumerically.

This function can be used on unique and duplicate-name outlines.

Chapter 2
Calculation Function List

2-40

Syntax

@BETWEEN (firstToken , secondToken, topMbrInHierarchy)

Parameters

firstToken
First token string value with which to compare to members in the outline, starting with the
member specified in topMbr.

secondToken
Second token string value with which to compare to members in the outline, starting with the
member specified in topMbr.

topMbrInHierarchy
A fully qualified name of a member in the outline on which to base the member search. The
specified member and its aliases, and all of its descendants, are included in the search.
To search the entire outline, provide an empty string ("") for this parameter. For example,
@BETWEEN("200-10","200-20", "").

Example

The following example is based on the following duplicate-name outline:

Product
 100
 100–10
 100–10–10
 100–20
 100–30
 200
 200–10
 200–20
 200–30
 300
 300–10
 300–20
 Diet
 100–10
 100–10–11
 200–10
 300–10
 Bottle
 200–10
 300–20

@BETWEEN("200-10", "200-20", "Product")

Returns the members [200].[200-10], [200].[200-20], [Diet].[200-10],
and [Bottle].[200-10].

Chapter 2
Calculation Function List

2-41

@CALCMODE
The @CALCMODE calculation function for Essbase enables you to select the execution mode
of a formula: block mode or cell mode.

You can use this function to manually control whether block or cell mode is used for formula
execution. Block mode is generally faster, but cannot be used to fully calculate when there are
dependencies between cells in a block. In cell mode, each cell is calculated sequentially in the
order of the dense dimensions in the outline. For example, SalesYTD = CurMth + PriorMth
should be calculated in cell mode so that each month is calculated in the order of the outline.

In hybrid cubes, the calculation of cells are computed in an order dictated by the solve order of
the block members.

@CALCMODE can control two types of modes:

• Whether a formula is calculated in block calculation or cell calculation mode when
calculating formulas that contain certain functions (for example, @ISMBR)

• Whether a formula assigned to a sparse member is calculated in bottom-up or top-down
mode

Understanding Block Calculation and Cell Calculation Modes

Using block calculation mode, Essbase groups the cells within a block and simultaneously
calculates the cells in each group. Block calculation mode is fast, but you must carefully
consider data dependencies within the block to ensure that the resulting data is accurate.

Using cell calculation mode, Essbase calculates each cell sequentially, following the calculation
order, which is based on the order of the dense dimensions in the outline.

Understanding Bottom-Up and Top-Down Calculation Modes

Essbase uses one of two methods to do a full calculation of an outline: bottom-up calculation
(the default) or top-down calculation. If the outline contains a complex member formula,
Essbase performs a top-down calculation for that member. When a formula is compiled, if the
formula is to be calculated top-down, Essbase logs a message in the application log file.

For a bottom-up calculation, Essbase determines which existing data blocks need to be
calculated before it calculates the database. Essbase then calculates only the blocks that need
to be calculated during the full database calculation. The calculation begins with the lowest
existing block number and works up through each subsequent block until the last existing block
is reached.

In contrast, a top-down calculation calculates the formula on all potential datablocks with the
member. A top-down calculation may be less efficient than a bottom-up calculation because
more blocks may be calculated than is necessary. Although a top-down calculation is less
efficient than a bottom-up calculation, in some cases top-down calculations are necessary to
ensure that calculation results are correct. See Example 4.

Syntax

@CALCMODE (CELL|BLOCK|TOPDOWN|BOTTOMUP)

Chapter 2
Calculation Function List

2-42

Parameters

CELL
Turns on the cell calculation mode

BLOCK
Turns on the block calculation mode

TOPDOWN
Turns on the top-down calculation mode

BOTTOMUP
Turns on the bottom-up calculation mode

Notes

Cell and block modes are mutually exclusive. Top-down and bottom-up modes are mutually
exclusive. Within one @CALCMODE specification, you can specify only one option. To specify
both types of modes, perform the instruction twice; for example:

@CALCMODE (CELL)
@CALCMODE (TOPDOWN)

Block calculation mode (enabled when Essbase configuration setting CALCMODE is set to
BLOCK) is not applicable for federated partition cubes. Calculation processing is pushed to
Autonomous Data Warehouse. If an exception exists and the calculation is processed on the
Essbase Server instead, then solve order determines the dependency analysis.

Knowing When Essbase uses Cell or Block Mode and Top-down or Bottom-up Mode

• When Essbase compiles a formula, it prints a message in the application log file explaining
the mode of execution for the formula similar to the following message:

Formula on member Profit % will be executed in CELL and TOPDOWN mode.

When Essbase determines that the formula will be executed in block and bottom-up mode,
no message is written in the application log file.

• In calculation scripts, @CALCMODE statements must be placed within parentheses and
associated with a specific database member.

• By default, for a simple formula such as A = B + C, Essbase does a bottom-up calculation.
A is calculated only if B or C exists in the database. The dependency of the formula on B
and C is known before the calculation is started.

For a complex formula such as A = B->D + C->D, Essbase performs a top-down
calculation because every possible combination of A must be examined to see whether B-
>D or C->D exists.

• By default, Essbase uses cell calculation mode for formulas containing:

– @ANCEST

– @CURRMBR

– @ISMBR on a dense member

– @MDANCESTVAL

– @MDPARENTVAL

Chapter 2
Calculation Function List

2-43

– @MDSHIFT

– @NEXT

– @PARENT

– @PARENTVAL

– @PRIOR

– @SANCESTVAL

– @SPARENTVAL

– @SHIFT

– @XWRITE

For all other formulas, Essbase uses block calculation mode by default.

• Essbase calculates in cell mode for any calculation script that uses VAR in a FIX...ENDFIX
block (during serial calculation), or that uses THREADVAR in a
FIXPARALLEL...ENDFIXPARALLEL block (during parallel calculation).

Understanding Data Dependency Issues With Block Calculation Mode

Data dependency occurs if the accurate calculation of one or more members depends on
another member or other on members being calculated previously. Most data dependency
issues with block calculation mode occur when a formula contains IF ELSE or IF ELSEIF
conditions. However, data dependencies can occur in other formulas; for example, when using
the @PRIOR function.

Data Dependency Issues With IF ELSE and IF ELSEIF

When Essbase uses block calculation mode to calculate a formula that contains IF ELSE or IF
ELSEIF conditions, it separates the members being calculated into two groups. The first group
contains the members that satisfy the IF condition. The second group contains the members
that satisfy the ELSE or ELSEIF conditions.

Essbase simultaneously calculates the members in the first group before simultaneously
calculating the members in the second group. See Example 1.

If a formula contains data dependencies, ensure that the following conditions are met:

• Members on which the accurate calculation of other members depends are in the first
group.

• Dependent members are in the second group.

If an IF condition has multiple ELSEIF conditions, Essbase evaluates each ELSEIF condition,
placing the members that satisfy the ELSEIF condition in the first group and the members that
satisfy subsequent ELSEIF or ELSE conditions in the second group. See Example 2.

Understanding Other Data Dependency Issues

Data dependencies can occur in formulas that do not contain IF ELSE conditions. See
Example 3 for an example of data dependency in a formula containing @PRIOR.

Example

Example 1, Example 2, and Example 3 illustrate use of the BLOCK and CELL options of
@CALCMODE. Example 4 illustrates use of the BOTTOMUP and TOPDOWN options.

Chapter 2
Calculation Function List

2-44

Example 1

Consider a database with two dense dimensions, Time and Accounts. The following formula is
placed on the Budget Sales member of the Accounts dimension. Because this is a formula
containing @ISMBR applied to a dense member (Budget Sales), by default Essbase uses cell
calculation mode. Use @CALCMODE(BLOCK) to specify block calculation mode for this
formula.

@CALCMODE(BLOCK);
IF(@ISMBR(Feb))
 "Budget Sales"=100;
ELSE
 "Budget Sales"=Feb+10;

According to the above formula, we expect that if the member being calculated is Feb, the
Budget Sales value is 100. If the member being calculated is not Feb, the Budget Sales value
is 100+10 (the value for Feb + 10).

Assume that we load the values 10, 20, and 30 into the Budget Sales data block for Jan, Feb
and Mar, as follows:

Table 2-17 Values loaded in the Budget Sales Data Block

(axis) Jan Feb Mar

Budget Sales 10 20 30

Using block calculation mode, Essbase calculates the members satisfying the IF condition first.
In this example, Feb is the only member that satisfies the IF condition. After calculating Feb,
Essbase calculates the members Jan and Mar. In this example, the results are as expected:

Table 2-18 Results of Block Calculation Mode

(axis) Jan Feb Mar

Budget Sales 110 100 110

Example 2

Now consider the same database as in Example 1, but we place the following formula on the
Budget Sales member of the Accounts dimension. As in Example 1, because this is a formula
containing @ISMBR applied to a dense dimension member (Budget Sales), by default
Essbase uses cell calculation mode. However, we use @CALCMODE(BLOCK) to specify the
block calculation mode for this formula.

@CALCMODE(BLOCK);
IF(@ISMBR(Mar))
 "Budget"->"Sales"=Feb+20;
ELSEIF(@ISMBR(Jan))
 "Budget"->"Sales"=Feb+10;
ELSE
 "Budget"->"Sales"=100;
ENDIF

Chapter 2
Calculation Function List

2-45

According to this formula, we want the Jan and Mar Budget Sales values to be calculated
based on the Feb Budget Sales value, which is 100. We want to see the following results:

Table 2-19 Desired Calculation Results

(axis) Jan Feb Mar

Budget Sales 110 100 120

Assume that we load the values 10, 20, and 30 into the Budget Sales data block for Jan, Feb,
and Mar, as follows:

Table 2-20 Values Loaded in Budget Sales Data Block

(axis) Jan Feb Mar

Budget Sales 10 20 30

Using block calculation mode, Essbase calculates the members satisfying the IF condition first,
followed by the members satisfying the ELSEIF condition, followed by the members satisfying
the ELSE condition. In this example, Essbase calculates the members in the following order:
Mar, Jan, Feb. The results are not what we want, because the calculation of Jan and Mar is
dependent on the calculation of Feb, and Feb is calculated after Jan and Mar. The inaccurate
results are as follows:

Table 2-21 Inaccurate Calculation of Budget Sales Data Block

(axis) Jan Feb Mar

Budget Sales 30 100 40

To achieve the desired results, use @CALCMODE(CELL).

Example 3

The following formula calculates the members Opening Inventory and Ending Inventory using
the @PRIOR function. There is a data dependency between Opening Inventory and Ending
Inventory. The formula is placed on the Opening Inventory member. The example shows the
results for January, February, and March.

@CALCMODE(BLOCK)
"Opening Inventory"=@PRIOR("Ending Inventory")+10;
"Ending Inventory"="Opening Inventory";

Before the calculation, there is no data for these members (the data is #MISSING or #MI):

Table 2-22 Missing Data Before Inventory Calculation

(axis) Jan Feb Mar

Opening Inventory #MI #MI #MI

Ending Inventory #MI #MI #MI

Using block calculation mode, Essbase calculates the members simultaneously, taking the
previous month's Ending Inventory #MISSING value as 0 for all member combinations and
adding 10. This is not the desired result.

Chapter 2
Calculation Function List

2-46

Table 2-23 Inaccurate Results for Inventory Calculation

(axis) Jan Feb Mar

Opening Inventory 10 10 10

Ending Inventory 10 10 10

The following formula on the Opening Inventory member causes Essbase to use cell
calculation mode (the default for formulas containing @PRIOR):

"Opening Inventory"=@PRIOR("Ending Inventory")+10;

"Ending Inventory"="Opening Inventory";

The results are as follows:

Table 2-24 Cell Calculation Mode Inventory Results

(axis) Jan Feb Mar

Opening Inventory 10 20 30

Ending Inventory 10 20 30

Example 4

Depending on the formula and the structure of the data, calculating a formula top-down versus
bottom-up may involve two issues: performance (reflecting the number of calculations that
must be made) and accuracy. This example compares calculation results to illustrate both of
these issues.

Before the calculation, assume that Actual and Budget are members of a sparse dimension
and they contain the following data:

Table 2-25 Data for Actual and Budget Members

(axis) Cola New York Sales

(axis) Actual Budget

Jan #MISSING 50

Feb 200 #MISSING

Mar 400 450

The following formula is calculated bottom-up.

Budget(
 @CALCMODE(BOTTOMUP);
 Budget=Actual*1.10;
)

In a bottom-up calculation, Essbase executes formulas only from existing data blocks.
Therefore, only two values—Jan and Mar—are calculated, based on existing combinations of
Budget.

Chapter 2
Calculation Function List

2-47

Table 2-26 Bottom-up Calculation Results for Actual and Budget

(axis) Cola New York Sales (Comment)

(axis) Actual Budget -

Jan #MISSING #MISSING (#MISSING*1.10)

Feb 200 #MISSING (No calculation is
performed)

Mar 400 440 (400*1.10)

The following formula is calculated top-down.

Budget(
 @CALCMODE(TOPDOWN);
 Budget=Actual*1.10;
)

In a top-down calculation, Essbase materializes every potential data block that is relevant to
the calculation, and executes formulas in those blocks. Therefore, all three values—Jan, Feb,
and Mar—are calculated, based on all potential combinations of Budget. The results are:

Table 2-27 Top-down Calculation Results for Actual and Budget

(axis) Cola New York Sales (Comment)

(axis) Actual Budget -

Jan #MISSING #MISSING (#MISSING*1.10)

Feb 200 220 (200*1.10)

Mar 400 440 (400*1.10)

@CHILDREN
The @CHILDREN calculation function for Essbase returns children of a member.

This function returns all children of the specified member, excluding the specified member. This
member set function can be used as a parameter of another function, where that parameter is
a list of members.

Syntax

@CHILDREN (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Notes

This function sorts the child members in ascending order. Using Sample Basic as an example,
if you specify 100 for mbrName, Essbase returns 100-10, 100-20, 100-30 (in that order). This

Chapter 2
Calculation Function List

2-48

order is important to consider when you use this function with certain forecasting and statistical
functions.

Example

In the Sample Basic cube:

@CHILDREN(Market)

returns East, West, South, and Central (in that order).

@CHILDREN(Margin)

returns Sales and COGS (in that order).

See Also

• @ANCESTORS

• @DESCENDANTS

• @ICHILDREN

• @ISCHILD

• @SIBLINGS

@COMPOUND
The @COMPOUND calculation function for Essbase calculates compound interest.

This function compiles the proceeds of a compound interest calculation. The calculation is
based on the balances of the specified member at the specified rate across the specified
range.

Syntax

@COMPOUND (balanceMbr, rateMbrConst [, XrangeList])

Parameters

balanceMbr
Single member specification representing the beginning balance across a range of periods.
The input can be either one deposit or a series of deposits. If balanceMbr is a constant, then
Essbase assumes balanceMbr to be a single deposit in the first member of rangeList or
XrangeList. This is equivalent to entering the constant value in the first member in the range
followed by zeros. The function keeps track of each deposit separately, but returns a
composite value. If balanceMbr is a member, or a range, then it is assumed to be a series of
deposits.

rateMbrConst
Single member specification, variable name, or numeric expression in decimal form. This
represents the interest rate per time period specified in the rangeList or XrangeList. If your
interest is compounded monthly, this value would be the annual interest rate divided by 12.

Chapter 2
Calculation Function List

2-49

XrangeList
Optional parameter specifying the range over which the interest is compounded. The last
value in the range is the total compounded interest for that range. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

The following example determines the compound interest of a series of deposits, based on a
credit rate of 0.0525, across a series of fiscal years:

"Compound Interest"=@COMPOUND(Deposit,"Credit Rate",FY1998:FY2001,FY2002);

This example produces the following report:

 FY1998 FY1999 FY2000 FY2001 FY2002
 ====== ====== ====== ====== ======
Credit Rate 0.0525 0.0525 0.0525 0.0525 0.0525
Compound Interest 0 105 110.5125 273.8144 288.1897
Deposit 0 2,000 0 3,000 0

The following example assumes a Year dimension is added to Sample Basic. It calculates
compound interest using a multidimensional range.

FIX ("100-10", "New York")
"Compound Interest" = @COMPOUND(Deposit,"Credit Rate",@XRANGE("2011"->"Sep",
"2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@INTEREST

Chapter 2
Calculation Function List

2-50

@COMPOUNDGROWTH
The @COMPOUNDGROWTH calculation function for Essbase is a financial function that
calculates compound growth.

This function calculates a series of values that represents a compound growth of values (the
first nonzero value in the specified member across the specified range of members) across
time.

The growth factor is calculated by multiplying the growth rate in the current time period by the
previous period's result, yielding a compounded value. You can change the growth rate from
period to period by placing a nonzero value in the current period's rateMbrConst cell.

Syntax

@COMPOUNDGROWTH (principalMbr, rateMbrConst [, XrangeList])

Parameters

principalMbr
Member specification representing the initial value to be compounded. The input line must be
a single deposit.

rateMbrConst
Single member specification, variable name, or expression which provides a constant value.
This value can change across rangeList, making the new value be the new compound rate. If
the value in the current period is zero, the compound rate is equal to zero, and the principal
does not change.

XrangeList
Optional parameter specifying the time period over which the interest is calculated. If a range
is not specified, Essbase uses the level 0 members from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

The following example determines the compound growth of Principal Amount based on Growth
Rate across a series of fiscal years.

"Compound Growth"=@COMPOUNDGROWTH("Principal Amount",
 "Growth Rate",FY1998:FY2003);

This example produces the following report:

 FY1998 FY1999 FY2000 FY2001 FY2002 FY2003
 ====== ====== ====== ====== ======

Chapter 2
Calculation Function List

2-51

======
Principal Amount 2,000 2,000 2,000 3,000 2,500 -500
Growth Rate 0.0525 0 0 0 0 0
Compound Growth 2,105 2,105 2,105 2,105 2,105 2,105

The following example assumes a Year dimension is added to Sample Basic. It calculates
compound growth using a multidimensional range.

FIX ("100-10", "New York")
"Compound Growth" = @COMPOUNDGROWTH("Principal Amount","Growth
Rate",@XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@GROWTH

@CONCATENATE
The @CONCATENATE calculation function for Essbase joins two character strings.

This function returns a character string that is the result of appending one character string
(String2) to the end of another character string (String1).

This function can be nested to concatenate more than two strings (See Example 2
(@CONCATENATE)).

Syntax

@CONCATENATE (String1, String2)

Parameters

String1
A string or a function that returns a string

String2
A string or a function that returns a string

Notes

• To use a member name as a character string, use @NAME with the member name.

Chapter 2
Calculation Function List

2-52

• To use the resulting character string as a member name, use @MEMBER with
@CONCATENATE; for example,

@MEMBER(@CONCATENATE("2000_", QTR1));

Example

The following examples are based on the Sample Basic database:

Example 1 (@CONCATENATE)

The following function statement puts the string Item in front of the name of the member
currently being processed in the Product dimension; for example, if the current member being
calculated is 100-10, the result is Item100-10:

@CONCATENATE("Item",@NAME(@CURRMBR(Product)))

Example 2 (@CONCATENATE)

To concatenate more than two strings, you can nest multiple instances of the
@CONCATENATE function. The following function statement returns string values starting with
the current member of the Year dimension, followed by an underscore, followed by the current
member of the Measures dimension; for example, if the current members being calculated are
Qtr1 and Sales, the result is Qtr1_Sales:

@CONCATENATE(@NAME(@CURRMBR(Year)),@CONCATENATE("_",@NAME(@CURRMBR(Measures)))
)

See Also

• @MEMBER

• @NAME

• @SUBSTRING

@CORRELATION
The @CORRELATION calculation function for Essbase calculates the relationship between
two data sets.

This function returns the correlation coefficient between two parallel data sets (XrangeList1 and
XrangeList2). The correlation coefficient determines the relationship between two data sets.

Syntax

@CORRELATION (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, XrangeList1,
XrangeList2)

Parameters

SKIPNONE
Includes all cells specified in the two data sets, regardless of their content, during calculation
of the correlation coefficient.

Chapter 2
Calculation Function List

2-53

SKIPMISSING
Excludes all #MISSING values from the two data sets during calculation of the correlation
coefficient.

SKIPZERO
Excludes all zero (0) values from the two data sets during calculation of the correlation
coefficient.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from the two data sets during calculation of
the correlation coefficient.

XrangeList1
The first of two parallel data sets.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about XrangeList, see Range List Parameters in the topic Range and
Financial Functions.

XrangeList2
The second of two parallel data sets.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

Notes

• For complete information about using the @RANGE function, see @RANGE. For more
information about XrangeList, see Range List Parameters in the topic Range and Financial
Functions.

• The XrangeList1 and XrangeList2 parameters must have the same number of data points.
If the two data sets have different numbers of data points, this function returns #MISSING.

• This function returns #MISSING if XrangeList1 and XrangeList2 (1) are empty, (2) contain
only #MISSING values, or (3) have a standard deviation of 0 (all values are constant).

• This function treats #MISSING values as zero (0) values, unless SKIPMISSING or
SKIPBOTH is specified. If a value in XrangeList1 is #MISSING, and SKIPMISSING is
specified, the value's corresponding value in XrangeList1 is treated as #MISSING. (That is,
both values are deleted before calculation.) SKIPZERO and SKIPBOTH work similarly.

• This function returns values from -1 to 1.

• If you use a member set function to generate a member list for this function (for example,
@SIBLINGS), to ensure correct results, consider the order in which Essbase sorts the
generated member list. For more information, see the topic for the member set function
you are using.

• The equation for the correlation coefficient is:

Chapter 2
Calculation Function List

2-54

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Sales Correl. The calculation script calculates the
correlation coefficient for a set of members (Sales for the children of Qtr1 and Qtr2). Because
the calculation script fixes on Jun, the results are placed in Sales Correl->Jun.

This example uses the @RANGE function to generate XrangeList1 and XrangeList2:

FIX(June)
"Sales Correl"=@CORRELATION(SKIPNONE,
@RANGE(Sales,@CHILDREN(Qtr1)),@RANGE(Sales,@CHILDREN(Qtr2)));
ENDFIX

This example produces the following report:

 Colas Actual New York
 Sales Sales Correl
 ===== ============
Jan 678 #MI
Feb 645 #MI
Mar 675 #MI
Apr 712 #MI
May 756 #MI
Jun 890 0.200368468

The following example assumes a Year dimension is added to Sample Basic. It calculates a
correlation coefficient using cross-dimensional members in the data sets.

FIX(Product)
"Sales Correl" = @CORRELATION(SKIPNONE,@XRANGE("2011"->"Sep", "2012"-

Chapter 2
Calculation Function List

2-55

>"Mar"),@XRANGE("2012"->"Sep", "2013"->"Mar"));
ENDFIX

The correlation above is calculated across the following two multidimensional ranges specified
by XrangeList1 and XrangeList2:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

2012->Sep
2012->Oct
2012->Nov
2012->Dec
2013->Jan
2013->Feb
2013->Mar

See Also

@RANGE

@COUNT
The @COUNT calculation function for Essbase returns the number of values in a data set.

This function returns the number of data values in the specified data set (XrangeList).

Syntax

@COUNT (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, XrangeList)

Parameters

SKIPNONE
Includes all cells specified in the data set, regardless of their content, during calculation of the
count.

SKIPMISSING
Excludes all #MISSING values from the data set during calculation of the count.

SKIPZERO
Excludes all zero (0) values from the data set during calculation of the count.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from the data set during calculation of the
count.

Chapter 2
Calculation Function List

2-56

XrangeList
A list of numeric values. Referred to generically throughout this topic as "the data set."
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about XrangeList, see Range List Parameters in the topic Range and
Financial Functions.

Notes

This function always returns an integer greater than or equal to 0.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Prod Count. This example calculates the count of all
products for which a data value exists and uses the @RANGE function to generate expList:

FIX(Product)
"Prod Count" = @COUNT(SKIPMISSING,@RANGE(Sales,@CHILDREN(Product)));
ENDFIX

This example produces the following report. Since SKIPMISSING is specified in the calculation
script, the #MI values for Diet Drinks are skipped during the product count.

 Jan New York
 Actual Budget
 ====== ======
Sales Colas 678 640
 Root Beer 551 530
 Cream Soda 663 510
 Fruit Soda 587 620
 Diet Drinks #MI #MI
 Product 2479 2300

Prod Count Product 4 4

The following example assumes a Year dimension is added to Sample Basic. It counts data
values using cross-dimensional members in the data set.

FIX(Product)
"Count" = @COUNT(SKIPMISSING,@XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan

Chapter 2
Calculation Function List

2-57

2012->Feb
2012->Mar

See Also

• @ISRANGENONEMPTY

• @RANGE

@CREATEBLOCK
The @CREATEBLOCK calculation function for Essbase generates empty target blocks.

This function creates a block or blocks for a sparse member name or a sparse member
combination, and sets dense values in the newly created block to #MISSING.

Sometimes, new blocks are not desired; for example, when they contain no other values. In
large databases, creation and processing of unneeded blocks can increase processing time
and storage requirements.

This advanced-level function can help you use bottom-up calculation to achieve faster
performance. It is useful for generating empty target blocks that can then be traversed during
bottom-up processing, and populated with data at that time. It is most useful in those situations
where blocks are not automatically created by the calculator; for example, during processing of
a dense formula where the target blocks are from a different, sparse dimension.

Whereas the allocation functions (@ALLOCATE and @MDALLOCATE) also create the
necessary target blocks, those functions are intended specifically for allocating values. The
purpose of @CREATEBLOCK is only to enable rapid block creation, without reading or writing
data.

Note:

• This function is not supported in outline member formulas.

• The DATACOPY calculation command also creates blocks on demand.

Syntax

@CREATEBLOCK(mbrName|mbrList)

Parameters

mbrName
Any single, sparse member name or a sparse member combination or a function that returns a
single member, member list, or member combination. For example:

• Single member name: ["200-20"]
• Combination of sparse members: ["100-10"->"New York"]
• Member function returning mbrName or mbrList: @ANCESTORS("New York")

Chapter 2
Calculation Function List

2-58

Notes

• This function does nothing if the block for the specified member combination already
exists.

• mbrName|mbrList can be explicitly stated or can be returned by a function.

• If mbrName is a cross-dimensional member (such as "100-10"->"New York"), this function
creates a block for the combination specified.

• When you use this function in a calculation script, use it within a FIX statement; for
example, FIX on the member for which blocks should be created. Although FIX is not
required, using it may improve calculation performance.

• If you use this function in a member formula, your formula should look like this:
@CREATEBLOCK (...).

• This function does not return a value; rather, it creates the required blocks in the database
with a #MISSING value.

• On sparse dimension members, a formula without @CALCMODE(BOTTOMUP) is
executed in top-down mode, creating all possible blocks. However, if the dimension
member is dense, it is executed as bottom-up, creating new blocks only based on the
existing ones. Therefore, @CREATEBLOCK will not create dense blocks on an empty
cube.

• For more discussion of top-down and bottom-up processing, see @CALCMODE.

Example

The following calculation script example uses the Sample.Basic database, but assumes that
only the 100-10 and New York block is loaded. The member formula for Sales is
@CREATEBLOCK("100").

/* Calling @CREATEBLOCK inside member formula (Sales) */
FIX("100-10", "New York")
 "Sales" (
 @CREATEBLOCK ("100");
)
ENDFIX

The script creates all possible sparse blocks matching the FIX…ENDFIX statement. In this
case, only the block "100"->"New York" is created.

In the following calculation script example, @CREATEBLOCK is not used in any member
formula, so it must be assigned in the script using mbrName =.

/* Calling @CREATEBLOCK outside member formula */
Budget = @CREATEBLOCK ("100");

The existing value for Budget member in the current processing block is unchanged, because
@CREATEBLOCK does not return a value (see first Note).

Chapter 2
Calculation Function List

2-59

@CURGEN
The @CURGEN calculation function for Essbase returns the current generation number.

This function returns the generation number of the current member combination for the
specified dimension. This number represents the number of members separating the current
member from the top-most member of the dimension.

Syntax

@CURGEN (dimName)

Parameters

dimName
Single dimension name specification. dimName must be the name of the top-most member of
the dimension. It cannot be another member name from within the dimension.

Notes

• If the current member of the specified dimension is an implied share member, the member
generation returned is the same generation as the stored member. For example, in Sample
Basic, Inventory, a member of the Measures dimension, is an implied share member:

Inventory
 Opening Inventory (+)
 Additions (~)
 Ending Inventory (~)

The generation value of Inventory is the same as the stored member under it, Opening
Inventory. For this example, Opening Inventory is at generation 3. When Inventory is the
current member, @CURGEN(Measures) returns generation 3.

Example

Given the following database structure:

 Year
 Qtr1
 Jan, Feb, Mar
 Qtr2
 Apr, May, Jun
 Qtr3
 Jul, Aug, Sep
 Qtr4
 Oct, Nov, Dec

@CURGEN provides the following results for the members shown:

Formula Current Member Value
Position = @CURGEN(Year); Year 1
Position = @CURGEN(Year); Qtr2 2
Position = @CURGEN(Year); Oct 3

Chapter 2
Calculation Function List

2-60

See Also

• @CURLEV

• @GEN

@CURLEV
The @CURLEV calculation function for Essbase returns the current level number.

This function returns the level number of the current member combination for the specified
dimension. This number represents the number of members that separates the current
member from its bottom-most descendant.

Syntax

@CURLEV (dimName)

Parameters

dimName
Single dimension name specification. dimName must be the name of the top-most member of
the dimension. It cannot be another member name from within the dimension.

Notes

• If the current member of the specified dimension is an implied share member, the member
level returned is the same level as the stored member. For example, in Sample Basic,
Inventory, a member of the Measures dimension, is an implied share member:

Inventory
 Opening Inventory (+)
 Additions (~)
 Ending Inventory (~)

The value of Inventory results only from the value of Opening Inventory.

When Inventory is the current member @CURLEV (Measures) returns level 0.

Example

Given the following time dimension structure:

 Year
 Qtr1
 Jan, Feb, Mar
 Qtr2
 Apr, May, Jun
 Qtr3
 Jul, Aug, Sep
 Qtr4
 Oct, Nov, Dec

Chapter 2
Calculation Function List

2-61

@CURLEV provides the following results for the members shown:

Formula Current Member Value
Position = @CURLEV(Year); Year 2
Position = @CURLEV(Year); Qtr3 1
Position = @CURLEV(Year); Aug 0

See Also

• @CURGEN

• @LEV

@CURRMBR
The @CURRMBR calculation function for Essbase returns the current member.

This function returns the member that is currently being calculated in the specified dimension
(dimName). This function can be used as a parameter of another function, where that
parameter is a single member or a list of members.

Syntax

@CURRMBR (dimName)

Parameters

dimName
A single dimension name.

Notes

• You cannot use this function in a FIX statement.

• You cannot use this function on the left-hand side of a formula.

• The time required for retrieval and calculation may be significantly longer if this function is
in a formula attached to a member tagged as Dynamic Calc or Dynamic Calc and Store.

Caution:

If you use this function to return a member name which is then concatenated with
other names to get a final member name, it may result in an invalid member name,
depending on the current intersection being calculated. For example:
@MEMBER(@CONCATENATE(@NAME (@CURRMBR ("Account")),"_Total"))

Example

In the Sample Basic cube,

@CURRMBR(Year);

returns Jan if the current member of Year being calculated is Jan.

Chapter 2
Calculation Function List

2-62

As a more complex example, consider the following formula in the context of the Sample Basic
database. Assume that the Measures dimension contains an additional member, Average
Sales.

"Average Sales"
 (IF(@ISLEV(Product,0))
 Sales;
 ELSE
 @AVGRANGE(SKIPNONE,Sales,@CHILDREN(@CURRMBR(Product)));
 ENDIF;);

This formula populates each upper-level member of the Product dimension (100, 200) at
Average Sales. To calculate Average Sales, the Sales values for the level 0 members of
Product are averaged and placed in their respective parent members. The Average Sales
values for the level 0 Product members are the same as the Sales values, as specified by the
IF statement in the calculation script.

This example produces the following report:

 Jan New York Actual
 Sales Average Sales
 ===== =============
100-10 5 5
100-20 10 10
100-30 15 15
 100 30 10
200-10 20 20
200-20 25 25
200-30 30 30
200-40 35 35
 200 110 27.5
 300 #MI #MI
 400 #MI #MI
 Diet 35 11.67
Product 140 35

See Also

@CURRMBRRANGE

@CURRMBRRANGE
The @CURRMBRRANGE calculation function for Essbase generates a member list that is
based on the relative position of the current member being calculated.

Syntax

@CURRMBRRANGE (dimName, {GEN|LEV}, genLevNum, [startOffset], [endOffset])

Parameters

dimName
Name of the dimension for which you want to return the range list.

Chapter 2
Calculation Function List

2-63

GEN|LEV
Defines whether the range list to be returned is based on a generation or a level within the
dimension.

genLevNum
Integer value that defines the absolute generation or level number of the range list to be
returned.

startOffset
Defines the first member in the range to be returned.

• A null value returns the first member of the specified genLevNum.

• An integer value returns the member name relative to the current member being
calculated.

• A negative value specifies a member prior to the current member being calculated in the
dimension.

• A value of 0 returns the name of the member currently being calculated.

• A positive value specifies a member after the current member being calculated in the
dimension.

endOffset
Defines the last member in the range to be returned.

• A null value returns the last member of the specified genLevNum.

• An integer value returns the member name relative to the current member being
calculated.

• A negative value specifies a member prior to the current member being calculated in the
dimension.

• A value of 0 returns the name of the member currently being calculated.

• A positive value specifies a member after the current member being calculated in the
dimension.

Notes

• You cannot use this function in a FIX statement.

• The first three parameters of this function (dimName,{GEN|LEV},genLevNum) provide a
member range list. The startOffset and endOffset parameters create a subset of this list.
For example, consider the following syntax in the context of the Sample Basic database:

@CURRMBRRANGE(Year,LEV,0,-1,1)

In this example, the full range list contains the level 0 members of the Year dimension
(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec). If the current member being
calculated in the Year dimension is Jan, the startOffset and endOffset parameters reduce
this list to (Jan, Feb). Since there is no member prior to Jan in the full range list, only two
members are returned: Jan itself and the member after it, Feb. If the current member being
calculated is Feb, the subset list would include three members: Jan, Feb, Mar.

• Currently, this function can be used only within range and financial functions, such as
@AVGRANGE, @MAXRANGE, @COMPOUND, and @SHIFT.

Example

Example 1

Chapter 2
Calculation Function List

2-64

Average Inventory is calculated by summing opening inventories from the first month of the
year to the current period plus one period, and dividing the result by the number of periods to
date plus one period. This calculation is accomplished by defining the @CURRMBRRANGE
function within the rangeList parameter of the @AVGRANGE function.

"Average Inventory" = @AVGRANGE(SKIPNONE,"Opening Inventory",
@CURRMBRRANGE(Year, LEV, 0, , 1));

This example produces the following result:

 Jan Feb Mar Apr Nov Dec
Opening Inventory 100 110 120 130 . . . 200 210
Average Inventory 105 110 115 120155 155

Since a null value is specified for startOffset, the average operations always begin at the first
member of the range list, Jan. The endOffset parameter, 1, specifies that the member after the
current member being calculated is included in each average operation. So, for Average
Inventory->Jan, the values for Jan and Feb are averaged; for <Average Inventory->Feb, the
values for Jan, Feb, and Mar are averaged; and so on. The values for Nov and Dec are the
same since there is no member after Dec in the range list.

Example 2

Inventory Turnover is calculated by summing period-to-date Sales and dividing the result by
the Average Inventory.

Turnover = @SUMRANGE(Sales,@CURRMBRRANGE(Year, LEV, 0, , 0))/"Average
Inventory"

which produces the following result:

 Jan Feb Mar Apr
Average Inventory 110 116.7 122.5 126
Sales 40 44 48 52
Turnover 0.36 0.72 1.08 1.46

Example 3

Consider the following formula:

@CURRMBRRANGE(Year,LEV,@CURLEV("Year"),-1,1)

The full range list contains the members of the Year dimension at a particular level. The level is
determined by taking the level of the current member being calculated. For example, if the
current member being calculated is Jan, the full range list contains all level 0 members of Year
dimension (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec). The startOffset and
endOffset parameters reduce this list to (Jan, Feb). As there is no member prior to Jan in the
full range list, only two members are returned: Jan and Feb. If the current member being
calculated is Feb, the subset list includes three members: Jan, Feb, Mar.

Chapter 2
Calculation Function List

2-65

Note:

The usage demonstrated by this example would require RTDEPCALCOPTIMIZE
configuration to be set to FALSE.

@DATEDIFF
The @DATEDIFF calculation function for Essbase returns the difference between two input
dates.

This function returns the difference (number) between two input dates in terms of the specified
date-parts, following a standard Gregorian calendar.

Syntax

@DATEDIFF (date1, date2, date_part)

Parameters

date1
A number representing the input date between January 1, 1970 and Dec 31, 2037. The
number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this
number, use any of the following functions: @TODAY, @TODATEEX, @DATEROLL.
Date-time attribute properties of a member can also be used to retrieve this number. For
example, @AttributeVal("Intro Date"); returns the product introduction date for the current
product in context.

date2
A second input date. See date1.

date_part
Defined using the following rule:

date_part_ex ::= DP_YEAR | DP_QUARTER |DP_MONTH | DP_WEEK | DP_DAY |
DP_DAYOFYEAR | DP_WEEKDAY

Defined time components as per the standard calendar:

• DP_YEAR - Year of the input date.

• DP_QUARTER - Quarter of the input date.

• DP_MONTH - Month of the input date.

• DP_WEEK - Week of the input date.

• DP_DAY - Day of the input date.

Notes

Based on the input date_part, the difference between the two input dates is counted in terms of
time component specified.

Example: For input dates June 14, 2005 and Oct 10, 2006,

• DP_YEAR returns the difference in the year component. (2006 - 2005 = 1)

Chapter 2
Calculation Function List

2-66

• DP_QUARTER returns the distance between the quarters capturing the input dates.
(Quarter 4, 2006 - Quarter 2, 2005 = 6)

• DP_MONTH returns the distance between the months capturing the input dates. (Oct 2006
- June 2005 = 16)

• DP_WEEK returns the distance between the weeks capturing the input dates. Each
Standard calendar week is defined to start on Sunday and it spans 7 days. (Oct 10, 2006 -
June 14, 2005 = 69)

• DP_DAY returns the difference between the input dates in terms of days. (483 days)

Example

Assume the outline has two date type members, MyDate1 and MyDate2.

Profit=@DateDiff(MyDate1, MyDate2, DP_WEEK);
Profit=@DatePart(MyDate1, DP_YEAR);
MyDate2=@DateRoll(MyDate1, DP_MONTH), 10);

See Also

• @ATTRIBUTEVAL

• @DATEPART

• @DATEROLL

• @FORMATDATE

• @TODATEEX

• @TODAY

@DATEPART
The @DATEPART calculation function for Essbase returns a numeric representation of a date
component.

This function returns the Year/Quarter/Month/Week/Day/DayOfYear/Weekday as a number,
given the input date and a date part, following the standard Gregorian calendar.

Syntax

@DATEPART (date, date_part_ex)

Parameters

date
A number representing the input date between January 1, 1970 and Dec 31, 2037. The
number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this
number, use any of the following functions: @TODAY, @TODATEEX, @DATEROLL.
Date-time attribute properties of a member can also be used to retrieve this number. For
example, @AttributeVal("Intro Date"); returns the product introduction date for the current
product in context.

Chapter 2
Calculation Function List

2-67

date_part_ex
Defined using the following rule:

date_part_ex ::= DP_YEAR | DP_QUARTER |DP_MONTH | DP_WEEK | DP_DAY |
DP_DAYOFYEAR | DP_WEEKDAY

Defined time components as per the standard calendar:

• DP_YEAR - Year of the input date.

• DP_QUARTER - Quarter of the input date.

• DP_MONTH - Month of the input date.

• DP_WEEK - Week of the input date.

• DP_DAY - Day of the input date.

Notes

Based on the requested time component, the output is as follows:

• DP_YEAR returns the year of the input date in yyyy format.

• DP_QUARTER returns the quarter of the year (1 to 4) for the input date.

• DP_MONTH returns the month of the year (1 to 12) for the input date.

• DP_WEEK returns the week of the year for the input date (1 to 54).

• DP_WEEKDAY returns the week day of the input date. (1 - Sunday, 2 - Monday, ... 7 -
Saturday).

• DP_DAYOFYEAR returns the day of the year numbering (1 to 366).

• DP_DAY returns the day of the month (1 to 31).

Example: For June 14, 2005,

DP_YEAR returns 2005 (the year member, in yyyy format).

DP_QUARTER returns 2 (Second quarter of the year)

DP_MONTH returns 6 (Sixth month of the year)

DP_WEEK returns 24 (24th week of the year)

DP_WEEKDAY returns 4 (for Wednesday. Sunday = 1)

DP_DAYOFYEAR returns 165 (165th day of the year)

DP_DAY returns 14 (14th day of the month)

Example

Assume the outline has two date type members, MyDate1 and MyDate2.

Profit=@DateDiff(MyDate1, MyDate2, DP_WEEK);
Profit=@DatePart(MyDate1, DP_YEAR);
MyDate2=@DateRoll(MyDate1, DP_MONTH), 10);

Chapter 2
Calculation Function List

2-68

See Also

• @ATTRIBUTEVAL

• @DATEDIFF

• @DATEROLL

• @FORMATDATE

• @TODATEEX

• @TODAY

@DATEROLL
The @DATEROLL calculation function for Essbase adds/subtracts time intervals to/from a
date.

To the given date, this function rolls (adds or subtracts) a number of specific time intervals,
returning another date. This function assumes a standard Gregorian calendar.

Syntax

@DATEROLL (date, date_part, number)

Parameters

date
A number representing the date between January 1, 1970 and Dec 31, 2037. The number is
the number of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use
either of the following functions: @TODAY, @TODATEEX.
Date-time attribute properties of a member can also be used to retrieve this number. For
example, @AttributeVal("Intro Date"); returns the product introduction date for the current
product in context.

date_part
Defined using the following rule:

date_part_ex ::= DP_YEAR | DP_QUARTER |DP_MONTH | DP_WEEK | DP_DAY |
DP_DAYOFYEAR | DP_WEEKDAY

Defined time components as per the standard calendar:

• DP_YEAR - Year of the input date.

• DP_QUARTER - Quarter of the input date.

• DP_MONTH - Month of the input date.

• DP_WEEK - Week of the input date.

• DP_DAY - Day of the input date.

number
Number of time intervals to add or subtract.

Notes

Based on input date_part and dateroll number, the date is moved forward or backward in time.

Chapter 2
Calculation Function List

2-69

Example: For input date June 14, 2005 and input dateroll number 5,

• DP_YEAR adds 5 years to the input date. (June 14, 2010)

• DP_QUARTER adds 5 quarters to the input date. (June 14, 2005 + 5 quarters = June 14,
2005 + 15 months = Sept 14, 2006)

• DP_MONTH adds 5 months to the input date (June 14, 2005 + 5 months = Nov 14, 2005)

• DP_WEEK adds 5 weeks to the input date (June 14, 2005 + 5 weeks = June 14, 2005 + 35
days = July 19, 2005)

• DP_DAY adds 5 days to the input date. (June 14, 2005 + 5 days = June 19, 2005)

Example

Assume the outline has two date type members, MyDate1 and MyDate2.

Profit=@DateDiff(MyDate1, MyDate2, DP_WEEK);
Profit=@DatePart(MyDate1, DP_YEAR);
MyDate2=@DateRoll(MyDate1, DP_MONTH, 10);

See Also

• @ATTRIBUTEVAL

• @DATEDIFF

• @DATEPART

• @FORMATDATE

• @TODATEEX

• @TODAY

@DECLINE
The @DECLINE calculation function for Essbase calculates the depreciation of an asset.

This function calculates the depreciation of an asset for the specified period, using the
declining balance method. The factor by which the declining balance depreciates the assets is
specified using factorMbrConst. For example, to calculate a double declining balance, set
factorMbrConst to 2.

Syntax

@DECLINE (costMbr, salvageMbrConst, lifeMbrConst, factorMbrConst [,
XrangeList])

Parameters

costMbr
Single member specification representing the starting values of the assets. More than one
asset can be input and depreciated across the specified range. The function calculates each
asset separately.

Chapter 2
Calculation Function List

2-70

salvageMbrConst
Single member specification, variable name, or numeric expression that provides a constant
value. This value represents the value of the asset at the end of the depreciation.

lifeMbrConst
Single member specification, variable name, or numeric expression that provides a constant
value. The value represents the number of periods over which the asset is depreciated.

factorMbrConst
Single member specification, variable name, or numeric expression that provides a constant
value. The value represents the factor by which the asset is depreciated.

XrangeList
Optional parameter specifying the periods over which the function is calculated. More than
one asset can be depreciated. If a range is not specified, Essbase uses the level 0 members
from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, seeRange List Parameters in the topic
Range and Financial Functions.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

The following example calculates the depreciation of Asset for the specified series of fiscal
years.

"Decline Dep" = @DECLINE(Asset,Residual,Life,2,FY2000:FY2001,FY2002,FY2003);

This example produces the following report:

 FY2000 FY2001 FY2002 FY2003
 ====== ====== ====== ======
Asset 9,000 0 0 0
Residual 750 0 0 0
Life 5 0 0 0
Decline Dep 3,600 2,160 1,296 778

The following example assumes a Year dimension is added to Sample Basic. It calculates
depreciation using a multidimensional range.

FIX ("100-10", "New York")
"Decline Dep" = @DECLINE(Asset,Residual,Life,2,@XRANGE("2011"->"Sep", "2012"-
>"Mar"));
ENDFIX

Chapter 2
Calculation Function List

2-71

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

• @GROWTH

• @SLN

@DESCENDANTS
The @DESCENDANTS calculation function for Essbase returns a member's descendants.

This function returns all descendants of the specified member, or those down to the specified
generation or level. This function excludes the specified member.

Syntax

@DESCENDANTS (mbrName [, genLevNum| genLevName])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

genLevNum
Optional. An integer value that defines the absolute generation or level number down to which
to select the members. A positive integer defines a generation number. A value of 0 or a
negative integer defines a level number.

genLevName
Optional. Level name or generation name down to which to select the members.

Notes

• You can use this function as a parameter of another function, where that parameter is a list
of members.

• Essbase sorts the generated list of members starting with the nearest descendant of the
member, followed by the next nearest descendant of the member, and so on. In the
Sample.Basic database, if you specify @DESCENDANTS(100), Essbase returns 100-10,
100-20, 100-30 (in that order). This order is important to consider when you use this
function with certain forecasting and statistical functions.

• To include the specified member, use @IDESCENDANTS.

• To include descendants of shared members, use @RDESCENDANTS and
@IRDESCENDANTS.

Chapter 2
Calculation Function List

2-72

Example

In the Sample Basic database:

@DESCENDANTS(East)
returns New York, Massachusetts, Florida, Connecticut, and New Hampshire (in that order).

@DESCENDANTS(Profit)
returns Margin, Sales, COGS, Total Expenses, Marketing, Payroll, and Misc (in that order).

@DESCENDANTS(Market,2)
returns East, West, South, and Central (in that order).

@DESCENDANTS(Diet,0)
returns 100-20, 200-20, and 300-30 (in that order).

See Also

• @ANCESTORS

• @CHILDREN

• @IDESCENDANTS

• @ILDESCENDANTS

• @IRDESCENDANTS

• @ISDESC

• @LDESCENDANTS

• @RDESCENDANTS

• @SIBLINGS

@DISCOUNT
The @DISCOUNT calculation function for Essbase calculates a discounted cash flow.

This function calculates a value discounted by the specified rate, from the first period of the
range to the period in which the amount to discount is found. The answer is returned in the
same period. More than one value can be discounted simultaneously in this manner.

Syntax

@DISCOUNT (cashMbr, rateMbrConst [, XrangeList])

Parameters

cashMbr
Member specification representing the value you want to discount from the last period in
XrangeList to the current period.

Chapter 2
Calculation Function List

2-73

rateMbrConst
Member specification, variable name, or numeric expression which provides a constant value.
The value represents the rate per period which cashMbr is discounted. It is a decimal value,
not a percent.

XrangeList
Optional parameter specifying the period over which the discount is calculated. If a range is
not specified, Essbase uses the level 0 members from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

The following example discounts the values in Cash by the rates in Credit Rate and places the
results in Discount Amount for each fiscal year.

"Discount Amount" = @DISCOUNT(Cash,"Credit Rate",FY1999:FY2002,FY2003);

This example produces the following report:

 FY1999 FY2000 FY2001 FY2002 FY2003
 ====== ====== ====== ======
======
Cash 0.00 0.00 1000.00 1000.00 0.00
Credit Rate 0.00 0.00 0.05 0.05 0.00
Discount Amount #MI #MI 863.84 822.70 #MI

The following example assumes a Year dimension is added to Sample Basic. It calculates
discount using a multidimensional range.

FIX ("100-10", "New York")
"Discount Amount" = @DISCOUNT(Cash,"Credit Rate",@XRANGE("2011"->"Sep",
"2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

Chapter 2
Calculation Function List

2-74

@ENUMVALUE
The @ENUMVALUE calculation function for Essbase returns the internal numeric value for a
text value in a text list.

Syntax

@ENUMVALUE ([mbrName,]enum_string)

Parameters

mbrName
Optional. Any valid single member name, or a function that returns a single member. If given
as the first argument, @ENUMVALUE checks the text list associated with that member, and
returns the numeric value of the character string provided in the second argument.

enum_string
If mbrName is given as the first argument, this is a char_string_literal of one of the text strings
represented in the text list.
If no mbrName is given as first argument, this is a string of the format text_list_name,
char_string_literal, where:

• text_list_name is the name of a text list, or of a member that is associated with a text list.

• char_string_literal is one of the text values represented in the text list.

Example

The following examples are based on the Facility Rating cube, which you can download from
the Files catalog under All Files > Gallery > Applications > Facility Rating. The cube includes a
text list named ResponseValues that has the following mappings: "Perfect" = 1, "Very Nice" =
2, "Nice" = 3, "Good some of the times" = 4, "No Opinion" = 5.

Example 1a: Using @ENUMVALUE in a member formula

The following example formula means: For every "Answer" to every "Office" within the
Geography of "USA", change the "Answer" to "Good some of the times" if the current "Answer"
is "No Opinion".

FIX (@IDESCENDANTS("USA"))
"Office" (
 IF ("Answer" == @ENUMVALUE("ResponseValues", "No Opinion"))
 "Answer" = @ENUMVALUE("ResponseValues", "Good some of the times");
 ENDIF
);
ENDFIX

Example 1b: Using the text list’s numeric values in a member formula

The following example formula does the same thing as the one in Example 1a, but this use
case is not recommended. It is less error-prone to use @ENUMVALUE to look up the value
from the text list. In the example below, the calculation script will validate even if the

Chapter 2
Calculation Function List

2-75

assignment statement would lead to an out of range response value (a value not mapped in
the ResponseValues text list object).

FIX (@IDESCENDANTS("USA"))
"Office" (
 IF ("Answer" == 5)
 "Answer" = 4;
 ENDIF
);
ENDFIX

@EQUAL
The @EQUAL calculation function searches an Essbase outline or hierarchy for member
names that match a string.

This function returns a member set of member names that match the specified token name.

This function can be used on unique and duplicate-name outlines.

Syntax

@EQUAL (tokenName, topMbrinHierarchy)

Parameters

tokenName
Token string value, representing the name of a member, with which to compare to members in
the outline, starting with member specified in topMbrinHierarchy. The specified token name
must not be qualified for duplicate members.

topMbrinHierarchy
A fully qualified name of a member in the outline on which to base the member search. The
specified member and its aliases, and all of its descendants, are included in the search.
To search the entire outline, provide an empty string ("") for this parameter. For example,
@EQUAL("100-10", "").

Example

The following examples are based on the following duplicate-name outline:

Product
 100
 100–10
 100–10–10
 100–20
 100–30
 200
 200–10
 200–20
 200–30
 300
 300–10
 300–20
 Diet

Chapter 2
Calculation Function List

2-76

 100–10
 100–10–11
 200–10
 300–10
 Bottle
 200–10
 300–20

@EQUAL("100-10", "Product")

Returns the members [Diet].[100-10] and [100].[100-10].

@EQUAL("100-10", "Diet")

Returns the member [Diet].[100-10].

See Also

• @EXPAND

• @LIKE

• @MBRCOMPARE

• @MBRPARENT

• @NOTEQUAL

@EXP
The @EXP calculation function for Essbase returns the exponent of a numeric expression.

This function returns the exponent of a specified expression; that is, the value of e (the base of
natural logarithms) raised to the power of the specified expression.

Syntax

@EXP (expression)

Parameters

expression
Single member specification, variable name, function, or other numeric expression. If less than
-700 or greater than 700, Essbase returns #MISSING.

Example

The following example is based on a variation of Sample Basic:

Index = @EXP("Variance %"/100);

Chapter 2
Calculation Function List

2-77

This example produces the following result:

 East West South Central
Variance % 10.7 10.9 3.6 3.6
Index 1.11293 1.11516 1.03666 1.03666

See Also

@LN

@EXPAND
The @EXPAND calculation function for Essbase expands a member search by calling another
function.

This function expands a member search by calling a member set function for each member in
a member list. The members returned by this function are added to the existing member set.
Duplicate members are not removed from the member set.

This function can be used on unique and duplicate-name outlines.

Syntax

@EXPAND (mbrSetFunction, mbrList,[, genLevNum][, LAYERONLY | ALL][,
topMbrinHierarchy])

Parameters

mbrSetFunction
One of the following member set functions, which return a list of members:

• @ANCESTORS

• @IANCESTORS

• @CHILDREN

• @ICHILDREN

• @DESCENDANTS

• @IDESCENDANTS

• @EQUAL

• @MBRPARENT

• @SIBLINGS

• @ISIBLINGS

mbrList
A comma-delimited list of members grouped together using @LISTor a member set function
(such as @DESCENDANTS) that returns a list of members.

genLevNum
Optional: This argument applies only if you specify @ANCESTORS, @IANCESTORS,
@DESCENDANTS, or @IDESCENDANTS for mbrSetFunction.

Chapter 2
Calculation Function List

2-78

The integer value that defines the absolute generation or level number up to which to select
members. A positive integer defines a generation number. A value of 0 or a negative integer
defines a level number.

LAYERONLY
Optional: This argument applies only if you specify @ANCESTORS, @IANCESTORS,
@DESCENDANTS, or @IDESCENDANTS for mbrSetFunction.
Returns only those members at the specified generation or level (genLevNum) that match the
selection criteria.
If you specify this argument, you must specify genLevNum.

ALL
Optional: This argument applies only if you specify @ANCESTORS, @IANCESTORS,
@DESCENDANTS, or @IDESCENDANTS for mbrSetFunction.
Returns all of the members that match the member selection criteria, starting with the
specified top member (topMbrinHierarchy).
If you specify this argument, you must specify topMbrinHierarchy.

topMbrinHierarchy
Optional: This argument applies only if you specify @EQUAL for mbrSetFunction.
A fully qualified member name on which to base the member search. The specified member
and its aliases, and all of its descendants, are included in the search.
If you specify @EQUAL for mbrSetFunction, and you do not specify topMbrinHierarchy,
Essbase searches the entire outline.

Example

The following examples are based on the following duplicate-name outline:

Product
 100
 100–10
 100–10–10
 100–20
 100–30
 200
 200–10
 200–20
 200–30
 300
 300–10
 300–20
 Diet
 100–10
 100–10–11
 200–10
 300–10
 Bottle
 200–10
 300–20

@EXPAND("@DESC", @LIST("Product"), -1, LAYERONLY)

Chapter 2
Calculation Function List

2-79

Returns all of the members under the Product dimension that are at
level 1, which are [100].[100-10], [Product].[200], [Product].[300],
[Diet].[100-10], and [Product].[Bottle].

@EXPAND("@EQUAL", @EXPAND("@CHILDREN", @LIST("[product].[100]", "[product].
[200]")), , ,"Product")

Essbase first executes the inner @EXPAND function—
@EXPAND("@CHILDREN", @LIST("[product].[100]", "[product].
[200]"))—which expands the member list to include all of the children
of members 100 and 200 (a total of six members). Then Essbase
executes the outer @EXPAND function, which searches the Product
hierarchy for a match with any of the six members.

See Also

• @BETWEEN

• @EQUAL

• @NOTEQUAL

• @LIKE

• @MBRCOMPARE

• @MBRPARENT

@FACTORIAL
The @FACTORIAL calculation function for Essbase computes the factorial of an expression.

This function returns the factorial of expression. The factorial of a number is equal to 1*2*3*...*
number.

Syntax

@FACTORIAL (expression)

Parameters

expression
Single member specification or numeric expression.

Notes

• expression can be no larger than 189. If expression is larger than 189, Essbase returns
#MISSING.

• If expression is negative, Essbase returns #MISSING.

Example

@FACTORIAL(1) 1
@FACTORIAL(5) 120

Chapter 2
Calculation Function List

2-80

See Also

@POWER

@FORMATDATE
The @FORMATDATE calculation function for Essbase returns a formatted date-string.

Syntax

@FormatDate(date, date_format_string)

Parameters

<date>
A number representing the input date between January 1, 1970 and Dec 31, 2037. The
number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this
number, use any of the following functions: @TODAY, @TODATEEX, or @DATEROLL.
Date-time attribute properties of a member can also be used to retrieve this number. For
example, @AttributeVal("Intro Date"); returns the product introduction date for the current
product in context.

date_format_string
One of the following literal strings (excluding ordered-list numbers and parenthetical
examples) indicating a supported date format.

1. "mon dd yyyy" (Example: mon = Aug)

2. "Month dd yyyy" (Example: Month = August)

3. "mm/dd/yy"
4. "mm/dd/yyyy"
5. "yy.mm.dd"
6. "dd/mm/yy"
7. "dd.mm.yy"
8. "dd-mm-yy"
9. "dd Month yy"
10. "dd mon yy"
11. "Month dd, yy"
12. "mon dd, yy"
13. "mm-dd-yy"
14. "yy/mm/dd"
15. "yymmdd"
16. "dd Month yyyy"
17. "dd mon yyyy"
18. "yyyy-mm-dd"

Chapter 2
Calculation Function List

2-81

19. "yyyy/mm/dd"
20. Long format (Example: WeekDay, Mon dd, yyyy)

21. Short format (Example: m/d/yy)

Notes

• Using an invalid input date returns an error.

• Using extra whitespace not included in the internal format strings returns an error.

• This function interprets years in the range 1970 to 2029 for yy format. Therefore, if the
function is invoked using a date format mm/dd/yy for June 20, 2006, the returned date
string is "06/20/06".

Example

Assume the outline has a date type member MyDate1.

Profit (If(@ToDateEx("yyyy-mm-dd", @FormatDate(@Today(), "yyyy-mm-dd")) ==
MyDate1)
 Profit=99;
Endif;)

See Also

• @DATEDIFF

• @DATEPART

• @DATEROLL

• @TODATEEX

• @TODAY

@GEN
The @GEN calculation function for Essbase returns the generation number of the specified
member.

Syntax

@GEN (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@GEN(Year)

Chapter 2
Calculation Function List

2-82

Returns 1.

@GEN(Qtr3)

Returns 2.

See Also

• @CURGEN

• @LEV

@GENMBRS
The @GENMBRS calculation function for Essbase returns dimension members of a specific
generation.

This function returns all members with the specified generation number or generation name in
the specified dimension.

Syntax

@GENMBRS (dimName,genName|genNum)

Parameters

dimName
A single dimension name specification.

genName|genNum
Generation name or generation number from dimName. A positive integer defines a
generation number.

Notes

• If you specify a name for the genName parameter, Essbase looks for a generation with that
name in the specified dimension.

• If you specify a number for the genName parameter (for example, 2), Essbase first looks
for a generation with a number string name. If no generation name exists with that numeric
name, Essbase checks to see if the parameter is a valid generation number. Check the
application event log after running the calculation to make sure that the correct members
were calculated.

• Generation 0 is not a valid generation number. Generations begin numbering at 1.

• If you specify a temporary variable for the genName parameter, Essbase does not
recognize the value of the variable. It looks in the outline for a generation name with the
same name as the temporary variable.

• For more information about generations and defining generation names, see Dimension
and Member Relationships.

• Essbase sorts the generated list of members in ascending order. Using Sample Basic as
an example, if you specify @GENMBRS(Product,2), Essbase returns 100, 200, 300, 400,
Diet (in that order). This order is important to consider when you use the @GENMBRS
member set function with certain forecasting and statistical functions.

Chapter 2
Calculation Function List

2-83

Example

In the Sample Basic database:

@GENMBRS(Year,Month)
@GENMBRS(Year,3)

both return the following members since generation 3 of the Year dimension is named Month:

Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec (in that order).

The following example restricts the calculation to members with the combination Budget and
one of the members of the Market dimension with a generation name of State.

FIX(Budget,@GENMBRS(Market,State))
CALC DIM (Year,Measures);
ENDFIX

See Also

@LEVMBRS

@GRIDTUPLES
@GRIDTUPLES is optional syntax you can add to FIX...ENDFIX, to limit the scope of Essbase
calculations to the active grid.

For more information, see Calculate Selected Tuples. See FIX…ENDFIX if you are looking for
the syntax.

@GROWTH
The @GROWTH calculation function for Essbase calculates the growth of a principal amount.

Calculates a series of values that represent a linear growth of the first nonzero value
encountered in principalMbr across the specified XrangeList. Growth is calculated by
multiplying the growth rate in rateMbrConst by the original principalMbr. This value is then
added to the previous time period's result, yielding the new value.

Syntax

@GROWTH (principalMbr, rateMbrConst [, XrangeList])

Parameters

principalMbr
Single member specification that represents the initial value of the value to grow. The first
nonzero value encountered is the initial value. Other principalMbr values after the first are
ignored.

rateMbrConst
Single member specification, variable name, or numeric expression providing a constant value
that represents the decimal growth rate to be applied (for example, 10% = .1).

Chapter 2
Calculation Function List

2-84

XrangeList
Optional parameter specifying the range over which the function is calculated. If a range is not
specified, Essbase uses the level 0 members from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

The following example calculates the growth of Principal Amount, using the rate found in
Growth Rate for each fiscal year. The results are placed in Growth Amount.

"Growth Amount"=@GROWTH("Principal Amount","Growth Rate",FY1998:FY2003);

This example produces the following report:

 FY1998 FY1999 FY2000 FY2001 FY2002 FY2003
 ====== ====== ====== ====== ======
======
Principal Amount 1,000 0 2,000 0 0 0
Growth Amount 1,050 1,120 1,200 1,280 1,380 1,480
Growth Rate 0.05 0.07 0.08 0.08 0.1 0.1

The following example assumes a Year dimension is added to Sample Basic. It calculates
growth using a multidimensional range.

FIX ("100-10", "New York")
"Growth Amount" = @GROWTH("Principal Amount","Growth Rate",@XRANGE("2011"-
>"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

• @COMPOUNDGROWTH

• @DECLINE

Chapter 2
Calculation Function List

2-85

• @XRANGE

@IALLANCESTORS
The @IALLANCESTORS calculation function for Essbase returns a member and all its
ancestors.

This function returns the specified member and all the ancestors of that member, including
ancestors of any occurrences of the specified member as a shared member. You can use this
function as a parameter of another function, where that parameter is a list of members.

Syntax

@IALLANCESTORS (mbrName)

Parameters

mbrName
A valid single member name, or a function that returns a single member.

Notes

Essbase sorts the generated list of members in ascending order of the member number in the
outline. Using Sample Basic as an example, if you specify 100-20 for mbrName, Essbase
returns 100-20, 100, Diet, Product (in that order). However, the order in which shared
ancestors are returned is not guaranteed. This order is important to consider when you use this
function with certain forecasting and statistical functions.

Example

The following example is based on the Sample Basic database. Sample Basic has a shared
level of diet drinks, which includes 100-20 (Diet Cola). So 100-20 (Diet Cola) is a descendant
of 100 (Colas) and is a shared member descendant of Diet:

100
 100-10
 100-20
 ...
Diet
 100-20 (Shared Member)
 ...

The following calculation script increases by 5% the Budget Sales values of 100-20 and all its
ancestors, including Diet:

FIX(Budget,@IALLANCESTORS("100-20"))
Sales = Sales * 1.05;
ENDFIX

Chapter 2
Calculation Function List

2-86

This example produces the following report. This report shows that the Budget->Sales values
for 100-20, 100, Diet, and Product (100-20 and its ancestors) have been increased by 5%. The
original values were 2610, 8980, 8260, and 28480, respectively.

 Jan
 Actual Budget
 Sales Sales
 ===== =====
Market 100-10 4860 5200
 100-20 2372 2740.5 *
 100-30 1082 1170
 100 8314 9429 *
 100-20 2372 2610
 200-20 3122 3090
 300-30 2960 2560
 Diet 8454 8673 *
 Product 31538 30954 *

See Also

• @ALLANCESTORS

• @IANCESTORS

• @ILANCESTORS

• @LANCESTORS

@IANCESTORS
The @IANCESTORS calculation function for Essbase returns a member and its ancestors,
optionally up to a certain generation or level.

This function returns the specified member and either all ancestors of the member or all
ancestors up to the specified generation or level.

Essbase sorts the generated list of members—starting with the specified member, followed by
the nearest ancestor of the member, followed by the next nearest ancestor of the member, and
so on. In the Sample.Basic database, if you specify @IANCESTORS(200-30), Essbase returns
200-30, 200, Product (in that order). When using this function with certain forecasting and
statistical functions, you must consider order.

You can use this function as a parameter of another function, where the function requires a list
of members.

Syntax

@IANCESTORS (mbrName [, genLevNum | genLevName])

Parameters

mbrName
Valid member name, or a function that returns a member.

Chapter 2
Calculation Function List

2-87

genLevNum
Optional. The integer value that defines the absolute generation or level number up to which
to select members. A positive integer defines a generation number. A value of 0 or a negative
integer defines a level number.

genLevName
Optional. The level or generation name up to which to select members.

Example

All examples are from the Sample.Basic database.

@IANCESTORS("New York")
Returns New York, East, Market (in that order).

@IANCESTORS(Qtr4)
Returns Qtr4, Year (in that order).

@IANCESTORS(Sales,-2)
Returns Sales, Margin, Profit (in that order). Members higher than level 2 are not returned.

@IANCESTORS("100-10",1)
Returns 100-10, 100, Product (in that order). All ancestors are returned up to generation 1.

See Also

• @ANCESTORS

• @IALLANCESTORS

• @ILANCESTORS

• @LANCESTORS

@ICHILDREN
The @ICHILDREN calculation function for Essbase returns a member and all its children.

This function returns the specified member and all of its children. This function can be used as
a parameter of another function, where that parameter is a list of members.

Syntax

@ICHILDREN (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Notes

Essbase sorts the generated list of members starting with the specified member, followed by its
children in ascending order. Using Sample Basic as an example, if you specify 100 for
mbrName, Essbase returns 100, 100-10, 100-20, 100-30 (in that order). This order is important
to consider when you use this function with certain forecasting and statistical functions.

Chapter 2
Calculation Function List

2-88

Example

In the Sample Basic database:

@ICHILDREN(Market)

Returns Market, East, West, South, and Central (in that order).

@ICHILDREN(Margin)

Returns Margin, Sales, and COGS (in that order).

See Also

@CHILDREN

@IDESCENDANTS
The @IDESCENDANTS calculation function for Essbase returns a member and its
descendants, optionally down to a certain generation or level.

This function returns the specified member and either all descendants of the member or all
descendants down to the specified generation or level.

Essbase sorts the generated list of members—starting with the specified member, followed by
the nearest descendant of the member, followed by the next nearest descendant of the
member, and so on. In the Sample.Basic database, if you specify @IDESCENDANTS(100),
Essbase returns 100, 100-10, 100-20, 100-30 (in that order). When using this function with
certain forecasting and statistical functions, you must consider order.

You can use this function as a parameter of another function, where the function requires a list
of members.

Syntax

@IDESCENDANTS (mbrName[, genLevNum | genLevName])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

genLevNum
Optional. The integer value that defines the absolute generation or level number up to which
to select members. A positive integer defines a generation number. A value of 0 or a negative
integer defines a level number.

genLevName
Optional. The level or generation name up to which to select members.

Example

All examples are from the Sample.Basic database.

@IDESCENDANTS(East)

Chapter 2
Calculation Function List

2-89

Returns East, New York, Massachusetts, Florida, Connecticut, and New Hampshire (in that
order).

@IDESCENDANTS(Profit)
Returns Profit, Margin, Sales, COGS, Total Expenses, Marketing, Payroll, and Misc (in that
order).

@IDESCENDANTS(Market,2)
Returns Market, East, West, South, and Central (in that order).

@IDESCENDANTS(South,-1)
Returns South.

See Also

• @ANCESTORS

• @CHILDREN

• @DESCENDANTS

• @ILDESCENDANTS

• @IRDESCENDANTS

• @ISDESC

• @LDESCENDANTS

• @RDESCENDANTS

• @SIBLINGS

@ILANCESTORS
The @ILANCESTORS calculation function for Essbase returns a member list and its
ancestors, optionally up to a certain generation or level.

This function returns the members of the specified member list and either all ancestors of the
members or all ancestors up to the specified generation or level.

You can use this function as a parameter of another function, where the function requires a list
of members.

Syntax

@ILANCESTORS ((memberSetFunction) [,genLevNum])

Parameters

memberSetFunction
A member set function that returns a list of members.
How @ILANCESTORS is used determines which member set functions are allowed. Follow
these guidelines:

Chapter 2
Calculation Function List

2-90

• If @ILANCESTORS is used alone (not within a FIX statement), you must use the @LIST
function and specify member names. For example:

@LIST(mbr1,mbr2,...)

• If the @ILANCESTORS function is used within a FIX statement, you can use member set
functions such as @UDA and @ATTRIBUTE. For example:

@UDA(dimName,uda)

@ATTRIBUTE (attMbrName)

In this case, you can choose whether to use the @LIST function. For example, both of the
following statements are valid, and the statements return the same results.

Example using only @ATTRIBUTE:

FIX(@ILANCESTORS(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces_12),"200-4
0"))
...
ENDFIX;

Example using @LIST and @ATTRIBUTE:

FIX(@ILANCESTORS(@LIST(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces_12),
"200-40")))
...
ENDFIX;

Caution:

All members of the specified member list must be from the same dimension.

genLevNum
Optional. The integer value that defines the absolute generation or level number up to which
to select members. A positive integer defines a generation number. A value of 0 or a negative
integer defines a level number.

Example

All examples are from the Sample.Basic database.

@ILANCESTORS(@LIST("100–10","200–20"))

Returns 100-10 (a specified member); 100 and Product (the ancestors of 100-10); 200-20 (a
specified member); and 200 (the ancestor of 200–20). The result does not contain duplicate
members.

@ILANCESTORS(@LIST("100","100–10"))

Chapter 2
Calculation Function List

2-91

Returns 100 and 100-10 (the specified members); and Product (the ancestor of 100 and
100-10). The result does not contain duplicate members.

@ILANCESTORS(@LIST("100","Product","200"))

Returns 100, Product, and 200 (the specified members). The result does not contain duplicate
members.

FIX(@ILANCESTORS(@UDA(Market,"New Market")),2)
...
ENDFIX;

Returns Nevada (a member that is assigned the New Market UDA) and West (the ancestor to
generation 2 for Nevada); Louisiana (a member that is assigned the New Market UDA) and
South (the ancestor to generation 2 for Louisiana); and Colorado (a member that is assigned
the New Market UDA) and Central (the ancestor to generation 2 for Colorado).

FIX(@ILANCESTORS(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces_12),"200-40"))
...
ENDFIX;

Returns 100-10, 100-20, 200-10, and 300-30 (caffeinated, 12-ounce drinks); and 200-40 (the
specified member), and 100, 200, 300, and Product (the ancestors of the members).

See Also

• @ANCESTORS

• @IANCESTORS

• @LANCESTORS

@ILDESCENDANTS
The @ILDESCENDANTS calculation function for Essbase returns a member list and its
descendants, optionally down to a certain generation or level.

This function returns the members of the specified member list and either all descendants of
the members or all descendents down to the specified generation or level.

You can use this function as a parameter of another function, where the function requires a list
of members.

Syntax

@ILDESCENDANTS ((memberSetFunction) [,genLevNum])

Parameters

memberSetFunction
A member set function that returns a list of members.
How this function is used determines which member set functions are allowed. Follow these
guidelines:

Chapter 2
Calculation Function List

2-92

• If @ILDESCENDANTS is used alone (not within a FIX statement), you must use the
@LIST function and specify member names. For example:

@LIST(mbr1,mbr2,...)

• If the @ILDESCENDANTS function is used within a FIX statement, you can use member
set functions such as @UDA and @ATTRIBUTE. For example:

@UDA(dimName,uda)

@ATTRIBUTE (attMbrName)

In this case, you can choose whether to use the @LIST function. For example, both of the
following statements are valid, and the statements return the same results.

Example using only @ATTRIBUTE:

FIX
(@ILDESCENDANTS(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces_12),"200-40
"))
...
ENDFIX;

Example using @LIST and @ATTRIBUTE:

FIX
(@ILDESCENDANTS(@LIST(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces_12),"
200-40")))
...
ENDFIX;

Caution:

All members of the specified member list must be from the same dimension.

genLevNum
Optional. The integer value that defines the absolute generation or level number up to which
to select members. A positive integer defines a generation number. A value of 0 or a negative
integer defines a level number.

Example

All examples are from the Sample.Basic database.

@ILDESCENDANTS(@LIST("100","200","300"))

Returns 100 (a specified member); 100-10, 100-20, 100-30 (the descendants of 100); 200 (a
specified member); and 200-10, 200-20, 200-30, and 200-40 (the descendants of 200); 300 (a
specified member); and 300-10, 300-20, 300-30 (the descendants of 300).

@ILDESCENDANTS(@LIST("Market"),-1)

Chapter 2
Calculation Function List

2-93

Returns Market (the specified member); and East, West, South, and Central (the descendants
of Market to level 1).

FIX
(@ILDESCENDANTS(@UDA(Market,"Major Market")))
...
ENDFIX;

Returns East (a specified member); New York, Massachusetts, Florida, Connecticut, and New
Hampshire (the descendants of East); Central (a specified member); Illinois, Ohio, Wisconsin,
Missouri, Iowa, and Colorado (the descendants of Central); California and Texas (specified
members, which do not have descendants).

FIX
(@ILDESCENDANTS(@ATTRIBUTE(Caffeinated_True)@ATTRIBUTE(Ounces_12),"200–40"))
...
ENDFIX;

Returns 100-10, 100-20, 200-10, 300-30 (caffeinated, 12-ounce drinks); and 200-40 (a
specified member). None of these members have descendants.

See Also

• @ANCESTORS

• @CHILDREN

• @IDESCENDANTS

• @ILANCESTORS

• @IRDESCENDANTS

• @ISDESC

• @LANCESTORS

• @LDESCENDANTS

• @RDESCENDANTS

• @SIBLINGS

• @SHIFTSIBLING

@ILSIBLINGS
The @ILSIBLINGS calculation function for Essbase returns a member and its left siblings.

Syntax

@ILSIBLINGS (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Chapter 2
Calculation Function List

2-94

Notes

This function returns the specified member and all of the left siblings of the member. Left
siblings are children that share the same parent as the member and that precede the member
in the database outline.

This member set function can be used as a parameter of another function, where that
parameter is a list of members.

Essbase sorts the generated list of members starting with the left siblings of the member (that
is, siblings appearing above the member in the database outline) in ascending order. Using
Sample Basic as an example, if you specify 200-30 for mbrName, Essbase returns 200-10,
200-20, 200-30 (in that order). This order is important to consider when you use this function
with certain forecasting and statistical functions.

Example

In the Sample Basic database:

@ILSIBLINGS(Florida)

Returns New York, Massachusetts, and Florida (in that order). New York and Massachusetts
appear above Florida in the Sample Basic outline.

@ILSIBLINGS(Qtr3)

Returns Qtr1, Qtr2, and Qtr3 (in that order). Qtr1 and Qtr2 appear above Qtr3 in the Sample
Basic outline.

See Also

@LSIBLINGS

@INT
The @INT calculation function for Essbase returns the next lowest integer value of an
expression.

Syntax

@INT (expression)

Parameters

expression
Member specification or mathematical expression that generates a numeric value.

Example

The following example is based on the Sample Basic database. Assume that the Profit %
member is not tagged as Dynamic Calc.

The following formula rounds the values for West down to the nearest integer.

West=@INT(@SUM(@CHILDREN(West)));

Chapter 2
Calculation Function List

2-95

This example produces the following report:

 Profit %
 Cola Actual
 Jan Feb Mar
 === === ===
California 38.64 37.98 38.37
Oregon 17.50 16.13 16.11
Washington 29.23 30.90 32.00
Utah 23.08 23.08 20.97
Nevada -3.95 -6.76 -5.33
 West 104 101 102

See Also

• @ABS

• @REMAINDER

• @ROUND

• @TRUNCATE

@INTEREST
The @INTEREST calculation function for Essbase performs a simple interest calculation on a
balance.

This function calculates the simple interest in balanceMbr at the rate specified by
creditrateMbrConst if the value specified by balanceMbr is positive, or at the rate specified by
borrowrateMbrConst if balanceMbr is negative. The interest is calculated for each time period
specified by XrangeList.

Syntax

@INTEREST (balanceMbr, creditrateMbrConst, borrowrateMbrConst [, XrangeList])

Parameters

balanceMbr
Single member specification representing the balance at the time the interest is calculated.

creditrateMbrConst
Single member specification, variable name, or numeric expression providing a constant
value. The value must be a decimal number that corresponds to a percentage. The value
represents the per-period interest rate.

borrowrateMbrConst
Single member specification, variable name, or numeric expression providing a constant
value. The value must be a decimal number corresponding to a percentage value. The value
represents the per-period interest rate.

XrangeList
Optional parameter specifying the time period over which the interest is calculated. If a range
is not specified, Essbase uses the level 0 members from the dimension tagged as Time.

Chapter 2
Calculation Function List

2-96

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

The following example calculates the interest for Balance, using Credit Rate for positive
balances and using Borrow Rate for negative balances. The results are placed in Interest
Amount for each fiscal year.

"Interest Amount" = @INTEREST(Balance,"Credit Rate","Borrow Rate",
FY1998:FY2001,FY2002,FY2003);

This example produces the following report:

 FY1998 FY1999 FY2000 FY2001 FY2002 FY2003
 ====== ====== ====== ====== ======
======
Balance 2000.00 3000.00 -1000.00 3000.00 9000.00 -6000.00
Credit Rate 0.065 0.065 0.065 0.065 0.065 0.065
Borrow Rate 0.1125 0.1125 0.1125 0.1125 0.1125 0.1125
Interest Amount 130.00 195.00 -112.50 195.00 585.00 -675.00

The following example assumes a Year dimension is added to Sample Basic. It calculates
interest using a multidimensional range.

FIX ("100-10", "New York")
"Interest Amount" = @INTEREST (Balance, "Credit Rate", "Borrow Rate",
@XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@COMPOUND

Chapter 2
Calculation Function List

2-97

@INTERSECT
The @INTERSECT calculation function for Essbase returns the intersection of two member
lists.

This function returns the intersection of members that appear in two specified lists of members.
The intersection is the set of all distinct members that are part of both lists.

Syntax

@INTERSECT(list1, list2)

Parameters

list1
The first list of members.

list2
The second list of members.

Notes

This function treats shared members as distinct from their prototype members; therefore, they
do not intersect.

Example

The following examples use the Sample.Basic database.

@INTERSECT(@CHILDREN("100"), @ATTRIBUTE(Can)) returns 100-10 and 100-20.

@INTERSECT(@CHILDREN("Colas"), @CHILDREN("Diet Drinks"); returns an empty set,
because shared members are considered distinct from their prototype members.

FIX (@INTERSECT(@CHILDREN("100-10"), @CHILDREN("Diet Drinks")))

 Sales = 500;

ENDFIX;

The @INTERSECT expression evaluates to an empty set; therefore, the FIX statement sets all
the values of Sales to 500.

See Also

• @MERGE

• @REMOVE

Chapter 2
Calculation Function List

2-98

@IRDESCENDANTS
The @IRDESCENDANTS calculation function for Essbase returns a member and its
descendants, optionally down to a certain generation or level, and including its shared-member
descendants.

This function returns the specified member and all its descendants, or all descendants down to
a specified generation or level, including descendants of any occurrences of the specified
member as a shared member.

You can use this function as a parameter of another function, where that parameter is a list of
members. In the absence of shared members, this function behaves the same as
@IDESCENDANTS.

Syntax

@IRDESCENDANTS (mbrName[, genLevNum | genLevName])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

genLevNum
Optional. An integer value that defines the absolute generation or level number down to which
to select the members. A positive integer defines a generation number. A value of 0 or a
negative integer defines a level number.

genLevName
Optional. Level name or generation name down to which to select the members.

Notes

• The order of members in the result list is important to consider when you use this function
with certain forecasting and statistical functions. Essbase generates the list of members in
the following sequence: If a shared member is encountered, the above steps are repeated
on the member being shared.

1. The specified member

2. The nearest descendant of the member

3. The next nearest descendant of the member, and so on

• You can use @RDESCENDANTS to exclude the specified member and include
descendants of shared members.

• You can use @IDESCENDANTS to include the specified member and exclude
descendants of shared members.

• You can use @DESCENDANTS to exclude the specified member and descendants of
shared members.

Example

Example 1

Chapter 2
Calculation Function List

2-99

Assume a variation of the Sample Basic database such that the Product dimension includes
the following members:

Product
 100
 100-10
 100-20
 100-30
 200
 200-10
 200-20
 200-30
 200-40
 Diet
 100 (Shared Member)
 200 (Shared Member)

Diet has two children "100" and "200" instead of "100-10", "200-20" and "300-30". The
members "100" and "200" are shared members.

@IRDESCENDANTS(Diet)
Returns the members: Diet, 100, 100-10, 100-20, 100-30, 200, 200-10, 200-20, 200-30,
200-40 (in that order).

Example 2

@IRDESCENDANTS(East)
Returns East, New York, Massachusetts, Florida, Connecticut, and New Hampshire (in that
order) and is exactly the same as @IDESCENDANTS(East).

See Also

• @DESCENDANTS

• @IANCESTORS

• @ICHILDREN

• @IDESCENDANTS

• @ISDESC

• @ISIBLINGS

• @RDESCENDANTS

@IRR
The @IRR calculation function for Essbase calculates the Internal Rate of Return on a cash
flow that must contain at least one investment (negative) and one income (positive) value.

Also see @IRREX.

Syntax

@IRR (cashflowMbr, discountFlag[, XrangeList])

Chapter 2
Calculation Function List

2-100

Parameters

cashflowMbr
Single member specification.

discountFlag
Member specification, variable name, or numeric expression providing a constant value of
either 1 or 0. discountFlag indicates whether the function should discount from the first period.
1 means do not discount from the first period.

XrangeList
Optional parameter specifying the range over which the rate is calculated. If a range is not
specified, Essbase uses the level 0 members from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Notes

• Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

• This function returns #MISSING if all cash flows are zero.

• This function provides an initial guess of 0.07. This value cannot be changed, in contrast to
similar functions in Excel. Because results depend in part on the initial guess, any
difference in the initial guess may result in a different result. Even if both Excel and
Essbase start with the same initial guess, results may differ. This is because there may be
more than one solution to an equation, and the algorithm stops looking when it finds a valid
solution. Which solution is found first may differ based on the algorithm. Although leading
or trailing zeros do not matter in a mathematical context, the algorithm may behave
differently and find a different root because of the presence of leading or trailing zeros. If
you need identical solutions regardless of the presence of leading or trailing zeros, you
may wish to create a custom-defined function to handle these issues.

Example

This example calculates the Internal Rate of Return (Return) on a cash flow (Cash).

Return = @IRR(Cash,0,FY1998:FY2000,FY2001:FY2003);

This example produces the following report:

 FY1998 FY1999 FY2000 FY2001 FY2002 FY2003
 ====== ====== ====== ====== ====== ======
Cash (1,000) 500 600 500 #MISSING #MISSING
Rate 0 0 0 0 #MISSING #MISSING
Return 0 0 0 0 0 0

Chapter 2
Calculation Function List

2-101

The following example assumes a Year dimension is added to Sample Basic. It calculates the
return using a multidimensional range.

FIX ("100-10", "New York")
"Return" = @IRR(Cash,0,@XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

@IRREX
The @IRREX calculation function for Essbase calculates the Internal Rate of Return on a cash
flow, with the ability to estimate the starting guess and to set the number of iterations.

This function calculates the Internal Rate of Return on a cash flow that must contain at least
one investment (negative) and one income (positive) value. Includes functionality to configure
the initial guess and the number of iterations the algorithm can make.

@IRREX is an extension of @IRR, in which the initial guess of 0.07 cannot be changed.

Syntax

@IRREX (cashflowMbr, discountFlag[, [guess], [number_of_iteration],
[STORECALCVALUE | STOREMISSING], [XrangeList])

Parameters

cashflowMbr
Single member specification.

discountFlag
Member specification, variable name, or numeric expression providing a constant value of
either 1 or 0. Indicates whether the function should discount from the first period. 0 means
discount from the first period, and 1 means do not discount from the first period.

guess
Optional. The starting guess for estimated IRR. If not specified, the default guess of 0.07 is
used.

number_of_iteration
Optional. The number of iterations the Newton Raphson algorithm will loop through. (Newton
Raphson is the mathematical method used for finding the IRR using the IRREX function.) The
default value is 300.

Chapter 2
Calculation Function List

2-102

STORECALCVALUE | STOREMISSING
Optional. STORECALCVALUE tells Essbase to always store the calculated value even when
the IRR calculation returns ‘false’ results. This is the default.
Optional. STOREMISSING tells Essbase to store #MISSING value when the IRR calculation
returns false results after the specified number of iterations.

XrangeList
Optional parameter specifying the range over which the rate is calculated. If a range is not
specified, Essbase uses the level 0 members from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Notes

• Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

• This function returns #MISSING if all cash flows are zero.

• This function provides functionality to configure the initial guess and the number of
iterations the algorithm can make. Even if both Essbase and similar functions in Excel start
with the same initial guess, results may differ. This is because there may be more than one
solution to an equation, and the algorithm stops looking when it finds a valid solution.
Which solution is found first may differ based on the algorithm. Although leading or trailing
zeros do not matter in a mathematical context, the algorithm may behave differently and
find a different root because of the presence of leading or trailing zeros. If you need
identical solutions regardless of the presence of leading or trailing zeros, you may wish to
create a custom-defined function to handle these issues.

Example

@IRREX(IRROut1,0,0.02, 500,STOREMISSING,"2006":"2009");

The starting guess is 0.02 (2%). @IRREX iterates 500 times, and stores #MISSING if the
solution does not converge.

@IRREX(IRROut1,0, , ,STOREMISSING,"2006":"2009");

The starting guess and iteration values are omitted (NULL). Note: The commas (,) are required
even when passing null arguments.

The following example assumes a Year dimension is added to Sample Basic. The rate is
calculated using a multidimensional range.

FIX ("100-10", "New York")
Return = @IRREX(IRROut1,0, , ,STOREMISSING, @XRANGE("2011"->"Sep", "2012"-
>"Mar"));
ENDFIX

Chapter 2
Calculation Function List

2-103

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

@IRSIBLINGS
The @IRSIBLINGS calculation function for Essbase returns the specified member and its right
siblings.

Syntax

@IRSIBLINGS (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Notes

This function returns the specified member and all of the right siblings of the specified member.
Right siblings are children that share the same parent as the member and that follow the
member in the database outline.

This member set function can be used as a parameter of another function, where that
parameter is a list of members.

Essbase sorts the generated list of members starting with the specified member, followed by
the right siblings of the member (that is, siblings appearing below the member in the database
outline) in ascending order. Using Sample Basic as an example, if you specify 200-20 for
mbrName, Essbase returns 200-20, 200-30, 200-40 (in that order). This order is important to
consider when you use this function with certain forecasting and statistical functions.

Example

In the Sample Basic database:

@IRSIBLINGS(Florida)

Returns Florida, Connecticut, and New Hampshire (in that order). Connecticut and New
Hampshire appear below Florida in the Sample Basic outline.

@IRSIBLINGS(Qtr3)

Returns Qtr3 and Qtr4 (in that order). Qtr4 appears below Qtr3 in the Sample Basic outline.

Chapter 2
Calculation Function List

2-104

See Also

@RSIBLINGS

@ISACCTYPE
The @ISACCTYPE calculation function for Essbase tells whether the current member has a
specified accounts tag.

This function returns TRUE if the current member has the associated accounts tag.

Syntax

@ISACCTYPE (tag)

Parameters

tag
Valid accounts tag defined in the current database. Any of these values may be used: First,
Last, Average, Expense, and Twopass. To ensure that the tag is resolved as a string rather
than a member name, enclose the tag in quotation marks.

Example

The following example is based on the Sample Basic database. For members with the
Expense accounts tag, the formula uses the @ABS function to calculate Budget as the
absolute value of Budget.

IF (@ISACCTYPE("Expense"))
 Budget = @ABS(Budget);
ENDIF;

@ISANCEST
The @ISANCEST calculation function for Essbase tells whether a member is an ancestor of
another member.

This function returns TRUE if the current member is an ancestor of the specified member. This
function excludes the specified member.

Syntax

@ISANCEST (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISANCEST(California)

Chapter 2
Calculation Function List

2-105

Returns TRUE for Market, West

@ISANCEST(West)

Returns FALSE for California, West, East

See Also

@ISIANCEST

@ISATTRIBUTE
The @ISATTRIBUTE calculation function for Essbase tells whether a member is a specific
attribute.

This function returns TRUE if the current member under calculation matches the attribute or
varying attribute name specified in attMbrName.

Syntax

@ISATTRIBUTE (attMbrName)

Parameters

attMbrName
Single attribute member name or member combination.

Notes

• This function provides the same functionality as @ISMBR (@ATTRIBUTE(attMbrName)),
but is faster.

• You may have duplicate Boolean, date, and numeric attribute member names in your
outline. For example, 12 can be the attribute value for the size (in ounces) of a product as
well as the value for the number of packing units for a product. To distinguish duplicate
member names, specify the full attribute member name (for example,
@ISATTRIBUTE(Ounces_12)).

Example

Consider the following calculation script, based on the Sample Basic database:

/* To increase the marketing budget for markets with large populations */
Marketing (
 IF (@ISATTRIBUTE(Large))
 Marketing = Marketing * 1.1;
 ENDIF
);

See Also

• @ISMBRWITHATTR

• SET SCAPERSPECTIVE

Chapter 2
Calculation Function List

2-106

@ISCHILD
The @ISCHILD calculation function for Essbase tells whether the current member is a child of
a specific member.

This function returns TRUE if the current member is a child of the specified member. This
function excludes the specified member.

Syntax

@ISCHILD (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISCHILD(East)

Returns TRUE for New York, Florida, Connecticut

@ISCHILD(Margin)

Returns FALSE for Measures, Profit, Margin

See Also

@ISICHILD

@ISDESC
The @ISDESC calculation function for Essbase tells whether the current member is a
descendant of a specific member.

This function returns TRUE if the current member is a descendant of the specified member.
This function excludes the specified member.

Syntax

@ISDESC (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Chapter 2
Calculation Function List

2-107

Example

In the Sample Basic database:

@ISDESC(Market)

Returns TRUE for West, California, Oregon, Washington, Utah, Nevada

@ISDESC(Profit)

Returns FALSE for Measures, Profit, Profit %

@ISGEN
The @ISGEN calculation function for Essbase tells whether the current member is in a specific
generation.

This function returns TRUE if the current member of the specified dimension is in the specified
generation.

Syntax

@ISGEN (dimName, genName | genNum)

Parameters

dimName
The name of a dimension.

genName or genNum
A generation name or a non-negative integer value that defines the number of a generation.

Example

In the Sample Basic cube:

@ISGEN(Measures,3)

Returns TRUE if the current member is Margin, Total Inventory, or Margin %, because these
members are all in generation 3 of the Measures dimension.

@ISGEN(Market,2)

Returns FALSE if the current member is New York or Market, because these members are not
in generation 2 of the Market dimension.

See Also

• @ISSAMEGEN

• @ISLEV

Chapter 2
Calculation Function List

2-108

@ISIANCEST
The @ISIANCEST calculation function for Essbase tests whether the current member is an
ancestor (or a match) of the specified member.

This function returns TRUE if the current member being calculated is the specified member or
an ancestor of the specified member. This function includes the specified member.

Syntax

@ISIANCEST (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISIANCEST(California)

Returns TRUE for Market, West, and California. California is the specified member, and West
and Market are ancestors of California.

@ISIANCEST(Qtr1)

Returns FALSE for Jan, Feb, Mar, Qtr2. None of these members is the specified member
(Qtr1) or an ancestor of Qtr1.

See Also

@ISANCEST

@ISIBLINGS
The @ISIBLINGS calculation function for Essbase returns a member and all its siblings.

This function returns the specified member and all siblings of that member. This function can
be used as a parameter of another function, where that parameter is a list of members.

Syntax

@ISIBLINGS (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Chapter 2
Calculation Function List

2-109

Notes

Essbase sorts the generated list of members in ascending order. Using Sample Basic as an
example, if you specify 200-30 for mbrName, Essbase returns 200-10, 200-20, 200-30, 200-40
(in that order). This order is important to consider when you use this function with certain
forecasting and statistical functions.

Example

In the Sample Basic database:

@ISIBLINGS(California)

returns California, Oregon, Washington, Utah, and Nevada (in that order), because these
members are siblings of California.

@ISIBLINGS(Qtr2)

returns Qtr1, Qtr2, Qtr3, and Qtr4 (in that order), because these members are siblings of Qtr2.

See Also

• @NEXTSIBLING

• @PREVSIBLING

• @SHIFTSIBLING

• @SIBLINGS

@ISICHILD
The @ISICHILD calculation function for Essbase tests whether the current member is a child
(or a match) of the specified member.

This function returns TRUE if the current member being calculated is the specified member or
a child of the specified member.

Syntax

@ISICHILD (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISICHILD(South)

Chapter 2
Calculation Function List

2-110

Returns TRUE for Texas, Oklahoma, Louisiana, New Mexico, South

@ISICHILD(Profit)

Returns FALSE for Measures, Sales

See Also

@ISCHILD

@ISIDESC
The @ISIDESC calculation function for Essbase tests whether the current member is a
descendant (or a match) of the specified member.

This function returns TRUE if the current member being calculated is the specified member or
a descendant of the specified member.

Syntax

@ISIDESC (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISIDESC(South)

Returns TRUE for Texas, Oklahoma, Louisiana, New Mexico, South

@ISIDESC(West)

Returns FALSE for Market, East, South, and Central

See Also

@ISDESC

@ISIPARENT
The @ISIPARENT calculation function for Essbase tests whether the current member is the
parent (or a match) of the specified member.

This function returns TRUE if the current member being calculated is the specified member or
the parent of the specified member.

Syntax

@ISIPARENT (mbrName)

Chapter 2
Calculation Function List

2-111

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISIPARENT(Qtr1)

Returns TRUE for Year, Qtr1.

@ISIPARENT(Margin)

Returns FALSE for Measures, Sales.

See Also

@ISPARENT

@ISISIBLING
The @ISISIBLING calculation function for Essbase tests whether the current member is a
sibling (or a match) of the specified member.

This function returns TRUE if the current member being calculated is the specified member or
a sibling of the specified member.

Syntax

@ISISIBLING (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISISIBLING(Qtr2)

Returns TRUE for Qtr1, Qtr2, Qtr3, and Qtr4.

@ISISIBLING(Actual)

Returns FALSE for Scenario.

See Also

@ISSIBLING

Chapter 2
Calculation Function List

2-112

@ISLEV
The @ISLEV calculation function for Essbase tests whether a member is in a specific level.

This function returns TRUE if the current member being calculated is in the specified level of
the specified dimension.

Syntax

@ISLEV (dimName, levName | levNum)

Parameters

dimName
Name of a dimension.

levName | levNum
A level name or a non-negative integer value that defines the number of a level.

Example

In the Sample Basic database:

@ISLEV(Market,0)

Returns TRUE if the current member of Market is New York, California, Texas, or Illinois.

@ISLEV(Year,1)

Returns FALSE if the current member of Year is Jan, Feb, or Mar.

See Also

• @ISSAMELEV

• @ISGEN

@ISMBR
The @ISMBR calculation function for Essbase tests whether a member is a match for any of
the specified members.

This function returns TRUE if the current member being calculated matches any one of the
specified members within a list or range.

Syntax

@ISMBR (mbrName | rangeList | mbrList)

Chapter 2
Calculation Function List

2-113

Parameters

mbrName
Any valid single member name or member combination, or a function that returns a single
member or member combination.

rangeList
A valid member name, a comma-delimited list of member names, member set functions, and
range functions.

mbrList
A comma-delimited list of members.

Notes

If a cross-dimensional (->) member is included, that term evaluates as TRUE only if all the
components of the cross-dimensional member match the current member list.

If any term returns TRUE, this function returns TRUE.

Example

In the Sample Basic database:

@ISMBR("New York":"New Hampshire")

Returns TRUE for Florida.

@ISMBR(@CHILDREN(Qtr1))

Returns FALSE for Qtr2, Year.

@ISMBRUDA
The @ISMBRUDA calculation function for Essbase tests whether a member has a certain
UDA.

This function returns TRUE if the specified user-defined attribute (UDA) exists for the specified
member at calculation time.

Syntax

@ ISMBRUDA(mbrName, UDAStr)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

UDAStr
User-defined attribute (UDA) name string.

Notes

If you specify a nonexistent member name, the calculation script verification fails.

Chapter 2
Calculation Function List

2-114

Example

The following examples use the Sample.Basic database.

@ISMBRUDA ("New York", "Major Market") and @ISMBRUDA([Market].[New York], "Major
Market") both return true.

@ISMBRUDA("New York", "Small Market") AND @ISCHILD("Market")
Because “New York” is not a small market, the first condition returns false.

IF(@ISMBRUDA("New York")
Because UDAStr is omitted, the verification fails.

@ISMBRWITHATTR
The @ISMBRWITHATTR calculation function for Essbase returns TRUE if the current member
being calculated belongs to the list of base members that are associated with an attribute that
satisfies the conditions you specify.

Syntax

@ISMBRWITHATTR (dimName, "operator", value)

Parameters

dimName
Single varying attribute dimension name.

operator
Operator specification, which must be enclosed in quotation marks ("").

value
A value that, in combination with the operator, defines the condition that must be met. The
value can be a varying attribute member specification, a constant, or a date-format function
(that is, @TODATE).

Notes

• This function provides the same functionality as @ISMBR(@WITHATTR()), but is faster.

• This function is a superset of the @ISATTRIBUTE function. The following two formulas
return the same member set:

@ISATTRIBUTE(Bottle)
@ISMBRWITHATTR("Pkg Type","==",Bottle)

However, the following formula can be performed only with @ISMBRWITHATTR (not with
@ISATTRIBUTE) because you specify a condition:

@ISMBRWITHATTR(Ounces,">","16")

• If you specify a date attribute with the @ISMBRWITHATTR function, you must use
@TODATE in the string parameter to convert the date string to a number.

• The following operators are supported:

Chapter 2
Calculation Function List

2-115

Table 2-28 Supported Operators

Operator Description

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

= = Equal to

<> or != Not equal to

IN In

When using Boolean attributes with this function, use only the actual Boolean attribute member
name, or use 1 (for True or Yes) or 0 (for False or No). You cannot use True/Yes and False/No
interchangeably.

See Also

• @ATTRIBUTE

• @ATTRIBUTEVAL

• @ISATTRIBUTE

• SET SCAPERSPECTIVE

• @TODATE

• @WITHATTR

@ISPARENT
The @ISPARENT calculation function for Essbase returns TRUE if the current member is the
parent of the specified member.

This function excludes the specified member.

Syntax

@ISPARENT (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISPARENT("New York")

Returns TRUE for East.

@ISPARENT(Profit)

Returns FALSE for Margin.

Chapter 2
Calculation Function List

2-116

See Also

@ISIPARENT

@ISRANGENONEMPTY
The @ISRANGENONEMPTY calculation function for Essbase tests for data values in a range.

This function tests for the existence of data values, which can help you improve performance
of complex dense processing. If this function returns true, values exist for the specified range.
If it returns false, the range is empty.

Syntax

@ISRANGENONEMPTY(ZEROASDATA|ZEROASMISSG, mbrList)

Parameters

ZEROASDATA
Zero (0) values are treated as data.

ZEROASMISSG
Zero (0) values are treated as #MISSING.

mbrList
A valid member name, a comma-delimited list of member names, or a member set function
that returns a list of members from the same dimension. If you use the range operator or a
function, the order of mbrList is dictated by the database outline order.

Notes

The definition of “emptiness” depends on your use of the first parameter, which describes how
zero (0) values are treated.

Example

The following examples use the Sample.Basic database.

Example 1

@ISRANGENONEMPTY(ZEROASDATA, Sales->Cola)

Because the intersection of Cola and Sales contains non-#MISSING values, the condition
returns TRUE.

Example 2

//ESS_LOCALE English_UnitedStates.Latin1@Binary
FIX (Budget)
 Sales (IF(@ISRANGENONEMPTY(ZEROASMISSG, Jan:Mar))
 Sales = 500;
 ENDIF;);
ENDFIX

Chapter 2
Calculation Function List

2-117

If there is any value except #MISSING in the range Jan:Mar in the database, the script returns
TRUE, and all the Sales->Budget values In the database are changed to 500.

@ISSAMEGEN
The @ISSAMEGEN calculation function for Essbase tests whether a member is in the same
generation as another member.

This function returns TRUE if the current member being calculated is in the same generation
as the specified member.

Syntax

@ISSAMEGEN (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISSAMEGEN(West)

Returns TRUE for East.

@ISSAMEGEN(West)

Returns FALSE for California.

See Also

• @GEN

• @ISGEN

• @ISSAMELEV

@ISSAMELEV
The @ISSAMELEV calculation function for Essbase tests whether a member is in the same
level as another member.

This function returns TRUE if the current member being calculated is in the same level as the
specified member.

Syntax

@ISSAMELEV (mbrName)

Chapter 2
Calculation Function List

2-118

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISSAMELEV(Sales)

Returns FALSE for Total Expenses.

@ISSAMELEV(Jan)

Returns TRUE for Apr, Jul, Oct.

See Also

• @ISLEV

• @ISSAMEGEN

• @LEV

@ISSIBLING
The @ISSIBLING calculation function for Essbase tests whether a member is a sibling of
another member.

This function returns TRUE if the current member being calculated is a sibling of the specified
member. This function excludes the specified member.

Syntax

@ISSIBLING (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISSIBLING("New York")

Returns TRUE for Florida, New Hampshire.

@ISSIBLING(Sales)

Returns FALSE for Margin.

Chapter 2
Calculation Function List

2-119

See Also

@ISISIBLING

@ISUDA
The @ISUDA calculation function for Essbase tests whether a member has a certain UDA.

This function returns TRUE if the specified user-defined attribute (UDA) exists for the current
member of the specified dimension at the time of the calculation.

Syntax

@ISUDA (dimName,UDAStr)

Parameters

dimName
Dimension name specification that contains the member you are checking.

UDAStr
User-defined attribute (UDA) name string.

Notes

• Essbase checks to see if the UDA is defined for the current member of the specified
dimension at calculation time. It returns TRUE if the UDA is defined, FALSE if not.

• For more information about UDAs, see Create User-Defined Attributes.

Example

The following example is based on the Sample Basic database. The Market dimension has
members that indicate a geographic location. Some members represent major markets. The
example below calculates the database and stores a budget amount for the upcoming year
based on the actual amount from this year. A different sales growth rate is applied to major
markets than to small markets.

FIX (Budget)
 Sales (IF(@ISUDA(Market,"Major Market"))
 Sales = Sales->Actual * 1.2;
 ELSE
 Sales = Sales->Actual * 1.1;
 ENDIF;);
ENDFIX

The preceding example tests to see if the current member of Market has a UDA called "Major
Market". If it does, the Budget -> Sales value is set to 120% of Actual -> Sales. If it does not,
the Budget -> Sales value is set to 110% of Actual -> Sales.

See Also

• @ISMBRUDA

• @UDA

Chapter 2
Calculation Function List

2-120

@LANCESTORS
The @LANCESTORS calculation function for Essbase returns a member list's ancestors,
optionally up to a certain generation or level.

This function excludes from the output the members specified in the input list.

You can use this function as a parameter of another function, where the function requires a list
of members.

Syntax

@LANCESTORS ((memberSetFunction) [,genLevNum])

Parameters

memberSetFunction
A member set function that returns a list of members.
How the @LANCESTORS function is used determines which member set functions are
allowed. Follow these guidelines:

• If the @LANCESTORS function is used alone (not within a FIX statement), you must use
the @LIST function and specify member names. For example:

@LIST(mbr1,mbr2,...)

• If the @LANCESTORS function is used within a FIX statement, you can use member set
functions such as @UDA and @ATTRIBUTE. For example:

@UDA(dimName,uda)

@ATTRIBUTE (attMbrName)

In this case, you can choose whether to use @LIST. For example, both of the following
statements are valid, and the statements return the same results.

Example using only @ATTRIBUTE:

FIX(@LANCESTORS(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces_12),"200-40
"))
...
ENDFIX;

Example using @LIST and @ATTRIBUTE:

FIX(@LANCESTORS(@LIST(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces_12),"
200-40")))
...
ENDFIX;

Chapter 2
Calculation Function List

2-121

Caution:

All members of the specified member list must be from the same dimension.

genLevNum
Optional. The integer value that defines the absolute generation or level number up to which
to select members. A positive integer defines a generation number. A value of 0 or a negative
integer defines a level number.

Example

All examples are from the Sample.Basic database.

@LANCESTORS(@LIST("100–10","200–20"),2)

Returns 100 (the ancestor of 100-10); and 200 (the ancestor of 200-20). Excludes Product
because it is at generation 1.

@LANCESTORS(@LIST("100","100–10"))

Returns Product (the ancestor of 100); and 100 (the ancestor of 100-10). The result does not
contain duplicate members.

@LANCESTORS(@LIST("100","Product","200"))

Returns Product (the ancestor of 100 and 200). The result does not contain duplicate
members.

FIX(@LANCESTORS(@UDA(Market,"New Market")),2)
...
ENDFIX;

Returns West, South, and Central (the ancestors, to generation 2, for the members in the
Market dimension that are associated with the New Market attribute).

FIX(@LANCESTORS(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces_12),"200–40"))
...
ENDFIX;

Returns 100, 200, 300, and Product (the ancestors of 100-10, 100-20, 200-10, 300-30—
caffeinated, 12-ounce drinks, and 200-40).

See Also

• @ANCESTORS

• @IANCESTORS

• @ILANCESTORS

Chapter 2
Calculation Function List

2-122

@LDESCENDANTS
The @LDESCENDANTS calculation function for Essbase returns a member list's descendants,
optionally down to a certain generation or level.

This function excludes the specified members.

You can use this function as a parameter of another function, where the function requires a list
of members.

Syntax

@LDESCENDANTS ((memberSetFunction) [,genLevNum])

Parameters

memberSetFunction
A member set function that returns a list of members.
How this function is used determines which member set functions are allowed. Follow these
guidelines:

• If this function is used alone (not within a FIX statement), you must use @LIST and
specify member names. For example:

@LIST(mbr1,mbr2,...)

• If @LDESCENDANTS is used within a FIX statement, you can use member set functions
such as @UDA and @ATTRIBUTE. For example:

@UDA(dimName,uda)

@ATTRIBUTE (attMbrName)

In this case, you can choose whether to use @LIST. For example, both of the following
statements are valid, and the statements return the same results.

Example using only @ATTRIBUTE:

FIX
(@LDESCENDANTS(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces_12),"200-40"
))
...
ENDFIX;

Example using @LIST and @ATTRIBUTE:

FIX
(@LDESCENDANTS(@LIST(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces_12),"2
00-40")))
...
ENDFIX;

Chapter 2
Calculation Function List

2-123

Caution:

All members of the specified member list must be from the same dimension.

genLevNum
Optional. The integer value that defines the absolute generation or level number up to which
to select members. A positive integer defines a generation number. A value of 0 or a negative
integer defines a level number.

Example

All examples are from the Sample.Basic database.

@LDESCENDANTS(@LIST("100","200","300"))

Returns 100-10, 100-20, 100-30 (the descendants of 100); 200-10, 200-20, 200-30, 200-40
(the descendants of 200); and 300-10, 300-20, 300-30 (the descendants of 300).

@LDESCENDANTS(@LIST("Market"),-1)

Returns East, West, South, and Central (the descendants of the specified member Market to
level 1).

FIX
(@LDESCENDANTS(@UDA(Market,"Major Market")))
...
ENDFIX;

Returns New York, Massachusetts, Florida, Connecticut, and New Hampshire (the
descendants of the specified member East); and Illinois, Ohio, Wisconsin, Missouri, Iowa, and
Colorado (the descendants of the specified member Central). California and Texas (specified
members) are excluded because they do not have descendants.

FIX
(@LDESCENDANTS(@ATTRIBUTE(Caffeinated_True),@ATTRIBUTE(Ounces_12),"200–40"))
...
ENDFIX;

Returns an empty list as none of the specified members (100-10, 100-20, 200-10, 300-30,
which are caffeinated, 12-ounce drinks, and 200-40) have descendants.

See Also

• @DESCENDANTS

• @IDESCENDANTS

• @ILDESCENDANTS

Chapter 2
Calculation Function List

2-124

@LEV
The @LEV calculation function for Essbase returns the level number of the specified member.

Syntax

@LEV(mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

Table 2-29 @LEV Results

Function Level Returned

@LEV(Margin) 1

@LEV("New York") 0

See Also

• @CURLEV

• @GEN

@LEVMBRS
The @LEVMBRS calculation function for Essbase returns dimension members of a specific
level.

This function returns all members with the specified level number or level name in the specified
dimension.

Syntax

@LEVMBRS (dimName, levName|levNum)

Parameters

dimName
Dimension name specification.

levName|levNum
A level name or an integer value that defines the number of a level. The integer value must be
0 or a positive integer.

Notes

• If you specify a name for the levName parameter, Essbase looks for a level with that name
in the specified dimension.

Chapter 2
Calculation Function List

2-125

• If you specify a number for the levName parameter (for example, 2), Essbase first looks for
a level with a number string name. If no level name exists with that name, Essbase checks
to see if the parameter is a valid level number.

• If you specify a temporary variable for the levName parameter, Essbase does not
recognize the value of the variable. It looks in the outline for a level name with the same
name as the temporary variable.

• For more information about levels and defining level names, see Generations and Levels.

