Oracle® Essbase
Calculation and Query Reference for Oracle
Essbase

F17644-13
August 2024
ORACLE

Oracle Essbase Calculation and Query Reference for Oracle Essbase,
F17644-13

Copyright © 2019, 2024, Oracle and/or its affiliates.

Primary Author: Essbase Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Calculation and Query Reference Overview
About the Calculation and Query Reference 1-1
What You Should Know Before You Start 1-1
Syntax Conventions 1-1
About Aggregate Storage Cubes 1-2
2 Calculation Functions
Calculation and Member Hierarchy 2-1
Function Parameters 2-2
Calculation Operators 2-5
Mathematical Operators 2-5
Conditional and Logical Operators 2-6
Cross-Dimensional Operator 2-6
Operation Results on #MISSING Values and Zero (0) Values 2-7
Calculation Function Categories 2-8
Boolean Functions 2-8
Relationship Functions 2-9
Mathematical Functions 2-10
Member Set Functions 2-11
Range and Financial Functions 2-14
Allocation Functions 2-18
Forecasting Functions 2-18
Statistical Functions 2-19
Date & Time Functions 2-20
Miscellaneous Functions 2-20
Calculation Function List 2-20
@ABS 2-22
@ACCUM 2-22
@ALLANCESTORS 2-23
@ALIAS 2-25
@ALLOCATE 2-26
@ANCEST 2-29
@ANCESTORS 2-30

ORACLE il

@ANCESTVAL 2-31

@ATTRIBUTE 2-32
@ATTRIBUTEBVAL 2-34
@ATTRIBUTESVAL 2-35
@ATTRIBUTEVAL 2-37
@AVG 2-38
@AVGRANGE 2-39
@BETWEEN 2-40
@CALCMODE 2-42
@CHILDREN 2.48
@COMPOUND 2-49
@COMPOUNDGROWTH 2-51
@CONCATENATE 2-52
@CORRELATION 2-53
@COUNT 2-56
@CREATEBLOCK 2-58
@CURGEN 2-60
@CURLEV 2-61
@CURRMBR 2-62
@CURRMBRRANGE 2-63
@DATEDIFF 2-66
@DATEPART 2-67
@DATEROLL 2-69
@DECLINE 2-70
@DESCENDANTS 2-72
@DISCOUNT 2-73
@ENUMVALUE 2-75
@EQUAL 2-76
@EXP 2-77
@EXPAND 2-78
@FACTORIAL 2-80
@FORMATDATE 2-81
@GEN 2-82
@GENMBRS 2-83
@GRIDTUPLES 2-84
@GROWTH 2-84
@IALLANCESTORS 2-86
@IANCESTORS 2-87
@ICHILDREN 2-88
@IDESCENDANTS 2-89
@ILANCESTORS 2-90
@ILDESCENDANTS 2-92

ORACLE

@ILSIBLINGS 2-94

@INT 2-95
@INTEREST 2-96
@INTERSECT 2-98
@IRDESCENDANTS 2-99
@IRR 2-100
@IRREX 2-102
@IRSIBLINGS 2-104
@ISACCTYPE 2-105
@ISANCEST 2-105
@ISATTRIBUTE 2-106
@ISCHILD 2-107
@ISDESC 2-107
@ISGEN 2-108
@ISIANCEST 2-109
@ISIBLINGS 2-109
@ISICHILD 2-110
@ISIDESC 2-111
@ISIPARENT 2-111
@ISISIBLING 2-112
@ISLEV 2-113
@ISMBR 2-113
@ISMBRUDA 2-114
@ISMBRWITHATTR 2-115
@ISPARENT 2-116
@ISRANGENONEMPTY 2-117
@ISSAMEGEN 2-118
@ISSAMELEV 2-118
@ISSIBLING 2-119
@ISUDA 2-120
@LANCESTORS 2-121
@LDESCENDANTS 2-123
@LEV 2-125
@LEVMBRS 2-125
@LIKE 2-126
@LIST 2-128
@LN 2-129
@LOG 2-130
@LOG10 2-131
@LSIBLINGS 2-131
@MATCH 2-132
@MAX 2-133

ORACLE

@MAXRANGE 2-134

@MAXS 2-135
@MAXSRANGE 2-136
@MBRCOMPARE 2-138
@MBRPARENT 2-141
@MDALLOCATE 2-142
@MDANCESTVAL 2-146
@MDPARENTVAL 2-147
@MDSHIFT 2-149
@MEDIAN 2-150
@MEMBER 2-152
@MEMBERAT 2-152
@MERGE 2-153
@MIN 2-155
@MINRANGE 2-156
@MINS 2-157
@MINSRANGE 2-158
@MOD 2-160
@MODE 2-160
@MOVAVG 2-162
@MOVMAX 2-164
@MOVMED 2-166
@MOVMIN 2-167
@MOVSUM 2-169
@MOVSUMX 2-171
@NAME 2-173
@NEXT 2-175
@NEXTS 2-176
@NEXTSIBLING 2-178
@NONEMPTYTUPLE 2-179
@NOTEQUAL 2-180
@NPV 2-182
@PARENT 2-183
@PARENTVAL 2-184
@POWER 2-186
@PREVSIBLING 2-186
@PRIOR 2-187
@PRIORS 2-189
@PTD 2-190
@QUERYBOTTOMUP 2-192
@RANGE 2-193
@RANGEFIRSTVAL 2-194

ORACLE Vi

@RANGELASTVAL 2-196

@RANK 2-197
@RDESCENDANTS 2-200
@RELATIVE 2-202
@RELXRANGE 2-203
@REMAINDER 2-205
@REMOVE 2-206
@RETURN 2-207
@ROUND 2-208
@RSIBLINGS 2-210
@SANCESTVAL 2-211
@SHARE 2-213
@SHIFT 2-213
@SHIFTMINUS 2-215
@SHIFTPLUS 2-217
@SHIFTSIBLING 2-219
@SIBLINGS 2-220
@SLN 2-221
@SPARENTVAL 2-223
@SPLINE 2-224
@STDEV 2-228
@STDEVP 2-230
@STDEVRANGE 2-231
@SUBSTRING 2-233
@SUM 2-234
@SUMRANGE 2-235
@SYD 2-236
@TODATE 2-237
@TODATEEX 2-238
@TODAY 2-241
@TREND 2-241
@TRUNCATE 2-252
@UDA 2-252
@VAR 2-253
@VARPER 2-254
@VARIANCE 2-255
@VARIANCEP 2-257
@WEIGHTEDSUMX 2-259
@WITHATTR 2-261
@XRANGE 2-263
@XREF 2-266
@XWRITE 2-269

ORACLE Vii

Custom-Defined Calculation Functions 2-271
Java Code Examples 2-272
MaxL Registration Scripts 2-302

register.mxl Sample Code 2-302
reglobal.mxl Sample Code 2-315
drop.mxl Sample Code 2-329

Custom-Defined Macros 2-331
Custom-Defined Macro Input Parameters 2-331
Using Argument Values in Macro Definitions 2-333
Directives Used in Custom-Defined Macros 2-334
Macro Reference 2-334

@@x 2-335
@@S 2-335
@@SHx 2-336
@@ERROR 2-337
@@Lx 2-337
@@IFSTRCMP 2-339
@@ELSE 2-339
@@ENDIF 2-340
Functions Supported in Hybrid Mode 2-341
3 Calculation Commands

Calculation Commands Overview 3-1

Calculation Operators 3-1
Mathematical Operators 3-2
Conditional and Logical Operators 3-2
Cross-Dimensional Operator 3-3

Calculation Command Groups 3-3
Conditional Commands 3-3
Control Flow Commands 3-4
Data Declaration Commands 3-4
Functional Commands 3-4
Member Formulas 3-5

Calculation Command List 3-6
& (ampersand) 3-8
AGG 3-8
ARRAY 3-9
CALC ALL 3-10
CALC AVERAGE 3-11
CALC DIM 3-12
CALC FIRST 3-13

ORACLE

viii

CALC LAST

CALC TWOPASS

CCONV

CLEARBLOCK
CLEARCCTRACK
CLEARDATA

DATACOPY

DATAEXPORT
DATAEXPORTCOND
DATAIMPORTBIN
DATAMERGE

ELSE

ELSEIF

ENDIF
EXCLUDE...ENDEXCLUDE
FIX...ENDFIX
FIXPARALLEL...ENDFIXPARALLEL
IF

LOOP...ENDLOOP
POSTFIXPARALLEL

SET Commands

SET AGGMISSG

SET CACHE

SET CALCDIAGNOSTICS
SET CALCPARALLEL

SET CALCTASKDIMS

SET CCTRACKCALC

SET CLEARUPDATESTATUS
SET COPYMISSINGBLOCK
SET CREATENONMISSINGBLK
SET CREATEBLOCKONEQ
SET DATAEXPORTOPTIONS
SET DATAIMPORTIGNORETIMESTAMP
SET EMPTYMEMBERSETS
SET FRMLBOTTOMUP

SET FRMLRTDYNAMIC

SET HYBRIDBSOINCALCSCRIPT
SET MSG

SET NOTICE

SET REMOTECALC

SET RUNTIMESUBVARS
SET SCAPERSPECTIVE

ORACLE

3-13
3-14
3-14
3-16
3-18
3-18
3-19
3-20
3-24
3-26
3-27
3-28
3-29
3-30
3-32
3-34
3-37
3-40
3-42
3-43
3-44
3-45
3-45
3-47
3-50
3-50
3-51
3-52
3-55
3-56
3-58
3-60
3-69
3-70
3-71
3-72
3-73
3-74
3-77
3-78
3-79
3-81

SET TRACE 3-82
SET UPDATECALC 3-84
SET UPTOLOCAL 3-84
THREADVAR 3-85
USE_MDX_INSERT 3-86
VAR 3-87
4 MDX
Overview of MDX 4-1
MDX Query Format 4-2
MDX Syntax and Grammar Rules 4-3
Understanding BNF Notation 4-3
MDX Grammar Rules 4-5
MDX Syntax for Specifying Duplicate Member Names and Aliases 4-21
MDX Axis Specifications 4-23
MDX Slicer Specification 4-26
MDX Cube Specification 4-27
MDX Set Specification 4-28
MDX With Section 4-29
MDX Dimension Specification 4-34
MDX Layer Specification 4-34
MDX Member Specification 4-36
MDX Hierarchy Specification 4-37
MDX Tuple Specification 4-37
MDX Create Set / Delete Set 4-38
MDX Sub Select 4-40
MDX Insert Specification 4-41
MDX Export Specification 4-48
MDX Operators 4-51
About MDX Properties 4-53
MDX Intrinsic Properties 4-54
MDX Custom Properties 4-54
MDX Property Expressions 4-55
MDX Optimization Properties 4-56
Querying for Member Properties in MDX 4-58
The Value Type of MDX Properties 4-60
MDX NULL Property Values 4-60
MDX Comments 4-61
MDX Query Limits 4-62
Aggregate Storage and MDX Outline Formulas 4-65
MDX Function Return Values 4-87

ORACLE

MDX Functions that Return a Member 4-88

MDX Functions that Return a Set 4-89
MDX Functions that Return a Tuple 4-91
MDX Functions that Return a Number 4-91
MDX Functions that Return a Dimension 4-93
MDX Functions that Return a Layer 4-93
MDX Functions that Return a Boolean 4-93
MDX Functions that Return a Date 4-94
MDX Functions that Return a String 4-94
MDX Function List 4-95
Abs 4-96
Aggregate 4-97
Ancestor 4-99
Ancestors 4-101
Attribute 4-102
AttributeEx 4-102
Avg 4-104
BottomCount 4-106
BottomPercent 4-107
BottomSum 4-109
Case 4-110
Cellvalue 4-113
Children 4-114
ClosingPeriod 4-116
CoalesceEmpty 4-118
Concat 4-118
Contains 4-119
Count 4-119
Cousin 4-120
CrossJoin 4-122
CrossJoinAttribute 4-125
CurrentAxisMember 4-126
CurrentMember 4-126
CurrentTuple 4-127
DateDiff 4-128
DatePart 4-129
DateRoll 4-131
DateToMember 4-132
DefaultMember 4-134
Descendants 4-134
Distinct 4-139
Dimension 4-140
ORACLE

Xi

DrilldownByLayer 4-141

DrilldownMember 4-142
DrillupByLayer 4-144
DrillupMember 4-145
DTS 4-147
EnumText 4-148
EnumValue 4-149
Except 4-149
Exp 4-151
Extract 4-152
Factorial 4-153
Filter 4-153
FirstChild 4-158
FirstSibling 4-159
FormatDate 4-160
Generate 4-162
Generation 4-163
Generations 4-164
GetFirstDate 4-165
GetFirstDay 4-165
GetLastDate 4-167
GetLastDay 4-167
GetNextDay 4-169
GetRoundDate 4-170
Head 4-171
Hierarchize 4-173
IF 4-176
InStr 4-178
InString 4-179
Int 4-179
Intersect 4-180
Is 4-183
IsAccType 4-184
IsAncestor 4-184
IsChild 4-186
ISEmpty 4-187
IsGeneration 4-188
IsLeaf 4-188
IsLevel 4-189
IsMatch 4-190
IsSibling 4-192
IsUda 4-193
ORACLE

Xii

IsValid 4-194

Iltem 4-195
JulianDate 4-197
Lag 4-198
LastChild 4-200
LastPeriods 4-201
LastSibling 4-202
Lead 4-203
Leaves 4-205
Left 4-208
Len 4-208
Level 4-208
Levels 4-209
LinkMember 4-210
Ln 4-212
Log 4-213
Logl0 4-213
Lower 4-213
LTrim 4-214
Max 4-214
Median 4-215
MemberRange 4-216
Members 4-218
Min 4-219
Mod 4-220
NextMember 4-221
NonEmptyCount 4-223
NonEmptySubset 4-225
NTile 4-227
NumToStr 4-227
OpeningPeriod 4-228
Order 4-229
Ordinal 4-230
ParallelPeriod 4-231
Parent 4-232
Percentile 4-234
PeriodsToDate 4-234
Power 4-236
PrevMember 4-236
Rank 4-238
RealVvalue 4-240
RelMemberRange 4-241
ORACLE

Xiii

Remainder 4-242

Right 4-243
Round 4-244
RTrim 4-244
Siblings 4-244
Stddev 4-246
Stddevp 4-248
StrToMbr 4-249
StrToNum 4-250
Subset 4-251
Substring 4-252
Sum 4-253
Tall 4-254
Todate 4-258
TodateEx 4-259
Today 4-261
TopCount 4-262
TopPercent 4-263
TopSum 4-264
Truncate 4-266
TupleRange 4-266
Uda 4-267
Union 4-269
UnixDate 4-270
Upper 4-271
Value 4-271
WithAttr 4-273
WithAttrEx 4-274
XTD 4-276
ORACLE

Xiv

Accessibility and Support

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.
Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

ORACLE

15

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Calculation and Query Reference Overview

You can use a wide variety of commands and functions to calculate and query Essbase cubes.
This reference is intended for advanced users who need detailed information and examples
about Essbase calculation functions, calculation commands, and MDX.

e About the Calculation and Query Reference

e About Aggregate Storage Cubes

About the Calculation and Query Reference

The Calculation and Query Reference describes commands and functions you can use to
calculate and query Oracle Essbase cubes. This reference is intended for advanced users who
need detailed information and examples about calculation functions, calculation commands,
and MDX.

This document provides examples based mostly on the Sample Basic cube, provided with
Essbase as a template you can build into a cube. The Sample application, as well as more
samples you can build, are available in the Applications > Demo Samples section of the
gallery. The gallery is available in the Files section of Essbase. See Explore the Gallery
Templates.

What You Should Know Before You Start

e Syntax Conventions

What You Should Know Before You Start

To use this document, you need the following:
e A working knowledge of the operating system.
e Anunderstanding of Essbase concepts and features.

e Anunderstanding of the typical database administration requirements and tasks, including
calculation, querying, security, and maintenance.

Syntax Conventions

This document uses several formatting styles to indicate actions you should take or types of
information you need.

Table 1-1 Syntax Conventions
|

Syntax Purpose Example
UPPERCASE Calculation command or function names DATAEXPORT

in syntax.
italic Terms, such as parameters, that you AGG (dimlist);

replace with a value

ORACLE 1

Table 1-1 (Cont.) Syntax Conventions

Chapter 1
About Aggregate Storage Cubes

Syntax Purpose Example
" Double quotation marks enclose text @CHILDREN ("New York")
parameters or single parameters that
include a space
() Parentheses are used in a couple of @POWER (14,3)
ways: (a +b) *c
* To enclose function parameters
» To show the order of execution of
the enclosed operations
[x ... * Comment markers in calculation scripts. /*Get results*/
The /* ... */ comment markers indicate
the enclosed text should be ignored in
processing.
; Statement terminator
AGG ("Product");
1 Brackets enclose optional parameters in
syntax . Used with OR symbol | if there @RANGE (mbrName [,
is more than one optional parameter. DO rangeList])
not type brackets or the OR symbol |.
, numeric ndicates an optional numeric (no , year
Indicat pt | y
[, "text"] guotes) or character (quoted) parameter [, "columnName"]
and the comma which must precede the
optional parameter. Do not type the
brackets.
Syntax: OR. Separates alternatives from SET AGGMISSG ON | OFF
which you choose only one. Do not type
the OR symbol.
@ Essbase calculation functions: Precedes @ABS
many function names
-> Essbase calculation functions: Cross- Price -> West = AVGRANGE

dimensional operator (a hyphen
followed by a greater-than sign) points
to data values of specific member
combinations -> (cross-dimensional
operator)

About Aggregate Storage Cubes

Consider using Essbase aggregate storage (ASO) cubes if data in your business is large and
sparse, and requires frequent aggregation, but not so frequent updates.

ORACLE

This topic explains how calculation and query considerations of your data model might lead
you to select aggregate storage option (ASO) for your Essbase database.

Consider using aggregate storage if the following is true:

e Your cube is sparse and has many dimensions, and/or the dimensions have many levels of

members.

e The cube is used primarily for read-only purposes, with few or no data updates.

1-2

Chapter 1
About Aggregate Storage Cubes

* The outline contains no formulas except in the dimension tagged as Accounts.

e Calculation of the cube is frequent, is based mainly on summation of the data, and does
not rely on calculation scripts.

Note the applicability of the following elements for aggregate storage cubes:

« MDX—Used for querying on block storage and aggregate storage cubes. Additionally,
MDX numeric-value expressions can be used for developing formulas on aggregate
storage outlines. For more information, see Aggregate Storage and MDX Outline
Formulas.

e Calculation commands—Not supported, because calculation scripts are not relevant to
aggregate storage.

e Calculation functions—Not relevant to aggregate storage cubes. Instead, MDX formulas
can be written using MDX numeric-value expressions. Only the Accounts dimension can
have formulas in aggregate storage cubes.

ORACLE 13

Calculation Functions

Using the Essbase calculation language with its flexible library of functions, you can analyze
complex business scenarios and data relationships.

e Calculation and Member Hierarchy

e Function Parameters

e Calculation Operators

e Calculation Function Categories

e Calculation Function List

e Custom-Defined Calculation Functions
e Custom-Defined Macros

e Functions Supported in Hybrid Mode

Calculation and Member Hierarchy

Essbase provides a suite of functions and calculation operators to facilitate the definition and
application of complex member formulas.

Many Essbase functions identify a member in the database by its position in the database
outline. The outline structure represents a hierarchical tree; every dimension represents a
subsection of the database tree. Generations and levels provide position references for all
database members within the tree. Position references are required because many
applications must be able to determine the location of members within the database structure.

The terms "generation” and "level" denote the distance from either the "root" or the "leaves" of
the dimension. Thus, you can determine the location of any member within a database tree.
You can also specify relationships between groups of related members.

Generations specify the distance of members from the root of their dimension. All members in
a database that are the same number of branches from their root have the same generation
number. The dimension is generation 1, its children are generation 2, and so on.

Levels measure the number of branches between a member and the lowest member below it,
that is, the number of branches between a member and the "leaf" of its hierarchy within the
database structure. Level 0 specifies the bottom-most members of a dimension and thus
provides ready access to the raw data stored in a database. Leaf members are level 0, then
their parents are level 1, and so on up the hierarchy.

You might note that when all sibling members have the same generation number but not
necessarily the same level number.

For example, the members in this hierarchy:

Diml

mll
mlll
mll2

ORACLE o1

Chapter 2
Function Parameters

ml2
ml21
ml22

ml3

have the following generation and level numbers:

Diml Gen 1, Level 2
mll Gen 2, Level 1
mlll Gen 3, Level 0
mll2 Gen 3, Level 0
ml2 Gen 2, Level 1
ml21 Gen 3, Level 0
ml22 Gen 3, Level 0
ml3 Gen 2, Level 0

~

See also: Relationship Functions

Function Parameters

The following table provides a brief description of some of the common parameters used in
various functions.

¢ Note:

Member names that are also keywords, such as IF, THEN, ELSE, and RETURN,
must be enclosed in quotation marks. Best practice is to always enclose member
names in quotation marks.

Table 2-1 Function Parameters

]
Parameter Description

attDimName A single attribute dimension name specification.

@WITHATTR (Ounces, "<",16)

attMbrName A single attribute member name specification.

@ATTRIBUTE (Can)
@ATTRIBUTEVAL (Ounces)
@WITHATTR ("Pkg Type","= =",Can)

dimName A single dimension name specification.

@CURLEV (Accounts)
@CURGEN (Year)
@PARENT (Measures, Sales)

ORACLE "5

ORACLE

Chapter 2
Function Parameters

Table 2-1 (Cont.) Function Parameters

___|
Parameter Description

expList A comma-delimited list of member names, variable
names, functions, and numeric expressions, all of
which return numeric values.

@MAX (Jan, Feb, 100, Apr-May)

@MIN (Oct:Dec)

@COUNT (SKIPNONE, @QRANGE (Sales, @CHILDRE
N (Product)))

expression Any mathematical or numeric expression that is
valid within Essbase and that, when calculated,
returns a numeric value. This definition of
expression also includes parameters such as
numDigits, generation, and level, and other similar
parameters for the financial group of functions,
such as rateMbrConst and lifeMbrConst.

@ABS (Actual-Budget)
@ROUND (Sales / 10.0 + 100)

genLevName Generation or level name specification.

@DESCENDANTS (Market,Regions)
@RELATIVE (Qtrl,Month)

genLevNum An integer value that defines the number of a
generation or level. A positive integer defines a
generation number. A value of O or a negative
integer defines a level number.

@ANCESTORS (Sales, -2)
@SANCESTVAL (Product, 2, Sales)

mbrList A comma-delimited list of members.

@ISMBR (New York,Boston,Chicago)

2-3

Chapter 2
Function Parameters

Table 2-1 (Cont.) Function Parameters

___|
Parameter Description

mbrName Any valid single member name or member
combination, or a function that returns a single
member or member combination. This definition
also includes similar parameters, such as
balanceMbrName, costMbr, and cashflowMbr, for
the financial group of functions.

@GEN (Actual)
@CHILDREN (Product)
@MAXRANGE (@ANCESTORS (Qtr4),Jan:Dec)

For functions that expect a single member name
(for example, @DESCENDANTS and
@CHILDREN), if a member combination is
provided, Essbase uses the first member in the
combination. For example, if mbrName is Utah-
>Sales, Essbase uses Utah.

n A positive or negative integer value.

@NEXT (2, Jan:Dec)
@SHIFT (3)

propertyName Dimension property name.

@PROPERTY (Market, Size)
@ISPROPERTY ([Market]. [New
York],Size,Medium)

propertyValue Optional. Member property value. The value must
match the data type of the dimension property
specified in propertyName.

@PROPERTY (Market, Size,Medium)
@PROPERTYBVAL (“New York”,Color)

rangeList A valid member name, a comma-delimited list of
member names, member set functions, and range
functions from the same dimension. If rangeList is
optional and is not specified, Essbase uses the
level 0 members from the dimension tagged as
Time. If no dimension is tagged as Time and this
parameter is omitted, Essbase reports a syntax
error. This definition of rangeList also includes
mbrList.

@ACCUM(Q189:0491)
@MAXRANGE (Sales, @CHILDREN (Qtrl))

ORACLE 54

Calculation Operators

Mathematical Operators

ORACLE

Table 2-1 (Cont.) Function Parameters

Chapter 2
Calculation Operators

Parameter

Description

tag

XrangelList

Any valid account tag defined in the current
database including First, Last, Average, Expense,
and Two-Pass.

@ISACCTYPE ("EXPENSE")

To ensure that the tag is resolved as a string rather
than a member name, enclose the tag in quotation
marks.

Similar to rangeList, but supports cross
dimensional members.

A valid member name, a comma-delimited list of
member names, cross dimension members, or a
member set function or range function (including
@XRANGE) that returns a list of members from the
same dimension. If XrangeList is not specified,
Essbase uses the level 0 members from the
dimension tagged as Time.

See also Range List Parameters.

Essbase calculation operators (mathematical, conditional and logical, and cross-dimensional)
help you define equations for member formulas and calc scripts.

e Mathematical Operators are for common arithmetic operations.

e Conditional and Logical Operators are for building conditional tests.

e The Cross-Dimensional Operator is for referencing data intersections.

Mathematical operators help you perform common arithmetic operations in your Essbase

calculation scripts.

Table 2-2 Mathematical Operators

Operator Description
+ Adds

- Subtracts

* Multiplies

/ Divides

%

0

Evaluates percentage, for example:
Memberl%Member2 evaluates Memberl as a
percentage of Member2.

Controls the order of calculations and nests
equations and formulas

2-5

Chapter 2
Calculation Operators

Conditional and Logical Operators

Conditional operators in Essbase calculations help you build logical conditions into your
calculation scripts.

Table 2-3 Conditional and Logical Operators

Operator Description

IF | ELSE | ELSEIF | ENDIF Tests conditions and calculates a formula based on
the success or failure of the test

> Data value is greater than

>= Data value is greater than or equal to

< Data value is less than

<= Data value is less than or equal to

== If data value is equal to

<>orl= Data value is not equal to

AND Logical AND linking operator for multiple value

tests. Result is TRUE if both conditions are TRUE.
Otherwise the result is FALSE.!

OR Logical OR linking operator for multiple value tests.
Result is TRUE if either condition is TRUE.
Otherwise the result is FALSE.?2

NOT Logical NOT operator. Result is TRUE if condition
is FALSE. Result is FALSE if condition is TRUE.3

1 The logical constants TRUE and FALSE are interpreted as 1 (TRUE) and 0 (FALSE) where appropriate.
2 The logical constants TRUE and FALSE are interpreted as 1 (TRUE) and 0 (FALSE) where appropriate.
3 The logical constants TRUE and FALSE are interpreted as 1 (TRUE) and 0 (FALSE) where appropriate.

Cross-Dimensional Operator

ORACLE

The cross-dimensional operator is an Essbase calculation notation for pointing to data values
of specific member combinations.

To include a cross-dimensional operator in a calculation, create it using a hyphen (-) and a
right angle bracket (>), with no space between them.

->

The following example uses the CLEARDATA command to clear budget data for the Colas
product family.

CLEARDATA Budget->Colas;

The following example uses a cross-dimensional operator between two member functions to
calculate the average of the children of a member across two dimensions.

@AVGRANGE (SKIPBOTH, "Sales", @CHILDREN (QCURRMBR ("Product")) -
>QCHILDREN (@CURRMBR ("Market")));

2-6

Chapter 2

Operation Results on #MISSING Values and Zero (0) Values

Operation Results on #MISSING Values and Zero (0) Values

If a data value does not exist for a unique combination of members, Essbase gives the
combination a value of #MISSING. A #MISSING value is different from a zero (0) value.
Therefore, Essbase treats #MI1SSING values differently from O values.

ORACLE

The following tables shows how Essbase calculates #MISSING values. In this table, X

represents any number.

Table 2-4 How Essbhase Calculates Missing Values

Calculation/Operation Result

X + #MISSING X

X — #MISSING X
#MISSING — X -X

X* #MISSING #MISSING
X/ #MISSING #MISSING
#MISSING/ X #MISSING
X/0 #MISSING
X % #MISSING #MISSING
#MISSING % X #MISSING
X%O0 #MISSING

X == #MISSING

X 1= #MISSING
X <> #MISSING

(X <= #MISSING)

(X >= #MISSING)

(X > #MISSING)

(X < #MISSING)

X AND #MISSING:

1 AND #MISSING (1 represents any nonzero value)
0 AND #MISSING

#MISSING AND #MISSING

X OR #MISSING:

1 OR #MISSING (1 represents any nonzero value)
0 OR #MISSING

#MISSING OR #MISSING

IF (#MISSING)

f (#MISSING)

f(X)

False, unless X is #MISSING

True, unless X is #MISSING
True, unless X is #MISSING

(X <=0)

(X >=0) or (X == #MISSING)
X>0)

(X<0)

#MISSING

0
#MISSING

1
#MISSING
#MISSING

IF (0)
#MISSING for any Essbase function of one variable

#MISSING for any X not in the domain of f, and any
Essbase function of more than one variable (except
where specifically noted)

2-7

Chapter 2
Calculation Function Categories

Calculation Function Categories

This section lists all of the Essbase calculation functions, grouped by function type.
e Conditional and Logical Operators

e Boolean Functions

e Relationship Functions

e Calculation Operators

e Mathematical Functions

¢ Member Set Functions

e Range and Financial Functions

e Allocation Functions

e Forecasting Functions

e Statistical Functions

e Date & Time Functions

e Custom-Defined Calculation Functions

* Miscellaneous Functions

Boolean Functions

ORACLE

A Boolean function returns TRUE or FALSE (1 or 0, respectively). Boolean functions are
generally used in conjunction with the IF command to provide a conditional test. Because they
generate a numeric value, however, Boolean functions can also be used as part of a member
formula.

Boolean functions are useful because they can determine which formula to apply based on
characteristics of the current member combination. For example, you may want to restrict a
calculation to those members in a dimension that contain input data. In this case, you preface
the calculation with an IF test that is based on @ISLEV (dimName, 0).

If one of the function parameters is a cross-dimensional member; for example, @ @ISMBR
(Sales->Budget), all parts of the cross-dimensional member must match all parts of the current
cell to return a value of TRUE.

In the following quick-reference table, "the current member" means the member that is
currently being calculated by the function. Words in italics, such as member, loosely indicate
information you supply to the function. For details, see the individual function topics.

Table 2-5 Boolean Functions

Function Condition Tested

@ISACCTYPE Whether the current member has a particular
accounts tag.

@ISANCEST Whether the current member is an ancestor of
member.

@ISCHILD Whether the current member is a child of member.

@ISDESC Whether the current member is a descendant of
member.

2-8

Table 2-5 (Cont.) Boolean Functions

Chapter 2
Calculation Function Categories

Function Condition Tested

@ISGEN Whether the current member of dimension is in
generation.

@ISIANCEST Whether the current member is the same member
or an ancestor of member.

@ISICHILD Whether the current member is the same member
or a child of member.

@ISIDESC Whether the current member is the same member
or a descendant of member.

@ISIPARENT Whether the current member is the same member
or the parent of member.

@ISISIBLING Whether the current member is the same member
or a sibling of member.

@ISLEV Whether the current member of dimension is in
level.

@ISMBR Whether the current member is member, or is
found in member list, or is found in a range
returned by another function.

@ISMBRUDA Whether the specified user-defined attribute string
exists for the specified member.

@ISPARENT Whether the current member is the parent of

@ISRANGENONEMPTY
@ISSAMEGEN

@ISSAMELEV

@ISSIBLING

@ISUDA

member.
Whether data values exist for a specified range.

Whether the current member is in the same
generation as member.

Whether the current member is in the same level
as member.

Whether the current member is a sibling of
member.

Whether the current member of dimension has a
particular user-defined attribute string.

Relationship Functions

Relationship functions look up specific values within the database based on current cell
location and a series of parameters. You can use these functions to refer to another value in a
data series. Relationship functions have an implicit current member argument; that is, these
functions are dependent on the current member's position.

ORACLE

In the following quick-reference table, words in italics loosely represent information you supply
to the function. For details, see the individual function topics.

Table 2-6 Relationship Functions

Function

Return Value

@ANCESTVAL

@ATTRIBUTEBVAL

Ancestor values of a specified one-dimensional
member combination.

Associated attribute value from a Boolean attribute
dimension.

2-9

Table 2-6 (Cont.) Relationship Functions

Chapter 2
Calculation Function Categories

Function

Return Value

@ATTRIBUTESVAL

@ATTRIBUTEVAL

@CURGEN

@CURLEV
@GEN

@LEV
@MDANCESTVAL

@MDPARENTVAL

@PARENTVAL
@SANCESTVAL

@SPARENTVAL

@WEIGHTEDSUMX

@XREF

@XWRITE

Associated attribute value from a text attribute
dimension.

Associated attribute value from a numeric or date
attribute dimension.

Generation number of the current member in
dimension.

Level number of the current member in dimension.
Generation number of member.
Level number of member.

Ancestor values for any number of
multidimensional member combinations.

Parent values for any number of multidimensional
member combinations.

Parent values for member in dimension.

Ancestor values for shared members at a certain
depth under a root member.

Parent values for shared members under a root
member.

Aggregates all members in a member list,
depending on the unit weight of each member.
Values from a different database than the one
being calculated.

Writes values to a different database than the one
being calculated.

Mathematical Functions

These functions perform specific mathematical calculations. Mathematical functions define and
return values that are based on selected member expressions. These functions cover many
basic statistical functions and return numeric results that are based on supplied member
values. Advanced statistical functions are included in the statistical functions category.

ORACLE

In the following quick-reference table, words in italics loosely represent information you supply
to the function. For details, see the individual function topics.

Table 2-7 Mathematical Functions

Function Return Value

@ABS Absolute value of expression.

@AVG Average of all values in expList.

@EXP e (base of natural logarithms) raised to the power
of expression.

@FACTORIAL Factorial of expression.

@INT Next lowest integer value of expression.

@LN e (base of natural logarithms) of expression.

@LOG Any base logarithm of expression.

@LOG10 Base-10 logarithm of expression.

@MAX Maximum value found in cells of an expression list.

2-10

Table 2-7 (Cont.) Mathematical Functions

Chapter 2
Calculation Function Categories

Function Return Value

@MAXS Maximum value found in cells of an expression list,
optionally skipping empty values.

@MIN Minimum value found in cells of expression list.

@MINS Minimum value found in cells of an expression list,
optionally skipping empty values.

@MOD Modulus of a division operation between two
members.

@POWER Expression raised to power.

@REMAINDER Remainder value of expression.

@ROUND Expression rounded to numDigits.

@SUM Sum of values found in cells of an expression list.

@TRUNCATE Expression with fractional part removed, returning
an integer.

@VAR Variance between two members.

@VARPER Percent variance between two members.

Member Set Functions

ORACLE

Member set functions return a list of members. This list is based on the member specified and
the function used. You can use operators to specify Generation and Level Range Operators for
Member Set Functions with member set functions.

When a member set function is called as part of a formula, the list of members is generated
before the calculation begins. The list never varies because it is based on the specified
member and is independent of the current member.

If a member set function (for example, @CHILDREN or @SIBLINGS) is used to specify the list
of members to calculate in a calculation script, Essbase bypasses the calculation of any
Dynamic Calc or Dynamic Calc and Store members in the resulting list.

Only the @ATTRIBUTE and @WITHATTR functions can use attribute members or members of
the Attribute Calculations dimension as parameters in member set functions.

You can use cross-dimension expressions such as ("1998":"2001" -> @Levmbrs (Year, 0)).
The cross-dimensional operator is associative (x ->y) -> z=x -> (y -> z), but not commutative
because x ->y =y -> x is a set, but the order of elements is different.

Table 2-8 Member Set Functions

|
Function Return Value

@ALLANCESTORS

All ancestors of member, including ancestors of
shared member.

@ANCEST Ancestor at distance from the current member or
an explicitly specified member.

@ANCESTORS All ancestors of member, or those ancestors up to
a specified distance.

@ATTRIBUTE All base members associated with attribute
member name.

@BETWEEN All members whose name string value fall between,

and are inclusive of, two specified string tokens.

2-11

ORACLE

Table 2-8 (Cont.) Member Set Functions

Chapter 2
Calculation Function Categories

Function Return Value

@CHILDREN Children of member.

@CURRMBR Member currently being calculated in the specified
dimension.

@DESCENDANTS All descendants of member, or those descendants
down to a specified distance.

@EQUAL Member names that match the specified token
name.

@EXPAND Expands a member search by calling a member set
function for each member in a member list.

@GENMBRS Members of dimension that are at generation.

@IALLANCESTORS

@IANCESTORS

@ICHILDREN
@IDESCENDANTS

@ILANCESTORS

@ILDESCENDANTS

@ILSIBLINGS
@INTERSECT

@IRSIBLINGS
@IRDESCENDANTS

@ISIBLINGS
@LANCESTORS

@LDESCENDANTS

@LEVMBRS
@LIST

@LSIBLINGS
@MATCH

@MBRCOMPARE
@MBRPARENT
@MEMBER
@MEMBERAT
@MERGE

Member and ancestors of member, including
ancestors of shared member.

Member, and either all member ancestors or those
ancestors up to a specified distance.

Member and its children.

Member, and either all member descendants or
those descendants down to a specified distance.

Members of the specified list of members, and
either all ancestors of the specified list of members
or those ancestors up to a specified distance.

Members of the specified list of members, and
either all descendants of the specified list of
members or those descendants down to a
specified distance.

Member and its left siblings.

Members that are at the intersection of two
specified lists of members.

Member and its right siblings.

Member and all its descendants, or those
descendants down to a specified distance,
including descendants of shared member.

Member and its siblings.

All ancestors of the specified list of members, or
those ancestors up to a specified distance.

All descendants of the specified list of members, or
those descendants down to a specified distance.

Members of dimension that are at level.

A single list compiled from arguments, and can be
used for functions requiring an expression list, a
member list, or a range list.

Left siblings of member.

Members that match a pattern search performed
over a generation, a level, or a member and its
descendants.

Member names that match the comparison criteria.
Parent of the specified member.

Member with name string.

Member at the specified location in a list.

Merged list from two lists.

2-12

Table 2-8 (Cont.) Member Set Functions

Chapter 2
Calculation Function Categories

Function Return Value

@NEXTSIBLING Next, or right-most, sibling of member.

@NOTEQUAL Member names that do not match the specified
token name.

@PARENT Parent of the current member being calculated in

@PREVSIBLING

dimension, optionally crossed with another
member.

Previous, or left-most, sibling of member.

@RANGE Member list that crosses a member from one
dimension with a range from another dimension.

@RDESCENDANTS All descendants of member, or those down to a
specified distance, including descendants of
shared member.

@RELATIVE All members that are at distance from member.

@REMOVE List1, with anything that is also in list2 removed.

@RSIBLINGS Right siblings of member.

@SHIFTSIBLING Sibling at specified distance from member.

@SIBLINGS Siblings of member.

@UDA Members of dimension that have UDA.

@WITHATTR Base members from dimension that are associated
with an attribute meeting a condition.

@XRANGE Range of members between (and inclusive of) two

members at the same level.

Generation and Level Range Operators for Member Set Functions

The operators : and :: can be used with member set functions, which return a list of members.
The : operator returns level-based ranges and the :: operator returns generation-based ranges.
For example, Jan:Dec and Jan::Dec both return all members between and inclusive of Jan and

Dec.

The difference is that Jan:Dec returns all members at the same level and Jan::Dec returns all

members at the same generation.

For example, if we have the outline:

Q1 - Jan
Feb
Mar

Q2 - Apr
May
Jun

03

Q4 - Oct
Nov
Dec

The function @MOVAVG(Sales, 3, Jan:Dec) computes @MOVAVG(Sales, 3, Jan, Feb, Mar,
Apr, May, Jun, Q3, Oct, Nov, Dec).

ORACLE 513

Range and Financial Functions

ORACLE

Chapter 2
Calculation Function Categories

The function @MOVAVG(Sales, 3, Jan::Dec) computes @MOVAVG(Sales, 3, Jan, Feb, Mar,

Apr, May, Jun, Oct, Nov, Dec).

Range functions take a range of members as an argument. Rather than return a single value,
these functions calculate a series of values internally based on the range specified.

Financial functions execute specialized financial calculations.

Table 2-9 Range and Financial Functions

Function

Return Value

@ACCUM

@AVGRANGE

@COMPOUND

@COMPOUNDGROWTH

@CURRMBRRANGE

@DECLINE

@DISCOUNT

@GROWTH

@INTEREST

@IRR

@IRREX

@MAXRANGE

@MAXSRANGE

The sum of values of a specified member across a
range

The average of values of a specified member
across a range

The compound interest of values of a specified
member across a range, calculated at a specified
rate

A series of values that represent the compound
growth of the specified member across a range of
members, calculated at a specified rate

A range of members that is based on the relative
position of the member combination Essbase is
currently calculating

Depreciation of a member over a specified period,
calculated using the declining balance method

Discounted values of a specified member,
calculated at a specified rate, across a range of
values from the time dimension

A series of values that represents the linear growth
of the specified value

A series of values that represent the linear growth
of a specified member, calculated at a specified
rate, across a range of members from the time
dimension

The Internal Rate of Return on a cash flow that is
calculated across the time dimension or a specified
range of members and must contain at least one
investment (negative) and one income (positive).
Includes an initial guess of 0.07 (the initial guess
cannot be configured).

The Internal Rate of Return on a cash flow that is
calculated across the time dimension or a specified
range of members and must contain at least one
investment (negative) and one income (positive).
Includes functionality to configure the initial guess
and the number of iterations the algorithm can
make.

The maximum value of a member across a range
of members

The maximum value of a member across a range
of members, with the ability to skip zero and
#MISSING values

2-14

ORACLE

Chapter 2
Calculation Function Categories

Table 2-9 (Cont.) Range and Financial Functions

Function Return Value

@MDSHIFT The next or nth member in a range of members,
retaining all other members identical to the current
member across multiple dimensions

@MINRANGE The minimum value of a member across a range of
members

@MINSRANGE The minimum value of a member across a range of
members, with the ability to skip zero and
#MISSING values

@NEXT The next or nth member in a range of members

@NEXTS The next or nth member in a range of members,
with the option to skip #MISSING, zero, or both
values

@NPV The Net Present Value of an investment based on
a series of payments and income values

@PTD The period-to-date values of members in the time
dimension

@PRIOR A list of the previous or nth previous members in a
range of members

@PRIORS A list of the previous or nth previous members in a
range of members, with the option to skip
#MISSING, zero, or both values

@RANGE A member list that crosses the specified member

@RANGEFIRSTVAL

@RANGELASTVAL

@SHIFT
@SHIFTPLUS
@SHIFTMINUS

@SLN

@SUMRANGE

@SYD

@XRANGE

from one dimension with the specified member
range from another dimension

The first value in a range (with options for how to
handle zero and #MISSING).

The last value in a range (with options for how to
handle zero and #MISSING).

A list of the next or nth members in a range of
members, retaining all other members identical to
the current member and in the specified dimension

Depreciation amounts, across a range period, that
an asset in the current period may be depreciated,
calculated using the straight-line depreciation
method

A list of summarized values of all specified
members across a range of members

Depreciation amounts, across a range of periods,
of an asset in the current period, calculated using
the sum of the year's digits depreciation method

A list of a range of members between specified
members at the same level

Range List Parameters

Some range and forecasting functions recognize the optional parameter rangeList or
XrangelList as the last parameter. rangeList is a range of members restricted to one dimension;
XrangelList is a range of members that can be from one or multiple dimensions. XrangeList
helps you incorporate time continuum navigation for the calculation functions you use.

2-15

ORACLE

Chapter 2
Calculation Function Categories

If rangeList or XrangeList are not given, the level 0 (leaf) members from the dimension tagged
as Time become the default range. If no dimension is tagged as Time and the last parameter is
not given, Essbase reports a syntax error.

Examples of rangeList
The following examples are based on Sample Basic.

@QCHILDREN (West) is a rangeList that returns the following list:

California
Oregon
Washington
Utah
Nevada

@QCHILDREN (Product) is a rangeList that returns the following list:

Colas

Root Beer
Cream Soda
Fruit Soda
Diet Drinks

As you can see from the above examples, rangeList is a list of members from a single
dimension only.

Examples of XrangeList
The following examples are based on Sample Basic.

The following example uses simple members to return the range between Jan and Mar:

@XRANGE (Jan:Mar)

and returns the following members:

Jan
Feb
Mar

The following example uses cross dimensional members to return the range between Actual,
Jan and Budget, Mar:

@XRANGE (Actual->Jan, Budget->Mar)

and returns the following members:

Actual, Jan
Actual, Feb
Actual, Mar
Actual, Apr
Actual, May
Actual, Jun

2-16

ORACLE

Chapter 2
Calculation Function Categories

Actual, Jul
Actual, Aug
Actual, Sep
Actual, Oct
Actual, Nov
Actual, Dec
Budget, Jan
Budget, Feb
Budget, Mar

The following example is not based on the Sample Basic database. It is based on database
that contains a dimension called Year that contains members for each year, from 2001 to 2003.
The following formula computes the average sales for all months between Mar of 2000 and
Jan of 2001:

SalesAvg= @MOVAVG(Sales, 3, @XRANGE ("2001"->Mar, "2003"->Jan));

and returns the following members:

Colas New York Actual

Sales SalesAvg
2000
Mar 678 678
Apr 645 645
May 675 666
Jun 712 677.3
Jul 756 714.3
Aug 890 786
Sep 924 856.7
Oct 914 909.3
Nov 912 916.7
Dec 723 849.7
2001
Jan 647 760.7

As you can see from the above examples, XrangeList is a range of members from one or more
dimensions, and can help you incorporate time continuum navigation.

More Examples of rangeList and XrangeList

The following table provides more examples of valid values for rangeList or XrangeList.

Table 2-10 Valid Values for rangeList and XrangeList
]

Example Description

Mar99 A single member

Mar99, Apr99, May99 A comma-delimited list of members.
Jan99:Dec99 A level range

A level range includes all members on the same
level between and including the members defining
the range.

2-17

Chapter 2
Calculation Function Categories

Table 2-10 (Cont.) Valid Values for rangeList and XrangeList

___|
Example Description

Q1_99::Q4_2000 A generation range.
A generation range includes the members defining
the range and all members that are within the
range and of the same generation.

Q1 99::Q4_2000, FY98, FY99, FY2000 A generation range and a comma-delimited list

@SIBLINGS(Dept01), Dept65:Dept73, Total_Dept A member set function and one or more range lists

The following table provides examples of valid values for XrangeList.

Table 2-11 Valid Values for XrangeList
]

Example Description

Jan->Actual->Sales, Dec->Actual->Sales A comma-delimited list of members from one or
more dimensions.

Actual->Jan, @XRANGE(Actual->December, A comma-delimited list and a range.

Budget->Mar);

@XRANGE(Jan->Actual,Dec->Budget); A @XRANGE function.

@CHILDREN("Colas"), @CHILDREN("West") A member set function as part of a range list.

Financial functions never return a value; rather, they internally calculate a series of values
based on the range specified and write the results to a range of cells. Thus, you cannot apply
any operator directly to the function.

Allocation Functions

These functions allocate values that are input at the parent level. The values are allocated
across child members in one or more dimensions, based on specified criteria. These functions
consolidate the common tasks that are required to perform allocations in Essbase.

Table 2-12 Allocation Functions
]

Function Allocation Type

@ALLOCATE Allocates values to lower-level members in one
level.

@MDALLOCATE Allocates values to lower-level members in multiple
dimensions.

Forecasting Functions

Forecasting functions manipulate data for the purpose of smoothing, interpolating, or
calculating future values. Forecasting functions are often used in planning, analysis, and
modeling applications. Some forecasting functions recognize the optional Range List
Parameters rangeList or XrangeList).

ORACLE 518

Chapter 2
Calculation Function Categories

Table 2-13 Forecasting Functions

___|
Function Data Manipulation

@MOVAVG Applies a moving average to a data set, replacing
each term in the list with a trailing average. This
function modifies the data set for smoothing
purposes.

@MOVMAX Applies a moving maximum to a data set, replacing
each term in the list with a trailing maximum. This
function modifies the data set for smoothing
purposes.

@MOVMED Applies a moving median to a data set, replacing
each term in the list with a trailing median. This
function modifies the data set for smoothing
purposes.

@MOVMIN Applies a moving minimum to a data set, replacing
each term in the list with a trailing minimum. This
function modifies the data set for smoothing

purposes.
@MOVSUM Applies a moving sum to a data set. This function

modifies the data set for smoothing purposes.
@MOVSUMX Applies a moving sum to a data set, enabling

specification of values for trailing members. This
function modifies the data set for smoothing
purposes.

@SPLINE Applies a smoothing spline to a set of data points.

A spline is a mathematical curve that is used to
smooth or interpolate data.

@TREND Calculates future values, basing the calculation on
curve-fitting to historical values

Statistical Functions

Statistical functions calculate advanced statistical values, such as correlation or variance.
These functions are often used in sales and marketing applications.

Table 2-14 Statistical Functions

Function Return Value

@CORRELATION The correlation coefficient between two parallel
data sets

@COUNT The number of data values in the specified data set

@MEDIAN The median (middle value) of the specified data set

@MODE The mode (the most frequently occurring value) in
the specified data set

@RANK The rank (position in the sorted data set) of the

specified members or the specified value among
the values in the specified data set.

@STDEV The standard deviation of the specified data set

@STDEVP The standard deviation of the specified data set,
calculated over the entire population

ORACLE 519

Chapter 2
Calculation Function List

Table 2-14 (Cont.) Statistical Functions

|
Function Return Value

@STDEVRANGE The standard deviation of all values of the specified
member across the specified data set. The
specified mbrName is crossed with a range list to
obtain the sample across which the standard
deviation is calculated.

@VARIANCE The statistical variance of the specified data set
(expList), based upon a sample of a population
@VARIANCEP The statistical variance of the specified data set

(expList), based upon the entire population

Date & Time Functions

Some Essbase calculation functions help you perform calculations based on calendar dates or
date-type strings.

@TODATE converts date strings to numbers that can be processed in calculation formulas.
If your cube uses date measures, you can also use the following functions.

e @DATEDIFF

e @DATEPART

* @DATEROLL

* @FORMATDATE
* @TODATEEX

* @TODAY

Miscellaneous Functions

* @CALCMODE—This function enables you to specify whether a formula is calculated in
cell mode or block mode and whether a formula is calculated bottom-up or top-down

* @CONCATENATE, @SUBSTRING, and @NAME—These functions enable manipulation
of character strings.

« @RETURN—This function enables termination of a calculation, with a custom error
message.

e @CREATEBLOCK—This function populates cells with values or #MISSING.

Calculation Function List

Essbase includes powerful calculation features for demanding analytic requirements. A rich
library of calculation functions makes it easy to define advanced and sophisticated business
logic and relationships.

Click here for a categorical list.

Alphabetical List of Calculation Functions

@ABS @EXP @ISMBR @MINRANGE @RETURN

ORACLE 590

ORACLE"

Chapter 2

Calculation Function List

Alphabetical List of Calculation Functions

@ACCUM @EXPAND @ISMBRUDA @MINS @ROUND
@ALLANCESTOR @FACTORIAL @ISMBRWITHATT @MINSRANGE ~ @RSIBLINGS
S R
@ALIAS @FORMATDATE ~ @ISPARENT @MOD @SANCESTVAL
@ALLOCATE @GEN @ISRANGENONE @MODE @SHARE
MPTY
@ANCEST @GENMBRS @ISSAMEGEN ~ @MOVAVG @SHIFT
@ANCESTORS ~ @GRIDTUPLES ~ @ISSAMELEV ~ @MOVMAX @SHIFTMINUS
@ANCESTVAL ~ @GROWTH @ISSIBLING @MOVMED @SHIFTPLUS
@ATTRIBUTE @IALLANCESTOR @ISUDA @MOVMIN @SHIFTSIBLING
S
@ATTRIBUTEBVA @IANCESTORS ~ @LANCESTORS ~ @MOVSUM @SIBLINGS
L
@ATTRIBUTESVA @ICHILDREN @LDESCENDANT @MOVSUMX @SLN
L S
@ATTRIBUTEVAL @IDESCENDANT @LEV @NAME @SPARENTVAL
S
@AVG @ILANCESTORS ~ @LEVMBRS @NEXT @SPLINE
@AVGRANGE @ILDESCENDANT @LIKE @NEXTS @STDEV
S
@BETWEEN @ILSIBLINGS @LIST @NEXTSIBLING ~ @STDEVP
@CALCMODE @INT @LN @NONEMPTYTUP @STDEVRANGE
LE
@CHILDREN @INTEREST @LOG @NOTEQUAL @SUBSTRING
@COMPOUND @INTERSECT @LOG10 @NPV @SUM
@COMPOUNDGR @IRDESCENDAN ~ @LSIBLINGS @PARENT @SUMRANGE
OWTH TS
@CONCATENATE @IRR @MATCH @PARENTVAL ~ @SYD
@CORRELATION ~ @IRREX @MAX @POWER @TODATE
@COUNT @IRSIBLINGS @MAXRANGE ~ @PREVSIBLING ~ @TODATEEX
@CREATEBLOCK @ISACCTYPE @MAXS @PRIOR @TODAY
@CURGEN @ISANCEST @MAXSRANGE ~ @PRIORS @TREND
@CURLEV @ISATTRIBUTE ~ @MBRCOMPARE ~@PTD @TRUNCATE
@CURRMBR @ISCHILD @MBRPARENT ~ @QUERYBOTTO @UDA
MUP
@CURRMBRRAN @ISDESC @MDALLOCATE ~ @RANGE @VAR
GE
@DATEDIFF @ISGEN @MDANCESTVAL @RANGEFIRSTVA @VARPER
L
@DATEPART @ISIANCEST @MDPARENTVAL @RANGELASTVA @VARIANCE
L
@DATEROLL @ISIBLINGS @MDSHIFT @RANK @VARIANCEP
@DECLINE @ISICHILD @MEDIAN @RDESCENDANT @WEIGHTEDSUM
S X
@DESCENDANTS @ISIDESC @MEMBER @RELATIVE @WITHATTR
@DISCOUNT @ISIPARENT @MEMBERAT @RELXRANGE @XRANGE
@ENUMVALUE @ISISIBLING @MERGE @REMAINDER ~ @XREF
@EQUAL @ISLEV @MIN @REMOVE @XWRITE

2-21

@ABS

@ACCUM

ORACLE

Chapter 2
Calculation Function List

The @ABS calculation function for Essbase returns an absolute value.

This function returns the absolute value of expression. The absolute value of a number is that
number less its sign. A negative number becomes positive, while a positive number remains
positive.

Syntax

@ABS (expression)

Parameters

expression
Member hame or mathematical expression that generates a numeric value.

Example

The following example is based on the Demo Basic database. In this example, Variance needs
to be presented as a positive number. The @ABS function is used because otherwise some
combinations of Actual - Budget would return negative values.

Variance=@ABS (Actual-Budget) ;

This example produces the following report:

Sales VCR San_Francisco
Jan Feb Mar
Actual 1,323 1,290 1,234
Budget 1,200 1,100 1,100
Variance 123 190 134

The @ACCUM calculation function for Essbase accumulates the values of a member across a
range.

Syntax

This function accumulates the values of mbrName within rangeList, up to the current member
in the dimension of which rangelList is a part.

@ACCUM (mbrName [, rangeList])

Parameters

mbrName
Any valid single member name (or a function that returns a single member) whose value is to
be accumulated.

2-22

Chapter 2
Calculation Function List

rangeList

Optional comma-delimited list of members, member set functions, or range functions, across
which the accumulation occurs. If rangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

« Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

e @ACCUM accepts the @ATTRIBUTE member set function as a member range.

« If you use an Essbase member set function to generate a member list for the rangeList
parameter (for example, @SIBLINGS), to ensure correct results, consider the order in
which Essbase sorts the generated member list.

