
PeopleTools 8.53: SQR Language
Reference for PeopleSoft

October 2014

PeopleTools 8.53: SQR Language Reference for PeopleSoft
CDSKU pt853pbr1_r03
Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification,
and adaptation of the programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc.
AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

Third Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. v

Contents

Preface..xi
Understanding the PeopleSoft Online Help and PeopleBooks... xi

PeopleSoft Hosted Documentation... xi
Locally Installed Help... xi
Downloadable PeopleBook PDF Files..xi
Common Help Documentation..xi
Field and Control Definitions.. xii
Typographical Conventions..xii
ISO Country and Currency Codes..xiii
Region and Industry Identifiers.. xiii
Access to Oracle Support... xiii
Documentation Accessibility...xiv

Using and Managing the PeopleSoft Online Help.. xiv
PeopleTools Related Links.. xiv
Contact Us..xiv
Follow Us...xiv

Chapter 1: Understanding SQR for PeopleSoft... 15
SQR for PeopleSoft Tools.. 15
The SQR Language...15

Understanding the SQR Language...15
SQR Program Structure..16
SQR Syntax Conventions...16
Rules for Entering SQR Commands..17

SQR Command Line...18
SQR Command-Line Arguments... 18
SQR Command-Line Flags.. 20

SQR Data Elements.. 28
Columns.. 28
Variables..28
Literals.. 32

Sample Reports... 32
Chapter 2: SQR Command Reference.. 33

SQR Command Overview.. 33
SQR Commands..34

ADD..34
ALTER-COLOR-MAP... 35
ALTER-LOCALE... 36
ALTER-PRINTER.. 43
ALTER-REPORT..44
ARRAY-ADD, ARRAY-DIVIDE, ARRAY-MULTIPLY, ARRAY-SUBTRACT........................ 45
ASK...47
BEGIN-DOCUMENT.. 48
BEGIN-EXECUTE...49
BEGIN-FOOTING... 51
BEGIN-HEADING...53
BEGIN-PROCEDURE... 54
BEGIN-PROGRAM... 56

Contents

vi Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

BEGIN-SELECT.. 57
BEGIN-SETUP...60
BEGIN-SQL... 61
BREAK... 63
CALL, CALL SYSTEM.. 64
CLEAR-ARRAY...68
CLOSE..69
COLUMNS... 69
COMMIT.. 70
CONCAT...71
CONNECT..72
CREATE-ARRAY...73
CREATE-COLOR-PALETTE.. 75
#DEBUG...76
DECLARE-CHART..77
DECLARE-COLOR-MAP... 85
DECLARE-CONNECTION...87
DECLARE-IMAGE..88
DECLARE-LAYOUT...89
DECLARE-PRINTER.. 95
DECLARE-PROCEDURE... 103
DECLARE-REPORT..104
DECLARE-TOC...106
DECLARE-VARIABLE... 107
#DEFINE.. 110
DISPLAY.. 111
DIVIDE...114
DO...115
#ELSE... 116
ELSE... 116
ENCODE.. 117
END-DECLARE, END-DOCUMENT, END-EVALUATE, END-FOOTING, END-
HEADING.. 118
#END-IF, #ENDIF..118
END-IF... 119
END-PROCEDURE, END-PROGRAM, END-SELECT, END-SETUP, END-SQL, END-
WHILE..119
EVALUATE.. 119
EXECUTE (Sybase and Microsoft SQL Server)...121
EXIT-SELECT..124
EXTRACT.. 124
FIND... 126
GET...127
GET-COLOR..128
GOTO..130
GRAPHIC BOX, GRAPHIC HORZ-LINE, GRAPHIC VERT-LINE.. 131
#IF... 132
IF... 134
#IFDEF... 136
#IFNDEF...136
#INCLUDE... 136

Contents

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. vii

INPUT...137
LAST-PAGE... 140
LET... 140
LOAD-LOOKUP..172
LOOKUP.. 175
LOWERCASE.. 176
MBTOSBS.. 177
MOVE...177
MULTIPLY... 180
NEW-PAGE.. 181
NEW-REPORT... 182
NEXT-COLUMN... 183
NEXT-LISTING... 184
OPEN.. 185
PAGE-NUMBER.. 187
POSITION.. 187
PRINT... 188
PRINT-BAR-CODE... 206
PRINT-CHART.. 208
PRINT-DIRECT... 212
PRINT-IMAGE...213
PUT... 214
READ..215
ROLLBACK... 217
SBTOMBS.. 218
SECURITY... 218
SET-COLOR...219
SET-GENERATIONS...222
SET-LEVELS... 222
SET-MEMBERS...223
SHOW...223
STOP...227
STRING.. 227
SUBTRACT..229
TOC-ENTRY.. 229
UNSTRING.. 230
UPPERCASE..231
USE... 232
USE-COLUMN.. 232
USE-PRINTER-TYPE..233
USE-PROCEDURE..234
USE-REPORT...235
WHILE..236
WRITE..237

Chapter 3: Generating HTML Output..241
HTML General Purpose Procedures...241
HTML Heading Procedures..244
HTML Highlighting Procedures... 247
HTML Hypertext Link Procedures...250
HTML List Procedures... 251
HTML Table Procedures.. 255

Contents

viii Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 4: Generating Tagged PDF Output...259
Generating Tagged PDF Output from an SQR Program..259
SQR Commands to Create Tagged PDF Table.. 259
SQR Commands to Create Tagged PDF Lists... 259
SQR Commands to Create Heading and Paragraph...260
SQR Commands to Create Alternate Text... 260
Tagged PDF Support for SQR..260

Chapter 5: Invoking SQR Execute.. 263
Running SQR Execute.. 263
Using SQR Execute Flags.. 263

Chapter 6: Using SQR Print...269
Understanding SQR Print... 269
Generating Output from the Command Line... 269
Using SQR Print Command-Line Flags...269
Generating Output in Microsoft Windows... 273

Chapter 7: Avoiding Older SQR Commands... 275
Understanding Older SQR Commands...275
Using Older SQR Commands.. 275

BEGIN-REPORT.. 276
DATE-TIME... 276
DECLARE PRINTER.. 277
DECLARE PROCEDURE... 283
DOLLAR-SYMBOL.. 284
GRAPHIC FONT... 285
MONEY-SYMBOL..286
NO-FORMFEED.. 287
PAGE-SIZE...288
PRINT … CODE... 289
PRINTER-DEINIT... 289
PRINTER-INIT...290

Chapter 8: Using the PSSQR.INI File and the PSSQR Command Line... 291
Installing PSSQR.INI..291
Default Settings Section..293
Processing-Limits Section...297
Environment Sections... 299
Locale Section...300
Fonts Section...303

Adding Font Entries... 304
Specifying Character Sets in Windows..304

HTML-Images Section..304
PDF Fonts Section.. 305
PDF Fonts: Exclusion Ranges Section...307
TrueType Font Section..307
Enhanced-HTML Section... 308
Colors Section... 309
Using PSSQR.EXE Command-Line Options...310

Appendix A: Understanding SQR Messages...313
Unnumbered Messages... 313
Numbered Messages... 315

Appendix B: Using SQR Sample Programs..407
SQR Samples Library... 407

Contents

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. ix

SQR Sample Programs...407

Contents

x Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. xi

Preface

Understanding the PeopleSoft Online Help and PeopleBooks

The PeopleSoft Online Help is a website that enables you to view all help content for PeopleSoft
Applications and PeopleTools. The help provides standard navigation and full-text searching, as well as
context-sensitive online help for PeopleSoft users.

PeopleSoft Hosted Documentation
You access the PeopleSoft Online Help on Oracle’s PeopleSoft Hosted Documentation website, which
enables you to access the full help website and context-sensitive help directly from an Oracle hosted
server. The hosted documentation is updated on a regular schedule, ensuring that you have access to the
most current documentation. This reduces the need to view separate documentation posts for application
maintenance on My Oracle Support, because that documentation is now incorporated into the hosted
website content. The Hosted Documentation website is available in English only.

Locally Installed Help
If your organization has firewall restrictions that prevent you from using the Hosted Documentation
website, you can install the PeopleSoft Online Help locally. If you install the help locally, you have more
control over which documents users can access and you can include links to your organization’s custom
documentation on help pages.

In addition, if you locally install the PeopleSoft Online Help, you can use any search engine for full-
text searching. Your installation documentation includes instructions about how to set up Oracle Secure
Enterprise Search for full-text searching.

See PeopleTools 8.53 Installation for your database platform, “Installing PeopleSoft Online Help.” If you
do not use Secure Enterprise Search, see the documentation for your chosen search engine.

Note: Before users can access the search engine on a locally installed help website, you must enable the
Search portlet and link. Click the Help link on any page in the PeopleSoft Online Help for instructions.

Downloadable PeopleBook PDF Files
You can access downloadable PDF versions of the help content in the traditional PeopleBook format.
The content in the PeopleBook PDFs is the same as the content in the PeopleSoft Online Help, but it has
a different structure and it does not include the interactive navigation features that are available in the
online help.

Common Help Documentation
Common help documentation contains information that applies to multiple applications. The two main
types of common help are:

• Application Fundamentals

Preface

xii Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

• Using PeopleSoft Applications

Most product lines provide a set of application fundamentals help topics that discuss essential information
about the setup and design of your system. This information applies to many or all applications in the
PeopleSoft product line. Whether you are implementing a single application, some combination of
applications within the product line, or the entire product line, you should be familiar with the contents
of the appropriate application fundamentals help. They provide the starting points for fundamental
implementation tasks.

In addition, the PeopleTools: PeopleSoft Applications User's Guide introduces you to the various
elements of the PeopleSoft Pure Internet Architecture. It also explains how to use the navigational
hierarchy, components, and pages to perform basic functions as you navigate through the system. While
your application or implementation may differ, the topics in this user’s guide provide general information
about using PeopleSoft Applications.

Field and Control Definitions
PeopleSoft documentation includes definitions for most fields and controls that appear on application
pages. These definitions describe how to use a field or control, where populated values come from, the
effects of selecting certain values, and so on. If a field or control is not defined, then it either requires
no additional explanation or is documented in a common elements section earlier in the documentation.
For example, the Date field rarely requires additional explanation and may not be defined in the
documentation for some pages.

Typographical Conventions
The following table describes the typographical conventions that are used in the online help.

Typographical Convention Description

Key+Key Indicates a key combination action. For example, a plus sign (
+) between keys means that you must hold down the first key
while you press the second key. For Alt+W, hold down the Alt
key while you press the W key.

. . . (ellipses) Indicate that the preceding item or series can be repeated any
number of times in PeopleCode syntax.

{ } (curly braces) Indicate a choice between two options in PeopleCode syntax.
 Options are separated by a pipe (|).

[] (square brackets) Indicate optional items in PeopleCode syntax.

& (ampersand) When placed before a parameter in PeopleCode syntax,
 an ampersand indicates that the parameter is an already
instantiated object.

Ampersands also precede all PeopleCode variables.

⇒ This continuation character has been inserted at the end of a
line of code that has been wrapped at the page margin. The
code should be viewed or entered as a single, continuous line
of code without the continuation character.

Preface

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. xiii

ISO Country and Currency Codes
PeopleSoft Online Help topics use International Organization for Standardization (ISO) country and
currency codes to identify country-specific information and monetary amounts.

ISO country codes may appear as country identifiers, and ISO currency codes may appear as currency
identifiers in your PeopleSoft documentation. Reference to an ISO country code in your documentation
does not imply that your application includes every ISO country code. The following example is a
country-specific heading: "(FRA) Hiring an Employee."

The PeopleSoft Currency Code table (CURRENCY_CD_TBL) contains sample currency code data. The
Currency Code table is based on ISO Standard 4217, "Codes for the representation of currencies," and
also relies on ISO country codes in the Country table (COUNTRY_TBL). The navigation to the pages
where you maintain currency code and country information depends on which PeopleSoft applications
you are using. To access the pages for maintaining the Currency Code and Country tables, consult the
online help for your applications for more information.

Region and Industry Identifiers
Information that applies only to a specific region or industry is preceded by a standard identifier in
parentheses. This identifier typically appears at the beginning of a section heading, but it may also appear
at the beginning of a note or other text.

Example of a region-specific heading: "(Latin America) Setting Up Depreciation"

Region Identifiers
Regions are identified by the region name. The following region identifiers may appear in the PeopleSoft
Online Help:

• Asia Pacific

• Europe

• Latin America

• North America

Industry Identifiers
Industries are identified by the industry name or by an abbreviation for that industry. The following
industry identifiers may appear in the PeopleSoft Online Help:

• USF (U.S. Federal)

• E&G (Education and Government)

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

xiv Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Using and Managing the PeopleSoft Online Help

Click the Help link in the universal navigation header of any page in the PeopleSoft Online Help to see
information on the following topics:

• What’s new in the PeopleSoft Online Help.

• PeopleSoft Online Help acessibility.

• Accessing, navigating, and searching the PeopleSoft Online Help.

• Managing a locally installed PeopleSoft Online Help website.

PeopleTools Related Links

Oracle's PeopleSoft PeopleTools 8.53 Documentation Home Page [ID 1494462.1]

PeopleSoft Information Portal on Oracle.com

My Oracle Support

PeopleSoft Training from Oracle University

PeopleSoft Video Feature Overviews on YouTube

Contact Us

Send us your suggestions Please include release numbers for the PeopleTools and applications that you
are using.

Follow Us

Get the latest PeopleSoft updates on Facebook.

Follow PeopleSoft on Twitter@PeopleSoft_Info.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://support.oracle.com/epmos/faces/ui/km/DocumentDisplay.jspx?id=1494462.1
http://www.oracle.com/us/products/applications/054275.html
https://support.oracle.com/CSP/ui/flash.html
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=402&p_nl=OPSE
http://www.youtube.com/user/PSFTOracle
mailto:PSOFT-INFODEV_US@ORACLE.COM
http://www.facebook.com/pages/Oracle-PeopleSoft/220476464680933?sk=wall&filter=12
https://twitter.com/PeopleSoft_Info

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 15

Chapter 1

Understanding SQR for PeopleSoft

SQR for PeopleSoft Tools

SQR for PeopleSoft is a powerful enterprise reporting system that provides direct access to multiple data
sources. The SQR for PeopleSoft tools enable you to create clear, professional reports from complex
arrays of information systems.

This PeopleBook describes the following SQR for PeopleSoft tools:

• The SQR language, which is a flexible, fourth-generation reporting language with a lexicon of more
than 110 commands.

The procedural design of SQR enables you to easily develop, implement, and distribute complex
reports.

• SQR Execute, which enables you to run previously compiled SQR programs.

• SQR Print, which enables you to configure reports for most printers.

• SQR Samples, a library of SQR programs and output that provides a framework for creating
configured reports.

The SQR Language

This section provides an overview of the SQR language and discusses:

• SQR program structure.

• SQR syntax conventions.

• Rules for entering SQR commands.

Understanding the SQR Language
SQR is a specialized programming language for accessing, manipulating, and reporting enterprise data.
With SQR, you build complex procedures that perform multiple calls to multiple data sources and
implement nested, hierarchical, or object-oriented program logic.

SQR provides several important benefits:

• Flexibility and scalability.

• Comprehensive facilities for combined report and data processing.

• Multiple platform availability.

Understanding SQR for PeopleSoft Chapter 1

16 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

• Multiple data source compatibility.

With SQR, you design reports by defining the page size, headers, footers, and layout . SQR enables you
to generate a variety of output types , such as complex tabular reports, multiple page reports, and form
letters. You can display data in columns; produce special formats, such as mailing labels; and create
HTML, PDF, or configured output for laser printers and phototypesetters.

The high-level programming capabilities of SQR enable you to add procedural logic and to control
data source calls. You can use SQR to write other types of applications, such as those for database
manipulation and maintenance, table loading and unloading, and interactive querying and displaying.

SQR Program Structure
SQR for PeopleSoft processes source code from a standard text file and generates a report. The text file
containing source code comprises a set of sections that you delimit with BEGIN-section and END-section
commands. The following examples show the general structure of SQR:

• The SETUP section describes overall characteristics of the report.

BEGIN-SETUP
 {setup commands}...
END-SETUP

• The HEADING and FOOTING sections specify what information is printed in the header and footer
on each page of the report.

BEGIN-HEADING {heading_lines}
 {heading commands}...
END-HEADING
BEGIN-FOOTING {footing_lines}
 {footing commands}...
END-FOOTING

• The PROGRAM section runs the procedures in the report.

BEGIN-PROGRAM
 {commands}...
END-PROGRAM

• The PROCEDURE section performs the tasks to produce the report.

BEGIN-PROCEDURE {procedure_name}
 {procedure commands}...
END-PROCEDURE

SQR Syntax Conventions
The following table describes the SQR syntax conventions:

Syntax Convention Description

{ } Braces enclose required items.

[] Square brackets enclose optional items.

... Ellipses indicate that the preceding parameter can be repeated.

Chapter 1 Understanding SQR for PeopleSoft

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 17

Syntax Convention Description

| A vertical bar separates alternatives inside brackets, braces, or
parentheses.

! An exclamation point begins a single-line comment that
extends to the end of the line. Each comment line must begin
with an exclamation point.

' A single quote starts and ends a literal text constant or any
argument with more than one word.

Important! If you are copying code directly from the sample
programs, change the slanted quotes to regular quotes as
shown here, otherwise you will receive an error message.

, A comma separates multiple arguments.

() Parentheses must enclose an argument or element.

UPPERCASE SQR commands and arguments are uppercase within the
text, but lowercase in the sample programs. (Note that these
commands are not case-sensitive.)

Variable Information and values that you must supply appear in
variable style.

hyphen versus underscore Many SQR commands, such as BEGIN-PROGRAM, contain
a hyphen, whereas procedure and variable names contain an
underscore. Procedure and variable names can contain either
hyphens or underscores, but you should use underscores in
procedure and variable names to distinguish them from SQR
commands.

This practice also prevents confusion when you mix variable
names and numbers in an expression in which hyphens could
be mistaken for minus signs.

Rules for Entering SQR Commands
Use these command rules as you develop SQR programs:

• You can enter SQR commands in either uppercase or lowercase; they are not case-sensitive.

Many SQR programmers use uppercase for SQR commands, but SQR ignores case as it compiles
source code.

• You must separate command names and arguments by at least one space or tab character.

• You must begin each command on a new line; however, you can develop commands that extend
beyond one line.

• You can break a line in any position between words except inside a quoted string.

• You can use a hyphen (-) at the end of a line to indicate that it continues on the next line; however,
SQR ignores hyphens and carriage returns in commands.

Understanding SQR for PeopleSoft Chapter 1

18 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

• You must begin each comment line with an exclamation point (!).

Note: To display the exclamation point (!) or single quote (') symbols in a report, type the symbol twice
to indicate that it is text. For example, DON'T is typed DON''T. This rule does not apply in the document
paragraph of form-letter reports.

SQR Command Line

SQR for PeopleSoft comprises SQR, SQR Execute, and SQR Print . Each has a command-line interface.

To begin running SQR, enter the following command:

SQR [program][connectivity][flags...][args...][@file...]

Note: The executable name for SQR is SQR (SQRW for Microsoft Windows). The executable name
for SQR Execute is SQRT (SQRWT for Microsoft Windows). The executable for SQR Print is SQRP
(SQRWP for Microsoft Windows).

See Running SQR ExecuteUnderstanding SQR Print.

SQR Command-Line Arguments
The following table describes the SQR command-line arguments:

Argument Description

program Name of the text file containing the source code. The default
file type or extension is .sqr. If you enter this value as a
question mark (?) or omit it, SQR for PeopleSoft prompts you
for the report program name. On UNIX/Linux-based systems,
 if your shell uses the question mark as a wildcard character,
 you must precede it with a backslash (\).

Chapter 1 Understanding SQR for PeopleSoft

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 19

Argument Description

connectivity Information that SQR for PeopleSoft needs to connect to the
database. If you enter this value as a question mark (?) or omit
it, SQR for PeopleSoft prompts you for the information.

IBM DB2: Subsystem name and Structured Query Language (
SQL) authorization ID.

 Ssname/SQLid

Microsoft Windows or IBM DB2: The name of the database,
 your username, and the password for the database.

[Database] / [Username] / [Password]

Informix: Name of the database.

 Database[/username/password]

Open Database Connectivity (ODBC): The name that you
give to the ODBC driver when you set up the driver, and your
username and password for the database. This port has been
certified against IBM DB2 and Microsoft SQL Server.

 Data_Source_
Name/[Username]/[Password]

Oracle: Your username and password for the database, and
an optional connection string for the database (for example,
 @sales.2cme.com).

[Username]/[Password[@Database]]

Sybase: Your username and password for the database.

Username/[Password]

flags See SQR Command-Line Flags.

args... Arguments that SQR for PeopleSoft uses while the program is
running. The ASK and INPUT commands use these arguments
rather than prompting the user. You must enter arguments on
the command line in the sequence that the program expects
—first all ASK arguments, in order, followed by INPUT
arguments.

@file... File containing program arguments—one argument per line.
 Arguments that are listed in the file are processed one at a
time: first all ASK arguments, in order, followed by INPUT
arguments. You can specify the command-line arguments (
program, connectivity, and args) in this file for non-Microsoft
Windows platforms.

Understanding SQR for PeopleSoft Chapter 1

20 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

SQR Command-Line Flags
SQR supports a number of command-line flags. Each flag begins with a hyphen (-). When a flag takes an
argument, the argument must follow the flag with no intervening space.