• Essbase sorts the generated list of members in ascending order. Using Sample Basic as
an example, if you specify @LEVMBRS(Product,1), Essbase returns 100, 200, 300, 400,
Diet (in that order). This order is important to consider when you use @LEVMBRS with
certain forecasting and statistical functions.

• If you use a negative number for the level number, no syntax error is noted, but the
calculation will fail with an error message.

Example

In the Sample Basic cube:

@LEVMBRS(Measures,"Profit and Loss")
@LEVMBRS(Measures,0)

both return the following members if level 0 of the Measures dimension is named Profit and
Loss:

Sales, COGS, Marketing, Payroll, Misc, Opening Inventory, Additions, Ending Inventory,
Margin %, Profit %, and Profit per Ounce (in that order).

@LEVMBRS(Scenario,0)

Returns Actual, Budget, Variance, and Variance %.

The following example restricts the calculation to members with the combination Budget and
one of the members of the Market dimension with a level name of "State".

FIX (Budget,@LEVMBRS(Market,State))
 CALC DIM (Year,Measures);
ENDFIX

See Also

@GENMBRS

@LIKE
The @LIKE calculation function for Essbase returns a member set of member names that
match the specified pattern.

This function can be used on unique and duplicate-name outlines.

Syntax

@LIKE(pattern, topMbrinHierarchy, [escChar])

Chapter 2
Calculation Function List

2-126

Parameters

pattern
The character pattern with which to compare to members in the outline, including a single
wildcard character:

• %: The percentage sign allows matching to a string of any length (including zero length).

• _: The underscore allows matching on a single character in a member name.

topMbrinHierarchy
A fully qualified member name on which to base the member search. The specified member
and its aliases, and all of its descendants, are included in the search.
To search the entire outline, provide an empty string ("") for this parameter. For example,
@LIKE("100%", "").

escChar
Optional: A one-byte-length escape character to use if the wildcard character exists in
member names.
If you do not specify an escape character, a backslash (\) is assumed.

Example

The following examples are based on the following duplicate-name outline:

Product
 100
 100–10
 100–10–10
 100–20
 100–30
 200
 200–10
 200–20
 200–30
 300
 300–10
 300–20
 Diet
 100–10
 100–10–11
 200–10
 300–10
 Bottle
 200–10
 300–20

@LIKE("100%", "Product")

Returns members 100, 100-10, 100-20, and 100-30.

@LIKE("30_", "Product")

Chapter 2
Calculation Function List

2-127

Returns member 300.

@LIKE("200_", "Product", "\")

If member 200 has children named 200_10 (note the underscore, _),
200-20 (note the dash, -), 200_30 and 200-40, returns those members
whose name contains an underscore: 200_10 and 200_30.

See Also

• @BETWEEN

• @EQUAL

• @EXPAND

• @MBRCOMPARE

• @MBRPARENT

• @NOTEQUAL

@LIST
The @LIST calculation function for Essbase creates and distinguishes lists to be processed by
functions that require list arguments.

This function can be used to create expLists, member lists, or rangeLists. This function treats a
collection of parameters as one entity.

Syntax

@LIST (argument1, argument2, ..., argumentN)

Parameters

argument1, argument2, ..., argumentN
The list of arguments that are collected and treated as one argument so they can be
processed by the parent function. Arguments can be member names, member combinations,
member set functions, range functions, and numeric expressions.

Notes

@LIST does not check for or eliminate duplicates.

Example

The following example is based on the Sample Basic database. Assume that the Year
dimension contains an additional member, Sales Correl. @LIST is used with the
@CORRELATION function to determine the sales relationship between a product's two peak
periods (Jan-Mar and Apr-May):

FIX(Sales)
"Sales Correl" = @CORRELATION(SKIPNONE,
 @LIST(Jan,Feb,Mar),@LIST(Apr,May,Jun));
ENDFIX

Chapter 2
Calculation Function List

2-128

This example produces the following report:

 Colas Actual New York
 Sales
 =====
Jan 678
Feb 645
Mar 675
Apr 712
May 756
Jun 890

Sales Correl 0.200368468

@LN
The @LN calculation function for Essbase returns the natural logarithm (base e) of the
specified expression.

Syntax

@LN (expression)

Parameters

expression
Single member specification, member combination, or other numeric expression. If less than
or equal to 0, Essbase returns #MISSING.

Example

The following example is based on a variation of Sample Basic:

LN_Sales = @LN(Sales);

This example produces the following result:

 Cola East
 Jan Feb Mar Nov Dec
Sales 100 110 120 . . . 0 210
LN_Sales 4.65052 4.70048 4.78749 . . . #MISSING 5.34710

See Also

• @LOG10

• @LOG

• @EXP

Chapter 2
Calculation Function List

2-129

@LOG
The @LOG calculation function for Essbase returns the result of a logarithm calculation where
you can specify both the base to use and the expression to calculate.

Syntax

@LOG (expression [, base])

Parameters

expression
Single member specification, variable name, function, or other numeric expression. If less than
or equal to 0, Essbase returns #MISSING.

base
Optional. Single member specification, member combination, or numeric expression.

• If the base value is #MISSING, less than or equal to 0, or close to 1, Essbase returns
#MISSING.

• If the base is omitted, Essbase calculates the base-10 logarithm of the specified
expression. @LOG(Sales) is equivalent to @LOG10(Sales).

Notes

The @LOG function returns the logarithm of expression calculated using the specified base.
@LOG (x,b) is equivalent to logb(x).

Example

The following example is based on a variation of Sample Basic:

LOG2_Sales = @LOG(Sales,2);

This example produces the following result:

 Cola East
 Jan Feb Mar Nov Dec
Sales 100 #MISSING 120 . . . 0 210
LOG2_Sales 6.64386 #MISSING 6.90689 . . . #MISSING 7.71425

See Also

• @LN

• @LOG10

Chapter 2
Calculation Function List

2-130

@LOG10
The @LOG10 calculation function for Essbase returns the base-10 logarithm of the specified
expression.

Syntax

@LOG10 (expression)

Parameters

expression
Single member specification, variable name, function, or other numeric expression. If less than
or equal to 0, Essbase returns #MISSING.

Example

The following example is based on a variation of Sample Basic:

LOG10_Sales = @LOG10(Sales);

This example produces the following result:

 Product Actual
 East West South Central
Sales 87398 132931 50846 129680
LOG10_Sales 4.94150 5.12363 4.70626 5.11287

See Also

• @LOG

• @LN

@LSIBLINGS
The @LSIBLINGS calculation function for Essbase returns the left siblings of the specified
member.

Syntax

@LSIBLINGS(mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Notes

This function returns the left siblings of the specified member. Left siblings are children that
share the same parent as the member and that precede the member in the database outline.
This function excludes the specified member.

Chapter 2
Calculation Function List

2-131

This member set function can be used as a parameter of another function, where that
parameter is a list of members.

Essbase sorts the generated list of left siblings in descending order. Using Sample Basic as an
example, if you specify 200-30 for mbrName, Essbase returns 200-20, 200-10 (in that order).
This order is important to consider when you use this function with certain forecasting and
statistical functions.

Example

In the Sample Basic database:

@LSIBLINGS(Qtr4)

Returns Qtr3, Qtr2, and Qtr1 (in that order). These members appear above Qtr4 in the Sample
Basic outline.

@LSIBLINGS(Utah)

Returns Washington, Oregon, and California (in that order). These members appear above
Utah in the Sample Basic outline.

See Also

• @ILSIBLINGS

• @NEXTSIBLING

• @PREVSIBLING

• @RSIBLINGS

• @SHIFTSIBLING

@MATCH
The @MATCH calculation function for Essbase performs wildcard member selections.

Syntax

@MATCH (mbrName|genName|levName, "pattern")

Parameters

mbrName
The default or user-defined name of the member on which to base the search. Essbase
searches the member names and alias names of the specified member and its descendants.

genName
The default or user-defined name of the generation to search. Essbase searches all member
names and member alias names in the generation.

levName
The default or user-defined name of the level to search. Essbase searches all member names
and member alias names in the level.

Chapter 2
Calculation Function List

2-132

"pattern"
The character pattern to search for, including a wildcard character (* or ?).
? substitutes one occurrence of any character. You can use ? anywhere in the pattern.
* substitutes any number of characters. You can use * only at the end of the pattern.
To include spaces in the character pattern, enclose the pattern in double quotation marks ("").

Notes

This function performs a trailing-wildcard member selection. Essbase searches for member
names and alias names that match the pattern you specify and returns the member and alias
names it finds.

If the members names in the database you are searching are case-sensitive, the search is
case-sensitive. Otherwise, the search is not case-sensitive.

You can call @MATCH more than once in a calculation script.

If Essbase does not find any members that match the chosen character pattern, it returns no
member names and continues with the other calculation commands in the calculation script.

Example

In the Sample Basic database:

@MATCH(Product,"???-10")

Returns 100-10, 200-10, 300-10, and 400-10

@MATCH(Year,"J*")

Returns Jan, Jun, Jul

@MATCH(Product,"C*")

Returns 100 (Colas), 100-10 (Cola), 100-30 (Caffeine Free Cola), 300 (Cream Soda)

@MAX
The @MAX calculation function for Essbase returns the maximum from a list of numeric
values.

Syntax

This function returns the maximum value among the results of the expressions in expList.

@MAX (expList)

Parameters

expList
Comma-delimited list of members, variable names, functions, and numeric expressions, all of
which return numeric values.

Chapter 2
Calculation Function List

2-133

Notes

Depending on the values in the list, this function may return zero(0) or #MISSING. For full
control over skipping or inclusion of empty values, use @MAXS instead.

Example

This example is based on the Sample Basic database:

Qtr1 = @MAX(Jan:Mar);

This example produces the following report:

 Colas New York Actual
 Jan Feb Mar Qtr1
 === === === ====
Sales 678 645 675 678

See Also

• @MAXS

• @MAXSRANGE

• @MINS

@MAXRANGE
The @MAXRANGE calculation function for Essbase returns the maximum value of the
specified member across the specified range of members.

Syntax

@MAXRANGE (mbrName [,XrangeList])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

XrangeList
Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

Depending on the values in the list, @MAXRANGE may return a zero(0) or #MISSING value.
For full control over skipping or inclusion of empty values, use @MAXSRANGE instead.

Chapter 2
Calculation Function List

2-134

Example

In the Sample Basic database:

Qtr1 = @MAXRANGE(Sales,@CHILDREN(Qtr1));

produces the following report:

 Colas New York Actual
 Jan Feb Mar Qtr1
 === === === ====
Sales 678 645 675 678

See Also

• @MAXS

• @MAXSRANGE

• @MINSRANGE

@MAXS
The @MAXS calculation function for Essbase returns the maximum value from results of
expressions in a member list, with options to ignore empty values.

This function returns the maximum value among the results of the expressions in the specified
member list, with options to skip missing or zero values (in contrast with @MAX, which cannot
ignore empty values).

Syntax

@MAXS (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameters

SKIPNONE
Includes all cells specified in expList in the operation, regardless of their content

SKIPMISSING
Ignores all #MISSING values

SKIPZERO
Ignores all 0 values

SKIPBOTH
Ignores all 0 and #MISSING values

expList
Comma-delimited list of members, variable names, functions, or numeric expressions, all of
which return numeric values

Notes

• @MAXS (SKIPMISSING, expList) is equivalent to @MAX (expList).

Chapter 2
Calculation Function List

2-135

• Because #MISSING values are greater than negative data values and less than positive
data values, if the data being calculated includes only negative and #MISSING values,
@MAXS returns #MISSING.

• If the data being calculated includes only negative, 0, and #MISSING values, @MAXS may
return either #MISSING or 0 values in an unpredictable manner.

Example

For both examples, assume a database similar to Sample Basic. The Measures dimension
includes two members: COGS (cost of goods sold) and OtherInc_Exp (miscellaneous income
and expenses). The data can include 0 and #MISSING values.

Example 1

Qtr1_Max = @MAXS(SKIPBOTH, Jan:Mar);

This example ignores #MISSING and 0 values for all members of the Measures dimension. This
example produces the following results:

 Jan Feb Mar Qtr1_Max
 ======== ======== ======== ========
COGS #MISSING 1500 2300 2300
OtherInc_Exp -500 -350 0 -350

Example 2

Qtr1_Max = @MAXS(SKIPNONE, Jan:Mar);

This example includes #MISSING and 0 values in the calculation, for all members of the
Measures dimension. This example produces the following results:

 Jan Feb Mar Qtr1_Max
 ======== ======== ======== ========
COGS #MISSING 1500 2300 2300
OtherInc_Exp -500 -350 0 0

See Also

• @MAX

• @MAXSRANGE

• @MINS

@MAXSRANGE
The @MAXSRANGE calculation function for Essbase returns the maximum value of a member
across a range of members, with options to ignore empty values.

This function returns the maximum value of the specified member across the specified range of
members, with options to skip missing or zero values (in contrast with @MAXRANGE, which
cannot ignore empty values).

Chapter 2
Calculation Function List

2-136

Syntax

@MAXSRANGE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrName
[,XrangeList])

Parameters

SKIPNONE
Includes all cells specified in expList in the operation, regardless of their content

SKIPMISSING
Ignores all #MISSING values

SKIPZERO
Ignores all 0 values

SKIPBOTH
Ignores all 0 and #MISSING values

mbrName
Any valid single member name, or a function that returns a single member.

XrangeList
Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

• @MAXSRANGE (SKIPNONE, mbrName, XrangeList) is equivalent to @MAXRANGE
mbrName, (XrangeList).

• #MISSING values are considered to be greater than negative data values and less than
positive data values. If the data being calculated includes only negative and #MISSING
values, @MAXSRANGE returns #MISSING.

• For all members, @MAXSRANGE returns the value calculated for the specified member
and range list.

Example

For both examples, assume a database similar to Sample Basic. The Measures dimension
includes two members: COGS (cost of goods sold) and OtherInc_Exp (miscellaneous income
and expenses). The data can include 0 and #MISSING values. For both members of the
Measures dimension, the result is the same--the maximum value for the OtherInc_Exp
member across the specified range.

Example 1

Qtr1_Max = @MAXSRANGE (SKIPBOTH, OtherInc_Exp, @CHILDREN(Qtr1));

This example ignores #MISSING and 0 values and produces the following results:

 Jan Feb Mar Qtr1_Max
 ======== ======== ======== ========

Chapter 2
Calculation Function List

2-137

OtherInc_Exp -500 #MISSING -250 -250
COGS 0 1500 2300 -250

Example 2

Qtr1_Max = @MAXSRANGE (SKIPNONE, OtherInc_Exp, @CHILDREN(Qtr1));

Using the same data as Example 1, Example 2 demonstrates what happens if you do not skip
0 and #MISSING values in the data. Example 2 produces the following report:

 Jan Feb Mar Qtr1_Max
 ======== ======== ======== ========
OtherInc_Exp -500 #MISSING -250 #MISSING
COGS 0 1500 2300 #MISSING

See Also

• @MAXS

• @MINSRANGE

• @MAXRANGE

@MBRCOMPARE
The @MBRCOMPARE calculation function for Essbase returns a member set of member
names that match the comparison criteria.

Member names are evaluated alpha-numerically.

This function can be used on unique and duplicate-name outlines.

Syntax

@MBRCOMPARE (compOperator, tokenString, topMbrinHierarchy, cdfName)

Parameters

compOperator
One of the following strings: < (less than), <= (less than or equal to), > (greater than), >=
(greater than or equal to), == (equals), != (not equal to), or CDF (for a custom-defined
function).

Note:

Using the == (equal to) comparison operator is the same as using @EQUAL. Using
the != (not equal to) comparison operator is the same as using @NOTEQUAL.

tokenString
Token string value with which to compare to members in the outline, starting with the member
specified in topMbrinHierarchy.

Chapter 2
Calculation Function List

2-138

topMbrinHierarchy
A fully qualified name of a member in the outline on which to base the member search. The
specified member and its aliases, and all of its descendants, are included in the search.

Note:

Although aliases of the specified member are included in the search, only outline
member names (not aliases) are used when comparing member names.

To search the entire outline, provide an empty string ("") for this parameter. For example,
@MBRCOMPARE("<=" , "100-10", "").

cdfName
Optional: This argument applies only if CDF is specified for compOperator.
Name of a custom-defined function.
For information about creating custom-defined functions, see the MaxL Create Function
statement.
The custom-defined function must take the tokenString and topMbrinHierarchy arguments and
return a Boolean value. (When compiling @MBRCOMPARE, Essbase rejects custom-defined
functions that do not meet these requirements.) If the function returns TRUE, the member is
added to the member set returned by @MBRCOMPARE.

Notes

The following example of a custom-defined function returns results similar to using the >=
(greater than or equal to) comparison operator:

package com.hyperion.essbase.cdf.comparecdf;

class MyCDF {

public static boolean JavaNameCompare(String baseStr,
 String newStr)
{
try {
 System.out.println ("\n COMPARING MEMBER NAMES \n ");
 // Compare the two strings.
 int result = newStr.compareToIgnoreCase(baseStr);
 if (result < 0)
 return false;
 else if (result == 0)
 return true;
 else
 return true;
}
catch (Exception e) {
 System.out.println ("Comparison function failed !!. Exception \n ");
 return false;
}
}

You must register the custom-defined function before you can use it in the @MBRCOMPARE
function.

Chapter 2
Calculation Function List

2-139

To register the custom-defined function:

1. Compile the custom-defined function into a JAR file. For example:

CompareCDF.jar

2. Copy the JAR file to the following directory:

$ESSBASEPATH/java/udf

For the location of $ESSBASEPATH, see Environment Variables in the Essbase Platform.

3. To grant access to the JAR file, add the following statement to the end of the udf.policy
file, which is located in the $ESSBASEPATH/java/ directory:

grant codeBase "file:${essbase.java.home}/../java/udf/ CompareCDF.jar" {
permission java.security.AllPermission;
};

4. To register the custom-defined function, use the following MaxL statement:

CREATE OR REPLACE FUNCTION '@JAVACOMPARE'
AS com.hyperion.essbase.cdf.comparecdf.MyCDF.JavaNameCompare(String,
String)'
SPEC '@ CUSTOMCOMPARE (Str1, Str2)'
COMMENT 'Compares Strings returns boolean flag';

Example

The following examples are based on the following duplicate-name outline:

Product
 100
 100–10
 100–10–10
 100–20
 100–30
 200
 200–10
 200–20
 200–30
 300
 300–10
 300–20
 Diet
 100–10
 100–10–11
 200–10
 300–10
 Bottle
 200–10
 300–20

@MBRCOMPARE("<=", "100-10", "Product")

Chapter 2
Calculation Function List

2-140

Returns the members 100, [100].[100-10], and [Diet].[100-10].

@MBRCOMPARE("==", "100-10", "Product")

Returns the members [Diet].[100-10] and [100].[100-10].

@MBRCOMPARE ("CDF","100-20", "100", @JAVACOMPARE)

Uses the @JAVACOMPARE custom-defined function to return a
member set.

See Also

• @BETWEEN

• @EQUAL

• @EXPAND

• @LIKE

• @MBRPARENT

• @NOTEQUAL

@MBRPARENT
The @MBRPARENT calculation function for Essbase returns the parent of the specified
member.

This function can be used on unique and duplicate-name outlines.

Syntax

@MBRPARENT (mbrName)

Parameters

mbrName
Name of a member in the outline (or an expression returning a member name)

Example

For the following examples, assume the following outline hierarchy exists:

Chapter 2
Calculation Function List

2-141

@MBRPARENT("Salem")

returns Massachusetts.

FIX(Actual, Jan, "100-10")
Sales (
IF (@ISLEV("Market", 0))
 @MBRPARENT(@CURRMBR("Market")) /
@COUNT(SKIPNONE,@CHILDREN(@MBRPARENT(@CURRMBR("Market"))));
ENDIF
)
ENDFIX

The calculation script distributes the value of Massachusetts equally
among Springfield, Salem, and Boston.

See Also

• @BETWEEN

• @EQUAL

• @EXPAND

• @LIKE

• @MBRCOMPARE

• @NOTEQUAL

@MDALLOCATE
The @MDALLOCATE calculation function for Essbase allocates values from a member, a
cross-dimensional member, or a value across multiple dimensions. The allocation is based on
a variety of criteria.

This function allocates values that are input at an upper level to lower-level members in
multiple dimensions. The allocation is based upon a specified share or spread of another

Chapter 2
Calculation Function List

2-142

variable. You can specify a rounding parameter for allocated values and account for rounding
errors.

Syntax

@MDALLOCATE (amount, Ndim, allocationRange1 ... allocationRangeN,basisMbr,
[roundMbr], method [, methodParams]
 [, round [, numDigits][, roundErr]])

Parameters

amount
A value, member, or cross-dimensional member that contains the value to be allocated into
each allocationRange. The value may also be a constant.

• If amount is a member, the member must be from a dimension to which an
allocationRange belongs.

• If amount is a cross-dimensional member, the member must include a member from every
dimension of every allocationRange.

• If a member or cross-dimensional member is not from an allocationRange dimension,
Essbase displays a warning message.

If the amount parameter is a loaded value, it cannot be a Dynamic Calc member.

Ndim
The number of dimensions across which values are allocated.

allocationRange1 ... allocationRangeN
Comma-delimited lists of members, member set functions, or range functions from the multiple
dimensions into which values from amount are allocated.

basisMbr
A value, member, or cross-dimensional member that contains the values that are used as the
basis for the allocation. The method you specify determines how the basis data is used.

roundMbr
Optional. The member or cross-dimensional member to which rounding errors are added. This
member (or at least one member of a cross-dimensional member) must be included in an
allocationRange.

method
The expression that determines how values are allocated. One of the following:

• share: Uses basisMbr to calculate a percentage share. The percentage share is
calculated by dividing the value in basisMbr for the current member in allocationRange by
the sum across the allocationRange for that basis member:

amount * (@CURRMBR()-> basisMbr / @SUM(allocationRange -> basisMbr))

• spread: Spreads amount across allocationRange:

amount * (1/@COUNT(SKIP,allocationRange))

Chapter 2
Calculation Function List

2-143

• SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH: Values to be ignored during
calculation of the spread. You must specify a SKIP parameter only for spread.

– SKIPNONE: Includes all cells.

– SKIPMISSING: Excludes all #MISSING values in basisMbr, and stores #MISSING for
values in allocationRange for which the basisMbr is missing.

– SKIPZERO: Excludes all zero (0) values in basisMbr, and stores #MISSING for values
in allocationRange for which the basisMbr is zero.

– SKIPBOTH: Excludes all zero (0) values and all #MISSING values, and stores
#MISSING for values in allocationRange for which the basisMbr is zero (0) or #MISSING.

• percent: Takes a percentage value from basisMbr for each member in allocationRange
and applies the percentage value to amount:

amount * (@CURRMBR()->basisMbr * .01).

• add: Takes the value from basisMbr for each member of allocationRange and adds the
value to amount:

amount + @CURRMBR()-> basisMbr

• subtract: Takes the value from basisMbr for each member of allocationRange and
subtracts the value from amount:

amount - @CURRMBR()->basisMbr

• multiply: Takes the value from basisMbr for each member of allocationRange and
multiplies the value by amount:

amount * @CURRMBR()->basisMbr

• divide: Takes the value from basisMbr for each member of allocationRange and divides
the value by amount:

amount/@CURRMBR()->basisMbr

round
Optional. One of the following:

• noRound: No rounding. This is the default.

• roundAmt: Indicates that you want to round the allocated values. If you specify roundAmt,
you also must specify numDigits to indicate the number of decimal places to round to.

numDigits
An integer that represents the number of decimal places to round to. You must specify
numDigits if you specify roundAmt.

• If numDigits is 0, the allocated values are rounded to the nearest integer. The default
value for numDigits is 0.

• If numDigits is greater than 0, the allocated values are rounded to the specified number of
decimal places.

• If numDigits is a negative value, the allocated values are rounded to a power of 10.

Chapter 2
Calculation Function List

2-144

If you specify roundAmt, you also can specify a roundErr parameter.

roundErr
Optional. An expression that specifies where rounding errors should be placed. You must
specify roundAmt in order to specify roundErr. If you do not specify roundErr, Essbase
discards rounding errors.
To specify roundErr, choose from one of the following:

• errorsToHigh: Adds rounding errors to the member with the highest allocated value. If
allocated values are identical, adds rounding errors to the first value in allocationRange.

• errorsToLow: Adds rounding errors to the member with the lowest allocated value. If
allocated values are identical, adds rounding errors to the first value in allocationRange.
#MISSING is treated as the lowest value in a list; if multiple values are #MISSING, rounding
errors are added to the first #MISSING value in the list.

• errorsToMbr: Adds rounding errors to the specified roundMbr, which must be included in
allocationRange.

Notes

• When you use this function in a calculation script, use it within a FIX statement; for
example, FIX on the member to which the allocation amount is loaded. Although FIX is not
required, using it may decrease calculation time.

• For a more complex example using @MDALLOCATE, see Allocating Values Across
Multiple Dimensions.

• If you have very large allocationRange lists, Essbase may return error messages during
the calculation.

Example

Consider the following example from the Sample Basic database. A data value of 500 is
loaded to Budget->Total Expenses->East for Jan and Colas. (For this example, assume that
Total Expenses is not a Dynamic Calc member.)

You need to allocate the amount across each expense category for each child of East. The
allocation for each child of East is based on the child's share of Total Expenses->Actual:

FIX("Total Expenses")
Budget = @MDALLOCATE(Budget->"Total Expenses"->East,2,
 @CHILDREN(East),@CHILDREN("Total Expenses"),Actual,,share);
ENDFIX

This example produces the following report:

 Jan Colas
 Marketing Payroll Misc Total Expenses
 ========= ======= ==== ==============
Actual New York 94 51 0 145
 Massachusetts 23 31 1 55
 Florida 53 54 0 107
 Connecticut 40 31 0 71
 New Hampshire 27 53 2 82
 East 237 220 3 460
Budget New York 102.174 55.435 0 #MI
 Massachusetts 25 33.696 1.087 #MI
 Florida 57.609 58.696 0 #MI

Chapter 2
Calculation Function List

2-145

 Connecticut 43.478 33.696 0 #MI
 New Hampshire 29.348 57.609 2.173 #MI
 East #MI #MI #MI 500

See Also

@ALLOCATE

@MDANCESTVAL
The @MDANCESTVAL calculation function for Essbase returns ancestor-level data from
multiple dimensions based on the current member being calculated.

Syntax

@MDANCESTVAL (dimCount, dimName1, genLevNum1 ... dimNameX, genLevNumX
[,mbrName])

Parameters

dimCount
Integer value that defines the number of dimensions from which ancestor values are being
returned.

dimName1, . . . dimNameX
Defines the dimension names from which the ancestor values are to be returned. You must
specify a genLevNum for every dimName.

genLevNum, . . . genLevNumX
Integer value that defines the absolute generation or level number from which the ancestor
values are to be returned. A positive integer defines a generation reference. A negative
number or value of 0 defines a level reference. You must specify a dimName for every
genLevNum.
To use this function or any other ancestor value function in a ragged hierarchy, use generation
references instead of level references to avoid unexpected results. See Hierarchy Shapes.

mbrName
Optional. Any valid single member name, or a function that returns a single member.

Example

Marketing expenses are captured at the Product Family and Region level in a product planning
application. The Marketing Expense data must be allocated down to each Product code and
State level based on Sales contribution. Data is captured as follows:

 Sales Marketing
 ===== =========
New York 100-10 300 N/A
 100-20 200 N/A
 100 500 N/A
Boston 100-10 100 N/A
 100-20 400 N/A
 100 500 N/A
East 100-10 400 N/A

Chapter 2
Calculation Function List

2-146

 100-20 600 N/A
 100 1000 200

The Marketing Expense value of 200 at East and Product code 100 is allocated down to each
Product code and State with the following formula:

Marketing = (Sales / @MDANCESTVAL(2, Market, 2, Product, 2, Sales)) *
@MDANCESTVAL(2, Market, 2, Product, 2, Marketing);

which produces the following result:

 Sales Marketing
 ===== =========
New York 100-10 300 60
 100-20 200 40
 100 500 100
Boston 100-10 100 20
 100-20 400 80
 100 500 100
East 100-10 400 80
 100-20 600 120
 100 1000 200

The Marketing expenses can then be reconsolidated across Products and Markets.

See Also

• @ANCESTVAL

• @MDPARENTVAL

• @SANCESTVAL

@MDPARENTVAL
The @MDPARENTVAL calculation function for Essbase returns parent-level data from multiple
dimensions based on the current member being calculated.

Syntax

@MDPARENTVAL (numDim, dimName1, ... dimNameX [,mbrName])

Parameters

numDim
Integer value that defines the number of dimensions from which parent values are being
returned.

dimName1, . . . dimNameX
Defines the dimension names from which the parent values are to be returned.

mbrName
Optional. Any valid single member name, or a function that returns a single member.

Chapter 2
Calculation Function List

2-147

Example

Marketing expenses are captured at the Product Family and Region level in a product planning
application. The Marketing Expense data must be allocated down to each Product code and
State level based on Sales contribution.

Data is captured as follows:

 Sales Marketing
 =====
=========
New York 100-10 300 N/A
 100-20 200 N/A
 100 500 N/A
Boston 100-10 100 N/A
 100-20 400 N/A
 100 500 N/A
East 100-10 400 N/A
 100-20 600 N/A
 100 1000 200

The Marketing Expense value of 200 at East and Product code 100 is allocated down to each
Product code and State with the following formula:

Marketing = (Sales / @MDPARENTVAL(2, Market, Product, Sales)) *
@MDPARENTVAL(2, Market, Product, Marketing);

which produces the following result:

 Sales Marketing
 ===== =========
New York 100-10 300 60
 100-20 200 40
 100 500 N/A
Boston 100-10 100 20
 100-20 400 80
 100 500 N/A
East 100-10 400 N/A
 100-20 600 N/A
 100 1000 N/A

The Marketing expenses can then be reconsolidated across Products and Markets.

See Also

• @PARENTVAL

• @MDANCESTVAL

• @SPARENTVAL

Chapter 2
Calculation Function List

2-148

@MDSHIFT
The @MDSHIFT calculation function for Essbase shifts a series of data values across multiple
dimension ranges.

Syntax

@MDSHIFT (mbrName, shiftCnt1, dimName1, [range1|(range1)], ... shiftCntX,
dimNameX, [rangeX|(rangeX)])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

shiftCnt1...shiftCntX
Integer that defines the number of member positions to shift.

dimName1, . . . dimNameX
Defines the dimension names in which the shift is to occur.

range1|(range1) . . . rangeX|(rangeX)
Optional. A valid member name, a comma-delimited list of member names, member set
functions, and range functions. If rangeList is not specified, Essbase uses the level 0
members from the dimension specified with the dimName parameter. If the range list is
comma delimited, then the list must be enclosed in parentheses.

Example

The Budget figures for Ending Inventory need to be calculated by taking Prior Year->Opening
Inventory results as a starting point:

 Jan Feb Mar
 === === ===
Prior Year Opening Inventory 110 120 130 . .
Budget Ending Inventory N/A N/A N/A . .

The following calculation script assumes that the Scenario dimension is as follows:

Scenario
 Prior Year
 Budget

FIX (Budget)
"Ending Inventory" = @MDSHIFT("Opening Inventory", 1, Year, , -1, Scenario,);
ENDFIX

In this example, range1 is not specified, so Essbase defaults to the level 0 members of the
Year dimension, which was specified as the dimName1 parameter. Since range2 is also not

Chapter 2
Calculation Function List

2-149

specified, Essbase defaults to the level 0 members of the Scenario dimension, which was
specified as the dimName2 parameter. This example produces the following result:

 Jan Feb Mar
 === ===
===
Prior Year Opening Inventory 110 120 130 . .
Budget Ending Inventory 120 130 140 . .

See Also

@SHIFT

@MEDIAN
The @MEDIAN calculation function for Essbase returns the median (the middle number) of the
specified data set. Half the numbers in the data set are larger than the median, and half are
smaller.

Syntax

@MEDIAN (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, XrangeList)

Parameters

SKIPNONE
Includes all cells specified in the data set, regardless of their content, during calculation of the
median.

SKIPMISSING
Excludes all #MISSING values from the data set during calculation of the median.

SKIPZERO
Excludes all zero (0) values from the data set during calculation of the median.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from the data set during calculation of the
median.

XrangeList
A list of numeric values across which the median is calculated. Referred to generically
throughout this topic as "the data set."
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about XrangeList, see Range List Parameters.

Notes

• If the member you are calculating and the data set (XrangeList) are not in the same
dimension, use @RANGE or @XRANGE to cross the member with the list of members (for
example, to cross Sales with the children of 100).

• @MEDIAN sorts the data set in ascending order before calculating the median.

• When the data set contains an even number of values, @MEDIAN calculates the average
of the two middle numbers.

Chapter 2
Calculation Function List

2-150

• @MEDIAN treats #MISSING values as 0 unless SKIPMISSING or SKIPBOTH is specified.

• When you use this function in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

• When you use this function across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Median. This example calculates the median sales
values for all products and uses @RANGE to generate the data set:

FIX (Product)
Median = @MEDIAN(SKIPBOTH,@RANGE(Sales,@CHILDREN(Product)));
ENDFIX

This example produces the following report:

 Jan New York
 Actual Budget
 ====== ======
Sales Colas 678 640
 Root Beer 551 530
 Cream Soda 663 510
 Fruit Soda 587 620
 Diet Drinks #MI #MI
 Product 2479 2300

Median Product 625 575

Because SKIPBOTH is specified in the calculation script, the #MI values for Diet Drinks are
skipped. The remaining four products create an even-numbered data set. So, to calculate
Median->Product->Actual, the two middle numbers in the set (587 and 663) are averaged to
create the median (625). To calculate Median->Product->Budget, the two middle numbers in
the set (530 and 620) are averaged to create the median (575).

The following example assumes a Year dimension is added to Sample Basic. It calculates
median using cross-dimensional members in the data set.

FIX(Product)
Median = @MEDIAN(@XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan

Chapter 2
Calculation Function List

2-151

2012->Feb
2012->Mar

See Also

• @RANGE

• @XRANGE

@MEMBER
The @MEMBER calculation function for Essbase returns the member with the name that is
provided as a character string.

Syntax

@MEMBER (String)

Parameters

String
A string (enclosed in double quotation marks) or a function that returns a string

Example

Typically, @MEMBER is used in combination with string functions that are used to manipulate
character strings to form the name of a member. In the following example, the member name
QTR1 is appended to the character string 2000_ to form the string 2000_QTR1. @MEMBER
returns the member 2000_QTR1 and QTD is set to the value of this member.

QTD=@MEMBER(@CONCATENATE("2000_", QTR1));

See Also

• @CONCATENATE

• @SUBSTRING

@MEMBERAT
The @MEMBERAT calculation function for Essbase returns the specified member in a list of
members.

Syntax

@MEMBERAT(mbrList, mbrIndex)

Parameters

mbrList
Member list or function that returns a member list.

Chapter 2
Calculation Function List

2-152

mbrIndex
Nonzero integer. If positive, enumerates from start of the list (for example, 1 returns the first
member in the list). If negative, enumerates from the end of the list (for example, -1 returns the
last member in the list).

Notes

If mbrIndex is 0 or out of bounds, the script or member formula fails during verification or
runtime and returns an error.

Example

The following examples use the Sample.Basic database.

@MEMBERAT(@CHILDREN("Colas"), 2); returns 100-20 (Diet Cola).

Sales = @ MEMBERAT(@CHILDREN("Total Expenses"), -1);

The value of the member Misc is assigned to Sales, because Misc is the last child of Total
Expenses, and the mbrIndex of -1 causes this function to select the last member in the list.

@MEMBERAT(@CHILDREN("100-10"), 1);

Because @CHILDREN("100-10") is an empty list, returns an error.

See Also

@MEMBER

@MERGE
The @MERGE calculation function for Essbase merges two member lists that are processed
by another function. Duplicates (values found in both lists) are included only once in the
merged list.

Syntax

@MERGE (list1, list2)

Parameters

list1
The first list of member specifications to be merged.

list2
The second list of member specifications to be merged.

Notes

• Duplicate values are included only once in the merged list.

• @MERGE can merge only two lists at a time. You can nest @MERGE function calls to
merge more than two lists.

Chapter 2
Calculation Function List

2-153

Example

Example 1

In the Sample Basic database,

@MERGE(@CHILDREN(Colas),@CHILDREN("Diet Drinks"));

returns Cola, Diet Cola, Caffeine Free Cola, Diet Root Beer, and Diet Cream Soda.

Diet Cola appears only once in the merged list, even though it is a child of both Colas and Diet
Drinks.

Example 2

In this example, @MERGE is used with @ISMBR to increase the marketing budget for major
markets and for western markets.

Budget
(IF (@ISMBR(@MERGE(@UDA(Market,"Major Market"),
 @DESCENDANTS(West))))
Marketing = Marketing * 1.1;
ENDIF;);

This example produces the following report, which shows only the major markets in the East
and all western markets:

 Product Year Budget
 Marketing
 =========
New York 6039
Massachusetts 1276
Florida 2530

California 7260
Oregon 2090
Washington 2772
Utah 1837
Nevada 4521

The values prior to running the calculation script were:

New York 5490
Massachusetts 1160
Florida 2300

California 6600
Oregon 1900
Washington 2520
Utah 1670
Nevada 4110

Chapter 2
Calculation Function List

2-154

See Also

• @INTERSECT

• @LIST

• @RANGE

• @REMOVE

@MIN
The @MIN calculation function for Essbase returns the minimum from a list of numeric values.

Syntax

This function returns the minimum value among the results of the expressions in expList.

@MIN (expList)

Parameters

expList
Comma-delimited list of members, variable names, functions, and numeric expressions, all of
which return numeric values.

Notes

Depending on the values in the list, @MIN may return a zero(0) or #MISSING value. For full
control over skipping or inclusion of empty values, use @MINS.

Example

In the Sample Basic database:

Qtr1 = @MIN(Jan:Mar);

produces the following report:

 Colas New York Actual
 Jan Feb Mar Qtr1
 === === === ====
Sales 678 645 675 645

See Also

• @MAX

• @MINS

• @MINRANGE

Chapter 2
Calculation Function List

2-155

@MINRANGE
The @MINRANGE calculation function for Essbase returns the minimum value of a member
across a range of members.

This function returns the minimum value of mbrName across XrangeList.

Syntax

@MINRANGE (mbrName [,XrangeList])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

XrangeList
Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

Depending on the values in the list, this function may return a zero(0) or #MISSING value. For
full control over skipping or inclusion of empty values, use @MINSRANGE.

Example

In the Sample Basic database:

Qtr1 = @MINRANGE(Sales,Jan:Mar);

produces the following report:

 Colas New York Actual
 Jan Feb Mar Qtr1
 === === === ====
Sales 678 645 675 645

See Also

• @MAXSRANGE

• @MINSRANGE

• @MIN

Chapter 2
Calculation Function List

2-156

@MINS
The @MINS calculation function for Essbase returns the minimum value from results of
expressions in a member list, with options to ignore empty values.

This function returns the minimum value across the results of the expressions in expList, with
options to skip missing or zero values (in contrast with @MIN, which cannot ignore empty
values).

Syntax

@MINS (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameters

SKIPNONE
Includes in the operation all cells specified in expList regardless of their content

SKIPMISSING
Ignores all #MISSING values

SKIPZERO
Ignores all 0 values

SKIPBOTH
Ignores all 0 and #MISSING values

expList
Comma-delimited list of member names, variable names, functions, or numeric expressions.
expList provides a list of numeric values for which Essbase determines the minimum value.

Notes

• This function enables skipping of #MISSING and 0 values, in contrast with @MIN, which
always includes empty values.

• @MINS (SKIPNONE, expList) is equivalent to @MIN (expList).

• Because #MISSING values are less than positive data values and more than negative data
values, if the data being calculated includes only positive and #MISSING values, @MINS
returns #MISSING.

• If the data being calculated includes only negative, 0, and #MISSING values, @MINS may
return either #MISSING or 0 values in an unpredictable manner.

Example

For both examples, assume a database similar to Sample Basic. The Measures dimension
includes two members: COGS (cost of goods sold) and OtherInc_Exp (miscellaneous income
and expenses). The data can include 0 and #MISSING values.

Example 1

Qtr1_Min = @MINS(SKIPBOTH, Jan:Mar);

Chapter 2
Calculation Function List

2-157

This example ignores #MISSING and 0 values for all members of the Measures dimension. This
example produces the following results:

 Jan Feb Mar Qtr1_Min
 ======== ======== ======== ========
COGS #MISSING 1500 2300 1500
OtherInc_Exp -500 -350 0 -500

Example 2

Qtr1_Min = @MINS(SKIPNONE, Jan:Mar);

For all members of the Measures dimension, this example includes #MISSING and 0 values and
produces the following results:

 Jan Feb Mar Qtr1_Min
 ======== ======== ======== ========
COGS #MISSING 1500 2300 #MISSING
OtherInc_Exp -500 -350 0 -500

See Also

• @MAXS

• @MIN

• @MINSRANGE

@MINSRANGE
The @MINSRANGE calculation function for Essbase returns the minimum value of a member
across a range of members, with options to skip missing or zero values.

Syntax

This function returns the minimum value of mbrName across XrangeList, with options to skip
empty values.

@MINSRANGE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrName
[,XrangeList])

Parameters

SKIPNONE
Includes in the operation all specified cells regardless of their content

SKIPMISSING
Ignores all #MISSING values

SKIPZERO
Ignores all 0 values

SKIPBOTH
Ignores all 0 and #MISSING values

Chapter 2
Calculation Function List

2-158

mbrName
Any valid single member name, or a function that returns a single member.

XrangeList
Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

• This function enables skipping of #MISSING and 0 values, in contrast with @MINRANGE,
which always includes empty values in the calculation.

• @MINSRANGE (SKIPNONE, mbrName, rangeList) is equivalent to @MINRANGE (mbrName,
rangeList).

• #MISSING values are considered to be less than positive data values and more than
negative data values. If the data being calculated includes only positive and #MISSING
values, this function returns #MISSING.

• For all members, this function returns the value calculated for the specified member and
range list.

Example

For both examples, assume a database similar to Sample Basic. The Measures dimension
includes two members: COGS (cost of goods sold) and OtherInc_Exp (miscellaneous income
and expenses). The data can include 0 and #MISSING values. For both members of the
Measures dimension, the result is the same--the minimum value for the OtherInc_Exp member
across the specified range.

Example 1

Qtr1_Min = @MINSRANGE(SKIPBOTH, OtherInc_Exp, Jan:Mar);

This example ignores the 0 value for Mar and produces the following results:

 Jan Feb Mar Qtr1_Min
 ======== ======== ======== ========
COGS #MISSING 1500 2300 350
OtherInc_Exp 500 350 0 350

Example 2

Qtr1_Min = @MINS(SKIPNONE, OtherInc_Exp, Jan:Mar);

This example does not ignore the 0 value in the calculation. This example produces the
following results:

 Jan Feb Mar Qtr1_Min
 ======== ======== ======== ========
COGS #MISSING 1500 2300 0
OtherInc_Exp 500 350 0 0

Chapter 2
Calculation Function List

2-159

See Also

• @MINS

• @MINRANGE

• @MAXSRANGE

@MOD
The @MOD calculation function for Essbase calculates the modulus of a division operation.

Syntax

@MOD (mbrName1, mbrName2)

Parameters

mbrName1 and mbrName2
Members from the same dimension whose modulus is to be calculated.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Factor. The modulus between Profit % and Margin
% is calculated with the following formula:

Factor = @MOD("Margin %", "Profit %");

This example produces the following report:

 Market Product Scenario
 Margin % Profit % Factor
 ======== ======== ======
Jan 55.10 25.44 4.22
Feb 55.39 26.03 3.34
Mar 55.27 25.87 3.53

@MODE
The @MODE calculation function for Essbase returns the mode (the most frequently occurring
value) in the specified data set.

Syntax

@MODE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, XrangeList)

Parameters

SKIPNONE
Includes all cells specified in the data set, regardless of their content, during calculation of the
mode.

Chapter 2
Calculation Function List

2-160

SKIPMISSING
Excludes all #MISSING values from the data set during calculation of the mode.

SKIPZERO
Excludes all zero (0) values from the data set during calculation of the mode.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from the data set during calculation of the
mode.

XrangeList
A list of numeric values across which the mode is calculated. Referred to generically
throughout this topic as "the data set."
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about XrangeList, see Range List Parameters.

Notes

• When two or more values in the data set occur at the same frequency, Essbase sorts the
list of values in ascending order and chooses the lowest value that occurs with the most
frequency as the mode. For example, if the data set contains [2,1,2,2,2,3,3,3,3], Essbase
sorts the list as [1,2,2,2,2,3,3,3,3] and chooses the value [2] as the mode.

• If the data set contains no duplicate values, this function returns the smallest value in the
list as the mode. For example, if the data set contains [2,4,7,10,14], @MODE returns 2 as
the mode.

• If #MISSING is the mode of the data set, this function returns #MISSING unless
SKIPMISSING or SKIPBOTH is specified. If you specify SKIPMISSING or SKIPBOTH and
all values in the data set are #MISSING, this function returns #MISSING. If you specify
SKIPZERO or SKIPBOTH and all values in the data set are 0, this function returns
#MISSING.

• When you use this function in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

• When you use this function across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example

The following example calculates the mode of the units sold for the Central region and uses
@RANGE to generate the data set:

FIX (Central)
"Mode" = @MODE(SKIPMISSING,
 @RANGE(Sales,@CHILDREN(Central)));
ENDFIX

This example produces the following report:

 Colas Actual Jan
 Units Sold
 ==========
Units Sold Illinois 3
 Ohio 2

Chapter 2
Calculation Function List

2-161

 Wisconsin 3
 Missouri #MI
 Iowa 0
 Colorado 6
 Central 14

Mode Central 3

The following example assumes a Year dimension is added to Sample Basic. It calculates
mode using cross-dimensional members in the data set.

FIX(Product)
"Mode" = @MODE(SKIPMISSING,@XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

• @RANGE

• @XRANGE

@MOVAVG
The @MOVAVG calculation function for Essbase applies a moving n-term average (mean) to
an input data set. @MOVAVG modifies a data set for smoothing purposes.

Each term in the set is replaced by a trailing mean of n terms, and the first terms (the n-1
terms) are copies of the input data.

Syntax

@MOVAVG (mbrName [, n [, XrangeList]])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional. A positive integer value that represents the number of values to average. The default
is 3.

Chapter 2
Calculation Function List

2-162

XrangeList
Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

• The @MOVAVG function calculates a trailing, rather than a centered, average. For
example:

 Trailing Average Centered Average
 1 2 3 1 2 3
 2 2

• While calculating the moving average, this function skips #MISSING values and decreases
the denominator accordingly. For example, if one value out of three is #MISSING, Essbase
adds the remaining two values and divides the sum by two.

• If you use a member set function to generate a member list for the XrangeList parameter
(for example, @SIBLINGS), to ensure correct results, consider the order in which Essbase
sorts the generated member list. For more information, see the help topic for the member
set function you are using.

• When you use @MOVAVG in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

• For periods where the width is undefined, the value is the same as for the source member.
For example, you can't compute the moving average over the last three months for Jan
and Feb because it doesn't exist. When this happens, Essbase simply copies the value for
Jan and Feb for the moving average.

• When you use @MOVAVG across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Mov Avg.

"Mov Avg" = @MOVAVG(Sales,3,Jan:Jun);

In this example, @MOVAVG smoothes sales data for the first six months of the year (Jan
through Jun). The results of @MOVAVG can be used with the @TREND function to forecast
average sales data for a holiday season (for example, October - December).

This example produces the following report:

 Colas New York Actual
 Sales Mov Avg
 ===== =======
Jan 678 678
Feb 645 645
Mar 675 666
Apr 712 677.3
May 756 714.3
Jun 890 786

Chapter 2
Calculation Function List

2-163

In this example, Essbase averages three values at a time for the moving average. The first two
values (Jan,Feb) for Mov Avg and the first two values for Sales are the same. The value for
Mar represents the trailing average of Jan, Feb, and Mar. The value for Apr represents the
trailing average of Feb, Mar, and Apr. The remaining values represent the trailing average for
each group of three values.

See Also

• @MOVMAX

• @MOVMED

• @MOVMIN

• @MOVSUM

• @MOVSUMX

• @TREND

@MOVMAX
The @MOVMAX calculation function for Essbase applies a moving n-term maximum (highest
number) to an input data set. @MOVMAX modifies a data set for smoothing purposes.

Each term in the set is replaced by a trailing maximum of n terms, and the first terms (the n-1
terms) are copies of the input data.

Syntax

@MOVMAX (mbrName [, n [, XrangeList]])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional. A positive integer value that represents the number of values that are used to
calculate the moving maximum. The default is 3.

XrangeList
Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

• This function calculates a trailing, rather than a centered, maximum. For example:

 Trailing Maximum Centered Maximum
 1 2 3 1 2 3
 3 3

• While calculating the moving maximum, @MOVMAX skips #MISSING values. For example,
if one value out of four is #MISSING, @MOVMAX calculates the maximum of the remaining
three values.

Chapter 2
Calculation Function List

2-164

• If you use an Essbase member set function to generate a member list for the XrangeList
parameter (for example, @SIBLINGS), to ensure correct results, consider the order in
which Essbase sorts the generated member list. For more information, see the help topic
for the member set function you are using.

• When you use @MOVMAX in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

• When you use @MOVMAX across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Mov Max.

"Mov Max" = @MOVMAX(Sales,3,Jan:Jun);

In this example, the @MOVMAX function smoothes sales data for the first six months of the
year (Jan through Jun). The results of @MOVMAX can be used with the @TREND function to
forecast maximum sales data for a holiday season (for example, October - December).

This example produces the following report:

 Root Beer New York Actual
 Sales Mov Max
 ===== =======
Jan 551 551
Feb 641 641
Mar 586 641
Apr 630 641
May 612 630
Jun 747 747

In this example, Essbase uses three values at a time to calculate the moving maximum. The
first two values (Jan,Feb) for Mov Max and the first two values for Sales are the same. The
value for Mar represents the trailing maximum of Jan, Feb, and Mar. The value for Apr
represents the trailing maximum of Feb, Mar, and Apr. The remaining values represent the
trailing maximum for each group of three values.

See Also

• @MOVAVG

• @MOVMED

• @MOVMIN

• @MOVSUM

• @MOVSUMX

• @TREND

Chapter 2
Calculation Function List

2-165

@MOVMED
The @MOVMED calculation function for Essbase applies a moving n-term median (middle
number) to an input data set. @MOVMED modifies a data set for smoothing purposes.

Each term in the list is replaced by a trailing median of n terms, and the first terms (the n-1
terms) are copies of the input data.

Syntax

@MOVMED (mbrName [, n [, XrangeList]])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional. A positive integer value that represents the number of values that are used to
calculate the moving median. The default is 3.

XrangeList
Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

• While calculating the moving median, this function skips #MISSING values. For example, if
one value out of four is #MISSING, @MOVMED calculates the median of the remaining
three values.

• This function calculates a trailing, rather than a centered, median. For example:

 Trailing Median Centered Median
 1 2 3 1 2 3
 2 2

• If the group of values being used to calculate the median contains an even number of
values, @MOVMED averages the two numbers in the middle.

• If you use an Essbase member set function to generate a member list for the XrangeList
parameter (for example, @SIBLINGS), to ensure correct results, consider the order in
which Essbase sorts the generated member list. For more information, see the help topic
for the member set function you are using.

• When you use @MOVMED in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

• When you use @MOVMED across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Chapter 2
Calculation Function List

2-166

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Mov Med.

"Mov Med" = @MOVMED(Sales,3,Jan:Jun);

In this example, @MOVMED smoothes sales data for the first six months of the year (Jan
through Jun). The results could be used with the @TREND function to forecast sales data for a
holiday season (for example, October - December).

This example produces the following report:

 Colas New York Actual
 Sales Mov Med
 ===== =======
Jan 678 678
Feb 645 645
Mar 675 675
Apr 712 675
May 756 712
Jun 890 756

In this example, Essbase uses three values at a time to calculate the moving median. The first
two values (Jan,Feb) for Mov Med are the same as the first two values for Sales. The value for
Mar represents the trailing median of Jan, Feb, and Mar. The value for Apr represents the
trailing median of Feb, Mar, and Apr. The remaining values represent the trailing median of
each group of three values.

See Also

• @MOVAVG

• @MOVMAX

• @MOVMIN

• @MOVSUM

• @MOVSUMX

• @TREND

@MOVMIN
The @MOVMIN calculation function for Essbase applies a moving n-term minimum (lowest
number) to an input data set. @MOVMIN modifies a data set for smoothing purposes.

Each term in the list is replaced by a trailing minimum of n terms, and the first terms (the n-1
terms) are copies of the input data.

Syntax

@MOVMIN (mbrName [, n [, XrangeList]])

Chapter 2
Calculation Function List

2-167

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional. A positive integer value that represents the number of values that are used to
calculate the moving minimum. The default is 3.

XrangeList
Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

• While calculating the moving minimum, @MOVMIN skips #MISSING values. For example, if
one value out of four is #MISSING, @MOVMIN calculates the minimum of the remaining
three values.

• This function calculates a trailing, rather than a centered, minimum. For example:

Trailing Minimum Centered Minimum
 1 2 3 1 2 3
 1 1

• If you use a member set function to generate a member list for the XrangeList parameter
(for example, @SIBLINGS), to ensure correct results, consider the order in which Essbase
sorts the generated member list. For more information, see the help topic for the member
set function you are using.

• When you use @MOVMIN in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

• When you use @MOVMIN across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Mov Min.

"Mov Min" = @MOVMIN(Sales,3,Jan:Jun);

In this example, the @MOVMIN function smoothes sales data for the first six months of the
year (Jan through Jun). The results of @MOVMIN can be used with the @TREND to forecast
minimum sales data for the holiday season (for example, October - December).

This example produces the following report:

 Colas New York Actual
 Sales Mov Min
 ===== =======
Jan 678 678
Feb 645 645
Mar 675 645

Chapter 2
Calculation Function List

2-168

Apr 712 645
May 756 675
Jun 890 712

In this example, Essbase uses three values at a time to calculate the moving minimum. The
first two values (Jan,Feb) for Mov Min and the first two values for Sales are the same. The
value for Mar represents the trailing minimum of Jan, Feb, and Mar. The value for Apr
represents the trailing minimum of Feb, Mar, and Apr. The remaining values represent the
trailing minimum for each group of three values.

See Also

• @MOVAVG

• @MOVMAX

• @MOVMED

• @MOVSUM

• @MOVSUMX

• @TREND

@MOVSUM
The @MOVSUM calculation function for Essbase applies a moving sum to the specified
number of values in an input data set. @MOVSUM modifies a data set for smoothing
purposes.

Syntax

@MOVSUM (mbrName [, n [, XrangeList]])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional. A positive integer value that represents the number of values to sum. The default is
3.

XrangeList
Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

• For example, if you specify 3 members of the Time dimension in the Sample Basic
database, @MOVSUM at Mar is the sum of the values for Jan, Feb, and Mar; @MOVSUM
at Apr is the sum of the values for Feb, Mar, and Apr. However, Jan and Feb have no
@MOVSUM value, and are called trailing members. Trailing members are copies of the
input values. If you wish to assign different values to trailing members, use @MOVSUMX
instead.

Chapter 2
Calculation Function List

2-169

• The @MOVSUM function calculates a trailing, rather than a centered, sum. This example
illustrates the difference:

 Trailing Sum Centered Sum
 1 2 3 1 2 3
 6 6

• While calculating the moving sum, @MOVSUM skips #MISSING values. For example, if one
value out of three is #MISSING, Essbase adds the remaining two values.

• If you use an Essbase member set function to generate a member list for the XrangeList
parameter (for example, @SIBLINGS), to ensure correct results, consider the order in
which Essbase sorts the generated member list. For more information, see the help topic
for the member set function that you are using.

• When you use @MOVSUM in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

• When you use @MOVSUM across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Mov Sum.

"Mov Sum" = @MOVSUM(Sales,3,Jan:Jun);

In this example, @MOVSUM smoothes sales data for the first six months of the year (Jan
through Jun). The results of @MOVSUM can be used with @TRENDto forecast average sales
data for a holiday season (for example, October through December).

This example produces the following report:

 Colas New York Actual
 Sales Mov Sum
 ===== =======
Jan 678 678
Feb 645 645
Mar 675 1998
Apr 712 2032
May 756 2143
Jun 890 2358

See Also

• @MOVAVG

• @MOVMED

• @MOVMAX

• @MOVMIN

• @MOVSUMX

• @TREND

Chapter 2
Calculation Function List

2-170

@MOVSUMX
The @MOVSUMX calculation function for Essbase applies a moving sum to the specified
number of values in an input data set. @MOVSUMX modifies a data set for smoothing
purposes.

Unlike @MOVSUM, @MOVSUMX allows you to specify the values assigned to trailing
members. For example, if you specify three members of the Time dimension in the Sample
Basic database, @MOVSUMX at Mar is the sum of the values for Jan, Feb, and Mar;
@MOVSUMX at Apr is the sum of the values for Feb, Mar, and Apr. However, Jan and Feb
have no @MOVSUMX value, and are called trailing members.

Syntax

@MOVSUMX (COPYFORWARD | TRAILMISSING | TRAILSUM, mbrName [,n[,Xrangelist]])

Parameters

COPYFORWARD
Copies the input value into the trailing members. This behavior is the same as the
@MOVSUM function.

TRAILMISSING
Sets the value of the trailing members to #MISSING.

TRAILSUM
Sums the trailing values.

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional. A positive integer value that represents the number of values that are used to
calculate the moving maximum. The default is 3.

XrangeList
Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

• The @MOVSUMX function calculates a trailing, rather than a centered, sum. This example
illustrates the difference:

 Trailing Sum Centered Sum
 1 2 3 1 2 3
 6 6

• While calculating the moving sum, @MOVSUMX skips #MISSING values. For example, if
one value out of three is #MISSING, Essbase adds the remaining two values.

• If you use a member set function to generate a member list for the XrangeList parameter
(for example, @SIBLINGS), to ensure correct results, consider the order in which Essbase

Chapter 2
Calculation Function List

2-171

sorts the generated member list. For more information, see the help topic for the member
set function that you are using.

• When you use @MOVSUMX in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

• When you use @MOVSUMX across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example

The following examples are based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, "Last 3 Months of Sales," and that the original Sales
values are as shown.

Last 3 Months of Sales = @MOVSUMX (COPYFORWARD,Sales,3,Jan:Aug);

or:

Last 3 Months of Sales = @MOVSUMX (TRAILMISSING,Sales,3,Jan:Aug);

or:

Last 3 Months of Sales = @MOVSUMX (TRAILSUM,Sales,3,Jan:Aug);

These examples produce the following reports:

Sales

===========
Jan 100
Feb 150
Mar 200
Apr 250
May 300
Jun 350
Jul 400
Aug 450

Last 3 Months of Sales
COPYFORWARD
======================
 100
 150
 450
 600
 750
 900
 1050
 1200

Last 3 Months of Sales
TRAILMISSING

Chapter 2
Calculation Function List

2-172

======================
 #MISSING
 #MISSING
 450
 600
 750
 900
 1050
 1200

Last 3 Months of Sales
TRAILSUM
======================
 100
 250
 450
 600
 750
 900
 1050
 1200

See Also

• @MOVAVG

• @MOVMAX

• @MOVMED

• @MOVMIN

• @MOVSUM

• @TREND

@NAME
The @NAME calculation function for Essbase passes the enclosed string, or list of member or
dimension names, as a list of strings to another function.

Syntax

@NAME (mbrName [,UNIQUE])

Parameters

mbrName
A list of member names, dimension names, or strings.

UNIQUE
Tells @NAME to return a unique member name (using shortcut qualified name format) for
mbrName, if mbrName is a duplicate name. If mbrName is not a duplicate name or if duplicate
member names is not enabled, UNIQUE is ignored, and only the member name is returned.
The following considerations apply:

Chapter 2
Calculation Function List

2-173

• Essbase does not support strings in functions. It treats strings as values or an array of
values. @NAME processes strings.

• To learn more about the shortcut qualified name format used for unique member names,
see Creating and Working With Duplicate Member Outlines.

Example

Example 1

The following example is based on the Sample Basic database. A user-defined function is
used to retrieve the price from the table below. The user defined function (J_GetPrice) takes
two string parameters, time and product name, to return the price for each product.

Table 2-30 Price Data in Sample Basic Database

MonthName ProductId Price

Jan 100-10 1.90

Feb 100-10 1.95

Mar 100-10 1.98

Jan 100-20 1.95

Feb 100-20 2.00

Mar 100-20 2.05

Price = @J_GetPrice(@NAME(@CURRMBR(Product)),@NAME(@CURRMBR(Year)));

The following report illustrates the above example:

 Price Actual Market
 Jan Feb Mar
 === === ===
 100-10 1.90 1.95 1.98
 100-20 1.95 2.00 2.05

Example 2

The following example is based on the Sample Basic database:

"Profit Per Ounce" = Profit/@ATTRIBUTEVAL(@NAME(Ounces));

The @NAME function processes the string “Ounces” before passing it to @ATTRIBUTEVAL.
This example produces the following report:

 Actual Year West
 Profit Profit Per Ounce
 ======== ================
Cola 4593 382.75

Example 3

For the following example, assume an outline that has duplicate member names enabled, and
there are two members named New York in the Market dimension:

Chapter 2
Calculation Function List

2-174

The qualified member names for the New York members are [State].[New York] and [City].[New
York].

The following example captures a qualified member name from the current calculation context:

@MEMBER(@NAME(@CURRMBR("Market"), UNIQUE))

If the current member of Market being calculated is the New York State member, the qualified
member name, [State].[New York], is passed to @MEMBER, effectively differentiating it from
the New York City member.

See Also

• @CURRMBR

• @MEMBER

@NEXT
The @NEXT calculation function for Essbase returns a cell value at a given next distance from
a member name within a range.

This function returns the nth cell value from mbrName, in the sequence XrangeList , retaining
all other members identical to the current member. @NEXT cannot operate outside the given
range.

Syntax

@NEXT (mbrName [, n, XrangeList])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional signed integer. If you do not specify n, then the default is set to 1, which provides the
next member in the range. Using a negative value for n has the same effect as using the
matching positive value in @PRIOR.

XrangeList
Optional parameter specifying a sequential range of members. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters.

Chapter 2
Calculation Function List

2-175

Example

In this example, Next Cash for each month is derived by taking the Cash value for the following
month. Since n is not specified, the default is 1, which provides the next member in the range.
Since XrangeList is not specified, the level 0 members from the dimension tagged as Time are
used (Jan,Feb,Mar, ...).

"Next Cash" = @NEXT(Cash);

This example produces the following report:

 Jan Feb Mar Apr May Jun
 === === === === === ===
Cash 100 90 120 110 150 100
Next Cash 90 120 110 150 100 #MI

The following example assumes a Year dimension is added to Sample Basic.

"Next Sales" = @NEXT(Sales, 1, @XRANGE("2011"->"Sep", "2012"->"Mar"));

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

• @PRIOR

• @SHIFT

• @SHIFTMINUS

• @SHIFTMINUS

@NEXTS
The @NEXTS calculation function for Essbase returns a cell value at a given next distance
from a member name within a range, with options to ignore empty values.

Returns the nth cell value from mbrName, in the sequence XrangeList. Provides the option to
skip #MISSING, zero, or both. Works within a designated range, and retains all other members
identical to the current member.

Syntax

@NEXTS (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH mbrName[,n,XrangeList])

Chapter 2
Calculation Function List

2-176

Parameters

SKIPNONE
Includes all cells specified in the sequence, regardless of their content.

SKIPMISSING
Ignores all #MISSING values in the sequence.

SKIPZERO
Ignores all 0 values in the sequence.

SKIPBOTH
Ignores all #MISSING and 0 values in the sequence.

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional signed integer. Using a negative value for n has the same effect as using the
matching positive value in @PRIORS. If you do not specify n, then a default value of 1 is
assumed, which returns the next prior member from the lowest level of the dimension set as
Time in the database outline.

XrangeList
Optional parameter specifying a sequential range of members. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters.

Example

In this example, Next Cash for each month is derived by taking the Cash value for the following
month and ignoring both #MISSING and zero values. Because n is not specified, the default is 1,
which provides the next member in the range. Also, because XrangeList is not specified, the
level 0 members from the dimension set as Time are used (Jan,Feb,Mar, ...).

"Next Cash" = @NEXTS(SKIPBOTH, Cash);

The following report illustrates the above example:

 Jan Feb Mar Apr May Jun
 === === === === === ===
Cash 1100 #MI 1000 1300 0 1400
Next Cash 1000 1000 1300 1400 1400 #MI

The following example assumes a Year dimension is added to Sample Basic.

FIX(East)
"Next Cash" = @NEXTS(SKIPNONE, Sales, 1, @XRANGE("2011"->"Sep", "2012"-
>"Mar"));
ENDFIX;

Chapter 2
Calculation Function List

2-177

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

• @NEXT

• @PRIORS

• @XRANGE

@NEXTSIBLING
The @NEXTSIBLING calculation function for Essbase returns the next sibling (the sibling to
the immediate right) of the specified member.

This function excludes the specified member. If the specified member is the last sibling,
Essbase returns an empty string.

This function returns the next sibling as a string. To pass this function as a parameter of
another function, where the function requires a list of members, you must wrap the
@NEXTSIBLING function call within a @MEMBER function call.

You must also wrap this function within the @MEMBER function if you are calling it inside a
member combination specified using the cross-dimensional operator (->). For example, this is
correct usage: @MEMBER(@NEXTSIBLING("FY19"))->"A1".

Syntax

@NEXTSIBLING (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

All examples are from the Sample.Basic database.

@NEXTSIBLING("100–20")

Returns 100-30 (the next sibling of 100-20).

@NEXTSIBLING("200")

Chapter 2
Calculation Function List

2-178

Returns 300 (the next sibling of 200). @NEXTSIBLING and @SHIFTSIBLING ("200",1) return
the same results.

@MEMBER(@NEXTSIBLING("100-20"))

Returns 100-30 (the next sibling of 100-20).

@CHILDREN(@MEMBER(@NEXTSIBLING("East")))

Returns all children of West.

See Also

• @MEMBER

• @PREVSIBLING

• @SHIFTSIBLING

@NONEMPTYTUPLE
The @NONEMPTYTUPLE calculation function is an Essbase formula directive you can use to
force queries to use only data dependent cells when executing the formula. For Release 21c
and later, use @QUERYBOTTOMUP instead of this function.

@QUERYBOTTOMUP replaces this function in Essbase 21c.

You can use this function before a formula to force queries to use only data dependent cells
when executing the formula. This optimizes query times by identifying the required
intersections for calculation, making the query time proportional to input data size.

This function can be used as a formula directive. Using it before the formula specification is
recommended when the formula is long and contains many cross-dimensional operators. Such
formulas often cause the formula cache to grow large while also being sparse (having a
relatively small input data set). Using this directive causes query execution to occur in bottom-
up mode, to resolve dependency analysis quickly in cases where the formula cache is sparse.

Syntax

@NONEMPTYTUPLE [(nonempty_member_list)]

Parameters

nonempty_member_list
Optional. A list of members from the current dimension (the dimension in which this formula
applies).
The formula will execute in bottom-up mode if any of the members specified in
nonempty_member_list are empty. If nonempty_member_list is not specified, the formula will
execute in bottom-up mode if any dependent members of the current formula are empty. For
most use cases, you do not need to specify nonempty_member_list; simply place
@NONEMPTYTUPLE before the formula syntax to cause bottom-up formula execution.

Chapter 2
Calculation Function List

2-179

Example

The following outline formula example is based on the Compensation Analytics sample cube,
for which the application workbook is available in the HR Analysis directory of the Applications
gallery.

@NONEMPTYTUPLE("Headcount under Target")
IF("Headcount under Target"!=#missing)
"Market Movement"*"Size %"->"Actual"->"Sep17"->"No JG"->"unassigned_OU"->"No
Job Code"->"No EE"->"No_MktComp"*"BASE"*"Competitive Incr %"->"Actual"-
>"Sep17"->"No Region"->"No JG"->"unassigned_OU"->"No Job Code"->"No EE"-
>"No_MktComp";
ENDIF;

The following example is for a calculation script use case:

"Headcount under Target"(
@NONEMPTYTUPLE("COMPARATIO")
IF("COMPARATIO"!=#missing AND "COMPARATIO"<="Competitive Target"->"No JG"-
>"No Region"->"unassigned_OU"->"No EE"->"No Job Code"->"No_MktComp")
1;
ENDIF;)

See Also

NONEMPTYTUPLE in MDX Optimization Properties

IGNORECONSTANTS application configuration setting

@NOTEQUAL
The @NOTEQUAL calculation function searches an Essbase outline or hierarchy for member
names that do not match a string.

This function returns a member set of member names that do not match the specified token
name. This function can be used on unique and duplicate-name outlines.

Syntax

@NOTEQUAL (tokenName, topMbrinHierarchy)

Parameters

tokenName
Token string value, representing the name of a member, with which to compare to members in
the outline, starting with member specified in topMbrinHierarchy. The specified token name
must not be qualified for duplicate members.

topMbrinHierarchy
A fully qualified name of a member in the outline on which to base the member search. The
specified member and its aliases, and all of its descendants, are included in the search.
To search the entire outline, provide an empty string ("") for this parameter. For example,
@NOTEQUAL("300-30", "").

Chapter 2
Calculation Function List

2-180

Example

The following examples are based on the following duplicate-name outline:

Product
 100
 100–10
 100–10–10
 100–20
 100–30
 200
 200–10
 200–20
 200–30
 300
 300–10
 300–20
 Diet
 100–10
 100–10–11
 200–10
 300–10
 Bottle
 200–10
 300–20

@NOTEQUAL("200-10", "Product")

Returns all of the members under the Product dimension, except for
the members [Bottle].[200-10], [Diet].[200-10], and [200].[200-10].

@NOTEQUAL("200-10", "Diet")

Returns the members Diet, [Diet].[100-10], [Diet].[100-10].[100-10-10],
and [Diet].[300-10].

See Also

• @EQUAL

• @EXPAND

• @LIKE

• @MBRCOMPARE

• @MBRPARENT

Chapter 2
Calculation Function List

2-181

@NPV
The @NPV calculation function for Essbase calculates the Net Present Value of an investment
based on the series of payments (negative values) and income (positive values).

Syntax

@NPV (cashflowMbr, rateMbrConst, discountFlag [, XrangeList])

Parameters

cashflowMbr
Member specification providing a series of numeric values.

rateMbrConst
Single member specification, variable name, or numeric expression, providing a constant
value.

discountFlag
Single member specification, variable name, or numeric expression set to 0 or 1 to indicate
whether the function should discount from the first period. 1 means do not discount from the
first period.

XrangeList
Optional parameter specifying the range over which the function is calculated. If a range is not
specified, Essbase uses the level 0 members from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

In this example, Value is calculated with the following formula:

Value = @NPV(Cash, Rate, 0, FY1990:FY1994, FY1995:FY2000);

This example produces the following report:

 FY1990 FY1991 FY1992 FY1993 FY1994 FY1995
 ====== ====== ====== ====== ====== ======
Cash (1,000) 500 600 500 #MISSING #MISSING
Rate 0 0 0 0 #MISSING #MISSING
Value 296 296 296 296 296 296

Chapter 2
Calculation Function List

2-182

The following example assumes a Year dimension is added to Sample Basic. It calculates NPV
using a multidimensional range.

FIX ("100-10", "New York")
"Value" = @NPV(Cash, Rate, 0, @XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@PTD

@PARENT
The @PARENT calculation function for Essbase returns the parent of the current member
being calculated in the specified dimension. If you specify the optional mbrName, that parent is
combined with the specified member.

This member set function can be used as a parameter of another function, where that
parameter is a member or list of members.

Syntax

@PARENT (dimName [, mbrName])

Parameters

dimName
Single dimension name specification.

mbrName
Optional. Any valid single member name, or a function that returns a single member.

Notes

• You cannot use this function in a FIX statement.

• You can use this function on both the left and right sides of a formula. If you use this
function on the left side of a formula in a calculation script, associate it with a member. For
example:

Sales(@PARENT(Product) = 5;);

Chapter 2
Calculation Function List

2-183

• In some cases, @PARENT is equivalent to @PARENTVAL, except in terms of calculation
performance. For example, the following two formulas are equivalent:

Sales = @PARENT(Profit);
Sales = @PARENTVAL(Profit);

In this case, using the latter formula results in better calculation performance. In general,
use @PARENT as a member rather than as an implied value of a cell. For example:

Sales = @AVG(SKIPMISSING, @ISIBLINGS(@PARENT("100")));

• The time required for retrieval and calculation may be significantly longer if this function is
in a formula attached to a member tagged as Dynamic Calc or Dynamic Calc and Store.

• If you are using @PARENT within @XREF, @XREF requires @NAME to be used around
@PARENT. For example:

COGS=@XREF(Sample, @NAME(@PARENT(Product)),Sales);

Example

In the Sample Basic database:

@PARENT(Market,Sales)

returns Central->Sales, if the current member of Market being calculated is Colorado.

@PARENT(Measures)

returns Profit, if the current member of Measures being calculated is Margin.

See Also

• @ANCEST

• @ANCESTORS

• @CHILDREN

• @DESCENDANTS

• @SIBLINGS

@PARENTVAL
The @PARENTVAL calculation function for Essbase returns the parent values of the member
being calculated in the specified dimension.

Syntax

@PARENTVAL (dimName [, mbrName])

Chapter 2
Calculation Function List

2-184

Parameters

dimName
Single dimension name specification that defines the focus dimension of parent values.

mbrName
Optional. Any valid single member name, or a function that returns a single member.

Example

This example is based on the Sample Basic database. The formula calculates Market Share
for each state by taking each state's Sales value as a percentage of Sales for East (its parent)
as a whole. Market Share->East is calculated as East's percentage of its parent, Market.

"Market Share" = Sales % @PARENTVAL(Market,Sales);

This example produces the following report:

 Cola Actual Jan
 Sales Market Share
 ===== ============
New York 678 37.42
Massachusetts 494 27.26
Florida 210 11.59
Connecticut 310 17.11
New Hampshire 120 6.62
 East 1812 37.29

Market 4860 100

Adding the "Market Share" member and formula to the outline would produce the same result
as above.

See Also

• @ANCESTVAL

• @MDPARENTVAL

• @SPARENTVAL

Chapter 2
Calculation Function List

2-185

@POWER
The @POWER calculation function for Essbase returns the value of the specified member or
expression raised to power.

Syntax

@POWER (expression, power)

Parameters

expression
Single member specification, variable name, function, or other numeric expression.

power
Single member specification, variable name, function, or other numeric expression.

Notes

• If expression is negative, and if power is not an integer, Essbase returns #MISSING.

• If the value calculated by @POWER is an infinite number, Essbase returns #MISSING.

Example

Table 2-31 @POWER Results

Usage Return Value

@POWER(14,3) 2744
@POWER(2,8) 256

See Also

@FACTORIAL

@PREVSIBLING
The @PREVSIBLING calculation function for Essbase returns the previous sibling (the sibling
to the immediate left) of the specified member.

This function excludes the specified member. If the specified member is the first sibling,
Essbase returns an empty string.

This function returns the next sibling as a string. To pass this function as a parameter of
another function, where the function requires a list of members, you must wrap the
@PREVSIBLING function call within a @MEMBER function call.

You must also wrap this function within the @MEMBER function if you are calling it inside a
member combination specified using the cross-dimensional operator (->). For example, this is
correct usage: @MEMBER(@PREVSIBLING("FY19"))->"A1".

Syntax

@PREVSIBLING(mbrName)

Chapter 2
Calculation Function List

2-186

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

All examples are from the Sample.Basic database.

@PREVSIBLING("100–20")

Returns 100-10 (the previous sibling of 100-20). The @PREVSIBLING("100–20") function and
the @SHIFTSIBLING("100-20",-1 function return the same results.

Returns 100 (the previous sibling of 200).

@PREVSIBLING("100–10")

Returns an empty list, as 100-10 does not have a previous sibling.

@CHILDREN(@MEMBER(@PREVSIBLING("East")))

Returns an empty list, as there is no previous sibling of East at the same level.

See Also

• @NEXTSIBLING

• @SHIFTSIBLING

@PRIOR
The @PRIOR calculation function for Essbase returns a cell value at a given prior distance
from a member name within a range.

This function returns the nth previous cell member from mbrName, in the sequence
XrangeList. All other dimensions assume the same members as the current member. @PRIOR
works only within the designated range, and with level 0 members.

Syntax

@PRIOR (mbrName [, n, XrangeList])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional signed integer. Using a negative value for n has the same effect as using the
matching positive value in @NEXT. If you do not specify n, then a default value of 1 is
assumed, which returns the next prior member from the lowest level of the dimension tagged
as Time in the database outline.

Chapter 2
Calculation Function List

2-187

XrangeList
Optional parameter specifying a sequential range of members. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters.

Example

In this example, Prev Inventory for each month is derived by taking the Inventory value from
the previous month. Since n is not specified, the default is 1, which provides the next prior
member in the range. Since XrangeList is not specified, the level 0 members from the
dimension tagged as Time are used (Jan,Feb,Mar,...).

"Prev Inventory" = @PRIOR(Inventory);

This example produces the following report:

 Jan Feb Mar Apr May Jun
 === === === === ===
===
Inventory 1100 1200 1000 1300 1300 1400
Prev Inventory #MI 1100 1200 1000 1300 1300

The following example assumes a Year dimension is added to Sample Basic.

"Prev Sales" = @PRIOR(Sales, 2, @XRANGE("2011"->"Sep", "2012"->"Mar"));

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

• @NEXT

• @SHIFT

• @SHIFTMINUS

• @SHIFTPLUS

Chapter 2
Calculation Function List

2-188

@PRIORS
The @PRIORS calculation function for Essbase returns a cell value at a given prior distance
from a member name within a range, with options to ignore empty values.

Returns the nth previous cell member from mbrName, in the sequence XrangeList. Provides
options to skip #MISSING, zero, or both #MISSING and zero values. All other dimensions assume
the same members as the current member. @PRIORS works within the designated range.

Syntax

@PRIORS(SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH mbrName[,n, XrangeList])

Parameters

SKIPNONE
Includes all cells specified in the sequence, regardless of their content.

SKIPMISSING
Ignores all #MISSING values in the sequence.

SKIPZERO
Ignores all zero values in the sequence.

SKIPBOTH
Ignores all #MISSING and zero values in the sequence.

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional signed integer. Using a negative value for n has the same effect as using the
matching positive value in the @NEXTS function. If you do not specify n, then a default value
of 1 is assumed, which returns the next prior member from the lowest level of the dimension
set as Time in the database outline.

XrangeList
Optional parameter specifying a sequential range of members. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters.

Example

In this example, Prev Inventory for each month is derived by taking the Inventory value from
the previous month and ignoring #MISSING and zero values. Because n is not specified, the
default is 1, which provides the next prior member in the range. Also, because XrangeList is
not specified, the level 0 members from the dimension are set as Time used as
(Jan,Feb,Mar,...).

"Prev Inventory" = @PRIORS(SKIPBOTH,Inventory);

Chapter 2
Calculation Function List

2-189

The following report illustrates this example:

 Jan Feb Mar Apr May Jun
 === === === === === ===
 Inventory 1100 #MI 1000 1300 0 1400
 Prev Inventory #MI 1100 1100 1000 1300 1300

The following example assumes a Year dimension is added to Sample Basic.

FIX(East)
"Prev Sales" = @PRIORS(SKIPBOTH,Sales, 1, @XRANGE("2011"->"Sep", "2012"-
>"Mar"));
ENDFIX;

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@PRIOR

@PTD
The @PTD calculation function for Essbase calculates the period-to-date values of members in
the dimension tagged as Time. By default, data is summed, unless Accounts are tagged as
"First" or "Last".

Syntax

@PTD (XrangeList)

Parameters

XrangeList
Range of members from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about XrangeList, see Range List Parameters.

Notes

• Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Chapter 2
Calculation Function List

2-190

• You can use @PTD only if the outline contains a dimension tagged as Accounts.

Example

In this example, assume that the Year dimension in the Sample Basic database outline
contains two additional members, YTD and QTD. Using a calculation script, the YTD and QTD
members are calculated as follows:

YTD = @PTD(Jan:May);
QTD = @PTD(Apr:May);

In this example Opening Inventory is tagged with a time balance of First, and Ending Inventory
is tagged with a time balance of Last.

This example produces the following report:

 Product Market
Scenario
 Sales Opening Inventory Ending Inventory
 ===== ================= ================
Jan 31538 117405 116434
Feb 32069 116434 115558
Mar 32213 115558 119143
 Qtr1 95820 117405 119143
Apr 32917 119143 125883
May 33674 125883 136145
Jun 35088 136145 143458
 Qtr2 101679 119143 143458
QTD 66591 245026 262028
YTD 162411 117405 136145

The following example assumes a Year dimension is added to Sample Basic. It calculates YTD
using a multidimensional range.

FIX("100-10", "New York")
YTD = @PTD(@XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@NPV

Chapter 2
Calculation Function List

2-191

@QUERYBOTTOMUP
The @QUERYBOTTOMUP calculation function for Essbase helps optimize query times by
identifying the required intersections for calculation, making the query time proportional to input
data size.

Use this function before a formula to force queries to use only data dependent cells when
executing the formula. This optimizes query times by identifying the required intersections for
calculation, making the query time proportional to input data size. Note: In Release 21 or later,
this function replaces @NONEMPTYTUPLE.

This function can be used as a formula directive. Using it before the formula specification is
recommended when the formula is long and contains many cross-dimensional operators. Such
formulas often cause the formula cache to grow large while also being sparse (having a
relatively small input data set). Using this directive causes query execution to occur in bottom-
up mode, to resolve dependency analysis quickly in cases where the formula cache is sparse.

Syntax

@QUERYBOTTOMUP();

When applied to a member formula, all dependent members of the formula are analzyed first
(in other words, the formula is executed in bottom-up mode).

You can also use this function in a calculation script (see Examples).

Example

The following outline formula example is based on the Compensation Analytics sample cube,
for which the application workbook is available in the HR Analysis directory of the Applications
gallery.

@QUERYBOTTOMUP();
IF
 ("Headcount under Target"!=#Missing)
 "Market Movement"*"Size %"->"Actual"->"Sep17"->"No JG"->"unassigned_OU"-
>"No Job Code"->
 "No EE"->"No_MktComp"*"BASE"*"Competitive Incr %"->"Actual"->"Sep17"->"No
Region"->
 "No JG"->"unassigned_OU"->"No Job Code"->"No EE"->"No_MktComp";
ENDIF;

The following example is for a calculation script use case:

"Headcount under Target"(
 @QUERYBOTTOMUP();
 IF
 (
 "COMPARATIO"!=#missing AND
 "COMPARATIO"<="Competitive Target"->"No JG"->"No Region"->"unassigned_OU"-
>"No EE"->"No Job Code"->"No_MktComp"
)
 1;

Chapter 2
Calculation Function List

2-192

 ENDIF;
)

See Also

QUERYBOTTOMUP configuration setting

@NONEMPTYTUPLE

@RANGE
The @RANGE calculation function returns a member list that crosses a member from one
Essbase dimension with a member range from another dimension.

This function returns a member list that crosses the specified member from one dimension
(mbrName) with the specified member range from another dimension (rangeList). This function
can be combined with non-range functions, such as @AVG, which replaces an existing range
function, such as @AVGRANGE.

Syntax

@RANGE (mbrName [, rangeList])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

rangeList
Optional. A valid member name, a comma-delimited list of member names, member set
functions, and range functions. If rangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

This function combined with the cross-dimensional operator (->) cannot be used inside a FIX
statement.

Example

Example 1

The following example is based on the Sample Basic database. @RANGE is used with @AVG
to determine the average sales for Colas in the West.

FIX(Sales)
West=@AVG(SKIPBOTH,@RANGE(Sales,@CHILDREN(West)));
ENDFIX

Since the calculation script fixes on Sales, only the Sales value for West are the average of the
values for western states; COGS values for West are the sum of the western states. This
example produces the following report:

 Colas
 Sales COGS
 Actual Actual

Chapter 2
Calculation Function List

2-193

 Qtr3 Qtr4 Qtr3 Qtr4
 ==== ==== ==== ====
California 3401 2767 2070 1701
Oregon 932 1051 382 434
Washington 1426 1203 590 498
Utah 1168 1294 520 575
Nevada 496 440 222 197
 West 1484.6 1351 3784 3405

Example 2

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Prod Count. @RANGE is used with @COUNT to
calculate the count of all products for which a data value exists:

"Prod Count" = @COUNT(SKIPMISSING,@RANGE(Sales,@CHILDREN(Product)));

This example produces the following report. Since SKIPMISSING is specified in the formula,
the #MI value for Sales->Diet Drinks is not counted as a data value:

 Jan New York Actual
 Sales Prod Count
 ===== ==========
Colas 678 #MI
Root Beer 551 #MI
Cream Soda 663 #MI
Fruit Soda 587 #MI
Diet Drinks #MI #MI
 Product 2479 4

See Also

• @LIST

• @MERGE

• @REMOVE

@RANGEFIRSTVAL
The @RANGEFIRSTVAL calculation function for Essbase returns the first data value in a
member range, after skipping whatever empty value type is specified in the first parameter.

This function returns the first value, in a range of the specified mbrList, that satisfies the
criterion specified in the first function parameter.

Syntax

@RANGEFIRSTVAL(SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrList)

Chapter 2
Calculation Function List

2-194

Parameters

SKIPNONE
Every cell value is considered as data.

SKIPMISSING
#MISSING values are not considered as data.

SKIPZERO
Zero (0) values are not considered as data.

SKIPBOTH
Zero (0) and #MISSING values are not considered as data.

mbrList
A valid member name, a comma-delimited list of member names, cross dimension members,
or a member set function that returns a list of members from the same dimension. If you use
the range operator or a function, the order of mbrList is dictated by the database outline order.

Notes

The function returns #MISSING when mbrList does not contain any value matching the
criterion specified in the first argument.

Example

Example 1

The following examples use the Sample.Basic database.

@RANGEFIRSTVAL(SKIPMISSING, @CHILDREN("Qtr1"));

or

@RANGEFIRSTVAL(SKIPMISSING, "Jan":"Mar");

or

@RANGEFIRSTVAL(SKIPMISSING, ("Jan","Feb","Mar"))

The previous statements return the first non-#MISSING value found when sequentially looking
up the values of members Jan, Feb, and Mar.

Example 2

@RANGEFIRSTVAL(SKIPZERO, @CHILDREN("Jan"));

Because member Jan does not have children, returns #MISSING.

Example 3

@RANGEFIRSTVAL(SKIPBOTH, @CHILDREN("Qtr1"));

Chapter 2
Calculation Function List

2-195

Returns the first non-#MISSING and nonzero Actual value from Qtr1, using the outline order. All
months have data, so the value for Jan is returned.

Example 4

@RANGEFIRSTVAL (SKIPBOTH, (Actual->Feb, Actual->Mar, Actual->Jan))

Returns the first non-#MISSING and nonzero Actual value from the given list of months, using
the order given in mbrList. All months have data, so the value for Feb is returned.

See Also

@RANGELASTVAL

@RANGELASTVAL
The @RANGELASTVAL calculation function for Essbase returns the last data value in a
member range, after skipping whatever empty value type is specified in the first parameter.

This function returns the last value, in a range of the specified mbrList, that satisfies the
criterion specified in the first function parameter.

Syntax

@RANGELASTVAL(SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrList)

Parameters

SKIPNONE
Every cell value is considered as data.

SKIPMISSING
#MISSING values are not considered as data.

SKIPZERO
Zero (0) values are not considered as data.

SKIPBOTH
Zero (0) and #MISSING values are not considered as data.

mbrList
A valid member name, a comma-delimited list of member names, cross dimension members,
or a member set function that returns a list of members from the same dimension. If you use
the range operator or a function, the order of mbrList is dictated by the database outline order.

Notes

The function returns #MISSING when mbrList does not contain any value matching the
criterion specified in the first argument.

Chapter 2
Calculation Function List

2-196

Example

Example 1

In the following example, @RANGELASTVAL sets Jan's budget sales of Diet Cola to the last
actual sales of Qtr1.

FIX("100-10", "New York", "Sales", "Jan")
"Budget" = @RANGELASTVAL(SKIPBOTH, @CHILDREN(Qtr1)->"Actual");
ENDFIX

As indicated by the SKIPBOTH parameter, @RANGELASTVAL skips zero and #MISSING.
The mbrList parameter is provided by the @CHILDREN expression.

The following examples use the Sample.Basic database.

Example 2

@RANGELASTVAL(SKIPMISSING, @CHILDREN("Qtr1"));

or

@RANGELASTVAL(SKIPMISSING, "Jan":"Mar");

or

@RANGELASTVAL(SKIPMISSING, ("Jan","Feb","Mar"))

The previous statements return the last non-#MISSING value found when sequentially looking
up the values of members Jan, Feb, and Mar.

Example 3

@RANGELASTVAL(SKIPZERO, @CHILDREN("Jan"));

Because member Jan does not have any children, it returns #MISSING.

See Also

@RANGEFIRSTVAL

@RANK
The @RANK calculation function for Essbase returns the rank of the specified members or the
specified value among the values in the specified data set. The rank of a value is equivalent to
its position (its rank) in the sorted data set.

Syntax

@RANK (rankOrderType, SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, value,
XrangeList)

Chapter 2
Calculation Function List

2-197

Parameters

rankOrderType
The type of order in which to sort the data set. Options:

• ASCEND Rank values listed in XrangeList in ascending order.

• DESCEND Rank values listed in XrangeList in descending order. This is the default.

SKIPNONE
Includes all cells specified in the data set, regardless of their content, during calculation of the
rank.

SKIPMISSING
Excludes all #MISSING values from the data set during calculation of the rank.

SKIPZERO
Excludes all zero (0) values from the data set during calculation of the rank.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from the data set during calculation of the
rank.

value
(1) The member or member combination for which the rank is calculated, or (2) a constant
value for which the rank is calculated.

XrangeList
A list of numeric values across which the rank is calculated. Referred to generically throughout
this topic as "the data set."
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about XrangeList, see Range List Parameters.

Notes

• After SKIP processing, @RANK sorts the data set in descending order (for example,
15341, 9650, 6556, 4255, 1989) or ascending order (1989, 4255, 6556, 9650, 15341). The
rank of a value identifies its position in the sorted data set in descending order (for
example, 15341 is ranked 1; 1989 is ranked 5)

• An input value of #MISSING returns #MISSING. #MISSING is also returned if, after SKIP
processing, there are no values to compare.

• @RANK assigns the same rank to duplicate values; however, the presence of duplicate
values affects the rank numbers. For example, if a list of values contains [2,2,4,5], Essbase
first sorts the list in descending order [5,4,2,2] and then ranks it: [5] has a rank of 1, [4] has
a rank of 2, and [2] has a rank of 3. In this case, no value has a rank of 4.

• If value is a constant value and that value is not included in the data set (XrangeList),
Essbase inserts the constant value in the list and then ranks it accordingly. For example, if
a list of values contains [2,4,6,13], and you want to rank (in descending order) a value of
[3] in this list, Essbase:

1. Sorts the list in descending order [13,6,4,2]

2. Inserts [3] in the list [13,6,4,3,2]

3. Ranks [3] in the list: in this case, [3] has a rank of 4.

Chapter 2
Calculation Function List

2-198

• When you use @RANK in a calculation script, use it within a FIX statement. Although
using FIX is not required, it may improve calculation performance.

• When you use @RANK across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example

Example 1

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Sales Rank. Essbase ranks the sales values for a
set of products:

"Sales Rank" = @RANK(SKIPBOTH,Sales,
@RANGE(Sales,@LEVMBRS(Product,1)));

This example produces the following report. Since SKIPBOTH is specified in the formula, the
#MI value for Sales->Diet Drinks is not included in the ranked list:

 New York Actual Jan
 Sales Sales Rank
 ===== ==========
Colas 678 1
Root Beer 551 4
Cream Soda 663 2
Fruit Soda 587 3
Diet Drinks #MI #MI

Example 2

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Expense Rank. Essbase ranks the total expenses
values for a set of products in ascending order (the minimum expense is assigned rank 1).

In this example, ASCEND is used to rank the values in ascending order.

"Expense Rank" = @RANK(ASCEND,SKIPBOTH,"Total Expenses",@RANGE("Total
Expenses",@LEVMBRS(Product,1)));

This example produces the following report.

 New York Actual Jan
 Total Expense Expense Rank
 ============= ==========
Colas 145 2
Root Beer 215 4
Cream Soda 213 3
Fruit Soda 100 1
Diet Drinks #MI #MI

Example 3

Chapter 2
Calculation Function List

2-199

The following example assumes a Year dimension is added to Sample Basic. It ranks values
using cross-dimensional members in the data set.

FIX(Product)
"Sales Rank" = @RANK(SKIPBOTH,Sales,@XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

• @RANGE

• @XRANGE

@RDESCENDANTS
The @RDESCENDANTS calculation function for Essbase returns all descendants of the
specified member, or those down to the specified generation or level, including shared
members, but excluding the specified member.

You can use this function as a parameter of another function, where that parameter is a list of
members.

In the absence of shared members, @RDESCENDANTS and @DESCENDANTS return the
same result.

Syntax

@RDESCENDANTS (mbrName [, genLevNum| genLevName])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

genLevNum
Optional. An integer value that defines the absolute generation or level number down to which
to select the members. A positive integer defines a generation number. A value of 0 or a
negative integer defines a level number.

genLevName
Optional. Level name or generation name down to which to select the members.

Chapter 2
Calculation Function List

2-200

Notes

• The order of members in the result list is important to consider when you use this function
with certain forecasting and statistical functions. Essbase generates the list of members in
the following sequence: If a shared member is encountered, the above steps are repeated
on the member being shared.

1. The specified member

2. The nearest descendant of the member

3. The next nearest descendant of the member, and so on.

• You can use @IRDESCENDANTS to include the specified member in the member list.

Example

Example 1

Assume a variation of the Sample Basic database such that the Product dimension includes
the following members:

Product
 100
 100-10
 100-20
 100-30
 200
 200-10
 200-20
 200-30
 200-40
 Diet
 100 (Shared Member)
 200 (Shared Member)

Diet has two children "100" and "200". The members "100" and "200" are shared members.

@RDESCENDANTS(Diet)

returns the members: 100, 100-10, 100-20, 100-30, 200, 200-10, 200-20, 200-30, 200-40 (in
that order).

Example 2

@RDESCENDANTS(Profit)

returns Margin, Sales, COGS, Total Expenses, Marketing, Payroll, and Misc (in that order) and
is identical to @DESCENDANTS(Profit).

See Also

• @DESCENDANTS

• @IDESCENDANTS

• @IRDESCENDANTS

Chapter 2
Calculation Function List

2-201

• @LDESCENDANTS

@RELATIVE
The @RELATIVE calculation function returns all members at the specified generation or level,
relative to the specified member in the Essbase database outline.

Syntax

@RELATIVE (mbrName, genLevNum | genLevName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

genLevNum
An integer value that defines the number of a generation or level. A positive integer defines a
generation number. A value of 0 or a negative integer defines a level number.

genLevName
Generation or level name specification.

Notes

This function returns all members at the specified generation or level relative to the specified
member in the database outline.

Essbase sorts the generated list of members in ascending order. Using Sample Basic as an
example, @RELATIVE(200,0), returns 200-10, 200-20, 200-30, 200-40 (in that order). This order
is important to consider when you use this function with certain forecasting and statistical
functions.

If the specified parameters to @RELATIVE are used with the specified level or generation
describing the specified member, then the specified member is included. For example,
@RELATIVE(("100-10",0)) includes 100-10 in the results, because 100-10 is a level 0 member.
@RELATIVE(("100",1)) includes 100 in the results, because 100 is a level 1 member.

Example

In the Sample Basic database:

@RELATIVE(Qtr1,3)
@RELATIVE(Qtr1,0)

both return the three members that are at generation 3 (or level 0) and that are below Qtr1 in
the Sample Basic outline: Jan, Feb, and Mar (in that order).

@RELATIVE(Profit,-1)

returns the two members that are at level 1 and that are below Profit: Margin and Total
Expenses (in that order).

Chapter 2
Calculation Function List

2-202

@RELXRANGE
The @RELXRANGE calculation function for Essbase generates a cross dimensional list based
on another cross dimensional list, combined with starting and ending positional offsets.

This function generates a cross-dimensional list for each cell in the predefined cross-
dimensional list (XrangeList), based on the relative position of the cell that is currently being
calculated and the offsets, using the predefined cross-dimensional list (XrangeList) as the limit.

Syntax

@RELXRANGE (startOffset, endOffset, XrangeList)

Parameters

startOffset
Defines the first tuple in the cross dimensional list to be returned.

• An integer value returns a cross-dimensional member relative to the current cell being
calculated, in the predefined cross-dimensional list (XrangeList).

• A negative value specifies a prior cross-dimensional member to the current cell being
calculated, in XrangeList.

• A value of 0 returns the cross-dimensional member or cell currently being calculated.

• A positive value specifies a subsequent cross-dimensional member to the current cell
being calculated, in XrangeList.

endOffset
Defines the last tuple in the cross-dimensional list to be returned. The value types are the
same as for startOffset

XrangeList
A cross-dimensional list to be used as the limit.
Can be a valid member name, a comma-delimited list of member names, cross-dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters.

Notes

• startOffset must be equal to or lesser than endOffset.

• The order of dimensions in XrangeList drives the sequence of the tuples in the resulting
tuples list. The right-most dimension in an XrangeList is the most frequently incremented
dimension. The increment of members in a dimension goes in outline order, or in the order
of the XrangeList used as an argument.

• If the cell that is currently being calculated is out of the bounds of XrangeList, this function
returns an empty cross-dimensional list.

• If startOffset is out of the bounds of XrangeList, this function returns a cross-dimensional
list starting from the first member of XrangeList.

• If endOffset is out of the bounds of XrangeList, this function returns a cross-dimensional
list ending on the last member of XrangeList.

Chapter 2
Calculation Function List

2-203

• Within XrangeList, in the parameter list for @XRANGE, you cannot pass members from
the anchor dimension, meaning the dimension of the member on which the formula is set.
See the Example for a correct way to use members from the anchor dimension.

Example

In the parameter list for @XRANGE, you cannot pass members from the anchor dimension.
This example demonstrates a correct and an incorrect usage of @XRANGE.

Correct

mbrCount=@COUNT(SKIPNONE,@RELXRANGE(-1,3,@XRANGE(Jan->Actual,May->Actual))-
>Sales);

Where mbrCount and Sales are both in the Measures dimension. Measures is the anchor
dimension, meaning the dimension of the member on which the formula is set.

The XrangeList is represented by @XRANGE(Jan->Actual,May->Actual), and returns the
following:

Jan->Actual
Jan->Budget
Feb->Actual
Feb->Budget
Mar->Actual
Mar->Budget
Apr->Actual
Apr->Budget
May->Actual

@RELXRANGE operates on the XrangeList, returning lists of cross dimensional members
within the defined offsets of -1 and 3.

If the current member being calculated is Jan->Actual, the count returned is 4 (offset of -1 is
empty):

Jan->Actual (offset 0)
Jan->Budget (offset 1)
Feb->Actual (offset 2)
Feb->Budget (offset 3)

If the current member being calculated is Jan->Budget, the count returned is 5:

Jan->Actual (offset -1)
Jan->Budget (offset 0)
Feb->Actual (offset 1)
Feb->Budget (offset 2)
Mar->Actual (offset 3)

Chapter 2
Calculation Function List

2-204

If the current member being calculated is Apr->Budget, the count returned is 3 (offsets of 2 and
3 are empty):

Apr->Actual (offset -1)
Apr->Budget (offset 0)
May->Actual (offset 1)

Incorrect

mbrCount=@COUNT(SKIPNONE,@RELXRANGE(0,0,@XRANGE(Sales->Jan->Actual,Sales->May-
>Actual)));

You cannot use Sales in the arguments for @XRANGE, because it is from the anchor
dimension for mbrCount. Instead, reference a cross dimensional member with Sales and the
@XRANGE function call, as shown in the correct example.

@REMAINDER
The @REMAINDER calculation function for Essbase returns the remainder value of an
expression.

Syntax

This function returns the remainder value of expression.

@REMAINDER (expression)

Parameters

expression
Single member specification, variable name, or other numeric expression.

Example

Margin = @REMAINDER("Margin %");

This example produces the following report:

 Product Market
 Margin % Margin
 Jan Feb Mar Jan Feb Mar
 === === === === === ===
Scenario 55.10 55.39 55.27 0.10 0.39 0.27

See Also

@TRUNCATE

Chapter 2
Calculation Function List

2-205

@REMOVE
The @REMOVE calculation function for Essbase removes values or members in one list from
another list.

Syntax

@REMOVE (list1, list2)

Parameters

list1
A list of member specifications, from which the members specified in list2 are removed.

list2
A list of member specifications to be removed from list1.

Example

Example 1

In the Sample Basic database,

@REMOVE(@CHILDREN(East),@LIST("New York",Connecticut))

returns Massachusetts, Florida, New Hampshire.

Example 2

The following example is based on the Sample Basic database. Assume that the Market
dimension contains an additional member, Non-West.

A special analysis requires a sum of the actual sales values of a particular product family for
non-western states. In this example, @REMOVE is called within @SUMRANGE to perform
this analysis. @LIST groups the last two arguments passed to @REMOVE (the children of
West, plus two additional members, Texas and New Mexico).

FIX(Sales)
"Non-West"=@SUMRANGE(Sales,@REMOVE(@LEVMBRS(Market,0),
 @LIST(@CHILDREN(West),Texas,"New Mexico")));
ENDFIX

This example produces the following report:

 Jan Colas
Actual
 Sales
 =====
Non-West 5114

New York 678
Massachusetts 494
Florida 410
Connecticut 310

Chapter 2
Calculation Function List

2-206

New Hampshire 213
 East 2105

California 941
Oregon 450
Washington 320
Utah 490
Nevada 138
 West 2339

Texas 642
Oklahoma 180
Louisiana 166
New Mexico 219
 South 1207

Illinois 579
Ohio 430
Wisconsin 490
Missouri 360
Iowa 161
Colorado 643
 Central 2663

See Also

• @INTERSECT

• @LIST

• @MERGE

• @RANGE

@RETURN
The @RETURN calculation function exits an Essbase calculation and returns a message,
based on given conditions.

This function exits the calculation immediately, returning a message, under specified logical
conditions. You can use an IF... ELSEIF command block to specify the error conditions, and
use @RETURN to exit the calculation with customized error messages and levels.

Syntax

@RETURN ("ErrorMessage", [,INFO|ERROR|WARNING])

Parameters

ErrorMessage
An error message string, or any expression that returns a string.

INFO|ERROR|WARNING
An error message priority setting, where INFO, ERROR, and WARNING are priority levels:

Chapter 2
Calculation Function List

2-207

• INFO—The message indicated in the ErrorMessage string is sent back to the client and
the application log as an informational type message. This is the default.

• ERROR—The message indicated in the ErrorMessage string is sent back to the client and
the application log as an error type message.

• WARNING—The message indicated in the ErrorMessage string is sent back to the client
and the application log as a warning type message.

Notes

• The calculation script will stop executing when this function is called.

• This function can only be used in calculation scripts; it cannot be used in member
formulas.

Example

The following example stops the calculation and returns a custom warning message if
maximum values specified in the IF statement are empty:

FIX("Actual")
. "Profit"(
 IF(("Marketing" < 0) OR ("Payroll" < 0) OR ("Misc" < 0))
 @RETURN(@CONCATENATE(
 @CONCATENATE("The violation of data integrity : Market [",
@NAME(@CURRMBR("Market"))),
 "] has a negative expenses. Calculations are interrupted")

 , WARNING);
 ELSE
 "Profit" = ("Margin" - "Total Expenses")*0.9;

 ENDIF
)
ENDFIX

@ROUND
The @ROUND calculation function for Essbase rounds a numeric expression to a specified
number of digits.

Syntax

@ROUND (expression, numDigits [, compatibility])

Parameters

expression
Single member specification, variable name, or other numeric expression.

numDigits
Single member specification, variable name, or other numeric expression that provides an
integer value. If numDigits is 0 or a positive number, expression is rounded to the number of

Chapter 2
Calculation Function List

2-208

decimal places specified by numDigits. If numDigits is a negative value, expression is rounded
to the nearest 10 to the power of the absolute value of numDigits. For example:

@ROUND(1234, -2) = 1200

The default value for numDigits is 0.

compatibility
Optional backward-compatibility setting to select which algorithm you want to use for rounding
margin of error.
Possible keyword values:

• COMPATPREV11121—Original rounding algorithm, in use up until Release 11.1.2.1. The
integer part of the number is used to generate the rounding margin of error. Limitation:
aggregate values are only accurate up to the 15th decimal place.

Only some decimal numbers can be represented perfectly in binary. For example, if the
value 1234.725 is loaded, it may be represented in binary as 1234.72499999999991.
Using the COMPATPREV11121 algorithm to round this number to two decimal places
returns 1234.72, though you may prefer 1234.73.

• COMPATPREV11123—Alternate rounding algorithm, in use between Release 11.1.2.1
and 11.1.2.3, to negate the representational error discussed above. The rounding margin
of error was changed for better precision, which in some cases returned different results
than the original algorithm.

If unspecified, the default rounding algorithm now matches the standard used by the C-
language Round function. The C Round function is a common rounding algorithm, used widely
across platforms. It uses a built-in construct of floor and ceiling functions to map a real number
to the largest previous or the smallest subsequent integer, respectively, depending on
numDigits.

Example

The following example is based on the Sample Basic database:

SET UPDATECALC OFF;
Profit = @ROUND("Profit_%", 1);

This example produces the following report:

 Market Product
 Profit_% Profit
 Jan Feb Mar Jan Feb Mar
 === === === === === ===
Scenario 21.37 19.09 18.46 21.4 19.1 18.5

See Also

• @ABS

• @INT

• @REMAINDER

• @TRUNCATE

Chapter 2
Calculation Function List

2-209

@RSIBLINGS
The @RSIBLINGS calculation function for Essbase returns the right siblings of the specified
member.

Syntax

@RSIBLINGS (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Notes

This function returns all of the right siblings of the specified member. Right siblings are children
that share the same parent as the member and that follow the member in the database outline.
This function excludes the specified member.

This function can be used as a parameter of another function, where that parameter is a list of
members.

Essbase sorts the right siblings in ascending order. Using Sample Basic as an example, if you
specify 200-10 for mbrName, Essbase returns 200-20, 200-30, 200-40 (in that order). This
order is important to consider when you use @RSIBLINGS with certain forecasting and
statistical functions.

Example

In the Sample Basic cube:

@RSIBLINGS(Florida)

returns Connecticut and New Hampshire (in that order). These members appear below Florida
in the Sample Basic outline.

@RSIBLINGS(Sales)

returns COGS because this member appears below Sales in the Sample Basic outline.

See Also

• @IRSIBLINGS

• @LSIBLINGS

• @NEXTSIBLING

• @PREVSIBLING

• @SHIFTSIBLING

Chapter 2
Calculation Function List

2-210

@SANCESTVAL
The @SANCESTVAL calculation function for Essbase returns ancestor-level data based on
the shared ancestor value of the current member being calculated.

Syntax

@SANCESTVAL (rootMbr,genLevNum [, mbrName])

Parameters

rootMbr
Defines a member that is used to search for the nearest occurrence of an ancestor of a
shared member.

genLevNum
Integer value that defines the absolute generation or level number from which the ancestor
values are to be returned. A positive integer defines a generation reference. A negative
number or value of 0 defines a level reference.
To use this function or any other ancestor value function in a ragged hierarchy, use generation
references instead of level references to avoid unexpected results. See Hierarchy Shapes.

mbrName
Optional. Any valid single member name, or a function that returns a single member.

Notes

• You cannot use this function in a FIX statement.

• The time required for retrieval and calculation may be significantly longer if this function is
in a formula attached to a member tagged as Dynamic Calc or Dynamic Calc and Store.

Example

Marketing expenses are captured at the Product Category levels in a product planning
application. The Product categories are defined as ancestors that contain shared members as
children. The Marketing Expense data must be allocated down to each Product code based on
Sales contribution.

The following Product hierarchy is defined:

Product
 100
 100-10
 100-20
 200
 200-10
 200-20
 Diet ~
 100-10 SHARED
 200-10 SHARED
 Caffeine Free ~

Chapter 2
Calculation Function List

2-211

 100-20 SHARED
 200-20 SHARED

 Sales Marketing
 ===== =========
100-10 300 0
100-20 200 0
100 500 0
200-10 100 0
200-30 400 0
200 900 0
100-10 300 0
200-10 100 0
Diet 400 50
100-20 200 0
200-30 400 0
Caffeine Free 600 40

The Marketing Expense value is allocated down to each Product code with the following
formula:

Marketing = (Sales / @SANCESTVAL(Product, 2, Sales)) * @SANCESTVAL(Product,
2, Marketing);

which produces the following result:

 Sales Marketing
 ===== =========
100-10 300 37.5
100-20 200 13.3
100 500 #MI
200-10 100 12.5
200-30 400 26.7
200 900 #MI
100-10 300 37.5
200-10 100 12.5
Diet 400 50
100-20 200 13.3
200-30 400 26.7
Caffeine Free 600 40

The Marketing expenses can then be reconsolidated across Products and Markets.

See Also

• @ANCESTVAL

• @MDPARENTVAL

• @PARENTVAL

Chapter 2
Calculation Function List

2-212

@SHARE
The @SHARE calculation function for Essbase checks each member from a list to see if it has
a shared member, and returns a list of the shared members it has found.

Syntax

@SHARE (rangeList)

Parameters

rangeList
A comma-delimited list of members, functions that return members, and ranges of members.
All the members in rangeList must be from the same dimension.

Notes

Other member-set functions return the prototype members, not the shared members. You can
use @SHARE within the memberList, rangeList, expList or list parameters of other functions to
provide shared members instead.

Example

The following examples are based on Sample Basic.

To remove all shared members from the Product dimension:

@REMOVE(@DESCENDANT(Product),@SHARE(@DESCENDENT((Product)))

To remove a specific member from the Product dimension, you can use @SHARE specifying
the shared member to be removed:

@REMOVE(@DESCENDANT(Product),@SHARE("100-20"))

See Also

@REMOVE

@SHIFT
The @SHIFT calculation function for Essbase returns either the prior or next nth cell value from
mbrName, in the sequence XrangeList, retaining all other members identical to the current
member.

The direction of @SHIFT is wholly based on n, with positive n values producing an effect
equivalent to @NEXT and negative values of n producing an equivalent effect to @PRIOR.