* You cannot apply an operator (for example divide or multiply) to @Accum. For example,
the formula Budget=@ACCUM (Actual, Jan:Feb)/2 is not valid.

Example

In this example, Accum Asset is calculated using the following formula:

"Accum Asset" = @ACCUM(Asset, FY1997:FY2002);

This example produces the following report. This report shows that the values for Asset are
accumulated starting with FY1997 and the yearly accumulation value is placed in Accum Asset
for FY1997 through FY2002:

FY1997 FY1998 FY1999 FY2000 FY2001 FY2002

Asset 9,000 0 1,000 0 2,500 1,500
Residual 750 0 0 0 #MISSING #MISSING
Life 5 0 3 0 #MISSING #MISSING
Accum Asset #MISSING #MISSING 1,000 1,000 3,500 5,000

The value of Accum Asset is #MISSING for FY1997 because that is the starting year. The
value of Accum Asset is #MISSING for FY1998 because there was no accumulation that year.
For FY1999, the value of the asset grew by 1,000, so Accum Asset has a value of 1000.

@ALLANCESTORS

The @ALLANCESTORS calculation function for Essbase returns all ancestors of a member.

This function returns all ancestors of the specified member, including ancestors of any
occurrences of the specified member as a shared member. This function excludes the
specified member.

Syntax

@ALLANCESTORS (mbrName)

ORACLE 503

ORACLE

Chapter 2
Calculation Function List

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Notes

« Essbase sorts the generated list of members in ascending order of the member number in
the outline. Using Sample Basic as an example, if you specify 100-20 for mbrName, 100,
Diet, and Product are returned (in that order). However, the order in which shared
ancestors are returned is not guaranteed. This order is important to consider when you use
the @ALLANCESTORS member set function with certain forecasting and statistical
functions.

* You can use @ALLANCESTORS as a parameter of another function, where that
parameter is a list of members.

Example

The following example is based on the Sample Basic cube. Sample Basic has a shared level of
diet drinks, which includes 100-20 (Diet Cola). So 100-20 (Diet Cola) is a descendant of 100
(Colas) and is a shared member descendant of Diet:

100
100-10
100-20

Diet
100-20 (Shared Member)

The following calculation script increases by 5% the Budget->Sales values of all ancestors of
100-20, including Diet.

FIX (Budget, @ALLANCESTORS ("100-20"))
Sales = Sales * 1.05;
ENDFIX

This example produces the following report. This report shows that the Budget->Sales values
for 100, Diet, and Product (the ancestors of 100-20) have been increased by 5%. The original
values were 8980, 8260, and 28480, respectively.

Jan
Actual Budget
Sales Sales
Market 100-10 4860 5200
100-20 2372 2610
100-30 1082 1170
100 8314 9429 =
100-20 2372 2610
200-20 3122 3090
300-30 2960 2560

2-24

@ALIAS

ORACLE

Chapter 2
Calculation Function List

Diet 8454 8673 *
Product 31538 30954 ~

See Also

* @IALLANCESTORS
* @ILANCESTORS
* @LANCESTORS

The @ALIAS calculation function for Essbase returns an alias name.

This function for returns the alias name for the input member name, as a string.
Syntax

@ALIAS (mbrName [, altName])

Parameters

mbrName
Any valid member name, or a function returning a member.

altName
Optional. Alias table name. This parameter is case insensitive.

Notes

« If no alias name is found, this function returns an empty string.

e Because functions that take strings as arguments may not function correctly if the string
matches a member alias, use the function @ALIAS to pass member alias names as
strings, for example when passing alias names as strings to functions such as @ISUDA,
@UDA, @CONCATENATE, @SUBSTRING, @MATCH, or @NAME.

Example

The following example returns the alias of member "US$" from the alias table "Long Names."
IF (QISUDA (@ALIAS ("USS", "Long Names")))

ENDIF

In the following example, assume "Book_Inventory" is a dimension name, and there are four
alias tables in the outline ("Long Names" is one of them). The example code checks if the
current member being calculated in the "Title" dimension has an alias name in "Long Names"
that matches with the UDA associated with the "Book_Inventory" dimension’s currently

calculating member.

@ISUDA ("Book Inventory",@ALIAS (@NAME (@CURRMBR("Title")), "Long Names"))

2-25

Chapter 2
Calculation Function List

@ALLOCATE

The @ALLOCATE calculation function for Essbase allocates values from a member, a cross-
dimensional member, or a value across a member list. The allocation is based on a variety of
criteria.

This function allocates values that are input at an upper level to lower-level members. The
allocation is based upon a specified share or spread of another variable. For example, you can
allocate values loaded to a parent member to all of that member's children. You can specify a
rounding parameter for allocated values and account for rounding errors.

Syntax

@ALLOCATE (amount, allocationRange, basisMbr, [roundMbr],method [,
methodParams] [, round [, numDigits][, roundErr]])

Parameters

amount
A value, member, or cross-dimensional member that contains the value to be allocated into
allocationRange. The value may also be a constant.

e If amount is a member, the member must be from the dimension to which allocationRange
belongs.

e |f amount is a cross-dimensional member, at least one of its members must be from the
dimension to which allocationRange belongs.

e |f no member or cross-dimensional member is from the dimension to which
allocationRange belongs, a warning message is displayed.

If the amount parameter is a loaded value, it cannot be a Dynamic Calc member.

allocationRange

A comma-delimited list of members, member set functions, or range functions, into which
value(s) from amount are allocated. allocationRange should be from only one level (for
example, @CHILDREN(Total Expenses) rather than from multiple levels (for example,
@DESCENDANTS(Product)).

basisMbr
A value, member, or cross-dimensional member that contains the values that provide the
basis for the allocation. The method you specify determines how the basis data is used.

roundMbr

Optional. The member or cross-dimensional member to which rounding errors are added. The
member (or at least one member of a cross-dimensional member) must be included in
allocationRange.

method
The expression that determines how values are allocated. One of the following:

e share:

ORACLE 506

Chapter 2
Calculation Function List

Uses basisMbr to calculate a percentage share. The percentage share is calculated by
dividing the value in basisMbr for the current member in allocationRange by the sum
across the allocationRange for that basis member:

amount * (Q@CURRMBR()->basisMbr/@SUM(allocationRange-> basisMbr)

e spread:
Spreads amount across allocationRange:
amount * (1/@COUNT (SKIP, allocationRange))

SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH: Values to be ignored during
calculation of the spread. You must specify a SKIP parameter only for spread.

— SKIPNONE: Includes all cells.

— SKIPMISSING: Excludes all #MISSING values in basisMbr, and stores #MISSING for
values in allocationRange for which the basisMbr is missing.

— SKIPZERO: Excludes all zero (0) values in basisMbr, and stores #MISSING for values
in allocationRange for which the basisMbr is zero.

— SKIPBOTH: Excludes all zero (0) values and all #MISSING values, and stores
#MI1SSING for values in allocationRange for which the basisMbr is zero (0) or #MISSING.

« percent: Takes a percentage value from basisMbr for each member in allocationRange
and applies the percentage value to amount:

amount * (QCURRMBR ()->basisMbr * .01)

* add: Takes the value from basisMbr for each member of allocationRange and adds the
value to amount:

amount + @CURRMBR () ->basisMbr

e subtract: Takes the value from basisMbr for each member of allocationRange and
subtracts the value from amount:

amount - QCURRMBR () ->basisMbr

e multiply: Takes the value from basisMbr for each member of allocationRange and
multiplies the value by amount:

amount * @CURRMBR () ->basisMbr

e divide: Takes the value from basisMbr for each member of allocationRange and divides
the value by amount:

amount/@CURRMBR () ->basisMbr
round
Optional. One of the following:
* noRound: No rounding. noRound is the default.

* roundAmt: Indicates that you want to round the allocated values. If you specify roundAmt,
you also must specify numDigits to indicate the number of decimal places to round to.

numDigits
An integer that represents the number of decimal places to round to. You must specify
numbDigits if you specify roundAmt.

e If numDigits is 0, the allocated values are rounded to the nearest integer. The default
value for numbDigits is 0.

ORACLE 2-27

ORACLE

Chapter 2
Calculation Function List

e If numDigits is greater than 0, the allocated values are rounded to the specified number of
decimal places.

* If numDigits is a negative value, the allocated values are rounded to a power of 10.

If you specify roundAmt, you also can specify a roundErr parameter.

roundErr

Optional. An expression that specifies where rounding errors should be placed. You must
specify roundAmt in order to specify roundErr. If you do not specify roundErr, rounding errors
are discarded.

To specify roundErr, choose from one of the following:

e errorsToHigh: Adds rounding errors to the member with the highest allocated value. If
allocated values are identical, adds rounding errors to the first value in allocationRange.
(For this option, Essbase does not distinguish between #MI and zero values.)

e errorsToLow: Adds rounding errors to the member with the lowest allocated value. If
allocated values are identical, adds rounding errors to the first value in allocationRange.
#MISSING is treated as the lowest value in a list; if multiple values are #MISSING, rounding
errors are added to the first #MISSING value in the list.

e errorsToMbr: Adds rounding errors to the specified roundMbr, which must be included in
allocationRange.

Notes

* When you use @ALLOCATE in a calculation script, use it within a FIX statement; for
example, FIX on the member to which the allocation amount is loaded. Although FIX is not
required, using it may improve calculation performance.

* If you use @ALLOCATE in a member formula, your formula should look like this:

Member Name = @ALLOCATE (...)

This is because allocation functions never return a value; rather, they calculate a series of
values internally based on the range specified.

e For an example that explains the use of rounding error processing with the @ALLOCATE
function, see Allocating Values within a Dimension.

Example

Consider the following example from the Sample Basic cube. The example assumes that the
Scenario dimension contains an additional member, PY Actual, for the prior year's actual
expenses. Data values of 7000 and 8000 are loaded into Budget->Total Expenses for Jan and
Feb, respectively. (For this example, assume that Total Expenses is not a Dynamic Calc
member.)

You need to allocate values to each expense category (to each child of Total Expenses). The
allocation for each of child of Total Expenses is based on the child's share of actual expenses
for the prior year (PY Actual).:

FIX("Total Expenses")

Budget = @ALLOCATE (Budget->"Total Expenses",@CHILDREN ("Total Expenses"),
"PY Actual",,share);

ENDFIX

2-28

@ANCEST

ORACLE

Chapter 2
Calculation Function List

This example produces the following report:

Product Market

PY Actual Budget
Jan Feb Jan Feb
Marketing 5223 5289 3908.60 4493.63
Payroll 4056 4056 3035.28 3446.05
Misc 75 71 56.13 60.32
Total Expenses 9354 9416 7000 8000

See Also

* @CREATEBLOCK
° @MDALLOCATE

The @ANCEST calculation function for Essbase returns an ancestor member.

This function returns the ancestor at the specified generation or level of the current member
being calculated in the specified dimension. If you specify the optional mbrName, that ancestor
is combined with the specified member.

This member set function can be used as a parameter of another function, where that
parameter is a member or list of members.

Syntax

@ANCEST (dimName, genLevNum [, mbrName])

Parameters

dimName
Single dimension name specification.

genLevNum

An integer value that defines the generation or level number from which the ancestor value is
returned. A positive integer defines a generation number. A value of O or a negative integer
defines a level number.

mbrName
Optional. Any valid single member name, or a function that returns a single member. This
member is crossed with the ancestor returned.

Notes

* You cannot use the @ANCEST function in a FIX statement.

e You can use the @ANCEST function on both the left-hand and right-hand sides of a
formula. If you use this function on the left-hand side of a formula in a calculation script,
associate it with a member. For example:

Sales (@ANCEST (Product) = 5;);

2-29

Chapter 2
Calculation Function List

* In some cases, the @ANCEST function is equivalent to the @ANCESTVAL function,
except in terms of calculation performance. For example, the following two formulas are
equivalent:

Sales = @ANCEST (Product,2);

Sales = Q@ANCESTVAL (Product,2);

In this case, using the latter formula results in better calculation performance. In general,
use @ANCEST as a member rather than as an implied value of a cell. For example:

Sales = @AVG(SKIPMISSING, @ISIBLINGS (@ANCEST (Product,2)));

e The time required for retrieval and calculation may be significantly longer if this function is
in a formula attached to a member tagged as Dynamic Calc or Dynamic Calc and Store.

Example

In the Sample Basic database:

Function Generated List

@ANCEST (Product, 2, Sales) Colas->Sales, if the current member of Product
being calculated is Diet Cola.

@ANCEST (Measures, 3, East) Total Expenses->East, if the current member of

Measures being calculated is Payroll.

See Also

* @ANCESTORS
* @CHILDREN
* (@DESCENDANTS

@ANCESTORS

The @ANCESTORS calculation function for Essbase returns ancestor members.

This function returns all ancestors of the specified member (mbrName), or, those up to a
specified generation or level. You can use this member set function as a parameter of another
function, where that parameter is a list of members.

Syntax

@ANCESTORS (mbrName [, genLevNum | genLevName])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

ORACLE 530

Chapter 2
Calculation Function List

genLevNum

Optional. An integer value that defines the absolute generation or level number up to which to
select the members. A positive integer defines a generation number. A value of 0 or a
negative integer defines a level number.

genLevName
Optional. Level name or generation name up to which to select the members.

Notes

The generated list of members is sorted starting with the nearest ancestor of the member,
followed by the next nearest ancestor of the member, and so on. Using Sample Basic as an
example, if you specify @ANCESTORS (200-30), Essbase returns 200, Product (in that order).
This order is important to consider when you use the @ANCESTORS member set function
with certain forecasting and statistical functions.

Example

In the Sample Basic database:

@ANCESTORS ("New York")

returns East, Market (in that order).

@ANCESTORS (Qtr4)

returns Yeatr.

@ANCESTORS ("100-10", 1)

returns 100, Product (in that order).

@ANCESTORS (Sales, -2)

returns Margin, Profit (in that order).

See Also

* @CHILDREN

* (@DESCENDANTS
* @IANCESTORS

* @ILANCESTORS
* @ISANCEST

* @LANCESTORS

* @SIBLINGS

@ANCESTVAL

ORACLE

The @ANCESTVAL calculation function for Essbase returns ancestor values.

This function returns the ancestor data values of the specified member combination.

2-31

Chapter 2
Calculation Function List

Syntax

@ANCESTVAL (dimName, genLevNum [, mbrName])

Parameters

dimName
A single dimension name that defines the focus dimension of ancestor values.

genLevNum

Integer value that defines the generation or level number from which the ancestor values are
to be returned. A positive integer defines a generation reference. A negative number or value
of 0 defines a level reference.

To use this function or any other ancestor value function in a ragged hierarchy, use generation
references instead of level references to avoid unexpected results. See Hierarchy Shapes.

mbrName
Optional. Any valid single member nhame or member combination (or a function that returns a
single member or member combination).

Example

In this example, SKU Share is derived by taking Sales in each SKU as a percentage of its
product family. Families are at generation 2; therefore, each descendant of family is calculated
as a percentage its respective ancestor. Consolidated results must be calculated for Sales by
Product before the SKU Share calculation occurs.

"SKU Share" = Sales % Q@ANCESTVAL (Product,?2,Sales);

This example produces the following report:

Sales SKU Share
SKU101 510 26.0
SKU102 520 26.5
Group01 1030 52.5
SKU120 430 21.9
SKU123 500 25.5
Group02 930 47.4
Familyl 1960 100.00
See Also

* @MDANCESTVAL
* @SANCESTVAL

@ATTRIBUTE

ORACLE

The @ATTRIBUTE calculation function for Essbase returns base members associated with an
attribute.

This function lists all base members that are associated with the specified attribute member
(attmbrName). This function can be used as a parameter of another function, where that
parameter is a member or list of members.

2-32

ORACLE

Chapter 2
Calculation Function List

Syntax

@ATTRIBUTE (attmbrName)

Parameters

attMbrName
Single attribute member name.

Notes

When used with a non-level 0 member of an attribute dimension, this function returns all base
members that are associated with the children of the attribute member. For example, in the
Sample Basic database, €ATTRIBUTE (Large) returns all base members that fall into one of the
population ranges for the attribute parent Large.

If you specify the name of a Boolean attribute dimension (for example, Caffeinated), this
function returns all base members that are associated with either Caffeinated member (for
example, True or False). To return only one, specify the member name (for example,
@ATTRIBUTE (Caffeinated True)).

You may have duplicate Boolean, date, and numeric attribute member names in your outline.
For example, 12 can be the attribute value for the size (in ounces) of a product as well as the
value for the number of packing units for a product. To distinguish duplicate member names,
specify the full attribute member name (for example, GATTRIBUTE (Ounces_12)).

The generated list of members is sorted in ascending order from the database outline. This
order is important to consider when you use this function with certain forecasting and statistical
functions.

Example

In the Sample Basic database,

@ATTRIBUTE (Can) ;

returns all base members with the Can attribute: Cola, Diet Cola, and Diet Cream.

Consider the following two calculation scripts, which are based on the Sample Basic database:

/* To increase the marketing budget for markets with large populations */
FIX (QATTRIBUTE (Large))

Marketing = Marketing * 1.1;

ENDFIX

/* To calculate the average sales of bottled products */
"Bottle Sales" = @AVG(SKIPBOTH,@ATTRIBUTE (Bottle));

See Also

* @ATTRIBUTEVAL
° @WITHATTR

2-33

Chapter 2
Calculation Function List

@ATTRIBUTEBVAL

ORACLE

The @ATTRIBUTEBVAL calculation function for Essbase returns a member's Boolean attribute
value.

This function returns, for the current member being calculated, the associated attribute value
from the specified Boolean attribute dimension.

Syntax

@ATTRIBUTEBVAL (attDimName)

Parameters

attDimName
The name of a Boolean attribute dimension.

Notes

e This function works only with Boolean attribute dimensions. To return values from numeric
or date attribute dimensions, use @ATTRIBUTEVAL. To return values from text attribute
dimensions, use @ATTRIBUTESVAL.

« If no attribute is associated with the member being calculated or if the attribute associated
with the member is a text, numeric, or date attribute, this function returns #MISSING.

* Only level 0 members of attribute dimensions can be associated as attributes of members
of a base dimension.

Example
This example is based on the Sample Basic database.

The Product dimension is associated with the Caffeinated Boolean attribute dimension, as
shown in the following example:

Product {Caffeinated}
100
100-10 {Caffeinated:True}
100-20 {Caffeinated:True}
100-30 {Caffeinated:False}
200
200-10 {Caffeinated:True}
200-20 {Caffeinated:True}
200-30 {Caffeinated:False}
200-40 {Caffeinated:False}
Caffeinated Attribute {Type: Boolean}
True
False

For the current member of the base dimension Product, the function
QATTRIBUTEBVAL (Caffeinated) returns the associated attribute value from the Boolean
attribute dimension, Caffeinated. The following table shows the value that would be returned.

2-34

Chapter 2
Calculation Function List

Table 2-15 Value Returned by @ATTRIBUTEBVAL (Caffeinated) Function
]

Current Member Return Value
100-10 True
100-20 True
100-30 False

100 #MISSING
200-10 True
200-20 True
200-30 False
200-40 False

200 #MISSING
Product #MISSING

For any member that does not have an associated attribute, #MISSING is returned. Only one
value is returned at a time.

See Also

° @ATTRIBUTEVAL
° @ATTRIBUTESVAL

@ATTRIBUTESVAL

ORACLE

The @ATTRIBUTESVAL calculation function for Essbase returns a member's text attribute
value.

This function returns, for the current member being calculated, the associated attribute value
from the specified text attribute dimension.

Syntax

@ATTRIBUTESVAL (attDimName)

Parameters

attDimName
The name of a text attribute dimension.

Notes

e This function works only with text attribute dimensions. To return values from numeric or
date attribute dimensions, use @ATTRIBUTEVAL. To return values from Boolean attribute
dimensions, use @ATTRIBUTEBVAL.

< If no attribute is associated with the member being calculated or if the attribute associated
with the member is a numeric, Boolean, or date attribute, this function returns an empty
string.

* Only level 0 members of attribute dimensions can be associated as attributes of members
of a base dimension.

2-35

Example

Chapter 2
Calculation Function List

This example is based on the Sample Basic database.

The Product dimension is associated with the Pkg Type text attribute dimension, as shown in

the following example:

Product {Pkg Type}

100
100-10
100-20
100-30

200
200-10
200-20
200-30
200-40

(Pkg
(Pkg
(Pkg

(Pkg
(Pkg
(Pkg
(Pkg

Pkg Type Attribute

Bottle
Can

Type
Type
Type

Type
Type
Type
Type

:Can}
:Can}
:Bottle}

:Bottle}
:Bottle}
:Bottle}
:Bottle}

}

{Type: Text

For the current member of the base dimension, Product, RATTRIBUTESVAL ("Pkg Type") returns
the associated attribute value from the text attribute dimension, Pkg Type. The following table

shows the value that would be returned:

Table 2-16 Values Returned for @ATTRIBUTESVAL("Pkg Type") Function
]

Current Member

Return Value

100-10
100-20
100-30
100
200-10
200-20
200-30
200-40
200
Product

Can

Can

Bottle

(empty string)
Bottle

Bottle

Bottle

Bottle

(empty string)
(empty string)

For any member that does not have an associated attribute, an empty string is returned.

See Also

* @ATTRIBUTEVAL
° @ATTRIBUTEBVAL

ORACLE

2-36

Chapter 2
Calculation Function List

@ATTRIBUTEVAL

The @ATTRIBUTEVAL calculation function for Essbase returns a member's numeric or date
attribute value.

This function returns, for the current member being calculated, the associated attribute value
from the specified numeric or date attribute dimension.

Syntax

@ATTRIBUTEVAL (attDimName)

Parameters

attDimName
Single dimension specification for a numeric or date attribute dimension.

Notes

e This function works only with numeric and date attribute dimensions. To return values from
text attribute dimensions, use @ATTRIBUTESVAL. To return values from Boolean attribute
dimensions, use @ATTRIBUTEBVAL.

* Only level 0 members of attribute dimensions can be associated as attributes of members
of a base dimension.

- If atext attribute, or no attribute, is associated with the member being calculated, this
function returns #MISSING.

« When this function is used with a date attribute dimension, it converts the date string to the
number of seconds elapsed since midnight, January 1, 1970.

Example
Example 1

The following example is based on the Sample Basic database:

"Profit Per Ounce" = Profit/Q@ATTRIBUTEVAL (@NAME (Ounces)) ;

In this formula, for the current member being calculated, @ATTRIBUTEVAL returns the
associated attribute from the Ounces numeric attribute dimension. For example, if the member
being calculated is Cola and if the Ounces attribute value associated with Cola is 12,
@ATTRIBUTEVAL returns 12. The value returned is then divided into Profit to yield Profit Per
Ounce.

Note:

@NAME is required to process the string “Ounces” before passing it to
@ATTRIBUTEVAL.

ORACLE 2-37

Chapter 2
Calculation Function List

This example produces the following report:

Actual Year West
Profit Profit Per Ounce
Cola 4593 382.75

Example 2

The following MaxL execute calculation Statement applies a formula to members that are 16
Oz products:

execute calculation

'Misc
(IF
(RATTRIBUTEVAL (Ounces) == 16)
Misc = .5;
ENDIF;

)i
on sample.basic;

@AVG

The @AVG calculation function for Essbase returns the average from a list of numeric values.

Syntax

This function returns the average value among the results of the expressions in expList.

@AVG (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameters

SKIPNONE
Includes all cells specified in the average operation regardless of their content.

SKIPMISSING
Excludes all values that are #MISSING in the average operation.

SKIPZERO
Excludes values of zero from the average calculation.

SKIPBOTH
Excludes all values of zero or #MISSING from the average calculation.

expList
Comma-delimited list of member names, variable names, functions, or numeric expressions.
expList provides a list of numeric values across which the average is calculated.

ORACLE 538

Chapter 2
Calculation Function List

Example

The following example is based on the Sample Basic database. The calculation averages the
values for the individual states making up the western region and places the results in West:

FIX(Sales)
West=@AVG (SKIPBOTH, California:Nevada) ;
ENDFIX

This example produces the following report:

Sales Jan Actual
Cola Diet Cola Caffeine Free Cola

California 678 118 145
Oregon 160 140 150
Washington 130 190 #MI
Utah 130 190 170
Nevada 76 62 #MI
West 234.8 140 155
See Also
@AVGRANGE

@AVGRANGE

ORACLE

The @AVGRANGE calculation function for Essbase returns a member's average value across
arange.

This function returns the average value of the specified member (mbrName) across the
specified range (XrangeList).

Syntax

@AVGRANGE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrName [,
XrangeList])
Parameters

SKIPNONE
Includes all cells specified in the average operation regardless of their content.

SKIPMISSING
Excludes all values that are #MISSING in the average operation.

SKIPZERO
Excludes values of zero from the average calculation.

SKIPBOTH
Excludes all values of zero or #MISSING from the average calculation.

2-39

Chapter 2
Calculation Function List

mbrName
Any valid single member.

XrangeList

Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

This function accepts @ATTRIBUTE as a member range.

Example

The following example is based on the Sample Basic database. The calculation script
determines the average sales of Colas in the West.

FIX(Sales)
West=@AVGRANGE (SKIPNONE, Sales, @CHILDREN (West)) ;
ENDFIX

This example produces the following report:

Sales Colas Actual
Jan Feb Mar

California 941 899 927
Oregon 450 412 395
Washington 320 362 377
Utah 490 488 476
Nevada 138 137 138
West 467.8 459.6 462.6

The following example uses a cross-dimensional operator between two member functions to
calculate the average of the children of a member across two dimensions.

@AVGRANGE (SKIPBOTH, "Sales", @CHILDREN (@CURRMBR ("Product")) -
>QCHILDREN (@CURRMBR ("Market")));

See Also

@AVG

@BETWEEN

ORACLE

The @BETWEEN calculation function for Essbase returns member names between two
strings.

This function returns a member set of all members whose name string value fall between, and
are inclusive of, the two specified string tokens. Member names are evaluated
alphanumerically.

This function can be used on unique and duplicate-name outlines.

2-40

ORACLE

Chapter 2
Calculation Function List

Syntax

@BETWEEN (firstToken , secondToken, topMbrInHierarchy)

Parameters

firstToken
First token string value with which to compare to members in the outline, starting with the
member specified in topMbr.

secondToken
Second token string value with which to compare to members in the outline, starting with the
member specified in topMbr.

topMbrinHierarchy

A fully qualified name of a member in the outline on which to base the member search. The
specified member and its aliases, and all of its descendants, are included in the search.

To search the entire outline, provide an empty string ("") for this parameter. For example,
@BETWEEN ("200-10","200-20", "").

Example

The following example is based on the following duplicate-name outline:

Product

100

100-10
100-10-10

100-20
100-30

200
200-10
200-20
200-30

300
300-10
300-20

Diet
100-10

100-10-11

200-10
300-10

Bottle
200-10
300-20

@BETWEEN ("200-10", "200-20", "Product")

Returns the members [200].[200-10], [200].[200-20], [Diet].[200-10],
and [Bottle].[200-10].

2-41

Chapter 2
Calculation Function List

@CALCMODE

The @CALCMODE calculation function for Essbase enables you to select the execution mode
of a formula: block mode or cell mode.

You can use this function to manually control whether block or cell mode is used for formula
execution. Block mode is generally faster, but cannot be used to fully calculate when there are
dependencies between cells in a block. In cell mode, each cell is calculated sequentially in the
order of the dense dimensions in the outline. For example, SalesYTD = CurMth + PriorMth
should be calculated in cell mode so that each month is calculated in the order of the outline.

In hybrid cubes, the calculation of cells are computed in an order dictated by the solve order of
the block members.

@CALCMODE can control two types of modes:

* Whether a formula is calculated in block calculation or cell calculation mode when
calculating formulas that contain certain functions (for example, @ISMBR)

e Whether a formula assigned to a sparse member is calculated in bottom-up or top-down
mode

Understanding Block Calculation and Cell Calculation Modes

Using block calculation mode, Essbase groups the cells within a block and simultaneously
calculates the cells in each group. Block calculation mode is fast, but you must carefully
consider data dependencies within the block to ensure that the resulting data is accurate.

Using cell calculation mode, Essbase calculates each cell sequentially, following the calculation
order, which is based on the order of the dense dimensions in the outline.

Understanding Bottom-Up and Top-Down Calculation Modes

Essbase uses one of two methods to do a full calculation of an outline: bottom-up calculation
(the default) or top-down calculation. If the outline contains a complex member formula,
Essbase performs a top-down calculation for that member. When a formula is compiled, if the
formula is to be calculated top-down, Essbase logs a message in the application log file.

For a bottom-up calculation, Essbase determines which existing data blocks need to be
calculated before it calculates the database. Essbase then calculates only the blocks that need
to be calculated during the full database calculation. The calculation begins with the lowest
existing block number and works up through each subsequent block until the last existing block
is reached.

In contrast, a top-down calculation calculates the formula on all potential datablocks with the
member. A top-down calculation may be less efficient than a bottom-up calculation because
more blocks may be calculated than is necessary. Although a top-down calculation is less
efficient than a bottom-up calculation, in some cases top-down calculations are necessary to
ensure that calculation results are correct. See Example 4.

Syntax

@CALCMODE (CELL|BLOCK|TOPDOWN | BOTTOMUP)

ORACLE 545

Chapter 2
Calculation Function List

Parameters

CELL
Turns on the cell calculation mode

BLOCK
Turns on the block calculation mode

TOPDOWN
Turns on the top-down calculation mode

BOTTOMUP
Turns on the bottom-up calculation mode

Notes

Cell and block modes are mutually exclusive. Top-down and bottom-up modes are mutually
exclusive. Within one @ CALCMODE specification, you can specify only one option. To specify
both types of modes, perform the instruction twice; for example:

@CALCMODE (CELL)
@CALCMODE (TOPDOWN)

Block calculation mode (enabled when Essbase configuration setting CALCMODE is set to
BLOCK) is not applicable for federated partition cubes. Calculation processing is pushed to
Autonomous Data Warehouse. If an exception exists and the calculation is processed on the
Essbase Server instead, then solve order determines the dependency analysis.

Knowing When Essbase uses Cell or Block Mode and Top-down or Bottom-up Mode

e When Essbase compiles a formula, it prints a message in the application log file explaining
the mode of execution for the formula similar to the following message:

Formula on member Profit % will be executed in CELL and TOPDOWN mode.

When Essbase determines that the formula will be executed in block and bottom-up mode,
no message is written in the application log file.

e In calculation scripts, @CALCMODE statements must be placed within parentheses and
associated with a specific database member.

* By default, for a simple formula such as A = B + C, Essbase does a bottom-up calculation.
A is calculated only if B or C exists in the database. The dependency of the formula on B
and C is known before the calculation is started.

For a complex formula such as A = B->D + C->D, Essbase performs a top-down
calculation because every possible combination of A must be examined to see whether B-
>D or C->D exists.

* By default, Essbase uses cell calculation mode for formulas containing:
— @ANCEST
— @CURRMBR
— @ISMBR on a dense member
— @MDANCESTVAL
— @MDPARENTVAL

ORACLE 543

ORACLE

Chapter 2
Calculation Function List

— @MDSHIFT

- @NEXT

— @PARENT

— @PARENTVAL

- @PRIOR

— @SANCESTVAL

— @SPARENTVAL

— @SHIFT

- @XWRITE

For all other formulas, Essbase uses block calculation mode by default.

* Essbhase calculates in cell mode for any calculation script that uses VAR in a FIX...ENDFIX
block (during serial calculation), or that uses THREADVAR in a
FIXPARALLEL...ENDFIXPARALLEL block (during parallel calculation).

Understanding Data Dependency Issues With Block Calculation Mode

Data dependency occurs if the accurate calculation of one or more members depends on
another member or other on members being calculated previously. Most data dependency
issues with block calculation mode occur when a formula contains IF ELSE or IF ELSEIF
conditions. However, data dependencies can occur in other formulas; for example, when using
the @PRIOR function.

Data Dependency Issues With IF ELSE and IF ELSEIF

When Essbase uses block calculation mode to calculate a formula that contains IF ELSE or IF
ELSEIF conditions, it separates the members being calculated into two groups. The first group
contains the members that satisfy the IF condition. The second group contains the members
that satisfy the ELSE or ELSEIF conditions.

Essbase simultaneously calculates the members in the first group before simultaneously
calculating the members in the second group. See Example 1.

If a formula contains data dependencies, ensure that the following conditions are met:

* Members on which the accurate calculation of other members depends are in the first
group.
* Dependent members are in the second group.

If an IF condition has multiple ELSEIF conditions, Essbase evaluates each ELSEIF condition,
placing the members that satisfy the ELSEIF condition in the first group and the members that
satisfy subsequent ELSEIF or ELSE conditions in the second group. See Example 2.

Understanding Other Data Dependency Issues

Data dependencies can occur in formulas that do not contain IF ELSE conditions. See
Example 3 for an example of data dependency in a formula containing @PRIOR.

Example

Example 1, Example 2, and Example 3 illustrate use of the BLOCK and CELL options of
@CALCMODE. Example 4 illustrates use of the BOTTOMUP and TOPDOWN options.

2-44

ORACLE

Chapter 2
Calculation Function List

Example 1

Consider a database with two dense dimensions, Time and Accounts. The following formula is
placed on the Budget Sales member of the Accounts dimension. Because this is a formula
containing @ISMBR applied to a dense member (Budget Sales), by default Essbase uses cell
calculation mode. Use @ CALCMODE(BLOCK) to specify block calculation mode for this
formula.

@CALCMODE (BLOCK) ;
IF(@ISMBR (Feb))

"Budget Sales"=100;
ELSE

"Budget Sales"=Feb+10;

According to the above formula, we expect that if the member being calculated is Feb, the
Budget Sales value is 100. If the member being calculated is not Feb, the Budget Sales value
is 100+10 (the value for Feb + 10).

Assume that we load the values 10, 20, and 30 into the Budget Sales data block for Jan, Feb
and Mar, as follows:

Table 2-17 Values loaded in the Budget Sales Data Block

]
(axis) Jan Feb Mar

Budget Sales 10 20 30

Using block calculation mode, Essbase calculates the members satisfying the IF condition first.
In this example, Feb is the only member that satisfies the IF condition. After calculating Feb,
Essbase calculates the members Jan and Mar. In this example, the results are as expected:

Table 2-18 Results of Block Calculation Mode
]

(axis) Jan Feb Mar
Budget Sales 110 100 110
Example 2

Now consider the same database as in Example 1, but we place the following formula on the
Budget Sales member of the Accounts dimension. As in Example 1, because this is a formula
containing @ISMBR applied to a dense dimension member (Budget Sales), by default
Essbase uses cell calculation mode. However, we use @CALCMODE(BLOCK) to specify the
block calculation mode for this formula.

@CALCMODE (BLOCK) ;
IF(Q@ISMBR (Mar))
"Budget"->"Sales"=Feb+20;
ELSEIF (QISMBR (Jan))
"Budget"->"Sales"=Feb+10;
ELSE
"Budget"->"Sales"=100;
ENDIF

2-45

ORACLE

Chapter 2
Calculation Function List

According to this formula, we want the Jan and Mar Budget Sales values to be calculated
based on the Feb Budget Sales value, which is 100. We want to see the following results:

Table 2-19 Desired Calculation Results

___|
(axis) Jan Feb Mar

Budget Sales 110 100 120

Assume that we load the values 10, 20, and 30 into the Budget Sales data block for Jan, Feb,
and Mar, as follows:

Table 2-20 Values Loaded in Budget Sales Data Block

|
(axis) Jan Feb Mar

Budget Sales 10 20 30

Using block calculation mode, Essbase calculates the members satisfying the IF condition first,
followed by the members satisfying the ELSEIF condition, followed by the members satisfying
the ELSE condition. In this example, Essbase calculates the members in the following order:
Mar, Jan, Feb. The results are not what we want, because the calculation of Jan and Mar is
dependent on the calculation of Feb, and Feb is calculated after Jan and Mar. The inaccurate
results are as follows:

Table 2-21 Inaccurate Calculation of Budget Sales Data Block

|
(axis) Jan Feb Mar

Budget Sales 30 100 40

To achieve the desired results, use @CALCMODE(CELL).

Example 3

The following formula calculates the members Opening Inventory and Ending Inventory using
the @PRIOR function. There is a data dependency between Opening Inventory and Ending
Inventory. The formula is placed on the Opening Inventory member. The example shows the
results for January, February, and March.

@CALCMODE (BLOCK)

"Opening Inventory"=@PRIOR ("Ending Inventory")+10;
"Ending Inventory"="Opening Inventory";

Before the calculation, there is no data for these members (the data is #MISSING or #MI):

Table 2-22 Missing Data Before Inventory Calculation

(axis) Jan Feb Mar
Opening Inventory #MI #MI #MI
Ending Inventory #MI #MI #MI

Using block calculation mode, Essbase calculates the members simultaneously, taking the
previous month's Ending Inventory #MISSING value as 0 for all member combinations and
adding 10. This is not the desired result.

2-46

ORACLE

Chapter 2
Calculation Function List

Table 2-23 Inaccurate Results for Inventory Calculation

(axis) Jan Feb Mar
Opening Inventory 10 10 10
Ending Inventory 10 10 10

The following formula on the Opening Inventory member causes Essbase to use cell
calculation mode (the default for formulas containing @PRIOR):

"Opening Inventory"=@PRIOR ("Ending Inventory")+10;

"Ending Inventory"="Opening Inventory";

The results are as follows:

Table 2-24 Cell Calculation Mode Inventory Results

(axis) Jan Feb Mar
Opening Inventory 10 20 30
Ending Inventory 10 20 30
Example 4

Depending on the formula and the structure of the data, calculating a formula top-down versus
bottom-up may involve two issues: performance (reflecting the number of calculations that
must be made) and accuracy. This example compares calculation results to illustrate both of
these issues.

Before the calculation, assume that Actual and Budget are members of a sparse dimension
and they contain the following data:

Table 2-25 Data for Actual and Budget Members

(axis) Cola New York Sales
(axis) Actual Budget

Jan #MISSING 50

Feb 200 #MISSING

Mar 400 450

The following formula is calculated bottom-up.

Budget (
@CALCMODE (BOTTOMUP) ;
Budget=Actual*1.10;

In a bottom-up calculation, Essbase executes formulas only from existing data blocks.
Therefore, only two values—Jan and Mar—are calculated, based on existing combinations of
Budget.

2-47

Chapter 2
Calculation Function List

Table 2-26 Bottom-up Calculation Results for Actual and Budget
|

(axis) Cola New York Sales (Comment)

(axis) Actual Budget -

Jan #MISSING #MISSING (#MISSING*1.10)

Feb 200 #MISSING (No calculation is
performed)

Mar 400 440 (400*1.10)

The following formula is calculated top-down.

Budget (
@CALCMODE (TOPDOWN) ;
Budget=Actual*1.10;

In a top-down calculation, Essbase materializes every potential data block that is relevant to
the calculation, and executes formulas in those blocks. Therefore, all three values—Jan, Feb,
and Mar—are calculated, based on all potential combinations of Budget. The results are:

Table 2-27 Top-down Calculation Results for Actual and Budget
]

(axis) Cola New York Sales (Comment)
(axis) Actual Budget -

Jan #MISSING #MISSING (#MISSING*1.10)
Feb 200 220 (200*1.10)

Mar 400 440 (400*1.10)

@CHILDREN

ORACLE

The @CHILDREN calculation function for Essbase returns children of a member.

This function returns all children of the specified member, excluding the specified member. This
member set function can be used as a parameter of another function, where that parameter is
a list of members.

Syntax

@CHILDREN (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Notes

This function sorts the child members in ascending order. Using Sample Basic as an example,
if you specify 100 for mbrName, Essbase returns 100-10, 100-20, 100-30 (in that order). This

2-48

Chapter 2
Calculation Function List

order is important to consider when you use this function with certain forecasting and statistical
functions.

Example

In the Sample Basic cube:

@CHILDREN (Market)

returns East, West, South, and Central (in that order).

@CHILDREN (Margin)

returns Sales and COGS (in that order).

See Also

° @ANCESTORS

* (@DESCENDANTS
* @ICHILDREN

* @ISCHILD

°* @SIBLINGS

@COMPOUND

The @COMPOUND calculation function for Essbase calculates compound interest.

This function compiles the proceeds of a compound interest calculation. The calculation is
based on the balances of the specified member at the specified rate across the specified
range.

Syntax

@COMPOUND (balanceMbr, rateMbrConst [, XrangeList])

Parameters

balanceMbr

Single member specification representing the beginning balance across a range of periods.
The input can be either one deposit or a series of deposits. If balanceMbr is a constant, then
Essbase assumes balanceMbr to be a single deposit in the first member of rangeList or
XrangelList. This is equivalent to entering the constant value in the first member in the range
followed by zeros. The function keeps track of each deposit separately, but returns a
composite value. If balanceMbr is a member, or a range, then it is assumed to be a series of
deposits.

rateMbrConst

Single member specification, variable name, or numeric expression in decimal form. This
represents the interest rate per time period specified in the rangeList or XrangeList. If your
interest is compounded monthly, this value would be the annual interest rate divided by 12.

ORACLE 549

ORACLE

Chapter 2
Calculation Function List

XrangeList

Optional parameter specifying the range over which the interest is compounded. The last
value in the range is the total compounded interest for that range. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

The following example determines the compound interest of a series of deposits, based on a
credit rate of 0.0525, across a series of fiscal years:

"Compound Interest"=@COMPOUND (Deposit,"Credit Rate",FY1998:FY2001,FY2002);

This example produces the following report:

FY1998 FY1999 FY2000 FY2001 FY2002

Credit Rate 0.0525 0.0525 0.0525 0.0525 0.0525
Compound Interest 0 105 110.5125 273.8144 288.1897
Deposit 0 2,000 0 3,000 0

The following example assumes a Year dimension is added to Sample Basic. It calculates
compound interest using a multidimensional range.

FIX ("100-10", "New York")

"Compound Interest" = @COMPOUND (Deposit,"Credit Rate",@XRANGE ("2011"->"Sep",
"2012"->"Mar")) ;

ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@INTEREST

2-50

Chapter 2
Calculation Function List

@COMPOUNDGROWTH

ORACLE

The @COMPOUNDGROWTH calculation function for Essbase is a financial function that
calculates compound growth.

This function calculates a series of values that represents a compound growth of values (the
first nonzero value in the specified member across the specified range of members) across
time.

The growth factor is calculated by multiplying the growth rate in the current time period by the
previous period's result, yielding a compounded value. You can change the growth rate from
period to period by placing a nonzero value in the current period's rateMbrConst cell.

Syntax

@COMPOUNDGROWTH (principalMbr, rateMbrConst [, XrangeList])

Parameters

principalMbr
Member specification representing the initial value to be compounded. The input line must be
a single deposit.

rateMbrConst

Single member specification, variable name, or expression which provides a constant value.
This value can change across rangelList, making the new value be the new compound rate. If
the value in the current period is zero, the compound rate is equal to zero, and the principal
does not change.

XrangeList

Optional parameter specifying the time period over which the interest is calculated. If a range
is not specified, Essbase uses the level 0 members from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

The following example determines the compound growth of Principal Amount based on Growth
Rate across a series of fiscal years.

"Compound Growth"=@COMPOUNDGROWTH ("Principal Amount",
"Growth Rate",FY1998:FY2003);

This example produces the following report:

FY1998 FY1999 FY2000 FY2001 FY2002 FY2003

2-51

Chapter 2
Calculation Function List

Principal Amount 2,000 2,000 2,000 3,000 2,500 -500
Growth Rate 0.0525 0 0 0 0 0
Compound Growth 2,105 2,105 2,105 2,105 2,105 2,105

The following example assumes a Year dimension is added to Sample Basic. It calculates
compound growth using a multidimensional range.

FIX ("100-10", "New York")

"Compound Growth" = @COMPOUNDGROWTH ("Principal Amount","Growth
Rate", @XRANGE ("2011"->"Sep", "2012"->"Mar"));

ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangelList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@GROWTH

@CONCATENATE

ORACLE

The @CONCATENATE calculation function for Essbase joins two character strings.

This function returns a character string that is the result of appending one character string
(String2) to the end of another character string (String1).

This function can be nested to concatenate more than two strings (See Example 2
(@CONCATENATE)).

Syntax

@CONCATENATE (Stringl, String?2)

Parameters

Stringl
A string or a function that returns a string

String2
A string or a function that returns a string

Notes

e To use a member name as a character string, use @NAME with the member name.

2-52

Chapter 2
Calculation Function List

e To use the resulting character string as a member name, use @MEMBER with
@CONCATENATE; for example,

@MEMBER (€CONCATENATE ("2000_", QTR1));

Example

The following examples are based on the Sample Basic database:

Example 1 (@QCONCATENATE)

The following function statement puts the string Item in front of the name of the member
currently being processed in the Product dimension; for example, if the current member being
calculated is 100-10, the result is Item100-10:

@CONCATENATE ("Item", @NAME (@CURRMBR (Product)))

Example 2 (@CONCATENATE)

To concatenate more than two strings, you can nest multiple instances of the
@CONCATENATE function. The following function statement returns string values starting with
the current member of the Year dimension, followed by an underscore, followed by the current
member of the Measures dimension; for example, if the current members being calculated are
Qtrl and Sales, the result is Qtrl_Sales:

@CONCATENATE (@NAME (RCURRMBR (Year)) , @CONCATENATE (" ", @NAME (@CURRMBR (Measures)))
)

See Also

* @MEMBER

* @NAME

* @SUBSTRING

@CORRELATION

ORACLE

The @CORRELATION calculation function for Essbase calculates the relationship between
two data sets.

This function returns the correlation coefficient between two parallel data sets (XrangeListl and
XrangelList2). The correlation coefficient determines the relationship between two data sets.

Syntax

@CORRELATION (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, XrangeListl,
XrangeList?2)
Parameters

SKIPNONE
Includes all cells specified in the two data sets, regardless of their content, during calculation
of the correlation coefficient.

2-53

Chapter 2
Calculation Function List

SKIPMISSING
Excludes all #MISSING values from the two data sets during calculation of the correlation
coefficient.

SKIPZERO
Excludes all zero (0) values from the two data sets during calculation of the correlation
coefficient.

SKIPBOTH
Excludes all zero (0) values and #M1SSING values from the two data sets during calculation of
the correlation coefficient.

XrangeListl

The first of two parallel data sets.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about XrangeList, see Range List Parameters in the topic Range and
Financial Functions.

XrangeList2

The second of two parallel data sets.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

Notes

e For complete information about using the @RANGE function, see @RANGE. For more
information about XrangeList, see Range List Parameters in the topic Range and Financial
Functions.

* The XrangeListl and XrangeList2 parameters must have the same number of data points.
If the two data sets have different numbers of data points, this function returns #MISSING.

e This function returns #MISSING if XrangeListl and XrangeList2 (1) are empty, (2) contain
only #MTSSING values, or (3) have a standard deviation of O (all values are constant).

e This function treats #MISSING values as zero (0) values, unless SKIPMISSING or
SKIPBOTH is specified. If a value in XrangeList1 is #MISSING, and SKIPMISSING is
specified, the value's corresponding value in XrangelListl is treated as #MISSING. (That is,
both values are deleted before calculation.) SKIPZERO and SKIPBOTH work similarly.

e This function returns values from -1 to 1.

e If you use a member set function to generate a member list for this function (for example,
@SIBLINGS), to ensure correct results, consider the order in which Essbase sorts the
generated member list. For more information, see the topic for the member set function
you are using.

e The equation for the correlation coefficient is:

ORACLE -~

Chapter 2
Calculation Function List

_ Cov(X F)
= Tx * Ty

5o that
-1= :C'x,_}’ =1

and
1
i=

X

i, stands for the standard dewiation of X = {xz- }z._l

7, stands for the standard dewiation of ¥ = Iy }:_1

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Sales Correl. The calculation script calculates the
correlation coefficient for a set of members (Sales for the children of Qtrl and Qtr2). Because
the calculation script fixes on Jun, the results are placed in Sales Correl->Jun.

This example uses the @RANGE function to generate XrangeListl and XrangeList2:
FIX (June)
"Sales Correl"=@CORRELATION (SKIPNONE,

@RANGE (Sales, @CHILDREN (Qtrl)), @RANGE (Sales, @CHILDREN (Qtr2))) ;
ENDFIX

This example produces the following report:

Colas Actual New York
Sales Sales Correl
Jan 678 #MI
Feb 645 #MI
Mar 675 #MI
Apr 712 #MI
May 756 #MI
Jun 890 0.200368468

The following example assumes a Year dimension is added to Sample Basic. It calculates a
correlation coefficient using cross-dimensional members in the data sets.

FIX (Product)
"Sales Correl" = @CORRELATION (SKIPNONE, @XRANGE ("2011"->"Sep", "2012"-

ORACLE 5 e

Chapter 2
Calculation Function List

>"Mar"), @XRANGE ("2012"->"Sep", "2013"->"Mar"));
ENDFIX

The correlation above is calculated across the following two multidimensional ranges specified
by XrangeListl and XrangeList2:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

2012->Sep
2012->0ct
2012->Nov
2012->Dec
2013->Jan
2013->Feb
2013->Mar

See Also

@RANGE

@COUNT

The @COUNT calculation function for Essbase returns the number of values in a data set.

This function returns the number of data values in the specified data set (XrangeList).
Syntax

@COUNT (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, XrangeList)

Parameters

SKIPNONE
Includes all cells specified in the data set, regardless of their content, during calculation of the
count.

SKIPMISSING
Excludes all #M1SSING values from the data set during calculation of the count.

SKIPZERO
Excludes all zero (0) values from the data set during calculation of the count.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from the data set during calculation of the
count.

ORACLE 56

ORACLE

Chapter 2
Calculation Function List

XrangeList

A list of numeric values. Referred to generically throughout this topic as "the data set."

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about XrangeList, see Range List Parameters in the topic Range and
Financial Functions.

Notes

This function always returns an integer greater than or equal to 0.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Prod Count. This example calculates the count of all
products for which a data value exists and uses the @RANGE function to generate expList:

FIX (Product)
"Prod Count" = @COUNT (SKIPMISSING, @RANGE (Sales, @CHILDREN (Product)));
ENDFIX

This example produces the following report. Since SKIPMISSING is specified in the calculation
script, the #M1 values for Diet Drinks are skipped during the product count.

Jan New York
Actual Budget
Sales Colas 678 640
Root Beer 551 530
Cream Soda 663 510
Fruit Soda 587 620
Diet Drinks #MI #MI
Product 2479 2300
Prod Count Product 4 4

The following example assumes a Year dimension is added to Sample Basic. It counts data
values using cross-dimensional members in the data set.

FIX (Product)
"Count" = @COUNT (SKIPMISSING,@XRANGE ("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangelList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan

2-57

Chapter 2
Calculation Function List

2012->Feb
2012->Mar

See Also

* @ISRANGENONEMPTY
« @RANGE

@CREATEBLOCK

ORACLE

The @CREATEBLOCK calculation function for Essbase generates empty target blocks.

This function creates a block or blocks for a sparse member name or a sparse member
combination, and sets dense values in the newly created block to #MISSING.

Sometimes, new blocks are not desired; for example, when they contain no other values. In
large databases, creation and processing of unneeded blocks can increase processing time
and storage requirements.

This advanced-level function can help you use bottom-up calculation to achieve faster
performance. It is useful for generating empty target blocks that can then be traversed during
bottom-up processing, and populated with data at that time. It is most useful in those situations
where blocks are not automatically created by the calculator; for example, during processing of
a dense formula where the target blocks are from a different, sparse dimension.

Whereas the allocation functions (@ALLOCATE and @MDALLOCATE) also create the
necessary target blocks, those functions are intended specifically for allocating values. The
purpose of @CREATEBLOCK is only to enable rapid block creation, without reading or writing
data.

Note:

* This function is not supported in outline member formulas.

« The DATACOPY calculation command also creates blocks on demand.

Syntax

@CREATEBLOCK (mbrName |mbrList)

Parameters

mbrName
Any single, sparse member name or a sparse member combination or a function that returns a
single member, member list, or member combination. For example:

e Single member name: ["200-20"]
e Combination of sparse members: ["100-10"->"New York"]

e Member function returning mbrName or mbrList: @ANCESTORS ("New York")

2-58

ORACLE

Chapter 2
Calculation Function List

Notes

e This function does nothing if the block for the specified member combination already
exists.

* mbrName|mbrList can be explicitly stated or can be returned by a function.

e If mbrName is a cross-dimensional member (such as "100-10"->"New York"), this function
creates a block for the combination specified.

* When you use this function in a calculation script, use it within a FIX statement; for
example, FIX on the member for which blocks should be created. Although FIX is not
required, using it may improve calculation performance.

e If you use this function in a member formula, your formula should look like this:
@CREATEBLOCK (...).

e This function does not return a value; rather, it creates the required blocks in the database
with a #MISSING value.

e On sparse dimension members, a formula without @ CALCMODE(BOTTOMUP) is
executed in top-down mode, creating all possible blocks. However, if the dimension
member is dense, it is executed as bottom-up, creating new blocks only based on the
existing ones. Therefore, @CREATEBLOCK will not create dense blocks on an empty
cube.

e For more discussion of top-down and bottom-up processing, see @CALCMODE.

Example

The following calculation script example uses the Sample.Basic database, but assumes that
only the 100-10 and New York block is loaded. The member formula for Sales is
@CREATEBLOCK("100").

/* Calling @CREATEBLOCK inside member formula (Sales) */
FIX("100-10", "New York")
"Sales" (
@CREATEBLOCK ("100");

)
ENDFIX

The script creates all possible sparse blocks matching the FIX...ENDFIX statement. In this
case, only the block "100"->"New York" is created.

In the following calculation script example, @CREATEBLOCK is not used in any member
formula, so it must be assigned in the script using mbrName =.

/* Calling @CREATEBLOCK outside member formula */
Budget = @CREATEBLOCK ("100");

The existing value for Budget member in the current processing block is unchanged, because
@CREATEBLOCK does not return a value (see first Note).

2-59

@CURGEN

ORACLE

Chapter 2
Calculation Function List

The @CURGEN calculation function for Essbase returns the current generation number.

This function returns the generation number of the current member combination for the
specified dimension. This number represents the number of members separating the current
member from the top-most member of the dimension.

Syntax

@CURGEN (dimName)

Parameters

dimName
Single dimension name specification. dimName must be the name of the top-most member of
the dimension. It cannot be another member name from within the dimension.

Notes

» If the current member of the specified dimension is an implied share member, the member
generation returned is the same generation as the stored member. For example, in Sample
Basic, Inventory, a member of the Measures dimension, is an implied share member:

Inventory
Opening Inventory (+)
Additions (~)
Ending Inventory (~)

The generation value of Inventory is the same as the stored member under it, Opening
Inventory. For this example, Opening Inventory is at generation 3. When Inventory is the
current member, @CURGEN (Measures) returns generation 3.

Example

Given the following database structure:

Year

otrl

Jan, Feb, Mar
Qtr2

Apr, May, Jun
Qtr3

Jul, Aug, Sep
Qtr4

Oct, Nov, Dec

@CURGEN provides the following results for the members shown:

Formula Current Member Value
Position = QCURGEN (Year); Year 1
Position = QCURGEN (Year); Qtr2 2
Position = QCURGEN (Year); Oct 3

2-60

@CURLEV

ORACLE

Chapter 2
Calculation Function List

See Also
e @CURLEV
e @GEN

The @CURLEYV calculation function for Essbase returns the current level number.

This function returns the level number of the current member combination for the specified
dimension. This number represents the number of members that separates the current
member from its bottom-most descendant.

Syntax

@CURLEV (dimName)

Parameters

dimName
Single dimension name specification. dimName must be the name of the top-most member of
the dimension. It cannot be another member name from within the dimension.

Notes

» If the current member of the specified dimension is an implied share member, the member
level returned is the same level as the stored member. For example, in Sample Basic,
Inventory, a member of the Measures dimension, is an implied share member:

Inventory
Opening Inventory (+)
Additions (~)
Ending Inventory (~)

The value of Inventory results only from the value of Opening Inventory.