The following table describes the SQR command-line flags:

Flag Description

-A Appends the output to an existing output file carrying the same
name as the source of the output. If the file does not exist, a
new one is created. This flag is useful when you want to run
the same report more than once but want only a single output
file.

-Bnn (Oracle, ODBC, and Sybase CT-Lib) Indicates the number
of rows to buffer each time SQR for PeopleSoft retrieves
data from the database. The default is 10 rows. Regardless
of the setting, all rows are retrieved. When used on the
command line, -B controls the setting for all BEGIN-
SELECT commands. Inside a program, each BEGIN-
SELECT command can also have its own -B flag for further
optimization.

-BURST:{xx} -BURST:T generates the table of contents file only.

-BURST:S generates the report output according to the
symbolic table of contents entries that are set in the program
with the level argument of the TOC-ENTRY command. In
-BURST:S[{l}], {l} is the level on which to burst. The -
BURST:S setting is equivalent to -BURST:S1.

See "Bursting Reports" (PeopleTools 8.53: SQR for
PeopleSoft Developers)

Note: -BURST:P and -BURST:S require -PRINTER:EH or -
PRINTER:HT.
The page range selection feature of -BURST:P requires -
PRINTER:HT.
-BURST:T requires -PRINTER:HT.

-C (Microsoft Windows) Specifies that the Cancel dialog box
appears while the program runs so that you can easily stop the
program.

-CB (Microsoft Windows, Callable SQR) Forces the
communication box to use.

-Dnn (Non-Microsoft Windows) Displays the report output on the
terminal while it is being written to the output file. The value
for nn is the maximum number of lines to display before
pausing. If no number is entered after -D, the display scrolls
continuously.

Note: The printer type must be LP; otherwise, the display is
ignored. If the program is producing more than one report, the
display is for the first report only.

Chapter 1 Understanding SQR for PeopleSoft

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 21

Flag Description

-DBdatabase (Sybase) Forces the SQR program to use the specified
database, which overrides any USE command in the SQR
program.

-DEBUG [xxx] See #DEBUG.

-DNT: {xx} See DECLARE-VARIABLE.

-E[file] Directs error messages to the named file or to the default file
program.err. If no errors occur, no file is created.

-EH_APPLETS:dir Specifies the directory location of the enhanced HTML
applets. If you include an applet, SQR for PeopleSoft must
know where it resides. SQR for PeopleSoft usually checks for
the applet in a default directory; the default directory for these
applets is IMAGES.

Note: This flag is applicable only when you specify the -
PRINTER:EH or -PRINTER:EP flag.

-EH_BQD Generates a {report}.bqd file from the report data. This flag
also associates a query format file (BQD) icon with {report}.
bqd in the navigation bar.

Note: This flag is applicable only when you specify the -
PRINTER:EH or -PRINTER:EP flag.

-EH_BQD:file Associates the BQD icon with the specified file.

Note: This flag is applicable only when you specify the -
PRINTER:EH or -PRINTER:EP flag.

-EH_BROWSER:xx Generates HTML, determines the browser, and displays
HTML.

When this flag is set to ALL, SQR for PeopleSoft generates
frame.html, which contains JavaScript to determine the
browser on the user’s machine (that is, the person reading the
report, not the person writing it).

When this flag is set to BASIC, SQR for PeopleSoft generates
HTML that is suitable for all browsers.

When this flag is set to IE, SQR for PeopleSoft generates
HTML that is designed for Microsoft Internet Explorer.

Note: This flag is applicable only when you specify the -
PRINTER:EH or -PRINTER:EP flag.

-EH_CSV Generates a {report}.csv file from the report data.

Note: This flag is applicable only when you specify the -
PRINTER:EH or -PRINTER:EP flag.

Understanding SQR for PeopleSoft Chapter 1

22 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Flag Description

-EH_CSV:file Associates the CSV icon with the specified file.

Note: This flag is applicable only when you specify the -
PRINTER:EH or -PRINTER:EP flag.

-EH_CSVONLY Creates a .csv file, but does not create an HTML file.

Note: This flag is applicable only when you specify the -
PRINTER:EH or -PRINTER:EP flag.

-EH_FULLHTML:xx Specifies the level of the generated enhanced HTML code.
 This can be 30, 32, or 40.

Note: For upward compatibility, a value of TRUE is
equivalent to 40 and FALSE is 30.

-EH_Icons:dir Specifies the directory in which the HTML should find the
referenced icons.

Note: This flag is applicable only when you specify the -
PRINTER:EH or -PRINTER:EP flag.

-EH_IMAGES:dir Specifies the directory path for the .gif files that are used by
the navigation bar.

Note: This flag is applicable only when you specify the -
PRINTER:EH or -PRINTER:EP flag.

-EH_KEEP Copies (does not move) the files when used in conjunction
with -EH_ZIP.

Note: This flag is applicable only when you specify the -
PRINTER:EH or -PRINTER:EP flag.

-EH_LANGUAGE:xx Sets the language that is used for the HTML navigation
bar. You can specify English, French, German, Portuguese,
 Spanish, Japanese, Simplified Chinese, or Korean.

Note: This flag is applicable only when you specify the -
PRINTER:EH or -PRINTER:EP flag.

-EH_PDF Associates a PDF icon with {report}.pdf in the navigation bar.

Note: This flag is applicable only when you specify the -
PRINTER:EH or -PRINTER:EP flag.

-EH_Scale:{nn} Sets the scaling factor to a value from 50 to 200.

Note: This flag is applicable only when you specify the -
PRINTER:EH or -PRINTER:EP flag.

Chapter 1 Understanding SQR for PeopleSoft

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 23

Flag Description

-EH_XML:file Associates the XML icon with the specified file.

Note: This flag is applicable only when you specify the -
PRINTER:EH or -PRINTER:EP flag.

-EH_ZIP[:file] Moves the generated files to the specified file or {report}.zip if
{file} is not specified.

Note: This flag is applicable only when you specify the -
PRINTER:EH or the -PRINTER:EP flag.

-F[file | directory] Overrides the default output file name, program.lis. The
default action places the program.lis file in the same directory
as the program.sqr file. To use the current directory, specify
-F without an argument. To change the name of the output
file, specify -F with the new name. If the new name does not
specify a directory, the file is created in the current directory.
 The output file is not created until data is actually printed on
the page. If no data is printed, no output file is created.

Specify these file names and directories for different operating
systems:

UNIX/Linux

Directory character is /

-F$HOME/reports/

IBM MVS

Directory character is (

-FDSN:SQR.REPORTS(

-GPRINT=YES | NO (IBM MVS) -GPRINT=YES includes control characters in
the first column of each record of the SQR report output file. -
GPRINT=NO omits the control characters.

-Idir_list Specifies the list of directories that SQR for PeopleSoft
searches when processing the #INCLUDE directive when the
include file does not exist in the current directory and no path
is specified for the file. The directory names must be separated
by commas (,) or semicolons (;).

For UNIX/Linux-based systems, if your shell uses semicolons
as command delimiters, you must precede each semicolon
with a backslash (\). Always append the directory character
to the end of each directory name. See the -F flag for a list of
directory characters, sorted by operating system.

-ID (Non-Microsoft Windows) Displays the copyright banner on
the console.

-KEEP See "Specifying Output File Types by Using SQR Command-
Line Flags" (PeopleTools 8.53: SQR for PeopleSoft
Developers)

Understanding SQR for PeopleSoft Chapter 1

24 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Flag Description

-LL{s | d}{c | i} Specifies the following LOAD-LOOKUP values:

• s: SQR

• d: DB

• c: Case sensitive

• i: Case insensitive

See LOAD-LOOKUP.

-Mfile Defines a startup file containing sizes to assign to internal
parameters—extremely small, large, or complex reports.
 Mfiles are text files that have individual switches in the INI
files that are unique to a run.

-NOLIS Prevents the creation of .lis files, creating .spfs instead.

-O[file] Directs log messages to the specified file or to program.log if
no file is specified. By default, the sqr.log file is created in the
current working directory.

-olim Displays the SQR resources that are used by the SQR report.

• Limit is the programmatic limit, the maximum amount of
memory that can be allocated to the variable.

• Defined is the value defined in the pspssqr.ini file; this is
a user-defined value.

• Actual is the actual amount of memory/space used by the
variable at runtime.

-P (IBM MVS) Suppresses printer control characters from
column 1.

-PB (Informix) Causes column data to preserve trailing blanks.

Chapter 1 Understanding SQR for PeopleSoft

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 25

Flag Description

-PRINTER:xx Uses printer type xx when creating output files. The xx
represents:

EH: Enhanced HTML

-PRINTER:EH

EP: Enhanced HTML or PDF

-PRINTER:EP

HP: HP LaserJet

-PRINTER:HP

HT: HTML 2.0

-PRINTER:HT

LP: Line printer

-PRINTER:LP

PD: PDF

-PRINTER:PD

PS: PostScript

-PRINTER:PS

WP: Microsoft Windows

-PRINTER:WP

LP, HP, and PS produce .lis files. EH and HT produce .htm
files. HT produces version 2.0 HTML files with the report
content inside <PRE></PRE> tags. EH produces reports
in which content is fully formatted with version 3.0 or 3.2
HTML tags. On Microsoft Windows systems, WP sends the
output to the default Microsoft Windows printer. To specify
a Microsoft Windows printer that is not the default, enter -
PRINTER:WP:{printer name}, where {printer name} is the
name that is assigned to your printer. For example, to send
output to a Microsoft Windows printer named New Printer, use
-PRINTER:WP:NewPrinter. If the printer name has spaces,
 enclose the entire argument in quotes. To create an .spf file
also, use -KEEP.

-RS Saves the program in a runtime file. The program is scanned,
 compiled, and checked for correct syntax. Queries are
validated and compiled. The executable version is saved in a
file named program.sqt.

Note: SQR for PeopleSoft does not prompt ASK variables
after compilation.

Understanding SQR for PeopleSoft Chapter 1

26 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Flag Description

-RT Uses the runtime file that is saved with the -RS flag. This
skips all syntax and query checking, and processing begins
immediately.

Note: SQR for PeopleSoft does not prompt ASK variables
after compilation.

-S Requests that the status of all cursors be displayed at the
end of the report run. Status includes the text of each SQL
statement, the number of times each was compiled and run,
 and the total number of rows that were selected. The output
appears directly on the screen. This information can be used
for debugging SQL statements, enhancing performance, and
tuning.

-Tnn Specifies that you want to test your report for nn pages. To
save time during testing, SQR for PeopleSoft ignores all
ORDER BY clauses in SELECT statements. If the program
is producing more than one report, SQR for PeopleSoft stops
after producing the specified number of pages defined for the
first report.

-T{B} (Microsoft Windows, IBM DB2, Sybase CT-Lib, and ODBC)
Trims trailing blanks from database character columns.

If the TB flag is set in DB2 database environment, SQR trims
the all-blanks fields (fields that contain only spaces) to NULL
values in the SQR buffers.

Using the TB flag on IBM MVS and DB2 has no effect. IBM
MVS and DB2 prevent SQR for PeopleSoft from removing
trailing blanks from database character columns.

Note: The -TB flag has an effect only if SQR is connecting
to a DB2, Sybase CT-Lib, or ODBC (MSS) database.
 Confusingly, the behavior of the -TB command-line flag
varies depending on the platform. If you are using one of the
previously mentioned databases and are running SQR on z/OS,
 the -TB flag will act in the following way:
If you do not use the -TB flag, trailing blanks are trimmed.
If you do use the -TB flag, trailing blanks are not trimmed.
If you are running SQR on any other platform, the behavior of
-TB is the opposite. That is:
If you do not use the -TB flag, trailing blanks are not trimmed.
If you do use the -TB flag, trailing blanks are trimmed.

-T{Z} (IBM MVS and DB2) Prevents SQR for PeopleSoft from
removing trailing zeros from the decimal portion of numeric
columns.

-Vserver (Sybase) Uses the named server.

-XB (Non-Microsoft Windows) Suppresses the SQR banner and the
SQR.... End of Run message.

-XC (Callable SQR) Suppresses the database commit when the
report has finished running.

Chapter 1 Understanding SQR for PeopleSoft

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 27

Flag Description

-XCB (Microsoft Windows) Does not use the communication box.
 Requests for input are made in Microsoft Windows dialog
boxes.

-XI Prevents user interaction during a program run. If an ASK
or INPUT command requires user input, an error message is
generated and the program ends.

-XL Prevents SQR for PeopleSoft from signing in to the database.
 Programs that you run in this mode cannot contain SQL
statements. -XL enables you to run SQR for PeopleSoft
without accessing the database. You still must supply at least
an empty slash on the command line as a placeholder for the
connectivity information.

For example:

sqr myprog / -xl

-XLFF Prevents a trailing form feed.

-XMB (Microsoft Windows) Disables the error message display so
that you can run a program without interruption from error
message boxes. Error messages are sent to an .err file. See the
-E flag.

-XNAV Prevents SQR for PeopleSoft from creating the navigation
bar in .htm files that are generated with -PRINTER:HT. This
occurs when only a single .htm file is produced. Multiple .htm
files that are generated from a single report always contain the
navigation bar.

-XP (Sybase) Prevents SQR for PeopleSoft from creating
temporary stored procedures.

See BEGIN-SELECT.

-XTB Preserves the trailing blanks in a .lis file.

-XTOC Suppresses the table of contents for the report. This flag
is ignored when you specify either -PRINTER:EH or -
PRINTER:HT.

-ZIF{file} Sets the full path and name of the SQR initialization file, pssqr.
ini.

-ZIV Invokes the SPF Viewer after generating the program.spf file.
 This flag implicitly invokes the -KEEP flag to create program.
spf. In the case of multiple output files, only the first report file
is passed to the viewer.

-ZMF{file} Specifies the full path and name of the SQR error message file,
 sqrerr.dat.

-PDF_tag Generates the tagged PDF report when run against PDF report
output.

Understanding SQR for PeopleSoft Chapter 1

28 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

SQR Data Elements

Each SQR data element begins with a special character that denotes the type of data element.

This section discusses:

• Columns

• Variables

• Literals

Columns
Columns are fields that are defined in the database.

The ampersand character (&) begins a database column or expression name. It can be any type of column,
such as character , number , or date . Columns that are defined in a query are declared automatically,
except for dynamic columns and database or aggregate functions.

Variables
Variables are storage places for text or numbers that you define and manipulate. Variables begin with
special characters:

• $ begins a text or date variable.

• # begins a numeric variable.

• % begins a list variable.

• @ begins a variable name for a marker location.

Marker locations identify positions to begin printing in a BEGIN-DOCUMENT paragraph.

Variable Rules
The following rules govern the use of variables in SQR:

• Variables can be almost any name of almost any length—for example, $state_name or #total_cost.

• Do not use an underscore (_) or colon (:) as the first character of a two-variable name.

See "Using Hyphens and Underscores" (PeopleTools 8.53: SQR for PeopleSoft Developers)

• Variable names are not case-sensitive.

That is, you can use a name in uppercase on one line and lowercase on the next; both refer to the same
variable.

• SQR for PeopleSoft initializes variables to null (text and date) or zero (numeric).

• A command can grow to whatever length the memory of your computer can accommodate.

Chapter 1 Understanding SQR for PeopleSoft

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 29

• Numeric variables can be one of three types: float, integer, or decimal.

See DECLARE-VARIABLE.

• Variables and columns are known globally throughout a report, except when used in a local procedure
(one with arguments or declared with the LOCAL argument), in which case they are known in that
procedure only.

See BEGIN-PROCEDURE.

SQR Reserved Variables
When you create multiple reports, the variables apply to the current report. SQR for PeopleSoft reserves a
library of predefined variables for general use.

The following table describes the SQR-reserved variables:

Variable Description

#current-column Current column on the page.

$current-date Current date and time on the local machine when SQR for
PeopleSoft starts running the process.

#current-line Current line on the page. This value is the physical line on the
page, not the line in the report body.

Line numbers are referenced in PRINT and other SQR
commands that are used for positioning the data on the page.
 Optional page headers and footers, which are defined with
BEGIN-HEADING and BEGIN-FOOTING commands, have
their own line sequences. Line 2 of the heading is different
from line 2 of the report body or footing.

#end-file See READ.

#page-count Current page number.

#return-status Value to return to the operating system when SQR for
PeopleSoft exits. This can be set in the report. #return-status is
initialized to the success return value for the operating system.

#sql-count Count of the rows that are affected by a SELECT paragraph
(INSERT, UPDATE, or DELETE). This is equivalent to
ROWCOUNT in Oracle and Sybase.

$sql-error Text message from the database explaining an error. This
variable is rewritten when a new error is encountered.

Understanding SQR for PeopleSoft Chapter 1

30 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Variable Description

#sql-status The value of #sql-status is set whenever a BEGIN-SELECT
command is run. Normally this variable is checked from inside
an ON-ERROR procedure, so its value describes the error
condition (whereas the $sql-error variable contains the error
message). The actual meaning of #sql-status is database-
dependent. Therefore, consult the proper database manual to
fully interpret its meaning.

$sqr-encoding-console

{sqr-encoding-console}

Name of encoding for character data that is written to the log
file or console.

$sqr-encoding-database

{sqr-encoding-database}

Character data that is retrieved from and inserted into the
database.

$sqr-encoding-file-input

{sqr-encoding-file-input}

Name of encoding for character data that is read from files that
are used with the OPEN command.

$sqr-encoding-file-output

{sqr-encoding-file-output}

Name of encoding for character data that is written to files that
are used with the OPEN command.

$sqr-encoding-report-output

{sqr-encoding-report-output}

Report that is generated by SQR for PeopleSoft (for example,
 a .lis file or a PostScript file).

$sqr-encoding-source

{sqr-encoding-source}

Name of encoding for SQR source files and include files.

$sqr-database

{sqr-database}

Database type for which SQR was compiled. Values are
ORACLE, DB2, ODBC, SYBASE, and INFORMIX.

$sqr-dbcs

{sqr-dbcs}

Specifies whether SQR for PeopleSoft recognizes double-byte
character strings. Values are YES and NO.

$sqr-encoding

{sqr-encoding}

Name of the default encoding as defined by the ENCODING
environment variable when SQR for PeopleSoft is invoked.

$sqr-hostname

{sqr-hostname}

Name of the computer on which SQR for PeopleSoft is
currently running.

$sqr-locale Name of the current locale that is being used. A plus symbol
(+) at the end of the name indicates that an argument that is
used in the locale has changed.

Chapter 1 Understanding SQR for PeopleSoft

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 31

Variable Description

#sqr-max-lines Maximum number of lines, as determined by the layout. When
a new report is selected, this variable is automatically updated
to reflect the new layout.

#sqr-max-columns Maximum number of columns, as determined by the layout.
 When a new report is selected, this variable is automatically
updated to reflect the new layout.

#sqr-pid Process ID of the current SQR process. #sqr-pid is unique for
each run of SQR. This variable is useful for creating unique,
 temporary names.

$sqr-platform,

{sqr-platform}

The hardware or operating system type for which SQR was
compiled. Values are MVS, Windows, and UNIX/Linux.

$sqr-program Name of the SQR process file .

$sqr-ver Text string that is shown with the -ID flag, SQR version.

$username Database username that is specified on the command line.

$sqr-report Name of the report output file . $sqr-report reflects the actual
name of the file to use, as specified by the -F flag or NEW-
REPORT command.

List Variables
List variables contain an ordered collection of SQR variables and are nonrecursive—that is, you cannot
nest lists inside lists.

Indicate list variables with the percent symbol (%). Create list variables with the LET command and a list
of variables. For example:

let %list1 = list (num_var1|str_var1, num_var2|str_var2,...)

Working with list variables includes the following tasks:

• Defining a list variable:

You can use a list variable to hold multiple rows of information. Before you assign a list variable,
define it by using the following syntax:

let %listname=list(col_var|num_var|str_var|str_lit|num_lit[,...])

or

let %listname[num_lit]=list(NUMBER|DATE|TEXT$colname
|'.colname'[,...])

• Assigning a list variable:

Understanding SQR for PeopleSoft Chapter 1

32 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Assign a list variable by using the following syntax:

let %listname|%listname[num_var|num_lit]=list(col_var|str_var
|num_var|str_lit|num_lit[,...])

• Accessing a list variable:

Access a list variable by using the following syntax:

let str_var|num_var=%listname[num_var|num_lit].#colname

List Variable Arguments
The value between the brackets indicates either the number of rows in the list for the definition case or the
row in the list to modify or assign.

If no brackets are present, you do not need to predefine; assign the types based on the given variable
types. For multirow lists, the assignment must be compatible with the types that are given in the
definition.

A NUMBER field has the same characteristics as an undeclared #var. The underlying storage depends on
the contents, and the DEFAULT-NUMERIC setting applies.

The usual SQR rules for variable assignment apply to list access. Assignment is prohibited only
between date and numeric types. Assignment of a numeric column to a string variable returns the string
representation of the numeric value; assignment of a date variable to a string variable returns the default-
edit-mask representation of the date.

Literals
Literals are text or numeric constants:

• A single quote begins and ends a text literal . For example:

'Hello'

• Numerals 0−9 begin numeric literals .

Numerals that include digits with an optional decimal point and leading sign are acceptable numeric
literals, for example, -543.21. Numeric literals can also be expressed in scientific form, for example,
1.2E5.