Syntax

@SHIFT (mbrName [,n, XrangeList])

Chapter 2
Calculation Function List

2-213

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional signed integer. Using a negative value for n has the same effect as using a positive
value in the @PRIOR function. n must be a numeric value, not a reference, such as a member
name.

XrangeList
Optional parameter specifying a sequential range of members. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Notes

@SHIFT is provided as a more appropriate, self-documenting name than @NEXT or @PRIOR
when the value for n is a variable and may change from positive to negative, depending on the
database state when the call occurs (that is, when the usage is likely to be NEXT and/or
PRIOR).

Example

In this example, Prev Asset for each month is derived by taking the Asset value from the
previous month because -1 is specified as the n parameter. Next Avl Asset for each month is
derived by taking the Asset value from two months following the current month because 2 is
specified as the n parameter. Since the range sequence is not specified for either formula, the
level 0 members from the dimension tagged as Time are used.

"Prev Asset" = @SHIFT(Asset,-1);
"Next Avl Asset" = @SHIFT(Asset,2);

This example produces the following report:

 Jan Feb Mar Apr May Jun
 === === === === === ===
Asset 100 110 105 120 115 125
Prev Asset #MI 100 110 105 120 115
Next Avl Asset 105 120 115 125 #MI #MI

The following example assumes a Year dimension is added to Sample Basic.

FIX("West")
"Prev Sales" = @SHIFT(Sales, -1, @XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX;

Chapter 2
Calculation Function List

2-214

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

• @MDSHIFT

• @NEXT

• @PRIOR

• @SHIFTPLUS

• @SHIFTMINUS

@SHIFTMINUS
The @SHIFTMINUS calculation function for Essbase returns a cell value at a given distance
from a member name within a range. It can optimize performance over using @SHIFT,
@PRIOR, or @NEXT, for certain formula patterns.

This function can be used in place of @SHIFT, @PRIOR, or @NEXT to improve performance
if the formula meets the following criteria:

• The formula is being executed in CELL mode.

• The formula has one of the following patterns:

X = Y - @SHIFT(mbrName [,n, XrangeList])

or:

X = Y - @PRIOR(mbrName [,n, XrangeList])

or:

X = Y - @NEXT(mbrName [,n, XrangeList])

If these criteria are met, consider rewriting your formula using @SHIFTMINUS, which runs the
formula in block mode to improve performance.

Note: If you use this function in combination with a function that runs in cell mode, it may
necessitate execution in cell mode to resolve dependencies. To determine whether a formula
executed in cell mode, check the log for the following informational message: Formula for
member [mbrName] will be executed in [CELL] mode. To learn which functions use cell
mode, see the @CALCMODE topic.

Chapter 2
Calculation Function List

2-215

Syntax

@SHIFTMINUS (mbrName1, mbrName2 [,n, XrangeList])

Parameters

mbrName1
Any valid single member name, or a function that returns a single member.

mbrName2
Any valid single member name, or a function that returns a single member.

n
Optional signed integer. n must be a numeric value, not a reference, such as a member name.
If you are using @SHIFTMINUS to replace the @NEXT function, use 1 as the value for n. If
you are using @SHIFTMINUS to replace the @PRIOR function, use -1 as the value for n.
Default value is +1.

XrangeList
Optional parameter specifying a sequential range of members. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Example

The following example shows a formula using @SHIFT().

Sales = Loss - @SHIFT(Sales, 1);

Here is the formula using @SHIFTMINUS() to improve performance:

@SHIFTMINUS (Loss, Sales, 1)

The following example assumes a Year dimension is added to Sample Basic.

FIX("South", "East")
Sales = @SHIFTMINUS (COGS, Sales, 1, @XRANGE("2018"->"Sep", "2019"->"Mar"));
ENDFIX;

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2018->Sep
2018->Oct
2018->Nov
2018->Dec
2019->Jan

Chapter 2
Calculation Function List

2-216

2019->Feb
2019->Mar

See Also

@SHIFTPLUS

@CALCMODE (for an explanation of block calculation and cell calculation modes)

@SHIFTPLUS
The @SHIFTPLUS calculation function for Essbase returns a cell value at a given distance
from a member name within a range. It can optimize performance over using @SHIFT,
@PRIOR, or @NEXT, for certain formula patterns.

This function can be used in place of @SHIFT, @PRIOR, or @NEXT to improve performance
if the formula meets the following criteria:

• The formula is being executed in CELL mode.

• The formula has one of the following patterns:

X = Y + @SHIFT(mbrName [,n, XrangeList])

or:

X = Y + @PRIOR(mbrName [,n, XrangeList])

or:

X = Y + @NEXT(mbrName [,n, XrangeList])

If these criteria are met, consider rewriting your formula using @SHIFTPLUS, which runs the
formula in block mode to improve performance.

Note: If you use this function in combination with a function that runs in cell mode, it may
necessitate execution in cell mode to resolve dependencies. To determine whether a formula
executed in cell mode, check the log for the following informational message: Formula for
member [mbrName] will be executed in [CELL] mode. To learn which functions use cell
mode, see the @CALCMODE topic.

Syntax

@SHIFTPLUS (mbrName1, mbrName2 [,n, XrangeList])

Parameters

mbrName1
Any valid single member name, or a function that returns a single member.

mbrName2
Any valid single member name, or a function that returns a single member.

Chapter 2
Calculation Function List

2-217

n
Optional signed integer. n must be a numeric value, not a reference, such as a member name.
If you are using @SHIFTPLUS to replace the @NEXT function, use 1 as the value for n. If you
are using @SHIFTPLUS to replace the @PRIOR function, use -1 as the value for n. Default
value is +1.

XrangeList
Optional parameter specifying a sequential range of members. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Example

The following example shows a formula using @SHIFT().

Sales = Loss + @SHIFT(Sales, 1);

Here is the formula using @SHIFTPLUS() to improve performance:

@SHIFTPLUS (Loss, Sales, 1);

The following example assumes a Year dimension is added to Sample Basic.

FIX("North")
Sales = @SHIFTPLUS (COGS, Sales, 1, @XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX;

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@SHIFTMINUS

@CALCMODE (for an explanation of block calculation and cell calculation modes)

Chapter 2
Calculation Function List

2-218

@SHIFTSIBLING
The @SHIFTSIBLING calculation function for Essbase returns a member's next sibling, at a
relative position, as a string.

This function returns the specified member or the nth sibling of the member. This function
traverses members that are at the same level and of the same parent. If the specified relative
position moves beyond the first or last sibling, Essbase returns an empty string.

This function returns the next sibling as a string. To pass the @SHIFTSIBLING function as a
parameter of another function, where the function requires a list of members, you must wrap
the @SHIFTSIBLING function call within a @MEMBER function call.

You must also wrap this function within the @MEMBER function if you are calling it inside a
member combination specified using the cross-dimensional operator (->). For example, this is
correct usage: @MEMBER(@SHIFTSIBLING("FY19"))->"A1".

Syntax

@SHIFTSIBLING (mbrName [,relativePosition])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

relativePosition
Optional. The integer that defines the position relative to the specified member. Valid values:

• 0 (Default) Returns the specified member.

• < 0 (negative integer): Returns the previous sibling.

• > 0 (positive integer): Returns the next sibling.

Example

All examples are from the Sample.Basic database.

@SHIFTSIBLING("100–20",0)

Returns 100-20 (the specified member).

@SHIFTSIBLING("200",1)

Returns 300 (the next sibling of 200). The @SHIFTSIBLING("200",1) function and the
@NEXTSIBLING("200") function return the same results.

Returns 400 (the second-next sibling of 200).

@SHIFTSIBLING("100–20",–1)

Chapter 2
Calculation Function List

2-219

Returns 100-10 (the previous sibling of 100-20). The @SHIFTSIBLING("100–20",–1) function
and the @PREVSIBLING("100–20") function return the same results.

@SHIFTSIBLING("100–10",9)

Returns an empty string, as 100-10 does not have a ninth sibling.

@CHILDREN(@MEMBER(@SHIFTSIBLING("East")))

Returns all children of East. Because no shift position is specified, the default shift position is 0,
which means the current member.

See Also

• @MEMBER

• @NEXTSIBLING

• @PREVSIBLING

@SIBLINGS
The @SIBLINGS calculation function for Essbase returns all siblings of the specified member.

Syntax

@SIBLINGS (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Notes

This function returns all siblings of the specified member. This function excludes the specified
member.

This function can be used as a parameter of another function, where that parameter is a list of
members.

Essbase sorts the generated list of members as follows:

1. Left siblings of the member (siblings appearing above the member in the database outline)
in descending order

2. Right siblings of the member (siblings appearing below the member in the database
outline) in ascending order

Using Sample Basic as an example, if you specify 200-30 for mbrName, Essbase returns
200-20, 200-10, 200-40 (in that order). This order is important to consider when you use this
function with certain forecasting and statistical functions.

Chapter 2
Calculation Function List

2-220

Example

In the Sample Basic database:

@SIBLINGS (Washington)

Returns Oregon, California, Utah, and Nevada (in that order).

@SIBLINGS(East)

Returns West, South, and Central (in that order).

@SLN
The @SLN calculation function for Essbase calculates the periodic amount that an asset in the
current period may be depreciated, across a range of periods.

The depreciation method used is straight-line depreciation:

cost - salvage value / life

The SLN method assumes that the asset depreciates by the same amount each period.

More than one asset may be depreciated over the range. The value is depreciated from its
entry period to the last period in the range. The resulting value represents the sum of all the
per-period depreciation values of each asset being depreciated.

Syntax

@SLN (costMbr, salvageMbrConst, lifeMbrConst [, XrangeList])

Parameters

costMbr
Single member specification representing an input asset for the current period.

salvageMbrConst
Single member specification, variable name, or numeric expression, providing a constant
numeric value. This value represents the value of the asset in the current period at the end of
the useful life of the asset.

lifeMbrConst
Single member specification, variable name, or numeric expression representing the useful life
of the asset.

XrangeList
Optional parameter specifying the range over which the function accepts input and returns
depreciation values. If a range is not specified, Essbase uses the level 0 members from the
dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters.

Chapter 2
Calculation Function List

2-221

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

In this example, the depreciation for each year is calculated by taking into account the initial
asset (Asset), the salvage value of the asset (Residual), and the life of the asset (Life).

"SLN Dep" = @SLN(Asset,Residual,Life,FY1991:FY1995);

This example produces the following report:

 FY1991 FY1992 FY1993 FY1994 FY1995 FY1996
 ====== ====== ====== ====== ====== ======
Asset 9,000 0 1,000 0 0 0
Residual 750.00 0.00 0.00 0.00 0 0
Life 5.00 #MI 5.00 0.00 0.00 0
SLN Dep 1650 1650 1850 1850 1850 0

The following example assumes a Year dimension is added to Sample Basic. It calculates
depreciation using a multidimensional range.

FIX ("100-10", "New York")
"SLN Dep" = @SLN(Asset,Residual,Life,@XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

• @DECLINE

• @SYD

Chapter 2
Calculation Function List

2-222

@SPARENTVAL
The @SPARENTVAL calculation function for Essbase returns parent-level data based on the
shared parent value of the current member being calculated.

Syntax

@SPARENTVAL (RootMbr [, mbrName])

Parameters

RootMbr
Defines a member that is used to search for the nearest occurrence of a parent of a shared
member.

mbrName
Optional. Any valid single member name, or a function that returns a single member.

Notes

• You cannot use this function in a FIX statement.

• The time required for retrieval and calculation may be significantly longer if this function is
in a formula attached to a member tagged as Dynamic Calc or Dynamic Calc and Store.

Example

Marketing expenses are captured at the Product Category levels in a product planning
application. The Product categories are defined as parents that contain shared members as
children. The Marketing Expense data must be allocated down to each Product code based on
Sales contribution.

The following Product hierarchy is defined:

Product
100
 100-10
 100-20
200
 200-10
 200-20
Diet ~
 100-10 SHARED
 200-10 SHARED
Caffeine Free ~
 100-20 SHARED
 200-20 SHARED

 Sales Marketing
 ===== =========
100-10 300 0
100-20 200 0
100 500 0
200-10 100 0
200-30 400 0

Chapter 2
Calculation Function List

2-223

200 900 0
100-10 300 0
200-10 100 0
Diet 400 50
100-20 200 0
200-30 400 0
Caffeine Free 600 40

The Marketing Expense value is allocated down to each Product code with the following
formula:

Marketing = (Sales / @SPARENTVAL(Product, Sales)) * @SPARENTVAL(Product,
Marketing);

which produces the following result:

 Sales Marketing
 ===== =========
100-10 300 37.5
100-20 200 13.3
100 500 #Missing
200-10 100 12.5
200-30 400 26.7
200 900 #Missing
100-10 300 37.5
200-10 100 12.5
Diet 400 #Missing
100-20 200 13.3
200-30 400 26.7
Caffeine Free 600 #Missing

The Marketing expenses can then be reconsolidated across Products and Markets.

See Also

• @ANCESTVAL

• @MDPARENTVAL

• @PARENTVAL

@SPLINE
The @SPLINE calculation function for Essbase applies a smoothing spline to a set of data
points. A spline is a mathematical curve that smoothes or interpolates data.

Syntax

@SPLINE (YmbrName [, s [, XmbrName [, XrangeList]]])

Chapter 2
Calculation Function List

2-224

Parameters

YmbrName
A valid single member name that contains the dependent variable values used (when crossed
with rangeList) to construct the spline.

s
Optional. A zero (0) or positive value that determines the smoothness parameter. The default
value is 1.0.

XmbrName
Optional. A valid single member name that contains the independent variable values used
(when crossed with rangeList) to construct the spline. The default independent variable values
are 0,1,2,3, and so on.

XrangeList
Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

• XrangeList must contain at least two values.

• If XrangeList contains gaps in the data (for example: Jan, Feb, Mar, Jun, Jul), be sure to
specify XmbrName (for example: 0,1,2,5,6) so that correct results are returned.

• This function skips #MISSING values in YmbrName and XmbrName; in the result, Essbase
replaces the #MISSING values of YmbrName with the spline values.

• This function calculates a smoothing cubic spline for (n > 0).

• Setting the smoothness parameter (s) to 0 produces an interpolating spline, that is, a
spline that fits the initial data exactly. Increasing s results in a smoother spline but a less
exact approximation of the initial data.

• @SPLINE can be used with @TREND to forecast future values that are based on the
values smoothed with @SPLINE.

• If you use an Essbase member set function to generate a member list for the XrangeList
parameter (for example, @SIBLINGS), to ensure correct results, consider the order in
which Essbase sorts the generated member list. For more information, see the help topic
for the member set function you are using.

• When you use @SPLINE in a calculation script, use it within a FIX statement. Although
using FIX is not required, it may improve calculation performance.

• When you use @SPLINE across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

• View the Algorithm for the smoothing spline.

Algorithm

Chapter 2
Calculation Function List

2-225

Chapter 2
Calculation Function List

2-226

Chapter 2
Calculation Function List

2-227

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Sales Spline. The formula calculates the spline of
Sales values for Jan through Jun, based on a smoothness parameter of 2.

"Sales Spline" = @SPLINE(Sales,2,,Jan:Jun);

This example produces the following report:

 Colas Actual New York
 Sales Sales Spline
 ===== ============
Jan 645 632.8941564
Feb 675 675.8247101
Mar 712 724.7394598
Apr 756 784.2860765
May 890 852.4398456
Jun 912 919.8157517

See Also

@TREND

@STDEV
The @STDEV calculation function for Essbase calculates the standard deviation of the
specified data set (expList).

The calculation is based upon a sample of a population. Standard deviation is a measure of
how widely values are dispersed from their mean (average).

This function assumes that expList represents a sample of a population. If you want expList to
represent the entire population, use @STDEVP. For large samples, the functions return similar
values.

@STDEV is calculated using the "nonbiased" or "n-1" method.

@STDEV uses the following formula:

Chapter 2
Calculation Function List

2-228

Syntax

@STDEV (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameters

SKIPNONE
Includes all cells specified in expList, regardless of their content, during calculation of the
standard deviation.

SKIPMISSING
Excludes all #MISSING values from expList during calculation of the standard deviation.

SKIPZERO
Excludes all zero (0) values from expList during calculation of the standard deviation.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from expList during calculation of the
standard deviation.

expList
Comma-delimited list of member specifications, variable names, functions, or numeric
expressions. expList provides a list of numeric values across which the standard deviation is
calculated.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Std Deviation. This example calculates the standard
deviation (based on a sample of a population) of the sales values for all products and uses
@RANGE to generate expList.

FIX (Product)
"Std Deviation" = @STDEV(SKIPBOTH,@RANGE(Sales,@CHILDREN(Product)));
ENDFIX

This example produces the following report:

 Jan New York
 Actual Budget
 ====== ======
Sales Colas 678 640
 Root Beer 551 530
 Cream Soda 663 510
 Fruit Soda 587 620
 Diet Drinks #MI #MI
 Product 2479 2300

Std Deviation Product 60.73 64.55

Chapter 2
Calculation Function List

2-229

See Also

• @RANGE

• @STDEVP

• @STDEVRANGE

@STDEVP
The @STDEVP calculation function for Essbase calculates the standard deviation of the
specified data set (expList).

This function assumes that expList represents the entire population. If you want expList to
represent a sample of a population, use @STDEV. For large samples, the functions return
similar values.

Syntax

@STDEVP (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameters

SKIPNONE
Includes all cells specified in expList, regardless of their content, during calculation of the
standard deviation.

SKIPMISSING
Excludes all #MISSING values from expList during calculation of the standard deviation.

SKIPZERO
Excludes all zero (0) values from expList during calculation of the standard deviation.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from expList during calculation of the
standard deviation.

expList
Comma-delimited list of member specifications, variable names, functions, or numeric
expressions. expList provides a list of numeric values across which the standard deviation is
calculated.

Notes

@STDEVP calculates the standard deviation of the specified data set (expList). The
calculation is based upon the entire population. Standard deviation is a measure of how widely
values are dispersed from their mean (average).

@STDEVP is calculated using the "biased" or "n" method.

@STDEVP uses the following formula:

Chapter 2
Calculation Function List

2-230

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Std Deviation. This example calculates the standard
deviation (based on the entire population) of the sales values for all products and uses
@RANGE to generate expList.

FIX (Product)
"Std Deviation" = @STDEVP(SKIPBOTH,@RANGE(Sales,@CHILDREN(Product)));
ENDFIX

This example produces the following report:

 Jan New York
 Actual Budget
 ======
======
Sales Colas 678 640
 Root Beer 551 530
 Cream Soda 663 510
 Fruit Soda 587 620
 Diet Drinks #MI #MI
 Product 2479 2300

Std Deviation Product 52.59 55.90

See Also

• @RANGE

• @STDEV

• @STDEVRANGE

@STDEVRANGE
The @STDEVRANGE calculation function for Essbase calculates the standard deviation of all
values of the specified member (mbrName) across the specified data set (XrangeList).

The calculation is based upon a sample of a population. Standard deviation is a measure of
how widely values are dispersed from their mean (average).

This function is calculated using the "unbiased" or "n-1" method. See @STDEV for the formula
used.

Syntax

@STDEVRANGE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrName [,
XrangeList])

Chapter 2
Calculation Function List

2-231

Parameters

SKIPNONE
Includes all cells specified in expList, regardless of their content, during calculation of the
standard deviation.

SKIPMISSING
Excludes all #MISSING values from expList during calculation of the standard deviation.

SKIPZERO
Excludes all zero (0) values from expList during calculation of the standard deviation.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from expList during calculation of the
standard deviation.

mbrName
Any valid single member name, or a function that returns a single member.

XrangeList
Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Std Deviation. This example calculates the standard
deviation (based on a sample of a population) of the sales values for all products.

FIX (Product)
"Std Deviation" = @STDEVRANGE(SKIPBOTH,Sales,@CHILDREN(Product));
ENDFIX

This example produces the following report:

 Jan New York
 Actual Budget
 ====== ======
Sales Colas 678 640
 Root Beer 551 530
 Cream Soda 663 510
 Fruit Soda 587 620
 Diet Drinks #MI #MI
 Product 2479 2300

Std Deviation Product 60.73 64.55

See Also

• @STDEV

• @STDEVP

Chapter 2
Calculation Function List

2-232

@SUBSTRING
The @SUBSTRING calculation function for Essbase returns the requested string of characters
from an existing source string.

The source string can be a text string or a member name, or it can result from a specified
function that returns a text string or a single member name.

Syntax

@SUBSTRING (String, StartPosition [, EndPosition])

Parameters

String
A string or a function that returns a string or a single member name (For example,
@ATTRIBUTESVAL, @CONCATENATE, and @NAME return strings.)

StartPosition
Beginning character position within String to include in the substring. An integer greater than
or equal to 0, where 0 corresponds to the first character in String, 1 corresponds to the second
character, and so on.

EndPosition
Optional. An integer greater than or equal to 1, where 1 corresponds to the first character in
String, 2 corresponds to the second character, and so on. If EndPosition is not specified or is
less than StartPosition, Essbase returns all remaining characters from the source string. Note
that this is a different numbering scheme that the start position uses.

Example

The following examples are based on the Sample Basic database:

Table 2-32 @SUBSTRING Examples and Results

Function Statement Result

@SUBSTRING ("100-10",1) "00-10"

@SUBSTRING ("200-21",0,2) "20"

@SUBSTRING (@Name(@Parent(Jan)),3)

(The parent of Jan is Qtr1.)

"1"

See Also

• @CONCATENATE

• @MEMBER

Chapter 2
Calculation Function List

2-233

@SUM
The @SUM calculation function for Essbase returns the summation of all the values in expList.

Syntax

@SUM (expList)

Parameters

expList
Comma-delimited list of member specifications, variable names, or numeric expressions, all of
which provide numeric values.

Example

In the Sample Basic database:

FIX("Total Expenses")
West=@SUM(West,East);
ENDFIX

Since the calculation script fixes on Total Expenses, the value for Total Expenses->West is
equal to the sum of the value for East and the values for the states making up the West. For
Sales, West and East are simply the sum of the states making up each region (that is, Sales-
>West is not equal to the sum of East and West). This example produces the following report:

 Product Qtr1 Actual
 Sales Total Expenses
 ===== ==============
New York 7705 2068
Massachusetts 3660 892
Florida 4132 1313
Connecticut 3472 1087
New Hampshire 1652 801
 East 20621 6161
California 11056 2742
Oregon 5058 1587
Washington 4835 1621
Utah 4209 1544
Nevada 6516 2193
 West 31674 15848

See Also

@SUMRANGE

Chapter 2
Calculation Function List

2-234

@SUMRANGE
The @SUMRANGE calculation function for Essbase returns the summation of all the values of
the specified member (mbrName) across the specified range (XrangeList).

Syntax

@SUMRANGE (mbrName [,XrangeList])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

XrangeList
Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Example

The following example is based on the Sample Basic database. Assume that the Year
dimension contains an additional member, Partial Year. The formula for Partial Year sums the
values for New York across the range of Jan through Jun. The calculation script fixes on Sales,
so this formula is applied only to Sales values.

FIX(Sales)
"Partial Year"=@SUMRANGE("New York",Jan:Jun);
ENDFIX
This example produces the following report:

 Actual New York Colas
 Sales
 =====
Jan 678
Feb 645
Mar 675
Apr 712
May 756
Jun 890
Partial Year 4356

See Also

@SUM

Chapter 2
Calculation Function List

2-235

@SYD
The @SYD calculation function for Essbase calculates the periodic amount (usually annual)
that an asset in the current period may be depreciated, across a range of periods. The
depreciation method used is sum of the year's digits.

The SYD method assumes that depreciation amounts are higher at the earlier stages of the
asset's life. Thus, XrangeList can be used to specify a period to calculate.

More than one asset may be depreciated over the range. The value is depreciated from its
entry period to the last period in the range. The resulting value represents the sum of all per-
period depreciation values of each asset.

Syntax

@SYD (costMbr, salvageMbrConst, lifeMbrConst [, XrangeList])

Parameters

costMbr
Single member specification representing an input asset for the current period.

salvageMbrConst
Single member specification, variable name, or numeric expression, providing a constant
numeric value. This value is the value of the asset in the current period after the useful life of
the asset.

lifeMbrConst
Single member specification, variable name, or numeric expression representing the useful life
of the asset.

XrangeList
Optional parameter specifying the range over which the function accepts input and returns
depreciation values. If a range is not specified, Essbase uses the level 0 members from the
dimension tagged as Time.
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about rangeList and XrangeList, see Range List Parameters.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

In this example, the depreciation for each year is calculated by taking into account the initial
asset (Asset), the salvage value of the asset (Residual), and the life of the asset (Life).

"SYD Dep"=@SYD(Asset,Residual,Life,FY1999:FY2002,FY2003);

Chapter 2
Calculation Function List

2-236

This example produces the following report:

 FY1999 FY2000 FY2001 FY2002 FY2003
 ====== ====== ====== ====== ======
Asset 9,000 0 1,000 0 0
Residual 750.00 0.00 0.00 0.00 0
Life 5.00 #MISSING 3.00 0.00 0.00
SYD Dep 2750 2200 2150 1433 717

The following example assumes a Year dimension is added to Sample Basic. It calculates
depreciation using a multidimensional range.

FIX ("100-10", "New York")
"SYD Dep" = @SYD(Asset,Residual,Life,@XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

• @DECLINE

• @SLN

@TODATE
The @TODATE calculation function for Essbase converts date strings to numbers that can be
used in calculation formulas.

This function converts date strings into the number of seconds elapsed since midnight,
January 1, 1970.

Syntax

@TODATE (formatString, dateString)

Parameters

formatString
The format of the date string, either "mm-dd-yyyy" or "dd-mm-yyyy" (must be in lower case).

dateString
The date string.

Chapter 2
Calculation Function List

2-237

Notes

• If you specify a date that is earlier than 01-01-1970, this function returns an error.

• The latest date supported by this function is 12-31-2037.

Example

The following example is based on the Sample Basic database.

Marketing
(IF (@ATTRIBUTEVAL("Intro Date") >
 @TODATE("mm-dd-yyyy","06-30-1996"))
Marketing - (Marketing * .1);
ENDIF;);

This formula searches for members with an Intro Date attribute member that is later than
6-30-96 and decreases Marketing for those members by 10 percent. In order to process the
formula, Essbase converts the date strings to numbers before it calculates.

This example produces the following report:

 Actual Jan Massachusetts
 Marketing
Intro Date_12-10-1996 200-30 9
 200-40 9
Intro Date_10-01-1996 400-10 9
 400-20 9
Intro Date_07-26-1996 200-20 9
Intro Date_06-26-1996 300-10 9
 300-20 9
 300-30 9
Intro Date_04-01-1996 100-20 10
 100-30 10
Intro Date_03-25-1996 100-10 10
Intro Date_09-27-1995 200-10 10

See Also

• @ATTRIBUTE

• @ATTRIBUTEVAL

• @WITHATTR

@TODATEEX
The @TODATEEX calculation function for Essbase returns the numeric date value from input
date-string according to the date-format specified.

The date returned is the number of seconds elapsed since midnight, January 1, 1970.

If the date or the date format strings are invalid, an error is returned.

Chapter 2
Calculation Function List

2-238

Syntax

@TODATEEX(date_format_string, string)

Parameters

date_format_string
One of the following literal strings (excluding ordered-list numbers and parenthetical
examples) indicating a supported date format.

1. "mon dd yyyy" (Example: mon = Aug)

2. "Month dd yyyy" (Example: Month = August)

3. "mm/dd/yy"
4. "mm/dd/yyyy"
5. "yy.mm.dd"
6. "dd/mm/yy"
7. "dd.mm.yy"
8. "dd-mm-yy"
9. "dd Month yy"
10. "dd mon yy"
11. "Month dd, yy"
12. "mon dd, yy"
13. "mm-dd-yy"
14. "yy/mm/dd"
15. "yymmdd"
16. "dd Month yyyy"
17. "dd mon yyyy"
18. "yyyy-mm-dd"
19. "yyyy/mm/dd"
20. Long format (Example: WeekDay, Mon dd, yyyy)

21. Short format (Example: m/d/yy)

string
A date string following the rules of internal-date-format. The following examples correspond to
the above listed internal date formats.

1. Jan 15 2006
2. January 15 2006
3. 01/15/06
4. 01/15/2006

Chapter 2
Calculation Function List

2-239

5. 06.01.06
6. 15/01/06
7. 15.01.06
8. 15-01-06
9. 15 January 06
10. 15 Jan 06
11. January 15 06
12. Jan 15 06
13. 01-15-06
14. 06/01/15
15. 060115
16. 15 January 2006
17. 15 Jan 2006
18. 2006-01-15
19. 2006/01/15
20. Sunday, January 15, 2006
21. 1/8/06 (m/d/yy)

Notes

• This function is case-sensitive. For example, using apr instead of Apr returns an error.

• Using extra whitespace not included in the internal format strings returns an error.

• Trailing characters after the date format has been satisfied are ignored. If you erroneously
use a date string of 06/20/2006 with date format mm/dd/yy, the trailing 06 is ignored and
the date is interpreted as June 20, 2020.

• Long Format (Weekday, Mon dd, yyyy) is not verified for a day-of-week match to the given
date.

For example: For date string Sunday, March 13, 2007 with date format Long Format, the
input date string is parsed correctly for March 13, 2007, although March 13, 2007 does not
fall on Sunday.

• If you specify a date that is earlier than 01-01-1970, this function returns an error.

• The latest date supported by this function is 12-31-2037.

• When the yy format is used, this function interprets years in the range 1970 to 2029.

See Also

• @DATEDIFF

• @DATEPART

• @DATEROLL

• @FORMATDATE

• @TODAY

Chapter 2
Calculation Function List

2-240

@TODAY
The @TODAY calculation function for Essbase returns a number representing the current date
on the Essbase server computer.

The number is the number of seconds elapsed since midnight, January 1, 1970.

Syntax

@TODAY()

Notes

• The date returned can be used as input to other functions listed in the See Also section.

• As this function is a run-time formula, you cannot use it in a FIX statement.

Example

If today’s date is 15-Jul-2014, the following expression returns 15:

@DATEPART(@TODAY(), DP_DAY)

See also the example for @FORMATDATE.

See Also

• @DATEDIFF

• @DATEPART

• @DATEROLL

• @FORMATDATE

• @TODATEEX

@TREND
The @TREND calculation function for Essbase calculates future values based on curve-fitting
to historical values.

The @TREND procedure considers a number of observations, constructs a mathematical
model of the process based on these observations (that is, fits a curve), and predicts values for
a future observation. You can use weights to assign credibility coefficients to particular
observations, report errors of the curve fitting, choose the forecasting method to be used (for
example, linear regression), and specify certain data filters.

Syntax

@TREND (Ylist, [Xlist], [weightList], [errorList], [XforecastList],
YforecastList, method[, method parameters] [, Xfilter1 [, parameters]] [,
XfilterN [, parameters]] [, Yfilter1 [, parameters]] [, YfilterN [,
parameters]])

Chapter 2
Calculation Function List

2-241

Parameters

Ylist
An expression list that contains known observations; for example, sales figures over a period
of time.

Xlist
Optional. An expression list that contains underlying variable values. For example, for each
sales figure in Ylist, Xlist may contain a value for associated time periods. If you do not specify
Xlist, the default variable values are 1,2,3, and so on, up to the number of values in Ylist.

weightList
Optional. An expression list that contains weights for the data points in Ylist, for the linear
regression method only. If values in weightList are #MISSING, the default is 1. Weights for
methods other than linear regression are ignored. Negative weights are replaced with their
absolute values.

errorList
Optional. Member list that represents the differences between the data points in Ylist and the
data points on the line or curve (as specified for method).

XforecastList
Optional. Expression list that contains the underlying variable values for which the forecasting
is sought. If you do not specify XforecastList, the values are assumed to be as follows: {(last
value in Xlist + 1), (last value in Xlist + 2), ...}up to (last value in Xlist + the number of values in
YforecastList)
If you forecast consecutively from where Ylist stops, you do not need to specify XforecastList.
If you want to move the forecasting period forward, specify the new period with XforecastList.

YforecastList
A member list into which the forecast values are placed.

method
A choice among LR (linear regression), SES (single exponential smoothing), DES (double
exponential smoothing), and TES (triple exponential smoothing). Method parameters must be
numeric values, not member names. Method parameters may be any of the following:

• LR[,t]: standard linear regression with possible weights assigned to each data point and
an optional seasonal adjustment period [t], where [t] is the length of the period. In general,
the weights are equal to 1 by default. You might want to increase the weight if the
corresponding observation is important, or decrease the weight if the corresponding
observation is an outlier or is unreliable.

• SES[,c]: single exponential smoothing with parameter c (default c=0.2). This method uses
its own weight system, using the single parameter c. Increasing this parameter gives more
weight to early observations than to later ones.

• DES[[,c1],c2]: double exponential smoothing (Holt's method) with optional parameters c1,
c2 (default c1=0.2, c2=0.3). This is a two-parameter weight system and a linear
subsequent approximation scheme. The first parameter controls weight distribution for the
intercept; the second parameter controls weight distribution for the slope of the line fit.

• TES[[[[,T],c1],c2],c3]: triple exponential smoothing (Holt-Winters method) with optional
parameters c1, c2, c3, T (default c1=0.2, c2=0.05, c3=0.1, T=1). This is a three-parameter
weight system and a linear model with a multiplicative seasonal component.

Chapter 2
Calculation Function List

2-242

Xfilter1 ... XfilterN
Optional. Use one or more of the following filter methods to scale Xlist:

• XLOG[,c]: logarithmic change with shift c (x' = log(x+c)) (default c=1

• XEXP[,c]: exponential change with shift c (x' = exp(x+c)) (default c=0).

• XPOW[,c]: power change with power c (x' = x^c) (default c=2).

Yfilter1 ... YfilterN
Optional. Use one or more of the following filter methods to scale Ylist:

• YLOG[,c]: logarithmic change with shift c (y' = log(y+c)) (default c=1)

• YEXP[,c]: exponential change with shift c (y' = exp(y+c)) (default c=0).

• YPOW[,c]: power change with power c (y' = y^c) (default c=2).

Notes

• @TREND can be used only in calculation scripts, not in outline formulas.

• You must associate the @TREND formula with a member.

• Ylist, Xlist, weightList, and errorList should contain the same number of values.

• XforecastList and YforecastList should contain the same number of values.

• The method and filter parameters must be numbers only; functions and member names
are not allowed.

• @TREND ignores #MISSING values during calculation of the trend.

• When you use the LR method with seasonal adjustments or when you use the TES
method, Essbase places strict requirements on the input data. With these methods, input
data cannot contain #MISSING values. Also, if you specify Xlist, the data must be
equidistant, with the interval (step) being a whole fraction of the period, T (for example,
T/5, T/2). The XforecastList parameters should also contain multiples of the interval.

• For another example using @TREND with more options, see Forecasting Future Values.

• If you use a member set function to generate a member list for this function, (for example,
@SIBLINGS), to ensure correct results, consider the order in which Essbase sorts the
generated member list. For more information, see the help topic for the member set
function you are using.

• The following algorithms are used to calculate @TREND:

Algorithm for Linear Regression

Chapter 2
Calculation Function List

2-243

Algorithm for Linear Regression with Seasonal Adjustment

Chapter 2
Calculation Function List

2-244

Chapter 2
Calculation Function List

2-245

Chapter 2
Calculation Function List

2-246

Algorithm for Single Exponential Smoothing (SES)

Chapter 2
Calculation Function List

2-247

Algorithm for Double Exponential Smoothing (DES)

Chapter 2
Calculation Function List

2-248

Algorithm for Triple Exponential Smoothing (TES)

Chapter 2
Calculation Function List

2-249

Chapter 2
Calculation Function List

2-250

Example

The following example is based on the Sample Basic database. It forecasts sales data for May
through December, based on the trend of the same sales data from January through April. The
method used is linear regression with no seasonal adjustment.

Sales(@TREND(Jan:Apr,,,,,May:Dec,LR););

This example produces the following report:

 Actual Sales West
 Colas
 =====
Jan 2339
Feb 2298
Mar 2313
Apr 2332
May 2319
Jun 2318.4
Jul 2317.8
Aug 2317.2
Sep 2316.6
Oct 2316
Nov 2315.4
Dec 2314.8
 Year 27817.2

See Also

@LIST

Chapter 2
Calculation Function List

2-251

@TRUNCATE
The @TRUNCATE calculation function for Essbase removes the fractional part of expression,
returning the integer.

Syntax

@TRUNCATE (expression)

Parameters

expression
Single member specification, function, variable name, or other numeric expression, which
returns a numeric value.

Example

In the following example, Total Sales is calculated by (1) taking the sum of the values for Direct
Sales and Other Sales and (2) truncating the summed values.

"Total Sales" = @TRUNCATE(@SUM("Direct Sales":"Other Sales"));

This example produces the following report:

 Colas New York Actual
 Jan Feb Mar
 === === ===
Direct Sales 678.557 645.874 675.299
Other Sales 411.299 389.554 423.547
Total Sales 1089 1035 1098

See Also

• @REMAINDER

• @ROUND

@UDA
The @UDA calculation function for Essbase returns members based on a common attribute,
which you have defined as a user-defined attribute (UDA) on the Essbase Server.

Syntax

@UDA (dimName, uda)

Parameters

dimName
Name of the dimension with which the uda is associated.

Chapter 2
Calculation Function List

2-252

uda
Name of the user-defined attribute as it appears in the database outline.

Notes

You must type the UDA string exactly as it appears in the database outline.

Example

In the Sample Basic database:

@UDA(Market, "New Mkt")

Returns a list of members with the UDA of New Mkt.

See Also

• @ISUDA

• @ISMBRUDA

@VAR
The @VAR calculation function for Essbase calculates the variance (difference) between two
members.

The variance calculation recognizes the difference between accounts that are tagged in the
database outline as expense and those that are non-expense (the default), and calculates the
variance accordingly.

Syntax

@VAR (mbrName1, mbrName2)

Parameters

mbrName1 and mbrName2
Members from the same dimension whose variance results are to be calculated. The variance
is derived by subtracting mbrName2 values from mbrName1, unless an account is tagged as
expense, in which case mbrName1 values are subtracted from mbrName2.

Example

The following example is based on the Sample Basic database. The variance between Actual
and Budget is calculated as follows:

Variance = @VAR(Actual,Budget);

Sales is non-expense, whereas COGS is expense. This example produces the following
report:

 Year Product Market
 Sales COGS
 ===== ====
Actual 400855 179336

Chapter 2
Calculation Function List

2-253

Budget 373080 158940
Variance 27775 (20396)

See Also

• @VARPER

• @VARIANCE

• @VARIANCEP

@VARPER
The @VARPER calculation function for Essbase calculates the percent variance (difference)
between two members.

The variance calculation recognizes the difference between accounts that are tagged in the
database outline as expense and those that are non-expense, and calculates the variance
accordingly.

Syntax

@VARPER (mbrName1, mbrName2)

Parameters

mbrName1 and mbrName2
Members from the same dimension whose variance results are to be calculated. The percent
variance is derived by taking the percent variance of mbrName2 values from mbrName1,
unless an account is tagged as expense, in which case mbrName1 values are taken as a
percent variance of mbrName2.

Example

The following example is based on the Sample Basic database. The percent variance between
Actual and Budget is calculated as follows:

Variance % = @VARPER(Actual,Budget);

In this example Sales is non-expense, whereas COGS is expense. This example produces the
following report:

 Year Product Market
 Sales COGS
 ===== ====
Actual 400855 179336
Budget 373080 158940
Variance % 7.4 (12.8)

See Also

• @VAR

• @VARIANCE

• @VARIANCEP

Chapter 2
Calculation Function List

2-254

@VARIANCE
The @VARIANCE calculation function for Essbase calculates the statistical variance of the
specified data set, based upon a sample.

The calculation is based upon a sample of a population. Variance is a measure of the
dispersion of a set of data points around their mean (average) value.

Syntax

@VARIANCE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, XrangeList)

Parameters

SKIPNONE
Includes all cells specified in the data set, regardless of their content, during calculation of the
variance.

SKIPMISSING
Excludes all #MISSING values from the data set during calculation of the variance.

SKIPZERO
Excludes all zero (0) values from the data set during calculation of the variance.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from the data set during calculation of the
variance.

XrangeList
A list of numeric values across which the variance is calculated. Referred to generically
throughout this topic as "the data set."
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about XrangeList, see Range List Parameters.

Notes

• @VARIANCE is different from @VAR, which calculates the variance (difference) between
two members.

• @VARIANCE assumes that the data set (XrangeList) represents a sample of the
population. If you want the data set to represent the entire population, use @VARIANCEP.

• @VARIANCE is calculated with the "unbiased" or "n-1" method.

• @VARIANCE uses the following formula:

Chapter 2
Calculation Function List

2-255

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Sales Var. This example uses the @RANGE
function to generate the data set, and calculates the variance of the sales values for a product
family.

FIX (Product)
"Sales Var" = @VARIANCE(SKIPBOTH,@RANGE(Sales,@CHILDREN(Product)));
ENDFIX

This example produces the following report:

 Jan New
York
 Actual Budget
 ======
======
Sales Colas 678 640
 Root Beer 551 530
 Cream Soda 663 510
 Fruit Soda 587 620
 Diet Drinks #MI #MI
 Product 2479 2300

Sales Var Product 3687.58 4166.67

The following example assumes a Year dimension is added to Sample Basic. It calculates
variance using cross-dimensional members in the data set.

FIX(Product)
"Sales Var" = @VARIANCE(SKIPBOTH,@XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@VARIANCEP

Chapter 2
Calculation Function List

2-256

@VARIANCEP
The @VARIANCEP calculation function for Essbase calculates the statistical variance of the
specified data set.

The calculation is based upon the entire population. Variance is a measure of the dispersion of
a set of data points around their mean (average) value.

Syntax

@VARIANCEP (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, XrangeList)

Parameters

SKIPNONE
Includes all cells specified in the data set, regardless of their content, during calculation of the
variance.

SKIPMISSING
Excludes all #MISSING values from the data set during calculation of the variance.

SKIPZERO
Excludes all zero (0) values from the data set during calculation of the variance.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from the data set during calculation of the
variance.

XrangeList
A list of numeric values across which the variance is calculated. Referred to generically
throughout this topic as "the data set."
Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).
For more information about XrangeList, see Range List Parameters.

Notes

• @VARIANCEP is different from @VARPER, which calculates the percent variance
(difference) between two members.

• @VARIANCEP assumes that the data set (XrangeList) represents the entire population. If
you want the data set to represent a sample of the population, use @VARIANCE.

• @VARIANCEP is calculated using the "biased" or "n" method.

• @VARIANCEP uses the following formula:

Chapter 2
Calculation Function List

2-257

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Sales Var. This example uses the @RANGE
function to generate the data set, and calculates the variance of the sales values for a product
family.

FIX (Product)
"Sales Var" = @VARIANCEP(SKIPBOTH,@RANGE(Sales,@CHILDREN(Product)));
ENDFIX

This example produces the following report:

 Jan New York
 Actual Budget
 ====== ======
 Sales Colas 678 640
 Root Beer 551 530
 Cream Soda 663 510
 Fruit Soda 587 620
 Diet Drinks #MI #MI
 Product 2479 2300

 Sales Var Product 2765.69 3125

The following example assumes a Year dimension is added to Sample Basic. It calculates
variance using cross-dimensional members in the data set.

FIX(Product)
"Sales Var" = @VARIANCEP(SKIPBOTH,@XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->Oct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@VARIANCE

Chapter 2
Calculation Function List

2-258

@WEIGHTEDSUMX
The @WEIGHTEDSUMX calculation function for Essbase aggregates all members in a
member list, depending on the unit weight of each member, which is fetched from a remote
data source.

This function improves the performance of aggregating currency databases by calling the
calculation framework only once.

The following terminology is used to describe this function:

• Data target: the database on which the current calculation is running (that is, the database
on which the @WEIGHTEDSUMX call originates).

• Data source: the database that is queried by @WEIGHTEDSUMX. This database may be
remote (that is, on a different machine than the data target).

• Point of view: the member combination currently being calculated on the data target (that
is, the member combination that identifies the left hand side of a calculation).

Syntax

There are multiple ways to call this function, depending on your goal.

To incorporate values from a remote cube, use this syntax:

@WEIGHTEDSUMX (mbrList, locationAlias [, CurrencyType, CurrencyRate, Period]);

The mbrList and locationAlias parameters are required. If the other parameters are not
provided, they are taken from the POV.

To incorporate values from another application and database on the same Essbase server
instance, use this syntax:

@WEIGHTEDSUMX (mbrList, appname, dbname [, CurrencyType, CurrencyRate,
Period]);

Parameters

mbrList
Required. Specifies the list of members to be aggregated according to the unit weight of the
individual members. The mbrList can be a calculation function that returns a member list or a
comma-separated list of member names. The member list cannot contain functions that return
more than one member.
Examples of functions that return a member list: @CHILDREN, @DESCENDANTS, and
@RANGE.
A comma-separated list of member names must be expressed as a single argument. For
example, a list of currencies such as "USD","ARS","AUD","BRL" can be used with a member
list function, as in @LIST ("USD", "ARS","AUD","BRL"), or expressed as a range if the
members are at the same level, as in "USD":"BRL", or enclosed in parentheses, as in ("USD",
"ARS","AUD","BRL").
The members you specify for mbrList are sent to the data source in addition to the members in
the current point of view in the data target. The data source then constructs a member
combination, using in order of precedence:

Chapter 2
Calculation Function List

2-259

• The members specified in mbrList

• The members in the current point of view

• The top member in any unspecified dimensions in the data source

The following formula modifies the point of view on the data target. Assume that the cube on
the data source (sourceDB) contains data only from 2002. This formula sets Inventory for Jan
2003 to the Inventory value for Dec 2002:

2003(2003->Jan->Inventory = @WEIGHTEDSUMX (mbrList, locationAlias, Dec) ;)

The following formula defines a specific point of view on the data target. Assume that the data
target contains the member Jan and the data source (locationAlias) contains the member
January. This formula maps the member in the data target (Jan) with its corresponding
member in the data source (January), and pulls January from data source:

Jan = @WEIGHTEDSUMX (mbrList, locationAlias, January);

The following formula is an example of using @RANGE with a comma-separated list of
members, which includes a range of members at the same level:

@WEIGHTEDSUMX(@RANGE("Entered","USD":"ZAR"), _FCCS_Rates_, "Rate.Average",
"Rate_USD");

locationAlias
Required. A location alias for the data source. A location alias is a descriptor that identifies the
data source. The location alias must be set on the database on which the calculation script will
be run. The location alias is set by the database administrator and specifies a server,
application, database, user name, and password for the data source.

appname, dbname
Application and cube name. Use only for deployments with only one Essbase server instance.

CurrencyType
Optional. A member in a dimension that contains currency types, with members such as
Average, Closing, or Historical.

CurrencyRate
Optional. A member in a dimension that contains currency rates, with members depicting the
global currency rates.

Period
Optional. A member from a time dimension.

Notes

• You must be signed in on the data target, and also provisioned on the data source.

• An error is returned if the members supplied in mbrList do not exist in the data source.

• The number of data cells queried on the data source must match the number of data cells
expected on the data target.

• The member list cannot contain functions that return more than one member.

• Only one parameter can be provided per dimension.

Chapter 2
Calculation Function List

2-260

@WITHATTR
The @WITHATTR calculation function for Essbase returns all base members that are
associated with an attribute or varying attribute that satisfies the conditions you specify.

You can use operators such as >, <, =, and IN to specify conditions that must be met. This
function can be used as a parameter of another function, where that parameter is a list of
members.

Syntax

@WITHATTR (dimName, "operator", value)

Parameters

dimName
Single attribute dimension name or varying attribute dimension name.

operator
Operator specification, which must be enclosed in quotation marks ("").

value
A value that, in combination with the operator, defines the condition that must be met. The
value can be an attribute member specification, a constant, or a date-format function
(@TODATE).

Notes

• A varying attribute cannot be included in a FIX command if no perspective is specified in
the calculation script.

• @WITHATTR is a superset of @ATTRIBUTE. The following two formulas return the same
member set:

@ATTRIBUTE(Bottle)
@WITHATTR("Pkg Type","==",Bottle)

However, the following formula can be performed only with @WITHATTR (not with
@ATTRIBUTE) because you specify a condition:

@WITHATTR(Ounces,">","16")

• If you specify a date attribute with @WITHATTR, you must use @TODATE in the string
parameter to convert the date string to a number.

The following operators are supported:

Table 2-33 Supported Operators

Operator Description

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

Chapter 2
Calculation Function List

2-261

Table 2-33 (Cont.) Supported Operators

Operator Description

= = Equal to

<> or != Not equal to

IN In

• The IN operator returns the base members that are associated with a subcategory of
attributes in the attribute dimension. For example, in the Sample Basic database,
@WITHATTR(Population,"IN",Medium) returns the base members that are associated with
all attributes under the Medium parent member in the Population dimension.

• When using Boolean attributes with @WITHATTR, use only the actual Boolean attribute
member name, or use 1 (for True or Yes) or 0 (for False or No). You cannot use True/Yes
and False/No interchangeably.

• An operator may work differently with different attribute types. For example:

– Text—@WITHATTR(Flavors,"<",Orange) returns base members with attributes that
precede Orange in the alphabet; for example, Apple, Cranberry, Mango, and Oat, but
not Peach or Strawberry.

– Boolean—@WITHATTR(Caffeinated,"<",True) returns all base members that have
Caffeinated set to False (or No). It does not return base members that do not have
Caffeinated set to True (or Yes) or do not have a Caffeinated attribute at all. The
behavior is similar for a formula like @WITHATTR(Caffeinated,"<>",True), which
returns only base members with Caffeinated set to False.

– Date—@WITHATTR("Intro Date","<",@TODATE("mm-dd-yyyy","07-26-2002"))
returns all base members with date attributes that are before July 26, 2002.

Example

The following table shows examples, based on the Sample Basic database, for each type of
operator:

Table 2-34 Operator Results

Operator Example Result

> @WITHATTR(Population,">","18000000
")

Returns New York, California, and Texas

>= @WITHATTR(Population,">=",1000000
0) where 10,000,000 is not a numeric
attribute member, but a constant

Returns New York, Florida, California,
Texas, Illinois, and Ohio

< @WITHATTR(Ounces,"<","16") Returns Cola, Diet Cola, Old Fashioned,
Sasparilla, and Diet Cream

<= @WITHATTR("Intro
Date","<=",@TODATE("mm-dd-yyyy",
"04-01-2002"))

Returns Cola, Diet Cola, Caffeine Free
Cola, and Old Fashioned

= = @WITHATTR("Pkg Type","= =",Can) Returns Cola, Diet Cola, and Diet
Cream

<> or != @WITHATTR(Caffeinated,"<>",True) Returns Caffeine Free Cola, Sasparilla,
Birch Beer, Grape, Orange Strawberry

IN @WITHATTR("Population","IN",Medium
)

Returns Massachusetts, Florida, Illinois,
and Ohio

Chapter 2
Calculation Function List

2-262

The following two examples show @WITHATTR used in a calculation script, based on the
Sample Basic database:

/* To increase by 10% the price of products that are greater than
or equal to 20 ounces */

FIX (@WITHATTR(Ounces,">=","20"))
Price = Price * 1.1;
ENDFIX

/* To increase by 10% the marketing budget for products brought
to market after a certain date */

FIX (@WITHATTR("Intro Date",">",
@TODATE("mm-dd-yyyy","06-26-1996")));
Marketing = Marketing * 1.1;
ENDFIX

See Also

• @ATTRIBUTE

• @ATTRIBUTEVAL

• SET SCAPERSPECTIVE

• @TODATE

@XRANGE
The @XRANGE calculation function for Essbase returns the range of members between (and
inclusive of) two specified single or cross-dimensional members at the same level.

For example, when you work with the Time and Scenario dimensions, you can use @XRANGE
to return a member set combination of Time and Scenario instead of creating a dimension that
combines the two (which creates many more individual members than necessary).

@XRANGE is a member set function. Member set functions return a list of members.
@XRANGE can appear anywhere in a formula where a range can normally appear.

Syntax

@XRANGE (mbrName1, mbrName2)

Parameters

mbrName1
Any valid member name, member combination, or function that returns a single member.

mbrName2
Any valid member name, member combination, or function that returns a single member. If
mbrName1 is a cross-dimensional member (such as Actual->Jan), then mbrName2 must be
also, and the dimension order must match the order used in mbrName1.

Chapter 2
Calculation Function List

2-263

Notes

• The two arguments to @XRANGE can be either both single members or both cross-
dimensional members. For example, @XRANGE(Actual->Jan, Budget) is invalid because a
single member and a cross dimensional member are used together. Both @XRANGE(Actual-
>Jan, Budget->Feb) and @XRANGE(Jan, Mar) are valid.

• The dimension order of members must match for both arguments. For example,
@XRANGE(Actual->Jun, Jul->Budget) is invalid because the two member components are
in different orders. @XRANGE(Actual->Jun, Budget->Jul) is valid.

• Although the syntax is correct, a function such as @XRANGE (Dec, Mar) is meaningless
because it results in an empty set.

• The member components of each argument must be from the same level. For example,
@XRANGE(Actual->Jun, Budget->Qtr1) is invalid because Jun and Qtr1 are not from the
same level.

Example

The following examples are based on the Sample Basic database.

Example 1

Here is a very simple example using simple members to return the range between Jan and
Mar.

@XRANGE(Jan, Mar)

This example returns the following members:

Jan
Feb
Mar

Example 2

Here is a very simple example using cross dimensional members to return the range between
Actual, Jan and Budget, Mar:

@XRANGE (Actual->Jan, Budget->Mar)

This example returns the following members:

Actual, Jan
Actual, Feb
Actual, Mar
Actual, Apr
Actual, May
Actual, Jun
Actual, Jul
Actual, Aug
Actual, Sep
Actual, Oct
Actual, Nov

Chapter 2
Calculation Function List

2-264

Actual, Dec
Budget, Jan
Budget, Feb
Budget, Mar

Example 3

This example is not based on the Sample Basic database. It is based on database that
contains a dimension called Year that contains members for each year, from 2001 to 2003.

The following formula computes the average sales for all months between Mar of 2000 and
Jan of 2001.

SalesAvg= @MOVAVG(Sales, 3, @XRANGE("2000"->Mar, "2001"->Jan));

This example returns the following members:

 Colas New York Actual
 Sales SalesAvg
 ===== ========
2000
 Mar 678 678
 Apr 645 645
 May 675 666
 Jun 712 677.3
 Jul 756 714.3
 Aug 890 786
 Sep 924 856.7
 Oct 914 909.3
 Nov 912 916.7
 Dec 723 849.7
2001
 Jan 647 760.7

See Also

• @AVGRANGE

• @MAXRANGE

• @MAXSRANGE

• @MINRANGE

• @MINSRANGE

• @MOVAVG

• @MOVMAX

• @MOVMED

• @MOVMIN

• @MOVSUM

• @SPLINE

• @STDEVRANGE

• @SUMRANGE

Chapter 2
Calculation Function List

2-265

@XREF
The @XREF calculation function enables a calculation to incorporate values from another
Essbase cube.

The following terminology is used to describe @XREF:

• Data target: the cube on which the current calculation is running (that is, the cube on which
the @XREF call originates).

• Data source: the cube that is queried by @XREF. This cube may be remote (that is, on a
different machine than the data target).

• Point of view: the member combination currently being calculated on the data target (that
is, the member combination that identifies the left hand side of a calculation).

The @XREF function retrieves values from a data source to be used in a calculation on a data
target. @XREF does not impose member and dimension mapping restrictions, which means
that the data source and data target outlines can be different.

Syntax

There are multiple ways to call this function, depending on your goal.

To incorporate values from a remote cube, use:

@XREF (locationAlias [, mbrList])

To incorporate values from another application and cube on the same Essbase instance, use:

@XREF (appname, dbname [, mbrList])

Parameters

locationAlias
A location alias for the data source. A location alias is a descriptor that identifies the data
source. A location alias is not needed if the source and target are on the same Essbase
instance.
If used, the location alias must be set on the cube on which the calculation script will be run.
The location alias is set by the database administrator and specifies a server, application,
database, user name, and password for the data source.

mbrList
Optional. A comma-delimited list of member names that qualify the @XREF query. The
members you specify for mbrList are sent to the data source in addition to the members in the
current point of view in the data target. The data source then constructs a member
combination, using in order of precedence:

• The members specified in mbrList

• The members in the current point of view

• The top member in any unspecified dimensions in the data source

Chapter 2
Calculation Function List

2-266

The mbrList parameter (1) modifies the point of view on the data target or (2) defines a
specific point of view on the data source. For example, the following formula modifies the point
of view on the data target:

2003(2003->Jan->Inventory = @XREF(sourceDB,Dec);)

If the cube on the data source (sourceDB) contains data only from 2002, this formula sets
Inventory for Jan in 2003 to the Inventory value for Dec from 2002.
The following formula defines a specific point of view on the data target:

Jan = @XREF(sourceDB,January);

Assume that the data target contains the member Jan, while the data source (sourceDB)
contains the member January. This formula simply maps the member in the data target (Jan)
with its corresponding member in the data source (January), and pulls January from
sourceDB.
See Notes for more information about the mbrList parameter.

appname, dbname
Application and cube name. Use only for deployments with only one Essbase instance.

Notes

• You must be signed in on the data target, and also provisioned on the data source.

• An error is returned if the members supplied in mbrList do not exist in the data source.

• The number of data cells queried on the data source must match the number of data cells
expected on the data target.

• The member list cannot contain functions that return more than one member. For example,
the following formula is not valid:

West = @XREF(SourceDb, @LEVMBRS(Market,0));

• The member list cannot contain ranges. For example, the following formula is not valid:

West = @XREF(SourceDb, Jan:Mar);

• mbrList can contain attribute members. For example, if the data source classifies products
based on a color attribute, the following formula would calculate the sum of the sales of all
red products and would assign the result to member RedThings:

RedThings = @XREF(SourceDb, Sales, Red);

• mbrList can contain attribute operators. For example, the following formula calculates
RedThings as the average sales of all red products:

RedThings = @XREF(SourceDb, Sales, Red, Average);

• @XREF can query all types of members. For example, members retrieved from a data
source can be Dynamic Calc members as well as attribute members. Keep in mind that all
performance considerations that apply to dynamic and attribute calculations also apply to
@XREF queries that depend on dynamic and attribute members.

• Over the course of an @XREF calculation, data in the source database may change.
@XREF does not incorporate changes made after the beginning of the calculation.

Chapter 2
Calculation Function List

2-267

• @XREF is a top-down formula. For more information on top-down formulas, see Bottom-
Up and Top-Down Calculation.

• For a member that does not exist in either the data source or the data target, @XREF
returns the value of the top dimension, not the value #M1.

• If you are using @PARENT within @XREF, it must be within @NAME. For example:

COGS=@XREF(Sample, @NAME(@PARENT(Product)),Sales);

• When running a parallel calculation that includes @XREF, the application times out if the
number of threads you specify to use is higher than the configured number of
SERVERTHREADS.

Example

For this example, consider the following two databases:

Main Database

Year
 Qtr1
 Qtr2
Measures
 Sales
 Units
Product
 100
 100-10
 100-20
Market
 East
 West
Scenario
 Budget
 Forecast

Inflation Rates Database

Year
 Qtr1
 Qtr2
Assumptions
 Inflation
 Deflation = Inflation * .5 (Dynamic Calc)
Country
 US
 Canada
 Europe

The following formula is associated with the Main Database:

Units = Units * @XREF(InflatDB,Inflation,US);

Where InflatDB is the location alias for the Inflation Rates Database and Inflation is the
member for which a data value is retrieved from InflatDB.

Chapter 2
Calculation Function List

2-268

In this example, Essbase calculates the following member combinations:

Units->Qtr1->100-10->East->Budget = Units->Qtr1->100-10->East->Budget * Inflation->Qtr1-
>US

Units->Qtr2->100-10->East->Budget = Units->Qtr2->100-10->East->Budget *Inflation->Qtr2-
>US and so on.

See Also

@XWRITE

Understand XREF/XWRITE

@XWRITE
The @XWRITE calculation function enables a database calculation to write values to another
Essbase database, or to the same database.

The following terminology is used to describe the @XWRITE function:

• Data source: the database on which the current calculation is running (that is, the database
on which the @XWRITE call originates).

• Data target: the database that is updated by @XWRITE. This database may be remote
(that is, on a different machine than the data source).

• Point of view: the member combination currently being calculated on the data source.

This function writes to data blocks, either in the same database or in a remote database, while
calculating a block in the current database. @XWRITE does not impose member and
dimension mapping restrictions, which means that the data source and data target outlines can
be different.

As arguments, this function takes a location alias, an implied list of members that represents
the current point of view, and an optional list of members to qualify @XWRITE on the data
target. The second argument (the members making up the current point of view) is implied;
that is, these members are not specified as an @XWRITE parameter. An @XWRITE that omits
the third argument indicates that a given data point in the data source will be set to the same
data point in the data target.

Syntax

There are multiple ways to call this function, depending on your goal.

To incorporate values from a remote cube, use:

@XWRITE (expression, locationAlias [, mbrList])

To incorporate values from another application and database on the same Essbase server
instance, use:

@XWRITE (expression, appname, dbname [, mbrList])

Chapter 2
Calculation Function List

2-269

Parameters

expression
A single member specification, variable name, or other numeric expression corresponding to
the value to be stored.

locationAlias
A location alias for the data target. A location alias is not needed if the source and target are
on the same Essbase server instance.
If used, the location alias must be set on the database on which the calculation script will be
run. The location alias is set by the database administrator and specifies a server, application,
database, username, and password for the data target.
The same location alias can be used by both @XREF and @XWRITE. For @XREF, it
represents the data source, and for @XWRITE it represents the data target.
For @XWRITE only, a reserved keyword @LOOPBACK can be used to write to the same
database.

mbrList
Optional. A comma-delimited list of member names that qualify the @XWRITE operation. The
members you specify for mbrList, in addition to the members in the current point of view in the
data source, determine what is written to the data target. The data target is written to using the
following calculation logic (in order of precedence):

• The members specified in mbrList

• The members in the current point of view

• The top member in any unspecified dimensions in the data target

Therefore, the remote member list is calculated and written using members from current point
of view, overridden with members from the mbrList specified to @XWRITE, and if some
dimensions are still absent at the data target, the top most dimension of the data target is
used.
See Notes for more information about the mbrList parameter.

appname, dbname
Application and cube name. Use only for deployments with only one Essbase server instance.

Notes

• You must be signed in on the data target, and also provisioned on the data source.

• This function is applicable only to block storage databases.

• An error is returned if the members supplied in mbrList do not exist in the data target.

• The member list cannot contain functions that return more than one member. For example
@LEVMBRS(Market,0).

• The member list cannot contain ranges.

• The member list cannot contain attribute members or attribute operators.

• @XWRITE is a top-down formula. For more information on top-down formulas, see
Bottom-Up and Top-Down Calculation.

• @XWRITE to dynamic calc cells is not recommended; the data is calculated in memory,
but not written.

• @XWRITE can be used in calculation scripts as well as outline member formulas.

Chapter 2
Calculation Function List

2-270

Example

The following Sample Basic formula writes the 100-30 values into 100-20 on the same
database.

FIX (East, Actual, Budget, Sales)
"100-30" (
@XWRITE("100-30", @loopback, "100-20");
)
ENDFIX

The following Sample Basic formula writes the 100-30 values into 100-20 on a remote
database, Sample2 Basic, using the location alias "sam2basic" defined from Sample Basic to
Sample2 Basic.

FIX (East, Actual, Budget, Sales)
"100-30" (
@XWRITE("100-30", sam2basic, "100-20");
)
ENDFIX

The following example shows how to call another function within the @XWRITE function call.

FIX (East, Actual, Budget, Sales)
"100" (
 @XWRITE(@PARENT("100-30"), @loopback, "100-20");
)
ENDFIX

See Also

@XREF

Understand XREF/XWRITE

Custom-Defined Calculation Functions
Custom-defined functions (CDFs) are a category of functions that you develop for calculation
operations that are not enabled by the built-in Essbase calculator framework functions. You
write custom-defined functions in Java and register them on the Essbase Server.

To get you started in creating custom-defined functions for the Essbase calculator, a set of
example statistical functions is provided with this release. These examples are compiled and
included in the essbase.jar file, located in the $ESSBASEPATH/java/ directory.

For the location of $ESSBASEPATH, see Environment Variables in the Essbase Platform.

For information about creating custom-defined functions, refer to the MaxL Create Function
statement, and to Developing Custom-Defined Calculation Functions.

• Java Code Examples

Chapter 2
Custom-Defined Calculation Functions

2-271

• MaxL Registration Scripts

Java Code Examples
The Java code for examples of custom-defined functions is provided in the file statisti.jav,
copied below. For more information about the classes, methods, and constants in the
statisti.jav file, see the Oracle Essbase Statistics Java Package.

The code contained in the statisti.jav file is implemented in the $ESSBASE_PRODUCT_HOME/
products/Essbase/EssbaseServer/java/essbase.jar file. The examples in the statisti.jav
file use constants which are defined in the essbase.jar file. To use the constants defined in
these examples, you must import the Calculator class constants defined in the essbase.jar
file.

• register.mxl Sample Code

• drop.mxl Sample Code

• reglobal.mxl Sample Code

Statisti.jav

package com.hyperion.essbase.calculator;

/**
 * This class provides a set of simple statistical routines. Some of them
 * are present native in Essbase as well and some are not.
 * Contains:
 *
 * min, max
 * sum, weighted sum
 * product, weighted product
 * average, weighted average
 * geometric mean, weighted geometric mean
 * harmonic mean, weighted harmonic mean
 * variance (var and varp), weighted variance
 * standard deviation (stdev and stdevp), weighted standard deviation
 * covariance, weighted covariance
 * correlation, weighted correlation
 * skewness, weighted skewness
 * kurtosis, weighted kurtosis
 * rank, mode, median, percentile, quartile
 *
 */
public final class Statistics implements CalculatorConstants {

/**
 * Computes minimum value of given sequence. Missing values are ignored
 * @param data data array
 * @return minimum value in the array
 */
public static double min (double [] data) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

Chapter 2
Custom-Defined Calculation Functions

2-272

 double min = data [0];
 boolean flag = (min == MISSG);

 for (i=1; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 if (flag) {
 min = d;
 flag = false;
 }
 else if (d < min) {
 min = d;
 }
 }
 }

 return min;
}

/**
 * Computes maximum value of given sequence. Missing values are ignored.
 * @param data data array
 * @return maximum value in the array
 */
public static double max (double [] data) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double max = data [0];
 boolean flag = (max == MISSG);

 for (i=1; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 if (flag) {
 max = d;
 flag = false;
 }
 else if (d > max) {
 max = d;
 }
 }
 }
 return max;
}

/**
 * Computes sum of a given sequence. Missing values are ignored (treated as 0)
 * @param data data array
 * @return sum of the data
 */
public static double sum (double [] data) {
 int i, n = data.length;

Chapter 2
Custom-Defined Calculation Functions

2-273

 double sum = MISSG;
 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 sum = Calculator.add (sum, d);
 }
 }
 return sum;
}

/**
 * Computes weighted sum of a given sequence.
 * Missing values are ignored (treated as 0)
 * @param data data array
 * @param weights weights
 * @return weighted sum of the data
 */
public static double sum (double [] data, double [] weights) {
 int i, n = data.length;

 double sum = MISSG;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if (d != MISSG && w != MISSG) {
 sum = Calculator.add (sum, d * w);
 }
 }
 return sum;
}

/**
 * Computes product of a given sequence. Missing values are ignored (treated
as 0)
 * @param data data array
 * @return product of the data
 */
public static double product (double [] data) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double product = 1.;
 boolean flag = false;
 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 flag = true;
 product = product * d;
 }
 }

 if (!flag)
 return MISSG;

Chapter 2
Custom-Defined Calculation Functions

2-274

 return product;
}

/**
 * Computes weighted product of a given sequence.
 * Missing values are ignored (treated as 0)
 * @param data data array
 * @param weights weights
 * @return weighted product of the data
 */
public static double product (double [] data, double [] weights) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double product = 1.;
 boolean flag = false;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if (d != MISSG && w != MISSG) {
 d = Calculator.pow (d, w);
 if (d != MISSG) {
 flag = true;
 product = product * d;
 }
 }
 }
 if (!flag)
 return MISSG;

 return product;
}

/**
 * Computes count of non-missing values in a given sequence.
 * @param data data array
 * @return count of the non-missing data
 */
public static int count (double [] data) {
 int i, n = data.length;

 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 count ++;
 }
 }
 return count;
}

/**

Chapter 2
Custom-Defined Calculation Functions

2-275

 * Computes count of a given sequence (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @return count of the data
 */
public static int count (int skip, double [] data) {
 int i, n = data.length;
 if (skip == SKIPNONE)
 return n;

 if (skip == SKIPMISSG)
 return count (data);
 boolean bZero = false, bMissg = false;

 bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
 bMissg = (skip == SKIPBOTH);

 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;
 count ++;
 }
 return count;
}

/**
 * Computes the average value of a given sequence. Missing values are ignored.
 * @param data data array
 * @return average of the data
 */
public static double avg (double [] data) {
 int i, n = data.length;

 double sum = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 sum = Calculator.add (sum, d);
 count ++;
 }
 }

 if (count == 0)
 return MISSG;

Chapter 2
Custom-Defined Calculation Functions

2-276

 return sum / count;
}

/**
 * Computes the average value of a given sequence (with prescribed skip
directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @return average of the data
 */
public static double avg (int skip, double [] data) {
 int i, n = data.length;
 boolean bZero = false, bMissg = false;

 if (skip == SKIPMISSG)
 return avg (data);

 bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
 bMissg = (skip == SKIPBOTH);

 double sum = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;
 sum = Calculator.add (sum, d);
 count ++;
 }

 if (count == 0)
 return MISSG;

 return sum / count;
}

/**
 * Computes weighted average of a given sequence. Missing values are ignored
 * @param data data array
 * @param weights weights
 * @return weighted average of the data
 */
public static double avg (double [] data, double [] weights) {
 int i, n = data.length;

 double sum = MISSG;
 double weight = MISSG;

 for (i=0; i<n; i++) {

Chapter 2
Custom-Defined Calculation Functions

2-277

 double d = data [i], w = weights [i];
 if (d != MISSG && w != MISSG) {
 sum = Calculator.add (sum, d * w);
 weight = Calculator.add (weight, w);
 }
 }

 if (sum == MISSG || weight == MISSG || weight == 0.)
 return MISSG;

 return sum / weight;
}

/**
 * Computes weighted average value of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @param weights weights
 * @return weighted average of the data
 */
public static double avg (int skip, double [] data, double [] weights) {
 int i, n = data.length;
 boolean bZero = false, bMissg = false;

 if (skip == SKIPMISSG)
 return avg (data, weights);

 bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
 bMissg = (skip == SKIPBOTH);

 double sum = MISSG;
 double weight = MISSG;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;

 if (w != MISSG)
 sum = Calculator.add (sum, d * w);
 weight = Calculator.add (weight, w);
 }

 if (sum == MISSG || weight == MISSG || weight == 0.)
 return MISSG;

 return sum / weight;
}

Chapter 2
Custom-Defined Calculation Functions

2-278

/**
 * Computes the geometric average value of a given sequence.
 * Missing values are ignored.
 * @param data data array
 * @return average of the data
 */
public static double geomean (double [] data) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double product = 1.;
 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 product = product * d;
 count ++;
 }
 }

 if (count == 0)
 return MISSG;

 return Math.pow (product, 1. / (double) count);
}

/**
 * Computes weighted geometric average of a given sequence.
 * Missing values are ignored
 * @param data data array
 * @param weights weights
 * @return weighted average of the data
 */
public static double geomean (double [] data, double [] weights) {
 int i, n = data.length;

 double product = 1.;
 double weight = MISSG;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if (d != MISSG && w != MISSG) {
 product = product * Math.pow (d, w);
 weight = Calculator.add (weight, w);
 }
 }

 if (weight == MISSG || weight == 0.)
 return MISSG;

 return Math.pow (product, 1. / weight);
}

Chapter 2
Custom-Defined Calculation Functions

2-279

/**
 * Computes harmonic mean of a given sequence.
 * Missing values are ignored.
 * @param data data array
 * @return harmonic mean of the data
 */
public static double harmean (double [] data) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double sum = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 if (d == 0.)
 return MISSG;
 sum = sum + 1. / d;
 count ++;
 }
 }

 if (count == 0 || sum == 0.)
 return MISSG;

 return count / sum;
}

/**
 * Computes weighted harmonic mean of a given sequence.
 * Missing values are ignored
 * @param data data array
 * @param weights weights
 * @return weighted harmonic mean of the data
 */
public static double harmean (double [] data, double [] weights) {
 int i, n = data.length;

 double sum = MISSG;
 double weight = MISSG;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if (d != MISSG && w != MISSG) {
 if (d == 0.)
 return MISSG;
 sum = Calculator.add (sum, w / d);
 weight = Calculator.add (weight, w);
 }
 }

 if (sum == MISSG || sum == 0. || weight == MISSG)
 return MISSG;

Chapter 2
Custom-Defined Calculation Functions

2-280

 return weight / sum;
}

/**
 * Computes variance of a given sequence. Missing values are ignored
 * @param data data array
 * @return variance of the data
 */
public static double var (double [] data) {
 int i, n = data.length;

 double d, sum = MISSG, avg = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 sum = Calculator.add (sum, d);
 count ++;
 }
 }

 if (count < 2)
 return MISSG;

 avg = sum / count;
 sum = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 d = d - avg;
 d = d * d;
 sum = sum + d;
 }
 }

 return (sum / (count - 1));
}

/**
 * Computes standard deviation of a given sequence. Missing values are ignored
 * @param data data array
 * @return stdev of the data
 */
public static double stdev (double [] data) {
 return Calculator.sqrt (var (data));
}

/**
 * Computes variance of a given sequence (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped

Chapter 2
Custom-Defined Calculation Functions

2-281

 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @return variance of the data
 */
public static double var (int skip, double [] data) {
 int i, n = data.length;
 boolean bZero = false, bMissg = false;

 if (skip == SKIPMISSG)
 return var (data);

 bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
 bMissg = (skip == SKIPBOTH);

 double d, sum = MISSG, avg = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 d = data [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;
 sum = Calculator.add (sum, d);
 count ++;
 }

 if (count < 2)
 return MISSG;

 avg = sum / count;
 sum = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;
 if (d == MISSG)
 d = - avg;
 else
 d = d - avg;
 d = d * d;
 sum = sum + d;
 }

 return (sum / (count - 1));
}

/**
 * Computes standard deviation of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)

Chapter 2
Custom-Defined Calculation Functions

2-282

 * @param data data array
 * @return standard deviation of the data
 */
public static double stdev (int skip, double [] data) {
 return Calculator.sqrt (var (skip, data));
}

/**
 * Computes weighted variance of a given sequence. Missing values are ignored
 * @param data data array
 * @param weights weights
 * @return weighted variance of the data
 */
public static double var (double [] data, double [] weights) {
 int i, n = data.length;

 double d, sum = MISSG, avg = MISSG;
 double w, weight = MISSG;

 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d != MISSG && w != MISSG) {
 sum = Calculator.add (sum, d * w);
 weight = Calculator.add (weight, w);
 }
 }

 if (sum == MISSG || weight == MISSG || weight == 0. || weight == 1.)
 return MISSG;

 avg = sum / weight;
 sum = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d == MISSG || w == MISSG)
 continue;
 d = d - avg;
 d = d * d * w;
 sum = sum + d;
 }
 return (sum / (weight - 1.));
}

/**
 * Computes weighted standard deviation of a given sequence.
 * Missing values are ignored
 * @param data data array
 * @param weights weights
 * @return weighted standard deviation of the data
 * (without taking missing values into account)
 */
public static double stdev (double [] data, double [] weights) {
 return Calculator.sqrt (var (data, weights));
}

Chapter 2
Custom-Defined Calculation Functions

2-283

/**
 * Computes weighted variance of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @param weights weights
 * @return weighted variance of the data
 */
public static double var (int skip, double [] data, double [] weights) {
 int i, n = data.length;
 boolean bZero = false, bMissg = false;

 if (skip == SKIPMISSG)
 return var (data, weights);

 bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
 bMissg = (skip == SKIPBOTH);

 double sum = MISSG, avg = MISSG;
 double weight = MISSG;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;

 if (d != MISSG && w != MISSG)
 sum = Calculator.add (sum, d * w);
 weight = Calculator.add (weight, w);
 }

 if (sum == MISSG || weight == MISSG || weight == 0. || weight == 1.)
 return MISSG;

 avg = sum / weight;
 sum = 0.;
 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;

 if (w != MISSG) {
 if (d == MISSG)
 d = -avg;
 else
 d = d - avg;
 d = d * d * w;
 sum = sum + d;
 }

Chapter 2
Custom-Defined Calculation Functions

2-284

 }
 return Math.sqrt (sum / (weight - 1));
}

/**
 * Computes weighted standard deviation of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @param weights weights
 * @return weighted standard deviation of the data
 */
public static double stdev (int skip, double [] data, double [] weights) {
 return Calculator.sqrt (var (skip, data, weights));
}

/**
 * Computes variancep of a given sequence. Missing values are ignored
 * @param data data array
 * @return variancep of the data
 */
public static double varp (double [] data) {
 int i, n = data.length;

 double sum = MISSG, avg = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 sum = Calculator.add (sum, d);
 count ++;
 }
 }

 if (count == 0)
 return MISSG;

 avg = sum / count;
 sum = 0.;
 for (i=0; i<n; i++) {
 double d = data [i];
 if (d != MISSG) {
 d = d - avg;
 d = d * d;
 sum = sum + d;
 }
 }
 return (sum / count);
}

Chapter 2
Custom-Defined Calculation Functions

2-285

/**
 * Computes stdevp of a given sequence. Missing values are ignored
 * @param data data array
 * @return stdevp of the data
 */
public static double stdevp (double [] data) {
 return Calculator.sqrt (varp (data));
}

/**
 * Computes variancep of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @return variancep of the data
 */
public static double varp (int skip, double [] data) {
 int i, n = data.length;
 boolean bZero = false, bMissg = false;

 if (skip == SKIPMISSG)
 return varp (data);

 bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
 bMissg = (skip == SKIPBOTH);

 double sum = MISSG, avg = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 double d = data [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;
 sum = Calculator.add (sum, d);
 count ++;
 }

 if (count == 0)
 return MISSG;

 avg = sum / count;
 sum = 0.;
 for (i=0; i<n; i++) {
 double d = data [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;
 if (d == MISSG)
 d = - avg;
 else

Chapter 2
Custom-Defined Calculation Functions

2-286

 d = d - avg;
 d = d * d;
 sum = sum + d;
 }
 return (sum / count);
}

/**
 * Computes stdevp of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @return stdevp of the data
 */
public static double stdevp (int skip, double [] data) {
 return Calculator.sqrt (varp (skip, data));
}

/**
 * Computes weighted varp of a given sequence. Missing values are ignored
 * @param data data array
 * @param weights weights
 * @return weighted varp of the data
 */
public static double varp (double [] data, double [] weights) {
 int i, n = data.length;

 double sum = MISSG, avg = MISSG;
 double weight = MISSG;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if (d != MISSG && w != MISSG) {
 sum = Calculator.add (sum, d * w);
 weight = Calculator.add (weight, w);
 }
 }

 if (sum == MISSG || weight == MISSG || weight == 0.)
 return MISSG;

 avg = sum / weight;
 sum = 0.;
 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if (d == MISSG || w == MISSG)
 continue;
 d = d - avg;
 d = d * d * w;
 sum = sum + d;

Chapter 2
Custom-Defined Calculation Functions

2-287

 }

 return (sum / weight);
}

/**
 * Computes weighted standard deviation of a given sequence.
 * Missing values are ignored
 * @param data data array
 * @param weights weights
 * @return weighted standard deviation of the data
 */
public static double stdevp (double [] data, double [] weights) {
 return Calculator.sqrt (varp (data, weights));
}

/**
 * Computes weighted varp of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @param weights weights
 * @return weighted varp of the data
 */
public static double varp (int skip, double [] data, double [] weights) {
 int i, n = data.length;
 boolean bZero = false, bMissg = false;

 if (skip == SKIPMISSG)
 return varp (data, weights);

 bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
 bMissg = (skip == SKIPBOTH);

 double sum = MISSG, avg = MISSG;
 double weight = MISSG;

 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;

 if (d != MISSG && w != MISSG)
 sum = Calculator.add (sum, d * w);
 weight = Calculator.add (weight, w);
 }

 if (sum == MISSG || weight == MISSG || weight == 0.)
 return MISSG;

Chapter 2
Custom-Defined Calculation Functions

2-288

 avg = sum / weight;
 sum = 0.;
 for (i=0; i<n; i++) {
 double d = data [i], w = weights [i];
 if ((bMissg && d == MISSG) || (bZero && d == 0.))
 continue;

 if (w != MISSG) {
 if (d == MISSG)
 d = -avg;
 else
 d = d - avg;
 d = d * d * w;
 sum = sum + d;
 }
 }

 return (sum / weight);
}

/**
 * Computes weighted stdevp value of a given sequence
 * (with prescribed skip directive).
 * @param skip skip instruction; possible values are
 *
 * SKIPNONE - nothing skipped
 * SKIPZERO - zeros skipped
 * SKIPMISSG - missing values skipped
 * SKIPBOTH - skip both zeros and missing values
 * (defined in CalculatorConstants interface)
 * @param data data array
 * @param weights weights
 * @return weighted stdevp of the data
 */
public static double stdevp (int skip, double [] data, double [] weights) {
 return Calculator.sqrt (varp (skip, data, weights));
}

/**
 * Computes covariance between two sequences.
 * If a missing value is encountered in either of the sequences,
 * the corresponding position is skipped in both of them.
 * @param x first array
 * @param y second array
 * @return covariance
 */
public static double covariance (double [] x, double [] y) {
 int i, n = x.length;

 if (n == 0)
 return MISSG;

 double d1, d2, avg1 = MISSG, avg2 = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {

Chapter 2
Custom-Defined Calculation Functions

2-289

 d1 = x [i];
 d2 = y [i];
 if (d1 != MISSG && d2 != MISSG) {
 avg1 = Calculator.add (avg1, d1);
 avg2 = Calculator.add (avg2, d2);
 count ++;
 }
 }

 if (count < 1)
 return MISSG;

 avg1 = avg1 / count;
 avg2 = avg2 / count;

 double covar = 0.;
 for (i=0; i<n; i++) {
 d1 = x [i];
 d2 = y [i];
 if (d1 != MISSG && d2 != MISSG) {
 d1 = d1 - avg1;
 d2 = d2 - avg2;
 covar = covar + d1 * d2;
 }
 }
 return covar / count;
}

/**
 * Computes weighted covariance between two sequences
 * If a missing value is encountered in either of the sequences,
 * the corresponding position is skipped in both of them.
 * @param x first array
 * @param y second array
 * @return correlation
 */
public static double covariance (double [] x, double [] y, double [] weights)
{
 int i, n = x.length;

 if (n == 0)
 return MISSG;

 double d1, d2, avg1 = MISSG, avg2 = MISSG;
 double w, weight = MISSG;

 for (i=0; i<n; i++) {
 d1 = x [i];
 d2 = y [i];
 w = weights [i];
 if (d1 != MISSG && d2 != MISSG && w != MISSG) {
 avg1 = Calculator.add (avg1, d1 * w);
 avg2 = Calculator.add (avg2, d2 * w);
 weight = Calculator.add (weight, w);
 }
 }

Chapter 2
Custom-Defined Calculation Functions

2-290

 if (avg1 == MISSG || weight == MISSG || weight == 0.)
 return MISSG;

 avg1 = avg1 / weight;
 avg2 = avg2 / weight;

 double covar = 0.;
 for (i=0; i<n; i++) {
 d1 = x [i];
 d2 = y [i];
 w = weights [i];
 if (d1 != MISSG && d2 != MISSG && w != MISSG) {
 d1 = d1 - avg1;
 d2 = d2 - avg2;
 covar = covar + w * d1 * d2;
 }
 }
 return covar / weight;
}

/**
 * Computes correlation between two sequences
 * If a missing value is encountered in either of the sequences,
 * the corresponding position is skipped in both of them.
 * @param x first array
 * @param y second array
 * @return correlation
 */
public static double correlation (double [] x, double [] y) {
 int i, n = x.length;

 if (n == 0)
 return MISSG;

 double d1, d2, avg1 = MISSG, avg2 = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 d1 = x [i];
 d2 = y [i];
 if (d1 != MISSG && d2 != MISSG) {
 avg1 = Calculator.add (avg1, d1);
 avg2 = Calculator.add (avg2, d2);
 count ++;
 }
 }

 if (count < 2)
 return MISSG;

 avg1 = avg1 / count;
 avg2 = avg2 / count;

 double stdev1 = 0.;
 double stdev2 = 0.;

Chapter 2
Custom-Defined Calculation Functions

2-291

 double covar = 0.;
 for (i=0; i<n; i++) {
 d1 = x [i];
 d2 = y [i];
 if (d1 != MISSG && d2 != MISSG) {
 d1 = d1 - avg1;
 d2 = d2 - avg2;
 covar = covar + d1 * d2;
 stdev1 = stdev1 + d1 * d1;
 stdev2 = stdev2 + d2 * d2;
 }
 }

 stdev1 = Math.sqrt (stdev1 / (count - 1));
 stdev2 = Math.sqrt (stdev2 / (count - 1));
 covar = covar / count;

 return covar / (stdev1 * stdev2);
}

/**
 * Computes weighted correlation between two sequences
 * If a missing value is encountered in either of the sequences,
 * the corresponding position is skipped in both of them.
 * @param x first array
 * @param y second array
 * @return correlation
 */
public static double correlation (double [] x, double [] y, double []
weights) {
 int i, n = x.length;

 if (n == 0)
 return MISSG;

 double d1, d2, avg1 = MISSG, avg2 = MISSG;
 double w, weight = MISSG;

 for (i=0; i<n; i++) {
 d1 = x [i];
 d2 = y [i];
 w = weights [i];
 if (d1 != MISSG && d2 != MISSG && w != MISSG) {
 avg1 = Calculator.add (avg1, d1 * w);
 avg2 = Calculator.add (avg2, d2 * w);
 weight = Calculator.add (weight, w);
 }
 }

 if (avg1 == MISSG || weight == MISSG || weight == 0. || weight == 1.)
 return MISSG;

 avg1 = avg1 / weight;
 avg2 = avg2 / weight;

 double stdev1 = 0.;

Chapter 2
Custom-Defined Calculation Functions

2-292

 double stdev2 = 0.;
 double covar = 0.;
 for (i=0; i<n; i++) {
 d1 = x [i];
 d2 = y [i];
 w = weights [i];
 if (d1 != MISSG && d2 != MISSG && w != MISSG) {
 d1 = d1 - avg1;
 d2 = d2 - avg2;
 covar = covar + w * d1 * d2;
 stdev1 = stdev1 + w * d1 * d1;
 stdev2 = stdev2 + w * d2 * d2;
 }
 }

 stdev1 = Math.sqrt (stdev1 / (weight - 1.));
 stdev2 = Math.sqrt (stdev2 / (weight - 1.));
 covar = covar / weight;

 return covar / (stdev1 * stdev2);
}

/**
 * Computes skewness of a sequence. Missing values are skipped
 * @param data data array
 * @return skewness of the sequence
 */
public static double skew (double [] data) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double d, avg = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 avg = Calculator.add (avg, d);
 count ++;
 }
 }

 if (count < 3)
 return MISSG;

 avg = avg / count;

 double stdev = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 d = d - avg;
 stdev = stdev + d * d;
 }

Chapter 2
Custom-Defined Calculation Functions

2-293

 }

 stdev = Math.sqrt (stdev / (count - 1));

 if (stdev == 0.)
 return MISSG;
 double skew = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 d = d - avg;
 d = d / stdev;
 skew = skew + d * d * d;
 }
 }

 return skew * count / ((count - 1) * (count - 2));
}

/**
 * Computes weighted skewness of a sequence. Missing values are ignored
 * @param data data array
 * @return skewness of the sequence
 */
public static double skew (double [] data, double [] weights) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double d, avg = MISSG;
 double w, weight = MISSG;

 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d != MISSG && w != MISSG) {
 avg = Calculator.add (avg, w * d);
 weight = Calculator.add (weight, w);
 }
 }

 if (avg == MISSG || weight == MISSG || weight == 0. || weight == 1. ||
weight == 2.)
 return MISSG;

 avg = avg / weight;

 double stdev = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d != MISSG && w != MISSG) {
 d = d - avg;
 stdev = stdev + w * d * d;
 }

Chapter 2
Custom-Defined Calculation Functions

2-294

 }

 stdev = Math.sqrt (stdev / (weight - 1));

 if (stdev == 0.)
 return MISSG;
 double skew = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d != MISSG && w != MISSG) {
 d = d - avg;
 d = d / stdev;
 skew = skew + w * d * d * d;
 }
 }

 return skew * weight / ((weight - 1.) * (weight - 2.));
}

/**
 * Computes kurtosis of a sequence. Missing values are skipped
 * @param data data array
 * @return kurtosis of the sequence
 */
public static double kurt (double [] data) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double d, avg = MISSG;
 int count = 0;

 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 avg = Calculator.add (avg, d);
 count ++;
 }
 }

 if (count < 4)
 return MISSG;

 avg = avg / count;

 double stdev = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 d = d - avg;
 stdev = stdev + d * d;
 }
 }

Chapter 2
Custom-Defined Calculation Functions

2-295

 stdev = Math.sqrt (stdev / (count - 1));

 if (stdev == 0.)
 return MISSG;

 double kurt = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 d = d - avg;
 d = d / stdev;
 kurt = kurt + d * d * d * d;
 }
 }

 kurt = kurt * count * (count + 1) / (count - 1) - 3 * (count - 1) *
(count - 1);
 return kurt / ((count - 2) * (count - 3));
}

/**
 * Computes weighted kurtosis of a sequence. Missing values are ignored
 * @param x data array
 * @return kurtosis of the sequence
 */
public static double kurt (double [] data, double [] weights) {
 int i, n = data.length;

 if (n == 0)
 return MISSG;

 double d, avg = MISSG;
 double w, weight = MISSG;

 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d != MISSG && w != MISSG) {
 avg = Calculator.add (avg, w * d);
 weight = Calculator.add (weight, w);
 }
 }

 if (avg == MISSG || weight == MISSG || weight == 0. ||
 weight == 1. || weight == 2. || weight == 3.)
 return MISSG;

 avg = avg / weight;

 double stdev = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d != MISSG && w != MISSG) {
 d = d - avg;
 stdev = stdev + w * d * d;

Chapter 2
Custom-Defined Calculation Functions

2-296

 }
 }

 stdev = Math.sqrt (stdev / (weight - 1));

 if (stdev == 0.)
 return MISSG;

 double kurt = 0.;
 for (i=0; i<n; i++) {
 d = data [i];
 w = weights [i];
 if (d != MISSG && w != MISSG) {
 d = d - avg;
 d = d / stdev;
 kurt = kurt + w * d * d * d * d;
 }
 }

 kurt = kurt * weight * (weight + 1.) / (weight - 1.) -
 3 * (weight - 1.) * (weight - 1.);
 return kurt / ((weight - 2.) * (weight - 3.));
}

/**
 * Computes rank of a value relative to a given sequence.
 * Missing elements in the sequence are ignored. Rank is 1-based.
 * Missing value is not ranked.
 * @param value value to be ranked
 * @param data array of data
 * @return rank in the sequence as a double
 */
public static double rank (double value, double [] data) {
 int i = 0, n = data.length;
 double d;
 int rank;

 if (value == MISSG)
 return MISSG;

 double [] ddd = new double [n];

 int j = 0;
 for (i=0; i<n; i++) {
 d = data [i];
 if (d != MISSG) {
 ddd [j] = d;
 j ++;
 }
 }
 n = j;
 if (n == 0)
 return MISSG;

 if (n == 1) {
 if (ddd [0] > value)

Chapter 2
Custom-Defined Calculation Functions

2-297

 return 2.;
 else
 return 1.;
 }

 Calculator.sort (ddd, 0, n-1);

 rank = 1;
 while (ddd [n - rank] > value) {
 rank++;
 if (rank > n)
 break;
 }
 return (double) rank;
}

/**
 * Computes mode of a sequence. Missing values are ignored
 * @param data array of data
 * @return mode of the sequence
 */
public static double mode (double [] data) {
 int i, j, n = data.length, maxFreq, freq;
 double d, mode;
 double [] ddd = new double [n];

 j = 0;
 for (i=0; i<n; i++) {
 if (data [i] != MISSG) {
 ddd [j] = data [i];
 j ++;
 }
 }
 n = j;
 if (n == 0)
 return MISSG;

 if (n == 1)
 return ddd [0];

 Calculator.sort (ddd, 0, n-1);

 mode = ddd [0];
 maxFreq = 1;
 while (i < n-1) {
 freq = 1;
 d = ddd [i];
 i++;
 while (ddd [i] == d) {
 freq++;
 i++;
 if (i >= n)
 break;
 }
 if (freq > maxFreq) {
 maxFreq = freq;

Chapter 2
Custom-Defined Calculation Functions

2-298

 mode = d;
 }
 }
 return mode;
}

/**
 * Computes median of a sequence. Missing values are ignored
 * @param data data array
 * @result median of the sequence
 */
public static double median (double [] data) {
 int i, j, n = data.length;
 int midIndex;
 double median;
 double [] ddd = new double [n];

 j = 0;
 for (i=0; i<n; i++) {
 if (data [i] != MISSG) {
 ddd [j] = data [i];
 j ++;
 }
 }
 n = j;

 if (n == 0)
 return MISSG;

 Calculator.sort (ddd, 0, n - 1);

 midIndex = n / 2;
 if (n % 2 == 0) {
 /* Average of the two middle numbers */
 median = (ddd [midIndex] + ddd [midIndex - 1]) / 2;
 }
 else {
 median = ddd [midIndex];
 }
 return median;
}

/**
 * Computes percentile of a sequence. Missing values are ignored
 * @param percent percent value
 * @param data double array
 * @result percentile of the sequence
 */
public static double percentile (double percent, double [] data) {
 int i, j, n = data.length;
 int midIndex;
 double median, temp;
 double [] ddd = new double [n];

 j = 0;
 for (i=0; i<n; i++) {

Chapter 2
Custom-Defined Calculation Functions

2-299

 if (data [i] != MISSG) {
 ddd [j] = data [i];
 j ++;
 }
 }
 n = j;

 if (n == 0)
 return MISSG;

 Calculator.sort (ddd, 0, n-1);

 if (percent == 0.)
 return ddd [0];

 if (percent == 1.)
 return ddd [n-1];

 temp = percent * (double) n;
 median = Math.floor (temp);
 midIndex = (int) median;

 if (median != temp) {
 temp -= median;
 median = ddd [midIndex-1];
 median += (ddd [midIndex] - median) * temp;
 }
 else {
 median = ddd [midIndex];
 }
 return median;
}

/**
 * Computes percentile of a part of a sequence. Missing values are ignored
 * @param percent percent value
 * @param size size to use
 * @param data data array
 * @result percentile of the subsequence
 */
public static double percentile (double percent, int size, double [] data) {
 int i, j, n = data.length;
 if (n > size)
 n = size;
 int midIndex;
 double median, temp;
 double [] ddd = new double [n];

 j = 0;
 for (i=0; i<n; i++) {
 if (data [i] != MISSG) {
 ddd [j] = data [i];
 j++;
 }
 }

Chapter 2
Custom-Defined Calculation Functions

2-300

 n = j;

 if (n == 0)
 return MISSG;

 Calculator.sort (ddd, 0, n-1);

 if (percent == 0.)
 return ddd [0];

 if (percent == 1.)
 return ddd [n-1];

 temp = percent * (double) n;
 median = Math.floor (temp);
 midIndex = (int) median;

 if (median != temp) {
 temp -= median;
 median = ddd [midIndex-1];
 median += (ddd [midIndex] - median) * temp;
 }
 else {
 median = ddd [midIndex];
 }
 return median;
}

/**
 * Computes quartile of a sequence. Missing values are ignored
 * @param quart indicates which value to return
 * Possible values are:
 *
 * 0 - return minimum
 * 1 - return 25% percentile
 * 2 - return median
 * 3 - return 75% percentile
 * 4 - return maximum
 *
 * @param data double array
 * @result quartile of the sequence
 */
public static double quartile (int quart, double [] data) {
 switch (quart) {
 case 0:
 return min (data);
 case 1:
 return percentile (0.25, data);
 case 2:
 return median (data);
 case 3:
 return percentile (0.75, data);
 case 4:
 return max (data);
 default:
 return MISSG;

Chapter 2
Custom-Defined Calculation Functions

2-301

 }
}

}

MaxL Registration Scripts
The following sample scripts written in MaxL show you how to register and drop the example
custom-defined functions packaged in essbase.jar.

• register.mxl—To register the functions locally in an application (see register.mxl Sample
Code).

• drop.mxl—To drop the functions (if they were registered locally) (see drop.mxl Sample
Code).

• reglobal.mxl—To register the functions globally (see reglobal.mxl Sample Code).

register.mxl Sample Code

/* <maxl version="11.1.1" encoding="UTF-8"/> */

/**
 * This script registers methods of the class Statistics as custom-defined
functions
 * for a specified application
 * Usage: Log in to MaxL Shell, then call: msh register.mxl appname
 */

//**
 * Register function average
 */
CREATE MACRO $1.'@JAVG'(GROUP)
AS '@_JAVG(@@S)'
SPEC '@JAVG(expList)'
COMMENT 'Computes the average of non-missing values in a data set (expList)';

CREATE FUNCTION $1.'@_JAVG'
AS 'com.hyperion.essbase.calculator.Statistics.avg(double [])';

/**
 * Register function weighted average
 */
CREATE FUNCTION $1.'@JAVGW'
AS 'com.hyperion.essbase.calculator.Statistics.avg(double [],double [])'
SPEC '@JAVGW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted average of non-missing values in a data set
(expList)';

/**
 * Register functions average and weighted average with a skip instruction.