When Inventory is the current member @CURLEV (Measures) returns level 0.

Example

Given the following time dimension structure:

Year

Qtrl

Jan, Feb, Mar
Qtr2

Apr, May, Jun
Qtr3

Jul, Aug, Sep
Qtri4

Oct, Nov, Dec

2-61

Chapter 2
Calculation Function List

@CURLEV provides the following results for the members shown:

Formula Current Member Value
Position = QCURLEV (Year); Year 2
Position = QCURLEV (Year); Qtr3 1
Position = @CURLEV (Year); Aug 0

See Also

¢« @CURGEN

e @LEV

@CURRMBR

ORACLE

The @CURRMBR calculation function for Essbase returns the current member.

This function returns the member that is currently being calculated in the specified dimension
(dimName). This function can be used as a parameter of another function, where that
parameter is a single member or a list of members.

Syntax

@CURRMBR (dimName)

Parameters

dimName
A single dimension name.

Notes

¢ You cannot use this function in a FIX statement.
¢ You cannot use this function on the left-hand side of a formula.

* The time required for retrieval and calculation may be significantly longer if this function is
in a formula attached to a member tagged as Dynamic Calc or Dynamic Calc and Store.

Caution:

If you use this function to return a member name which is then concatenated with
other names to get a final member name, it may result in an invalid member name,
depending on the current intersection being calculated. For example:

@MEMBER (@CONCATENATE (@NAME (@CURRMBR ("Account"))," Total"))

Example

In the Sample Basic cube,

@CURRMBR (Year) ;

returns Jan if the current member of Year being calculated is Jan.

2-62

Chapter 2
Calculation Function List

As a more complex example, consider the following formula in the context of the Sample Basic
database. Assume that the Measures dimension contains an additional member, Average
Sales.

"Average Sales"
(IF(QRISLEV (Product,0))
Sales;
ELSE
@AVGRANGE (SKIPNONE, Sales, @CHILDREN (@CURRMBR (Product))) ;
ENDIF;);

This formula populates each upper-level member of the Product dimension (100, 200) at
Average Sales. To calculate Average Sales, the Sales values for the level 0 members of
Product are averaged and placed in their respective parent members. The Average Sales
values for the level 0 Product members are the same as the Sales values, as specified by the
IF statement in the calculation script.

This example produces the following report:

Jan New York Actual
Sales Average Sales

100-10 5 5
100-20 10 10
100-30 15 15

100 30 10
200-10 20 20
200-20 25 25
200-30 30 30
200-40 35 35

200 110 27.5

300 #MI #MI

400 #MI #MI

Diet 35 11.67
Product 140 35
See Also
@CURRMBRRANGE

@CURRMBRRANGE

The @CURRMBRRANGE calculation function for Essbase generates a member list that is
based on the relative position of the current member being calculated.

Syntax

@CURRMBRRANGE (dimName, {GEN|LEV}, genLevNum, [startOffset], [endOffset])

Parameters

dimName
Name of the dimension for which you want to return the range list.

ORACLE 563

Chapter 2
Calculation Function List

GEN|LEV
Defines whether the range list to be returned is based on a generation or a level within the
dimension.

genLevNum
Integer value that defines the absolute generation or level number of the range list to be
returned.

startOffset
Defines the first member in the range to be returned.

e A null value returns the first member of the specified genLevNum.

e Aninteger value returns the member name relative to the current member being
calculated.

e A negative value specifies a member prior to the current member being calculated in the
dimension.

e Avalue of 0 returns the name of the member currently being calculated.

e A positive value specifies a member after the current member being calculated in the
dimension.

endOffset
Defines the last member in the range to be returned.

« A null value returns the last member of the specified genLevNum.

* Aninteger value returns the member name relative to the current member being
calculated.

* A negative value specifies a member prior to the current member being calculated in the
dimension.

« Avalue of 0 returns the name of the member currently being calculated.
* A positive value specifies a member after the current member being calculated in the
dimension.

Notes

* You cannot use this function in a FIX statement.

e The first three parameters of this function (dimName {GEN|LEV},genLevNum) provide a
member range list. The startOffset and endOffset parameters create a subset of this list.
For example, consider the following syntax in the context of the Sample Basic database:

@CURRMBRRANGE (Year, LEV,0,-1,1)

In this example, the full range list contains the level 0 members of the Year dimension
(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec). If the current member being
calculated in the Year dimension is Jan, the startOffset and endOffset parameters reduce
this list to (Jan, Feb). Since there is no member prior to Jan in the full range list, only two
members are returned: Jan itself and the member after it, Feb. If the current member being
calculated is Feb, the subset list would include three members: Jan, Feb, Mar.

e Currently, this function can be used only within range and financial functions, such as
@AVGRANGE, @MAXRANGE, @COMPOUND, and @SHIFT.

Example

Example 1

ORACLE 564

Chapter 2
Calculation Function List

Average Inventory is calculated by summing opening inventories from the first month of the
year to the current period plus one period, and dividing the result by the number of periods to
date plus one period. This calculation is accomplished by defining the @CURRMBRRANGE
function within the rangeList parameter of the @AVGRANGE function.

"Average Inventory" = @AVGRANGE (SKIPNONE, "Opening Inventory",
@CURRMBRRANGE (Year, LEV, 0, , 1));

This example produces the following result:

Jan Feb Mar Apr Nov Dec
Opening Inventory 100 110 120 130 . . . 200 210
Average Inventory 105 110 115 120155 155

Since a null value is specified for startOffset, the average operations always begin at the first
member of the range list, Jan. The endOffset parameter, 1, specifies that the member after the
current member being calculated is included in each average operation. So, for Average
Inventory->Jan, the values for Jan and Feb are averaged; for <Average Inventory->Feb, the
values for Jan, Feb, and Mar are averaged; and so on. The values for Nov and Dec are the
same since there is no member after Dec in the range list.

Example 2

Inventory Turnover is calculated by summing period-to-date Sales and dividing the result by
the Average Inventory.

Turnover = @SUMRANGE (Sales, @CURRMBRRANGE (Year, LEV, 0, , 0))/"Average
Inventory"

which produces the following result:

Jan Feb Mar Apr
Average Inventory 110 116.7 122.5 126
Sales 40 44 48 52
Turnover 0.36 0.72 1.08 1.46

Example 3

Consider the following formula:

@CURRMBRRANGE (Year, LEV, @CURLEV ("Year"),-1,1)

The full range list contains the members of the Year dimension at a particular level. The level is
determined by taking the level of the current member being calculated. For example, if the
current member being calculated is Jan, the full range list contains all level 0 members of Year
dimension (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec). The startOffset and
endOffset parameters reduce this list to (Jan, Feb). As there is no member prior to Jan in the
full range list, only two members are returned: Jan and Feb. If the current member being
calculated is Feb, the subset list includes three members: Jan, Feb, Mar.

ORACLE 565

Chapter 2
Calculation Function List

Note:

The usage demonstrated by this example would require RTDEPCALCOPTIMIZE
configuration to be set to FALSE.

@DATEDIFF

ORACLE

The @DATEDIFF calculation function for Essbase returns the difference between two input
dates.

This function returns the difference (number) between two input dates in terms of the specified
date-parts, following a standard Gregorian calendar.

Syntax

@DATEDIFF (datel, date2, date part)

Parameters

datel

A number representing the input date between January 1, 1970 and Dec 31, 2037. The
number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this
number, use any of the following functions: @TODAY, @ TODATEEX, @DATEROLL.
Date-time attribute properties of a member can also be used to retrieve this number. For
example, GAttributeVal ("Intro Date"); returns the product introduction date for the current
product in context.

date2
A second input date. See datel.

date_part
Defined using the following rule:

date part ex ::= DP_YEAR | DP QUARTER |DP MONTH | DP WEEK | DP_ DAY |
DP DAYOFYEAR | DP WEEKDAY

Defined time components as per the standard calendar:
« DP_YEAR - Year of the input date.

« DP_QUARTER - Quarter of the input date.
DP_MONTH - Month of the input date.

« DP_WEEK - Week of the input date.

* DP_DAY - Day of the input date.

Notes

Based on the input date_patrt, the difference between the two input dates is counted in terms of
time component specified.

Example: For input dates June 14, 2005 and Oct 10, 2006,
« DP_YEAR returns the difference in the year component. (2006 - 2005 = 1)

2-66

Chapter 2
Calculation Function List

- DP_QUARTER returns the distance between the quarters capturing the input dates.
(Quarter 4, 2006 - Quarter 2, 2005 = 6)

« DP_MONTH returns the distance between the months capturing the input dates. (Oct 2006
- June 2005 = 16)

« DP_WEEK returns the distance between the weeks capturing the input dates. Each
Standard calendar week is defined to start on Sunday and it spans 7 days. (Oct 10, 2006 -
June 14, 2005 = 69)

- DP_DAY returns the difference between the input dates in terms of days. (483 days)

Example

Assume the outline has two date type members, MyDatel and MyDate2.

Profit=@DateDiff (MyDatel, MyDate2, DP WEEK);
Profit=@DatePart (MyDatel, DP_YEAR);
MyDate2=@DateRoll (MyDatel, DP_MONTH), 10);

See Also

* @ATTRIBUTEVAL
° @DATEPART

* @DATEROLL

* @FORMATDATE

* @TODATEEX

* @TODAY

@DATEPART

ORACLE

The @DATEPART calculation function for Essbase returns a numeric representation of a date
component.

This function returns the Year/Quarter/Month/Week/Day/DayOfYear/Weekday as a number,
given the input date and a date part, following the standard Gregorian calendar.

Syntax

@DATEPART (date, date part ex)

Parameters

date

A number representing the input date between January 1, 1970 and Dec 31, 2037. The
number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this
number, use any of the following functions: @TODAY, @ TODATEEX, @DATEROLL.
Date-time attribute properties of a member can also be used to retrieve this number. For
example, @AttributevVal ("Intro Date"); returns the product introduction date for the current
product in context.

2-67

ORACLE

Chapter 2
Calculation Function List

date_part_ex
Defined using the following rule:

date part ex ::= DP_YEAR | DP QUARTER |DP MONTH | DP WEEK | DP_DAY |
DP_DAYOFYEAR | DP WEEKDAY

Defined time components as per the standard calendar:
e DP_YEAR - Year of the input date.

e DP_QUARTER - Quarter of the input date.

e DP_MONTH - Month of the input date.

e DP_WEEK - Week of the input date.

e DP_DAY - Day of the input date.

Notes

Based on the requested time component, the output is as follows:

* DP_YEAR returns the year of the input date in yyyy format.

« DP_QUARTER returns the quarter of the year (1 to 4) for the input date.
 DP_MONTH returns the month of the year (1 to 12) for the input date.

* DP_WEEK returns the week of the year for the input date (1 to 54).

 DP_WEEKDAY returns the week day of the input date. (1 - Sunday, 2 - Monday, ... 7 -
Saturday).

« DP_DAYOFYEAR returns the day of the year numbering (1 to 366).
* DP_DAY returns the day of the month (1 to 31).
Example: For June 14, 2005,

DP_YEAR returns 2005 (the year member, in yyyy format).
DP_QUARTER returns 2 (Second quarter of the year)
DP_MONTH returns 6 (Sixth month of the year)

DP_WEEK returns 24 (24th week of the year)

DP_WEEKDAY returns 4 (for Wednesday. Sunday = 1)

DP DAYOFYEAR returns 165 (165th day of the year)

DP DAY returns 14 (14th day of the month)

Example

Assume the outline has two date type members, MyDatel and MyDate2.

Profit=@DateDiff (MyDatel, MyDate2, DP WEEK);
Profit=@DatePart (MyDatel, DP_YEAR);
MyDate2=@DateRoll (MyDatel, DP_MONTH), 10);

2-68

Chapter 2
Calculation Function List

See Also

* @ATTRIBUTEVAL
e @DATEDIFF

* @DATEROLL

* @FORMATDATE

* @TODATEEX

c @TODAY

@DATEROLL

ORACLE

The @DATEROLL calculation function for Essbase adds/subtracts time intervals to/from a
date.

To the given date, this function rolls (adds or subtracts) a number of specific time intervals,
returning another date. This function assumes a standard Gregorian calendar.

Syntax

@DATEROLL (date, date part, number)

Parameters

date

A number representing the date between January 1, 1970 and Dec 31, 2037. The number is
the number of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use
either of the following functions: @ TODAY, @ TODATEEX.

Date-time attribute properties of a member can also be used to retrieve this number. For
example, GAttributeval ("Intro Date"); returns the product introduction date for the current
product in context.

date_part
Defined using the following rule:

date part ex ::= DP_YEAR | DP QUARTER |DP MONTH | DP WEEK | DP_DAY |
DP_DAYOFYEAR | DP WEEKDAY

Defined time components as per the standard calendar:
e DP_YEAR - Year of the input date.

e DP_QUARTER - Quarter of the input date.

e DP_MONTH - Month of the input date.

e DP_WEEK - Week of the input date.

e DP_DAY - Day of the input date.

number
Number of time intervals to add or subtract.

Notes

Based on input date_part and dateroll number, the date is moved forward or backward in time.

2-69

Chapter 2
Calculation Function List

Example: For input date June 14, 2005 and input dateroll number 5,

« DP_YEAR adds 5 years to the input date. (June 14, 2010)

e DP_QUARTER adds 5 quarters to the input date. (June 14, 2005 + 5 quarters = June 14,
2005 + 15 months = Sept 14, 2006)

¢ DP_MONTH adds 5 months to the input date (June 14, 2005 + 5 months = Nov 14, 2005)

- DP_WEEK adds 5 weeks to the input date (June 14, 2005 + 5 weeks = June 14, 2005 + 35
days = July 19, 2005)

« DP_DAY adds 5 days to the input date. (June 14, 2005 + 5 days = June 19, 2005)

Example

Assume the outline has two date type members, MyDatel and MyDate2.

Profit=@DateDiff (MyDatel, MyDate2, DP WEEK);
Profit=@DatePart (MyDatel, DP YEAR);
MyDate2=@DateRoll (MyDatel, DP MONTH, 10);

See Also

* @ATTRIBUTEVAL
e @DATEDIFF

° @DATEPART

* @FORMATDATE

* @TODATEEX

« @TODAY

@DECLINE

ORACLE

The @DECLINE calculation function for Essbase calculates the depreciation of an asset.

This function calculates the depreciation of an asset for the specified period, using the
declining balance method. The factor by which the declining balance depreciates the assets is
specified using factorMbrConst. For example, to calculate a double declining balance, set
factorMbrConst to 2.

Syntax

@DECLINE (costMbr, salvageMbrConst, lifeMbrConst, factorMbrConst [,
XrangeList])

Parameters

costMbr

Single member specification representing the starting values of the assets. More than one
asset can be input and depreciated across the specified range. The function calculates each
asset separately.

2-70

Chapter 2
Calculation Function List

salvageMbrConst
Single member specification, variable name, or numeric expression that provides a constant
value. This value represents the value of the asset at the end of the depreciation.

lifeMbrConst
Single member specification, variable name, or numeric expression that provides a constant
value. The value represents the number of periods over which the asset is depreciated.

factorMbrConst
Single member specification, variable name, or numeric expression that provides a constant
value. The value represents the factor by which the asset is depreciated.

XrangeList

Optional parameter specifying the periods over which the function is calculated. More than
one asset can be depreciated. If a range is not specified, Essbase uses the level 0 members
from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, seeRange List Parameters in the topic
Range and Financial Functions.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

The following example calculates the depreciation of Asset for the specified series of fiscal
years.

"Decline Dep" = @DECLINE (Asset,Residual,Life,2,FY2000:FY2001,FY2002,FY2003);

This example produces the following report:

FY2000 FY2001 FY2002 FY2003

Asset 9,000 0 0 0
Residual 750 0 0 0
Life 5 0 0 0
Decline Dep 3,600 2,160 1,296 778

The following example assumes a Year dimension is added to Sample Basic. It calculates
depreciation using a multidimensional range.

FIX ("100-10", "New York")

"Decline Dep" = @DECLINE (Asset,Residual,Life, 2, @XRANGE ("2011"->"Sep", "2012"-
>"Mar"));

ENDFIX

ORACLE 71

Chapter 2
Calculation Function List

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

* @GROWTH
* @SLN

@DESCENDANTS

ORACLE

The @DESCENDANTS calculation function for Essbase returns a member's descendants.

This function returns all descendants of the specified member, or those down to the specified
generation or level. This function excludes the specified member.

Syntax

@DESCENDANTS (mbrName [, genLevNum| genLevName])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

genLevNum

Optional. An integer value that defines the absolute generation or level number down to which
to select the members. A positive integer defines a generation number. A value of 0 or a
negative integer defines a level number.

genLevName
Optional. Level name or generation name down to which to select the members.

Notes

* You can use this function as a parameter of another function, where that parameter is a list
of members.

» Essbase sorts the generated list of members starting with the nearest descendant of the
member, followed by the next nearest descendant of the member, and so on. In the
Sample.Basic database, if you specify @DESCENDANTS (100), Essbase returns 100-10,
100-20, 100-30 (in that order). This order is important to consider when you use this
function with certain forecasting and statistical functions.

e Toinclude the specified member, use @IDESCENDANTS.

e To include descendants of shared members, use @RDESCENDANTS and
@IRDESCENDANTS.

2-72

Chapter 2
Calculation Function List

Example
In the Sample Basic database:

@DESCENDANTS (East)

returns New York, Massachusetts, Florida, Connecticut, and New Hampshire (in that order).

@DESCENDANTS (Profit)

returns Margin, Sales, COGS, Total Expenses, Marketing, Payroll, and Misc (in that order).

@DESCENDANTS (Market, 2)

returns East, West, South, and Central (in that order).

@DESCENDANTS (Diet, 0)

returns 100-20, 200-20, and 300-30 (in that order).

See Also

* @ANCESTORS

¢ @CHILDREN

* (@IDESCENDANTS

°* (@ILDESCENDANTS
* @IRDESCENDANTS
* (@ISDESC

* (@LDESCENDANTS

* (@RDESCENDANTS
* @SIBLINGS

@DISCOUNT

ORACLE

The @DISCOUNT calculation function for Essbase calculates a discounted cash flow.

This function calculates a value discounted by the specified rate, from the first period of the
range to the period in which the amount to discount is found. The answer is returned in the
same period. More than one value can be discounted simultaneously in this manner.
Syntax

@DISCOUNT (cashMbr, rateMbrConst [, XrangeList])

Parameters

cashMbr
Member specification representing the value you want to discount from the last period in
XrangelList to the current period.

2-73

ORACLE

Chapter 2
Calculation Function List

rateMbrConst

Member specification, variable name, or numeric expression which provides a constant value.
The value represents the rate per period which cashMbr is discounted. It is a decimal value,
not a percent.

XrangeList

Optional parameter specifying the period over which the discount is calculated. If a range is
not specified, Essbase uses the level 0 members from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

The following example discounts the values in Cash by the rates in Credit Rate and places the
results in Discount Amount for each fiscal year.

"Discount Amount" = @DISCOUNT (Cash, "Credit Rate",FY1999:FY2002,FY2003);

This example produces the following report:

FY1999 FY2000 FY2001 FY2002 FY2003

Cash 0.00 0.00 1000.00 1000.00 0.00
Credit Rate 0.00 0.00 0.05 0.05 0.00
Discount Amount #MI #MI 863.84 822.70 #MI

The following example assumes a Year dimension is added to Sample Basic. It calculates
discount using a multidimensional range.

FIX ("100-10", "New York")

"Discount Amount" = @DISCOUNT (Cash,"Credit Rate",@XRANGE ("2011"->"Sep",
"2012"->"Mar"));

ENDFIX

The above calculation is performed across the following multidimensional range specified by
Xrangelist:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

2-74

Chapter 2
Calculation Function List

@ENUMVALUE

ORACLE

The @ENUMVALUE calculation function for Essbase returns the internal numeric value for a
text value in a text list.

Syntax

@ENUMVALUE ([mbrName,]enum string)

Parameters

mbrName

Optional. Any valid single member name, or a function that returns a single member. If given
as the first argument, @ENUMVALUE checks the text list associated with that member, and
returns the numeric value of the character string provided in the second argument.

enum_string

If mbrName is given as the first argument, this is a char_string_literal of one of the text strings
represented in the text list.

If no mbrName is given as first argument, this is a string of the format text 1ist name,

char string literal, where:

* text _list_name is the name of a text list, or of a member that is associated with a text list.

e char_string_literal is one of the text values represented in the text list.

Example

The following examples are based on the Facility Rating cube, which you can download from
the Files catalog under All Files > Gallery > Applications > Facility Rating. The cube includes a
text list named ResponseValues that has the following mappings: "Perfect" = 1, "Very Nice" =
2, "Nice" = 3, "Good some of the times" = 4, "No Opinion" = 5.

Example 1la: Using @ENUMVALUE in a member formula

The following example formula means: For every "Answer" to every "Office" within the
Geography of "USA", change the "Answer" to "Good some of the times" if the current "Answer"
is "No Opinion".

FIX (@IDESCENDANTS ("USA"))

"Office"™ (
IF ("Answer" == QENUMVALUE ("ResponseValues", "No Opinion"))
"Answer" = @ENUMVALUE ("ResponseValues", "Good some of the times");
ENDIF
);
ENDFIX

Example 1b: Using the text list’'s numeric values in a member formula

The following example formula does the same thing as the one in Example 1a, but this use
case is not recommended. It is less error-prone to use @ENUMVALUE to look up the value
from the text list. In the example below, the calculation script will validate even if the

2-75

@EQUAL

ORACLE

Chapter 2
Calculation Function List

assignment statement would lead to an out of range response value (a value not mapped in
the ResponseValues text list object).

FIX (Q@IDESCENDANTS ("USA"))
"Office" (
IF ("Answer" == 5)
"Answer" = 4;
ENDIF
)
ENDFIX

The @EQUAL calculation function searches an Essbase outline or hierarchy for member
names that match a string.

This function returns a member set of member names that match the specified token name.

This function can be used on unique and duplicate-name outlines.
Syntax

@EQUAL (tokenName, topMbrinHierarchy)

Parameters

tokenName

Token string value, representing the name of a member, with which to compare to members in
the outline, starting with member specified in topMbrinHierarchy. The specified token name
must not be qualified for duplicate members.

topMbrinHierarchy

A fully qualified name of a member in the outline on which to base the member search. The
specified member and its aliases, and all of its descendants, are included in the search.

To search the entire outline, provide an empty string ("") for this parameter. For example,
@EQUAL("100-10", "").

Example

The following examples are based on the following duplicate-name outline:

Product
100
100-10
100-10-10
100-20
100-30
200
200-10
200-20
200-30
300
300-10
300-20
Diet

2-76

@EXP

ORACLE

Chapter 2
Calculation Function List

100-10
100-10-11
200-10
300-10
Bottle
200-10
300-20

@EQUAL("100-10", "Product")

Returns the members [Diet].[100-10] and [100].[100-10].

@EQUAL("100-10", "Diet")

Returns the member [Diet].[100-10].

See Also
« @EXPAND
e @LIKE

* @MBRCOMPARE
° @MBRPARENT
* @NOTEQUAL

The @EXP calculation function for Essbase returns the exponent of a numeric expression.

This function returns the exponent of a specified expression; that is, the value of e (the base of
natural logarithms) raised to the power of the specified expression.

Syntax

@EXP (expression)

Parameters

expression
Single member specification, variable name, function, or other numeric expression. If less than
-700 or greater than 700, Essbase returns #MISSING.

Example

The following example is based on a variation of Sample Basic:

Index = QEXP("Variance %"/100);

2-77

@EXPAND

ORACLE

Chapter 2
Calculation Function List

This example produces the following result:

East West South Central
Variance % 10.7 10.9 3.6 3.6
Index 1.11293 1.11516 1.03666 1.03666
See Also
@LN

The @EXPAND calculation function for Essbase expands a member search by calling another
function.

This function expands a member search by calling a member set function for each member in
a member list. The members returned by this function are added to the existing member set.
Duplicate members are not removed from the member set.

This function can be used on unique and duplicate-name outlines.
Syntax

@EXPAND (mbrSetFunction, mbrList, [, genLevNum] [, LAYERONLY | ALL][,
topMbrinHierarchy])

Parameters

mbrSetFunction
One of the following member set functions, which return a list of members:

* @ANCESTORS

e @IANCESTORS

* @CHILDREN

* @ICHILDREN

e (@DESCENDANTS
* @IDESCENDANTS
+ @EQUAL

° @MBRPARENT

e @SIBLINGS

e @ISIBLINGS
mbrList

A comma-delimited list of members grouped together using @LISTor a member set function
(such as @DESCENDANTS) that returns a list of members.

genLevNum

Optional: This argument applies only if you specify @ANCESTORS, @IANCESTORS,
@DESCENDANTS, or @IDESCENDANTS for mbrSetFunction.

2-78

ORACLE

Chapter 2
Calculation Function List

The integer value that defines the absolute generation or level number up to which to select
members. A positive integer defines a generation number. A value of O or a negative integer
defines a level number.

LAYERONLY

Optional: This argument applies only if you specify @ANCESTORS, @IANCESTORS,
@DESCENDANTS, or @IDESCENDANTS for mbrSetFunction.

Returns only those members at the specified generation or level (genLevNum) that match the
selection criteria.

If you specify this argument, you must specify genLeviNum.

ALL

Optional: This argument applies only if you specify @ANCESTORS, @IANCESTORS,
@DESCENDANTS, or @IDESCENDANTS for mbrSetFunction.

Returns all of the members that match the member selection criteria, starting with the
specified top member (topMbrinHierarchy).

If you specify this argument, you must specify topMbrinHierarchy.

topMbrinHierarchy

Optional: This argument applies only if you specify @ EQUAL for mbrSetFunction.

A fully qualified member name on which to base the member search. The specified member
and its aliases, and all of its descendants, are included in the search.

If you specify @EQUAL for mbrSetFunction, and you do not specify topMbrinHierarchy,
Essbase searches the entire outline.

Example

The following examples are based on the following duplicate-name outline:

Product

100

100-10
100-10-10

100-20
100-30

200
200-10
200-20
200-30

300
300-10
300-20

Diet
100-10

100-10-11

200-10
300-10

Bottle
200-10
300-20

@EXPAND ("@DESC", QLIST("Product"), -1, LAYERONLY)

2-79

Chapter 2
Calculation Function List

Returns all of the members under the Product dimension that are at
level 1, which are [100].[100-10], [Product].[200], [Product].[300],
[Diet].[100-10], and [Product].[Bottle].

@EXPAND ("@EQUAL", @EXPAND ("@CHILDREN", @LIST("[product].[100]", "[product].
(2001")), , ,"Product")

Essbase first executes the inner @EXPAND function—

@EXPAND ("@CHILDREN", @LIST("[product].[100]", "[product].
[200]"))—which expands the member list to include all of the children
of members 100 and 200 (a total of six members). Then Essbase
executes the outer @EXPAND function, which searches the Product
hierarchy for a match with any of the six members.

See Also

e @BETWEEN

. @EQUAL
- @NOTEQUAL
« @LIKE

* @MBRCOMPARE
° @MBRPARENT

@FACTORIAL

ORACLE

The @FACTORIAL calculation function for Essbase computes the factorial of an expression.

This function returns the factorial of expression. The factorial of a number is equal to 1*2*3*...*
number.

Syntax

@FACTORIAL (expression)

Parameters

expression
Single member specification or numeric expression.

Notes

e expression can be no larger than 189. If expression is larger than 189, Essbhase returns
#MISSING.

e If expression is negative, Esshase returns #MISSING.

Example
@FACTORIAL (1) 1
@FACTORIAL (5) 120

2-80

Chapter 2
Calculation Function List

See Also

@POWER

@FORMATDATE

ORACLE

The @FORMATDATE calculation function for Essbase returns a formatted date-string.
Syntax

@FormatDate (date, date format string)

Parameters

<date>

A number representing the input date between January 1, 1970 and Dec 31, 2037. The
number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this
number, use any of the following functions: @ TODAY, @ TODATEEX, or @DATEROLL.
Date-time attribute properties of a member can also be used to retrieve this number. For
example, GAttributeVal ("Intro Date"); returns the product introduction date for the current
product in context.

date_format_string
One of the following literal strings (excluding ordered-list numbers and parenthetical
examples) indicating a supported date format.

"mon dd yyyy" (Example: mon = Aug)
"Month dd yyyy" (Example: Month = August)
llmm/dd/yyll

"mm/dd/yyyy"

1

2

3

4

5. "yy.mm.dd"
6. "dd/mm/yy"

7. "dd.mm.yy"

8. "dd-mm-yy"

9. "dd Month yy"
10. "dd mon yy"

11. "Month dd, yy"
12. "mon dd, yy"
13. "mm-dd-yy"

14. "yy/mm/dd"

15. "yymmdd"

16. "dd Month yyyy"
17. "dd mon yyyy"

18. "yyyy-mm-dd"

2-81

@GEN

ORACLE

Chapter 2
Calculation Function List

19. "yyyy/mm/dd"
20. Long format (Example: WeekDay, Mon dd, yyyy)

21. Short format (Example: m/d/yy)

Notes
¢ Using an invalid input date returns an error.
e Using extra whitespace not included in the internal format strings returns an error.

e This function interprets years in the range 1970 to 2029 for yy format. Therefore, if the
function is invoked using a date format mm/dd/yy for June 20, 2006, the returned date
string is "06/20/06".

Example

Assume the outline has a date type member MyDatel.

Profit (If(@ToDateEx ("yyyy-mm-dd", @FormatDate (€Today(), "yyyy-mm-dd")) ==
MyDatel)
Profit=99;
Endif;)
See Also

* (@DATEDIFF
* @DATEPART
* @DATEROLL
* @TODATEEX
* @TODAY

The @GEN calculation function for Essbase returns the generation number of the specified
member.

Syntax

@GEN (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@GEN (Year)

2-82

Chapter 2
Calculation Function List

Returns 1.

@GEN (Qtr3)

Returns 2.

See Also

* @CURGEN
° @LEV

@GENMBRS

ORACLE

The @GENMBRS calculation function for Essbase returns dimension members of a specific
generation.

This function returns all members with the specified generation number or generation name in
the specified dimension.

Syntax

@GENMBRS (dimName, genName | genNum)

Parameters

dimName
A single dimension name specification.

genName|genNum
Generation name or generation number from dimName. A positive integer defines a
generation number.

Notes

e If you specify a name for the genName parameter, Essbase looks for a generation with that
name in the specified dimension.

e If you specify a number for the genName parameter (for example, 2), Essbase first looks
for a generation with a number string name. If no generation name exists with that numeric
name, Esshase checks to see if the parameter is a valid generation number. Check the
application event log after running the calculation to make sure that the correct members
were calculated.

e Generation 0 is not a valid generation number. Generations begin numbering at 1.

e If you specify a temporary variable for the genName parameter, Esshase does not
recognize the value of the variable. It looks in the outline for a generation name with the
same name as the temporary variable.

e For more information about generations and defining generation names, see Dimension
and Member Relationships.

e Essbase sorts the generated list of members in ascending order. Using Sample Basic as
an example, if you specify @GENMBRS (Product, 2), Essbase returns 100, 200, 300, 400,
Diet (in that order). This order is important to consider when you use the @GENMBRS
member set function with certain forecasting and statistical functions.

2-83

Chapter 2
Calculation Function List

Example

In the Sample Basic database:

@GENMBRS (Year, Month)
@GENMBRS (Year, 3)

both return the following members since generation 3 of the Year dimension is named Month;
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec (in that order).

The following example restricts the calculation to members with the combination Budget and
one of the members of the Market dimension with a generation name of State.

FIX (Budget, @GENMBRS (Market, State))
CALC DIM (Year,Measures);
ENDFIX

See Also

@LEVMBRS

@GRIDTUPLES

@GRIDTUPLES is optional syntax you can add to FIX...ENDFIX, to limit the scope of Essbase
calculations to the active grid.

For more information, see Calculate Selected Tuples. See FIX...ENDFIX if you are looking for
the syntax.

@GROWTH

ORACLE

The @GROWTH calculation function for Essbase calculates the growth of a principal amount.

Calculates a series of values that represent a linear growth of the first nonzero value
encountered in principalMbr across the specified XrangeList. Growth is calculated by
multiplying the growth rate in rateMbrConst by the original principalMbr. This value is then
added to the previous time period's result, yielding the new value.

Syntax

@GROWTH (principalMbr, rateMbrConst [, XrangeList])

Parameters

principalMbr

Single member specification that represents the initial value of the value to grow. The first
nonzero value encountered is the initial value. Other principalMbr values after the first are
ignored.

rateMbrConst
Single member specification, variable name, or numeric expression providing a constant value
that represents the decimal growth rate to be applied (for example, 10% = .1).

2-84

ORACLE

Chapter 2
Calculation Function List

XrangeList

Optional parameter specifying the range over which the function is calculated. If a range is not
specified, Essbase uses the level 0 members from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

The following example calculates the growth of Principal Amount, using the rate found in
Growth Rate for each fiscal year. The results are placed in Growth Amount.

"Growth Amount"=@GROWTH ("Principal Amount","Growth Rate",FY1998:FY2003);

This example produces the following report:

FY1998 FY1999 FY2000 FY2001 FY2002 FY2003

Principal Amount 1,000 0 2,000 0
Growth Amount 1,050 1,120 1,200 1,280 1,380 1,480
Growth Rate 0.05 0.07 0.08 0.08 0.1 0.1

The following example assumes a Year dimension is added to Sample Basic. It calculates
growth using a multidimensional range.

FIX ("100-10", "New York")

"Growth Amount" = @GROWTH ("Principal Amount","Growth Rate", @XRANGE ("2011"-
>"Sep", "2012"_>"Mar")) ;

ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

* @COMPOUNDGROWTH
* (@DECLINE

2-85

Chapter 2
Calculation Function List

* @XRANGE

@IALLANCESTORS

The @IALLANCESTORS calculation function for Essbase returns a member and all its
ancestors.

This function returns the specified member and all the ancestors of that member, including
ancestors of any occurrences of the specified member as a shared member. You can use this
function as a parameter of another function, where that parameter is a list of members.

Syntax

@IALLANCESTORS (mbrName)

Parameters

mbrName
A valid single member name, or a function that returns a single member.

Notes

Essbase sorts the generated list of members in ascending order of the member number in the
outline. Using Sample Basic as an example, if you specify 100-20 for mbrName, Essbase
returns 100-20, 100, Diet, Product (in that order). However, the order in which shared
ancestors are returned is not guaranteed. This order is important to consider when you use this
function with certain forecasting and statistical functions.

Example

The following example is based on the Sample Basic database. Sample Basic has a shared
level of diet drinks, which includes 100-20 (Diet Cola). So 100-20 (Diet Cola) is a descendant
of 100 (Colas) and is a shared member descendant of Diet:

100
100-10
100-20

Diet
100-20 (Shared Member)

The following calculation script increases by 5% the Budget Sales values of 100-20 and all its
ancestors, including Diet:

FIX (Budget, @IALLANCESTORS ("100-20"))
Sales = Sales * 1.05;
ENDFIX

ORACLE 5 86

Chapter 2
Calculation Function List

This example produces the following report. This report shows that the Budget->Sales values
for 100-20, 100, Diet, and Product (100-20 and its ancestors) have been increased by 5%. The
original values were 2610, 8980, 8260, and 28480, respectively.

Jan
Actual Budget
Sales Sales
Market 100-10 4860 5200
100-20 2372 2740.5 *
100-30 1082 1170
100 8314 9429 *
100-20 2372 2610
200-20 3122 3090
300-30 2960 2560
Diet 8454 8673 *
Product 31538 30954 *

See Also

° @ALLANCESTORS
°* @IANCESTORS

* @ILANCESTORS

°* @LANCESTORS

@IANCESTORS

ORACLE

The @IANCESTORS calculation function for Essbase returns a member and its ancestors,
optionally up to a certain generation or level.

This function returns the specified member and either all ancestors of the member or all
ancestors up to the specified generation or level.

Essbase sorts the generated list of members—starting with the specified member, followed by
the nearest ancestor of the member, followed by the next nearest ancestor of the member, and
so on. In the Sample.Basic database, if you specify @IANCESTORS (200-30) , Essbase returns
200-30, 200, Product (in that order). When using this function with certain forecasting and
statistical functions, you must consider order.

You can use this function as a parameter of another function, where the function requires a list
of members.

Syntax
@IANCESTORS (mbrName [, genLevNum | genLevName])

Parameters

mbrName
Valid member name, or a function that returns a member.

2-87

Chapter 2
Calculation Function List

genLevNum

Optional. The integer value that defines the absolute generation or level number up to which
to select members. A positive integer defines a generation number. A value of 0 or a negative
integer defines a level number.

genLevName
Optional. The level or generation name up to which to select members.

Example

All examples are from the Sample.Basic database.

@IANCESTORS ("New York")

Returns New York, East, Market (in that order).

@TANCESTORS (Qtr4)

Returns Qtr4, Year (in that order).

@IANCESTORS (Sales, -2)

Returns Sales, Margin, Profit (in that order). Members higher than level 2 are not returned.
@IANCESTORS ("100-10",1)

Returns 100-10, 100, Product (in that order). All ancestors are returned up to generation 1.

See Also

* @ANCESTORS

* @IALLANCESTORS
e @ILANCESTORS

° @LANCESTORS

@ICHILDREN

ORACLE

The @ICHILDREN calculation function for Essbase returns a member and all its children.

This function returns the specified member and all of its children. This function can be used as
a parameter of another function, where that parameter is a list of members.

Syntax

@ICHILDREN (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Notes

Essbase sorts the generated list of members starting with the specified member, followed by its
children in ascending order. Using Sample Basic as an example, if you specify 100 for
mbrName, Essbase returns 100, 100-10, 100-20, 100-30 (in that order). This order is important
to consider when you use this function with certain forecasting and statistical functions.

2-88

Chapter 2
Calculation Function List

Example

In the Sample Basic database:

@ICHILDREN (Market)

Returns Market, East, West, South, and Central (in that order).

@ICHILDREN (Margin)

Returns Margin, Sales, and COGS (in that order).

See Also

@CHILDREN

@IDESCENDANTS

ORACLE

The @IDESCENDANTS calculation function for Essbase returns a member and its
descendants, optionally down to a certain generation or level.

This function returns the specified member and either all descendants of the member or all
descendants down to the specified generation or level.

Essbase sorts the generated list of members—starting with the specified member, followed by
the nearest descendant of the member, followed by the next nearest descendant of the
member, and so on. In the Sample.Basic database, if you specify @ IDESCENDANTS (100),
Essbase returns 100, 100-10, 100-20, 100-30 (in that order). When using this function with
certain forecasting and statistical functions, you must consider order.

You can use this function as a parameter of another function, where the function requires a list
of members.

Syntax

@IDESCENDANTS (mbrName[, genLevNum | genLevName])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

genLevNum

Optional. The integer value that defines the absolute generation or level number up to which
to select members. A positive integer defines a generation number. A value of 0 or a negative
integer defines a level number.

genLevName
Optional. The level or generation name up to which to select members.

Example
All examples are from the Sample.Basic database.

@IDESCENDANTS (East)

2-89

Chapter 2
Calculation Function List

Returns East, New York, Massachusetts, Florida, Connecticut, and New Hampshire (in that
order).

@IDESCENDANTS (Profit)

Returns Profit, Margin, Sales, COGS, Total Expenses, Marketing, Payroll, and Misc (in that
order).

@IDESCENDANTS (Market, 2)
Returns Market, East, West, South, and Central (in that order).
@IDESCENDANTS (South, -1)

Returns South.

See Also

e @ANCESTORS

* @CHILDREN

e (@DESCENDANTS

* @ILDESCENDANTS
* @IRDESCENDANTS
e @ISDESC

* @LDESCENDANTS

* @RDESCENDANTS
e @SIBLINGS

@ILANCESTORS

ORACLE

The @ILANCESTORS calculation function for Essbase returns a member list and its
ancestors, optionally up to a certain generation or level.

This function returns the members of the specified member list and either all ancestors of the
members or all ancestors up to the specified generation or level.

You can use this function as a parameter of another function, where the function requires a list
of members.

Syntax

@ILANCESTORS ((memberSetFunction) [,genLevNum])

Parameters

memberSetFunction

A member set function that returns a list of members.

How @ILANCESTORS is used determines which member set functions are allowed. Follow
these guidelines:

2-90

ORACLE

Chapter 2
Calculation Function List

* If @ILANCESTORS is used alone (not within a FIX statement), you must use the @LIST
function and specify member names. For example:

@LIST (mbrl,mbr2,...)

e Ifthe @ILANCESTORS function is used within a FIX statement, you can use member set
functions such as @UDA and @ATTRIBUTE. For example:

@UDA (dimName, uda)

@ATTRIBUTE (attMbrName)

In this case, you can choose whether to use the @LIST function. For example, both of the
following statements are valid, and the statements return the same results.

Example using only @ATTRIBUTE:

FIX (@ILANCESTORS (RATTRIBUTE (Caffeinated True), @ATTRIBUTE (Ounces 12),"200-4
0"))

ENDFIX;
Example using @LIST and @ATTRIBUTE:

FIX(QRILANCESTORS (RLIST (€ATTRIBUTE (Caffeinated True), @ATTRIBUTE (Ounces 12),
"200-40")))

ENDFIX;

Caution:

All members of the specified member list must be from the same dimension.

genLevNum

Optional. The integer value that defines the absolute generation or level number up to which
to select members. A positive integer defines a generation number. A value of 0 or a negative
integer defines a level number.

Example

All examples are from the Sample.Basic database.

@ILANCESTORS (QLIST ("100-10","200-20"))

Returns 100-10 (a specified member); 100 and Product (the ancestors of 100-10); 200-20 (a
specified member); and 200 (the ancestor of 200-20). The result does not contain duplicate
members.

@ILANCESTORS (QLIST ("100","100-10"))

2-91

Chapter 2
Calculation Function List

Returns 100 and 100-10 (the specified members); and Product (the ancestor of 100 and
100-10). The result does not contain duplicate members.

@ILANCESTORS (@LIST ("100","Product","200"))

Returns 100, Product, and 200 (the specified members). The result does not contain duplicate
members.

FIX (@ILANCESTORS (QUDA (Market, "New Market")),2)
ENDFIX;

Returns Nevada (a member that is assigned the New Market UDA) and West (the ancestor to
generation 2 for Nevada); Louisiana (a member that is assigned the New Market UDA) and
South (the ancestor to generation 2 for Louisiana); and Colorado (a member that is assigned
the New Market UDA) and Central (the ancestor to generation 2 for Colorado).

FIX(RILANCESTORS (RATTRIBUTE (Caffeinated True), @ATTRIBUTE (Ounces 12),"200-40"))
ENDFIX;

Returns 100-10, 100-20, 200-10, and 300-30 (caffeinated, 12-ounce drinks); and 200-40 (the
specified member), and 100, 200, 300, and Product (the ancestors of the members).

See Also

* @ANCESTORS
* @IANCESTORS
* @LANCESTORS

@ILDESCENDANTS

ORACLE

The @ILDESCENDANTS calculation function for Essbase returns a member list and its
descendants, optionally down to a certain generation or level.

This function returns the members of the specified member list and either all descendants of
the members or all descendents down to the specified generation or level.

You can use this function as a parameter of another function, where the function requires a list
of members.

Syntax

@ILDESCENDANTS ((memberSetFunction) [,genLevNum])

Parameters

memberSetFunction

A member set function that returns a list of members.

How this function is used determines which member set functions are allowed. Follow these
guidelines:

2-92

ORACLE

Chapter 2
Calculation Function List

* |If @ILDESCENDANTS is used alone (not within a FIX statement), you must use the
@LIST function and specify member names. For example:

@LIST (mbrl,mbr2,...)

e Ifthe @ILDESCENDANTS function is used within a FIX statement, you can use member
set functions such as @UDA and @ATTRIBUTE. For example:

@UDA (dimName, uda)

@ATTRIBUTE (attMbrName)

In this case, you can choose whether to use the @LIST function. For example, both of the
following statements are valid, and the statements return the same results.

Example using only @ATTRIBUTE:

FIX

(RILDESCENDANTS (QATTRIBUTE (Caffeinated True), @ATTRIBUTE (Ounces 12),"200-40
H))

ENDFIX;

Example using @LIST and @ATTRIBUTE:

FIX

(RILDESCENDANTS (@LIST (RATTRIBUTE (Caffeinated True), RATTRIBUTE (Ounces 12),"

200-40")))

ENDFIX;

Caution:

All members of the specified member list must be from the same dimension.

genLevNum

Optional. The integer value that defines the absolute generation or level number up to which
to select members. A positive integer defines a generation number. A value of 0 or a negative
integer defines a level number.

Example

All examples are from the Sample.Basic database.

@ILDESCENDANTS (GLIST ("100"™,"200","300"))

Returns 100 (a specified member); 100-10, 100-20, 100-30 (the descendants of 100); 200 (a
specified member); and 200-10, 200-20, 200-30, and 200-40 (the descendants of 200); 300 (a
specified member); and 300-10, 300-20, 300-30 (the descendants of 300).

@ILDESCENDANTS (QLIST ("Market"),-1)

2-93

Chapter 2
Calculation Function List

Returns Market (the specified member); and East, West, South, and Central (the descendants
of Market to level 1).

FIX
(@ILDESCENDANTS (QUDA (Market, "Major Market")))
ENDFIX;

Returns East (a specified member); New York, Massachusetts, Florida, Connecticut, and New
Hampshire (the descendants of East); Central (a specified member); lllinois, Ohio, Wisconsin,
Missouri, lowa, and Colorado (the descendants of Central); California and Texas (specified
members, which do not have descendants).

FIX

(RILDESCENDANTS (@ATTRIBUTE (Caffeinated True)@ATTRIBUTE (Ounces 12),"200-40"))
ENDFIX;

Returns 100-10, 100-20, 200-10, 300-30 (caffeinated, 12-ounce drinks); and 200-40 (a

specified member). None of these members have descendants.

See Also

° @ANCESTORS

* @CHILDREN

° @IDESCENDANTS
* @ILANCESTORS

° @IRDESCENDANTS
* @ISDESC

°* @LANCESTORS

° @LDESCENDANTS
* (@RDESCENDANTS
* @SIBLINGS

°* @SHIFTSIBLING

@ILSIBLINGS

ORACLE

The @ILSIBLINGS calculation function for Essbase returns a member and its left siblings.
Syntax

@ILSIBLINGS (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

2-94

@INT

ORACLE

Chapter 2
Calculation Function List

Notes

This function returns the specified member and all of the left siblings of the member. Left
siblings are children that share the same parent as the member and that precede the member
in the database outline.

This member set function can be used as a parameter of another function, where that
parameter is a list of members.

Essbase sorts the generated list of members starting with the left siblings of the member (that
is, siblings appearing above the member in the database outline) in ascending order. Using
Sample Basic as an example, if you specify 200-30 for mbrName, Essbase returns 200-10,
200-20, 200-30 (in that order). This order is important to consider when you use this function
with certain forecasting and statistical functions.

Example

In the Sample Basic database:

@ILSIBLINGS (Florida)

Returns New York, Massachusetts, and Florida (in that order). New York and Massachusetts
appear above Florida in the Sample Basic outline.

@ILSIBLINGS (Qtr3)

Returns Qtrl, Qtr2, and Qtr3 (in that order). Qtrl and Qtr2 appear above Qtr3 in the Sample
Basic outline.

See Also

@LSIBLINGS

The @INT calculation function for Essbase returns the next lowest integer value of an
expression.

Syntax

@INT (expression)

Parameters

expression
Member specification or mathematical expression that generates a numeric value.

Example

The following example is based on the Sample Basic database. Assume that the Profit %
member is not tagged as Dynamic Calc.

The following formula rounds the values for West down to the nearest integer.

West=@INT (@SUM (QCHILDREN (West))) ;

2-95

Chapter 2
Calculation Function List

This example produces the following report:

Profit %
Cola Actual
Jan Feb Mar

California 38.64 37.98 38.37

Oregon 17.50 16.13 16.11

Washington 29.23 30.90 32.00

Utah 23.08 23.08 20.97

Nevada -3.95 -6.76 -5.33
West 104 101 102

See Also

e @ABS

¢« @REMAINDER

¢« @ROUND

* @TRUNCATE

@INTEREST

The @INTEREST calculation function for Essbase performs a simple interest calculation on a
balance.

This function calculates the simple interest in balanceMbr at the rate specified by
creditrateMbrConst if the value specified by balanceMbr is positive, or at the rate specified by
borrowrateMbrConst if balanceMbr is negative. The interest is calculated for each time period
specified by XrangeList.

Syntax

@INTEREST (balanceMbr, creditrateMbrConst, borrowrateMbrConst [, XrangeList])

Parameters

balanceMbr
Single member specification representing the balance at the time the interest is calculated.

creditrateMbrConst

Single member specification, variable name, or numeric expression providing a constant
value. The value must be a decimal number that corresponds to a percentage. The value
represents the per-period interest rate.

borrowrateMbrConst

Single member specification, variable name, or numeric expression providing a constant
value. The value must be a decimal number corresponding to a percentage value. The value
represents the per-period interest rate.

XrangeList
Optional parameter specifying the time period over which the interest is calculated. If a range
is not specified, Essbase uses the level 0 members from the dimension tagged as Time.

ORACLE 506

ORACLE

Chapter 2
Calculation Function List

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

The following example calculates the interest for Balance, using Credit Rate for positive
balances and using Borrow Rate for negative balances. The results are placed in Interest
Amount for each fiscal year.

"Interest Amount" = @INTEREST (Balance,"Credit Rate","Borrow Rate",
FY1998:FY2001,FY2002,FY2003) ;

This example produces the following report:

FY1998 FY1999 FY2000 FY2001 FY2002 FY2003

Balance 2000.00 3000.00 -1000.00 3000.00 9000.00 -6000.00
Credit Rate 0.065 0.065 0.065 0.065 0.065 0.065
Borrow Rate 0.1125 0.1125 0.1125 0.1125 0.1125 0.1125

Interest Amount 130.00 195.00 -112.50 195.00 585.00 -675.00

The following example assumes a Year dimension is added to Sample Basic. It calculates
interest using a multidimensional range.

FIX ("100-10", "New York")

"Interest Amount" = @INTEREST (Balance, "Credit Rate", "Borrow Rate",
@XRANGE ("2011"->"Sep", "2012"->"Mar"));

ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@COMPOUND

2-97

Chapter 2
Calculation Function List

@INTERSECT

ORACLE

The @INTERSECT calculation function for Essbase returns the intersection of two member
lists.

This function returns the intersection of members that appear in two specified lists of members.
The intersection is the set of all distinct members that are part of both lists.

Syntax

@INTERSECT (1istl, list2)

Parameters

listl
The first list of members.

list2
The second list of members.

Notes

This function treats shared members as distinct from their prototype members; therefore, they
do not intersect.

Example
The following examples use the Sample.Basic database.
@QINTERSECT (QCHILDREN ("100"), @ATTRIBUTE (Can)) returns 100-10 and 100-20.

@INTERSECT (RCHILDREN ("Colas"), @CHILDREN("Diet Drinks"); returns an empty set,
because shared members are considered distinct from their prototype members.

FIX (QINTERSECT (QCHILDREN("100-10"), QCHILDREN ("Diet Drinks")))
Sales = 500;

ENDFIX;

The @INTERSECT expression evaluates to an empty set; therefore, the FIX statement sets all
the values of Sales to 500.

See Also

* @MERGE
* @REMOVE

2-98

Chapter 2
Calculation Function List

@IRDESCENDANTS

ORACLE

The @IRDESCENDANTS calculation function for Essbase returns a member and its
descendants, optionally down to a certain generation or level, and including its shared-member
descendants.

This function returns the specified member and all its descendants, or all descendants down to
a specified generation or level, including descendants of any occurrences of the specified
member as a shared member.

You can use this function as a parameter of another function, where that parameter is a list of
members. In the absence of shared members, this function behaves the same as
@IDESCENDANTS.

Syntax

@IRDESCENDANTS (mbrName[, genLevNum | genLevName])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

genLevNum

Optional. An integer value that defines the absolute generation or level number down to which
to select the members. A positive integer defines a generation number. A value of 0 or a
negative integer defines a level number.

genLevName
Optional. Level name or generation name down to which to select the members.

Notes

e The order of members in the result list is important to consider when you use this function
with certain forecasting and statistical functions. Essbase generates the list of members in
the following sequence: If a shared member is encountered, the above steps are repeated
on the member being shared.

1. The specified member
2. The nearest descendant of the member
3. The next nearest descendant of the member, and so on

* You can use @RDESCENDANTS to exclude the specified member and include
descendants of shared members.

* You can use @IDESCENDANTS to include the specified member and exclude
descendants of shared members.

* You can use @DESCENDANTS to exclude the specified member and descendants of
shared members.

Example

Example 1

2-99

@IRR

ORACLE

Chapter 2
Calculation Function List

Assume a variation of the Sample Basic database such that the Product dimension includes
the following members:

Product

100
100-10
100-20
100-30

200
200-10
200-20
200-30
200-40

Diet
100 (Shared Member)
200 (Shared Member)

Diet has two children "100" and "200" instead of "100-10", "200-20" and "300-30". The
members "100" and "200" are shared members.

@IRDESCENDANTS (Diet)

Returns the members: Diet, 100, 100-10, 100-20, 100-30, 200, 200-10, 200-20, 200-30,
200-40 (in that order).

Example 2

@IRDESCENDANTS (East)

Returns East, New York, Massachusetts, Florida, Connecticut, and New Hampshire (in that
order) and is exactly the same as @IDESCENDANTS (East).

See Also

* @DESCENDANTS

° @IANCESTORS

e @ICHILDREN

° @IDESCENDANTS
e @ISDESC

° @ISIBLINGS

* @RDESCENDANTS

The @IRR calculation function for Essbase calculates the Internal Rate of Return on a cash
flow that must contain at least one investment (negative) and one income (positive) value.

Also see @IRREX.

Syntax

@IRR (cashflowMbr, discountFlag[, XrangelList])

2-100

ORACLE

Chapter 2
Calculation Function List

Parameters

cashflowMbr
Single member specification.

discountFlag

Member specification, variable name, or numeric expression providing a constant value of
either 1 or 0. discountFlag indicates whether the function should discount from the first period.
1 means do not discount from the first period.

XrangeList

Optional parameter specifying the range over which the rate is calculated. If a range is not
specified, Essbase uses the level 0 members from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Notes

* Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

e This function returns #MISSING if all cash flows are zero.

» This function provides an initial guess of 0.07. This value cannot be changed, in contrast to
similar functions in Excel. Because results depend in part on the initial guess, any
difference in the initial guess may result in a different result. Even if both Excel and
Essbase start with the same initial guess, results may differ. This is because there may be
more than one solution to an equation, and the algorithm stops looking when it finds a valid
solution. Which solution is found first may differ based on the algorithm. Although leading
or trailing zeros do not matter in a mathematical context, the algorithm may behave
differently and find a different root because of the presence of leading or trailing zeros. If
you need identical solutions regardless of the presence of leading or trailing zeros, you
may wish to create a custom-defined function to handle these issues.

Example

This example calculates the Internal Rate of Return (Return) on a cash flow (Cash).

Return = @IRR(Cash,0,FY1998:FY2000,FY2001:FY2003);

This example produces the following report:

FY1998 FY1999 FY2000 FY2001 FY2002 FY2003
Cash (1,000) 500 600 500 #MISSING #MISSING
Rate 0 0 0 0 #MISSING #MISSING
Return 0 0 0 0 0 0

2-101

@IRREX

ORACLE

Chapter 2
Calculation Function List

The following example assumes a Year dimension is added to Sample Basic. It calculates the
return using a multidimensional range.