Sample Reports

For an overview of how an SQR report looks, view the sample reports that are stored in the SQR
for PeopleSoft directory <PS_HOME>\bin\sqr\<database_platform>\SAMPLE (or SAMPLEW, for
Windows). You can modify these reports to meet your needs.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 33

Chapter 2

SQR Command Reference

SQR Command Overview

The commands in this section follow the conventions listed in the section SQR Syntax Conventions in the
previous topics and use the abbreviations described in the following table:

Warning! If you are copying code directly from the examples in the PDF file, make sure that you change
the slanted quotes to regular quotes or you will receive an error message.

Abbreviation Description Example

txt_col Text column retrievable from a database. &address

num_col Numeric column retrievable from a
database.

&price

date_col Date or datetime column retrievable
from a database.

&date1

txt_var String variable defined in a program. $your_name

num_var Numeric variable defined in a program. #total_cost

date_var A variable explicitly defined as a date
variable.

$date1

any_lit A literal of any type. 'abc' 12

any_var A variable of any type. $string #number $date

any_col A column of any type. &string &number &date

txt_lit Text literal defined in a program. 'Company Confidential'

num_lit Numeric literal defined in a program. 12345.67

int_lit Integer literal defined in a program. 12345

nn Integer literal used as an argument to a
command.

123

position The position qualifier, which consists
of the line, column, and length
specification. The minimum position, (),
means to use the current line and column
position on the page for the length of the
field being printed.

(5,10,30)

SQR Command Reference Chapter 2

34 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

SQR Commands

The following sections discuss the SQR commands in alphabetical order.

ADD

Syntax
ADD{src_num_lit | _var | _col} TO dst_num_var [ROUND=nn]

Description
Adds one number to another.

The source value is added to the destination variable and the result is placed in the destination. The source
is always first and the destination is always second.

When dealing with money-related values, use decimal variables rather than float variables . Float
variables are stored as double-precision floating point numbers , and small inaccuracies can occur when
a program is adding many numbers in succession. These inaccuracies can appear due to the way floating
point numbers are represented by different hardware and software implementations and also due to
inaccuracies that can be introduced when a program is converting between floating point and decimal.

Parameters

Parameter Description

src_num_lit | _var | _col Source number literal, variable, or column.

dst_num_var A numeric destination variable that contains the result after
execution.

ROUND Rounds the result to the specified number of digits to the right
of the decimal point. For float variables, this value can be from
0 to 15. For decimal variables, this value can be from 0 to the
precision of the variable. For integer variables, this argument
is not appropriate.

Example

To add 10 to #counter:

add #counter to #new_count
add &price to #total round=2

See LET Command

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 35

ALTER-COLOR-MAP

Syntax
ALTER-COLOR-MAP NAME = {color_name_lit | _var | _col} VALUE =
({color_name_lit | _var | _col} | {rgb})

Description
Dynamically alters a defined color.

The ALTER-COLOR-MAP command is allowed wherever the PRINT command is allowed. This
command enables you to dynamically alter a defined color. You cannot use this command to define a new
color.

Parameters

Parameter Description

NAME Defines the name of the color that you want to alter. For
example, light blue.

VALUE Defines the RGB value of the color that you want to alter, for
example, (193, 233, 230).

{color_name_lit | _var | _col} The color_name is composed of alphanumeric characters (
A–Z, 0–9), the underscore (_) character, and the hyphen (-)
character. It must start with an alpha (A–Z) character and is
not case-sensitive. The name 'none' is reserved and cannot be
assigned a value. A name in the format (RGBredgreenblue)
cannot be assigned a value. The name 'default' is reserved and
can be assigned a value. 'Default' is used during execution
when a referenced color is not defined in the runtime
environment.

{rgb} red_lit | _var | _col, green_lit | _var | _col, blue_lit | _var | _col
where each component is a value in the range of 000 to 255. In
the BEGIN-SETUP section, only literal values are allowed.

The default colors implicitly installed with SQR include:

• black=(0,0,0)

• white=(255,255,255)

• gray=(128,128,128)

• silver=(192,192,192)

• red=(255,0,0)

• green=(0,255,0)

• blue=(0,0,255)

SQR Command Reference Chapter 2

36 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

• yellow=(255,255,0)

• purple=(128,0,128)

• olive=(128,128,0)

• navy=(0,0,128)

• aqua=(0,255,255)

• lime=(0,128,0)

• maroon=(128,0,0)

• teal=(0,128,128)

• fuchsia=(255,0,255)

Example

The following example illustrates the ALTER-COLOR-MAP command:

begin-setup
 declare-color-map
 light_blue = (193, 222, 229)
 end-declare
end-setup

begin-program
 alter-color-map name = 'light_blue' value = (193, 233, 230)

 print 'Yellow Submarine' ()
 foreground = ('yellow')
 background = ('light_blue')

 get-color print-text-foreground = ($print-foreground)
 set-color print-text-foreground = ('purple')
 print 'Barney' (+1,1)
 set-color print-text-foreground = ($print-foreground)
end-program

See DECLARE-COLOR-MAP SET-COLOR,GET-COLOR

ALTER-LOCALE

Syntax
ALTER-LOCALE [LOCALE={txt_lit _var|DEFAULT|SYSTEM}] [NUMBER-EDIT-MASK={txt_lit|_var|
DEFAULT|SYSTEM}] [MONEY-EDIT-MASK={txt_lit|_var|DEFAULT|SYSTEM}] [DATE-EDIT-
MASK={txt_lit|_var|DEFAULT|SYSTEM}] [INPUT-DATE-EDIT-MASK={txt_lit|_var|DEFAULT|
SYSTEM}]
[MONEY-SIGN={txt_lit|_var|DEFAULT|SYSTEM}] [MONEY-SIGN-LOCATION={txt_var|DEFAULT|
SYSTEM|LEFT |RIGHT}] [THOUSAND-SEPARATOR={txt_lit|_var|DEFAULT|SYSTEM}] [DECIMAL-
SEPARATOR={txt_lit|_var|DEFAULT|SYSTEM}] [DATE-SEPARATOR={txt_lit|_var|DEFAULT|
SYSTEM}] [TIME-SEPARATOR={txt_lit|_var|DEFAULT|SYSTEM}] [EDIT-OPTION-NA={txt_lit|_var|
DEFAULT|SYSTEM}] [EDIT-OPTION-AM={txt_lit|_var|DEFAULT|SYSTEM}] [EDIT-OPTION-
PM={txt_lit|_var|DEFAULT|SYSTEM}] [EDIT-OPTION-BC={txt_lit|_var|DEFAULT|SYSTEM}]
[EDIT-OPTION-AD={txt_lit|_var|DEFAULT|SYSTEM}] [DAY-OF-WEEK-CASE={txt_var|DEFAULT|
SYSTEM|UPPER|LOWER |EDIT|NO-CHANGE}] [DAY-OF-WEEK-FULL=({txt_lit1|_var1}...
{txt_lit7 |_var7})] [DAY-OF-WEEK-SHORT=({txt_lit1|_var1}...{txt_lit7 |_var7})]
[MONTHS-CASE={txt_var|DEFAULT|SYSTEM|UPPER|LOWER|EDIT |NO-CHANGE}] [MONTHS-
FULL=({txt_lit1|_var1}...{txt_lit12| _var12})] [MONTHS-SHORT=({txt_lit1|_var1}...
{txt_lit12|_var12})]

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 37

Description
Selects a locale or changes locale parameters used for printing date, numeric, and money data and for
data accepted by the INPUT command. A locale is a set of preferences for language, currency, and
presentation of charts and numbers.

The SYSTEM locale represents the behavior of older versions of SQR prior to Version 4.0. When you
install SQR for PeopleSoft Version 4.0 or later, the default locale is set to SYSTEM. This provides
upwards compatibility for older SQR programs. This table describes the SYSTEM locale settings:

Keyword Value

NUMBER-EDIT-MASK The PRINT command prints two digits to the right of the
decimal point and left-justifies the number in the field. The
MOVE, SHOW, and DISPLAY commands format the number
with six digits to the right of the decimal point and left-justify
the number.

MONEY-EDIT-MASK SQR uses the same default as the NUMBER-EDIT-MASK
keyword.

DATE-EDIT-MASK SQR uses the default database date format. See the Date Time
section for more details.

INPUT-DATE-EDIT-MASK SQR uses a default date edit mask with the INPUT command.
 See the Sample Date Edit Masks table for a listing of the date
edit mask.

MONEY-SIGN '$'

MONEY-SIGN-LOCATION LEFT

THOUSAND-SEPARATOR ','

DECIMAL-SEPARATOR '.'

DATE-SEPARATOR '/'

TIME-SEPARATOR ':'

EDIT-OPTION-NA 'NA'

EDIT-OPTION-AM 'am'

EDIT-OPTION-PM 'pm'

EDIT-OPTION-BC 'bc'

EDIT-OPTION-AD 'ad'

DAY-OF-WEEK-CASE EDIT

SQR Command Reference Chapter 2

38 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Keyword Value

DAY-OF-WEEK-FULL ('Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday',
 'Friday', 'Saturday')

DAY-OF-WEEK-SHORT ('Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat')

MONTHS-CASE EDIT

MONTHS-FULL ('January', 'February', 'March', 'April', 'May', 'June', 'July',
 'August', 'September', 'October', 'November', 'December')

MONTHS-SHORT ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct',
 'Nov', 'Dec')

Parameters
The following table lists and describes the parameters:

Note: Many of the settings can have a value of DEFAULT or SYSTEM . For a given setting, specifying
DEFAULT retrieves the value from the corresponding setting of the default locale as identified in the
Default-Settings section of the pssqr.ini file. Similarly, specifying SYSTEM retrieves the value from the
corresponding setting of the system locale. You can alter the system locale using the ALTER-LOCALE
command; however, you cannot define it in the pssqr.ini file.

Parameter Description

LOCALE Specifies the name of the locale to use. This name must be
defined in the pssqr.ini file. If this field is omitted, then the
current locale is used. The locale name is not case-sensitive
and is limited to the following character set: A–Z, 0–9,
 underscore, and hyphen. The current locale can be determined
by printing the reserved variable $sqr-locale.

NUMBER-EDIT-MASK Specifies the numeric edit mask to use with the keyword
NUMBER in a PRINT, MOVE, SHOW, or DISPLAY
command.

MONEY-EDIT-MASK Specifies the numeric edit mask to use with the keyword
MONEY in a PRINT, MOVE, SHOW, or DISPLAY
command.

DATE-EDIT-MASK The default date edit mask to use with the keyword DATE in
the PRINT, MOVE, SHOW, or DISPLAY command, or the
LET function datetostr() or strtodate().

INPUT-DATE-EDIT-MASK The default date format to use with the INPUT command
when TYPE=DATE is specified with the command or the
input variable is a date variable. For information about edit
masks, see PRINT.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 39

Parameter Description

MONEY-SIGN Specifies the characters that replace the $ or other currency
symbol used in edit masks.

MONEY-SIGN-LOCATION Specifies where to place the MONEY-SIGN characters. Valid
values are LEFT and RIGHT.

THOUSAND-SEPARATOR Specifies the character to replace the ',' edit character.

DECIMAL-SEPARATOR Specifies the character to replace the '.' edit character.

DATE-SEPARATOR Specifies the character to replace the '/' character.

TIME-SEPARATOR Specifies the character to replace the ':' character.

EDIT-OPTION-NA Specifies the characters to use with the 'na' option.

EDIT-OPTION-AM Specifies the characters to replace 'AM'.

EDIT-OPTION-PM Specifies the characters to replace 'PM'.

EDIT-OPTION-BC Specifies the characters to replace 'BC'.

EDIT-OPTION-AD Specifies the characters to replace 'AD'.

DAY-OF-WEEK-CASE Specifies how the case for the DAY-OF-WEEK-FULL or
DAY-OF-WEEK-SHORT entries is affected when used with
the format codes 'DAY' or 'DY'. Valid values are UPPER,
 LOWER, EDIT, and NO-CHANGE. UPPER and LOWER
force the output to either all uppercase or lowercase, ignoring
the case of the format code in the edit mask. Use EDIT to
follow the case specified with the format code in the edit
mask. Use NO-CHANGE to ignore the case of the format code
and output the day of week explicitly listed in the DAY-OF-
WEEK-FULL or DAY-OF-WEEK-SHORT entries.

DAY-OF-WEEK-FULL Specifies the full names for the days of the week. SQR
considers the first day of the week to be Sunday. You must
specify all seven days.

DAY-OF-WEEK-SHORT Specifies the abbreviated names for the days of the week. SQR
considers the first day of the week to be Sunday. You must
specify all seven abbreviations.

SQR Command Reference Chapter 2

40 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameter Description

MONTHS-CASE Specifies how the case for the MONTHS-FULL or MONTHS-
SHORT entries is affected when used with the format code
'MONTH' or 'MON'. Valid values are UPPER, LOWER,
 EDIT, and NO-CHANGE. UPPER and LOWER force the
output to either all uppercase or lowercase, ignoring the case
of the format code in the edit mask. Use EDIT to follow the
case specified with the format code in the edit mask. Use NO-
CHANGE to ignore the case of the format code and format the
month explicitly listed in the MONTHS-FULL or MONTHS-
SHORT entries.

MONTHS-FULL Specifies the full names for the months of the year. SQR for
PeopleSoft considers the first month of the year to be January.
 You must specify all 12 months.

MONTHS-SHORT Specifies the abbreviated names for the months of the year.
 SQR for PeopleSoft considers the first month of the year to be
January. You must specify all 12 abbreviations.

Example

The following example illustrates the ALTER-LOCALE command:

!
! The following program segments will illustrate the various
! ALTER-LOCALE features.
!
begin-setup
 declare-variable
 date $date $date1 $date2 $date3
 end-declare
end-setup

 !
 ! Set default masks
 !
 alter-locale
 number-edit-mask = '9,999,999.99'
 money-edit-mask = '$999,999,999.99'
 date-edit-mask = 'Mon DD, YYYY'

 let #value = 123456
 let $edit = 'Mon DD YYYY HH:MI:SS'
 let $date = strtodate('Jan 01 2004 11:22:33', $edit)
 show 'With NUMBER option #Value = ' #value number
 show 'With MONEY option #Value = ' #value money
 show 'Without NUMBER option #Value = ' #value
 show 'With DATE option $Date = ' $date date
 show 'Without DATE option $Date = ' $date

Produces the following output:

With NUMBER option #Value = 123,456.00
With MONEY option #Value = $ 123,456.00
Without NUMBER option #Value = 123456.000000
With DATE option $Date = Jan 01, 2004
Without DATE option $Date = 01-JAN-04

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 41

 !
 ! Reset locale to SQR defaults and assign a multi-character
 ! money-sign.
 !
 alter-Locale
 locale = 'System'
 money-sign = 'AU$' ! Australian dollars

 let #value = 123456
 show #value edit '$999,999,999,999.99'
 show #value edit '$$$$,$$$$999,999.99'

Produces the following output:

AU$ 123,456.00
 AU$123,456.00

 !
 ! Move the money-sign to the right side of the value. Note
 ! the leading space.
 !
 alter-locale
 money-sign = ' AU$' ! Australian dollars
 money-sign-location = right

 let #value = 123456
 show #value edit '$999,999,999,999.99'
 show #value edit '$$$$,$$$$999,999.99'

Produces the following output:

 123,456.00 AU$
 123,456.00 AU$

 !
 ! Reset locale to SQR defaults and flip the thousand and
 ! decimal separator characters.
 !
 alter-locale
 locale = 'System'
 thousand-separator = '.'
 decimal-separator = ','

 let #value = 123456
 show #value edit '999,999,999,999.99'

Produces the following output:

123.456,00

 !
 ! Reset locale to SQR defaults and change the date and time
 ! separators
 !
 alter-locale
 locale = 'System'
 date-separator = '-'
 time-separator = '.'

 let $edit = 'Mon/DD/YYYY HH:MI:SS'
 let $date = strtodate('Jan/01/2004 11:22:33', $edit)
 show $date edit :$edit

Produces the following output:

Jan-01-2004 11.22.33

 !
 ! Reset locale to SQR defaults and change the text used with

SQR Command Reference Chapter 2

42 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

 ! the edit options 'na', 'am', 'pm', 'bc, 'ad'
 !
 alter-locale
 locale = 'System'
 edit-option-na = 'not/applicable'
 edit-option-am = 'a.m.'
 edit-option-pm = 'p.m.'
 edit-option-bc = 'b.c.'
 edit-option-ad = 'a.d.'

 let $value = ''
 let $edit = 'Mon DD YYYY HH:MI'
 let $date1 = strtodate('Jan 01 2004 11:59', $edit)
 let $date2 = strtodate('Feb 28 2004 12:01', $edit)
 show $value edit '999,999,999,999.99Na'
 show $date1 edit 'Mon DD YYYY HH:MI:SS PM'
 show $date2 edit 'Mon DD YYYY HH:MI:SS pm'

Produces the following output:

 Not/Applicable
Jan 01 2004 11:59:00 A.M.
Feb 28 2004 12:01:00 p.m.

 !
 ! Input some dates using the 'system' locale and
 ! output using other locales from the PSPSPSSQR.INI file.
 !
 alter-locale
 locale = 'System'
 let $date1 = strtodate('Jan 01 2004', 'Mon DD YYYY')
 let $date2 = strtodate('Feb 28 2004', 'Mon DD YYYY')
 let $date3 = strtodate('Mar 15 2004', 'Mon DD YYYY')
 show 'System:'
 show
 show $date1 edit 'Month DD YYYY' ' is ' $date1 edit 'Day'
 show $date2 edit 'Month DD YYYY' ' is ' $date2 edit 'Day'
 show $date3 edit 'Month DD YYYY' ' is ' $date3 edit 'Day'
 alter-locale
 locale = 'German'
 show
 show 'German:'
 show
 show $date1 edit 'DD Month YYYY' ' ist ' $date1 edit 'Day'
 show $date2 edit 'DD Month YYYY' ' ist ' $date2 edit 'Day'
 show $date3 edit 'DD Month YYYY' ' ist ' $date3 edit 'Day'
 alter-locale
 locale = 'Spanish'
 show
 show 'Spanish:'
 show
 show $date1 edit 'DD Month YYYY' ' es ' $date1 edit 'Day'
 show $date2 edit 'DD Month YYYY' ' es ' $date2 edit 'Day'
 show $date3 edit 'DD Month YYYY' ' es ' $date3 edit 'Day'

Produces the following output:

System:

January 01 2004 is Thursday
February 28 2004 is Saturday
March 15 2004 is Monday

German:

01 Januar 2004 ist Donnerstag
28 Februar 2004 ist Samstag
15 März 2004 ist Montag

Spanish:

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 43

01 enero 2004 es jueves
28 febrero 2004 es sábado
15 marzo 2004 es lunes

See DISPLAY , LET, MOVE ,PRINT, SHOW

Related Links
Using PSSQR.EXE Command-Line Options

ALTER-PRINTER

Syntax
ALTER-PRINTER [POINT-SIZE={point_size_num_lit|_var}] [FONT-TYPE={font_type|txt_var}]
[SYMBOL-SET={symbol_set_id|txt_var}] [FONT={font_int_lit|_var}] [PITCH={pitch_num_lit|
_var}]

Description
Alters printer parameters at runtime.

You can place the ALTER-PRINTER command in any part of an SQR program except the SETUP
section.

ALTER-PRINTER attempts to change the attributes of the current printer for the current report. If an
attribute does not apply to the current printer, it is ignored. For example, ALTER-PRINTER is ignored
if it specifies proportional fonts for a report printed on a line printer. When your program is creating
multiple reports and the printer is shared by another report, the attributes are changed for that report as
well.

Parameters

Parameter Description

POINT-SIZE Specifies the new font point size.

FONT-TYPE Specifies the new font type. Values are PROPORTIONAL or
FIXED.

SYMBOL-SET Specifies the new symbol set identifier.

FONT Specifies the new font as a number. (For example, font=3 for
Courier and font=4 for Helvetica.)

PITCH Specifies the new pitch in characters per inch.

See the DECLARE-PRINTER arguments table for information
about these arguments.

SQR Command Reference Chapter 2

44 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Example

Change the font and symbol set for the current printer:

alter-printer

font=4 ! Helvetica

symbol-set=12U ! PC-850 Multilingual

If the output prints to a PostScript printer, the SYMBOL-SET argument is ignored; however, if the .spf
file is kept (-KEEP) and later printed on an HP LaserJet, the symbol set 12U can be used.

See The DECLARE-PRINTER command and the -KEEP command-line flag

ALTER-REPORT

Syntax
ALTER-REPORT [HEADING={heading_name_txt_lit|_var|_col}]
[HEADING-SIZE={heading_size_int_lit|_var|_col}] [FOOTING={footing_name_txt_lit|_var|
_col}]
[FOOTING-SIZE={heading_size_int_lit|_var|_col}]

Description
Alters some of the report-specific functionality.

This command enables you to dynamically change the heading or footing sections that are active for the
current report. You can also change how much space the heading or footing sections occupy.

If the HEADING or FOOTING value is set to NONE, the section is disabled for the current report.

If the HEADING or FOOTING value is set to DEFAULT, the section reverts to the setting that was in
effect when the report was initiated.

If no HEADING or FOOTING value is set, the HEADING-SIZE or FOOTING-SIZE values affect the
HEADING/FOOTING currently being used.