Chapter 2
Custom-Defined Calculation Functions

2-302

 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION $1.'@_JAVGS'
AS 'com.hyperion.essbase.calculator.Statistics.avg(int,double [])';
CREATE FUNCTION $1.'@_JAVGWS'
AS 'com.hyperion.essbase.calculator.Statistics.avg(int,double [],double [])';

/**
 * Register macro for average with a skip instruction
 */
CREATE MACRO $1.'@JAVGS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JAVGS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JAVGS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JAVGS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JAVGS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JAVGS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the average value of a data set (expList) with skip
instructions';

/**
 * Register macro for weighted average with a skip instruction
 */
CREATE MACRO $1.'@JAVGWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JAVGWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JAVGWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JAVGWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JAVGS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF

Chapter 2
Custom-Defined Calculation Functions

2-303

 @@ENDIF
 @@ENDIF'
SPEC '@JAVGWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, @LIST(expList),
@LIST(weightExpList))'
COMMENT 'Computes the weighted average value of a data set (expList) with
skip instructions';

/**
 * Register function correlation
 */
CREATE FUNCTION $1.'@JCORR'
AS 'com.hyperion.essbase.calculator.Statistics.correlation(double [],double
[])'
SPEC '@JCORR(@LIST(expList1), @LIST(expList2))'
COMMENT 'Computes the correlation coefficient between two data sets (expList1
and expList2)';

/**
 * Register function weighted correlation
 */
CREATE FUNCTION $1.'@JCORRW'
AS 'com.hyperion.essbase.calculator.Statistics.correlation(double [],double
[],double [])'
SPEC '@JCORRW(@LIST(expList1), @LIST(expList2), @LIST(weightExpList))'
COMMENT 'Computes the weighted correlation coefficient between two data sets
(expList1 and expList2)';

/**
 * Register function count
 */
CREATE MACRO $1.'@JCOUNT'(GROUP)
AS '@_JCOUNT(@@S)'
SPEC '@JCOUNT(expList)'
COMMENT 'Computes the count of non-missing elements in a data set (expList)';

CREATE FUNCTION $1.'@_JCOUNT'
AS 'com.hyperion.essbase.calculator.Statistics.count(double [])';

/**
 * Register function count with a skip instruction.
 * This function will be used through macros, so no spec/comment specified.
 * Since this function will not be used directly, the name starts with '@_'.
 */
CREATE FUNCTION $1.'@_JCOUNTS'
AS 'com.hyperion.essbase.calculator.Statistics.count(int,double [])';

/**
 * Register macro for count with a skip instruction
 */
CREATE MACRO $1.'@JCOUNTS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)

Chapter 2
Custom-Defined Calculation Functions

2-304

 @_JCOUNTS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JCOUNTS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JCOUNTS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JCOUNTS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JCOUNTS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the number of elements of a data set (expList) with skip
instructions';

/**
 * Register function covariance
 */
CREATE FUNCTION $1.'@JCOVAR'
AS 'com.hyperion.essbase.calculator.Statistics.covariance(double [],double
[])'
SPEC '@JCOVAR(@LIST(expList1), @LIST(expList2))'
COMMENT 'Computes the covariance between two data sets (expList1 and
expList2)';

/**
 * Register function weighted covariance
 */
CREATE FUNCTION $1.'@JCOVARW'
AS 'com.hyperion.essbase.calculator.Statistics.covariance(double [],double
[],double [])'
SPEC '@JCOVARW(@LIST(expList1), @LIST(expList2), @LIST(weightExpList))'
COMMENT 'Computes the weighted covariance between two data sets (expList1 and
expList2)';

/**
 * Register function geometric mean
 */
CREATE MACRO $1.'@JGEOMEAN'(GROUP)
AS '@_JGEOMEAN(@@S)'
SPEC '@JGEOMEAN(expList)'
COMMENT 'Computes the geometric mean of a data set (expList)';

CREATE FUNCTION $1.'@_JGEOMEAN'
AS 'com.hyperion.essbase.calculator.Statistics.geomean(double [])';

/**
 * Register function weighted geometric mean

Chapter 2
Custom-Defined Calculation Functions

2-305

 */
CREATE FUNCTION $1.'@JGEOMEANW'
AS 'com.hyperion.essbase.calculator.Statistics.geomean(double [],double [])'
SPEC '@JGEOMEANW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted geometric mean of a data set (expList)';

/**
 * Register function harmonic mean
 */
CREATE MACRO $1.'@JHARMEAN'(GROUP)
AS '@_JHARMEAN(@@S)'
SPEC '@JHARMEAN(expList)'
COMMENT 'Computes the harmonic mean of a data set (expList)';

CREATE FUNCTION $1.'@_JHARMEAN'
AS 'com.hyperion.essbase.calculator.Statistics.harmean(double [])';

/**
 * Register function weighted harmonic mean
 */
CREATE FUNCTION $1.'@JHARMEANW'
AS 'com.hyperion.essbase.calculator.Statistics.harmean(double [],double [])'
SPEC '@JHARMEANW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted harmonic mean of a data set (expList)';

/**
 * Register function kurtosis
 */
CREATE MACRO $1.'@JKURT'(GROUP)
AS '@_JKURT(@@S)'
SPEC '@JKURT(expList)'
COMMENT 'Computes the kurtosis of a data set (expList)';

CREATE FUNCTION $1.'@_JKURT'
AS 'com.hyperion.essbase.calculator.Statistics.kurt(double [])';

/**
 * Register function weighted kurtosis
 */
CREATE FUNCTION $1.'@JKURTW'
AS 'com.hyperion.essbase.calculator.Statistics.kurt(double [],double [])'
SPEC '@JKURTW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted kurtosis of a data set (expList)';

/**
 * Register function max
 * There is only one function with this name, so no need to specify the
signature
 */
CREATE MACRO $1.'@JMAX'(GROUP)
AS '@_JMAX(@@S)'
SPEC '@JMAX(expList)'
COMMENT 'Computes the maximum of a data set (expList)';

Chapter 2
Custom-Defined Calculation Functions

2-306

CREATE FUNCTION $1.'@_JMAX'
AS 'com.hyperion.essbase.calculator.Statistics.max';

/**
 * Register function median
 * There is only one function with this name, so no need to specify the
signature
 */
CREATE MACRO $1.'@JMEDIAN'(GROUP)
AS '@_JMEDIAN(@@S)'
SPEC '@JMEDIAN(expList)'
COMMENT 'Computes the median of a data set (expList)';

CREATE FUNCTION $1.'@_JMEDIAN'
AS 'com.hyperion.essbase.calculator.Statistics.median';

/**
 * Register function min
 * There is only one function with this name, so no need to specify the
signature
 */
CREATE MACRO $1.'@JMIN'(GROUP)
AS '@_JMIN(@@S)'
SPEC '@JMIN(expList)'
COMMENT 'Computes the minimum of a data set (expList)';

CREATE FUNCTION $1.'@_JMIN'
AS 'com.hyperion.essbase.calculator.Statistics.min';

/**
 * Register function mode
 * There is only one function with this name, so no need to specify the
signature
 */
CREATE MACRO $1.'@JMODE'(GROUP)
AS '@_JMODE(@@S)'
SPEC '@JMODE(expList)'
COMMENT 'Computes the mode of a data set (expList)';

CREATE FUNCTION $1.'@_JMODE'
AS 'com.hyperion.essbase.calculator.Statistics.mode';

/**
 * Register function percentile
 */
CREATE MACRO $1.'@JPTILE'(SINGLE, GROUP)
AS '@_JPTILE(@@1, @@SH1)'
SPEC '@JPTILE(percent,expList)'
COMMENT 'Computes the specified (percent) percentile of a data set (expList)';

CREATE FUNCTION $1.'@_JPTILE'
AS 'com.hyperion.essbase.calculator.Statistics.percentile(double,double [])';

/**
 * Register function product

Chapter 2
Custom-Defined Calculation Functions

2-307

 */
CREATE MACRO $1.'@JPROD'(GROUP)
AS '@_JPROD(@@S)'
SPEC '@JPROD(expList)'
COMMENT 'Computes the product of non-missing values in a data set (expList)';

CREATE FUNCTION $1.'@_JPROD'
AS 'com.hyperion.essbase.calculator.Statistics.product(double [])';

/**
 * Register function weighted product
 */
CREATE FUNCTION $1.'@JPRODW'
AS 'com.hyperion.essbase.calculator.Statistics.product(double [],double [])'
SPEC '@JPRODW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted product of non-missing values in a data set
(expList)';

/**
 * Register function quartile
 * There is only one function with this name, so no need to specify the
signature
 */
CREATE MACRO $1.'@JQTILE'(SINGLE, GROUP)
AS '@_JQTILE(@@1, @@SH1)'
SPEC '@JQTILE(quart,expList)'
COMMENT 'Computes the specified (quart) quartile of a data set (expList)';

CREATE FUNCTION $1.'@_JQTILE'
AS 'com.hyperion.essbase.calculator.Statistics.quartile';

/**
 * Register function rank
 * There is only one function with this name, so no need to specify the
signature
 */
CREATE MACRO $1.'@JRANK'(SINGLE, GROUP)
AS '@_JRANK(@@1, @@SH1)'
SPEC '@JRANK(value,expList)'
COMMENT 'Computes the rank of a value in a data set (expList)';

CREATE FUNCTION $1.'@_JRANK'
AS 'com.hyperion.essbase.calculator.Statistics.rank';

/**
 * Register function skewness
 */
CREATE MACRO $1.'@JSKEW'(GROUP)
AS '@_JSKEW(@@S)'
SPEC '@JSKEW(expList)'
COMMENT 'Computes the skewness of a data set (expList)';

CREATE FUNCTION $1.'@JSKEW'
AS 'com.hyperion.essbase.calculator.Statistics.skew(double [])';

Chapter 2
Custom-Defined Calculation Functions

2-308

/**
 * Register function weighted skewness
 */
CREATE FUNCTION $1.'@JSKEWW'
AS 'com.hyperion.essbase.calculator.Statistics.skew(double [],double [])'
SPEC '@JSKEWW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted skewness of a data set (expList)';

/**
 * Register function stdev
 */
CREATE FUNCTION $1.'@JSTDEV'(GROUP)
AS '@_JSTDEV(@@S)'
SPEC '@JSTDEV(expList)'
COMMENT 'Computes the standard deviation of non-missing values in a data set
(expList)';

CREATE FUNCTION $1.'@_JSTDEV'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(double [])';

/**
 * Register function weighted stdev
 */
CREATE FUNCTION $1.'@JSTDEVW'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(double [],double [])'
SPEC '@JSTDEVW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted standard deviation of non-missing values in a
data set (expList)';

/**
 * Register functions stdev and weighted stdev with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION $1.'@_JSTDEVS'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(int,double [])';
CREATE FUNCTION $1.'@_JSTDEVWS'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(int,double [],double
[])';

/**
 * Register macro for stdev with a skip instruction
 */
CREATE MACRO $1.'@JSTDEVS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JSTDEVS (1, @@2)

Chapter 2
Custom-Defined Calculation Functions

2-309

 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JSTDEVS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the standard deviation value of a data set (expList) with
skip instructions';

/**
 * Register macro for weighted standard deviation with a skip instruction
 */
CREATE MACRO $1.'@JSTDEVWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JSTDEVWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JSTDEVWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList,
weightExpList)'
COMMENT 'Computes the weighted standard deviation value of a data set
(expList) with skip instructions';

/**
 * Register function stdevp
 */
CREATE MACRO $1.'@JSTDEVP'(GROUP)
AS '@_JSTDEVP(@@S)'
SPEC '@JSTDEVP(expList)'
COMMENT 'Computes the standard deviation(p) of non-missing values in a data
set (expList)';

CREATE FUNCTION $1.'@JSTDEVP'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(double [])';

Chapter 2
Custom-Defined Calculation Functions

2-310

/**
 * Register function weighted stdevp
 */
CREATE FUNCTION $1.'@JSTDEVPW'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(double [],double [])'
SPEC '@JSTDEVPW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted standard deviation(p) of non-missing values in
a data set (expList)';

/**
 * Register functions stdevp and weighted stdevp with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION $1.'@_JSTDEVPS'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(int,double [])';
CREATE FUNCTION $1.'@_JSTDEVPWS'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(int,double [],double
[])';

/**
 * Register macro for stdevp with a skip instruction
 */
CREATE MACRO $1.'@JSTDEVPS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVPS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JSTDEVPS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JSTDEVPS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVPS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVPS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the standard deviation(p) value of a data set (expList)
with skip instructions';

/**
 * Register macro for weighted stdevp with a skip instruction
 */
CREATE MACRO $1.'@JSTDEVPWS'(SINGLE,SINGLE,SINGLE)
AS

Chapter 2
Custom-Defined Calculation Functions

2-311

'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVPWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JSTDEVPWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JSTDEVPWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVPS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVPWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList,
weightExpList)'
COMMENT 'Computes the weighted standard deviation(p) value of a data set
(expList) with skip instructions';

/**
 * Register function sum
 */
CREATE MACRO $1.'@JSUM'(GROUP)
AS '@_JSUM(@@S)'
SPEC '@JSUM(expList)'
COMMENT 'Computes the sum of a data set (expList)';

CREATE FUNCTION $1.'@_JSUM'
AS 'com.hyperion.essbase.calculator.Statistics.sum(double [])';

/**
 * Register function weighted SUM
 */
CREATE FUNCTION $1.'@JSUMW'
AS 'com.hyperion.essbase.calculator.Statistics.sum(double [],double [])'
SPEC '@JSUMW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted sum of a data set (expList)';

/**
 * Register function var
 */
CREATE MACRO $1.'@JVAR'(GROUP)
AS '@_JVAR(@@S)'
SPEC '@JVAR(expList)'
COMMENT 'Computes the variance of non-missing values in a data set (expList)';

CREATE FUNCTION $1.'@_JVAR'
AS 'com.hyperion.essbase.calculator.Statistics.var(double [])';

/**

Chapter 2
Custom-Defined Calculation Functions

2-312

 * Register function weighted var
 */
CREATE FUNCTION $1.'@JVARW'
AS 'com.hyperion.essbase.calculator.Statistics.var(double [],double [])'
SPEC '@JVARW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted variance of non-missing values in a data set
(expList)';

/**
 * Register functions var and weighted var with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION $1.'@_JVARS'
AS 'com.hyperion.essbase.calculator.Statistics.var(int,double [])';
CREATE FUNCTION $1.'@_JVARWS'
AS 'com.hyperion.essbase.calculator.Statistics.var(int,double [],double [])';

/**
 * Register macro for var with a skip instruction
 */
CREATE MACRO $1.'@JVARS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JVARS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JVARS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the variance value of a data set (expList) with skip
instructions';

/**
 * Register macro for weighted variance with a skip instruction
 */
CREATE MACRO $1.'@JVARWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JVARWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)

Chapter 2
Custom-Defined Calculation Functions

2-313

 @_JVARWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList, weightExpList)'
COMMENT 'Computes the weighted variance value of a data set (expList) with
skip instructions';

/**
 * Register function varp
 */
CREATE MACRO $1.'@JVARP'(GROUP)
AS '@_JVARP(@@S)'
SPEC '@JVARP(expList)'
COMMENT 'Computes the variance(p) of non-missing values in a data set
(expList)';

CREATE FUNCTION $1.'@_JVARP'
AS 'com.hyperion.essbase.calculator.Statistics.varp(double [])';

/**
 * Register function weighted varp
 */
CREATE FUNCTION $1.'@JVARPW'
AS 'com.hyperion.essbase.calculator.Statistics.varp(double [],double [])'
SPEC '@JVARPW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted variance(p) of non-missing values in a data
set (expList)';

/**
 * Register functions varp and weighted varp with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION $1.'@_JVARPS'
AS 'com.hyperion.essbase.calculator.Statistics.varp(int,double [])';
CREATE FUNCTION $1.'@_JVARPWS'
AS 'com.hyperion.essbase.calculator.Statistics.varp(int,double [],double [])';

/**
 * Register macro for varp with a skip instruction
 */
CREATE MACRO $1.'@JVARPS'(SINGLE,GROUP)
AS

Chapter 2
Custom-Defined Calculation Functions

2-314

'@@IFSTRCMP (@@1, SKIPNONE)
 @_JVARPS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JVARPS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARPS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARPS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARPS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the variance(p) value of a data set (expList) with skip
instructions';

/**
 * Register macro for weighted varp with a skip instruction
 */
CREATE MACRO $1.'@JVARPWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JVARPWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JVARPWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARPWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARPS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARPWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList,
weightExpList)'
COMMENT 'Computes the weighted variance(p) value of a data set (expList) with
skip instructions';

reglobal.mxl Sample Code

/* <maxl version="11.1.1" encoding="UTF-8"/> */

/**
 * This script registers methods of the class Statistics as global custom-

Chapter 2
Custom-Defined Calculation Functions

2-315

defined functions
 * Usage: Log in to MaxL Shell, then call: msh reglobal.mxl
 *
 */

/**
 * Register function average
 */
CREATE MACRO '@JAVG'(GROUP)
AS '@_JAVG(@@S)'
SPEC '@JAVG(expList)'
COMMENT 'Computes the average of non-missing values in a data set (expList)';

CREATE FUNCTION '@_JAVG'
AS 'com.hyperion.essbase.calculator.Statistics.avg(double [])';

/**
 * Register function weighted average
 */
CREATE FUNCTION '@JAVGW'
AS 'com.hyperion.essbase.calculator.Statistics.avg(double [],double [])'
SPEC '@JAVGW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted average of non-missing values in a data set
(expList)';

/**
 * Register functions average and weighted average with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION '@_JAVGS'
AS 'com.hyperion.essbase.calculator.Statistics.avg(int,double [])';
CREATE FUNCTION '@_JAVGWS'
AS 'com.hyperion.essbase.calculator.Statistics.avg(int,double [],double [])';

/**
 * Register macro for average with a skip instruction
 */
CREATE MACRO '@JAVGS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JAVGS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JAVGS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JAVGS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JAVGS (3, @@2)
 @@ELSE

Chapter 2
Custom-Defined Calculation Functions

2-316

 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JAVGS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the average value of a data set (expList) with skip
instructions';

/**
 * Register macro for weighted average with a skip instruction
 */
CREATE MACRO '@JAVGWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JAVGWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JAVGWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JAVGWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JAVGS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JAVGWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, @LIST(expList),
@LIST(weightExpList))'
COMMENT 'Computes the weighted average value of a data set (expList) with
skip instructions';

/**
 * Register function correlation
 */
CREATE FUNCTION '@JCORR'
AS 'com.hyperion.essbase.calculator.Statistics.correlation(double [],double
[])'
SPEC '@JCORR(@LIST(expList1), @LIST(expList2))'
COMMENT 'Computes the correlation coefficient between two data sets (expList1
and expList2)';

/**
 * Register function weighted correlation
 */
CREATE FUNCTION '@JCORRW'
AS 'com.hyperion.essbase.calculator.Statistics.correlation(double [],double
[],double [])'
SPEC '@JCORRW(@LIST(expList1), @LIST(expList2), @LIST(weightExpList))'

Chapter 2
Custom-Defined Calculation Functions

2-317

COMMENT 'Computes the weighted correlation coefficient between two data sets
(expList1 and expList2)';

/**
 * Register function count
 */
CREATE MACRO '@JCOUNT'(GROUP)
AS '@_JCOUNT(@@S)'
SPEC '@JCOUNT(expList)'
COMMENT 'Computes the count of non-missing elements in a data set (expList)';

CREATE FUNCTION '@_JCOUNT'
AS 'com.hyperion.essbase.calculator.Statistics.count(double [])';

/**
 * Register function count with a skip instruction.
 * This function will be used through macros, so no spec/comment specified.
 * Since this function will not be used directly, the name starts with '@_'.
 */
CREATE FUNCTION '@_JCOUNTS'
AS 'com.hyperion.essbase.calculator.Statistics.count(int,double [])';

/**
 * Register macro for count with a skip instruction
 */
CREATE MACRO '@JCOUNTS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JCOUNTS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JCOUNTS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JCOUNTS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JCOUNTS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JCOUNTS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the number of elements of a data set (expList) with skip
instructions';

/**
 * Register function covariance
 */
CREATE FUNCTION '@JCOVAR'
AS 'com.hyperion.essbase.calculator.Statistics.covariance(double [],double

Chapter 2
Custom-Defined Calculation Functions

2-318

[])'
SPEC '@JCOVAR(@LIST(expList1), @LIST(expList2))'
COMMENT 'Computes the covariance between two data sets (expList1 and
expList2)';

/**
 * Register function weighted covariance
 */
CREATE FUNCTION '@JCOVARW'
AS 'com.hyperion.essbase.calculator.Statistics.covariance(double [],double
[],double [])'
SPEC '@JCOVARW(@LIST(expList1), @LIST(expList2), @LIST(weightExpList))'
COMMENT 'Computes the weighted covariance between two data sets (expList1 and
expList2)';

/**
 * Register function geometric mean
 */
CREATE MACRO '@JGEOMEAN'(GROUP)
AS '@_JGEOMEAN(@@S)'
SPEC '@JGEOMEAN(expList)'
COMMENT 'Computes the geometric mean of a data set (expList)';

CREATE FUNCTION '@_JGEOMEAN'
AS 'com.hyperion.essbase.calculator.Statistics.geomean(double [])';

/**
 * Register function weighted geometric mean
 */
CREATE FUNCTION '@JGEOMEANW'
AS 'com.hyperion.essbase.calculator.Statistics.geomean(double [],double [])'
SPEC '@JGEOMEANW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted geometric mean of a data set (expList)';

/**
 * Register function harmonic mean
 */
CREATE MACRO '@JHARMEAN'(GROUP)
AS '@_JHARMEAN(@@S)'
SPEC '@JHARMEAN(expList)'
COMMENT 'Computes the harmonic mean of a data set (expList)';

CREATE FUNCTION '@_JHARMEAN'
AS 'com.hyperion.essbase.calculator.Statistics.harmean(double [])';

/**
 * Register function weighted harmonic mean
 */
CREATE FUNCTION '@JHARMEANW'
AS 'com.hyperion.essbase.calculator.Statistics.harmean(double [],double [])'
SPEC '@JHARMEANW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted harmonic mean of a data set (expList)';

Chapter 2
Custom-Defined Calculation Functions

2-319

/**
 * Register function kurtosis
 */
CREATE MACRO '@JKURT'(GROUP)
AS '@_JKURT(@@S)'
SPEC '@JKURT(expList)'
COMMENT 'Computes the kurtosis of a data set (expList)';

CREATE FUNCTION '@_JKURT'
AS 'com.hyperion.essbase.calculator.Statistics.kurt(double [])';

/**
 * Register function weighted kurtosis
 */
CREATE FUNCTION '@JKURTW'
AS 'com.hyperion.essbase.calculator.Statistics.kurt(double [],double [])'
SPEC '@JKURTW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted kurtosis of a data set (expList)';

/**
 * Register function max
 * There is only one function with this name, so no need to specify the
signature
 */
CREATE MACRO '@JMAX'(GROUP)
AS '@_JMAX(@@S)'
SPEC '@JMAX(expList)'
COMMENT 'Computes the maximum of a data set (expList)';

CREATE FUNCTION '@_JMAX'
AS 'com.hyperion.essbase.calculator.Statistics.max';

/**
 * Register function median
 * There is only one function with this name, so no need to specify the
signature
 */
CREATE MACRO '@JMEDIAN'(GROUP)
AS '@_JMEDIAN(@@S)'
SPEC '@JMEDIAN(expList)'
COMMENT 'Computes the median of a data set (expList)';

CREATE FUNCTION '@_JMEDIAN'
AS 'com.hyperion.essbase.calculator.Statistics.median';

/**
 * Register function min
 * There is only one function with this name, so no need to specify the
signature
 */
CREATE MACRO '@JMIN'(GROUP)
AS '@_JMIN(@@S)'
SPEC '@JMIN(expList)'
COMMENT 'Computes the minimum of a data set (expList)';

Chapter 2
Custom-Defined Calculation Functions

2-320

CREATE FUNCTION '@_JMIN'
AS 'com.hyperion.essbase.calculator.Statistics.min';

/**
 * Register function mode
 * There is only one function with this name, so no need to specify the
signature
 */
CREATE MACRO '@JMODE'(GROUP)
AS '@_JMODE(@@S)'
SPEC '@JMODE(expList)'
COMMENT 'Computes the mode of a data set (expList)';

CREATE FUNCTION '@_JMODE'
AS 'com.hyperion.essbase.calculator.Statistics.mode';

/**
 * Register function percentile
 */
CREATE MACRO '@JPTILE'(SINGLE, GROUP)
AS '@_JPTILE(@@1, @@SH1)'
SPEC '@JPTILE(percent,expList)'
COMMENT 'Computes the specified (percent) percentile of a data set (expList)';

CREATE FUNCTION '@_JPTILE'
AS 'com.hyperion.essbase.calculator.Statistics.percentile(double,double [])';

/**
 * Register function product
 */
CREATE MACRO '@JPROD'(GROUP)
AS '@_JPROD(@@S)'
SPEC '@JPROD(expList)'
COMMENT 'Computes the product of non-missing values in a data set (expList)';

CREATE FUNCTION '@_JPROD'
AS 'com.hyperion.essbase.calculator.Statistics.product(double [])';

/**
 * Register function weighted product
 */
CREATE FUNCTION '@JPRODW'
AS 'com.hyperion.essbase.calculator.Statistics.product(double [],double [])'
SPEC '@JPRODW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted product of non-missing values in a data set
(expList)';

/**
 * Register function quartile
 * There is only one function with this name, so no need to specify the
signature
 */
CREATE MACRO '@JQTILE'(SINGLE, GROUP)
AS '@_JQTILE(@@1, @@SH1)'

Chapter 2
Custom-Defined Calculation Functions

2-321

SPEC '@JQTILE(quart,expList)'
COMMENT 'Computes the specified (quart) quartile of a data set (expList)';

CREATE FUNCTION '@_JQTILE'
AS 'com.hyperion.essbase.calculator.Statistics.quartile';

/**
 * Register function rank
 * There is only one function with this name, so no need to specify the
signature
 */
CREATE MACRO '@JRANK'(SINGLE, GROUP)
AS '@_JRANK(@@1, @@SH1)'
SPEC '@JRANK(value,expList)'
COMMENT 'Computes the rank of a value in a data set (expList)';

CREATE FUNCTION '@_JRANK'
AS 'com.hyperion.essbase.calculator.Statistics.rank';

/**
 * Register function skewness
 */
CREATE MACRO '@JSKEW'(GROUP)
AS '@_JSKEW(@@S)'
SPEC '@JSKEW(expList)'
COMMENT 'Computes the skewness of a data set (expList)';

CREATE FUNCTION '@JSKEW'
AS 'com.hyperion.essbase.calculator.Statistics.skew(double [])';

/**
 * Register function weighted skewness
 */
CREATE FUNCTION '@JSKEWW'
AS 'com.hyperion.essbase.calculator.Statistics.skew(double [],double [])'
SPEC '@JSKEWW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted skewness of a data set (expList)';

/**
 * Register function stdev
 */
CREATE FUNCTION '@JSTDEV'(GROUP)
AS '@_JSTDEV(@@S)'
SPEC '@JSTDEV(expList)'
COMMENT 'Computes the standard deviation of non-missing values in a data set
(expList)';

CREATE FUNCTION '@_JSTDEV'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(double [])';

/**
 * Register function weighted stdev

Chapter 2
Custom-Defined Calculation Functions

2-322

 */
CREATE FUNCTION '@JSTDEVW'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(double [],double [])'
SPEC '@JSTDEVW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted standard deviation of non-missing values in a
data set (expList)';

/**
 * Register functions stdev and weighted stdev with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION '@_JSTDEVS'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(int,double [])';
CREATE FUNCTION '@_JSTDEVWS'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(int,double [],double
[])';

/**
 * Register macro for stdev with a skip instruction
 */
CREATE MACRO '@JSTDEVS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JSTDEVS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JSTDEVS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the standard deviation value of a data set (expList) with
skip instructions';

/**
 * Register macro for weighted standard deviation with a skip instruction
 */
CREATE MACRO '@JSTDEVWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)

Chapter 2
Custom-Defined Calculation Functions

2-323

 @_JSTDEVWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JSTDEVWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList,
weightExpList)'
COMMENT 'Computes the weighted standard deviation value of a data set
(expList) with skip instructions';

/**
 * Register function stdevp
 */
CREATE MACRO '@JSTDEVP'(GROUP)
AS '@_JSTDEVP(@@S)'
SPEC '@JSTDEVP(expList)'
COMMENT 'Computes the standard deviation(p) of non-missing values in a data
set (expList)';

CREATE FUNCTION '@JSTDEVP'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(double [])';

/**
 * Register function weighted stdevp
 */
CREATE FUNCTION '@JSTDEVPW'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(double [],double [])'
SPEC '@JSTDEVPW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted standard deviation(p) of non-missing values in
a data set (expList)';

/**
 * Register functions stdevp and weighted stdevp with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION '@_JSTDEVPS'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(int,double [])';
CREATE FUNCTION '@_JSTDEVPWS'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(int,double [],double
[])';

/**
 * Register macro for stdevp with a skip instruction

Chapter 2
Custom-Defined Calculation Functions

2-324

 */
CREATE MACRO '@JSTDEVPS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVPS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JSTDEVPS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JSTDEVPS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVPS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVPS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the standard deviation(p) value of a data set (expList)
with skip instructions';

/**
 * Register macro for weighted stdevp with a skip instruction
 */
CREATE MACRO '@JSTDEVPWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JSTDEVPWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JSTDEVPWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JSTDEVPWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JSTDEVPS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JSTDEVPWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList,
weightExpList)'
COMMENT 'Computes the weighted standard deviation(p) value of a data set
(expList) with skip instructions';

/**
 * Register function sum
 */

Chapter 2
Custom-Defined Calculation Functions

2-325

CREATE MACRO '@JSUM'(GROUP)
AS '@_JSUM(@@S)'
SPEC '@JSUM(expList)'
COMMENT 'Computes the sum of a data set (expList)';

CREATE FUNCTION '@_JSUM'
AS 'com.hyperion.essbase.calculator.Statistics.sum(double [])';

/**
 * Register function weighted SUM
 */
CREATE FUNCTION '@JSUMW'
AS 'com.hyperion.essbase.calculator.Statistics.sum(double [],double [])'
SPEC '@JSUMW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted sum of a data set (expList)';

/**
 * Register function var
 */
CREATE MACRO '@JVAR'(GROUP)
AS '@_JVAR(@@S)'
SPEC '@JVAR(expList)'
COMMENT 'Computes the variance of non-missing values in a data set (expList)';

CREATE FUNCTION '@_JVAR'
AS 'com.hyperion.essbase.calculator.Statistics.var(double [])';

/**
 * Register function weighted var
 */
CREATE FUNCTION '@JVARW'
AS 'com.hyperion.essbase.calculator.Statistics.var(double [],double [])'
SPEC '@JVARW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted variance of non-missing values in a data set
(expList)';

/**
 * Register functions var and weighted var with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION '@_JVARS'
AS 'com.hyperion.essbase.calculator.Statistics.var(int,double [])';
CREATE FUNCTION '@_JVARWS'
AS 'com.hyperion.essbase.calculator.Statistics.var(int,double [],double [])';

/**
 * Register macro for var with a skip instruction
 */
CREATE MACRO '@JVARS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)

Chapter 2
Custom-Defined Calculation Functions

2-326

 @_JVARS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JVARS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the variance value of a data set (expList) with skip
instructions';

/**
 * Register macro for weighted variance with a skip instruction
 */
CREATE MACRO '@JVARWS'(SINGLE,SINGLE,SINGLE)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JVARWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JVARWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList, weightExpList)'
COMMENT 'Computes the weighted variance value of a data set (expList) with
skip instructions';

/**
 * Register function varp
 */
CREATE MACRO '@JVARP'(GROUP)
AS '@_JVARP(@@S)'
SPEC '@JVARP(expList)'
COMMENT 'Computes the variance(p) of non-missing values in a data set
(expList)';

Chapter 2
Custom-Defined Calculation Functions

2-327

CREATE FUNCTION '@_JVARP'
AS 'com.hyperion.essbase.calculator.Statistics.varp(double [])';

/**
 * Register function weighted varp
 */
CREATE FUNCTION '@JVARPW'
AS 'com.hyperion.essbase.calculator.Statistics.varp(double [],double [])'
SPEC '@JVARPW(@LIST(expList), @LIST(weightExpList))'
COMMENT 'Computes the weighted variance(p) of non-missing values in a data
set (expList)';

/**
 * Register functions varp and weighted varp with a skip instruction.
 * These functions will be used through macros, so no spec/comment specified.
 * Since these functions will not be used directly, the names start with '@_'.
 */
CREATE FUNCTION '@_JVARPS'
AS 'com.hyperion.essbase.calculator.Statistics.varp(int,double [])';
CREATE FUNCTION '@_JVARPWS'
AS 'com.hyperion.essbase.calculator.Statistics.varp(int,double [],double [])';

/**
 * Register macro for varp with a skip instruction
 */
CREATE MACRO '@JVARPS'(SINGLE,GROUP)
AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JVARPS (0, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JVARPS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARPS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARPS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARPS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the variance(p) value of a data set (expList) with skip
instructions';

/**
 * Register macro for weighted varp with a skip instruction
 */
CREATE MACRO '@JVARPWS'(SINGLE,SINGLE,SINGLE)

Chapter 2
Custom-Defined Calculation Functions

2-328

AS
'@@IFSTRCMP (@@1, SKIPNONE)
 @_JVARPWS (0, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JVARPWS (1, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JVARPWS (2, @@2, @@3)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JVARPS (3, @@2, @@3)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
 @@ENDIF'
SPEC '@JVARPWS(SKIPNONE|SKIPZERO|SKIPMISSING|SKIPBOTH, expList,
weightExpList)'
COMMENT 'Computes the weighted variance(p) value of a data set (expList) with
skip instructions';

drop.mxl Sample Code

/* <maxl version="7.0.0" encoding="UTF-8"/> */

/**
 * This script deregisters methods of the class Statistics as custom-defined
functions
 * for a specified application
 * Usage: Log in to MaxL Shell, then call: msh drop.mxl appname
 *
 */

/**
 * Deregister all functions
 */
DROP FUNCTION $1.'@JAVG';
DROP FUNCTION $1.'@JAVGW';
DROP FUNCTION $1.'@_JAVGS';
DROP FUNCTION $1.'@_JAVGWS';
DROP MACRO $1.'@JAVGS';
DROP MACRO $1.'@JAVGWS';

DROP FUNCTION $1.'@JCORR';
DROP FUNCTION $1.'@JCORRW';

DROP FUNCTION $1.'@JCOUNT';
DROP FUNCTION $1.'@_JCOUNTS';
DROP MACRO $1.'@JCOUNTS';

DROP FUNCTION $1.'@JCOVAR';
DROP FUNCTION $1.'@JCOVARW';

Chapter 2
Custom-Defined Calculation Functions

2-329

DROP FUNCTION $1.'@JGEOMEAN';
DROP FUNCTION $1.'@JGEOMEANW';

DROP FUNCTION $1.'@JHARMEAN';
DROP FUNCTION $1.'@JHARMEANW';

DROP FUNCTION $1.'@JKURT';
DROP FUNCTION $1.'@JKURTW';

DROP FUNCTION $1.'@JMAX';

DROP FUNCTION $1.'@JMEDIAN';

DROP FUNCTION $1.'@JMIN';

DROP FUNCTION $1.'@JMODE';

DROP FUNCTION $1.'@JPTILE';

DROP FUNCTION $1.'@JPROD';
DROP FUNCTION $1.'@JPRODW';

DROP FUNCTION $1.'@JQTILE';

DROP FUNCTION $1.'@JRANK';

DROP FUNCTION $1.'@JSKEW';
DROP FUNCTION $1.'@JSKEWW';

DROP FUNCTION $1.'@JSTDEV';
DROP FUNCTION $1.'@JSTDEVW';
DROP FUNCTION $1.'@_JSTDEVS';
DROP FUNCTION $1.'@_JSTDEVWS';
DROP MACRO $1.'@JSTDEVS';
DROP MACRO $1.'@JSTDEVWS';

DROP FUNCTION $1.'@JSTDEVP';
DROP FUNCTION $1.'@JSTDEVPW';
DROP FUNCTION $1.'@_JSTDEVPS';
DROP FUNCTION $1.'@_JSTDEVPWS';
DROP MACRO $1.'@JSTDEVPS';
DROP MACRO $1.'@JSTDEVPWS';

DROP FUNCTION $1.'@JSUM';
DROP FUNCTION $1.'@JSUMW';

DROP FUNCTION $1.'@JVAR';
DROP FUNCTION $1.'@JVARW';
DROP FUNCTION $1.'@_JVARS';
DROP FUNCTION $1.'@_JVARWS';
DROP MACRO $1.'@JVARS';
DROP MACRO $1.'@JVARWS';

DROP FUNCTION $1.'@JVARP';
DROP FUNCTION $1.'@JVARPW';

Chapter 2
Custom-Defined Calculation Functions

2-330

DROP FUNCTION $1.'@_JVARPS';
DROP FUNCTION $1.'@_JVARPWS';
DROP MACRO $1.'@JVARPS';
DROP MACRO $1.'@JVARPWS';

/**
 * Restart the application
 */
ALTER SYSTEM UNLOAD APPLICATION $1;
ALTER SYSTEM LOAD APPLICATION $1;

Custom-Defined Macros
Custom-defined macros enable you to combine Essbase calculation functions into a single
function, called a macro. Custom-defined macros can also include special directives, variables,
and other macros. After you create macros, they can be used in formulas and calculation
scripts just like native Essbase calculation functions.

Note:

Custom-defined macros cannot include calculation commands.

Topics that discuss custom-defined macros:

• Custom-Defined Macro Input Parameters

• Using Argument Values in Macro Definitions

• Directives Used in Custom-Defined Macros

• Macro Reference

For information about creating custom-defined macros, see the MaxL Create Macro statement.

Custom-Defined Macro Input Parameters
When creating a macro, you can define how many and what kind of arguments are passed into
the macro. Specifying the argument set (also known as the signature) for a macro is optional,
but specifying it can make the macro easier to use and prevent usage errors.

The argument set is specified as part of the macro name when you create a macro with the
Create Macro MaxL statement. In the following macro name, the argument set is enclosed in
parentheses:

@SUMRANGE(single, group)

The preceding macro signature indicates that this macro requires two arguments: single, which
represents one input parameter, and group, which represents a list of input parameters. These
macro arguments do not represent a specific data type (such as a boolean, double, or string);
instead, they only indicate how many arguments are accepted by the macro.

Arguments are specified in a comma-delimited list (argument1, argument2, ... argumentX) as
part of the macro name when the macro is created. Arguments can be specified using the
following keywords, which tell the macro processor how to check the arguments for a macro:

Chapter 2
Custom-Defined Macros

2-331

Table 2-35 Keywords Used in Arguments

Argument Description

SINGLE A single argument

GROUP A list of arguments. Any argument following
GROUP is ignored.

OPTIONAL A single argument that is not required

OPTIONAL_GROUP A list of arguments that is not required. Any
argument following OPTIONAL_GROUP is ignored.

ANY No checking of arguments. Any argument following
ANY is ignored.

In the macro presented previously, the following sets of arguments are valid:

@SUMRANGE(Profit, @CHILDREN(East))
@SUMRANGE(Profit, "New York", "New Jersey", Connecticut)
@SUMRANGE(Sales, @DESCENDANTS(Product))

The following table shows examples of how the macro processor interprets arguments for
macros with different signatures given different input parameters. The definition of the example
macro is:

create macro SUM3(argument1, argument2, argument3) as '(@@1 + @@2 + @@3)';

Table 2-36 Example Macro Inputs and Results

Macro with Signature
of SUM3(signature)

Result when given
input of SUM3(X,Y)

Result when given
input of SUM3(X,Y,Z)

Result when given
input of SUM3(X,Y,Z,T)

SUM3(SINGLE,
SINGLE, SINGLE)

Error (wrong number of
arguments)

X+Y+Z Error (wrong number of
arguments)

SUM3(SINGLE,
SINGLE, GROUP)

Error (wrong number of
arguments)

X+Y+Z X+Y+@LIST(Z,T)

SUM3(SINGLE,
SINGLE,
OPTIONAL_GROUP)

X+Y+@_NULL X+Y+Z X+Y+@LIST(Z,T)

SUM3(SINGLE,
SINGLE, OPTIONAL)

X+Y+@_NULL X+Y+Z Error (wrong number of
arguments)

SUM3(SINGLE,
SINGLE, ANY)

X+Y+@_NULL X+Y+Z X+Y+Z

SUM3(SINGLE, ANY) X+Y+ X+Y+Z X+Y+Z

SUM3(SINGLE,
GROUP)

X+Y+ X+@LIST(Y,Z)+ X+@LIST(Y,Z,T)+

SUM3(ANY) X+Y+ X+Y+Z X+Y+Z

As noted previously, specification of arguments in the macro name only restricts the number of
arguments that are accepted by the macro and does not restrict the data types that may be
passed into the macro. Arguments in the Essbase calculator language can represent any of
the following data types:

Chapter 2
Custom-Defined Macros

2-332

Table 2-37 Data Types of Arguments

Data Type Description

Number A single, double precision, floating point type
number, which can have a special value,
#MISSING, or an array of these numbers

Boolean A single three-valued variable with the possible
values, TRUE, FALSE, and #MISSING, or an array
of these variables

Member A single database outline member, cross-member
combination, or an array of members

String A string variable type, or an array of these strings

When developing macros, you should consider the types of data that can be passed into
macros to avoid errors in calculation.

Using Argument Values in Macro Definitions
Specifying an argument set for a custom-defined macro is only part of creating a macro. You
must use the argument values in the macro expansion, which defines what functions the macro
performs. Two types of argument variables can be used in a macro definition: numbered
argument variables and argument variable shortcuts.

Using Numbered Argument Variables

In a macro definition, argument variables can be referenced by the order in which they appear
in the macro signature. Consider the following example macro signature with three argument
variables:

SUM3(single, single, group)

To use the input from this function in the macro definition, you reference the arguments using
the argument variables @@1 for the first input parameter, @@2 for the second input parameter,
and @@3 for the third input parameter. Thus, using the macro in the preceding example and
providing the following input,

SUM3("New York", "New Jersey", @CHILDREN(Products));

results in the macro variables being set to the following values:

@@1 = "New York"@@2 = "New Jersey"@@3 = @CHILDREN(Products)

Use of the optional argument in the macro signature has no effect on which macro variable
represents which incoming argument; for example, the input,

Macro signature: SUM3(single, optional, group)
Macro input: SUM3("New York", , @CHILDREN(Products));

results in the macro variables being set to the following values:

@@1 = "New York"@@2 = @_NULL@@3 = @CHILDREN(Products)

Chapter 2
Custom-Defined Macros

2-333

Using Argument Variable Shortcuts

You can represent sets of arguments with the variable shortcuts @@S and @@SHx. These
shortcuts enable you to specify a set of arguments with one variable, rather than listing a set of
numbered variables. Using input from the preceding example, the @@S variable would be set to
the following value:

@@S = "New York", @_NULL, @CHILDREN(Products)

Argument variables and shortcuts for custom-defined macros can be used in any order within a
macro definition and can be repeated in a macro.

Directives Used in Custom-Defined Macros
Custom-defined macros can include calculation functions, but cannot include calculation
commands.

In addition to the calculation functions, custom-defined macros can include special directives
that are available only for macros. These directives are categorized as follows:

Variable handling

• @@x

• @@S

• @@SHx

Error handling

• @@ERROR

• @@Lx

Conditionals

• @@IFSTRCMP

• @@ELSE

• @@ENDIF

Macro Reference
The following topics describe the directives.

• @@x

• @@S

• @@SHx

• @@ERROR

• @@Lx

• @@IFSTRCMP

• @@ELSE

• @@ENDIF

Chapter 2
Custom-Defined Macros

2-334

@@x
The @@x statement is a variable representing an input argument for a macro. The number x is
the number of the argument in the signature of the macro. So, @@1 represents the first input
argument, @@2 represents the second input argument, and so on.

Syntax

@@x

Where x is the number of an argument in the signature of the macro.

Notes

• Each @@x input argument variable can be used multiple times within a macro expansion.

• The @@x argument variable can also be used with the @@S and @@SHx argument
variables within a macro expansion.

• The meaning of @@x argument variables does not change if an optional variable is not
provided; for example, given the following macro signature,

create macro Sample.'@ADD'(single, optional, single) as '(@@1 + @@2 +
@@3)';

and the following input parameters,

@ADD("New York", , Connecticut);

the argument variables would be set to these values:

@@1 = "New York"
@@2 = @_NULL
@@3 = Connecticut

Example

The following example shows a create statement for a macro with three input arguments that
are added.

create macro Sample.'@SUM3'(single, single, single) as '(@@1 + @@2 + @@3)';

See Also

• @@S

• @@SHx

@@S
The @@S statement is a variable representing all input arguments for a macro.

Chapter 2
Custom-Defined Macros

2-335

Syntax

@@S

Notes

• The @@S input argument variable can be used multiple times within a macro expansion.

• The @@S input argument variable can also be used with the @@x and @@SHx
argument variables within a macro expansion.

Example

The following example shows a macro that divides the sum of all arguments by the sum of the
first two arguments.

create macro Sample.'@DIVIDE'(single, single, optional_group)
 as '@SUM(@@S)/(@@1 + @@2)';

See Also

• @@x

• @@SHx

@@SHx
The @@SHx statement represents a subset of all arguments starting with position x and
including the rest of the arguments for the macro.

Syntax

@@Sx

Where x is the number of an argument in the signature of the macro, with 0 representing the
first position, 1 representing the second position, and so on.

Notes

• The @@SHx argument variable can be used multiple times within a macro expansion.

• The @@SHx argument variable can be used with the @@x and @@S argument variables
within a macro expansion.

Example

The following example shows a macro that multiplies the first arguments together and adds
them to the sum of the remaining arguments.

create macro Sample.'@MULTANDSUM'(single, single, any)
 as '(@@1 * @@2) + @SUM(@@SH2)';

See Also

• @@x

• @@S

Chapter 2
Custom-Defined Macros

2-336

@@ERROR
The @@ERROR command forces the macro processor to stop and report an error.

Syntax

@@ERROR(lineNumber , errorCode)

Where:

• lineNumber is a number representing a line in the calculation script or formula where the
macro is used

• errorCode is an error code for the error

Notes

The @@Lx command can be used as the first parameter of an @@ERROR statement to
identify a line number in a calculation script or formula where the macro is used.

Example

The following example function checks the first input argument for valid values (SKIPNONE,
SKIPMISSING, SKIPZERO, SKIPBOTH). If none of these values is found, the macro returns
an error, specifying a line number in a calculation script or formula where the macro is used.

@@IFSTRCMP (@@1, SKIPNONE)
 @_JAVGS (0, @@2)
@@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JAVGS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JAVGS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JAVGS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
@@ENDIF

See Also

• @@Lx

• @@IFSTRCMP

@@Lx
The @@Lx command returns a number representing the line in a calculation script or formula
where a macro argument occurs, or the line where the macro name occurs.

Chapter 2
Custom-Defined Macros

2-337

Syntax

@@Lx

Where x is a number specifying a macro input argument number (1 , 2, ... n), or the macro
name, if zero (0) is specified.

Notes

The @@Lx command can be used only as the first parameter of an @@ERROR statement to
identify a line number for an error in a calculation script or formula.

Example

The following example macro checks the first input argument for valid values (SKIPNONE,
SKIPMISSING, SKIPZERO, SKIPBOTH). If none of these values is found, the macro returns
an error, specifying a line number in a calculation script or formula where the macro is used.
The line number is specified using the @@L1 statement, which returns 2, the number of the
line in the calculation script or formula where the first parameter of the macro occurs.

Calculation script using macro @AVGS
1: "Average_Revenue" = @AVGS(
2: SKIPNONE,
3: @CHILDREN(YrlyRevenue)
4:);

@AVGS macro definition:

@@IFSTRCMP (@@1, SKIPNONE)
 @_JAVGS (0, @@2)
@@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JAVGS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JAVGS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JAVGS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF
 @@ENDIF
 @@ENDIF
@@ENDIF

See Also

@@ERROR

Chapter 2
Custom-Defined Macros

2-338

@@IFSTRCMP
The @@IFSTRCMP command compares a macro input parameter to a string. If the input
parameters match, the macro statements following the command are processed. Otherwise,
the statements following @@ELSE are processed.

Syntax

@@IFSTRCMP(@@x , token) statement @@ELSE... [statement]@@ENDIF

Where:

• @@x is a variable representing a macro argument

• token is a string to be compared to the macro argument

• statement is operations to be performed depending on the results of the test

Notes

The @@IFSTRCMP statement block must use the @@ELSE statement as part of its decision
syntax. You do not have to include a statement after @@ELSE.

Example

@@IFSTRCMP (@@2, @_NULL)
 @@1
@@ELSE
 (@@1 + @@2)
@@ENDIF

This test checks to see if the second macro argument is blank. If it is, then only the first
argument is used. If the second argument is not blank, then the two arguments are added.

See Also

• @@ELSE

• @@ENDIF

@@ELSE
The @@ELSE command designates a conditional action to be performed in an
@@IFSTRCMP statement. All actions placed after the @@ELSE in an @@IFSTRCMP
statement are performed only if the strings compared in the @@IFSTRCMP statement do not
match.

Syntax

@@ELSE...statement [...statement] @@ENDIF

Where statement is operations to be performed depending on the results of the test.

Chapter 2
Custom-Defined Macros

2-339

Notes

• The @@ELSE statement can only be used in conjunction with an @@IFSTRCMP
statement.

• All @@IFSTRCMP statements must be ended with @@ENDIF statements.

Example

@@IFSTRCMP (@@2, @_NULL)
 @@1
@@ELSE
 (@@1 + @@2)
@@ENDIF

This test checks to see if the second macro argument is blank. If it is, then only the first
argument is used. If the second argument is not blank, then the two arguments are added.

See Also

• @@IFSTRCMP

• @@ENDIF

@@ENDIF
The @@ENDIF command marks the end of an @@IFSTRCMP command sequence. The
@@ENDIF command can be used only in conjunction with the @@IFSTRCMP statement.

Syntax

@@ENDIF

Notes

• You must supply an @@ENDIF statement for every @@IFSTRCMP statement in your
macro. If you do not supply the required @@ENDIF statements, your formula or
calculation script does not verify.

• If you are using an IF statement nested within another IF statement, end each IF with an
ENDIF, as in the following example:

@@IFSTRCMP (@@1, SKIPNONE)
 @_JAVGS (0, @@2)
@@ELSE
 @@IFSTRCMP (@@1, SKIPMISSING)
 @_JAVGS (1, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPZERO)
 @_JAVGS (2, @@2)
 @@ELSE
 @@IFSTRCMP (@@1, SKIPBOTH)
 @_JAVGS (3, @@2)
 @@ELSE
 @@ERROR (@@L1, @_INVALIDSKIP)
 @@ENDIF

Chapter 2
Custom-Defined Macros

2-340

 @@ENDIF
 @@ENDIF
@@ENDIF

• All @@IFSTRCMP statements must be ended with @@ENDIF statements.

Example

@@IFSTRCMP (@@2, @_NULL)
 @@1
@@ELSE
 (@@1 + @@2)
@@ENDIF

This test checks to see if the second macro argument is blank. If it is, then only the first
argument is used. If the second argument is not blank, then the two arguments are added.

See Also

• @@IFSTRCMP

• @@ELSE

Functions Supported in Hybrid Mode
The Essbase configuration setting ASODYNAMICAGGINBSO controls whether block storage
databases use hybrid mode. Hybrid mode is the default for block storage cubes. See Adopt
Hybrid Mode for Fast Analytic Processing for more information.

If enabled, hybrid mode is supported for member formulas using any of functions in this group.

• @ABS

• @ACCUM

• @ALLANCESTORS

• @ALIAS

• @ANCEST

• @ANCESTORS

• @ANCESTVAL

• @ATTRIBUTE

• @ATTRIBUTEBVAL

• @ATTRIBUTESVAL

• @ATTRIBUTEVAL

• @AVG

• @AVGRANGE

• @BETWEEN

• @CALCMODE

• @CHILDREN

• @COMPOUND

Chapter 2
Functions Supported in Hybrid Mode

2-341

• @COMPOUNDGROWTH

• @CONCATENATE

• @CORRELATION

• @COUNT

• @CURGEN

• @CURLEV

• @CURRMBR

• @CURRMBRRANGE

• @DATEDIFF

• @DATEPART

• @DATEROLL

• @DECLINE

• @DESCENDANTS

• @DISCOUNT

• @ENUMVALUE

• @EQUAL

• @EXP

• @EXPAND

• @FACTORIAL

• @FORMATDATE

• @GEN

• @GENMBRS

• @GROWTH

• @IALLANCESTORS

• @IANCESTORS

• @ICHILDREN

• @IDESCENDANTS

• @ILANCESTORS

• @ILDESCENDANTS

• @ILSIBLINGS

• @INT

• @INTEREST

• @INTERSECT

• @IRDESCENDANTS

• @IRR

• @IRSIBLINGS

• @ISACCTYPE

• @ISANCEST

Chapter 2
Functions Supported in Hybrid Mode

2-342

• @ISATTRIBUTE

• @ISCHILD

• @ISDESC

• @ISGEN

• @ISIANCEST

• @ISIBLINGS

• @ISICHILD

• @ISIDESC

• @ISIPARENT

• @ISISIBLING

• @ISLEV

• @ISMBR

• @ISMBRUDA

• @ISMBRWITHATTR

• @ISPARENT

• @ISRANGENONEMPTY

• @ISSAMEGEN

• @ISSAMELEV

• @ISSIBLING

• @ISUDA

• @LANCESTORS

• @LDESCENDANTS

• @LEV

• @LEVMBRS

• @LIKE

• @LIST

• @LN

• @LOG

• @LOG10

• @LSIBLINGS

• @MATCH

• @MAX

• @MAXRANGE

• @MAXS

• @MAXSRANGE

• @MBRCOMPARE

• @MBRPARENT

• @MDANCESTVAL

Chapter 2
Functions Supported in Hybrid Mode

2-343

• @MDPARENTVAL

• @MEDIAN

• @MEMBER

• @MEMBERAT

• @MERGE

• @MIN

• @MINRANGE

• @MINS

• @MINSRANGE

• @MOD

• @MODE

• @MOVAVG

• @MOVMAX

• @MOVMED

• @MOVMIN

• @MOVSUM

• @NAME

• @NEXT

• @NEXTS

• @NEXTSIBLING

• @NONEMPTYTUPLE

• @NOTEQUAL

• @NPV

• @PARENT

• @PARENTVAL

• @POWER

• @PREVSIBLING

• @PRIOR

• @PRIORS

• @RANGE

• @RANGEFIRSTVAL

• @RANGELASTVAL

• @RANK

• @RDESCENDANTS

• @RELATIVE

• @RELXRANGE

• @REMAINDER

• @REMOVE

Chapter 2
Functions Supported in Hybrid Mode

2-344

• @RETURN

• @ROUND

• @RSIBLINGS

• @SHARE

• @SHIFT

• @SHIFTMINUS

• @SHIFTPLUS

• @SHIFTSIBLING

• @SIBLINGS

• @SLN

• @SPARENTVAL

• @SPLINE

• @SUBSTRING

• @SUM

• @SUMRANGE

• @TODATE

• @TODATEEX

• @TODAY

• @TRUNCATE

• @UDA

• @VAR

• @VARPER

• @VARIANCE

• @VARIANCEP

• @WEIGHTEDSUMX

• @WITHATTR

• @XRANGE

• @XREF

The following functions are not supported for hybrid mode. If encountered, Essbase defaults to
block storage execution for these functions.

• @ALLOCATE

• @CREATEBLOCK

• @IRREX

• @MDALLOCATE

• @MDSHIFT

• @MOVSUMX

• @PTD

• @SANCESTVAL

Chapter 2
Functions Supported in Hybrid Mode

2-345

• @STDEV

• @STDEVP

• @STDEVRANGE

• @SYD

• @TREND

• @XWRITE

Chapter 2
Functions Supported in Hybrid Mode

2-346

3
Calculation Commands

Essbase calculation commands help you develop calculation scripts for your block storage
database. Calculation scripts enable you to develop custom operations to supplement the built-
in calculation of the database outline.

• To learn what you can do with calculation commands, start with Calculation Commands
Overview.

• To understand how different operators help you define equations, see Calculation
Operators.

• To explore the types of calculation commands Essbase offers, see Calculation Command
Groups

• To view the whole calculation command list, see Calculation Command List.

Calculation Commands Overview
You use Essbase calculation scripts to create calculations that differ from those defined in the
database outline. Calculation scripts enable development of custom operations to supplement
the built-in calculation of a block storage database outline.

Calculation commands are the elements of calculation scripts that instruct Essbase in the
calculation rules to be used.

When a database is created, a default calculation script is set to "calculate all", which means
that it will calculate all dimensions based on the database outline's hierarchical relationships
and formulas.

You can override this default script by using a custom script. You can use the custom script(s)
temporarily or permanently, without altering the default script. In the custom script, you can
refer to calculation rules defined in the database outline or you can specify custom formulas,
calculation formats, and calculation orders.

A calculation script contains a series of calculation commands. The order of the commands
defines the execution order of the calculation.

Calculation Operators
Essbase calculation operators (mathematical, conditional and logical, and cross-dimensional)
help you define equations for member formulas and calc scripts.

• Mathematical Operators are for common arithmetic operations.

• Conditional and Logical Operators are for building conditional tests.

• The Cross-Dimensional Operator is for referencing data intersections.

3-1

Mathematical Operators
Mathematical operators help you perform common arithmetic operations in your Essbase
calculation scripts.

Table 3-1 Mathematical Operators

Operator Description

+ Adds

- Subtracts

* Multiplies

/ Divides

% Evaluates percentage, for example:

Member1%Member2 evaluates Member1 as a
percentage of Member2.

() Controls the order of calculations and nests
equations and formulas

Conditional and Logical Operators
Conditional operators in Essbase calculations help you build logical conditions into your
calculation scripts.

Table 3-2 Conditional and Logical Operators

Operator Description

IF | ELSE | ELSEIF | ENDIF Tests conditions and calculates a formula based on
the success or failure of the test

> Data value is greater than

>= Data value is greater than or equal to

< Data value is less than

<= Data value is less than or equal to

= = If data value is equal to

< > or != Data value is not equal to

AND Logical AND linking operator for multiple value
tests. Result is TRUE if both conditions are TRUE.
Otherwise the result is FALSE.1

OR Logical OR linking operator for multiple value tests.
Result is TRUE if either condition is TRUE.
Otherwise the result is FALSE.2

NOT Logical NOT operator. Result is TRUE if condition
is FALSE. Result is FALSE if condition is TRUE.3

1 The logical constants TRUE and FALSE are interpreted as 1 (TRUE) and 0 (FALSE) where appropriate.
2 The logical constants TRUE and FALSE are interpreted as 1 (TRUE) and 0 (FALSE) where appropriate.
3 The logical constants TRUE and FALSE are interpreted as 1 (TRUE) and 0 (FALSE) where appropriate.

Chapter 3
Calculation Operators

3-2

Cross-Dimensional Operator
The cross-dimensional operator is an Essbase calculation notation for pointing to data values
of specific member combinations.

To include a cross-dimensional operator in a calculation, create it using a hyphen (-) and a
right angle bracket (>), with no space between them.

->

The following example uses the CLEARDATA command to clear budget data for the Colas
product family.

CLEARDATA Budget->Colas;

The following example uses a cross-dimensional operator between two member functions to
calculate the average of the children of a member across two dimensions.

@AVGRANGE(SKIPBOTH,"Sales",@CHILDREN(@CURRMBR("Product"))-
>@CHILDREN(@CURRMBR("Market")));

Calculation Command Groups
The Essbase calculation commands help you develop calculation scripts for your block storage
database. Using these commands, you can calculate the database, control the flow of the
calculations, declare variables, and adjust settings within the scope of the calculation. Explore
the types of calculation commands Essbase offers.

• Conditional Commands

• Control Flow Commands

• Data Declaration Commands

• Functional Commands

• Member Formulas

Additionally, you can explore the whole Calculation Command List in alphabetical order.

Conditional Commands
Use the conditional commands in Essbase calculation scripts to control the flow of events in
formulas. You can control which formulas are executed within a calculation, test conditions,
and calculate a formula based on the result of the test.

• IF

• ENDIF

• ELSE

• ELSEIF

When you use an IF statement as part of a member formula in a calc script, you need to:

• Associate it with a single member

Chapter 3
Calculation Command Groups

3-3

• Enclose it in parentheses

For example:

Profit (IF (Sales > 100)
 Profit = (Sales - COGS) * 2;
ELSE
 Profit = (Sales - COGS) * 1.5;
ENDIF;);

Essbase cycles through the database, performing the following calculations:

1. The IF statement checks to see if the value of Sales for the current member combination is
greater than 100.

2. If Sales is greater than 100, Essbase subtracts the value in COGS from the value in Sales,
multiplies it by 2, and places the result in Profit.

3. If Sales is less than, or equal to 100, Essbase subtracts the value in COGS from the value
in Sales, multiplies it by 1.5, and places the result in Profit.

The entire IF ... ENDIF statement is enclosed in parentheses and associated with the Profit
member.

Control Flow Commands
Use the control flow commands in Essbase calculation scripts to iterate a set of commands or
to restrict the commands' effect to a subset (partition) database.

The following control flow commands control the flow of a calculation script.

• The FIX…ENDFIX and EXCLUDE…ENDEXCLUDE commands restrict calculations to
specified members.

• The LOOP...ENDLOOP command enables repetition.

• The FIXPARALLEL...ENDFIXPARALLEL command block enables parallel calculation
controls on a subset.

Data Declaration Commands
Use the data declaration commands in Essbase calculation scripts to declare and set the initial
values of temporary variables.

The values stored in a variable are not returned in queries, because they only exist while the
calculation script is being processed. If you want to report these values, you need to create
members within the database outline, or assign the values from the variables into existing
members.

• ARRAY

• VAR

Functional Commands
Use the functional commands in Essbase calculation scripts to perform operations such as
calculation, data copying, exporting data, and clearing data.

The following is the list of functional commands:

Chapter 3
Calculation Command Groups

3-4

• AGG

• CALC ALL

• CALC AVERAGE

• CALC DIM

• CALC FIRST

• CALC LAST

• CALC TWOPASS

• CLEARBLOCK

• CLEARDATA

• DATACOPY

• DATAEXPORT

• DATAEXPORTCOND

• DATAIMPORTBIN

• SET DATAEXPORTOPTIONS

• SET DATAIMPORTIGNORETIMESTAMP

• SET AGGMISSG

• SET CACHE

• SET CLEARUPDATESTATUS

• SET FRMLBOTTOMUP

• SET FRMLRTDYNAMIC

• SET MSG

• SET NOTICE

• SET REMOTECALC

• SET RUNTIMESUBVARS

• SET UPDATECALC

• USE_MDX_INSERT(for aggregate storage custom calculations only)

Member Formulas
Essbase formulas calculate relationships between members in a database outline. You can
apply them to members in the outline, and/or use them in calculation scripts for strict control of
your calculations.

Member formulas are used to calculate the default outline format on a custom formula within
the script. As with formulas in the database outline, a formula in a calculation script defines
mathematical relationships between database members. For example, the following
expressions are valid within a calculation script:

"Profit_%";

Chapter 3
Calculation Command Groups

3-5

Specifying a member name with a formula defined in the outline calculates the member using
its formula.

Expenses = Payroll + Marketing;

The above formula expresses a simple mathematical relationship, which is used in place of the
database outline formula on the Expenses member.

Interdependent Member Formulas

Essbase optimizes calculation performance by calculating formulas for a range of members in
the same dimension. However, some formulas require values from members of the same
dimension. A good example is that of cash flow, in which the opening inventory is dependent
on the closing inventory from the previous month.

When you use an interdependent formula in a calc script, the same rules apply as for the IF
statement. You need to:

• Associate the formula with a single member

• Enclose the formula in parentheses

If you place the following interdependent formula in a calc script, you construct it as follows:

"Opening Inventory" (IF(NOT @ISMBR (Jan))"Opening Inventory" =
@PRIOR("Ending Inventory"));
ENDIF;
"Ending Inventory" = "Opening Inventory" - Sales + Additions;)

The entire formula is enclosed in parentheses and associated with the Opening Inventory
member.

Calculation Command List
An Essbase calculation script contains a series of calculation commands, equations, and
formulas. Use a calculation script for a block storage database when you want to perform a
default calculation (CALC ALL) of the database, or to run calculations you developed using any
of the following commands.

• & (ampersand)

• AGG

• ARRAY

• CALC ALL

• CALC AVERAGE

• CALC DIM

• CALC FIRST

• CALC LAST

• CALC TWOPASS

• CCONV

• CLEARBLOCK

• CLEARCCTRACK

Chapter 3
Calculation Command List

3-6

• CLEARDATA

• DATACOPY

• DATAEXPORT

• DATAEXPORTCOND

• DATAIMPORTBIN

• DATAMERGE

• ELSE

• ELSEIF

• ENDIF

• EXCLUDE…ENDEXCLUDE

• FIX…ENDFIX

• FIXPARALLEL...ENDFIXPARALLEL

• IF

• LOOP...ENDLOOP

• POSTFIXPARALLEL

• SET Commands

• SET AGGMISSG

• SET CACHE

• SET CALCDIAGNOSTICS

• SET CALCPARALLEL

• SET CALCTASKDIMS

• SET CCTRACKCALC

• SET CLEARUPDATESTATUS

• SET COPYMISSINGBLOCK

• SET CREATEBLOCKONEQ

• SET CREATENONMISSINGBLK

• SET DATAEXPORTOPTIONS

• SET DATAIMPORTIGNORETIMESTAMP

• SET EMPTYMEMBERSETS

• SET FRMLBOTTOMUP

• SET FRMLRTDYNAMIC

• SET HYBRIDBSOINCALCSCRIPT

• SET MSG

• SET NOTICE

• SET REMOTECALC

• SET RUNTIMESUBVARS

• SET SCAPERSPECTIVE

• SET TRACE

Chapter 3
Calculation Command List

3-7

• SET UPDATECALC

• SET UPTOLOCAL

• THREADVAR

• USE_MDX_INSERT (for aggregate storage custom calculations only)

• VAR

& (ampersand)
The & calculation command for Essbase prefaces a substitution variable in a calculation script.

Syntax

&variableName;

Parameters

variableName
The name of the substitution variable set on the database.

Notes

Essbase treats strings beginning with & as substitution variables, replacing them with values
before parsing the calculation script.

Example

&CurQtr;

becomes

Qtr1;

if substitution variable &CurQtr has the value "Qtr1".

AGG
The AGG calculation command consolidates Essbase database values. This command
ignores all member formulas, consolidating only parent/child relationships.

The AGG command performs a limited set of high-speed consolidations. Although AGG is
faster than the CALC commands when calculating sparse dimensions, it cannot calculate
formulas; it can only perform aggregations based on the database structure. AGG aggregates
a list of sparse dimensions based on the hierarchy defined in the database outline. If a member
has a formula, it is ignored, and the result does not match the relationship defined by the
database outline.

If you want to aggregate a dimension that contains formulas:

1. Calculate any members that are "leaf" members (that is, level 0).

2. Aggregate the dimension, using the AGG command.

3. Calculate all other members with formulas that have not been calculated yet.

Chapter 3
Calculation Command List

3-8

Syntax

AGG (dimList);

Parameters

dimList
Name of a dimension or comma-separated list of dimensions.

Notes

• AGG only works with sparse dimensions.

• When a dimension contains fewer than six consolidation levels, AGG is typically faster
than CALC. Conversely, the CALC command is usually faster on dimensions with six or
more levels.

• AGG follows the rules for any defined FIX command.

Example

AGG(Market);
AGG(Product,Market,Scenario);

Related Topics

• CALC ALL
The CALC ALL calculation command calculates and aggregates the entire Essbase
database based on the database outline.

• CALC DIM
The CALC DIM calculation command for Essbase calculates formulas and aggregations
for each member of the specified dimensions.

• SET AGGMISSG
The SET AGGMISSG calculation command specifies whether Essbase consolidates
#MISSING values in the database for this calculation.

ARRAY
The ARRAY calculation command for Essbase declares one-dimensional array variables.

Syntax

ARRAY arrayVariableName [dimName] = { constList};

Parameters

arrayVariableName
Comma-delimited list of one or more array variable names.

dimName
Dimension whose size determines the size of the array variable. Surround dimName with
brackets [].

Chapter 3
Calculation Command List

3-9

constList
Optional list of data values used to initialize the array variable(s). If no initialization is
performed, the array variables are set to #MISSING. The order of the values corresponds to the
order of the members in the dimension used to define the array.

Notes

• Typically, arrays are used to temporarily store variables as part of a member formula. The
variables cease to exist after the calculation script ends. The size of the array variable is
determined by the corresponding dimension (for example, if dimension Period has 12
members, ARRAY Discount[Period] has 12 members).

• To create multiple arrays simultaneously, separate the array declarations in the ARRAY
command with commas, as shown in the Example.

• You can calculate data for an array directly as part of a member formula. As the member
formula is processed, each value in the array is assigned as its member is evaluated in the
calculation.

• Do not use quotation marks (") in variables; for example:

ARRAY "discount"

Example

ARRAY discount[Scenario];

yields an array of 4 entries, with the values 1 through 4 entered in those four entries.

ARRAY discount[Scenario] = {1, 2, 3, 4};
ARRAY discount[Scenario], tmpProduct[Product];

yields two arrays:

1. discount, corresponding to Scenario and containing four members

2. tmpProduct, corresponding to Product and containing nine members

See Also

VAR

CALC ALL
The CALC ALL calculation command calculates and aggregates the entire Essbase database
based on the database outline.

Syntax

CALC ALL [EXCEPT DIM (dimList) | MBR (mbrList)];

Parameters

EXCEPT
Defines an exception list of dimensions or members to be excluded from calculation.

Chapter 3
Calculation Command List

3-10

DIM
Single-dimension specification.

dimList
Optional comma-delimited list of dimensions.

MBR
Single-member specification.

mbrList
Optional comma-delimited list of members, member set functions, or range functions.

Notes

The order in which dimensions are processed depends on their characteristics in the outline.
For more information, see Defining Calculation Order.

Example

CALC ALL;
CALC ALL EXCEPT DIM(Product);

See Also

• CALC DIM

• SET FRMLBOTTOMUP

• SET UPDATECALC

CALC AVERAGE
The CALC AVERAGE calculation command for Essbase calculates members tagged as time
balance Average or Average Non-Missing. All other member calculations are ignored.

Syntax

CALC AVERAGE;

Notes

This command calculates based on the Accounts dimension; it does not do a Time Series
calculation on the Time dimension.

Example

CALC AVERAGE;

Related Topics

• CALC FIRST
The CALC FIRST calculation command for Essbase calculates all members that are
tagged in the database outline as time balance First. Only members tagged as time
balance First are calculated using this command. Other members are ignored.

Chapter 3
Calculation Command List

3-11

• CALC LAST
The CALC LAST calculation command for Essbase calculates all members that are tagged
in the database outline as time balance Last. Only members tagged as time balance Last
are calculated using this command. Other members are ignored.

CALC DIM
The CALC DIM calculation command for Essbase calculates formulas and aggregations for
each member of the specified dimensions.

Syntax

CALC DIM (dimList);

Parameters

dimList
Dimension or comma-delimited list of dimensions to be calculated.

Notes

The order in which dimensions are calculated depends on whether they are dense or sparse.
Dense dimensions are calculated first, in the order of dimList. The sparse dimensions are then
calculated in a similar order.

Example

CALC DIM(Accounts);

CALC DIM(Dense1,Sparse1,Sparse2,Dense2);

In the above example, the calculation order is: Dense1, Dense2, Sparse1, Sparse2. If your
dimensions need to be calculated in a particular order, use separate CALC DIM commands:

CALC DIM(Dense1);
CALC DIM(Sparse1);
CALC DIM(Sparse2);
CALC DIM(Dense2);

Related Topics

• CALC ALL
The CALC ALL calculation command calculates and aggregates the entire Essbase
database based on the database outline.

• SET UPDATECALC
The SET UPDATECALC calculation command for Essbase turns Intelligent Calculation on
or off.

• SET CLEARUPDATESTATUS
The SET CLEARUPDATESTATUS calculation command specifies when Essbase marks
data blocks as clean. This clean status is used during Intelligent Calculation.

Chapter 3
Calculation Command List

3-12

CALC FIRST
The CALC FIRST calculation command for Essbase calculates all members that are tagged in
the database outline as time balance First. Only members tagged as time balance First are
calculated using this command. Other members are ignored.

Syntax

CALC FIRST;

Notes

This command calculates based on the Accounts dimension; it does not do a Time Series
calculation on the Time dimension.

Example

CALC FIRST;

Related Topics

• CALC AVERAGE
The CALC AVERAGE calculation command for Essbase calculates members tagged as
time balance Average or Average Non-Missing. All other member calculations are ignored.

• CALC LAST
The CALC LAST calculation command for Essbase calculates all members that are tagged
in the database outline as time balance Last. Only members tagged as time balance Last
are calculated using this command. Other members are ignored.

CALC LAST
The CALC LAST calculation command for Essbase calculates all members that are tagged in
the database outline as time balance Last. Only members tagged as time balance Last are
calculated using this command. Other members are ignored.

Syntax

CALC LAST;

Notes

This command calculates based on the Accounts dimension; it does not do a Time Series
calculation on the Time dimension.

Example

CALC LAST;

Related Topics

• CALC AVERAGE
The CALC AVERAGE calculation command for Essbase calculates members tagged as
time balance Average or Average Non-Missing. All other member calculations are ignored.

Chapter 3
Calculation Command List

3-13

• CALC FIRST
The CALC FIRST calculation command for Essbase calculates all members that are
tagged in the database outline as time balance First. Only members tagged as time
balance First are calculated using this command. Other members are ignored.

CALC TWOPASS
The CALC TWOPASS calculation command for Essbase calculates all members that are
tagged in the database outline as two-pass. These members must be on a dimension tagged
as Accounts.

Note:

Do not use two-pass calculation with hybrid mode cubes. Only use solve order.

Syntax

CALC TWOPASS;

Notes

Member formulas are applied at each consolidated level of the database. All non two-pass
members are ignored during this process.

Example

CALC TWOPASS;

CCONV
The CCONV calculation command for Essbase calculates currency conversions.

This command is available only if you generated a currency cube to go along with your main
cube. To convert currencies, you must also define specific dimensions in the main cube.

Syntax

CCONV currExchMbr | TOLOCALRATE curType;

Parameters

currExchMbr
Currency name containing the required exchange rate. This is a member from the currency
cube.

TOLOCALRATE
Converts a converted currency back to the original, local rate. To use this, CCTRACK must be
set to TRUE in the application configuration.

curType
Currency type. This is a member from the CurType dimension in the currency cube.

Chapter 3
Calculation Command List

3-14

Notes

You convert data values from a local to a common, converted currency using the CCONV
currExchMbr command. For example, you might convert data from a European currency into
US$. You can then convert the data values back to the local currency using the CCONV
TOLOCALRATE curType command.

You can convert all or part of the main cube using the rates defined in the currency cube. You
can keep both the local and converted values in the main cube, or you can overwrite the local
values with the converted values.

If you want to overwrite local values with converted values:

You do not need to create a CURPARTITION dimension in the main database. Use the
CCONV command in a calculation script to convert all the data in the database. Note: You
cannot use the FIX command if the CCTRACK setting is set to TRUE (the default) in the
application configuration and you are not using a CURPARTITION dimension.

If you want to keep both local and converted values:

In the main cube, define the members that store the local and converted values. You do this by
creating a CURPARTITION dimension. The CURPARTITION dimension has two partitions, one
for local values and one for converted values.

1. Use the DATACOPY command to copy data from the local to the converted partition.

2. Use the FIXcommand to calculate only the converted partition and use the CCONV
command to convert the data.

3. Use the CALC ALL command to recalculate the cube.

Example

CCONV YEN;

converts the data values from local currency values to Japanese Yen using the YEN exchange
rate from the currency cube.

CCONV TOLOCALRATE "Act xchg";

converts the data values back to the local currencies using the Act xchg currency type from the
currency cube.

CCONV Actual->US$;

converts the data values from local currencies to US$ using the Actual, US$ exchange rate
from the currency cube.

FIX (Act)
 CCONV TOLOCALRATE "Act xchg";
ENDFIX

Chapter 3
Calculation Command List

3-15

converts the data in the Act currency partition back to the local currencies using the Act xchg
currency type from the currency cube.

DATACOPY Act TO Actual;
FIX (Actual)
 CCONV "Act xchg"->US$;
ENDFIX
CALC ALL;

copies Actual data values from the local currency partition to the converted currency partition.
Fixes on the Actual data (in the converted partition) and converts it using the Act xchg, US$
rate from the currency cube. Recalculates the cube.

See Also

SET UPTOLOCAL

SET CCTRACKCALC

CLEARCCTRACK

CCTRACK (configuration parameter)

Designing and Building Currency Conversion Applications

CLEARBLOCK
The CLEARBLOCK calculation command for Essbase sets cell values to #MISSING, and if all
the cells are empty or #MISSING, removes the block. This command is useful when you need to
clear old data values across blocks before loading new values.

CLEARBLOCK helps optimize database calculation speed. For example, if an initial calculation
creates numerous consolidated level blocks, subsequent recalculations take longer, because
Essbase must pass through the additional blocks. CLEARBLOCK clears blocks before a
calculation occurs.

Another example: if a database to be copied contains a lot of empty blocks, copying the
database also copies the empty blocks, resulting in a many more empty blocks. Using
CLEARBLOCK EMPTY first makes the copy process more efficient.

If you use CLEARBLOCK within a FIX statement containing dense dimension members,
Essbase clears only the cells within the fixed range, and not the entire block.

Syntax

CLEARBLOCK ALL | UPPER | NONINPUT | DYNAMIC | EMPTY;

Parameters

ALL
Clears and removes all blocks.

UPPER
Clears consolidated level blocks.

Chapter 3
Calculation Command List

3-16

NONINPUT
Clears blocks containing derived values. Applies to blocks that are completely created by a
calculation operation. Cannot be a block into which any values were loaded.

DYNAMIC
Clears blocks containing values derived from Dynamic Calc and Store member combinations.

EMPTY
Removes empty blocks (blocks where all values are #MISSING).

Notes

• If you regularly enter data values directly into a consolidated level, the UPPER option
overwrites your data. In this case, you should use the NONINPUT option, which only clears
blocks containing calculated values.

• If you use CLEARBLOCK EMPTY, the resulting, smaller database can be processed more
efficiently; however, the CLEARBLOCK EMPTY process itself can take some time,
depending on the size and density of the database.

• If CLEARBLOCK is used within a FIX command on a dense dimension, the FIX statement
is ignored and all blocks are scanned for missing cells.

• In a FIX statement, blocks are cleared only if the entire CLEARBLOCK block is selected by
the FIX (no dense dimensions in the FIX), and the block is update-able (it is not a
replicated-partition target region). If you wish to retain empty blocks, then in the FIX
statement, set the blocks to #MISSING, instead of using CLEARBLOCK.

For example, the following command block clears East data and removes the block
(because Market is sparse):

FIX("East")
 CLEARBLOCK ALL;
ENDFIX

The following command block sets New York data values to #MISSING without removing
the blocks:

FIX("East")
 "New York" = #Missing;
ENDFIX

• To use this command with parallel calculation, use FIXPARALLEL...ENDFIXPARALLEL
instead of SET CALCPARALLEL.

Example

CLEARBLOCK ALL;
CLEARBLOCK UPPER;
CLEARBLOCK NONINPUT;
CLEARBLOCK DYNAMIC;
CLEARBLOCK EMPTY;

See Also

CLEARDATA

Chapter 3
Calculation Command List

3-17

CLEARCCTRACK
The CLEARCCTRACK calculation command for Essbase clears the internal exchange rate
tables created by the CCTRACK configuration setting.

Syntax

CLEARCCTRACK;

Notes

Use this command after a data load, to reset the exchange rate tables before rerunning a
currency conversion. You can use this command inside a FIX statement to clear the exchange
rates for a currency partition.

Example

CLEARDATA Actual;
FIX(Actual)
CLEARCCTRACK;
ENDFIX

Clears the Actual data, fixes on the Actual data (in the converted partition) and clears the
internal exchange rate tables for the Actual data.

See Also

CCTRACK configuration setting

SET CCTRACKCALC

SET UPTOLOCAL

CCONV

CLEARDATA
The CLEARDATA calculation command clears data values from slices of the Essbase cube,
setting the cleared values to #MISSING.

This command is useful when you need to clear existing data values before loading new
values into a block storage database.

Syntax

CLEARDATA mbrName;

Parameters

mbrName
Any valid single member name or member combination, or a function that returns a single
member or member combination.

Chapter 3
Calculation Command List

3-18

Notes

• CLEARDATA can only clear a section of a database. It cannot clear the entire database. To
clear the entire database, use the alter database MaxL statement with the reset keyword.

• CLEARDATA does not work if placed in an IF statement.

• Generally, use CLEARBLOCK instead of CLEARDATA if you wish to remove blocks from
the database, which can improve performance.

• To use this command with parallel calculation, use FIXPARALLEL...ENDFIXPARALLEL
instead of SET CALCPARALLEL.

• Using CLEARDATA in a FIX statement on a sparse dimension clears the data and
removes the blocks, to improve performance. Blocks are cleared only if the entire
CLEARDATA block is selected by the FIX (no dense dimensions in the FIX), and the block
is update-able (it is not a replicated-partition target region). If you wish to retain empty
blocks, then in the FIX statement, set the blocks to #MISSING, instead of using
CLEARDATA.

For example, the following command block clears New York data and removes the block
(because Market is sparse):

FIX("East")
 CLEARDATA "New York";
ENDFIX

The following command block sets New York data values to #MISSING without removing
the blocks:

FIX("East")
 "New York" = #Missing;
ENDFIX

Example

CLEARDATA Budget;

Clears all Budget data.

CLEARDATA Budget->Colas;

Clears only Budget data for the Colas product family.

DATACOPY
The DATACOPY calculation command copies a range of data cells to another range within the
Essbase database.

This command is useful when you must maintain an original set of data values and perform
changes on the copied data set.

DATACOPY is commonly used as part of the currency conversion process.

Chapter 3
Calculation Command List

3-19

DATACOPY is useful when you need to define multiple iterations of plan data.

To reduce typing, if any dimension(s) represented by the members in mbrName1 are not
represented in mbrName2, then by default the same member or members from mbrName1 are
assumed to exist in mbrName2 to complete the range. The reverse is not true. Any dimension
explicitly represented in mbrName2 MUST be represented by another member of the same
dimension in mbrName1.

The ranges specified by both mbrName1 and mbrName2 must be of the same size. The same
dimensions represented by the members that make up mbrName1 must also be present in
mbrName2.

Syntax

DATACOPY mbrName1 TO mbrName2;

Parameters

mbrName1 and mbrName2
Any valid single member name or member combination.

Notes

• The size of the copied dimensions must be equal to the destination (TO) size.

• DATACOPY follows the rules for any defined FIX command.

• To prevent creation of #MISSING blocks, add the following calculation command to your
script:

SET COPYMISSINGBLOCK OFF;

• To use this command with parallel calculation, use FIXPARALLEL...ENDFIXPARALLEL
instead of SET CALCPARALLEL.

Example

DATACOPY Plan TO Revised_Plan;

See Also

• SET COPYMISSINGBLOCK

• MDX Insert

DATAEXPORT
The DATAEXPORT calculation command writes data from an Essbase cube to a text or binary
file.

Syntax

For a text output file:

DATAEXPORT "File" "delimiter" "fileName" "missingChar"

Chapter 3
Calculation Command List

3-20

For a binary output file (DATAEXPORT to binary files is not supported across Essbase
releases, and is only supported between 64-bit operating systems):

DATAEXPORT "Binfile" "fileName"

Parameters

"File" | "Binfile"
Required keyword for the type of output file. Specify the appropriate keyword, then use the
associated syntax.

"delimiter"
Required for "File" exports
The character that separates fields; for example, ","
Do not use with "Binfile" exports

"fileName"
Required for "File" and "Binfile" exports
File name for the export file.

"missingChar"
Optional for output type "File"

• A text string to represent missing data values. Maximum length: 128 characters.

• "NULL" to skip the field, resulting in consecutive delimiters (such as ,,).

• Default value: #MI

Do not use with "Binfile" exports.

Notes

• In general, specify SET commands within the calculation script to specify various options,
and then use FIX…ENDFIX to refine data to be exported, including the DATAEXPORT
command within the FIX…ENDFIX command set. Without FIX…ENDFIX, the entire cube
is exported.

• Exported data from the cube is written to the <Application Directory>/app/appname/
dbname directory, unless the administrator has specified a different export location using
FILEGOVPATH. If you do not know where <Application Directory> is in your environment,
see Environment Locations in the Essbase Platform for an explanation.

Export files cannot be written to a client.

If the specified export file already exists, the export will fail. This is a safeguard against
overwriting existing export files.

• To use this command with parallel calculation, use FIXPARALLEL...ENDFIXPARALLEL
instead of SET CALCPARALLEL.

• Use the DATAIMPORTBIN command to import a previously exported binary export file.

• Calculation export locks one block at a time; all other blocks can be updated.

Description

The DATAEXPORT calculation command writes data into a text or binary output file.

Whereas the MaxL Export Data statement can export all, level 0, or input data from the entire
cube as text data, the DATAEXPORT calculation command also enables you to:

Chapter 3
Calculation Command List

3-21

• Use FIX…ENDFIX or EXCLUDE...ENDEXCLUDE calculations to select a slice of the cube
and use a DATAEXPORTCOND command to select data based on data values.

• Use parameters to qualify the type and destination filename of the export data.

• Use options provided by the SET DATAEXPORTOPTIONS command to refine export
content, format, or process.

• Use the SET DATAIMPORTIGNORETIMESTAMP command to manage the import
requirement for a matching outline timestamp.

Example

Text Output File: Level 0 Slice

SET DATAEXPORTOPTIONS
 {
 DataExportLevel "LEVEL0";
 };
DATAEXPORTCOND ("Sales">=1000);
FIX ("100-10","New York","Actual","Sales");
DATAEXPORT "File" "," "jan.txt" "#MI";
ENDFIX;

Specifies a level 0 data export level, limits output to data only with 1000 or greater Sales, fixes
the data slice, then exports to a text file located in the cube directory, using comma (,)
delimiters and specifying #MI for missing data values.

Text Output File: CSV Format for Federated Partition

The following examples export data in the required format for the DBMS_CLOUD package
(applicable when you use a federated partition to integrate your cube with Autonomous Data
Warehouse).

Example 1

By specifying the pivot dimension of the fact table as the DataExportColHeader, you can
generate a data file that is in the format required for DBMS_CLOUD. In this calc script
example, the pivot dimension is Measures.

SET DATAEXPORTOPTIONS
 {
 DataExportColHeader "Measures";
 DataExportOverwriteFile ON;
 DATAEXPORTDIMHEADER ON;
 DATAEXPORTCSVFORMAT ON;
 };
 DATAEXPORT "File" "," "out.txt" "NULL";

The example above generates a data file that is in the format required for DBMS_CLOUD, as
shown in the following output example. The fact table column names are in the header, and the
fields of each data record are comma separated.

"Year","Product","Market","Scenario","Sales","COGS","Margin","Marketing","Payr
oll","Misc","Total Expenses","Profit","Opening Inventory","Additions","Ending
Inventory"
"Jan","100-10","New York","Actual",678,271,407,94,51,0,145,262,2101,644,2067

Chapter 3
Calculation Command List

3-22

"Feb","100-10","New York","Actual",645,258,387,90,51,1,142,245,2067,619,2041
"Mar","100-10","New York","Actual",675,270,405,94,51,1,146,259,2041,742,2108

Example 2

In this calc script example, the pivot dimension is Year.

SET DATAEXPORTOPTIONS
 {
 DataExportColHeader "Year";
 DataExportOverwriteFile ON;
 DATAEXPORTDIMHEADER ON;
 DATAEXPORTCSVFORMAT ON;
 };
 DATAEXPORT "File" "," "out.txt" "NULL";

The example above generates a data file that is in the format required for DBMS_CLOUD, as
shown in the following output example. The fact table column names are in the header, and the
fields of each data record are comma separated.

"Product","Market","Scenario","Measures","Jan","Feb","Mar","Apr","May","Jun","
Jul","Aug","Sep","Oct","Nov","Dec"
"100-10","Utah","Actual","Additions",1762.0,1681.0,1482.0,1201.0,1193.0,1779.0
,2055.0,1438.0,1991.0,1443.0,1379.0,1415.0
"100-10","Utah","Actual","COGS",598.0,714.0,630.0,510.0,510.0,756.0,697.0,533.
0,624.0,535.0,536.0,600.0
"100-10","Utah","Actual","Ending
Inventory",5417.0,8379.0,10294.0,4125.0,3823.0,7861.0,7283.0,4636.0,6383.0,980
5.0,9247.0,8757.0
"100-10","Utah","Actual","Margin",383.0,449.0,363.0,389.0,431.0,445.0,458.0,39
4.0,401.0,350.0,353.0,437.0
"100-10","Utah","Actual","Marketing",201.0,240.0,210.0,171.0,171.0,254.0,235.0
,178.0,209.0,180.0,180.0,202.0
"100-10","Utah","Actual","Misc",2.0,1.0,3.0,1.0,1.0,0.0,0.0,3.0,2.0,2.0,1.0,0.
0
"100-10","Utah","Actual","Opening
Inventory",4636.0,7861.0,9805.0,3823.0,3571.0,7283.0,6383.0,4125.0,5417.0,9247
.0,8757.0,8379.0
"100-10","Utah","Actual","Payroll",121.0,116.0,116.0,116.0,116.0,116.0,121.0,1
16.0,121.0,116.0,116.0,116.0
"100-10","Utah","Actual","Profit",59.0,92.0,34.0,101.0,143.0,75.0,102.0,97.0,6
9.0,52.0,56.0,119.0

Binary Example 1: Export

SET DATAEXPORTOPTIONS
 {
 DataExportLevel "ALL";
 };
FIX ("New York");
DATAEXPORT "BinFile" "newyork.bin";
ENDFIX;

Chapter 3
Calculation Command List

3-23

Exports all New York blocks. Binary exports can be fixed only on sparse dimensions. Essbase
uses the same bitmap compression technique to create the file as is used by Essbase Kernel.

Binary Example 2: Import

SET DATAIMPORTIGNORETIMESTAMP OFF;
DATAIMPORTBIN "newyork.bin"

Imports the previously exported file. The timestamp must match. The data is imported to the
cube on which the calculation script is executed. Because only data was exported, to recreate
a cube after using DATAIMPORT to read in the data, you must recalculate the data.

See Also

• DATAEXPORTCOND

• DATAIMPORTBIN

• FIX…ENDFIX

• SET Commands

• SET DATAEXPORTOPTIONS

• SET DATAIMPORTIGNORETIMESTAMP

• MDX Export

DATAEXPORTCOND
The DATAEXPORTCOND calculation command for Essbase specifies value conditions that
select export records to be included or marked as "#NoValue" in the export output file.

Syntax

DATAEXPORTCOND "conditionExpression" ReplaceAll;

Parameters

conditionExpression
One or more conditions separated by a logical AND or OR. Each condition specifies a
member name the value of which is equal to (=), greater than (>), greater than or equal (>=).
less than (<), or less than or equal (<=) to a specified value or the value of another member;
for example, "Sales" > 500 AND "Ending Inventory" < 0.
The condition list is processed from left to right. Thus the result of cond1 is calculated first,
then the operator (AND or OR) is calculated against cond2, and so on. While processing
conditions, if a resultant condition is found to be false, the entire record is omitted from the
output file

ReplaceAll
The keyword that indicates whether exported records are to be excluded from the initial export
set of records, or included but marked as "#NoValue". The intial export set of records is
determined by the region defined by the FIX command and SET commands that apply to the
data export.

• When ReplaceAll is not specified, only those records within the initial export set are
exported that meet the specified conditions.

Chapter 3
Calculation Command List

3-24

• When ReplaceAll is specified, all records within the initial export set are exported, but the
AND and OR specifications are ignored. All fields that do not satisfy any of the specified
conditions are marked as #NoValue.

Notes

Use DATAEXPORTCOND to specify conditions that identify records to be exported based on
field values. Whether a condition can specify a member compared to a numeric value or
compared to another member depends the member being a row or column element of the
output. In order to represent multidimensional data within a two-dimension file, the members of
one dense dimension become columns. The combinations of the members of the other dense
dimensions and the sparse dimensions create rows. (You can use the DataExportColHeader
option of the SET DATAEXPORTOPTIONS calculation command to specify which dimension
defines the columns.)

• If a condition is placed on a column member, the value of the specified member can be
compared to a specific value (for example, Sales > 500) or to the value of another member
of the same export record (for example, Sales < Cost).

• If a condition is placed on a row member, the value of the specified member can be
compared only to a specific value (for example, Cost < 500).

Example

Not Using ReplaceAll

SET DATAEXPORTOPTIONS
 {
 DataExportLevel "ALL";
 };
DATAEXPORTCOND (Actual >= 2 AND Sales > 2000 OR COGS > 600);
FIX("100-10","East");
 DATAEXPORT "File" "," "E:\temp\2222.txt";
ENDFIX;

Sets the contents of the initial export file through the DataExportLevel option of the SET
DATAEXPORTOPTIONS command and FIX…ENDFIX command. The DATAEXPORTCOND
command specifies the records to be included when the Actual value is greater than or equal
to 2 and Sales are greater than 2000, or when the Actual value is greater than or equal to 2
and COGS is greater than 600. The conditions are specified on the column Actual, the column
Sales, and the column COGS. The exported data includes only records that meet the
conditions. Sample output:

"Sales","COGS","Marketing","Payroll","Misc","Opening
Inventory","Additions","Ending Inventory"
"100-10","East"
"Jun","Actual",2205,675,227,177,2,3775,2028,3598
"Jul","Actual",2248,684,231,175,2,3598,1643,2993
"Sep","Actual",2012,633,212,175,4,2389,1521,1898
"Jun","Budget",2070,620,180,120,#Mi,2790,1700,2420
"Jul","Budget",2120,620,180,120,#Mi,2420,1400,1700
"Aug","Budget",2120,620,180,120,#Mi,1700,1400,980

Chapter 3
Calculation Command List

3-25

Using ReplaceAll

SET DATAEXPORTOPTIONS
{
DataExportLevel "ALL";
DATAEXPORTOVERWRITEFILE ON;
};
DATAEXPORTCOND (Actual >= 2 AND Sales > 2000 OR COGS > 600) ReplaceAll;
FIX("100-10","East");
DATAEXPORT "File" "," "E:\temp\2222.txt";
ENDFIX;

Using the same conditions as the prior example, but including "ReplaceAll" in the
DATAEXPORT command, the exported data includes all records specified by the FIX
command. #NoValue is inserted for fields that do not meet the specified conditions. Sample
output:

"Sales","COGS","Marketing","Payroll","Misc","Opening
Inventory","Additions","Ending
Inventory" "100-10","East"
"Jan","Actual",#NoValue,#NoValue,199,175,2,4643,1422,4253
"Feb","Actual",#NoValue,#NoValue,196,175,3,4253,1413,3912
"Mar","Actual",#NoValue,#NoValue,199,175,3,3912,1640,3747
"Apr","Actual",#NoValue,606,204,177,3,3747,1824,3701
"May","Actual",#NoValue,622,210,177,4,3701,2023,3775
"Jun","Actual",2205,675,227,177,2,3775,2028,3598
"Jul","Actual",2248,684,231,175,2,3598,1643,2993
"Aug","Actual",2245,684,231,175,#NoValue,2993,1641,2389
"Sep","Actual",2012,633,212,175,4,2389,1521,1898
"Oct","Actual",#NoValue,#NoValue,196,175,3,1898,1535,1677
"Nov","Actual",#NoValue,#NoValue,192,175,#NoValue,1677,1584,1553
"Dec","Actual",#NoValue,#NoValue,200,175,2,1553,1438,1150
"Jan","Budget",#NoValue,#NoValue,160,120,#Mi,4490,1100,3900
"Feb","Budget",#NoValue,#NoValue,160,120,#Mi,3900,1200,3460
"Mar","Budget",#NoValue,#NoValue,160,120,#Mi,3460,1400,3170
"Apr","Budget",#NoValue,#NoValue,150,120,#Mi,3170,1500,2920
"May","Budget",#NoValue,#NoValue,160,120,#Mi,2920,1700,2790
"Jun","Budget",2070,620,180,120,#Mi,2790,1700,2420
"Jul","Budget",2120,620,180,120,#Mi,2420,1400,1700
"Aug","Budget",2120,620,180,120,#Mi,1700,1400,980
"Sep","Budget",#NoValue,#NoValue,150,120,#Mi,980,1300,390
"Oct","Budget",#NoValue,#NoValue,110,70,#Mi,390,1180,110
"Nov","Budget",#NoValue,#NoValue,150,120,#Mi,110,1460,60
"Dec","Budget",#NoValue,#NoValue,150,120,#Mi,60,1300,-260

DATAIMPORTBIN
The DATAIMPORTBIN calculation command for Essbase imports the binary output file
previously exported with the DATAEXPORT "Binfile" calculation command.

You can use this command to import previously exported binary files. For example, you can
use DATAEXPORT "Binfile" and DATAIMPORTBIN as a method for data backup and recovery.

Chapter 3
Calculation Command List

3-26

Note:

DATAIMPORTBIN is not supported across Essbase releases.

Syntax

DATAIMPORTBIN fileName;

Parameters

fileName
Full path name for the binary input file to be imported.

Notes

• The outline timestamp is included with the export file created by DATAEXPORT. By default,
the DATAIMPORTBIN process checks the timestamp. Use the SET
DATAIMPORTIGNORETIMESTAMP calculation command with DATAIMPORT to bypass
checking the timestamp. See SET DATAIMPORTIGNORETIMESTAMP for details.

• Use DATAIMPORTBIN only with files created by DATAEXPORT "Binfile".

Example

DATAIMPORTBIN e:\january\sales.bin;

Specifies the binary file e:\january\sales.bin is to be imported to the database for which the
calculation script is being run.

DATAMERGE
The DATAMERGE calculation command for Essbase merges a range of data cells from the
current scenario to a baseline target, or to another scenario. This command is useful when,
after working on a scenario, you decide to commit the changes.

Syntax

DATAMERGE sourceMbrName targetMbrName [NOCALC] [SBSOURCE|SBTARGET];

Parameters

sourceMbrName
A single sandbox member name or member combination.

targetMbrName
A single sandbox member name.

NOCALC
Keyword indicating that only cells with cell status of INPUT or LOAD should be merged.

SBSOURCE or SBTARGET
Keyword indicating a merge preference:

Chapter 3
Calculation Command List

3-27

• SBSOURCE—The default. If merge source and merge target have different values, apply
the source value to the target.

• SBTARGET—If merge source and merge target have different values, apply the target
value to the source.

Notes

• Use of this command presumes you have created and provisioned a cube for scenario
modeling.

• The merge process iterates over all non-missing cells in the source, and checks whether
the cell should be copied into the target. The decision depends on the value of the optional
SOURCE | TARGET keyword (SOURCE is default). If a cell needs to be merged, Essbase
copies the cell's value, transaction ID, and status from the source to the target, and
updates the cell status to MERGED.

Example

Fix(@Relative(Colas,0))
DATAMERGE sb1->2016 sb2 NOCALC SBTARGET;
EndFix

ELSE
The ELSE calculation command for Essbase designates a conditional action to be performed
in an IF statement. All actions placed after the ELSE in an IF statement are performed only if
the test in the IF statement generates a value of FALSE.

Syntax

ELSE statement ; [...statement;] ENDIF;

Parameters

statement
Those operations that are to be performed in the event that the IF test including the ELSE
command produces a FALSE, or 0, result.

Notes

• The ELSE command can only be used in conjunction with an IF command.

• You do not need to end ELSE statements with ENDIF statements. Only IF statements
should be ended with ENDIF statements.

Example

The following example is based on the Sample Basic database. This calculation script tests to
see if the current member in the Market dimension is a descendant of West or East. If so,
Essbase multiplies the value for Marketing by 1.5. If the current member is not a descendant of
West or East, Essbase multiplies the value for Marketing by 1.1.

Marketing
(IF (@ISMBR(@DESCENDANTS(West))
 OR
 (@ISMBR(@DESCENDANTS(East)))

Chapter 3
Calculation Command List

3-28

Marketing = Marketing * 1.5;
ELSE
Marketing = Marketing * 1.1;
ENDIF;

Related Topics

• ELSEIF
The ELSEIF calculation command for Essbase designates a conditional test and
conditions that are performed if the preceding IF test generates a value of FALSE. For this
reason, multiple ELSEIF commands are allowed following a single IF.

• ENDIF
The ENDIF calculation command for Essbase marks the end of an IF command sequence.
The ENDIF command can be used only in conjunction with IF or IF ... ELSEIF statements.

• IF
The IF calculation command for Essbase performs conditional tests within a formula. Using
the IF statement, you can define a Boolean test, as well as formulas to be calculated if the
test returns either a TRUE or FALSE value.

ELSEIF
The ELSEIF calculation command for Essbase designates a conditional test and conditions
that are performed if the preceding IF test generates a value of FALSE. For this reason,
multiple ELSEIF commands are allowed following a single IF.

Syntax

ELSEIF(condition) statement ; [...statement ;]
ELSEIF | ELSE | ENDIF

Parameters

condition
Formula or function that returns a Boolean value of TRUE (a nonzero value) or FALSE (a zero
value).

statement
Those operations that are to be performed in the event that the IF test (including the ELSE
command) produces a FALSE, or 0, result.

Notes

• The ELSEIF command must be used in conjunction with an IF command.

• You do not need to end ELSEIF statements with ENDIF statements. Only IF statements
should be ended with ENDIF statements. For example:

 IF (condition)
 statement;
 IF (condition)
 statement;
 ELSEIF (condition)
 statement;
 ENDIF;

Chapter 3
Calculation Command List

3-29

 statement;
 ENDIF;

Example

The following example is based on the Sample Basic database. This calculation script tests to
see if the current member in the Market dimension is a descendant of West or East. If so,
Essbase multiplies the value for Marketing by 1.5. The calculation script then tests to see if the
current member is a descendant of South. If so, Essbase multiplies the value for Marketing
by .9. If the current member is not a descendant of West, East, or South, Essbase multiplies
the value for Marketing by 1.1.

IF (@ISMBR(@DESCENDANTS(West))
 OR
 @ISMBR(@DESCENDANTS(East))
)
 Marketing = Marketing * 1.5;
ELSEIF(@ISMBR(@DESCENDANTS(South))
)
 Marketing = Marketing * .9;
ELSE
 Marketing = Marketing * 1.1;
ENDIF;

Related Topics

• ELSE
The ELSE calculation command for Essbase designates a conditional action to be
performed in an IF statement. All actions placed after the ELSE in an IF statement are
performed only if the test in the IF statement generates a value of FALSE.

• ENDIF
The ENDIF calculation command for Essbase marks the end of an IF command sequence.
The ENDIF command can be used only in conjunction with IF or IF ... ELSEIF statements.

• IF
The IF calculation command for Essbase performs conditional tests within a formula. Using
the IF statement, you can define a Boolean test, as well as formulas to be calculated if the
test returns either a TRUE or FALSE value.

ENDIF
The ENDIF calculation command for Essbase marks the end of an IF command sequence.
The ENDIF command can be used only in conjunction with IF or IF ... ELSEIF statements.

Syntax

ENDIF;

Notes

• You must supply an ENDIF statement for every IF statement in your formula or calculation
script. If you do not supply the required ENDIF statements, your formula or calculation
script does not verify.

Chapter 3
Calculation Command List

3-30

• If you are using an IF statement nested within another IF statement, end each IF with an
ENDIF. For example:

"Opening Inventory"
 (IF (@ISMBR(Budget))
 IF (@ISMBR(Jan))
 "Opening Inventory" = Jan;
 ELSE
 "Opening Inventory" = @PRIOR("Ending Inventory");
 ENDIF;
 ENDIF;)

• You do not need to end ELSE or ELSEIF statements with ENDIF statements.

• Although ending ENDIF statements with a semicolon is not required, it is good practice to
follow each ENDIF statement in your formula or calculation script with a semicolon.

• IF, ELSE, ELSEIF, and ENDIF must all be used within a database outline formula, or must
be associated with a member in the database outline when used in a calculation script.

Example

The following example is based on the Sample Basic database. This calculation script tests to
see if the current member in the Market dimension is a descendant of West or East. If so,
Essbase multiplies the value for Marketing by 1.5. The calculation script then tests to see if the
current member is a descendant of South. If so, Essbase multiplies the value for Marketing
by .9. If the current member is not a descendant of West, East, or South, Essbase multiplies
the value for Marketing by 1.1.

IF (@ISMBR(@DESCENDANTS(West))
 OR
 @ISMBR(@DESCENDANTS(East))
)
 Marketing = Marketing * 1.5;
ELSEIF(@ISMBR(@DESCENDANTS(South))
)
 Marketing = Marketing * .9;
ELSE
 Marketing = Marketing * 1.1;
ENDIF;

Related Topics

• ELSE
The ELSE calculation command for Essbase designates a conditional action to be
performed in an IF statement. All actions placed after the ELSE in an IF statement are
performed only if the test in the IF statement generates a value of FALSE.

• ELSEIF
The ELSEIF calculation command for Essbase designates a conditional test and
conditions that are performed if the preceding IF test generates a value of FALSE. For this
reason, multiple ELSEIF commands are allowed following a single IF.

• IF
The IF calculation command for Essbase performs conditional tests within a formula. Using
the IF statement, you can define a Boolean test, as well as formulas to be calculated if the
test returns either a TRUE or FALSE value.

Chapter 3
Calculation Command List

3-31

EXCLUDE…ENDEXCLUDE
The EXCLUDE…ENDEXCLUDE calculation command block for Essbase allows you to define
a fixed range of members which are not to be affected by the associated commands.

The EXCLUDE command begins a fixed exclusion range of members which should not be
affected by the associated commands in the command block. The ENDEXCLUDE command
ends the EXCLUDE command block.

As shown in the example, you call ENDEXCLUDE after all of the commands in the EXCLUDE
command block have been called, and before the next element of the calculation script.

Specifying members that should not be calculated in an EXCLUDE..ENDEXCLUDE command
may be simpler than specifying a complex combination of member names in a FIX…ENDFIX
command.

Syntax

EXCLUDE (Mbrs)
COMMANDS ;
ENDEXCLUDE

Parameters

Mbrs
A member name or list of members from any number of database dimensions. Mbrs can also
contain:

• AND/OR operators. Use the AND operator when all conditions must be met. Use the OR
operator when one condition of several must be met.

• Member set functions, which are used to build member lists based on other members.

COMMANDS
The commands to be executed for the duration of the EXCLUDE.

Notes

• Use EXCLUDE…ENDEXCLUDE commands only within calculation scripts, not in outline
member formulas.

• You can include EXCLUDE commands within FIX command blocks.

• If a FIX command within an EXCLUDE command block specifies cells already specified by
the EXCLUDE statement, those cells are not calculated, and a warning message is posted
to the application log file.

• An EXCLUDE command block cannot include CALC ALL, CLEARDATA, and DATACOPY
commands.

• AND and OR operators have the same precedence and are evaluated from left to right.
Use parentheses to group the expressions. For example: A OR B AND C is the same as ((A
OR B) AND C). However, subexpressions (for example, (A OR (B AND C)) are evaluated
before the whole expression, producing a different result.

• Inside EXCLUDE command blocks, the AND operator represents the intersection of two
sets; the OR operator represents the union of two sets. In formulas, these operators are
Boolean operators. Using the AND or OR operators on members that are from different
dimensions, returns:

Chapter 3
Calculation Command List

3-32

– AND: An empty set. The EXCLUDE statement is ignored and the calculation continues
with a warning message.

– OR: The union of two members sets. EXCLUDE (Jan OR Market) is identical to FIX
(Jan, Market).

• NOT operators are not supported in EXCLUDE command blocks. Use the @REMOVE
function.

• You do not need to follow ENDEXCLUDE with a semicolon.

• Use the @ATTRIBUTE and @WITHATTR functions to specify attributes within EXCLUDE
command blocks; for example EXCLUDE(@ATTRIBUTE(Can)). FIX(Can) is not supported.

• You cannot use EXCLUDE on a dimension if it is a subset of a dimension that you
calculate within the EXCLUDE command block. For example you could not use Market
"New Mkt" in an EXCLUDE statement if you calculate all of Market within the command
block.

• Dynamic Calc members are ignored in an EXCLUDE statement. If the only member in an
EXCLUDE statement is a Dynamic Calc member, an error message is displayed stating
that the EXCLUDE statement cannot contain a Dynamic Calc member.

• If the EXCLUDE command is issued from a calculation script and produces an empty set,
that part of the calculation is ignored, and the calculation continues to the next statement.
The application log entry for the calculation shows that the EXCLUDE statement evaluated
to an empty set (Calculating […] with fixed members []).

For example, consider the following statement in a Sample Basic calculation script:

 EXCLUDE (@children(Jan))
 CALC DIM (Accounts, Product, Market)
 ENDEXCLUDE

Since @children(Jan) is empty (Jan is a level 0 member), the EXCLUDE parameter is
ignored; the calculation operates on the entire database.

Similarly, if a region defining a partition or a security filter evaluates to an empty set,
Essbase behaves as if the region definition or security filter does not exist.

• Calculator function @RANGE and the cross-dimensional operator (->) cannot be used
inside an EXCLUDE Mbrs parameter).

Example

The following example excludes calculations on the children of Qtr4, enabling calculation of
other quarters in the Year dimension.

EXCLUDE (@CHILDREN(Qtr4))
CALC DIM (Year)
ENDEXCLUDE

Related Topics

• FIX…ENDFIX
The FIX…ENDFIX calculation command block restricts database calculations to a subset
of the Essbase database. All commands nested between the FIX and ENDFIX statements
are restricted to the specified database subset.

Chapter 3
Calculation Command List

3-33

• LOOP...ENDLOOP
The LOOP...ENDLOOP calculation command block for Essbase specifies the number of
times to iterate calculations. All commands between the LOOP and ENDLOOP statements
are performed the number of times that you specify.

FIX…ENDFIX
The FIX…ENDFIX calculation command block restricts database calculations to a subset of
the Essbase database. All commands nested between the FIX and ENDFIX statements are
restricted to the specified database subset.

This command is useful because it allows you to calculate separate portions of the database
using different formulas, if necessary. It also allows you to calculate the sub-section much
faster than you would otherwise.

The ENDFIX command ends a FIX command block. As shown in the example, you call
ENDFIX after all of the commands in the FIX command block have been called, and before the
next element of the calculation script.

The optional syntax within the {set} brackets is for selecting regions you define using
calculation tuples. Tuple selection helps you optimize asymmetric grid calculations across
dimensions, avoiding over-calculation.

Syntax

FIX ([{ tupleList|@GRIDTUPLES(dimensionList)},]fixMbrs)
COMMANDS ;
ENDFIX

Parameters

fixMbrs
A member name or list of members from any number of database dimensions. fixMbrs can
also contain:

• AND/OR operators. Use the AND operator when all conditions must be met. Use the OR
operator when one condition of several must be met.

• Member set functions, which are used to build member lists based on other members.

COMMANDS
The commands you want to be executed for the duration of the FIX.

tupleList
Optional list of calculation tuples. A calculation tuple is a list of members from two or more
sparse dimensions. Tuples can contain different numbers of members.
Examples:

("Diet Cola", "Cola", Florida)
(Cola, "New Hampshire")

tupleList must not contain members from dimensions used in fixMbrs.
When tuples overlap, the overlapping regions are calculated only once.

Chapter 3
Calculation Command List

3-34

@GRIDTUPLES(dimensionList)
Contextual tuple selection based on whichever members are present in a Smart View grid
POV at calculation run time. Pass to the @GRIDTUPLES function a list of two or more sparse
dimensions whose members from the active Smart View grid will be used to define calculation
regions.
Example:

@GRIDTUPLES(Product, Market)

Notes

• You can use SET EMPTYMEMBERSETS to stop the calculation within a FIX command if
the FIX evaluates to an empty member set.

• FIX commands can be nested within other FIX command blocks. For an example of an
incorrect use of nested FIX commands, see Using the FIX Command.

• FIX statements can only be used in calculation scripts, not in outline member formulas.
Use an IF command instead of a FIX statement in member formulas. For example:

Jan(
IF (Sales)
Actual=5;
ENDIF;)

• AND/OR operators have the same precedence; Essbase evaluates them from left to right.
Use parentheses to group the expressions. For example: A OR B AND C is the same as ((A
OR B) AND C). However, if you use (A OR (B AND C)), Essbase evaluates the sub-
expression in parentheses (B AND C) before the whole expression, producing a different
result.

• Inside FIX statements, the AND operator represents the intersection of two sets; the OR
operator represents the union of two sets. In formulas, these operators are Boolean
operators. Using the AND or OR operators on members that are from different dimensions,
returns:

– AND: An empty set. The FIX statement is ignored and the calculation continues with a
warning message.

– OR: The union of two members sets. FIX (Jan OR Market) is identical to FIX (Jan,
Market).

• In FIX statements, members from the same dimension are always acted on as OR unless
you specify otherwise.

• NOT operators are not supported in FIX statements. Use @REMOVE with FIX statements.

• You do not need to follow ENDFIX with a semicolon.

• You can specify attributes in FIX statements using @ATTRIBUTE and @WITHATTR; for
example FIX(@ATTRIBUTE(Can)). You must use these functions; FIX(Can) is not
supported.

• You cannot use a FIX statement on a dimension if it is a subset of a dimension that you
calculate within the FIX statement. For example you could not use Market "New Mkt" in a
FIX statement if you calculate all of Market within the FIX statement.

• Dynamic Calc members are ignored in a FIX statement. If the only member in a FIX
statement is a Dynamic Calc member, an error message is displayed stating that the FIX
statement cannot contain a Dynamic Calc member.

Chapter 3
Calculation Command List

3-35

• If the FIX command is issued from a calculation script and produces an empty set, that part
of the calculation is ignored, and the calculation continues to the next statement. The
application log entry for the calculation shows that the FIX statement evaluated to an
empty set (Calculating […] with fixed members []).

For example, using Sample Basic, assume this statement is in a calculation script:

 FIX (@children(Jan))
 CALC DIM (Accounts, Product, Market)
 ENDFIX

Since @children(Jan) is empty, the FIX is ignored; the calculation issues a warning and
operates on the entire database.

Similarly, if a region defining a partition or a security filter evaluates to an empty set,
Essbase issues a warning and behaves as if the region definition or security filter did not
exist.

• The @RANGE function and the cross-dimensional operator (->) cannot be used inside a
FIX fixMbrs parameter.

• Using an EXCLUDE…ENDEXCLUDE block to specify members that should not be
calculated may be simpler than specifying a complex combination of member names in a
FIX…ENDFIX block.

• The variable (varName) that is defined by a VAR calculation command cannot be used
within the FIX member statement. The FIX members are evaluated before the calculation
is executed, and variables are evaluated during runtime after the FIX statement is set.
Because variables can change during the calculation execution, you cannot use the
variable as part of the FIX statement. The following example shows the incorrect use of the
variable in the FIX member statement:

VAR varName=1;
FIX (@relative(@memberat(@List("Product1","Product2"),varName),0))
 COMMANDS;
ENDFIX

Example

FIX (Budget)
 CALC DIM (Year, Measures, Product, Market);
ENDFIX
FIX (Budget, Jan, Feb, Mar, @DESCENDANTS(Profit))
 CALC DIM (Product, Market);
ENDFIX

The following example fixes on the children of East and the Market dimension members with
the UDA "New Mkt".

FIX (@CHILDREN(East) OR @UDA(Market, "New Mkt"))

Chapter 3
Calculation Command List

3-36

The following example fixes on the children of East with the UDA "New Mkt" and Market
dimension members with the UDA "Big Mkt".

FIX((@CHILDREN(East) AND @UDA(Market, "New Mkt")) OR @UDA(Market,"Big Mkt"))

See Also

• Calculate Selected Tuples

• EXCLUDE…ENDEXCLUDE

• LOOP...ENDLOOP

• SET EMPTYMEMBERSETS

FIXPARALLEL...ENDFIXPARALLEL
The FIXPARALLEL...ENDFIXPARALLEL calculation command block for Essbase enables
parallel calculation on a block of commands by using up to a specified number of parallel
threads.

The ENDFIXPARALLEL command ends the FIXPARALLEL command block.

Syntax

FIXPARALLEL (numThreads, mbrList)
COMMANDS ;
[POSTFIXPARALLEL ([varName = ACCUMULATEVAR (threadVarName);]*);]
ENDFIXPARALLEL

Parameters

numThreads
A positive integer specifying the number of threads to be made available for parallel
calculation.

mbrList
A selection of slices for restricting the calculation. These slices become the task members for
the FIXPARALLEL calculation. Can be one of the following:

• A member name or list of members. Note: If mbrList is a single member from one or more
sparse dimensions, then it only generates one task, and cannot benefit from parallel
execution. Multiple members from one or more sparse dimensions generate multiple
tasks.

• Member set functions, which are used to build member lists based on other members.

The database regions (slices) you specify must be independent of one another.
From mbrList, Essbase generates tasks to be calculated in parallel.
Essbase uses only non-dynamic, non-shared, sparse members to create the tasks, which in
turn determine the blocks to be calculated. Therefore, mbrList must contain at least one non-
dynamic, non-shared, sparse member. In order to use multiple threads, mbrList should contain
two or more members from each sparse dimension. mbrList should indicate at least as many
tasks as the numThreads you specify.

Chapter 3
Calculation Command List

3-37

To avoid setting too many tasks in a FIXPARALLEL calculation, only those member
combinations that are to be used for tasks should be in the mbrList. All other sparse member
combinations belong in an inner or outer FIX.

COMMANDS
The commands you want to be executed for the duration of the FIXPARALLEL. These
commands are applied to the database regions described by mbrList. May include
THREADVAR commands.

POSTFIXPARALLEL
Optional block of operations to copy THREADVAR variables to VAR variables. Essbase
executes POSTFIXPARALLEL block once, before the FIXPARALLEL command finishes. See
POSTFIXPARALLEL.

varName
Name of a VAR variable.

threadVarName
Name of a THREADVAR variable.

ACCUMULATEVAR
Used within optional POSTFIXPARALLEL. Add up all the thread values of a given
THREADVAR variable. The sum is then assigned to a specified VAR variable.

ENDFIXPARALLEL
Closes the FIXPARALLEL command block.

Notes

• You control thread activity by using:

– The numThreads parameter

– The THREADVAR command

– The ACCUMULATEVAR command (inside POSTFIXPARALLEL)

– The mbrList parameter. The member list is an important tool for optimizing
calculations, because it tells Essbase how to divide the calculation regions into tasks.
As mbrList becomes larger, each task becomes smaller. When tasks become too
small, calculation memory overhead could slow down performance. However, when
tasks are too large, there might not be enough tasks for parallel calculation threads to
work on.

• @LIST function is not needed in FIXPARALLEL statements, and should not be used, as it
can lead to infinite loop in macro processing errors. You can easily list members
without using the @LIST function, as shown below:

/* Listing of members without @LIST */
FIXPARALLEL (@CHILDREN("West"), @CHILDREN("East"))
calc-command-block
ENDFIXPARALLEL

/* Do Not Use */
FIXPARALLEL (2, @LIST(@CHILDREN("West"), @CHILDREN("East")))
calc-command-block
ENDFIXPARALLEL

Chapter 3
Calculation Command List

3-38

Overview of FIXPARALLEL

Although parallel calculation can be performed using the CALCPARALLEL configuration
setting, in certain cases it might be beneficial to use the FIXPARALLEL command block
method.

In a FIXPARALLEL command block, you input some commands to be executed, along with a
number of threads (numThreads) and a member list (mbrList) specifying the database regions
(slices) to be calculated. Essbase creates a list of tasks from the combinations in the member
list, and divides the tasks across the threads.

FIXPARALLEL has the following benefits:

• You can use temporary variables during parallel calculation.

• You can use the DATACOPY, DATAEXPORT, or CLEARBLOCK commands.

• You can use it in conjunction with the @XREF or @XWRITE functions.

• You can export regions of the database in parallel. See the Example in this topic.

• In cases where CALCPARALLEL is not meeting performance requirements, and your
outline generates many empty tasks, or contains many task groupings with fewer tasks
than threads made available to the calculation. See also “Task Selection Comparison of
FIXPARALLEL and CALCPARALLEL.”

When considering converting FIX statements to FIXPARALLEL within a calculation script,
follow these guidelines:

• Focus on FIX statements that do not meet your performance needs using
CALCPARALLEL.

• Focus on FIX statements that require a substantial amount of work. Parallelizing a FIX
statement requires some overhead, so trying to parallelize calculation passes with light
workloads may not be beneficial. Heavier workloads, such as AGG and CALC DIM, are
good candidates for FIXPARALLEL.

• First, try parallelism with a single large sparse dimension, or by restricting mbrList to one or
more hierarchies with a limited stored member count. You may continue adding
dimensions to the member list to see if the calculation time continues to improve.

Note that when "parallel" calculation of tasks occurs, it means that the tasks are divided and
executed concurrently in any order. In other words, there is no guarantee that any task will be
executed before any other tasks. This is why the regions you specify must not have any data
or calculation dependencies. For example, assume there are two parallel threads, and there is
a division of work into tasks A, B, C, and D.

The possible sequence of calculation might be:

• Thread #1 executes A and then C.

• Thread #2 executes B and then D.

Or,

• Thread #1 executes A.

• Thread #2 executes B, then C, then D.

Or,

• Thread #1 executes C and then A.

• Thread #2 executes D and then B.

Chapter 3
Calculation Command List

3-39

Task Selection Comparison of FIXPARALLEL and CALCPARALLEL

CALCPARALLEL creates tasks from the last sparse dimension first, then the second from the
last, and so on, until it has enough tasks. FIXPARALLEL can choose from any sparse
dimension that is not in its COMMANDS block. For example (as is true with FIX), you cannot
FIXPARALLEL on (Level 0, Product) and also AGG (Product).

FIXPARALLEL can help you customize task selection, but it also assumes no
interdependencies when generating tasks from the selected region. CALCPARALLEL must
consider sparsity, outline order, dependencies, and member formulas in generating a task list.

Limitations of FIXPARALLEL Parallel Calculation

• For databases which are the target of transparent partitions, FIXPARALLEL is supported
only when remote calculation is disabled (SET REMOTECALC OFF).

• The following calculation commands are not supported in a FIXPARALLEL block:

– DATAEXPORT with options other than flat files

– DATAIMPORTBIN

– EXCLUDE...ENDEXCLUDE

• FIXPARALLEL supports up to 8 threads (more if Essbase is running on Oracle Exalytics
In-Memory machine). The data structures created in each thread and the algorithms used
for scheduling and executing tasks require significant CPU and memory resources.
Executing highly parallelized activities on servers with limited resources might have a
negative impact on performance and system stability. Therefore, using FIXPARALLEL with
more than 8 threads, when the ORACLEHARDWAREACCELERATION configuration
setting is set to FALSE, is not supported.