FIX ("100-10", "New York")
"Return" = @QIRR(Cash, 0, @XRANGE ("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangelList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

The @IRREX calculation function for Essbase calculates the Internal Rate of Return on a cash
flow, with the ability to estimate the starting guess and to set the number of iterations.

This function calculates the Internal Rate of Return on a cash flow that must contain at least
one investment (negative) and one income (positive) value. Includes functionality to configure
the initial guess and the number of iterations the algorithm can make.

@IRREX is an extension of @IRR, in which the initial guess of 0.07 cannot be changed.

Syntax

@IRREX (cashflowMbr, discountFlagl[, [guess], [number of iteration],
[STORECALCVALUE | STOREMISSING], [XrangeList])

Parameters

cashflowMbr
Single member specification.

discountFlag

Member specification, variable name, or numeric expression providing a constant value of
either 1 or 0. Indicates whether the function should discount from the first period. 0 means
discount from the first period, and 1 means do not discount from the first period.

guess
Optional. The starting guess for estimated IRR. If not specified, the default guess of 0.07 is
used.

number_of_iteration

Optional. The number of iterations the Newton Raphson algorithm will loop through. (Newton
Raphson is the mathematical method used for finding the IRR using the IRREX function.) The
default value is 300.

2-102

Chapter 2
Calculation Function List

STORECALCVALUE | STOREMISSING

Optional. STORECALCVALUE tells Essbase to always store the calculated value even when
the IRR calculation returns ‘false’ results. This is the default.

Optional. STOREMISSING tells Essbase to store #MISSING value when the IRR calculation
returns false results after the specified number of iterations.

XrangeList

Optional parameter specifying the range over which the rate is calculated. If a range is not
specified, Essbase uses the level 0 members from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Notes

* Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

e This function returns #MISSING if all cash flows are zero.

* This function provides functionality to configure the initial guess and the number of
iterations the algorithm can make. Even if both Essbase and similar functions in Excel start
with the same initial guess, results may differ. This is because there may be more than one
solution to an equation, and the algorithm stops looking when it finds a valid solution.
Which solution is found first may differ based on the algorithm. Although leading or trailing
zeros do not matter in a mathematical context, the algorithm may behave differently and
find a different root because of the presence of leading or trailing zeros. If you need
identical solutions regardless of the presence of leading or trailing zeros, you may wish to
create a custom-defined function to handle these issues.

Example

@IRREX (IRROutl,0,0.02, 500, STOREMISSING,"2006":"2009");

The starting guess is 0.02 (2%). @IRREX iterates 500 times, and stores #MISSING if the
solution does not converge.

@IRREX (IRROutl,0, , ,STOREMISSING,"2006":"2009");

The starting guess and iteration values are omitted (NULL). Note: The commas (,) are required
even when passing null arguments.

The following example assumes a Year dimension is added to Sample Basic. The rate is
calculated using a multidimensional range.

FIX ("100-10", "New York")

Return = @IRREX (IRROutl,O0, , ,STOREMISSING, R@XRANGE ("2011"->"Sep", "2012"-
>"Mar"));

ENDFIX

ORACLE 5103

Chapter 2
Calculation Function List

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

@IRSIBLINGS

ORACLE

The @IRSIBLINGS calculation function for Essbase returns the specified member and its right
siblings.

Syntax

@IRSIBLINGS (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Notes

This function returns the specified member and all of the right siblings of the specified member.
Right siblings are children that share the same parent as the member and that follow the
member in the database outline.

This member set function can be used as a parameter of another function, where that
parameter is a list of members.

Essbase sorts the generated list of members starting with the specified member, followed by
the right siblings of the member (that is, siblings appearing below the member in the database
outline) in ascending order. Using Sample Basic as an example, if you specify 200-20 for
mbrName, Essbase returns 200-20, 200-30, 200-40 (in that order). This order is important to
consider when you use this function with certain forecasting and statistical functions.

Example

In the Sample Basic database:

@IRSIBLINGS (Florida)

Returns Florida, Connecticut, and New Hampshire (in that order). Connecticut and New
Hampshire appear below Florida in the Sample Basic outline.

@IRSIBLINGS (Qtr3)

Returns Qtr3 and Qtr4 (in that order). Qtr4 appears below Qtr3 in the Sample Basic outline.

2-104

Chapter 2
Calculation Function List

See Also

@RSIBLINGS

@ISACCTYPE

The @ISACCTYPE calculation function for Essbase tells whether the current member has a
specified accounts tag.

This function returns TRUE if the current member has the associated accounts tag.

Syntax

@ISACCTYPE (tag)

Parameters

tag

Valid accounts tag defined in the current database. Any of these values may be used: First,
Last, Average, Expense, and Twopass. To ensure that the tag is resolved as a string rather
than a member name, enclose the tag in quotation marks.

Example

The following example is based on the Sample Basic database. For members with the
Expense accounts tag, the formula uses the @ABS function to calculate Budget as the
absolute value of Budget.

IF (Q@ISACCTYPE ("Expense"))
Budget = Q@ABS (Budget);
ENDIF;

@ISANCEST

ORACLE

The @ISANCEST calculation function for Essbase tells whether a member is an ancestor of
another member.

This function returns TRUE if the current member is an ancestor of the specified member. This
function excludes the specified member.

Syntax

@ISANCEST (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISANCEST (California)

2-105

Chapter 2
Calculation Function List

Returns TRUE for Market, West

@ISANCEST (West)

Returns FALSE for California, West, East

See Also

@ISIANCEST

@ISATTRIBUTE

ORACLE

The @ISATTRIBUTE calculation function for Essbase tells whether a member is a specific
attribute.

This function returns TRUE if the current member under calculation matches the attribute or
varying attribute name specified in attMbrName.

Syntax

@ISATTRIBUTE (attMbrName)

Parameters

attMbrName
Single attribute member name or member combination.

Notes

e This function provides the same functionality as @ISMBR (@ATTRIBUTE(attMbrName)),
but is faster.

* You may have duplicate Boolean, date, and numeric attribute member names in your
outline. For example, 12 can be the attribute value for the size (in ounces) of a product as
well as the value for the number of packing units for a product. To distinguish duplicate
member names, specify the full attribute member name (for example,

@ISATTRIBUTE (Ounces 12)).

Example

Consider the following calculation script, based on the Sample Basic database:

/* To increase the marketing budget for markets with large populations */
Marketing (
IF (@ISATTRIBUTE (Large))
Marketing = Marketing * 1.1;
ENDIF

);

See Also

* @ISMBRWITHATTR
 SET SCAPERSPECTIVE

2-106

@ISCHILD

@ISDESC

ORACLE

Chapter 2
Calculation Function List

The @ISCHILD calculation function for Essbase tells whether the current member is a child of
a specific member.

This function returns TRUE if the current member is a child of the specified member. This
function excludes the specified member.

Syntax

@ISCHILD (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISCHILD (East)

Returns TRUE for New York, Florida, Connecticut

@ISCHILD (Margin)

Returns FALSE for Measures, Profit, Margin

See Also

@ISICHILD

The @ISDESC calculation function for Essbase tells whether the current member is a
descendant of a specific member.

This function returns TRUE if the current member is a descendant of the specified member.
This function excludes the specified member.

Syntax

@ISDESC (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

2-107

@ISGEN

ORACLE

Chapter 2
Calculation Function List

Example

In the Sample Basic database:

@ISDESC (Market)

Returns TRUE for West, California, Oregon, Washington, Utah, Nevada

@ISDESC (Profit)

Returns FALSE for Measures, Profit, Profit %

The @ISGEN calculation function for Essbase tells whether the current member is in a specific
generation.

This function returns TRUE if the current member of the specified dimension is in the specified
generation.

Syntax

@ISGEN (dimName, genName | genNum)

Parameters

dimName
The name of a dimension.

genName or genNum
A generation name or a non-negative integer value that defines the number of a generation.

Example

In the Sample Basic cube:

@ISGEN (Measures, 3)

Returns TRUE if the current member is Margin, Total Inventory, or Margin %, because these
members are all in generation 3 of the Measures dimension.

@ISGEN (Market, 2)

Returns FALSE if the current member is New York or Market, because these members are not
in generation 2 of the Market dimension.

See Also

* @ISSAMEGEN
* @ISLEV

2-108

Chapter 2
Calculation Function List

@ISIANCEST

The @ISIANCEST calculation function for Essbase tests whether the current member is an
ancestor (or a match) of the specified member.

This function returns TRUE if the current member being calculated is the specified member or
an ancestor of the specified member. This function includes the specified member.

Syntax

@ISIANCEST (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISIANCEST (California)

Returns TRUE for Market, West, and California. California is the specified member, and West
and Market are ancestors of California.

@ISIANCEST (Qtrl)

Returns FALSE for Jan, Feb, Mar, Qtr2. None of these members is the specified member
(Qtr1) or an ancestor of Qtr1.

See Also

@ISANCEST

@ISIBLINGS

ORACLE

The @ISIBLINGS calculation function for Essbase returns a member and all its siblings.

This function returns the specified member and all siblings of that member. This function can
be used as a parameter of another function, where that parameter is a list of members.

Syntax

@ISIBLINGS (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

2-109

@ISICHILD

ORACLE

Chapter 2
Calculation Function List

Notes

Essbase sorts the generated list of members in ascending order. Using Sample Basic as an
example, if you specify 200-30 for mbrName, Essbase returns 200-10, 200-20, 200-30, 200-40
(in that order). This order is important to consider when you use this function with certain
forecasting and statistical functions.

Example

In the Sample Basic database:

@ISIBLINGS (California)

returns California, Oregon, Washington, Utah, and Nevada (in that order), because these
members are siblings of California.

@ISIBLINGS (Qtr2)

returns Qtrl, Qtr2, Qtr3, and Qtr4 (in that order), because these members are siblings of Qtr2.

See Also

° @NEXTSIBLING
° @PREVSIBLING
° @SHIFTSIBLING
°* @SIBLINGS

The @ISICHILD calculation function for Essbase tests whether the current member is a child
(or a match) of the specified member.

This function returns TRUE if the current member being calculated is the specified member or
a child of the specified member.

Syntax

@ISICHILD (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISICHILD (South)

2-110

@ISIDESC

Chapter 2
Calculation Function List

Returns TRUE for Texas, Oklahoma, Louisiana, New Mexico, South

@ISICHILD(Profit)

Returns FALSE for Measures, Sales

See Also

@ISCHILD

The @ISIDESC calculation function for Essbase tests whether the current member is a
descendant (or a match) of the specified member.

This function returns TRUE if the current member being calculated is the specified member or
a descendant of the specified member.

Syntax

@ISIDESC (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISIDESC (South)

Returns TRUE for Texas, Oklahoma, Louisiana, New Mexico, South

@ISIDESC (West)

Returns FALSE for Market, East, South, and Central

See Also

@ISDESC

@ISIPARENT

ORACLE

The @ISIPARENT calculation function for Essbase tests whether the current member is the
parent (or a match) of the specified member.

This function returns TRUE if the current member being calculated is the specified member or
the parent of the specified member.

Syntax

@ISIPARENT (mbrName)

2-111

Chapter 2
Calculation Function List

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISIPARENT (Qtrl)

Returns TRUE for Year, Qtrl.

@ISIPARENT (Margin)

Returns FALSE for Measures, Sales.

See Also

@ISPARENT

@ISISIBLING

The @ISISIBLING calculation function for Essbase tests whether the current member is a
sibling (or a match) of the specified member.

This function returns TRUE if the current member being calculated is the specified member or
a sibling of the specified member.

Syntax

@ISISIBLING (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISISIBLING (Qtr2)

Returns TRUE for Qtrl, Qtr2, Qtr3, and Qtr4.

@ISISIBLING (Actual)

Returns FALSE for Scenario.

See Also

@ISSIBLING

ORACLE 5115

Chapter 2
Calculation Function List

@ISLEV

The @ISLEV calculation function for Essbase tests whether a member is in a specific level.

This function returns TRUE if the current member being calculated is in the specified level of
the specified dimension.

Syntax

@ISLEV (dimName, levName | levNum)

Parameters

dimName
Name of a dimension.

levName | levNum
A level name or a non-negative integer value that defines the number of a level.

Example

In the Sample Basic database:

@ISLEV (Market,0)

Returns TRUE if the current member of Market is New York, California, Texas, or lllinois.

@ISLEV (Year, 1)

Returns FALSE if the current member of Year is Jan, Feb, or Mar.

See Also

* @ISSAMELEV
* @ISGEN

@ISMBR

The @ISMBR calculation function for Essbase tests whether a member is a match for any of
the specified members.

This function returns TRUE if the current member being calculated matches any one of the
specified members within a list or range.

Syntax

@ISMBR (mbrName | rangeList | mbrList)

ORACLE 5113

Chapter 2
Calculation Function List

Parameters

mbrName
Any valid single member name or member combination, or a function that returns a single
member or member combination.

rangeList
A valid member name, a comma-delimited list of member names, member set functions, and
range functions.

mbrList
A comma-delimited list of members.

Notes

If a cross-dimensional (->) member is included, that term evaluates as TRUE only if all the
components of the cross-dimensional member match the current member list.

If any term returns TRUE, this function returns TRUE.

Example

In the Sample Basic database:

@ISMBR ("New York":"New Hampshire")

Returns TRUE for Florida.

@ISMBR (QCHILDREN (Qtrl))

Returns FALSE for Qtr2, Year.

@ISMBRUDA

ORACLE

The @ISMBRUDA calculation function for Essbase tests whether a member has a certain
UDA.

This function returns TRUE if the specified user-defined attribute (UDA) exists for the specified
member at calculation time.

Syntax

@ ISMBRUDA (mbrName, UDAStr)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

UDAStr
User-defined attribute (UDA) name string.

Notes

If you specify a nhonexistent member name, the calculation script verification fails.

2-114

Chapter 2
Calculation Function List

Example
The following examples use the Sample.Basic database.

@ISMBRUDA ("New York", "Major Market") and @ISMBRUDA ([Market].[New York], "Major
Market") both return true.

@ISMBRUDA ("New York", "Small Market") AND @ISCHILD("Market")

Because “New York” is not a small market, the first condition returns false.

IF (@ISMBRUDA ("New York")

Because UDASTIr is omitted, the verification fails.

@ISMBRWITHATTR

The @ISMBRWITHATTR calculation function for Essbase returns TRUE if the current member
being calculated belongs to the list of base members that are associated with an attribute that
satisfies the conditions you specify.

Syntax

@ISMBRWITHATTR (dimName, "operator", value)

Parameters

dimName
Single varying attribute dimension name.

operator
Operator specification, which must be enclosed in quotation marks ().

value

A value that, in combination with the operator, defines the condition that must be met. The
value can be a varying attribute member specification, a constant, or a date-format function
(that is, @ TODATE).

Notes

e This function provides the same functionality as @TSMBR (eWITHATTR()), but is faster.
e This function is a superset of the @ISATTRIBUTE function. The following two formulas
return the same member set:

@ISATTRIBUTE (Bottle)
@ISMBRWITHATTR ("Pkg Type","==",Bottle)

However, the following formula can be performed only with @ISMBRWITHATTR (not with
@ISATTRIBUTE) because you specify a condition:

@ISMBRWITHATTR (Ounces, ">","16")

* If you specify a date attribute with the @ISMBRWITHATTR function, you must use
@TODATE in the string parameter to convert the date string to a number.

e The following operators are supported:

ORACLE 5115

Chapter 2
Calculation Function List

Table 2-28 Supported Operators

Operator Description

> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to
== Equal to

<>or!= Not equal to

IN In

When using Boolean attributes with this function, use only the actual Boolean attribute member
name, or use 1 (for True or Yes) or O (for False or No). You cannot use True/Yes and False/No
interchangeably.

See Also

e @ATTRIBUTE

* @ATTRIBUTEVAL

* @ISATTRIBUTE

* SET SCAPERSPECTIVE
« @TODATE

° @WITHATTR

@ISPARENT

ORACLE

The @ISPARENT calculation function for Essbase returns TRUE if the current member is the
parent of the specified member.

This function excludes the specified member.

Syntax

@ISPARENT (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISPARENT ("New York")

Returns TRUE for East.

@ISPARENT (Profit)

Returns FALSE for Margin.

2-116

Chapter 2
Calculation Function List

See Also

@ISIPARENT

@ISRANGENONEMPTY

ORACLE

The @ISRANGENONEMPTY calculation function for Essbase tests for data values in a range.

This function tests for the existence of data values, which can help you improve performance
of complex dense processing. If this function returns true, values exist for the specified range.
If it returns false, the range is empty.

Syntax

@ISRANGENONEMPTY (ZEROASDATA | ZEROASMISSG, mbrList)

Parameters

ZEROASDATA
Zero (0) values are treated as data.

ZEROASMISSG
Zero (0) values are treated as #MISSING.

mbrList

A valid member name, a comma-delimited list of member names, or a member set function
that returns a list of members from the same dimension. If you use the range operator or a
function, the order of mbrList is dictated by the database outline order.

Notes

The definition of “emptiness” depends on your use of the first parameter, which describes how
zero (0) values are treated.

Example

The following examples use the Sample.Basic database.

Example 1

@ISRANGENONEMPTY (ZEROASDATA, Sales->Cola)

Because the intersection of Cola and Sales contains non-#MISSING values, the condition
returns TRUE.

Example 2

//ESS_LOCALE English UnitedStates.Latinl@Binary

FIX (Budget)
Sales (IF(QISRANGENONEMPTY (ZEROASMISSG, Jan:Mar))
Sales = 500;
ENDIF;) ;
ENDFIX

2-117

Chapter 2
Calculation Function List

If there is any value except #MISSING in the range Jan:Mar in the database, the script returns
TRUE, and all the Sales->Budget values In the database are changed to 500.

@ISSAMEGEN

The @ISSAMEGEN calculation function for Essbase tests whether a member is in the same
generation as another member.

This function returns TRUE if the current member being calculated is in the same generation
as the specified member.

Syntax

@ISSAMEGEN (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISSAMEGEN (West)

Returns TRUE for East.

@ISSAMEGEN (West)

Returns FALSE for California.

See Also
« @GEN
« @ISGEN

* @ISSAMELEV

@ISSAMELEV

The @ISSAMELEYV calculation function for Essbase tests whether a member is in the same
level as another member.

This function returns TRUE if the current member being calculated is in the same level as the
specified member.

Syntax

@ISSAMELEV (mbrName)

ORACLE 5118

Chapter 2
Calculation Function List

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISSAMELEV (Sales)

Returns FALSE for Total Expenses.

@ISSAMELEV (Jan)

Returns TRUE for Apr, Jul, Oct.

See Also

° @ISLEV

° @ISSAMEGEN
° @LEV

@ISSIBLING

The @ISSIBLING calculation function for Essbase tests whether a member is a sibling of
another member.

This function returns TRUE if the current member being calculated is a sibling of the specified
member. This function excludes the specified member.

Syntax

@ISSIBLING (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

@ISSIBLING ("New York")

Returns TRUE for Florida, New Hampshire.

@ISSIBLING (Sales)

Returns FALSE for Margin.

ORACLE 5119

@ISUDA

ORACLE

Chapter 2
Calculation Function List

See Also

@ISISIBLING

The @ISUDA calculation function for Essbase tests whether a member has a certain UDA.

This function returns TRUE if the specified user-defined attribute (UDA) exists for the current
member of the specified dimension at the time of the calculation.

Syntax

@ISUDA (dimName, UDAStr)

Parameters

dimName
Dimension name specification that contains the member you are checking.

UDAStr
User-defined attribute (UDA) name string.

Notes

* Essbhase checks to see if the UDA is defined for the current member of the specified
dimension at calculation time. It returns TRUE if the UDA is defined, FALSE if not.

* For more information about UDAS, see Create User-Defined Attributes.

Example

The following example is based on the Sample Basic database. The Market dimension has
members that indicate a geographic location. Some members represent major markets. The
example below calculates the database and stores a budget amount for the upcoming year
based on the actual amount from this year. A different sales growth rate is applied to major
markets than to small markets.

FIX (Budget)
Sales (IF(QISUDA (Market,"Major Market"))
Sales = Sales->Actual * 1.2;
ELSE
Sales = Sales->Actual * 1.1;
ENDIF;);
ENDFIX

The preceding example tests to see if the current member of Market has a UDA called "Major
Market". If it does, the Budget -> Sales value is set to 120% of Actual -> Sales. If it does not,
the Budget -> Sales value is set to 110% of Actual -> Sales.

See Also

e @ISMBRUDA
* @UDA

2-120

Chapter 2
Calculation Function List

@LANCESTORS

ORACLE

The @LANCESTORS calculation function for Essbase returns a member list's ancestors,
optionally up to a certain generation or level.

This function excludes from the output the members specified in the input list.

You can use this function as a parameter of another function, where the function requires a list
of members.

Syntax

@LANCESTORS ((memberSetFunction) [,genLevNum])

Parameters
memberSetFunction
A member set function that returns a list of members.

How the @LANCESTORS function is used determines which member set functions are
allowed. Follow these guidelines:

e Ifthe @LANCESTORS function is used alone (not within a FIX statement), you must use
the @LIST function and specify member names. For example:

@LIST (mbrl,mbr2,...)

* If the @LANCESTORS function is used within a FIX statement, you can use member set
functions such as @UDA and @ATTRIBUTE. For example:

@UDA (dimName, uda)

@ATTRIBUTE (attMbrName)

In this case, you can choose whether to use @LIST. For example, both of the following
statements are valid, and the statements return the same results.

Example using only @ATTRIBUTE:

FIX (@QLANCESTORS (GATTRIBUTE (Caffeinated True), @QATTRIBUTE (Ounces 12),"200-40
"))

ENDFIX;
Example using @LIST and @ATTRIBUTE:

FIX (@LANCESTORS (GLIST (GATTRIBUTE (Caffeinated True), @RATTRIBUTE (Ounces 12),"
200-40")))

ENDFIX;

2-121

ORACLE

Chapter 2
Calculation Function List

Caution:

All members of the specified member list must be from the same dimension.

genLevNum

Optional. The integer value that defines the absolute generation or level number up to which
to select members. A positive integer defines a generation number. A value of 0 or a negative
integer defines a level number.

Example

All examples are from the Sample.Basic database.

@LANCESTORS (QLIST("100-10","200-20"),2)

Returns 100 (the ancestor of 100-10); and 200 (the ancestor of 200-20). Excludes Product
because it is at generation 1.

@LANCESTORS (QLIST("100","100-10"))

Returns Product (the ancestor of 100); and 100 (the ancestor of 100-10). The result does not
contain duplicate members.

@LANCESTORS (QLIST ("100", "Product","200"))

Returns Product (the ancestor of 100 and 200). The result does not contain duplicate
members.

FIX (QLANCESTORS (QUDA (Market, "New Market")),2)

ENDFIX;

Returns West, South, and Central (the ancestors, to generation 2, for the members in the
Market dimension that are associated with the New Market attribute).

FIX (@LANCESTORS (€ATTRIBUTE (Caffeinated True), @QATTRIBUTE (Ounces 12),"200-40"))
ENDFIX;

Returns 100, 200, 300, and Product (the ancestors of 100-10, 100-20, 200-10, 300-30—
caffeinated, 12-ounce drinks, and 200-40).

See Also

¢ @ANCESTORS

* @IANCESTORS
* @ILANCESTORS

2-122

Chapter 2
Calculation Function List

@LDESCENDANTS

ORACLE

The @LDESCENDANTS calculation function for Essbase returns a member list's descendants,
optionally down to a certain generation or level.

This function excludes the specified members.

You can use this function as a parameter of another function, where the function requires a list
of members.

Syntax

@LDESCENDANTS ((memberSetFunction) [,genLevNum])

Parameters

memberSetFunction

A member set function that returns a list of members.

How this function is used determines which member set functions are allowed. Follow these
guidelines:

e If this function is used alone (not within a FIX statement), you must use @LIST and
specify member names. For example:

@LIST (mbrl,mbr2,...)

* If @LDESCENDANTS is used within a FIX statement, you can use member set functions
such as @UDA and @ATTRIBUTE. For example:

@UDA (dimName, uda)

@ATTRIBUTE (attMbrName)

In this case, you can choose whether to use @LIST. For example, both of the following
statements are valid, and the statements return the same results.

Example using only @ATTRIBUTE:
FIX

(QLDESCENDANTS (QATTRIBUTE (Caffeinated True), @ATTRIBUTE (Ounces_12),"200-40"
))

ENDFIX;

Example using @LIST and @ATTRIBUTE:

FIX

(RLDESCENDANTS (@LIST (RATTRIBUTE (Caffeinated True), @ATTRIBUTE (Ounces 12),"2

00-40")))

ENDFIX;

2-123

Chapter 2
Calculation Function List

Caution:

All members of the specified member list must be from the same dimension.

genLevNum

Optional. The integer value that defines the absolute generation or level number up to which
to select members. A positive integer defines a generation number. A value of 0 or a negative
integer defines a level number.

Example

All examples are from the Sample.Basic database.

@LDESCENDANTS (@LIST ("100","200","300"))

Returns 100-10, 100-20, 100-30 (the descendants of 100); 200-10, 200-20, 200-30, 200-40
(the descendants of 200); and 300-10, 300-20, 300-30 (the descendants of 300).

@LDESCENDANTS (QLIST ("Market"),-1)

Returns East, West, South, and Central (the descendants of the specified member Market to
level 1).

FIX
(QLDESCENDANTS (QUDA (Market, "Major Market")))

ENDFIX;

Returns New York, Massachusetts, Florida, Connecticut, and New Hampshire (the
descendants of the specified member East); and lllinois, Ohio, Wisconsin, Missouri, lowa, and
Colorado (the descendants of the specified member Central). California and Texas (specified
members) are excluded because they do not have descendants.

FIX
(QLDESCENDANTS (QGATTRIBUTE (Caffeinated True), @RATTRIBUTE (Ounces_12),"200-40"))

ENDFIX;

Returns an empty list as none of the specified members (100-10, 100-20, 200-10, 300-30,
which are caffeinated, 12-ounce drinks, and 200-40) have descendants.

See Also

* (@DESCENDANTS
° @IDESCENDANTS
°* @ILDESCENDANTS

ORACLE 5104

@LEV

Chapter 2
Calculation Function List

The @LEV calculation function for Essbase returns the level number of the specified member.
Syntax

@LEV (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

In the Sample Basic database:

Table 2-29 @LEV Results

Function Level Returned
@LEV (Margin) 1

@LEV ("New York") 0

See Also

* @CURLEV

e @GEN

@LEVMBRS

ORACLE

The @LEVMBRS calculation function for Essbase returns dimension members of a specific
level.

This function returns all members with the specified level number or level name in the specified
dimension.

Syntax

@LEVMBRS (dimName, levName|levNum)

Parameters

dimName
Dimension name specification.

levName|levNum
A level name or an integer value that defines the number of a level. The integer value must be
0 or a positive integer.

Notes

* If you specify a name for the levName parameter, Essbase looks for a level with that name
in the specified dimension.

2-125

Chapter 2
Calculation Function List

* If you specify a number for the levName parameter (for example, 2), Essbase first looks for
a level with a number string name. If no level name exists with that name, Essbase checks
to see if the parameter is a valid level number.

* If you specify a temporary variable for the levName parameter, Essbase does not
recognize the value of the variable. It looks in the outline for a level name with the same
name as the temporary variable.

* For more information about levels and defining level names, see Generations and Levels.

» Essbase sorts the generated list of members in ascending order. Using Sample Basic as
an example, if you specify @LEVMBRS (Product, 1), Essbase returns 100, 200, 300, 400,
Diet (in that order). This order is important to consider when you use @LEVMBRS with
certain forecasting and statistical functions.

* If you use a negative number for the level number, no syntax error is noted, but the
calculation will fail with an error message.

Example

In the Sample Basic cube:

@LEVMBRS (Measures, "Profit and Loss")
@LEVMBRS (Measures, 0)

both return the following members if level 0 of the Measures dimension is named Profit and
Loss:

Sales, COGS, Marketing, Payroll, Misc, Opening Inventory, Additions, Ending Inventory,
Margin %, Profit %, and Profit per Ounce (in that order).

@LEVMBRS (Scenario, 0)

Returns Actual, Budget, Variance, and Variance %.

The following example restricts the calculation to members with the combination Budget and
one of the members of the Market dimension with a level name of "State".

FIX (Budget,@LEVMBRS (Market,State))
CALC DIM (Year,Measures);
ENDFIX

See Also

@GENMBRS

@LIKE

The @LIKE calculation function for Essbase returns a member set of member names that
match the specified pattern.

This function can be used on unique and duplicate-name outlines.

Syntax

@LIKE (pattern, topMbrinHierarchy, [escChar])

ORACLE 5 196

ORACLE

Chapter 2
Calculation Function List

Parameters

pattern
The character pattern with which to compare to members in the outline, including a single
wildcard character:

e %: The percentage sign allows matching to a string of any length (including zero length).

* _:The underscore allows matching on a single character in a member name.

topMbrinHierarchy

A fully qualified member name on which to base the member search. The specified member
and its aliases, and all of its descendants, are included in the search.

To search the entire outline, provide an empty string (") for this parameter. For example,
@LIKE("100%", "").

escChar

Optional: A one-byte-length escape character to use if the wildcard character exists in
member names.

If you do not specify an escape character, a backslash (\) is assumed.

Example

The following examples are based on the following duplicate-name outline:

Product

100

100-10
100-10-10

100-20
100-30

200
200-10
200-20
200-30

300
300-10
300-20

Diet
100-10

100-10-11

200-10
300-10

Bottle
200-10
300-20

@LIKE("100%", "Product")

Returns members 100, 100-10, 100-20, and 100-30.

@LIKE("30_", "Product")

2-127

@LIST

ORACLE

Chapter 2
Calculation Function List

Returns member 300.

@LIKE("200_", "Product", H\ll)

If member 200 has children named 200_10 (note the underscore,),
200-20 (note the dash, -), 200_30 and 200-40, returns those members
whose name contains an underscore: 200_10 and 200_30.

See Also

- @BETWEEN

. @EQUAL

- @EXPAND

- @MBRCOMPARE
- @MBRPARENT

- @NOTEQUAL

The @LIST calculation function for Essbase creates and distinguishes lists to be processed by
functions that require list arguments.

This function can be used to create expLists, member lists, or rangeLists. This function treats a
collection of parameters as one entity.

Syntax

@LIST (argumentl, argument2, ..., argumentN)

Parameters

argumentl, argument2, ..., argumentN

The list of arguments that are collected and treated as one argument so they can be
processed by the parent function. Arguments can be member names, member combinations,
member set functions, range functions, and numeric expressions.

Notes

@LIST does not check for or eliminate duplicates.

Example

The following example is based on the Sample Basic database. Assume that the Year
dimension contains an additional member, Sales Correl. @LIST is used with the
@CORRELATION function to determine the sales relationship between a product's two peak
periods (Jan-Mar and Apr-May):

FIX(Sales)

"Sales Correl" = @QCORRELATION (SKIPNONE,
@LIST (Jan,Feb,Mar),@LIST (Apr,May, Jun));

ENDFIX

2-128

Chapter 2
Calculation Function List

This example produces the following report:

Colas Actual New York

Sales

Jan 678

Feb 645

Mar 675

Apr 712

May 756

Jun 890

Sales Correl 0.200368468

@LN

The @LN calculation function for Essbase returns the natural logarithm (base e) of the
specified expression.

Syntax

QLN (expression)

Parameters

expression

Single member specification, member combination, or other numeric expression. If less than
or equal to 0, Essbase returns #MISSING.

Example

The following example is based on a variation of Sample Basic:

LN Sales = QLN(Sales);

This example produces the following result:

Cola East

Jan Feb Mar Nov Dec
Sales 100 110 120 . . . 0 210
LN Sales 4.65052 4.,70048 4.,78749 . . . #MISSING 5.34710
See Also
¢« @LOGI10
e @LOG
e @EXP

ORACLE 5199

Chapter 2
Calculation Function List

@LOG

The @LOG calculation function for Essbase returns the result of a logarithm calculation where
you can specify both the base to use and the expression to calculate.

Syntax

@LOG (expression [, basel)

Parameters

expression
Single member specification, variable name, function, or other numeric expression. If less than
or equal to 0, Essbase returns #MISSING.

base
Optional. Single member specification, member combination, or numeric expression.

* If the base value is #MISSING, less than or equal to O, or close to 1, Essbase returns
#MISSING.

« If the base is omitted, Essbase calculates the base-10 logarithm of the specified
expression. @LOG(Sales) is equivalent to @LOG10(Sales).

Notes

The @LOG function returns the logarithm of expression calculated using the specified base.
@LOG (x,b) is equivalent to logy(x).

Example

The following example is based on a variation of Sample Basic:

LOG2_Sales = QLOG(Sales,2);

This example produces the following result:

Cola East
Jan Feb Mar Nov Dec
Sales 100 #MISSING 120 . . . 0 210
LOG2 Sales 6.64386 #MISSING 6.90689 . . . #MISSING 7.71425
See Also
e @LN
« @LOGI10

ORACLE 5130

@LOG10

Chapter 2
Calculation Function List

The @LOG10 calculation function for Essbase returns the base-10 logarithm of the specified
expression.

Syntax

@LOG1l0 (expression)

Parameters

expression
Single member specification, variable name, function, or other numeric expression. If less than
or equal to 0, Essbase returns #MISSING.

Example

The following example is based on a variation of Sample Basic:

LOG10_Sales = RLOG10 (Sales);

This example produces the following result:

Product Actual

East West South Central
Sales 87398 132931 50846 129680
LOG10 Sales 4.94150 5.12363 4.70626 5.11287
See Also
e @LOG
e @LN

@LSIBLINGS

ORACLE

The @LSIBLINGS calculation function for Essbase returns the left siblings of the specified
member.

Syntax

@LSIBLINGS (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Notes

This function returns the left siblings of the specified member. Left siblings are children that
share the same parent as the member and that precede the member in the database outline.
This function excludes the specified member.

2-131

@MATCH

ORACLE

Chapter 2
Calculation Function List

This member set function can be used as a parameter of another function, where that
parameter is a list of members.

Essbase sorts the generated list of left siblings in descending order. Using Sample Basic as an
example, if you specify 200-30 for mbrName, Essbase returns 200-20, 200-10 (in that order).
This order is important to consider when you use this function with certain forecasting and
statistical functions.

Example

In the Sample Basic database:

@LSIBLINGS (Qtr4)

Returns Qtr3, Qtr2, and Qtrl (in that order). These members appear above Qtr4 in the Sample
Basic outline.

@LSIBLINGS (Utah)

Returns Washington, Oregon, and California (in that order). These members appear above
Utah in the Sample Basic outline.

See Also

° @ILSIBLINGS
° @NEXTSIBLING
° @PREVSIBLING
* @RSIBLINGS
° @SHIFTSIBLING

The @MATCH calculation function for Essbase performs wildcard member selections.
Syntax

@MATCH (mbrName|genName|levName, "pattern")

Parameters

mbrName
The default or user-defined name of the member on which to base the search. Essbase
searches the member names and alias names of the specified member and its descendants.

genName
The default or user-defined name of the generation to search. Essbase searches all member
names and member alias names in the generation.

levName
The default or user-defined name of the level to search. Essbase searches all member names
and member alias names in the level.

2-132

@MAX

ORACLE

Chapter 2
Calculation Function List

"pattern”

The character pattern to search for, including a wildcard character (* or ?).

? substitutes one occurrence of any character. You can use ? anywhere in the pattern.

* substitutes any number of characters. You can use * only at the end of the pattern.

To include spaces in the character pattern, enclose the pattern in double quotation marks (™).

Notes

This function performs a trailing-wildcard member selection. Essbase searches for member
names and alias names that match the pattern you specify and returns the member and alias
names it finds.

If the members names in the database you are searching are case-sensitive, the search is
case-sensitive. Otherwise, the search is not case-sensitive.

You can call @MATCH more than once in a calculation script.

If Essbase does not find any members that match the chosen character pattern, it returns no
member names and continues with the other calculation commands in the calculation script.

Example

In the Sample Basic database:

@MATCH (Product, "???2-10")

Returns 100-10, 200-10, 300-10, and 400-10

@MATCH (Year, "J*")

Returns Jan, Jun, Jul

@MATCH (Product, "C*")

Returns 100 (Colas), 100-10 (Cola), 100-30 (Caffeine Free Cola), 300 (Cream Soda)

The @MAX calculation function for Essbase returns the maximum from a list of numeric
values.

Syntax

This function returns the maximum value among the results of the expressions in expList.
@MAX (expList)

Parameters

expList
Comma-delimited list of members, variable names, functions, and numeric expressions, all of
which return numeric values.

2-133

Chapter 2
Calculation Function List

Notes

Depending on the values in the list, this function may return zero(0) or #MISSING. For full
control over skipping or inclusion of empty values, use @MAXS instead.

Example

This example is based on the Sample Basic database:

Qtrl = @MAX(Jan:Mar);

This example produces the following report:

Colas New York Actual

Jan Feb Mar Qtrl
Sales 678 645 675 678
See Also
e @MAXS
e @MAXSRANGE
e @MINS

@MAXRANGE

ORACLE

The @MAXRANGE calculation function for Essbase returns the maximum value of the
specified member across the specified range of members.

Syntax

@MAXRANGE (mbrName [,XrangeList])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

XrangeList

Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

Depending on the values in the list, @MAXRANGE may return a zero(0) or #MISSING value.
For full control over skipping or inclusion of empty values, use @MAXSRANGE instead.

2-134

@MAXS

ORACLE

Chapter 2
Calculation Function List

Example

In the Sample Basic database:

Qtrl = @MAXRANGE (Sales,@CHILDREN (Qtrl));

produces the following report:

Colas New York Actual

Jan Feb Mar otrl
Sales 678 645 675 678
See Also
o @MAXS

° @MAXSRANGE
° @MINSRANGE

The @MAXS calculation function for Essbase returns the maximum value from results of
expressions in a member list, with options to ignore empty values.

This function returns the maximum value among the results of the expressions in the specified
member list, with options to skip missing or zero values (in contrast with @MAX, which cannot
ignore empty values).

Syntax

@MAXS (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameters

SKIPNONE
Includes all cells specified in expList in the operation, regardless of their content

SKIPMISSING
Ignores all #MISSING values

SKIPZERO
Ignores all 0 values

SKIPBOTH
Ignores all 0 and #MISSING values

expList
Comma-delimited list of members, variable names, functions, or numeric expressions, all of
which return numeric values

Notes

* @MAXS (SKIPMISSING, expList) is equivalent to @MAX (expList).

2-135

Chapter 2
Calculation Function List

e Because #MISSING values are greater than negative data values and less than positive
data values, if the data being calculated includes only negative and #MISSING values,
@MAXS returns #MISSING.

e If the data being calculated includes only negative, 0, and #MISSING values, @MAXS may
return either #MISSING or O values in an unpredictable manner.

Example

For both examples, assume a database similar to Sample Basic. The Measures dimension
includes two members: COGS (cost of goods sold) and Otherinc_Exp (miscellaneous income
and expenses). The data can include 0 and #MISSING values.

Example 1

Qtrl Max = @MAXS (SKIPBOTH, Jan:Mar);

This example ignores #MISSING and O values for all members of the Measures dimension. This
example produces the following results:

Jan Feb Mar Qtrl Max
COGS #MISSING 1500 2300 2300
OtherInc_Exp =500 -350 0 -350

Example 2

Qtrl Max = @MAXS (SKIPNONE, Jan:Mar);

This example includes #MISSING and O values in the calculation, for all members of the
Measures dimension. This example produces the following results:

Jan Feb Mar Qtrl Max
COGS #MISSING 1500 2300 2300
OtherInc_Exp =500 -350 0 0
See Also
* @MAX
* @MAXSRANGE
* @MINS

@MAXSRANGE

ORACLE

The @MAXSRANGE calculation function for Essbase returns the maximum value of a member
across a range of members, with options to ignore empty values.

This function returns the maximum value of the specified member across the specified range of
members, with options to skip missing or zero values (in contrast with @ MAXRANGE, which
cannot ignore empty values).

2-136

ORACLE

Chapter 2
Calculation Function List

Syntax

@MAXSRANGE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrName
[,XrangeList])

Parameters

SKIPNONE
Includes all cells specified in expList in the operation, regardless of their content

SKIPMISSING
Ignores all #MISSING values

SKIPZERO
Ignores all 0 values

SKIPBOTH
Ignores all 0 and #MISSING values

mbrName
Any valid single member name, or a function that returns a single member.

XrangeList

Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

« @MAXSRANGE (SKIPNONE, mbrName, XrangelList) is equivalent to @ MAXRANGE
mbrName, (XrangeList).

e #MISSING values are considered to be greater than negative data values and less than
positive data values. If the data being calculated includes only negative and #MISSING
values, @MAXSRANGE returns #MISSING.

e For all members, @MAXSRANGE returns the value calculated for the specified member
and range list.

Example

For both examples, assume a database similar to Sample Basic. The Measures dimension
includes two members: COGS (cost of goods sold) and Otherinc_Exp (miscellaneous income
and expenses). The data can include 0 and #MISSING values. For both members of the
Measures dimension, the result is the same--the maximum value for the Otherinc_Exp
member across the specified range.

Example 1

Qtrl Max = @MAXSRANGE (SKIPBOTH, OtherInc Exp, @CHILDREN (Qtrl));

This example ignores #MI1SSING and O values and produces the following results:

Jan Feb Mar Qtrl Max

2-137

Chapter 2
Calculation Function List

OtherInc Exp -500 #MISSING -250 -250
COGS 0 1500 2300 -250
Example 2

Qtrl Max = @MAXSRANGE (SKIPNONE, OtherInc Exp, @CHILDREN (Qtrl));

Using the same data as Example 1, Example 2 demonstrates what happens if you do not skip
0 and #MI1SSING values in the data. Example 2 produces the following report:

Jan Feb Mar Qtrl Max
OtherInc Exp -500 #MISSING -250 #MISSING
COGS 0 1500 2300 #MISSING
See Also
* @MAXS

* @MINSRANGE
° @MAXRANGE

@MBRCOMPARE

ORACLE

The @MBRCOMPARE calculation function for Essbase returns a member set of member
names that match the comparison criteria.

Member names are evaluated alpha-numerically.

This function can be used on unique and duplicate-name outlines.
Syntax

@MBRCOMPARE (compOperator, tokenString, topMbrinHierarchy, cdfName)

Parameters

compOperator

One of the following strings: < (less than), <= (less than or equal to), > (greater than), >=
(greater than or equal to), == (equals), != (not equal to), or CDF (for a custom-defined
function).

Note:
Using the == (equal to) comparison operator is the same as using @EQUAL. Using

the != (not equal to) comparison operator is the same as using @NOTEQUAL.

tokenString
Token string value with which to compare to members in the outline, starting with the member
specified in topMbrinHierarchy.

2-138

ORACLE

Chapter 2
Calculation Function List

topMbrinHierarchy
A fully qualified name of a member in the outline on which to base the member search. The
specified member and its aliases, and all of its descendants, are included in the search.

Note:

Although aliases of the specified member are included in the search, only outline
member names (not aliases) are used when comparing member names.

To search the entire outline, provide an empty string ("") for this parameter. For example,
@MBRCOMPARE ("<=" , "100-10", "").

cdfName

Optional: This argument applies only if CDF is specified for compOperator.

Name of a custom-defined function.

For information about creating custom-defined functions, see the MaxL Create Function
statement.

The custom-defined function must take the tokenString and topMbrinHierarchy arguments and
return a Boolean value. (When compiling @MBRCOMPARE, Essbase rejects custom-defined
functions that do not meet these requirements.) If the function returns TRUE, the member is
added to the member set returned by @ MBRCOMPARE.

Notes

The following example of a custom-defined function returns results similar to using the >=
(greater than or equal to) comparison operator:

package com.hyperion.essbase.cdf.comparecdf;
class MyCDF {

public static boolean JavaNameCompare (String baseStr,
String newStr)
{
try {
System.out.println ("\n COMPARING MEMBER NAMES \n ");
// Compare the two strings.
int result = newStr.compareToIgnoreCase (baseStr);
if (result < 0)
return false;
else if (result == 0)
return true;
else
return true;
}
catch (Exception e) {
System.out.println ("Comparison function failed !!. Exception \n ");
return false;

You must register the custom-defined function before you can use it in the @MBRCOMPARE
function.

2-139

ORACLE

Chapter 2
Calculation Function List

To register the custom-defined function:

1. Compile the custom-defined function into a JAR file. For example:
CompareCDF.jar
2. Copy the JAR file to the following directory:
SESSBASEPATH/java/udf
For the location of SESSBASEPATH, see Environment Variables in the Essbase Platform.
3. To grant access to the JAR file, add the following statement to the end of the udf.policy
file, which is located in the SESSBASEPATH/java/ directory:
grant codeBase "file:${essbase.java.home}/../java/udf/ CompareCDF.jar" {
permission java.security.AllPermission;
b
4. To register the custom-defined function, use the following MaxL statement:
CREATE OR REPLACE FUNCTION '@JAVACOMPARE'
AS com.hyperion.essbase.cdf.comparecdf.MyCDF.JavaNameCompare (String,
String)'
SPEC '@ CUSTOMCOMPARE (Strl, Str2)'
COMMENT 'Compares Strings returns boolean flag';
Example

The following examples are based on the following duplicate-name outline:

Product

100

100-10
100-10-10

100-20
100-30

200
200-10
200-20
200-30

300
300-10
300-20

Diet
100-10

100-10-11

200-10
300-10

Bottle
200-10
300-20

@MBRCOMPARE ("<=", "100-10", "Product")

2-140

Chapter 2
Calculation Function List

Returns the members 100, [100].[100-10], and [Diet].[100-10].

@MBRCOMPARE ("==", "100-10", "Product")

Returns the members [Diet].[100-10] and [100].[100-10].

@MBRCOMPARE ("CDF","100-20", "100", QJAVACOMPARE)

Uses the @JAVACOMPARE custom-defined function to return a
member set.

See Also

* @BETWEEN

. @EQUAL
. @EXPAND
. @LIKE

- @MBRPARENT
. @NOTEQUAL

@MBRPARENT

The @MBRPARENT calculation function for Essbase returns the parent of the specified
member.

This function can be used on unique and duplicate-name outlines.
Syntax

@MBRPARENT (mbrName)

Parameters

mbrName
Name of a member in the outline (or an expression returning a member name)

Example

For the following examples, assume the following outline hierarchy exists:

ORACLE 5141

-

Market <=d= {Population}
¥ East «=3=(+)
P Mew York =2=(+)
¥ Massachusetts =3> (+)
Springfield (+)
Salem (+)

Boston (+)

@MBRPARENT ("Salem")

returns Massachusetts.

FIX(Actual, Jan, "100-10")
Sales (

IF

(RISLEV ("Market", 0))

@MBRPARENT (@CURRMBR ("Market"))
@COUNT (SKIPNONE, €CHILDREN (@MBRPARENT (QCURRMBR ("Market"))));

ENDIF

)

ENDFIX

The calculation script distributes the value of Massachusetts equally
among Springfield, Salem, and Boston.

See Also

@BETWEEN
@EQUAL
@EXPAND
@LIKE
@MBRCOMPARE
@NOTEQUAL

@MDALLOCATE

The @MDALLOCATE calculation function for Essbase allocates values from a member, a
cross-dimensional member, or a value across multiple dimensions. The allocation is based on
a variety of criteria.

ORACLE

Chapter 2
Calculation Function List

This function allocates values that are input at an upper level to lower-level members in
multiple dimensions. The allocation is based upon a specified share or spread of another

2-142

Chapter 2
Calculation Function List

variable. You can specify a rounding parameter for allocated values and account for rounding

errors.
Syntax
@MDALLOCATE (amount, Ndim, allocationRangel ... allocationRangeN,basisMbr,
[roundMbr], method [, methodParams]
[, round [, numDigits] [, roundErr]])
Parameters
amount

A value, member, or cross-dimensional member that contains the value to be allocated into
each allocationRange. The value may also be a constant.

* If amount is a member, the member must be from a dimension to which an
allocationRange belongs.

» If amount is a cross-dimensional member, the member must include a member from every
dimension of every allocationRange.

« If a member or cross-dimensional member is not from an allocationRange dimension,
Essbase displays a warning message.

If the amount parameter is a loaded value, it cannot be a Dynamic Calc member.

Ndim
The number of dimensions across which values are allocated.

allocationRangel ... allocationRangeN
Comma-delimited lists of members, member set functions, or range functions from the multiple
dimensions into which values from amount are allocated.

basisMbr
A value, member, or cross-dimensional member that contains the values that are used as the
basis for the allocation. The method you specify determines how the basis data is used.

roundMbr

Optional. The member or cross-dimensional member to which rounding errors are added. This
member (or at least one member of a cross-dimensional member) must be included in an
allocationRange.

method
The expression that determines how values are allocated. One of the following:

e share: Uses basisMbr to calculate a percentage share. The percentage share is
calculated by dividing the value in basisMbr for the current member in allocationRange by
the sum across the allocationRange for that basis member:
amount * (QCURRMBR()-> basisMbr / @SUM(allocationRange -> basisMbr))

e spread: Spreads amount across allocationRange:

amount * (1/Q@COUNT (SKIP,allocationRange))

ORACLE 5143

ORACLE

Chapter 2
Calculation Function List

SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH: Values to be ignored during
calculation of the spread. You must specify a SKIP parameter only for spread.

— SKIPNONE: Includes all cells.

— SKIPMISSING: Excludes all #MISSING values in basisMbr, and stores #MISSING for
values in allocationRange for which the basisMbr is missing.

— SKIPZERO: Excludes all zero (0) values in basisMbr, and stores #MISSING for values
in allocationRange for which the basisMbr is zero.

— SKIPBOTH: Excludes all zero (0) values and all #MISSING values, and stores
#MISSING for values in allocationRange for which the basisMbr is zero (0) or #MISSING.

percent: Takes a percentage value from basisMbr for each member in allocationRange
and applies the percentage value to amount:

amount * (@CURRMBR()->basisMbr * .01).

add: Takes the value from basisMbr for each member of allocationRange and adds the
value to amount:

amount + QCURRMBR()-> basisMbr

subtract: Takes the value from basisMbr for each member of allocationRange and
subtracts the value from amount:

amount - QCURRMBR () ->basisMbr

multiply: Takes the value from basisMbr for each member of allocationRange and
multiplies the value by amount:

amount * QCURRMBR ()->basisMbr

divide: Takes the value from basisMbr for each member of allocationRange and divides
the value by amount:

amount/QCURRMBR () ->basisMbr

round
Optional. One of the following:

noRound: No rounding. This is the default.

roundAmt: Indicates that you want to round the allocated values. If you specify roundAmt,
you also must specify numDigits to indicate the number of decimal places to round to.

numbDigits
An integer that represents the number of decimal places to round to. You must specify
numbDigits if you specify roundAmt.

If numDigits is 0, the allocated values are rounded to the nearest integer. The default
value for numDigits is 0.

If numDigits is greater than 0, the allocated values are rounded to the specified number of
decimal places.

If numDigits is a negative value, the allocated values are rounded to a power of 10.

2-144

ORACLE

Chapter 2
Calculation Function List

If you specify roundAmt, you also can specify a roundErr parameter.

roundErr

Optional. An expression that specifies where rounding errors should be placed. You must
specify roundAmt in order to specify roundErr. If you do not specify roundErr, Essbase
discards rounding errors.

To specify roundErr, choose from one of the following:

e errorsToHigh: Adds rounding errors to the member with the highest allocated value. If
allocated values are identical, adds rounding errors to the first value in allocationRange.

e errorsToLow: Adds rounding errors to the member with the lowest allocated value. If
allocated values are identical, adds rounding errors to the first value in allocationRange.
#MISSING is treated as the lowest value in a list; if multiple values are #MISSING, rounding
errors are added to the first #MISSING value in the list.

e errorsToMbr: Adds rounding errors to the specified roundMbr, which must be included in
allocationRange.

Notes

* When you use this function in a calculation script, use it within a FIX statement; for
example, FIX on the member to which the allocation amount is loaded. Although FIX is not
required, using it may decrease calculation time.

e For a more complex example using @MDALLOCATE, see Allocating Values Across
Multiple Dimensions.

« If you have very large allocationRange lists, Essbase may return error messages during
the calculation.

Example

Consider the following example from the Sample Basic database. A data value of 500 is
loaded to Budget->Total Expenses->East for Jan and Colas. (For this example, assume that
Total Expenses is not a Dynamic Calc member.)

You need to allocate the amount across each expense category for each child of East. The
allocation for each child of East is based on the child's share of Total Expenses->Actual:

FIX("Total Expenses")

Budget = @MDALLOCATE (Budget->"Total Expenses"->East,2,
@CHILDREN (East),@CHILDREN ("Total Expenses"),Actual,,share);

ENDFIX

This example produces the following report:

Jan Colas
Marketing Payroll Misc Total Expenses

Actual New York 94 51 0 145
Massachusetts 23 31 1 55

Florida 53 54 0 107
Connecticut 40 31 0 71

New Hampshire 27 53 2 82

East 237 220 3 460

Budget New York 102.174 55.435 0 #MI
Massachusetts 25 33.696 1.087 #MI

Florida 57.609 58.696 0 #MI

2-145

Chapter 2
Calculation Function List

Connecticut 43.478 33.696 0 #MI
New Hampshire 29.348 57.609 2.173 #MI
East #MI #MI #MI 500
See Also
@ALLOCATE

@MDANCESTVAL

ORACLE

The @MDANCESTVAL calculation function for Essbase returns ancestor-level data from
multiple dimensions based on the current member being calculated.

Syntax

@MDANCESTVAL (dimCount, dimNamel, genLevNuml ... dimNameX, genLevNumX
[, mbrName])

Parameters

dimCount
Integer value that defines the number of dimensions from which ancestor values are being
returned.

dimNamel, ... dimNameX
Defines the dimension names from which the ancestor values are to be returned. You must
specify a genLevNum for every dimName.

genLevNum, ... genLevNumX

Integer value that defines the absolute generation or level number from which the ancestor
values are to be returned. A positive integer defines a generation reference. A negative
number or value of O defines a level reference. You must specify a dimName for every
genLevNum.

To use this function or any other ancestor value function in a ragged hierarchy, use generation
references instead of level references to avoid unexpected results. See Hierarchy Shapes.

mbrName
Optional. Any valid single member name, or a function that returns a single member.

Example

Marketing expenses are captured at the Product Family and Region level in a product planning
application. The Marketing Expense data must be allocated down to each Product code and
State level based on Sales contribution. Data is captured as follows:

Sales Marketing

New York 100-10 300 N/A
100-20 200 N/A

100 500 N/A

Boston 100-10 100 N/A
100-20 400 N/A

100 500 N/A

East 100-10 400 N/A

2-146

Chapter 2
Calculation Function List

100-20 600 N/A
100 1000 200

The Marketing Expense value of 200 at East and Product code 100 is allocated down to each
Product code and State with the following formula:

Marketing = (Sales / @MDANCESTVAL (2, Market, 2, Product, 2, Sales)) *
@MDANCESTVAL (2, Market, 2, Product, 2, Marketing);

which produces the following result:

Sales Marketing

New York 100-10 300 60
100-20 200 40

100 500 100

Boston 100-10 100 20
100-20 400 80

100 500 100

East 100-10 400 80
100-20 600 120

100 1000 200

The Marketing expenses can then be reconsolidated across Products and Markets.

See Also

* @ANCESTVAL
* @MDPARENTVAL
° @SANCESTVAL

@MDPARENTVAL

ORACLE

The @MDPARENTVAL calculation function for Essbase returns parent-level data from multiple
dimensions based on the current member being calculated.

Syntax

@MDPARENTVAL (numDim, dimNamel, ... dimNameX [,mbrName])

Parameters

numDim
Integer value that defines the number of dimensions from which parent values are being
returned.

dimNamel, . .. dimNameX
Defines the dimension names from which the parent values are to be returned.

mbrName
Optional. Any valid single member name, or a function that returns a single member.