If the ALTER-REPORT command was not invoked from within a BEGIN-HEADING or BEGIN-
FOOTING section and the page has not been written to, the assignment takes effect immediately;
otherwise, it takes effect for the next page.

Parameters

Parameter Description

HEADING Specifies the name of the BEGIN-HEADING section to use.

HEADING-SIZE Specifies the amount of space the BEGIN-HEADING section
occupies on the page.

FOOTING Specifies the name of the BEGIN-FOOTING section to use.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 45

Parameter Description

FOOTING-SIZE Specifies the amount of space the BEGIN-FOOTING section
occupies on the page

Example

The following example illustrates the ALTER-REPORT command:

begin-footing 2 name=confidental
 print 'Company Confidential' (1,1,0) center
 page-number (2,37,0)
end-footing

begin-footing 2 name=proprietary
 print 'Company Proprietary' (1,1,0) center
 page-number (2,37,0)
end-footing

begin-report
 alter-report
 footing = 'Proprietary'
 footing-size = 6 ! Increase depth

.

.

.
end-report

See The BEGIN-FOOTING and BEGIN-HEADING commands in this section.

ARRAY-ADD, ARRAY-DIVIDE, ARRAY-MULTIPLY, ARRAY-SUBTRACT

Syntax
ARRAY-ADD{src_num_lit|_var|_col}...TO dst_array_name (element_lit|_var|_col)
[field [(occurs_lit|_var|_col)]]... ARRAY-DIVIDE{src_num_lit|_var|_col}...INTO
dst_array_name (element_int_lit|_var|_col)[field [(occurs_lit|_var|_col)]]... ARRAY-
MULTIPLY{src_num_lit|_var|_col}...TIMES dst_array_name (element_int_lit|_var|_col)
[field [(occurs_lit|_var|_col)]]... ARRAY-SUBTRACT{src_num_lit|_var|_col}...FROM
dst_array_name (element_int_lit|_var|_col)[field [(occurs_lit|_var|_col)]]...

Description
These four commands perform arithmetic operations on one or more elements in an array.

The following information applies to the array arithmetic commands:

• The array must first be created with the CREATE-ARRAY command.

• The four array arithmetic commands perform on one or more source numbers, placing the result into
the corresponding field in the array.

• Array element and field occurrence numbers can be numeric literals (123) or numeric variables (#j)
and can be from zero (0) to one less than the size of the array.

• If fields are not listed, the results are placed into consecutively defined fields in the array. If fields are
listed, results are placed into those fields at the specified occurrence of the field. If an occurrence is
not specified, the zeroth (0) occurrence is used.

SQR Command Reference Chapter 2

46 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

• All fields must be of type number, decimal, float, or integer. They cannot be of type date, char, or text.

• If division by zero is attempted, a warning message appears, the result field is unchanged, and SQR
continues running.

Parameters

Parameter Description

src_num_lit|_var|_col Source values are added to, divided into, multiplied by, or
subtracted from the respective destination array fields. All
variables must be numeric in type.

dst_array_name (element_int_lit|_var|_col) [field [(occurs_
lit|_var|_col)]]

Destination array fields contain the results after the operation.
 All variables must be numeric in type.

Example

The following example adds &salary and #comm to the first two fields defined in the emps array. The
#j'th element of the array is used:

array-add &salary #comm to emps(#j)

The following example subtracts #lost, #count, and 1 from the fields loses, total, and sequence of the
#j2'th element of the stats array:

array-subtract #lost #count 1 from stats(#j2) loses total sequence

The following example multiplies occurrences 0 through 2 of the field p in the #i'th element of the
percentages array by 2:

array-multiply 2 2 2 times percentages(#i) p(0) p(1) p(2)

The following example divides the #i2'th occurrence of the salesman field of the #j'th element of the
commissions array by 100:

array-divide 100 into commissions(#j) salesman(#i2)

The following example uses the ARRAY-ADD command in an SQR program:

begin-setup
! declare arrays
create-array name=emps size=1 ! one row needed for this example
 field=Salary:number=35000 ! initialize to 35,000
 field=Comm:number=5000 ! initialize to 5,000
end-setup

begin-program
do Main
end-program

begin-procedure Main local
! Show original contents of the arrays, then the modified arrays
! array-add
! retrieve values from the only row of array "emps"
get #sal #com FROM emps(0) Salary Comm
print 'Array-Add' (+1, 1)

print 'Add 1000 to each column' (+1, 1)
print 'Salary' (+1, 3) bold underline

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 47

print 'Comm' (,25) bold underline

print #sal (+1, 1) money
print #com (,22) money

let #salary = 1000
let #commission = 1000
let #j = 0 ! address the array row with variable "#j"
! Add 1000 (in variables) to each column of row 0 (the 1st and only row)
array-add #salary #commission TO emps(#j)
! retrieved the new "added" values
get #sal #com FROM emps(0) Salary Comm
print #sal (+1,1) money
print #com (,22) money
end-procedure

See The CREATE-ARRAY command for information about creating an array.

See The CLEAR-ARRAY command for information about clearing or initializing an array.

See The GET, PUT, and LET commands for information about using arrays.

ASK

Syntax
ASK substitution_variable [prompt]

Description
Retrieves values for a compile-time substitution variable. The retrieval can be by user input or command-
line arguments, or as entries in the @file on the command line.

The value of the substitution variable replaces the reference variable in the program. Variables are
referenced by enclosing the variable name in braces, for example, '{state_name}'. When the substitution
variable is text or date, enclose the brackets with single quotes. Substitutions are made when the program
is compiled and are saved in the .sqt file. Each variable can be referenced multiple times.

ASK is used only in the SETUP section and must appear prior to any substitution variable references.

You cannot break the ASK command across program lines.

Parameters

Parameter Description

Substitution_variable The variable to be used as the substitution variable.

Prompt An optional, literal text string to be displayed as a prompt if
the value for the substitution variable is not entered on the
command line or in an argument file.

SQR Command Reference Chapter 2

48 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Example

In the following example, state takes the value entered by the user in response to the prompt Enter state
for this report:

begin-setup
 ask state 'Enter state for this report'
end-setup
 ...
begin-select
name, city, state, zip
from customers where state = '{state}'
end-select

See The INPUT command for information about input at runtime.

Related Links
"Compiling SQR Programs and Using SQR Execute" (PeopleTools 8.53: SQR for PeopleSoft Developers)

BEGIN-DOCUMENT

Syntax
BEGIN-DOCUMENT position END-DOCUMENT

Description
Begins a document paragraph . A document paragraph enables you to write free-form text to create form
letters, invoices, and so on.

You can reference database columns, SQR variables, and document markers within a document. Their
locations in the document determine where they print on the page. You should not use tabs inside a
document paragraph. To indent text or fields, use the spacebar. Note also that if the variables being
printed inside a document paragraph are variable in length, you might need to manipulate the variable
outside the document paragraph.

Note: A document must be run before you can reference its document markers. Because documents can
be printed at relative positions on the page, the actual location of a document marker may not be known
by SQR until the document itself has been run.

Parameters

Parameter Description

position The location on the page where the document begins. The
position can be fixed or relative to the current position. See the
POSITION command for a description and examples of the
position parameter.

Example

The following example illustrates the BEGIN-DOCUMENT command

begin-document (1,1)

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 49

.b
Dear $firstname
 ...
end-document

See END-DOCUMENT

Related Links
"Sample Program for Form Letters" (PeopleTools 8.53: SQR for PeopleSoft Developers)

BEGIN-EXECUTE

Syntax
BEGIN-EXECUTE [CONNECTION=uq_txt_lit] [ON-ERROR=procedure[(arg1[,argi]...)]]
[RSV=num_var] [STATUS=list_var|num_var|txt_var] [SCHEMA=txt_lit|txt_var]
[PROCEDURE=txt_lit|txt_var [PARAMETERS=(arg1[IN|INOUT|NULL[,argi[IN|
INOUT]]...]])] |COMMAND=txt_lit|txt_var |GETDATA=txt_lit|txt_var]
[BEGIN-SELECT[BEFORE=sqr_procedure[(arg1[,argi]...]])]]
[AFTER=sqr_procedure[(arg1[,argi]...]])]]] col-name type=char|text|number|date[edit-
mask] [on-break]... FROM ROWSETS=({m,-n,n-m,m-|all}) |FROM PARAMETER=txt_lit|txt_var
END-SELECT] END-EXECUTE

Description
Begins a new construct. In a BEGIN-EXECUTE paragraph, the syntax of BEGIN-SELECT varies as
shown in the following syntax:

Parameters

Parameter Description

CONNECTION Identifies a name previously specified with the DECLARE-
CONNECTION construct. If you do not specify a name, SQR
Server uses the default connection. The default connection is
defined by the command-line entries for datasource (DSN),
 username (USER), and password (PASSWORD). Name is not
case-sensitive.

ON-ERROR Declares the procedure to run if an error occurs.

RSV Row Set Variable. A global SQR variable containing the row
set being retrieved.

STATUS Identifies a list or scalar variable that receives the status of the
stored procedure.

SCHEMA Identifies the location in the datasource of the object being
queried.

PROCEDURE The name of the datasource-stored procedure to be run. The
name may include spaces. If the datasource is SAP R/3, this
procedure is a BAPI.

SQR Command Reference Chapter 2

50 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameter Description

PARAMETER_LIST Scalar variables, list variables, or both of the form list_var
| num_lit | txt_lit | txt_var | num_var | any_col. If you do
not specify the keywords IN or INOUT, the default value is
IN. Specify all parameters in order; leaving any parameters
unnamed causes a syntax error. To ignore a parameter, fill its
position with the keyword NULL. This results in a null value
for that parameter position.

COMMAND A text string that you pass to the datasource without
modification by SQR. This string can include embedded SQR
variables.

BEFORE/AFTER Names an SQR procedure to be run before or after the row
set. The procedure is not performed unless at least one row is
returned from the specified row sets.

FROM ROWSET Special case addition to the BEGIN-SELECT syntax.
 Available for use with all datasource types, including SAP
R/3 and JDBC. Names the row sets from which to retrieve the
column variables. If you specify more than one row set, use
identical column name/type signatures. Row set numbers must
be sequential from left to right within the parentheses, and
they must not overlap as in this example: (1–3, 2–4). Numeric
literals or #variables are allowed.

FROM PARAMETER Special case addition to the BEGIN-SELECT syntax.
 Available only for SAP R/3 datasources. Use only with the
PROCEDURE keyword. This argument names an output
parameter containing one or more rows from which the
column variables are to be retrieved.

PROPERTIES = (txt_var | strlit = txt_var | strlit | num_var |
num_lit | any_col, …)

Specifies a set of keyword-value pairs that represent
modifications to be made to the properties of the datasource
(specified by the CONNECTION = statement). An arbitrary
number of such pairs can be specified.

Note: This is a similar concept to the PARAMETERS = statement in DECLARE-CONNECTION, with
the minor difference that the properties specified here alter the flow of returned information, as opposed
to just setting login properties. Can be used in conjunction with any data-access model (Procedure,
Command, Getdata). An application of this statement would be in the MDB setting, where it might be
used to specify such things as Level, Generation, or Include-Column, for example, PROPERTIES =
('SetColumn' = 5)

Example

The following example illustrates the BEGIN-EXECUTE command

begin-setup
 declare-variable
 date $when_ordered

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 51

 text $ship_method
 integer #theRow
 integer #theStatus
 integer #howMany
 end-declare
end-setup

input #howMany type=integer
input $pword
let %parm1 = list($when_ordered, $ship_method, #howMany)

declare-connection SAPR3
user=scott
parameters=clientno=5;node=starfish;
end-declare

alter-connection
 name=SAPR3
 password=$pword

Begin-Execute
 connection=SAPR3
 rsv=#theRow
 status=#theStatus
 on-error=it_failed(#theStatus)
 procedure='CreditHistory version 5'
 parameters=(%parm1,'recalculate')

 print 'proc ran OK, status is ' (+1,1)
 print #theStatus (,+5) edit 999

Begin-Select before=do_eject after=cleanup
city &col=char (1,1) on-break level=1 after=city-tot
keyval type=number (1,+1)
rcvd type=date (0,+2)
from Rowsets=(1)
End-Select

End-Execute

See EXECUTE

BEGIN-FOOTING

Syntax
BEGIN-FOOTING footing_lines_int_lit [FOR-REPORTS=(ALL|report_name1[,report_namei]...)]
[FOR-TOCS=(ALL|toc_name1[,toc_namei]...)] [NAME={footing_name}] END-FOOTING

Description
Begins the FOOTING section.

The FOOTING section defines and controls the information to be printed at the bottom of each page.

You must define the report_name in a DECLARE-REPORT paragraph. If you do not use DECLARE-
REPORT, the footing is applied to all reports. You can also specify FOR-REPORTS=(ALL). Note that the
parentheses are required.

You can specify more than one BEGIN-FOOTING section; however, only one can exist for each report.
A BEGIN-FOOTING section with FOR-REPORTS=(ALL) can be followed by other BEGIN-FOOTING
sections for specific reports, which override the ALL setting.

SQR Command Reference Chapter 2

52 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

You must define the toc_name in a DECLARE-TOC paragraph. You can also specify FOR-TOCS=(ALL).
Note that the parentheses are required.

You can specify more than one BEGIN-FOOTING section; however, only one section can exist for
each table of contents. A BEGIN-FOOTING section with FOR-TOCS=(ALL) can be followed by other
BEGIN-FOOTING sections for a specific table of contents, which override the ALL setting.

The BEGIN-FOOTING section can be shared between reports and tables of contents.

You can print outside the footing area of the report—that is, in the body area—from the footing, but you
cannot print in the footing area from the body.

Parameters

Parameter Description

footing_lines_int_lit The number of lines to be reserved at the bottom of each page.

FOR-REPORTS Specifies the reports to which this footing applies. This
argument is required only for a program with multiple reports.
 If you are writing a program that produces a single report, you
can ignore this argument.

FOR-TOCS Specifies the table of contents to which this heading applies.

NAME Specifies the name to be associated with this footing section.
 Use this parameter with the ALTER-REPORT command. The
name cannot be NONE or DEFAULT.

Example

The following example illustrates the BEGIN-FOOTING command

begin-footing 2 for-reports=(customer, summary)
 print 'Company Confidential' (1,1,0) center
 page-number (2,37,0)
end-footing
begin-footing 2 ! For all reports
 print 'Division Report' (1,1,0) center
 page-number (2,37,0)
end-footing
begin-footing 2 for-tocs=(all)
 print 'Table of Contents' (2,1)
 let $page = roman(#page-count) ! ROMAN numerals
 print $page (,64)
end-footing

See The ALTER-REPORT command for information about dynamic headings and footings.

See The DECLARE-LAYOUT command for information about page layout.

See The DECLARE-REPORT command for information about programs with multiple reports.

See The DECLARE-TOC command for information about the table of contents.

See The END-FOOTING command.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 53

BEGIN-HEADING

Syntax
BEGIN-HEADING heading_lines_int_lit [FOR-REPORTS=(ALL| report_name1[,
report_namei]...)] [FOR-TOCS=(ALL|toc_name1[, toc_namei]...)] [NAME={footing_name}]
END-HEADING

Description
Begins a HEADING section.

The HEADING section defines and controls information to be printed at the top of each page.

You must define the report_name in a DECLARE-REPORT paragraph. If you do not use DECLARE-
REPORT, the heading is applied to all reports. You can also specify FOR-REPORTS=(ALL). Note that
the parentheses are required.

You can specify more than one BEGIN-HEADING section; however, only one can exist for each report.
A BEGIN-HEADING section with FOR-REPORTS=(ALL) can be specified followed by other BEGIN-
HEADING sections for specific reports, which override the ALL setting.

You must define the toc_name in a DECLARE-TOC paragraph. You can also specify FOR-TOCS=(ALL).
Note that the parentheses are required.

You can specify more than one BEGIN-HEADING section; however, only one section can exist for each
table of contents. A BEGIN-HEADING section with FOR-TOCS=(ALL) can be specified, followed by
other BEGIN-HEADING sections for specific tables of contents, which override the ALL setting.

The BEGIN-HEADING section can be shared between reports and a table of contents.

You can print outside the heading area of the report—that is, in the body area—from the heading, but you
cannot print in the heading area from the body.

Parameters

Parameter Description

heading_lines_int_lit The number of lines to be reserved at the top of each page.

FOR-REPORTS Specifies the reports to which this heading applies. This is
required only for a program with multiple reports. If you are
writing a program that produces a single report, you can ignore
this argument.

FOR-TOCS Specifies the table of contents to which this heading applies.

NAME Specifies the name to be associated with this heading
section. This option cannot be used if FOR-REPORTS or
FOR-TOCS is also specified. Use this parameter with the
ALTER-REPORT command. The name cannot be NONE or
DEFAULT.

SQR Command Reference Chapter 2

54 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Example

The following example illustrates the BEGIN-HEADING command

begin-heading 2 ! Use 2 lines for
print $current-date (1,1) edit MM/DD/YY ! heading,
 print 'Sales for the Month of ' (1,30) ! 2nd is blank.
 print $month ()
end-heading
begin-heading 2 for-tocs=(all)
 print 'Table of Contents' (1,1) bold center
end-heading

See The ALTER-REPORT command for information about dynamic headings/footings

See The DECLARE-LAYOUT command for information about page layout

See The DECLARE-REPORT command for information about programs with multiple reports

See The DECLARE-TOC command for information about Table of Contents

See The END-HEADING command

BEGIN-PROCEDURE

Syntax
BEGIN-PROCEDURE procedure_name [LOCAL|(arg1 [, argi]...)] END-PROCEDURE

Description
Begins a procedure. A procedure is one of the most powerful parts of the SQR language. It enables
modularized functions and provides standard execution control.

The procedure name must be unique. The name is referenced in DO commands. Procedures contain other
commands and paragraphs (for example, SELECT, SQL, DOCUMENT).

By default, procedures are global. That is, variables or columns defined within a procedure are known and
can be referenced outside of the procedure.

A procedure is local when the word LOCAL appears after the procedure name or when the procedure is
declared with arguments. That is, variables declared within the procedure are available only within the
procedure, even when the same variable name is used elsewhere in the program. In addition, any query
defined in a local procedure has local database, column-variable names assigned that do not conflict with
similarly named columns defined in queries in other procedures.

SQR procedures can be called recursively. However, unlike C or Pascal, SQR maintains only one copy of
the local variables and they are persistent.

Arguments passed by a DO command to a procedure must match in number:

• Database text or date columns, string variables, and literals can be passed to procedure string
arguments. If you are passing a date string to a date argument, the date string must be in the format
specified by the SQR_DB_DATE_FORMAT setting, or a database-dependent format, or the database-
independent format SYYYYMMDD[HH24[MI[SS[NNNNNN]]]].

See the Default Database Formats table in the PRINT command description.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 55

• Database numeric columns, numeric variables, and numeric literals can be passed to procedure
numeric arguments.

• Numeric variables (DECIMAL, INTEGER, FLOAT) can be passed to procedure numeric arguments
without regard to the argument type of the procedure. SQR automatically converts the numeric values
upon entering and leaving the procedure as required.

• Date variables or columns can be passed to procedure date or string arguments . When a date variable
or column is passed to a string argument, the date is converted to a string according to the following
rules:

• For DATETIME columns and SQR DATE variables, SQR uses the format specified by the
SQR_DB_DATE_FORMAT setting.

If this has not been set, SQR uses the first database-dependent format as listed in the Default
Database Formats table.

• For DATE columns, SQR uses the format specified by the SQR_DB_DATE_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format listed in the Default Database Formats table.

• For TIME columns, the format specified by the SQR_DB_TIME_ONLY_FORMAT setting is
used.

If this has not been set, SQR uses the format listed in the TIME Column Formats table.

To reference or declare global variables from a local procedure, add a leading underscore to the variable
name, after the initial $, #, or &. (Example: #_amount)

Note: All the SQR-reserved variables, such as #sql-status and $sql-error, are global variables. Within a
local procedure, they must be referenced by the leading underscore: #_sql-status or $_sql-error.

Parameters

Parameter Description

procedure_name Specifies a unique name for this procedure. Procedure names
are not case-sensitive.

LOCAL Specifies that this is a local procedure.

arg1 [, argi]... Specifies the arguments to be passed to or returned from the
procedure. Arguments can be string variables ($arg), numeric
variables (#arg), or date variables ($arg). If you want to return
a value passed back to the calling DO command, place a colon
(:) before the variable name. The arguments of the BEGIN-
PROCEDURE and DO commands must match in number,
 order, and type.

SQR Command Reference Chapter 2

56 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Example

The following example shows a procedure, main, that also runs the procedure print_list for each row
returned from the Select statement. No parameters are passed to print_list:

begin-procedure main
begin-select
name
address
phone
 do print_list
from custlist order by name
end-select
end-procedure ! main

In the following example, five arguments are passed to the Calc procedure:

do Calc (&tax, 'OH', &county_name, 12, #amount)

begin-procedure Calc(#rate, $state, $county, #months, :#answer)
.
.
.
let #answer = ...
end-procedure

In the preceding example, the value for :#answer is returned to #amount in the calling DO command.