Example

FIXPARALLEL used with DATAEXPORT enables you to export restricted regions of database
in parallel. The following example uses two threads to export data relating to [California],
[Oregon], [Washington], [Utah], and [Nevada].

FIXPARALLEL (2, @CHILDREN("West"))
 DATAEXPORT "File" " " "dataOfWest.txt" "#MI";
ENDFIXPARALLEL

See also the example for POSTFIXPARALLEL.

IF
The IF calculation command for Essbase performs conditional tests within a formula. Using the
IF statement, you can define a Boolean test, as well as formulas to be calculated if the test
returns either a TRUE or FALSE value.

Syntax

IF(condition) statement ; [...statement ;] [ELSEIF...statement |
ELSE...statement]
 ENDIF;

Chapter 3
Calculation Command List

3-40

Parameters

condition
Formula or function that returns a Boolean value of TRUE (a nonzero value) or FALSE (a zero
value).

statement
Operations to be performed depending on the results of the test.

Notes

• The IF statement block can also use the ELSE and ELSEIF statements as part of its
decision syntax.

• For information about using ENDIF statements and semicolons with IF, ELSE, and ELSEIF
statements, see ENDIF.

• In calculation scripts, IF statements must be placed within parentheses and associated
with a specific database member. They must also be closed with ENDIF statements.

• You can specify attributes in IF statements using @ATTRIBUTE and @WITHATTR; for
example: IF (@ISMBR(@ATTRIBUTE(Can))) You must use the attribute functions;
IF(@ISMBR(Can)) is not supported.

Example

Example 1

IF(
 @ISMBR(@DESCENDANTS(Europe))
OR @ISMBR(@DESCENDANTS(Asia))
)
 Taxes = "Gross Margin" * "Foreign Tax Rate";
ELSE
 Taxes = "Gross Margin" * "Domestic Tax Rate";
ENDIF;

This test checks to see if the current cell includes a member that is a descendant of either the
Europe or Asia members. If it does, the formula calculates the taxes for the member based on
the foreign tax rate. If the current cell does not include a member from one of those groups,
then the domestic tax rate is used for the tax calculation.

Example 2

When you use an IF statement as part of a member formula in a calculation script, you need to
perform both of the following tasks:

• Associate the IF statement with a single member

• Enclose the IF statement in parentheses

A sample IF statement is illustrated in the following example:

Profit
(IF (Sales > 100)
 Profit = (Sales - COGS) * 2;
ELSE

Chapter 3
Calculation Command List

3-41

 Profit = (Sales - COGS) * 1.5;
ENDIF;)

Essbase cycles through the database and performs the following calculations:

1. The IF statement checks to see if the value of Sales for the current member combination is
greater than 100.

2. If Sales is greater than 100, Essbase subtracts the value in COGS from the value in Sales,
multiplies the difference by 2, and places the result in Profit.

3. If Sales is less than or equal to 100, Essbase subtracts the value in COGS from the value
in Sales, multiplies the difference by 1.5, and places the result in Profit.

The whole of the IF ... ENDIF statement is enclosed in parentheses and associated with the
Profit member, Profit (IF(...)...).

See Also

• ELSE

• ELSEIF

• ENDIF

LOOP...ENDLOOP
The LOOP...ENDLOOP calculation command block for Essbase specifies the number of times
to iterate calculations. All commands between the LOOP and ENDLOOP statements are
performed the number of times that you specify.

Syntax

LOOP (integer, [break])COMMANDS ;
ENDLOOP

Parameters

integer
The integer constant that indicates the number of times to execute the commands contained
in the loop block.

break
Optional parameter used to break the iterative process of a loop. break must be the name of a
temporary variable (VAR). Setting the value of the variable to 1 during the execution of the
loop causes the loop to break at the beginning of its next iteration.

COMMANDS
Those commands that you want to be executed for the duration of the LOOP.

Notes

LOOP is a block command that defines a block of commands for repeated execution. As with
the FIX command, you can nest LOOP statements if necessary.

The ENDLOOP command ends a LOOP command block. It terminates the LOOP block and
occurs after the commands in the LOOP block, but before any other commands.

Chapter 3
Calculation Command List

3-42

Example

In this example, the LOOP command finds a solution for Profit and Commission. This operation
is done as a loop because Profit and Commission are interdependent: Profit is needed to
evaluate Commission, and Commission is needed to calculate Profit. This example thus
provides a model for solving simultaneous formulas.

FIX("New York",Camera,Actual,Mar)
 LOOP(30)
 Commission = Profit * .15;
 Profit = Margin - "Total Expenses" - Commission;
 ENDLOOP;
ENDFIX

POSTFIXPARALLEL
The POSTFIXPARALLEL calculation command block for Essbase is an optional, post-
processing block you can use within FIXPARALLEL...ENDFIXPARALLEL to copy temporary,
thread-level THREADVAR values into longer-persisting VAR variables that you can use outside
of the FIXPARALLEL block.

Syntax

POSTFIXPARALLEL ([varName = ACCUMULATEVAR (threadVarName);]*);

Parameters

varName
Name of a VAR variable to store the sum of all the thread’s values of a specified THREADVAR
variable.

ACCUMULATEVAR
Keyword to add up all the thread values of a specified THREADVAR variable. The sum is then
assigned to a specified VAR variable.

threadVarName
Name of a THREADVAR variable.

Notes

To copy temporary THREADVAR values into VAR variables you can use outside
FIXPARALLEL, use the following task flow:

1. Declare a VAR variable (outside of FIXPARALLEL block) to store the computed result.

2. Declare a THREADVAR variable that you use within the FIXPARALLEL block.

3. Use a POSTFIXPARALLEL block to copy the THREADVAR to the VAR.

Example

The following example accumulates Sales values from THREADVAR variables to a VAR
variable.

/* Store computed result of four tasks */

Chapter 3
Calculation Command List

3-43

VAR totalSalesAmnt = 0;
/* Four tasks */
FIXPARALLEL (2, "New York", "California", "Oregon", "Florida")
/* Accumulate results of tasks into threads */
THREADVAR s_entitySalesAmnt;
/* Use for computation in each task */
THREADVAR entitySalesAmnt;
/* Use/change THREADVARs within member formula blocks */
"Sales"
 (
 /* Initialize variables for this task */
 entitySalesAmnt = 2;
 /* Use the THREADVARS ... */
 /* Accumulate task-data into thread-data */
 s_entitySalesAmnt = s_entitySalesAmnt + entitySalesAmnt;
);
/* Copy computed data into longer-persisting VAR */
POSTFIXPARALLEL (totalSalesAmnt = ACCUMULATEVAR (s_entitySalesAmnt););
ENDFIXPARALLEL

Related Topics

• FIXPARALLEL...ENDFIXPARALLEL
The FIXPARALLEL...ENDFIXPARALLEL calculation command block for Essbase enables
parallel calculation on a block of commands by using up to a specified number of parallel
threads.

• THREADVAR
The THREADVAR calculation command for Essbase declares one or more temporary,
thread-level variables within a FIXPARALLEL...ENDFIXPARALLEL command block.

SET Commands
The SET calculation commands for Essbase are procedural. The first occurrence of a SET
command in a calculation script stays in effect until the next occurrence of the same SET
command.

Example

In the following example, Essbase displays messages at the DETAIL level when calculating the
Year dimension. However, when calculating the Measures dimension, Essbase displays
messages at the SUMMARY level.

SET MSG DETAIL;CALC DIM(Year);
SET MSG SUMMARY;CALC DIM(Measures);

In the following example, Essbase calculates member combinations for Qtr1 with the SET
AGGMISSG setting turned on. Essbase then does a second calculation pass through the
database and calculates member combinations for East with the AGGMISSG setting turned off.

SET AGGMISSG ON;Qtr1;
SET AGGMISSG OFF;East;

Chapter 3
Calculation Command List

3-44

SET AGGMISSG
The SET AGGMISSG calculation command specifies whether Essbase consolidates #MISSING
values in the database for this calculation.

The default behavior is determined by a database-level setting (Aggregate missing values: yes|
no).

Syntax

SET AGGMISSG ON | OFF ;

Example

SET AGGMISSG OFF;
CALC ALL;

SET CACHE
The SET CACHE calculation command specifies the size of the calculator cache. Essbase
uses the calculator cache to create and track data blocks during calculation.

Syntax

SET CACHE HIGH | DEFAULT | LOW | OFF | ALL;

Parameters

HIGH, DEFAULT, and LOW
Levels defining the size of the calculator cache. You set the values of HIGH, DEFAULT and
LOW in the Essbase configuration settings. If you do not set the value of DEFAULT, Essbase
uses a default value of 200,000 bytes. The maximum calculator cache size that you can
specify is 200,000,000 bytes.

OFF
Essbase does not use the calculator cache.

ALL
Essbase uses the calculator cache, even when you do not calculate at least one full sparse
dimension.

Caution:

Forcing use of the calculator cache inside a FIXPARALLEL statement could increase
calculation time.

Notes

Essbase uses the calculator cache to create and track data blocks during calculation. Using
the calculator cache significantly improves your calculation performance. The size of the
performance improvement depends on the configuration of your database.

Chapter 3
Calculation Command List

3-45

You can choose one of three levels. The size of the calculator cache at each level is defined
using the CALCCACHE {HIGH | DEFAULT | LOW} settings in the Essbase configuration.

The level you choose depends on the amount of memory your system has available and the
configuration of your database.

You can specify whether, by default, Essbase uses a calculator cache using the CALCCACHE
TRUE | FALSE configuration setting. By default, CALCCACHE is set to TRUE.

Essbase uses the calculator cache providing that:

• Your database has at least two sparse dimensions.

• You calculate at least one, full sparse dimension (unless you specify the CALCCACHE
ALL option).

You can use this command more than once within a calculation script.

You can display the calculator cache setting using the SET MSG command.

Example

If the Essbase configuration contains the following settings:

CALCCACHEHIGH 1000000
CALCCACHEDEFAULT 300000
CALCCACHELOW 200000

Then:

SET CACHE HIGH;

Sets a calculator cache of up to 1,000,000 bytes for the duration of the calculation script.

SET CACHE DEFAULT;

Sets a calculator cache of up to 300,000 bytes for the duration of the calculation script.

SET CACHE LOW;

Sets a calculator cache of up to 200,000 bytes for the duration of the calculation script.

SET CACHE ALL;
SET CACHE LOW;

Sets a calculator cache of 200,000 bytes to be used even when you do not calculate at least
one, full sparse dimension.

SET CACHE OFF;

Specifies that Essbase does not use a calculator cache.

Chapter 3
Calculation Command List

3-46

SET CALCDIAGNOSTICS
The SET CALCDIAGNOSTICS calculation command for Essbase enables diagnostic logging
for parallel calculation tasks.

Parallel tasks are those generated by CALCPARALLEL or FIXPARALLEL commands. Enabling
diagnostic logging instructs Essbase to log the calculation time of the longest running parallel
tasks.

Syntax

SET CALCDIAGNOSTICS { LOGSIZE numTasks; };

Parameters

LOGSIZE
A required keyword.

numTasks
How many of the top longest-running tasks to log. To disable diagnostic logging in the
calculation script, set numTasks to 0.

Notes

• Diagnostics logging is not on by default, because it has performance overhead. After you
are finished designing or optimizing your calculation script, you should turn off diagnostic
logging.

• When used inside a FIXPARALLEL block, this command only takes effect within that block.

Example

The following example enables diagnostic logging for all parallel calculations in the calculation
script.

SET CALCDIAGNOSTICS { LOGSIZE 4; };

FIXPARALLEL (2, @IDESCENDANT("US_Market"))
 AGG ("Product");
ENDFIXPARALLEL

The following example enables diagnostic logging for a specific FIXPARALLEL block.

FIXPARALLEL (2, @IDESCENDANT("US_Market"))
 SET CALCDIAGNOSTICS { LOGSIZE 4; };
 AGG ("Product");
ENDFIXPARALLEL

Sample Diagnostic Log Output for FIXPARALLEL

The following sample output pertains to FIXPARALLEL parallel calculation.

OK/INFO - 1012899 - Statistics for [Calc1.csc], FIXPARALLEL of index [1] at

Chapter 3
Calculation Command List

3-47

line [14]: Number of FIXPARALLEL Threads = [2], Total Tasks = [261],
Min/Max/Avg Thread's Time = [103.453]/[103.519]/[103.486] secs.
 OK/INFO - 1012899 - For [4] Longest tasks, next rows display : Time(secs),
Thread_id, (Task_index/Task_count), Task_id, Member-combinations.
 OK/INFO - 1012899 - 15.131, 1, (30/132), 53, [ID_051341].
 OK/INFO - 1012899 - 10.759, 2, (124/129), 211, [ID_050092].
 OK/INFO - 1012899 - 9.690, 1, (42/132), 125, [ID_052230].
 OK/INFO - 1012899 - 7.192, 1, (38/132), 105, [ID_052073].
 OK/INFO - 1012899 - Summary for thread[1]: Total Time = [103.519] secs,
Total Tasks = [132].
 OK/INFO - 1012899 - Longest tasks executing on thread[1] : Time(secs),
Thread_id, (Task_index/Task_count), Task_id.
 OK/INFO - 1012899 - 15.131, 1, (30/132), 53.
 OK/INFO - 1012899 - 7.192, 1, (38/132), 105.
 OK/INFO - 1012899 - 9.690, 1, (42/132), 125.
 OK/INFO - 1012899 - Summary for thread[2]: Total Time = [103.453] secs,
Total Tasks = [129].
 OK/INFO - 1012899 - Longest tasks executing on thread[2] : Time(secs),
Thread_id, (Task_index/Task_count), Task_id.
 OK/INFO - 1012899 - 10.759, 2, (124/129), 211.

The diagnostic output is organized into 3 sections.

Log Section 1

The following section contains general information about the command being diagnosed.

OK/INFO - 1012899 - Statistics for [Calc1.csc], FIXPARALLEL of index [1] at
line [14]: Number of FIXPARALLEL Threads = [2], Total Tasks = [261],
Min/Max/Avg Thread's Time = [103.453]/[103.519]/[103.486] secs.

• Calc script name: Calc1.csc
• Command ID: FIXPARALLEL at index[1] (the first FIXPARALLEL command in Calc1.csc)

• Other information: Up to 2 threads are used for this calculation. It contains 261 parallel
tasks. The calculation time is about 104 seconds.

Log Section 2

The following section contains information about the longest running tasks.

 OK/INFO - 1012899 - For [4] Longest tasks, next rows display : Time(secs),
Thread_id, (Task_index/Task_count), Task_id, Member-combinations.
 OK/INFO - 1012899 - 15.131, 1, (30/132), 53, [ID_051341].
 OK/INFO - 1012899 - 10.759, 2, (124/129), 211, [ID_050092].
 OK/INFO - 1012899 - 9.690, 1, (42/132), 125, [ID_052230].
 OK/INFO - 1012899 - 7.192, 1, (38/132), 105, [ID_052073].

The per-task diagnostic information is in columnar format. The following table describes each
column, to help you interpret the data.

Chapter 3
Calculation Command List

3-48

Table 3-3 Calc Diagnostic Output Columns

Output Column Description

Diagnostic Message ID The message ID. For example, OK/INFO -
1012899. This ID can be used to extract diagnostic
information from the application log into a file.

Time (secs) Task execution time in seconds. For example,
15.131. The tasks are listed in decreasing order
based on execution time.

Thread ID Calculation thread ID. For example, 1. This
calculation uses up to 2 threads, so the thread ID
will always be 1 or 2.

Task Index/Task Count The task index and the total task count. For
example, 30/132, which indicates that this is the
30th task executed by this thread, and that this
thread executes a total of 132 tasks.

Task ID The task ID number. For example, 53. The first task
has an ID of 1, but 53 is listed first because it was
the longest running task. Note that as indicated by
Log Section 1, there are 261 total tasks.

Member Combinations The member names that form the slice
corresponding to a task ID. For example, 53,
[ID_051341] means that this calculation task is
defined by the slice specified by task 53 and the
member [ID_051341].

Log Section 3

The following section contains a summary of information already shown in Section 2, but
groups the information per separate thread.

OK/INFO - 1012899 - Summary for thread[1]: Total Time = [103.519] secs, Total
Tasks = [132].
 OK/INFO - 1012899 - Longest tasks executing on thread[1] : Time(secs),
Thread_id, (Task_index/Task_count), Task_id.
 OK/INFO - 1012899 - 15.131, 1, (30/132), 53.
 OK/INFO - 1012899 - 7.192, 1, (38/132), 105.
 OK/INFO - 1012899 - 9.690, 1, (42/132), 125.
 OK/INFO - 1012899 - Summary for thread[2]: Total Time = [103.453] secs,
Total Tasks = [129].
 OK/INFO - 1012899 - Longest tasks executing on thread[2] : Time(secs),
Thread_id, (Task_index/Task_count), Task_id.
 OK/INFO - 1012899 - 10.759, 2, (124/129), 211.

Related Topics

• SET CALCPARALLEL
The SET CALCPARALLEL calculation command for Essbase enables parallel calculation
in place of the default serial calculation.

• FIXPARALLEL...ENDFIXPARALLEL
The FIXPARALLEL...ENDFIXPARALLEL calculation command block for Essbase enables
parallel calculation on a block of commands by using up to a specified number of parallel
threads.

Chapter 3
Calculation Command List

3-49

SET CALCPARALLEL
The SET CALCPARALLEL calculation command for Essbase enables parallel calculation in
place of the default serial calculation.

If enabled, Essbase analyzes each pass of a calculation to determine whether parallel
calculation is possible. If it is not possible, Essbase uses serial calculation.

This setting is not supported in hybrid aggregation mode, which is the default query processing
mode.

Syntax

SET CALCPARALLEL n;

Parameters

n
A required parameter, an integer from 1 to 128, specifying the number of threads to be made
available for parallel calculation. The default value specifies serial calculation: no parallel
calculation takes place. Values 1 to 128 specify parallel calculation with 1 to 128 threads.
Values of 0 specify serial calculation. Values less than 0 return an error. Values greater than
the maximum are interpreted as the maximum (128).

Notes

• If a specific calculation pass has stored members depending on dynamic members,
Essbase uses hybrid aggregation mode. In this case, SET CALCPARALLEL is ignored,
and the calculation will run in serial. Alternately, you can use FIXPARALLEL, which is
supported in hybrid aggregation mode.

• If you need to use the DATACOPY, DATAEXPORT, OR CLEARBLOCK commands, use
FIXPARALLEL...ENDFIXPARALLEL for parallel calculation instead of this command.

• A number of features are affected by parallel calculation. See CALCPARALLEL Parallel
Calculation Guidelines for a list of these effects and for detailed information about how
Essbase performs parallel calculation.

Example

SET CALCPARALLEL 3;

Enables up to three threads to be used to perform calculation tasks at the same time.

SET CALCTASKDIMS
The SET CALCTASKDIMS calculation command for Essbase specifies the number of sparse
dimensions included in the identification of tasks for parallel calculation.

Syntax

SET CALCTASKDIMS n;

Chapter 3
Calculation Command List

3-50

Parameters

n
A required parameter, an integer specifying the number of sparse dimensions to be included
when Essbase identifies tasks that can be performed at the same time.
A value of 1 indicates that only the last sparse dimension in the outline will be used to identify
tasks. A value of 2, for example, indicates that the last and second-to-last sparse dimensions
in the outline are used.
Because each unique combination of members from the selected sparse dimensions is a
potential task, the potential number of parallel tasks is the product of the number of members
of the selected dimensions. The maximum value is the number of sparse dimensions in the
outline.
Essbase issues an error if the value is less than 1. A value greater than the number of sparse
dimensions in the outline is interpreted as the largest valid value.
Using the calculator bitmap cache can affect this value. See Calculator Cache.

Notes

• A number of features are affected by parallel calculation. See Relationship Between
CALCPARALLEL Parallel Calculation and Other Essbase Features for a list of these
effects and for detailed information about how Essbase performs parallel calculation.

• Use the SET CALCTASKDIMS calculation command only if your outline generates many
empty tasks, thus reducing opportunities for parallel calculation.

• If you do not notice an improvement in performance after increasing the value of SET
CALCTASKDIMS, consider returning the value to the optimal number that Essbase
selected. Sometimes using more task dimensions can generate such a large number of
tasks that performance may decrease instead of increase, because the overhead of
generating and managing the tasks is too great. See Identifying Additional Tasks for
Parallel Calculation and Tuning CALCPARALLEL with Log Messages.

Example

SET CALCTASKDIMS 2;

Specifies that the last two sparse dimensions in the outline will be used to identify potential
tasks to be performed at the same time during a calculation pass.

See Also

SET CALCPARALLEL

SET CCTRACKCALC
The SET CCTRACKCALC calculation command specifies whether Essbase checks the flags
set by the CCTRACK configuration setting to determine if the currency data has already been
converted.

By default, CCTRACK is turned on. Essbase tracks which currency partitions have been
converted and which have not. The tracking is done at the currency partition level: a database
with two partitions would have two flags that could be either "converted" or "unconverted."
Essbase does not store a flag for member combinations within a partition.

When you load or clear data in a currency partition, Essbase does not reset the CCTRACK flag
to "unconverted". You can use SET CCTRACKCALC OFF to force the conversion of the
reloaded data, ignoring CCTRACK.

Chapter 3
Calculation Command List

3-51

Syntax

SET CCTRACKCALC ON | OFF;

Parameters

ON
Uses the flags set by the CCTRACK setting to determine whether the data needs to be
converted. The default value is ON.

OFF
Always converts the data, regardless of whether CCTRACK has flagged the data as already-
converted. Note that during the conversion CCTRACK is still active and tracks the exchange
rates used during the conversion.

Notes

The SET CCTRACKCALC command is valid only when CCTRACK is set to TRUE (the
default).

Example

SET CCTRACKCALC OFF;
FIX(Actual)
CCONV "XchR"->US$;
ENDFIX
CALC ALL;

Fixes on the the Actual currency partition and forces the conversion of the Actual data
regardless of whether Essbase has flagged the data as already being converted, converting
the data using the XchR, US$ rate from the currency database. Recalculates the database.

See Also

CCTRACK configuration setting

CLEARCCTRACK

SET UPTOLOCAL

CCONV

SET CLEARUPDATESTATUS
The SET CLEARUPDATESTATUS calculation command specifies when Essbase marks data
blocks as clean. This clean status is used during Intelligent Calculation.

Syntax

SET CLEARUPDATESTATUS AFTER | ONLY | OFF;

Chapter 3
Calculation Command List

3-52

Parameters

AFTER
Essbase marks calculated data blocks as clean, even if you are calculating a subset of your
database.

ONLY
Essbase marks the specified data blocks as clean but does not actually calculate the data
blocks. This does the same as AFTER, but disables calculation.

OFF
Essbase does not mark the calculated data blocks as clean. Data blocks are not marked as
clean, even on a default calculation (CALC ALL;) of your database. The existing clean or dirty
status of the calculated data blocks remains unchanged.

Notes

SET CLEARUPDATESTATUS specifies when Essbase marks data blocks as clean.

The data blocks in your database have a calculation status of either clean or dirty. When
Essbase does a full calculation of your database, it marks the calculated data blocks as clean.
When a data block is clean, Essbase will not recalculate the data block on subsequent
calculations, provided that Intelligent Calculation is turned on.

To ensure the accuracy of your calculation results, consider carefully the effect of the SET
CLEARUPDATESTATUS AFTER command on your calculation. .

If you do not use SET CLEARUPDATESTATUS, Essbase does not mark calculated data
blocks as clean when you calculate a subset of your database. Essbase marks data blocks as
clean only on a full calculation (CALC ALL;) or when Essbase calculates all members in a single
calculation pass through your database.

If you calculate a subset of your database, you may want to use the SET
CLEARUPDATESTATUS AFTER command to ensure that the calculated blocks are marked as
clean. However, consider carefully the effect of this command on your calculation to ensure
that your calculation results are correct.

Warnings

When you use the SET CLEARUPDATESTATUS command to mark calculated data blocks as
clean, consider carefully the following questions:

Which data blocks are calculated?

Only calculated data blocks are marked as clean.

Are concurrent calculations going to affect the same data blocks?

Do not use the SET CLEARUPDATESTATUS AFTER command with concurrent calculations
unless you are certain that the different calculations do not need to calculate the same data
block or blocks. If concurrent calculations attempt to calculate the same data blocks, with
Intelligent Calculation turned on, Essbase may not recalculate the data blocks, because they
are already marked as clean.

Are the same data blocks to be recalculated on a second calculation pass through the
database?

If you calculate data blocks on a first calculation pass through your database, Essbase marks
them as clean. If you then attempt to calculate the same data blocks on a subsequent pass

Chapter 3
Calculation Command List

3-53

with Intelligent Calculation turned on, Essbase does not recalculate the data blocks, because
they are already marked as clean.

Example

The following examples are based on the Sample Basic database. They assume that
Intelligent Calculation is turned on (the default). For information on turning Intelligent
Calculation on and off, see the SET UPDATECALC command.

Example 1

SET CLEARUPDATESTATUS AFTER;
FIX ("New York")
CALC DIM(Product);
ENDFIX

New York is a member on the sparse Market dimension. Essbase searches for dirty parent
data blocks for New York (for example "New York"->Colas in which Colas is a parent
member). It calculates these dirty blocks based on the Product dimension and marks them as
clean. Essbase does not mark the child, Input blocks as clean, because they are not
calculated.

Example 2

SET CLEARUPDATESTATUS ONLY;
CALC ALL;

Essbase searches for all the dirty blocks in the database and marks them as clean. It does not
calculate the blocks, even though a CALC ALL; command is used.

Example 3

SET CLEARUPDATESTATUS ONLY;
FIX ("New York")
CALC DIM(Product);
ENDFIX

New York is a member on the sparse Market dimension. Essbase searches for dirty parent
data blocks for New York (for example "New York"->Colas in which Colas is a parent member).
It marks them as clean. It does not calculate the data blocks. It does not mark the child blocks
as clean because they are not calculated. For example, if

"New York"->100-10

is dirty, it remains dirty.

Example 4

SET CLEARUPDATESTATUS OFF;
CALC ALL;
CALC TWOPASS;

Chapter 3
Calculation Command List

3-54

Essbase calculates all the dirty data blocks in the database. The calculated data blocks remain
dirty; Essbase does not mark them as clean. Essbase then calculates those members tagged
as Two-Pass on the dimension tagged as Accounts. Again, it does not mark the calculated
data blocks as clean.

Related Topics

• SET UPDATECALC
The SET UPDATECALC calculation command for Essbase turns Intelligent Calculation on
or off.

• SET Commands
The SET calculation commands for Essbase are procedural. The first occurrence of a SET
command in a calculation script stays in effect until the next occurrence of the same SET
command.

SET COPYMISSINGBLOCK
The Essbase SET COPYMISSINGBLOCK calculation command sets whether the DATACOPY
calculation command creates #MISSING blocks during the copy of data from a dense
dimension.

This setting does not apply to aggregate storage databases.

SET COPYMISSINGBLOCK allows DATACOPY to avoid creating #MISSING blocks during the
copy of data from a dense dimension.

Using DATACOPY on a dense dimension can create blocks populated with #MISSING. This is
done deliberately in some instances, because most batch calculations operate only on existing
data blocks. Therefore, DATACOPY can be used to ensure that all necessary data blocks are
created prior to batch calculation.

But if the creation of #MISSING blocks is not required, you may want to avoid the increase in
database size, and the possibly slower performance that results when, for example, a default
calculation visits every #MISSING block.

Syntax

SET COPYMISSINGBLOCK ON | OFF

Parameters

ON
This is the default value. Allows missing blocks to be created during a data copy.

OFF
Suppresses the creation of missing blocks during a data copy.

Notes

• Existing #MISSING blocks are not removed.

• A message is added to the Essbase Server log to indicate the number of data blocks being
copied from the source data blocks. The number of #MISSING blocks skipped, if any, is
also reported in the log.

Chapter 3
Calculation Command List

3-55

Example

SET COPYMISSINGBLOCK OFF;

The following log message indicates that SET COPYMISSINGBLOCK is OFF:

[Fri May 31 10:35:03 2002]Local/Test6/Test6/essexer/Info(1012574)
Datacopy command copied [1] source data blocks to [0] target data blocks

[Fri May 31 10:35:03 2002]Local/Test6/Test6/essexer/Info(1012576)
Datacopy command skipped creating [1] target data blocks with
CopyMissingBlock OFF

See Also

DATACOPY

SET CREATENONMISSINGBLK
The SET CREATENONMISSINGBLK calculation command for Essbase controls whether
potential blocks are created in memory for calculation purposes, and whether #MISSING
blocks are stored.

This command affects the results of calculations on sparse and dense dimensions.

By default, Essbase applies dense-member formulas only to existing data blocks. SET
CREATENONMISSINGBLK ON enables Essbase to create potential blocks in memory where
the dense-member formulas are performed. Of these potential blocks, Essbase writes to the
database only blocks that contain values; blocks resulting in only #MISSING are not written to
the database.

The creation of #MISSING blocks resulting from sparse-member formulas is governed by SET
CREATEBLOCKONEQ. SET CREATENONMISSINGBLK ON ensures that only non-empty
blocks are created, regardless of the Create Block on Equations setting.

In order to create new blocks, setting SET CREATENONMISSINGBLK to ON requires Essbase
to anticipate the blocks that will be created. Working with potential blocks can affect calculation
performance. Consider the following situations carefully:

• When SET CREATENONMISSINGBLK is ON, all sparse-member formulas are executed
in top-down mode. Dense member formulas are flagged for top-down calculation when
they contain the following:

– Sparse members

– Constants (for example, Sales = 100,000)

– @VAR

– @XREF

• If Essbase encounters @CALCMODE(BOTTOMUP) in a member formula, it ignores
@CALCMODE.

• If a batch calculation contains top-down formulas and SET CREATENONMISSINGBLK is
ON, Intelligent Calculation is turned off. Within the scope of the calculation script, all blocks
are calculated, regardless if they are marked clean or dirty.

Chapter 3
Calculation Command List

3-56

• To reduce the number of blocks to be calculated, use this command within
FIX...ENDFIXregions. As a warning, when the potential number of blocks exceeds 20
million, Essbase writes an entry to the application log showing the number of blocks to be
calculated and recommending using FIX/ENDFIX.

• You can use multiple SET CREATENONMISSINGBLK commands in a calc script, each
affecting calculations that follow. However, consider that each time SET
CREATENONMISSINGBLK is encountered within a set of FIX and ENDFIX statements,
the calculator cycles through the database, potentially affecting calculation performance.

Syntax

SET CREATENONMISSINGBLK ON|OFF;

Parameters

ON
Calculations are performed on potential blocks as well as existing blocks. If the result of the
calculation is not #MISSING, the block is stored. The Create Blocks on Equations setting is
ignored.

OFF
Calculations are performed only on existing blocks. This is the default setting.

Notes

• SET CREATENONMISSINGBLK affects only creation of new blocks. If existing blocks
become #MISSING after formula execution, they are not deleted.

• The value set by SET CREATENONMISSINGBLK stays in effect until the next SET
CREATENONMISSINGBLK is processed, or the calculation script terminates.

• When the calculation script includes both SET CREATENONMISSINGBLK ON and SET
MSG DETAIL, any non-stored #MISSING block is indicated in the application log.

• If SET MSG is set to SUMMARY, when SET CREATENONMISSINGBLK is set to ON,
Essbase writes an entry to the application log stating that Create Non #MISSING Blocks is
enabled.

• If SET MSG is set to SUMMARY, and SET CREATENONMISSINGBLK is set to ON, at the
end of the calculation, Essbase writes an entry to the application log showing the total
number of #MISSING blocks that were not created.

Example

The following example is based on a variation of Sample Basic. Assume that the Scenario
dimension, of which Actual is a member, is sparse. "Jan Rolling YTD Est" is a member of the
dense time dimension, Year.

FIX (Budget)
 SET MSG DETAIL;
 SET CREATENONMISSINGBLK ON;
 "Jan Rolling YTD Est"= (Jan-
>Actual+Feb+Mar+Apr+May+Jun+Jul+Aug+Sep+Oct+Nov+Dec);
ENDFIX

See Also

SET CREATEBLOCKONEQ

Chapter 3
Calculation Command List

3-57

SET CREATEBLOCKONEQ
The SET CREATEBLOCKONEQ calculation command for Essbase controls, within a
calculation script, whether new blocks are created when a calculation formula assigns anything
other than a constant to a member of a sparse dimension.

The value of this calculation command takes precedence over the value of the Create Block on
Equation setting defined for the database.

Syntax

SET CREATEBLOCKONEQ ON|OFF;

Parameters

ON
When a formula assigns a non-constant value to a sparse dimension member for which no
block exists, Essbase creates a block.

OFF
When a formula assigns a non-constant value to a sparse dimension member for which no
block exists, Essbase does not create a block.

Notes

If calculations result in a value for a sparse dimension member for which no block exists,
Essbase creates a block. Sometimes, new blocks are not desired; for example, when they
contain no other values. In large databases, creation and processing of unneeded blocks can
increase processing time and storage requirements.

The Create Blocks on Equation setting is designed for situations when blocks would be created
as a result of assigning something other than a constant to a member of a sparse dimension.
For example, when Create Blocks on Equation is ON and West is assigned a value where it did
not have a value before, new blocks are created. When this setting is OFF, blocks are not
created.

Create Blocks on Equation setting is a database property. Its initial value is OFF; no blocks are
created when something other than a constant is assigned to a sparse dimension member.

For more specific control, you can use the SET CREATEBLOCKONEQ calculation command
within a calculation script to control creation of blocks at the time the command is encountered
in the script. Use of SET CREATEBLOCKONEQ has the following characteristics:

• When Essbase encounters SET CREATEBLOCKONEQ within a calculation script, the
database-level setting is ignored.

• You can use multiple SET CREATEBLOCKONEQ commands in the calculation script to
define the Create Blocks on Equation setting value for the calculations following each
command.

• The value set by the SET CREATEBLOCKONEQ command stays in effect until the next
SET CREATEBLOCKONEQ command is processed or the calculation script is finished.

• The Create Blocks on Equation setting is overridden by SET CREATENONMISSINGBLK
ON.

• The SET CREATEBLOCKONEQ command does not change the database-level Create
Blocks on Equation property.

Chapter 3
Calculation Command List

3-58

• If no SET CREATEBLOCKONEQ command is encountered, Essbase uses the database-
level setting to determine whether to create blocks.

When the Create Blocks on Equation setting is ON, Essbase uses the top-down calculation
method to calculate each sparse member.

The Create Blocks on Equation setting is not consulted when Essbase assigns constants to
members of sparse dimensions. The following table shows examples of sparse member
calculations where constants or non-constants are assigned to them.

Table 3-4 Examples of Constant and Non-constant Assignments on Sparse Member
Calculations

Assigned Value Sparse Member Formula
Example

New Block Created?

Constant West = 350 Yes

Non-constant West = California + 120 Yes, if the Create Blocks on
Equation setting is ON.
Otherwise, no.

Non-constant West = California * 1.05 Yes, if the Create Blocks on
Equation setting is ON.
Otherwise, no.

For a tip on controlling creation of blocks when you work with non-constants and sparse
dimensions, see Nonconstant Values Assigned to Members in a Sparse Dimension.

Example

Example 1

The following example is based on Sample.Basic. Data is loaded for only one block:
(“100-10”, “New York”).

SET MSG SUMMARY;
SET CREATEBLOCKONEQ OFF;

"300-10" = "100-10" + 100000;

This calculation creates the block ("300-10", "New York"). Upon
export, the database exports two blocks: the loaded block, and the
new block. The calculation runs bottom-up.

Example 2

The following example is based on Sample.Basic. Data is loaded for only one block:
(“100-10”, “New York”).

SET MSG SUMMARY;
SET CREATEBLOCKONEQ ON;

"300-10" = "100-10" + 100000;

This calculation creates 25 new blocks: 300-10 crossed with 25 stored
members from the Market dimension. Upon export, the database

Chapter 3
Calculation Command List

3-59

exports 26 blocks: the loaded block, and the 25 new blocks. The
calculation runs top-down.

Comparison of Example 1 and Example 2

In Example 1, the calculation script writer may have hoped to turn block creation OFF by using
this line:

SET CREATEBLOCKONEQ OFF;

However, the calculation script has to create at least the one dependent block, to be able to
execute the assignment statement.

SET CREATEBLOCKONEQ OFF does not mute block creation in the case where dependent
blocks are needed for the calculation; however, it mutes extraneous block creation.

In the case of Example 1, Essbase avoids creating blocks crossing the Product dimension with
the Market dimension. In Example 2, those extra blocks are created.

See Also

SET CREATENONMISSINGBLK

SET DATAEXPORTOPTIONS
The SET DATAEXPORTOPTIONS calculation command specifies options for Essbase
database export operations.

Syntax

SET DATAEXPORTOPTIONS
 {
 DataExportLevel ALL | LEVEL0 | INPUT;
 DataExportDynamicCalc ON | OFF;
 DataExportNonExistingBlocks ON | OFF;
 DataExportDecimal n;
 DataExportPrecision n;
 DataExportColFormat ON | OFF;
 DataExportColHeader dimensionName;
 DataExportDimHeader ON | OFF;
 DataExportRelationalFile ON | OFF;
 DataExportCSVFormat ON | OFF
 DataExportOverwriteFile ON | OFF;
 DataExportDryRun ON | OFF;
 };

Notes

Each SET DATAEXPORTOPTIONS command specifies a set of option values that are in place
until the next SET DATAEXPORTOPTIONS command is encountered. At that time, option
values are reset to default, and newly specified option values are set.

The option list must start with a left brace { and end with a right brace followed by a
semicolon };. Each option ends with a semicolon. The options can be listed in any order.
When an option is not specified, the default value is assumed.

Chapter 3
Calculation Command List

3-60

The option categories are:

• Content Options

• Output Format Options

• Processing Options

Content Options

DataExportLevel ALL | LEVEL0 | INPUT

• ALL—(Default) All data, including consolidation and calculation results.

• LEVEL0—Data from level 0 data blocks only (blocks containing only level 0 sparse
member combinations).

• INPUT—Input blocks only (blocks containing data from a previous data load or grid client
data-update operation). This option excludes dynamically calculated data. See also the
DataExportDynamicCalc option.

In specifying the value for the DataExportLevel option, use these guidelines:

• The values are case-insensitive. For example, you can specify LEVEL0 or level0.

• Enclosing the value in quotation marks is optional. For example, you can specify LEVEL0
or "LEVEL0".

• If the value is not specified, Essbase uses the default value of ALL.

• If the value is incorrectly expressed (for example, LEVEL 0 or LEVEL2), Essbase uses the
default value of ALL.

Description

Specifies the amount of data to export.

DataExportDynamicCalc ON | OFF

• ON—(Default) Dynamically calculated values are included in the export.

• OFF—No dynamically calculated values are included in the report.

Description

Specifies whether a text data export excludes dynamically calculated data.

Notes:

• Text data exports only. If DataExportDynamicCalc ON is encountered with a binary export
(DATAEXPORT BINFILE …) it is ignored. No dynamically calculated data is exported.

• The DataExportDynamicCalc option does not apply to attribute values.

• If DataExportLevel INPUT is also specified and the FIX statement range includes sparse
Dynamic Calc members, the FIX statement is ignored.

DataExportNonExistingBlocks ON | OFF

• ON—Data from all possible data blocks, including all combinations in sparse dimensions,
are exported.

• OFF—(Default) Only data from existing data blocks is exported.

Description

Specifies whether to export data from all possible data blocks. For large outlines with a large
number of members in sparse dimensions, the number of potential data blocks can be very

Chapter 3
Calculation Command List

3-61

high. Exporting Dynamic Calc members from all possible blocks can significantly impact
performance.

DataExportPrecision n

n (Optional; default 16)—A value that specifies the number of positions in exported numeric
data. If n < 0, 16-position precision is used.

Description

Specifies that the DATAEXPORT calculation command will output numeric data with emphasis
on precision (accuracy). Depending on the size of a data value and number of decimal
positions, some numeric fields may be written in exponential format; for example,
678123e+008. You may consider using DataExportPrecision for export files intended as
backup or when data ranges from very large to very small values. The output files typically are
smaller and data values more accurate. For output data to be read by people or some external
programs, you may consider specifying the DataExportDecimal option instead.

Notes:

• By default, Essbase supports 16 positions for numeric data, including decimal positions.

• The DataExportDecimal option has precedence over the DataExportPrecision option.

Example

SET DATAEXPORTOPTIONS
 {
 DataExportPrecision 6;
 DataExportLevel ALL;
 DataExportColHeader "Measures";
 DataExportDynamicCalc ON;
 };
 DATAEXPORT "File" "," "output1.out";

Initial Data Load Values

"Sales" "COGS" "Margin" "Marketing" "Payroll" "Misc" "Total Expenses"
"Profit" "Opening Inventory" "Additions" "Ending Inventory" "Margin %"
"Profit %"
"100-10" "New York"
"Jan" "Actual" 678123456.0 271123456.0 407123456.0 941234567890123456.0
51123456.0 0 145123456.0 262123456.0 2101123456.0 644123456.0 2067123456.0
60123456.029 38123456.6430
"Feb" "Actual" 645123 258123 3871234 9012345 5112345 112345678 14212345
24512345 2067123456 61912345 20411234 601234 37123456.98
"Mar" "Actual" 675 270 405 94 51 1 146 259 2041 742 2108 60 38.37037037037037
"Qtr1" "Actual" 1998 799 1199 278 153 2 433 766 2101 2005 2108
60.01001001001001 38.33833833833834

Exported Data Format

"Sales","COGS","Margin","Marketing","Payroll","Misc","Total
Expenses","Profit","Opening Inventory","Additions","Ending Inventory","Margin
%","Profit %","Profit per Ounce","100-10","New York"
"Jan","Actual",6.78123e+008,2.71123e+008,4.07e+008,9.41235e+017,5.11235e+007,0
,9.41235e+017,-9.41235e+017,2.10112e+009,6.44123e+008,2.06712e+009,60.0186,-1.

Chapter 3
Calculation Command List

3-62

388e+011,-7.84362e+016
"Feb","Actual",645123,258123,387000,9.01235e+006,5.11235e+006,1.12346e+008,1.2
647e+008,-1.26083e+008,2.06712e+009,6.19123e+007,2.04112e+007,59.9886,-19544.1
,-1.05069e+007
"Mar","Actual",675,270,405,94,51,1,146,259,2041,742,2108,60,38.3704,21.5833

DataExportDecimal n

Where n is a value between 0 and 16.

If no value is provided, the number of decimal positions of the data to be exported is used, up
to 16 positions, or a value determined by the DataExportPrecision option if that is specified.

Description

Specifies that the DATAEXPORT calculation command will output numeric data with emphasis
on legibility; output data is in straight text format. Regardless of the number of decimal
positions in the data, the specified number is output. It is possible the data can lose accuracy,
particularly if the data ranges from very large values to very small values, above and below the
decimal point.

Notes:

• By default, Essbase supports 16 positions for numeric data, including decimal positions.

• If both the DataExportDecimal option and the DataExportPrecision option are specified, the
DataExportPrecision option is ignored.

Example

SET DATAEXPORTOPTIONS
 {DataExportDecimal 4;
 DataExportLevel "ALL";
 DataExportColHeader "Measures";
 DataExportDynamicCalc ON;
 };
 DATAEXPORT "File" "," "output1.out";

Initial Data Load Values

"Sales" "COGS" "Margin" "Marketing" "Payroll" "Misc" "Total Expenses"
"Profit" "Opening Inventory" "Additions" "Ending Inventory" "Margin %"
"Profit %"
"100-10" "New York"
"Jan" "Actual" 678123456.0 271123456.0 407123456.0 941234567890123456.0
51123456.0 0 145123456.0 262123456.0 2101123456.0 644123456.0 2067123456.0
60123456.029 38123456.6430
"Feb" "Actual" 645123 258123 3871234 9012345 5112345 112345678 14212345
24512345 2067123456 61912345 20411234 601234 37123456.98
"Mar" "Actual" 675 270 405 94 51 1 146 259 2041 742 2108 60 38.37037037037037
"Qtr1" "Actual" 1998 799 1199 278 153 2 433 766 2101 2005 2108
60.01001001001001 38.33833833833834

Exported Data Format

"Sales","COGS","Margin","Marketing","Payroll","Misc","Total
Expenses","Profit","Opening Inventory","Additions","Ending Inventory","Margin

Chapter 3
Calculation Command List

3-63

%","Profit %","Profit per Ounce"
"100-10","New York"
"Jan","Actual",678123456.0000,271123456.0000,407000000.0000,941234567890123520
.0000,51123456.0000,0.0000,941234567941246980.0000,-941234567534246910.0000,21
01123456.0000,644123456.0000,2067123456.0000,60.0186,-138799883591.4395,-78436
213961187248.0000
"Feb","Actual",645123.0000,258123.0000,387000.0000,9012345.0000,5112345.0000,1
12345678.0000,126470368.0000,-126083368.0000,2067123456.0000,61912345.0000,204
11234.0000,59.9886,-19544.0820,-10506947.3333
"Mar","Actual",675.0000,270.0000,405.0000,94.0000,51.0000,1.0000,146.0000,259.
0000,2041.0000,742.0000,2108.0000,60.0000,38.3704,21.5833

Output Format Options

DataExportColFormat ON | OFF

• ON—The data is output in columnar format.

• OFF—Default. The data is output in non-columnar format.

Description

Specifies if data is output in columnar format. Columnar format displays a member name from
every dimension; names can be repeated from row to row, enabling use by applications other
than Essbase tools. In non-columnar format, sparse members identifying a data block are
included only once for the block. Non-columnar export files are smaller, enabling faster loading
to an Essbase database.

Notes

Do not use the DataExportColFormat option in combination with the DataExportRelationalFile
option, which already assumes columnar format for files destined as input files to relational
databases.

Example

SET DATAEXPORTOPTIONS
 {
 DATAEXPORTCOLFORMAT ON;
 };
 FIX("100-10", Sales, COGS, Jan, Feb, Mar, Actual, Budget)
 DATAEXPORT "File" "," "test2.txt" ;
ENDFIX;

DataExportColHeader dimensionName

Description

Specifies the name of the dense dimension that is the column header (the focus) around which
other data is referenced in the export file. Use the DataExportColHeader option only when you
export data to a text file. For example, if from Sample Basic the Year dimension is specified,
the output data starts with data associated with the first member of the Year dimension: Year.
After all data for Year is output, it continues with the second member: Qtr1, and so on.

Notes

Chapter 3
Calculation Command List

3-64

MaxL, ESSCMD shell, and Essbase exports do not provide a similar capability. With these
methods, Essbase determines the focal point of the output data.

Exporting through Report Writer enables you to specify the header in the report script.

Example

SET DATAEXPORTOPTIONS {DATAEXPORTCOLHEADER Scenario;};

Specifies Scenario as the page header in the export file. The Scenario dimension contains
three members: Scenario, Actual, and Budget. All Scenario data is shown first, followed by all
Actual data, then all Budget data.

DataExportDimHeader ON | OFF

• ON—The header record is included.

• OFF—Default. The header record is not included.

Description

Use the DataExportDimHeader option to insert the optional header record at the beginning of
the export data file. The header record contains all dimension names in the order as they are
used in the file. Specifying this command always writes the data in "column format".

Example

SET DATAEXPORTOPTIONS
 {
 DATAEXPORTLEVEL "ALL";
 DATAEXPORTDIMHEADER ON;
 };
FIX("100-10", "New York", "Actual")
 DATAEXPORT "File" "," "2222.txt" ;
ENDFIX;

Specifying the DataExporttDimHeader ON option while exporting Sample Basic writes the data
in column format, with common members repeated in each row. The data begins with a
dimension header, as shown in the first two rows of the example file below:

"Product","Market","Year","Scenario","Measures"
"Sales","COGS","Marketing","Payroll","Misc","Opening
Inventory","Additions","Ending Inventory"
"100-10","New York","Jan","Actual",678,271,94,51,0,2101,644,2067
"100-10","New York","Feb","Actual",645,258,90,51,1,2067,619,2041
"100-10","New York","Mar","Actual",675,270,94,51,1,2041,742,2108
"100-10","New York","Apr","Actual",712,284,99,53,0,2108,854,2250
"100-10","New York","May","Actual",756,302,105,53,1,2250,982,2476
"100-10","New York","Jun","Actual",890,356,124,53,0,2476,1068,2654
"100-10","New York","Jul","Actual",912,364,127,51,0,2654,875,2617
"100-10","New York","Aug","Actual",910,364,127,51,0,2617,873,2580
"100-10","New York","Sep","Actual",790,316,110,51,1,2580,758,2548
"100-10","New York","Oct","Actual",650,260,91,51,1,2548,682,2580
"100-10","New York","Nov","Actual",623,249,87,51,0,2580,685,2642
"100-10","New York","Dec","Actual",699,279,97,51,1,2642,671,2614

DataExportRelationalFile ON | OFF

Chapter 3
Calculation Command List

3-65

• ON—The output text export file is formatted for import to a relational database.

– Data is in column format; sparse member names are repeated. (The
DataExportColFormat option is ignored.)

– The first record in the export file is data. No dimension header is included, even if
specified using the DataExportDimHeader option. No columns are labeled in the first
row of the relational export file, even if the DataExportColHeader option is used;
however, the dense dimension specified in the DataExportColHeader option is the
focus around which other data is referenced in the export file.

– Missing and invalid data is skipped, resulting in consecutive delimiters (commas) in the
output. The optional "missing_char" parameter for DATAEXPORT is ignored.

• OFF—Default. The data is not explicitly formatted for use as input to a relational database.

Description

Using the DataExportRelationalFile option with DATAEXPORT enables you to format the text
export file to be used directly as an input file for a relational database.

Example

SET DATAEXPORTOPTIONS {
 DataExportLevel "ALL";
 DataExportRelationalFile ON;
};

FIX (Jan)
 DATAEXPORT "File" "," "jan.txt"
ENDFIX;

DataExportCSVFormat ON | OFF

• ON—The data is output in CSV format.

• OFF—Default. The data is output in non-CSV format.

Description

Specifies whether data is output in CSV (comma-separated values) format. This option helps
export data in the required format for the DBMS_CLOUD package (applicable when you use a
federated partition to integrate your cube with Autonomous Data Warehouse). By specifying
the pivot dimension of the fact table as the DataExportColHeader, you can generate a data file
that is in the format required for DBMS_CLOUD: column names are in the header, and the
fields of each data record are comma separated.

Example 1: Pivot Dimension is Measures

SET DATAEXPORTOPTIONS
 {
 DataExportColHeader "Measures";
 DataExportOverwriteFile ON;
 DATAEXPORTDIMHEADER ON;
 DATAEXPORTCSVFORMAT ON;
 };
 DATAEXPORT "File" "," "out.txt" "NULL";

Chapter 3
Calculation Command List

3-66

Output of Example 1

"Year","Product","Market","Scenario","Sales","COGS","Margin","Marketing","Payr
oll","Misc","Total Expenses","Profit","Opening Inventory","Additions","Ending
Inventory"
"Jan","100-10","New York","Actual",678,271,407,94,51,0,145,262,2101,644,2067
"Feb","100-10","New York","Actual",645,258,387,90,51,1,142,245,2067,619,2041
"Mar","100-10","New York","Actual",675,270,405,94,51,1,146,259,2041,742,2108

Example 2: Pivot Dimension is Year

SET DATAEXPORTOPTIONS
 {
 DataExportColHeader "Year";
 DataExportOverwriteFile ON;
 DATAEXPORTDIMHEADER ON;
 DATAEXPORTCSVFORMAT ON;
 };
 DATAEXPORT "File" "," "out.txt" "NULL";

Output of Example 2

"Product","Market","Scenario","Measures","Jan","Feb","Mar","Apr","May","Jun","
Jul","Aug","Sep","Oct","Nov","Dec"
"100-10","Utah","Actual","Additions",1762.0,1681.0,1482.0,1201.0,1193.0,1779.0
,2055.0,1438.0,1991.0,1443.0,1379.0,1415.0
"100-10","Utah","Actual","COGS",598.0,714.0,630.0,510.0,510.0,756.0,697.0,533.
0,624.0,535.0,536.0,600.0
"100-10","Utah","Actual","Ending
Inventory",5417.0,8379.0,10294.0,4125.0,3823.0,7861.0,7283.0,4636.0,6383.0,980
5.0,9247.0,8757.0
"100-10","Utah","Actual","Margin",383.0,449.0,363.0,389.0,431.0,445.0,458.0,39
4.0,401.0,350.0,353.0,437.0
"100-10","Utah","Actual","Marketing",201.0,240.0,210.0,171.0,171.0,254.0,235.0
,178.0,209.0,180.0,180.0,202.0
"100-10","Utah","Actual","Misc",2.0,1.0,3.0,1.0,1.0,0.0,0.0,3.0,2.0,2.0,1.0,0.
0
"100-10","Utah","Actual","Opening
Inventory",4636.0,7861.0,9805.0,3823.0,3571.0,7283.0,6383.0,4125.0,5417.0,9247
.0,8757.0,8379.0
"100-10","Utah","Actual","Payroll",121.0,116.0,116.0,116.0,116.0,116.0,121.0,1
16.0,121.0,116.0,116.0,116.0
"100-10","Utah","Actual","Profit",59.0,92.0,34.0,101.0,143.0,75.0,102.0,97.0,6
9.0,52.0,56.0,119.0

Processing Options

DataExportOverwriteFile ON | OFF

• ON—The existing file with the same name and location is replaced.

• OFF—Default. If a file with the same name and location already exists, no file is output.

Description

Manages whether an existing file with the same name and location is replaced.

Chapter 3
Calculation Command List

3-67

DataExportDryRun ON | OFF

• ON—DATAEXPORT and associated commands are run, without exporting data.

• OFF—Default. Data is exported

Description

Enables running the calculation script data export commands to see information about the
coded export, without exporting the data. When the DataExportDryRun option value is ON, the
following information is written to the output file specified in the DATAEXPORT command:

• Summary of data export settings

• Info, Warning, and Error messages

• Exact number of blocks to be exported

• Estimated time, excluding I/O time.

Notes

• The DataExportDryRun option does not work with exports to relational databases.

• If you modify the script for reuse for the actual export, besides removing the
DataExportDryRun option from the script you may want to change the name of the export
file.

Example

SET DATAEXPORTOPTIONS
 {
 DataExportLevel "ALL";
 DataExportColHeader "Measures";
 DataExportColFormat ON;
 DataExportDimHeader ON;
 DataExportDynamicCalc OFF;
 DataExportDecimal 0;
 DataExportDryRun ON;
 DataExportOverwriteFile ON;
 };

FIX("Qtr1")
 DATAEXPORT "File" "," "log.txt" ;
ENDFIX;

Creates the file "E:\temp\log.txt" containing the following information:

 <EXPORT_OPTIONS>
 <DELIMITER>
 ,
 </DELIMITER>
 <MISSING_VALUE>
 #Mi
 </MISSING_VALUE>
 <EXPORT_LEVEL>
 ALL
 </EXPORT_LEVEL>
 <DYNAMIC_CALC_EXPORT>
 OFF

Chapter 3
Calculation Command List

3-68

 </DYNAMIC_CALC_EXPORT>
 <COLUMN HEADER>
 Measures
 </COLUMN HEADER>
 <COLUMN_FORMAT>
 ON
 </COLUMN_FORMAT>
 <DIMENSION_HEADER_WRITE>
 ON
 </DIMENSION_HEADER_WRITE>
 <FILE_OVERWRITE>
 ON
 </FILE_OVERWRITE>
 <DECIMAL_POINT>
 0N
 </DECIMAL_POINT>
 <PRECISION POINT>
 16
 </PRECISION_POINT>
 <RELATIONAL_EXPORT>
 OFF
 </RELATIONAL_EXPORT>
 </EXPORT_OPTIONS>
 <MESSAGE>
 <INFO>
 DataExport Warning: FIX statement contains Dynamic Calc member
[Qtr1]. No Dynamic Calc members are exported with the DataExportDynamicCalc
option set to OFF.
 </INFO>
 <INFO>
 Data Export Completed. Total blocks: [332]. Elapsed time: [3.846]
secs.
 </INFO>
 </MESSAGE>

SET DATAIMPORTIGNORETIMESTAMP
When importing binary data exported from an Essbase database, Essbase typically compares
the outline timestamp with that of the import file. The SET DATAIMPORTIGNORETIMESTAMP
calculation command lets you bypass the timestamp comparison.

This calculation command specifies whether to ignore, when importing binary data exported
from an Essbase database, the outline timestamp that was captured at the time data was
exported.

Caution:

Bypassing the check enables potentially importing the wrong file.

Syntax

SET DATAIMPORTIGNORETIMESTAMP ON|OFF;

Chapter 3
Calculation Command List

3-69

Parameters

ON
Ignore the outline timestamp.

OFF
Default. Check the outline timestamp.

Notes

The DATAEXPORT "Binfile" command captures the outline timestamp when it creates a binary
export file. By default, when the file is imported, Essbase checks the import file timestamp
against the existing outine timestamp to ensure the correct import file is read. You can use SET
DATAIMPORTIGNORETIMESTAMP to bypass checking the timestamp.

Caution:

Bypassing the check enables potentially importing the wrong file.

Example

SET DATAIMPORTIGNORETIMESTAMP ON;
DATAIMPORTBIN e:january\basic.bin

Specifies to ignore comparing the outline timestamp with the timestamp on the import file, and
to import the binary export file to the database on which the calculation script is running.

Related Topics

• DATAEXPORT
The DATAEXPORT calculation command writes data from an Essbase cube to a text or
binary file.

• DATAIMPORTBIN
The DATAIMPORTBIN calculation command for Essbase imports the binary output file
previously exported with the DATAEXPORT "Binfile" calculation command.

• SET Commands
The SET calculation commands for Essbase are procedural. The first occurrence of a SET
command in a calculation script stays in effect until the next occurrence of the same SET
command.

SET EMPTYMEMBERSETS
The SET EMPTYMEMBERSETS calculation command for Essbase stops the calculation
within a FIX...ENDFIX command block if the FIX evaluates to an empty member set.

Syntax

SET EMPTYMEMBERSETS ON|OFF

Chapter 3
Calculation Command List

3-70

Parameters

ON
Calculation within FIX command stops if FIX evaluates to an empty member set.

OFF
Entire database is calculated, even if FIX evaluates to an empty member set.

Notes

If EMPTYMEMBERSETS is ON, and a command within FIX…ENDFIX evaluates to a empty
member set, the calculation stops and the following information message is displayed: "FIX
statement evaluates to an empty set. Please refer to SET EMPTYMEMBERSETS command."
The calculation resumes after the FIX block. If a calculation script contains nested FIX
commands, the nested FIX commands are not evaluated.

Example

The following calculation script does not calculate Calc Dim(Year) within the FIX command.
100-10 has no children and therefore the FIX statement evaluates to an empty member set.

SET EMPTYMEMBERSETS ON;
...
FIX(@CHILDREN("100-10"))
 Calc Dim(Year);
ENDFIX
...

The following calculation script has nested FIX commands. Calc Dim(Product) is not calculated
because FIX(@CHILDREN("100-10")) evaluates to empty member set. Calc Dim(Year) is not
calculated even though the nested FIX("New York") does not evaluate to an empty member
set.

SET EMPTYMEMBERSETS ON;
...
FIX(@CHILDREN("100-10"))
 FIX("New York")
 Calc Dim(Year);
 ENDFIX
Calc Dim (Product);
ENDFIX
...

SET FRMLBOTTOMUP
The SET FRMLBOTTOMUP calculation command optimizes the calculation of complex
formulas on sparse dimensions in large database outlines. This command tells Essbase to
perform a bottom-up calculation on formulas that would otherwise require a top-down
calculation.

You might want to turn on this setting when using the CALC ALL and CALC DIM commands to
calculate the database.

Chapter 3
Calculation Command List

3-71

Syntax

SET FRMLBOTTOMUP ON|OFF;

Parameters

ON
Turns on the bottom-up sparse formula calculation method.

OFF
Turns off the bottom-up sparse formula calculation method. The default setting is OFF.
You can change the default behavior by setting the CALCOPTFRMLBOTTOMUP
configuration setting to TRUE.

Notes

• For information on complex formulas and top-down calculations, see Optimizing
Calculations.

• Forcing a bottom-up calculation on a formula may produce results that are inconsistent
with a top-down calculation if:

– The formula contains complex functions (for example, range functions)

– The formula's dependencies are not straightforward

• Before using this command in a production environment, be sure to check the validity of
calculation results produced when the command is enabled (set to ON).

Example

SET FRMLBOTTOMUP ON;

SET FRMLRTDYNAMIC
The SET FRMLRTDYNAMIC calculation command for Essbase enables you to turn off
calculation of dense Dynamic Calc dependencies during a batch calculation.

This command enables you to turn off calculation of all dense Dynamic Calc members during
batch calculation if runtime dependent functions are included in formulas on stored members.
(The preprocessing phase of a calculation script cannot determine if an outline contains dense
Dynamic Calc members.)

This command improves batch calculation performance by removing the overhead of
calculating all Dynamic Calc members.

The SET FRMLRTDYNAMIC command can be applied to an entire calculation script segment,
as shown in the example below.

Syntax

SET FRMLRTDYNAMIC ON | OFF;

Chapter 3
Calculation Command List

3-72

Parameters

ON
Calculation of Dynamic Calc members is performed. The default value is ON.

OFF
Calculation of Dynamic Calc members is not performed.

Notes

• Runtime-dependent functions include:

– @ANCEST

– @SANCEST

– @PARENT

– @SPARENT

– @CURRMBR

• If a stored member formula includes a runtime-dependent function on a Dynamic Calc
member, it may get #MISSING as the result instead of the expected value after executing
the formula on the Dynamic Calc member.

Example

The following example turns off all dense Dynamic Calc members:

SET FRMLRTDYNAMIC OFF;
FIX(@LEVMBRS(Product, 0)))
"Avg Sales" = @AVGRANGE(SKIPNONE,Sales,@CHIDREN(@CURRMBR(Product)));
ENDFIX
CALC ALL;

SET HYBRIDBSOINCALCSCRIPT
The SET HYBRIDBSOINCALCSCRIPT calculation command controls whether the subsequent
blocks in the current Essbase calculation script execute in hybrid mode. This command can be
used to enable or disable hybrid mode for specific blocks in the script.

This setting applies only to block storage databases.

Hybrid aggregation for block storage databases means that wherever possible, block storage
data calculation executes with efficiency similar to that of aggregate storage databases.

Syntax

SET HYBRIDBSOINCALCSCRIPT NONE|FULL;

Parameters

NONE
The calculation script runs in block storage mode. This is the default.

Chapter 3
Calculation Command List

3-73

FULL
The calculation script runs in hybrid mode.

Notes

• The calculation commands CALC DIM and AGG are not supported in hybrid mode.

• Only formulas that have dynamic dependencies are supported in hybrid mode.

Example

SET HYBRIDBSOINCALCSCRIPT FULL;

SET MSG
The SET MSG calculation command sets the level of messaging you want Essbase to return
about calculations, and enables simulated calculations.

This command applies only to the calculation script in which it is used.

Syntax

SET MSG SUMMARY | DETAIL | ERROR | INFO | NONE | ONLY;

Parameters

SUMMARY
Displays calculation settings and provides statistics on the number of:

• Data blocks created, read, and written

• Data cells calculated

DETAIL
Provides the same information as SUMMARY. In addition, it displays a detailed information
message every time Essbase calculates a data block.

ERROR
Displays only error messages.

INFO
Displays information and error messages.

NONE
Displays no messages during the life of the calculation script. However, because error
messages may contain vital information, they are still displayed.

ONLY
Instructs Essbase to perform a simulated calculation only. You may disregard any error
message during validation that indicates Essbase does not recognize a command.

Chapter 3
Calculation Command List

3-74

Note:

When you use this parameter, Essbase generates some empty upper-level blocks.
Make sure to clear upper-level blocks (or non-input blocks if you load data into upper
level blocks in your model) at the end of the simulation/command.

Oracle recommends using SET MSG ONLY with the calculation script commands SET
NOTICE HIGH and CALC ALL.
SET MSG ONLY does not generate a completion notice.

Notes

SET MSG SUMMARY and SET MSG DETAIL tell you:

• The status of calculation settings (for example, whether completion notice messages are
enabled)

• The total number of data blocks created

• The number of data blocks read and written on sparse calculations

• The number of data blocks read and written on dense calculations

• The number of data cells calculated on sparse calculations

• The number of data cells calculated on dense calculations

In addition, the SET MSG DETAIL command provides an information message every time
Essbase calculates a data block. It is useful for testing your database's consolidation path.
Because it causes a high processing overhead, it should be used during test calculations only.

SET MSG SUMMARY causes a processing overhead of approximately 1% to 5%, depending
on the database size.

Example

SET MSG ERROR;

Displays only the error messages.

SET MSG SUMMARY;

Produces the following sample output:

[Tue Apr 4 05:11:16 1995] local/Sample/Basic/Qatest/Info(1012672)
Calculator Information Message:

Maximum Number of Lock Blocks: [100] Blocks

Completion Notice Messages: [Disabled]

Calculations On Updated Blocks Only: [Enabled]

Clear Update Status After Full Calculations: [Enabled]

Calculator Cache With Multiple Bitmaps For: [Market]

Chapter 3
Calculation Command List

3-75

[Tue Apr 4 05:11:19 1995] local/Sample/Basic/Qatest/Info(1012672)
Calculator Information Message:

Total Block Created: [0.0000e+00] Blocks

Sparse Calculations: [4.3000e+01] Writes and [4.3000e+01] Reads

Dense Calculations: [4.3200e+02] Writes and [4.3200e+02] Reads

Sparse Calculations: [1.7200e+02] Cells

Dense Calculations: [4.3200e+02] Cells

SET MSG DETAIL;

Produces the following sample output:

[Thu Mar 30 16:27:26 1995] local/Sample/Basic/Qatest/Info(1012669)
Calculator Information Message:

Maximum Number of Lock Blocks: [100] Blocks

Completion Notice Messages: [Disabled]

Calculations On Updated Blocks Only: [Enabled]

Clear Update Status After Partial Calculations: [Disabled]

Calculator Cache With Multiple Bitmaps For: [Market]

 [Thu Mar 30 16:27:26 1995] local/Sample/Basic/Qatest/Info(1012669)
Calculator Information Message: Executing Block - [100], [East]

[Thu Mar 30 16:27:26 1995] local/Sample/Basic/Qatest/Info(1012669)

Calculator Information Message: Executing Block - [Product], [East]

[Thu Mar 30 16:27:26 1995] local/Sample/Basic/Qatest/Info(1012669)

Calculator Information Message: Executing Block - [100], [Market]

[Thu Mar 30 16:27:26 1995] local/Sample/Basic/Qatest/Info(1012669)

Calculator Information Message: Executing Block - [Product], [Market]

[Thu Mar 30 16:27:26 1995] local/Sample/Basic/Qatest/Info(1012669)
Calculator Information Message:

Total Block Created: [0.0000e+00] Blocks

Sparse Calculations: [4.0000e+00] Writes and [2.2000e+01] Reads

Dense Calculations: [0.0000e+00] Writes and [0.0000e+00] Reads

Chapter 3
Calculation Command List

3-76

Sparse Calculations: [3.8080e+03] Cells

Dense Calculations: [0.0000e+00] Cells

See Also

• CLEARBLOCK

• SET NOTICE

• SET Commands

SET NOTICE
The SET NOTICE calculation command monitors the progress of your Essbase calculation by
providing completion notices at intervals during the calculation. The number of notices
depends on the level you specify.

Syntax

SET NOTICE HIGH | DEFAULT | LOW;

Parameters

HIGH, DEFAULT, and LOW
Levels defining the frequency and number of completion notices.
You can set the values of HIGH, DEFAULT, and LOW using the CALCNOTICE configuration
setting. If you do not set the value of DEFAULT for CALCNOTICE, Essbase uses a default
value of 10, which provides 10 completion messages at 10% intervals during the calculation.

Notes

• The interval between notices is approximate. Essbase measures the interval by taking the
number of data blocks already calculated as a percentage of the total number of possible
data blocks in your database. For example, if there are 10,000 possible blocks and you
specify 5 notices, Essbase notifies you when the calculation approximately reaches block
2000, 4000, 6000, 8,000 and 10,000. However, if only the blocks 1,000 - 4,000 exist, then
Essbase displays only two notices.

• For partial calculations and calculations with multiple passes through your database, the
interval between completion notices is very approximate.

• Completion notices do not significantly reduce the calculation performance, except when
used with a very small database.

Example

If the following settings are configured:

CALCNOTICEHIGH 50
CALCNOTICEDEFAULT 20
CALCNOTICELOW 5

Chapter 3
Calculation Command List

3-77

then:

SET NOTICE HIGH;

displays 50 completion notices at 2% intervals.

SET NOTICE DEFAULT;

displays 20 completion notices at 5% intervals.

SET NOTICE LOW;

displays 5 completion notices at 20% intervals.

Related Topics

• SET MSG
The SET MSG calculation command sets the level of messaging you want Essbase to
return about calculations, and enables simulated calculations.

SET REMOTECALC
The SET REMOTECALC calculation command for Essbase turns on or off the ability to
perform remote calculation to the source of a transparent partition.

Syntax

SET REMOTECALC ON | OFF;

Parameters

ON
Default. Essbase connects to the source partition enabling remote calculations.

OFF
Essbase does not connect to the source partition. Use this option only when absolutely sure
the calculation script does not involve access to remote data.

Notes

• When you are working with transparent partitions and are sure that a calculation script
does not include remote values in the calculations, you can use SET REMOTECALC OFF
to improve calculation performance.

• Performance improvement is visible only when batch calculation is run on the target
application.

Example

SET REMOTECALC ON;

SET REMOTECALC OFF;

Chapter 3
Calculation Command List

3-78

SET RUNTIMESUBVARS
The SET RUNTIMESUBVARS calculation command declares runtime substitution variables
that are used in an Essbase calculation script.

Every runtime substitution variable used in a calculation script must be declared in the SET
RUNTIMESUBVARS command, with a name and a default value. You can include a
description of the runtime substitution variable's data type and data input limit, which is a string
in the <RTSV_HINT>rtsv_description</RTSV_HINT> tag. Each runtime substitution variable
declaration must end in a semicolon.

Syntax

SET RUNTIMESUBVARS
 {
 runtime_substitution_variable [= value] [<RTSV_HINT>rtsv_description</
RTSV_HINT>];
 };

Parameters

runtime_substitution_variable
Name of a runtime substitution variable

value
Default value of the named runtime substitution variable. The value can be expressed as a
string, a constant, a member name, or a member combination.
Default values specified in the SET RUNTIMESUBVARS command can be overwritten at
runtime. See Using Runtime Substitution Variables in Calculation Scripts Run in Essbase.

<RTSV_HINT>rtsv_description</RTSV_HINT>
A string that describes the data type and data input limit (for example, an integer not greater
than 100) of the named runtime substitution variable. When running a calculation script that
contains runtime substitution variables, the <RTSV_HINT> tag is:

• Optional, when running the calculation script in Essbase

• Required, when running the calculation script in Smart View

The IEssIterator.getCalcFileRunTimeSubVars or IEssIterator.getCalcRunTimeSubVars Java
API methods or EssGetRuntimeSubVars C API retrieves all of the information (name, value,
and description) that is specified in the runtime substitution variable declaration. The
<RTSV_HINT> string can then be used to prompt a user to input a value at runtime or to validate
input data before passing the value to the calculation script.

Notes

• If a default value is not included in the runtime substitution variable declaration in SET
RUNTIMESUBVARS, an error occurs when the calculation script is validated. Oracle
recommends that you provide a default value to avoid the validation error and, when
running the calculation script, provide the expected value. However, if you do not provide a
default value, you can still provide a value at runtime using the execute calculation MaxL
statement with the with runtimesubvars grammar.

• If you specify a runtime substitution variable in SET RUNTIMESUBVARS but do not use
the runtime substitution variable in the calculation script, Essbase ignores the runtime
substitution variable declaration.

Chapter 3
Calculation Command List

3-79

• If multiple runtime substitution variables have the same name but have different values,
only the value of the first instance of the runtime substitution variable is used; all other
subsequent values are ignored.

• To log the runtime substitution variables that are used in a calculation script, set the
ENABLERTSVLOGGING configuration setting to TRUE.

Example

In the following example, three runtime substitution variables are defined with a name and a
default value; for example, the runtime substitution variable named myMarket has a value of
"New York".

SET RUNTIMESUBVARS
{
 myMarket = "New York";
 salesNum = 100;
 pointD = "Actual"->"Final";
};

In the following example, the runtime substitution variables include a default value and
rtsv_description. The EssGetRuntimeSubVars API can be implemented to retrieve all of the
information (name, value, and description) about the runtime substitution variable. The
<RTSV_HINT> string can then be used to prompt a user to input a value at runtime or to validate
input data before passing the value to the calculation script.

SET RUNTIMESUBVARS
{
 myMarket "New York" <RTSV_HINT>myMarket: Input the value as a string, such
as "New York"</RTSV_HINT>;
 salesNum 10 <RTSV_HINT>salesNum: Input the value as an integer, such as
100</RTSV_HINT>;
 pointD "Actual"->"Final" <RTSV_HINT>pointD: Input the value as a member
name or a member combination, such as "Actual"->"Final"</RTSV_HINT>;
};

The following example shows the use of XML-style tags within the <RTSV_HINT> tag for running
a calculation script with runtime substitution variables in Smart View:

SET RUNTIMESUBVARS
{
 sbx = POV <RTSV_HINT>
 <svLaunch>
 <description>Sandbox to merge</description>
 <allowMissing>false</allowMissing>
 <type>member</type>
 <dimension>Sandbox</dimension>
 <choice>single</choice>
 </svLaunch>
 </RTSV_HINT>;
};

See Also

Using Substitution, Runtime Substitution, and Environment Variables in Calculation Scripts

Chapter 3
Calculation Command List

3-80

ENABLERTSVLOGGING configuration setting

execute calculation MaxL statement

SET SCAPERSPECTIVE
The SET SCAPERSPECTIVE calculation command for Essbase sets the perspective for
varying attribute calculations.

Syntax

SET SCAPERSPECTIVE (mbrName1) [, (mbrName2)] ... [,(mbrNamen)]) on
Attribute_Dimension
| OFF ;

Parameters

mbrName1 [,...] on Attribute_Dimension
Any valid single member name, or list of member names, on the specified varying attribute
dimension.

OFF
Turn off the perspective setting for the calculation block.

Notes

• For use only in applications enabled with varying attributes.

• Only one independent member from each independent dimension is supported.

Example

Once the perspective is specified using this command, @WITHATTR can be used on a varying
attribute inside a FIX statement. In the following example, the SET SCAPERSPECTIVE
statements indicate that for attribute dimensions TYPE and TITLE, the subsequent FIX
statement with @WithATTR will use their attribute association as defined at time FY03 and
Jan.

set SCAPerspective ((FY03), (Jan)) on TYPE;
set SCAPerspective ((FY03), (Jan)) on TITLE;

FIX (@WithAttr (TYPE, "==", Contractor), @withattr (Title, "==",
Senior_QA_Engineer), Local, "HSP_Historical", "BU Version_1", Target, Local,
FY03)
HSP_INPUTVALUE = 100;
ENDFIX;

Related Topics

• @ISATTRIBUTE
The @ISATTRIBUTE calculation function for Essbase tells whether a member is a specific
attribute.

Chapter 3
Calculation Command List

3-81

• @ISMBRWITHATTR
The @ISMBRWITHATTR calculation function for Essbase returns TRUE if the current
member being calculated belongs to the list of base members that are associated with an
attribute that satisfies the conditions you specify.

• @WITHATTR
The @WITHATTR calculation function for Essbase returns all base members that are
associated with an attribute or varying attribute that satisfies the conditions you specify.

SET TRACE
The SET TRACE calculation command selects a particular cell to be traced during the
execution of member formulas in an Essbase calculation script.

Description

This command enables you to trace multiple data cells. Additionally, you can trace sections of
calculation scripts by using a combination of SET TRACE mbrList and SET TRACE OFF.
However, to use SET TRACE command, you must execute the calculation script outside of
Smart View, using Cube Designer or the Jobs page of the cloud service.

Syntax

SET TRACE mbrList| OFF;

Parameters

mbrList
A comma-delimited list of members, member set functions, or range functions. Must contain at
least one member from each dimension.

OFF
Turns off the previous SET TRACE command in the script. SET TRACE OFF has no effect
when calculation traces are run from Smart View.

Notes

• Trace output is logged to calc_trace.txt in the database directory on the cloud service.
This file is overwritten when the next calculation script is run or verified.

• SET TRACE commands are ignored if the CALCTRACE configuration setting is set to
OFF.

• Even if the CALCTRACE configuration setting is ON, SET TRACE commands are ignored
when calculation scripts are executed from Smart View.

Example

In the following example, the script traces the calculation of "Actual," "Opening Inventory," and
"Ending Inventory" for Cola in New York for the months of January to March:

SET TRACE (@CHILDREN("Qtr1"), "Cola", "New York", "Actual", "Ending
Inventory");

FIX(@LEVMBRS("Year",0), "Cola", "New York", "Actual")
"Opening Inventory" (
 IF(NOT @ISMBR("Jan"))
 "Opening Inventory"=@PRIOR("Ending

Chapter 3
Calculation Command List

3-82

Inventory");
 ENDIF

 "Ending Inventory" = "Opening Inventory" + "Additions" -
"Sales";
)
ENDFIX

The tracing output from the above script is:

Tracing cell: [100-10][New York][Actual][Jan][Ending Inventory] (Cell update
count: 1)

Previous value: #MI
Dependent values:
 [100-10][New York][Actual][Jan][Opening Inventory] = 2101.00
 [100-10][New York][Actual][Jan][Additions] = 644.00
 [100-10][New York][Actual][Jan][Sales] = 678.00
New value: [100-10][New York][Actual][Jan][Ending Inventory] = 2067.00

Computed in lines: [8 - 14] using:
"Opening Inventory"(
IF(NOT@ISMBR("Jan"))
"Opening Inventory"=@PRIOR("Ending Inventory");
ENDIF
"Ending Inventory"="Opening Inventory"+"Additions"-"Sales";
)

Tracing cell: [100-10][New York][Actual][Feb][Opening Inventory] (Cell
update count: 1)

Previous value: #MI
Dependent values:
 [100-10][New York][Actual][Jan][Ending Inventory] = 2067.00
New value: [100-10][New York][Actual][Feb][Opening Inventory] = 2067.00

Computed in lines: [8 - 14] using:
"Opening Inventory"(
IF(NOT@ISMBR("Jan"))
"Opening Inventory"=@PRIOR("Ending Inventory");
ENDIF
"Ending Inventory"="Opening Inventory"+"Additions"-"Sales";
)

...

For more examples, see Tracing Calculations.

Chapter 3
Calculation Command List

3-83

SET UPDATECALC
The SET UPDATECALC calculation command for Essbase turns Intelligent Calculation on or
off.

Syntax

SET UPDATECALC ON | OFF;

Parameters

ON
Essbase calculates only blocks marked as dirty (see Description). Dirty blocks include
updated blocks and their dependent parents (see Notes).
The default setting is ON. You can change this default using the UPDATECALC TRUE |
FALSE configuration property.

OFF
Essbase calculates all data blocks, regardless of whether they have been updated.

Notes

• Using Intelligent Calculation, Essbase calculates only dirty blocks, such as updated data
blocks and their dependent parents. Therefore, the calculation is very efficient.

• All data blocks in the database are marked as either clean or dirty. If a data block is clean,
then Essbase knows that the block does not need to be recalculated.

• By default, all data blocks are marked as clean after a full calculation of the database but
not after a partial calculation of the database. If required, you can change this default
behavior using the SET CLEARUPDATESTATUS command in your calculation script.

• There are several possible reasons blocks might be marked as dirty. See Understanding
Intelligent Calculation for information on Intelligent Calculation and clean and dirty blocks.

Example

SET UPDATECALC ON;

SET UPDATECALC OFF;

Related Topics

• SET CLEARUPDATESTATUS
The SET CLEARUPDATESTATUS calculation command specifies when Essbase marks
data blocks as clean. This clean status is used during Intelligent Calculation.

• UPDATECALC

SET UPTOLOCAL
The SET UPTOLOCAL calculation command for Essbase restricts consolidations to those
parents with the same defined currency. The default is OFF.

For example, all cities in Switzerland use the Swiss franc (CHF) as the unit of currency.
Therefore, all children of Switzerland, such as the cities Geneva, Zurich, and Lucerne,

Chapter 3
Calculation Command List

3-84

consolidate to Switzerland. Consolidation stops at this level, however, because Europe also
contains countries that use other currencies. The following database outline example illustrates
this situation:

Syntax

SET UPTOLOCAL ON | OFF ;

Notes

SET UPTOLOCAL ON has no effect on databases with no currency definitions.

Example

SET UPTOLOCAL ON;

SET UPTOLOCAL OFF;

See Also

SET CCTRACKCALC

CLEARCCTRACK

CCONV

CCTRACK (configuration setting)

THREADVAR
The THREADVAR calculation command for Essbase declares one or more temporary, thread-
level variables within a FIXPARALLEL...ENDFIXPARALLEL command block.

Syntax

THREADVAR varName [, varName] ;

Chapter 3
Calculation Command List

3-85

Parameters

varName
Name of the temporary variable(s).

Notes

• THREADVAR variables must be declared within the FIXPARALLEL...ENDFIXPARALLEL
block, and can only be used within that context.

• Essbase creates an instance of a THREADVAR variable for each child thread.

• A THREADVAR variable cannot be initialized; Essbase initializes it to #MISSING.

• A THREADVAR variable cannot have the same name as a VAR variable.

Example

See the example for POSTFIXPARALLEL.

Related Topics

• FIXPARALLEL...ENDFIXPARALLEL
The FIXPARALLEL...ENDFIXPARALLEL calculation command block for Essbase enables
parallel calculation on a block of commands by using up to a specified number of parallel
threads.

• POSTFIXPARALLEL
The POSTFIXPARALLEL calculation command block for Essbase is an optional, post-
processing block you can use within FIXPARALLEL...ENDFIXPARALLEL to copy
temporary, thread-level THREADVAR values into longer-persisting VAR variables that you
can use outside of the FIXPARALLEL block.

USE_MDX_INSERT
For the current Essbase calculation script, the USE_MDX_INSERT command enables
execution of aggregate storage custom calculations and allocations through MDX Insert.

This command is applicable to aggregate storage calculation scripts only. It must be added as
the first line of the custom calculation script.

Syntax

USE_MDX_INSERT;

Example

USE_MDX_INSERT;
[Original Price] := Units/7;
[Price Paid] := Units/7;
[Returns] := Units/7;

See Also

• Performing Custom Calculations and Allocations on Aggregate Storage Databases

• CUSTOMCALCANDALLOCTHRUINSERT

• MDX Insert Specification

Chapter 3
Calculation Command List

3-86

VAR
The VAR calculation command for Essbase declares a temporary variable that contains a
single value. The variable lasts for the scope of the calculation script.

You can also use a single VAR command to declare multiple variables by supplying a comma-
delimited list of variable names.

Syntax

VAR varName [= value] ;

Parameters

varName
Name of the temporary variable.

value
Optional parameter that declares the data value.

Notes

• The name of the variable cannot duplicate a database member name.

• If a value is not declared, it is set to #MISSING.

• VAR commands can only be assigned values within a member calculation or when VAR is
declared.

Example

VAR Target = 1200;

VAR Break1, Break2, Break3;

See Also

ARRAY

Chapter 3
Calculation Command List

3-87

4
MDX

MDX is a language for anyone who needs to develop scripts or applications to query and
report against data and metadata in Essbase databases.

• Overview of MDX

• MDX Query Format

• MDX Syntax and Grammar Rules

• MDX Operators

• About MDX Properties

• MDX Comments

• MDX Query Limits

• Aggregate Storage and MDX Outline Formulas

• MDX Function Return Values

• MDX Function List

Overview of MDX
MDX is a query language for multidimensional databases that can be used to analyze and
extract Essbase data and metadata, define formulas on aggregate storage cubes, and more.

MDX is a language-based way to analyze data in Essbase cubes. MDX exhibits all of the
following characteristics:

• Provides advanced data extraction capability

• Provides advanced reporting capability

• Includes functions for identifying and manipulating very specific subsets of data

• Is a data-manipulation language, complementing MaxL (a data-definition language for
Essbase)

• Utilizes the platform-independent XML for Analysis specification

MDX is a joint specification of the XMLA Council, who are the XML for Analysis founding
members.

MDX is a language for anyone who needs to develop scripts or applications to query and
report against data and metadata in Essbase databases. The following prerequisite knowledge
is assumed:

• A working knowledge of the operating system your server uses and the ones your clients
use.

• An understanding of Essbase concepts and features.

• Familiarity with XML.

In order for Essbase to receive MDX statements, you must pass the statements to Essbase. To
pass statements, use the Analyze view in the Web interface, or use the MaxL client or MaxL

4-1

shell (essmsh). When using the MaxL Shell, terminate all statements with a semicolon. Results
are returned in the form of a grid.

See Also

• Analyzing and Moving Data with MDX

• Writing MDX Queries

MDX Query Format
This overview presentation of a high-level MDX query structure gives you a summary of the
required and optional elements you can use to write MDX queries for Essbase
multidimensional analysis.

Every query using the SELECT statement has the following basic format. Items in [brackets]
are optional.

[<with_section>]
[<insert_clause>]
[<export_clause>]
SELECT [<axis_specification>
 [, <axis_specification>...]]
 <subselect> | FROM <cube_specification>
[WHERE [<slicer_specification>]]

Table 4-1 Description of MDX Query Elements

Item Description

<with_section> An optional section, beginning with the keyword
WITH, in which you can define referenceable sets
or members.

<insert_clause> An optional clause for inserting tuples of data from
a source to a target.

<export_clause> An optional clause to save query results to a file on
Essbase. This is an alternative to viewing the query
output on a client.

SELECT A literal keyword that must precede axis
specifications.

[<axis_specification> [,<axis_specification>...]] Any number of comma-separated axis
specifications. Axes represent an n dimensional
cube schema. Each axis is conceptually a
framework for retrieving a data set; for example,
one axis could be thought of as a column, and the
next could be considered a row. See MDX Axis
Specifications for more information.

[<subselect>] An optional sub selection to filter an axis
specification. See MDX Sub Select.

FROM A literal keyword that must precede the cube
specification.

<cube_specification> The name of the database from which to select.

WHERE A literal keyword that must precede the slicer
specification, if one is used.

Chapter 4
MDX Query Format

4-2

Table 4-1 (Cont.) Description of MDX Query Elements

Item Description

<slicer specification> A tuple, member, or set representing any further
level of filtering you want done on the results. For
example, you may want the entire query to apply
only to Actual Sales in the Sample Basic database,
excluding budgeted sales. The WHERE clause
might look like the following:WHERE ([Scenario].
[Actual], [Measures].[Sales])

MDX Syntax and Grammar Rules
You can learn to use the MDX language to develop statements for querying and manipulating
Essbase data and metadata. To become adept at using MDX with Essbase, explore this
documentation to learn about the elements of MDX queries and how they are ordered to form
valid statements.

The following topics describe syntax and grammar rules for MDX functions:

• Understanding BNF Notation

• MDX Grammar Rules

• MDX Syntax for Specifying Duplicate Member Names and Aliases

• MDX Axis Specifications

• MDX Slicer Specification

• MDX Cube Specification

• MDX Set Specification

• MDX With Section

• MDX Dimension Specification

• MDX Layer Specification

• MDX Member Specification

• MDX Hierarchy Specification

• MDX Tuple Specification

• MDX Create Set / Delete Set

• MDX Sub Select

• MDX Insert Specification

• MDX Export Specification

Understanding BNF Notation
The MDX grammar rules for Essbase are presented using Backus-Naur Form (BNF) syntax
notation throughout this documentation. Learning to read BNF will help you understand MDX

Chapter 4
MDX Syntax and Grammar Rules

4-3

syntax as you write statements or formulas to help you with Essbase analysis and data
extraction.

This section briefly explains the meaning of symbolic notations used to describe grammar in
this MDX documentation. The following table of conventions is not a complete description of
BNF, but it can help you read the grammar rules presented in this document.

Table 4-2 BNF Notation Elements

Symbol Description Example

<word>
(A word in angle brackets.)

The word presented in angle brackets is
not meant to be literally used in a
statement; its rules are further defined
elsewhere.

When reading the following syntax,

SELECT <axis-specification> ...
you know that axis-specification is
not meant to be typed literally into the
statement. The rules for axis-
specification are further defined in the
documentation (look for <axis-
specification> ::= to get the
definition).

<word> ::=
(A word in angle brackets, followed
directly by the symbol ::=)

A definition, or BNF "production." The
symbol ::= can be interpreted to mean
"is defined as."

The word referred to elsewhere as the
placeholder <word> is defined here,
directly following <word> ::=.

The following syntax tells you that a
tuple is defined as either one member in
parenthesis, or two or more comma-
separated members in parenthesis.

<tuple> ::=
'(' <member> [,<member>]...
')'

|
The pipe symbol or "OR" symbol.

Precedes alternatives. The symbol |
can be interpreted to mean "or."

The following syntax:

ON COLUMNS|ROWS|PAGES|
CHAPTERS|SECTIONS

can be used to build any of the following
literal statement parts:

• ON COLUMNS
• ON ROWS
• ON PAGES
• ON CHAPTERS
• ON SECTIONS

WORD
(Text in all caps.)

A query-grammar keyword, to be typed
literally.

When reading the following syntax,

SELECT <axis-specification> ...
you know that SELECT is a keyword, and
therefore should be typed literally into its
proper location in the statement.

Chapter 4
MDX Syntax and Grammar Rules

4-4

Table 4-2 (Cont.) BNF Notation Elements

Symbol Description Example

[<word>] or [word] or[WORD]
(Square brackets enclosing some word
or item.)

An optional element. In the following high-level query syntax,

[<with_section>]
SELECT [<axis_specification>
 [, <axis_specification>...]]
FROM [<cube_specification>]
[WHERE
[<slicer_specification>]]

everything, technically, is optional
except for SELECT and FROM.
Therefore, a query containing only the
words

SELECT FROM

would in fact be valid; however, it would
select one consolidated data value from
its best estimate of a cube context,
which might not be very useful.

[, <word>...]
(A comma, a word, and an ellipsis, all
enclosed in square brackets.)

You can optionally append a comma-
separated list of one or more <words>.

The following syntax

SELECT [<axis_specification>
 [, <axis_specification<...]]

indicates that multiple, comma-
separated axis specifications can
optionally be supplied to the SELECT
statement.

MDX Grammar Rules
This BNF presentation of MDX grammar rules gives you a top-down look at all the possible
syntax elements of the MDX language as it applies to Essbase.

The following is a comprehensive view of the syntax for MDX in Essbase.

In this document, the syntax for MDX is illustrated using BNF notation.

[<with_section>]
[<insert_specification>]
[<export_specification>]
SELECT [<axis_specification>
 [, <axis_specification>...]]
[<subselect>]
[FROM [<cube_specification>]]
[WHERE [<slicer_specification> [<dim_props>]]

<insert_specification> ::=

Chapter 4
MDX Syntax and Grammar Rules

4-5

 INSERT
 <source_tuple> TO <target_tuple>

 <source_tuple> TO <target_tuple>
 [<offset> <debitmember> <creditmember>]
 [USING <load_buffer_method>]
 INTO <cube_specification>
 <subselect>

<export_specification> ::=
EXPORT INTO FILE <file_name> [<OVERWRITE> <USING COLUMNDELIMITER
<delimiter_character>>]

<subselect> ::=
FROM SELECT [<axis_specification>
 [, <axis_specification>...]]

<cube_specification> ::=
 '[' <ident_or_string>.<ident_or_string> ']'
 | <delim_ident>.<delim_ident>

<delim_ident> ::=
 '[' <ident> ']'
 | <ident_or_string>

<ident_or_string> ::=
 ' <ident> '
 | <ident>

Note:

<ident> refers to a valid Essbase application/database name. In the cube
specification, if there are two identifiers, the first one should be application name and
the second one should be database name. For example, all of the following are valid
identifiers:

• Sample.Basic
• [Sample.Basic]
• [Sample].[Basic]
• 'Sample'.'Basic'

<axis_specification> ::=
 [NON EMPTY] <set> [<dim_props>] ON
 COLUMNS | ROWS | PAGES | CHAPTERS |
 SECTIONS | AXIS (<unsigned_integer>)

<dim_props> ::=
 [DIMENSION] PROPERTIES <property> [, <property>...]

<slicer_specification> ::= <set> | <tuple> | <member>

Chapter 4
MDX Syntax and Grammar Rules

4-6

Note:

The cardinality of the <set> in the slicer should be 1.

<member> ::=
 <member-name-specification>
 | <member_value_expression>

<member-name-specification> ::=

A member name can be specified in the following ways:

1. By specifying the actual name or the alias; for example, Cola, Actual, COGS, and [100].

If the member name starts with number or contains spaces, it should be within brackets;
for example, [100]. Brackets are recommended for all member names, for clarity and code
readability.

For attribute members, the long name (qualified to uniquely identify the member) should be
used; for example, [Ounces_12] instead of just [12].

2. By specifying dimension name or any one of the ancestor member names as a prefix to
the member name; for example, [Product].[100-10] and [Diet].[100-10] This is a
recommended practice for all member names, as it eliminates ambiguity and enables you
to refer accurately to shared members.

Note:

Use only one ancestor in the qualification. Essbase returns an error if multiple
ancestors are included. For example, [Market].[New York] is a valid name for
New York, and so is [East].[New York]. However, [Market].[East].[New
York] returns an error.

3. By specifying the name of a calculated member defined in the WITH section.

4. For outlines that have duplicate member names enabled, see also MDX Syntax for
Specifying Duplicate Member Names and Aliases.

<member_value_expression> ::=
 Parent (<member> [,<hierarchy>])
 | <member>.Parent [(<hierarchy>)]
 | FirstChild (<member>)
 | <member>.FirstChild
 | LastChild (<member>)
 | <member>.LastChild
 | PrevMember (<member> [,<layertype>])
 | <member>.PrevMember [(<layertype>)]
 | NextMember (<member> [,<layertype>])
 | <member>.NextMember [(<layertype>)]
 | FirstSibling (<member> [,<hierarchy>])
 | <member>.FirstSibling [(<hierarchy>)]
 | LastSibling (<member> [,<hierarchy>])

Chapter 4
MDX Syntax and Grammar Rules

4-7

 | <member>.LastSibling [(<hierarchy>)]
 | Ancestor (<member> , <layer> | <index> [,<hierarchy>])
 | Lead (<member>, <index> [,<layertype>] [,<hierarchy>])
 | <member>.Lead (<index> [,<layertype>] [,<hierarchy>])
 | Lag (<member>, <index> [,<layertype>] [,<hierarchy>])
 | <member>.Lag (<index> [,<layertype>] [,<hierarchy>])
 | CurrentAxisMember()
 | CurrentMember (<dim_hier>)
 | <dim_hier>. CurrentMember
 | DefaultMember (<dim_hier>)
 | <dim_hier>. DefaultMember
 | OpeningPeriod ([<layer> [,<member>]])
 | ClosingPeriod ([<layer> [,<member>]])
 | Cousin (<member>, <member>)
 | ParallelPeriod([<layer>[, <index>[, <member> [,<hierarchy>]]]])
 | Item (<tuple>, <index>)
 | tuple[.Item] (<index>)
 | LinkMember (<member>, <hierarchy>)
 | member.LinkMember (<hierarchy>)
 | DateToMember (<date>, <dim_hier> [,<genlev>])
 | StrToMbr (<string_value_expr> [,<dimension>] [, MEMBER_NAMEONLY |
<alias_table_name>])

<dim_hier> ::= <dimension>

<dimension> :: =
 <dimension-name-specification>
 | Dimension (<member> | <layer>)
 | <member>.DIMENSION
 | <layer>.DIMENSION

<dimension-name-specification> ::=
 Same as <member_name-specification> case 1.
 e.g. Product, [Product]

<hierarchy> ::=

A hierarchy refers to a root member of an alternate hierarchy, which is
always at
generation 2 of a dimension. Member value expressions are not allowed as
hierarchy
arguments.

<layertype> ::=
 GENERATION | LEVEL

<layer> ::=
 <layer-name-specification>
 | Levels (<dim_hier>, <index>)
 | <dim_hier>.Levels (<index>)
 | Generations (<dim_hier>, <index>)
 | <dim_hier>.Generations (<index>)
 | <member>.Generation
 | <member>.Level

Chapter 4
MDX Syntax and Grammar Rules

4-8

<layer-name-specification> ::=

A layer name can be specified in the following ways:

1. By specifying the generation or level names; for example, States or Regions.

The generation or level name can be within brackets; for example, [Regions]. Using
brackets is recommended.

2. By specifying the dimension name along with the generation or level name; for example,
Market.Regions and [Market].[States] This naming convention is recommended.

<tuple> ::=
 <member>
 | (<member> [,<member>]..)
 | <tuple_value_expression>

A tuple is a collection of member(s) with the restriction that no two members can be from the
same dimension. For example, (Actual, Sales) is a tuple. (Actual, Budget) is not a tuple,
as both members are from the same dimension.

<tuple_value_expression> ::=
 CurrentTuple (<set>)
 | <set>.Current
 | Item (<set>, <index>)
 | <set>[.Item] (<index>)

A set is a collection of tuples where members in all tuples must be from the same dimensions
and in the same order.

For example, {(Actual, Sales), (Budget, COGS)} is a set.

{(Actual, Sales), (COGS, [100])} is not a set because the second tuple has members from
Scenario and Product dimensions, whereas the first tuple has members from Scenario and
Measures dimensions.

{(Actual, Sales). (COGS, Budget)} is not a set because the second tuple has members
from Scenario and Measures dimensions, whereas the first tuple has members from Measures
and Scenario dimensions (the order of dimensions is different).

Note:

The size of an input set to a function has range between 0 and 4294967295 tuples.

<set> ::=
 MemberRange (<member>, <member>
 [,<layertype>] [,<hierarchy>])
 | <member> : <member>
 | { <tuple>|<set> [, <tuple>|<set>].. }
 | (<set>)
 | <set_value_expression>

Chapter 4
MDX Syntax and Grammar Rules

4-9

<set_value_expression> ::=
 | Members (<dim_hier>)
 | <dim_hier>.Members
 | Members (<layer>)
 | <layer>.Members
 | Children (<member>)
 | <member>.Children
 | CrossJoin (<set> , <set>)
 | CrossJoinAttribute (<set> , <set>)
 | Union (<set> , <set> [,ALL])
 | Intersect (<set> , <set> [,ALL])
 | Except (<set> , <set> [,ALL])
 | Extract (<set> , <dim_hier> [, <dim_hier>]..)
 | Head (<set> [, <index>])
 | Subset (<set> , <index> [,index])
 | Tail (<set> [,index])
 | Distinct (<set>)
 | Siblings (<member> [, <selection_flags>, [INCLUDEMEMBER|
EXCLUDEMEMBER]])
 | <member>.Siblings
 | Descendants (<member> , [{<layer>|<index>}[, <Desc_flags>]])
 | PeriodsToDate ([<layer>[, <member> [,<hierarchy>]]])
 | LastPeriods (<index>[, <member> [,<hierarchy>]])
 | xTD ([<member>])
 where xTD could be {HTD|YTD|STD|PTD|QTD|MTD|WTD|DTD}
 | Hierarchize (<set> [,POST])
 | Filter (<set> , <search_condition>)
 | Order (<set>, <value_expression> [,BASC | BDESC])
 | TopCount (<set> , <index> [,<numeric_value_expression>])
 | BottomCount (<set> , <index> [,<numeric_value_expression>])
 | TopSum (<set> , <numeric_value_expression>
 , <numeric_value_expression>)
 | BottomSum (<set> , <numeric_value_expression>
 , <numeric_value_expression>)
 | TopPercent (<set> , <percentage> , <numeric_value_expression>)
 | BottomPercent (<set> , <percentage> , <numeric_value_expression>)
 | Generate (<set> , <set> [, [ALL]])
 | DrilldownMember (<set> , <set>[, RECURSIVE])
 | DrillupMember (<set> , <set>)
 | DrilldownByLayer (<set> [, {<layer>|<index>])
 | DrilldownLevel (<set> [, {<layer>|<index>])
 | DrillupByLayer (<set> [, <layer>])
 | DrillupLevel (<set>[, <layer>])
 | WithAttr (<member> , <character_string_literal>, <value_expression>)
 | WithAttrEx (<member> , <character_string_literal>, <value_expression>,
ANY, <tuple>|<member> [, <tuple>|<member>])
 | Attribute (<member>)
 | AttributeEx (<member>, ANY, <tuple>|<member> [, <tuple>|<member>])
 | Uda (<dimension> | <member> , <string_value_expression>)
 | RelMemberRange (<member>, <prevcount>, <nextcount>,
 [,<layertype>] [,<hierarchy>])
 | Ancestors (<member>, <layer>|<index>)
 | <conditional_expression>

Chapter 4
MDX Syntax and Grammar Rules

4-10

Note:

<conditional_expression> is expected to return a <set> in the above production.

<Desc_flags> ::=
 SELF
 | AFTER
 | BEFORE
 | BEFORE_AND_AFTER
 | SELF_AND_AFTER
 | SELF_AND_BEFORE
 | SELF_BEFORE_AFTER
 | LEAVES

<selection_flags> ::=
 LEFT
 | RIGHT
 | ALL

<value_expression> ::=
 <numeric_value_expression>
 | <string_value_expression>

<numeric_value_expression> ::=
 <term>
 | <numeric_value_expression> + <term>
 | <numeric_value_expression> - <term>

<term> ::=
 <factor>
 | <term> * <factor>
 | <term> / <factor>

<factor> ::=
 [+ | -]<numeric_primary>

<numeric_primary> ::=
 <value_expr_primary>
 | <numeric_value_function>
 | <mathematical_function>
 | <date_function>

Note:

The data type of <value_expr_primary> in the above production must be numeric.

<base> ::=
 <numeric_value_expression>
<power> ::=

Chapter 4
MDX Syntax and Grammar Rules

4-11

 <numeric_value_expression>

<mathematical_function> ::=
 Abs (<numeric_value_expression>)
 | Exp (<numeric_value_expression>)
 | Factorial (<index>)
 | Int (<numeric_value_expression>)
 | Ln (<numeric_value_expression>)
 | Log (<numeric_value_expression> [, <base>])
 | Log10 (<numeric_value_expression>)
 | Mod (<numeric_value_expression> , <numeric_value_expression>)
 | Power (<numeric_value_expression> , <power>)
 | Remainder (<numeric_value_expression>)
 | Stddev (<set> [,<numeric_value_expression> [,IncludeEmpty]])
 | Stddevp (<set> [,<numeric_value_expression> [,IncludeEmpty]])
 | Round (<numeric_value_expression> , <index>)
 | Truncate (<numeric_value_expression>)

<date_function> ::=
 DateRoll(<date>, <date_part>, <index>)
 | DateDiff(<date>, <date>, <date_part>)
 | DatePart(<date>, <date_part>)
 | Today()
 | TodateEx(<date_format_string>, <string>)
 | GetFirstDate(<member>)
 | GetLastDate(<member>)
 | UnixDate(<numeric_value_expression>)
 | GetFirstDay(<date>, <date_part>)
 | GetLastDay(<date>, <date_part>)
 | GetNextDay(<date>, <week-day-specification>, [0|1])
 | GetRoundDate(<date>, <date_part>)

The <date> argument is a number representing the input date. The number is the number of
seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the
following functions: Today(), TodateEx(), GetFirstDate(), GetLastDate().

<date_part> ::=
 DP_YEAR
 | DP_QUARTER
 | DP_MONTH
 | DP_WEEK
 | DP_DAY
 | DP_DAYOFYEAR
 | DP_WEEKDAY

Chapter 4
MDX Syntax and Grammar Rules

4-12

Note:

DP_DAYOFYEAR and DP_WEEKDAY are not valid arguments in functions DateRoll and
DateDiff.

<week-day-specification> ::=
 1 | 2 | 3 | 4 | 5 | 6 | 7
 e.g. 1 implying Sunday, 7 implying Saturday

<date_format_string> ::=
 "mon dd yyyy"
 | "Month dd yyyy"
 | "mm/dd/yy"
 | "mm/dd/yyyy"
 | "yy.mm.dd"
 | "dd/mm/yy"
 | "dd.mm.yy"
 | "dd-mm-yy"
 | "dd Month yy"
 | "dd mon yy"
 | "Month dd, yy"
 | "mon dd, yy"
 | "mm-dd-yy"
 | "yy/mm/dd"
 | "yymmdd"
 | "dd Month yyyy"
 | "dd mon yyyy"
 | "yyyy-mm-dd"
 | "yyyy/mm/dd"
 | "Long format"
 | "Short format"

<string_value_expression> ::=
 <string_value_primary>
 | FormatDate (<date>, <date_format_string>)
 | Concat (<string_value_expression> [<, string_value_expression> ...])
 | Left(<string_value_expression>, <length>)
 | Right(<string_value_expression>, <length>)
 | Substring(<string_value_expression>, <index> [, <index>])
 | Upper(<string_value_expression>)
 | Lower (<string_value_expression>)
 | RTrim(<string_value_expression>)
 | LTrim(<string_value_expression>)
 | NumToStr(<value_expr_primary>)
 | EnumText(<textlistname> | <member>, <numeric_value_expression>)

<value_expr_primary> ::=
 <unsigned_numeric_literal>

Chapter 4
MDX Syntax and Grammar Rules

4-13

 | (<numeric_value_expression>)
 | <tuple>[.RealValue]
 | <member>[.RealValue]
 | <tuple> [.Value]
 | <member>[.Value]
 | CellValue()
 | <property>
 | <conditional_expression>
 | MISSING

<string_value_primary> ::=
 <character_string_literal>
 | <string_property>

Notes

• <conditional_expression> is expected to return a numeric value in the above production.

• String literals are delimited by double quotes(").

<conditional_expression> ::=
 <if_expression>
 | <case_expression>
 | CoalesceEmpty (<numeric_value_expression>
 , <numeric_value_expression>)

<case_expression> ::=
 <simple_case> | <searched_case>

<if_expression> ::=
 IIF (<search_condition>, <true_part>, <false_part>)
<true_part> ::=
 <value_expression> | <set>
<false_part> ::=
 <value_expression> | <set>

<simple_case> ::=
 Case <case_operand>
 <simple_when_clause>...
 [<else_clause>]
 END

<simple_when_clause> ::=
 WHEN <when_operand>
 THEN <result>
<else_clause> ::=
 ELSE <value_expression> | <set>

<case_operand> ::=
 <value_expression>
<when_operand> ::=
 <value_expression>
<result> ::=
 <value_expression> | <set>

<searched_case> ::=

Chapter 4
MDX Syntax and Grammar Rules

4-14

 Case
 <searched_when_clause>...
 [<else_clause>]
 END

<searched_when_clause> ::=
 WHEN <search_condition>
 THEN <result>

<numeric_value_function> ::=
 Avg (<set> [, <numeric_value_expression>] [, IncludeEmpty])
 | Max (<set> [, <numeric_value_expression>])
 | Min (<set> [, <numeric_value_expression>])
 | Sum (<set> [, <numeric_value_expression>])
 | NonEmptyCount (<set> [, <numeric_value_expression>])
 | Count (<set> [, IncludeEmpty])
 | <dts-specification> ::= DTS (<dts-operation-specification>,<member>)
 <dts-operation-specification> ::= HTD|YTD|STD|PTD|QTD|MTD|WTD|DTD
 | Todate (<string_value_expression> , <string_value_expression>)
 | Ordinal (<layer>)
 | Aggregate (<set> [,<member-name-specification>])
 | Rank (<member_or_tuple>, <set> [,<numeric_value_expression>
 [, <rank_flags>]])
 | NTile (<member_or_tuple>, <set>, <index>,
 <numeric_value_expression>)
 | Percentile (<set>, <numeric_value_expression>,
 <numeric_value_expression>)
 | Median (<set>, <numeric_value_expression>)
 | Len (<string_value_expression>)
 | InStr (<index>, <string_value_expression>,
 <string_value_expression>, <numeric_value_expression>)
 | StrToNum (<string_value_expression>)
 | EnumValue(<enum_string>)
 | JulianDate(<date>)

Note:

The <member-name-specification> in Aggregate function should refer to an Accounts
dimension member name.

Note:

<enum_string> represents an enumerated string. It should be in the following format.
The member should refer to a member of type text.

<enum_string> ::=
 <textlist-name-specification>.<character_string_literal>
 | <member>.<character_string_literal>
<textlist-name-specification> ::=

Chapter 4
MDX Syntax and Grammar Rules

4-15

 Same as <member_name-specification> case 1. The text list name
specification should refer to the name of a text list object.
 e.g. AccountStatus, [AccountStatus]

<member_or_tuple> ::=
 <member>
 | <tuple>

<index> ::=
 <numeric_value_expression>

Note:

The input <index> argument has range between -2147483647 and 2147483647.

<percentage> ::=
 <numeric_value_expression>

<search_condition> ::=
 <bool_term>
 | <search_condition> OR <bool_term>

<bool_term> ::=
 <bool_factor>
 | <bool_term> AND <bool_factor>

<bool_factor> ::=
 <bool_primary>
 | NOT <bool_primary>

<bool_primary> ::=
 <value_expression> [=|>|<|<>|>=|<=] <value_expression>
 | <property> IN <member>|<character_string_literal>
 | <property>
 | IsEmpty (<value_expression>)
 | (<search_condition>)
 | IsSibling(<member>,<member> [, INCLUDEMEMBER])
 | IsLeaf(<member>)
 | IsGeneration(<member>,<index>)
 | IsLevel(<member>,<index>)
 | IsAncestor(<member>,<member> [, INCLUDEMEMBER])
 | IsChild(<member>,<member> [, INCLUDEMEMBER])
 | IsUda (<member>, <string_value_expression>)
 | IsAccType (<member>, <AcctTag>)
 | Is (<member> , <member>)
 | <member> Is <member>
 | IsValid (<member> | <tuple> | <set> | <layer> | <property>)
 | IsMatch (<string_value_expression>, <string_value_expression>,
[,MATCH_CASE|IGNORE_CASE])
 | Contains (<member_or_tuple>, <set>)

Chapter 4
MDX Syntax and Grammar Rules

4-16

Note:

Only properties with boolean values can be used as <bool_primary>.