2-147

Chapter 2
Calculation Function List

Example

Marketing expenses are captured at the Product Family and Region level in a product planning
application. The Marketing Expense data must be allocated down to each Product code and
State level based on Sales contribution.

Data is captured as follows:

Sales Marketing

New York 100-10 300 N/A
100-20 200 N/A

100 500 N/A

Boston 100-10 100 N/A
100-20 400 N/A

100 500 N/A

East 100-10 400 N/A
100-20 600 N/A

100 1000 200

The Marketing Expense value of 200 at East and Product code 100 is allocated down to each
Product code and State with the following formula:

Marketing = (Sales / @MDPARENTVAL (2, Market, Product, Sales)) *
@MDPARENTVAL (2, Market, Product, Marketing);

which produces the following result:

Sales Marketing

New York 100-10 300 60
100-20 200 40
100 500 N/A
Boston 100-10 100 20
100-20 400 80
100 500 N/A
East 100-10 400 N/A
100-20 600 N/A
100 1000 N/A

The Marketing expenses can then be reconsolidated across Products and Markets.

See Also

e @PARENTVAL

e @MDANCESTVAL
e @SPARENTVAL

ORACLE 5148

Chapter 2
Calculation Function List

@MDSHIFT

ORACLE

The @MDSHIFT calculation function for Essbase shifts a series of data values across multiple
dimension ranges.

Syntax

@MDSHIFT (mbrName, shiftCntl, dimNamel, [rangel| (rangel)], ... shiftCntX,
dimNameX, [rangeX| (rangeX)])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

shiftCntl...shiftCntX
Integer that defines the number of member positions to shift.

dimNamel, . .. dimNameX
Defines the dimension names in which the shift is to occur.

rangelj(rangel) . . . rangeX|(rangeX)

Optional. A valid member name, a comma-delimited list of member names, member set
functions, and range functions. If rangeList is not specified, Essbase uses the level 0
members from the dimension specified with the dimName parameter. If the range list is
comma delimited, then the list must be enclosed in parentheses.

Example

The Budget figures for Ending Inventory need to be calculated by taking Prior Year->Opening
Inventory results as a starting point:

Jan Feb Mar

Prior Year Opening Inventory 110 120 130 .
Budget Ending Inventory N/A N/A N/A .

The following calculation script assumes that the Scenario dimension is as follows:

Scenario
Prior Year
Budget

FIX (Budget)
"Ending Inventory" = @MDSHIFT ("Opening Inventory", 1, Year, , -1, Scenario,);
ENDFIX

In this example, rangel is not specified, so Essbase defaults to the level 0 members of the
Year dimension, which was specified as the dimNamel parameter. Since rangeZ2 is also not

2-149

@MEDIAN

ORACLE

Chapter 2
Calculation Function List

specified, Essbase defaults to the level 0 members of the Scenario dimension, which was
specified as the dimName2 parameter. This example produces the following result:

Jan Feb Mar
Prior Year Opening Inventory 110 120 130 .
Budget Ending Inventory 120 130 140 .
See Also
@SHIFT

The @MEDIAN calculation function for Essbase returns the median (the middle number) of the
specified data set. Half the numbers in the data set are larger than the median, and half are
smaller.

Syntax

@MEDIAN (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, XrangeList)

Parameters

SKIPNONE
Includes all cells specified in the data set, regardless of their content, during calculation of the
median.

SKIPMISSING
Excludes all #MISSING values from the data set during calculation of the median.

SKIPZERO
Excludes all zero (0) values from the data set during calculation of the median.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from the data set during calculation of the
median.

XrangeList

A list of numeric values across which the median is calculated. Referred to generically
throughout this topic as "the data set."

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about XrangeList, see Range List Parameters.

Notes

e If the member you are calculating and the data set (XrangeList) are not in the same
dimension, use @RANGE or @XRANGE to cross the member with the list of members (for
example, to cross Sales with the children of 100).

e @MEDIAN sorts the data set in ascending order before calculating the median.

« When the data set contains an even number of values, @MEDIAN calculates the average
of the two middle numbers.

2-150

Chapter 2
Calculation Function List

e @MEDIAN treats #MISSING values as 0 unless SKIPMISSING or SKIPBOTH is specified.

* When you use this function in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

* When you use this function across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Median. This example calculates the median sales
values for all products and uses @RANGE to generate the data set:

FIX (Product)
Median = @MEDIAN (SKIPBOTH, @RANGE (Sales, @CHILDREN (Product)));
ENDFIX

This example produces the following report:

Jan New York
Actual Budget
Sales Colas 678 640
Root Beer 551 530
Cream Soda 663 510
Fruit Soda 587 620
Diet Drinks #MI #MI
Product 2479 2300
Median Product 625 575

Because SKIPBOTH is specified in the calculation script, the #MI values for Diet Drinks are
skipped. The remaining four products create an even-numbered data set. So, to calculate
Median->Product->Actual, the two middle numbers in the set (587 and 663) are averaged to
create the median (625). To calculate Median->Product->Budget, the two middle numbers in
the set (530 and 620) are averaged to create the median (575).

The following example assumes a Year dimension is added to Sample Basic. It calculates
median using cross-dimensional members in the data set.

FIX (Product)
Median = @MEDIAN (@XRANGE ("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
Xrangelist:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan

ORACLE T

Chapter 2
Calculation Function List

2012->Feb
2012->Mar

See Also

* @RANGE
* @XRANGE

@MEMBER

The @MEMBER calculation function for Essbase returns the member with the name that is
provided as a character string.

Syntax

@MEMBER (String)

Parameters

String
A string (enclosed in double quotation marks) or a function that returns a string

Example

Typically, @MEMBER is used in combination with string functions that are used to manipulate
character strings to form the name of a member. In the following example, the member name

QTRL1 is appended to the character string 2000 _ to form the string 2000_QTR1. @ MEMBER

returns the member 2000_QTR1 and QTD is set to the value of this member.

QTD=@MEMBER (@CONCATENATE ("2000_", QTR1));

See Also

* @CONCATENATE
* @SUBSTRING

@MEMBERAT

ORACLE

The @MEMBERAT calculation function for Essbase returns the specified member in a list of
members.

Syntax

@MEMBERAT (mbrList, mbrIndex)

Parameters

mbrList
Member list or function that returns a member list.

2-152

Chapter 2
Calculation Function List

mbrindex

Nonzero integer. If positive, enumerates from start of the list (for example, 1 returns the first
member in the list). If negative, enumerates from the end of the list (for example, -1 returns the
last member in the list).

Notes

If mbrindex is 0 or out of bounds, the script or member formula fails during verification or
runtime and returns an error.

Example
The following examples use the Sample.Basic database.

@MEMBERAT (@CHILDREN ("Colas"), 2); returns 100-20 (Diet Cola)

Sales = @ MEMBERAT (@CHILDREN ("Total Expenses"), -1);

The value of the member Misc is assigned to Sales, because Misc is the last child of Total
Expenses, and the mbrindex of -1 causes this function to select the last member in the list.

@MEMBERAT (@CHILDREN ("100-10"), 1);

Because @CHILDREN ("100-10") is an empty list, returns an error.

See Also

@MEMBER

@MERGE

The @MERGE calculation function for Esshase merges two member lists that are processed
by another function. Duplicates (values found in both lists) are included only once in the
merged list.

Syntax

@MERGE (listl, list2)

Parameters

listl
The first list of member specifications to be merged.

list2
The second list of member specifications to be merged.

Notes

* Duplicate values are included only once in the merged list.

° @MERGE can merge only two lists at a time. You can nest @MERGE function calls to
merge more than two lists.

ORACLE 5153

ORACLE

Chapter 2
Calculation Function List

Example

Example 1

In the Sample Basic database,

@MERGE (@CHILDREN (Colas) , @CHILDREN ("Diet Drinks"));

returns Cola, Diet Cola, Caffeine Free Cola, Diet Root Beer, and Diet Cream Soda.

Diet Cola appears only once in the merged list, even though it is a child of both Colas and Diet
Drinks.

Example 2

In this example, @MERGE is used with @ISMBR to increase the marketing budget for major
markets and for western markets.

Budget

(IF (QISMBR (@MERGE (@UDA (Market, "Major Market"),
@DESCENDANTS (West))))

Marketing = Marketing * 1.1;

ENDIF;) ;

This example produces the following report, which shows only the major markets in the East
and all western markets:

Product Year Budget
Marketing
New York 6039
Massachusetts 1276
Florida 2530
California 7260
Oregon 2090
Washington 2772
Utah 1837
Nevada 4521

The values prior to running the calculation script were:

New York 5490
Massachusetts 1160
Florida 2300
California 6600
Oregon 1900
Washington 2520
Utah 1670
Nevada 4110

2-154

@MIN

ORACLE

Chapter 2
Calculation Function List

See Also

* @INTERSECT
e @LIST

« @RANGE

* @REMOVE

The @MIN calculation function for Essbase returns the minimum from a list of numeric values.
Syntax

This function returns the minimum value among the results of the expressions in expList.

@MIN (expList)

Parameters

expList

Comma-delimited list of members, variable names, functions, and numeric expressions, all of
which return numeric values.

Notes

Depending on the values in the list, @MIN may return a zero(0) or #MISSING value. For full
control over skipping or inclusion of empty values, use @MINS.

Example

In the Sample Basic database:

Qtrl = @MIN(Jan:Mar);

produces the following report:

Colas New York Actual

Jan Feb Mar otrl
Sales 678 645 675 645
See Also
e @MAX
e @MINS

* @MINRANGE

2-155

Chapter 2
Calculation Function List

@MINRANGE

ORACLE

The @MINRANGE calculation function for Essbase returns the minimum value of a member
across a range of members.

This function returns the minimum value of mbrName across XrangeList.

Syntax

@MINRANGE (mbrName [,XrangeList])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

XrangeList

Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

Depending on the values in the list, this function may return a zero(0) or #MISSING value. For
full control over skipping or inclusion of empty values, use @MINSRANGE.

Example

In the Sample Basic database:

Qtrl = @MINRANGE (Sales, Jan:Mar);

produces the following report:

Colas New York Actual
Jan Feb Mar otrl

Sales 678 645 675 645

See Also
c @MAXSRANGE
« @MINSRANGE
e @MIN

2-156

@MINS

ORACLE

Chapter 2
Calculation Function List

The @MINS calculation function for Essbase returns the minimum value from results of
expressions in a member list, with options to ignore empty values.

This function returns the minimum value across the results of the expressions in expList, with
options to skip missing or zero values (in contrast with @MIN, which cannot ignore empty
values).

Syntax

@MINS (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameters

SKIPNONE
Includes in the operation all cells specified in expList regardless of their content

SKIPMISSING
Ignores all #MISSING values

SKIPZERO
Ignores all 0 values

SKIPBOTH
Ignores all 0 and #MISSING values

expList
Comma-delimited list of member names, variable names, functions, or numeric expressions.
expList provides a list of numeric values for which Essbase determines the minimum value.

Notes

e This function enables skipping of #MISSING and O values, in contrast with @MIN, which
always includes empty values.

e @MINS (SKIPNONE, expList) is equivalent to @MIN (expList).

* Because #MISSING values are less than positive data values and more than negative data
values, if the data being calculated includes only positive and #MISSING values, @MINS
returns #MISSING.

» If the data being calculated includes only negative, O, and #MISSING values, @MINS may
return either #MISSING or O values in an unpredictable manner.

Example

For both examples, assume a database similar to Sample Basic. The Measures dimension
includes two members: COGS (cost of goods sold) and Otherinc_Exp (miscellaneous income
and expenses). The data can include 0 and #MISSING values.

Example 1

Qtrl Min = @MINS(SKIPBOTH, Jan:Mar);

2-157

Chapter 2
Calculation Function List

This example ignores #MISSING and O values for all members of the Measures dimension. This
example produces the following results:

Jan Feb Mar Qtrl Min
COGS #MISSING 1500 2300 1500
OtherInc_Exp =500 -350 0 -500

Example 2

Qtrl Min = @MINS(SKIPNONE, Jan:Mar);

For all members of the Measures dimension, this example includes #MISSING and O values and
produces the following results:

Jan Feb Mar Qtrl Min
COGS #MISSING 1500 2300 #MISSING
OtherInc_Exp -500 -350 0 -500
See Also
¢ @MAXS
¢« @MIN

* @MINSRANGE

@MINSRANGE

ORACLE

The @MINSRANGE calculation function for Essbase returns the minimum value of a member
across a range of members, with options to skip missing or zero values.

Syntax

This function returns the minimum value of mbrName across XrangeList, with options to skip
empty values.

@MINSRANGE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrName
[, XrangeList])
Parameters

SKIPNONE
Includes in the operation all specified cells regardless of their content

SKIPMISSING
Ignores all #MISSING values

SKIPZERO
Ignores all 0 values

SKIPBOTH
Ignores all 0 and #MISSING values

2-158

ORACLE

Chapter 2
Calculation Function List

mbrName
Any valid single member name, or a function that returns a single member.

XrangeList

Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

* This function enables skipping of #MISSING and O values, in contrast with @ MINRANGE,
which always includes empty values in the calculation.

° (@MINSRANGE (SKIPNONE, mbrName, rangelList) iSequivalentto @MINRANGE (mbrName,
rangeList).

e #MISSING values are considered to be less than positive data values and more than
negative data values. If the data being calculated includes only positive and #MISSING
values, this function returns #MISSING.

* For all members, this function returns the value calculated for the specified member and
range list.

Example

For both examples, assume a database similar to Sample Basic. The Measures dimension
includes two members: COGS (cost of goods sold) and Otherinc_Exp (miscellaneous income
and expenses). The data can include 0 and #MISSING values. For both members of the
Measures dimension, the result is the same--the minimum value for the Otherinc_Exp member
across the specified range.

Example 1

Qtrl Min = @MINSRANGE (SKIPBOTH, OtherInc Exp, Jan:Mar);

This example ignores the 0 value for Mar and produces the following results:

Jan Feb Mar Qtrl Min
COGS #MISSING 1500 2300 350
OtherInc_Exp 500 350 0 350

Example 2

Qtrl Min = @MINS(SKIPNONE, OtherInc Exp, Jan:Mar);

This example does not ignore the 0 value in the calculation. This example produces the
following results:

Jan Feb Mar Qtrl Min
COGS #MISSING 1500 2300 0
OtherInc Exp 500 350 0 0

2-159

@MOD

@MODE

ORACLE

Chapter 2
Calculation Function List

See Also

e @MINS
* @MINRANGE
° @MAXSRANGE

The @MOD calculation function for Essbase calculates the modulus of a division operation.
Syntax

@MOD (mbrNamel, mbrNameZ)

Parameters

mbrNamel and mbrName2
Members from the same dimension whose modulus is to be calculated.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Factor. The modulus between Profit % and Margin
% is calculated with the following formula:

Factor = @MOD("Margin %", "Profit %");

This example produces the following report:

Market Product Scenario
Margin % Profit % Factor
Jan 55.10 25.44 4.22
Feb 55.39 26.03 3.34
Mar 55.27 25.87 3.53

The @MODE calculation function for Essbase returns the mode (the most frequently occurring
value) in the specified data set.

Syntax

@MODE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, XrangeList)

Parameters

SKIPNONE
Includes all cells specified in the data set, regardless of their content, during calculation of the
mode.

2-160

ORACLE

Chapter 2
Calculation Function List

SKIPMISSING
Excludes all #MISSING values from the data set during calculation of the mode.

SKIPZERO
Excludes all zero (0) values from the data set during calculation of the mode.

SKIPBOTH
Excludes all zero (0) values and #M1SSING values from the data set during calculation of the
mode.

XrangeList

A list of numeric values across which the mode is calculated. Referred to generically
throughout this topic as "the data set."

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about XrangeList, see Range List Parameters.

Notes

e When two or more values in the data set occur at the same frequency, Essbase sorts the
list of values in ascending order and chooses the lowest value that occurs with the most
frequency as the mode. For example, if the data set contains [2,1,2,2,2,3,3,3,3], Essbase
sorts the list as [1,2,2,2,2,3,3,3,3] and chooses the value [2] as the mode.

e If the data set contains no duplicate values, this function returns the smallest value in the
list as the mode. For example, if the data set contains [2,4,7,10,14], @MODE returns 2 as
the mode.

e If #MISSING is the mode of the data set, this function returns #MISSING unless
SKIPMISSING or SKIPBOTH is specified. If you specify SKIPMISSING or SKIPBOTH and
all values in the data set are #MISSING, this function returns #MISSING. If you specify
SKIPZERO or SKIPBOTH and all values in the data set are 0, this function returns
#MISSING.

* When you use this function in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

* When you use this function across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example

The following example calculates the mode of the units sold for the Central region and uses
@RANGE to generate the data set:

FIX (Central)
"Mode" = @MODE (SKIPMISSING,

@RANGE (Sales, @CHILDREN (Central)));
ENDFIX

This example produces the following report:

Colas Actual Jan
Units Sold
Units Sold Illinois 3
Ohio 2

2-161

@MOVAVG

ORACLE

Chapter 2
Calculation Function List

Wisconsin 3

Missouri #MI

Iowa 0

Colorado 6

Central 14

Mode Central 3

The following example assumes a Year dimension is added to Sample Basic. It calculates
mode using cross-dimensional members in the data set.

FIX (Product)
"Mode" = @MODE (SKIPMISSING, @XRANGE ("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangelList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

* @RANGE
* @XRANGE

The @MOVAVG calculation function for Essbase applies a moving n-term average (mean) to
an input data set. @MOVAVG modifies a data set for smoothing purposes.

Each term in the set is replaced by a trailing mean of n terms, and the first terms (the n-1
terms) are copies of the input data.

Syntax

@MOVAVG (mbrName [, n [, XrangeList]])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional. A positive integer value that represents the number of values to average. The default
is 3.

2-162

ORACLE

Chapter 2
Calculation Function List

XrangeList

Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

« The @MOVAVG function calculates a trailing, rather than a centered, average. For

example:
Trailing Average Centered Average
1 2 3 1 2 3

2 2

e While calculating the moving average, this function skips #MISSING values and decreases
the denominator accordingly. For example, if one value out of three is #MISSING, Essbase
adds the remaining two values and divides the sum by two.

* If you use a member set function to generate a member list for the XrangeList parameter
(for example, @SIBLINGS), to ensure correct results, consider the order in which Essbase
sorts the generated member list. For more information, see the help topic for the member
set function you are using.

* When you use @MOVAVG in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

* For periods where the width is undefined, the value is the same as for the source member.
For example, you can't compute the moving average over the last three months for Jan
and Feb because it doesn't exist. When this happens, Essbase simply copies the value for
Jan and Feb for the moving average.

* When you use @MOVAVG across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Mov Avg.

"Mov Avg" = @MOVAVG(Sales, 3,Jan:Jun);

In this example, @MOVAVG smoothes sales data for the first six months of the year (Jan
through Jun). The results of @MOVAVG can be used with the @ TREND function to forecast
average sales data for a holiday season (for example, October - December).

This example produces the following report:

Colas New York Actual

Sales Mov Avg
Jan 678 678
Feb 645 645
Mar 675 666
Apr 712 677.3
May 756 714.3
Jun 890 786

2-163

Chapter 2
Calculation Function List

In this example, Essbase averages three values at a time for the moving average. The first two
values (Jan,Feb) for Mov Avg and the first two values for Sales are the same. The value for
Mar represents the trailing average of Jan, Feb, and Mar. The value for Apr represents the
trailing average of Feb, Mar, and Apr. The remaining values represent the trailing average for
each group of three values.

See Also

° @MOVMAX

° @MOVMED
° @MOVMIN

* @MOVSUM

* @MOVSUMX
e @TREND

@MOVMAX

ORACLE

The @MOVMAX calculation function for Essbase applies a moving n-term maximum (highest
number) to an input data set. @MOVMAX modifies a data set for smoothing purposes.

Each term in the set is replaced by a trailing maximum of n terms, and the first terms (the n-1
terms) are copies of the input data.

Syntax

@MOVMAX (mbrName [, n [, XrangeList]])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional. A positive integer value that represents the number of values that are used to
calculate the moving maximum. The default is 3.

XrangeList

Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

e This function calculates a trailing, rather than a centered, maximum. For example:

Trailing Maximum Centered Maximum
12 3 1 2 3
3 3

* While calculating the moving maximum, @MOVMAX skips #MISSING values. For example,
if one value out of four is #MISSING, @MOVMAX calculates the maximum of the remaining
three values.

2-164

Chapter 2
Calculation Function List

* If you use an Essbase member set function to generate a member list for the XrangeList
parameter (for example, @SIBLINGS), to ensure correct results, consider the order in
which Essbase sorts the generated member list. For more information, see the help topic
for the member set function you are using.

* When you use @MOVMAX in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

* When you use @MOVMAX across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Mov Max.

"Mov Max" = @MOVMAX (Sales,3,Jan:Jun);

In this example, the @MOVMAX function smoothes sales data for the first six months of the
year (Jan through Jun). The results of @MOVMAX can be used with the @ TREND function to
forecast maximum sales data for a holiday season (for example, October - December).

This example produces the following report:

Root Beer New York Actual

Sales Mov Max
Jan 551 551
Feb 641 641
Mar 586 641
Apr 630 641
May 612 630
Jun 747 747

In this example, Essbase uses three values at a time to calculate the moving maximum. The
first two values (Jan,Feb) for Mov Max and the first two values for Sales are the same. The
value for Mar represents the trailing maximum of Jan, Feb, and Mar. The value for Apr
represents the trailing maximum of Feb, Mar, and Apr. The remaining values represent the
trailing maximum for each group of three values.

See Also

° @MOVAVG
* @MOVMED
- @MOVMIN

* @MOVSUM
* @MOVSUMX
e @TREND

ORACLE b 165

Chapter 2
Calculation Function List

@MOVMED

The @MOVMED calculation function for Essbase applies a moving n-term median (middle
number) to an input data set. @ MOVMED maodifies a data set for smoothing purposes.

Each term in the list is replaced by a trailing median of n terms, and the first terms (the n-1
terms) are copies of the input data.

Syntax

@MOVMED (mbrName [, n [, XrangeList]])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional. A positive integer value that represents the number of values that are used to
calculate the moving median. The default is 3.

XrangeList

Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

e While calculating the moving median, this function skips #MISSING values. For example, if
one value out of four is #MISSING, @MOVMED calculates the median of the remaining
three values.

e This function calculates a trailing, rather than a centered, median. For example:

Trailing Median Centered Median
1 2 3 1 2 3
2 2

» If the group of values being used to calculate the median contains an even number of
values, @MOVMED averages the two humbers in the middle.

* If you use an Esshase member set function to generate a member list for the XrangeList
parameter (for example, @SIBLINGS), to ensure correct results, consider the order in
which Essbase sorts the generated member list. For more information, see the help topic
for the member set function you are using.

* When you use @MOVMED in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

* When you use @MOVMED across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

ORACLE 5166

@MOVMIN

ORACLE

Chapter 2
Calculation Function List

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Mov Med.

"Mov Med" = @MOVMED (Sales,3,Jan:Jun);

In this example, @MOVMED smoothes sales data for the first six months of the year (Jan
through Jun). The results could be used with the @ TREND function to forecast sales data for a
holiday season (for example, October - December).

This example produces the following report:

Colas New York Actual
Sales Mov Med
Jan 678 678
Feb 645 645
Mar 675 675
Apr 712 675
May 756 712
Jun 890 756

In this example, Essbase uses three values at a time to calculate the moving median. The first
two values (Jan,Feb) for Mov Med are the same as the first two values for Sales. The value for
Mar represents the trailing median of Jan, Feb, and Mar. The value for Apr represents the
trailing median of Feb, Mar, and Apr. The remaining values represent the trailing median of
each group of three values.

See Also

° @MOVAVG
° @MOVMAX
- @MOVMIN

* @MOVSUM
* @MOVSUMX
e @TREND

The @MOVMIN calculation function for Essbase applies a moving n-term minimum (lowest
number) to an input data set. @MOVMIN modifies a data set for smoothing purposes.

Each term in the list is replaced by a trailing minimum of n terms, and the first terms (the n-1
terms) are copies of the input data.

Syntax

@MOVMIN (mbrName [, n [, XrangeList]])

2-167

ORACLE

Chapter 2
Calculation Function List

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional. A positive integer value that represents the number of values that are used to
calculate the moving minimum. The default is 3.

XrangeList

Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

e While calculating the moving minimum, @MOVMIN skips #MISSING values. For example, if
one value out of four is #MISSING, @MOVMIN calculates the minimum of the remaining
three values.

e This function calculates a trailing, rather than a centered, minimum. For example:

Trailing Minimum Centered Minimum
1 2 3 1 2 3
1 1

e If you use a member set function to generate a member list for the XrangeList parameter
(for example, @SIBLINGS), to ensure correct results, consider the order in which Essbase
sorts the generated member list. For more information, see the help topic for the member
set function you are using.

e When you use @MOVMIN in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

e When you use @MOVMIN across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Mov Min.

"Mov Min" = @MOVMIN (Sales, 3,Jan:Jun);

In this example, the @MOVMIN function smoothes sales data for the first six months of the
year (Jan through Jun). The results of @MOVMIN can be used with the @ TREND to forecast
minimum sales data for the holiday season (for example, October - December).

This example produces the following report:

Colas New York Actual
Sales Mov Min
Jan 678 678
Feb 645 645
Mar 675 645

2-168

Chapter 2
Calculation Function List

Apr 712 645
May 756 675
Jun 890 712

In this example, Essbase uses three values at a time to calculate the moving minimum. The
first two values (Jan,Feb) for Mov Min and the first two values for Sales are the same. The
value for Mar represents the trailing minimum of Jan, Feb, and Mar. The value for Apr
represents the trailing minimum of Feb, Mar, and Apr. The remaining values represent the
trailing minimum for each group of three values.

See Also

° @MOVAVG

° @MOVMAX

° @MOVMED
* @MOVSUM

* @MOVSUMX
e @TREND

@MOVSUM

ORACLE

The @MOVSUM calculation function for Essbase applies a moving sum to the specified
number of values in an input data set. @ MOVSUM modifies a data set for smoothing
purposes.

Syntax

@MOVSUM (mbrName [, n [, XrangeList]])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional. A positive integer value that represents the number of values to sum. The default is
3.

XrangeList

Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

e For example, if you specify 3 members of the Time dimension in the Sample Basic
database, @MOVSUM at Mar is the sum of the values for Jan, Feb, and Mar; @MOVSUM
at Apr is the sum of the values for Feb, Mar, and Apr. However, Jan and Feb have no
@MOVSUM value, and are called trailing members. Trailing members are copies of the
input values. If you wish to assign different values to trailing members, use @MOVSUMX
instead.

2-169

ORACLE

Chapter 2
Calculation Function List

The @MOVSUM function calculates a trailing, rather than a centered, sum. This example
illustrates the difference:

Trailing Sum Centered Sum
1 2 3 1 2 3
6 6

While calculating the moving sum, @MOVSUM skips #MISSING values. For example, if one
value out of three is #M1SSING, Essbase adds the remaining two values.

If you use an Essbase member set function to generate a member list for the XrangeList
parameter (for example, @SIBLINGS), to ensure correct results, consider the order in
which Essbase sorts the generated member list. For more information, see the help topic
for the member set function that you are using.

When you use @MOVSUM in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

When you use @MOVSUM across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Mov Sum.

"Mov Sum" = @MOVSUM(Sales, 3,Jan:Jun);

In this example, @MOVSUM smoothes sales data for the first six months of the year (Jan
through Jun). The results of @MOVSUM can be used with @ TRENDto forecast average sales
data for a holiday season (for example, October through December).

This example produces the following report:

Colas New York Actual

Sales Mov Sum
Jan 678 678
Feb 645 645
Mar 675 1998
Apr 712 2032
May 756 2143
Jun 890 2358
See Also
« @MOVAVG
e @MOVMED
« @MOVMAX
e @MOVMIN
¢ @MOVSUMX
e @TREND

2-170

Chapter 2
Calculation Function List

@MOVSUMX

ORACLE

The @MOVSUMKX calculation function for Essbase applies a moving sum to the specified
number of values in an input data set. @ MOVSUMX modifies a data set for smoothing
purposes.

Unlike @MOVSUM, @MOVSUMX allows you to specify the values assigned to trailing
members. For example, if you specify three members of the Time dimension in the Sample
Basic database, @MOVSUMX at Mar is the sum of the values for Jan, Feb, and Mar;
@MOVSUMX at Apr is the sum of the values for Feb, Mar, and Apr. However, Jan and Feb
have no @MOVSUMX value, and are called trailing members.

Syntax

@MOVSUMX (COPYFORWARD | TRAILMISSING | TRAILSUM, mbrName [,n[,Xrangelist]])

Parameters

COPYFORWARD
Copies the input value into the trailing members. This behavior is the same as the
@MOVSUM function.

TRAILMISSING
Sets the value of the trailing members to #MISSING.

TRAILSUM
Sums the trailing values.

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional. A positive integer value that represents the number of values that are used to
calculate the moving maximum. The default is 3.

XrangeList

Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

The @MOVSUMX function calculates a trailing, rather than a centered, sum. This example
illustrates the difference:

Trailing Sum Centered Sum
1 2 3 1 2 3
6 6

* While calculating the moving sum, @MOVSUMX skips #MISSING values. For example, if
one value out of three is #MISSING, Essbase adds the remaining two values.

e If you use a member set function to generate a member list for the XrangeList parameter
(for example, @SIBLINGS), to ensure correct results, consider the order in which Essbase

2-171

ORACLE

Chapter 2
Calculation Function List

sorts the generated member list. For more information, see the help topic for the member
set function that you are using.

* When you use @MOVSUMX in a calculation script, use it within a FIX statement. Although
FIX is not required, using it may improve calculation performance.

* When you use @MOVSUMX across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example

The following examples are based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, "Last 3 Months of Sales," and that the original Sales
values are as shown.

Last 3 Months of Sales = @MOVSUMX (COPYFORWARD, Sales,3,Jan:Aug);

or:

Last 3 Months of Sales @MOVSUMX (TRAILMISSING, Sales, 3,Jan:Aug);

or:

Last 3 Months of Sales

@MOVSUMX (TRAILSUM, Sales, 3,Jan:Auqg);

These examples produce the following reports:

Sales

Jan 100
Feb 150
Mar 200
Apr 250
May 300
Jun 350
Jul 400
Aug 450

Last 3 Months of Sales
COPYFORWARD

100
150
450
600
750
900
1050
1200

Last 3 Months of Sales
TRAILMISSING

2-172

@NAME

ORACLE

Chapter 2
Calculation Function List

#MISSING
#MISSING
450
600
750
900

1050

1200

Last 3 Months of Sales

TRAILSUM
100
250
450
600
750
900
1050
1200
See Also
e @MOVAVG
e @MOVMAX
e @MOVMED
e @MOVMIN
e @MOVSUM
e @TREND

The @NAME calculation function for Essbase passes the enclosed string, or list of member or
dimension names, as a list of strings to another function.

Syntax

@NAME (mbrName [,UNIQUE])

Parameters

mbrName
A list of member names, dimension hames, or strings.

UNIQUE

Tells @NAME to return a unigue member name (using shortcut qualified name format) for
mbrName, if mbrName is a duplicate name. If mbrName is not a duplicate name or if duplicate
member names is not enabled, UNIQUE is ignored, and only the member name is returned.
The following considerations apply:

2-173

ORACLE

Chapter 2
Calculation Function List

» Essbase does not support strings in functions. It treats strings as values or an array of
values. @NAME processes strings.

e To learn more about the shortcut qualified name format used for unique member names,
see Creating and Working With Duplicate Member Outlines.

Example
Example 1

The following example is based on the Sample Basic database. A user-defined function is
used to retrieve the price from the table below. The user defined function (J_GetPrice) takes
two string parameters, time and product name, to return the price for each product.

Table 2-30 Price Data in Sample Basic Database
|

MonthName Productid Price
Jan 100-10 1.90
Feb 100-10 1.95
Mar 100-10 1.98
Jan 100-20 1.95
Feb 100-20 2.00
Mar 100-20 2.05

Price = @J GetPrice (@NAME (€CURRMBR (Product)), @NAME (@CURRMBR (Year))) ;

The following report illustrates the above example:

Price Actual Market
Jan Feb Mar

100-10 1.90 1.95 1.98
100-20 1.95 2.00 2.05

Example 2

The following example is based on the Sample Basic database:

"Profit Per Ounce" = Profit/Q@ATTRIBUTEVAL (@NAME (Ounces));

The @NAME function processes the string “Ounces” before passing it to @ATTRIBUTEVAL.
This example produces the following report:

Actual Year West
Profit Profit Per Ounce
Cola 4593 382.75

Example 3

For the following example, assume an outline that has duplicate member names enabled, and
there are two members named New York in the Market dimension:

2-174

@NEXT

ORACLE

Chapter 2
Calculation Function List

[=1-State <2=
! ----- hews Yark

ks

|_:|'Cl't‘:|" d=

The qualified member names for the New York members are [State].[New York] and [City].[New
York].

The following example captures a qualified member name from the current calculation context:

@MEMBER (@NAME (€CURRMBR ("Market"), UNIQUE))

If the current member of Market being calculated is the New York State member, the qualified
member name, [State].[New York], is passed to @MEMBER, effectively differentiating it from
the New York City member.

See Also

* @CURRMBR
* @MEMBER

The @NEXT calculation function for Essbase returns a cell value at a given next distance from
a member name within a range.

This function returns the nth cell value from mbrName, in the sequence XrangeList , retaining
all other members identical to the current member. @NEXT cannot operate outside the given
range.

Syntax

@NEXT (mbrName [, n, XrangeList])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional signed integer. If you do not specify n, then the default is set to 1, which provides the
next member in the range. Using a negative value for n has the same effect as using the
matching positive value in @PRIOR.

XrangeList

Optional parameter specifying a sequential range of members. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters.

2-175

@NEXTS

ORACLE

Chapter 2
Calculation Function List

Example

In this example, Next Cash for each month is derived by taking the Cash value for the following
month. Since n is not specified, the default is 1, which provides the next member in the range.
Since XrangeList is not specified, the level 0 members from the dimension tagged as Time are
used (Jan,Feb,Mar, ...).

"Next Cash" = @NEXT (Cash);

This example produces the following report:

Jan Feb Mar Apr May Jun

Cash 100 90 120 110 150 100
Next Cash 90 120 110 150 100 #MI

The following example assumes a Year dimension is added to Sample Basic.

"Next Sales" = @NEXT(Sales, 1, @XRANGE("2011"->"Sep", "2012"->"Mar"));

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

* @PRIOR
* @SHIFT
* @SHIFTMINUS
* @SHIFTMINUS

The @NEXTS calculation function for Essbase returns a cell value at a given next distance
from a member name within a range, with options to ignore empty values.

Returns the nth cell value from mbrName, in the sequence XrangeList. Provides the option to
skip #MISSING, zero, or both. Works within a designated range, and retains all other members
identical to the current member.

Syntax

@NEXTS (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH mbrNamel,n,XrangeList])

2-176

ORACLE

Chapter 2
Calculation Function List

Parameters

SKIPNONE
Includes all cells specified in the sequence, regardless of their content.

SKIPMISSING
Ignores all #MISSING values in the sequence.

SKIPZERO
Ignores all 0 values in the sequence.

SKIPBOTH
Ignores all #MISSING and O values in the sequence.

mbrName
Any valid single member name, or a function that returns a single member.

n

Optional signed integer. Using a negative value for n has the same effect as using the
matching positive value in @PRIORS. If you do not specify n, then a default value of 1 is
assumed, which returns the next prior member from the lowest level of the dimension set as
Time in the database outline.

XrangeList

Optional parameter specifying a sequential range of members. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters.

Example

In this example, Next Cash for each month is derived by taking the Cash value for the following
month and ignoring both #MISSING and zero values. Because n is not specified, the default is 1,
which provides the next member in the range. Also, because XrangelList is not specified, the
level 0 members from the dimension set as Time are used (Jan,Feb,Mar, ...).

"Next Cash" = @NEXTS (SKIPBOTH, Cash);

The following report illustrates the above example:

Jan Feb Mar Apr May Jun

Cash 1100 #MI 1000 1300 0 1400
Next Cash 1000 1000 1300 1400 1400 #MI

The following example assumes a Year dimension is added to Sample Basic.

FIX(East)

"Next Cash" = @NEXTS (SKIPNONE, Sales, 1, @XRANGE ("2011"->"Sep", "2012"-
>"Mar"));

ENDFIX;

2-177

Chapter 2
Calculation Function List

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

* @NEXT
* @PRIORS
* @XRANGE

@NEXTSIBLING

ORACLE

The @NEXTSIBLING calculation function for Essbase returns the next sibling (the sibling to
the immediate right) of the specified member.

This function excludes the specified member. If the specified member is the last sibling,
Essbase returns an empty string.

This function returns the next sibling as a string. To pass this function as a parameter of
another function, where the function requires a list of members, you must wrap the
@NEXTSIBLING function call within a @MEMBER function call.

You must also wrap this function within the @MEMBER function if you are calling it inside a
member combination specified using the cross-dimensional operator (->). For example, this is
correct usage: @MEMBER (@NEXTSIBLING ("FY19"))->"Al".

Syntax

@NEXTSIBLING (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

All examples are from the Sample.Basic database.

@NEXTSIBLING ("100-20")

Returns 100-30 (the next sibling of 100-20).

@NEXTSIBLING ("200")

2-178

Chapter 2
Calculation Function List

Returns 300 (the next sibling of 200). @NEXTSIBLING and @SHIFTSIBLING ("200",1) return
the same results.

@MEMBER (@NEXTSIBLING ("100-20"))

Returns 100-30 (the next sibling of 100-20).

@CHILDREN (@MEMBER (G@NEXTSIBLING ("East")))

Returns all children of West.

See Also

° @MEMBER
° @PREVSIBLING
° @SHIFTSIBLING

@NONEMPTYTUPLE

The @NONEMPTYTUPLE calculation function is an Essbase formula directive you can use to
force queries to use only data dependent cells when executing the formula. For Release 21c
and later, use @QUERYBOTTOMUP instead of this function.

@QUERYBOTTOMUP replaces this function in Essbase 21c.

You can use this function before a formula to force queries to use only data dependent cells
when executing the formula. This optimizes query times by identifying the required
intersections for calculation, making the query time proportional to input data size.

This function can be used as a formula directive. Using it before the formula specification is
recommended when the formula is long and contains many cross-dimensional operators. Such
formulas often cause the formula cache to grow large while also being sparse (having a
relatively small input data set). Using this directive causes query execution to occur in bottom-
up mode, to resolve dependency analysis quickly in cases where the formula cache is sparse.

Syntax

@NONEMPTYTUPLE [(nonempty member 1ist)]

Parameters

nonempty_member_list

Optional. A list of members from the current dimension (the dimension in which this formula
applies).

The formula will execute in bottom-up mode if any of the members specified in
nonempty_member_list are empty. If nonempty_member_list is not specified, the formula will
execute in bottom-up mode if any dependent members of the current formula are empty. For
most use cases, you do not need to specify nonempty_member_list; simply place
@NONEMPTYTUPLE before the formula syntax to cause bottom-up formula execution.

ORACLE 5179

Chapter 2
Calculation Function List

Example

The following outline formula example is based on the Compensation Analytics sample cube,
for which the application workbook is available in the HR Analysis directory of the Applications
gallery.

@NONEMPTYTUPLE ("Headcount under Target")

IF ("Headcount under Target"!=#missing)

"Market Movement"*"Size %"->"Actual"->"Sepl7"->"No JG"->"unassigned OU"->"No
Job Code"->"No EE"->"No MktComp"*"BASE"*"Competitive Incr %"->"Actual"-
>"Sepl7"->"No Region"->"No JG"->"unassigned OU"->"No Job Code"->"No EE"-
>"No MktComp";

ENDIF;

The following example is for a calculation script use case:

"Headcount under Target" (

@NONEMPTYTUPLE ("COMPARATIO")

IF ("COMPARATIO"!=#missing AND "COMPARATIO"<="Competitive Target"->"No JG"-
>"No Region"->"unassigned OU"->"No EE"->"No Job Code"->"No MktComp")

1;

ENDIF;)

See Also
NONEMPTYTUPLE in MDX Optimization Properties
IGNORECONSTANTS application configuration setting

@NOTEQUAL

ORACLE

The @NOTEQUAL calculation function searches an Essbhase outline or hierarchy for member
names that do not match a string.

This function returns a member set of member names that do not match the specified token
name. This function can be used on unique and duplicate-name outlines.

Syntax

@NOTEQUAL (tokenName, topMbrinHierarchy)

Parameters

tokenName

Token string value, representing the name of a member, with which to compare to members in
the outline, starting with member specified in topMbrinHierarchy. The specified token name
must not be qualified for duplicate members.

topMbrinHierarchy

A fully qualified name of a member in the outline on which to base the member search. The
specified member and its aliases, and all of its descendants, are included in the search.

To search the entire outline, provide an empty string ("") for this parameter. For example,
@NOTEQUAL ("300-30", "").

2-180

Chapter 2
Calculation Function List

Example

The following examples are based on the following duplicate-name outline:

Product

100

100-10
100-10-10

100-20
100-30

200
200-10
200-20
200-30

300
300-10
300-20

Diet
100-10

100-10-11

200-10
300-10

Bottle
200-10
300-20

@NOTEQUAL("200-10", "Product")

Returns all of the members under the Product dimension, except for
the members [Bottle].[200-10], [Diet].[200-10], and [200].[200-10].

@NOTEQUAL ("200-10", "Diet")

Returns the members Diet, [Diet].[100-10], [Diet].[100-10].[100-10-10],
and [Diet].[300-10].

See Also

« @EQUAL

e @EXPAND
e @LIKE

* @MBRCOMPARE
* @MBRPARENT

ORACLE 5181

Chapter 2
Calculation Function List

@NPV

The @NPV calculation function for Essbase calculates the Net Present Value of an investment
based on the series of payments (negative values) and income (positive values).

Syntax

@NPV (cashflowMbr, rateMbrConst, discountFlag [, XrangeList])

Parameters

cashflowMbr
Member specification providing a series of numeric values.

rateMbrConst
Single member specification, variable name, or numeric expression, providing a constant
value.

discountFlag

Single member specification, variable name, or numeric expression set to 0 or 1 to indicate
whether the function should discount from the first period. 1 means do not discount from the
first period.

XrangeList

Optional parameter specifying the range over which the function is calculated. If a range is not
specified, Essbase uses the level 0 members from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

In this example, Value is calculated with the following formula:

Value = @NPV(Cash, Rate, 0, FY1990:FY1994, FY1995:FY2000);

This example produces the following report:

FY1990 FY1991 FY1992 FY1993 FY1994 FY1995

Cash (1,000) 500 600 500 #MISSING #MISSING
Rate 0 0 0 0 #MISSING #MISSING
Value 296 296 296 296 296 296

ORACLE 5180

Chapter 2
Calculation Function List

The following example assumes a Year dimension is added to Sample Basic. It calculates NPV
using a multidimensional range.

FIX ("100-10", "New York")
"Value" = @NPV(Cash, Rate, 0, @XRANGE ("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangelList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@PTD

@PARENT

The @PARENT calculation function for Essbase returns the parent of the current member
being calculated in the specified dimension. If you specify the optional mbrName, that parent is
combined with the specified member.

This member set function can be used as a parameter of another function, where that
parameter is a member or list of members.

Syntax

@PARENT (dimName [, mbrName])

Parameters

dimName
Single dimension name specification.

mbrName
Optional. Any valid single member name, or a function that returns a single member.

Notes

¢ You cannot use this function in a FIX statement.

* You can use this function on both the left and right sides of a formula. If you use this
function on the left side of a formula in a calculation script, associate it with a member. For
example:

Sales (@PARENT (Product) = 5;);

ORACLE 5183

Chapter 2
Calculation Function List

* Insome cases, @PARENT is equivalent to @PARENTVAL, except in terms of calculation
performance. For example, the following two formulas are equivalent:

Sales @PARENT (Profit);
Sales = @PARENTVAL (Profit);

In this case, using the latter formula results in better calculation performance. In general,
use @PARENT as a member rather than as an implied value of a cell. For example:

Sales = QAVG (SKIPMISSING, Q@ISIBLINGS (@PARENT("100")));

e The time required for retrieval and calculation may be significantly longer if this function is
in a formula attached to a member tagged as Dynamic Calc or Dynamic Calc and Store.

e If you are using @PARENT within @XREF, @XREF requires @NAME to be used around
@PARENT. For example:

COGS=@XREF (Sample, @NAME (@PARENT (Product)),Sales);

Example

In the Sample Basic database:

@PARENT (Market, Sales)

returns Central->Sales, if the current member of Market being calculated is Colorado.

@PARENT (Measures)

returns Profit, if the current member of Measures being calculated is Margin.

See Also

° @ANCEST

° @ANCESTORS

* @CHILDREN

* @DESCENDANTS
°* @SIBLINGS

@PARENTVAL

The @PARENTVAL calculation function for Essbase returns the parent values of the member
being calculated in the specified dimension.

Syntax

@PARENTVAL (dimName [, mbrName])

ORACLE 5184

ORACLE

Chapter 2
Calculation Function List

Parameters

dimName
Single dimension name specification that defines the focus dimension of parent values.

mbrName
Optional. Any valid single member name, or a function that returns a single member.

Example

This example is based on the Sample Basic database. The formula calculates Market Share
for each state by taking each state's Sales value as a percentage of Sales for East (its parent)
as a whole. Market Share->East is calculated as East's percentage of its parent, Market.

"Market Share" = Sales % @PARENTVAL (Market,Sales);

This example produces the following report:

Cola Actual Jan
Sales Market Share
New York 678 37.42
Massachusetts 494 27.26
Florida 210 11.59
Connecticut 310 17.11
New Hampshire 120 6.62
East 1812 37.29
Market 4860 100

Adding the "Market Share" member and formula to the outline would produce the same result
as above.

-Measures
L EProfit (+)
© o E-Margin (+)
tarket Share (+) [Formula: Sales % @FPARENTYALMarket, Sales))

See Also

e @ANCESTVAL

e @MDPARENTVAL
e @SPARENTVAL

2-185

@POWER

Chapter 2
Calculation Function List

The @POWER calculation function for Essbase returns the value of the specified member or
expression raised to power.

Syntax

@POWER (expression, power)

Parameters

expression
Single member specification, variable name, function, or other numeric expression.

power
Single member specification, variable name, function, or other numeric expression.

Notes

e If expression is negative, and if power is not an integer, Esshase returns #MISSING.

* If the value calculated by @POWER is an infinite number, Essbase returns #MISSING.

Example

Table 2-31 @POWER Results

Usage Return Value
@POWER (14, 3) 2744

@POWER (2, 8) 256

See Also

@FACTORIAL

@PREVSIBLING

ORACLE

The @PREVSIBLING calculation function for Essbase returns the previous sibling (the sibling
to the immediate left) of the specified member.

This function excludes the specified member. If the specified member is the first sibling,
Essbase returns an empty string.

This function returns the next sibling as a string. To pass this function as a parameter of
another function, where the function requires a list of members, you must wrap the
@PREVSIBLING function call within a @ MEMBER function call.

You must also wrap this function within the @MEMBER function if you are calling it inside a
member combination specified using the cross-dimensional operator (->). For example, this is
correct usage: @MEMBER (@PREVSIBLING ("FY19"))->"Al".

Syntax

@PREVSIBLING (mbrName)

2-186

@PRIOR

ORACLE

Chapter 2
Calculation Function List

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Example

All examples are from the Sample.Basic database.

@PREVSIBLING("100-20")
Returns 100-10 (the previous sibling of 100-20). The @PREVSIBLING ("100-20") function and
the @SHIFTSIBLING("100-20", -1 function return the same results.

Returns 100 (the previous sibling of 200).

@PREVSIBLING("100-10")

Returns an empty list, as 100-10 does not have a previous sibling.

@CHILDREN (@MEMBER (@PREVSIBLING ("East")))

Returns an empty list, as there is no previous sibling of East at the same level.

See Also

° @NEXTSIBLING
e @SHIFTSIBLING

The @PRIOR calculation function for Essbase returns a cell value at a given prior distance
from a member name within a range.

This function returns the nth previous cell member from mbrName, in the sequence
XrangelList. All other dimensions assume the same members as the current member. @PRIOR
works only within the designated range, and with level 0 members.

Syntax

@PRIOR (mbrName [, n, XrangeList])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional signed integer. Using a negative value for n has the same effect as using the
matching positive value in @NEXT. If you do not specify n, then a default value of 1 is
assumed, which returns the next prior member from the lowest level of the dimension tagged
as Time in the database outline.

2-187

Chapter 2
Calculation Function List

XrangeList

Optional parameter specifying a sequential range of members. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters.

Example

In this example, Prev Inventory for each month is derived by taking the Inventory value from
the previous month. Since n is not specified, the default is 1, which provides the next prior
member in the range. Since XrangelList is not specified, the level 0 members from the
dimension tagged as Time are used (Jan,Feb,Mar,...).

"Prev Inventory" = @PRIOR(Inventory);

This example produces the following report:

Jan Feb Mar Apr May Jun

Inventory 1100 1200 1000 1300 1300 1400
Prev Inventory #MI 1100 1200 1000 1300 1300

The following example assumes a Year dimension is added to Sample Basic.

"Prev Sales" = @PRIOR(Sales, 2, @XRANGE ("2011"->"Sep", "2012"->"Mar"));

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

- @NEXT
- @SHIFT

- @SHIFTMINUS
- @SHIFTPLUS

ORACLE 5 188

@PRIORS

ORACLE

Chapter 2
Calculation Function List

The @PRIORS calculation function for Essbase returns a cell value at a given prior distance
from a member name within a range, with options to ignore empty values.

Returns the nth previous cell member from mbrName, in the sequence XrangeList. Provides
options to skip #MISSING, zero, or both #MISSING and zero values. All other dimensions assume
the same members as the current member. @PRIORS works within the designated range.

Syntax

@PRIORS (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH mbrName[,n, XrangeList])

Parameters

SKIPNONE
Includes all cells specified in the sequence, regardless of their content.

SKIPMISSING
Ignores all #MISSING values in the sequence.

SKIPZERO
Ignores all zero values in the sequence.

SKIPBOTH
Ignores all #MISSING and zero values in the sequence.

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional signed integer. Using a negative value for n has the same effect as using the
matching positive value in the @NEXTS function. If you do not specify n, then a default value
of 1 is assumed, which returns the next prior member from the lowest level of the dimension
set as Time in the database outline.

XrangeList

Optional parameter specifying a sequential range of members. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters.

Example

In this example, Prev Inventory for each month is derived by taking the Inventory value from
the previous month and ignoring #MISSING and zero values. Because n is not specified, the
default is 1, which provides the next prior member in the range. Also, because XrangeList is
not specified, the level 0 members from the dimension are set as Time used as
(Jan,Feb,Mar,...).

"Prev Inventory" = @PRIORS (SKIPBOTH, Inventory);

2-189

Chapter 2
Calculation Function List

The following report illustrates this example:

Jan Feb Mar Apr May Jun
Inventory 1100 #MI 1000 1300 0 1400
Prev Inventory #MI 1100 1100 1000 1300 1300

The following example assumes a Year dimension is added to Sample Basic.

FIX (East)

"Prev Sales" = @PRIORS (SKIPBOTH, Sales, 1, @XRANGE("2011"->"Sep", "2012"-
>"Mar"));

ENDFIX;

The above calculation is performed across the following multidimensional range specified by
Xrangelist:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@PRIOR

@PTD

The @PTD calculation function for Essbase calculates the period-to-date values of members in
the dimension tagged as Time. By default, data is summed, unless Accounts are tagged as
"First" or "Last".

Syntax

@PTD (XrangeList)

Parameters

XrangeList

Range of members from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about XrangeList, see Range List Parameters.

Notes

« Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

ORACLE 5190

ORACLE

Chapter 2
Calculation Function List

* You can use @PTD only if the outline contains a dimension tagged as Accounts.

Example

In this example, assume that the Year dimension in the Sample Basic database outline
contains two additional members, YTD and QTD. Using a calculation script, the YTD and QTD
members are calculated as follows:

YTD = @PTD(Jan:May) ;
QTD @PTD (Apr:May) ;

In this example Opening Inventory is tagged with a time balance of First, and Ending Inventory
is tagged with a time balance of Last.

This example produces the following report:

Product Market

Scenario
Sales Opening Inventory Ending Inventory

Jan 31538 117405 116434
Feb 32069 116434 115558
Mar 32213 115558 119143

Qtrl 95820 117405 119143
Apr 32917 119143 125883
May 33674 125883 136145
Jun 35088 136145 143458

Qtr2 101679 119143 143458
QTD 66591 245026 262028
YTD 162411 117405 136145

The following example assumes a Year dimension is added to Sample Basic. It calculates YTD
using a multidimensional range.

FIX("100-10", "New York")
YTD = @PTD (@XRANGE ("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangelList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@NPV

2-191

Chapter 2
Calculation Function List

@QUERYBOTTOMUP

The @QUERYBOTTOMUP calculation function for Essbase helps optimize query times by
identifying the required intersections for calculation, making the query time proportional to input
data size.

Use this function before a formula to force queries to use only data dependent cells when
executing the formula. This optimizes query times by identifying the required intersections for
calculation, making the query time proportional to input data size. Note: In Release 21 or later,
this function replaces @NONEMPTYTUPLE.

This function can be used as a formula directive. Using it before the formula specification is
recommended when the formula is long and contains many cross-dimensional operators. Such
formulas often cause the formula cache to grow large while also being sparse (having a
relatively small input data set). Using this directive causes query execution to occur in bottom-
up mode, to resolve dependency analysis quickly in cases where the formula cache is sparse.

Syntax

@QUERYBOTTOMUP () ;

When applied to a member formula, all dependent members of the formula are analzyed first
(in other words, the formula is executed in bottom-up mode).

You can also use this function in a calculation script (see Examples).

Example

The following outline formula example is based on the Compensation Analytics sample cube,
for which the application workbook is available in the HR Analysis directory of the Applications
gallery.

@QUERYBOTTOMUP () ;
IF

("Headcount under Target"!=#Missing)

"Market Movement"*"Size %"->"Actual"->"Sepl7"->"No JG"->"unassigned OU"-
>"No Job Code"->

"No EE"->"No MktComp"*"BASE"*"Competitive Incr %"->"Actual"->"Sepl7"->"No
Region"->

"No JG"->"unassigned OU"->"No Job Code"->"No EE"->"No MktComp";
ENDIF;

The following example is for a calculation script use case:

"Headcount under Target" (
@QUERYBOTTOMUP () ;
IF
(
"COMPARATIO" !=#missing AND
"COMPARATIO"<="Competitive Target"->"No JG"->"No Region"->"unassigned OU"-
>"No EE"->"No Job Code"->"No MktComp"
)
1;

ORACLE 5192

@RANGE

ORACLE

Chapter 2
Calculation Function List

ENDIF;

See Also
QUERYBOTTOMUP configuration setting
@NONEMPTYTUPLE

The @RANGE calculation function returns a member list that crosses a member from one
Essbase dimension with a member range from another dimension.

This function returns a member list that crosses the specified member from one dimension
(mbrName) with the specified member range from another dimension (rangeList). This function
can be combined with non-range functions, such as @AVG, which replaces an existing range
function, such as @AVGRANGE.

Syntax

@RANGE (mbrName [, rangeList])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

rangeList

Optional. A valid member name, a comma-delimited list of member names, member set
functions, and range functions. If rangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

This function combined with the cross-dimensional operator (->) cannot be used inside a FIX
statement.

Example

Example 1

The following example is based on the Sample Basic database. @RANGE is used with @AVG
to determine the average sales for Colas in the West.