The following example references global variables:

begin-procedure print-it ($a, $b)
print $_deptname (+2,5,20) ! $deptname is
print $a (,+1) ! declared outside
print $b (,+1) ! this procedure
end-procedure

See DO, END-PROCEDURE

BEGIN-PROGRAM

Syntax
BEGIN-PROGRAM END-PROGRAM

Description
Begins the PROGRAM section of an SQR program.

After processing any commands in the SETUP section, SQR starts program execution at the BEGIN-
PROGRAM section. The PROGRAM section typically contains a list of DO commands, though other
commands can be used. This is the only required section in an SQR program.

Example

The following example illustrates the BEGIN-PROGRAM command:

begin-program
 do startup
 do main
 do finish
end-program

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 57

See BEGIN-REPORT, BEGIN-SETUP, END-PROGRAM

BEGIN-SELECT

Syntax
BEGIN-SELECT[DISTINCT][-Cnn][-Bnn][-XP][-NR][-SORTnn] [-LOCK{RR|CS|RO|RL|XX}][-
DBdatabase] [-DBconnectionstring] [LOOPS=nn][ON-ERROR=procedure[(arg1[,argi]...)]]
{column} [&synonym] {expression &synonym} {[$columnname] &synonym = (char | number |
date)} [SQR commands] FROM
{table,...|[table:$tablename]} [additional SQL]
[$variable] END-SELECT

Description
Begins a SELECT paragraph . A SELECT paragraph is the principal means of retrieving data from the
database and printing it in a report. A SELECT paragraph must be inside a PROCEDURE or BEGIN-
PROGRAM section.

Note that SELECT * FROM is not a valid SQR SQL statement. BEGIN-SELECT can be placed inside a
BEGIN-PROGRAM section.

Parameters
The table describes the parameters:

Note: The arguments can span multiple lines; however, the first character position cannot be used
unless the continuation character terminated the previous line. If the first character position is used with
arguments spanning multiple lines, the argument will be misconstrued as a Select column.

Parameter Description

DISTINCT Specifies that duplicate rows be eliminated from your query.

-Cnn (Oracle) Sets the context area size (buffer size for query) to
larger or smaller than the default. This option is rarely needed.

-Bnn (Oracle, ODBC, Sybase CT-Lib) Sets the number of rows to
retrieve at one time. This is for performance purposes only.
 Regardless of this setting, all rows are selected. The default,
 without using -B, is 10 rows. An overall setting for a program
can be indicated on the SQR command line with -B, which can
be overridden by a separate -B flag on each BEGIN-SELECT
command.

SQR Command Reference Chapter 2

58 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameter Description

-XP (Sybase) Prevents the creation of a stored procedure for the
SELECT paragraph. When -XP is specified, SQR generates
a new SQL statement using the current value of any bind
variables each time the BEGIN-SELECT is is carried out. This
disables the potential performance optimization created by
stored procedures. Use this flag if you change the variables
frequently during execution and you do not want SQR to
automatically create a stored procedure. You can also use -
XP if the username/password to your program does not have
permission to create stored procedures.

If you do not change variables frequently during execution,
 the use of stored procedures may optimize your program's
performance. In that case, do not use this argument. Note also
that -XP is available as a command-line flag.

-XP improves performance when you use bind variables
and dynamic query variables in the same query. Each time
the dynamic query variable changes in value, a new stored
procedure is created. If the dynamic query variable changes
often and the query contains bind variables, you create many
stored procedures if you do not use -XP.

-DBconnectionstring (ODBC) Specifies the ODBC connection string for this
SELECT paragraph only. A connection string has the
following syntax:

DSN=data_source_name[;keyword=value[;keyword=value [;.
..]]]

This option enables you to combine data from multiple
databases in one program. For example, a connection string for
an Oracle database named ora8 might look like this:

'DSN=ora8;UID=scott;PWD=tiger'

where DSN, UID, and PWD are keywords common to
all drivers (representing name, user ID, and password,
 respectively). Connection string options are always separated
by a semicolon (;). Other driver-specific options can be added
to the connection string by driver-defined keywords. See your
ODBC driver documentation for available options.

LOOPS Specifies the number of rows to retrieve. After the specified
number has been processed, the SELECT loop exits.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 59

Parameter Description

ON-ERROR Declares a procedure to run if an error occurs due to incorrect
SQL syntax. Error trapping should be used with dynamic
query variables. SELECT paragraphs without dynamic
variables are checked for errors before the program is
processed and therefore do not require a special error
procedure.

Optionally, you can specify arguments to be passed to the ON-
ERROR procedure. Arguments can be any variable, column,
 or literal.

Example

In this example, duplicate rows are not selected for the city, state, and zip columns because of the distinct
keyword. The numbers within parentheses accompanying city, state, and zip define the column positions
of these rows. Column names cannot have spaces in front of them.

See "Using Column Variables in Conditions" (PeopleTools 8.53: SQR for PeopleSoft Developers)

begin-select distinct
city (1,1,30)
state (0,+2,2)
zip (1,+3,6)
from custlist order by city
end-select

In this example, the first two columns may be present when the statement is compiled. The column
cust_id is declared to be a number. A runtime error occurs if the database table, as identified by the
variable $table_name, declares it to be something other than a number.

begin-select loops=100
[$col_var_char] &col1=char
[$col_var_num] &col2=number
cust_id &id=number
from [$table_name]
[$where clause]
[$order_by_clause]
end-select

In this example, the embedded SQR command Do Print_Row is carried out once for each row.

begin-select distinct
city (1,1,30)
state (0,+2,2)
zip (1,+3,6)
 Do Print_Row
from custlist order by city
end-select

See END-SELECT , EXIT-SELECT

Related Links
"Setting Up the Sample Database" (PeopleTools 8.53: SQR for PeopleSoft Developers)
"Using Dynamic SQL" (PeopleTools 8.53: SQR for PeopleSoft Developers)
"Using SQL Error Checking" (PeopleTools 8.53: SQR for PeopleSoft Developers)

SQR Command Reference Chapter 2

60 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

BEGIN-SETUP

Syntax
BEGIN-SETUP END-SETUP

Description
Begins a SETUP section. This optional section is processed prior to the BEGIN-PROGRAM, BEGIN-
HEADING, and BEGIN-FOOTING sections.

The SETUP section should be the first section in the program.

The SETUP section contains commands that determine the overall characteristics of the program. The
commands used in the SETUP section cannot be used elsewhere unless specified. The SETUP section can
include the following commands:

ASK
BEGIN-SQL

(The BEGIN-SQL command can also be used in BEGIN-PROCEDURE paragraphs.)

CREATE-ARRAY

(The CREATE-ARRAY command can also be used in the other sections of an SQR program.)

DECLARE-CHART
DECLARE-IMAGE
DECLARE-LAYOUT
DECLARE-PRINTER
DECLARE-PROCEDURE
DECLARE-REPORT
DECLARE-VARIABLE

(The DECLARE-VARIABLE command can also be used in LOCAL procedures.)

DECLARE-TOC
LOAD-LOOKUP

(The LOAD-LOOKUP command can also be used in the other sections of an SQR program.)

USE

(Sybase and Microsoft SQL Server only.)

Example

The following example illustrates the BEGIN-SETUP command:

begin-setup
 declare-layout customer_list
 paper-size=(8.5, 11)
 left-margin=1.0
 right-margin=1.0
 end-declare
end-setup

See ASK, BEGIN-SQL, CREATE-ARRAY, LOAD-LOOKUP , USE

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 61

BEGIN-SQL

Syntax
BEGIN-SQL[-Cnn][-XP][-NR][-SORTnn] [-LOCK{RR|CS|RO|RL|XX}]
[-DBdatabase][-DBconnectionstring] [ON-ERROR=procedure[(arg1[,argi]]...)]! In the
SETUP section
|[ON-ERROR={STOP|WARN|SKIP}](insetup)! Outside the SETUP section
END-SQL

Description
Begins an SQL paragraph . This paragraph can reside in a BEGIN-PROCEDURE, BEGIN-SETUP, or
BEGIN-PROGRAM section.

BEGIN-SQL starts all SQL statements except SELECT, which has its own BEGIN-SELECT paragraph.
If a single paragraph contains more than one SQL statement, each statement except the last must be
terminated by a semicolon (;).

If a single paragraph contains more than one SQL statement, and the -C flag is used, all are assigned the
same context area size or logical connection number.

Only non-SELECT statements can be used (except SELECT INTO for Sybase and Microsoft SQL
Server). Columns and variables can be referenced in the SQL statements.

Stored Procedures

For Oracle, stored procedures are implemented by PL/SQL in the BEGIN-SQL paragraph. For Sybase
and Microsoft SQL Server, SQR supports stored procedures with the EXECUTE command.

For some databases, such as Oracle, using DDL statements within a BEGIN-SQL paragraph causes a
commit of outstanding inserts, updates, and deletes and releases cursors. For this reason, ensure that these
are done in the proper order or the results will be unpredictable.

Oracle PL/SQL

For Oracle, PL/SQL is supported in a BEGIN-SQL paragraph. This requires an additional semicolon at
the end of each PL/SQL statement.

For Oracle PL/SQL:

begin-sql
declare
 varpl varchar2 (25);;
 var2 number (8,2);;
begin
varpl :='abcdefg';;
$v1 :=varpl;;
$v2 :='1230894asd';;
var2 :=1234.56;;
#v :=var2;;
end;;
end-sql

For Oracle stored procedures:

begin-sql
begin
#dept_number :=get_dept_no($dept_name);;
end;;

SQR Command Reference Chapter 2

62 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

end-sql

Parameters

Parameter Description

-Cnn (Oracle) Sets the context area size (buffer size for query) to
larger or smaller than the default. This option is rarely needed.

-XP (Sybase) Prevents the creation of a stored procedure for the
SQL paragraph. When -XP is specified, SQR generates a new
SQL statement using the current value of the bind variables
each time the BEGIN-SQL is carried out. This disables the
performance optimization created by stored procedures.
 Use this flag if you change the variables frequently during
execution and you do not want SQR to automatically create
stored procedures. You can also use it if your program does not
have permission to create stored procedures.

If you do not change variables frequently during execution,
 the use of stored procedures optimizes the performance of the
program. In that case, do not use this argument.

-XP improves performance when you use bind variables
and dynamic query variables in the same query. Each time
the dynamic query variable changes in value, a new stored
procedure is created. If the dynamic query variable changes
often and the query contains bind variables, you create many
stored procedures if you do not use -XP.

-DBconnectionstring (ODBC) Specifies the ODBC connection string for this SQL
paragraph only. A connection string has the following syntax:

DSN=data_source_
name[;keyword=value[;keyword=value[;...]]]

This option enables you to combine data from multiple
databases in one program. For example, a connection string for
an Oracle database named ora8 might look like this:

'DSN=ora8;UID=scott;PWD=tiger'

where DSN, UID, and PWD are keywords common to
all drivers (representing name, user ID, and password,
 respectively). Connection string options are always separated
by a semicolon (;). Other driver-specific options can be added
to the connection string with driver-defined keywords. See
your ODBC driver documentation for available options.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 63

Parameter Description

ON-ERROR Declares a procedure to run if an error occurs due to incorrect
SQL syntax except when the statement is run in a BEGIN-
SETUP section. By default, SQR reports any error and then
halts; if an error procedure is declared, you can trap errors,
 report or log them, and continue processing. The procedure
is invoked when an error occurs in any SQL statement in the
paragraph. After the error procedure ends, control returns to
the next SQL statement.

Optionally, you can specify arguments to be passed to the ON-
ERROR procedure. Arguments can be any variable, column,
 or literal.

If ON-ERROR is used in the SETUP section, it is a condition
flag supporting the following conditions:

STOP: Do not run the program.

WARN: Run the program but with a warning message.

SKIP: Ignore any errors and run the program.

Example

The following example illustrates the BEGIN-SQL command:

begin-sql
update orders set invoice_num = #next_invoice_num

where order_num = &order_num
end-sql

begin sql
delete orders

where order_num = &order_num;
insert into orders values ($customer_name, #order_num,...)
end-sql

See END-SQL, BEGIN-PROCEDURE, EXECUTE

See The -S command-line flag

Related Links
"Using Dynamic SQL" (PeopleTools 8.53: SQR for PeopleSoft Developers)
"Using SQL Error Checking" (PeopleTools 8.53: SQR for PeopleSoft Developers)
"Using SQL Statements in SQR" (PeopleTools 8.53: SQR for PeopleSoft Developers)

BREAK

Syntax
BREAK

SQR Command Reference Chapter 2

64 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Description
Causes an exit from within an EVALUATE or WHILE command. Execution then continues to the
command immediately following the END-WHILE or END-EVALUATE.

This command is used inside a WHILE ... END-WHILE loop or within an EVALUATE command.

Related Links

See Also: WHILE, EVALUATE

CALL, CALL SYSTEM

Syntax
CALL subroutine USING {src_txt_lit|_var|_col}|{ src_num_lit|_var|_col}
{dst_txt_var|_num_var} [param]

To issue operating system commands from within an SQR program, use the following syntax:

CALL SYSTEM USING command status [WAIT
| NOWAIT]

Description
Issues an operating system command or calls a subroutine that you have written in another language, such
as C or COBOL, and passes the specified parameters.

You can write your own subroutines to perform tasks that are awkward in SQR. Subroutines can be
written in any language.

Warning! Oracle recommends that the UCALL function not use any database calls because it may cause
erroneous results.

Used in an SQR program, CALL has the following format:

 CALL your_sub USING source destination [param_literal]
 CALL SYSTEM USING command status [WAIT|NOWAIT]

The CALL SYSTEM is a special subroutine that is provided as part of SQR to enable the program to
issue operating system commands. Its arguments, command, status, and WAIT|NOWAIT are described
subsequently.

The values of the source and destination variables and the parameter's literal value are passed to your
subroutine. Upon return from the subroutine, a value is placed in the destination variable.

You must write the subroutine and call it in one of the supplied UCALL routines. Optionally, you could
rewrite UCALL in another language instead.

The source file UCALL.C contains sample subroutines written in C. The UCALL function takes the
following arguments:

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 65

Argument Description How Passed

callname Name of the subroutine. By reference with a maximum of 31
characters, null terminated.

strsrc Source string. By reference with a maximum of 255
characters, null terminated.

strdes Destination string. By reference with a maximum of 255
characters.

dblsrc Source double floating point. By reference.

dbldes Destination double floating point. By reference.

param Subroutine parameter string. It must be a
literal.

By reference with a maximum of 80
characters, null terminated.

When you use the CALL command, your arguments are processed in the following way:

• Calling arguments are copied into the variables depending on the type of argument. Strings are placed
into strsrc and numerics are placed into dblsrc.

• Return values are placed into strdes or dbldes depending on whether your destination argument for
CALL is a string or numeric variable.

The destination arguments can also be used to pass values to your subroutine.

To access your subroutine, add a reference to it in UCALL and pass along the arguments that you need.

You must relink SQR to CALL after compiling a user-defined function that becomes another SQR
function.

If you have created a new object file, you must add your subroutine to the link command file: in UNIX/
Linux it is called SQRMAKE; in Microsoft Windows it is called SQREXT.MAK. (Alternatively, you
could add your routine to the bottom of the UCALL source module that is already included in the link).

Your subroutine and calling SQR program are responsible for passing the correct string or numeric
variables and optional parameter string to the subroutine. No checking is performed.

Parameters

Parameter Description

subroutine Specifies the name of your subroutine.

src_txt_lit|_var|_col Specifies a text column, variable, or literal that is to be input to
the called subroutine.

src_num_lit|_var|_col Specifies a numeric column, variable (decimal, float, or
integer), or literal that is to be input to the called subroutine.

SQR Command Reference Chapter 2

66 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameter Description

dst_txt_var|_num_var Specifies a text or numeric variable (decimal, float, or integer)
into which the called subroutine is to place the return result.

param Specifies an optional alphanumeric string of characters to be
passed as a parameter to the subroutine.

SYSTEM Specifies that this CALL command issues an operating system
command.

command Specifies the operating system command to carry out. The
command can be a quoted string, string variable, or column.

status Contains the status returned by the operating system. The
status must be a numeric variable. The value returned in status
is system-dependent as described here:

UNIX/Linux: Zero (0) indicates success. Any other value is
the system error code.

PC/ Microsoft Windows: A value less than 32 indicates an
error.

WAIT|NOWAIT (Microsoft Windows only): WAIT specifies that SQR suspend
its execution until the CALL SYSTEM command has finished
processing. NOWAIT specifies that SQR start the CALL
SYSTEM command but continue its own processing while that
command is in progress.

For Microsoft Windows, the default is NOWAIT. On UNIX
\Linux operating systems, the behavior is always WAIT.

Example

For example, if your program runs under UNIX and you want to make a copy of a file, you can use the
following code in your program:

!Executing a UNIX command from an SQR program
Let $Command_String='cp /usr/tmp/file1.dat /usr/tmp/file2.dat'
Call System Using $Command_String #Status
If #Status<>0
 Show 'Error executing the command in Unix: '$command
End-If

See these sample subroutines included in the UCALL source file:

• TODASH shows how strings can be manipulated.

• SQROOT demonstrates how to access numerics.

• SYSTEM invokes a secondary command processor.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 67

The following code calls these subroutines:

call todash using $addr $newaddr '/.', ! Convert these to
 ! dashes
call sqroot using #n #n2 ! Put square root of
 ! #n into #n2
call sqroot using &hnvr #j ! Hnvr is numeric
 ! database column
call system using 'dir' #s ! Get directory listing

The following example uses the SYSTEM argument to issue an operating system command. Some
operating systems enable you to invoke a secondary command processor to enter one or more commands
and then return to SQR.

! Unix (Type 'exit' to return to SQR)
!
let $shell = getenv('SHELL')
if isblank($shell)
 let $shell = '/bin/sh'
end-if
call system using $shell #unix_status

!Windows (Type 'exit' to return to SQR)
!
let $comspec = getenv('COMSPEC')
let $cmd = comspec || '/c' ||$comspec || ' /k'
call system using $cmd #win_status wait

The following step-by-step example shows how to add a user-defined subroutine to SQR so that it can be
invoked from SQR with the CALL command. For this example, the C function initcap, which makes the
first letter of a string uppercase, is added. The function accepts two parameters. The first parameter is the
string to which the initcap function is applied. The second is the resultant string.

To add the initcap function to SQR, you need to make the following modifications to the UCALL.C file
that was provided with SQR:

1. Add the prototype for the initcap function:

static void initcap CC_ARGS((char *, char *));

2. Modify the UCALL routine in the UCALL.C file.

Specifically, add an else if statement at the end of the if statement to check for the initcap function:

 void ucall CC_ARGL((callname, strsrc, strdes, dblsrc, dbldes, params))
 ...

 /* If other subroutines, add "else if..." statement for each */
 else if (strcmp(callname,"initcap") == 0)
 initcap(strsrc, strdes);
 else
 sq999("Unknown CALLed subroutine: %s\n", callname);
 return;
 }

3. At the end of the UCALL.C file, add the initcap routine listed in the following example.

The routine name must be lowercase; however, in your SQR program, it can be referenced by using
either uppercase or lowercase.

static void initcap CC_ARGL((strsrc, strdes))
CC_ARG(char *, strsrc) /* Pointer to source string */
CC_LARG(char *, strdes) /* Pointer to destination string */
 {

SQR Command Reference Chapter 2

68 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

 int nIndex;
 int nToUpCase;
 char cChar;

 nToUpCase = 1;
 for (nIndex = 0; cChar = strsrc[nIndex]; nIndex++)
 {
 if (isalnum(cChar))
 {
 if (nToUpCase)
 strdes[nIndex] = islower(cChar) ? toupper(cChar) : cChar;
 else
 strdes[nIndex] = isupper(cChar) ? tolower(cChar) : cChar;
 nToUpCase = 0;
 }
 else
 {
 nToUpCase = 1;
 strdes[nIndex] = cChar;
 }
 }
 strdes[nIndex] = '\0';
 }

Note: The CC_ARG macros are defined in the UCALL.C source module. The macros enable the
programmer to define a fully prototyped function without concern for whether the C compiler supports
the feature.

After these modifications, recompile UCALL.C and relink SQR. See the programming manual for your
particular machine for details.

Finally, the following example shows a simple SQR program that uses the initcap function:

begin-program
 input $name 'Enter the first name '! Get the first name from the user
 lowercase $name ! Set the first name to all lowercase
 call initcap using $name $capname ! Now set the first character to uppercase
 input $last 'Enter the last name ' ! Get the last name from the user
 lowercase $last ! Set the last name to all lowercase
 call initcap using $last $caplast ! Now set the first character to uppercase
 .
 .
 .

See The LET command for information about user-defined functions using UFUNC. C that can
be used in the context of an expression and that can either or both pass and return any number of
arguments.

CLEAR-ARRAY

Syntax
CLEAR-ARRAY NAME=array_name

Description
Resets each field of an array to its initial value.

The CLEAR-ARRAY command resets each field of the named array to the initial value specified for that
field in the CREATE-ARRAY command. If no initial value was specified, numeric fields are reset to zero,
text fields are reset to null, and date fields are reset to null. CLEAR-ARRAY also releases all memory that
was used by the specified array and returns it to its pristine state.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 69

Parameters

Parameter Description

NAME Specifies the name of the array to be cleared.

Example

The following example illustrates the CLEAR-ARRAY command:

clear-array name=custs

See CREATE-ARRAY

CLOSE

Syntax
CLOSE {filenum_lit|_var_col}

Description
Closes a file, specified by its file number.