<AcctTag> ::=
 FIRST
 | LAST
 | AVERAGE
 | EXPENSE
 | TWO-PASS

<rank_flags> ::=
 ORDINALRANK
 | DENSERANK
 | PERCENTRANK

<with_section> ::=
 WITH <frml_spec>

<frml_spec> ::=
 <single_frml_spec>
 | <frml_spec> <single_frml_spec>

<single_frml_spec> ::=
 <set_spec>
 | <perspective_specification>
 | <member_specification>

<set_spec> ::=
 SET <set_name> AS ' <set> '

<set_name> ::=

The name of the set to be defined. The name cannot be same as any names/aliases of
database members, generation/level names, or UDA names.

<perspective_specification> ::=
 PERSPECTIVE REALITY | <tuple> FOR <dimension-name-specification>

<member_specification> ::=
 MEMBER <member_name> AS '
 <nonempty_specification>
 <numeric_value_expression> '
 [, <solve_order_specification>]

<member_name> ::=
 <dimension-name-specification>.<calculated member name>

<calculated member name> ::=

Chapter 4
MDX Syntax and Grammar Rules

4-17

Names used for calculated members cannot be the same as any names/aliases of database
members, generation/level names, or UDA names.

<solve_order_specification> ::=
 SOLVE_ORDER = <unsigned_integer>

<property> ::=
 <member>.<property_specification>
 | <dim_hier>.<property_specification>
 | <property_specification>
 | <property_expr_specification>

Note:

The last three alternatives in the above rule can be used only inside the DIMENSION
PROPERTIES section.

Assume an axis has 2 dimensions, Product and Market. Using DIMENSION PROPERTIES
Gen_number, [Product].level_number, the generation number will be present in the output
for the members of both dimensions, whereas the level number will be present only for the
members of the Product dimension.

Within a value expression, [Product].Gen_number refers to the generation number of the
member named [Product].

[Product].CurrentMember.Gen_number refers to the generation number of the current member
of the [Product] dimension.

For example,

Filter ([Product].Members, [Product].Gen_number > 1)

returns an empty set. Product.Generation is 1, so the search condition fails for each tuple of
[Product].Members.

Filter ([Product].Members, [Product].CurrentMember.Gen_number > 1)

returns all members of Product dimension except the top dimension member, [Product].

<string_property> ::= <member>.<property_specification>

Note:

The above rule specifies string properties such as MEMBER_NAME,
MEMBER_ALIAS.

<property_specification> ::=
 MEMBER_NAME

Chapter 4
MDX Syntax and Grammar Rules

4-18

 | MEMBER_ALIAS
 | GEN_NUMBER
 | LEVEL_NUMBER
 | <dimension-name-specification>
 | <uda-specification>

Note:

The <dimension-name-specification> in <property_specification> should be an
attribute dimension-name specification. The attribute dimension names are treated as
properties of members from their corresponding base dimensions.

<uda-specification> ::=

The <uda-specification> specifies a User Defined Attribute(UDA). UDA properties are
Boolean-valued properties. A TRUE value indicates presence of a UDA for a member. For
example,

Filter (Market.Members, Market.CurrentMember.[Major Market])

returns the Market dimension members tagged with "Major Market" UDA in the outline.

<property_expr_specification> ::=
PROPERTY_EXPR (<dimension name>,
 <property_name>,
 <member_value_expression>,
 <display_name>)

<property_name> ::=
 <property_specification>
<display_name> ::=
 <character_string_literal>

For more discussion of properties, see About MDX Properties.

The following rule describes the syntax for Essbase outline formulas in aggregate storage
applications.

<formula_specification> ::= <nonempty_specification>
 <numeric_value_expression>

<nonempty_specification> ::= NONEMPTYMEMBER <nonempty_member_list>
 | NONEMPTYTUPLE (<nonempty_member_list>)

<nonempty_member_list> ::= <nonempty_member_name>
 | <nonempty_member_name> [,
<nonempty_member_list>]

<nonempty_member_name> ::=

Chapter 4
MDX Syntax and Grammar Rules

4-19

 An Essbase member name or a calculated member name (only when used
in another calculated member).

Note:

The member name (or member names when multiple names are specified) in a
NONEMPTYMEMBER directive should belong to the same dimension as the
calculated member or formula member in which it is specified.

<signed_numeric_literal> ::=
 [+|-] <unsigned_numeric_literal>

<unsigned_numeric_literal> ::=
 <exact_numeric_literal>
 | <approximate_numeric_literal>

<exact_numeric_literal> ::=
 <unsigned_integer>[.<unsigned_integer>]
 | <unsigned_integer>.
 | .<unsigned_integer>

<unsigned_integer> ::=
 {<digit>}...

<approximate_numeric_literal> ::=
 <mantissa>E<exponent>

<mantissa> ::=
 < exact_numeric_literal>

<exponent> ::=
 [<sign>]<unsigned_integer>

<digit> ::=
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Note:

Numbers can also be input in scientific notation (mantissa/exponent), using the E
character.

<character_string_literal> ::=
 <quote>[<character_representation>...] <quote>

<character_representation> ::=
 <nonquote_character>
 | <quote_symbol>

<nonquote_character> ::=

Chapter 4
MDX Syntax and Grammar Rules

4-20

 Any character in the character set other than <quote>

<quote_symbol> ::=
 <quote> <quote>

<quote> ::= "

The following is the syntax for Format Strings in Essbase:
MdxFormat(string_value_expression)

MDX Syntax for Specifying Duplicate Member Names and Aliases
Use MDX when you need to identify Essbase member names in a precise way. For example, in
databases in which duplicate member names are enabled, MDX helps you reference the
qualified member name, enabling unique identification.

The following member specification rules apply to cubes with duplicate member names
enabled.

Note:

These rules are also applicable if you need to use MDX to explicitly reference shared
member names in a unique member name outline (an outline with duplicate member
names NOT enabled). See the "Shared Member Names Example" in this topic.

Qualified names must be used to specify duplicate member names. Qualified member or alias
names can be specified using:

• Fully qualified member names—Consist of duplicate member or alias name and all
ancestors up to and including the dimension name. Each name must be enclosed in
square brackets([]) and separated by a period.

[DimensionMember].[Ancestors...].[DuplicateMember]

For example:

[Product].[100].[100-10]

• Shortcut qualified member names—Essbase internally constructs shortcut qualified
names for members in duplicate member outlines.

You can manually insert shortcut qualified names into scripts, Smart View or other grid
clients, or MDX queries.

Essbase uses the following syntax to construct shortcut qualified names. Using the same
syntax that Essbase uses when you reference members in scripts, grid clients, and MDX
queries is optimal, but not required.

Chapter 4
MDX Syntax and Grammar Rules

4-21

Table 4-3 Construction of Shortcut Qualified Member Names

Scenario Qualified Name Syntax Example

Duplicate member names exist at
generation 2

[DimensionMember].
[DuplicateMember]

[Year].[Jan] or [Product].[Jan]

Duplicate member names exist in an
outline, but are unique within a
dimension

[DimensionMember]@[DuplicateMem
ber]

[Year]@[Jan]

Duplicate member names have a unique
parent

[ParentMember].
[DuplicateMember]

[East].[New York]

Duplicate member names exist at
generation 3

[DimensionMember].
[ParentMember].
[DuplicateMember]

[Products].[Personal Electronics].
[Televisions]

Duplicate member names exist at a
named generation or level, and the
member is unique at its generation or
level

[DimensionMember]@[GenLevelName
]|[DuplicateMember]

[2006]@[Gen1]|[Jan]

In MDX, either one the following syntax methods must be used to reference shortcut
qualified member names:

– Escape Character method—Because MDX syntax also uses square brackets:

1. Any internal closing bracket (])used by name parts within the shortcut qualified
names requires an additional] escape character.

2. The entire shortcut qualified member name must be enclosed in a set of square
brackets ([]).

Examples:

[Year].[Jan] is referenced as [[Year]].[Jan]]] in MDX.

[Year]@[Jan] is referenced as [[Year]]@[Jan]]] in MDX.

[2006]@[Gen1]|[Jan] is referenced as [[2006]]@[Gen1]]|[Jan]]] in MDX.

Note:

The above syntax also works for fully qualified member names, but is not
required.

– StrToMbr Function method—You can use the StrToMbr function to convert qualified
name strings to member value expressions.

Examples:

[Year].[Jan] is referenced as StrToMbr("[Year].[Jan]") in MDX.

[Year]@[Jan] is referenced as StrToMbr("[Year]@[Jan]") in MDX.

[2006]@[Gen1]|[Jan] is referenced as StrToMbr("[2006]@[Gen1]|[Jan]") in MDX.

Chapter 4
MDX Syntax and Grammar Rules

4-22

Note:

The above syntax also works for fully qualified member names, but is not
required.

Duplicate Member Names Query Example

The following query uses both methods of referencing shortcut member names in MDX:

SELECT
 { Sales, Profit }
ON COLUMNS,
 {[[Store]]@[6]]], StrToMbr("Product.SKU.1")}
ON ROWS
FROM MySample.Basic
WHERE ([[1998]].[Q1]].[1]]])

Note:

StrToMbr accepts any type of member-identifier strings: names, aliases or qualified
names.

Shared Member Names Example

The following example applies to a unique member name outline that contains shared
members.

In the Sample Basic database, the member [100-20] is the referenced member under parent
[100], and has a shared member associated with it under parent [Diet]. The shared member
[100-20] can be referred to explicitly, using the unique name [Diet].[100-20], as shown in the
following query:

SELECT
 {Sales}
ON COLUMNS,
 {[[Diet]].[100-20]]]} PROPERTIES MEMBER_UNIQUE_NAME
ON ROWS
FROM Sample.Basic;

MDX Axis Specifications
An MDX axis specification in Essbase consists of a set and one or more axis keywords.

<axis_specification> :: =
 [NON EMPTY] <set> ON COLUMNS|ROWS|PAGES|CHAPTERS|SECTIONS|
AXIS(<unsigned_integer>)

Understanding the following concepts will help you construct axis specifications for many
SELECT queries to Essbase databases.

Chapter 4
MDX Syntax and Grammar Rules

4-23

Ordering of Axes

If providing multiple axes, you cannot skip axes. For example, you can specify a Row axis only
if you have a Column axis. You can specify a Pages axis only if you also have Column and
Row axes.

You can also use ordinals to represent the axes. For example, you can specify <set> ON
AXIS(0), <set> ON AXIS(1), etc.

You can specify up to 64 axes (though it is common to use just two). The first five ordinal axes
have keyword aliases:

Table 4-4 Axis Keywords and Corresponding Ordinal Notation

Axis Keyword Axis Ordinal

COLUMNS AXIS(0) (default if nothing specified)

ROWS AXIS(1)
PAGES AXIS(2)
CHAPTERS AXIS(3)
SECTIONS AXIS(4)

For example:

SELECT set1 ON COLUMNS,
set2 ON ROWS
FROM Sample.Basic

is the same as:

SELECT set1 ON AXIS(0),
set2 ON AXIS(1)
FROM Sample.Basic

Both return a hypothetical data cube (or subset) of the following format:

Table 4-5 Hypothetical Subset of Data

(axis) Member names in set1

Member names in set2 Data at intersections of set1 and set2 members

The examples above are hypothetical because they will not return a cube until values are
provided for the sets. In the following example, we replace set1 and set2 with real sets:

SELECT
{[100-10], [100-20]} ON COLUMNS,
{[Qtr1], [Qtr2], [Qtr3], [Qtr4]} ON ROWS
FROM Sample.Basic

which returns the following results:

Chapter 4
MDX Syntax and Grammar Rules

4-24

Table 4-6 Output Grid from MDX Example

(axis) 100-10 100-20

Qtr1 5096 1359

Qtr2 5892 1534

Qtr3 6583 1528

Qtr4 5206 1287

Specifying the Set

You can represent the sets in each axis in many ways.

SELECT
{ }
ON COLUMNS
from sample.basic

illustrates that you can choose nothing for a set. However, no cell values will be returned. The
following rules apply:

• When any of the axes contains an empty set, no cell values are returned. The axes whose
sets have at least one tuple will have their tuples returned.

• If there are no axes at all, then exactly one cell is returned using the default member of
each dimension. The slicer tuple, if present, overrides the default member for the
respective dimensions.

SELECT
{ ([Year].[Qtr2]) }
ON COLUMNS
from sample.basic

illustrates using a set that contains a single tuple.

For more information about sets, see MDX Set Specification.

NON EMPTY

The axis specification syntax including NON EMPTY is shown below:

<axis_specification> ::=
 [NON EMPTY] <set> ON
 COLUMNS | ROWS | PAGES | CHAPTERS |
 SECTIONS | AXIS (<unsigned_integer>)

Including the optional keywords NON EMPTY before the set specification in an axis causes
suppression of slices in that axis that would contain entirely #MISSING values.

For any given tuple on an axis (such as (Qtr1, Actual)), a slice consists of the cells arising
from combining this tuple with all tuples of all other axes. If all of these cell values are
#MISSING, the NON EMPTY keyword causes the tuple to be eliminated.

Chapter 4
MDX Syntax and Grammar Rules

4-25

For example, if even one value in a row is not empty, the entire row is returned. Including NON
EMPTY at the beginning of the row axis specification would eliminate the following row slice
from the set returned by a query:

Table 4-7 Output Grid from MDX Example

Qtr1

Actual #Missing #Missing #Missing #Missing #Missing

For another example, see the Tail function.

Note:

NON EMPTY syntax is not supported in an MDX sub select axis specification.

To provide the best data export performance in MDX, any NON EMPTY specification on
an axis is ignored for MDX Export.

Dimension Properties

A property, in MDX grammar, refers to the Essbase concepts of attributes and UDAs.

The axis specification syntax including the properties specification is shown below:

<axis_specification> ::=
 [NON EMPTY] <set> [<dim_props>] ON
 COLUMNS | ROWS | PAGES | CHAPTERS |
 SECTIONS | AXIS (<unsigned_integer>)

As shown in the above syntax, a properties specification can follow the set specification in an
axis.

For more information about properties, see About MDX Properties.

MDX Slicer Specification
An MDX slicer specification starts with WHERE, and is a way of limiting a query to apply only
to a specific area of the Essbase database.

This section shows rules for the slicer specification (WHERE clause). The slicer axis is a way
of limiting a query to apply only to a specific area of the database.

A slicer specification consists of the WHERE keyword followed by a tuple, member, or set. You
can optionally query for certain dimension properties in the slicer specification.

Syntax

[WHERE [<slicer_specification> [<dim_props>]]

 <slicer_specification> ::= <set> | <tuple> | <member>

Chapter 4
MDX Syntax and Grammar Rules

4-26

Note:

The cardinality of the <set> in the slicer should be 1; in other words, if a set is used, it
must evaluate to a single tuple.

Note:

The same dimension cannot appear on an axis and the slicer. To filter an axis using
criteria from its own dimension, you can use a sub select. See MDX Sub Select.

<dim_props> ::=
 [DIMENSION] PROPERTIES <property> [, <property>...]

Example

For example, you may want an entire query to apply only to Actual Sales in the Sample Basic
database, excluding budgeted sales or any other measures. The WHERE clause might look
like the following:

SELECT
 {([West].children)}
ON COLUMNS,
 {([Diet].children)}
ON ROWS
FROM Sample.Basic
WHERE ([Scenario].[Actual], [Measures].[Sales])

MDX Cube Specification
An MDX cube specification indicates the name of the Essbase database being queried.

Use the cube specification to name the database at which the query is directed. A cube
specification consists of the FROM keyword followed by delimited or nondelimited identifiers
indicating an application name and a database name.

The first identifier should be an application name and the second one should be a database
name. For example, all of the following are valid identifiers:

• Sample.Basic
• [Sample.Basic]
• [Sample].[Basic]
• 'Sample'.'Basic'

Syntax

[FROM [<cube_specification>]]

 <cube_specification> ::=

Chapter 4
MDX Syntax and Grammar Rules

4-27

 '['<ident_or_string>.<ident_or_string>']'
 |<delim_ident>.<delim_ident>

 <delim_ident> ::=
 '[' <ident> ']'
 |<ident_or_string>

 <ident_or_string> ::=
 '<ident>'
 |<ident>

Notes

If [FROM [<cube_specification>]] is omitted from a query, the current database context is
assumed.

Example

Sample.Basic is the cube specification in the following hypothetical query.

SELECT
...
FROM Sample.Basic

MDX Set Specification
An MDX set specification is a collection of tuples. (For now, you can think of tuples as
analogous to Essbase member combinations, with no two members from the same
dimension.)

In each tuple of a set, members must represent the same dimensions as do the members of
other tuples of the set. Additionally, the dimensions must be represented in the same order.

In other words, each tuple of a set must have the same dimensionality as the other tuples in
the set.

<set> ::=
 MemberRange (<member>, <member>)
 | <member> : <member>
 | { [<tuple> | <set>] [, <tuple> | <set>].. }
 | <set_value_expression>

Table 4-8 Ways To Specify an MDX Set

Item Description

MemberRange (<member>, <member>) A set can be a range of members, specified using
the MemberRange function.

<member> : <member> Alternate syntax that has the same effect as the
MemberRange function.

{[<tuple> | <set>] [, <tuple> | <set>].. } Unless it is returned by a function, a set must be
enclosed in curly braces { }. A set can be one or
more tuples, or it can be made up of other sets.
All tuples in a set must have the same
dimensionality.

Chapter 4
MDX Syntax and Grammar Rules

4-28

Table 4-8 (Cont.) Ways To Specify an MDX Set

Item Description

<set_value_expression> Output from any function that returns a set. As an
alternative to creating sets member-by-member or
tuple-by-tuple, you can use a function that returns a
set. For a list of functions that return sets, see MDX
Function Return Values.

MDX With Section
An MDX WITH Section is for defining referential sets or members that can be used repeatedly
in the context of a query against Essbase.

Beginning with the keyword WITH at the very start of a query, you can define a buffer of
reusable logic lasting for the length of the query execution. This can save time in lines of code
written as well as in execution time.

If varying attributes are enabled, the WITH section can also be used to define perspective for
each varying attribute dimension. In case of multiple varying attributes, perspective setting can
be defined for each varying attribute dimension separately.

In the WITH section, you can create the following reusable elements:

• Calculated members

• Named Sets

Syntax

WITH
 SET set_name AS ' set '
 | MEMBER calculated_member_name AS ' <numeric_value_expr> '
 [, <solve_order_specification>]
 | <perspective_specification>

Chapter 4
MDX Syntax and Grammar Rules

4-29

Table 4-9 MDX WITH Section Elements

Item Description

set_name The name of the set that will be defined after the
AS keyword. Any name can be used; it should be
something that helps you remember the nature of
the set. For example, a set name could be
Best5Books, which names a set of the five top-
selling paperback titles in December:

WITH
SET [Best5Books] AS
 'Topcount (
 [Paperbacks].members,
 5,
 ([Measures].[Sales], [Scenario].
[Actual],
 [Year].[Dec])
)'

set The logic of a set specification; this can be re-used
because it is being named. Must be enclosed in
single quotation marks. In the example above, the
Topcount function defines the entire set.

calculated_member_name A name for a hypothetical member existing for the
duration of query execution. In its definition, you
must associate the calculated member with a
dimension (as [Max Qtr2 Sales] is associated with
the Measures dimension, in the example that
follows).
For example, the calculated member named Max
Qtr2 Sales has its value calculated at execution
time using the Max function:

WITH
MEMBER [Measures].[Max Qtr2 Sales] AS
 'Max (
 {[Year].[Qtr2]},
 [Measures].[Sales]
)'

Calculated members do not work with metadata
functions such as Children, Descendants, Parent,
and Siblings. For example, if there is a calculated
member defined as [CM1], you cannot use it in the
following way: [CM1].children.

<numeric_value_expr> An expression involving real members in the
database outline, compared using mathematical
functions. The value resulting from the expression
is applied to the calculated member. By using
calculated members, you can create and analyze a
great many scenarios without the need to modify
the database outline.

Chapter 4
MDX Syntax and Grammar Rules

4-30

Table 4-9 (Cont.) MDX WITH Section Elements

Item Description

<solve_order_specification> Optional. By adding ,SOLVE_ORDER = n to the
end of each calculated member, you can specify
the order in which the members are calculated. For
example, solve order in the following hypothetical
query is indicated in bold:

WITH
MEMBER [Product].[mbr1] AS
 'calculation', SOLVE_ORDER = 2

MEMBER [Product].[mbr2] AS
 'calculation', SOLVE_ORDER = 1

SELECT
 {[Year].children}
on columns,
 {
 [Product].[mbr1],
 [Product].[mbr2]
 }
on rows

See Usage Examples for Solve Order.

<perspective_specification>
PERSPECTIVE REALITY | tuple FOR
dimension

When a database uses varying attributes, base
members associated with the varying attributes are
aggregated according to the specified perspective.

You can set the perspective to reality (using the
REALITY keyword) or to explicit (using an input
tuple consisting of level 0 members).

Reality-based evaluation and reporting is the
default, in which independent members are
determined by the current context.

When using explicit evaluation and reporting, you
specify a tuple of level 0 members from the
independent dimension to be used as the context.

For an example of a reality-based perspective, see
the example for AttributeEx. For an example of an
explicit perspective, see the example for
WithAttrEx.

Usage Examples for Solve Order

WITH
MEMBER
 [Measures].[Profit Percent]
 AS 'Profit *100 /Sales', SOLVE_ORDER=20

Chapter 4
MDX Syntax and Grammar Rules

4-31

MEMBER
 [Year].[FirstFourMonths]
 AS 'Sum(Jan:Apr)',SOLVE_ORDER=10
SELECT
 {[Profit], [Sales], [Profit Percent]}
ON COLUMNS,
 {[Jan], [Feb], [Mar], [Apr], [FirstFourMonths]}
ON ROWS
FROM Sample.Basic

The calculated member [Profit Percent], defined in the Measures dimension, calculates
Profit as a percentage of Sales.

The calculated member [FirstFourMonths], defined in the Year dimension, calculates sum of
data for first four months.

When data for ([Profit Percent], [FirstFourMonths]) is evaluated, SOLVE_ORDER
specifies the order of evaluation, ensuring that [Profit Percent] is evaluated first, and
resulting in a correct value for percentage. If you change the order of evaluation, you will see
that the percentage value is not correct. In this example, SOLVE_ORDER specifies that sum
should be calculated before percentage.

Tie-Case Example for Solve Order

When evaluating a cell identified by multiple calculated members, the SOLVE_ORDER value is
used to determine the order in which the expressions are evaluated. The expression that is
used to evaluate the cell is that of the calculated member with the highest SOLVE_ORDER
value. In this case, [Profit Percent]'s expression is used to evaluate ([Profit Percent],
[FirstFourMonths]). The example above is calculated as:

([Profit Percent], [FirstFourMonths])
 = ([Profit], [FirstFourMonths]) * 100 / ([Sales], [FirstFourMonths])
 = (([Profit], [Jan]) + ([Profit], [Feb]) + ([Profit], [Mar]) + ([Profit],
[Apr])) * 100 /
 (([Sales], [Jan]) + ([Sales], [Feb]) + ([Sales], [Mar]) + ([Sales],
[Apr]))

A tie situation is possible because calculated members may have the same SOLVE_ORDER
value. The tie is broken based on the position of the dimensions to which the calculated
members are attached:

• For aggregate storage outlines, the calculated member belonging to the dimension that
comes later in the outline is the one that wins in this case.

• For block storage database outlines (and for pre-Release 7.1.2 aggregate storage
outlines), the solve order property applies to calculated members defined in an MDX query.
The calculated member belonging to the dimension that comes earlier in the outline is the
one that wins in this case, and its expression is used to evaluate the cell.

Calculated Members

For examples of queries using calculated members, see examples for the following functions:

Abs

Avg

BottomPercent

Chapter 4
MDX Syntax and Grammar Rules

4-32

Case

ClosingPeriod

Count

Exp

FirstSibling

IIF

Int

Lag

LastPeriods

Lead

Ln

Max

Min

Mod

NextMember

NonEmptyCount

Ordinal

PrevMember

Remainder

Sum

Todate

Named Sets

For examples of queries using named sets, see examples for the following functions:

BottomPercent

CurrentTuple

Filter (example 3)

Generate

Parent (example 2)

Perspective

For examples of varying attribute queries using perspective, see examples for the following
functions:

AttributeEx

WithAttrEx

Chapter 4
MDX Syntax and Grammar Rules

4-33

MDX Dimension Specification
In Essbase, a dimension is a top-level member in the hierarchy (a member with no parent).
Represent a dimension in MDX using the following syntax rules.

Syntax

<dimension> :: =
 <dimension-name-specification>
 | <member>.DIMENSION
 | <layer>.DIMENSION
 | DIMENSION (<member> | <layer>)

Table 4-10 Ways to Specify a Dimension in MDX

Syntax Description

<dimension-name-specification> A dimension name. See Description, item 1.

<member>.DIMENSION Dimension function with a member specification
as input.

<layer>.DIMENSION Dimension function with a layer specification as
input.

DIMENSION (<member> | <layer>) Alternate syntax. Dimension (<member>) has the
same effect as <member>.Dimension. Dimension
(<layer>) has the same effect as
<layer>.Dimension.

Description

A dimension can be represented in the following ways:

1. Using the dimension name (the name of the top member of a dimension.) For example,
[Market].

2. Using the Dimension function with a member of a dimension as input. For example, [New
York].Dimension or Dimension ([New York]).

3. Using the Dimension function with a layer specification as input. For example, Dimension
([Market].Generations(2).Members) or
{([Market].Generations(2).Members)}.Dimension.

MDX Layer Specification
In MDX, a layer is a shared depth in the outline hierarchy. Therefore, the concept of layer
includes Essbase generations and levels. Represent a layer in MDX using the following syntax
rules.

Syntax

<layer> ::=
 <layer-name-specification>
 | Levels (<dim_hier>, <index>)
 | <dim_hier>.Levels (<index>)
 | Generations (<dim_hier>, <index>)
 | <dim_hier>.Generations (<index>)

Chapter 4
MDX Syntax and Grammar Rules

4-34

 | <member>.Generation
 | <member>.Level

Table 4-11 Ways to Specify a Layer in MDX

Syntax Description

<layer-name-specification> A layer name can be specified in the following
ways:

1. By specifying the generation or level names;
for example, States or Regions.

The generation or level name can be within
brackets; for example, [Regions]. Using
brackets is recommended.

2. By specifying the dimension name along with
the generation or level name; for example,
Market.Regions and [Market].[States]
This naming convention is recommended.

<dimension>.Levels (<index>) Levels function with the dimension specification
and a level number as input. For example,
[Year].Levels(0).

Levels (<dimension>, <index>) Alternate syntax for Levels function with the
dimension specification and a level number as
input. For example, Levels ([Year], 0).

<dimension>.Generations (<index>) Generations function with the dimension
specification and a generation number as input. For
example, [Year].Generations (3).

Generations (<dimension>, <index>) Alternate syntax for Generations function with the
dimension specification and a generation number
as input. For example, Generations ([Year],
3).

<member>.Generation Generation function with a member specification as
input. For example, [Year].Generation. Returns
the generation of the specified member.

<member>.Level Level function with a member specification as
input. For example, [Year].Level. Returns the
level of the specified member.

Description

Generation numbers begin counting with 1 at the dimension name; higher generation numbers
are those that are closest to leaf members in a hierarchy.

Level numbers begin with 0 at the deepest part of the hierarchy; the highest level number is a
dimension name.

Chapter 4
MDX Syntax and Grammar Rules

4-35

Note:

In an asymmetric (or ragged) hierarchy, same level numbers does not mean that the
members are at the same depth in the outline. For example, in the following diagram,
member aa and member f are both level 0 members, and yet they are not at the
same depth:

MDX Member Specification
In Essbase, member is a named hierarchical element in a database outline. Represent a
member in MDX using the following syntax rules.

Syntax

<member> ::=
 <member-name-specification>
 | <member_value_expression>

Member Name Specification

A member name can be specified in the following ways:

1. By specifying the actual name or the alias; for example, Cola, Actual, COGS, and [100].

If the member name starts with number or contains spaces, it should be within brackets;
for example, [100]. Brackets are recommended for all member names, for clarity and code
readability.

If the member name starts with an ampersand (&) , it should be within quotation marks; for
example, ["&xyz"]. This is because the leading ampersand is reserved for substitution
variables. You can also specify it as StrToMbr("&100").

For attribute members, the long name (qualified to uniquely identify the member) should be
used; for example, [Ounces_12] instead of [12].

2. By specifying dimension name or any one of the ancestor member names as a prefix to
the member name; for example, [Product].[100-10] and [Diet].[100-10] This is a

Chapter 4
MDX Syntax and Grammar Rules

4-36

recommended practice for all member names, as it eliminates ambiguity and enables you
to refer accurately to shared members.

Note:

Use only one ancestor in the qualification. Essbase returns an error if multiple
ancestors are included. For example, [Market].[New York] is a valid name for
New York, and so is [East].[New York]. However, [Market].[East].[New
York] returns an error.

3. By specifying the name of a calculated member defined in the WITH section.

4. For outlines that have duplicate member names enabled, see also MDX Syntax for
Specifying Duplicate Member Names and Aliases.

Member Value Expression

A member value expression is output from any function that returns a member. As an
alternative to referencing the member by name or alias, you can use a function that returns a
member in place of <member>. For a list of functions that return a member, see MDX Function
Return Values.

Unresolved Member Names

If an MDX query contains references to members that do not exist in the outline, the
unresolved member names can be skipped so that the query can continue without error. To
enable this feature, use the EssOpMdxQuery Java interface or EssMdxSetQueryOptions C API
function. Unresolved names are left out from the result grid in cases where non existing
members are given on query axes or as parameters to functions.

MDX Hierarchy Specification
In an Essbase aggregate storage database, a hierarchy is the root member of an alternate
hierarchy, which is always at generation 2 of a dimension.

Alternate hierarchies are applicable to aggregate storage databases only.

Some MDX functions accept a hierarchy argument. To learn which ones, see MDX Grammar
Rules and search for <hierarchy>. Member value expressions are not allowed as hierarchy
arguments in MDX.

The dimension of the hierarchy argument passed to a function must match the dimension of
the other arguments passed to the function. If they do not match, an error is returned, and the
query is aborted.

MDX Tuple Specification
An MDX tuple is a collection of member(s) with the restriction that no two members can be
from the same Essbase dimension. For example, (Actual, Sales) is a tuple. (Actual,
Budget) is not a tuple, as both members are from the same dimension.

This section shows syntax rules for tuple specifications.

Chapter 4
MDX Syntax and Grammar Rules

4-37

Syntax

<tuple> ::=
 <member>
 | (<member> [, <member>]..)
 | <tuple_value_expression>

Table 4-12 Ways to Specify a Tuple in MDX

Syntax Description

<member> A member name. If a member name contains
spaces or special characters, enclose it in brackets
[]. It is good practice to use brackets for member
names, even if they do not contain special
characters. Example: [West]

(<member> [, <member>]..) One or more member names, separated by
commas. The members must be from different
dimensions. The list of members must be enclosed
in parentheses (). Example: ([West], [Feb])

<tuple_value_expression> An instance of a function that extracts a tuple from
a set. There are two such functions available:
• CurrentTuple
• Item

Description

A tuple represents a single data cell if all dimensions are represented. For example, this tuple
from Sample Basic is a single data value:

([Qtr1], [Sales], [Cola], [Florida], [Actual])

MDX Create Set / Delete Set
In MDX, you can create and delete a named set that persists for the duration of an Essbase
login session. A named set is a re-usable member selection that can help you streamline the
writing and execution of MDX queries.

Syntax

The syntax to create or delete session-persistent named sets is shown below:

 CREATE SET set name AS ' set ' [FROM <cube_specification>] [WHERE
[<slicer_specification>]]
|DROP SET set_name [FROM <cube_specification>]

Chapter 4
MDX Syntax and Grammar Rules

4-38

Examples

Example 1

The following statement creates a named set called "Most Selling Products," which is a
selection of the top selling products for Qtr1:

CREATE SET [Most Selling Products] AS
 '
 {TopCount
 (
 Descendants
 (
 [Product], [Product].level, AFTER
), 3,
 ([Measures].[Sales], [Year].[Qtr1])
)
 }
 '

The following query, issued in the same login session as the CREATE statement, references
the stored named set "Most Selling Products":

SELECT {[Measures].[Sales]}
 ON COLUMNS,
{[Most Selling Products]}
ON ROWS
FROM [Sample.Basic]

Example 2

To provide a context, a slicer clause maybe added to the set creation statement, as shown in
bold:

CREATE SET [Most Selling Products] AS
 '
 {TopCount
 (
 Descendants
 (
 [Product], [Product].level, AFTER
), 3,
 ([Measures].[Sales], [Year].[Qtr1])
)
 }
 '
 WHERE ([Market].[East], [Scenario].[Actual])

Notes

• Only 16 session-based named sets maybe stored simultaneously.

• Named set definitions may not contain references to other named sets.

Chapter 4
MDX Syntax and Grammar Rules

4-39

MDX Sub Select
In MDX, a sub select is a secondary SELECT statement nested within the primary SELECT
statement, in a FROM clause. Its purpose is to reduce, or filter out, the volume of scanned
Essbase data. Using a sub select provides an effective way of processing Essbase queries
that require partial aggregations.

Syntax

The syntax for using a sub select is shown in the context of the MDX query format:

[<with_section>]
SELECT <axis_specification>
 [, <axis_specification>...]
 <subselect>
 [WHERE [<slicer_specification>]]

Where <subselect> is:

FROM
 (SELECT <axis_specification>
 [, <axis_specification>...]
 FROM <cube_specification>)

Notes

The following guidelines apply to members you can use in the sub select:

• Can be from any generation or level. The consolidation operators of descendants are
analyzed, for potential filtering out of results. If a descendant's operator is ~ (non
consolidation) and its descendants do not have any shared members or prototype
members of shared members, its sub-hierarchy is removed from results. Similarly, a
stored, non-level-0 member in a block storage hierarchy is the sole contributor to the
aggregation; its children are not treated as dependencies.

• Can be calculated members defined in the WITH section.

• Can be formulas. Formula contributors are analyzed, but not their descendants.

• Functions that return a value are not evaluated (see MDX Functions that Return a
Number), nor are functions that derive their results using data (see Data-based Set
Functions in MDX Functions that Return a Set. All dependencies from such expressions
are included.

• If members are from the same dimension, they must also be in the same level and
hierarchy (applies to aggregate storage databases only).

• The NON EMPTY syntax is not relevant in a sub-select axis specification.

Example

SELECT
 [Digital Cameras/Camcorders].Children ON COLUMNS
FROM
 (SELECT
 {[Digital Cameras],[Camcorders]} ON COLUMNS

Chapter 4
MDX Syntax and Grammar Rules

4-40

 FROM ASOsamp.Basic)
WHERE ([Curr Year],[94706],[Coupon],[Cash],[1 to 13 Years],[Under 20,000],
[Sale],[Units],[Mar])

MDX Insert Specification
The insert clause is a way you can use MDX to update the Essbase database with new data,
by inserting tuples from a source to a target.

MDX Insert is supported for aggregate storage databases and hybrid mode databases.

Syntax

[WITH MEMBER calculated_member_name AS ' <numeric_value_expr> ']
INSERT
 <source_tuple> TO <target_tuple>

 <source_tuple> TO <target_tuple>
 [<offset> <debitmember> <creditmember>]
 [USING <load_buffer_method>]
INTO
 APP.DB
FROM
 (
 <nested_select_statement>
)
[WHERE [<slicer_specification>]]

Table 4-13 MDX INSERT Clause Elements

Item Description

source_tuple A database region from which to retrieve data
values.

The source tuple can contain dynamic or stored
members. It can contain member-based functions,
but it cannot contain context-dependent member
functions, such as CurrentMember.

Examples:

• "([Scenario].[S1], [Jan])"
• "([Scenario].[S1])"
• "([Measures].[Payroll])"
Map the source tuple to a target tuple that you will
be updating.

Chapter 4
MDX Syntax and Grammar Rules

4-41

Table 4-13 (Cont.) MDX INSERT Clause Elements

Item Description

target_tuple The database region to populate with values from
the source tuple.

The target tuple must consist of only stored
members, dynamic calc and store members, or
member-based functions. It cannot contain
dynamic members.

Examples:

• "([Actual])"
• "([Actual], [Revised_payroll])"
• "([Actual],

[Year].CurrentMember.PrevMember)"

offset, creditmember, debitmember Optional parameters for double-entry accounting,
applicable only for custom calculations in
aggregate storage cubes. For details about these
parameters, see Performing Custom Calculations
and Allocations on Aggregate Storage Databases

USING load_buffer_method Optional, and supported only for aggregate storage
databases. Specifies the data load buffer method to
use when updating the aggregate storage
database.

Examples:

• USING Add Values
• USING Subtract Values
If no method is specified, the update replaces
values with the contents of the load buffer.

INTO app.db The cube specification naming the database at
which the Insert clause is directed. Must be same
as the cube used in the FROM clause of the inner
SELECT statement.

FROM nested_select_statement An inner select statement defining the database
region from which the tuples you want to insert
should be retrieved.

The WITH section is optional, enabling you to define the area to insert using a calculated
member.

The WHERE section is optional, enabling you to define a slicer.

Notes

• Do not use attribute dimension members in the source or target tuples.

• Do not use context-dependent member functions, such as CurrentMember or
PrevMember, in the source tuple.

• The source and target tuples should have the same dimensionality. For example, the
following source and target tuple have the same dimensionality because the target tuple,
[Scenario].[Actual], which is stored, matches the format of the source tuple, [Scenario].
[S1], which is a calculated member defined in the WITH section.

 “([Scenario].[S1])” TO “([Scenario].[Actual])”

• #Missing values are not inserted/copied.

Chapter 4
MDX Syntax and Grammar Rules

4-42

• Filters assigned to you may limit what regions of data you can insert.

• The source cube (app.db) of the INTO clause must be same as the source cube used in
the FROM clause of the inner SELECT statement.

Example 4-1 Calculated Member and Nested Select Statement

The following example uses a calculated member, M1, as the source tuple to update a target
member, Commission, in Sample Basic.

WITH
 Member [Measures].[M1] as 'Sales * 0.1'
INSERT
 "([Measures].[M1])" TO "([Measures].[Commission])"
INTO [Sample].[Basic]
FROM (
 SELECT
 {[Measures].[M1]} on columns,
 {(Jan, Actual, [100-10], [New York])} on ROWS
 FROM [Sample].[Basic]
);

Example 4-2 Copying Data

The following example uses an inner select statement of crossjoins to copy data from one
outline member to another.

INSERT "([Measures].[Payroll])" TO "([Measures].[Revised_Payroll])"
INTO [Test].[Basic]
FROM (
 SELECT
 {[Measures].[Payroll]} ON COLUMNS,
 {Crossjoin
 (Crossjoin(Descendants([Year]),
 Crossjoin(Descendants([Scenario]),
 Descendants([Product]))),
 Descendants([Market]))} ON ROWS
 FROM [Test].[Basic]
);

Example 4-3 Inserting Multiple Tuples

The following example inserts multiple tuples into Test.Basic.

WITH
 Member [Measures].[M2] as 'Sales * 0.5'
INSERT
 "([Measures].[M2])"
 TO
 "([Measures].[Commission])"

 "([East].[New York],[Measures].[Payroll])"
 TO
 "([Measures].[Revised_Payroll])"

INTO [Test].[Basic]
FROM (

Chapter 4
MDX Syntax and Grammar Rules

4-43

 SELECT
 {[Measures].[M2]} ON COLUMNS,
 {Crossjoin(Crossjoin(Descendants([Year]),
 Crossjoin(Descendants([Scenario]),
 Descendants([Product]))),
 Descendants([Market]))} ON ROWS
 FROM [Test].[Basic]
);

Example 4-4 Performing Allocations

The following example uses a calculated member to perform an allocation in the Scenario
dimension.

WITH MEMBER
 [Scenario].[S1]
AS
 '([PY Actual], [Total Expenses]) *
 ([Budget] / ([Total Expenses], [Budget]))'
INSERT
 "([Scenario].[S1])"
 TO
 "([Scenario].[PY Actual])"
INTO
 [Sample1].[Basic]
FROM
 (SELECT
 {[Scenario].[S1]}
 ON COLUMNS,
 Crossjoin
 (Crossjoin
 ({[Jan]},
 Crossjoin([Total Expenses].Children, {[100],[200]})
), {[New York]})
 ON ROWS
 FROM
 [Sample1].[Basic]
);

The above MDX example has similar functionality to a block storage allocation as shown in the
following calc script example:

FIX("Total Expenses", {[Jan]}, [[New York]])
"PY Actual" = @ALLOCATE("PY Actual"->"Total Expenses",@CHILDREN("Total
Expenses"), "Budget",,share);
ENDFIX

Example 4-5 Inserting Using Member Context

The following example updates the revised payroll based on previous year context.

INSERT
 "([Measures].[Payroll])"
TO
 "([Measures].[Revised_Payroll],[Year].CurrentMember.PrevMember)"

Chapter 4
MDX Syntax and Grammar Rules

4-44

INTO [Test].[Basic]
FROM
 (
 SELECT
 {[Measures].[Payroll]}
 ON COLUMNS,
 {Descendants([Year])}
 ON ROWS
 FROM [Test].[Basic]
 WHERE ([Actual],[100-10],[New York])
);

Example 4-6 Performing a Custom Calculation

The following example runs a custom calculation on an aggregate storage database.

WITH

 MEMBER [Amount Type].[AT1]
 AS
 'CASE
 WHEN IS ([Account].CurrentMember, [ACC19802])
 THEN ([ACC19802],[CC10000],[ORG63],[Beginning Balance])
 WHEN IS([Account].CurrentMember, [ACC19803])
 THEN ([ACC19803],[FEB-05/06],[ORG00],[CC20000],[Beginning Balance]) * 2
 WHEN IS([Account].CurrentMember, [ACC19804])
 THEN ([ACC19804],[Feb-05/06],[ORG65],[CC19000],[Beginning Balance]) *
 ([ACC19803],[Feb-08],[ORG63],[CC12000],[Beginning Balance])
 WHEN IS([Account].CurrentMember, [ACC19805])
 THEN ([ACC12000],[Beginning Balance]) + ([ACC19802],[Beginning Balance])
+ 20
 WHEN IS([Account].CurrentMember, [ACC19806])
 THEN ([ACC19805],[Feb-08],[ORG63],[CC12000],[Beginning Balance])-
0.00000020e7
 WHEN IS([Account].CurrentMember, [ACC19807])
 THEN 1
 ELSE Missing
 END'

 MEMBER [Amount Type].[AT3]
 AS
 'IIF
 ([Amount Type].[AT1] < 0,
 [Amount Type].[AT1] * -1, Missing)'

 MEMBER [Amount Type].[AT4]
 AS
 'IIF
 ([Amount Type].[AT1] >= 0,
 [Amount Type].[AT1], Missing)'

 MEMBER [Amount Type].[AT5]
 AS
 'IIF(IS([Organisation].CurrentMember, [ORG00])
 AND IS([Account].CurrentMember, [ACC19807]),

Chapter 4
MDX Syntax and Grammar Rules

4-45

 SUM(Crossjoin(
 [ACC19801].Children,
 {[ORGT].Children}),
 [Amount Type].[AT1]), Missing)'

 MEMBER [Amount Type].[AT6]
 AS
 'IIF
 ([Amount Type].[AT5] < 0,
 [Amount Type].[AT5] * -1, Missing)'

 MEMBER [Amount Type].[AT7]
 AS
 'IIF
 ([Amount Type].[AT5] >= 0,
 [Amount Type].[AT5], Missing)'

INSERT

 "([Amount Type].[AT3])"
 TO
 "([Allocations],[Beginning Balance Credit])"

 "([Amount Type].[AT4])"
 TO
 "([Allocations],[Beginning Balance Debit])"

 "([Amount Type].[AT6])"
 TO
 "([Allocations],[Beginning Balance Debit],[ORG66])"

 "([Amount Type].[AT7])"
 TO
 "([Allocations],[Beginning Balance Credit],[ORG66])"

INTO
 [Gl].[Basic]

FROM
(
 SELECT
 {[ACC19801].Children}
 ON COLUMNS,
 {Crossjoin(Crossjoin([ORGT].Children,[CCT].Children),
 {[Amount Type].[AT1],
 [Amount Type].[AT3],
 [Amount Type].[AT4],
 [Amount Type].[AT5],
 [Amount Type].[AT6],
 [Amount Type].[AT7]})}
 ON ROWS
 FROM
 [Gl].[Basic]
 WHERE
 ([Actual],[PUBT],[OUTT], [Feb-08],[FRED],[ANLT])
);

Chapter 4
MDX Syntax and Grammar Rules

4-46

Example 4-7 Performing a Custom Allocation

The following example runs a custom allocation on an aggregate storage database.

WITH
 MEMBER [Amount Type].[AT1]
 AS
 '([Beginning Balance],[ORG63],[CC10000])'

 MEMBER [Amount Type].[AT2]
 AS
 '[Amount Type].[AT1]/
 Count(
 Crossjoin(
 {[Beginning Balance Credit]},
 CrossJoin(
 Descendants(
 [ORGT],
 [Organisation].Levels(0)
),
 Descendants([CCT],[Cost Centre].Levels(0))
)
)
)'

 MEMBER [Amount Type].[AT3]
 AS
 'IIF([Amount Type].[AT2] < 0, [Amount Type].[AT2] * -1, Missing)'

 MEMBER [Amount Type].[AT4]
 AS
 'IIF([Amount Type].[AT2] >= 0, [Amount Type].[AT2], Missing)'

 MEMBER [Amount Type].[AT5]
 AS
 'IIF(IS([Organisation].CurrentMember, [ORG00])
 AND IS([Cost Centre].currentMember,[CC19000])
 AND [Amount Type].[AT1] < 0, [Amount Type].[AT1] * -1, Missing)'

 MEMBER [Amount Type].[AT6]
 AS
 'IIF (IS([Organisation].currentMember, [ORG00])
 AND IS([Cost Centre].currentMember,[CC19000])
 AND [Amount Type].[AT1] >= 0, [Amount Type].[AT1], Missing)'

INSERT
 "([Amount Type].[AT3],[Scenario])"
 TO
 "([Allocations],[Beginning Balance Credit])"

 "([Amount Type].[AT4],[Scenario])"
 TO
 "([Allocations], [Beginning Balance Debit])"

 "([Amount Type].[AT5],[Scenario])"
 TO "([Allocations],[Beginning Balance Debit],[ORG63],[CC19000])"

Chapter 4
MDX Syntax and Grammar Rules

4-47

 "([Amount Type].[AT6],[Scenario])"
 TO
 "([Allocations],[Beginning Balance Credit],[ORG63],[CC19000])"

INTO [Gl].[Basic]
FROM
 (
 SELECT
 {[Amount Type].[AT1],
 [Amount Type].[AT2],
 [Amount Type].[AT3],
 [Amount Type].[AT4],
 [Amount Type].[AT5],
 [Amount Type].[AT6]}
 ON COLUMNS,
 {Crossjoin(
 [Acc19801].Children,
 CrossJoin(
 Descendants(
 [ORGT],[Organisation].Levels(0)
),
 Descendants(
 [CCT],[Cost Centre].Levels(0)
)
)
)}
 ON ROWS
 FROM [Gl].[Basic]
 WHERE ([ANLT],[OUTT],[Scenario],[PUBT],[FRED],[Feb-08])
);

MDX Export Specification
The MDX export clause is a way to save query results to a file on Essbase. This is an
alternative to viewing the query output on a client, and can be useful for large queries, or for
exporting data to import later using a data load.

Syntax

[<with_section>]
EXPORT INTO FILE <file_name> [OVERWRITE] [USING COLUMNDELIMITER
<delimiter_character>] [DATAEXPFORMAT]
SELECT [<axis_specification>
 [, <axis_specification>...]]
 <subselect> | FROM <cube_specification>
[WHERE [<slicer_specification>]]

Chapter 4
MDX Syntax and Grammar Rules

4-48

Table 4-14 MDX EXPORT Clause Elements

Item Description

file_name The name of a text file in which to save the
exported MDX query results. A file extension is not
required.

OVERWRITE Optional keyword specifying that if file_name
already exists, overwrite it.

USING COLUMNDELIMITER delimiter_character Optional argument specifying a character or word
to use as a column separator. If omitted, the default
MaxL column output is used, and the default
column width is 20 characters.

DATAEXPFORMAT Optional keyword, applicable for aggregate storage
(ASO) cubes only. Exports the data (for stored
members only) in native data export format. Native
format means the same format that is produced by
the DATAEXPORT calculation command or the
Export Data job in the Essbase web interface.

Limitations of DATAEXPFORMAT directive:

• You can export only level-0 (stored) data. See
the examples for how to employ the Filter
function to achieve this.

• Using the directive with COLUMNDELIMITER
keyword has no effect.

• Calculated members are not supported for
export.

• Formula members are not supported for
export.

See Example 2.

Notes

MDX Export is designed for large data exports. For optimal performance, Essbase treats the
row axis as NON EMPTY, in a two-axis MDX Export query. This is the default behavior even if
NON EMPTY is not specified. For more information about NON EMPTY, see MDX Axis
Specifications.

When you use MDX Export to export data subsets, your export has optimal performance and
no query limit of 232-cells, as long as you adhere to the following guidelines:

• Export only level-0 (stored) data. See the examples for how to employ the Filter function to
achieve this.

• Use two axes in the SELECT section of the query.

MDX Export can export data from cubes that have duplicate member outlines.

Example 1 – Basic Usage

Assume the following query is entered into MaxL Shell:

EXPORT INTO FILE "example" OVERWRITE USING COLUMNDELIMITER "#~"
SELECT
 {[Mar],[Apr]} ON COLUMNS,
 Crossjoin({[100],[200]} , crossjoin({[Actual],[Budget]},
 {[Opening Inventory],[Ending Inventory]})) ON ROWS

Chapter 4
MDX Syntax and Grammar Rules

4-49

FROM [Sample].[Basic]
WHERE ([New York]);

The query returns only minimal information to the MaxL Shell (where status 1 indicates
successful query execution):

 Axis-1 (File)
+-------------------+-------------------
 (Mdx Export) 1

The output file, example.txt, is saved to the cube directory, and contains the actual query
output:

Product#~Scenario#~Measures#~Mar#~Apr
Colas#~Actual#~Opening Inventory#~2041#~2108
Colas#~Actual#~Ending Inventory#~2108#~2250
Colas#~Budget#~Opening Inventory#~1980#~2040
Colas#~Budget#~Ending Inventory#~2040#~2170
Root Beer#~Actual#~Opening Inventory#~2378#~2644
Root Beer#~Actual#~Ending Inventory#~2644#~2944
Root Beer#~Budget#~Opening Inventory#~2220#~2450
Root Beer#~Budget#~Ending Inventory#~2450#~2710

You can also use the Analyze view in the Essbase web interface to run MDX Exports, if you do
not want to use MaxL Shell. For details, refer to Run MDX Scripts.

Example 2 – DATAEXPFORMAT for ASO

The following query exports stored (level 0) aggregate storage cube data in the same format
that is produced by the DATAEXPORT calculation command or the Export Data job in the
Essbase web interface.

EXPORT INTO FILE "MDXExport_DataExport1.txt" USING DATAEXPFORMAT
SELECT Filter([Measures].members, [Measures].currentmember.STORED_FLAG)
ON COLUMNS,
NON EMPTY(
 Crossjoin(
 Crossjoin(
 Crossjoin(
 Crossjoin(
 Crossjoin(
 Crossjoin(
 Crossjoin(
 Crossjoin(
 Crossjoin(
 Filter([Years].members, [Years].currentmember.STORED_FLAG),
 Filter([Time].members, [Time].currentmember.STORED_FLAG)),
 Filter([Transaction Type].members, [Transaction
Type].currentmember.STORED_FLAG)),
 Filter([Payment Type].members, [Payment
Type].currentmember.STORED_FLAG)),
 Filter([Promotions].members, [Promotions].currentmember.STORED_FLAG)),
 Filter([Age].members, [Age].currentmember.STORED_FLAG)),
 Filter([Income Level].members, [Income Level].currentmember.STORED_FLAG)),

Chapter 4
MDX Syntax and Grammar Rules

4-50

 Filter([Products].members, [Products].currentmember.STORED_FLAG)),
 Filter([Stores].members, [Stores].currentmember.STORED_FLAG)),
 Filter([Geography].members, [Geography].currentmember.STORED_FLAG))
)
ON ROWS FROM ASOSamp.Basic;

The output file, MDXExport_DataExport1.txt, is saved to the cube directory. This example
is truncated for length.

"Original Price" "Price Paid" "Units" "Transactions" "Returns"
"Curr Year" "Jan" "Sale" "Cash" "No Promotion" "1 to 13 Years" "Under 20,000"
"Camcorders" "017589" "14036" 656.5 656.5 1 2
"13681" 1443 1443 2 1
"Photo Printers" "14010" 232 232 1 2
"14027" 238 238 1 1
"13428" 214 214 1 2
"13681" 206 206 1 2 206
"Feb" "Digital Cameras" "13421" 436 436 1 2
"Camcorders" 682.5 682.5 1 1
"Photo Printers" "13835" 238 238 1 1
"Jan" "Memory" "13904" 220 220 2 2 220
"13664" 238 238 2 1
"13668" 202 202 2 1 202
"13421" 236 236 2 1
"Other Accessories" "14001" 357 357 6 5
"14027" 202 202 4 2
"13628" 380.5 380.5 7 3
"13636" 157.5 157.5 3 2
. . .

MDX Operators
The MDX operators (mathematical, conditional and logical, and Boolean) help you define
expressions when you write MDX formulas and queries for Essbase.

This section describes operators that can be used in MDX queries as part of numeric value
expressions or search conditions.

Mathematical Operators

Table 4-15 Mathematical Operators in MDX

Operator Definition

+ Adds. Also can be used as a unary operator.

- Subtracts. Also can be used as a unary operator;
for example, -5, -(Profit).

* Multiplies.

/ Divides.

Chapter 4
MDX Operators

4-51

Table 4-15 (Cont.) Mathematical Operators in MDX

Operator Definition

% Evaluates percentage. For example,
Member1%Member2 evaluates Member1 as a
percentage of Member2. Note: Aggregate storage
outline formulas cannot contain the % operator. In
outline formulas, replace % with expression:
(value1/value2)*100)

Conditional and Logical Operators

Conditional operators take two operands and check for relationships between them, returning
TRUE or FALSE.

Table 4-16 Conditional and Logical Operators in MDX

Operator Definition

> Data value is greater than.

< Data value is less than.

= Data value is equal to.

<> Data value is not equal to.

>= Data value is greater than or equal to.

<= Data value is less than or equal to.

IN The syntax for the IN operator is as follows:

<property> IN <member>|
<character_string_literal>

The first argument, <property> should be an
attribute property; for example, Population in the
following example.

The second argument, <member> or
<character_string_literal>, should be an attribute
member that is neither a level-0 member nor a
generation-1 member; for example, Medium in the
following example.

Example
The following filter evaluates the Population
property (attribute) of the current member of
Market dimension:

 Filter ([Market].Members,
Market.CurrentMember.Population IN
Medium)

If the population attribute of the current member is
Medium, the expression returns TRUE.

Chapter 4
MDX Operators

4-52

Table 4-16 (Cont.) Conditional and Logical Operators in MDX

Operator Definition

IS The IS operator syntax is as follows: member1 IS
member2. The IS operator is equivalent to the IS
function. For details and examples, see the IS
function.

Boolean Operators

Boolean operators can be used in the following functions to perform conditional tests: Filter,
Case, IIF, Generate. Boolean operators operate on boolean operands (TRUE/FALSE values).

See also MDX Functions that Return a Boolean.

Table 4-17 Boolean Operators in MDX

Operator Definition

AND Logical AND linking operator for multiple value
tests. Result is TRUE if both conditions are TRUE.
Otherwise the result is FALSE. For an example
using AND, see IsValid.

OR Logical OR linking operator for multiple value tests.
Result is TRUE if either condition is TRUE.
Otherwise the result is FALSE.

NOT Logical NOT operator. Result is TRUE if condition
is FALSE. Result is FALSE if condition is TRUE.
For an example using NOT, see IsEmpty.

XOR Logical XOR linking operator for multiple value
tests. Result is TRUE if only one condition is TRUE.
Otherwise the result is FALSE.

About MDX Properties
Essbase properties describe certain characteristics of data and metadata. MDX enables you to
write queries that retrieve and analyze data based on the Essbase properties. Properties can
be intrinsic or custom. Explore the topics in this section to learn more about querying for
properties using MDX.

MDX Intrinsic Properties

MDX Custom Properties

MDX Property Expressions

MDX Optimization Properties

Querying for Member Properties in MDX

The Value Type of MDX Properties

MDX NULL Property Values

Chapter 4
About MDX Properties

4-53

MDX Intrinsic Properties
All Essbase database members have some essential intrinsic properties related to being part
of an Essbase cube. These include details such as their names, aliases, and generation or
level numbers. Learn how to query for the intrinsic properties using MDX.

Intrinsic properties are properties that defined for members in all dimensions. In Essbase, the
intrinsic MDX member properties defined for all members in an Essbase database outline are
MEMBER_NAME, MEMBER_ALIAS, LEVEL_NUMBER, GEN_NUMBER, IS_EXPENSE, COMMENTS, and
MEMBER_UNIQUE_NAME.

The MEMBER_NAME intrinsic property returns a member name string for each member.

The MEMBER_ALIAS intrinsic property returns a member alias string for each member.

The LEVEL_NUMBER intrinsic property returns the level number of each member.

The GEN_NUMBER intrinsic property returns the generation number of each member.

The IS_EXPENSE intrinsic property returns TRUE if a member has the Expense account type,
and FALSE otherwise. Example:

 SELECT
 [Measures].Members
 DIMENSION PROPERTIES [Measures].[IS_EXPENSE] on columns
from Sample.Basic;

The COMMENTS intrinsic property returns a comment string for each member where applicable.
Example:

 SELECT
 [Market].Members
 DIMENSION PROPERTIES [Market].[COMMENTS] on columns
from Sample.Basic;

The MEMBER_UNIQUE_NAME intrinsic property is a member-name property. It returns NULL for
unique members, and a system-generated key for duplicate members.

MDX Custom Properties
MDX in Essbase supports three types of custom properties: attribute properties, UDA
properties, and alias-table-name properties.

Attribute properties are defined by the attribute dimensions in an outline. In the Sample Basic
database, the [Pkg Type] attribute dimension describes the packaging characteristics of
members in the Product dimension. This information can be queried in MDX using the property
name [Pkg Type].

Attribute properties are defined only for specific dimensions and only for a specific level in each
dimension. For example, in the Sample Basic outline, [Ounces] is an attribute property defined
only for members in the Product dimension, and this property has valid values only for the
level-0 members of the Product dimension. The [Ounces] property does not exist for other
dimensions, such as Market. The [Ounces] property for a non level-0 member in the Product

Chapter 4
About MDX Properties

4-54

dimension is a NULL value. The attribute properties in an outline are identified by the names of
attribute dimensions in that outline.

The custom properties also include UDAs. For example, [Major Market] is a UDA property
defined on Market dimension members. It returns a TRUE value if [Major Market] UDA is
defined for a member, and FALSE otherwise.

Custom alias-table-name properties enable you to query for alias table names used by each
member returned in the output.

MDX Property Expressions
Learn how to use MDX to query for properties of related Essbase members, using
PROPERTY_EXPR.

In addition to querying for intrinsic and custom properties of a member, you can also query for
MDX properties using the PROPERTY_EXPR function. This function enables you to query for
properties of related members based on a member value expression.

Syntax

PROPERTY_EXPR (dimension name, property_name, member_value_expression,
display_name)

Table 4-18 PROPERTY_EXPR Parameters

Parameter Description

dimension name The dimension name, or the keyword ALL. When a
dimension name is specified, the property
expression is evaluated for members from that
dimension only. When the keyword ALL is
specified, the property expression is evaluated for
all members on the axis.

property_name Property specification. One of the intrinsic
properties (MEMBER_NAME, MEMBER_ALIAS,
LEVEL_NUMBER, GEN_NUMBER, IS_EXPENSE,
COMMENTS, or MEMBER_UNIQUE_NAME), or
one of the custom properties (an attribute
dimension name, alias-table name, or UDA
specification).

member_value_expression Member value expression. See
<member_value_expression> ::= in MDX
Grammar Rules.

display_name Character string literal. The display name to use for
the queried properties information in the query
output.

Description

For every member on an axis from dimension name, the member_value_expression is
evaluated with the current member from dimension name in the context. The property_name is
evaluated on the output of member_value_expression. The specified display_name indicates
the label to use for the queried properties output.

You can refer to the current member on the axis by using CurrentAxisMember.

Chapter 4
About MDX Properties

4-55

Example

SELECT
 {[100]}
ON COLUMNS,
Market.Levels(0).Members
 DIMENSION PROPERTIES
 PROPERTY_EXPR
 (
 Market,
 MEMBER_NAME,
 Ancestor
 (
 Currentaxismember(),
 Currentaxismember().Dimension.Levels(1)
),
 "Parent_level_1"
),
 PROPERTY_EXPR
 (
 Market,
 MEMBER_NAME,
 Ancestor
 (
 Currentaxismember(),
 Currentaxismember().Dimension.Levels(2)
),
 "Parent_level_2"
)
ON ROWS
FROM Sample.Basic;

which returns the following grid (truncated):

Table 4-19 Output Grid from MDX Example

(axis) Axis-1.properties 100

[New York] Parent_level_1 = East,
Parent_level_2 = market

3498

[Massachusetts] Parent_level_1 = East,
Parent_level_2 = market

5105

[Florida] Parent_level_1 = East,
Parent_level_2 = market

2056

...

MDX Optimization Properties
Optimization properties in MDX can improve the performance of Essbase formulas and
calculated members, as well as the performance of MDX queries that rely on these. Learn
about using NONEMPTYMEMBER and NONEMPTYTUPLE for querying large sets while
skipping empty values.

Chapter 4
About MDX Properties

4-56

Optimization properties are applicable to outline members with formulas and calculated
members only. Stored members are not associated with these properties.

The NONEMPTYMEMBER and NONEMPTYTUPLE properties enable MDX in Essbase to
query on large sets of members or tuples while skipping formula execution on non-contributing
values that contain only #MISSING data.

Because large sets tend to be very sparse, only a few members contribute to the input member
(have non #MISSING values) and are returned. As a result, the use of NONEMPTYMEMBER
and NONEMPTYTUPLE in calculated members and formulas conserves memory resources,
allowing for better scalability, especially in concurrent user environments.

NONEMPTYMEMBER

NONEMPTYMEMBER nonempty_member_list

where nonempty_member_list is one or more comma-separated member names or calculated
member names from the same dimension as the formula or calculated member.

Use a single NONEMPTYMEMBER property clause at the beginning of a calculated member
or formula expression to indicate to Essbase that the value of the formula or calculated
member is empty when any of the members specified in nonempty_member_list are empty.

NONEMPTYTUPLE

NONEMPTYTUPLE "("nonempty_member_list")"

where nonempty_member_list is one or more comma-separated member names or calculated
member names, each from different dimensions.

If any formula-dependent dimension is omitted from nonempty_member_list, it may lead to
incorrect results, as not all dimensions will be added to the formula cache.

Use a single NONEMPTYTUPLE property clause at the beginning of a calculated member or
formula expression to indicate to Essbase that the value of the formula or calculated member
is empty when the cell value at the tuple given in nonempty_member_list is empty.

Example

The following query calculates a member [3 Month Units] that represents the sum of Units
(items per package) for the current month and the previous two months, where Units data is
not missing.

The calculated member [3 Month Units] calculates Units shipped for last three months. If the
units shipped for [MTD] (units shipped in a year) is empty, it follows that Units data is empty for
all months in the Year; therefore, the sum of Units shipped for last three months is also empty.
Because the row axis in the query is very large and sparse, the NONEMPTYTUPLE property
would significantly increase the performance of the query in this case.

WITH MEMBER [Measures].[3 Month Units] AS
'
 NONEMPTYTUPLE ([Units], [MTD])
 Sum(
 {
 ClosingPeriod(Time.Generations(5), Time.CurrentMember),
 Time.CurrentMember.Lag(1),
 Time.CurrentMember.Lag(2)

Chapter 4
About MDX Properties

4-57

 },
 Units
)
'
SELECT
 {Units, [3 Month Units]} ON COLUMNS,
 NON EMPTY
 CrossJoin(
 Stores.Levels(0).Members,
 [Store Manager].Children
)
ON ROWS
FROM Asosamp.Basic
WHERE (Mar);

This query returns the following grid (results truncated):

Table 4-20 Output Grid from MDX Example

(axis) Items Per Package 3 Month Units

(017589, Carrie) 610 1808

(020408, Debra) 584 1778

(020486, Kalluri) 551 1670

(047108, Kimberley) 593 1723

(051273, Madhukar) 541 1642

(056098, Melisse) 607 1750

...

Querying for Member Properties in MDX
Learn how to query for Essbase member properties using MDX.

Properties can be used inside an MDX query in two ways. In the first approach, you can list the
dimension and property combinations for each axis set. When a query is executed, the
specified property is evaluated for all members from the specified dimension and included in
the result set.

For example, on the column axis, the following query will return the GEN_NUMBER
information for every Market dimension member. On the row axis, the query returns
MEMBER_ALIAS information for every Product dimension member.

SELECT
 [Market].Members
 DIMENSION PROPERTIES [Market].[GEN_NUMBER] on columns,
 Filter ([Product].Members, Sales > 5000)
 DIMENSION PROPERTIES [Product].[MEMBER_ALIAS] on rows
from Sample.Basic

When querying for member properties using the DIMENSION PROPERTIES section of an
axis, a property can be identified by the dimension name and the name of the property, or just
by using the property name itself. When a property name is used by itself, that property
information is returned for all members from all dimensions on that axis, for which that property
applies.

Chapter 4
About MDX Properties

4-58

Note:

When a property name is used by itself within the DIMENSION PROPERTIES
section, do not use brackets [] around the property name.

In the following query. the MEMBER_ALIAS property is evaluated on the row axis for both Year
and Product dimensions.

SELECT
 [Market].Members
 DIMENSION PROPERTIES [Market].[GEN_NUMBER] on columns,
 CrossJoin([Product].Children, Year.Children)
 DIMENSION PROPERTIES MEMBER_ALIAS on rows
from Sample.Basic

In a second approach, properties can be used inside value expressions in an MDX query. For
example you can filter a set based on a value expression that uses properties of members in
input set.

The following query returns all caffeinated products that are packaged in cans.

Select
Filter([Product].levels(0).members,
 [Product].CurrentMember.Caffeinated and
 [Product].CurrentMember.[Pkg Type] = "Can")
 Dimension Properties
 [Caffeinated], [Pkg Type] on columns

The following query uses the UDA [Major Market] to calculate the value [BudgetedExpenses]
based on whether the current member of the Market dimension is a major market or not.

With
 MEMBER [Measures].[BudgetedExpenses] AS
 'IIF([Market].CurrentMember.[Major Market],
 [Marketing] * 1.2, [Marketing])'
Select
 {[Measures].[BudgetedExpenses]} on columns,
 Market.Members on rows
Where
 ([Budget])

The following queries use alias table names.

 SELECT
 [Product].Members
 DIMENSION PROPERTIES [Default] on columns
from Sample.Basic;

SELECT
 [Product].Members

Chapter 4
About MDX Properties

4-59

 DIMENSION PROPERTIES [Long Names] on columns
from Sample.Basic;

The Value Type of MDX Properties
Learn about the types of MDX properties in Essbase based on what values they return.

The value of an MDX property in Essbase can be a numeric, Boolean, or string type.
MEMBER_NAME and MEMBER_ALIAS properties return string values. LEVEL_NUMBER and
GEN_NUMBER properties return numeric values.

The attribute properties return numeric, Boolean, or string values based on the attribute
dimension type. For example, in Sample Basic, the [Ounces] attribute property is a numeric
property. The [Pkg Type] attribute property is a string property. The [Caffeinated] attribute
property is a Boolean property.

Essbase allows attribute dimensions with date types. The date type properties are treated as
numeric properties in MDX. When comparing these property values with dates, you need to
use the TODATE function to convert date strings to numeric before comparison.

The following query returns all Product dimension members that have been introduced on date
03/25/1996. Since the property [Intro Date] is a date type, the TODATE function must be
used to convert the date string "03-25-1996" to a number before comparing it.

Select
 Filter ([Product].Members,
 [Product].CurrentMember.[Intro Date] =
 TODATE("mm-dd-yyyy","03-25-1996")) on columns

When a property is used in a value expression, you must use it appropriately based on its
value type: string, numeric, or Boolean.

MDX NULL Property Values
Learn about how Essbase handles null property values when you query using MDX.

Not all members may have valid values for a given property name. For example, the
MEMBER_ALIAS property returns an alternate name for a given member as defined in the
outline; however, not all members may have aliases defined. In these cases A NULL value
would be returned for those members that do not have aliases.

In the following query:

 SELECT
 [Year].Members
 DIMENSION PROPERTIES MEMBER_ALIAS on columns

none of the members in the Year dimension have aliases defined for them. Therefore, the
query returns NULL values for the MEMBER_ALIAS property for members in the Year
dimension.

The attribute properties are defined for members of a specific dimension and a specific level in
that dimension. In the Sample Basic database, the [Ounces] property is defined only for level-0
members of the Product dimension.

Chapter 4
About MDX Properties

4-60

Therefore, if you query for the [Ounces] property of a member from the Market dimension, as
shown in the following query, you will get a syntax error:

 SELECT
 Filter([Market].members,
 [Market].CurrentMember.[Ounces] = 32) on columns

Additionally, if you query for the [Ounces] property of a non level-0 member of the dimension,
you will get a NULL value.

When using property values in value expressions, you can use the function IsValid() to check
for NULL values. The following query returns all Product dimension members with [Ounces]
property value of 12, after eliminating members with NULL values.

 Select
 Filter([Product].Members,
 IsValid([Product].CurrentMember.[Ounces]) and
 [Product].CurrentMember.[Ounces] = 12) on columns

MDX Comments
Learn how to add comments to MDX queries for Essbase.

Syntax

MDX supports two types of syntax for comments:

1. MDX supports the "C++ style" comments that are also supported by the Essbase Server
calculator framework. This type of comment can cover multiple lines. Everything in
between is ignored by the MDX parser.

Example:

/*
commented text is
ignored by parser
*/

2. MDX supports inline comments beginning with two hyphens. Beginning with two hyphens,
the rest of the line is ignored by the MDX parser. A new line ends the span of the
comment.

Example:

-- short comment can go on till line break

Example

The following example uses both styles of comments:

/* Query the profit figures in each
 market for the "100" products
*/

Chapter 4
MDX Comments

4-61

SELECT
 {([Market].levels(1).members)} --L1 members of Market
ON COLUMNS,
 --Cross of the "100" products and their profit figures:
 CrossJoin ([100].children, [Profit].children)
ON ROWS
FROM Sample.Basic

MDX Query Limits
Learn about query limits when using MDX with Essbase.

Overview

The following concepts are applicable to understanding MDX query limits.

Table 4-21 MDX Query Limit Concepts

Concept Description

NON EMPTY processing Refers to how Essbase processes MDX queries
and sets when the NON EMPTY keywords are
used in an axis specification. The NON EMPTY
specification optimizes processing by suppressing
slices that would contain entirely #MISSING values.

Cluster elements/symmetric sets Although an MDX set is a collection of tuples,
internally, Essbase represents sets using clusters
and tuples. A cluster is a type of set derived using
the CrossJoin function, where the arguments to
CrossJoin are sets from one dimension only.

A cluster can also be thought of as a symmetric
set. The following set is a symmetric set and can
be stored as one cluster.

CROSSJOIN(Products.LEVELS(0).MEMBERS,
 [Market].LEVELS(0).MEMBERS)

A tuple is a collection of members from different
dimensions. The following set has one tuple.

{([Product].Product_1,
[Market].Market_1)}

The following set is a union of the above two sets. It
is stored internally as a cluster and a tuple.

UNION(
CROSSJOIN(Products.LEVELS(0).MEMBERS,
 [Market].LEVELS(0).MEMBERS)
,
{([Product].Product_1,
[Market].Market_1)}
)

Chapter 4
MDX Query Limits

4-62

Table 4-21 (Cont.) MDX Query Limit Concepts

Concept Description

Compact set A set is stored in compact form if it can be
internally represented as a cluster or symmetric
set.

Flattened set A set that must be internally expanded into tuples
is a flattened set. Flattened sets consume more
memory to be processed. Certain MDX functions,
such as Order, need to flatten sets in order to
process them correctly. Therefore, certain
functions, as listed in the next section, have
different set size or query limits.

The following set is an example of a flattened set.

{(Colas, East)
(Colas, West)
(Colas, South)
(Colas, Central)
(Root Beer, East)
(Root Beer, West)
(Root Beer, South)
(Root Beer, Central
(Cream Soda, East)
(Cream Soda, West)
(Cream Soda, South)
(Cream Soda, Central)
(Fruit Soda, East)
(Fruit Soda, West)
(Fruit Soda, South)
(Fruit Soda, Central)}

Asymmetric set The following set is stored internally as a collection
of a tuple element and a cluster element. The two
elements cannot be combined into a single
element. Such sets are called asymmetric sets.

UNION({(Colas, East)}
 CROSSJOIN(
 [Product].CHILDREN,
 [Market].CHILDREN))

MDX Query Limits

The following size limitations apply to MDX queries, sets, and certain functions.

Chapter 4
MDX Query Limits

4-63

Note:

The following exception applies to the general query limits: If the database being
queried is the target database of a partition, the maximum size of a cube region you
can query using MDX is 232 potential cells.

Table 4-22 MDX Query Limit Descriptions and Units

Limitations Units

Number of cells in a query region defined by all
axis sets in an MDX query with NON EMPTY
clause

2640

Number of cells that can be returned to a client
after NON EMPTY processing

232

Number of cells in a query region defined by all
axis sets in an MDX query with no NON EMPTY
clause

232

Number of tuples in an axis set with NON EMPTY
directive after NON EMPTY processing

228

Size of a set in compact form 2640

Size of a set in flattened form 232

Number of elements in a set 232

Number of members (from all dimensions) in a
cluster element

232

Number of cells in a query after applying non
empty cell processing

232

Size of a set that can be processed by the following
functions:

• Distinct
• Except
• Filter
• Intersect
• Ntile
• Order
• Percentile
• Rank
• TopPercent
• BottomPercent
• TopSum
• BottomSum
• Hierarchize
• Union (with removal of duplicates)
• NonEmptySubset (output set size)
• TopCount (output set size)
• BottomCount (output set size)

Less than 228

Chapter 4
MDX Query Limits

4-64

Table 4-22 (Cont.) MDX Query Limit Descriptions and Units

Limitations Units

IEssOpMdxQuery Java API interface or EssMdx C
API functions

• Maximum number of tuples/clusters on an axis
—229-1

• Maximum number of cells (when cell status is
requested)—226-1

• Maximum number of cells (when cell status is
not requested)—approximately 227-1

MDX queries run through MaxL • Maximum number of columns—229-1
• Maximum number of rows—229-1

Aggregate Storage and MDX Outline Formulas
To write formulas for block storage outlines, Essbase provides a set of calculation functions
and operators known as the Calculator, or Calc, language. The Calculator language cannot be
used to write member formulas for aggregate storage databases. You write formulas for
aggregate storage outlines using MDX.

The following sections provide information for rewriting Calculator formulas in MDX for outlines
that have been migrated from block storage to aggregate storage. Before attempting to rewrite
formulas you should be familiar with the basic workings of aggregate storage outlines.

Translating Calculator Functions to MDX Functions

When translating Calculator formulas to MDX, keep in mind the following differences between
block storage outlines and aggregate storage outlines:

• The storage characteristics of a member and hence all its associated cells are defined in a
block storage outline through Dynamic Calc (and Dynamic Calc and Store) attributes, and
stored attributes. Such attributes do not exist in an aggregate storage outline. Upper level
members along an explicitly tagged accounts dimension and members with formulas
attached to them are always calculated dynamically in such a database.

• In block storage outlines, calculation order is dependent on the order in which members
appear in the outline whereas formulas are executed in order of their dependencies in
aggregate storage outlines. In addition, calculation order in the event of ambiguity in the
evaluation of a cell, and two-pass calculation tags are not required in an aggregate storage
outline.

• The layout of block storage outlines and the separation of dimensions into dense and
sparse has an effect on the semantics of certain calculations, giving rise to concepts such
as top-down calculation mode, cell and block calculation mode, and create-blocks on
equations. The simplicity of the aggregate storage outlines, which do not separate
dimensions into dense and sparse, do not require such concepts.

General Guidelines for Translating Calculator Formulas to MDX

This section provides some general guidelines for translating Calculator formulas to MDX.

Be certain that the application has been redesigned to use an aggregate storage outline. In this
regard, make certain that formulas do not reference any block-storage specific outline
constructs, such as variance functions that rely on expense tagging, or functions that operate
on shared members (for example, @RDESCENDANTS). Such constructs are not valid in
aggregate storage outlines.

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-65

Rewrite each function in the formulas attached to an explicitly tagged accounts dimension for
which a direct counterpart in MDX exists. Table 4-23 provides specific information and
examples. Then identify functions for which an indirect rewrite is required. Table 4-23 also
provides information and examples for these functions.

Understand the calculation order semantics for the formulas in the block storage outline.
Organize the dependent formulas in the aggregate storage outline carefully to achieve the
same results as block storage.

If formulas reference custom-defined functions or macros consider rewriting them, if possible,
using other MDX functions.

The following table lists all functions in the Calculator language and their analogs in MDX (and
vice versa). Where a direct analog does not exist, transformation rules and examples are
provided.

Table 4-23 Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@ABS Abs Calculator

@ABS(Actual-Budget)

MDX

Abs([Actual]-[Budget])

@ALLANCESTORS Ancestors Shared members are not relevant to
aggregate storage outlines.

@ALIAS Not required. In MDX, the argument to @ALIAS can
be passed as-is to the outer function.

@ANCEST Ancestor with CurrentMember as input.
Use a tuple to combine the result with
the optional third argument to the
@ANCEST function.

Calculator

@ANCEST(Product,2,Sales)

MDX

(
 Sales,
 Ancestor(
 Product.CurrentMember,
 Product.Generations(2)
)
)

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-66

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@ANCESTORS Ancestors Calculator

@ANCESTORS("New York")

MDX

 Ancestors([New
York].parent,
[Market].levels(2))

@ANCESTVAL Ancestor with CurrentMember as input.
Use a tuple to combine the result with
the optional third argument to the
@ANCESTVAL function.

Calculator

@ANCESTVAL(Product,2,Sales)

MDX

(Sales,
 Ancestor(
 Product.CurrentMember,
 Product.Generations(2)
)
).Value

@ATTRIBUTE Attribute Calculator

@ATTRIBUTE(Can)

MDX

Attribute([Can])

@ATTRIBUTEBVAL [BaseDim] .CurrentMember.AttributeDim See About MDX Properties.Calculator

@ATTRIBUTEBVAL(Caffeinated)

MDX

Product.CurrentMember.Caffein
ated

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-67

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@ATTRIBUTESVAL [BaseDim] .CurrentMember.AttributeDim See About MDX Properties.Calculator

@ATTRIBUTESVAL("Pkg Type")

MDX

Product.CurrentMember.[Pkg
Type]

@ATTRIBUTEVAL [BaseDim] .CurrentMember
AttributeDim

See About MDX Properties.Calculator

@ATTRIBUTEVAL(Ounces)

MDX

Product.CurrentMember.Ounces

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-68

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@AVG If the dimensionality of all elements in
the input set to @AVG is the same, use
Avg. Translate SKIPNONE to
INCLUDEEMPTY.

If the dimensionality of all elements in
the input set to @AVG is not the same,
then perform average by explicitly
adding the tuples and dividing by the set
cardinality (the number of tuples in the
set).

Note that the MDX Avg function skips
missing cell values by default.

Calculator

@AVG(SKIPMISSING,
@CHILDREN(East))

MDX

Avg([East].Children)

If SKIPMISSING is replaced by
SKIPNONE, the translation changes to:

Avg([East].Children, Sales,
INCLUDEEMPTY)

For SKIPZERO, the translation is:

Avg([East].Children,

IIF(Market.CurrentMember.Valu
e=0, Missing,

IIF(Market.CurrentMember=
Missing,0,

Market.CurrentMember.Value
)
)
)

For SKIPBOTH, the translation is:

Avg([East].Children,

IIF(Market.CurrentMember=0,
Missing,

Market.CurrentMember.Value)
)

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-69

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@AVGRANGE CrossJoin (first argument, set created
out of second argument). The rest is
similar to @AVG when the
dimensionality of all elements of the
input set is identical.

Calculator

@AVGRANGE(SKIPMISSING,
Sales, @CHILDREN(West))

MDX

Avg(CrossJoin({Sales},
{[West].Children)})

If SKIPMISSING is replaced by
SKIPNONE, the translation becomes:

Avg({[West].Children)},Sales,
INCLUDEEMPTY)

If SKIPZERO is used, then the
translation is:

Avg([West].Children),
 IIF(Sales = 0, Missing,
 IIF(Sales = Missing, 0,
Sales)
)
)

@CHILDREN Children Calculator

@CHILDREN(Market)

MDX

Children(Market)

or

Market.Children

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-70

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@CONCATENATE Concat Calculator

@MEMBER(@CONCATENATE("Qtr1",
"1"));

MDX

Concat("01", "01")

@CORRELATION Not supported in MDX. .

@COUNT Use Count if SKIPNONE.

Use NonEmptyCount if SKIPMISSING.

For SKIPZERO, see the example in the
next column.

For SKIPBOTH, use Count (Filter(set,
value <> 0 && value <> MISSING))

Calculator

@COUNT(SKIPMISSING,@RANGE(Sal
es, Children(Product)))

MDX

NonEmptyCount(CrossJoin({Sale
s},{Product.Children}))

Note that Count always counts including
the empty cells, whereas
NonEmptyCount does not.

For SKIPNONE, the translation is:

Count(Product.Children)

For SKIPZERO, the translation is:

NonEmptyCount
 (Product.Children,
 IIF(Sales=0, Missing,
 IIF(Sales = Missing, 0,
sales)
)
)

@CURGEN Generation
(CurrentMember(dimension))

Calculator

@CURGEN(Year)

MDX

Year.CurrentMember.Generation

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-71

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@CURLEV Level (CurrentMember(dimension)) Calculator

@CURLEV(Year)

MDX

Year.CurrentMember.Level

@CURRMBR CurrentMember Calculator

@CURRMBR(Product)

MDX

[Product].CurrentMember

@CURRMBRRANGE RelMemberRange Calculator

@CURRMBRRANGE(Year, LEV, 0,
-1, 1)

MDX

RelMemberRange
 (Year.CurrentMember,
1, 1, LEVEL)

@DESCENDANTS Descendants (member) See MDX Descendants documentation
for examples.

@EXP Exp Calculator

@EXP("Variance %"/100);

MDX

Exp([Scenario].[Variance %]/
100)

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-72

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@FACTORIAL Factorial Calculator

@FACTORIAL(5)

MDX

Factorial(5)

@GEN, @LEV Generation, Level .

@GENMBRS, @LEVMBRS layer.Members .

@IALLANCESTORS Ancestors Shared members are not relevant to
aggregate storage outlines.

@IANCESTORS Ancestors Shared members are not relevant to
aggregate storage outlines.

@ICHILDREN Union(member, member.Children) Calculator

@ICHILDREN(Market)

MDX

Union({Market},
{Market.children})

@IDESCENDANTS Descendants(member) Calculator

@IDESCENDANTS(Market)

MDX

Descendants(Market)

@ILSIBLINGS MemberRange
(member.FirstSibling,member)

Calculator

@ILSIBLINGS(Florida)

MDX

MemberRange(Florida.FirstSibl
ing, Florida.Lag(1))

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-73

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@INT Int Calculator

@INT(104.504)

MDX

Int(104.504)

@ISACCTYPE IsAccType See MDX IsAccType documentation for
examples.

@ISANCEST IsAncestor Calculator

@ISANCEST(California)

MDX

IsAncestor(Market.CurrentMemb
er, California)

@ISCHILD IsChild See MDX IsChild documentation for
examples.

@ISDESC See examples. Calculator

@ISDESC(Market)

MDX

IsAncestor([Market],
[Market].Dimension.CurrentMem
ber)

or

Count(Intersect({Member.Desce
ndants},

{Member.dimension.CurrentMemb
er}) = 1

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-74

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@ISGEN IsGeneration Calculator

@ISGEN(Market, 2)

MDX

IsGeneration(
 Market.CurrentMember, 2)

@ISIANCEST IIF(Is(member, ancestormember) OR
IsAncestor(member, ancestormember),
<true-part>, <false-part>)

Calculator

@ISIANCEST(California)

MDX

IIF(
 IS(Market.CurrentMember,
California)
 OR

IsAncestor(Market.CurrentMemb
er, California),
 <true-part>, <false-part>
)

@ISIBLINGS Siblings(member) Returns a set that includes the specified
member and its siblings.

@ISICHILD IIF(Is(member, childmember) OR
IsChild(member, childmember), <true-
part>, <false-part>)

Calculator

@ISICHILD(South)

MDX

IIF(

Is(Market.CurrentMember,South
)
 OR

IsChild(Market.CurrentMember,
South),
 <true-part>, <false-part>
)

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-75

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@ISIDESC See examples. Calculator

@ISIDESC(South)

MDX

(Count(Intersect({[South].Des
cendants}, {South}) = 1
OR
Is(CurrentMember, [South]))

@ISIPARENT IIF(Is(member, parentmember) Calculator

@ISIPARENT(Qtr1)

MDX

IIF(
 Is(Time.CurrentMember,
[Qtr1])
 OR
 IsChild([Qtr1],
Time.CurrentMember),
 <true-part>, <false-part>)

@ISISIBLING IsSibling(member, siblingmember) Calculator

@ISISIBLING(Qtr2)

MDX

IIF(
 IsSibling(
 [Qtr2],
Time.CurrentMember
),
 <true-part>, <false-part>
)

@ISLEV IsLevel .

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-76

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@ISMBR IIF(Count(Intersect (member-set,
member)) = 1, true-part, false-part)

Calculator allows a collection of
members or cross members that do not
subscribe to the rules of an MDX set to
appear as the second argument. This
functionality cannot be easily replicated
without enumerating each element of
the second set and testing for
intersection.
However, if the second argument
subscribes to MDX set rules then the
translation is easier, as shown. For
example:

Calculator

@ISMBR("New York":"New
Hampshire")

MDX

IIF(
 Count(
 Intersect(
 {MemberRange([New York],
[New Hampshire])},
 {Market.CurrentMember}
)
) = 1,
 <true-part>, <false-part>
)

@ISPARENT Use IsChild. Calculator

@ISPARENT("New York")

MDX

IsChild(Market.CurrentMember,
[New York])

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-77

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@ISSAMEGEN,@ISSAMELEV IIF (member.Generation =
CurrentMember(dimension).Generation,
<true-part>, <false-part>)

Calculator

@ISSAMEGEN(West)

MDX

IIF(
 Ordinal(

Market.CurrentMember.Generati
on
)
 = Ordinal(West.Generation),
 <true-part>, <false-part>
)

@ISSIBLING IsSibling See MDX IsSibling documentation for
examples.

@ISUDA IsUda See MDX IsUda documentation for
examples.

@LIST . If the member set does not subscribe to
MDX set rules, then explicit enumeration
is required. For rangelist use
CrossJoin(member, set).

@LN, @LOG, @LOG10 Ln, Log, Log10 .

@LSIBLINGS
@RSIBLINGS

MemberRange(member.FirstSibling,
member.Lag(1))
MemberRange(member.Lead(1),
member.LastSibling)

Calculator

@LSIBLINGS(Qtr4)

MDX

MemberRange([Qtr4].FirstSibli
ng, [Qtr4].Lag(1))

Calculator

@RSIBLINGS(Qtr1)

MDX

MemberRange([Qtr1].Lead(1),
[Qtr1].LastSibling)

@MATCH . .

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-78

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@MAX Max Use Max if argument list is a set.
Otherwise, rewrite logic using Case
constructs by explicit enumeration of the
argument list.
Calculator

@MAX(Jan:Mar)

MDX

Max(MemberRange([Jan],
[Mar]))

@MAXRANGE Max Calculator

@MAXRANGE(Sales,
@CHILDREN(Qtr1))

MDX

Max(
 CrossJoin(
 {Sales},
 {[Qtr1].Children}
)
)

OR

Max([Qtr1].Children, Sales)

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-79

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@MAXS Max Calculator

@MAXS(SKIPMISSING,Sales,@CHIL
DREN(Qtr1))

MDX

Max(
 Children([Qtr1]),Sales)
)

For SKIPZERO, the translation is:

Max (Children ([Qtr1]), IIF
(Sales = 0, MISSING, Sales))

For SKIPBOTH, the translation is the
same as for SKIPZERO, because Max
skips missing values by default.

@MAXSRANGE Max Calculator

@MAXSRANGE(SKIPMISSING,
Sales, @CHILDREN(Qtr1))

MDX

Max(
 Children([Qtr1]),Sales)
)

For SKIPZERO, the translation is:

Max (Children ([Qtr1]), IIF
(Sales = 0, MISSING, Sales))

For SKIPBOTH, the translation is the
same as for SKIPZERO, because Max
skips missing values by default.

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-80

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@MDANCESTVAL Use Ancestor, Value, and
Currentmember as shown in the
example.

Calculator

@MDANCESTVAL(2, Market, 2,
Product, 2, Sales)

MDX
Construct a tuple consisting of Sales
from the Measures dimension, the
ancestor of the current member along
the Market dimension, and the ancestor
of the current member along the
Product dimension. Then get the value
of the tuple.

(Sales,
Ancestor(Market.CurrentMember
, 2),

Ancestor(Product.CurrentMembe
r, 2)).Value

@MDPARENTVAL Use Parent, Value, and CurrentMember
as shown in the example.

Calculator

@MDPARENTVAL(2, Market,
Product, Sales)

MDX
Construct a tuple consisting of Sales
from the Measures dimension, the
parent of the current member along the
Market dimension, and the parent of the
current member along the Product
dimension. Then get the value of the
tuple.

(Sales,
Market.CurrentMember.Parent,

Product.CurrentMember.Parent)
.Value

@MDSHIFT See MDX equivalent for @NEXT, and
repeat it for each dimension that needs
to be shifted. CrossJoin the results from
each dimension and get the value of the
final tuple. See comments for
@MDANCESTVAL.

.

@MEDIAN Not supported in MDX. .

@MEMBER Not needed in MDX. .

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-81

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@MERGE Union(set1,set2) If the lists specified as inputs to
@MERGE do not subscribe to the rules
of an MDX set, then the @MERGE
function cannot be translated. The
following example assumes that the lists
do subscribe to MDX set rules.
Calculator

@MERGE(@CHILDREN(East),@CHILD
REN(West))

MDX

{Union([East].Children,
[West].Children)}

@MIN Min Use Min if argument list is a set.
Otherwise, rewrite logic using Case
constructs by explicit enumeration of the
argument list.
Calculator

@MIN(Jan:Mar)

MDX

Min(MemberRange([Jan],
[Mar]))

@MINRANGE Min Calculator

@MINRANGE(Sales,
@CHILDREN(Qtr1))

MDX

Min(
 CrossJoin(
 {Sales},
 {[Qtr1].Children}
)
)

OR

Min([Qtr1].Children, Sales)

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-82

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@MINS Min Calculator

@MINS(SKIPMISSING,Sales,@CHIL
DREN(Qtr1))

MDX

Min(
 Filter(
 Children([Qtr1]),
 Sales <> Missing
)
)

For SKIPZERO, the translation is:

Min(
 Filter(
 Children([Qtr1]),
 Sales <> 0
)
)

For SKIPBOTH, the translation is:

Min(
 Filter(
 Children([Qtr1]),
 Sales <> 0 AND
 Sales <> Missing
)
)

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-83

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@MINSRANGE Min Calculator

@MINSRANGE(SKIPMISSING,
Sales, @CHILDREN(Qtr1))

MDX

Min(
 Filter(Children([Qtr1]),
 Sales <> Missing
)
)

For SKIPZERO, the translation is:

Min(
 Filter(Children([Qtr1]),
 Sales <> 0
)
)

For SKIPBOTH, the translation is:

Min (
 Filter(Children([Qtr1]),
 Sales <> 0 AND
 Sales <> Missing
)
)

@MOD Mod .

@MODE Not supported in MDX. .

@NAME Not needed in MDX. .

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-84

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@NEXT @NEXT(member,[n, range]) returns the
nth cell value in the range from the
supplied member. The function returns
a missing value if the supplied member
does not exist in the range. If range is
not specified, level-0 members of the
Time dimension are used.

MDX does not have an equivalent
function for an arbitrary range. However,
if the range is restricted to members
from a specific level or generation, then
using NextMember (if n=1) or Lead/Lag
will work as shown in the sample
translation. This is probably the
common case.

Calculator

@Next(Cash)

MDX

(NextMember(
 [Year].CurrentMember,
LEVEL),
 [Cash]).Value

Alternative:

Calculator

@Next(Cash, 2)

MDX

CrossJoin(
 Year.CurrentMember.Lead(2,
LEVEL),
 Cash).Value

@NEXTS Not supported in MDX. .

@PARENT Parent .

@PARENTVAL Parent with CurrentMember as input.
Use a tuple to combine the result with
the optional second argument to the
@PARENTVAL function.

Calculator

@PARENTVAL(Market, Sales)

MDX

([Sales],
[Market].CurrentMember.Parent
).Value

@POWER Power .

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-85

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@PRIOR @PRIOR(member,[n, range]) returns
the nth cell value in the range from the
supplied member. The function returns
a missing value if the supplied member
does not exist in the range. If range is
not specified, level-0 members of the
Time dimension are used.

MDX does not have an equivalent
function for an arbitrary range. However,
if the range is restricted to members
from a specific level or generation, then
using PrevMember (if n=1) or Lead/Lag
will work as shown in the sample
translation. This is probably the
common case.

Calculator

@Prior(Cash)

MDX

PrevMember(Year.CurrentMember
, LEVEL), [Cash]).Value

Alternative:

Calculator

@Prior(Cash, 2)

MDX

(Year.CurrentMember.Lag(2,
LEVEL), [Cash]).Value

@PRIORS Not supported in MDX. .

@RANGE CrossJoin(member, rangeset) Calculator automatically uses level-0
members of the Time dimension if a
range is unspecified. That feature does
not exist in MDX, so you must explicitly
include the range.
Calculator

@RANGE(Sales,
@CHILDREN(East))

MDX

CrossJoin({Sales},
{[East].Children})

@RANK Not supported in MDX. This is a vector
function.

.

@REMAINDER Remainder .

Chapter 4
Aggregate Storage and MDX Outline Formulas

4-86

Table 4-23 (Cont.) Calculator to MDX Function Mapping

Calculator MDX Remarks/Examples

@REMOVE Except(set1, set2) Translation will work only if set1 and
set2 are true MDX sets.
Calculator

@REMOVE(@CHILDREN(East),@LIS
T("New York",Connecticut))

MDX

Except ({[East].Children},
{[New York],[Connecticut]})

@ROUND Round .

@SHIFT See @PRIOR and @NEXT. .

@SIBLINGS Siblings .

@STDEV, @STDEVP,
@STDEVRANGE

Not supported in MDX. .

@SUBSTRING Not supported in MDX. .

@SUM Sum Convert each element of the explist to a
tuple so that collectively the tuples can
form a set.

@SUMRANGE Sum(CrossJoin(member, Xrangelist)) Calculator

@SUMRANGE("New York",Jan:Jun)

MDX

Sum(CrossJoin({[New York]},
{[Jan]:[Jun]}))

@TODATE Todate .

@TRUNCATE Truncate .

@UDA Uda .

@VAR, @VARPER Arg1 - Arg2 An aggregate storage outline has no
expense tags. Therefore, variance
functionality defaults to subtraction.

@VARIANCE, @VARIANCEP Not supported in MDX. .

@WITHATTR WithAttr .

@XRANGE Not supported in MDX. .

@XREF Not supported in MDX. .

MDX Function Return Values
Functions can be used to generate metadata and/or value information that you need to pass to
a SELECT statement. Becoming proficient with the functions reduces the need to enumerate
tuples, members, numeric values, or other needed values explicitly in the set specifications of
a query. More importantly, using functions allows in-depth analysis of your database.

Chapter 4
MDX Function Return Values

4-87

This section contains a listing of query functions by return value. The possible return values
are described in these topics:

• MDX Functions that Return a Member

• MDX Functions that Return a Set

• MDX Functions that Return a Tuple

• MDX Functions that Return a Number

• MDX Functions that Return a Dimension

• MDX Functions that Return a Layer

• MDX Functions that Return a Boolean

• MDX Functions that Return a Date

• MDX Functions that Return a String

MDX Functions that Return a Member
The following functions return a member or a member value expression.

Table 4-24 MDX Member Functions

Function Result

Ancestor Returns a member that is an ancestor of the
specified member, at a specified generation or
level.

ClosingPeriod Returns the last descendant of a layer, or the last
child of the Time dimension.

Cousin Returns a child member at a matching outline level
and location as a member from another parent.

CurrentAxisMember Returns the current axis member in the context of a
member value expression argument.

CurrentMember Returns the current member in the input dimension.
Current is in the context of query execution
mechanics. Use in combination with iterative
functions such as Filter.

DateToMember Returns the date-hierarchy member specified by
the input date.

DefaultMember Returns the default member in the input dimension.

FirstChild Returns the first child of the input member.

FirstSibling Returns the first child of the input member's parent.

Lag Using the default order of members in a database
outline, returns a member that is n steps behind the
input member.

LastChild Returns the last child of the input member.

LastSibling Returns the last child of the input member's parent.

Lead Using the default order of members in a database
outline, returns a member that is n steps past the
input member.

NextMember Returns the member (in the same layer) that is one
step past the input member.

OpeningPeriod Returns the first descendant of a layer, or the first
child of the Time dimension.

Chapter 4
MDX Function Return Values

4-88

Table 4-24 (Cont.) MDX Member Functions

Function Result

ParallelPeriod Returns a member from a prior time period as the
specified or default time member.

Parent Returns a member's parent.

PrevMember Returns the member (in the same layer) that is one
step prior to the input member.

StrToMbr Converts a string to a member name.

MDX Functions that Return a Set
The following categories of functions return a set or a set value expression.

• Pure Set Functions

• Metadata-based Set Functions

• Data-based Set Functions

Pure Set Functions

Functions in this category derive their results without getting any further information from the
cube.

Table 4-25 MDX Pure Set Functions

Function Result

CrossJoin Returns a cross-section of two sets from different
dimensions.

Distinct Deletes duplicate tuples from a set.

Except Returns a subset containing the differences
between two sets.

Generate For each tuple in set1, return set2.

Head Returns the first n members or tuples present in a
set.

Intersect Returns the intersection of two input sets.

Subset Returns a subset from a set, in which the subset is
a numerically specified range of tuples.

Tail Returns the last n members or tuples present in a
set.

TupleRange Returns the range of tuples between (and inclusive
of) two tuples at the same level.

Union Returns the union of two input sets.

Metadata-based Set Functions

Functions in this category derive their results using metadata information from the cube.

Chapter 4
MDX Function Return Values

4-89

Table 4-26 MDX Metadata-based Set Functions

Function Result

Ancestors Returns a set of ancestors up to a specified layer
or distance.

Attribute Returns all base members that are associated with
the specified attribute member.

Children Returns all child members of the input member.

Descendants Returns the set of descendants of a member at
specified layers.

DrilldownByLayer Drills down members of a set that are at a specified
layer.

DrilldownMember Drills down on any members or tuples of <set1>
that are also found in <set2>.

DrillupByLayer Drills up the members of a set that are below a
specified layer.

DrillupMember Tests two sets for common ancestors, and drills up
members in the first set to the layer of the
ancestors which are present in the second set.

Extract Returns a subset containing only the tuples of a
specified dimensionality.

Hierarchize Sorts members according to the default member
ordering as represented in the database outline.

LastPeriods Returns a set of members ending either at the
specified member or at the current member in the
time dimension.

MemberRange Returns the range of members positioned between
two input members (inclusive) at the same
generation or level.

Members Returns a set of all members of a given dimension,
hierarchy, or layer.

PeriodsToDate Returns a set of dynamic-time-series members
from the beginning of a given layer up to a given
member in that layer (or up to the default member);
or, returns members up to the current member of
the Time dimension.

RelMemberRange Returns a set based on the relative position of the
specified member.

Siblings Returns the siblings of the input member.

Uda Returns all members that share a specified user-
defined attribute.

WithAttr Returns all base members that are associated with
an attribute member of the specified type.

AttributeEx Given the varying attribute member and the
perspective setting, returns the associated base
member list.

WithAttrEx Given the varying attribute dimension, condition,
predicate, and perspective setting, returns the base
member list satisfying the predicate.

xTD Functions returning period-to-date values.

Data-based Set Functions

Functions in this category derive their results using data values from the cube.

Chapter 4
MDX Function Return Values

4-90

Table 4-27 MDX Data-based Set Functions

Function Result

BottomCount Returns a set of n elements ordered from smallest
to largest, optionally based on an evaluation.

BottomPercent Returns the smallest possible subset, with
elements listed from smallest to largest, of a set for
which the total results of a numeric evaluation are
at least a given percentage.

BottomSum Returns the smallest possible subset, with
elements listed from smallest to largest, of a set for
which the total results of a numeric evaluation are
at least a given sum.

Case Performs conditional expressions.

Filter Returns those parts of a set which meet the criteria
of a search condition.

IIF Performs a conditional test, and returns an
appropriate numeric expression or set depending
on whether the test evaluates to true or false.

Leaves Returns the set of level 0 (leaf) members that
contribute to the value of the specified member.

Order Sorts members of a set in order based on an
expression.

TopCount Returns a set of n elements ordered from largest to
smallest, optionally based on an evaluation.

TopPercent Returns the smallest possible subset, with
elements listed from largest to smallest, of a set for
which the total results of a numeric evaluation are
at least a given percentage.

TopSum Returns the smallest possible subset, with
elements listed from largest to smallest, of a set for
which the total results of a numeric evaluation are
at least a given sum.

MDX Functions that Return a Tuple
The following functions return a tuple.

Table 4-28 MDX Tuple Functions

Function Result

CurrentTuple Returns the current tuple in a set. Current is in the
context of query execution mechanics. Use in
combination with iterative functions such as Filter.

Item Extracts a member from a tuple.

MDX Functions that Return a Number
The following functions return a value.

Chapter 4
MDX Function Return Values

4-91

Table 4-29 MDX Numeric Value Functions

Function Result

Abs Returns absolute value of an expression.

Aggregate Aggregates the Accounts member based on its
Time Balance behavior.

Avg Returns the average of values found in the tuples
of a set.

Case Performs conditional expressions.

CellValue Returns the numeric value of the current cell.

CoalesceEmpty Returns the first non #Missing value from the given
value expressions.

Count Returns the count of the number of tuples in a set.

DateDiff Returns the difference between two input dates.

DatePart Returns a number representing a date part (such
as Week).

EnumText Returns the text value corresponding to a numeric
value in a text list.

EnumValue Returns the internal numeric value for a text value
in a text list.

Exp Returns the exponent of an expression.

Factorial Returns the factorial of an expression.

IIF Performs a conditional test, and returns an
appropriate numeric expression or set depending
on whether the test evaluates to true or false.

InStr Returns a number specifying the position of the first
occurrence of one string within another.

Int Returns the next lowest integer value of an
expression.

Len Returns length of a string.

Ln Returns the natural logarithm of an expression.

Log Returns the logarithm of an expression to a
specified base.

Log10 Returns the base-10 logarithm of an expression.

Max Returns the maximum of values found in the tuples
of a set.

Median Returns the value of the median tuple of a set.

Min Returns the minimum of values found in the tuples
of a set.

Mod Returns the modulus (remainder value) of a
division operation.

NonEmptyCount Returns the count of the number of tuples in a set
that evaluate to nonempty values.

NTile Returns a division number of a tuple in a set.

Ordinal Returns a number indicating depth in the hierarchy.

Percentile Returns the value of the tuple that is at a given
percentile of a set.

Power Returns the value of the numeric value expression
raised to power.

Rank Returns the numeric position of a tuple in a set.

Chapter 4
MDX Function Return Values

4-92

Table 4-29 (Cont.) MDX Numeric Value Functions

Function Result

RealValue Returns a value for the specified member or tuple
without the inherited attribute dimension context.

Remainder Returns the remainder value of the numeric value
expression.

Round Rounds a numeric value expression to the
specified number of digits.

Stddev Calculates standard deviation based on a sample.

Stddevp Calculates standard deviation based on a
population.

StrToNum Converts a string to a number.

Sum Returns the sum of values of tuples in a set.

Todate Converts a date string to a value that is usable in
calculations.

Truncate Removes the fractional part of a numeric value
expression, returning the integer.

MDX Functions that Return a Dimension
The Dimension function returns the dimension that contains the input element.

MDX Functions that Return a Layer
The following functions return a layer. A layer is used to group the members of a dimension by
hierarchical depth.

In Essbase, a layer is either a generation or a level, indicated by a name or a number.

Table 4-30 MDX Layer Functions

Function Result

Generation Returns the generation of the input member.

Generations Returns the generation specified by the input
numerical depth and the input dimension or
hierarchy.

Level Returns the level of the input member.

Levels Returns the level specified by the input numerical
depth and the input dimension or hierarchy.

MDX Functions that Return a Boolean
The following functions return a Boolean (TRUE or FALSE).

Table 4-31 MDX Boolean Functions

Function Result

Is Returns TRUE if two members are identical.

Chapter 4
MDX Function Return Values

4-93

Table 4-31 (Cont.) MDX Boolean Functions

Function Result

IsAccType Returns TRUE if the current member has the
associated accounts tag.

IsAncestor Returns TRUE if the first member is an ancestor of
the second member.

IsChild Returns TRUE if the first member is a child of the
second member.

IsEmpty Returns True if the value of an input numeric-value-
expression is #MISSING.

IsGeneration Returns TRUE if the member is in a specified
generation.

IsLeaf Returns TRUE if the member is a level-0 member.

IsLevel Returns TRUE if the member is in a specified level.

IsSibling Returns TRUE if the first member is a sibling of the
second member.

IsUda Returns TRUE if the member has the associated
UDA tag (user-defined attribute).

IsValid Returns TRUE if the specified element validates
successfuly.

Contains Returns TRUE if a tuple is found within a set.

MDX Functions that Return a Date
The following functions return a date.

Table 4-32 MDX Date Functions

Function Result

DateRoll To the given date, rolls (adds or subtracts) a
number of specific time intervals, returning another
date.

GetFirstDate Returns the start date for a date-hierarchy member.

GetLastDate Returns the end date for a date-hierarchy member.

GetNextDay To the given date and the week day, gets the next
date after input date that corresponds to the week
day.

GetFirstDay For a given date_part, returns the first day of the
time interval for the input date.

GetLastDay For a given date_part, returns the last day of the
time interval for the input date.

TodateEx Converts date strings to dates.

Today Returns a number representing the current date.

JulianDate For the given UNIX date, gets its Julian date.

UnixDate For the given Julian date, gets its UNIX date.

MDX Functions that Return a String
The following functions return a string.

Chapter 4
MDX Function Return Values

4-94

Table 4-33 MDX String Functions

Function Result

FormatDate Formats date strings.

Concat Concatenates input strings.

Left Returns a specified number of characters from the
left side of the string.

Right Returns a specified number of characters from the
right side of the string.

LTrim Trims whitespace on the left of the string.

RTrim Trims whitespace on the right of the string.

Lower Converts upper-case string to lower case.

Upper Converts lower-case string to upper case.

Substring Returns the substring between a starting and
ending position.

NumToStr Converts a double-precision floating-point value
into a decimal string.

MDX Function List
MDX is a query language for multidimensional databases that can be used to execute grid
retrievals, to define formulas on aggregate storage cubes, to query and describe Essbase data
and metadata. Explore the MDX functions to learn different ways you can use MDX to analyze
complex business scenarios and data relationships.

Consult the Contents pane for a list of MDX functions by return value.

Table 4-34 MDX Function List

Alphabetical List of MDX Functions

Abs Generations Min

Aggregate GetFirstDate Mod

Ancestor GetFirstDay NextMember

Ancestors GetLastDate NonEmptyCount

Attribute GetLastDay NonEmptySubset

AttributeEx GetNextDay NTile

Avg GetRoundDate NumToStr

BottomCount Head OpeningPeriod

BottomPercent Hierarchize Order

BottomSum IIF Ordinal

Case InStr ParallelPeriod

CellValue InString Parent

Children Int Percentile

ClosingPeriod Intersect PeriodsToDate

CoalesceEmpty Is Power

Concat IsAccType PrevMember

Contains IsAncestor Rank

Count IsChild RealValue

Cousin IsEmpty RelMemberRange

Chapter 4
MDX Function List

4-95

Table 4-34 (Cont.) MDX Function List

Alphabetical List of MDX Functions

CrossJoin IsGeneration Remainder

CrossJoinAttribute IsLeaf Right

CurrentAxisMember IsLevel Round

CurrentMember IsMatch RTrim

CurrentTuple IsSibling Siblings

DateDiff IsUda Stddev

DatePart IsValid Stddevp

DateRoll Item StrToMbr

DateToMember JulianDate StrToNum

DefaultMember Lag Subset

Descendants LastChild Substring

Distinct LastPeriods Sum

Dimension LastSibling Tail

DrilldownByLayer Lead Todate

DrilldownMember Leaves TodateEx

DrillupByLayer Left Today

DrillupMember Len TopCount

DTS Level TopPercent

EnumText Levels TopSum

EnumValue LinkMember Truncate

Except Ln TupleRange

Exp Log Uda

Extract Log10 Union

Factorial Lower UnixDate

Filter LTrim Upper

FirstChild Max Value

FirstSibling Median WithAttr

FormatDate MemberRange WithAttrEx

Generate Members xTD

Generation

Abs
The MDX Abs function for Essbase returns the absolute value of an expression.

The absolute value of a number is that number less its sign. A negative number becomes
positive, while a positive number remains positive.

Syntax

Abs (numeric_value_expression)

Chapter 4
MDX Function List

4-96

Parameters

numeric_value_expression
Numeric value expression (see MDX Grammar Rules).

Example

The following example is based on the Demo Basic database. The absolute value is taken in
case Variance is a negative number. Absolute Variance is always a non-negative number.

The following query:

WITH MEMBER
 [Scenario].[Absolute Variance]
AS
 'Abs([Scenario].[Actual] - [Scenario].[Budget])'
SELECT
 { [Year].[Qtr1].children }
ON COLUMNS,
 { [Scenario].children, [Scenario].[Absolute Variance] }
ON ROWS
FROM
 Demo.Basic
WHERE
 ([Accounts].[Sales], [Product].[VCR], [Market].[San_Francisco])

returns the grid:

Table 4-35 Output Grid from MDX Example

(axis) Jan Feb Mar

Actual 1323 1290 1234

Budget 1200 1100 1100

Variance 123 190 134

Absolute Variance 123 190 134

Aggregate
The MDX Aggregate function for Essbase aggregates the Accounts member based on its Time
Balance behavior.