FIX(Sales)
West=@AVG (SKIPBOTH, @RANGE (Sales, @CHILDREN (West))) ;
ENDFIX

Since the calculation script fixes on Sales, only the Sales value for West are the average of the
values for western states; COGS values for West are the sum of the western states. This
example produces the following report:

Colas
Sales COGS
Actual Actual

2-193

Chapter 2
Calculation Function List

Qtr3 Qtr4d Qtr3 Qtréd

California 3401 2767 2070 1701
Oregon 932 1051 382 434
Washington 1426 1203 590 498
Utah 1168 1294 520 575
Nevada 496 440 222 197
West 1484.6 1351 3784 3405

Example 2

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Prod Count. @RANGE is used with @COUNT to
calculate the count of all products for which a data value exists:

"Prod Count" = @COUNT (SKIPMISSING, @RANGE (Sales, @CHILDREN (Product)));

This example produces the following report. Since SKIPMISSING is specified in the formula,
the #MI value for Sales->Diet Drinks is not counted as a data value:

Jan New York Actual
Sales Prod Count
Colas 678 #MI
Root Beer 551 #MI
Cream Soda 663 #MI
Fruit Soda 587 #MI
Diet Drinks #MI #MI
Product 2479 4
See Also
e @LIST
* @MERGE
+ @REMOVE

@RANGEFIRSTVAL

The @RANGEFIRSTVAL calculation function for Essbase returns the first data value in a
member range, after skipping whatever empty value type is specified in the first parameter.

This function returns the first value, in a range of the specified mbrList, that satisfies the
criterion specified in the first function parameter.

Syntax

@RANGEFIRSTVAL (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrList)

ORACLE 5194

ORACLE

Chapter 2
Calculation Function List

Parameters

SKIPNONE
Every cell value is considered as data.

SKIPMISSING
#MISSING values are not considered as data.

SKIPZERO
Zero (0) values are not considered as data.

SKIPBOTH
Zero (0) and #MISSING values are not considered as data.

mbrList

A valid member name, a comma-delimited list of member names, cross dimension members,
or a member set function that returns a list of members from the same dimension. If you use
the range operator or a function, the order of mbrList is dictated by the database outline order.

Notes

The function returns #MISSING when mbrList does not contain any value matching the
criterion specified in the first argument.

Example

Example 1

The following examples use the Sample.Basic database.

@RANGEFIRSTVAL (SKIPMISSING, @CHILDREN("Qtrl"));

or

@RANGEFIRSTVAL (SKIPMISSING, "Jan":"Mar");

or

@RANGEFIRSTVAL (SKIPMISSING, ("Jan","Feb","Mar"))

The previous statements return the first non-#MISSING value found when sequentially looking
up the values of members Jan, Feb, and Mar.

Example 2

@RANGEFIRSTVAL (SKIPZERO, @CHILDREN ("Jan"));

Because member Jan does not have children, returns #MISSING.

Example 3

@RANGEFIRSTVAL (SKIPBOTH, QCHILDREN("Qtrl"));

2-195

Chapter 2
Calculation Function List

Returns the first non-#MISSING and nonzero Actual value from Qtrl, using the outline order. All
months have data, so the value for Jan is returned.

Example 4

@RANGEFIRSTVAL (SKIPBOTH, (Actual->Feb, Actual->Mar, Actual->Jan))

Returns the first non-#MISSING and nonzero Actual value from the given list of months, using
the order given in mbrList. All months have data, so the value for Feb is returned.

See Also

@RANGELASTVAL

@RANGELASTVAL

The @RANGELASTVAL calculation function for Essbase returns the last data value in a
member range, after skipping whatever empty value type is specified in the first parameter.

This function returns the last value, in a range of the specified mbrList, that satisfies the
criterion specified in the first function parameter.

Syntax

@RANGELASTVAL (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrList)

Parameters

SKIPNONE
Every cell value is considered as data.

SKIPMISSING
#MISSING values are not considered as data.

SKIPZERO
Zero (0) values are not considered as data.

SKIPBOTH
Zero (0) and #MISSING values are not considered as data.

mbrList

A valid member name, a comma-delimited list of member names, cross dimension members,
or a member set function that returns a list of members from the same dimension. If you use
the range operator or a function, the order of mbrList is dictated by the database outline order.

Notes

The function returns #MISSING when mbrList does not contain any value matching the
criterion specified in the first argument.

ORACLE 5196

@RANK

ORACLE

Chapter 2
Calculation Function List

Example

Example 1

In the following example, @RANGELASTVAL sets Jan's budget sales of Diet Cola to the last
actual sales of Qtrl.

FIX("100-10", "New York", "Sales", "Jan")

"Budget" = @RANGELASTVAL (SKIPBOTH, @CHILDREN (Qtrl)->"Actual");
ENDFIX

As indicated by the SKIPBOTH parameter, @RANGELASTVAL skips zero and #MISSING.
The mbrList parameter is provided by the @CHILDREN expression.

The following examples use the Sample.Basic database.

Example 2

@RANGELASTVAL (SKIPMISSING, @CHILDREN("Qtrl"));

or

@RANGELASTVAL (SKIPMISSING, "Jan":"Mar");

or

@RANGELASTVAL (SKIPMISSING, ("Jan","Feb","Mar"))

The previous statements return the last non-#MISSING value found when sequentially looking
up the values of members Jan, Feb, and Mar.

Example 3

@RANGELASTVAL (SKIPZERO, @CHILDREN ("Jan"));

Because member Jan does not have any children, it returns #MISSING.

See Also

@RANGEFIRSTVAL

The @RANK calculation function for Essbase returns the rank of the specified members or the
specified value among the values in the specified data set. The rank of a value is equivalent to
its position (its rank) in the sorted data set.

Syntax

@RANK (rankOrderType, SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, value,
XrangelList)

2-197

Chapter 2
Calculation Function List

Parameters

rankOrderType
The type of order in which to sort the data set. Options:

e ASCEND Rank values listed in XrangeList in ascending order.

 DESCEND Rank values listed in XrangeList in descending order. This is the default.

SKIPNONE
Includes all cells specified in the data set, regardless of their content, during calculation of the
rank.

SKIPMISSING
Excludes all #MISSING values from the data set during calculation of the rank.

SKIPZERO
Excludes all zero (0) values from the data set during calculation of the rank.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from the data set during calculation of the
rank.

value
(1) The member or member combination for which the rank is calculated, or (2) a constant
value for which the rank is calculated.

XrangeList

A list of numeric values across which the rank is calculated. Referred to generically throughout
this topic as "the data set."

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about XrangeList, see Range List Parameters.

Notes

* After SKIP processing, @RANK sorts the data set in descending order (for example,
15341, 9650, 6556, 4255, 1989) or ascending order (1989, 4255, 6556, 9650, 15341). The
rank of a value identifies its position in the sorted data set in descending order (for
example, 15341 is ranked 1; 1989 is ranked 5)

* Aninput value of #MISSING returns #MISSING. #MISSING is also returned if, after SKIP
processing, there are no values to compare.

°* @RANK assigns the same rank to duplicate values; however, the presence of duplicate
values affects the rank numbers. For example, if a list of values contains [2,2,4,5], Essbase
first sorts the list in descending order [5,4,2,2] and then ranks it: [5] has a rank of 1, [4] has
arank of 2, and [2] has a rank of 3. In this case, no value has a rank of 4.

» If value is a constant value and that value is not included in the data set (XrangeList),
Essbase inserts the constant value in the list and then ranks it accordingly. For example, if
a list of values contains [2,4,6,13], and you want to rank (in descending order) a value of
[3] in this list, Essbase:

1. Sorts the list in descending order [13,6,4,2]
2. Inserts [3] in the list [13,6,4,3,2]

3. Ranks [3] in the list: in this case, [3] has a rank of 4.

ORACLE 5 108

ORACLE

Chapter 2
Calculation Function List

* When you use @RANK in a calculation script, use it within a FIX statement. Although
using FIX is not required, it may improve calculation performance.

* When you use @RANK across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

Example
Example 1

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Sales Rank. Essbhase ranks the sales values for a
set of products:

"Sales Rank" = @RANK (SKIPBOTH, Sales,
@RANGE (Sales, @LEVMBRS (Product,1)));

This example produces the following report. Since SKIPBOTH is specified in the formula, the
#MI value for Sales->Diet Drinks is not included in the ranked list:

New York Actual Jan

Sales Sales Rank
Colas 678 1
Root Beer 551 4
Cream Soda 663 2
Fruit Soda 587 3
Diet Drinks #MI #MI

Example 2

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Expense Rank. Essbase ranks the total expenses
values for a set of products in ascending order (the minimum expense is assigned rank 1).

In this example, ASCEND is used to rank the values in ascending order.

"Expense Rank" = @RANK (ASCEND, SKIPBOTH, "Total Expenses",@RANGE ("Total
Expenses", @LEVMBRS (Product,1)));

This example produces the following report.

New York Actual Jan

Total Expense Expense Rank
Colas 145 2
Root Beer 215 4
Cream Soda 213 3
Fruit Soda 100 1
Diet Drinks #MI #MI

Example 3

2-199

Chapter 2
Calculation Function List

The following example assumes a Year dimension is added to Sample Basic. It ranks values
using cross-dimensional members in the data set.

FIX (Product)
"Sales Rank" = @RANK (SKIPBOTH, Sales, @XRANGE ("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangelList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

* @RANGE
* @XRANGE

@RDESCENDANTS

ORACLE

The @RDESCENDANTS calculation function for Essbase returns all descendants of the
specified member, or those down to the specified generation or level, including shared
members, but excluding the specified member.

You can use this function as a parameter of another function, where that parameter is a list of
members.

In the absence of shared members, @RDESCENDANTS and @DESCENDANTS return the
same result.

Syntax

@RDESCENDANTS (mbrName [, genLevNum| genLevName])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

genLevNum

Optional. An integer value that defines the absolute generation or level number down to which
to select the members. A positive integer defines a generation number. A value of 0 or a
negative integer defines a level number.

genLevName
Optional. Level name or generation name down to which to select the members.

2-200

ORACLE

Chapter 2
Calculation Function List

Notes

e The order of members in the result list is important to consider when you use this function
with certain forecasting and statistical functions. Essbase generates the list of members in
the following sequence: If a shared member is encountered, the above steps are repeated
on the member being shared.

1. The specified member
2. The nearest descendant of the member
3. The next nearest descendant of the member, and so on.
* You can use @IRDESCENDANTS to include the specified member in the member list.

Example

Example 1

Assume a variation of the Sample Basic database such that the Product dimension includes
the following members:

Product

100
100-10
100-20
100-30

200
200-10
200-20
200-30
200-40

Diet
100 (Shared Member)
200 (Shared Member)

Diet has two children "100" and "200". The members "100" and "200" are shared members.

@RDESCENDANTS (Diet)

returns the members: 100, 100-10, 100-20, 100-30, 200, 200-10, 200-20, 200-30, 200-40 (in
that order).

Example 2

@RDESCENDANTS (Profit)

returns Margin, Sales, COGS, Total Expenses, Marketing, Payroll, and Misc (in that order) and
is identical to @DESCENDANTS(Profit).

See Also

* @DESCENDANTS
* @IDESCENDANTS
* @IRDESCENDANTS

2-201

Chapter 2
Calculation Function List

° (@LDESCENDANTS

@RELATIVE

ORACLE

The @RELATIVE calculation function returns all members at the specified generation or level,
relative to the specified member in the Essbase database outline.

Syntax

@RELATIVE (mbrName, genLevNum | genLevName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

genLevNum
An integer value that defines the number of a generation or level. A positive integer defines a
generation number. A value of 0 or a negative integer defines a level number.

genLevName
Generation or level name specification.

Notes

This function returns all members at the specified generation or level relative to the specified
member in the database outline.

Essbase sorts the generated list of members in ascending order. Using Sample Basic as an
example, GRELATIVE (200, 0), returns 200-10, 200-20, 200-30, 200-40 (in that order). This order
is important to consider when you use this function with certain forecasting and statistical
functions.

If the specified parameters to @RELATIVE are used with the specified level or generation
describing the specified member, then the specified member is included. For example,
@RELATIVE (("100-10",0)) includes 100-10 in the results, because 100-10 is a level 0 member.
@RELATIVE (("100",1)) includes 100 in the results, because 100 is a level 1 member.

Example

In the Sample Basic database:

@RELATIVE (Qtrl, 3)
@RELATIVE (Qtrl,0)

both return the three members that are at generation 3 (or level 0) and that are below Qtrl in
the Sample Basic outline: Jan, Feb, and Mar (in that order).

@RELATIVE (Profit,-1)

returns the two members that are at level 1 and that are below Profit: Margin and Total
Expenses (in that order).

2-202

Chapter 2
Calculation Function List

@RELXRANGE

ORACLE

The @RELXRANGE calculation function for Essbase generates a cross dimensional list based
on another cross dimensional list, combined with starting and ending positional offsets.

This function generates a cross-dimensional list for each cell in the predefined cross-
dimensional list (XrangeList), based on the relative position of the cell that is currently being
calculated and the offsets, using the predefined cross-dimensional list (XrangeList) as the limit.

Syntax

@RELXRANGE (startOffset, endOffset, XrangeList)

Parameters

startOffset
Defines the first tuple in the cross dimensional list to be returned.

* Aninteger value returns a cross-dimensional member relative to the current cell being
calculated, in the predefined cross-dimensional list (XrangeList).

e A negative value specifies a prior cross-dimensional member to the current cell being
calculated, in XrangelList.

« Avalue of 0 returns the cross-dimensional member or cell currently being calculated.

* A positive value specifies a subsequent cross-dimensional member to the current cell
being calculated, in XrangeList.

endOffset
Defines the last tuple in the cross-dimensional list to be returned. The value types are the
same as for startOffset

XrangeList

A cross-dimensional list to be used as the limit.

Can be a valid member name, a comma-delimited list of member names, cross-dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters.

Notes

e startOffset must be equal to or lesser than endOffset.

e The order of dimensions in XrangeList drives the sequence of the tuples in the resulting
tuples list. The right-most dimension in an XrangeList is the most frequently incremented
dimension. The increment of members in a dimension goes in outline order, or in the order
of the XrangeList used as an argument.

e If the cell that is currently being calculated is out of the bounds of XrangeList, this function
returns an empty cross-dimensional list.

e |If startOffset is out of the bounds of XrangeList, this function returns a cross-dimensional
list starting from the first member of XrangeList.

e If endOffset is out of the bounds of XrangeList, this function returns a cross-dimensional
list ending on the last member of XrangeList.

2-203

Chapter 2
Calculation Function List

e Within XrangelList, in the parameter list for @XRANGE, you cannot pass members from
the anchor dimension, meaning the dimension of the member on which the formula is set.
See the Example for a correct way to use members from the anchor dimension.

Example

In the parameter list for @XRANGE, you cannot pass members from the anchor dimension.
This example demonstrates a correct and an incorrect usage of @XRANGE.

Correct

mbrCount=@COUNT (SKIPNONE, @RELXRANGE (-1, 3, @XRANGE (Jan->Actual,May->Actual)) -
>Sales);

Where mbrCount and Sales are both in the Measures dimension. Measures is the anchor
dimension, meaning the dimension of the member on which the formula is set.

The XrangeList is represented by @XRANGE (Jan->Actual,May->Actual), and returns the
following:

Jan->Actual
Jan->Budget
Feb->Actual
Feb->Budget
Mar->Actual
Mar->Budget
Apr->Actual
Apr->Budget
May->Actual

@RELXRANGE operates on the XrangeList, returning lists of cross dimensional members
within the defined offsets of -1 and 3.

If the current member being calculated is Jan->Actual, the count returned is 4 (offset of -1 is

empty):

Jan->Actual (offset 0)
Jan->Budget (offset 1)
Feb->Actual (offset 2)
Feb->Budget (offset 3)

If the current member being calculated is Jan->Budget, the count returned is 5:

Jan->Actual (offset -
Jan->Budget (offset
Feb->Actual (offset
Feb->Budget (offset
Mar->Actual (offset

w N = O
—_ — — —

ORACLE 5504

Chapter 2
Calculation Function List

If the current member being calculated is Apr->Budget, the count returned is 3 (offsets of 2 and
3 are empty):

Apr->Actual (offset -1)
Apr->Budget (offset 0)
May->Actual (offset 1)

Incorrect

mbrCount=@COUNT (SKIPNONE, @RELXRANGE (0, 0, @XRANGE (Sales->Jan->Actual, Sales->May-
>Actual)));

You cannot use Sales in the arguments for @XRANGE, because it is from the anchor
dimension for mbrCount. Instead, reference a cross dimensional member with Sales and the
@XRANGE function call, as shown in the correct example.

@REMAINDER

ORACLE

The @REMAINDER calculation function for Essbase returns the remainder value of an
expression.

Syntax

This function returns the remainder value of expression.

@REMAINDER (expression)

Parameters

expression
Single member specification, variable name, or other numeric expression.

Example

Margin = QREMAINDER ("Margin %");

This example produces the following report:

Product Market

Margin % Margin
Jan Feb Mar Jan Feb Mar
Scenario 55.10 55.39 55.27 0.10 0.39 0.27
See Also
@TRUNCATE

2-205

Chapter 2
Calculation Function List

@REMOVE

The @REMOVE calculation function for Essbase removes values or members in one list from
another list.

Syntax

@REMOVE (listl, list2)

Parameters

listl
A list of member specifications, from which the members specified in list2 are removed.

list2
A list of member specifications to be removed from list1.

Example

Example 1

In the Sample Basic database,

@REMOVE (@CHILDREN (East) , @LIST ("New York",Connecticut))

returns Massachusetts, Florida, New Hampshire.

Example 2

The following example is based on the Sample Basic database. Assume that the Market
dimension contains an additional member, Non-West.

A special analysis requires a sum of the actual sales values of a particular product family for
non-western states. In this example, @REMOVE is called within @SUMRANGE to perform
this analysis. @LIST groups the last two arguments passed to @REMOVE (the children of
West, plus two additional members, Texas and New Mexico).

FIX(Sales)

"Non-West"=@SUMRANGE (Sales, @REMOVE (@LEVMBRS (Market, 0),
@LIST (QCHILDREN (West), Texas, "New Mexico")));

ENDFIX

This example produces the following report:

Jan Colas

Actual
Sales
Non-West 5114
New York 678
Massachusetts 494
Florida 410
Connecticut 310

ORACLE 5506

Chapter 2
Calculation Function List

New Hampshire 213
East 2105
California 941
Oregon 450
Washington 320
Utah 490
Nevada 138
West 2339
Texas 642
Oklahoma 180
Louisiana 166
New Mexico 219
South 1207
Illinois 579
Ohio 430
Wisconsin 490
Missouri 360
Towa 161
Colorado 643
Central 2663
See Also

* @INTERSECT

e @LIST
* @MERGE
* @RANGE

@RETURN

The @RETURN calculation function exits an Essbase calculation and returns a message,
based on given conditions.

This function exits the calculation immediately, returning a message, under specified logical
conditions. You can use an IF... ELSEIF command block to specify the error conditions, and
use @RETURN to exit the calculation with customized error messages and levels.

Syntax

@RETURN ("ErrorMessage", [,INFO|ERROR|WARNING])

Parameters

ErrorMessage
An error message string, or any expression that returns a string.

INFO|[ERROR|WARNING
An error message priority setting, where INFO, ERROR, and WARNING are priority levels:

ORACLE 2-207

@ROUND

ORACLE

Chapter 2
Calculation Function List

* INFO—The message indicated in the ErrorMessage string is sent back to the client and
the application log as an informational type message. This is the default.

« ERROR—The message indicated in the ErrorMessage string is sent back to the client and
the application log as an error type message.

« WARNING—The message indicated in the ErrorMessage string is sent back to the client
and the application log as a warning type message.

Notes

e The calculation script will stop executing when this function is called.

* This function can only be used in calculation scripts; it cannot be used in member
formulas.

Example

The following example stops the calculation and returns a custom warning message if
maximum values specified in the IF statement are empty:

FIX("Actual")
"Profit"(
IF(("Marketing" < 0) OR ("Payroll" < 0) OR ("Misc" < 0))
@RETURN (@CONCATENATE (
@CONCATENATE ("The violation of data integrity : Market [",
@NAME (QCURRMBR ("Market"))),
"] has a negative expenses. Calculations are interrupted")

, WARNING);
ELSE
"Profit" = ("Margin" - "Total Expenses")*0.9;

ENDIF

)
ENDFIX

The @ROUND calculation function for Essbase rounds a numeric expression to a specified
number of digits.

Syntax

@ROUND (expression, numDigits [, compatibility])

Parameters

expression
Single member specification, variable name, or other numeric expression.

numbDigits

Single member specification, variable name, or other numeric expression that provides an
integer value. If numDigits is O or a positive number, expression is rounded to the number of

2-208

ORACLE

Chapter 2
Calculation Function List

decimal places specified by numDigits. If numDigits is a negative value, expression is rounded
to the nearest 10 to the power of the absolute value of numDigits. For example:

@ROUND (1234, -2) = 1200

The default value for numDigits is O.

compatibility

Optional backward-compatibility setting to select which algorithm you want to use for rounding
margin of error.

Possible keyword values:

« COMPATPREV11121—Original rounding algorithm, in use up until Release 11.1.2.1. The
integer part of the number is used to generate the rounding margin of error. Limitation:
aggregate values are only accurate up to the 15th decimal place.

Only some decimal numbers can be represented perfectly in binary. For example, if the
value 1234.725 is loaded, it may be represented in binary as 1234.72499999999991.
Using the COMPATPREV11121 algorithm to round this number to two decimal places
returns 1234.72, though you may prefer 1234.73.

+ COMPATPREV11123—Alternate rounding algorithm, in use between Release 11.1.2.1
and 11.1.2.3, to negate the representational error discussed above. The rounding margin
of error was changed for better precision, which in some cases returned different results
than the original algorithm.

If unspecified, the default rounding algorithm now matches the standard used by the C-
language Round function. The C Round function is a common rounding algorithm, used widely
across platforms. It uses a built-in construct of floor and ceiling functions to map a real number
to the largest previous or the smallest subsequent integer, respectively, depending on
numDigits.

Example

The following example is based on the Sample Basic database:

SET UPDATECALC OFF;
Profit = QROUND ("Profit %", 1);

This example produces the following report:

Market Product

Profit % Profit
Jan Feb Mar Jan Feb Mar
Scenario 21.37 19.09 18.406 21.4 19.1 18.5
See Also
o @ABS
o @INT

* @REMAINDER
* @TRUNCATE

2-209

Chapter 2
Calculation Function List

@RSIBLINGS

ORACLE

The @RSIBLINGS calculation function for Essbase returns the right siblings of the specified
member.

Syntax

@RSIBLINGS (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Notes

This function returns all of the right siblings of the specified member. Right siblings are children
that share the same parent as the member and that follow the member in the database outline.
This function excludes the specified member.

This function can be used as a parameter of another function, where that parameter is a list of
members.

Essbase sorts the right siblings in ascending order. Using Sample Basic as an example, if you
specify 200-10 for mbrName, Essbase returns 200-20, 200-30, 200-40 (in that order). This
order is important to consider when you use @RSIBLINGS with certain forecasting and
statistical functions.

Example

In the Sample Basic cube:

@RSIBLINGS (Florida)

returns Connecticut and New Hampshire (in that order). These members appear below Florida
in the Sample Basic outline.

@RSIBLINGS (Sales)

returns COGS because this member appears below Sales in the Sample Basic outline.

See Also

* @IRSIBLINGS

* @LSIBLINGS

* @NEXTSIBLING
* @PREVSIBLING
* @SHIFTSIBLING

2-210

Chapter 2
Calculation Function List

@SANCESTVAL

ORACLE

The @SANCESTVAL calculation function for Essbase returns ancestor-level data based on
the shared ancestor value of the current member being calculated.

Syntax

@SANCESTVAL (rootMbr,genLevNum [, mbrName])

Parameters

rootMbr
Defines a member that is used to search for the nearest occurrence of an ancestor of a
shared member.

genLevNum

Integer value that defines the absolute generation or level number from which the ancestor
values are to be returned. A positive integer defines a generation reference. A negative
number or value of O defines a level reference.

To use this function or any other ancestor value function in a ragged hierarchy, use generation
references instead of level references to avoid unexpected results. See Hierarchy Shapes.

mbrName
Optional. Any valid single member name, or a function that returns a single member.

Notes

* You cannot use this function in a FIX statement.

e The time required for retrieval and calculation may be significantly longer if this function is
in a formula attached to a member tagged as Dynamic Calc or Dynamic Calc and Store.

Example

Marketing expenses are captured at the Product Category levels in a product planning
application. The Product categories are defined as ancestors that contain shared members as
children. The Marketing Expense data must be allocated down to each Product code based on
Sales contribution.

The following Product hierarchy is defined:

Product
100
100-10
100-20
200
200-10
200-20
Diet ~
100-10 SHARED
200-10 SHARED
Caffeine Free =~

2-211

Chapter 2
Calculation Function List

100-20 SHARED
200-20 SHARED

Sales Marketing

100-10 300 0
100-20 200 0
100 500 0
200-10 100 0
200-30 400 0
200 900 0
100-10 300 0
200-10 100 0
Diet 400 50
100-20 200 0
200-30 400 0
Caffeine Free 600 40

The Marketing Expense value is allocated down to each Product code with the following
formula:

Marketing = (Sales / @SANCESTVAL (Product, 2, Sales)) * @SANCESTVAL (Product,
2, Marketing);

which produces the following result:

Sales Marketing

100-10 300 37.5
100-20 200 13.3
100 500 #MI
200-10 100 12.5
200-30 400 26.7
200 900 #MI
100-10 300 37.5
200-10 100 12.5
Diet 400 50
100-20 200 13.3
200-30 400 26.7
Caffeine Free 600 40

The Marketing expenses can then be reconsolidated across Products and Markets.

See Also

* @ANCESTVAL
* @MDPARENTVAL
* @PARENTVAL

ORACLE 5510

@SHARE

@SHIFT

ORACLE

Chapter 2
Calculation Function List

The @SHARE calculation function for Essbase checks each member from a list to see if it has
a shared member, and returns a list of the shared members it has found.

Syntax

@SHARE (rangeList)

Parameters

rangeList
A comma-delimited list of members, functions that return members, and ranges of members.
All the members in rangeList must be from the same dimension.

Notes

Other member-set functions return the prototype members, not the shared members. You can
use @SHARE within the memberList, rangeList, expList or list parameters of other functions to
provide shared members instead.

Example
The following examples are based on Sample Basic.

To remove all shared members from the Product dimension:

@REMOVE (@DESCENDANT (Product) , @SHARE (@DESCENDENT ((Product)))

To remove a specific member from the Product dimension, you can use @SHARE specifying
the shared member to be removed:

@REMOVE (@DESCENDANT (Product) , @SHARE ("100-20"))

See Also

@REMOVE

The @SHIFT calculation function for Essbase returns either the prior or next nt" cell value from
mbrName, in the sequence XrangelList, retaining all other members identical to the current
member.

The direction of @SHIFT is wholly based on n, with positive n values producing an effect
equivalent to @NEXT and negative values of n producing an equivalent effect to @PRIOR.

Syntax

@SHIFT (mbrName [,n, XrangeList])

2-213

Chapter 2
Calculation Function List

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

n
Optional signed integer. Using a negative value for n has the same effect as using a positive
value in the @PRIOR function. n must be a numeric value, not a reference, such as a member
name.

XrangeList

Optional parameter specifying a sequential range of members. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Notes

@SHIFT is provided as a more appropriate, self-documenting name than @NEXT or @PRIOR
when the value for n is a variable and may change from positive to negative, depending on the
database state when the call occurs (that is, when the usage is likely to be NEXT and/or
PRIOR).

Example

In this example, Prev Asset for each month is derived by taking the Asset value from the
previous month because -1 is specified as the n parameter. Next Avl Asset for each month is
derived by taking the Asset value from two months following the current month because 2 is
specified as the n parameter. Since the range sequence is not specified for either formula, the
level 0 members from the dimension tagged as Time are used.

"Prev Asset" = Q@SHIFT (Asset,-1);
"Next Avl Asset" = @SHIFT (Asset,?2);

This example produces the following report:

Jan Feb Mar Apr May Jun
Asset 100 110 105 120 115 125
Prev Asset #MI 100 110 105 120 115
Next Avl Asset 105 120 115 125 #MI #MI

The following example assumes a Year dimension is added to Sample Basic.

FIX("West")
"Prev Sales" = @SHIFT(Sales, -1, @XRANGE ("2011"->"Sep", "2012"->"Mar"));
ENDFIX;

ORACLE 5514

Chapter 2
Calculation Function List

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

* @MDSHIFT

* @NEXT

* @PRIOR

* @SHIFTPLUS
* @SHIFTMINUS

@SHIFTMINUS

ORACLE

The @SHIFTMINUS calculation function for Essbase returns a cell value at a given distance
from a member name within a range. It can optimize performance over using @SHIFT,
@PRIOR, or @NEXT, for certain formula patterns.

This function can be used in place of @SHIFT, @PRIOR, or @NEXT to improve performance
if the formula meets the following criteria:

e The formula is being executed in CELL mode.

e The formula has one of the following patterns:

X =Y - @SHIFT (mbrName [,n, XrangeList])

or:

X = Y - @PRIOR (mbrName [,n, XrangeList])

or:
X = Y - Q@NEXT (mbrName [,n, XrangeList])

If these criteria are met, consider rewriting your formula using @SHIFTMINUS, which runs the
formula in block mode to improve performance.

Note: If you use this function in combination with a function that runs in cell mode, it may
necessitate execution in cell mode to resolve dependencies. To determine whether a formula
executed in cell mode, check the log for the following informational message: Formula for
member [mbrName] will be executed in [CELL] mode. To learn which functions use cell
mode, see the @CALCMODE topic.

2-215

ORACLE

Chapter 2
Calculation Function List

Syntax

@SHIFTMINUS (mbrNamel, mbrName? [,n, XrangeList])

Parameters

mbrNamel
Any valid single member name, or a function that returns a single member.

mbrName2
Any valid single member name, or a function that returns a single member.

n
Optional signed integer. n must be a numeric value, not a reference, such as a member name.
If you are using @SHIFTMINUS to replace the @NEXT function, use 1 as the value for n. If
you are using @SHIFTMINUS to replace the @PRIOR function, use -1 as the value for n.
Default value is +1.

XrangeList

Optional parameter specifying a sequential range of members. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Example

The following example shows a formula using @SHIFT().

Sales = Loss - @SHIFT(Sales, 1);

Here is the formula using @SHIFTMINUS() to improve performance:

@SHIFTMINUS (Loss, Sales, 1)

The following example assumes a Year dimension is added to Sample Basic.

FIX("South", "East")
Sales = Q@SHIFTMINUS (COGS, Sales, 1, @XRANGE("2018"->"Sep", "2019"->"Mar"));
ENDFIX;

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2018->Sep
2018->0ct
2018->Nov
2018->Dec
2019->Jan

2-216

Chapter 2
Calculation Function List

2019->Feb
2019->Mar
See Also
@SHIFTPLUS

@CALCMODE (for an explanation of block calculation and cell calculation modes)

@SHIFTPLUS

ORACLE

The @SHIFTPLUS calculation function for Essbase returns a cell value at a given distance
from a member name within a range. It can optimize performance over using @SHIFT,
@PRIOR, or @NEXT, for certain formula patterns.

This function can be used in place of @SHIFT, @PRIOR, or @NEXT to improve performance
if the formula meets the following criteria:

e The formula is being executed in CELL mode.

e The formula has one of the following patterns:

X =Y + @SHIFT (mbrName [,n, XrangeList])

or:

X = Y + Q@PRIOR (mbrName [,n, XrangeList])

or:
X = Y + QNEXT (mbrName [,n, XrangeList])

If these criteria are met, consider rewriting your formula using @SHIFTPLUS, which runs the
formula in block mode to improve performance.

Note: If you use this function in combination with a function that runs in cell mode, it may
necessitate execution in cell mode to resolve dependencies. To determine whether a formula
executed in cell mode, check the log for the following informational message: Formula for
member [mbrName] will be executed in [CELL] mode. To learn which functions use cell
mode, see the @CALCMODE topic.

Syntax

@SHIFTPLUS (mbrNamel, mbrName? [,n, XrangeList])

Parameters

mbrNamel
Any valid single member name, or a function that returns a single member.

mbrName2
Any valid single member name, or a function that returns a single member.

2-217

Chapter 2
Calculation Function List

n
Optional signed integer. n must be a numeric value, not a reference, such as a member name.
If you are using @SHIFTPLUS to replace the @NEXT function, use 1 as the value for n. If you
are using @SHIFTPLUS to replace the @PRIOR function, use -1 as the value for n. Default
value is +1.

XrangeList

Optional parameter specifying a sequential range of members. If a range is not specified,
Essbase uses the level 0 members from the dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters in the topic
Range and Financial Functions.

Example

The following example shows a formula using @SHIFT().

Sales = Loss + @SHIFT (Sales, 1);

Here is the formula using @SHIFTPLUS() to improve performance:

@SHIFTPLUS (Loss, Sales, 1);

The following example assumes a Year dimension is added to Sample Basic.

FIX("North")
Sales = @SHIFTPLUS (COGS, Sales, 1, @XRANGE("2011"->"Sep", "2012"->"Mar"));
ENDFIX;

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also
@SHIFTMINUS

@CALCMODE (for an explanation of block calculation and cell calculation modes)

ORACLE 5018

Chapter 2
Calculation Function List

@SHIFTSIBLING

The @SHIFTSIBLING calculation function for Essbase returns a member's next sibling, at a
relative position, as a string.

This function returns the specified member or the n'" sibling of the member. This function
traverses members that are at the same level and of the same parent. If the specified relative
position moves beyond the first or last sibling, Essbase returns an empty string.

This function returns the next sibling as a string. To pass the @SHIFTSIBLING function as a
parameter of another function, where the function requires a list of members, you must wrap
the @SHIFTSIBLING function call within a @MEMBER function call.

You must also wrap this function within the @ MMEMBER function if you are calling it inside a
member combination specified using the cross-dimensional operator (->). For example, this is
correct usage: @MEMBER (@SHIFTSIBLING ("FY19"))->"Al".

Syntax

@SHIFTSIBLING (mbrName [,relativePosition])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

relativePosition
Optional. The integer that defines the position relative to the specified member. Valid values:

e 0 (Default) Returns the specified member.
e <0 (negative integer): Returns the previous sibling.

e >0 (positive integer): Returns the next sibling.

Example

All examples are from the Sample.Basic database.

@SHIFTSIBLING("100-20",0)

Returns 100-20 (the specified member).

@SHIFTSIBLING ("200", 1)

Returns 300 (the next sibling of 200). The @SHIFTSIBLING ("200", 1) function and the
@NEXTSIBLING ("200") function return the same results.

Returns 400 (the second-next sibling of 200).

@SHIFTSIBLING("100-20",-1)

ORACLE 5519

Chapter 2
Calculation Function List

Returns 100-10 (the previous sibling of 100-20). The @SHIFTSIBLING ("100-20",-1) function
and the @PREVSIBLING ("100-20") function return the same results.

@SHIFTSIBLING("100-10",9)

Returns an empty string, as 100-10 does not have a ninth sibling.

@CHILDREN (@MEMBER (@SHIFTSIBLING ("East")))

Returns all children of East. Because no shift position is specified, the default shift position is 0,
which means the current member.

See Also

° @MEMBER
° @NEXTSIBLING
° @PREVSIBLING

@SIBLINGS

The @SIBLINGS calculation function for Essbase returns all siblings of the specified member.
Syntax

@SIBLINGS (mbrName)

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

Notes

This function returns all siblings of the specified member. This function excludes the specified
member.

This function can be used as a parameter of another function, where that parameter is a list of
members.

Essbase sorts the generated list of members as follows:

1. Left siblings of the member (siblings appearing above the member in the database outline)
in descending order

2. Right siblings of the member (siblings appearing below the member in the database
outline) in ascending order

Using Sample Basic as an example, if you specify 200-30 for mbrName, Essbase returns
200-20, 200-10, 200-40 (in that order). This order is important to consider when you use this
function with certain forecasting and statistical functions.

ORACLE 5990

@SLN

ORACLE

Chapter 2
Calculation Function List

Example

In the Sample Basic database:

@SIBLINGS (Washington)

Returns Oregon, California, Utah, and Nevada (in that order).

@SIBLINGS (East)

Returns West, South, and Central (in that order).

The @SLN calculation function for Essbase calculates the periodic amount that an asset in the
current period may be depreciated, across a range of periods.

The depreciation method used is straight-line depreciation:

cost - salvage value / life

The SLN method assumes that the asset depreciates by the same amount each period.

More than one asset may be depreciated over the range. The value is depreciated from its
entry period to the last period in the range. The resulting value represents the sum of all the
per-period depreciation values of each asset being depreciated.

Syntax

@SLN (costMbr, salvageMbrConst, lifeMbrConst [, XrangeList])

Parameters

costMbr
Single member specification representing an input asset for the current period.

salvageMbrConst

Single member specification, variable name, or numeric expression, providing a constant
numeric value. This value represents the value of the asset in the current period at the end of
the useful life of the asset.

lifeMbrConst
Single member specification, variable name, or numeric expression representing the useful life
of the asset.

XrangeList

Optional parameter specifying the range over which the function accepts input and returns
depreciation values. If a range is not specified, Essbase uses the level 0 members from the
dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters.

2-221

ORACLE

Chapter 2
Calculation Function List

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

In this example, the depreciation for each year is calculated by taking into account the initial
asset (Asset), the salvage value of the asset (Residual), and the life of the asset (Life).

"SLN Dep" = @SLN(Asset,Residual,Life,FY1991:FY1995);

This example produces the following report:

FY1991 FY1992 FY1993 FY1994 FY1995 FY1996

Asset 9,000 0 1,000 0 0 0
Residual 750.00 0.00 0.00 0.00 0 0
Life 5.00 #MI 5.00 0.00 0.00 0
SLN Dep 1650 1650 1850 1850 1850 0

The following example assumes a Year dimension is added to Sample Basic. It calculates
depreciation using a multidimensional range.

FIX ("100-10", "New York")
"SLN Dep" = @SLN(Asset,Residual,Life,@XRANGE ("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

* (@DECLINE
* @SYD

2-222

Chapter 2
Calculation Function List

@SPARENTVAL

ORACLE

The @SPARENTVAL calculation function for Essbase returns parent-level data based on the
shared parent value of the current member being calculated.

Syntax

@SPARENTVAL (RootMbr [, mbrName])

Parameters

RootMbr
Defines a member that is used to search for the nearest occurrence of a parent of a shared
member.

mbrName
Optional. Any valid single member name, or a function that returns a single member.

Notes

* You cannot use this function in a FIX statement.

e The time required for retrieval and calculation may be significantly longer if this function is
in a formula attached to a member tagged as Dynamic Calc or Dynamic Calc and Store.

Example

Marketing expenses are captured at the Product Category levels in a product planning
application. The Product categories are defined as parents that contain shared members as
children. The Marketing Expense data must be allocated down to each Product code based on
Sales contribution.

The following Product hierarchy is defined:

Product
100
100-10
100-20
200
200-10
200-20
Diet ~
100-10 SHARED
200-10 SHARED
Caffeine Free ~
100-20 SHARED
200-20 SHARED

Sales Marketing

100-10 300 0
100-20 200 0
100 500 0
200-10 100 0
200-30 400 0

2-223

@SPLINE

ORACLE

200
100-10
200-10
Diet
100-20
200-30

Caffeine Free

900
300
100
400
200
400
600

o1
O O O O O o O

Chapter 2
Calculation Function List

The Marketing Expense value is allocated down to each Product code with the following

formula:

Marketing = (Sales / @SPARENTVAL (Product, Sales)) * @SPARENTVAL (Product,

Marketing) ;

which produces the following result:

100-10
100-20
100
200-10
200-30
200
100-10
200-10
Diet
100-20
200-30

Caffeine Free

Sales Marketing
300 37.5

200 13.3

500 #Missing
100 12.5

400 26.7

900 #Missing
300 37.5

100 12.5

400 #Missing
200 13.3

400 26.7

600 #Missing

The Marketing expenses can then be reconsolidated across Products and Markets.

See Also

° @ANCESTVAL

* @MDPARENTVAL

* @PARENTVAL

The @SPLINE calculation function for Essbase applies a smoothing spline to a set of data
points. A spline is a mathematical curve that smoothes or interpolates data.

Syntax

@SPLINE

[

s [, XmbrName [, XrangeList]]])

2-224

Chapter 2
Calculation Function List

Parameters

YmbrName
A valid single member name that contains the dependent variable values used (when crossed
with rangeList) to construct the spline.

s
Optional. A zero (0) or positive value that determines the smoothness parameter. The default
value is 1.0.

XmbrName

Optional. A valid single member name that contains the independent variable values used
(when crossed with rangeList) to construct the spline. The default independent variable values
are 0,1,2,3, and so on.

XrangeList

Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Notes

e XrangeList must contain at least two values.

e If XrangeList contains gaps in the data (for example: Jan, Feb, Mar, Jun, Jul), be sure to
specify XmbrName (for example: 0,1,2,5,6) so that correct results are returned.

e This function skips #MISSING values in YmbrName and XmbrName; in the result, Essbase
replaces the #MISSING values of YmbrName with the spline values.

e This function calculates a smoothing cubic spline for (n > 0).

e Setting the smoothness parameter (s) to 0 produces an interpolating spline, that is, a
spline that fits the initial data exactly. Increasing s results in a smoother spline but a less
exact approximation of the initial data.

e @SPLINE can be used with @ TREND to forecast future values that are based on the
values smoothed with @SPLINE.

* If you use an Essbase member set function to generate a member list for the XrangeList
parameter (for example, @SIBLINGS), to ensure correct results, consider the order in
which Essbase sorts the generated member list. For more information, see the help topic
for the member set function you are using.

* When you use @SPLINE in a calculation script, use it within a FIX statement. Although
using FIX is not required, it may improve calculation performance.

* When you use @SPLINE across a large range in a sparse dimension, you may need to
increase the size of the calculator cache.

* View the Algorithm for the smoothing spline.

Algorithm

ORACLE 5 ooe

Chapter 2
Calculation Function List

(x.»), i=01.. N

A function S(x) defined on grid & = {xz-} 1z called a smoothing cubic spline function if

the function

1} 15 a cubic polynomial
S(x) =S =ap’ +a? (r-x) + e (-2t +al (x-x)
on each partial segment [x,x +1,: =01..., AN -1,

2) has the continuous second derivatives on segment [xn,xm], that 15, the function 1z

of class Cz[xn . x;.,—] .

31 minimizes the functional
o 2 & 2
J =s) (@) dn+ 2 (x)-x
i i

where y; are given numbers and s 2 0, where 5 15 the smoothness parameter, and

4 zatizfies the boundary condition:
Ry (xﬂ}z 0,8 (xN)z 0

Ineach segment [x,,x,,]. i = 0.1....N -1, the smoothing spline functien 15 sought in the

following modified form:

2

S = 5,00 = 2,0-0) +206 ~ i1 - 0L O+ A+ D] ()

where

and numbers z; and »;, i =01, N are a selution of a linear algebraic system.

ORACLE 5996

Chapter 2
Calculation Function List

The numbers 2, are solutions to the system:
agty + by +ogiy = g,
Bong tap thyny tops =g,
Ciglig Fhpn tan thay Yo, S g, 1523 N2

Corafprs T oyt g @My t By My = Garys

CraPyy T Oy iy tayiy = 2y,

where

ai=l(;gi_l+}gi)+1Tg+ L+i S+L25,
3 ;35-1 hi-l ’Egz' }%

i=12.. N-1,
PRLY SR | PRI U IR | |
& N | R R
i=12,....N-2,

C = i=12,... N3

by,
!=.}?i+1 _yi_yi_.yi—l, 12 ..,N_].
Ay o

The end conditions are:
ap =1 &, =0, ¢,=0, g,=0,
=1 b, =0, cpy=0, g,=0
When numbers #; are found, the magnitudes z; are easily determined by formulas

=y —s Ll =012 N,

ORACLE 2-227

@STDEV

ORACLE

Chapter 2
Calculation Function List

where
b, = ! ey — w0, D= ! (Mo — #rq)
1 U N P N FIRLS TP
iy LI
D=1(n —m)—l(n—m 1, i=12 MN-1
i .33!- i+l i .33!-_1 i i-l4= e .

And now given any x, use (¥) and (%% from abowe to calculate STx0.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Sales Spline. The formula calculates the spline of
Sales values for Jan through Jun, based on a smoothness parameter of 2.

"Sales Spline" = @SPLINE(Sales,?2,,Jdan:Jun);

This example produces the following report:

Colas Actual New York

Sales Sales Spline
Jan 645 632.8941564
Feb 675 675.8247101
Mar 712 724.7394598
Apr 756 784.2860765
May 890 852.4398456
Jun 912 919.8157517
See Also
@TREND

The @STDEYV calculation function for Essbase calculates the standard deviation of the
specified data set (expList).

The calculation is based upon a sample of a population. Standard deviation is a measure of
how widely values are dispersed from their mean (average).

This function assumes that expList represents a sample of a population. If you want expList to
represent the entire population, use @STDEVP. For large samples, the functions return similar
values.

@STDEV is calculated using the "nonbiased" or "n-1" method.

@STDEV uses the following formula:

2-228

ORACLE

Chapter 2
Calculation Function List

anj - (Zx)z

aln -1

Syntax

@STDEV (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameters

SKIPNONE
Includes all cells specified in expList, regardless of their content, during calculation of the
standard deviation.

SKIPMISSING
Excludes all #M1SSING values from expList during calculation of the standard deviation.

SKIPZERO
Excludes all zero (0) values from expList during calculation of the standard deviation.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from expList during calculation of the
standard deviation.

expList

Comma-delimited list of member specifications, variable names, functions, or numeric
expressions. expList provides a list of numeric values across which the standard deviation is
calculated.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Std Deviation. This example calculates the standard
deviation (based on a sample of a population) of the sales values for all products and uses
@RANGE to generate expList.

FIX (Product)
"Std Deviation" = @STDEV (SKIPBOTH, @QRANGE (Sales, @CHILDREN (Product)));
ENDFIX

This example produces the following report:

Jan New York
Actual Budget
Sales Colas 678 640
Root Beer 551 530
Cream Soda 663 510
Fruit Soda 587 620
Diet Drinks #MI #MI
Product 2479 2300
Std Deviation Product 60.73 64.55

2-229

Chapter 2
Calculation Function List

See Also
* @RANGE
e @STDEVP

* @STDEVRANGE

@STDEVP

The @STDEVP calculation function for Essbase calculates the standard deviation of the
specified data set (expList).

This function assumes that expList represents the entire population. If you want expList to
represent a sample of a population, use @STDEV. For large samples, the functions return
similar values.

Syntax

@STDEVP (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, expList)

Parameters

SKIPNONE
Includes all cells specified in expList, regardless of their content, during calculation of the
standard deviation.

SKIPMISSING
Excludes all #M1SSING values from expList during calculation of the standard deviation.

SKIPZERO
Excludes all zero (0) values from expList during calculation of the standard deviation.

SKIPBOTH
Excludes all zero (0) values and #M1SSING values from expList during calculation of the
standard deviation.

expList

Comma-delimited list of member specifications, variable names, functions, or numeric
expressions. expList provides a list of numeric values across which the standard deviation is
calculated.

Notes

@STDEVP calculates the standard deviation of the specified data set (expList). The
calculation is based upon the entire population. Standard deviation is a measure of how widely
values are dispersed from their mean (average).

@STDEVP is calculated using the "biased" or "n" method.
@STDEVP uses the following formula:

\anpr:—z S

ORACLE 5930

Chapter 2
Calculation Function List

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Std Deviation. This example calculates the standard
deviation (based on the entire population) of the sales values for all products and uses
@RANGE to generate expList.

FIX (Product)
"Std Deviation" = @STDEVP (SKIPBOTH, @RANGE (Sales, @CHILDREN (Product)));
ENDFIX

This example produces the following report:

Jan New York
Actual Budget
Sales Colas 678 640
Root Beer 551 530
Cream Soda 663 510
Fruit Soda 587 620
Diet Drinks #MI #MI
Product 2479 2300
Std Deviation Product 52.59 55.90
See Also
* @RANGE
e @STDEV

* @STDEVRANGE

@STDEVRANGE

The @STDEVRANGE calculation function for Essbase calculates the standard deviation of all
values of the specified member (mbrName) across the specified data set (XrangeList).

The calculation is based upon a sample of a population. Standard deviation is a measure of
how widely values are dispersed from their mean (average).

This function is calculated using the "unbiased" or "n-1" method. See @STDEYV for the formula
used.

Syntax

@STDEVRANGE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, mbrName [,
XrangeList])

ORACLE 5031

ORACLE

Chapter 2
Calculation Function List

Parameters

SKIPNONE
Includes all cells specified in expList, regardless of their content, during calculation of the
standard deviation.

SKIPMISSING
Excludes all #M1SSING values from expList during calculation of the standard deviation.

SKIPZERO
Excludes all zero (0) values from expList during calculation of the standard deviation.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from expList during calculation of the
standard deviation.

mbrName
Any valid single member name, or a function that returns a single member.

XrangeList

Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Std Deviation. This example calculates the standard
deviation (based on a sample of a population) of the sales values for all products.

FIX (Product)
"Std Deviation" = @STDEVRANGE (SKIPBOTH, Sales, @CHILDREN (Product)) ;
ENDFIX

This example produces the following report:

Jan New York
Actual Budget
Sales Colas 678 640
Root Beer 551 530
Cream Soda 663 510
Fruit Soda 587 620
Diet Drinks #MI #MI
Product 2479 2300
Std Deviation Product 60.73 64.55
See Also
e @STDEV
e @STDEVP

2-232

Chapter 2
Calculation Function List

@SUBSTRING

ORACLE

The @SUBSTRING calculation function for Essbase returns the requested string of characters
from an existing source string.

The source string can be a text string or a member name, or it can result from a specified
function that returns a text string or a single member name.

Syntax

@SUBSTRING (String, StartPosition [, EndPosition])

Parameters

String
A string or a function that returns a string or a single member name (For example,
@ATTRIBUTESVAL, @CONCATENATE, and @NAME return strings.)

StartPosition

Beginning character position within String to include in the substring. An integer greater than
or equal to 0, where 0 corresponds to the first character in String, 1 corresponds to the second
character, and so on.

EndPosition

Optional. An integer greater than or equal to 1, where 1 corresponds to the first character in
String, 2 corresponds to the second character, and so on. If EndPosition is not specified or is
less than StartPosition, Essbase returns all remaining characters from the source string. Note
that this is a different numbering scheme that the start position uses.

Example

The following examples are based on the Sample Basic database:

Table 2-32 @SUBSTRING Examples and Results
|

Function Statement Result
@SUBSTRING ("100-10",1) "00-10"
@SUBSTRING ("200-21",0,2) "20"
@SUBSTRING (@Name(@Parent(Jan)),3) "1

(The parent of Jan is Qtrl.)

See Also

* @CONCATENATE
° @MEMBER

2-233

Chapter 2
Calculation Function List

@SUM

The @SUM calculation function for Essbase returns the summation of all the values in expList.
Syntax

@SUM (expList)

Parameters

expList
Comma-delimited list of member specifications, variable names, or numeric expressions, all of
which provide numeric values.

Example

In the Sample Basic database:

FIX("Total Expenses")
West=@SUM (West,East) ;
ENDFIX

Since the calculation script fixes on Total Expenses, the value for Total Expenses->West is
equal to the sum of the value for East and the values for the states making up the West. For
Sales, West and East are simply the sum of the states making up each region (that is, Sales-
>West is not equal to the sum of East and West). This example produces the following report:

Product Qtrl Actual

Sales Total Expenses

New York 7705 2068
Massachusetts 3660 892
Florida 4132 1313
Connecticut 3472 1087
New Hampshire 1652 801

East 20621 6161
California 11056 2742
Oregon 5058 1587
Washington 4835 1621
Utah 4209 1544
Nevada 6516 2193

West 31674 15848
See Also
@SUMRANGE

ORACLE 5 534

Chapter 2
Calculation Function List

@SUMRANGE

ORACLE

The @SUMRANGE calculation function for Essbase returns the summation of all the values of
the specified member (mbrName) across the specified range (XrangeList).

Syntax

@SUMRANGE (mbrName [, XrangeList])

Parameters

mbrName
Any valid single member name, or a function that returns a single member.

XrangeList

Optional. A valid member name, a comma-delimited list of member names, cross dimension
members, or a member set function or range function (including @XRANGE) that returns a list
of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0
members from the dimension tagged as Time.

Example

The following example is based on the Sample Basic database. Assume that the Year
dimension contains an additional member, Partial Year. The formula for Partial Year sums the
values for New York across the range of Jan through Jun. The calculation script fixes on Sales,
so this formula is applied only to Sales values.

FIX(Sales)

"Partial Year"=@SUMRANGE ("New York",Jan:Jun);
ENDFIX

This example produces the following report:

Actual New York Colas

Sales
Jan 678
Feb 645
Mar 675
Apr 712
May 756
Jun 890
Partial Year 4356
See Also
@SUM

2-235

Chapter 2
Calculation Function List

@SYD

The @SYD calculation function for Essbase calculates the periodic amount (usually annual)
that an asset in the current period may be depreciated, across a range of periods. The
depreciation method used is sum of the year's digits.

The SYD method assumes that depreciation amounts are higher at the earlier stages of the
asset's life. Thus, XrangeList can be used to specify a period to calculate.

More than one asset may be depreciated over the range. The value is depreciated from its
entry period to the last period in the range. The resulting value represents the sum of all per-
period depreciation values of each asset.

Syntax

@SYD (costMbr, salvageMbrConst, lifeMbrConst [, XrangeList])

Parameters

costMbr
Single member specification representing an input asset for the current period.

salvageMbrConst

Single member specification, variable name, or numeric expression, providing a constant
numeric value. This value is the value of the asset in the current period after the useful life of
the asset.

lifeMbrConst
Single member specification, variable name, or numeric expression representing the useful life
of the asset.

XrangeList

Optional parameter specifying the range over which the function accepts input and returns
depreciation values. If a range is not specified, Essbase uses the level 0 members from the
dimension tagged as Time.

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about rangeList and XrangeList, see Range List Parameters.

Notes

Financial functions never return a value; rather, they calculate a series of values internally
based on the range specified.

Example

In this example, the depreciation for each year is calculated by taking into account the initial
asset (Asset), the salvage value of the asset (Residual), and the life of the asset (Life).

"SYD Dep"=Q@SYD (Asset,Residual,Life,FY1999:FY2002,FY2003);

ORACLE 5 536

Chapter 2
Calculation Function List

This example produces the following report:

FY1999 FY2000 FY2001 FY2002 FY2003

Asset 9,000 0 1,000 0 0
Residual 750.00 0.00 0.00 0.00 0
Life 5.00 #MISSING 3.00 0.00 0.00
SYD Dep 2750 2200 2150 1433 717

The following example assumes a Year dimension is added to Sample Basic. It calculates
depreciation using a multidimensional range.

FIX ("100-10", "New York")
"SYD Dep" = @SYD(Asset,Residual,Life, @XRANGE ("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangelList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

* @DECLINE
* @SLN

@TODATE

The @TODATE calculation function for Essbase converts date strings to numbers that can be
used in calculation formulas.

This function converts date strings into the number of seconds elapsed since midnight,
January 1, 1970.

Syntax

@TODATE (formatString, dateString)

Parameters

formatString
The format of the date string, either "mm-dd-yyyy" or "dd-mm-yyyy" (must be in lower case).

dateString
The date string.

ORACLE 2-237

Chapter 2
Calculation Function List

Notes

* If you specify a date that is earlier than 01-01-1970, this function returns an error.
e The latest date supported by this function is 12-31-2037.

Example

The following example is based on the Sample Basic database.