Closes a flat file that was previously opened with the OPEN command.

Parameters

Parameter Description

filenum_lit|_var_col Specifies the number assigned to the file in the OPEN
command.

Example

The following example illustrates the CLOSE command:

close 5
close #j

See OPEN, READ, WRITE

COLUMNS

Syntax
COLUMNS {int_lit|_var|_col}[int_lit|_var|_col]...

Description
Defines logical columns to be used for PRINT commands.

SQR Command Reference Chapter 2

70 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

COLUMNS defines the leftmost position of one or more columns within the current page layout. It sets
the first column as current.

You can use COLUMNS for printing data either down the page or across the page, depending on how you
use the NEXT-COLUMN and USE-COLUMN commands.

The COLUMNS command applies only to the current report. If you want to print columns in more than
one report, you must specify the COLUMNS command for each report.

The USE-COLUMN 0 deselects columns. See USE-COLUMN.

Parameters

Parameter Description

int_lit|_var|_col Specifies the left margin position of each column.

See NEXT-COLUMN, NEXT-LISTING, NEW-PAGE, USE-COLUMN, USE-REPORT

COMMIT

Syntax
COMMIT

Description
Causes a database commit.

COMMIT is useful when you are doing many inserts, updates, or deletes in an SQL paragraph. A
database commit releases the locks on the records that have been inserted, updated, or deleted. Used with
some databases, it also has other effects. For this reason, it should not be used within the scope of an
active SELECT paragraph or results will be unpredictable.

When the application finishes, a commit is performed automatically unless a ROLLBACK was done or,
for callable SQR, the -XC flag was set.

Other commands or options, such as the CONNECT command and the use of DDL statements for some
databases with a BEGIN-SQL paragraph, can also cause the database to do a commit.

COMMIT is an SQR command and should not be used within an SQL paragraph. If COMMIT is used in
an SQL paragraph, results will be unpredictable.

Note: The COMMIT command can be used with SQR servers for Oracle, DB2, Informix, and ODBC. For
Sybase and Microsoft SQL Server, use BEGIN TRANSACTION and COMMIT TRANSACTION within
SQL paragraphs as in the following code segment.

Example

The following example illustrates the COMMIT command:

add 1 to #updates_done
if #updates_done > 50
 commit

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 71

 move 0 to #updates_done
end-if

For Sybase:

... ! Begin Transaction occurred previously
begin-sql
 insert into custlog values (&cust_num, &update_date)
end-sql
add 1 to #inserts
if #inserts >= 50
 begin-sql
 commit transaction; ! Commit every 50 rows
 begin transaction ! Begin next transaction
 end-sql
 move 0 to #inserts
end-if

... ! One more Commit Transaction is needed

Warning! Any data being changed by a current transaction is locked by the database and cannot be
retrieved in a SELECT paragraph until the transaction is completed by a COMMIT or ROLLBACK
statement (or COMMIT TRANSACTION or ROLLBACK TRANSACTION statement for Sybase or
Microsoft SQL Server).

CONCAT

Syntax
CONCAT {src_any_lit|_var|_col} WITH dst_txt_var[[:$]edit_mask]

Description
Concatenates a variable, column, or literal with a string variable.

The contents of the source field are appended to the end of the destination field.

CONCAT can optionally edit the source field before appending it. You can change edit masks
dynamically by placing them in a string variable and referencing the variable name preceded by a colon
(:).

Also, the source can be a date variable or column. If an edit mask is not specified, the date is converted to
a string according to the following rules:

• For DATETIME columns and SQR DATE variables, SQR uses the format specified by the
SQR_DB_DATE_FORMAT setting.

If this has not been set, the first database-dependent format listed in the Default Database Formats
table is used.

• For DATE columns, SQR uses the format specified by the SQR_DB_DATE_ONLY_FORMAT.

If a format has not been set, the format listed in the Default Database Formats table is used.

• For TIME columns, SQR uses the format specified by the SQR_DB_TIME_ONLY_FORMAT.

If a format has not been set, the format listed in the Time Column Formats table is used.

SQR Command Reference Chapter 2

72 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameters

Parameter Description

src_any_lit|_var|_col Specifies the source field to be concatenated with the dst_txt_
var field.

dst_txt_var Contains the result after execution

edit_mask Specifies an optional edit mask.

Example

The following example illustrates the CONCAT command:

concat &zip_plus_4 with $zip '-xxxx' ! Edit zip plus 4.
concat &descrip with $rec :$desc_edit ! Edit mask in variable.
concat $date1 with $string ! Concatenate a date.

See The PRINT command for information about the Default Database Formats table, the Time
Column Formats table, and edit masks

See The LET command for string functions

See STRING, UNSTRING

CONNECT

Syntax
CONNECT {txt_lit|_var|_col}[ON-ERROR=procedure[(arg1 [, argi]...)]]

Description
Logs off the database and logs on under a new username and password.

The new username and password can be stored in a string variable, column, or literal.

Warning! The username and password are not encrypted, so beware of security issues.
After each CONNECT, the reserved variable $username is set to the new username.
All database cursors or logons are closed before the CONNECT occurs. You should not issue a
CONNECT within a SELECT or an SQL paragraph while a query is actively fetching or manipulating
data from the database.

Parameters

Parameter Description

txt_lit|_var|_col Specifies a username and password for the logon.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 73

Parameter Description

ON-ERROR Specifies a procedure to be run if the logon fails. If no ON-
ERROR procedure is specified and the logon fails, SQR halts
with an error message.

Note: You can optionally specify arguments to be passed to the ON-ERROR procedure. Arguments can
be any variable, column, or literal.

Example

The following example illustrates the CONNECT command:

connect $new-user on-error=bad-logon($new_user)
connect 'sqr/test'

CREATE-ARRAY

Syntax
CREATE-ARRAY NAME=array_name SIZE=nn {FIELD=name:type[:occurs]
[={init_value_txt_lit|_num_lit}]}...

Description
Creates an array of fields to store and process data.

You can define arrays to store intermediate results or data retrieved from the database. For example, a
SELECT paragraph can retrieve data, store it in an array, and gather statistics at the same time. When the
query finishes, a summary could be printed followed by the data previously stored in the array.

SQR creates arrays before a program starts to run. The CREATE-ARRAY command can be used in any
section of a program.

Commands to process arrays include:

CREATE-ARRAY
CLEAR-ARRAY
GET
PUT
ARRAY-ADD
ARRAY-SUBTRACT
ARRAY-MULTIPLY
ARRAY-DIVIDE
LET

The maximum number of arrays in a program is 128; the maximum number of fields per array is 200.

The following code is a representation of an array emps with three fields in which the CREATE-ARRAY
command defines the array:

create-array name=emps size=10
field=name:char='Unknown'
 field=rate:number:2=10.50
 field=phone:char='None'

SQR Command Reference Chapter 2

74 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

The name is a simple field (one occurrence), rate has two occurrences, and phone is a simple field. Both
array elements and field occurrences are referenced beginning with 0 (zero). The rate is referenced by
rate(0) or rate(1). The emps array will contain 10 elements, 0 through 9. All name fields are initialized to
Unknown, all phone fields are initialized to None, and all rate fields are initialized to 10.50.

Parameters

Parameter Description

NAME Names the array. The name is referenced in other array
commands.

SIZE Defines the number of elements in the array.

FIELD Defines each field or column in the array. Each field must be
defined as type:

DECIMAL[(p)]: Decimal numbers with an optional precision
(p).

FLOAT: Double precision floating point numbers.

INTEGER: Whole numbers.

NUMBER: Uses the DEFAULT-NUMERIC type. See the
DECLARE-VARIABLE command.

CHAR (or TEXT): Character string.

DATE: Same as date variable.

You can specify an initialization value for each field. Each
field is set to this value when the array is created and
when the CLEAR-ARRAY command is carried out. If no
initialization value is specified, numeric fields (DECIMAL,
 FLOAT, INTEGER) are set to zero, character fields are
set to null, and date fields are set to null. All occurrences
of a multiple occurring field are set to the same value.
 For dates, the initialization string must be formatted as
'SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]'.

OCCURS Fields can optionally have a number of occurrences (occurs);
that is, they can be repeated any number of times.

Example

The following example illustrates the CREATE-ARRAY command:

create-array name=custs size=100
 field=name:char
 field=no:number
 field=state:char
 field=zip:char
 field=contacts:char:5
 field=last-contacted:date

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 75

See The sample report CUSTOMR4.SQR included with SQR

See DECLARE-VARIABLE, ARRAY-ADD, ARRAY-DIVIDE, ARRAY-MULTIPLY , ARRAY-
SUBTRACT, GET , PUT , LET , CLEAR-ARRAY

See The LOAD-LOOKUP command for an alternative way to store database tables in memory

CREATE-COLOR-PALETTE

Syntax
CREATE-COLOR-PALETTE NAME = {palette_name_txt_lit} COLOR_1 = {rgb_value} COLOR_2 =
{rgb_value} [COLOR_n] = {rgb_value}

Description
Create a color palette.

This command enables you to create a palette of colors. The number of palettes that can be defined in a
program is not limited. No gaps are permitted in the palette.

Parameters

Parameter Description

NAME Specifies the name of the color palette.

COLOR_1 Specifies the first color in the palette.

COLOR_2 Specifies the second color in the palette.

COLOR_n Specifies the nth color in the palette. You can specify up to 64
colors in the palette.

{rgb} Designates a color reference. This can be expressed as (r,g,
b), where r, g, and b are either a numeric literal (0 to 255),
 a numeric variable, or a numeric column. It can also be
expressed as a (c), where c is a string literal, column, or
variable that is the name of a color.

Example

The following example illustrates the CREATE-COLOR-PALETTE command:

begin-report
 create-color-palette
 name = 'funky'
 color_1 = ('blue')
 color_2 = ('red')
 color_3 = ('orange')

 Print-Chart Groovy
 Color-Palette = 'Funky'
 end-report

SQR Command Reference Chapter 2

76 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

See DECLARE-CHART, PRINT-CHART

#DEBUG

Syntax
#DEBUG[x...]SQR_Command

Description
Causes the current command to be processed during a debugging session.

A -DEBUG[xx] flag in the SQR command line enables conditional compilation of SQR commands. When
this flag is used, any command (including other compiler directives) preceded by the word #DEBUG is
processed; other commands are ignored.

This is useful for placing DISPLAY, SHOW, PRINT or other commands in your program for testing and
for deactivating them when the report goes into production.

The -DEBUG flag can contain a suffix of up to 10 letters or digits. These characters are used to match any
letters or digits appended to the #DEBUG preprocess command inside the program. #DEBUG commands
with one or more matching suffix characters are processed; other commands are ignored. Commands
without any suffix always match.

In addition, for each -DEBUGxx letter, a substitution variable is defined. For example, if the flag -
DEBUGab is used on the command line, three substitution variables are defined: debug, debuga, and
debugb. These variables can be referenced in #IFDEF commands to enable or disable whole sections of
code for debugging.

Parameters

Parameter Description

x Represents any letter or digit.

Example

The following SQR command line contains the -DEBUG flag with no suffixes:

sqr myprog sammy/baker -debug

The following SHOW command in the program is carried out if invoked with the previous command line
because the -DEBUG flag was used:

#debug show 'The total is ' #grand-tot 999,999,999

In the following code example, the command line contains the -DEBUG flag with the suffixes a, b, and c:

sqr myprog sammy/baker -debugabc

In the following code example, the first three #DEBUG commands are compiled, but the fourth,
beginning #debuge, is not because its suffix does not match any of the suffixes on the -DEBUG flag:

#debuga show 'Now selecting rows...'
#debug show 'Finished query.'

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 77

#debugb show 'Inserting new row.'
#debuge show 'Deleting row.'

The following code example shows the use of an #IF with a #DEBUG:

#debuga #if {platform}='unix'
#debuga show 'Platform is UNIX'
#debuga #endif

See CommnadsThe #IF, #IFDEF, #IFNDEF

DECLARE-CHART

Syntax
DECLARE-CHART chart_name [DATA-LABELS=data_labels_lit]
[COLOR-PALETTE=color_palette_lit] [ITEM-COLOR=(chart_item_keyword_lit,
color_value_lit |(r,g,b)] [CHART-SIZE=(chart_width_int_lit,chart_depth_int_lit)]
[TITLE=title_txt_lit] [SUB-TITLE=subtitle_txt_lit] [FILL=fill_lit]
[3D-EFFECTS=3d_effects_lit] [BORDER=border_lit] [POINT-MARKERS=point_markers_lit]
[TYPE=chart_type_lit] [LEGEND=legend_lit] [LEGEND-TITLE=legend_title_txt_lit]
[LEGEND-PLACEMENT=legend_placement_lit] [LEGEND-PRESENTATION=legend_presentation_lit]
[PIE-SEGMENT-QUANTITY-DISPLAY= pie_segement_quantity_display_lit]
[PIE-SEGMENT-PERCENT-DISPLAY= pie_segement_percent_display_lit] [PIE-SEGMENT-
EXPLODE=pie_segement_explode_lit]
[X-AXIS-LABEL=x_axis_label_txt_lit] [X-AXIS-MIN-VALUE={x_axis_min_value_lit|_num_lit}]
[X-AXIS-MAX-VALUE={x_axis_max_value_lit|_num_lit}] [X-AXIS-SCALE=x_axis_scale_lit]
[X-AXIS-MAJOR-TICK-MARKS=x_axis_major_tick_marks_lit] [X-AXIS-MINOR-TICK-
MARKS=x_axis_minor_tick_marks_lit]
[X-AXIS-MAJOR-INCREMENT= {x_axis_major_increment_lit|_num_lit}] [X-AXIS-MINOR-
INCREMENT=
x_axis_minor_increment_num_lit] [X-AXIS-TICK-MARK-PLACEMENT=
x_axis_tick_mark_placement_lit]
[X-AXIS-GRID=x_axis_grid_lit] [Y-AXIS-LABEL=y_axis_label_lit] [Y-AXIS-MIN-
VALUE={y_axis_min_value_lit|_num_lit}]
[Y-AXIS-MAX-VALUE={y_axis_max_value_lit|_num_lit}] [Y-AXIS-SCALE=y_axis_scale_lit]
[Y-AXIS-MAJOR-TICK-MARKS=y_axis_major_tick_marks_lit] [Y-AXIS-MINOR-TICK-
MARKS=y_axis_minor_tick_marks_lit]
[Y-AXIS-MAJOR-INCREMENT= {y_axis_major_increment_lit|_num_lit}] [Y-AXIS-MINOR-
INCREMENT=
y_axis_minor_increment_num_lit] [Y-AXIS-TICK-MARK-PLACEMENT=
y_axis_tick_mark_placement_lit]
[Y-AXIS-GRID=y_axis_grid_lit] END-DECLARE

Note: If CHART-SIZE is not defined, it must be defined in PRINT-CHART.

Description
Defines the attributes of a chart that can later be displayed using PRINT-CHART.

The DECLARE-CHART command can define the attributes of a chart to be printed as part of a report.

This command can appear only in the SETUP section.

A chart defined with DECLARE-CHART is printed by referencing its name in the PRINT-CHART
command. Some or all of the chart attributes can be overridden at runtime with the PRINT-CHART
command. As such, DECLARE-CHART is useful when the basic properties of a chart are common to
many PRINT-CHART commands.

SQR Command Reference Chapter 2

78 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Note: All DECLARE-CHART attributes can be overridden as part of the PRINT-CHART command.
Columns are not supported within the DECLARE-CHART command or the PRINT-CHART command.
Attributes that are specified more than once produce a warning, and the first instance is regarded as the
actual value. Attributes can be used in any order, with the exception of chart-name, which must follow the
DECLARE-CHART keyword.

Also, the FILL specification in the DECLARE-PRINTER command can influence the appearance of
the chart. The following table lists the final appearance of the chart with a combination of values for
PRINTER.COLOR and CHART.FILL options.

CHART.FILL= PRINTER.COLOR=Y PRINTER.COLOR=N

GRAYSCALE GRAYSCALE GRAYSCALE

COLOR COLOR GRAYSCALE

CROSSHATCH COLOR-CROSSHATCH CROSSHATCH

NONE NONE NONE

Specifying Chart Data Series Colors

Color palettes are used in the new graphics to set the colors of each data point in a data series. You
specify the color palette to be used in a business chart by creating an SQR COLOR-PALETTE using
the CREATE-COLOR-PALETTE command. The following code demonstrates how to create the color
palette:

Create-Color-Palette
 Name = 'Test-Palette'
 Color_1 = (100,133,238)
 Color_2 = (0, 0, 255)
 Color_3 = (0,255,0)
 Color_4 = (0,0,255)
 Color_5 = (0,0,0)

Users can specify any number of palettes, with up to 64 colors defined in each palette. If more data points
are in the data sets than are defined colors in the palette, the palette resets and continues to set the data
point colors from Color_1 to Color_n.

After a color palette has been defined, it can be used within the DECLARE-CHART and PRINT-CHART
commands to specify the color palette to be used. The following code example demonstrates the use of a
color palette:

Print-Chart test_Chart
 COLOR-PALETTE = 'Test-Palette'

Specifying Chart Item Colors

Users can specify the foreground and background colors of the individual areas within a business chart
using ITEM-COLOR = (rgb-value) within the DECLARE-CHART and PRINT-CHART commands. The
following list shows chart item keywords that are valid for ITEM-COLOR:

• ChartBackground – Background color of entire chart area.

• ChartForeground – Text and Line color of chart area.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 79

• HeaderBackground – Area within the text box specified for the Title and Subtitle.

• HeaderForeground – Text color of the Title and Subtitle.

• FooterBackground – Area within the text box specified for the X Axis label.

• FooterForeground – Text color of the X Axis label.

• LegendBackground – Area within the box defining the legend.

• LegendForeground – Text and outline color of the legend.

• ChartAreaBackground – Area that includes the body of the chart.

• ChartAreaForeground – Text and line colors of the chart area.

• PlotAreaBackground – Area within the X and Y Axis of a chart.

• PlotAreaForeground – Text and line colors of the plot area.

Parameters

Parameter Description

chart_name A unique name to be used for referencing a chart.

CHART-SIZE The size of the chart frame in standard SQR coordinate units.

The following DECLARE-CHART Command Arguments table describes other arguments for the
DECLARE-CHART command.

Note: Oracle does not currently support setting NewGraphics to Yes. You should not use the DATA-
LABELS, COLOR-PALETTE, and ITEM-COLOR attributes listed in the following table because they
are valid only when NewGraphics=Yes.

Argument Values Description

DATA-LABELS Yes|No If NewGraphics is set to Yes, use this
argument to specify whether SQR prints
the numeric value above the individual
data points. Set to NO to suppress the
numeric values.

COLOR-PALETTE palette_name If NewGraphics is set to Yes, use this
argument to specify the name of the
color palette to be used to color the
individual data points in each chart (
for example, bar, slice, point). A valid
SQR color-palette must be defined to use
COLOR-PALETTE.

SQR Command Reference Chapter 2

80 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Argument Values Description

ITEM-COLOR ChartBackground|ChartForeground

HeaderBackground|HeaderForeground

FooterBackground|FooterForeground

LegendBackground|LegendForeground

ChartAreaBackground|
ChartAreaForeground

PlotAreaBackground

If NewGraphics is set to Yes, use this
argument to specify the color of an
individual item in a chart. Specify a chart
item and a valid (r,g,b) color to set the
color of the chart item.

TITLE NONE | text Specifies a title for the chart. That text is
placed at the top of the chart.

SUB-TITLE NONE | text Specifies a subtitle for the chart. That
text is placed below the title regardless
of whether TITLE is specified.

FILL GRAYSCALE | COLOR | CROSS-
HATCH | NONE

Specifies the type of filling that is
applied to the shapes (bars, pie segments,
 and so on) in the chart. GRAYSCALE
varies the density of black dots. COLOR
sends color instructions to the current
printer. If the current printer does
not support color, then color can
appear in a GRAYSCALE fashion.
 CROSSHATCH uses patterns to fill the
shapes representing each data set. With
NONE, all graph shapes are filled with
white.

3D-EFFECTS YES | NO Specifies whether the chart depth
appears with 3-D effects. If this
argument is set to NO, the chart is
displayed in the default 2D mode.

BORDER YES | NO If this argument is set to YES, a border is
drawn around the chart. If it is set to NO,
 no border is displayed around the chart.

POINT-MARKERS YES | NO Specifies whether point markers appear
on line charts. If this argument is set
to YES, point markers appear on line
charts. If it is set to NO, point markers
do not appear.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 81

Argument Values Description

TYPE LINE | PIE | BAR, STACKED-BAR
| 100%-BAR | OVERLAPPED-BAR
| FLOATING-BAR | HISTOGRAM |
AREA | STACKED-AREA | 100%-
AREA | XY-SCATTER-PLOT | HIGH-
LOW-CLOSE

Specifies the type of chart.

See "Understanding Business Charts"
(PeopleTools 8.53: SQR for PeopleSoft
Developers).

LEGEND YES | NO Specifies whether to display a legend.

LEGEND-TITLE NONE | text Specifies the title for the legend. If this
argument is set to NONE, no title is
displayed in the legend box.

LEGEND-PLACEMENT CENTER-RIGHT | CENTER-LEFT
| UPPER-RIGHT | UPPER-LEFT |
UPPER-CENTER | LOWER-RIGHT |
LOWER-LEFT | LOWER-CENTER |

Places the legend in the specified
location on the chart. The first portion
of the placement parameter (CENTER,
 UPPER, or LOWER) is the vertical
position, and the second portion (RIGHT,
 LEFT, or CENTER) is the horizontal.