Syntax

Aggregate (set [, accounts_member])

Parameters

set
A set containing tuples to be aggregated. If empty, #Missing is returned.

Chapter 4
MDX Function List

4-97

accounts_member
A member from an Accounts dimension. If omitted, the current member from Accounts is
used. If there is no Accounts dimension, this function behaves the same as Sum.

Notes

For optimized performance of this function on aggregate storage databases, include in your
query the following kinds of sets:

• Any of the following functions, used within the named set and/or as an argument to this
function: Intersect, CurrentMember, Distinct, CrossJoin, PeriodsToDate.

• The Filter function, with the search condition defined as: dimensionName.CurrentMember
IS memberName.

• The IIF function, with the true_part and false_part being sets that meet the above criteria.

• The use of any other functions (such as Members) disables the optimization.

• The second parameter, numeric_value_expression, must be included for optimal
performance.

Optimal query performance may require a larger formula cache size. If you get an error
message similar to the following, adjust the MAXFORMULACACHESIZE configuration setting
accordingly:

Not enough memory for formula execution. Set MAXFORMULACACHESIZE
configuration parameter to [1072]KB and try again.

For each tuple in set, the value of accounts_member is evaluated.

If accounts_member has no time balance tag, or if set is one-dimensional, this function
behaves the same as Sum().

If accounts_member has a time balance tag, this function behaves as follows:

• For TB First, returns the value of accounts_member for the first tuple in set.

• For TB First with SKIP, scans tuples in set from first to last and returns first tuple with non-
empty value for accounts_member.

• For TB Last, returns the value of accounts_member for the last tuple in set.

• For TB Last with SKIP, scans tuples in set from last to first and returns first tuple with non-
empty value for accounts_member.

• For TB Average, returns the average of values of accounts_member at each tuple in set.

• For TB Average with SKIP, returns the average of value of accounts_member at each tuple
in set without factoring empty values.

Example

WITH
 SET [T1] AS '{[Time].[1st Half]}'
 SET [GM] AS '{Children ([Geography].[South])}'
 MEMBER [Measures].[m1] as 'Aggregate(CrossJoin([T1],
{[Geography].CurrentMember}),[Measures].[Price Paid])'
SELECT
 {[Measures].[m1]}
ON COLUMNS,
 NON EMPTY {CrossJoin([T1] ,[GM])}

Chapter 4
MDX Function List

4-98

ON ROWS
FROM ASOSamp.Basic

returns the grid:

Table 4-36 Output Grid from MDX Example

(axis) m1

(1st Half, DISTRICT OF COLUMBIA) 961107.26

(1st Half, DELAWARE) 245394.68

(1st Half, FLORIDA) 1446868.96

(1st Half, GEORGIA) 4766285.74

(1st Half, MARYLAND) 2496467.86

(1st Half, NORTH CAROLINA) 4660670.94

(1st Half, SOUTH CAROLINA) 2524777.6

(1st Half, VIRGINIA) 6253779.5

(1st Half, WEST VIRGINIA) 5009523.72

See Also

Sum

Ancestor
The MDX Ancestor function for Essbase takes the input member and returns an ancestor at
the specified layer.

Syntax

Ancestor (member , layer | index [, hierarchy])

Parameters

member
The member for which an ancestor is sought.

layer
Layer specification.

index
A number of hierarchical steps up from member, locating the ancestor you want returned.

hierarchy
Optional. A specific hierarchy within the time dimension.

Notes

• The return value of this function is a member. If you want the return value to be a set, use
Ancestors.

• Do not use negative numbers for index. If you want to return lower members, use
Descendants instead of Ancestor. Ancestor([Qtr1], -1) would return an empty member,
not a descendant.

Chapter 4
MDX Function List

4-99

• If you use layer to specify a level but no ancestor exists at that level, then the return value
is an empty member. For example, in the Sample Basic database, consider the level
numbers of the ancestors of the member [Additions] in the [Measures] dimension:

– [Additions], being a leaf-level member, has level number 0.

– [Inventory] has level number 1.

– [Measures] has level number 3, as one of its children [Profit] has level number 2.

The level number of a member = (highest level number among its children) + 1. Therefore,
Ancestor ([Measures].[Additions], [Measures].Levels(2)) returns an empty
member, because [Additions] does not have an ancestor with level number 2.

Example

Ancestor ([New York], [Market].levels(2))

returns the member [Market], which is the ancestor of [New York] that is located at level 2 in
the outline.

Ancestor ([Year].[Jan], [Year].generations(2))

returns the member [Qtr1], which is the ancestor of Jan that is located in the second
generation of the Year dimension.

Ancestor ([Feb], 2)

returns the member [Year], which is the grandparent of Feb.

Ancestor ([Feb], 0)

returns the member [Feb]. An "ancestor" that is zero steps away is considered to be the
member itself.

Chapter 4
MDX Function List

4-100

Ancestors
The MDX Ancestor function for Essbase takes the input member and a layer or distance, and
returns a set of ancestors along with the input member.

When the layer specification is a level, this function returns all ancestors having a level no
greater than the input level. For example, Ancestors ([Additions], [Measures].Levels(2))
returns {[Inventory] , [Additions]}.

Syntax

Ancestors (member , layer | index)

Parameters

member
The member for which a set of ancestors is sought.

layer
Layer specification.

index
A number of hierarchical steps up from member, locating the highest ancestor you want
returned in the result set.

Notes

• Do not use negative numbers for index. If you want to return lower members, use
Descendants instead of Ancestors. Ancestors([Qtr1], -1) would return an empty
member, not a descendant.

• If you use layer to specify a level but no ancestors exist at that level, then the return value
is an empty member.

Example

Ancestors ([New York], [Market].levels(2))

returns {[Market], [East], [New York]}, the self-inclusive set of [New York] ancestors
beginning with the ancestor that is located at level 2 of the Market dimension.

Ancestors ([Feb], 1)

returns {[Qtr1],[Feb]}, the self-inclusive set of ancestors beginning with the ancestor one
step higher than Feb.

Ancestors ([Feb], 0)

returns {[Feb]}.

Using the ASOSamp.Basic database,

Ancestors ([94089], [Geography].generations(2))

Chapter 4
MDX Function List

4-101

returns {[West], [CA], [SUNNYVALE - CA], [94089]}, the self-inclusive set of 94089
ancestors beginning with the second generation of the Geography dimension.

Attribute
The MDX Attribute function for Essbase returns all base members that are associated with a
specified attribute member.

Syntax

Attribute (member)

Parameters

member
Specification of a member from an attribute dimension.

Example

The following query

SELECT
 {[Year].Children}
ON COLUMNS,
 Attribute ([Ounces_12])
ON ROWS
FROM Sample.Basic

returns the grid:

Table 4-37 Output Grid from MDX Example

(axis) Qtr1 Qtr2 Qtr3 Qtr4

Cola 5096 5892 6583 5206

Diet Cola 1359 1534 1528 1287

Old Fashioned 1697 1734 1883 1887

Sarsaparilla 1153 1231 1159 1093

Diet Cream 2695 2723 2855 2820

See Also

WithAttr

AttributeEx
The MDX AttributeEx function for Essbase returns the set of base members that are
associated with a specified varying attribute member or dimension, given the perspective
setting.

Syntax

AttributeEx (member|dimension, ANY, tuple|member[,tuple|member])

Chapter 4
MDX Function List

4-102

Parameters

member
Specification of a member from an attribute dimension.

dimension
Specification of an attribute dimension.

ANY
The keyword ANY.

tuple | member
Level 0 start tuple (or member) of the independent dimension set. The tuple must contain all
the discrete dimensions followed by the continuous dimension members, in the same order
that the continuous range has been defined.

tuple | member
Optional level 0 end tuple (or member) of the independent dimension set. The tuple must
contain all the discrete dimensions followed by the continuous dimension members, in the
same order that the continuous range has been defined.

Example

Consider the following scenario: Products are packaged under different ounces over time and
the market state, according to the marketing strategy of the company. Ounces is defined as a
varying attribute for the Product dimension, to capture the varying attribute association over the
continuous Year dimension and the discrete Market dimension.

Year and Market are the independent dimensions, and level-0 tuple months (for example, Jan)
combined with a market state (for example, California) is a perspective for which the varying
attribute association is defined.

The following query analyzes the Ounces_32 sales performance of products packaged as
Ounces_32 any time from Jul to Dec in New York over all quarters. This is the reality view,
which gives the most current view of metrics as they happened over time.

WITH PERSPECTIVE REALITY for Ounces
SELECT
 { Qtr1, Qtr2, Qtr3, Qtr4}
ON COLUMNS,
 {AttributeEx(Ounces_32, ANY, ([New York], Jul), ([New York], Dec))}
ON ROWS
FROM
 app.db
WHERE
 (Sales, [New York], Ounces_32);

See Also

WithAttrEx

Chapter 4
MDX Function List

4-103

Avg
The MDX Avg function for Essbase returns the average of values found in the tuples of a set.

Syntax

Avg (set [,numeric_value_expression [,IncludeEmpty]])

Parameters

set
Set specification.

numeric_value_expression
Numeric value expression (see MDX Grammar Rules). Avg() sums the numeric value
expression and then takes the average.

IncludeEmpty
Use this keyword if you want to include in the average any tuples with #MISSING values.
Otherwise, they are omitted by default.

Notes

The average is calculated as (sum over the tuples in the set of numeric_value_expr) / count,
where count is the number of tuples in the set. Tuples with missing values are not included in
count unless IncludeEmpty is specified.

The return value of Avg is #MISSING if either of the following is true:

• The input set is empty.

• All tuple evaluations result in #MISSING values.

Example

Empty Values Included in Calculation of the Average

The following query

WITH MEMBER
 [Market].[Western Avg]
AS
 'Avg ([Market].[California]:[Market].[Nevada], [Measures].[Sales],
INCLUDEEMPTY)'
SELECT
 { [Product].[Colas].children }
ON COLUMNS,
 { [Market].[West].children, [Market].[Western Avg] }
ON ROWS
FROM
 Sample.Basic
WHERE
 ([Measures].[Sales], [Year].[Jan], [Scenario].[Actual])

returns the grid:

Chapter 4
MDX Function List

4-104

Table 4-38 Output Grid from MDX Example

(axis) Cola Diet Cola Caffeine Free Cola

California 678 118 145

Oregon 160 140 150

Washington 130 190 #Missing

Utah 130 190 170

Nevada 76 62 #Missing

Western Avg 234.8 140 93

Western Avg for Caffeine Free Cola is 93 because the sales for all Western states is divided by
5, the number of states.

Empty Values Not Included in Calculation of the Average

The following query is the same as the above query, except that it does not use IncludeEmpty:

WITH MEMBER
 [Market].[Western Avg]
AS
 'Avg ([Market].[California]:[Market].[Nevada], [Measures].[Sales])'
SELECT
 { [Product].[Colas].children }
ON COLUMNS,
 { [Market].[West].children, [Market].[Western Avg] }
ON ROWS
FROM
 Sample.Basic
WHERE
 ([Measures].[Sales], [Year].[Jan], [Scenario].[Actual])

returning the grid:

Table 4-39 Output Grid from MDX Example

(axis) Cola Diet Cola Caffeine Free Cola

California 678 118 145

Oregon 160 140 150

Washington 130 190 #Missing

Utah 130 190 170

Nevada 76 62 #Missing

Western Avg 234.8 140 155

Western Avg for Caffeine Free Cola is 155 because the sales for all Western states is divided
by 3, the number of states that do not have empty values for Caffeine Free Cola.

Chapter 4
MDX Function List

4-105

BottomCount
The MDX BottomCount function for Essbase returns a set of n elements ordered from smallest
to largest, optionally based on an evaluation.

This function ignores tuples that resulted in missing values after evaluating numeric value
expression.

Syntax

BottomCount (set, index [,numeric_value_expression])

Parameters

set
The set from which the bottom n elements are selected.

index
The number of elements to be included in the set (n).

numeric_value_expression
Optional. An expression further defining the selection criteria (see MDX Grammar Rules).

Example

The following expression

Bottomcount ([Product].levels(0).members, 10, ([Sales], [Actual]))

returns the set:

{ [200-40], [100-30], [400-30], [300-20], [200-30],
 [100-20], [100-20], [400-20], [400-10], [300-30] }

Therefore, the following query

SELECT {[Year].levels(1).members} ON COLUMNS,
BottomCount ([Product].levels(0).members, 10, ([Sales], [Actual]))
ON ROWS
FROM Sample.Basic
WHERE ([Sales], [Actual])

returns the grid:

Table 4-40 Output Grid from MDX Example

(axis) Qtr1 Qtr2 Qtr3 Qtr4

200–40 2807 2922 2756 3265

100–30 3187 3182 3189 3283

400–30 3763 3962 3995 4041

300–20 4248 4638 4556 4038

Chapter 4
MDX Function List

4-106

Table 4-40 (Cont.) Output Grid from MDX Example

(axis) Qtr1 Qtr2 Qtr3 Qtr4

200–30 4440 4562 4362 4195

100–20 7276 7957 8057 7179

100–20 7276 7957 8057 7179

400–20 7771 8332 8557 8010

400–10 8614 9061 9527 8957

300–30 8969 9105 9553 9342

See Also

TopCount

BottomPercent
The MDX BottomPercent function for Essbase returns the smallest possible subset of a set for
which the total results of a numeric evaluation are at least a given percentage. The result set is
returned with elements listed from smallest to largest.

Syntax

BottomPercent (set, percentage, numeric_value_expression)

Parameters

set
The set from which the bottom-percentile elements are selected.

percentage
The percentile. This argument must be a value between 0 and 100.

numeric_value_expression
The expression that defines the selection criteria (see MDX Grammar Rules).

Notes

This function ignores negative and missing values.

Example

The following query returns data for products making up the lowest 5th percentile of all product
sales in the Sample Basic database.

WITH
 SET [Lowest 5% products] AS
 'BottomPercent (
 { [Product].members },
 5,
 ([Measures].[Sales], [Year].[Qtr2])
)'

MEMBER
 [Product].[Sum of all lowest prods] AS

Chapter 4
MDX Function List

4-107

 'Sum ([Lowest 5% products])'

MEMBER [Product].[Percent that lowest sellers hold of all product sales] AS
 'Sum ([Lowest 5% products]) / [Product] '

SELECT
 {[Year].[Qtr2].children}
on columns,
 {
 [Lowest 5% products],
 [Product].[Sum of all lowest prods],
 [Product],
 [Product].[Percent that lowest sellers hold of all product sales]
 }
on rows
FROM Sample.Basic
WHERE ([Measures].[Sales])

In the WITH section,

• The named set [Lowest 5% products] consists of those products accounting for the
lowest 5 percent of sales in the second quarter. This set includes Birch Beer, Caffeine Free
Cola, Strawberry, Sasparilla, and Vanilla Cream.

• The first calculated member, [Product].[Sum of all lowest prods], is used to show the
sum of the sales of the products with sales in the lowest fifth percentile.

• The second calculated member, [Product].[Percent that lowest sellers hold of all
product sales], is used to show, for each month, how the sales of lowest-selling products
compare (as a percentage) to sales of all products in the Product dimension.

This query returns the following grid:

Table 4-41 Output Grid from MDX Example

(axis) Apr May Jun

Birch Beer 954 917 1051

Caffeine Free Cola 1049 1065 1068

Strawberry 1314 1332 1316

Sarsaparilla 1509 1552 1501

Vanilla Cream 1493 1533 1612

Sum of all lowest
prods

6319 6399 6548

Product 32917 33674 35088

Percent that lowest
sellers hold of all
product sales

0.192 0.194 0.187

See Also

TopPercent

Chapter 4
MDX Function List

4-108

BottomSum
The MDX BottomSum function for Essbase returns the smallest possible subset of a set for
which the total results of a numeric evaluation are at least a given sum. Elements of the result
set are listed from smallest to largest.

Syntax

BottomSum (set, numeric_value_expression, numeric_value_expression)

Parameters

set
The set from which the lowest-summing elements are selected.

numeric_value_expression1
The given sum (see MDX Grammar Rules).

numeric_value_expression2
The numeric evaluation (see MDX Grammar Rules).

Notes

• If the total results of the numeric evaluation do not add up to the given sum, an empty set
is returned.

• This function ignores negative and missing values.

Example

The following query selects Qtr1 and Qtr2 sales for the lowest selling products in Qtr1 (where
Sales totals at least 10000).

SELECT
 {[Year].[Qtr1], [Year].[Qtr2]}
ON COLUMNS,
 {
 BottomSum(
 [Product].Members, 10000, [Year].[Qtr1]
)
 }
ON ROWS
FROM Sample.Basic
WHERE ([Measures].[Sales])

This query returns the grid:

Table 4-42 Output Grid from MDX Example

(axis) Qtr1 Qtr2

200-40 2807 2922

100-30 3187 3182

400-30 3763 3962

Chapter 4
MDX Function List

4-109

Table 4-42 (Cont.) Output Grid from MDX Example

(axis) Qtr1 Qtr2

300-20 4248 4638

See Also

TopSum

Case
The MDX Case function for Essbase begins a conditional expression. There are two types of
conditional test you can perform using CASE: simple case expression and searched case
expression.

Syntax

The simple case expression evaluates case_operand and returns a result based on its value,
as specified by WHEN or ELSE clauses. The result of a case expression can be a value
expression or a set. If no ELSE clause is specified, and none of the WHEN clauses is
matched, an empty value/empty set is returned.

CASE
case_operand
simple_when_clause...
[else_clause]
END

In searched case expression, each WHEN clause specifies a search condition and a result to
be returned if that search condition is satisfied. The WHEN clauses are evaluated in the order
specified. The result is returned from the first WHEN clause in which the search condition
evaluates to TRUE. The result can be a value expression or a set. If no ELSE clause is
specified, and none of the search conditions in the WHEN clauses evaluate to TRUE, an
empty value/empty set is returned.

CASE
searched_when_clause...
[else_clause]
END

Parameters

case_operand
An expression to evaluate.

simple_when_clause
One or more WHEN/THEN statements. Syntax: WHEN when_operand THEN result
• when_operand: A value expression.

• result: A numeric value expression, a string value expression, or a set.

Chapter 4
MDX Function List

4-110

else_clause
Optional. Syntax:
ELSE numeric_value_expression | set | string_value_expression

searched_when_clause
One or more WHEN/THEN statements. Syntax: WHEN search_condition THEN result
• search_condition: A value expression.

• result: A numeric value expression, a string value expression, or a set.

Example

Example for Simple Case Expression

In the following query, the calculated member [Measures].[ProductOunces] is evaluated
based on the value of the Ounce attribute for the current member of the Product dimension.

WITH MEMBER [Measures].[ProductOunces] AS
'Case Product.CurrentMember.Ounces
 when 32 then 32
 when 20 then 20
 when 16 then 16
 when 12 then 12
 else 0
end'
SELECT
{ [Measures].[ProductOunces] } ON COLUMNS,
{ [Product].Members } ON ROWS
FROM Sample.Basic

This query returns the following result:

Table 4-43 Output Grid from MDX Example

(axis) ProductOunces

Product 0

Colas 0

Cola 12

Diet Cola 12

Caffeine Free Cola 16

Root Beer 0

Old Fashioned 12

Diet Root Beer 16

Sarsaparilla 12

Birch Beer 16

Cream Soda 0

Dark Cream 20

Vanilla Cream 20

Diet Cream 12

Fruit Soda 0

Grape 32

Orange 32

Chapter 4
MDX Function List

4-111

Table 4-43 (Cont.) Output Grid from MDX Example

(axis) ProductOunces

Strawberry 32

Diet Drinks 0

Diet Cola 0

Diet Root Beer 0

Diet Cream 0

Example for Searched Case Expression

The following query divides products into different profit categories based on Profit, and returns
categories for each product.

WITH MEMBER [Measures].[ProfitCategory] AS
' Case
 when Profit > 10000 then 4
 when Profit > 5000 then 3
 when Profit > 3000 then 2
 else 1
end'
SELECT
{ [Measures].[ProfitCategory] } ON COLUMNS,
{ [Product].Members } ON ROWS
FROM Sample.Basic

This query returns the following result:

Table 4-44 Output Grid from MDX Example

(axis) ProfitCategory

Product 4

Colas 4

Cola 4

Diet Cola 3

Caffeine Free Cola 1

Root Beer 4

Old Fashioned 3

Diet Root Beer 4

Sarsaparilla 2

Birch Beer 2

Cream Soda 4

Dark Cream 4

Vanilla Cream 1

Diet Cream 4

Fruit Soda 4

Grape 4

Orange 3

Strawberry 1

Chapter 4
MDX Function List

4-112

Table 4-44 (Cont.) Output Grid from MDX Example

(axis) ProfitCategory

Diet Drinks 4

Diet Cola 3

Diet Root Beer 4

Diet Cream 4

See Also

IIF

CellValue
The MDX CellValue function for Essbase returns the numeric value of the current cell.

Syntax

CellValue

Notes

• This function can be useful when defining format strings for a member. Most MDX
expressions can be used to specify format strings; however, format strings cannot contain
references to values of data cells other than the current cell value being formatted. Use
this function to reference the current cell value.

• Enclose all format strings within the MdxFormat() directive as shown in the examples.

Example

Example 1

The following format string displays negative values for the current measure if the current
[AccountTypes] member is of type “Expense”. CellValue refers to the current cell value that is
being formatted. The CurrentMember function in the expression refers to the context of the cell
being formatted.

/* Display negative values if current Account is an Expense type account */
MdxFormat(
IIF(IsUda(AccountTypes.CurrentMember, "Expense"),
 NumToStr(-CellValue()),
 NumToStr(CellValue()))
)

Example 2

The following format string displays negative cell values as positive values enclosed in
parentheses.

MdxFormat(
 IIF(

Chapter 4
MDX Function List

4-113

 CellValue() < 0,
 Concat(Concat("(", numtostr(-CellValue())), ")"),
 numtostr(CellValue())
)
)

Example 3

This example illustrates a dynamic member [Variance %] along the [Scenario] dimension.
[Variance %] has the following formula, which specifies how to calculate its value from [Actual]
and [Budget].

[Variance %] Formula

IIF(Is(Measures.CurrentMember, Title) OR
 Is(Measures.CurrentMember, Performance),
 (Actual – Budget) * 10, (Actual – Budget)*100/Budget)

[Variance %] also has the following format string, which specifies how its values should be
displayed. In this case, based on the percentage value computed for a [Variance %] cell, a text
value is displayed which conveys the importance of the number.

[Variance %] Format String

MdxFormat(
CASE
 WHEN CellValue() <= 5 THEN “Low”
 WHEN CellValue() <= 10 THEN “Medium”
 WHEN CellValue() <= 15 THEN “High”
 ELSE “Very High”
END
)

Children
The MDX Children function for Essbase returns a set of all child members of the specified
member.

Syntax

member.Children

Children (member)

Parameters

member
A member specification.

Chapter 4
MDX Function List

4-114

Notes

If the input member does not have any children (is a level-0 member), this function returns an
emtpy set.

Example

This example uses the following parts of the Sample Basic outline:

The following expression

([West].children)

returns the set:

{ [California], [Oregon], [Washington], [Utah], [Nevada] }

And the following expression

([Diet].children)

returns the set:

{ [100-20], [200-20], [300-30] }

Therefore, the following query

SELECT
 {([West].children)}
ON COLUMNS,
 {([Diet].children)}
ON ROWS
FROM Sample.Basic

returns the grid:

Table 4-45 Output Grid from MDX Example

(axis) California Oregon Washington Utah Nevada

100-20 -1587 338 231 398 86

200-20 2685 1086 579 496 167

300-30 1328 288 1217 413 362

Chapter 4
MDX Function List

4-115

ClosingPeriod
The MDX ClosingPeriod function for Essbase returns the last descendant of a layer, or the last
child of the Time dimension.

Syntax

ClosingPeriod ([layer [,member]])

Parameters

layer
Layer specification.

member
Optional member specification. If omitted, the last child of the Time dimension is assumed (for
example, Qtr4 in Sample Basic).

Notes

The return value of this function varies depending on the input.

1. When both layer and member arguments are given as input, Closingperiod returns the last
descendant of the input member at the input layer. For example,
Closingperiod(Year.generations(3), Qtr3) returns Sep. If the input member and layer
are the same layer, the output is the input member. For example,
Closingperiod(Year.generations(3), Sep) returns Sep.

2. When only the layer argument is specified, the input member is assumed to be the current
member of the dimension used in the layer argument. Closingperiod returns the last
descendant of that dimension, at the input layer. For example,
Closingperiod(Year.generations(3)) returns Dec.

3. When no arguments are specified, the input member is assumed to be the current member
of the Time dimension, and ClosingPeriod returns the last child of that member. Do not use
this function without arguments if there is no dimension tagged as Time.

Example

The following query

WITH
MEMBER [Measures].[Starting Inventory] AS
'
IIF (
 IsLeaf (Year.CurrentMember),
 [Measures].[Opening Inventory],
 ([Measures].[Opening Inventory],
 OpeningPeriod (
 [Year].Levels(0),
 [Year].CurrentMember
)
)
)'

MEMBER [Measures].[Closing Inventory] AS

Chapter 4
MDX Function List

4-116

'
IIF (
 Isleaf(Year.CurrentMember),
 [Measures].[Ending Inventory],
 ([Measures].[Closing Inventory],
 ClosingPeriod (
 [Year].Levels(0),
 [Year].CurrentMember
)
)
)'
SELECT
CrossJoin (
 { [100-10] },
 { [Measures].[Starting Inventory], [Measures].[Closing Inventory] }
)
ON COLUMNS,
Hierarchize ([Year].Members , POST)
ON ROWS
FROM Sample.Basic

returns the grid:

Table 4-46 Output Grid from MDX Example

(axis) 100-10 100-10

(axis) Starting Inventory Closing Inventory

Jan 14587 14039

Feb 14039 13566

Mar 13566 13660

Qtr1 14587 13660

Apr 13660 14172

May 14172 15127

Jun 15127 15580

Qtr2 13660 15580

Jul 15580 14819

Aug 14819 14055

Sep 14055 13424

Qtr3 15580 13424

Oct 13424 13323

Nov 13323 13460

Dec 13460 12915

Qtr4 13424 12915

Year 14587 12915

See Also

OpeningPeriod

LastPeriods

ParallelPeriod

Chapter 4
MDX Function List

4-117

PeriodsToDate

CoalesceEmpty
The MDX CoalesceEmpty function for Essbase returns the first (from the left) non #Missing
value from the given value expressions.

Syntax

CoalesceEmpty (numeric_value_expression1, numeric_value_expression2)

Parameters

numeric_value_expression1
A numeric value expression (see MDX Grammar Rules).

numeric_value_expression2
A numeric value expression (see MDX Grammar Rules).

Notes

This function returns numeric_value_expression2 if numeric_value_expression1 is #MISSING;
otherwise it returns numeric_value_expression1.

Example

CoalesceEmpty([Profit per Ounce], 0)

returns the [Profit per Ounce] value if it is not #MISSING; returns zero otherwise. This can
be used inside the Order function to coalesce all #MISSING values to zero, as shown in the
next example:

Order([Product].Members, CoalesceEmpty([Profit per Ounce], 0))

Without CoalesceEmpty in the value expression, the Order function would skip all [Product]
members with MISSING values for [Profit per Ounce].

See Also

Order

Concat
The MDX Concat function for Essbase returns the concatenated input strings.

Syntax

Concat (string [, string +])

Parameters

string
A string.

Chapter 4
MDX Function List

4-118

string +
Optional. A second string, or a list of multiple additional strings. If omitted, this function returns
the single input string.

Example

Concat("01", "01")

Contains
The MDX Contains function for Essbase returns TRUE if a tuple is found within a set;
otherwise returns FALSE.

Syntax

Contains (member_or_tuple, set)

Parameters

member_or_tuple
A member or a tuple.

set
The set to search.

Example

The following expression returns TRUE.

Contains([Oregon],{[California], [Oregon]})

Count
The MDX Count function for Essbase returns the number of tuples in a set (the cardinality of
the set). This function counts all tuples of the set regardless of empty values.

If you wish to count only tuples that evaluate to nonempty values, use NonEmptyCount.

Syntax

Count (set [, IncludeEmpty])

Parameters

set
The set for which a tuple count is needed.

IncludeEmpty
Optional and default (empty values are counted even if this keyword is omitted).

Notes

This function returns a zero if the input set is empty.

Chapter 4
MDX Function List

4-119

Example

WITH MEMBER
 [Measures].[Prod Count]
AS
 'Count (
 Crossjoin (
 {[Measures].[Sales]},
 {[Product].children}
)
)'
SELECT
 { [Scenario].[Actual], [Scenario].[Budget] }
ON COLUMNS,
 {
 Crossjoin (
 {[Measures].[Sales]},
 {[Product].children}
),
 ([Measures].[Prod Count], [Product])
 }
ON ROWS
FROM
 Sample.Basic
WHERE
 ([Year].[Jan], [Market].[New York])

returns the grid:

Table 4-47 Output Grid from MDX Example

(axis) Actual Budget

Sales Colas 678 640

Root Beer 551 530

Cream Soda 663 510

Fruit Soda 587 620

Diet Drinks #Missing #Missing

Prod Count Product 5 5

The WITH section of the query calculates the count of all products for which a data value
exists. The SELECT section arranges the members shown on columns and rows. The entire
query is sliced by January and New York in the WHERE section; though those members are
not shown in the grid, the data is applicable to those members.

Cousin
The MDX Cousin function for Essbase returns a child member at the same position as a
member from another ancestor.

Syntax

Cousin (member1, member2)

Chapter 4
MDX Function List

4-120

Parameters

member1
A child member. For example, [Year].[Qtr1].

member2
An ancestor for which Cousin() should the return child member at the same position as
member1.

Notes

Assuming a symmetric hierarchy, Cousin takes as input one member (member1) from one
hierarchy and an ancestor member (member2) of another hierarchy, and returns the child of
member2 that is at the same position as member1.

Example

This example uses the following parts of the Sample Basic outline:

The following expression

{ Cousin ([Qtr2].[Apr], [Qtr4]) }

returns the member:

[Qtr4].[Oct]

And the following expression

[Product].generations(2).members

returns the set:

{ [100], [200], [300], [400], [Diet] }

Therefore, the following query

SELECT
 { Cousin ([Qtr2].[Apr], [Qtr4]) }
ON COLUMNS,
 [Product].generations(2).members

Chapter 4
MDX Function List

4-121

ON ROWS
FROM Sample.Basic

returns the grid:

Table 4-48 Output Grid from MDX Example

(axis) Oct

100 2317

200 2505

300 2041

400 1790

Diet 2379

CrossJoin
The MDX CrossJoin function for Essbase returns the cross-product of two sets from different
dimensions.

Syntax

CrossJoin (set1, set2)

Parameters

set1
A set to cross with set2.

set2
A set to cross with set1. Must not include any dimension used in set1.

Notes

This function returns the cross-product of two sets from different dimensions. If the two sets
share a common dimension, an error is returned.

If one of the input sets is empty, the output set will be empty as well. For example, the output
will be empty if the input set is [Root Beer].children but [Root Beer] has no children.

The order of the sets (and their constituent tuples) provided to the CrossJoin function have an
effect on the order of the tuples in the result set. For example,

CrossJoin({a, b}, {c, d})

returns {(a, c), (a, d), (b, c), (b, d)}

CrossJoin({a, b, c}, {d, e, f})

returns {(a, d), (a, e), (a, f), (b, d), (b, e), (b, f), (c, d), (c, e), (c, f)}
Be aware of the order of the output set when using the results of CrossJoin with other order-
dependent set functions; for example, Head or Tail.

Chapter 4
MDX Function List

4-122

Example

Example 1

The following expression

CrossJoin({[Qtr1], [Qtr2]}, {[New York], [California]})

returns the set:

{([Qtr1], [New York]), ([Qtr1], [California]),
 ([Qtr2], [New York]), ([Qtr2], [California])}

Therefore, the following query

SELECT
CrossJoin({[Qtr1], [Qtr2]}, {[New York], [California]})
ON COLUMNS
FROM sample.basic

returns the grid:

Table 4-49 Output Grid from MDX Example

Qtr1 Qtr1 Qtr2 Qtr2

New York California New York California

1656 3129 2363 3288

Example 2

The following expression

CrossJoin({[Qtr1], [Qtr2], [Qtr3]}, {[New York], [California], [Texas]})

returns the set

{([Qtr1], [New York]), ([Qtr1], [California]), ([Qtr1], [Texas]),
([Qtr2], [New York]), ([Qtr2], [California]), ([Qtr2], [Texas]),
([Qtr3], [New York]), ([Qtr3], [California]), ([Qtr3], [Texas])}

Therefore, the following query

SELECT
CrossJoin({[Qtr1], [Qtr2], [Qtr3]}, {[New York], [California], [Texas]})
ON AXIS(0)
FROM Sample.Basic

returns the grid:

Chapter 4
MDX Function List

4-123

Table 4-50 Output Grid from MDX Example

Qtr1 Qtr1 Qtr1 Qtr2 Qtr2 Qtr2 Qtr3 Qtr3 Qtr3

New York California Texas New York California Texas New York California Texas

1656 3129 1582 2363 3288 1610 1943 3593 1703

Example 3

The following expression

CrossJoin ([100].children, [Profit].children)

returns the set:

{([100-10], Margin), ([100-10], [Total Expenses]),
 ([100-20], Margin), ([100-20], [Total Expenses]),
 ([100-30], Margin), ([100-30], [Total Expenses])}

Therefore, the following query

SELECT
 {([Market].levels(1).members)}
ON COLUMNS,
 CrossJoin ([100].children, [Profit].children)
ON ROWS
FROM Sample.Basic

returns the grid:

Table 4-51 Output Grid from MDX Example

(axis) (axis) East West South Central

100–10 Margin 15762 8803 5937 8124

Total Expenses 4633 4210 2361 4645

100–20 Margin 1785 3707 2767 7426

Total Expenses 671 4241 1570 3495

100–30 Margin 871 1629 #Missing 3975

Total Expenses 458 2139 #Missing 1895

See Also

CrossJoinAttribute

Chapter 4
MDX Function List

4-124

CrossJoinAttribute
The MDX CrossJoinAttribute function for Essbase returns the cross-product of two sets from
different dimensions. This function is similar to CrossJoin, but skips calculation of non-existing
intersections.

For aggregate storage databases, CrossJoinAttribute can improve on CrossJoin's performance
for queries on data intersections, because it checks the validity of data intersections before
calculating them. Only valid intersections are calculated, while invalid intersections are set to
#MISSING.

Syntax

CrossJoinAttribute (set1, set2)

Parameters

set1
A set to cross with set2.

set2
A set to cross with set1. Must not include any dimension used in set1.

Notes

In the case of data-less queries, only rows with existing intersections are returned. Data-less
queries have the following form:

SELECT {} ON COLUMNS,
CrossJoinAttribute ({set},{set}) ON ROWS
FROM <cube_specification>

Example

The following query based on ASOSamp.Basic

SELECT
{} ON COLUMNS,
CrossJoinAttribute({[Great Buys].Children}, {[Square Footage].Children}) ON
ROWS
FROM ASOSamp.Basic;

returns the grid

Table 4-52 Output Grid from MDX Example

(axis)

(004118, 10000)

(011683, 5000)

(017589, 10000)

Chapter 4
MDX Function List

4-125

See Also

CrossJoin

AttributeEx

WithAttrEx

CurrentAxisMember
The MDX CurrentAxisMember function for Essbase returns the current axis member in the
context of a member value expression argument.

Syntax

CurrentAxisMember()

Notes

This function is intended for use only inside the member value expression argument of the
PROPERTY_EXPR function. See MDX Property Expressions.

Example

See the example provided in MDX Property Expressions.

CurrentMember
The MDX CurrentMember function for Essbase returns the current member in the input
dimension.

The current member is evaluated in the context of query execution mechanics. Used in
conjunction with iterative functions such as Filter, at every stage of iteration the member being
operated upon is the current member.

Syntax

dimension.CurrentMember

CurrentMember (dimension)

Parameters

dimension
A dimension specification.

Notes

This function returns the child of an implied shared member instead of the member itself. To
avoid this behavior when using CurrentMember in MDX formulas and calculated members, tag
the parent with the "Never Share" property.

An implied share occurs when a parent has only one child, or only one child that consolidates.

Chapter 4
MDX Function List

4-126

Example

The following query selects the quarters during which sales growth is 3% or more compared to
the previous month.

SELECT
Filter (
 [Year].Children, -- outer loop
 Max (
 Except (
 [Year].CurrentMember.Children, -- current in outer loop
 { [Year].[Jan] }
),
 ([Year].CurrentMember -- current in Max loop
 / [Year].CurrentMember.PrevMember)
) >= 1.03
)
ON axis(0)
FROM Sample.Basic
WHERE ([Measures].[Sales])

Returns the grid:

Table 4-53 Output Grid from MDX Example

Qtr2 Qtr4

101679 98141

CurrentTuple
The MDX CurrentTuple function for Essbase returns the current tuple in a set. Current is
indicated in the context of query execution mechanics. Use in combination with iterative
functions, such as Filter.

Syntax

CurrentTuple (set)

set.Current

set.CurrentTuple

Parameters

set
A set specification. This argument should be a named set, defined in the WITH section.

Chapter 4
MDX Function List

4-127

Example

The following example finds all Product, Market combinations for which Sales data exists.

WITH SET [NewSet]
AS 'CrossJoin([Product].Children, [Market].Children)'
SELECT
 Filter([NewSet], NOT IsEmpty([NewSet].CurrentTuple))
ON COLUMNS
FROM Sample.Basic
WHERE
 {[Sales]}

This query returns the following grid:

Table 4-54 Output Grid from MDX Example

100 200 ... 400 Diet

East West South Central East ... Central East West South Central

27740 28306 16280 33808 23672 ... 33451 7919 36423 18676 42660

DateDiff
The MDX DateDiff function for Essbase returns the difference (a number) between two input
dates in terms of the specified date-parts, following a standard Gregorian calendar.

Syntax

DateDiff (date1, date2, date_part)

Parameters

date1
A number representing the input date between January 1, 1970 and Dec 31, 2037. The
number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this
number, use any of the following functions: Today(), TodateEx(), GetFirstDate(),
GetLastDate(), DateRoll().
Date-time attribute properties of a member can also be used to retrieve this number. For
example,

• Product.currentmember.[Intro Date] returns the product introduction date for the
current product in context.

• [Cola].[Intro Date] returns the product introduction date for Cola.

date2
A second input date. See date1.

date_part
Defined time components as per the standard calendar.

• DP_YEAR - Year of the input date.

Chapter 4
MDX Function List

4-128

• DP_QUARTER - Quarter of the input date.

• DP_MONTH - Month of the input date.

• DP_WEEK - Week of the input date.

• DP_DAY - Day of the input date.

Notes

Based on the input date_part, the difference between the two input dates is counted in terms of
time component specified.

Example: For input dates June 14, 2005 and Oct 10, 2006,

• DP_YEAR returns the difference in the year component. (2006 - 2005 = 1)

• DP_QUARTER returns the distance between the quarters capturing the input dates.
(Quarter 4, 2006 - Quarter 2, 2005 = 6)

• DP_MONTH returns the distance between the months capturing the input dates. (Oct 2006
- June 2005 = 16)

• DP_WEEK returns the distance between the weeks capturing the input dates. Each
Standard calendar week is defined to start on Sunday and it spans 7 days. (Oct 10, 2006 -
June 14, 2005 = 69)

• DP_DAY returns the difference between the input dates in terms of days. (483 days)

Example

The following query returns weekly sales for the last 6 months for the product Cola in the
market California.

SELECT
{sales} ON COLUMNS,
Filter(
 [Time dimension].Weeks.members,
 Datediff(
 GetFirstDate([Time dimension].CurrentMember),
 Today(),
 DP_MONTH
) < 6
)
ON ROWS
FROM Mysamp.Basic
WHERE (Actual, California, Cola);

DatePart
The MDX DatePart function for Essbase returns a numeric representation of a date
component.

This function returns the Year/Quarter/Month/Week/Weekday/DayOfYear/Day as a number,
given the input date and a date part, following the standard Gregorian calendar.

Syntax

DatePart (date, date_part_ex)

Chapter 4
MDX Function List

4-129

Parameters

date
A number representing the input date between January 1, 1970 and Dec 31, 2037. The
number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this
number, use any of the following functions: Today(), TodateEx(), GetFirstDate(),
GetLastDate(), DateRo
Date-time attribute properties of a member can also be used to retrieve this number. For
example,

• Product.currentmember.[Intro Date] returns the product introduction date for the
current product in context.

• [Cola].[Intro Date] returns the product introduction date for Cola.

date_part_ex
Defined time components as per the standard calendar.

• DP_YEAR - Year of the input date, in yyyy format.

• DP_QUARTER - Quarter of the year (1 to 4) for the input date.

• DP_MONTH - Month of the year (1 to 12) for the input date.

• DP_WEEK - Week of the year for the input date (1 to 54).

• DP_WEEKDAY - Week day of the input date. (1 - Sunday, 2 - Monday, ... 7 - Saturday).

• DP_DAYOFYEAR - Day of the year numbering (1 to 366).

• DP_DAY - Day of the month for the input date (1 to 31).

Notes

Based on the requested time component, the output is as follows:

• DP_YEAR returns the year of the input date in yyyy format.

• DP_QUARTER returns the quarter of the year (1 to 4) for the input date.

• DP_MONTH returns the month of the year (1 to 12) for the input date.

• DP_WEEK returns the week of the year for the input date (1 to 54).

• DP_WEEKDAY returns the week day of the input date. (1 - Sunday, 2 - Monday, ... 7 -
Saturday).

• DP_DAYOFYEAR returns the day of the year numbering (1 to 366).

• DP_DAY returns the day of the month for the input date (1 to 31).

Example: For June 14, 2005,

DP_YEAR returns 2005 (the year member, in yyyy format).

DP_QUARTER returns 2 (Second quarter of the year)

DP_MONTH returns 6 (Sixth month of the year)

DP_WEEK returns 24 (24th week of the year)

DP_WEEKDAY returns 4 (for Wednesday. Sunday = 1)

DP_DAYOFYEAR returns 165 (165th day of the year)

DP_DAY returns 14 (14th day of the month)

Chapter 4
MDX Function List

4-130

Example

The following query returns the quarterly sales for the second quarter across all years for the
product Cola in the market California.

SELECT
 {[Sales]}
 ON COLUMNS,
 {
 Filter(
 [Time dimension].Quarters.members,
 Datepart(
 getFirstDate([Time dimension].CurrentMember),
 DP_QUARTER
) = 2
)
}
 ON ROWS,
FROM MySamp.Basic
WHERE (Actual, Cola, California);

DateRoll
The MDX DateRoll function for Essbase adds/subtracts time intervals to/from a date.

To the given date, this function rolls (adds or subtracts) a number of specific time intervals,
returning another date. This function assumes a standard Gregorian calendar.

Syntax

DateRoll (date, date_part, number)

Parameters

date
A number representing the date between January 1, 1970 and Dec 31, 2037. The number is
the number of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use
any of the following functions: Today(), TodateEx(), GetFirstDate(), GetLastDate().
Date-time attribute properties of a member can also be used to retrieve this number. For
example,

• Product.currentmember.[Intro Date] returns the product introduction date for the
current product in context.

• [Cola].[Intro Date] returns the product introduction date for Cola.

date_part
Defined time components as per the standard calendar.

• DP_YEAR - Year of the input date.

• DP_QUARTER - Quarter of the input date.

• DP_MONTH - Month of the input date.

Chapter 4
MDX Function List

4-131

• DP_WEEK - Week of the input date.

• DP_DAY - Day of the input date.

number
Number of time intervals to add or subtract.

Notes

Based on input date_part and dateroll number, the date is moved forward or backward in time.

Example: For input date June 14, 2005 and input dateroll number 5,

• DP_YEAR adds 5 years to the input date. (June 14, 2010)

• DP_QUARTER adds 5 quarters to the input date. (June 14, 2005 + 5 quarters = June 14,
2005 + 15 months = Sept 14, 2006)

• DP_MONTH adds 5 months to the input date (June 14, 2005 + 5 months = Nov 14, 2005)

• DP_WEEK adds 5 weeks to the input date (June 14, 2005 + 5 weeks = June 14, 2005 + 35
days = July 19, 2005)

• DP_DAY adds 5 days to the input date. (June 14, 2005 + 5 days = June 19, 2005)

Example

The following query returns actual weekly sales, rolling back for six months from Apr 2005
(inclusive), for the product Cola in the market California.

SELECT
 {[Sales]}
ON COLUMNS,
 {DateToMember
 (
 DateRoll(
 GetFirstDate ([Apr 2005]),
 DP_MONTH,
 6
),
 [Time dimension].Dimension,
 [Time dimension].[WEEKS]
): ClosingPeriod([Time dimension].[Weeks], [Apr 2005]))
 } ON ROWS
FROM MySamp.Basic
Where (Actual, California, Cola);

DateToMember
The MDX DateToMember function for Essbase returns the date-time dimension member
specified by the input date and the input layer.

Syntax

DateToMember (date, dimension [,layer])

Chapter 4
MDX Function List

4-132

Parameters

date
A number representing the input date between January 1, 1970 and Dec 31, 2037. The
number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this
number, use any of the following functions: Today(), TodateEx(), GetFirstDate(),
GetLastDate(), DateRoll().
Date-time attribute properties of a member can also be used to retrieve this number. For
example,

• Product.currentmember.[Intro Date] returns the product introduction date for the
current product in context.

• [Cola].[Intro Date] returns the product introduction date for Cola.

dimension
A date-time dimension specification.

layer
Optional. A date-time dimension layer specification. If not specified, defaults to the date-time
dimension's leaf generation.

Notes

• This function is applicable only to aggregate storage databases.

• This function is only applicable if there is a date-time dimension in the outline.

Example

Consider the following Time-Date dimension hierarchy:

Time dimension (gen 1)
 Years (gen 2)
 Semesters (gen 3)
 Quarters (gen 4)
 Months (gen 5)
 Weeks (gen 6)
 Days (gen 7)

The following query returns sales for the week containing Dec 25, 2006 for the product Cola in
the market California.

SELECT
{Sales} ON COLUMNS,
{
DateToMember(
 TodateEx("Mon dd yyyy", "December 25 2006"),
 [Time dimension].Dimension,
 [Time dimension].[Weeks])
 } ON ROWS
FROM MySamp.Basic
WHERE (Actual, California, Cola);

Chapter 4
MDX Function List

4-133

DefaultMember
The MDX DefaultMember function returns the default member in the input dimension. In
Essbase, this means that the top member of the input dimension is returned.

Syntax

dimension.DefaultMember

DefaultMember (dimension)

Parameters

dimension
A dimension specification.

Example

DefaultMember ([Market])

returns the member [Market].

DefaultMember ([Florida].Dimension)

returns the member [Market].

DefaultMember ([Bottle])

returns the member [Pkg Type].

Descendants
The MDX Descendants function for Essbase returns the set of descendants of a member at a
specified level or distance, optionally including or excluding descendants in other levels.

This function returns the members in hierarchized order; for example, parent members are
followed by child members.

Syntax

Descendants (member , [{ layer | index }[, Desc_flags]])

Parameters

member
The member for which descendants are sought.

layer
Optional. Layer specification indicating the depth of the descendants to return.

Chapter 4
MDX Function List

4-134

index
Optional. A number of hierarchical steps down from member, locating the descendants you
want returned.

Desc_flags
Optional. Keywords which further indicate which members to return. These keywords are
available only if layer or index is specified.
See Values for Desc_flags

Notes

Values for Desc_flags

For all flags, SELF refers to layer; therefore, BEFORE indicates "before the layer" and AFTER
indicates "after the layer."

• SELF—Include only members in layer, including member only if member is in layer.

• AFTER—Include members below layer, but not the members of layer.

• BEFORE—Include member and all its descendants that are higher in the hierarchy than
layer, excluding layer and anything below it.

• BEFORE_AND_AFTER—Include member and all its descendants, down to level 0, but
excluding members in layer.

Chapter 4
MDX Function List

4-135

• SELF_AND_AFTER—Include members in layer and all descendants below layer.

• SELF_AND_BEFORE—Include member and all its descendants, down to and including layer.

• SELF_BEFORE_AFTER—Include member and all its descendants.

• LEAVES (Not pictured) — Include all descendants of member in the defined layer, and the
level-0 descendants between member and layer.

Example

The following query

SELECT
 Descendants ([Year])
ON COLUMNS
FROM sample.basic

returns the grid:

Chapter 4
MDX Function List

4-136

Table 4-55 Output Grid from MDX Example

Year Qtr1 Jan Feb Mar Qtr2 Apr May Jun Qtr3 Jul Aug Sep Qtr4 Oct Nov Dec

1265
6

2747 924 888 935 3352 1011 1071 1270 3740 1334 1304 1102 2817 907 884 1026

The following expressions return the following sets

Descendants ([Year], 2)

returns {([Jan]:[Dec])}, which is the range of members found two steps below Year.

Descendants ([Year], 2, BEFORE)

returns {[Year], [Qtr1], [Qtr2], [Qtr3], [Qtr4]}, which is the set of Year and its
descendants that occur BEFORE the layer that is two steps below Year.

Descendants ([Market], [West].level)

returns {[East], [West], [South], [Central]}, which is the set of Market's descendants
found at the level of West.

Descendants([Market])

is equivalent to Descendants([Market], [Market].level, SELF_BEFORE_AFTER). It returns all
descendants of Market:

{[Market],
 [East], [New York], [Massachusetts], [Florida], [Connecticut], [New
Hampshire],
 [West], [California], [Oregon], [Washington], [Utah], [Nevada],
 [South], [Texas], [Oklahoma], [Louisiana], [New Mexico],
 [Central], [Illinois], [Ohio], [Wisconsin], [Missouri], [Iowa], [Colorado] }

Descendants([Market], [Region])

is equivalent to Descendants([Market], [Region]), SELF), where [Region] is an alias. It
returns all members at [Region] level:

{[East], [West], [South], [Central]}

Descendants([Market], [State], SELF)

returns all descendants of [Market] at [State] level:

{[New York], [Massachusetts], [Florida], [Connecticut], [New Hampshire],
 [California], [Oregon], [Washington], [Utah], [Nevada], [Texas],

Chapter 4
MDX Function List

4-137

 [Oklahoma], [Louisiana], [New Mexico], [Illinois], [Ohio], [Wisconsin],
 [Missouri], [Iowa], [Colorado]}

Descendants([Market], [State], BEFORE)

returns all regions and [Market]:

{[Market], [East], [West], [South], [Central]}

Descendants([Market], [State], AFTER)

returns an empty set, because there are no levels below [State] level in the [Market]
dimension:

{}

Descendants([Market], [Region], AFTER)

returns all states in the [Market] dimension:

{[New York], [Massachusetts], [Florida], [Connecticut], [New Hampshire],
 [California], [Oregon], [Washington], [Utah], [Nevada], [Texas],
 [Oklahoma], [Louisiana], [New Mexico], [Illinois], [Ohio], [Wisconsin],
 [Missouri], [Iowa], [Colorado]}

Descendants([Market], [State], LEAVES)

returns all level-0 members between [Market] level and [State] level, including both levels:

{[New York], [Massachusetts], [Florida], [Connecticut], [New Hampshire],
 [California], [Oregon], [Washington], [Utah], [Nevada], [Texas],
 [Oklahoma], [Louisiana], [New Mexico], [Illinois], [Ohio], [Wisconsin],
 [Missouri], [Iowa], [Colorado]}

Descendants([Market], 1)

The second argument specifies a distance of 1 from [Market] level, which is [Region] level. So
this expression is equivalent to Descendants([Market], [Region]). It returns:

{[East], [West], [South], [Central]}

Descendants([Market], 2, SELF_BEFORE_AFTER)

Chapter 4
MDX Function List

4-138

is equivalent to Descendants([Market], [State], SELF_BEFORE_AFTER). It returns:

{[Market],
 [East], [New York], [Massachusetts], [Florida], [Connecticut], [New
Hampshire]
 [West], [California], [Oregon], [Washington], [Utah], [Nevada],
 [South], [Texas], [Oklahoma], [Louisiana], [New Mexico],
 [Central], [Illinois], [Ohio], [Wisconsin], [Missouri], [Iowa], [Colorado] }

Descendants([Market], -1, SELF_BEFORE_AFTER)

prints a warning in application log, because a negative distance argument is not valid. The
expression returns an empty set:

{}

Descendants([Market], 10, SELF)

returns an empty set, because there are no descendants of [Market] at a distance of 10 from
[Market] level.

Descendants([Market], 10, BEFORE)

returns all descendants of [Market]:

{[Market],
 [East], [New York], [Massachusetts], [Florida], [Connecticut], [New
Hampshire]
 [West], [California], [Oregon], [Washington], [Utah], [Nevada],
 [South], [Texas], [Oklahoma], [Louisiana], [New Mexico],
 [Central], [Illinois], [Ohio], [Wisconsin], [Missouri], [Iowa], [Colorado] }

Descendants([Market], 10, LEAVES)

returns all level-0 descendants of [Market]:

{[New York], [Massachusetts], [Florida], [Connecticut], [New Hampshire],
 [California], [Oregon], [Washington], [Utah], [Nevada], [Texas],
 [Oklahoma], [Louisiana], [New Mexico], [Illinois], [Ohio], [Wisconsin],
 [Missouri], [Iowa], [Colorado]}

Distinct
The MDX Distinct function for Essbase deletes duplicate tuples from a set.

Syntax

Distinct (set)

Chapter 4
MDX Function List

4-139

Parameters

set
The set from which to remove duplicates.

Notes

• Duplicates are eliminated from the tail of the set.

• Distinct of an empty set returns an empty set.

Example

The expression

Distinct({[Colas], [Root Beer], [Cream Soda], [Colas]})

returns the set

{[Colas], [Root Beer], [Cream Soda]}

Note that the duplicate [Colas] is removed from the end of the set.

Dimension
The MDX Dimension function for Essbase returns the dimension that contains the input
element.

Syntax

member.Dimension

layer.Dimension

Dimension (member | layer)

Parameters

member
A member specification. The dimension returned is the dimension that this member belongs
to.

layer
A layer specification. The dimension returned is the dimension that this layer belongs to.

Example

[Colas].Dimension returns Product.

[Market].[Region].Dimension returns Market.

Chapter 4
MDX Function List

4-140

DrilldownByLayer
The MDX DrilldownByLayer function for Essbase drills down members of a set that are at a
specified layer.

Syntax

DrilldownByLayer (set [, layer | index])

Parameters

set
The set in which the drilldown should occur.

layer
The layer of the members that should be drilled down.

index
A number of hierarchical steps representing the location of members that should be drilled
down.

Notes

This function returns the members of set to one level below the optionally specified layer (or
index number of the level). If layer (or index) is omitted, the lowest level of set is returned.
Members are returned in their hierarchical order as represented in the database outline.

Example

The following query

SELECT
DrilldownByLayer (
 {([Product],[California]), ([Product],[Oregon]),
 ([Product],[New York]), ([Product],[South]),
 ([Product],[Washington])}, [Market].[Region]
)
ON COLUMNS
FROM Sample.Basic

returns the grid:

Table 4-56 Output Grid from MDX Example

Product

California Oregon New York South Texas Oklahoma Louisiana New
Mexico

Washingto
n

12964 5062 8202 13238 6425 3491 2992 330 4641

Chapter 4
MDX Function List

4-141

TO use index, note that index is the index number of the dimension to drill down on. In the
example below, the function drills down on Market. If you change the 1 to a 0, it drills down on
Product.

SELECT
DrilldownByLayer (
 {
 ([Product],[East]), ([Product],[West])
 }, 1
)
ON COLUMNS
FROM Sample.Basic

DrilldownMember
The MDX DrilldownMember function for Essbase drills down on any members or tuples of set1
that are also found in set2. The resulting set contains the drilled-down members or tuples, as
well as the original members or tuples (whether they were expanded or not).

Syntax

DrilldownMember(set1, set2 [, RECURSIVE])

Parameters

set1
The set containing members or tuples to drill down on if comparison with set2 tests positive for
identical members or tuples.

set2
The set to compare with set1 before drilling down on members or tuples in set1.

RECURSIVE
Optional. A keyword to enable repeated comparisons of the sets.

Notes

This function drills down on all members of set1 that are also found in set2. The two sets are
compared. Then the members or tuples of the first set that are also present in the second set
are expanded to include their children.

If the first set is a list of tuples, then any tuples in the first set that contain members from the
second set are expanded to their children, generating more tuples.

If the RECURSIVE keyword is used, multiple passes are made on the expanded result sets.
Drilldownmember repeats the set comparison and resulting drilldown until there are no more
unexpanded members or tuples of set1 that are also present in set2.

Example

Drilling Down on Members

The following examples drill down on members.

Example 1

Example 2

Chapter 4
MDX Function List

4-142

The following expression

DrilldownMember({Market, [New York]}, {Market, West}, RECURSIVE)

returns the set:

{Market, East, West, California, Oregon, Washington, Utah, Nevada, South,
 Central, [New York]}

The member Market is drilled down and then the West member of the resulting set is drilled
down, because the RECURSIVE parameter was specified.

Drilling Down on Tuples

This example uses the following part of the Sample Basic outline:

The following example drills down on tuples.

The following expression

DrilldownMember
 ({([100],[California]), ([200],[Washington])},
 { [100] }
)

returns the set of tuples:

{ ([100],California), ([100-10],California), ([100-20],California),
 ([100-30],California), ([200],Washington)}

Therefore, the following query

SELECT
DrilldownMember
 ({([100],[California]), ([200],[Washington])},
 { [100] }
)
ON COLUMNS
FROM Sample.Basic

returns the grid:

Chapter 4
MDX Function List

4-143

Table 4-57 Output Grid from MDX Example

100 100-10 100-20 100-30 200

California California California California Washington

999 3498 -1587 -912 1091

DrillupByLayer
The MDX DrillupByLayer function for Essbase drills up the members of a set that are below a
specified layer.

Syntax

DrillupByLayer (set [,layer])

Parameters

set
The set in which the drill-up should occur.

layer
The layer of the members that should be drilled up. If omitted, the set is drilled up to the
second lowest level found in the set.

Notes

DrillupLevel can be used as a synonym for DrillupByLayer.

Example

These examples focus on the following hierarchy from the Sample Basic outline:

Example 1

The following query drills up the members of set to the second generation of the Measures
dimension:

SELECT
 DrillupByLayer
 (
 {[Measures],[Profit],
 [Margin], [Sales], [COGS]

Chapter 4
MDX Function List

4-144

 }, Generations([Measures], 2)
)

ON COLUMNS
FROM Sample.Basic

This query returns the grid:

Table 4-58 Output Grid from MDX Example

Measures Profit

105522 105522

Example 2

With no layer specified, the following query drills up the members of set to the second lowest
level found in set:

SELECT
 DrillupByLayer
 (
 {[Measures],[Profit],
 [Margin], [Sales], [COGS]
 }
)

ON COLUMNS
FROM Sample.Basic

This query returns the grid:

Table 4-59 Output Grid from MDX Example

Measures Profit Margin

105522 105522 221519

DrillupMember
The MDX DrillupMember function for Essbase tests two sets for common ancestors and drills
up members of the first set to the level of the ancestors that are present in the second set.

Syntax

DrillupMember (set1, set2)

Parameters

set1
The set containing members to drill up if comparison with set2 tests positive for identical
members or tuples.

Chapter 4
MDX Function List

4-145

set2
The set to compare with set1 before drilling up members in set1.

Notes

This function drills up any members of set1 whose ancestors are found in set2. The level to
which members in set1 are drilled up depends on the level of the ancestor found in set2. The
resulting set contains the ancestors of the drilled up member at the level found in set2, as well
as any members of set1 that were not drilled up.

Example

Example 1

The following example

DrillupMember({East, South, West, California, Washington, Oregon},{West})

returns the set:

{East, South, West}

The following expression

DrillupMember
 (
 {East, South, West, California,
 Washington, Oregon, Central, Nevada},
 {West}
)

returns the set:

{East, South, West, Central, Nevada}

The member Nevada is not drilled up to member West because another member Central
interrupts the chain of West descendants.

Example 2

The following examples use the following part of the Sample Basic outline:

The following expression

DrillupMember
 ({Product, [100], [100-10]},

Chapter 4
MDX Function List

4-146

 {[Product]}
)

returns the set:

{Product}

The following expression

 DrillupMember
 ({Product, [100], [100-10]},
 {[100]}
)

returns the set:

{Product, [100]}

DTS
The MDX DTS function calculates period-to-date values using built-in Dynamic Time Series
functionality on Essbase block storage databases.

Syntax

DTS (dts-operation-specification, member)

Parameters

dts-operation-specification
The Dynamic Time Series member for which to return values. Specify one of the following
operations:

• HTD—History-to-date

• YTD—Year-to-date

• STD—Season-to-date

• PTD—Period-to-date

• QTD—Quarter-to-date

• MTD—Month-to-date

• WTD—Week-to-date

• DTD—Day-to-date

Note:

The operation you use for this parameter must have a corresponding Dynamic Time
Series member enabled in the outline.

Chapter 4
MDX Function List

4-147

member
Member specification. Must be a level-0 member from the time dimension.

Notes

This function is applicable only to block storage databases.

Example

The following query returns year to date information for Sample Basic.

WITH MEMBER [Year].[QuarterToDate_April] AS 'DTS(QTD,Apr)'
SELECT
 {[Profit], [Opening Inventory],[Ratios]}
ON COLUMNS,
 {[Jan],[Feb],[Mar],[Apr],[QuarterToDate_April]}
ON ROWS
FROM Sample.Basic;

This query returns the grid:

Table 4-60 Output Grid from MDX Example

(axis) Profit Opening Inventory Ratios

Jan 8024 117405 55.1017819772972

Feb 8346 116434 55.3868221647073

Mar 8333 115558 55.2665073107131

Apr 8644 119143 55.4181729805268

QuarterToDate_April 8644 119143 55.4181729805268

EnumText
The MDX EnumText function for Essbase returns the text value corresponding to a numeric
value in a text list.

Syntax

EnumText (textlistname, numeric_value_expression)

Parameters

textlistname
Name of a text list defined on the outline.

numeric_value_expression
Numeric value expression (see MDX Grammar Rules).

Example

EnumText(CSRatings, 1)

Chapter 4
MDX Function List

4-148

returns “Excellent” if there is a text list named CSRatings containing the text “Excellent”
mapped to ID 1. This example returns an empty string if there is no text associated with the
given numeric ID.

EnumValue
The MDX EnumValue function for Essbase returns the internal numeric value for a text value in
a text list.

Syntax

EnumValue (enum_string)

Parameters

enum_string
Either textlistname.string_literal or textlistmembername.string_literal, where

• textlistname is the name of a text list defined on the outline

• textlistmembername is the name of a member that has an associated text list

• string_literal is the text value stored in the text list

Example

The following expression shows how EnumValue can be used to filter employees based on
their title, which is stored as a text list in [Measures].[Title].

FILTER([Employee].Levels[0].Members, [Measures].[Title] = EnumValue([Job
Titles]."Manager"))

Except
The MDX Except function for Essbase returns a subset containing the differences between two
sets, optionally retaining duplicates. The two input sets must have identical dimensionality.

Syntax

Except (set1, set2 [,ALL])

Parameters

set1
A set to compare with set2.

set2
A set to comparet with set1.

ALL
The optional ALL flag retains duplicates. Matching duplicates in set1 and set2 are eliminated.

Chapter 4
MDX Function List

4-149

Example

Except({[New York], [California], [Florida], [California]},
 {[Oregon], [Washington], [California], [Florida]})

returns {[New York]}.

Except({[New York], [California], [Florida], [California]},
 {[Oregon], [Washington], [California], [Florida]}, ALL)

returns {[New York], [California]}.

The following query returns Actual Sales and Profit numbers for the level-0 markets that are
not defined as "Major Market."

SELECT
 {[Measures].[Sales], [Measures].[Profit]}
ON COLUMNS,
 Except(
 [Market].Levels(0).Members,
 UDA (Market, "Major Market")
) ON ROWS
FROM Sample.Basic
WHERE {([Year].[Qtr1], [Scenario].[Actual])}

This query returns the grid:

Table 4-61 Output Grid from MDX Example

(axis) Sales Profit

Connecticut 3472 920

New Hampshire 1652 202

Oregon 5058 1277

Washington 4835 1212

Utah 4209 744

Nevada 6516 775

Oklahoma 2961 718

Louisiana 2906 773

New Mexico 1741 4

Wisconsin 4073 913

Missouri 3062 399

Iowa 6175 2036

Chapter 4
MDX Function List

4-150

Exp
The MDX Exp function for Essbase returns the exponent of an expression; that is, the value of
e (the base of natural logarithms) raised to the power of the expression.

Syntax

Exp (numeric_value_expression)

Parameters

numeric_value_expression
A numeric value (see MDX Grammar Rules).

Notes

• Exp returns the inverse of Ln, the natural logarithm.

• The constant e is the base of the natural logarithm. e is approximately 2.71828182845904.

Example

The calculated member Index is created to represent e raised to the power of [Variance %]/
100. In the example, [Variance %] divided by 100 is the numeric value expression provided to
the Exp function.

WITH MEMBER [Scenario].[Index]
AS
 'Exp(
 [Scenario].[Variance %]/100
)'
SELECT
 {[Scenario].[Variance %], [Scenario].[Index]}
ON COLUMNS,
 {[Market].children}
ON ROWS
FROM
 Sample.Basic
WHERE
 {[Sales]}

This query returns the grid:

Table 4-62 Output Grid from MDX Example

(axis) Variance % Index

East 10.700 1.113

West 10.914 1.115

South 3.556 1.036

Central 3.595 1.037

Chapter 4
MDX Function List

4-151

See Also

Ln

Extract
The MDX Extract function for Essbase returns a set of tuples with members from the specified
dimensions of the input set.

Syntax

Extract (set [, dimension ...])

Parameters

set
The set from which to extract tuples belonging to the specified dimension.

dimension
One or more dimensions from which to extract a set.

Notes

This function always removes duplicates. The dimension argument should specify dimensions
present in the input set. It is an error to specify a dimension that is not present in the input set.
The members in the tuples of the output set are ordered based on the dimension order
specified in the input set.

Example

In the following example, Extract returns a subset of only those tuples belonging to the Year
dimension.

SELECT
 Extract(
 {
 ([Year].[Qtr1], [Market].[California]),
 ([Year].[Qtr1], [Market].[Oregon]),
 ([Year].[Qtr2], [Market].[Oregon])
 }, Year
)
ON COLUMNS
FROM Sample.basic

Table 4-63 Output Grid from MDX Example

Qtr1 Qtr2

24703 27107

Chapter 4
MDX Function List

4-152

Factorial
The MDX Factorial function for Essbase returns the factorial of a number.

Syntax

Factorial (index)

Parameters

index
A numeric value. The fractional part of index is ignored.

Example

Factorial(5) returns 120 (which is 5 * 4 * 3 * 2 * 1).

Factorial(3.5) returns 6 (which is 3 * 2 * 1). The fractional part of index is ignored.

Filter
The MDX Filter function for Essbase returns the tuples of a set that meet the criteria of a
search condition.

Syntax

FILTER (set, search_condition)

Parameters

set
The set through which to iterate.

search_condition
A Boolean expression (see MDX Grammar Rules). The search condition is evaluated in the
context of every tuple in the set.

Notes

This function returns the subset of tuples in set for which the value of the search condition is
TRUE. The order of tuples in the returned set is the same as in the input set.

Example

Example 1

The following unfiltered query returns profit for all level-0 products:

SELECT
 { [Profit] }
ON COLUMNS,
 [Product].levels(0).members
ON ROWS
FROM Sample.Basic

Chapter 4
MDX Function List

4-153

This query returns the grid:

Table 4-64 Output Grid from MDX Example

(axis) Profit

100-10 22777

100-20 5708

100-30 1983

200-10 7201

200-20 12025

200-30 4636

200-40 4092

300-10 12195

300-20 2511

300-30 11093

400-10 11844

400-20 9851

400-30 -394

100-20 5708

200-20 12025

300-30 11093

To filter the above results to only show negative Profit, use the Filter function, passing it the
original set and a search condition. Filter will only return the set of members for which the
search condition is true (for which Profit is less than zero).

SELECT
 { Profit }
ON COLUMNS,
 Filter([Product].levels(0).members, Profit < 0)
ON ROWS
FROM Sample.Basic

The resulting query returns only the products with negative profit:

Table 4-65 Output Grid from MDX Example

(axis) Profit

400-30 -394

Example 2

The search expression in Example 1 compared a value expression (Profit) with a value. You
can also filter using a member attribute as the search condition. For example, you can use the
Filter function to only select members whose Caffeinated attribute is TRUE.

SELECT
 { [Profit] }
ON COLUMNS,
 Filter([Product].levels(0).members, Product.CurrentMember.[Caffeinated])

Chapter 4
MDX Function List

4-154

ON ROWS
FROM Sample.Basic

This query returns profit for the members that are caffeinated:

Table 4-66 Output Grid from MDX Example

(axis) Profit

100-10 22777

100-20 5708

200-10 7201

200-20 12025

300-10 12195

300-20 2511

300-30 11093

To understand the search condition, Product.CurrentMember.[Caffeinated], it may be helpful
to read it right to left: Filter is searching for presense of the Caffeinated property on the current
member, for each member in the input set, which happens to be from the Product dimension
(The CurrentMember function requires the dimension name as its argument).

Filter is an iterative function, meaning that at every member or tuple in the set being evaluated,
the member being operated upon is the "current member," until Filter has looped through the
entire input set and evaluted the search condition for each tuple. So to see how the previous
query results were generated, it would be useful to see first which members actually have the
Caffeinated attribute set to true. The following unfiltered query uses a calculated member to
reveal which of the level-0 product members is caffeinated. The IIF function returns a value of
1 for each member whose Caffeinated attribute is set to TRUE, and returns a value of 0
otherwise.

WITH MEMBER Measures.IsCaffeinated
AS 'IIF(Product.CurrentMember.[Caffeinated], 1, 0)'
SELECT
 { IsCaffeinated }
ON COLUMNS,
 [Product].levels(0).members
ON ROWS
FROM Sample.Basic

This query returns the grid:

Table 4-67 Output Grid from MDX Example

(axis) IsCaffeinated

100-10 1

100-20 1

100-30 0

200-10 1

200-20 1

200-30 0

200-40 0

Chapter 4
MDX Function List

4-155

Table 4-67 (Cont.) Output Grid from MDX Example

(axis) IsCaffeinated

300-10 1

300-20 1

300-30 1

400-10 0

400-20 0

400-30 0

100-20 0

200-20 0

300–30 0

Looking at the results for the second query, you can begin to see that the search condition is
evaluated for each tuple in the input set, and that only the tuples meeting the search condition
are returned.

Example 3

Example 2 introduced the CurrentMember function. Even when CurrentMember is not explicitly
called, Filter operates in the context of "the current member" while it iterates through a set.
Filter and other iterative functions are processed in a nested context.

By default, Filter operates in the current-member context of top dimension members. You make
the MDX context smaller by using a slicer (the Where clause), which overrides the built-in top-
dimensional context. Additionally, you can override the slicer context by specifying context in
the search condition argument for Filter.

The following query returns the Profit values for Western Region, for Qtr1. Note that the MDX
context is West, Qtr1.

SELECT
 { [Profit] }
ON COLUMNS,
 [Product].levels(0).members
ON ROWS
FROM Sample.Basic
Where (West, Qtr1)

When adding a filter to the above query, the values for Profit are still evaluated as (Profit,
West, Qtr1), because the sub-context for Filter is based on the main context.

SELECT
 { [Profit] }
ON COLUMNS,
 Filter([Product].levels(0).members, Profit < 0)
ON ROWS
FROM Sample.Basic
Where (West, Qtr1)

Chapter 4
MDX Function List

4-156

In the next query, the values for Profit are evaluated as (Profit, West, Qtr1), even though
the outer context is (Profit, Market, Qtr1). This is because the inner context in the Filter
function overrides the outer context of the slicer (West replaces Market).

SELECT
 { [Sales] }
ON COLUMNS,
Filter([Product].levels(0).members, (Profit, West) < 0)
ON ROWS
FROM Sample.Basic
Where (Market, Qtr1)

The above query returns the Sales values for West, Qtr1 for members of Product whose Profit
for West, Qtr1 was less than 0.

Table 4-68 Output Grid from MDX Example

(axis) Sales

100-20 2153

400-30 1862

100-20 2153

Additional Examples

The following query on Sample Basic returns Qtr2 sales figures for products where the sales
have increased by at least 10% since Qtr1.

SELECT
{
 Filter (
 [Product].Members,
 [Measures].[Sales] >
 1.1 *
 ([Measures].[Sales], [Year].CurrentMember.PrevMember)
)
}
on columns
FROM sample.basic
WHERE ([Year].[Qtr2], [Measures].[Sales])

Table 4-69 Output Grid from MDX Example

Cola Dark Cream

16048 11993

The following query on Sample Basic returns sales figures for product family "100" where the
monthly sales of that product family are greater than 8,570. The filtering logic is stored as a
named set in the WITH section.

WITH SET [High-Sales Months] as
'
 Filter(

Chapter 4
MDX Function List

4-157

 [Year].Levels(0).members,
 [Measures].[Sales] > 8570
)
'
SELECT
 {[Measures].[Sales]}
ON COLUMNS,
 {[High-Sales Months]}
ON ROWS
FROM
 sample.basic
WHERE
 ([Product].[100])

Table 4-70 Output Grid from MDX Example

(axis) Sales

Apr 8685

May 8945

Jun 9557

Jul 9913

Aug 9787

Sep 8844

Dec 8772

FirstChild
The MDX FirstChild function for Essbase returns the first child of the input member.

Syntax

member.FirstChild

FirstChild (member)

Parameters

member
A member specification. If a level-0 member, the output of FirstChild is an empty member.

Example

SELECT
 {[Qtr1].firstchild}
ON COLUMNS,
 {[Market].[Central].lastchild}
ON ROWS
FROM Sample.Basic

Chapter 4
MDX Function List

4-158

Table 4-71 Output Grid from MDX Example

(axis) Jan

Colorado 585

See Also

LastChild

FirstSibling

FirstSibling
The MDX FirstSibling function for Essbase returns the first child of the input member's parent.

Syntax

FirstSibling (member [, hierarchy])

member.FirstSibling [(hierarchy)]

Parameters

member
A member specification.

hierarchy
Optional. A specific hierarchy within the time dimension.

Notes

If member is the top member of a dimension, then member itself is returned.

Example

Example 1

Year.Firstsibling returns Year.

Qtr3.firstsibling returns Qtr1.

Example 2

For every month, the following query displays the change in inventory level since the beginning
of the quarter.

WITH MEMBER
 [Measures].[Inventory Level since beginning of Quarter]
AS
 '[Ending Inventory] - ([Opening Inventory],
[Year].CurrentMember.FirstSibling)'
SELECT
 {[Measures].[Inventory Level since beginning of Quarter]}
ON COLUMNS,

Chapter 4
MDX Function List

4-159

 Year.Levels(0).Members ON ROWS
FROM Sample.Basic

This query returns the grid:

Table 4-72 Output Grid from MDX Example

(axis) Inventory Level Since Beginning of Quarter

Jan -971

Feb -1847

Mar 1738

Apr 6740

May 17002

Jun 24315

Jul -871

Aug -1243

Sep -1608

Oct 2000

Nov 5308

Dec 4474

See Also

LastSibling

FirstChild

FormatDate
The MDX FormatDate function for Essbase returns a formatted date-string.

Syntax

FormatDate (date, internal-date-format)

Parameters

date
A number representing the input date between January 1, 1970 and Dec 31, 2037. The
number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this
number, use any of the following functions: Today(), TodateEx(), GetFirstDate(),
GetLastDate(), DateRoll().
Date-time attribute properties of a member can also be used to retrieve this number. For
example,

• Product.currentmember.[Intro Date] returns the product introduction date for the
current product in context.

• [Cola].[Intro Date] returns the product introduction date for Cola.

internal-date-format
One of the following literal strings (excluding ordered-list numbers and parenthetical
examples) indicating a supported date format.

Chapter 4
MDX Function List

4-160

1. "mon dd yyyy" (Example: mon = Aug)

2. "Month dd yyyy" (Example: Month = August)

3. "mm/dd/yy"
4. "mm/dd/yyyy"
5. "yy.mm.dd"
6. "dd/mm/yy"
7. "dd.mm.yy"
8. "dd-mm-yy"
9. "dd Month yy"
10. "dd mon yy"
11. "Month dd, yy"
12. "mon dd, yy"
13. "mm-dd-yy"
14. "yy/mm/dd"
15. "yymmdd"
16. "dd Month yyyy"
17. "dd mon yyyy"
18. "yyyy-mm-dd"
19. "yyyy/mm/dd"
20. "Long format" (Example: "WeekDay, Mon dd, yyyy")

21. "Short format" (Example: "m/d/yy")

Notes

• Using an invalid input date returns an error.

• Using extra whitespace not included in the internal format strings returns an error.

• This function interprets years in the range 1970 to 2029 for yy format. Therefore, if the
function is invoked using a date format mm/dd/yy for June 20, 2006, the returned date
string is "06/20/06".

Example

The following query returns the first 10 day sales for all Colas products since their release date
in the market California.

WITH MEMBER
 Measures.[first 10 days sales] AS
 'SUM(
 LastPeriods(-10,
 StrToMbr(
 FormatDate("Mon dd yyyy", Product.CurrentMember.[Intro Date])
)
)
 , Sales)'

Chapter 4
MDX Function List

4-161

SELECT
 {[first 10 days sales]}
ON COLUMNS,
 {Colas.Children}
ON ROWS
FROM MySamp.basic
WHERE (California, Actual);

Generate
The MDX Generate function for Essbase returns a set formed by evaluating a set expression
using the following algorithm: For each tuple in set1, return set2.

Syntax

Generate (set1, set2 [, [ALL]])

Parameters

set1
The set to loop through.

set2
The set expression to evaluate for every tuple in set1.

ALL
If the optional ALL flag is used, duplicate tuples are retained.

Notes

The set expression set2 is evaluated in the context of each of the tuples from set1. The
resulting sets are combined, in the same order as of the tuples in set1, to produce the output.
Duplicates are not included by default.

Example

For each region of the market, return its top-selling 3 products. Display the sales data by
quarter.

WITH SET [Top3BevsPerRegion]
AS
 'Generate ({[Market].children},
 Crossjoin
 (
 {[Market].Currentmember},
 TopCount
 (
 [Product].Members, 3, [Measures].[Sales]
)
)
)'
SELECT
 {[Top3BevsPerRegion]}
ON COLUMNS,
 {[Year].children}

Chapter 4
MDX Function List

4-162

ON ROWS
FROM Sample.Basic
WHERE ([Scenario].[Actual], [Measures].[Sales])

Table 4-73 Output Grid from MDX Example

(axis) East West South Central

(axis) Produc
t

Colas Root
Beer

Produc
t

Diet
Drinks

Cream
Soda

Produc
t

Root
Beer

Diet
Drinks

Produc
t

Diet
Drinks

Colas

Qtr1 20621 6292 5726 31674 8820 8043 12113 5354 4483 31412 10544 8074

Qtr2 224499 7230 5902 33572 9086 8982 12602 5535 4976 33056 10809 8701

Qtr3 22976 7770 5863 35130 9518 9616 13355 5690 4947 33754 10959 8894

Qtr4 21352 6448 6181 32555 8999 8750 12776 5429 4450 31458 10348 8139

Generation
The MDX Generation function for Essbase returns the generation of the input member.

Syntax

member.Generation

Parameters

member
Member specification.

Example

The following query

SELECT
 [Year].[Qtr1].Generation.Members
ON COLUMNS,
 [Product].Generations(2).Members
ON ROWS
FROM Sample.Basic

returns the grid:

Table 4-74 Output Grid from MDX Example

(axis) Qtr1 Qtr2 Qtr3 Qtr4

100 7048 7872 8511 7037

200 6721 7030 7005 7198

300 5929 6769 6698 6403

400 5005 5436 5698 5162

Diet 7017 7336 7532 6941

Chapter 4
MDX Function List

4-163

See Also

Generations

Level

IsGeneration

Generations
The MDX Generations function for Essbase returns the generation specified by the input
generation number.

Syntax

dimension.Generations (index)

Generations (dimension, index)

Parameters

dimension
The dimension specification.

index
The numerical depth from the top member of the outline, where the top member is 1.

Example

The following query

SELECT
 [Year].[Qtr1].Generation.Members
ON COLUMNS,
 [Product].Generations(2).Members
ON ROWS
FROM Sample.Basic

returns the grid:

Table 4-75 Output Grid from MDX Example

(axis) Qtr1 Qtr2 Qtr3 Qtr4

100 7048 7872 8511 7037

200 6721 7030 7005 7198

300 5929 6769 6698 6403

400 5005 5436 5698 5162

Diet 7017 7336 7532 6941

See Also

Generation

Chapter 4
MDX Function List

4-164

Levels

GetFirstDate
The MDX GetFirstDate function returns the start date for an Essbase date-time dimension
member.

Syntax

GetFirstDate (member)

Parameters

member
A member from a date-time dimension.

Notes

• This function returns #MISSING if the input member is not from a date hierarchy in a Time-
Date tagged dimension.

• The return value is a number representing the input date. The number is the number of
seconds elapsed since midnight, January 1, 1970.

• This function is applicable only to aggregate storage databases.

Example

The following query returns sales for the first week of April, 2004.

SELECT
 {[Sales]}
ON COLUMNS,
 {DateToMember(
 GetFirstDate ([Apr 2004]),
 [Time dimension].Dimension,
 [Time dimension].[Weeks]
)}
ON ROWS
FROM MySamp.basic;

GetFirstDay
The MDX GetFirstDay function for Essbase returns, for a given date_part, the first day of the
time interval for the input date, following a standard Gregorian calendar.

Syntax

GetFirstDay (date, date_part)

Chapter 4
MDX Function List

4-165

Parameters

date
A number representing the input date between January 1, 1970 and Dec 31, 2037. The
number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this
number, use any of the following functions: Today(), TodateEx(), GetFirstDate(),
GetLastDate(), DateRoll().
Date-Time type attribute properties of a member can also be used to retrieve this number. For
example: Product.currentmember.[Intro Date] returns the Introduction or release date for
the current product in context. [Cola].[Intro Date] returns the Introduction or release date
for the “Cola” product.

date_part
Defined time components of the standard calendar.

• DP_YEAR - year of the input date.

• DP_QUARTER – quarter of the input date.

• DP_MONTH - month of the input date.

• DP_WEEK - week of the input date.

Notes

This function can be used for getting the truncated date of an input date for a given date part,
following a standard Gregorian calendar.

Example

Assuming today’s date is April 15 2007, consider the following scenarios.

GetFirstDay(Today(), DP_YEAR)

returns the first day of the year, Jan 1 2007

GetFirstDay(Today(), DP_QUARTER)

returns the first day of the quarter, Apr 1 2007

GetFirstDay(Today(), DP_MONTH)

returns the first day of the month, Apr 1 2007

GetFirstDay(Today(), DP_WEEK)

returns the first day of the week, Apr 15 2007

See Also

GetNextDay

GetLastDay

Today

Chapter 4
MDX Function List

4-166

GetLastDate
The MDX GetLastDate function returns the end date for an Essbase date-time dimension
member.

Syntax

GetLastDate (member)

Parameters

member
A member from a date-time tagged dimension.

Notes

• This function returns #MISSING if the input member is not from a date hierarchy in a Time-
Date tagged dimension.

• The return value is a number representing the input date. The number is the number of
seconds elapsed since midnight, January 1, 1970.

• This function is applicable only to aggregate storage databases.

Example

The following query returns sales for the last week of April, 2004.

SELECT
 {[Sales]}
ON COLUMNS,
 {DateToMember(
 GetLastDate ([Apr 2004]),
 [Time dimension].Dimension,
 [Time dimension].[Weeks]
)}
ON ROWS
FROM MySamp.basic;

GetLastDay
The MDX GetLastDay function for Essbase returns, for a given date_part, the last day of the
time interval for the input date, following a standard Gregorian calendar.

Syntax

GetLastDay (date, date_part)

Parameters

date
A number representing the input date between January 1, 1970 and Dec 31, 2037. The
number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this

Chapter 4
MDX Function List

4-167

number, use any of the following functions: Today(), TodateEx(), GetFirstDate(),
GetLastDate(), DateRoll().
Date-Time type attribute properties of a member can also be used to retrieve this number. For
example: Product.currentmember.[Intro Date] returns the Introduction or release date for
the current product in context. [Cola].[Intro Date] returns the Introduction or release date
for the “Cola” product.

date_part
Defined time components of the standard calendar.

• DP_YEAR - year of the input date.

• DP_QUARTER – quarter of the input date.

• DP_MONTH - month of the input date.

• DP_WEEK - week of the input date.

Notes

This function can be used for getting the truncated date of an input date for a given date part,
following a standard Gregorian calendar.

Example

Assuming today’s date is April 15 2007, consider the following scenarios.

GetLastDay(Today(), DP_YEAR)

returns the last day of the year, Dec 31 2007

GetLastDay(Today(), DP_QUARTER)

returns the last day of the quarter, Jun 30 2007

GetLastDay(Today(), DP_MONTH)

returns the last day of the month, Apr 30 2007

GetLastDay(Today(), DP_WEEK)

returns the last day of the week, Apr 21 2007

See Also

GetFirstDay

GetNextDay

Today

Chapter 4
MDX Function List

4-168

GetNextDay
The MDX GetNextDay function for Essbase takes an input date and weekday, and returns the
next date after the input date that corresponds to the weekday.

Syntax

GetNextDay (date, week_day, [0|1])

Parameters

date
A number representing the input date between January 1, 1970 and Dec 31, 2037. The
number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this
number, use any of the following functions: Today(), TodateEx(), GetFirstDate(),
GetLastDate(), DateRoll().
Date-Time type attribute properties of a member can also be used to retrieve this number. For
example: Product.currentmember.[Intro Date] returns the Introduction or release date for
the current product in context. [Cola].[Intro Date] returns the Introduction or release date
for the “Cola” product.

week_day
A number between 1 (Sunday) and 7 (Saturday) representing the weekday.

0 or 1
Optional. Indicates whether to include the date itself or not. Default behavior is 1: to include
the date itself.

Example

GetNextDay(Today(), 2, 0)

returns the next Monday following today.

GetNextDay(Today(), 2, 1)

returns the next Monday following today, or today if today is Monday.

GetNextDay(Today(), 2)

returns the next Monday following today, or today if today is Monday.

See Also

GetFirstDay

GetLastDay

Today

Chapter 4
MDX Function List

4-169

GetRoundDate
The MDX GetRoundDate function for Essbase returns, for a given date_part, the rounded date
of the input date to the input time interval, following a standard Gregorian calendar.

Syntax

GetRoundDate (date, date_part)

Parameters

date
A number representing the input date between January 1, 1970 and Dec 31, 2037. The
number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this
number, use any of the following functions: Today(), TodateEx(), GetFirstDate(),
GetLastDate(), DateRoll().
Date-Time type attribute properties of a member can also be used to retrieve this number. For
example: Product.currentmember.[Intro Date] returns the Introduction or release date for
the current product in context. [Cola].[Intro Date] returns the Introduction or release date
for the “Cola” product.

date_part
Defined time components of the standard calendar.

• DP_YEAR - year of the input date.

• DP_QUARTER – quarter of the input date.

• DP_MONTH - month of the input date.

• DP_WEEK - week of the input date.

Example

Assuming today’s date is April 15 2022, consider the following scenarios.

GetRoundDate(Today(), DP_YEAR)

returns the rounded date to the year, Jan 1 2022

GetRoundDate(Today(), DP_QUARTER)

returns the rounded date to the quarter, Apr 1 2022

GetRoundDate(Today(), DP_MONTH)

returns the rounded date to the month, Apr 1 2022

GetRoundDate(Today(), DP_WEEK)

returns the rounded date to the week, Apr 15 2022

Chapter 4
MDX Function List

4-170

See Also

GetNextDay

GetFirstDay

GetLastDay

Today

Head
The MDX Head function for Essbase returns the first n members or tuples present in a set.

Syntax

Head (set [,numeric value expression])

Parameters

set
The set from which to take items.

numeric value expression
The count of items to take from the beginning of the set. If omitted, the default is 1. If less than
1, an empty set is returned. If the value exceeds the number of tuples in the input set, the
original set is returned.

Example

Example 1

This example uses the following part of the Sample Basic outline:

The following expression

[Product].children

returns the set:

{ [100], [200], [300], [400], [Diet] }

Therefore, the following expression

 Head (
 [Product].children, 2)

Chapter 4
MDX Function List

4-171

returns the first two members of the previous result set:

{ [100], [200] }

Example 2

This example uses the following parts of the Sample Basic outline:

The following expression

 CrossJoin ([100].children, [South].children)

returns the set:

{ ([100-10], Texas), ([100-10], Oklahoma), ([100-10], Louisiana), ([100-10],
[New Mexico]),
 ([100-20], Texas), ([100-20], Oklahoma), ([100-20], Louisiana), ([100-20],
[New Mexico]),
 ([100-30], Texas), ([100-30], Oklahoma), ([100-30], Louisiana), ([100-30],
[New Mexico]) }

And the following expression

Head (CrossJoin ([100].children, [South].children), 8)

returns the first 8 tuples of the previous result set:

{ ([100-10], Texas), ([100-10], Oklahoma), ([100-10], Louisiana), ([100-10],
[New Mexico]),
 ([100-20], Texas), ([100-20], Oklahoma), ([100-20], Louisiana), ([100-20],
[New Mexico]) }

Chapter 4
MDX Function List

4-172

Additionally, the following expression

([Year].generations(2).members)

returns the set of members comprising the second generation of the Year dimension:

{ [Qtr1], [Qtr2], [Qtr3], [Qtr4] }

Therefore, the following query

SELECT
 {([Year].generations(2).members)}
ON COLUMNS,
Head (
 CrossJoin (
 [100].children, [South].children), 8
)
ON ROWS
FROM Sample.Basic

returns the grid:

Table 4-76 Output Grid from MDX Example

(axis) Qtr1 Qtr2 Qtr3 Qtr4

100–10 Texas 489 536 653 547

Oklahoma 87 92 128 211

Louisiana 93 106 128 137

New Mexico 76 101 122 70

100–20 Texas 206 199 152 82

Oklahoma 84 66 55 79

Louisiana 119 158 171 104

New Mexico –103 –60 –98 –18

See Also

Tail

Hierarchize
The MDX Hierarchize function returns members of a set in their hierarchical order as
represented in the Essbase database outline.

Syntax

Hierarchize (set [,POST])

Chapter 4
MDX Function List

4-173

Parameters

set
Set specification.

POST
If this keyword is used, child members are returned before their parents.

Notes

This function returns members of a set in their hierarchical order as represented in the
database outline (viewed from top-down by default, meaning that parent members are returned
before their children).

If POST is used, child members are returned before their parents (the view changes to bottom-
up). For example,

Hierarchize({Child, Grandparent, Parent})
returns {Grandparent, Parent, Child}.

Hierarchize({Child, Grandparent, Parent}, POST)
returns {Child, Parent, Grandparent}.

Example

Example 1

The following expression

Hierarchize({May, Apr, Jun})

returns the set:

{Apr, May, Jun}

Therefore, the following query

Select
Hierarchize({May, Apr, Jun})
on columns from sample.basic

returns the grid:

Table 4-77 Output Grid from MDX Example

Apr May Jun

8644 8929 9534

Chapter 4
MDX Function List

4-174

Example 2

The following expression

Hierarchize({May, Qtr2, Apr, Jun})

returns the set:

{ Qtr2 Apr May Jun }

Therefore, the following query

Select
Hierarchize({May, Qtr2, Apr, Jun})
on columns from sample.basic

returns the grid:

Table 4-78 Output Grid from MDX Example

Qtr2 Apr May Jun

27107 8644 8929 9534

Example 3

The following expression

Hierarchize({May, Qtr2, Apr, Jun}, POST)

returns the set:

{Apr, May, Jun, Qtr2}

Therefore, the following query

Select
Hierarchize({May, Qtr2, Apr, Jun}, POST)
on columns from sample.basic

returns the grid:

Table 4-79 Output Grid from MDX Example

Apr May Jun Qtr2

8644 8929 9534 27107

Chapter 4
MDX Function List

4-175

Example 4

The following query

Select
Hierarchize({Dec, Year, Feb, Apr, Qtr1, Jun, Qtr2}, POST)
on columns,
Hierarchize({Margin, Sales})
on rows
from sample.basic

returns the grid:

Table 4-80 Output Grid from MDX Example

(axis) Feb Qtr1 Apr Jun Qtr2 Dec Year

Margin 17762 52943 18242 19457 56317 18435 221519

Sales 32069 95820 32917 35088 101679 33342 400855

IIF
The MDX IIF function for Essbase performs a conditional test, and returns an appropriate
numeric expression or set depending on whether the test evaluates to true or false.

Syntax

IIF (search_condition, true_part, false_part)

Parameters

search_condition
An expression to evaluate as true or false (see MDX Grammar Rules).

true_part
A value_expression or a set. IIF returns this expression if the search condition evaluates to
TRUE (something other than zero).
The value_expression can be a numeric value expression or a string value expression.

false_part
A value_expression or a set. IIF returns this expression if the search condition evaluates to
FALSE (zero).
The value_expression can be a numeric value expression or a string value expression.

Example

Example 1

The company plans an expensive promotion of its caffeinated drinks. For the Caffeinated
products only, the following query calculates a Revised Budget that is 110% of the regular
budget.

WITH MEMBER
 [Scenario].[Revised Budget]

Chapter 4
MDX Function List

4-176

AS
 'IIF (
 [Product].CurrentMember.Caffeinated,
 Budget * 1.1, Budget
)'
SELECT
 {[Scenario].[Budget], [Scenario].[Revised Budget]}
ON COLUMNS,
 [Product].Levels(0).Members
ON ROWS
FROM Sample.Basic
WHERE ([Measures].[Sales], [Year].[Qtr3])

This query returns the grid:

Table 4-81 Output Grid from MDX Example

(axis) Budget Revised Budget

100-10 18650 20515

100-20 8910 9801

100-30 3370 3370

200-10 11060 12166

200-20 9680 10648

200-30 3880 3880

200-40 2660 2660

300-10 10600 11660

300-20 3760 4136

300-30 8280 9108

400-10 7750 7750

400-20 6800 6800

400-30 3290 3290

100-20 8910 8910

200-20 9680 9680

300-30 8280 8280

Example 2

The following query calculates a Revised Budget equaling Budget for caffeinated products, and
Actual for non-caffeinated products.

WITH MEMBER
 [Scenario].[Revised Budget]
AS
 'StrToMbr(IIF (
 [Product].CurrentMember.Caffeinated,
 "Budget" , "Actual"
))'
SELECT
 {[Scenario].[Budget], [Scenario].[Revised Budget]}
ON COLUMNS,
Children([100])
ON ROWS

Chapter 4
MDX Function List

4-177

FROM Sample.Basic
WHERE ([Measures].[Sales], [Year].[Qtr3])

This query returns the grid:

Table 4-82 Output Grid from MDX Example

(axis) Budget Revised Budget

Cola 18650 18650

Diet Cola 8910 8910

Caffeine Free Cola 3370 3189

InStr
The MDX InStr function for Essbase returns a number specifying the position of the first
occurrence of one string within another. This function requires a start parameter.

Syntax

InStr (start, string1, string2 [,compare])

Parameters

start
Character position to begin search in string1. For example, a position value of 1 indicates that
the search begins at the first character in the string. This parameter is required.

string1
String expression or literal string in which to search.

string2
String expression or literal string for which to search.

compare
Optional search mode. Values: 0 for case sensitive, 1 for case insensitive. Default is case
sensitive.

Notes

If a matching string is not found, the return value is 0.

If you require an optional start argument, then use the InString function instead.

Example

InStr (5, "Year2000_promotional", "promotional", 1)

returns 10

Chapter 4
MDX Function List

4-178

InString
The MDX InString function for Essbase returns a number specifying the position of the first
occurrence of one string within another.

Syntax

InString (string1, string2, [start] [,compare])

Parameters

string1
String expression or literal string in which to search.

string2
String expression or literal string for which to search.

start
Optional character position to begin search in string1. The default value is 1. A position value
of 1 indicates the very first character in the string. If omitted, search begins at first character in
string1.

compare
Optional search mode. Values: 0 for case sensitive, 1 for case insensitive. Default is case
sensitive.

Notes

If a matching string is not found, the return value is 0.

Example

InString ("Year2000_promotional", "promotional", 5,1)

returns 10
If the start parameter is omitted, the comma before the compare parameter is still required:

InString ("Year2000_promotional", "promotional", ,1)

If the compare parameter is omitted, the comma before the start parameter is still required:

InString ("Year2000_promotional", "promotional", 5)

Int
The MDX Int function for Essbase returns the next lowest integer value of an expression.

Syntax

Int (numeric_value_expression)

Chapter 4
MDX Function List

4-179

Parameters

numeric_value_expression
A numeric value or an expression that returns a numeric value (see MDX Grammar Rules).

Example

Example 1

Int(104.504) returns 104.

Example 2

The following query

WITH MEMBER [Market].[West_approx]
AS
 'Int(
 Sum(
 Children([Market].[West])
)
)'
SELECT
 {[Year].[Qtr1].Children}
ON COLUMNS,
 {[Market].[West].children,
 [Market].[West_approx]}
ON ROWS
FROM
 Sample.Basic
WHERE ([Measures].[Profit %], [Product].[Cola], [Scenario].[Actual])

returns the grid:

Table 4-83 Output Grid from MDX Example

(axis) Jan Feb Mar

California 38.643 37.984 38.370

Oregon 17.500 16.129 16.107

Washington 29.231 30.986 32.000

Utah 23.077 23.077 20.968

Nevada -3.947 -6.757 -5.333

West_approx 104.000 101.00 102.000

Intersect
The MDX Intersect function for Essbase returns the intersection of two input sets, optionally
retaining duplicates.

Syntax

Intersect (set1, set2 [,ALL])

Chapter 4
MDX Function List

4-180

Parameters

set1
A set to intersect with set2.

set2
A set to intersect with set1.

ALL
The optional ALL keyword retains matching duplicates in set1 and set2.

Notes

Duplicates are eliminated by default from the tail of the set. The optional ALL keyword retains
duplicates. The two input sets must have identical dimension signatures. For example, if set1
consists of dimensions Product and Market, in that order, then set2 should also consist of
Product followed by Market.

Example

Example 1

The following expression

Intersect({[New York], [California], [Oregon]},
 {[California], [Washington], [Oregon]})

returns the set:

{[California], [Oregon]}

Therefore, the following query

SELECT
Intersect({[New York], [California], [Oregon]},
 {[California], [Washington], [Oregon]})
ON COLUMNS
FROM Sample.Basic

returns the grid:

Table 4-84 Output Grid from MDX Example

California Oregon

12964 5062

Chapter 4
MDX Function List

4-181

Example 2

The following expression

Intersect({ [New York], [California], [Florida], [California] },
 { [Oregon], [Washington], [California], [Florida], [California] },
ALL)

returns the set:

{ [California], [Florida], [California] }

Therefore, the following query

SELECT
Intersect({ [New York], [California], [Florida], [California] },
 { [Oregon], [Washington], [California], [Florida], [California] },
ALL)
ON COLUMNS
FROM Sample.Basic

returns the grid:

Table 4-85 Output Grid from MDX Example

California Florida California

12964 5029 12964

The matching duplicate element [California] is duplicated in the result.

However, the following expression

Intersect({ [New York], [California], [Florida], [California] },
 { [Oregon], [Washington], [California], [Florida] }, ALL)

would return only

{ [California], [Florida] }

because only one match exists between [California] in set1 and [California] in set2.

Chapter 4
MDX Function List

4-182

Is
The MDX Is function for Essbase returns TRUE if two members are identical.

Syntax

IS (member1 , member2)

member1 IS member2

Parameters

member1
First member specification.

member2
Second member specification.

Example

IS([Year].CurrentMember.Parent, [Qtr1])

returns TRUE if the parent of the current member in [Year] dimension is [Qtr1].

Filter([Year].Levels(0).members, IS([Year].CurrentMember.Parent, [Qtr1]))

returns children of [Qtr1].

The following query returns all members of [Market] that have the parent [East]; in other words,
children of [East].

SELECT
{
 Filter (
 [Market].members,
 [Market].CurrentMember.Parent IS [East]
)
}
on columns
FROM sample.basic

This query returns the following grid:

Table 4-86 Output Grid from MDX Example

New York Massachusetts Florida Connecticut New Hampshire

8202 6712 5029 3093 1125

Chapter 4
MDX Function List

4-183

IsAccType
The MDX IsAccType function returns TRUE if the member has the associated accounts tag.
Account tags apply only to Essbase dimensions marked as Accounts. A FALSE value is
returned for all other dimension types.

Syntax

IsAccType (member , AcctTag)

Parameters

member
A member specification.

AcctTag
Valid values (defined in the database outline):

• First
• Last
• Average
• Expense
• TwoPass

Example

SELECT
Filter([Measures].Members, IsAccType([Measures].CurrentMember, First))
ON COLUMNS
FROM Sample.Basic

This query returns the following grid:

Table 4-87 Output Grid from MDX Example

Opening Inventory

117405

IsAncestor
The MDX IsAncestor function for Essbase returns TRUE if the first member is an ancestor of
the second member and, optionally, if the first member is equal to the second member.

Syntax

IsAncestor (member1 , member2 [, INCLUDEMEMBER])

Chapter 4
MDX Function List

4-184

Parameters

member1
A member specification.

member2
A member specification.

INCLUDEMEMBER
Optional. Use this keyword if you want IsAncestor to return TRUE if the first member is equal
to the second member.

Example

Example 1

The following query returns all Market dimension members for which the expression
IsAncestor([Market].CurrentMember, [Florida]) returns TRUE; in other words, the query
returns all ancestors of Florida.

SELECT
 Filter([Market].Members, IsAncestor([Market].CurrentMember, [Florida]))
ON COLUMNS
FROM Sample.Basic

Table 4-88 Output Grid from MDX Example

Market East

105522 24161

Example 2

The following query is the same as the above query, except that it uses INCLUDEMEMBER. It
returns all Market dimension members for which the expression
IsAncestor([Market].CurrentMember, [Florida], INCLUDEMEMBER)) returns TRUE; in other
words, the query returns Florida and all ancestors of Florida.

SELECT
 Filter([Market].Members, IsAncestor([Market].CurrentMember, [Florida],
INCLUDEMEMBER))
ON COLUMNS
FROM Sample.Basic

{[Market], [East], [Florida]}

Table 4-89 Output Grid from MDX Example

Market East Florida

105522 24161 5029

Chapter 4
MDX Function List

4-185

IsChild
The MDX IsChild function for Essbase returns TRUE if the first member is a child of the second
member and, optionally, if the first member is equal to the second member.

Syntax

IsChild (member1 , member2 [, INCLUDEMEMBER])

Parameters

member1
A member specification.

member2
A member specification.

INCLUDEMEMBER
Optional. Use this keyword if you want IsChild to return TRUE if the first member is equal to
the second member.

Example

Example 1

The following query returns all Market dimension members for which the expression
IsChild([Market].CurrentMember, [East]) returns TRUE; in other words, the query returns
all children of East.

SELECT
 Filter([Market].Members, IsChild([Market].CurrentMember, [East]))
ON COLUMNS
FROM Sample.Basic

Table 4-90 Output Grid from MDX Example

New York Massachusetts Florida Connecticut New Hampshire

8202 6712 5029 3093 1125

Example 2

The following query is the same as the above query, except that it uses INCLUDEMEMBER. It
returns all Market dimension members for which the expression
IsChild([Market].CurrentMember, [East]) returns TRUE; in other words, the query returns
East and all children of East.

SELECT
 Filter([Market].Members, IsChild([Market].CurrentMember, [East],
INCLUDEMEMBER))
ON COLUMNS
FROM Sample.Basic

Chapter 4
MDX Function List

4-186

Table 4-91 Output Grid from MDX Example

East New York Massachusetts Florida Connecticut New Hampshire

24161 8202 6712 5029 3093 1125

IsEmpty
The MDX IsEmpty function for Essbase returns TRUE if the value of an input numeric-value-
expression evaluates to #MISSING, and returns FALSE otherwise.

Syntax

IsEmpty (value_expression)

Parameters

value_expression
A set returning values to check for emptiness.

Notes

Zero is not equivalent to #MISSING. IsEmpty(0) returns TRUE.

Example

The following example finds all Product, Market combinations for which Sales data exists.

WITH SET [NewSet]
AS 'CrossJoin([Product].Children, [Market].Children)'
SELECT
 Filter([NewSet], NOT IsEmpty([NewSet].CurrentTuple))
ON COLUMNS
FROM Sample.Basic
WHERE
 {[Sales]}

This query returns the following grid:

Table 4-92 Output Grid from MDX Example

100 ... 400 Diet

East West South Central ... East West Central East West South Central

27740 28306 16280 33808 ... 15745 35034 33451 7919 36423 18676 42660

Chapter 4
MDX Function List

4-187

IsGeneration
The MDX IsGeneration function for Essbase returns TRUE if the member is in a specified
generation.

Syntax

IsGeneration (member, index)

Parameters

member
A member specification.

index
A generation number.

Example

IsGeneration([Market].CurrentMember, 2)

returns TRUE if the current member of the Market dimension is at generation 2.

Therefore, the following query

SELECT
 Filter([Market].Members, IsGeneration([Market].CurrentMember, 2))
ON COLUMNS
FROM Sample.Basic

returns

Table 4-93 Output Grid from MDX Example

East West South Central

24161 29861 13238 38262

See Also

Generation

IsLevel

IsLeaf
The MDX IsLeaf function for Essbase returns TRUE if the member is a level-0 member.

Syntax

IsLeaf (member)

Chapter 4
MDX Function List

4-188

Parameters

member
A member specification.

Notes

IsLeaf(member) is the same as IsLevel(member, 0).

Example

IsLeaf([Market].CurrentMember)

returns TRUE if the current member of the Market dimension is at level 0.

Therefore, the following query

SELECT
 Filter([Market].Members, IsLeaf([Market].CurrentMember))
ON COLUMNS
FROM Sample.Basic

returns

Table 4-94 Output Grid from MDX Example

New York Massachusetts Florida ... Missouri Iowa Colorado

8202 6712 5029 ... 1466 9061 7227

IsLevel
The MDX IsLevel function for Essbase returns TRUE if the member is in a specified level.

Syntax

IsLevel (member , index)

Parameters

member
A member specification.

index
A level number.

Example

IsLevel([Market].CurrentMember, 1)

returns TRUE if the current member of the Market dimension is at level 1.

Chapter 4
MDX Function List

4-189

Therefore, the following query

SELECT
 Filter([Market].Members, IsLevel([Market].CurrentMember, 1))
ON COLUMNS
FROM Sample.Basic

returns

Table 4-95 Output Grid from MDX Example

East West South Central

24161 29861 13238 38262

See Also

Level

IsGeneration

IsMatch
The MDX IsMatch function for Essbase performs wild-card search / pattern matching to check
if a string matches a given pattern.

The input string can be a member name, an alias, an attribute value, or any relevant string.
This function searches for strings matching the pattern you specify, and returns the artifacts it
finds.

Syntax

IsMatch(string, patternstring, {MATCH_CASE | IGNORE_CASE})

Parameters

string
The string that should be tested against the pattern.

patternstring
The pattern to search for. Must be in POSIX Extended Regular Expression Syntax. See the
syntax specification at The Open Group.
See the Notes in this topic for additional rules regarding special characters.

MATCH_CASE
Optional. Consider patternstring to be case sensitive. If MATCH_CASE / IGNORE_CASE are
omitted, Essbase defaults to the case-sensitive setting of the outline properties.

IGNORE_CASE
Optional. Do not consider patternstring to be case sensitive. If MATCH_CASE / IGNORE_CASE are
omitted, Essbase defaults to the case-sensitive setting of the outline properties.

Chapter 4
MDX Function List

4-190

http://www.opengroup.org/onlinepubs/000095399/basedefs/xbd_chap09.html#tag_09_04

Notes

• To search for a member name containing $, you must precede it with three backslash (\)
escape characters in the patternstring. For example, to search for member a$bc in Market,
you must use IsMatch(Market.CurrentMember.MEMBER_NAME, "a\\\$bc").

• To search for a character at the end of a line, you must precede the POSIX end-of-line
anchor, which is a dollar sign ($), with one backslash (\) escape character in the
patternstring. For example, to search for a member name that ends with a c in Market, you
must use IsMatch(Market.CurrentMember.MEMBER_NAME, "c\$").

• To search for any other special characters besides $, you must precede them with two
backslash (\) escape characters in the patternstring. For example, to search for member
a?bc in Market, you must use IsMatch(Market.CurrentMember.MEMBER_NAME, "a\\?bc").

Example

The following query searches for members whose names start with "new":

SELECT
 Filter(Market.Levels(0).Members,
 IsMatch(Market.CurrentMember.MEMBER_NAME, "^new")
)
ON COLUMNS
FROM Sample.Basic

The following query searches for members whose names start with at least an "n":

SELECT
 Filter(Market.Levels(0).Members,
 ISMATCH(Market.CurrentMember.MEMBER_NAME, "^n+")
)
ON COLUMNS
FROM Sample.Basic

The following query searches for members whose names contain an "*":

SELECT
 Filter(Year.Members,
 ISMATCH(Year.CurrentMember.MEMBER_NAME, "*")
)
ON COLUMNS
FROM Sample.Basic

The following query searches for members whose names contain zero or an "a":

SELECT
 Filter(Year.Members,
 ISMATCH(Year.CurrentMember.MEMBER_NAME, "a?")
)

Chapter 4
MDX Function List

4-191

ON COLUMNS
FROM Sample.Basic

IsSibling
The MDX IsSibling function for Essbase returns TRUE if the first member is a sibling of the
second member and, optionally, if the first member is equal to the second member.

Syntax

IsSibling(member1, member2 [, INCLUDEMEMBER])

Parameters

member1
A member specification.

member2
A member specification.

INCLUDEMEMBER
Optional. Use this keyword if you want IsSibling to return TRUE if the first member is equal to
the second member.

Example

Example 1

The following query returns all Market dimension members for which the expression
IsSibling([Market].CurrentMember, [California]) returns TRUE; in other words, the
query returns all states that are siblings of California.