Marketing
(IF (GATTRIBUTEVAL ("Intro Date") >
@TODATE ("mm-dd-yyyy", "06-30-1996"))
Marketing - (Marketing * .1);
ENDIF;) ;

This formula searches for members with an Intro Date attribute member that is later than
6-30-96 and decreases Marketing for those members by 10 percent. In order to process the
formula, Essbase converts the date strings to numbers before it calculates.

This example produces the following report:

Actual Jan Massachusetts
Marketing
Intro Date 12-10-1996 200-30 9
200-40 9
Intro Date 10-01-1996 400-10 9
400-20 9
Intro Date 07-26-1996 200-20 9
Intro Date 06-26-1996 300-10 9
300-20 9
300-30 9
Intro Date 04-01-1996 100-20 10
100-30 10
Intro Date 03-25-1996 100-10 10
Intro Date 09-27-1995 200-10 10

See Also

* @ATTRIBUTE
* @ATTRIBUTEVAL
* @WITHATTR

@TODATEEX

ORACLE

The @TODATEEX calculation function for Essbase returns the numeric date value from input
date-string according to the date-format specified.

The date returned is the number of seconds elapsed since midnight, January 1, 1970.

If the date or the date format strings are invalid, an error is returned.

2-238

Chapter 2
Calculation Function List

Syntax

@TODATEEX (date format string, string)

Parameters

date_format_string
One of the following literal strings (excluding ordered-list numbers and parenthetical
examples) indicating a supported date format.

1. "mon dd yyyy" (Example: mon = Aug)
2. "Month dd yyyy" (Example: Month = August)
3. "mm/dd/yy"

4. "mm/dd/yyyy"

5. "yy.mm.dd"

6. "dd/mm/yy"

7. "dd.mm.yy"

8. "dd-mm-yy"

9. "dd Month yy"

10. "dd mon yy"

11. "Month dd, yy"

12. "mon dd, yy"

13. "mm-dd-yy"

14. "yy/mm/dd"

15. "yymmdd"

16. "dd Month yyyy"

17. "dd mon yyyy"

18. "yyyy-mm-dd"

19. "yyyy/mm/dd"

20. Long format (Example: WeekDay, Mon dd, yyyy)

21. Short format (Example: m/d/yy)

string
A date string following the rules of internal-date-format. The following examples correspond to
the above listed internal date formats.

1. Jan 15 2006
2. January 15 2006
3. 01/15/06

4. 01/15/2006

ORACLE 5 939

ORACLE

Chapter 2
Calculation Function List

5. 06.01.06

6. 15/01/06

7. 15.01.06

8. 15-01-06

9. 15 January 06

10. 15 Jan 06

11. January 15 06

12. Jan 15 06

13. 01-15-06

14. 06/01/15

15. 060115

16. 15 January 2006

17. 15 Jan 2006

18. 2006-01-15

19. 2006/01/15

20. Sunday, January 15, 2006

21. 1/8/06 (m/dlyy)

Notes

e This function is case-sensitive. For example, using apr instead of Apr returns an error.

« Using extra whitespace not included in the internal format strings returns an error.

e Trailing characters after the date format has been satisfied are ignored. If you erroneously
use a date string of 06/20/2006 with date format mm/dd/yy, the trailing 06 is ignored and
the date is interpreted as June 20, 2020.

e Long Format (Weekday, Mon dd, yyyy) is not verified for a day-of-week match to the given
date.
For example: For date string Ssunday, March 13, 2007 with date format Long Format, the
input date string is parsed correctly for March 13, 2007, although March 13, 2007 does not
fall on Sunday.

e If you specify a date that is earlier than 01-01-1970, this function returns an error.

e The latest date supported by this function is 12-31-2037.

* When the yy format is used, this function interprets years in the range 1970 to 2029.

See Also

e @DATEDIFF

e @DATEPART

* @DATEROLL

* @FORMATDATE

* @TODAY

2-240

@TODAY

@TREND

ORACLE

Chapter 2
Calculation Function List

The @TODAY calculation function for Essbase returns a number representing the current date
on the Essbase server computer.

The number is the number of seconds elapsed since midnight, January 1, 1970.

Syntax

@TODAY ()

Notes

e The date returned can be used as input to other functions listed in the See Also section.

* As this function is a run-time formula, you cannot use it in a FIX statement.

Example

If today’s date is 15-Jul-2014, the following expression returns 15:

@DATEPART (QTODAY (), DP_DAY)

See also the example for @FORMATDATE.

See Also

e @DATEDIFF

e @DATEPART

e @DATEROLL

* @FORMATDATE
* @TODATEEX

The @TREND calculation function for Essbase calculates future values based on curve-fitting
to historical values.

The @TREND procedure considers a number of observations, constructs a mathematical
model of the process based on these observations (that is, fits a curve), and predicts values for
a future observation. You can use weights to assign credibility coefficients to particular
observations, report errors of the curve fitting, choose the forecasting method to be used (for
example, linear regression), and specify certain data filters.

Syntax

@TREND (Ylist, [Xlist], [weightList], [errorList], [XforecastList],

YforecastList, method[, method parameters] [, Xfilterl [, parameters]] [,
XfilterN [, parameters]] [, Yfilterl [, parameters]] [, YfilterN [,
parameters]])

2-241

ORACLE

Chapter 2
Calculation Function List

Parameters

Ylist
An expression list that contains known observations; for example, sales figures over a period
of time.

Xlist

Optional. An expression list that contains underlying variable values. For example, for each
sales figure in Ylist, Xlist may contain a value for associated time periods. If you do not specify
Xlist, the default variable values are 1,2,3, and so on, up to the number of values in Ylist.

weightList

Optional. An expression list that contains weights for the data points in Ylist, for the linear
regression method only. If values in weightList are #MISSING, the default is 1. Weights for
methods other than linear regression are ignored. Negative weights are replaced with their
absolute values.

errorList
Optional. Member list that represents the differences between the data points in Ylist and the
data points on the line or curve (as specified for method).

XforecastList

Optional. Expression list that contains the underlying variable values for which the forecasting
is sought. If you do not specify XforecastList, the values are assumed to be as follows: {(last
value in Xlist + 1), (last value in Xlist + 2), ...}up to (last value in Xlist + the number of values in
YforecastList)

If you forecast consecutively from where Ylist stops, you do not need to specify XforecastList.
If you want to move the forecasting period forward, specify the new period with XforecastList.

YforecastList
A member list into which the forecast values are placed.

method

A choice among LR (linear regression), SES (single exponential smoothing), DES (double
exponential smoothing), and TES (triple exponential smoothing). Method parameters must be
numeric values, not member names. Method parameters may be any of the following:

* LR[1]: standard linear regression with possible weights assigned to each data point and
an optional seasonal adjustment period [t], where [t] is the length of the period. In general,
the weights are equal to 1 by default. You might want to increase the weight if the
corresponding observation is important, or decrease the weight if the corresponding
observation is an outlier or is unreliable.

e SES],c]: single exponential smoothing with parameter ¢ (default ¢=0.2). This method uses
its own weight system, using the single parameter c. Increasing this parameter gives more
weight to early observations than to later ones.

e DES]J[,c1],c2]: double exponential smoothing (Holt's method) with optional parameters c1,
c2 (default c1=0.2, ¢2=0.3). This is a two-parameter weight system and a linear
subsequent approximation scheme. The first parameter controls weight distribution for the
intercept; the second parameter controls weight distribution for the slope of the line fit.

e TESI[[[, T],c1],c2],c3]: triple exponential smoothing (Holt-Winters method) with optional
parameters c1, c2, ¢3, T (default c1=0.2, c2=0.05, ¢3=0.1, T=1). This is a three-parameter
weight system and a linear model with a multiplicative seasonal component.

2-242

ORACLE

Chapter 2
Calculation Function List

Xfilterl ... XfilterN
Optional. Use one or more of the following filter methods to scale Xlist:

e XLOG],c]: logarithmic change with shift ¢ (x' = log(x+c)) (default c=1

e XEXP|,c]: exponential change with shift ¢ (x' = exp(x+c)) (default c=0).
* XPOW],c]: power change with power ¢ (x' = xc) (default c=2).
Yfilterl ... YfilterN

Optional. Use one or more of the following filter methods to scale Yiist:

* YLOQG],c]: logarithmic change with shift ¢ (y' = log(y+c)) (default c=1)

* YEXP|,c]: exponential change with shift ¢ (y' = exp(y+c)) (default c=0).
* YPOW],c]: power change with power ¢ (y' = y”c) (default c=2).

Notes

e @TREND can be used only in calculation scripts, not in outline formulas.

¢ You must associate the @TREND formula with a member.

e Yiist, Xlist, weightList, and errorList should contain the same number of values.
e XforecastList and YforecastList should contain the same number of values.

e The method and filter parameters must be numbers only; functions and member names
are not allowed.

* @TREND ignores #MISSING values during calculation of the trend.

* When you use the LR method with seasonal adjustments or when you use the TES
method, Essbase places strict requirements on the input data. With these methods, input
data cannot contain #MISSING values. Also, if you specify Xlist, the data must be
equidistant, with the interval (step) being a whole fraction of the period, T (for example,
T/5, T/2). The XforecastList parameters should also contain multiples of the interval.

* For another example using @ TREND with more options, see Forecasting Future Values.

« If you use a member set function to generate a member list for this function, (for example,
@SIBLINGS), to ensure correct results, consider the order in which Essbase sorts the
generated member list. For more information, see the help topic for the member set
function you are using.

e The following algorithms are used to calculate @ TREND:

Algorithm for Linear Regression

2-243

Chapter 2
Calculation Function List

Yhisi K1Yz Ly
Kiist Xy Eg e, Xy
weight List Wy, Wy, e, Wy

Linear Regression ({LR)

(1f w15 #MISSING or the whole weightlist 1z missing as an argument, w; = 1)

X

2570 D M P10

i=l

YOV M) Y,

1

A=55_-(5)

S8, ~ 5,8,

ot

the equation ofthe line 1z

line =¥ (x)=a+bx

Algorithm for Linear Regression with Seasonal Adjustment

ORACLE 5 oun

ORACLE

Chapter 2
Calculation Function List

J1 Fa s My Vs Fs

In linear regressions, the intervals between % values must be the same.
The value of that interval 15 A In this case, A= 1.

Step 1, Centered moving average of v's, where # =3 (mowving centered average with 3
members at a time)

F1 Fa a3 Fa Fs Y
. "
'

x ATYtr Yotystyy yytytys yotyo)y

*
3 3 3 3
- — - - centered moving
=¥ =X =Xy =ry; 4 average
Flist Fls¥aae s ¥y
Khist b A R
weightList W, Wy, e, Wy

@ITEEND(Fiist,..... LR, £)
Linear regression with seasonal adjustment example:
There are & data points and a seasonal adjustment parameter, =3

Input data:

2-245

ORACLE

Chapter 2
Calculation Function List

M1 Fa F3 Ky s s

In linear regressions with seasonal adjustments, the intervals between
¥ values must be the same. A 1s equal to that interval. In this case, A= 1.

otep 1, Centered moving average of ¥'s, where # =3 (moving centered average with 3
members at a time)

M1 Ky ¥z Fy s Fe
S A
T

x« Aty tr Yatrystyy Vi)Yot
3

= j,r‘g = 3;3

Yyt Ty

ES

LN]
LN]
L)

— —~ certered moving
=X =y; average

Step 2, Subtract ¥ s from y s

Moo Yz ¥y Vs
_.,'F:; 5‘13 5‘74 ?5'

Yoo VoY j}j-d—djﬂ'erence

Step 3,

Arrange ¥ s inte 2(x = 3) columns to derive &5 and average values along
columns:

o

.i}z N3
B, F

=

oy e

.J?’_4 Fq + s Y3
1 2 1

=F =F =F +— adustmentlist

2-246

Chapter 2
Calculation Function List

step 4, Subtract F's from original Fist:

M1 Ma M3 Fa X M
5 A £ A A £
» o ot Vi b b

Step 5, Linear Eegression (LE) with

n=1 x,=2 x=3 x=4 x=5 x=56

¥ ¥ i Vi Vi Ve

as shown in Linear Begression (LE) section, deriving @b such that
¥ =hx+a 13 the trending line.

step 6, To get future trend walue for x

X Ffarﬁmrzb*x-l_a-l_lcz!’ where AE; i=m
Fi

_(x-1mod3
1

= (x—1)tmed 3

Algorithm for Single Exponential Smoothing (SES)

Ylist Y1:Vaeee, Yy

Alist b A S Xy

ORACLE 2.247

ORACLE

Chapter 2
Calculation Function List

¢ =.2 default, or else £ 1z input inte the trend

find 575, ,.... R

S =

Soy=a xS+ (1-a)y, fori=1..

then Ff:ﬂrem_st[x) =a *SK + I:l —ﬂ)*_}’x

where a, = (1-¢)¥1 ¥

@ = (1 —c)rxf

Note: When Xlistis missing, x:..;—x; = [and the correspondent coefficients

a=(l—-¢c) fori=I1 _ K-1I

Algorithm for Double Exponential Smoothing (DES)

Flist Y1 Vg aeen, Y

Hhist XL Xy Xg

2-248

Chapter 2
Calculation Function List

£, =.2, ¢y =.3 default, or elze they are input into the trend

find 5,.8;,....8;

b = [yz _J’1)

I:xz_xJ
Syl = & *[Si + b, [xz'+1 s D"’ [1_ﬂi)*(.yi+1)

by = d; *b, +[1‘di)*[M]

BT

where a, = I:l - '31:' h) W

d; = (1 _52) L

then Yepeea: () = 8 + (x —xg) by

Note: When Xlist is missing, x:-;—x: = [and the correspondent coefficients
a:={{—cyl

L _.'-';':'r 1= "IT.I "'.IK_ *'T

be=(l—ci

Algorithm for Triple Exponential Smoothing (TES)

Ylist T LA,

Kist X Xy Xy

ORACLE

2-249

Chapter 2
Calculation Function List

TES with period T (if T iz not given, it 15 assumed to be T =1
X Xy, Xz, ¥.¥g e ¥y are input to TES, x 13 forecast value.
@ = Iil—r:':lx!'*'l_xi di = |:1 —d:lx!'ﬂ_xi g = I:]_—gj]xz'ﬂ R
Note: When Xlistis missing, x:..;—x; = [and the correspondent coefficients
a:=(l—¢) fori=1I1_,K-1]

di= (1 -d)

g =(l—g
Default o =2
d =05
g =1
step 1,
i
B = Fa—h
AT H
i=1

step 2, Fori=1...., T-1

S =2 (5 (=) (-)w
fig = g—z
by =db +(1- .:fijlg"+1 ~ 5

T T

ORACLE 5550

ORACLE

step 3, Fori=T,.. K

Sz'+1 =y *[S; +~'-E:'!- |[.?f-+1 _xi:lj+|[1—az.:]'}?j_+l

| fz’+1—1"
yz'+
La=e Layr+(l-g)i
Bog =db [1_ - d;‘) Mo T A
T T

i+l i

Forecast for x 15 [S'K +E:'K[x— xK))*(fj)“

Chapter 2
Calculation Function List

where j 15 determuned by finding the maximum j, such that x, < x and then

Example

The following example is based on the Sample Basic database. It forecasts sales data for May
through December, based on the trend of the same sales data from January through April. The

method used is linear regression with no seasonal adjustment.

Sales (@TREND (Jan:Apr,,,,,May:Dec,LR) ;)

This example produces the following report:

Actual Sales West

Colas

Jan 2339
Feb 2298
Mar 2313
Apr 2332
May 2319
Jun 2318.4
Jul 2317.8
Aug 2317.2
Sep 2316.6
Oct 2316
Nov 2315.4
Dec 2314.8

Year 27817.2
See Also
@LIST

2-251

Chapter 2
Calculation Function List

@TRUNCATE

@UDA

ORACLE

The @TRUNCATE calculation function for Essbase removes the fractional part of expression,
returning the integer.

Syntax

@TRUNCATE (expression)

Parameters

expression
Single member specification, function, variable name, or other numeric expression, which
returns a numeric value.

Example

In the following example, Total Sales is calculated by (1) taking the sum of the values for Direct
Sales and Other Sales and (2) truncating the summed values.

"Total Sales" = @TRUNCATE (QSUM("Direct Sales":"Other Sales"));

This example produces the following report:

Colas New York Actual
Jan Feb Mar
Direct Sales 678.557 645.874 675.299
Other Sales 411.299 389.554 423.547
Total Sales 1089 1035 1098

See Also

* @REMAINDER
* @ROUND

The @UDA calculation function for Essbase returns members based on a common attribute,
which you have defined as a user-defined attribute (UDA) on the Essbase Server.

Syntax
QUDA

(dimName, uda)

Parameters

dimName
Name of the dimension with which the uda is associated.

2-252

@VAR

ORACLE

Chapter 2
Calculation Function List

uda
Name of the user-defined attribute as it appears in the database outline.

Notes

You must type the UDA string exactly as it appears in the database outline.

Example

In the Sample Basic database:

@UDA (Market, "New Mkt")

Returns a list of members with the UDA of New Mkt.

See Also

* @ISUDA
* @ISMBRUDA

The @VAR calculation function for Essbase calculates the variance (difference) between two
members.

The variance calculation recognizes the difference between accounts that are tagged in the
database outline as expense and those that are non-expense (the default), and calculates the
variance accordingly.

Syntax

@VAR (mbrNamel, mbrNameZ)

Parameters

mbrNamel and mbrName2

Members from the same dimension whose variance results are to be calculated. The variance
is derived by subtracting mbrName2 values from mbrNamel, unless an account is tagged as
expense, in which case mbrNamel values are subtracted from mbrName?2.

Example

The following example is based on the Sample Basic database. The variance between Actual
and Budget is calculated as follows:

Variance = @VAR(Actual,Budget);

Sales is non-expense, whereas COGS is expense. This example produces the following
report:

Year Product Market
Sales COGS
Actual 400855 179336

2-253

Chapter 2
Calculation Function List

Budget 373080 158940
Variance 27775 (20396)
See Also

« @VARPER

* @VARIANCE
* @VARIANCEP

@VARPER

The @VARPER calculation function for Essbase calculates the percent variance (difference)
between two members.

The variance calculation recognizes the difference between accounts that are tagged in the
database outline as expense and those that are non-expense, and calculates the variance
accordingly.

Syntax

@VARPER (mbrNamel, mbrNameZ2)

Parameters

mbrNamel and mbrName2

Members from the same dimension whose variance results are to be calculated. The percent
variance is derived by taking the percent variance of mbrName2 values from mbrNamel,
unless an account is tagged as expense, in which case mbrNamel values are taken as a
percent variance of mbrName2.

Example

The following example is based on the Sample Basic database. The percent variance between
Actual and Budget is calculated as follows:

Variance % = @VARPER (Actual,Budget);

In this example Sales is non-expense, whereas COGS is expense. This example produces the
following report:

Year Product Market
Sales COGS
Actual 400855 179336
Budget 373080 158940
Variance % 7.4 (12.8)

See Also

e @VAR

* @VARIANCE

e @VARIANCEP

ORACLE 5 o4

Chapter 2
Calculation Function List

@VARIANCE

The @VARIANCE calculation function for Essbase calculates the statistical variance of the
specified data set, based upon a sample.

The calculation is based upon a sample of a population. Variance is a measure of the
dispersion of a set of data points around their mean (average) value.

Syntax

@VARIANCE (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, XrangeList)

Parameters

SKIPNONE
Includes all cells specified in the data set, regardless of their content, during calculation of the
variance.

SKIPMISSING
Excludes all #MISSING values from the data set during calculation of the variance.

SKIPZERO
Excludes all zero (0) values from the data set during calculation of the variance.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from the data set during calculation of the
variance.

XrangeList

A list of numeric values across which the variance is calculated. Referred to generically
throughout this topic as "the data set."

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about XrangeList, see Range List Parameters.

Notes

« @VARIANCE is different from @VAR, which calculates the variance (difference) between
two members.

« @VARIANCE assumes that the data set (XrangeList) represents a sample of the
population. If you want the data set to represent the entire population, use @VARIANCEP.

* @VARIANCE is calculated with the "unbiased" or "n-1" method.
* @VARIANCE uses the following formula:

HZIE - (ZX)Q

nin-1

ORACLE P

ORACLE

Chapter 2
Calculation Function List

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Sales Var. This example uses the @RANGE
function to generate the data set, and calculates the variance of the sales values for a product
family.

FIX (Product)
"Sales Var" = @VARIANCE (SKIPBOTH, @RANGE (Sales, @CHILDREN (Product))) ;
ENDFIX

This example produces the following report:

Jan New
York

Actual Budget

Sales Colas 678 640

Root Beer 551 530

Cream Soda 663 510

Fruit Soda 587 620

Diet Drinks #MI #MI

Product 2479 2300
Sales Var Product 3687.58 4166.67

The following example assumes a Year dimension is added to Sample Basic. It calculates
variance using cross-dimensional members in the data set.

FIX (Product)
"Sales Var" = @VARIANCE (SKIPBOTH,@XRANGE ("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@VARIANCEP

2-256

Chapter 2
Calculation Function List

@VARIANCEP

The @VARIANCEP calculation function for Essbase calculates the statistical variance of the
specified data set.

The calculation is based upon the entire population. Variance is a measure of the dispersion of
a set of data points around their mean (average) value.

Syntax

@VARIANCEP (SKIPNONE | SKIPMISSING | SKIPZERO | SKIPBOTH, XrangeList)

Parameters

SKIPNONE
Includes all cells specified in the data set, regardless of their content, during calculation of the
variance.

SKIPMISSING
Excludes all #MISSING values from the data set during calculation of the variance.

SKIPZERO
Excludes all zero (0) values from the data set during calculation of the variance.

SKIPBOTH
Excludes all zero (0) values and #MISSING values from the data set during calculation of the
variance.

XrangeList

A list of numeric values across which the variance is calculated. Referred to generically
throughout this topic as "the data set."

Can be a valid member name, a comma-delimited list of member names, cross dimensional
members, or a return value from a member set function or range function (including
@XRANGE).

For more information about XrangeList, see Range List Parameters.

Notes

« @VARIANCEP is different from @VARPER, which calculates the percent variance
(difference) between two members.

« @VARIANCEP assumes that the data set (XrangeList) represents the entire population. If
you want the data set to represent a sample of the population, use @VARIANCE.

e @VARIANCEP is calculated using the "biased" or "n" method.
« @VARIANCEP uses the following formula:

ang _2 IZI)E

M

ORACLE 2-257

ORACLE

Chapter 2
Calculation Function List

Example

The following example is based on the Sample Basic database. Assume that the Measures
dimension contains an additional member, Sales Var. This example uses the @RANGE
function to generate the data set, and calculates the variance of the sales values for a product
family.

FIX (Product)
"Sales Var" = Q@VARIANCEP (SKIPBOTH, @RANGE (Sales, @CHILDREN (Product)));
ENDFIX

This example produces the following report:

Jan New York
Actual Budget
Sales Colas 678 640
Root Beer 551 530
Cream Soda 663 510
Fruit Soda 587 620
Diet Drinks #MI #MI
Product 2479 2300
Sales Var Product 2765.69 3125

The following example assumes a Year dimension is added to Sample Basic. It calculates
variance using cross-dimensional members in the data set.

FIX (Product)
"Sales Var" = @VARIANCEP (SKIPBOTH, @XRANGE ("2011"->"Sep", "2012"->"Mar"));
ENDFIX

The above calculation is performed across the following multidimensional range specified by
XrangeList:

2011->Sep
2011->0ct
2011->Nov
2011->Dec
2012->Jan
2012->Feb
2012->Mar

See Also

@VARIANCE

2-258

Chapter 2
Calculation Function List

@WEIGHTEDSUMX

ORACLE

The @WEIGHTEDSUMX calculation function for Essbase aggregates all members in a
member list, depending on the unit weight of each member, which is fetched from a remote
data source.

This function improves the performance of aggregating currency databases by calling the
calculation framework only once.

The following terminology is used to describe this function:

» Data target: the database on which the current calculation is running (that is, the database
on which the @WEIGHTEDSUMX call originates).

« Data source: the database that is queried by @WEIGHTEDSUMX. This database may be
remote (that is, on a different machine than the data target).

* Point of view: the member combination currently being calculated on the data target (that
is, the member combination that identifies the left hand side of a calculation).

Syntax
There are multiple ways to call this function, depending on your goal.

To incorporate values from a remote cube, use this syntax:

@WEIGHTEDSUMX (mbrList, locationAlias [, CurrencyType, CurrencyRate, Period]);

The mbrList and locationAlias parameters are required. If the other parameters are not
provided, they are taken from the POV.

To incorporate values from another application and database on the same Essbase server
instance, use this syntax:

@WEIGHTEDSUMX (mbrList, appname, dbname [, CurrencyType, CurrencyRate,
Period]);

Parameters

mbrList

Required. Specifies the list of members to be aggregated according to the unit weight of the
individual members. The mbrList can be a calculation function that returns a member list or a
comma-separated list of member names. The member list cannot contain functions that return
more than one member.

Examples of functions that return a member list: @ CHILDREN, @DESCENDANTS, and
@RANGE.

A comma-separated list of member names must be expressed as a single argument. For
example, a list of currencies such as "USD","ARS","AUD","BRL" can be used with a member
list function, as in @LIST ("USD", "ARS","AUD","BRL"), or expressed as a range if the
members are at the same level, as in "USD":"BRL", or enclosed in parentheses, as in ("USD",
"ARS","AUD","BRL").

The members you specify for mbrList are sent to the data source in addition to the members in
the current point of view in the data target. The data source then constructs a member
combination, using in order of precedence:

2-259

ORACLE

Chapter 2
Calculation Function List

e The members specified in mbrList
e The members in the current point of view
e The top member in any unspecified dimensions in the data source

The following formula modifies the point of view on the data target. Assume that the cube on
the data source (sourceDB) contains data only from 2002. This formula sets Inventory for Jan
2003 to the Inventory value for Dec 2002:

2003 (2003->Jan->Inventory = @WEIGHTEDSUMX (mbrList, locationAlias, Dec) ;)

The following formula defines a specific point of view on the data target. Assume that the data
target contains the member Jan and the data source (locationAlias) contains the member
January. This formula maps the member in the data target (Jan) with its corresponding
member in the data source (January), and pulls January from data source:

Jan = @WEIGHTEDSUMX (mbrList, locationAlias, January);

The following formula is an example of using @RANGE with a comma-separated list of
members, which includes a range of members at the same level:

@WEIGHTEDSUMX (@RANGE ("Entered","USD":"ZAR"), FCCS Rates , "Rate.Average",
"Rate USD");

locationAlias

Required. A location alias for the data source. A location alias is a descriptor that identifies the
data source. The location alias must be set on the database on which the calculation script will
be run. The location alias is set by the database administrator and specifies a server,
application, database, user name, and password for the data source.

appname, dbname
Application and cube name. Use only for deployments with only one Essbase server instance.

CurrencyType
Optional. A member in a dimension that contains currency types, with members such as
Average, Closing, or Historical.

CurrencyRate
Optional. A member in a dimension that contains currency rates, with members depicting the
global currency rates.

Period
Optional. A member from a time dimension.

Notes

* You must be signed in on the data target, and also provisioned on the data source.
e An erroris returned if the members supplied in mbrList do not exist in the data source.

e The number of data cells queried on the data source must match the number of data cells
expected on the data target.

« The member list cannot contain functions that return more than one member.

e Only one parameter can be provided per dimension.

2-260

Chapter 2
Calculation Function List

@WITHATTR

ORACLE

The @WITHATTR calculation function for Essbase returns all base members that are
associated with an attribute or varying attribute that satisfies the conditions you specify.

You can use operators such as >, <, =, and IN to specify conditions that must be met. This
function can be used as a parameter of another function, where that parameter is a list of
members.

Syntax

@WITHATTR (dimName, "operator", value)

Parameters

dimName
Single attribute dimension name or varying attribute dimension name.

operator
Operator specification, which must be enclosed in quotation marks ().

value

A value that, in combination with the operator, defines the condition that must be met. The
value can be an attribute member specification, a constant, or a date-format function
(@TODATE).

Notes

e Avarying attribute cannot be included in a FIX command if no perspective is specified in
the calculation script.

e @WITHATTR is a superset of @ATTRIBUTE. The following two formulas return the same
member set:

@ATTRIBUTE (Bottle)
@WITHATTR ("Pkg Type","==",Bottle)

However, the following formula can be performed only with @WITHATTR (not with
@ATTRIBUTE) because you specify a condition:

@WITHATTR (Ounces,">","16")

e If you specify a date attribute with @WITHATTR, you must use @ TODATE in the string
parameter to convert the date string to a number.

The following operators are supported:

Table 2-33 Supported Operators
___|

Operator Description

> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to

2-261

Chapter 2
Calculation Function List

Table 2-33 (Cont.) Supported Operators
|

Operator Description
== Equal to
<>or!= Not equal to
IN In

e The IN operator returns the base members that are associated with a subcategory of
attributes in the attribute dimension. For example, in the Sample Basic database,
QWITHATTR (Population, "IN",Medium) returns the base members that are associated with
all attributes under the Medium parent member in the Population dimension.

e When using Boolean attributes with @WITHATTR, use only the actual Boolean attribute
member name, or use 1 (for True or Yes) or O (for False or No). You cannot use True/Yes
and False/No interchangeably.

e An operator may work differently with different attribute types. For example:

— Text—QWITHATTR (Flavors, "<",Orange) returns base members with attributes that
precede Orange in the alphabet; for example, Apple, Cranberry, Mango, and Oat, but
not Peach or Strawberry.

— Boolean—@WITHATTR (Caffeinated, "<", True) returns all base members that have
Caffeinated set to False (or No). It does not return base members that do not have
Caffeinated set to True (or Yes) or do not have a Caffeinated attribute at all. The
behavior is similar for a formula like GWITHATTR (Caffeinated, "<>", True), which
returns only base members with Caffeinated set to False.

— Date—@WITHATTR ("Intro Date","<",@TODATE ("mm-dd-yyyy","07-26-2002"))
returns all base members with date attributes that are before July 26, 2002.

Example

The following table shows examples, based on the Sample Basic database, for each type of
operator:

Table 2-34 Operator Results

Operator Example Result
> @WITHATTR(Population,">","18000000 Returns New York, California, and Texas
")
>= @WITHATTR(Population,">=",1000000 Returns New York, Florida, California,
0) where 10,000,000 is not a numeric Texas, lllinois, and Ohio
attribute member, but a constant
< @WITHATTR(Ounces,"<","16") Returns Cola, Diet Cola, Old Fashioned,
Sasparilla, and Diet Cream
<= @WITHATTR("Intro Returns Cola, Diet Cola, Caffeine Free
Date","<=",@ TODATE("mm-dd-yyyy", Cola, and Old Fashioned
"04-01-2002"))
== @WITHATTR("Pkg Type","= =",Can) Returns Cola, Diet Cola, and Diet
Cream
<>or!= @WITHATTR(Caffeinated,"<>",True) Returns Caffeine Free Cola, Sasparilla,
Birch Beer, Grape, Orange Strawberry
IN @WITHATTR("Population”,"IN",Medium Returns Massachusetts, Florida, lllinois,
) and Ohio
ORACLE

2-262

@XRANGE

ORACLE

Chapter 2
Calculation Function List

The following two examples show @WITHATTR used in a calculation script, based on the
Sample Basic database:

/* To increase by 10% the price of products that are greater than
or equal to 20 ounces */

FIX (QWITHATTR (Ounces,">=","20"))
Price = Price * 1.1;
ENDFIX

/* To increase by 10% the marketing budget for products brought
to market after a certain date */

FIX (QWITHATTR("Intro Date",">",
@TODATE ("mm-dd-yyyy", "06-26-1996"))) ;
Marketing = Marketing * 1.1;

ENDFIX

See Also

* @ATTRIBUTE

* @ATTRIBUTEVAL

e SET SCAPERSPECTIVE
* @TODATE

The @XRANGE calculation function for Essbase returns the range of members between (and
inclusive of) two specified single or cross-dimensional members at the same level.

For example, when you work with the Time and Scenario dimensions, you can use @XRANGE
to return a member set combination of Time and Scenario instead of creating a dimension that
combines the two (which creates many more individual members than necessary).

@XRANGE is a member set function. Member set functions return a list of members.
@XRANGE can appear anywhere in a formula where a range can normally appear.

Syntax

@XRANGE (mbrNamel, mbrNameZ2)

Parameters

mbrNamel
Any valid member name, member combination, or function that returns a single member.

mbrName2

Any valid member name, member combination, or function that returns a single member. If
mbrNamel is a cross-dimensional member (such as Actual->Jan), then mbrName2 must be
also, and the dimension order must match the order used in mbrName1.

2-263

ORACLE

Chapter 2
Calculation Function List

Notes

* The two arguments to @XRANGE can be either both single members or both cross-
dimensional members. For example, @XRANGE (Actual->Jan, Budget) is invalid because a
single member and a cross dimensional member are used together. Both @XRANGE (Actual-
>Jan, Budget->Feb) and @XRANGE (Jan, Mar) are valid.

e The dimension order of members must match for both arguments. For example,
@XRANGE (Actual->Jun, Jul->Budget) is invalid because the two member components are
in different orders. @XRANGE (Actual->Jun, Budget->Jul) is valid.

* Although the syntax is correct, a function such as @XRANGE (Dec, Mar) iS meaningless
because it results in an empty set.

e The member components of each argument must be from the same level. For example,
@XRANGE (Actual->Jun, Budget->Qtrl) is invalid because Jun and Qtrl are not from the
same level.

Example

The following examples are based on the Sample Basic database.

Example 1

Here is a very simple example using simple members to return the range between Jan and
Mar.

@XRANGE (Jan, Mar)

This example returns the following members:

Jan
Feb
Mar

Example 2

Here is a very simple example using cross dimensional members to return the range between
Actual, Jan and Budget, Mar:

@XRANGE (Actual->Jan, Budget->Mar)

This example returns the following members:

Actual, Jan
Actual, Feb
Actual, Mar
Actual, Apr
Actual, May
Actual, Jun
Actual, Jul
Actual, Aug
Actual, Sep
Actual, Oct
Actual, Nov

2-264

ORACLE

Chapter 2
Calculation Function List

Actual, Dec
Budget, Jan
Budget, Feb
Budget, Mar

Example 3

This example is not based on the Sample Basic database. It is based on database that
contains a dimension called Year that contains members for each year, from 2001 to 2003.

The following formula computes the average sales for all months between Mar of 2000 and
Jan of 2001.

SalesAvg= @MOVAVG (Sales, 3, @XRANGE("2000"->Mar, "2001"->Jan));

This example returns the following members:

Colas New York Actual

Sales SalesAvg
2000
Mar 678 678
Apr 645 645
May 675 666
Jun 712 677.3
Jul 756 714.3
Aug 890 786
Sep 924 856.7
Oct 914 909.3
Nov 912 916.7
Dec 723 849.7
2001
Jan 647 760.7
See Also

* @AVGRANGE
* @MAXRANGE
* @MAXSRANGE
* @MINRANGE
° @MINSRANGE

° @MOVAVG
° @MOVMAX
* @MOVMED
* @MOVMIN

* @MOVSUM
* @SPLINE

* @STDEVRANGE
* @SUMRANGE

2-265

Chapter 2
Calculation Function List

@XREF

The @XREF calculation function enables a calculation to incorporate values from another
Essbase cube.

The following terminology is used to describe @XREF:

* Data target: the cube on which the current calculation is running (that is, the cube on which
the @XREF call originates).

« Data source: the cube that is queried by @XREF. This cube may be remote (that is, on a
different machine than the data target).

* Point of view: the member combination currently being calculated on the data target (that
is, the member combination that identifies the left hand side of a calculation).

The @XREF function retrieves values from a data source to be used in a calculation on a data
target. @XREF does not impose member and dimension mapping restrictions, which means
that the data source and data target outlines can be different.

Syntax
There are multiple ways to call this function, depending on your goal.

To incorporate values from a remote cube, use:

@XREF (locationAlias [, mbrList])

To incorporate values from another application and cube on the same Essbase instance, use:

@XREF (appname, dbname [, mbrList])

Parameters

locationAlias

A location alias for the data source. A location alias is a descriptor that identifies the data
source. A location alias is not needed if the source and target are on the same Essbase
instance.

If used, the location alias must be set on the cube on which the calculation script will be run.
The location alias is set by the database administrator and specifies a server, application,
database, user name, and password for the data source.

mbrList

Optional. A comma-delimited list of member names that qualify the @XREF query. The
members you specify for mbrList are sent to the data source in addition to the members in the
current point of view in the data target. The data source then constructs a member
combination, using in order of precedence:

e The members specified in mbrList
e The members in the current point of view

e The top member in any unspecified dimensions in the data source

ORACLE 5566

ORACLE

Chapter 2
Calculation Function List

The mbrList parameter (1) modifies the point of view on the data target or (2) defines a
specific point of view on the data source. For example, the following formula modifies the point
of view on the data target:

2003 (2003->Jan->Inventory = @XREF (sourceDB, Dec) ;)

If the cube on the data source (sourceDB) contains data only from 2002, this formula sets
Inventory for Jan in 2003 to the Inventory value for Dec from 2002.
The following formula defines a specific point of view on the data target:

Jan = @XREF (sourceDB, January) ;

Assume that the data target contains the member Jan, while the data source (sourceDB)
contains the member January. This formula simply maps the member in the data target (Jan)
with its corresponding member in the data source (January), and pulls January from
sourceDB.

See Notes for more information about the mbrList parameter.

appname, dbname
Application and cube name. Use only for deployments with only one Essbase instance.

Notes

e You must be signed in on the data target, and also provisioned on the data source.
e An error is returned if the members supplied in mbrList do not exist in the data source.

e The number of data cells queried on the data source must match the number of data cells
expected on the data target.

e The member list cannot contain functions that return more than one member. For example,
the following formula is not valid:

West = @XREF (SourceDb, @LEVMBRS (Market,0));

* The member list cannot contain ranges. For example, the following formula is not valid:
West = @XREF (SourceDb, Jan:Mar);

e mbrList can contain attribute members. For example, if the data source classifies products
based on a color attribute, the following formula would calculate the sum of the sales of all
red products and would assign the result to member RedThings:

RedThings = @XREF (SourceDb, Sales, Red);

e mbrList can contain attribute operators. For example, the following formula calculates
RedThings as the average sales of all red products:

RedThings = @XREF (SourceDb, Sales, Red, Average);

« @XREF can query all types of members. For example, members retrieved from a data
source can be Dynamic Calc members as well as attribute members. Keep in mind that all
performance considerations that apply to dynamic and attribute calculations also apply to
@XREF queries that depend on dynamic and attribute members.

e Over the course of an @XREF calculation, data in the source database may change.
@XREF does not incorporate changes made after the beginning of the calculation.

2-267

ORACLE

Chapter 2

Calculation Function List

* @XREF is a top-down formula. For more information on top-down formulas, see Bottom-

Up and Top-Down Calculation.

e For a member that does not exist in either the data source or the data target, @XREF

returns the value of the top dimension, not the value #M1.

e If you are using @PARENT within @XREF, it must be within @NAME. For example:

COGS=@XREF (Sample, @NAME (@PARENT (Product)),Sales);

e When running a parallel calculation that includes @XREF, the application times out if the

number of threads you specify to use is higher than the configured number of
SERVERTHREADS.

Example
For this example, consider the following two databases:

Main Database

Year
otrl
Qtr2
Measures
Sales
Units
Product
100
100-10
100-20
Market
East
West
Scenario
Budget
Forecast

Inflation Rates Database

Year

Qtrl

Qtr2
Assumptions

Inflation

Deflation = Inflation * .5 (Dynamic Calc)
Country

Us

Canada

Europe

The following formula is associated with the Main Database:

Units = Units * @XREF (InflatDB,Inflation,US);

Where InflatDB is the location alias for the Inflation Rates Database and Inflation is the
member for which a data value is retrieved from InflatDB.

2-268

Chapter 2
Calculation Function List

In this example, Essbase calculates the following member combinations:

Units->Qtr1->100-10->East->Budget = Units->Qtr1->100-10->East->Budget * Inflation->Qtr1-
>Us

Units->Qtr2->100-10->East->Budget = Units->Qtr2->100-10->East->Budget *Inflation->Qtr2-
>US and so on.

See Also
@XWRITE
Understand XREF/XWRITE

@XWRITE

The @XWRITE calculation function enables a database calculation to write values to another
Essbase database, or to the same database.

The following terminology is used to describe the @ XWRITE function:

« Data source: the database on which the current calculation is running (that is, the database
on which the @XWRITE call originates).

« Data target: the database that is updated by @ XWRITE. This database may be remote
(that is, on a different machine than the data source).

« Point of view: the member combination currently being calculated on the data source.

This function writes to data blocks, either in the same database or in a remote database, while
calculating a block in the current database. @XWRITE does not impose member and
dimension mapping restrictions, which means that the data source and data target outlines can
be different.

As arguments, this function takes a location alias, an implied list of members that represents
the current point of view, and an optional list of members to qualify @ XWRITE on the data
target. The second argument (the members making up the current point of view) is implied;
that is, these members are not specified as an @XWRITE parameter. An @ XWRITE that omits
the third argument indicates that a given data point in the data source will be set to the same
data point in the data target.

Syntax
There are multiple ways to call this function, depending on your goal.

To incorporate values from a remote cube, use:

@XWRITE (expression, locationAlias [, mbrList])

To incorporate values from another application and database on the same Essbase server
instance, use:

@XWRITE (expression, appname, dbname [, mbrList])

ORACLE 5560

ORACLE

Chapter 2
Calculation Function List

Parameters

expression
A single member specification, variable name, or other numeric expression corresponding to
the value to be stored.

locationAlias

A location alias for the data target. A location alias is not needed if the source and target are
on the same Essbase server instance.

If used, the location alias must be set on the database on which the calculation script will be
run. The location alias is set by the database administrator and specifies a server, application,
database, username, and password for the data target.

The same location alias can be used by both @XREF and @XWRITE. For @XREF, it
represents the data source, and for @XWRITE it represents the data target.

For @XWRITE only, a reserved keyword @LOOPBACK can be used to write to the same
database.

mbrList

Optional. A comma-delimited list of member names that qualify the @XWRITE operation. The
members you specify for mbrList, in addition to the members in the current point of view in the
data source, determine what is written to the data target. The data target is written to using the
following calculation logic (in order of precedence):

* The members specified in mbrList
e The members in the current point of view
* The top member in any unspecified dimensions in the data target

Therefore, the remote member list is calculated and written using members from current point
of view, overridden with members from the mbrList specified to @XWRITE, and if some
dimensions are still absent at the data target, the top most dimension of the data target is
used.

See Notes for more information about the mbrList parameter.

appname, dbname
Application and cube name. Use only for deployments with only one Essbase server instance.

Notes

e You must be signed in on the data target, and also provisioned on the data source.
e This function is applicable only to block storage databases.
e An error is returned if the members supplied in mbrList do not exist in the data target.

e The member list cannot contain functions that return more than one member. For example
@QLEVMBRS (Market, 0).

e The member list cannot contain ranges.
* The member list cannot contain attribute members or attribute operators.

e @XWRITE is a top-down formula. For more information on top-down formulas, see
Bottom-Up and Top-Down Calculation.

* @XWRITE to dynamic calc cells is not recommended; the data is calculated in memory,
but not written.

* @XWRITE can be used in calculation scripts as well as outline member formulas.

2-270

Chapter 2
Custom-Defined Calculation Functions

Example

The following Sample Basic formula writes the 100-30 values into 100-20 on the same
database.

FIX (East, Actual, Budget, Sales)
"100-30" (

@XWRITE ("100-30", Q@loopback, "100-20");
)

ENDFIX

The following Sample Basic formula writes the 100-30 values into 100-20 on a remote
database, Sample2 Basic, using the location alias "sam2basic" defined from Sample Basic to
Sample2 Basic.

FIX (East, Actual, Budget, Sales)
"100-30" ¢
@XWRITE ("100-30", sam2basic, "100-20");

)
ENDFIX

The following example shows how to call another function within the @XWRITE function call.

FIX (East, Actual, Budget, Sales)

"100" (

@XWRITE (@PARENT ("100-30"), @loopback, "100-20");
)

ENDFIX

See Also

@XREF

Understand XREF/XWRITE

Custom-Defined Calculation Functions

ORACLE

Custom-defined functions (CDFs) are a category of functions that you develop for calculation
operations that are not enabled by the built-in Essbase calculator framework functions. You
write custom-defined functions in Java and register them on the Essbase Server.

To get you started in creating custom-defined functions for the Essbase calculator, a set of
example statistical functions is provided with this release. These examples are compiled and
included in the essbase. jar file, located in the SESSBASEPATH/java/ directory.

For the location of $ESSBASEPATH, see Environment Variables in the Essbase Platform.

For information about creating custom-defined functions, refer to the MaxL Create Function
statement, and to Developing Custom-Defined Calculation Functions.

e Java Code Examples

2-271

Chapter 2
Custom-Defined Calculation Functions

* MaxL Registration Scripts

Java Code Examples

The Java code for examples of custom-defined functions is provided in the file statisti.jav,
copied below. For more information about the classes, methods, and constants in the
statisti.jav file, see the Oracle Essbhase Statistics Java Package.

The code contained in the statisti.jav file is implemented in the $ESSBASE PRODUCT HOME/
products/Essbase/EssbaseServer/java/essbase. jar file. The examples in the statisti.jav
file use constants which are defined in the essbase.jar file. To use the constants defined in
these examples, you must import the Calculator class constants defined in the essbase. jar
file.

e register.mxl Sample Code
e drop.mxl Sample Code

e reglobal.mxl Sample Code

Statisti.jav

package com.hyperion.essbase.calculator;

/**

* This class provides a set of simple statistical routines. Some of them
* are present native in Essbase as well and some are not.

* Contains:

*

* min, max

* sum, weighted sum</1i>

* product, weighted product

* average, weighted average

* geometric mean, weighted geometric mean</1li>

* harmonic mean, weighted harmonic mean

* variance (var and varp), weighted variance</1li>

* standard deviation (stdev and stdevp), weighted standard deviation</1li>
* covariance, weighted covariance

* correlation, weighted correlation</1i>

* skewness, weighted skewness</1i>

* kurtosis, weighted kurtosis</1i>

* rank, mode, median, percentile, quartile

*

*/

public final class Statistics implements CalculatorConstants ({

/**
* Computes minimum value of given sequence. Missing values are ignored
* @param data data array
* @return minimum value in the array
*/
public static double min (double [] data) {
int 1, n = data.length;

if (n == 0)
return MISSG;

ORACLE 2-272

Chapter 2
Custom-Defined Calculation Functions

double min = data [0];
boolean flag = (min == MISSG);

for (i=1; i<n; 1i++) {
double d = data [i];
if (d != MISSG) {
if (flag) {
min = d;
flag = false;
}
else if (d < min) {
min = d;

return min;

/**
* Computes maximum value of given sequence. Missing values are ignored.
* @param data data array
* @return maximum value in the array
*/
public static double max (double [] data) {
int i, n = data.length;

if (n == 0)
return MISSG;

double max = data [0];
boolean flag = (max == MISSG);

for (i=1; i<n; i++) {
double d = data [i];
{

if (d != MISSG)
if (flag) {
max = d

flag = false;

}

else 1f (d > max) {
max = d;

}

return max;

/**

* Computes sum of a given sequence. Missing values are ignored (treated as 0)
* @param data data array
* @return sum of the data
*/
public static double sum (double [] data) {
int i, n = data.length;

ORACLE 2-273

Chapter 2
Custom-Defined Calculation Functions

double sum = MISSG;
for (i=0; i<n; i++) {
double d = data [i];
if (d != MISSG) {
sum = Calculator.add (sum, d);

}

return sum;

* Computes weighted sum of a given sequence.
* Missing values are ignored (treated as 0)
* @param data data array
* (@param weights weights
* @return weighted sum of the data
*/
public static double sum (double [] data, double [] weights) {
int i, n = data.length;

double sum = MISSG;

for (i=0; i<n; i++) {
double d = data [i], w = weights [i];
if (d != MISSG && w != MISSG) {
sum = Calculator.add (sum, d * w);

}

return sum;

/**

* Computes product of a given sequence. Missing values are ignored (treated
as 0)

* @param data data array

* @return product of the data

*/
public static double product (double [] data) {

int i, n = data.length;

if (n == 0)
return MISSG;

double product = 1.;
boolean flag = false;
for (i=0; i<n; i++) {
double d = data [i];
if (d !'= MISSG) {
flag = true;
product = product * d;

if (!flag)
return MISSG;

ORACLE 2.274

Chapter 2
Custom-Defined Calculation Functions

return product;

* Computes weighted product of a given sequence.
* Missing values are ignored (treated as 0)
* @param data data array
* (@param weights weights
* @return weighted product of the data
*/
public static double product (double [] data, double [] weights) {
int i, n = data.length;

if (n == 0)
return MISSG;

double product = 1.;
boolean flag = false;

for (i=0; i<n; i++) {
double d = data [i], w = weights [i];
if (d != MISSG && w != MISSG) {
d = Calculator.pow (d, w);
if (d !'= MISSG) {
flag = true;
product = product * d;

}
if (!flag)
return MISSG;

return product;

/**
* Computes count of non-missing values in a given sequence.
* @param data data array
* @return count of the non-missing data
*/
public static int count (double [] data) {
int i, n = data.length;

int count = 0;
for (i=0; i<n; i++) {
double d = data [i];
{

if (d != MISSG)
count ++;

}

return count;

/**

ORACLE 2-275

ORACLE

Chapter 2
Custom-Defined Calculation Functions

* Computes count of a given sequence (with prescribed skip directive).
* (@param skip skip instruction; possible values are
*
* <1i>SKIPNONE - nothing skipped </1i>
* <1i>SKIPZERO - zeros skipped
* <1i>SKIPMISSG - missing values skipped</1li>
* <1i>SKIPBOTH - skip both zeros and missing values
* (defined in CalculatorConstants interface)
* @param data data array
* @return count of the data
*/
public static int count (int skip, double [] data) {
int i, n = data.length;
if (skip == SKIPNONE)
return n;

if (skip == SKIPMISSG)
return count (data);
boolean bZero = false, bMissg = false;

bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
bMissg = (skip == SKIPBOTH);

int count = 0;

for (i=0; i<n; i++) {
double d = data [i];

if ((bMissg && d == MISSG) || (bZero && d == 0.))
continue;
count ++;

}

return count;

/**
* Computes the average value of a given sequence. Missing values are ignored.
* @param data data array
* @return average of the data
*/
public static double avg (double [] data) {
int i, n = data.length;

double sum = MISSG;
int count = 0;

for (i=0; i<n; i++) {
double d = data [i];
if (d != MISSG) {
sum = Calculator.add (sum, d);
count ++;

if (count == 0)
return MISSG;

2-276

Chapter 2
Custom-Defined Calculation Functions

return sum / count;

/**

* Computes the average value of a given sequence (with prescribed skip
directive).

* (@param skip skip instruction; possible values are

*

* <1i>SKIPNONE - nothing skipped </1i>

* <1i>SKIPZERO - zeros skipped

* <1i>SKIPMISSG - missing values skipped</1li>

* <1i>SKIPBOTH - skip both zeros and missing values

* (defined in CalculatorConstants interface)

* @param data data array

* @return average of the data

*/

public static double avg (int skip, double [] data) {

int i, n = data.length;
boolean bZero = false, bMissg = false;

if (skip == SKIPMISSG)
return avg (data);

bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
bMissg = (skip == SKIPBOTH);

double sum = MISSG;
int count = 0;

for (i=0; i<n; i++) {
double d = data [i];

if ((bMissg && d == MISSG) || (bZero && d == 0.))
continue;
sum = Calculator.add (sum, d);
count ++;
}
if (count == 0)

return MISSG;

return sum / count;

* Computes weighted average of a given sequence. Missing values are ignored
* @param data data array
* (@param weights weights
* @return weighted average of the data
*/
public static double avg (double [] data, double [] weights) {
int i, n = data.length;

double sum = MISSG;
double weight = MISSG;

for (i=0; i<n; i++) {

ORACLE 2-277

Chapter 2
Custom-Defined Calculation Functions

double d = data [i], w = weights [i];

if (d != MISSG && w != MISSG) {
sum = Calculator.add (sum, d * w);
weight = Calculator.add (weight, w);

if (sum == MISSG || weight == MISSG || weight == 0.)
return MISSG;

return sum / weight;

* Computes weighted average value of a given sequence

* (with prescribed skip directive).

* (@param skip skip instruction; possible values are

*

* <1i>SKIPNONE - nothing skipped </1i>

* <1i>SKIPZERO - zeros skipped

* <1i>SKIPMISSG - missing values skipped</1li>

* <1i>SKIPBOTH - skip both zeros and missing values

* (defined in CalculatorConstants interface)

* @param data data array

* (@param weights weights

* @return weighted average of the data

*/

public static double avg (int skip, double [] data, double [] weights) {

int i, n = data.length;
boolean bZero = false, bMissg = false;

if (skip == SKIPMISSG)
return avg (data, weights);

bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
bMissg = (skip == SKIPBOTH);

double sum = MISSG;
double weight = MISSG;

for (i=0; i<n; i++) {
double d = data [i], w = weights [i];
if ((bMissg && d == MISSG) || (bZero && d == 0.))
continue;

if (w != MISSG)

sum = Calculator.add (sum, d * w);
weight = Calculator.add (weight, w);

if (sum == MISSG || weight == MISSG || weight == 0.)
return MISSG;

return sum / weight;

ORACLE 2-278

ORACLE

/**

Chapter 2
Custom-Defined Calculation Functions

* Computes the geometric average value of a given sequence.

* Missing values are ignored.
* @param data data array
* @return average of the data
*/
public static double geomean (double []
int i, n = data.length;

data) {

if (n == 0)
return MISSG;

double product = 1.;
int count = 0;
for (i=0; i<n; i++) {
double d = data [i];
if (d !'= MISSG) {
product = product * d;
count ++;

if (count == 0)
return MISSG;
return Math.pow (product, 1. /

(double) count);

* Computes weighted geometric average of a given sequence.