LEGEND-PRESENTATION INSIDE | OUTSIDE Specifies where the legend appears
on the chart. If this argument is set to
INSIDE, the legend is presented inside
the area defined by the two axes. If it is
set to OUTSIDE, the legend is presented
within the chart border, but outside of the
region represented by the two axes.

PIE-SEGMENT-QUANTITY-
DISPLAY

YES | NO Specifies whether quantity is presented
for each pie segment. If this argument is
set to YES, the quantity is presented.

PIE-SEGMENT-PERCENT-DISPLAY YES | NO Specifies whether the percent-of-
total number is presented for each pie
segment. If this argument is set to YES,
 the percent-of-total figures is presented.

PIE-SEGMENT-EXPLODE NONE | MAX |MIN | USE-3RD-DATA-
COLUMN

Controls which pie segments are
exploded (selected) within the pie chart.
 MAX selects the largest segment. MIN
selects the smallest segment. USE-3RD-
DATA-COLUMN uses the third field in
the DATA-ARRAY to determine which
pie segments are exploded. This third
field should be a CHAR and values
of YES or Y indicate that the segment
should be exploded.

SQR Command Reference Chapter 2

82 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Argument Values Description

X-AXIS-LABEL or Y-AXIS-LABEL NONE | text Specifies a line of text to be displayed
below (or alongside) the tick-mark labels
on the axis.

X-AXIS-MIN-VALUE AUTOSCALE | number Specifies the minimum value on the axis.
 If data values exist that are less than
X-AXIS- MIN-VALUE, they are not
displayed. AUTOSCALE directs SQR to
calculate an appropriate minimum value.

Y-AXIS-MIN-VALUE AUTOSCALE | number Specifies the minimum value on the axis.
 If data values exist that are less than Y-
AXIS- MIN-VALUE, then they are not
displayed. AUTOSCALE directs SQR to
calculate an appropriate minimum value.

X-AXIS-MAX-VALUE AUTOSCALE | number Specifies the maximum value on the
axis. If data values exist that are greater
than X- AXIS-MAX-VALUE, they
are not displayed. AUTOSCALE
directs SQR to calculate an appropriate
maximum value.

Y-AXIS-MAX-VALUE AUTOSCALE | number Specifies the maximum value on the
axis. If data values exist that are greater
than Y- AXIS-MAX-VALUE, they
are not displayed. AUTOSCALE
directs SQR to calculate an appropriate
maximum value.

X-AXIS-SCALE or Y-AXIS-SCALE LOG | LINEAR Specifies the scale for the axis. LOG
specifies a logarithmic scale for the axis.
 Otherwise, the scale is linear.

X-AXIS-MAJOR-TICK- MARKS YES | NO Specifies whether to display tick-marks
for major increments on the X-axis.
 If this argument is set to YES, tick-
marks appear on the axis between X-
AXIS-MIN-VALUE and X-AXIS-MAX-
VALUE, according to the X-AXIS-
SCALE setting spaced by X-AXIS-
MAJOR-INCREMENT.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 83

Argument Values Description

Y-AXIS-MAJOR-TICK- MARKS YES | NO Specifies whether to display tick-marks
for major increments on the Y-axis.
 If this argument is set to YES, tick-
marks appear on the axis between Y-
AXIS-MIN-VALUE and Y-AXIS-MAX-
VALUE, according to the Y-AXIS-
SCALE setting spaced by Y-AXIS-
MAJOR-INCREMENT.

X-AXIS-MINOR-TICK- MARKS YES | NO Specifies whether to display tick-marks
for minor increments on the X-axis.
 If this argument is set to YES, tick-
marks appear on the axis between X-
AXIS-MIN-VALUE and X-AXIS-MAX-
VALUE, according to the X-AXIS-
SCALE setting spaced by X-AXIS-
MINOR-INCREMENT.

Y-AXIS-MINOR-TICK- MARKS YES | NO Specifies whether to display tick-marks
for minor increments on the Y-axis.
 If this argument is set to YES, tick-
marks appear on the axis between Y-
AXIS-MIN-VALUE and Y-AXIS-MAX-
VALUE, according to the Y-AXIS-
SCALE setting spaced by Y-AXIS-
MINOR-INCREMENT.

X-AXIS-MAJOR-INCREMENT or Y-
AXIS-MAJOR-INCREMENT

AUTOSCALE | number Specifies, for SQR, the increment used
for spacing the major tick-marks on
the axis. AUTOSCALE directs SQR to
determine an appropriate increment.

X-AXIS-MINOR-INCREMENT or Y-
AXIS-MINOR-INCREMENT

number Specifies, for SQR, the increment used
for spacing the minor tick-marks on the
axis. These arguments must be set for the
X-AXIS- MINOR-TICK-MARKS and
the Y-AXIS- MINOR-TICK-MARKS to
appear.

X-AXIS-TICK-MARK- PLACEMENT
or Y-AXIS-TICK-MARK-
PLACEMENT

INSIDE | OUTSIDE | BOTH Specifies where to place the tick-marks
on the axis. INSIDE (or OUTSIDE)
directs SQR to place the tick-marks on
the inside (or outside) of the axis only.
 BOTH directs SQR to draw the tick-
marks such that they appear on both
sides of the axis.

SQR Command Reference Chapter 2

84 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Argument Values Description

X-AXIS-GRID or Y-AXIS-GRID YES | NO Specifies whether a grid line is drawn for
each major tick-mark on the axis. If this
argument is set toYES, a dashed grid line
is drawn for each major tick-mark. If it
is set to NO, no grid line is drawn on the
axis.

Example

This code example declares a basic sales chart using DECLARE-CHART. For each region, the SUB-
TITLE, DATA-ARRAY, and other elements are overridden to provide the chart with the specific features
desired.

begin-setup

declare-chart base_sales_chart
chart-size = (30, 20)
title = 'Quarterly Sales'
sub-title = none
fill = color
3d-effects = yes
type = stacked-bar
legend-title = 'Product'
x-axis-grid = yes
end-declare

end-setup

begin-program

print-chart base_sales_chart
sub-title = 'Region I'
data-array = reg1_sales
data-array-row-count = #rows_reg1
data-array-column-count = 2
y-axis-max-value = #max_of_all_regions
y-axis-min-value = #min_of_all_regions
legend = no

print-chart base_sales_chart
sub-title = 'Region II'
data-array = reg2_sales
data-array-row-count = #rows_reg2
data-array-column-count = 2
y-axis-max-value = #max_of_all_regions
y-axis-min-value = #min_of_all_regions
legend = no

end-program

begin-procedure chart_region_sales ($sub, $ary,
 #rows, #cols,
 #max_of_all_regions,
 #min_of_all_regions)

print-chart base_sales_chart (20, 15)

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 85

sub-title = $sub
data-array = all sales
data-array-row-count = #rows
data-array-column-count = #cols
data-array-column-labels = ('Q1', 'Q2', 'Q3', 'Q4')
y-axis-max-value = #max_of_all_regions
y-axis-min-value = #min_of_all_regions
chart-size = (50, 30)

end-procedure

See The PRINT-CHART command

DECLARE-COLOR-MAP

Syntax
In the SETUP section:

DECLARE-COLOR-MAP color_name = ({rgb}) color_name = ({rgb}) . . . END-DECLARE

Description
Defines colors in an SQR report.

The DECLARE-COLOR-MAP command in the BEGIN-SETUP section defines or redefines colors in an
SQR report. You can define an endless number of entries.

Parameters

Parameter Description

color_name A color_name is composed of alphanumeric characters (
A–Z, 0–9), the underscore (_) character, and the hyphen
(-) character. It must start with an alphabetical (A–Z)
character and is not case-sensitive. The name none is reserved
and cannot be assigned a value. A name in the format (
RGBredgreenblue) cannot be assigned a value. The name
default is reserved and cannot be assigned a value. Default is
used during execution when a referenced color is not defined
in the runtime environment.

SQR Command Reference Chapter 2

86 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameter Description

{rgb} red_lit | _var | _col, green_lit | _var | _col, blue_lit | _var |
_col where each component is a value in the range of 000 to
255. In the BEGIN-SETUP section, only literal values are
allowed.

The default colors implicitly installed with SQR include:

black=(0,0,0)

white=(255,255,255)

gray=(128,128,128)

silver=(192,192,192)

red=(255,0,0)

green=(0,255,0)

blue=(0,0,255)

yellow=(255,255,0)

purple=(128,0,128)

olive=(128,128,0)

navy=(0,0,128)

aqua=(0,255,255)

lime=(0,128,0)

maroon=(128,0,0)

teal=(0,128,128)

fuchsia=(255,0,255)

Example

The following example illustrates the DECLARE-COLOR-MAP command:

begin-setup
 declare-color-map
 light_blue = (193, 222, 229)
 end-declare
end-setup

See CommandsThe ALTER-COLOR-MAP, SET-COLOR, GET-COLOR

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 87

DECLARE-CONNECTION

Syntax
In the SETUP section:

DECLARE-CONNECTION connection_name_txt_lit DSN={uq_txt_lit} [USER={uq_txt_lit}]
[PASSWORD={uq_txt_lit}] [PARAMETERS=keyword_str=attr_str;[,keyword_str=attr_str ;...]]
END-DECLARE

In the body of the report:

DECLARE-CONNECTION connection_name DSN={uq_txt_lit|_var} [USER={uq_txt_lit|_var}]
[PASSWORD={uq_txt_lit|_var}] [PARAMETERS=keyword_str=attr_str;[,
keyword_str=attr_str;...]] END-DECLARE

Description
Defines the datasource logon parameters prior to logon. Can be used to override the default connection
logon parameters.

Parameters

Parameter Description

connection_name A user-defined name for describing a datasource connection.

USER, PASSWORD Traditional logon semantics.

PARAMETERS = keyword_str=attr_str; Defines a list of keyword-attribute pairs required by a
datasource driver for logon. No syntax restriction exists for
these entries apart from the delimiting semicolons (;) and equal
signs (=). The keywords must match the logon property names
listed for a datasource.

NO-DUPLICATE=

TRUE|FALSE

(default is FALSE)

This optional keyword prevents SQR from automatically
creating additional logins to datasources that are busy
handling a previous query. Creating a new login in such
cases is the default behavior for SQR, which allows a single
CONNECTION declaration to be used in a subquery. The
behavior, while allowing dynamic logins as needed, causes
problems when you are doing both DDL (BEGIN-SQL) and
DML (BEGIN-SELECT) against temporary tables in certain
vendors' datasources. In such cases, you must fetch from
the temporary table using the same login in which it was
created. Here, you should code the CONNECTION as NO-
DUPLICATE=TRUE, and then use that connection in both the
table creation logic of BEGIN-SQL and the row fetching logic
of BEGIN-SELECT.

SQR Command Reference Chapter 2

88 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Example

The following example illustrates the DECLARE-CONNECTION command:

declare-connection SAPR3-1
 dsn=SAPR3
 username=guest
 password=guest
end-declare

DECLARE-IMAGE

Syntax
DECLARE-IMAGE image_name [TYPE=image_type_lit] [IMAGE-
SIZE=(width_num_lit,height_num_lit)] [SOURCE=file_name_lit] END-DECLARE

Note: If TYPE, IMAGE-SIZE, and SOURCE are not defined in DECLARE-IMAGE, they must be
defined in PRINT-IMAGE.

Description
Declares the type, size, and source of an image to be printed.

The DECLARE-IMAGE command defines and names an image. This image can then be placed in a
report at the position specified in the PRINT-IMAGE command.

Note: If the image file is unrecognizable, or has incomplete header information, a box (either shaded,
for HP printers, or having a diagonal line through it in the case of postscript) appears where the image is
expected.

Parameters

Parameter Description

image_name Specifies a unique name for referencing the image declaration.

TYPE Specifies the image type. Types can be EPS-FILE, HPGL-
FILE, GIF-FILE, JPEG-FILE, or BMP-FILE (for Microsoft
Windows).

IMAGE-SIZE Specifies the width and height of the image in SQR
coordinates.

SOURCE Specifies the name of a file containing the image. The file
must be in the SQRDIR directory or you must specify the full
path.

Note: If the file is not in the SQRDIR directory, the full path
or no path should be given. You cannot specify a relative path,
 because you must know where to run the file from.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 89

Example

The following example illustrates the DECLARE-IMAGE command:

declare-image officer-signature
 type = eps-file
 source = 'off_sherman.eps'
 image-size = (40, 5)
end-declare

See PRINT-IMAGE

DECLARE-LAYOUT

Syntax
DECLARE-LAYOUT layout_name [PAPER-SIZE=({paper_width_num_lit[uom],
paper_depth_num_lit[uom]}|{paper_name})] [FORMFEED=form_feed_lit]
[ORIENTATION=orientation_lit] [LEFT-MARGIN=left_margin_num_lit[uom]]
[TOP-MARGIN=top_margin_num_lit[uom]] [RIGHT-MARGIN=right_margin_num_lit[uom]
|LINE-WIDTH=line_width_num_lit[uom] |MAX-COLUMNS=columns_int_lit]
[BOTTOM-MARGIN=bottom_margin_num_lit[uom] |PAGE-DEPTH=page_depth_num_lit[uom]
|MAX-LINES=lines_int_lit] [CHAR-WIDTH=char_width_num_lit[uom]] [LINE-
HEIGHT=line_height_num_lit[uom]]
END-DECLARE

Description
Defines the attributes for the layout of an output file .

The DECLARE-LAYOUT command describes the characteristics of a layout to be used for an output
file. A layout can be shared by more than one report. If no DECLARE-LAYOUT is defined or if a
DECLARE-REPORT does not reference a defined layout, a layout named DEFAULT is created with the
default attribute values shown in the DECLARE-LAYOUT Command Arguments table. For an example
of how DECLARE-LAYOUT relates to DECLARE-REPORT, see the DECLARE-REPORT examples in
this document.

You can define as many layouts as are necessary for the requirements of the application. You can override
the DEFAULT layout attributes by defining a layout called DEFAULT in your program. Each layout name
must be unique.

SQR maps its line and column positions on the page by using a grid determined by the LINE-HEIGHT
and CHAR-WIDTH arguments. That is, SQR calculates the number of columns per row by dividing the
LINE-WIDTH by the CHAR-WIDTH and calculates the number of lines by dividing the PAGE-DEPTH
by the LINE-HEIGHT. Each printed segment of text is placed on the page using this grid. Because the
characters in proportional fonts vary in width, a word or string may be wider than the horizontal space
you have allotted, especially in words containing uppercase letters or boldfaced characters. To account for
this behavior, you can either move the column position in the PRINT or POSITION statements or indicate
a larger CHAR-WIDTH in the DECLARE-LAYOUT command.

The DECLARE-LAYOUT command selects the proper fonts. In addition, the parameter interacts with
PAPER-SIZE like this:

• When you do not specify ORIENTATION=LANDSCAPE or the PAPER-SIZE dimensions, SQR
creates a page with the dimensions set to 11 inch by 8.5 inch. This results in a page of 100 columns by
45 lines with 0.5 inch margins.

SQR Command Reference Chapter 2

90 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

• When you specify PAPER-SIZE=(paper_name), the page orientation is set according to the
paper_name specified. If you also specify ORIENTATION and the value differs from the PAPER-
SIZE value, the ORIENTATION value overrides the PAPER-SIZE value.

• When you specify PAPER-SIZE=(page_width, page_depth), SQR does not swap the page width and
page depth if ORIENTATION=LANDSCAPE.

Parameters

Parameter Description

layout_name A unique layout name to be used for referencing the layout
and its attributes.

uom

(unit of measure)

An optional suffix that denotes the unit of measure to apply to
the preceding value.

paper_name An option of PAPER-SIZE. This name is associated with
predefined dimensions.

This table lists valid unit of measure suffixes:

Suffix Meaning Definition

dp decipoint 0.001388 inch

pt point 0.01388 inch

mm millimeter 0.03937 inch

cm centimeter 0.3937 inch

in inch 1.0000 inch

This table lists valid paper names for the paper_name parameter.

Name Width Depth Orientation

Letter 8.5 in 11 in Portrait

Legal 8.5 in 14 in Portrait

A4 8.27 in 11.69 in Portrait

Executive 7.25 in 10.5 in Portrait

B5 7.17 in 10.12 in Portrait

Com-10 4.125 in 9.5 in Landscape

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 91

Name Width Depth Orientation

Monarch 3.875 in 7.5 in Landscape

DL 4.33 in 8.66 in Landscape

C5 6.378 in 9.016 in Landscape

This table describes the arguments of the DECLARE-LAYOUT command:

Argument Choice or Default UOM Default Value Description

PAPER-SIZE inches 8.5 in, 11 in Physical size of the page.
 The first parameter is the
width of the page. The
second parameter is the
depth or length. It may
also be a predefined name.
 (See the table of valid
paper names.) Note that
when ORIENTATION=
LANDSCAPE, the default
values are 11 in, 8.5 in.

FORMFEED YES, NO YES Specifies whether formfeeds
are to be written at the end of
each page.

ORIENTATION PORTRAIT, LANDSCAPE PORTRAIT Portrait pages are printed
vertically. Landscape pages
are printed horizontally.
 Printing in landscape for the
printer type HPLASERJET
requires landscape fonts.

LEFT-MARGIN inches 0.5 in Amount of blank space to
leave at the left side of the
page.

TOP-MARGIN inches 0.5 in Amount of blank space to
leave at the top of the page.

RIGHT-MARGIN inches 0.5 in Amount of blank space to
leave at the right side of
the page. If you specify
LINE-WIDTH or MAX-
COLUMNS, you cannot use
this parameter.

SQR Command Reference Chapter 2

92 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Argument Choice or Default UOM Default Value Description

LINE-WIDTH inches 7.5 in Length of the line. If you
specify RIGHT-MARGIN
or MAX-COLUMNS, you
cannot use this parameter.

MAX-COLUMNS NA (not applicable) 75 Maximum number of columns
in a line. If you specify
RIGHT-MARGIN or LINE-
WIDTH, you cannot use this
parameter.

BOTTOM-MARGIN inches 0.5 in Amount of blank space to
leave at the bottom of the
page. If you specify PAGE-
DEPTH or MAX-LINES, you
cannot use this parameter.

PAGE-DEPTH inches 10 in Depth of the page. If you
specify BOTTOM-MARGIN
or MAX-LINES, you cannot
use this parameter.

MAX-LINES NA 60 Maximum number of lines
printed on the page. If you
specify PAGE-DEPTH or
BOTTOM-MARGIN, you
cannot use this parameter.

LINE-HEIGHT points 12 pt Size of each SQR line on the
page. An inch has 72 points.
 If LINE-HEIGHT is not
specified, it follows the value
for POINT-SIZE, if specified.
 The default value of 12 points
yields 6 lines per inch. For the
printer type LINEPRINTER,
 this value is used only to
calculate the TOP-MARGIN
and BOTTOM-MARGIN (for
example, not in computing the
position on the page).

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 93

Argument Choice or Default UOM Default Value Description

CHAR-WIDTH points 7.2 pt Size of each SQR horizontal
character column on the page
(for example, the distance
between the locations (1,
 12) and (1, 13)). For the
printer type LINEPRINTER,
 this value is used only to
calculate the TOP-MARGIN
and BOTTOM-MARGIN (not
for computing the position on
the page).

Example

This example illustrates the ability to specify these parameters using a different measurement system,
such as metric:

!
declare-layout my-layout ! Results in:

paper-size=(a4) ! paper-size=(210mm, 297mm)

left-margin=12.7 mm ! top-margin=12.7mm

right-margin=25.4 mm ! left-margin=12.7mm
end-declare ! right-margin=25.4mm

 ! bottom-margin=12.7mm

 ! orientation=portrait

 ! columns=67

 ! lines=64

This example changes the page dimensions and also changes the left and right margins to be 1 inch:

!
declare-layout large-paper ! Results in:

paper-size=(14, 11) ! paper-size=(14in, 11in)

left-margin=1 ! top-margin=0.5in

right-margin=1 ! left-margin=1.0in
end-declare ! right-margin=1.0in

 ! bottom-margin=0.5in

 ! orientation=portrait

 ! columns=120

 ! lines=60

This example retains the default page dimensions and changes the left and right margins to be 1 inch:

declare-layout default ! Results in:

SQR Command Reference Chapter 2

94 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

left-margin=1 ! paper-size=(8.5in, 11in)

right-margin=1 ! top-margin=0.5in
end-declare ! left-margin=1.0in

 ! right-margin=1.0in

 ! bottom-margin=0.5in

 ! orientation=portrait

 ! columns=65

 ! lines=60

This example changes the orientation to landscape; the default page dimensions (8.5in and 11in) are
swapped, the columns and rows are recalculated, and all other values remain the same:

declare-layout default ! Results in:

orientation=landscape ! paper-size=(11in, 8.5in)
end-declare ! top-margin=0.5in

 ! left-margin=0.5in

 ! right-margin=0.5in

 ! bottom-margin=0.5in

 ! orientation=landscape

 ! columns=100

 ! lines=45

This example changes the orientation to landscape; the default page dimensions (8.5in and 11in) are
swapped, and the top margin is set to 1 inch:

declare-layout my_landscape ! Results in:

orientation=landscape ! paper-size=(11in, 8.5in)

top-margin=1 ! top-margin=1.0in
end-declare ! left-margin=0.5in

 ! right-margin=0.5in

 ! bottom-margin=0.5in

 ! orientation=landscape

 ! columns=100

 ! lines=43

This example illustrates how to specify the page dimensions using one of the predefined names (note that
the orientation has also changed because this example is an envelope):

declare-layout envelope ! Results in:

paper-size=(com-10) ! paper-size=(4.125in, 9.5in)
end-declare ! top-margin=0.5in

 ! left-margin=0.5in

 ! right-margin=0.5in

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 95

 ! bottom-margin=0.5in

 ! orientation=landscape

 ! columns=85

 ! lines=18

See DECLARE-REPORT

DECLARE-PRINTER

Syntax
DECLARE-PRINTER printer_name [FOR-REPORTS=(report_name1[,report_namei]...)]
[TYPE=printer_type_lit] [INIT-STRING=initialization_string_txt_lit]
[RESET-STRING=reset_string_txt_lit] [COLOR=color_lit] [POINT-SIZE=point_size_num_lit]
[FONT-TYPE=font_type_int_lit] [SYMBOL-SET=symbol_set_id_lit] [STARTUP-
FILE=file_name_txt_lit]
[PITCH=pitch_num_lit] [FONT=font_int_lit] [BEFORE-BOLD=before_bold_string_txt_lit]
[AFTER-BOLD=after_bold_string_txt_lit] END-DECLARE

Description
Overrides the printer defaults for the specified printer type.