SELECT
 Filter([Market].Members, IsSibling([Market].CurrentMember, [California]))
ON COLUMNS
FROM Sample.Basic

Table 4-96 Output Grid from MDX Example

Oregon Washington Utah Nevada

5062 4641 3155 4039

Example 2

The following query is the same as the above query, except that it uses INCLUDEMEMBER. It
returns all Market dimension members for which the expression
IsSibling([Market].CurrentMember, [California]) returns TRUE; in other words, the
query returns all states that are siblings of California, including California itself.

SELECT
 Filter([Market].Members, IsSibling([Market].CurrentMember, [California],
INCLUDEMEMBER))

Chapter 4
MDX Function List

4-192

ON COLUMNS
FROM Sample.Basic

Table 4-97 Output Grid from MDX Example

California Oregon Washington Utah Nevada

12964 5062 4641 3155 4039

IsUda
The MDX IsUda function for Essbase returns TRUE if the member has the associated UDA tag
(user-defined attribute).

Syntax

IsUda (member , string_value_expression)

Parameters

member
A member specification.

string_value_expression
A user-defined attribute (UDA) name string, defined in the database outline.

Example

IsUda([Market].CurrentMember, "Major Market")

returns TRUE if the current member of the Market has the user-defined attribute "Major
Market."

Therefore, the following query

SELECT
 Filter([Market].Members, IsUda([Market].CurrentMember, "Major Market"))
ON COLUMNS
FROM Sample.Basic

returns

Table 4-98 Output Grid from MDX Example

East New York Massachu
setts

Florida California Texas Central Illinois Ohio Colorado

24161 8202 6712 5029 12964 6425 38262 12577 4384 7227

Chapter 4
MDX Function List

4-193

IsValid
The MDX IsValid function for Essbase returns TRUE if the specified element validates
successfuly.

Syntax

IsValid (member | tuple | set | layer | property)

Parameters

member
A member specification.

tuple
A tuple specification.

set
A set specification.

layer
A layer specification.

property
A property specification (see MDX Grammar Rules).

Example

Example 1

The following example shows how IsValid can be used to check whether a given property value
is valid. It returns all Product dimension members that have an Ounces attribute value of 12.

SELECT
Filter([Product].members,
 IsValid([Product].CurrentMember.Ounces)
 AND
 [Product].CurrentMember.Ounces = 12)
ON COLUMNS
FROM Sample.Basic

The expression IsValid([Product].currentmember.Ounces) returns TRUE for only those
members in the Product dimension that have a valid property value for [Ounces]. This
eliminates ancestral members such as [Product] and [Colas] that do not have the [Ounces]
property defined because they are not level-0 members of the Product dimension.

The second part of the AND condition in the filter selects only those members with a value of
12 for [Ounces].

This query returns the following grid:

Chapter 4
MDX Function List

4-194

Table 4-99 Output Grid from MDX Example

100-10 100-20 200-10 200-30 300-30

22777 5708 7201 4636 11093

Example 2

IsValid([Jan].FirstChild)

returns FALSE, because [Jan] is a level-0 member, therefore it does not have any children.

Item
The MDX Item function for Essbase extracts a member from a tuple, or a tuple from a set.

Syntax

Syntax that Returns a Member—one of the following:

tuple[.Item] (index)

Item (tuple, index)

Syntax that Returns a Tuple—one of the following:

set[.Item] (index)

Item (set, index)

Parameters

tuple
The tuple from which to get a member.

index
The usage depends upon whether you are returning a member or a tuple:

• Returning a member: Numeric position (starting from 0) of the member to extract from the
tuple. A valid value for index is from 0 to 1 less than the size of the input tuple. A value of
less than 0, or greater than or equal to size of the input tuple, results in an empty member.

• Returning a tuple: Numeric position (starting from 0) of the tuple to extract from the set. A
valid value for index is from 0 to 1 less than the size of the input set. A value of less than
0, or greater than or equal to size of the input set, results in an empty tuple.

set
The set from which to get a tuple.

Chapter 4
MDX Function List

4-195

Example

Example 1, Extracting a Member from a Tuple

SELECT
{([Qtr1], [Sales], [Cola], [Florida], [Actual]).Item(3)}
ON COLUMNS
FROM Sample.Basic

returns:

Table 4-100 Output Grid from MDX Example

Florida

5029

SELECT
 {Item(([Qtr1], [Sales], [Cola], [Florida], [Actual]), 2)}
ON COLUMNS
FROM Sample.Basic

returns:

Table 4-101 Output Grid from MDX Example

Cola

22777

Example 2, Extracting a Tuple from a Set

The following query

SELECT
{CrossJoin
 (
 [Market].CHILDREN,
 [Product].CHILDREN
).ITEM(0)}
 ON COLUMNS
 FROM Sample.Basic

returns the first tuple in the set CrossJoin([Market].CHILDREN, [Product].CHILDREN), which
is ([East], [Colas]):

The above query can also be written as:

SELECT
{CrossJoin
 (
 [Market].CHILDREN,
 [Product].CHILDREN

Chapter 4
MDX Function List

4-196

)(0)}
 ON COLUMNS
 FROM Sample.Basic

because the ITEM keyword is optional.

Example 3, Extracting Member from a Set

Consider the following crossjoined set of Market and Product members:

{
([East],[100]),([East],[200]),([East],[300]),([East],[400]),([East],[Diet]),
([West],[100]),([West],[200]),([West],[300]),([West],[400]),([West],[Diet]),
([South],[100]),([South],[200]),([South],[300]),([South],[400]),([South],
[Diet]),
([Central],[100]),([Central],[200]),([Central],[300]),([Central],[400]),
([Central],[Diet])
}

The following example

CrossJoin([Market].CHILDREN, [Product].CHILDREN).item(0)

returns the first tuple of the crossjoined set, ([East],[100]), and the following example

CrossJoin([Market].CHILDREN, [Product].CHILDREN).item(0).item(1)

returns [100], the second member of the first tuple of the crossjoined set.

JulianDate
For the given UNIX date, the MDX JulianDate function for Essbase returns its Julian date.

Syntax

JulianDate (date)

Parameters

date
A number representing the input date between January 1, 1970 and Dec 31, 2037. The
number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this
number, use any of the following functions: Today(), TodateEx(), GetFirstDate(),
GetLastDate(), DateRoll().
Date-Time type attribute properties of a member can also be used to retrieve this number. For
example: Product.currentmember.[Intro Date] returns the Introduction or release date for
the current product in context. [Cola].[Intro Date] returns the Introduction or release date
for the “Cola” product.

Notes

• This function is useful in converting the UNIX date to Julian Date or the 1900 Date system
recognized by Microsoft Excel.

Chapter 4
MDX Function List

4-197

• In the 1900 date system, the first day that is supported is January 1, 1900. When you enter
a date, the date is converted into a serial number that represents the number of elapsed
days since January 1, 1900. For example, if you enter July 5, 1998, Microsoft Excel
converts the date to the serial number 35981. By default, Microsoft Excel for Windows
uses the 1900 date system.

Return Value

This function returns juliandate, a number representing the Julian date. This number is a
continuous count of days and fractions elapsed since noon Universal Time on January 1, 4713
BC in the proleptic Julian calendar.

Note:

For Excel workbooks using 1900 date system, (JulianDate – 2415018.50) gets the
sequential serial number as per 1900 date system.

Example

The following query returns the total monthly sales for all Colas along with their release dates
as in 1900 Date system in market “California” for “March 2007.”

WITH MEMBER
 Measures.[Product Intro Date]
AS
 'JulianDate(Product.CurrentMember.[Intro Date]) – 2415018.50'
SELECT
 {Measures.[Product Intro Date], Measures.Sales}
ON COLUMNS,
 {Colas.Children}
ON ROWS
FROM Sample.Basic
WHERE
 (California, [March 2007], Actual);

See Also

UnixDate

Lag
Using the order of members existing in an Essbase database outline, the MDX Lag function
returns a member that is n steps behind a given member, along the same generation or level
(as defined by layertype).

Syntax

member.Lag (index [,layertype] [, hierarchy])

Lag (member, index [, hierarchy])

Chapter 4
MDX Function List

4-198

Parameters

member
The starting member from which .LAG counts to a given number of previous members.

index
A number n representing how many steps prior to <member> to count.

layertype
GENERATION or LEVEL. Generation is the default.

hierarchy
Optional. A specific hierarchy within the time dimension.

Notes

• If the member specified by the Lag function does not exist, the result is an empty member.
For example, using Sample Basic, [Jun].lag (12) returns an empty member.

• When multiple hierarchies are enabled, this function returns NULL when the source
member is in one hierarchy and the result member belongs to a different hierarchy.

Example

The following expression:

[Jun].lag (3)

returns the member that is 3 steps prior to Jun:

[Mar]

The following expression:

[Jun].lag (-3)

returns the member that is 3 steps following Jun:

[Sep]

For every month, the following query displays the sales and average over the last three
months.

WITH MEMBER
 [Measures].[Average Sales in Last 3 months]
AS
'Avg(
 {[Year].CurrentMember,
 [Year].CurrentMember.Lag(1),
 [Year]. CurrentMember.Lag(2)
 },
 [Measures].[Sales]
)'
SELECT

Chapter 4
MDX Function List

4-199

 {[Measures].[Sales],
 [Measures].[Average Sales in Last 3 months]
 }
ON COLUMNS,
 [Year].Levels(0).Members
ON ROWS
FROM Sample.Basic

This query returns the grid:

Table 4-102 Output Grid from MDX Example

(axis) Sales Average Sales in Last 3
Months

Jan 31538 31538

Feb 23069 31803.500

March 32213 31940

April 32917 32399.667

May 33674 32934.667

Jun 35088 33893

Jul 36134 34965.333

Aug 36008 35743.333

Sep 33073 35071.667

Oct 32828 33969.667

Nov 31971 32624

Dec 33342 32713.667

See Also

Lead

PrevMember

LastChild
The MDX LastChild function for Essbase returns last child of the input member.

Syntax

member.LastChild

LastChild (member)

Parameters

member
A member specification.

Example

SELECT
 {[Qtr1].firstchild}

Chapter 4
MDX Function List

4-200

ON COLUMNS,
 {[Market].[Central].lastchild}
ON ROWS
FROM Sample.Basic

Table 4-103 Output Grid from MDX Example

(axis) Jan

Colorado 585

See Also

FirstChild

LastSibling

LastPeriods
The MDX LastPeriods function for Essbase returns a set of members ending either at the
specified member or at the current member in the Time dimension.

Syntax

LastPeriods (numeric value expression [, member [, hierarchy]])

Parameters

numeric value expression
The number of members to return (see MDX Grammar Rules). If negative, member is treated
as the starting point.

member
Optional. A member expression.

hierarchy
Optional. A specific hierarchy within the time dimension.

Example

Lastperiods(3, Apr) returns the set {Feb, Mar, Apr}.

Lastperiods(-3, Apr) returns the set {Apr, May, Jun}.

Lastperiods(1, Apr) returns a set of one member: {Apr}.

Lastperiods(0, Apr) returns an empty set.

Lastperiods(5, Apr) returns the set {Jan, Feb, Mar, Apr}. Note that the output set has only
four members.

The following query:

WITH MEMBER
 [Measures].[Rolling Sales] AS
'Avg (
 LastPeriods

Chapter 4
MDX Function List

4-201

 (3, [Year].Currentmember
),
 [Measures].[Sales]
)'
SELECT
 {[Measures].[Sales], [Measures].[Rolling Sales]}
ON COLUMNS,
 Descendants ([Year].[Qtr2])
ON ROWS
FROM Sample.Basic
WHERE [Product].[Root Beer]

returns the grid:

Table 4-104 Output Grid from MDX Example

(axis) Sales Rolling Sales

Qtr2 27401 27014

Apr 8969 8960

May 9071 8997

Jun 9361 9133.667

See Also

PeriodsToDate

OpeningPeriod

ClosingPeriod

ParallelPeriod

LastSibling
The MDX LastSibling function for Essbase returns the last child of the input member's parent.

Syntax

LastSibling (member [, hierarchy])

member.LastSibling [(hierarchy)]

Parameters

member
A member specification.

hierarchy
Optional. A specific hierarchy within the Time dimension.

Notes

If member is the top member of a dimension, then member itself is returned.

Chapter 4
MDX Function List

4-202

Example

Year.Lastsibling returns Year.

Qtr3.Lastsibling returns Qtr4.

See Also

FirstSibling

LastChild

Lead
Using the order of members existing in an Essbase database outline, the MDX Lead function
returns a member that is n steps past a given member, along the same generation or level (as
defined by layertype).

Syntax

member.Lead (index [,layertype] [, hierarchy])

Lead (member, index [, hierarchy])

Parameters

member
The starting member from which .LEAD counts a given number of following members.

index
A number n representing how many steps away from <member> to count.

layertype
GENERATION or LEVEL.

hierarchy
Optional. A specific hierarchy within the time dimension.

Notes

• If the member specified by the Lead function does not exist, the result is an empty
member. For example, using Sample Basic, [Jun].lead (12) returns an empty member.

• When multiple hierarchies are enabled, this function returns NULL when the source
member is in one hierarchy and the result member belongs to a different hierarchy.

Example

The following expression:

[Jan].lead (11)

returns the member that is 11 steps past Jan:

[Dec]

Chapter 4
MDX Function List

4-203

The following expression:

[Dec].lead (-11)

returns the member that is 11 steps prior to Dec:

[Jan]

For every month, the following query displays the marketing expenses and budgeted sales for
the next month.

WITH MEMBER
 [Measures].[Expected Sales in Next month]
AS
 '([Measures].[Sales], [Year].CurrentMember.Lead(1))'
SELECT
 {
 ([Scenario].[Actual], [Measures].[Marketing]),
 ([Scenario].[Budget], [Measures].[Expected Sales in Next month])
 }
ON COLUMNS,
[Year].Levels(0).Members
ON ROWS
FROM Sample.Basic

This query returns the grid:

Table 4-105 Output Grid from MDX Example

(axis) Actual Budget

(axis) Marketing Expected Sales in Next Month

Jan 5223 30000

Feb 5289 30200

Mar 5327 30830

Apr 5421 31510

May 5530 32900

Jun 5765 33870

Jul 5985 33820

Aug 6046 31000

Sep 5491 29110

Oct 5388 29540

Nov 5263 30820

Dec 5509 #Missing

See Also

Lag

NextMember

Chapter 4
MDX Function List

4-204

Leaves
The MDX Leaves function for Essbase returns the set of level 0 (leaf) members that contribute
to the value of the specified member.

The Leaves function compactly describes large sets of members or tuples while avoiding pre-
expansion of the set before retrieval. Because large sets tend to be very sparse, only a few
members contribute to the input member (have non #Missing values) and are returned. As a
result, Leaves consumes less memory resources than the equivalent nonempty Descendants
function call, allowing for better scalability, especially in concurrent user environments.

Members with #MISSING values are not included in the return set.

When member is on the primary hierarchy, the return set is the set of descendants at level 0
that are nonempty.

The set returned by Leaves is the set of nonempty descendants at level 0, with a few
differences. For example, when member is from an alternate hierarchy, the return set contains
all primary, stored, level 0 members whose values are aggregated into member's value. These
contributing members may be either:

• Direct descendants of member along the alternate hierarchy

• Members that contribute value to a direct descendant of member by means of a shared
member

In most cases, the Leaves function does not pre-expand the set prior to retrieval. Thus it
requires less memory resources than the Descendants function, allowing for more scalability in
dealing with large sets, especially in a high-concurrency user environment. Large sets tend to
be very sparse; therefore, very few members are returned given the current point of view as
defined by the MDX current member stack.

For example, a healthcare provider may have a database containing Doctor and Geography
dimensions. While there may be hundreds of thousands, even millions, of doctors, only a
fraction have data associated with them for a given geographic location. Leaves is ideal for
queries where the set is large but is sparse at a given point of view:

Select {[Copayments]} ON COLUMNS
CrossJoin(Leaves ([Doctors]), Leaves([Santa Clara County]) ON ROWS

The Leaves function is beneficial for queries on large dimensions.

In some cases, Leaves does require pre-expansion of sets, limiting the memory savings. Pre-
expansion of sets likely will occur when the input member to Leaves is:

• On an Accounts dimension

• On a Time dimension

• On a dimension with fewer than 10,000 members

Syntax

Leaves (member)

Chapter 4
MDX Function List

4-205

Parameters

member
The member for which contributing leaf members are sought

Notes

• This function is applicable only to aggregate storage databases. Using Leaves() with a non
aggregate-storage input member returns an error.

• Leaves() is supported only for members in stored hierarchies. Using Leaves with a
member in a dynamic hierarchy returns an error.

• If you modify the return set of Leaves with a metadata function such as Head, Tail, or
Subset, then the query is not optimized. For example, querying for half of the Leaves set
reduces performance to about the same as for the nonempty Descendants function call.

• Leaves() is recommended for use on large, sparse dimensions. In general, use Leaves() to
optimize performance when the input set contains 10,000 members or more. For smaller,
denser input sets, using the NON EMPTY keyword on an axis with CrossJoin might
improve performance.

Example

The following examples are based on the Asosamp.Basic database.

Example 1 (Leaves)

The following query returns the Units (items per package) for all level 0 Personal Electronics
products for which the Units data is not #MISSING:

SELECT
{Units} ON COLUMNS,
Leaves([Personal Electronics]) ON ROWS
FROM [Asosamp.Basic]

Because Leaves returns nonempty, level 0 descendants, the above query is identical to the
following query:

SELECT
{Units} ON COLUMNS,
NON EMPTY Descendants([Personal Electronics], [Products].Levels(0), SELF) ON
ROWS
FROM [Asosamp.Basic]

These queries return the following grid:

Table 4-106 Output Grid from MDX Example

(axis) Items Per Package

Digital Cameras 3041

Camcorders 3830

Photo Printers 6002

Memory 23599

Other Accessories 117230

Chapter 4
MDX Function List

4-206

Table 4-106 (Cont.) Output Grid from MDX Example

(axis) Items Per Package

Boomboxes 10380

Radios 20009

[Handhelds] was omitted from the result set because it has a value of #MISSING for the
measure Units.

Example 2 (Leaves)

For this example, a third hierarchy called [Small Items] was added to the Products dimension.

The following query

SELECT
{Units} ON COLUMNS,
Leaves ([Small Items]) ON ROWS
FROM [Asosamp.Basic]

Returns the the following grid:

Table 4-107 Output Grid from MDX Example

(axis) Items Per Package

Digital Cameras 3041

Camcorders 3830

Memory 23599

Other Accessories 117230

In addition to the primary members [Digital Cameras] and [Camcorders], Leaves also returned
the primary members [Memory] and [Other Accessories], because these level-0 members
contributed to [Small Items] via [Handhelds/PDAs].

Chapter 4
MDX Function List

4-207

Left
The MDX Left function for Essbase returns a specified number (length) of characters from the
left side of the string.

Syntax

Left (string ,length)

Parameters

string
Input string.

length
The number of characters to return from the left side of the input string.

Example

Left ("Northwind", 5)

returns North.

Len
The MDX Len function for Essbase returns the length of a string in terms of number of
characters.

Syntax

Len (string)

Parameters

string
A string.

Level
The MDX Level function for Essbase returns the level of the input member.

Syntax

member.Level

Parameters

member
A member specification.

Chapter 4
MDX Function List

4-208

Example

The following query

SELECT
 [Year].[Qtr1].Level.Members
ON COLUMNS,
 [Product].Levels(0).Members
ON ROWS
FROM Sample.Basic

returns the grid:

Table 4-108 Output Grid from MDX Example

(axis) Qtr1 Qtr2 Qtr3 Qtr4

100-10 5096 5892 6583 5206

100-20 1359 1534 1528 1287

100-30 593 446 400 544

200-10 1697 1734 1883 1887

200-20 2963 3079 3149 2834

200-30 1153 1231 1159 1093

200-40 908 986 814 1384

300-10 2544 3231 3355 3065

300-20 690 815 488 518

300-30 2695 2723 2855 2820

400-10 2838 2998 3201 2807

400-20 2283 2522 2642 2404

400-30 -116 -84 -145 -49

100-20 1359 1534 1528 1287

200-20 2963 3079 3149 2834

300-30 2695 2723 2855 2820

See Also

Generation

Levels

IsLevel

Levels
The MDX Levels function for Essbase returns the level specified by the input level number.

Syntax

dimension.Levels (index)

Levels (dimension, index)

Chapter 4
MDX Function List

4-209

Parameters

dimension
The dimension specification.

index
The number of steps up from the lowest level-0 member of the dimension. The count begins
with zero at leaf members.

Example

The following query

SELECT
 [Year].[Qtr1].Level.Members
ON COLUMNS,
 [Product].Levels(0).Members
ON ROWS
FROM Sample.Basic

returns the grid:

Table 4-109 Output Grid from MDX Example

(axis) Qtr1 Qtr2 Qtr3 Qtr4

100-10 5096 5892 6583 5206

100-20 1359 1534 1528 1287

100-30 593 446 400 544

200-10 1697 1734 1883 1887

200-20 2963 3079 3149 2834

...

300-30 2695 2723 2855 2820

See Also

Level

Generations

LinkMember
The MDX LinkMember function for Essbase returns a member’s shared member along a given
hierarchy.

This function can be used instead of passing hierarchy arguments to Parent, Ancestor,
FirstSibling, and LastSibling functions. This function works well in conjunction with Is* functions
such as IsAncestor, IsChild, IsSibling, IsLevel, IsGeneration, and IsLeaf.

Chapter 4
MDX Function List

4-210

Syntax

member.LinkMember(hierarchy)

LinkMember(member,hierarchy)

Parameters

member
A member specification

hierarchy
Optional. A specific hierarchy within the time dimension.

Notes

• This function is applicable only to aggregate storage databases.

• If the primary hierarchy is passed to this function, it returns the primary member.

• If there is no shared member along the given hierarchy, this function returns an empty
member.

• If a calculated member is passed to this function, the calculated member itself is returned.

Example

The following examples are based on ASOSamp.Basic.

The following MDX returns the member [HDTV] along the [High End Merchandise] hierarchy.
By default, the primary instance of [HDTV] is used.

LinkMember([HDTV], [High End Merchandise])

The following MDX also returns the member [HDTV] along the [High End Merchandise]
hierarchy. In this example, the input member is on the input hierarchy.

LinkMember([High End Merchandise].[HDTV], [High End Merchandise])

The following MDX returns the member [HDTV] along the [All Merchandise] hierarchy.

LinkMember([All Merchandise].[HDTV], [All Merchandise])

The following MDX returns an empty member, because there is no instance of [Digital
Cameras] along the [High End Merchandise] hierarchy. The empty member has a value of
#MISSING.

LinkMember([Digital Cameras], [High End Merchandise])

The following MDX also returns an empty member.

LinkMember([All Merchandise], [High End Merchandise])

Chapter 4
MDX Function List

4-211

The following MDX also returns an empty member.

LinkMember([Products], [High End Merchandise])

The following MDX returns [High End Merchandise].

LinkMember([High End Merchandise], [High End Merchandise])

Ln
The MDX Ln function for Essbase returns the natural logarithm (base e) of an expression.

Syntax

Ln (numeric_value_expression)

Parameters

numeric_value_expression
A numeric value (see MDX Grammar Rules).

Notes

• Ln returns the inverse of Exp.

• The constant e is the base of the natural logarithm. e is approximately 2.71828182845904.

Example

WITH MEMBER [Measures].[Ln_Sales]
AS
 'Ln([Measures].[Sales])'
SELECT
 {[Year].levels(0).members}
ON COLUMNS,
 {[Measures].[Sales], [Measures].[Ln_Sales]}
ON ROWS
FROM
 Sample.Basic
WHERE
 ([Market].[East], [Product].[Cola])

returns the following grid:

Table 4-110 Output Grid from MDX Example

(axis) Jan Feb ... Nov Dec

Sales 1812 1754 ... 1708 1841

Ln_Sales 7.502 7.470 ... 7.443 7.518

See Also

Log

Chapter 4
MDX Function List

4-212

Log10

Exp

Log
The MDX Log function for Essbase returns the logarithm of an expression to a specified base.

Syntax

Log (numeric_value_expression [,base])

Parameters

numeric_value_expression
A numeric value or an expression that returns a numeric value (see MDX Grammar Rules).

base
Optional. A number representing the base to use for the logarithm. If less than zero, zero, or
close to 1, the Log function returns #MISSING. If omitted, the Log function calculates the
base-10 logarithm. Log (Sales, 10) is equivalent to Log(Sales), and is also equivalent to
Log10(Sales).

Example

Log(9,3) returns 2.

Log10
The MDX Log10 function for Essbase returns the base-10 logarithm of an expression.

Syntax

Log10 (numeric_value_expression)

Parameters

numeric_value_expression
A numeric value or an expression that returns a numeric value (see MDX Grammar Rules).

Example

Log10(1000) returns 3.

Lower
The MDX Lower function for Essbase converts an upper-case string to lower-case.

Syntax

Lower (string)

Chapter 4
MDX Function List

4-213

Parameters

string
Input string.

Example

Lower(STRING)

returns string

See Also

Upper

LTrim
The MDX LTrim function for Essbase trims all whitespace on the left side of a string.

Syntax

LTrim (string)

Parameters

string
Input string.

Example

LTrim(" STRING")

returns "STRING"

Max
The MDX Max function for Essbase returns the maximum of values found in the tuples of a set.

Syntax

Max (set [,numeric_value_expression])

Parameters

set
The set to search for values.

numeric_value_expression
Optional numeric value expression (see MDX Grammar Rules).

Notes

The return value of Max is #MISSING if either of the following is true:

Chapter 4
MDX Function List

4-214

• The input set is empty.

• All tuple evaluations result in #MISSING values.

Example

WITH
MEMBER [Measures].[Max Qtr2 Sales] AS
 'Max (
 {[Year].[Qtr2]},
 [Measures].[Sales]
)'
SELECT
{ [Measures].[Max Qtr2 Sales] } on columns,
{ [Product].children } on rows
FROM Sample.Basic

Table 4-111 Output Grid from MDX Example

(axis) Max Qtr2 Sales

Colas 27187

Root Beer 27401

Cream Soda 25736

Fruit Soda 21355

Diet Drinks 26787

Median
The MDX Median function for Essbase orders the set according to the numeric value
expression, and then returns the value of the set's median tuple.

Syntax

Median (set, numeric_value_expr)

Parameters

set
The set from which to get a median tuple value.

numeric_value_expr
A numeric value or an expression that returns a numeric value.

Notes

This function is a special case of the Percentile function where n = 50.

Example

The following query returns the median price for radios paid in all states last year.

WITH MEMBER
 [Geography].[Median Mkt Price]
AS

Chapter 4
MDX Function List

4-215

 'Median ([Geography].Levels(2).Members, [Measures].[Price Paid])'
SELECT
 { [Geography].[Median Mkt Price]}
ON COLUMNS
FROM
 ASOSamp.Basic
WHERE ([Products].[Radios], [Years].[Prev Year])

MemberRange
Using the order of members existing in an Essbase database outline, the MDX MemberRange
function returns a range of members inclusive of and between two members in the same
generation or level.

Syntax

MemberRange (member1, member2 [,layertype] [, hierarchy])

member1:member2

Parameters

member1
The beginning point of the member range.

member2
The endpoint of the member range.

layertype
GENERATION or LEVEL. Available only with function-style MemberRange() syntax. If omitted
or if operator-style member:member syntax is used, the range of members returned is inclusive
of and between two specified members of the same generation. If MemberRange(member,
member, LEVEL) is used, the range of members returned is inclusive of and between two
specified members of the same level.

hierarchy
Optional. A specific hierarchy within the time dimension.

Notes

• If the two input members are not from the same generation or level, the result is an empty
set.

• If the two input members are not from the same dimension, an error is returned.

• The order of the output resembles the order of the input. See Example 2.

• If the hierarchy argument is passed, member1 and member2 should belong to the same
hierarchy. Otherwise, an empty set is returned.

• When multiple hierarchies are enabled, this function returns NULL when the range begins
in one hierarchy and terminates in another hierarchy.

Chapter 4
MDX Function List

4-216

Example

Example 1 (MemberRange)

The following set:

{ [Year].[Qtr1], [Year].[Qtr2], [Year].[Qtr3], [Year].[Qtr4] }

is returned by both of the following examples:

MemberRange ([Year].[Qtr1], [Year].[Qtr4])

([Year].[Qtr1] : [Year].[Qtr4])

Example 2 (MemberRange)

[Jan] : [Mar]

returns:

{ [Jan], [Feb], [Mar] }

[Mar] : [Jan]

returns:

{ [Mar], [Feb], [Jan] }

Example 3 (MemberRange)

The following query

SELECT
 {[Measures].[Sales], [Measures].[Profit]}
ON COLUMNS,
 MemberRange([Year].[Feb], [Year].[Nov])
ON ROWS
FROM Sample.Basic

returns the grid:

Table 4-112 Output Grid from MDX Example

(axis) Sales Profit

Feb 32069 8346

Mar 32213 8333

Apr 32917 8644

May 33674 8929

Jun 35088 9534

Jul 36134 9878

Chapter 4
MDX Function List

4-217

Table 4-112 (Cont.) Output Grid from MDX Example

(axis) Sales Profit

Aug 36008 9545

Sep 33073 8489

Oct 32828 8653

Nov 31971 8367

See Also

RelMemberRange

Members
The MDX Members function returns all members of the specified Essbase dimension or layer.

Syntax

dimension.Members | Members (dimension)

layer.Members | Members (layer)

Parameters

dimension
A dimension specification.

layer
A layer specification.

Example

This example focuses on the following part of the Sample Basic outline:

The following expression:

{([Market].members)}

returns the following set, which includes all descendant members of the Market dimension:

{
 Market, [New York], Massachusetts, Florida, Connecticut,
 [New Hampshire], East, California, Oregon, Washington,
 Utah, Nevada, West, Texas, Oklahoma, Louisiana, [New Mexico],
 South, Illinois, Ohio, Wisconsin, Missouri, Iowa, Colorado, Central

Chapter 4
MDX Function List

4-218

}

The following expression:

{([Market].levels(1).members)}

returns the following set, which includes one level of descendant members of the Market
dimension:

{East, West, South, Central}

The following query assumes that level 1 of the Market dimension has an alias of Region:

Select
{([Market].[Region].members) }
on columns
from Sample.Basic

This query returns the following grid:

Table 4-113 Output Grid from MDX Example

East West South Central

24161 29861 13238 38262

Min
The MDX Min function for Essbase returns the minimum of values found in the tuples of a set.

Syntax

Min (set [,numeric_value_expression])

Parameters

set
The set to search for values.

numeric_value_expression
Optional numeric value expression (see MDX Grammar Rules).

Notes

The return value of Min is #MISSING if either of the following is true:

• The input set is empty.

• All tuple evaluations result in #MISSING values.

Chapter 4
MDX Function List

4-219

Example

For every quarter, the following query displays the minimum monthly sales value.

WITH MEMBER
 [Measures].[Minimum Sales in Quarter]
AS
 'Min ([Year].CurrentMember.Children, [Measures].[Sales])'
SELECT
 {[Measures].[Minimum Sales in Quarter]}
ON COLUMNS,
 [Year].Children
ON ROWS
FROM Sample.Basic

This query returns the grid:

Table 4-114 Output Grid from MDX Example

(axis) Minimum Sales in Quarter

Qtr1 31538

Qtr2 32917

Qtr3 33073

Qtr4 31971

Mod
The MDX Mod function for Essbase returns the modulus (remainder value) of a division
operation.

Syntax

Mod (numeric_value_expr_1, numeric_value_expr_2)

Parameters

numeric_value_expr_1
The number for which to find the remainder. Must be a numeric value or an expression that
returns a numeric value (see MDX Grammar Rules).

numeric_value_expr_2
The divisor. Must be a numeric value or an expression that returns a numeric value (see MDX
Grammar Rules).

Notes

The Essbase implementation of the function Mod returns the following values, which may be
different from other vendors' implementations:

Mod(n,k) = - Mod(-n,k) , where n < 0
Mod(n,k) = Mod(n,-k) , where k < 0

Chapter 4
MDX Function List

4-220

Example

WITH MEMBER [Measures].[Factor] AS
 'Mod ([Measures].[Margin %],[Measures].[Profit %])'
SELECT
 {
 [Measures].[Margin %],
 [Measures].[Profit %],
 [Measures].[Factor]
 }
ON COLUMNS,
 {[Year].[Qtr1].Children}
ON ROWS
FROM sample.basic

returns:

Table 4-115 Output Grid from MDX Example

(axis) Margin % Profit % Factor

Jan 55.102 25.44 4.217

Feb 55.387 26.025 3.337

Mar 55.267 25.868 3.530

NextMember
Using the order of members existing in an Essbase database outline, the MDX NextMember
function returns the next member along the same generation or level.

Syntax

member.NextMember [(layertype)]

NextMember (member [,layertype])

Parameters

member
The starting member from which .NEXTMEMBER counts one member forward.

layertype
GENERATION or LEVEL. The default is Generation.

Notes

• If the next member is not found, this function returns an empty member. For example,
using Sample Basic, these would return an empty member: Qtr4.nextmember and
Year.nextmember.

• When multiple hierarchies are enabled, this function returns NULL when the source
member is in one hierarchy and the result member belongs to a different hierarchy.

Chapter 4
MDX Function List

4-221

Example

Example 1

The following expression:

 [Jun].nextmember

returns the member that is one step further than Jun:

[Jul]

Example 2

The following query

/*
For January, PrevMember doesn't exist
For December, NextMember doesn't exist
*/

WITH

MEMBER
 [Measures].[Delta from Previous Month]
AS
 ' [Measures].[Sales] -
 ([Measures].[Sales],[Year].CurrentMember.PrevMember)
 '

MEMBER [Measures].[Delta from Next Month]
AS
 ' [Measures].[Sales] -
 ([Measures].[Sales], [Year].CurrentMember.NextMember)
 '

SELECT
 { [Measures].[Sales],
 [Measures].[Delta from Previous Month],
 [Measures].[Delta from Next Month]
 }
ON COLUMNS,

 [Year].Levels(0).Members
ON ROWS

FROM Sample.Basic
WHERE
 (
 [Scenario].[Actual],
 [Market].[East],
 [Product].[100]
)

Chapter 4
MDX Function List

4-222

returns the grid:

Table 4-116 Output Grid from MDX Example

(axis) Sales Delta from Previous
Month

Delta from Next Month

Jan 2105 2105 44

Feb 2061 -44 -65

Mar 2126 65 -132

Apr 2258 132 -89

May 2347 89 -278

Jun 2625 278 -110

Jul 2735 110 62

Aug 2673 -62 311

Sep 2362 -311 268

Oct 2094 -268 28

Nov 2066 -28 -222

Dec 2288 222 2288

See Also

PrevMember

Lead

NonEmptyCount
The MDX NonEmptyCount function for Essbase returns the count of the number of tuples in a
set that evaluate to non-#Missing values.

Each tuple is evaluated and included in the count returned by this function. If the numeric value
expression is specified, it is evaluated in the context of every tuple, and the count of non-
#Missing values is returned.

On aggregate storage databases, the NonEmptyCount MDX function is optimized so that the
calculation of the distinct count for all cells can be performed by scanning the database only
once. Without this optimization, the database is scanned as many times as the number of cells
corresponding to the distinct count. The NONEMPTYCOUNT optimization is triggered when an
outline member formula has the following syntax:

NONEMPTYCOUNT(set, measure, exclude_missing)

Syntax

NonEmptyCount (set [,numeric_value_expression [, exclude_missing]])

Parameters

set
The set in which to count tuples.

Chapter 4
MDX Function List

4-223

numeric_value_expression
Optional. (See MDX Grammar Rules.)

exclude_missing
Optional. A flag that indicates that the count value returned is missing when the Measure
value is missing for members in Set.
Where:

• Set: Is a one dimensional set from a stored dimension.

• Measure: Is a stored measure.

The exclude_missing parameter supports the NonEmptyCount optimization on aggregate
databases by improving the performance of a query that queries metrics that perform a distinct
count calculation. See Example 2 in this topic for more information.
By default, a value of zero is returned when the Measure value is missing for all members in
the Set.

Example

Example 1

The following query

With
Member [Measures].[Number Of Markets]
as 'NonEmptyCount (Market.Levels(0).Members, Sales)'

Select
{[Measures].[Number Of Markets]} on Columns,
{[100].Children, [200].Children} on Rows
FROM Sample.Basic

Returns the grid:

Table 4-117 Output Grid from MDX Example

(axis) Number of Markets

100-10 20

100-20 16

100-30 8

200-10 20

200-20 17

200-30 9

200-40 3

Example 2

In an aggregate storage database, it is common to count the distinct number of entities (such
as customers and products). You can perform a distinct count by defining a formula member or
a calculated member. For example, you can add a formula member, [DistinctCustomerCnt],
to use with the following formula to calculate the count of distinct customers who bought a
Product.

NONEMPTYCOUNT(Customer.Levels(0).Members, [Units])

Chapter 4
MDX Function List

4-224

The following MDX query scans the database as many times as the number of Products,
evaluating the distinct customer count for each Product separately:

SELECT
 {[DistinctCustomerCnt]} on COLUMNS,
 Products.Levels(0).Members on ROWS

NonEmptySubset
Given an input set, the MDX NonEmptySubset function for Essbase returns a subset of that
input set in which all tuples evaluate to nonempty. An optional value expression may be
specified for the nonempty check.

This function can help optimize queries that are based on a large set for which the set of
nonempty combinations is known to be small. NonEmptySubset reduces the size of the set in
the presense of a metric; for example, you might request the nonempty subset of descendants
for specific Units.

NonEmptySubset is used to reduce the size of a set before a subsequent analytical retrieval.

Syntax

NonEmptySubset (set [, value_expression [, dimension...]])

Parameters

set
The set to reduce

value_expression
A value expression--ideally, a stored member or a simple formula. For each tuple in set, if
value_expression is nonempty, the tuple is returned as part of the subset. Otherwise, it is
removed.

dimension
One or more (comma-separated) dimensions from which to return the non-empty subset

Notes

Value_expression, if used, should be a stored member or simple formula. If value_expression
is a complex formula, the retrieval of the nonempty subset is not optimized.

Example

The following example gets the bottom 10 products in terms of Units (items per package), and
then returns the CrossJoin of that set and the level 0 members (zip codes) of [Albany - NY].

WITH SET Bottom_10
AS '
 BottomCount(
 Leaves(Products),
 10,
 Units
)
'
SELECT

Chapter 4
MDX Function List

4-225

 {Units}
ON COLUMNS,
 NonEmptySubset(CrossJoin(Bottom_10, Leaves([Albany - NY])))
ON ROWS
FROM Asosamp.Basic

This query returns the following grid:

Table 4-118 Output Grid from MDX Example

(axis) Items Per Package

Digital Cameras,12201 4

Camcorders,12201 3

Photo Printers, 12201 2

Digital Recorders, 12201 2

Desktops,12201 3

Digital Cameras,12212 5

Camcorders,12212 2

Photo Printers, 12212 3

Flat Panel, 12212 1

HDTV,12212 1

Home Theater, 12212 1

Desktops, 12212 2

Notebooks,12212 1

Digital Cameras,12223 1

Camcorders,12223 1

Photo Printers,12223 4

HTDV,12223 1

Notebooks,12223 1

Camcorders,12229 4

HDTV,12229 1

Home Theater,12229 3

Desktops,12229 1

Digital Cameras,12249 2

Photo Printers,12249 3

Projection TVs,12249 1

HDTV,12249 2

Home Theater,12249 1

Digital Recorders,12249 1

Notebooks,12249 1

Camcorders,12257 2

Photo Printers,12257 4

Projection TVs,12257 2

HDTV,12257 1

Home Theater,12257 3

Digital Recorders,12257 1

Chapter 4
MDX Function List

4-226

NTile
The MDX NTile function returns a division number of a tuple in a set. This function only applies
to Essbase aggregate storage databases.

Syntax

NTile (member_or_tuple, set, number_of_divisions, numeric_value_expr)

Parameters

member_or_tuple
A member or a tuple.

set
The set to order.

number_of_divisions
The number of divisions to use in ordering the set.

numeric_value_expr
A numeric value or an expression that returns a numeric value.

Notes

• This function is applicable only to aggregate storage databases.

• This function orders the set by a numeric value, divides it into n equal divisions, and
returns the division number that the given tuple is in.

Example

WITH
MEMBER [Measures].[7tile] AS
 'Ntile
 ([Measures].[Price Paid],
 { [Products].Levels(0).Members },
 7,
 [Measures].[Price Paid]
)'
SELECT
{ [Measures].[Price Paid], [Measures].[7tile] } on columns,
{ [Products].Levels(0).Members } on rows
FROM ASOSamp.Basic

NumToStr
The MDX NumToStr function for Essbase converts a double-precision floating-point value into
a decimal string. The number is formatted according to locale-specific conventions.

Syntax

NumToStr (numeric_value_expression)

Chapter 4
MDX Function List

4-227

Parameters

numeric_value_expression
Numeric value expression (see MDX Grammar Rules).

Example

NumToStr(1)

returns "1.00".

OpeningPeriod
The MDX OpeningPeriod function for Essbase returns the first descendant of a layer, or the
first child of the Time dimension.

Syntax

OpeningPeriod ([layer [,member]])

Parameters

layer
A layer specification. If omitted, the first descendant of member is used. If member is omitted,
the first child of the Time dimension is assumed.

member
Optional. A member specification. If omitted, the first child of the Time dimension is assumed
(for example, Qtr1 in Sample Basic).

Notes

The return value of this function varies depending on the input.

1. When no arguments are specified, the input member is assumed to be the current member
of the Time dimension, and Openingperiod returns the first child of that member. Do not
use this function without arguments if there is no dimension tagged as Time.

2. When both layer and member arguments are given as input, Openingperiod returns the
first descendant of the input member at the input layer. For example,
Openingperiod(Year.generations(3), Qtr3) returns Jul. If the input member and layer
are the same layer, the output is the input member. For example,
Openingperiod(Year.generations(3), Jul) returns Jul.

3. When only the layer argument is specified, the input member is assumed to be the current
member of the dimension used in the layer argument. Openingperiod returns the first
descendant of that dimension, at the input layer. For example,
Openingperiod(Year.generations(3)) returns Oct.

See Also

ClosingPeriod

LastPeriods

ParallelPeriod

Chapter 4
MDX Function List

4-228

PeriodsToDate

Order
The MDX Order function for Essbase sorts members of a set in order based on an expression.

Syntax

Order (set, string_expr | numeric_value_expression [,BASC | BDESC])

Parameters

set
The set to sort.

string_expr
String sorting criteria.

numeric_value_expression
Numeric sorting criteria (see MDX Grammar Rules).

BASC
If this keyword is used, the returned set is arranged in ascending order. Ascending order is the
default even if no keyword is used.

BDESC
If this keyword is used, the returned set is arranged in descending order.

Notes

This function ignores missing values.

Example

The following query displays budgeted Sales and Marketing in Qtr2, and the display of
products is sorted based on ascending Actual Sales in Qtr1.

SELECT
 CrossJoin(
 {[Scenario].[Budget]},
 {[Measures].[Marketing], [Measures].[Sales]}
)
ON COLUMNS,
 Order(
 [Product].Levels(0).Members,
 ([Year].[Qtr1], [Scenario].[Actual])
)
ON ROWS
FROM Sample.Basic
WHERE ([Year].[Qtr2])

This query returns the grid:

Chapter 4
MDX Function List

4-229

Table 4-119 Output Grid from MDX Example

(axis) Budget Budget

(axis) Marketing Sales

400-30 510 3240

100-30 450 3400

300-20 550 3800

200-40 310 2830

200-30 550 4060

100-20 1160 8800

100-20 1160 8800

200-10 2090 10330

400-20 880 6590

300-10 1450 10080

300-30 1080 7880

300-30 1080 7880

400-10 790 7410

200-20 1080 9590

200-20 1080 9590

100-10 1800 17230

Ordinal
The MDX Ordinal function for Essbase returns a generation number or level number.

Syntax

Ordinal (layer)

Parameters

layer
A layer specification for which to determine the ordinal.

Example

The following example prints generation number and level number for each member in the
Product dimension. The value of calculated member [ProdGen] is a generation number
because the input argument to the Ordinal function is a generation. The value of calculated
member [ProdLev] is a level number because the input argument to the Ordinal function is a
level.

WITH
 MEMBER [Measures].[ProdGen] AS
 'Ordinal([Product].CurrentMember.Generation)'
 MEMBER [Measures].[ProdLev] AS
 'Ordinal([Product].CurrentMember.Level)'
SELECT
 {[ProdGen], [ProdLev]} ON COLUMNS,

Chapter 4
MDX Function List

4-230

 [Product].Members ON ROWS
FROM Sample.Basic

This query returns the following grid:

Table 4-120 Output Grid from MDX Example

(axis) ProdGen ProdLev

Product 3 0

100 2 1

100-10 3 0

100-20 3 0

100-30 3 0

200 3 0

200-10 2 1

200-20 3 0

200-30 3 0

200-40 3 0

300 2 1

300-10 3 0

300-20 3 0

300-30 3 0

400 2 1

400-10 3 0

400-20 3 0

400-30 3 0

Diet 2 1

100-20 3 0

200-20 3 0

300-30 3 0

ParallelPeriod
The MDX ParallelPeriod function for Essbase returns a member from a prior time period as the
specified or default Time member.

Syntax

ParallelPeriod ([layer [,index [,member [, hierarchy]]]])

Parameters

layer
Optional layer specification. If omitted, the same layer is assumed.

index
Number of time periods to count back in the specified layer.

Chapter 4
MDX Function List

4-231

member
Optional member specification. If omitted, the default member is assumed (for more
information, see Defaultmember).

hierarchy
Optional. A specific hierarchy within the time dimension.

Notes

If layer, index, and member are present, this function determines the member ANCESTOR1,
which is computed as

Ancestor(member, layer)

The member ANCESTOR2 is then computed as

Lag(ANCESTOR1, index)

The return value of this function is then computed as

Cousin(member, ANCESTOR2)

If layer and index are present and member is absent, member is taken to be the current
member along the dimension associated with layer. The returned value is determined as
above.

If only layer is present, index is taken to be 1, and member is taken to be the current member
along the dimension associated with layer. The returned value is determined as above.

If layer, index, and member are all absent, member is taken to be CurrentMember along TIME
Dimension, index is taken to be 1, and layer is taken to be the generation of the parent of
member. The returned value is determined as above.

See Also

LastPeriods

PeriodsToDate

ClosingPeriod

OpeningPeriod

Parent
The MDX Parent function for Essbase returns a member's parent.

Syntax

member.Parent [(hierarchy)]

Parent (member [, hierarchy])

Chapter 4
MDX Function List

4-232

Parameters

member
A member specification.

hierarchy
Optional. A specific hierarchy within the time dimension.

Example

Example 1

SELECT
 {Parent ([100-10])}
ON COLUMNS
FROM
 sample.basic

returns the parent of 100-10:

Table 4-121 Output Grid from MDX Example

100

30468

Example 2

The following query uses Filter to find the months in which Sales for [Product].[100] are higher
than 8,570. The Parent function is used with Generate to create a set consisting of the parents
(quarters) of the high-sales months.

WITH SET [High-Sales Months] as
'
 Filter(
 [Year].Levels(0).members,
 [Measures].[Sales] > 8570
)
'
SELECT
 {[Measures].[Sales]}
ON COLUMNS,
 Generate([High-Sales Months], { Parent([Year].CurrentMember) })
ON ROWS
FROM
 sample.basic
WHERE
 ([Product].[100])

This query returns the grid:

Chapter 4
MDX Function List

4-233

Table 4-122 Output Grid from MDX Example

(axis) Sales

Qtr2 27187

Qtr3 28544

Qtr4 25355

Percentile
The MDX Percentile function for Essbase orders the set according to the numeric value
expression, and then returns the value of the tuple that is at the given percentile.

This function only applies to aggregate storage databases.

Syntax

Percentile (set, numeric_value_expr, percentile)

Parameters

set
The set from which to get a tuple value.

numeric_value_expr
A numeric value or an expression that returns a numeric value.

percentile
A percentile. Must be between 0 and 100.

Notes

• This function is applicable only to aggregate storage databases.

• The returned value is such that n percent of the of the set members are smaller than it.

Example

WITH MEMBER [Measures].[Perc] AS
 'Percentile(Products.Levels(0).Members, [Measures].[Price Paid], 10)'
SELECT {[Measures].[Price Paid], [Measures].[Perc] } ON COLUMNS,
{ Products.Levels(0).Members } ON ROWS
FROM AsoSamp.Basic

PeriodsToDate
The MDX PeriodsToDate function for Essbase returns a set of single-member tuples from a
specified layer up to a given member in that layer (or up to the default member), or, returns
members up to the current member of the Time dimension.

Syntax

PeriodsToDate ([layer [, member [, hierarchy]]])

Chapter 4
MDX Function List

4-234

Parameters

layer
The layer to use as a beginning point.

member
The member to use as an ending point.

hierarchy
Optional. A specific hierarchy within the time dimension.

Notes

• If layer and member are present, this function determines the ANCESTOR of member,
computed as Ancestor(member, layer).

Consider the subtree rooted at the ANCESTOR. This function returns the set of all
members along the same generation between the first descendant of ANCESTOR at input
member's generation and the input member (inclusive of both.)

The return value of this function is the set of single-member tuples constructed from the
members in the subtree rooted at ANCESTOR which are in the same layer as member and
which are at or before the position of member within its layer. The order of tuples in the
returned set is the same as the order of the members included in the input layer.

• If layer is present and member is absent, member is considered to be CurrentMember of
the dimension that layer is associated with.

• If layer and member are both absent, member is considered to be the current member of
the Time dimension, and layer is assumed to be the generation of the member's parent.
Hence the return value is a set containing the left siblings of member and member itself.

• Using Periodstodate(layer, member) has the same effect as using the following nested
functions:

MemberRange(
 OpeningPeriod(
 member.GENERATION,
 Ancestor (member, layer)
)
 : member
)

Example

PeriodsToDate (Year.Generations(1), May) returns the set:

{ Jan, Feb, Mar, Apr, May }

PeriodsToDate (Year.Generations(2), May) returns the set:

{ Apr, May }

PeriodsToDate (Year.Generations(3), May) returns the set:

{ May }

Chapter 4
MDX Function List

4-235

See Also

OpeningPeriod

ClosingPeriod

ParallelPeriod

LastPeriods

Power
The MDX Power function for Essbase returns the result of raising a number to a given power.

Syntax

Power (numeric_value_expression, power)

Parameters

numeric_value_expression
An expression that returns a value (see MDX Grammar Rules).

power
The power to which the numeric value expression is raised.

Example

Power(9, 2.5) returns 243.

PrevMember
Using the order of members existing in an Essbase database outline, the MDX PrevMember
function returns the previous member along the same generation or level.

Note:

When multiple hierarchies are enabled, this function returns NULL when the source
member is in one hierarchy and the result member belongs to a different hierarchy.

Syntax

member.PrevMember [(layertype)]

PrevMember (member [,layertype])

Parameters

member
The starting member from which PrevMember counts one member back.

Chapter 4
MDX Function List

4-236

layertype
GENERATION or LEVEL. The default is Generation.

Example

Example 1

The following expression

 [Jun].prevmember

returns the member that is 1 step prior to Jun:

[May]

Example 2

The following query

/*
For January, PrevMember doesn't exist
For December, NextMember doesn't exist
*/

WITH

MEMBER
 [Measures].[Delta from Previous Month]
AS
 ' [Measures].[Sales] -
 ([Measures].[Sales],[Year].CurrentMember.PrevMember)
 '

MEMBER [Measures].[Delta from Next Month]
AS
 ' [Measures].[Sales] -
 ([Measures].[Sales], [Year].CurrentMember.NextMember)
 '

SELECT
 { [Measures].[Sales],
 [Measures].[Delta from Previous Month],
 [Measures].[Delta from Next Month]
 }
ON COLUMNS,

 [Year].Levels(0).Members
ON ROWS

FROM Sample.Basic
WHERE
 (
 [Scenario].[Actual],
 [Market].[East],

Chapter 4
MDX Function List

4-237

 [Product].[100]
)

Returns the grid:

Table 4-123 Output Grid from MDX Example

(axis) Sales Delta from Previous
Month

Delta from Next Month

Jan 2105 2105 44

Feb 2061 -44 -65

Mar 2126 65 -132

Apr 2258 132 -89

May 2347 89 -278

Jun 2625 278 -110

Jul 2735 110 62

Aug 2673 -62 311

Sep 2362 -311 268

Oct 2094 -268 28

Nov 2066 -28 -222

Dec 2288 222 2288

See Also

NextMember

Lag

Rank
The MDX Rank function for Essbase returns the numeric position of a tuple in a set.

Syntax

Rank (member_or_tuple, set [,numeric_value_expr [,ORDINALRANK | DENSERANK |
PERCENTRANK]])

Parameters

member_or_tuple
The member or tuple to rank.

set
The set containing the tuple to rank. Should not have duplicate members.

numeric_value_expr
Optional. Numeric sorting criteria.

ORDINALRANK
Optional. Rank duplicates separately.

Chapter 4
MDX Function List

4-238

DENSERANK
Optional. Rank with no gaps in ordinals.

PERCENTRANK
Optional. Rank on a scale from 0 to 1.

Notes

This function is applicable only to aggregate storage databases.

If no numeric value expression is given, this function returns the 1-based position of the tuple
in the set.

If a numeric value expression is given, this function sorts the set based on the numeric value
and returns the 1-based position of the tuple in the sorted set.

If an optional rank flag is given, this function sorts the set based on the numeric value and
returns the 1-based position of the tuple in the sorted set according to the instructions in the
flag. The meanings of the flags are:

• [no flag]: Default behavior. Ties are given the same rank, and the next member is the count
of members. Example:(1,1,1,4,5)

• ORDINALRANK: Ties are decided by Essbase. Duplicates are considered different
entities. Example: (1,2,3,4,5).

• DENSERANK: Ties are given the same rank, but there are no gaps in ordinals. Example:
(1,1,1,2,3)

• PERCENTRANK: Rank values are scaled by the cumulative sum up to this member.
Example: (.1, .15, .34, .78, 1.0). Values range from 0.0 to 1.0.

In the cases where this function sorts the set, it sorts tuples in descending order, and assigns
ranks based on that order (highest value has a rank of 1).

Example

Example 1

WITH MEMBER [Measures].[Units_Rank] AS
 'Rank(Products.CurrentMember, Products.CurrentMember.Siblings)'
SELECT
 {Units, [Price Paid], [Units_Rank]}
ON COLUMNS,
 { Products.Members } ON ROWS
FROM ASOSamp.Basic

Example 2

WITH MEMBER [Measures].[Units_Rank] AS
 'Rank(Products.CurrentMember, Products.CurrentMember.Siblings)'
SELECT {Units, [Measures].[Units_Rank]}
ON COLUMNS,
 Union(Children([Televisions]),
 Children([Radios]))
ON ROWS
FROM ASOSamp.Basic

Chapter 4
MDX Function List

4-239

Example 3

This example ranks sibling tuples in terms of unit measures.

WITH MEMBER [Measures].[Units_Rank] AS
 'Rank(([Products].CurrentMember), {[Products].CurrentMember.Siblings},
Measures.[Units])'
SELECT
 {Units, [Price Paid], [Units_Rank]}
ON COLUMNS,
 { Products.Members } ON ROWS
FROM ASOSamp.Basic

Example 4

This example ranks tuples along the level 0 descendants of an upper level member.

WITH MEMBER [Measures].[Units_Rank] AS
 'Rank(([Products].CurrentMember),{Descendants([Products],10,LEAVES)})'
SELECT
 {Units, [Price Paid], [Units_Rank]}
ON COLUMNS,
 { Products.Members } ON ROWS
FROM ASOSamp.Basic

RealValue
The MDX RealValue function for Essbase returns a value for the specified member or tuple
without the inherited attribute dimension context.

Syntax

tuple[.RealValue]

member[.RealValue]

Parameters

tuple
A tuple for which to return a real value

member
A member for which to return a real value

Example

The following query sorts level-0 members of the Product dimension by the real value of Sales
without the attribute dimension (Ounces_12) context, in descending order, and returns their
sales for Ounces_12.

SELECT
{[Sales]}

Chapter 4
MDX Function List

4-240

ON COLUMNS,
Order([Product].Levels(0).Members,
 [Sales].REALVALUE, BDESC)
ON ROWS
FROM Sample.Basic
WHERE ([OUNCES_12]) ;

RelMemberRange
The MDX RelMemberRange function returns a set that is based on the relative position of the
specified member in the Essbase database outline.

Note:

When multiple hierarchies are enabled, this function returns NULL when the range
begins in one hierarchy and terminates in another hierarchy.

Syntax

RelMemberRange (member, prevcount, nextcount, [,layertype] [, hierarchy])

Parameters

member
An input member in the set you want to return.

prevcount
The number of members in the same layer specified by layertype prior to member to include in
the return set.

nextcount
The number of members in the same layer specified by layertype following member to include
in the return set.

layertype
GENERATION or LEVEL. If omitted, the default is GENERATION. Defines whether the set to
be returned is based the same generation or on the same level as member.

hierarchy
Optional. A specific hierarchy within the time dimension.

Example

The following examples are based on ASOSamp.Basic.

Example 1

SELECT
RelMemberRange ([PORTLAND - OR],1,2)
ON COLUMNS
FROM ASOSamp.Basic

Chapter 4
MDX Function List

4-241

This query returns the set:

{[PHOENIX - OR],[PORTLAND - OR],[POWERS - OR],[PRAIRIE CITY - OR]}

Example 2

RelMemberRange(Apr, 5, 0)

returns the set {Jan, Feb, Mar, Apr}. Note that the output set has only four members.

RelMemberRange(Apr, 5, 10)

returns the set {Jan, Feb, Mar, Apr, May ...,Dec}. Note that the output set has only four
previous members and seven next members of Apr.

See Also

LastPeriods

Remainder
The MDX Remainder function for Essbase returns the fractional part of the numeric value
expression.

Syntax

Remainder (numeric_value_expression)

Parameters

numeric_value_expression
A numeric value expression (see MDX Grammar Rules).

Example

Remainder([Margin %])

extracts the fractional part of the [Margin %] value.

The following query shows [Margin %] and the fractional part of it for all members of the
Product dimension.

WITH
 MEMBER [Measures].[Margin % Rem] AS 'Remainder([Margin %])'
SELECT
 {[Margin %], [Margin % Rem]} ON COLUMNS,
 [Product].Members ON ROWS
FROM Sample.Basic

This query returns the following grid:

Chapter 4
MDX Function List

4-242

Table 4-124 Output Grid from MDX Example

(axis) Margin % Margin % Rem

Product 55.262 0.262

100 57.273 0.273

100-10 61.483 0.483

100-20 51.479 0.479

100-30 50.424 0.424

200 55.540 0.540

200-10 54.270 0.270

200-20 56.436 0.436

200-30 56.450 0.450

200-40 55.753 0.753

300 54.238 0.238

300-10 55.816 0.816

300-20 42.992 0.992

300-30 57.551 0.551

400 53.600 0.600

400-10 57.354 0.354

400-20 56.299 0.299

400-30 39.477 0.477

Diet 55.397 0.397

100-20 51.479 0.479

200-20 56.436 0.436

300-30 57.551 0.551

Right
The MDX Right function for Essbase returns a specified number (length) of characters from the
right side of a string.

Syntax

Right (string ,length)

Parameters

string
Input string.

length
The number of characters to return from the right side of the input string.

Example

Right ("Northwind", 4)

returns wind.

Chapter 4
MDX Function List

4-243

Round
The MDX Round function for Essbase rounds a numeric value expression to the specified
number of digits.

Syntax

Round (numeric_value_expression, index)

Parameters

numeric_value_expression
A numeric value expression (see MDX Grammar Rules).

index
Expression yielding an integer value. numeric_value_expression is rounded to the number of
digits specified by this value. The fractional part of index is ignored.

Example

Round(234.5678, 2) returns 234.57.

RTrim
The MDX RTrim function for Essbase trims all whitespace on the right side of a string.

Syntax

RTrim (string)

Parameters

string
Input string.

Example

RTrim("STRING ")

returns "STRING"

Siblings
The MDX Siblings function for Essbase returns the siblings of the input member, optionally
based on selection options.

Syntax

Siblings (member[, selection [,include_or_exclude]])

member.Siblings

Chapter 4
MDX Function List

4-244

Parameters

member
The member for which siblings are returned.

selection
Optional. This option can be one of the following:

• LEFT—Selects the siblings to the left of the input member

• RIGHT—Selects the siblings to the right of the input member

• ALL—Selects all the siblings of the input member

If no selection is made, the default is ALL.

include_or_exclude
Optional. This option can be one of the following:

• INCLUDEMEMBER—Includes the input member in the siblings list

• EXCLUDEMEMBER—Excludes the input member from the siblings list

If neither is specified, the default is to include the input member.

Notes

• If the input member is the top level of the dimension, this function returns a set containing
the input member.

• In aggregate storage databases, in multiple-hierarchy-enabled dimensions, if the input
member is a top-level member of a hierarchy, the output is members across hierarchies
that are top-level members of hierarchies.

• This function is the same as Children(member.parent).

• The member. Siblings syntax returns the same set as Siblings(member), Siblings(member,
ALL), or Siblings(member, ALL, INCLUDEMEMBER).

Example

Example 1

Siblings(Year) returns {Year}.

The following query

SELECT
CrossJoin (
 Union (
 Siblings ([Old Fashioned]),
 {([Root Beer]), ([Cream Soda])}
),
 {(Budget), ([Variance])}
)
ON COLUMNS
from Sample.Basic

returns the grid:

Chapter 4
MDX Function List

4-245

Table 4-125 Output Grid from MDX Example

Old Fashioned Diet Root Beer Sarsaparilla Birch Beer Root Beer Cream Soda

Budget Varianc
e

Budget Varianc
e

Budget Varianc
e

Budget Varianc
e

Budget Varianc
e

Budget Varianc
e

11640 -4439 14730 -2705 5050 -414 4530 -438 35950 -7996 29360 -3561

Example 2

The following examples are based on a Years – Quarters – Months Time hierarchy.

Siblings([Feb 2000], LEFT, INCLUDEMEMBER)

Returns {[Jan 2000], [Feb 2000]}.

Siblings([Feb 2000], RIGHT, EXCLUDEMEMBER)

Returns {[Mar 2000]}.

Siblings([Mar 2000], LEFT)

Returns {[Jan 2000], [Feb 2000], [Mar 2000]}.

Siblings([May 2000], RIGHT)

Returns {[May 2000], [Jun 2000]}.

Siblings([Mar 2000])

OR

[Mar 2000].Siblings

Returns {[Jan 2000], [Feb 2000], [Mar 2000]}.

Stddev
The MDX Stddev function for Essbase calculates the standard deviation of the specified set.
The calculation is based upon a sample of a population. Standard deviation is a measure of
how widely values are dispersed from their mean (average).

Syntax

Stddev (set [,numeric_value_expression [,IncludeEmpty]])

Chapter 4
MDX Function List

4-246

Parameters

set
A valid MDX set specification.

numeric_value_expression
A numeric value or an expression that returns a numeric value (see MDX Grammar Rules).

IncludeEmpty
Use this keyword if you want to include in the calculation any tuples with #MISSING values.
Otherwise, they are omitted by default.

Example

The following example, based on Sample Basic, calculates the standard deviation (based on a
sample of a population) of the January sales values for all products sold in New York.

WITH MEMBER [Measures].[Std Deviation]
AS
 'Stddev(
 Crossjoin(
 {[Product].Children}, {[Measures].[Sales]}
)
)
 '
SELECT
 {[Scenario].[Actual],[Scenario].[Budget]}
ON COLUMNS,
 {Crossjoin(
 {[Measures].[Sales]},{[Product].Children}
),
 Crossjoin(
 {[Measures].[Sales], [Measures].[Std Deviation]},
 {[Product]}
)}
ON ROWS
FROM
 Sample.Basic
WHERE
 ([Year].[Jan], [Market].[New York])

This query returns the following grid:

Table 4-126 Output Grid from MDX Example

(axis) Actual Budget

(Sales, 100) 678 640

(Sales, 200) 551 530

(Sales, 300) 663 510

(Sales, 400) 587 620

(Sales, Diet) #Missing #Missing

(Sales, Product) 2479 2300

(Std Deviation, Product) 60.723 64.55

Chapter 4
MDX Function List

4-247

See Also

Stddevp

Stddevp
The MDX Stddevp function for Essbase calculates the standard deviation of the specified set.
This function assumes that the set represents the entire population. If you want to calculate
based a sample of a population, use Stddev.

Standard deviation is a measure of how widely values are dispersed from their mean
(average).

Syntax

Stddevp (set [,numeric_value_expression [,IncludeEmpty]])

Parameters

set
A valid MDX set specification.

numeric_value_expression
A numeric value or an expression that returns a numeric value (see MDX Grammar Rules).

IncludeEmpty
Use this keyword if you want to include in the calculation any tuples with #MISSING values.
Otherwise, they are omitted by default.

Example

The following example, based on Sample Basic, calculates the standard deviation (based on
the entire population) of the January sales values for all products sold in New York.

WITH MEMBER [Measures].[Std Deviation]
AS
 'StddevP(
 Crossjoin(
 {[Product].Children}, {[Measures].[Sales]}
)
)
 '
SELECT
 {[Scenario].[Actual],[Scenario].[Budget]}
ON COLUMNS,
 {Crossjoin(
 {[Measures].[Sales]},{[Product].Children}
),
 Crossjoin(
 {[Measures].[Sales], [Measures].[Std Deviation]},
 {[Product]}
)}
ON ROWS
FROM
 Sample.Basic

Chapter 4
MDX Function List

4-248

WHERE
 ([Year].[Jan], [Market].[New York])

This query returns the following grid:

Table 4-127 Output Grid from MDX Example

(axis) Actual Budget

(Sales, 100) 678 640

(Sales, 200) 551 530

(Sales, 300) 663 510

(Sales, 400) 587 620

(Sales, Diet) #Missing #Missing

(Sales, Product) 2479 2300

(Std Deviation, Product) 52.59 55.9

See Also

Stddev

StrToMbr
The MDX StrToMbr function for Essbase converts a string to a member name.

Syntax

StrToMbr (string [, dimension] [, MEMBER_NAMEONLY | alias_table_name])

Parameters

string
Input string.

dimension
Optional dimension specification. If used, only member names found in this dimension will
be returned.

MEMBER_NAMEONLY
Optional. Create member name only out of member names found (not including aliases). The
default is to search for member names and all aliases.

alias_table_name
Optional. Create member name only out of alias name strings found. The default is to search
for member names and all aliases.

Notes

You can also use member properties as string input. These properties include
MEMBER_NAME, MEMBER_UNIQUE_NAME, MEMBER_ALIAS, ANCESTOR_NAMES, and
COMMENTS. For example:

SELECT {StrToMbr(Sales.MEMBER_NAME)} ON COLUMNS
FROM Sample.Basic

Chapter 4
MDX Function List

4-249

Example

SELECT
 { StrToMbr("CA" , [Geography], "Default") }
ON COLUMNS,
 Children([High End Merchandise])
ON ROWS
FROM Asosamp.Basic

returns CA.

SELECT
 { StrToMbr("Quarter1" , [Year], MEMBER_NAMEONLY) }
 DIMENSION PROPERTIES [YEAR].[MEMBER_ALIAS]
ON COLUMNS,
 Children([100])
ON ROWS
FROM Sample.Basic

returns nothing, because "Quarter1" is an alias.

SELECT
 { StrToMbr("Qtr1" , [Year], MEMBER_NAMEONLY) }
 DIMENSION PROPERTIES [YEAR].[MEMBER_ALIAS]
ON COLUMNS,
 Children([100])
ON ROWS
FROM Sample.Basic

returns Qtr1.

SELECT
 { StrToMbr("Quarter1" , [Year], "Long Names") }
 DIMENSION PROPERTIES [YEAR].[MEMBER_ALIAS]
ON COLUMNS,
 Children([100])
ON ROWS
FROM Sample.Basic

returns Qtr1 because "Quarter1" is in the "Long Names" alias table.

StrToNum
The MDX StrToNum function for Essbase converts a string to a number.

Syntax

StrToNum (string)

Chapter 4
MDX Function List

4-250

Parameters

string
Input string.

Notes

This function returns a numeric value after converting the string to a number. For example,
string "0.9" becomes the number 0.9. StrToMbr returns zero if the string cannot be converted.

Example

StrToNum("0.9")

returns 0.9 as a numeric value expression.

Subset
The MDX Subset function for Essbase returns a subset from a set, in which the subset is a
numerically specified range of tuples.

Syntax

Subset (set, index1 [,index2])

Parameters

set
The set from which to take tuples.

index1
The location of the tuple with which to begin the subset. Example: if index1 is 0, the subset
begins with the first tuple of set. If a negative value, the return is an empty set.

index2
Optional. The count of tuples to include in the subset. If omitted, all tuples to the end of set
are returned. If a negative value, the return is an empty set. If the count goes beyond the
range of the input set, all tuples to the end of the set are returned.

Notes

The first tuple of the subset is represented by index1. If index1 is 0, then the first tuple of the
returned subset will be the same as the first tuple of the input set.

Example

Example 1

The following expression

Subset ({Product.Members},0)

Chapter 4
MDX Function List

4-251

returns the set:

{ Product, [100-10], [100-20], [100-30], [100],
 [200-10], [200-20], [200-30], [200-40], [200],
 [300-10], [300-20], [300-30], [300],
 [400-10], [400-20], [400-30], [400],
 [100-20], [200-20], [300-30], Diet }

All tuples of the set {Product.Members} are returned, because the subset is told to begin with
the first tuple, and no count of tuples given for index2.

Example 2

The following expression

Subset ({Product.Members},0,4)

returns the set:

{ Product, [100], [100-10], [100-20] }

Therefore, the following query

Select
 Subset ({Product.Members},0,4)
on columns
from sample.basic

returns the grid:

Table 4-128 Output Grid from MDX Example

Product 100 100-10 100-20

105522 30468 22777 5708

Substring
The MDX Substring function for Essbase returns the substring between a starting and ending
position. Both the positional arguments are 1-based.

Syntax

Substring (string, index1 [, index2 +])

Parameters

string
String to subdivide (or field containing that string).

Chapter 4
MDX Function List

4-252

index1
A number n representing a starting position within a string.

index2
Optional. A number n representing an ending position within a string. If omitted, the endpoint
is assumed to be the end of the original string.

Sum
The MDX Sum function for Essbase returns the sum of values of tuples in a set.

Syntax

Sum (set [,numeric_value_expression])

Parameters

set
The set containing the tuples to aggregate. If empty, the return value is #MISSING.

numeric_value_expression
Optional. An expression that returns a value. Commonly used to restrict the aggregation to a
slice from a Measures dimension (see MDX Grammar Rules). In the example below,
[Measures].[Total Expenses] is the numeric value expression provided to the Sum function.

Notes

For optimized performance of this function on aggregate storage databases, include in your
query the following kinds of sets:

• Any of the following functions, used within the named set and/or as an argument to this
function: Intersect, CurrentMember, Distinct, CrossJoin, PeriodsToDate.

• The Filter function, with the search condition defined as: dimensionName.CurrentMember
IS memberName.

• The IIF function, with the true_part and false_part being sets that meet the above criteria.

• The use of any other functions (such as Members) disables the optimization.

• The second parameter, numeric_value_expression, must be included for optimal
performance.

Optimal query performance may require a larger formula cache size. If you get an error
message similar to the following, adjust the MAXFORMULACACHESIZE configuration setting
accordingly:

Not enough memory for formula execution. Set MAXFORMULACACHESIZE
configuration parameter to [1072]KB and try again.

For each tuple in set, the numeric value expression is evaluated in the context of that tuple and
the resulting values are summed up.

The return value of Sum is #MISSING if either of the following is true:

• The input set is empty.

• All tuple evaluations result in #MISSING values.

Chapter 4
MDX Function List

4-253

Example

WITH MEMBER [Market].[Sum Expense for Main States]
AS
 'Sum
 ({[Market].[California], [Market].[Colorado],
 [Market].[Texas], [Market].[Illinois],
 [Market].[Ohio], [Market].[New York],
 [Market].[Massachusetts], [Market].[Florida]},
 [Measures].[Total Expenses]
)'
SELECT
 {[Measures].[Total Expenses]}
ON COLUMNS,
 {UDA([Market], "Major Market"),
 [Market].[Sum Expense for Main States]}
ON ROWS
FROM
 Sample.Basic
WHERE ([Scenario].[Actual])

returns the grid:

Table 4-129 Output Grid from MDX Example

(axis) Total Expenses

New York 8914

Massachusetts 3412

Florida 5564

East 25310

California 11737

Texas 4041

Illinois 6900

Ohio 5175

Colorado 6131

Central 34864

Sum Expense for Main States 51874

See Also

Aggregate

Tail
The MDX Tail function for Essbase returns the last n members or tuples present in a set.

Syntax

Tail (set [,index])

Chapter 4
MDX Function List

4-254

Parameters

set
The set from which to take items.

index
The number of items to take from the end of the set. If omitted, the default is 1. If less than 1,
an empty set is returned. If the value exceeds the number of tuples in the input set, the
original set is returned.

Example

Example 1

This example uses the following part of the Sample Basic outline:

The following expression

[Product].children

returns the set:

{ [100], [200], [300], [400], [Diet] }

Therefore, the following expression

 Tail (
 [Product].children, 2)

returns the last two members of the previous result set:

{ [400], [Diet] }

Example 2

This example uses the following parts of the Sample Basic outline:

Chapter 4
MDX Function List

4-255

The following expression

 Crossjoin ([100].children, [South].children)

returns the set:

{ ([100-10], Texas), ([100-10], Oklahoma), ([100-10], Louisiana), ([100-10],
[New Mexico]),
 ([100-20], Texas), ([100-20], Oklahoma), ([100-20], Louisiana), ([100-20],
[New Mexico]),
 ([100-30], Texas), ([100-30], Oklahoma), ([100-30], Louisiana), ([100-30],
[New Mexico]) }

And the following expression:

Tail (Crossjoin ([100].children, [South].children), 8)

returns the last 8 tuples of the previous result set:

{ ([100-20], Texas), ([100-20], Oklahoma), ([100-20], Louisiana), ([100-20],
[New Mexico]),
 ([100-30], Texas), ([100-30], Oklahoma), ([100-30], Louisiana), ([100-30],
[New Mexico]) }

Additionally, the following expression

([Year].generations(2).members)

returns the set of members comprising the second generation of the Year dimension:

{ [Qtr1], [Qtr2], [Qtr3], [Qtr4] }

Therefore, the following query

SELECT
 {([Year].generations(2).members)}
ON COLUMNS,
 Tail (

Chapter 4
MDX Function List

4-256

 Crossjoin ([100].children, [South].children),
 8)
ON ROWS
FROM Sample.Basic

returns the grid:

Table 4-130 Output Grid from MDX Example

(axis) (axis) Qtr1 Qtr2 Qtr3 Qtr4

100–20 Texas 206 199 152 82

Oklahoma 84 66 55 79

Louisiana 119 158 171 104

New Mexico –103 –60 –97 –18

100–30 Texas #Missing #Missing #Missing #Missing

Oklahoma #Missing #Missing #Missing #Missing

Louisiana #Missing #Missing #Missing #Missing

New Mexico #Missing #Missing #Missing #Missing

To suppress the missing rows, use NON EMPTY at the beginning of the row axis specification:

SELECT
 {([Year].generations(2).members)}
ON COLUMNS,
NON EMPTY
 Tail (
 Crossjoin ([100].children, [South].children),
 8)
ON ROWS
FROM Sample.Basic

This modified query returns as many of the 8 requested tuples as it can, without returning any
that have entirely #Missing data:

Table 4-131 Output Grid from MDX Example

(axis) Qtr1 Qtr2 Qtr3 Qtr4

100-20 Texas 206 199 152 82

100-20 Oklahoma 84 66 55 79

100-20 Louisiana 119 158 171 104

100-20 New Mexico -103 -60 -97 -18

See Also

Head

Chapter 4
MDX Function List

4-257

Todate
The MDX Todate function converts date strings to numbers that can be used in Essbase
calculations.

Syntax

Todate (string_value_expression_1 ,string_value_expression_2)

Parameters

string_value_expression_1
The format of the date string, either "mm-dd-yyyy" or "dd-mm-yyyy" (must be in lower case).

string_value_expression_2
The date string.

Notes

• If you specify a date that is earlier than 01-01-1970, this function returns an error.

• The latest date supported by this function is 12-31-2037.

Example

For products introduced before 06.01.1996, the following query calculates a Revised Budget
that is 110% of Budget.

WITH MEMBER
 [Scenario].[Revised Budget]
AS
 'IIF (
 [Product].CurrentMember.[Intro Date]
 > TODATE("mm-dd-yyyy","06-01-1996"),
 Budget * 1.1, Budget
)'
SELECT
 {[Scenario].Budget, [Scenario].[Revised Budget]}
ON COLUMNS,
 [Product].[200].Children
 DIMENSION PROPERTIES [Intro Date]
ON ROWS
FROM Sample.Basic
WHERE ([Measures].[Sales], [Year].[Qtr3])

This query returns the grid:

Table 4-132 Output Grid from MDX Example

Axis-1 Axis-1.properties Budget Revised Budget

200-10 (Intro Date =
09-27-1995, type:
TIME,)

11060 11060

Chapter 4
MDX Function List

4-258

Table 4-132 (Cont.) Output Grid from MDX Example

Axis-1 Axis-1.properties Budget Revised Budget

200-20 (Intro Date =
07-26-1996, type:
TIME,)

9680 10648

200-30 (Intro Date =
12-10-1996, type:
TIME,)

3880 4268

200-40 (Intro Date =
12-10-1996, type:
TIME,)

2660 2926

TodateEx
The MDX TodateEx function for Essbase returns the numeric date value from input date-string
according to the date-format specified.

The date returned is the number of seconds elapsed since midnight, January 1, 1970.

If the date or the date format strings are invalid, an error is returned.

Syntax

TodateEx (internal-date-format, date-string)

Parameters

internal-date-format
One of the following literal strings (excluding ordered-list numbers and parenthetical
examples) indicating a supported date format.

1. "mon dd yyyy" (Example: mon = Aug)

2. "Month dd yyyy" (Example: Month = August)

3. "mm/dd/yy"
4. "mm/dd/yyyy"
5. "yy.mm.dd"
6. "dd/mm/yy"
7. "dd.mm.yy"
8. "dd-mm-yy"
9. "dd Month yy"
10. "dd mon yy"
11. "Month dd, yy"
12. "mon dd, yy"
13. "mm-dd-yy"

Chapter 4
MDX Function List

4-259

14. "yy/mm/dd"
15. "yymmdd"
16. "dd Month yyyy"
17. "dd mon yyyy"
18. "yyyy-mm-dd"
19. "yyyy/mm/dd"
20. Long format (Example: WeekDay, Mon dd, yyyy)

21. Short format (Example: m/d/yy)

date-string
A date string following the rules of internal-date-format. The following examples correspond to
the above listed internal date formats.

1. Jan 15 2006
2. January 15 2006
3. 01/15/06
4. 01/15/2006
5. 06.01.06
6. 15/01/06
7. 15.01.06
8. 15-01-06
9. 15 January 06
10. 15 Jan 06
11. January 15 06
12. Jan 15 06
13. 01-15-06
14. 06/01/15
15. 060115
16. 15 January 2006
17. 15 Jan 2006
18. 2006-01-15
19. 2006/01/15
20. Sunday, January 15, 2006
21. 1/8/06 (m/d/yy)

Notes

• This function is an extension of Todate.

• This function is case-sensitive. For example, using apr instead of Apr returns an error.

• Using extra whitespace not included in the internal format strings returns an error.

Chapter 4
MDX Function List

4-260

• Trailing characters after the date format has been satisfied are ignored. If you erroneously
use a date string of 06/20/2006 with date format mm/dd/yy, the trailing 06 is ignored and
the date is interpreted as June 20, 2020.

• Long Format (Weekday, Mon dd, yyyy) is not verified for a day-of-week match to the given
date.

For example: For date string Sunday, March 13, 2007 with date format Long Format, the
input date string is parsed correctly for March 13, 2007, although March 13, 2007 does not
fall on Sunday.

• If you specify a date that is earlier than 01-01-1970, this function returns an error.

• The latest date supported by this function is 12-31-2037.

• When the yy format is used, this function interprets years in the range 1970 to 2029.

Example

The following query returns the actual sales on May 31, 2005 for the product Cola in the
market California.

TodateEx() returns the date May 31, 2005, corresponding to date string 05.31.2005. StrToMbr
returns the corresponding day level member, capturing May 31, 2005.

SELECT
 {[Sales]}
ON COLUMNS,
 {
 StrToMbr(
 FormatDate(
 TodateEx("mm.dd.yyyy", "05.31.2005"),
 "Mon dd yyyy"
)
)
 }
ON ROWS
FROM Mysamp.basic
WHERE (Actual, California, Cola);

Today
The MDX Today function returns a number representing the current date on the Essbase
server computer. This number can be used as input to date-processing functions.

Syntax

Today

Notes

The returned number is a representation of date based on the number of seconds elapsed
since midnight, January 1, 1970. The return value can be used as input to other functions listed
in the See Also section.

Chapter 4
MDX Function List

4-261

Example

This query returns today's actual sales for the product Cola in the market California. Today()
returns today's date. StrToMbr retrieves the day member represented by the date returned by
Today.

SELECT
 {[Sales]}
ON COLUMNS,
 {
 StrToMbr(
 FormatDate(Today(), "Mon dd yyyy")
)
 }
ON ROWS
FROM Mysamp.basic;

See Also

DateToMember

DateRoll

DatePart

FormatDate

TopCount
The MDX TopCount function for Essbase returns a set of n elements ordered from largest to
smallest, optionally based on an evaluation. This function ignores missing values.

Syntax

TopCount (set , index [,numeric_value_expression])

Parameters

set
The set from which the top n elements are selected.

index
The number of elements to include in the set (n).

numeric_value_expression
Optional. An expression further defining the selection criteria (see MDX Grammar Rules).

Example

The following query selects the five top-selling markets in terms of yearly Diet products sales,
and displays the quarterly sales for each Diet product.

SELECT
 CrossJoin(
 [Product].[Diet].Children,
 [Year].Children

Chapter 4
MDX Function List

4-262

)
ON COLUMNS,
 TopCount(
 [Market].Levels(0).Members,
 5,
 [Product].[Diet]
)
ON ROWS
FROM Sample.Basic
WHERE ([Scenario].[Actual], [Measures].[Sales])

This query returns the grid:

Table 4-133 Output Grid from MDX Example

(axis) 100-20 100-20 100-20 100-20 200-20 200-20 200-20 200-20 300-30 300-30 300-30 300-30

(axis) Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4
Illinois 755 958 1050 888 1391 1520 1562 1402 675 755 859 894

Califor
nia

367 491 506 468 1658 1833 1954 1706 700 802 880 673

Colora
do

700 802 880 673 549 465 412 539 1006 921 892 991

Washin
gton

637 712 837 704 459 498 597 514 944 799 708 927

Iowa 162 153 121 70 129 129 129 129 1658 1833 1954 1706

See Also

BottomCount

TopPercent
The MDX TopPercent function for Essbase returns the smallest possible subset of a set for
which the total results of a numeric evaluation are at least a given percentage. Elements in the
result set are listed from largest to smallest.

Syntax

TopPercent (set, percentage, numeric_value_expression)

Parameters

set
The set from which the top-percentile elements are selected.

percentage
The percentile. This argument must be a value between 0 and 100.

numeric_value_expression
The expression that defines the selection criteria (see MDX Grammar Rules).

Notes

This function ignores negative and missing values.

Chapter 4
MDX Function List

4-263

Example

The following query selects the top-selling markets that contribute 25% of the total yearly Diet
products sales, and displays the quarterly sales for each Diet product.

SELECT
 CrossJoin(
 [Product].[Diet].Children,
 [Year].Children
)
ON COLUMNS,
 TopPercent(
 [Market].Levels(0).Members,
 25,
 [Product].[Diet]
)
ON ROWS
FROM Sample.Basic
WHERE ([Scenario].[Actual],
 [Measures].[Sales])

This query returns the grid:

Table 4-134 Output Grid from MDX Example

(axis) 100-20 100-20 100-20 100-20 200-20 200-20 200-20 200-20 300-30 300-30 300-30 300-30

(axis) Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4

Illinois 755 958 1050 888 1391 1520 1562 1402 675 755 859 894

Califor
nia

367 491 506 468 1658 1833 1954 1706 700 802 880 673

Colora
do

700 802 880 673 549 465 412 539 1006 921 892 991

TopSum
The MDX TopSum function for Essbase returns the smallest possible subset of a set for which
the total results of a numeric evaluation are at least a given sum. Elements of the result set are
listed from largest to smallest.

Syntax

TopSum (set, numeric_value_expression1, numeric_value_expression2)

Parameters

set
The set from which the highest-summing elements are selected.

numeric_value_expression1
The given sum (see MDX Grammar Rules).

Chapter 4
MDX Function List

4-264

numeric_value_expression2
The numeric evaluation (see MDX Grammar Rules).

Notes

• If the total results of the numeric evaluation do not add up to the given sum, an empty set
is returned.

• This function ignores negative and missing values.

Example

The following query selects the top-selling markets that collectively contribute 60,000 to the
total yearly Diet products sales, and displays the quarterly sales for each Diet product.

SELECT
 CrossJoin(
 [Product].[Diet].Children,
 [Year].Children
)
ON COLUMNS,
 TopSum(
 [Market].Levels(0).Members,
 60000,
 [Product].[Diet]
)
ON ROWS
FROM Sample.Basic
WHERE ([Scenario].[Actual],
 [Measures].[Sales])

This query returns the grid:

Table 4-135 Output Grid from MDX Example

(axis) 100-20 100-20 100-20 100-20 200-20 200-20 200-20 200-20 300-30 300-30 300-30 300-30

(axis) Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4

Illinois 755 958 1050 888 1391 1520 1562 1402 675 755 859 894

Califor
nia

367 491 506 468 1658 1833 1954 1706 700 802 880 673

Colora
do

700 802 880 673 549 465 412 539 1006 921 892 991

Washin
gton

637 712 837 704 459 498 597 514 944 799 708 927

Iowa 162 153 121 70 129 129 129 129 1658 1833 1954 1706

Florida 620 822 843 783 548 611 657 577 332 323 260 159

Oregon 389 303 277 322 1006 921 892 991 263 231 197 184

Chapter 4
MDX Function List

4-265

Truncate
The MDX Truncate function for Essbase returns the integral part of a number. The return value
has the same sign as its argument.

Syntax

Truncate (numeric_value_expression)

Parameters

numeric_value_expression
Numeric value expression (see MDX Grammar Rules).

Example

Truncate(2.65) returns 2.

Truncate(-8.12) returns -8.

TupleRange
The MDX TupleRange function for Essbase returns the range of tuples between (and inclusive
of) two tuples at the same level.

The range is created by identifying the level of the arguments and pruning the result set to
include only the argument tuples and the tuples that are, in terms of outline order, between
them.

Syntax

TupleRange (tuple1, tuple2)

Parameters

tuple1
The first input tuple, marking the beginning of the range.

tuple2
The second input tuple, marking the end of the range.

Notes

• TupleRange serves the same purpose as the @XRANGE function in the Essbase
calculator language.

• The two input tuples must be of the same dimensionality. See the example, wherein both
input tuples are of the format ([Year],[Month]).

Chapter 4
MDX Function List

4-266

Example

TupleRange can be useful if you have two Time dimensions. For example, the following
expression averages a value for the range of months from Mar 2005 to Feb 2006, inclusive.

AVG (
 TUPLERANGE(
 ([2005], [Mar]), ([2006], [Feb])
)
)

The values are averaged for the following range:

{([2005], [Mar]),
 ([2005], [Apr]),
 ([2005], [May]),
 ([2005], [Jun]),
 ([2005], [Jul]),
 ([2005], [Aug]),
 ([2005], [Sep]),
 ([2005], [Oct]),
 ([2005], [Nov]),
 ([2005], [Dec]),
 ([2006], [Jan]),
 ([2006], [Feb])}

Uda
The MDX Uda function selects all Essbase members to which a specified user-defined
attribute is associated, either in the entire dimension, or in a subtree rooted at the input
member.

Syntax

Uda (dimension | member, string_value_expression)

Parameters

dimension
The dimension in which matching UDAs are searched.

member
A member to search (descendants included) for matching UDAs.

string_value_expression
The name of the UDA to be selected. Can be an expression that evaluates to the UDA string,
or an exact character string (not case-sensitive) enclosed in double quotation marks.

Notes

A user-defined attribute is a term associated with members of an outline to describe a
characteristic. This function selects all members that have the specified UDA.

Chapter 4
MDX Function List

4-267

Example

Dimension Example

In the following query, the Uda function searches a dimension (top member included) for
descendant members having a UDA of Major Market:

SELECT
 {[Measures].[Sales], [Measures].[Profit]} ON COLUMNS,
 {UDA([Market], "Major Market")} ON ROWS
FROM Sample.Basic
WHERE ([Year].[Jul], [Product].[Cola])

Table 4-136 Output Grid from MDX Example

(axis) Sales Profit

East 2248 1156

New York 912 370

Massachusetts 665 564

Florida 286 104

California 912 370

Texas 567 206

Central 1392 369

Illinois 567 208

Ohio 85 18

Colorado 199 70

returning the grid:

Member Example

In the following query, the Uda function searches a member (itself included) for descendant
members having a UDA of Major Market:

SELECT
 {[Measures].[Sales], [Measures].[Profit]} ON COLUMNS,
 {UDA([East], "Major Market")} ON ROWS
FROM Sample.Basic
WHERE ([Year].[Jul], [Product].[Cola])

returning the grid:

Table 4-137 Output Grid from MDX Example

(axis) Sales Profit

East 2248 1156

New York 912 370

Massachusetts 665 564

Florida 286 104

Chapter 4
MDX Function List

4-268

Union
The MDX Union function for Essbase returns the union of two input sets, optionally retaining
duplicates.

Syntax

Union (set1, set2 [,ALL])

Parameters

set1
A set to join with set2.

set2
A set to join with set1.

ALL
If the optional ALL keyword is used, duplicates are retained.

Notes

Duplicates are eliminated by default from the tail of the set. The optional ALL keyword retains
duplicates. The two input sets must have identical dimension signatures. For example, if set1
consists of dimensions Product and Market, in that order, then set2 should also consist of
Product followed by Market.

Example

Example 1

The expression

Union(Siblings([Old Fashioned]), {[Sarsaparilla], [Birch Beer]})

returns the set

{ [Old Fashioned], [Diet Root Beer], [Sarsaparilla], [Birch Beer] }

Example 2

The expression

Union(Siblings([Old Fashioned]), {[Sarsaparilla], [Birch Beer]}, ALL)

returns the set

{ [Old Fashioned], [Diet Root Beer], [Sarsaparilla], [Birch Beer],
 [Sarsaparilla], [Birch Beer] }

Chapter 4
MDX Function List

4-269

Example 3

The following query

SELECT
CrossJoin (
 Union (
 Siblings ([Old Fashioned]),
 {([Root Beer]), ([Cream Soda])}
),
 {(Budget), ([Variance])}
)
ON COLUMNS
from Sample.Basic

returns the grid

Table 4-138 Output Grid from MDX Example

Old Fashioned Diet Root Beer Sarsaparilla Birch Beer Root Beer Cream Soda

Budget Varianc
e

Budget Varianc
e

Budget Varianc
e

Budget Varianc
e

Budget Varianc
e

Budget Varianc
e

11640 -4439 14730 -2705 5050 -414 4530 -438 35950 -7996 29360 -3561

UnixDate
For the given Julian date, the MDX UnixDate function for Essbase returns its UNIX date.

Syntax

UnixDate (juliandate)

Parameters

juliandate
A number representing the Julian date. This number is a continuous count of days and
fractions elapsed since noon Universal Time on January 1, 4713 BC in the proleptic Julian
calendar.

Note:

For Excel workbooks using 1900 date system, (JulianDate – 2415018.50) gets the
sequential serial number as per 1900 date system.

Notes

• This function is useful in converting the Julian date to UNIX date.

• In the 1900 date system, the first day that is supported is January 1, 1900. When you enter
a date, the date is converted into a serial number that represents the number of elapsed
days since January 1, 1900. For example, if you enter July 5, 1998, Microsoft Excel

Chapter 4
MDX Function List

4-270

converts the date to the serial number 35981. By default, Microsoft Excel for Windows
uses the 1900 date system.

Return Value

This function returns date a number representing the input date between January 1, 1970 and
Dec 31, 2037. The number is the number of seconds elapsed since midnight, January 1, 1970.
To retrieve this number, use any of the following functions: Today(), TodateEx(), GetFirstDate(),
GetLastDate(), DateRoll().

Date-Time type attribute properties of a member can also be used to retrieve this number. For
example: Product.currentmember.[Intro Date] returns the Introduction or release date for
the current product in context. [Cola].[Intro Date] returns the Introduction or release date
for the “Cola” product.

See Also

JulianDate

Upper
The MDX Upper function for Essbase converts a lower-case string to upper case.

Syntax

Upper (string)

Parameters

string
Input string.

Example

Upper(string)

returns STRING

See Also

Lower

Value
The MDX Value function for Essbase returns a value for the specified member or tuple.

Syntax

tuple[.Value]

member[.Value]

Chapter 4
MDX Function List

4-271

Parameters

tuple
A tuple for which to return a value.

member
A member for which to return a value.

Notes

The VALUE keyword is optional. In Example 2, the value of Sales can be represented either as
[Sales].VALUE or [Sales]. Any value expression (for example, the value expressions supplied
to functions such as Filter, Order, or Sum) has an implicit Value function in it. The expression
[Qtr1] <= 0.00 is a shortcut for [Qtr1].VALUE <= 0.00.

Example

Example 1

[Sales].Value

Returns the value of the Sales measure.

([Product].CurrentMember, [Sales]).Value

Returns the value of the Sales measure for the current member of the
Product dimension.

Note:

The Value keyword is optional. The above expressions can also be entered as:

[Sales]

Which is equivalent to [Sales].Value

([Product].CurrentMember, [Sales])

Which is equivalent to ([Product].CurrentMember, [Sales]).VALUE

Chapter 4
MDX Function List

4-272

Example 2

The following query sorts level-0 members of the Product dimension by the value of Sales, in
descending order.

SELECT
 {[Sales]}
ON COLUMNS,
 Order([Product].Levels(0).Members,
 [Sales].VALUE, BDESC)
ON ROWS
FROM Sample.Basic

This query returns the grid:

Table 4-139 Output Grid from MDX Example

(axis) Sales

100-10 62824

300-10 46956

200-10 41537

200-20 38240

200-20 38240

300-30 36969

300-30 36969

400-10 35799

400-20 32670

100-20 30469

100-20 30469

200-30 17559

300-20 17480

400-30 15761

100-30 12841

200-40 11750

WithAttr
The MDX WithAttr function for Essbase returns all base members that are associated with an
attribute member of the specified type.

Syntax

WithAttr (member, character_string_literal, value_expression)

Parameters

member
The top member of an attribute dimension.

Chapter 4
MDX Function List

4-273

character_string_literal
An operator. Must be enclosed in double quotation marks.
The following operators are supported:

• > Greater than

• >= Greater than or equal to

• < Less than

• <= Less than or equal to

• = = Equal to

• <> or != Not equal to

• IN In

value_expression
An attribute value described by a value expression. The expression must evaluate to a
numeric value for numeric/date attributes and must evaluate to a string for text valued
attributes. Can also be an exact character string (not case-sensitive) enclosed in double
quotation marks.

Example

The following query

SELECT
 Withattr([Pkg Type], "==", "Can")
on columns
FROM Sample.Basic

returns products that are packaged in a can:

Table 4-140 Output Grid from MDX Example

Cola Diet Cola Diet Cream

22777 5708 11093

See Also

Attribute

WithAttrEx
The MDX WithAttrEx function for Essbase returns the set of base members that are associated
with a specified varying attribute member or dimension, given the perspective setting and the
predicate.

Syntax

WithAttrEx (member, options, character_string_literal, value_expression,
ANY, tuple|member[,tuple|member])

Chapter 4
MDX Function List

4-274

Parameters

member
The top member of an attribute dimension.

character_string_literal
An operator. Must be enclosed in double quotation marks.
The following operators are supported:

• > Greater than

• >= Greater than or equal to

• < Less than

• <= Less than or equal to

• = = Equal to

• <> or != Not equal to

• IN In

value_expression
An attribute value described by a value expression. The expression must evaluate to a
numeric value for numeric/date attributes and must evaluate to a string for text valued
attributes. Can also be an exact character string (not case-sensitive) enclosed in double
quotation marks.

ANY
The keyword ANY.

tuple | member
Level 0 start tuple (or member) of the independent dimension set. The tuple must contain all
the discrete dimensions followed by the continuous dimension members, in the same order
that the continuous range has been defined.

tuple | member
Optional level 0 end tuple (or member) of the independent dimension set. The tuple must
contain all the discrete dimensions followed by the continuous dimension members, in the
same order that the continuous range has been defined.

Example

Consider the following scenario: Products are packaged under different ounces over time and
the market state, according to the marketing strategy of the company. Ounces is defined as a
varying attribute for the Product dimension, to capture the varying attribute association over the
continuous Year dimension and the discrete Market dimension.

Year and Market are the independent dimensions, and level-0 tuple months (for example, Jan)
combined with a market state (for example, California) is a perspective for which the varying
attribute association is defined.

The following query analyzes sales performance of products packaged in units of 20 ounces or
greater any time from Jan to Dec in New York, over all quarters. This is the perspective view,
which restates the sales according to the packaging strategy in July.

WITH PERSPECTIVE (Jul) FOR Ounces
SELECT

Chapter 4
MDX Function List

4-275

 {Qtr1, Qtr2, Qtr3, Qtr4}
ON COLUMNS,
 {WithattrEx(Ounces, “>=”, 20, ANY,
 ([New York], Jan), ([New York], Dec))}
ON ROWS
FROM app.db
WHERE
 (Sales, Ounces, [New York])
;

See Also

AttributeEx

xTD
The MDX xTD function for Essbase returns period-to-date values.

Syntax

xTD ([member])

Parameters

xTD
Values:

Parameter Value

HTD History-To-Date (H-T-D)

YTD Year-To-Date

STD Season-To-Date

PTD Period-To-Date

QTD Quarter-To-Date

MTD Month-To-Date

WTD Week-To-Date

DTD Day-To-Date

member
Member specification. Should be a member from the time dimension.

Notes

• xTD ([member]) is equivalent to PeriodsToDate (layer, [member]) where layer is
assumed to be the value set in the corresponding Dynamic Time Series member in the
database outline.

For example, in Sample Basic, QTD ([member]) is equivalent to PeriodsToDate
(Year.Generations(2) [,member]), because Q-T-D is Generation 2 in the Year
dimension.

• The xTD functions YTD, QTD, MTD, etc. are not relevant for use in aggregate storage
databases, because the xTD functions assume that Dynamic Time Series members are
defined in the outline. Dynamic Time Series members are not supported for aggregate
storage database outlines.

Chapter 4
MDX Function List

4-276

You can use the PeriodsToDate function with aggregate storage databases in place of the
xTD functions.

For example,

YTD(May) is equivalent to PeriodsToDate(Year.Generations(1),
May)

QTD(May) is equivalent to PeriodsToDate(Year.Generations(2),
May).

Example

QTD([Feb])

returns the set {[Jan], [Feb]}.

QTD([Feb]) is equivalent to PeriodsToDate([Year].Generations(2), [Feb]), because the
dynamic-time-series member Q-T-D is defined as Generation 2 of the Year dimension.

HTD([May])

returns the set {[Jan], [Feb], [Mar], [Apr], [May]}.

HTD([May]) is equivalent to PeriodsToDate([Year].Generations(1), [May]), because the
dynamic-time-series member H-T-D is defined as Generation 1 of the Year dimension.

Note:

If a dynamic-time-series member is not defined, an empty set is returned.

PTD([Feb])

returns an empty set, because the dynamic-time-series member P-T-D is not enabled in the
outline.

Chapter 4
MDX Function List

4-277

	Contents
	Accessibility and Support
	1 Calculation and Query Reference Overview
	About the Calculation and Query Reference
	What You Should Know Before You Start
	Syntax Conventions

	About Aggregate Storage Cubes

	2 Calculation Functions
	Calculation and Member Hierarchy
	Function Parameters
	Calculation Operators
	Mathematical Operators
	Conditional and Logical Operators
	Cross-Dimensional Operator

	Operation Results on #MISSING Values and Zero (0) Values
	Calculation Function Categories
	Boolean Functions
	Relationship Functions
	Mathematical Functions
	Member Set Functions
	Range and Financial Functions
	Allocation Functions
	Forecasting Functions
	Statistical Functions
	Date & Time Functions
	Miscellaneous Functions

	Calculation Function List
	@ABS
	@ACCUM
	@ALLANCESTORS
	@ALIAS
	@ALLOCATE
	@ANCEST
	@ANCESTORS
	@ANCESTVAL
	@ATTRIBUTE
	@ATTRIBUTEBVAL
	@ATTRIBUTESVAL
	@ATTRIBUTEVAL
	@AVG
	@AVGRANGE
	@BETWEEN
	@CALCMODE
	@CHILDREN
	@COMPOUND
	@COMPOUNDGROWTH
	@CONCATENATE
	@CORRELATION
	@COUNT
	@CREATEBLOCK
	@CURGEN
	@CURLEV
	@CURRMBR
	@CURRMBRRANGE
	@DATEDIFF
	@DATEPART
	@DATEROLL
	@DECLINE
	@DESCENDANTS
	@DISCOUNT
	@ENUMVALUE
	@EQUAL
	@EXP
	@EXPAND
	@FACTORIAL
	@FORMATDATE
	@GEN
	@GENMBRS
	@GRIDTUPLES
	@GROWTH
	@IALLANCESTORS
	@IANCESTORS
	@ICHILDREN
	@IDESCENDANTS
	@ILANCESTORS
	@ILDESCENDANTS
	@ILSIBLINGS
	@INT
	@INTEREST
	@INTERSECT
	@IRDESCENDANTS
	@IRR
	@IRREX
	@IRSIBLINGS
	@ISACCTYPE
	@ISANCEST
	@ISATTRIBUTE
	@ISCHILD
	@ISDESC
	@ISGEN
	@ISIANCEST
	@ISIBLINGS
	@ISICHILD
	@ISIDESC
	@ISIPARENT
	@ISISIBLING
	@ISLEV
	@ISMBR
	@ISMBRUDA
	@ISMBRWITHATTR
	@ISPARENT
	@ISRANGENONEMPTY
	@ISSAMEGEN
	@ISSAMELEV
	@ISSIBLING
	@ISUDA
	@LANCESTORS
	@LDESCENDANTS
	@LEV
	@LEVMBRS
	@LIKE
	@LIST
	@LN
	@LOG
	@LOG10
	@LSIBLINGS
	@MATCH
	@MAX
	@MAXRANGE
	@MAXS
	@MAXSRANGE
	@MBRCOMPARE
	@MBRPARENT
	@MDALLOCATE
	@MDANCESTVAL
	@MDPARENTVAL
	@MDSHIFT
	@MEDIAN
	@MEMBER
	@MEMBERAT
	@MERGE
	@MIN
	@MINRANGE
	@MINS
	@MINSRANGE
	@MOD
	@MODE
	@MOVAVG
	@MOVMAX
	@MOVMED
	@MOVMIN
	@MOVSUM
	@MOVSUMX
	@NAME
	@NEXT
	@NEXTS
	@NEXTSIBLING
	@NONEMPTYTUPLE
	@NOTEQUAL
	@NPV
	@PARENT
	@PARENTVAL
	@POWER
	@PREVSIBLING
	@PRIOR
	@PRIORS
	@PTD
	@QUERYBOTTOMUP
	@RANGE
	@RANGEFIRSTVAL
	@RANGELASTVAL
	@RANK
	@RDESCENDANTS
	@RELATIVE
	@RELXRANGE
	@REMAINDER
	@REMOVE
	@RETURN
	@ROUND
	@RSIBLINGS
	@SANCESTVAL
	@SHARE
	@SHIFT
	@SHIFTMINUS
	@SHIFTPLUS
	@SHIFTSIBLING
	@SIBLINGS
	@SLN
	@SPARENTVAL
	@SPLINE
	@STDEV
	@STDEVP
	@STDEVRANGE
	@SUBSTRING
	@SUM
	@SUMRANGE
	@SYD
	@TODATE
	@TODATEEX
	@TODAY
	@TREND
	@TRUNCATE
	@UDA
	@VAR
	@VARPER
	@VARIANCE
	@VARIANCEP
	@WEIGHTEDSUMX
	@WITHATTR
	@XRANGE
	@XREF
	@XWRITE

	Custom-Defined Calculation Functions
	Java Code Examples
	MaxL Registration Scripts
	register.mxl Sample Code
	reglobal.mxl Sample Code
	drop.mxl Sample Code

	Custom-Defined Macros
	Custom-Defined Macro Input Parameters
	Using Argument Values in Macro Definitions
	Directives Used in Custom-Defined Macros
	Macro Reference
	@@x
	@@S
	@@SHx
	@@ERROR
	@@Lx
	@@IFSTRCMP
	@@ELSE
	@@ENDIF

	Functions Supported in Hybrid Mode

	3 Calculation Commands
	Calculation Commands Overview
	Calculation Operators
	Mathematical Operators
	Conditional and Logical Operators
	Cross-Dimensional Operator

	Calculation Command Groups
	Conditional Commands
	Control Flow Commands
	Data Declaration Commands
	Functional Commands
	Member Formulas

	Calculation Command List
	& (ampersand)
	AGG
	ARRAY
	CALC ALL
	CALC AVERAGE
	CALC DIM
	CALC FIRST
	CALC LAST
	CALC TWOPASS
	CCONV
	CLEARBLOCK
	CLEARCCTRACK
	CLEARDATA
	DATACOPY
	DATAEXPORT
	DATAEXPORTCOND
	DATAIMPORTBIN
	DATAMERGE
	ELSE
	ELSEIF
	ENDIF
	EXCLUDE…ENDEXCLUDE
	FIX…ENDFIX
	FIXPARALLEL...ENDFIXPARALLEL
	IF
	LOOP...ENDLOOP
	POSTFIXPARALLEL
	SET Commands
	SET AGGMISSG
	SET CACHE
	SET CALCDIAGNOSTICS
	SET CALCPARALLEL
	SET CALCTASKDIMS
	SET CCTRACKCALC
	SET CLEARUPDATESTATUS
	SET COPYMISSINGBLOCK
	SET CREATENONMISSINGBLK
	SET CREATEBLOCKONEQ
	SET DATAEXPORTOPTIONS
	SET DATAIMPORTIGNORETIMESTAMP
	SET EMPTYMEMBERSETS
	SET FRMLBOTTOMUP
	SET FRMLRTDYNAMIC
	SET HYBRIDBSOINCALCSCRIPT
	SET MSG
	SET NOTICE
	SET REMOTECALC
	SET RUNTIMESUBVARS
	SET SCAPERSPECTIVE
	SET TRACE
	SET UPDATECALC
	SET UPTOLOCAL
	THREADVAR
	USE_MDX_INSERT
	VAR

	4 MDX
	Overview of MDX
	MDX Query Format
	MDX Syntax and Grammar Rules
	Understanding BNF Notation
	MDX Grammar Rules
	MDX Syntax for Specifying Duplicate Member Names and Aliases
	MDX Axis Specifications
	MDX Slicer Specification
	MDX Cube Specification
	MDX Set Specification
	MDX With Section
	MDX Dimension Specification
	MDX Layer Specification
	MDX Member Specification
	MDX Hierarchy Specification
	MDX Tuple Specification
	MDX Create Set / Delete Set
	MDX Sub Select
	MDX Insert Specification
	MDX Export Specification

	MDX Operators
	About MDX Properties
	MDX Intrinsic Properties
	MDX Custom Properties
	MDX Property Expressions
	MDX Optimization Properties
	Querying for Member Properties in MDX
	The Value Type of MDX Properties
	MDX NULL Property Values

	MDX Comments
	MDX Query Limits
	Aggregate Storage and MDX Outline Formulas
	MDX Function Return Values
	MDX Functions that Return a Member
	MDX Functions that Return a Set
	MDX Functions that Return a Tuple
	MDX Functions that Return a Number
	MDX Functions that Return a Dimension
	MDX Functions that Return a Layer
	MDX Functions that Return a Boolean
	MDX Functions that Return a Date
	MDX Functions that Return a String

	MDX Function List
	Abs
	Aggregate
	Ancestor
	Ancestors
	Attribute
	AttributeEx
	Avg
	BottomCount
	BottomPercent
	BottomSum
	Case
	CellValue
	Children
	ClosingPeriod
	CoalesceEmpty
	Concat
	Contains
	Count
	Cousin
	CrossJoin
	CrossJoinAttribute
	CurrentAxisMember
	CurrentMember
	CurrentTuple
	DateDiff
	DatePart
	DateRoll
	DateToMember
	DefaultMember
	Descendants
	Distinct
	Dimension
	DrilldownByLayer
	DrilldownMember
	DrillupByLayer
	DrillupMember
	DTS
	EnumText
	EnumValue
	Except
	Exp
	Extract
	Factorial
	Filter
	FirstChild
	FirstSibling
	FormatDate
	Generate
	Generation
	Generations
	GetFirstDate
	GetFirstDay
	GetLastDate
	GetLastDay
	GetNextDay
	GetRoundDate
	Head
	Hierarchize
	IIF
	InStr
	InString
	Int
	Intersect
	Is
	IsAccType
	IsAncestor
	IsChild
	IsEmpty
	IsGeneration
	IsLeaf
	IsLevel
	IsMatch
	IsSibling
	IsUda
	IsValid
	Item
	JulianDate
	Lag
	LastChild
	LastPeriods
	LastSibling
	Lead
	Leaves
	Left
	Len
	Level
	Levels
	LinkMember
	Ln
	Log
	Log10
	Lower
	LTrim
	Max
	Median
	MemberRange
	Members
	Min
	Mod
	NextMember
	NonEmptyCount
	NonEmptySubset
	NTile
	NumToStr
	OpeningPeriod
	Order
	Ordinal
	ParallelPeriod
	Parent
	Percentile
	PeriodsToDate
	Power
	PrevMember
	Rank
	RealValue
	RelMemberRange
	Remainder
	Right
	Round
	RTrim
	Siblings
	Stddev
	Stddevp
	StrToMbr
	StrToNum
	Subset
	Substring
	Sum
	Tail
	Todate
	TodateEx
	Today
	TopCount
	TopPercent
	TopSum
	Truncate
	TupleRange
	Uda
	Union
	UnixDate
	Upper
	Value
	WithAttr
	WithAttrEx
	xTD