* Missing values are ignored

* @param data data array

* (@param weights weights

* @return weighted average of the data

*/

public static double geomean (double [] data, double
int i, n = data.length;
double product = 1.;
double weight = MISSG;
for (1=0; i<n; i++) {
double d = data [i], w = weights [i];
if (d != MISSG && w != MISSG) {
product = product * Math.pow (d, w);
weight = Calculator.add (weight, w);
}
}
if (weight == MISSG || weight == 0.)

return MISSG;

return Math.pow (product, 1. / weight);

[] weights) {

2-279

Chapter 2
Custom-Defined Calculation Functions

/**
* Computes harmonic mean of a given sequence.
* Missing values are ignored.
* @param data data array
* @return harmonic mean of the data
*/
public static double harmean (double [] data) {
int i, n = data.length;

if (n == 0)
return MISSG;

double sum = MISSG;
int count = 0;

for (i=0; i<n; i++) {
double d = data [i];
if (d != MISSG) {
if (d == 0.)
return MISSG;
sum = sum + 1. / d;
count ++;

if (count == || sum == 0.)
return MISSG;

return count / sum;

/**
* Computes weighted harmonic mean of a given sequence.
* Missing values are ignored
* @param data data array
* (@param weights weights
* @return weighted harmonic mean of the data
*/
public static double harmean (double [] data, double [] weights) {
int i, n = data.length;

double sum = MISSG;
double weight = MISSG;

for (i=0; i<n; i++) {
double d = data [i], w = weights [i];
if (d != MISSG && w != MISSG) {
if (d == 0.)
return MISSG;
sum = Calculator.add (sum, w / d);
weight = Calculator.add (weight, w);

if (sum == MISSG || sum == 0. || weight == MISSG)
return MISSG;

ORACLE 2.980

ORACLE

return weight / sum;

/**

Chapter 2
Custom-Defined Calculation Functions

* Computes variance of a given sequence. Missing values are ignored

* @param data data array
* @return variance of the data
*/
public static double var (double [] data) {
int i, n = data.length;

double d, sum = MISSG, avg = MISSG;
int count = 0;

for (i=0; i<n; i++) {
d = data [i];
if (d != MISSG) {
sum = Calculator.add (sum, d);
count ++;

if (count < 2)
return MISSG;

avg = sum / count;

sum = 0.;
for (i=0; i<n; i++) {
d = data [i];
if (d != MISSG) {
d =d - avg;
d=d*d;

sum = sum + d;

return (sum / (count - 1));

/**

* Computes standard deviation of a given sequence. Missing values are ignored

* @param data data array
* @return stdev of the data
*/
public static double stdev (double [] data) {
return Calculator.sqrt (var (data));

* Computes variance of a given sequence

*

* <1i>SKIPNONE - nothing skipped </1i>

* <1i>SKIPZERO - zeros skipped

* <1i>SKIPMISSG - missing values skipped</1li>

(with prescribed skip directive).
* (@param skip skip instruction; possible values are

2-281

ORACLE

*

*

*

*

Chapter 2
Custom-Defined Calculation Functions

<1i>SKIPBOTH - skip both zeros and missing values</1i>

@param data data array
@return variance of the data

*/

public static double var

(int skip, double
int i, n = data.length;
boolean bZero = false, bMissg = false;

if (skip == SKIPMISSG)
return var (data);

bZero = (skip == SKIPZERO) ||
bMissg = (skip == SKIPBOTH);

(skip ==

double d, sum =
int count = 0;

MISSG, avg = MISSG;

for (i=0; i<n; i++) {
d = data [1i];
if ((bMissg && d == MISSG) ||
continue;
sum = Calculator.add
count ++;

(sum, d);

if (count < 2)
return MISSG;

avg = sum / count;

sum = 0.;

for (i=0; i<n; i++) {
d = data [i];

if ((bMissg && d == MISSG) ||
continue;

if (d MISSG)
d = - avg;

d =d - avg;
d * d;
sum + d;

return (sum / (count - 1));

(defined in CalculatorConstants interface)

[] data) {

SKIPBOTH) ;

(bZero && d == 0.))

(bZero && d == 0.))

Computes standard deviation of a given sequence

(with prescribed skip directive).

@param skip skip instruction; possible values are

<1i>SKIPNONE - nothing skipped </1i>
<1i>SKIPZERO - zeros skipped</1i>

<1i>SKIPMISSG - missing values skipped
<1i>SKIPBOTH - skip both zeros and missing values</1i>

(defined in CalculatorConstants interface)

2-282

ORACLE

Chapter 2
Custom-Defined Calculation Functions

* @param data data array
* @return standard deviation of the data
*/
public static double stdev (int skip, double [] data) {
return Calculator.sqrt (var (skip, data)):;

* Computes weighted variance of a given sequence. Missing values are ignored
* @param data data array
* (@param weights weights
* @return weighted variance of the data
*/
public static double var (double [] data, double [] weights) {
int i, n = data.length;

double d, sum = MISSG, avg = MISSG;
double w, weight = MISSG;

for (i=0; i<n; i++) {
d = data [i];
w = weights [i];
if (d != MISSG && w != MISSG) {
sum = Calculator.add (sum, d * w);
weight = Calculator.add (weight, w);
}
}
if (sum == MISSG || weight == MISSG || weight == 0. || weight == 1.)

return MISSG;

avg = sum / weight;

sum = 0.;
for (i=0; i<n; i++) {
d = data [1i];
w = weights [i];
if (d == MISSG || w == MISSG)
continue;
d =d - avg;
d=d*d* w;

sum = sum + d;

}

return (sum / (weight - 1.));

* Computes weighted standard deviation of a given sequence.
* Missing values are ignored
* @param data data array
* (@param weights weights
* @return weighted standard deviation of the data
* (without taking missing values into account)
*/
public static double stdev (double [] data, double [] weights) {
return Calculator.sqrt (var (data, weights));

2-283

Chapter 2
Custom-Defined Calculation Functions

* Computes weighted variance of a given sequence

* (with prescribed skip directive).

* @param skip skip instruction; possible values are

*

* <1i>SKIPNONE - nothing skipped </1i>

* <1i>SKIPZERO - zeros skipped

* <1i>SKIPMISSG - missing values skipped</1li>

* <1i>SKIPBOTH - skip both zeros and missing values

* (defined in CalculatorConstants interface)

* @param data data array

* (@param weights weights

* @return weighted variance of the data

*/

public static double var (int skip, double [] data, double [] weights) {

int i, n = data.length;
boolean bZero = false, bMissg = false;

if (skip == SKIPMISSG)
return var (data, weights);

bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
bMissg = (skip == SKIPBOTH);

double sum = MISSG, avg = MISSG;
double weight = MISSG;

for (i=0; i<n; i++) {
double d = data [i], w = weights [i];
if ((bMissg && d == MISSG) || (bZero && d == 0.))
continue;

if (d != MISSG && w != MISSG)
sum = Calculator.add (sum, d * w);
weight = Calculator.add (weight, w);

if (sum == MISSG || weight == MISSG || weight == 0. || weight == 1.)
return MISSG;

avg = sum / weight;
sum = 0.;
for (i=0; i<n; i++) {
double d = data [i], w = weights [i];
if ((bMissg && d == MISSG) || (bZero && d == 0.))
continue;

if (w != MISSG) {
if (d == MISSG)

d = -avg;
else

d =d - avg;
d=d*d*w;

sum = sum + d;

ORACLE 5 o84

ORACLE

Chapter 2
Custom-Defined Calculation Functions

}
return Math.sgrt (sum / (weight - 1));

* Computes weighted standard deviation of a given sequence
* (with prescribed skip directive).
* @param skip skip instruction; possible values are
*
* <1i>SKIPNONE - nothing skipped </1i>
* <1i>SKIPZERO - zeros skipped
* <1i>SKIPMISSG - missing values skipped</1li>
* <1i>SKIPBOTH - skip both zeros and missing values
* (defined in CalculatorConstants interface)
* @param data data array
* (@param weights weights
* @return weighted standard deviation of the data
*/
public static double stdev (int skip, double [] data, double [] weights) {
return Calculator.sqrt (var (skip, data, weights));

/**
* Computes variancep of a given sequence. Missing values are ignored
* @param data data array
* @return variancep of the data
*/
public static double varp (double [] data) {
int i, n = data.length;

double sum = MISSG, avg = MISSG;
int count = 0;

for (i=0; i<n; i++) {
double d = data [i];
if (d != MISSG) {
sum = Calculator.add (sum, d);
count ++;

if (count == 0)
return MISSG;

avg = sum / count;

sum = 0.;

for (i=0; i<n; i++) {
double d = data [i];
if (d != MISSG) {

d =d - avg;
d=d* d;
sum = sum + d;

}

return (sum / count);

2-285

Chapter 2
Custom-Defined Calculation Functions

/**
* Computes stdevp of a given sequence. Missing values are ignored
* @param data data array
* @return stdevp of the data
*/
public static double stdevp (double [] data) {
return Calculator.sqrt (varp (data));

* Computes variancep of a given sequence

* (with prescribed skip directive).

* (@param skip skip instruction; possible values are

*

* <1i>SKIPNONE - nothing skipped </1i>

* <1i>SKIPZERO - zeros skipped

* <1i>SKIPMISSG - missing values skipped</1li>

* <1i>SKIPBOTH - skip both zeros and missing values

* (defined in CalculatorConstants interface)

* @param data data array

* @return variancep of the data

*/

public static double varp (int skip, double [] data) {

int i, n = data.length;
boolean bZero = false, bMissg = false;

if (skip == SKIPMISSG)
return varp (data);

bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
bMissg = (skip == SKIPBOTH);

double sum = MISSG, avg = MISSG;
int count = 0;

for (i=0; i<n; i++) {
double d = data [i];

if ((bMissg && d == MISSG) || (bZero && d == 0.))
continue;
sum = Calculator.add (sum, d);
count ++;
}
if (count == 0)

return MISSG;

avg = sum / count;

sum = 0.;

for (i=0; i<n; i++) {
double d = data [i];

if ((bMissg && d == MISSG) || (bZero && d == 0.))
continue;

if (d == MISSG)
d = - avg;

else

ORACLE 5586

ORACLE

Chapter 2
Custom-Defined Calculation Functions

=d - avg;
d = * d;
sum = sum + d;

[oFgy e

}

return (sum / count);

* Computes stdevp of a given sequence

* (with prescribed skip directive).

* @param skip skip instruction; possible values are

*

* <1i>SKIPNONE - nothing skipped </1i>

* <1i>SKIPZERO - zeros skipped

* <1i>SKIPMISSG - missing values skipped</1li>

* <1i>SKIPBOTH - skip both zeros and missing values

* (defined in CalculatorConstants interface)

* @param data data array

* @return stdevp of the data

*/

public static double stdevp (int skip, double [] data) {

return Calculator.sqrt (varp (skip, data));

/**
* Computes weighted varp of a given sequence. Missing values are ignored
* @param data data array
* (@param weights weights
* @return weighted varp of the data
*/
public static double varp (double [] data, double [] weights) {
int i, n = data.length;

double sum = MISSG, avg = MISSG;
double weight = MISSG;

for (i=0; i<n; i++) {
double d = data [i], w = weights [i];
if (d != MISSG && w != MISSG) {
sum = Calculator.add (sum, d * w);
weight = Calculator.add (weight, w);

if (sum == MISSG || weight == MISSG || weight == 0.)
return MISSG;

avg = sum / weight;
sum = 0.;
for (i=0; i<n; i++) {
double d = data [i], w = weights [i];
if (d == MISSG || w == MISSG)
continue;
d =d - avg;
d=d*d* w;
sum = sum + d;

2-287

ORACLE

Chapter 2
Custom-Defined Calculation Functions

return (sum / weight);

* Computes weighted standard deviation of a given sequence.

* Missing values are ignored

* @param data data array

* (@param weights weights

* @return weighted standard deviation of the data

*/

public static double stdevp (double [] data, double [] weights) {

return Calculator.sqrt (varp (data, weights));

* Computes weighted varp of a given sequence

* (with prescribed skip directive).

* (@param skip skip instruction; possible values are

*

* <1i>SKIPNONE - nothing skipped </1i>

* <1i>SKIPZERO - zeros skipped

* <1i>SKIPMISSG - missing values skipped</1li>

* <1i>SKIPBOTH - skip both zeros and missing values

* (defined in CalculatorConstants interface)

* @param data data array

* (@param weights weights

* @return weighted varp of the data

*/

public static double varp (int skip, double [] data, double [] weights) {

int i, n = data.length;
boolean bZero = false, bMissg = false;

if (skip == SKIPMISSG)
return varp (data, weights);

bZero = (skip == SKIPZERO) || (skip == SKIPBOTH);
bMissg = (skip == SKIPBOTH);

double sum = MISSG, avg = MISSG;
double weight = MISSG;

for (i=0; i<n; i++) {
double d = data [i], w = weights [i];
if ((bMissg && d == MISSG) || (bZero && d == 0.))
continue;

if (d != MISSG && w != MISSG)

sum = Calculator.add (sum, d * w);
weight = Calculator.add (weight, w);

if (sum == MISSG || weight == MISSG || weight == 0.)
return MISSG;

2-288

ORACLE

*/

public static double stdevp (int skip, double [] data, double
return Calculator.sqrt (varp (skip, data, weights));

*/

Chapter 2

Custom-Defined Calculation Functions

avg = sum / weight;
sum = 0.;
for (i=0; i<n; i++) {
double d = data [i], w = weights [i];
if ((bMissg && d == MISSG) || (bZero && d == 0.))
continue;

if (w != MISSG) {
if (d == MISSG)

d = -avg;
else

d =d - avg;
d=d*d*w;

sum = sum + d;

return (sum / weight);

Computes weighted stdevp value of a given sequence
(with prescribed skip directive).

@param skip skip instruction; possible values are

<1i>SKIPNONE - nothing skipped </1i>

<1i>SKIPZERO - zeros skipped</1i>

<1i>SKIPMISSG - missing values skipped
<1i>SKIPBOTH - skip both zeros and missing values</1i>
 (defined in CalculatorConstants interface)
@param data data array

@param weights weights

@return weighted stdevp of the data

Computes covariance between two sequences.

[] weights)

If a missing value is encountered in either of the sequences,

the corresponding position is skipped in both of them.
@param x first array

@param y second array

@return covariance

public static double covariance (double [] x, double [] y)

int i, n = x.length;

if (n == 0)
return MISSG;

double dl, d2, avgl = MISSG, avg2 = MISSG;
int count = 0;

for (i=0; i<n; i++) {

{

2-289

Chapter 2
Custom-Defined Calculation Functions

dl = x [i];

dz =y [1i];

if (dl !'= MISSG && d2 != MISSG) {
avgl = Calculator.add (avgl, dl);
avg2 = Calculator.add (avgz, d2);
count ++;

if (count < 1)
return MISSG;

avgl = avgl / count;
avg2 = avg2 / count;

double covar = 0.;
for (i=0; i<n; i++) {
dl = x [i];
dz =y [i];
if (dl !'= MISSG && d2 != MISSG) {
dl = dl - avgl;
d2 = d2 - avg2;
covar = covar + dl * d2;

}

return covar / count;

* Computes weighted covariance between two sequences
* If a missing value 1is encountered in either of the sequences,
* the corresponding position is skipped in both of them.
* @param x first array
* @param y second array
* @return correlation
*/
public static double covariance (double [] x, double [] y, double [] weights)

{

int i, n = x.length;

if (n == 0)
return MISSG;

double dl, d2, avgl = MISSG, avg2 = MISSG;
double w, weight = MISSG;

for (i=0; i<n; i++) {

dl = x [i];

dz =y [i];

w = weights [1];

if (dl != MISSG && d2 != MISSG && w != MISSG) {
avgl Calculator.add (avgl, dl * w);
avg2 Calculator.add (avg2, d2 * w);
weight = Calculator.add (weight, w);

ORACLE 2.990

Chapter 2
Custom-Defined Calculation Functions

if (avgl == MISSG || weight == MISSG || weight == 0.)
return MISSG;

avgl = avgl / weight;
avg2 = avg2 / weight;

double covar = 0.;
for (i=0; i<n; i++) {
dl = x [i];
dz =y [i];
w = weights [1];
if (dl != MISSG && d2 != MISSG && w != MISSG) {
dl = dl - avgl;
d2 = d2 - avgz;
covar = covar + w * dl * d2;

}

return covar / weight;

* Computes correlation between two sequences

* If a missing value 1is encountered in either of the sequences,

* the corresponding position is skipped in both of them.

* @param x first array

* @param y second array

* @return correlation

*/

public static double correlation (double [] x, double [] y) {

int i, n = x.length;

if (n == 0)
return MISSG;

double dl, d2, avgl = MISSG, avg2 = MISSG;
int count = 0;

for (i=0; i<n; i++) {
dl = x [i];
dz =y [i];
if (dl !'= MISSG && d2 != MISSG) {
avgl = Calculator.add (avgl, dl);
avg2 = Calculator.add (avgz, d2);
count ++;

if (count < 2)
return MISSG;

avgl = avgl / count;

avg2 = avg2 / count;
double stdevl = 0.;
double stdev2 = 0.;

ORACLE 2,991

Chapter 2
Custom-Defined Calculation Functions

double covar = 0.;
for (i=0; i<n; i++) {
dl = x [1];
dz =y [i];
if (dl !'= MISSG && d2 != MISSG) {
dl = dl - avgl;
d2 = d2 - avgz;
covar = covar + dl * d2;
stdevl = stdevl + dl * dl;
stdev2 = stdev2 + d2 * d2;

stdevl = Math.sqgrt (stdevl / (count - 1));
stdev2 = Math.sqgrt (stdev2 / (count - 1));
covar = covar / count;

return covar / (stdevl * stdev2);

* Computes weighted correlation between two sequences

* If a missing value 1is encountered in either of the sequences,
* the corresponding position is skipped in both of them.

* @param x first array

* @param y second array

* @return correlation

*/
public static double correlation (double [] x, double [] y, double []
weights) {

int i, n = x.length;

if (n == 0)
return MISSG;

double dl, d2, avgl = MISSG, avg2 = MISSG;
double w, weight = MISSG;

for (1=0; i<n; i++) {

dl = x [1i];

dz =y [i];

w = weights [i];

if (dl !'= MISSG && d2 != MISSG && w != MISSG) {
avgl = Calculator.add (avgl, dl * w);
avg2 = Calculator.add (avg2, d2 * w);
weight = Calculator.add (weight, w);

if (avgl == MISSG || weight == MISSG || weight == 0. || weight == 1.)
return MISSG;

avgl = avgl / weight;
avg2 = avg2 / weight;

double stdevl = 0.;

ORACLE 5599

ORACLE

double stdev2 = 0.;
double covar = 0.;
(1=0; i<n; i++) {

for

dl
d2

w =

if

(

x [1];
y [1];
weights [1];

Chapter 2
Custom-Defined Calculation Functions

dl != MISSG && d2 != MISSG && w != MISSG) {

dl = dl - avgl;

d2 = d2 - avgz;

covar = covar + w * dl * d2;
stdevl = stdevl + w * dl * dl;
stdev2 = stdev2 + w * d2 * d2;

stdevl = Math.sqgrt (stdevl / (weight - 1.));
stdev2 = Math.sqrt (stdev2 / (weight - 1.));
covar

covar / weight;

return covar / (stdevl * stdev2);

/**

* Computes skewness of a sequence. Missing values are skipped
* @param data data array
* @return skewness of the sequence

*/

public static double skew (double [] data)
int i, n = data.length;

if

(n == 0)
return MISSG;

double d, avg = MISSG;
int count = 0;

for

if

(1

=0; i<n; i++) |
d = data [i];

if (d != MISSG) {
avg = Calculator.add (avg, d);
count ++;

}

(count < 3)

return MISSG;

avg = avg / count;

double stdev = 0.;
(1=0; i<n; i++) {
d = data [i];
(d !'= MISSG) {

for

if

d =d - avg;
stdev = stdev + d * d;

{

2-293

ORACLE

Chapter 2
Custom-Defined Calculation Functions

stdev = Math.sqrt (stdev / (count - 1));

if (stdev == 0.)
return MISSG;
double skew = 0.;
for (i=0; i<n; i++) {
d = data [i];
if (d != MISSG) {
d =d - avg;
d = d / stdev;
skew = skew + d * d * d;

return skew * count / ((count - 1) * (count - 2));

* Computes weighted skewness of a sequence. Missing values are ignored
* @param data data array
* @return skewness of the sequence

public static double skew (double [] data, double [] weights) {

int i, n = data.length;

if (n == 0)
return MISSG;

double d, avg = MISSG;
double w, weight = MISSG;

i=0; i<n; i++) {

data [i];

= weights [1];

if (d != MISSG && w != MISSG) {

avg = Calculator.add (avg, w * d);
weight = Calculator.add (weight, w);

for

(
d
W

if (avg == MISSG || weight == MISSG || weight == 0. || weight == 1. ||

weight == 2.)

return MISSG;
avg = avg / weight;

double stdev = 0.;
for (i=0; i<n; i++) {
d = data [i];
w = weights [1];
if (d != MISSG && w != MISSG) {
d =d - avg;
stdev = stdev + w * d * d;

2-294

ORACLE

Chapter 2

Custom-Defined Calculation Functions

stdev = Math.sqrt (stdev / (weight - 1));

if (stdev == 0.)
return MISSG;
double skew = 0.;
for (i=0; i<n; i++) {
d = data [i];
w = weights [1];
if (d != MISSG && w != MISSG) {
d =d - avg;
d = d / stdev;
skew = skew + w * d * d * d;

return skew * weight / ((weight - 1.) * (weight - 2.));

* Computes kurtosis of a sequence. Missing values are skipped
* @param data data array
* @return kurtosis of the sequence

public static double kurt (double [] data) {

int i, n = data.length;

if (n == 0)
return MISSG;

double d, avg = MISSG;
int count = 0;

for (i=0; i<n; i++) {
d = data [i];
if (d !'= MISSG) {
avg = Calculator.add (avg, d);
count ++;

if (count < 4)
return MISSG;

avg = avg / count;

double stdev = 0.;
for (i=0; i<n; i++) {
d = data [1i];
if (d != MISSG) {
d =d - avg;
stdev = stdev + d * d;

2-295

Chapter 2

Custom-Defined Calculation Functions

stdev = Math.sqrt (stdev / (count - 1));

if (stdev == 0.)
return MISSG;

double kurt = 0.;
for (i=0; i<n; i++) {
d = data [1i];
if (d != MISSG) {
d =d - avg;
d = d / stdev;
kurt = kurt + d * d * d * d;

kurt = kurt * count * (count + 1) / (count - 1) - 3 * (count - 1) *
(count - 1);
return kurt / ((count - 2) * (count - 3));

/**
* Computes weighted kurtosis of a sequence. Missing values are ignored
* (@param x data array
* @return kurtosis of the sequence
*/
public static double kurt (double [] data, double [] weights) {
int i, n = data.length;

if (n == 0)
return MISSG;

double d, avg = MISSG;
double w, weight = MISSG;

for (1=0; i<n; i++) {
d = data [i];
w = weights [i];
if (d != MISSG && w != MISSG) {
avg = Calculator.add (avg, w * d);
weight = Calculator.add (weight, w);
}
}
if (avg == MISSG || weight == MISSG || weight == 0. ||

weight == 1. || weight == 2. || weight == 3.)
return MISSG;

avg = avg / weight;

double stdev = 0.;
for (i=0; i<n; i++) {
ol data [i];
w = weights [i];
if (d != MISSG && w != MISSG) {
d =d - avg;
stdev = stdev + w * d * d;

ORACLE

2-296

Chapter 2
Custom-Defined Calculation Functions

stdev = Math.sqrt (stdev / (weight - 1));

if (stdev == 0.)
return MISSG;

double kurt = 0.;
for (i=0; i<n; i++) {
d = data [i];
w = weights [i];
if (d != MISSG && w != MISSG) {
d =d - avg;
d = d / stdev;
kurt = kurt + w * d *d * d * d;

kurt = kurt * weight * (weight + 1.) / (weight - 1.) -
3 * (weight - 1.) * (weight - 1.);
return kurt / ((weight - 2.) * (weight - 3.));

* Computes rank of a value relative to a given sequence.
* Missing elements in the sequence are ignored. Rank is 1l-based.
* Missing value is not ranked.
* (@param value value to be ranked
* (@param data array of data
* @return rank in the sequence as a double
*/
public static double rank (double value, double [] data) {
int 1 = 0, n = data.length;
double d;
int rank;

if (value == MISSG)
return MISSG;

double [] ddd = new double [n];

int j = 0;
for (i=0; i<n; i++) {
d = data [i];
if (d != MISSG) {
ddd [j] = d;
Jj o+t

}

n=7jj;

if (n == 0)
return MISSG;

if (n == 1) {
if (ddd [

0] > value)

ORACLE 2-297

ORACLE

/**

Chapter 2

Custom-Defined Calculation Functions

return 2.;
else
return 1.;

Calculator.sort (ddd, 0, n-1);

rank = 1;
while (ddd [n - rank] > value) {
rank++;
if (rank > n)
break;
}

return (double) rank;

* Computes mode of a sequence. Missing values are ignored
* @param data array of data
* @return mode of the sequence

*/

public static double mode (double [] data) {

int i, j, n = data.length, maxFreq, freq;
double d, mode;
double [] ddd = new double [n];

j = 0;
for (i=0; i<n; i++) {
(

if (data [i] != MISSG) {
ddd [j] = data [1];
Jj o+t
}
}
n=7jj;
if (n == 0)

return MISSG;

if (n == 1)
return ddd [0];

Calculator.sort (ddd, 0, n-1);

mode = ddd [0];
maxFreq = 1;
while (i < n-1) {
freq = 1;
d = ddd [i];
it++;
while (ddd [1i] == d) {
freg++;
i++;
if (i >=n)
break;
}
if (freq > maxFreq) {
maxFreqg = freq;

2-298

Chapter 2
Custom-Defined Calculation Functions

mode = d;

}

return mode;

/**
* Computes median of a sequence. Missing values are ignored
* @param data data array
* @result median of the sequence
*/
public static double median (double [] data) {
int i, j, n = data.length;
int midIndex;
double median;
double [] ddd = new double [n];

j = 0;
for (i=0; i<n; i++) {
(

if (data [i] != MISSG) {
ddd [j] = data [1];
Jj o+t
}
}
n=7jj;
if (n == 0)

return MISSG;

Calculator.sort (ddd, 0, n - 1);

midIndex = n / 2;

if (n % 2 == 0) {

/* Average of the two middle numbers */

median = (ddd [midIndex] + ddd [midIndex - 1]) / 2;
}
else {

median = ddd [midIndex];
}

return median;

* Computes percentile of a sequence. Missing values are ignored
* (@param percent percent value
* (@param data double array
* @result percentile of the sequence
*/
public static double percentile (double percent, double [] data) {
int i, j, n = data.length;
int midIndex;
double median, temp;
double [] ddd = new double [n];

4
i=0; i<n; i++) {

ORACLE 2.999

ORACLE

*/

public static double percentile

if (data [i] != MISSG) {
ddd [j] = data [1];
Jj o+t
}
}
n=7j;
if (n == 0)

return MISSG;

Calculator.sort (ddd, 0, n-1);

if (percent == 0.)
return ddd [0];
if (percent == 1.)

return ddd [n-1];

temp = percent * (double) n;
median = Math.floor (temp);

midIndex = (int) median;
if (median != temp) {
temp -= median;
median = ddd [midIndex-1];
median += (ddd [midIndex] - median) * temp;
}
else {

median = ddd [midIndex];
}

return median;

Chapter 2
Custom-Defined Calculation Functions

Computes percentile of a part of a sequence. Missing values are ignored

@param percent percent value

@param size size to use

@param data data array

@result percentile of the subsequence

int i, j, n =
if (n > size)

n = size;
int midIndex;
double median, temp;
double [] ddd = new double [n];

data.length;

i = 0;
for (i=0; i<n; i++) {
if (data [i] != MISSG) {
ddd [j] = data [1];
J++;

(double percent, int size, double [] data) {

2-300

ORACLE

*/

public static double quartile

n=7jj;

if (n == 0)

return MISSG;

Calculator.sort (ddd, 0, n-1);
if (percent == 0.)
return ddd [0];
if (percent == 1.)
return ddd [n-1];
temp = percent * (double) n;
median = Math.floor (temp);
midIndex = (int) median;
if (median != temp) {
temp -= median;
median = ddd [midIndex-1];
median += (ddd [midIndex] - median) * temp;
}
else {
median = ddd [midIndex];

}

return median;

Chapter 2
Custom-Defined Calculation Functions

Computes quartile of a sequence. Missing values are ignored

@param quart indicates which value to return
Possible values are:

<1i>0 - return minimum</1i>

<1i>1 - return 25% percentile
<1i>2 - return median</1i>

<1i>3 - return 75% percentile
<1i>4 - return maximum</1li>

@param data double array
@result quartile of the sequence

(int quart, double []
switch
case 0:
return
case 1:
return
case 2:
return
case 3:
return
case 4:
return
default:
return

(quart) {

min (data);

percentile (0.25, data);

median (data);

percentile (0.75, data);

max (data);

MISSG;

data) {

2-301

Chapter 2
Custom-Defined Calculation Functions

MaxL Registration Scripts

The following sample scripts written in MaxL show you how to register and drop the example
custom-defined functions packaged in essbase. jar.

* register.mx1—To register the functions locally in an application (see register.mxl Sample
Code).

* drop.mx1—To drop the functions (if they were registered locally) (see drop.mxlI Sample
Code).

* reglobal.mx1—To register the functions globally (see reglobal.mxl Sample Code).

register.mxl Sample Code

ORACLE

/* <maxl version="11.1.1" encoding="UTF-8"/> */

/**

* This script registers methods of the class Statistics as custom-defined
functions

* for a specified application

* Usage: Log in to MaxL Shell, then call: msh register.mxl appname

*/

/] **
* Register function average
*/

CREATE MACRO $1.'@JAVG' (GROUP)

AS '@ JAVG(QeES)'

SPEC '@JAVG (expList)'

COMMENT 'Computes the average of non-missing values in a data set (expList)';

CREATE FUNCTION $1.'@_JAVG'
AS 'com.hyperion.essbase.calculator.Statistics.avg(double [])';

/**

* Register function weighted average

*/
CREATE FUNCTION $1.'@JAVGW'
AS 'com.hyperion.essbase.calculator.Statistics.avg(double [],double [])'
SPEC '@JAVGW (QLIST (expList), QLIST (weightExpList))'
COMMENT 'Computes the weighted average of non-missing values in a data set
(expList)';

/**

* Register functions average and weighted average with a skip instruction.

2-302

Chapter 2
Custom-Defined Calculation Functions

* These functions will be used through macros, so no spec/comment specified.
* Since these functions will not be used directly, the names start with '@ '.

*/
CREATE FUNCTION $1.'@ JAVGS'
AS 'com.hyperion.essbase.calculator.Statistics.avg(int,double [])"';

CREATE FUNCTION $l.'@_JAVGWS'
AS 'com.hyperion.essbase.calculator.Statistics.avg(int,double [],double [])';

/**
* Register macro for average with a skip instruction
*/

CREATE MACRO $1.'@JAVGS' (SINGLE,GROUP)

AS

'"@@IFSTRCMP (@@1, SKIPNONE)
@ JAVGS (0, @@2)
@@ELSE
@@IFSTRCMP (@@1, SKIPMISSING)
@ JAVGS (1, @@2)
@@ELSE
@R@IFSTRCMP (QQ@1, SKIPZERO)
@ JAVGS (2, @@2)
@@ELSE
@Q@IFSTRCMP (@@1, SKIPBOTH)
@ JAVGS (3, @@2)
@@ELSE
@EERROR (@Q@L1, @ INVALIDSKIP)
@EENDIF
@ECENDIF
@EENDIF
@@ENDIFE'
SPEC '@JAVGS (SKIPNONE | SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the average value of a data set (expList) with skip
instructions';

/**
* Register macro for weighted average with a skip instruction
*/

CREATE MACRO $1.'Q@JAVGWS' (SINGLE, SINGLE, SINGLE)

AS

"@RIFSTRCMP (@@1, SKIPNONE)
@ JAVGWS (0, @e2, @e3)
QRELSE
@QIFSTRCMP (@@L, SKIPMISSING)
@ JAVGWS (1, @@2, @@3)
QQELSE
@RIFSTRCMP (Q@Q@1, SKIPZERO)
@ JAVGWS (2, @@2, @e3)
@RELSE
@QRIFSTRCMP (QQ@1, SKIPBOTH)
@ JAVGS (3, €@2, @@3)
@RELSE
@RERROR (@@L1, @ INVALIDSKIP)
@RENDIF
@@ENDIF

ORACLE 5303

ORACLE

Chapter 2
Custom-Defined Calculation Functions

@Q@ENDIF
@@ENDIF'
SPEC '@JAVGWS (SKIPNONE | SKIPZERO|SKIPMISSING|SKIPBOTH, @LIST (expList),
@LIST (weightExpList))'
COMMENT 'Computes the weighted average value of a data set (expList) with
skip instructions';

/**
* Register function correlation
*/
CREATE FUNCTION $1.'QJCORR'
AS 'com.hyperion.essbase.calculator.Statistics.correlation (double [],double
('
SPEC '@JCORR(QLIST (expListl), @LIST (expList2))'
COMMENT 'Computes the correlation coefficient between two data sets (expListl
and expList2)';

/**

* Register function weighted correlation

*/
CREATE FUNCTION $1.'Q@JCORRW'
AS 'com.hyperion.essbase.calculator.Statistics.correlation(double [],double
[1,double [])'
SPEC '@JCORRW (@LIST (expListl), @LIST (expList2), QLIST (weightExpList))'
COMMENT 'Computes the weighted correlation coefficient between two data sets
(expListl and expList2)';

/**
* Register function count
*/
CREATE MACRO $1.'Q@JCOUNT' (GROUP)
AS '@ JCOUNT (@@es)'
SPEC '@JCOUNT (expList)'
COMMENT 'Computes the count of non-missing elements in a data set (expList)';

CREATE FUNCTION $l.'@_JCOUNT'
AS 'com.hyperion.essbase.calculator.Statistics.count (double [])';

/**
* Register function count with a skip instruction.
* This function will be used through macros, so no spec/comment specified.
* Since this function will not be used directly, the name starts with '@ '.
*/

CREATE FUNCTION $l.'@_JCOUNTS'

AS 'com.hyperion.essbase.calculator.Statistics.count (int,double [])';

/**
* Register macro for count with a skip instruction
*/

CREATE MACRO $1.'Q@JCOUNTS' (SINGLE, GROUP)

AS

"@RIFSTRCMP (€@1, SKIPNONE)

2-304

Chapter 2
Custom-Defined Calculation Functions

@ JCOUNTS (0, @e2)
@@ELSE
@@IFSTRCMP (@@1, SKIPMISSING)
@ JCOUNTS (1, @Q2)
@@ELSE
@R@IFSTRCMP (Q@Q@1, SKIPZERO)
@ JCOUNTS (2, @@2)
@@ELSE
@@IFSTRCMP (@@1, SKIPBOTH)
@ JCOUNTS (3, @€2)
@@ELSE
@EERROR (@Q@L1, @ INVALIDSKIP)
@EENDIF
@ECENDIF
@EENDIF
@@ENDIFE'
SPEC '@JCOUNTS (SKIPNONE | SKIPZERO | SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the number of elements of a data set (expList) with skip
instructions';

/**
* Register function covariance
*/
CREATE FUNCTION $1.'QJCOVAR'
AS 'com.hyperion.essbase.calculator.Statistics.covariance (double [],double
('
SPEC '@JCOVAR (@LIST (expListl), @LIST (expList2))'
COMMENT 'Computes the covariance between two data sets (expListl and

expList2)';

/**

* Register function weighted covariance
*/

CREATE FUNCTION $1.'@JCOVARW'

AS 'com.hyperion.essbase.calculator.Statistics.covariance (double [],double
[1,double [])'

SPEC '@JCOVARW(QLIST (expListl), QLIST (expList2), QLIST(weightExpList))'
COMMENT 'Computes the weighted covariance between two data sets (expListl and

expList2)';

/**

* Register function geometric mean
*/

CREATE MACRO $1.'Q@JGEOMEAN' (GROUP)

AS '@ JGEOMEAN (@@S)'

SPEC '@JGEOMEAN (expList)'

COMMENT 'Computes the geometric mean of a data set (explList)';

CREATE FUNCTION $l.'@_JGEOMEAN'
AS 'com.hyperion.essbase.calculator.Statistics.geomean (double [])';

/**

* Register function weighted geometric mean

ORACLE 5305

ORACLE

Chapter 2
Custom-Defined Calculation Functions

*/
CREATE FUNCTION $1.'@JGEOMEANW'
AS 'com.hyperion.essbase.calculator.Statistics.geomean (double [],double [])'
SPEC '@JGEOMEANW (QLIST (expList), QLIST (weightExpList))'
COMMENT 'Computes the weighted geometric mean of a data set (explList)';

/**
* Register function harmonic mean
*/
CREATE MACRO $1.'Q@JHARMEAN' (GROUP)
AS '@ JHARMEAN (@@S)'
SPEC '@JHARMEAN (expList)'
COMMENT 'Computes the harmonic mean of a data set (expList)';

CREATE FUNCTION $l.'@_JHARMEAN'
AS 'com.hyperion.essbase.calculator.Statistics.harmean (double [])';

/**
* Register function weighted harmonic mean
*/
CREATE FUNCTION $1.'@JHARMEANW'
AS 'com.hyperion.essbase.calculator.Statistics.harmean (double [],double [])'
SPEC '@JHARMEANW (QLIST (expList), QLIST (weightExpList))'
COMMENT 'Computes the weighted harmonic mean of a data set (explList)';

/**
* Register function kurtosis
*/
CREATE MACRO $1.'@JKURT' (GROUP)
AS '@ JKURT (G@S)'
SPEC '@JKURT (expList)'
COMMENT 'Computes the kurtosis of a data set (explist)';

CREATE FUNCTION $l.'@_JKURT'
AS 'com.hyperion.essbase.calculator.Statistics.kurt (double [])';

/**
* Register function weighted kurtosis
*/
CREATE FUNCTION $1.'QJKURTW'
AS 'com.hyperion.essbase.calculator.Statistics.kurt (double [],double [])'
SPEC '@JKURTW (@LIST (expList), @LIST (weightExpList))'
COMMENT 'Computes the weighted kurtosis of a data set (expList)';

/**
* Register function max
* There is only one function with this name, so no need to specify the
signature
*/
CREATE MACRO $1.'@JMAX' (GROUP)
AS '@ JMAX(G@S)'
SPEC '@JMAX (expList)'
COMMENT 'Computes the maximum of a data set (expList)';

2-306

ORACLE

Chapter 2
Custom-Defined Calculation Functions

CREATE FUNCTION $l.'@_JMAX'
AS 'com.hyperion.essbase.calculator.Statistics.max"';

/**
* Register function median
* There is only one function with this name, so no need to specify the
signature
*/
CREATE MACRO $1.'@JMEDIAN' (GROUP)
AS '@ _JMEDIAN (@@S)"
SPEC '@JMEDIAN (expList)'
COMMENT 'Computes the median of a data set (explList)';

CREATE FUNCTION $l.'@_JMEDIAN'
AS 'com.hyperion.essbase.calculator.Statistics.median';

/**
* Register function min
* There is only one function with this name, so no need to specify the
signature
*/
CREATE MACRO $1.'@JMIN' (GROUP)
AS '@ JMIN(Q@S)'
SPEC '@JMIN (expList)'
COMMENT 'Computes the minimum of a data set (expList)';

CREATE FUNCTION $l.'@_JMIN'
AS 'com.hyperion.essbase.calculator.Statistics.min';

/**
* Register function mode
* There is only one function with this name, so no need to specify the
signature
*/
CREATE MACRO $1.'QJMODE' (GROUP)
AS '@ JMODE (@@S) "
SPEC '@JMODE (expList)'
COMMENT 'Computes the mode of a data set (expList)';

CREATE FUNCTION $l.'@_JMODE'
AS 'com.hyperion.essbase.calculator.Statistics.mode';

/**
* Register function percentile
*/
CREATE MACRO $1.'@JPTILE' (SINGLE, GROUP)
AS '@ JPTILE(@RL, QESH1)'
SPEC '@JPTILE (percent,explList)’
COMMENT 'Computes the specified (percent) percentile of a data set (explist)';

CREATE FUNCTION $l.'@_JPTILE'
AS 'com.hyperion.essbase.calculator.Statistics.percentile (double,double [])';

/**

* Register function product

2-307

ORACLE

Chapter 2
Custom-Defined Calculation Functions

*/
CREATE MACRO $1.'Q@JPROD' (GROUP)
AS '@ JPROD(@@S)'
SPEC '@JPROD (expList)'
COMMENT 'Computes the product of non-missing values in a data set (expList)';

CREATE FUNCTION $l.'@_JPROD'
AS 'com.hyperion.essbase.calculator.Statistics.product (double [])';

/**

* Register function weighted product

*/
CREATE FUNCTION $1.'Q@JPRODW'
AS 'com.hyperion.essbase.calculator.Statistics.product (double [],double [])'
SPEC '@JPRODW (@LIST (expList), @LIST (weightExpList))'
COMMENT 'Computes the weighted product of non-missing values in a data set
(expList)';

/**
* Register function quartile
* There is only one function with this name, so no need to specify the
signature
*/
CREATE MACRO $1.'@JQTILE' (SINGLE, GROUP)
AS '@ JQTILE (@@L, QESH1)'
SPEC '@JQTILE (quart,expList)"’
COMMENT 'Computes the specified (quart) quartile of a data set (expList)';

CREATE FUNCTION $l.'@_JQTILE'
AS 'com.hyperion.essbase.calculator.Statistics.quartile';

/**
* Register function rank
* There is only one function with this name, so no need to specify the
signature
*/
CREATE MACRO $1.'@JRANK' (SINGLE, GROUP)
AS '@ JRANK (@@L, @@SHI)'
SPEC '@JRANK (value,expList)'
COMMENT 'Computes the rank of a value in a data set (expList)';

CREATE FUNCTION $l.'@_JRANK'
AS 'com.hyperion.essbase.calculator.Statistics.rank';

/**
* Register function skewness
*/
CREATE MACRO $1.'Q@JSKEW' (GROUP)
AS '@ JSKEW(@@S)'
SPEC '@JSKEW (expList)'
COMMENT 'Computes the skewness of a data set (explist)';

CREATE FUNCTION S$1.'QJSKEW'
AS 'com.hyperion.essbase.calculator.Statistics.skew(double [])';

2-308

Chapter 2
Custom-Defined Calculation Functions

/**
* Register function weighted skewness
*/
CREATE FUNCTION $1.'QJISKEWW'
AS 'com.hyperion.essbase.calculator.Statistics.skew(double [],double [])'
SPEC '@JSKEWW (@LIST (expList), @LIST (weightExpList))'
COMMENT 'Computes the weighted skewness of a data set (expList)';

/**
* Register function stdev
*/
CREATE FUNCTION $1.'@JSTDEV' (GROUP)
AS '@ JSTDEV (@RS) '
SPEC '@JSTDEV (expList)'
COMMENT 'Computes the standard deviation of non-missing values in a data set
(expList)';

CREATE FUNCTION $l.'@_JSTDEV'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(double [])';

/**

* Register function weighted stdev

*/
CREATE FUNCTION $1.'QJSTDEVW'
AS 'com.hyperion.essbase.calculator.Statistics.stdev(double [],double [])'
SPEC '@JSTDEVW (@LIST (expList), @LIST (weightExpList))'
COMMENT 'Computes the weighted standard deviation of non-missing values in a
data set (expList)';

/**
* Register functions stdev and weighted stdev with a skip instruction.
* These functions will be used through macros, so no spec/comment specified.
* Since these functions will not be used directly, the names start with '@ '.
*/

CREATE FUNCTION $l.'@_JSTDEVS'

AS 'com.hyperion.essbase.calculator.Statistics.stdev(int,double [])';

CREATE FUNCTION $l.'@_JSTDEVWS'

AS 'com.hyperion.essbase.calculator.Statistics.stdev(int,double [],double

[n'

/**
* Register macro for stdev with a skip instruction
*/

CREATE MACRO $1.'Q@JSTDEVS' (SINGLE, GROUP)

AS

'"@RIFSTRCMP (@@1l, SKIPNONE)
@ JSTDEVS (0, @@2)
QRELSE
@RIFSTRCMP (@@L, SKIPMISSING)
@ JSTDEVS (1, @@2)

ORACLE 5300

Chapter 2
Custom-Defined Calculation Functions

@@ELSE
@R@IFSTRCMP (QQ@1, SKIPZERO)
@ JSTDEVS (2, @€2)
@@ELSE
@Q@IFSTRCMP (@@1, SKIPBOTH)
@ JSTDEVS (3, @€2)
@@ELSE
@EERROR (@Q@L1, @ INVALIDSKIP)
@EENDIF
@ECENDIF
@EENDIF
@@ENDIFE'
SPEC '@JSTDEVS (SKIPNONE | SKIPZERO | SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the standard deviation value of a data set (explList) with
skip instructions';

/**
* Register macro for weighted standard deviation with a skip instruction
*/

CREATE MACRO $1.'@JSTDEVWS' (SINGLE, SINGLE, SINGLE)

AS

'"@@IFSTRCMP (@@1, SKIPNONE)
@ JSTDEVWS (0, @R2, @@3)
@@ELSE
@@IFSTRCMP (@@1, SKIPMISSING)
@ JSTDEVWS (1, @G2, @E@3)
@@ELSE
@R@IFSTRCMP (QQ@1, SKIPZERO)
@ JSTDEVWS (2, @R2, @E@3)
@@ELSE
@Q@IFSTRCMP (@@1, SKIPBOTH)
@ JSTDEVS (3, R@@2, @E3)
@@ELSE
@EERROR (@Q@L1, @ INVALIDSKIP)
@EENDIF
@ECENDIF
@EENDIF
@@ENDIFE'
SPEC '@JSTDEVWS (SKIPNONE | SKIPZERO| SKIPMISSING| SKIPBOTH, explist,
weightExpList)'
COMMENT 'Computes the weighted standard deviation value of a data set
(expList) with skip instructions';

/**
* Register function stdevp
*/
CREATE MACRO $1.'Q@JSTDEVP' (GROUP)
AS '@ JSTDEVP (RES)'
SPEC '@JSTDEVP (expList)'
COMMENT 'Computes the standard deviation(p) of non-missing values in a data
set (expList)';

CREATE FUNCTION S$1.'QJSTDEVP'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp (double [])"';

ORACLE 5310

ORACLE

Chapter 2
Custom-Defined Calculation Functions

/**

* Register function weighted stdevp

*/
CREATE FUNCTION $1.'QJSTDEVPW'
AS 'com.hyperion.essbase.calculator.Statistics.stdevp(double [],double [])'
SPEC '@JSTDEVPW (QLIST (expList), @QLIST (weightExpList))'
COMMENT 'Computes the weighted standard deviation(p) of non-missing values in
a data set (expList)';

/**
* Register functions stdevp and weighted stdevp with a skip instruction.
* These functions will be used through macros, so no spec/comment specified.
* Since these functions will not be used directly, the names start with '@ '.
*/

CREATE FUNCTION $l.'@_JSTDEVPS'

AS 'com.hyperion.essbase.calculator.Statistics.stdevp(int,double [])"';

CREATE FUNCTION $l.'@_JSTDEVPWS'

AS 'com.hyperion.essbase.calculator.Statistics.stdevp(int,double [],double

[n'

/**
* Register macro for stdevp with a skip instruction
*/

CREATE MACRO $1.'Q@JSTDEVPS' (SINGLE, GROUP)

AS

'"@RIFSTRCMP (@@1, SKIPNONE)
@ JSTDEVPS (0, @Q2)
@@ELSE
@@IFSTRCMP (@@1, SKIPMISSING)
@ JSTDEVPS (1, @@2)
@@ELSE
@R@IFSTRCMP (QQ@1, SKIPZERO)
@ JSTDEVPS (2, @R2)
@QELSE
@@IFSTRCMP (@@1, SKIPBOTH)
@ JSTDEVPS (3, @R2)
@EELSE
@EERROR (@Q@L1, @ INVALIDSKIP)
@QENDIF
@QENDIF
@Q@ENDIF
@@ENDIF'
SPEC '@JSTDEVPS (SKIPNONE | SKIPZERO| SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the standard deviation(p) value of a data set (expList)
with skip instructions';

/**
* Register macro for weighted stdevp with a skip instruction
*/

CREATE MACRO $1.'@JSTDEVPWS' (SINGLE, SINGLE, SINGLE)

AS

2-311

Chapter 2
Custom-Defined Calculation Functions

'"@@IFSTRCMP (@@1, SKIPNONE)
@_JSTDEVPWS (0, @@2, @@3)
@@ELSE
@@IFSTRCMP (@@1, SKIPMISSING)
@_JSTDEVPWS (1, Q@2, Q@3)
@@ELSE
@RIFSTRCMP (QQ@1, SKIPZERO)
@_JSTDEVPWS (2, Q@2, Q@3)
@QELSE
@@IFSTRCMP (@@1, SKIPBOTH)
@ JSTDEVPS (3, @R2, @@3)
@EELSE
@@ERROR (@Q@LI, @_INVALIDSKIP)
@QENDIF
@QENDIF
@Q@ENDIF
@@ENDIF'
SPEC '@JSTDEVPWS (SKIPNONE | SKIPZERO| SKIPMISSING|SKIPBOTH, expList,
weightExpList)'
COMMENT 'Computes the weighted standard deviation(p) value of a data set
(expList) with skip instructions';

/**
* Register function sum
*/
CREATE MACRO $1.'@JSUM' (GROUP)
AS '@ JSuM(ees)'
SPEC '@JSUM (expList)'
COMMENT 'Computes the sum of a data set (explList)';

CREATE FUNCTION $l.'@_JSUM'
AS 'com.hyperion.essbase.calculator.Statistics.sum(double [])"';

/**
* Register function weighted SUM
*/
CREATE FUNCTION $1.'QJSUMW'
AS 'com.hyperion.essbase.calculator.Statistics.sum(double [],double [])'
SPEC '@JSUMW (QLIST (expList), QLIST (weightExpList))'
COMMENT 'Computes the weighted sum of a data set (expList)';

/**
* Register function var
*/
CREATE MACRO $1.'@JVAR' (GROUP)
AS '@ JVAR(G@S)'
SPEC '@JVAR (expList)'
COMMENT 'Computes the variance of non-missing values in a data set (explList)';

CREATE FUNCTION $l.'@_JVAR'
AS 'com.hyperion.essbase.calculator.Statistics.var(double [])"';

/**

ORACLE 5310

ORACLE

Chapter 2
Custom-Defined Calculation Functions

* Register function weighted var

*/
CREATE FUNCTION $1.'QJVARW'
AS 'com.hyperion.essbase.calculator.Statistics.var (double [],double [])'
SPEC '@JVARW (QLIST (expList), QLIST (weightExpList))'
COMMENT 'Computes the weighted variance of non-missing values in a data set
(expList)';

/**
* Register functions var and weighted var with a skip instruction.
* These functions will be used through macros, so no spec/comment specified.
* Since these functions will not be used directly, the names start with '€ '.
*/

CREATE FUNCTION $l.'@_JVARS'

AS 'com.hyperion.essbase.calculator.Statistics.var(int,double [])';

CREATE FUNCTION $l.'@_JVARWS'

AS 'com.hyperion.essbase.calculator.Statistics.var(int,double [],double [])';

/**
* Register macro for var with a skip instruction
*/

CREATE MACRO $1.'@JVARS' (SINGLE,GROUP)

AS

'"@@IFSTRCMP (@@1, SKIPNONE)
@ JVARS (0, @Q2)
@@ELSE
@@IFSTRCMP (@@1, SKIPMISSING)
@ JVARS (1, @@2)
@@ELSE
@R@IFSTRCMP (QQ@1, SKIPZERO)
@ _JVARS (2, @@2)
@@ELSE
@Q@IFSTRCMP (@@1, SKIPBOTH)
@ JVARS (3, @Q2)
@@ELSE
@EERROR (@Q@L1, @ INVALIDSKIP)
@EENDIF
@ECENDIF
@EENDIF
@@ENDIFE'
SPEC '@JVARS (SKIPNONE | SKIPZERO|SKIPMISSING|SKIPBOTH, expList)'
COMMENT 'Computes the variance value of a data set (expList) with skip
instructions';

/**
* Register macro for weighted variance with a skip instruction
*/
CREATE MACRO $1.'@JVARWS' (SINGLE, SINGLE, SINGLE)
AS
'"@@IFSTRCMP (@@1, SKIPNONE)
@ JVARWS (0, @Q@2, @@3)
@@ELSE
@@IFSTRCMP (@@1, SKIPMISSING)

2-313

ORACLE

Chapter 2
Custom-Defined Calculation Functions

@ JVARWS (1, @R@2, @@3)
@@ELSE
@R@IFSTRCMP (QQ@1, SKIPZERO)
@ JVARWS (2, @R@2, @@3)
@QELSE
@Q@IFSTRCMP (@@1, SKIPBOTH)
@ JVARS (3, @E2, @@3)
@EELSE
@EERROR (@Q@L1, @ INVALIDSKIP)
@QENDIF
@QENDIF
@Q@ENDIF
@@ENDIF'
SPEC '@JVARWS (SKIPNONE |SKIPZERO|SKIPMISSING|SKIPBOTH, explList, weightExpList)'
COMMENT 'Computes the weighted variance value of a data set (explList) with
skip instructions';

/**
* Register function varp
*/
CREATE MACRO $1.'@JVARP' (GROUP)
AS '@ JVARP (Q@S)'
SPEC '@JVARP (expList)'
COMMENT 'Computes the variance(p) of non-missing values in a data set
(expList)';

CREATE FUNCTION $l.'@_JVARP'
AS 'com.hyperion.essbase.calculator.Statistics.varp(double [])';

/**

* Register function weighted varp

*/
CREATE FUNCTION $1.'QJVARPW'
AS 'com.hyperion.essbase.calculator.Statistics.varp(double [],double [])'
SPEC '@JVARPW (@LIST (expList), @LIST (weightExpList))'
COMMENT 'Computes the weighted variance(p) of non-missing values in a data
set (expList)';

/**
* Register functions varp and weighted varp with a skip instruction.
* These functions will be used through macros, so no spec/comment specified.
* Since these functions will not be used directly, the names start with '€ '.
*/

CREATE FUNCTION $l.'@_JVARPS'

AS 'com.hyperion.essbase.calculator.Statistics.varp(int,double [])';

CREATE FUNCTION $l.'@_JVARPWS'

AS 'com.hyperion.essbase.calculator.Statistics.varp(int,double [],double [])';
/**
* Register macro for varp with a skip instruction
*/
CREATE MACRO $1.'Q@JVARPS' (SINGLE, GROUP)
AS

2-314

"@RIFSTRCMP (@@1, SKIPNONE)
@ JVARPS (0, @€2)
QRELSE
@QIFSTRCMP (@@L, SKIPMISSING)
@ JVARPS (1, €@2)
QQELSE
@RIFSTRCMP (@@L, SKIPZERO)
@ JVARPS (2, @@2)
@RELSE
@QRIFSTRCMP (QQ@1, SKIPBOTH)
@ JVARPS (3, €@2)
@RELSE
@RERROR (@RL1, @ INVALIDSKIP)
@RENDIF
@@ENDIF
@QQENDIF
QQENDIF'

Chapter 2
Custom-Defined Calculation Functions

SPEC '@JVARPS (SKIPNONE | SKIPZERO | SKIPMISSING|SKIPBOTH, expList)'

COMMENT 'Computes the variance(p) value of a data set

instructions';

/**

(expList) with skip

* Register macro for weighted varp with a skip instruction

*/

CREATE MACRO $1.'Q@JVARPWS' (SINGLE, SINGLE, SINGLE)

AS
"@RIFSTRCMP (@@1, SKIPNONE)
@ JVARPWS (0, @@2, @@3)
QRELSE
@QIFSTRCMP (@@1, SKIPMISSING)
@ JVARPWS (1, @@z, @@3)
QQELSE
@RIFSTRCMP (@Q@1, SKIPZERO)
@ JVARPWS (2, @€2, @@3)
@RELSE
@QRIFSTRCMP (QQ@1, SKIPBOTH)
@ JVARPS (3, @@2, @e3)
@RELSE
@RERROR (@RL1, @ INVALIDSKIP)
@RENDIF
@@ENDIF
@QQENDIF
QQENDIF'

SPEC '@JVARPWS (SKIPNONE | SKIPZERO|SKIPMISSING|SKIPBOTH, explist,

weightExpList)'

COMMENT 'Computes the weighted variance(p) value of a data set (expList) with

skip instructions';

reglobal.mx|I Sample Code

/* <maxl version="11.1.1" encoding="UTF-8"/> */

/**

* This script registers methods of the class Statistics as global custom-

ORACLE

2-315

Chapter 2
Custom-Defined Calculation Functions

defined functions
* Usage: Log in to MaxL Shell, then call: msh reglobal.mxl

*

*/

/**
* Register function average
*/
CREATE MACRO '@JAVG' (GROUP)
AS '@ JAVG(Q@S)'
SPEC '@JAVG (expList)'
COMMENT 'Computes the average of non-missing values in a data set (expList)';

CREATE FUNCTION '@ JAVG'
AS 'com.hyperion.essbase.calculator.Statistics.avg(double [])';

/**

* Register function weighted average

*/
CREATE FUNCTION 'Q@JAVGW'
AS 'com.hyperion.essbase.calculator.Statistics.avg(double [],double [])'
SPEC '@JAVGW (QLIST (expList), QLIST (weightExpList))'
COMMENT 'Computes the