Each printer has a set of defaults as listed in the DECLARE-PRINTER Command Arguments table. The
DECLARE-PRINTER command overrides these defaults.

Use the DECLARE-PRINTER command in the SETUP section to define the characteristics of the
printer or printers to be used. If you need to change some of the arguments depending on the runtime
environment, you can use the ALTER-PRINTER command in any part of the program except the
PROGRAM and SETUP sections.

A program can contain no more than one DECLARE-PRINTER command for each printer type for each
report. If you do not provide a printer declaration, the default specifications are used. You can override the
default printer attributes by providing a DECLARE-PRINTER specification for each printer. The names
are:

• DEFAULT-LP for line printer.

• DEFAULT-HP for HP LaserJet.

• DEFAULT-HT for HTML.

• DEFAULT-PS for PostScript.

This table lists the arguments, provides the possible choices or measure, lists the default values, and
describes the arguments.

SQR Command Reference Chapter 2

96 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Argument Choice or Measure Default Description

FOR-REPORTS NA (Not Applicable) ALL The name of the reports that
use this printer definition.
 The default is ALL, for all
reports. This argument is
required only for a program
with multiple reports. If you
are writing a program that
produces only a single report,
 you can ignore this argument.

TYPE LINEPRINTER,
 POSTSCRIPT,
 HPLASERJET, HTML, LP,
 PS, HP, HT

LP The output type specific to
each printer. LINEPRINTER
(LP) files can be viewed by
a text editor. POSTSCRIPT (
PS) files require you to know
PostScript to understand what
will be shown on the printer.
 HPLASERJET (HP) files
are binary files and cannot
be edited or viewed. HTML (
HT) files can be viewed by a
browser.

INIT-STRING NA (none) Sends control or other
characters to the printer
at the beginning of the
report. This parameter is
designed primarily for the
LINEPRINTER and has
limited use with other printer
types. Specify nondisplay
characters by placing their
decimal values inside angle
brackets. For example,
 <27> is the ESC or escape
character.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 97

Argument Choice or Measure Default Description

RESET-STRING NA (none) Sends control or other
characters to the printer
at the end of the report.
 This parameter is
designed primarily for the
LINEPRINTER and has
limited use with other printer
types. Specify nondisplay
characters by placing their
decimal values inside angle
brackets. For example,
 <27> is the ESC or escape
character.

COLOR Yes, No No Specifies whether this printer
can print in color.

POINT-SIZE points 12 This argument does not apply
to LINEPRINTER printers.
 It is the beginning size of the
selected font.

FONT-TYPE PROPORTIONAL, FIXED Depends on the font This argument applies only to
HPLASERJET printers and
needs to be specified only
for font types not defined in
the Fonts Available for HP
LaserJet Printers in the SQR
table.

SYMBOL-SET HP defined sets 0U This argument applies only to
HPLASERJET printers. The
default value of 0U is for the
USASCII symbol set. For a
complete list of the symbol
sets, see the HP LaserJet
Technical Reference Manual.

STARTUP-FILE file name POSTSCRI.STR This argument applies only to
POSTSCRIPT printers. This
argument is used to specify an
alternate startup file. Unless
otherwise specified, the
default startup file is located
in the directory pointed to
by the environment variable
SQRDIR.

SQR Command Reference Chapter 2

98 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Argument Choice or Measure Default Description

PITCH characters/inch 10 This argument is for
HPLASERJET printers only.
 If you specify a fixed pitch
font, you should also indicate
the pitch.

FONT font_number 3 This is the font number of
the typeface to use. For
HPLASERJET printers, this is
the typeface value as defined
by Hewlett-Packard. For a
complete list of the typeface
numbers, see the HP LaserJet
Technical Reference Manual.

For POSTSCRIPT printers,
 SQR supplies a list of fonts
and arbitrary font number
assignments in the file
POSTSCRI.STR. The font
numbers are the same as those
for HP LaserJet printers,
 wherever possible, so that
you can use the same font
number for reports to be
printed on both types of
printers. You can modify
the font list in POSTSCRI.
STR to add or delete fonts.
 Read the POSTSCRI.
STR file for instructions.
 The Fonts Available for
HP LaserJet Printers in
SQR table lists the fonts
available in SQR internally.
 The Fonts Available for
PostScript Printers table lists
the fonts available in the SQR
POSTSCRI.STR file.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 99

Argument Choice or Measure Default Description

BEFORE-BOLD any string (none) The BEFORE-BOLD and
AFTER-BOLD arguments
are for LINEPRINTER
printers only. They specify
the character string to enable
or disable boldfacing. If
the string contains blank
characters, enclose it in single
quote marks ('...'). To specify
nonprintable characters, such
as ESC, enclose the decimal
value inside angle brackets
as shown here: BEFORE-
BOLD=<27>[r ! Turn

on bold AFTER-

BOLD=<27>[u ! Turn

it off

These arguments work with
the BOLD argument of the
PRINT command.

AFTER-BOLD any string (none) See BEFORE-BOLD.

This table lists the fonts that are available in SQR for use with the FONT argument for HPLASERJET
printer types.

Value Typeface Style

0 Line printer Fixed

1 Pica Fixed

2 Elite Fixed

3 Courier Fixed

4 Helvetica Proportional

5 Times Roman Proportional

6 Letter Gothic Fixed

8 Prestige Fixed

11 Presentations Fixed

17 Optima Proportional

SQR Command Reference Chapter 2

100 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Value Typeface Style

18 Garamondi Proportional

19 Cooper Black Proportional

20 Coronet Bold Proportional

21 Broadway Proportional

22 Bauer Bodini Black Condensed Proportional

23 Century Schoolbook Proportional

24 University Roman Proportional

The font that you choose—in orientation, typeface, and point size—must be an internal font, available in a
font cartridge, or downloaded to the printer.

For fonts not listed in the Fonts Available for HP LaserJet Printers in SQR table, you must indicate the
font style using the FONT-TYPE argument to ensure that the correct typeface is selected by the printer.

This table lists the fonts that are available in SQR for use with the FONT argument for PostScript printer
types:

Value Typeface Boldface Type Available

3 Courier Y

4 Helvetica Y

5 Times Roman Y

6 Avant Garde Book NA (Not Applicable)

8 Palatino Roman Y

11 Symbol NA

12 Zapf Dingbats NA

17 Zapf Chancery Medium Italic NA

18 Bookman Light NA

23 New Century Schoolbook Roman Y

30 Courier Oblique Y

31 Helvetica Oblique Y

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 101

Value Typeface Boldface Type Available

32 Times Italic Y

33 Avant Garde Demi NA

34 Avant Garde Book Oblique NA

35 Avant Garde Demi Oblique NA

36 Palatino Oblique Y

37 New Century Schoolbook Italic Y

38 Helvetica Narrow Y

39 Helvetica Narrow Oblique Y

40 Bookman Demi NA

41 Bookman Light Italic NA

42 Bookman Demi Italic NA

Other type faces can be added to the POSTSCRI.STR file.

Different fonts are available in SQR for Microsoft Windows when you are printing with Microsoft
Windows printer drivers (using the -PRINTER:WP command-line flag). When you use the -
PRINTER:WP flag, your report is sent directly to the default Microsoft Windows printer. To specify
a nondefault Microsoft Windows printer, enter -PRINTER:WP:{printer name}. The {printer name} is
the name assigned to your printer. For example, to send output to a Microsoft Windows printer named
NewPrinter, you would use -PRINTER:WP:NewPrinter. If your printer name has spaces, enclose the
entire argument in quotes.

Fonts are specified by number in the FONT qualifier of the ALTER-PRINTER command.

This table lists the fonts that are available when you are printing with Microsoft Windows printer drivers:

Value Windows Font/Name Style

3 Courier New Fixed

300 Courier New Bold

4 Arial Proportional

400 Arial Bold

5 Times New Roman Proportional

500 Times New Roman Bold

SQR Command Reference Chapter 2

102 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Value Windows Font/Name Style

6 AvantGarde Proportional

8 Palatino Proportional

800 Palatino Bold

11 Symbol Proportional

Note: Fonts 6, 8, and 800 are not supplied with Microsoft Windows. You can get these fonts by
purchasing the ADOBE Type Manager (ATM). The advantage of using ATM fonts is the compatibility
for PostScript printer fonts. The Symbol font uses the SYMBOL_CHARSET instead of the usual
ANSI_CHARSET character set. You can add more fonts by editing the appropriate Fonts section in the
pssqr.ini file.

See Using PSSQR.EXE Command-Line Options.

Parameters

Parameter Description

printer_name A unique name to be used for referencing a printer definition
and its attributes.

Note: The DECLARE-PRINTER Command Arguments table describes the other arguments of the
DECLARE-PRINTER command. The table lists the options, default values, and description of each of the
arguments.

Example

The following example illustrates the DECLARE-PRINTER command:

declare-printer HP-definition ! Default HP definition

type=HP ! for all reports

font=4 ! Helvetica

symbol-set=12U ! PC-850 Multilingual
end-declare
declare-printer PS-Sales ! PS definition

for-reports=(sales) ! for the Sales report

type=PS

font=5 ! Times-Roman
end-declare

See ALTER-PRINTER, DECLARE-REPORT

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 103

DECLARE-PROCEDURE

Syntax
DECLARE-PROCEDURE [FOR-REPORTS=(report_name1[,report_namei]...)]
[BEFORE-REPORT=procedure_name[(arg1[,argi]...)]] [AFTER-
REPORT=procedure_name[(arg1[,argi]...)]] [BEFORE-
PAGE=procedure_name[(arg1[,argi]...)]] [AFTER-PAGE=procedure_name[(arg1[,argi]...)]]
END-DECLARE

Description
Declares procedures that are triggered when a specified event occurs.

The DECLARE-PROCEDURE command can be used to define SQR procedures that are to be invoked
before or after a report is printed or before the beginning or end of each page.

Issue the DECLARE-PROCEDURE in the SETUP section. For multiple reports, you can use the
command as often as required to declare procedures required by all the reports. If you issue multiple
DECLARE-PROCEDURE commands, the last one takes precedence. In this way, you can use one
command to declare common procedures for ALL reports and others to declare unique procedures for
individual reports. The referenced procedures can accept arguments.

If no FOR-REPORTS are specified, ALL is assumed. Initially, the default for each of the four procedure
types is NONE. If a procedure is defined in one DECLARE-PROCEDURE for a report, that procedure is
used unless NONE is specified.

Use the USE-PROCEDURE command to change the procedures to be used at runtime. To disable a
procedure, specify NONE in the USE-PROCEDURE statement.

Parameters

Parameter Description

FOR-REPORTS Specifies one or more reports that use the given procedures.
 This argument is required only for a program with multiple
reports. If you are writing a program that produces only a
single report, you can ignore this argument.

BEFORE-REPORT Specifies a procedure to be run when the first command that
causes output to be generated (PRINT) is carried out. It can be
used, for example, to create a report heading.

AFTER-REPORT Specifies a procedure to be run just before the report file is
closed at the end of the report. It can be used to print totals
or other closing summary information. If no report was
generated, the procedure does not run.

BEFORE-PAGE Specifies a procedure to be run at the beginning of every page,
 just before the first output command for the page. It can be
used, for example, to set up page totals.

SQR Command Reference Chapter 2

104 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameter Description

AFTER-PAGE Specifies a procedure to be run just before each page is written
to the file. It can be used, for example, to display page totals.

You can optionally specify arguments to be passed to any of
the procedures. Arguments can be any variable, column, or
literal.

Example

The following example illustrates the DECLARE-PROCEDURE command:

declare-procedure ! These procedures will

before-report=report_heading ! be used by all reports

after-report=report_footing
end-declare
declare-procedure ! These procedures will

for-reports=(customer) ! be used by the customer

before-page=page_setup ! report

after-page=page_totals
end-declare

See USE-PROCEDURE

DECLARE-REPORT

Syntax
DECLARE-REPORT report_name [TOC=toc_name] [LAYOUT=layout_name] [PRINTER-
TYPE=printer_type] END-DECLARE

Description
Defines reports and their attributes.

Issue the DECLARE-REPORT in the SETUP section.

You can use the DECLARE-REPORT command to declare one or more reports to be produced in the
application.

You must use this command when developing applications to produce more than one report.

Multiple reports can share the same layout and the same printer declarations or each report can use its
own layout or printer definitions if the report has unique characteristics.

When you are printing multiple reports, unless you specify report names by using the -F command-line
flag, the first report declared is generated with the name of program.lis, where program is the application
name.

Additional reports are generated with names conforming to the rules dictated by the OUTPUT-FILE-
MODE setting in the pssqr.ini file.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 105

When the -KEEP or -NOLIS flag is used, the first intermediate print file (.spf file) is generated with a
name of program.spf and additional reports are generated with names conforming to the rules dictated by
the OUTPUT-FILE-MODE setting in the pssqr.ini file.

Parameters

Parameter Description

report_name Specifies the name of the report.

TOC Specifies the name of the table of contents for this report.

LAYOUT Specifies the name of the layout for this report. If no layout is
specified, the default layout is used.

PRINTER-TYPE Specifies the type of printer to be used for this report. If
no printer type is specified, the default, LINEPRINTER, is
used for this report. If no DECLARE-PRINTER is specified,
 DEFAULT-LP is used. Valid values for PRINTER-TYPE are
HT, HP, PD, PS, LP, HTML, HPLASERJET, POSTSCRIPT,
 and LINEPRINTER.

Example

The following example illustrates the DECLARE-REPORT command:

declare-layout customer_layout
 left-margin
 right-margin
end-declare

declare-layout summary_layout
 orientation=landscape
end-declare

declare-report customer_detail

toc=detailed

layout=customer_layout

printer-type=postscript
end-declare
declare-report customer_summary

layout=summary_layout

printer-type=postscript
end-declare
.
.
.
use-report customer_detail

...print customer detail...
use-report customer_summary

...print customer summary...

See USE-REPORT, DECLARE-LAYOUT, DECLARE-PRINTER, DECLARE-TOC

SQR Command Reference Chapter 2

106 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

DECLARE-TOC

Syntax
DECLARE-TOC toc_name [FOR-REPORTS=(report_name1[,report_namei]...)]
[DOT-LEADER=YES|NO] [INDENTATION=position_count_num_lit] [BEFORE-
TOC=procedure_name[(arg1[,argi]...)]] [AFTER-TOC=procedure_name[(arg1[,argi]...)]]
[BEFORE-PAGE=procedure_name[(arg1[,argi]...)]] [AFTER-
PAGE=procedure_name[(arg1[,argi]...)]] [ENTRY=procedure-name [(argi [,argi] ...)]]
END-DECLARE

Description
Defines the table of contents and its attributes.

Use DECLARE-TOC in the SETUP section.

You can use the DECLARE-TOC command to declare one or more tables of contents for the application.

A table of contents can be shared between reports.

Parameters

Parameter Description

toc_name Specifies the name of the table of contents.

FOR-REPORTS Specifies one or more reports that use this table of contents.

DOT-LEADER Specifies whether a dot leader precedes the page number. The
default setting is NO.

INDENTATION Specifies the number of spaces by which each level is
indented. The default setting is 4.

BEFORE-TOC Specifies a procedure to be run before the application
generates the table of contents. If no table of contents is
generated, the procedure does not run.

AFTER-TOC Specifies a procedure to be run after the application generates
the table of contents. If no table of contents is generated, the
procedure does not run.

BEFORE-PAGE Specifies a procedure to be run at the start of every page.

AFTER-PAGE Specifies a procedure to be run at the end of each page.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 107

Parameter Description

ENTRY Specifies a procedure that is run to process each table of
contents entry (instead of SQR doing it for you). When this
procedure is invoked, the following SQR-reserved variables
are populated with data about the TOC entry:

#SQR-TOC-LEVEL contains the level.

#SQR-TOC-TEXT contains the text.

#SQR-TOC-PAGE contains the page number.

These are global variables. If the procedure is local, you must
precede it with an underscore (for example, #_sqr-toc-page).
 These three SQR-reserved variables are valid only within
the scope of the ENTRY procedure. They can be referenced
outside the scope, but their contents are undefined.

Example

The following example illustrates the DECLARE-TOC command:

begin-setup
 declare-toc common
 for-reports=(all)
 dot-leader=yes
 indentation=2
end-declare
end-setup
.
.
.
toc-entry level=1 text=$Chapter
toc-entry level=2 text=$Heading
.
.

See BEGIN-FOOTING, BEGIN-HEADING, DECLARE-REPORT, TOC-ENTRY

DECLARE-VARIABLE

Syntax
DECLARE-VARIABLE [DEFAULT-NUMERIC={DECIMAL[(prec_lit)]|FLOAT|INTEGER}]
[DECIMAL[(prec_lit)]num_var[(prec_lit)][num_var [(prec_lit)]]...]
[FLOAT num_var[num_var]...] [DATE date_var[date_var]...] [INTEGER num_var[num_var]...]
[TEXT string_var[string_var]...] END-DECLARE

Description
Enables you to explicitly declare a variable type.

You can set the default numeric type externally, using the -DNT command-line flag or the DEFAULT-
NUMERIC setting in the Default-Settings section of the pssqr.ini file. However, the setting in the
DECLARE-VARIABLE command takes precedence over all other settings. If the command has not been
used, then the -DNT command-line flag takes precedence over the setting in the pssqr.ini file.

SQR Command Reference Chapter 2

108 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

In addition to FLOAT, INTEGER, and DECIMAL, you can set DEFAULT-NUMERIC in the pssqr.ini
file and the -DNT command-line flag to V30. With V30, the program acts in the same manner as in
versions prior to release 4.0; that is, all variables are FLOAT. V30 is not a valid setting for the DEFAULT-
NUMERIC setting in the DECLARE-VARIABLE command.

The DECLARE-VARIABLE command enables you to determine the type of variables to use. This
command can appear only in the SETUP section or as the first statement of a local procedure. The
placement of the command affects its scope. When used in the SETUP section, it affects all variables in
the entire program. Alternatively, when it is placed in a local procedure, its effect is limited to the scope of
the procedure. If the command is in both places, the local declaration takes precedence over the SETUP
declaration.

In addition to declaring variables, this command enables you to specify the default numeric type using the
DEFAULT-NUMERIC setting as FLOAT, INTEGER, or DECIMAL. When dealing with money or when
more precision is required, use the DECIMAL qualifier.

The DECLARE-VARIABLE command, the -DNT command-line flag, and the DEFAULT-NUMERIC
setting in the pssqr.ini file affect the way numeric literals are typed. If V30 is specified, then all numeric
literals are FLOAT (just as in versions prior to release 4.0); otherwise, the use or lack of a decimal point
determines the type of the literal as either FLOAT or INTEGER, respectively. Finally, not specifying the
DECLARE-VARIABLE command, the -DNT command-line flag, and the DEFAULT-NUMERIC setting
in the pssqr.ini file is the same as specifying V30.

Parameters

Parameter Description

DEFAULT-NUMERIC Specifies the default type for numeric variables. Unless
explicitly declared otherwise, a numeric variable assumes the
variable type. This qualifier overrides any setting from the
command-line flag -DNT or the DEFAULT- NUMERIC entry
in the [Default-Settings] section of the pssqr.ini file. If -DNT
was not specified on the command line and the pssqr.ini file
entry has no DEFAULT-NUMERIC entry, then the default
numeric type is FLOAT.

DECIMAL Specifies that the numeric variables that follow are decimal
variables with a precision specified with prec_lit. The
precision can be assigned to the group of variables or to each
individual variable. The precision is the total number of digits
used to represent the number. This precision can range from 1
to 38. The default value is 16. The range of decimal numbers
is from –9.9999999999999999999999999999999999999E
±4096 to +9.9999999999999999999999999999999999999E
±4096

FLOAT Specifies that the numeric variables that follow are used as
double-precision floating points. The range and precision of
these numbers are machine-dependent.

DATE Specifies that the date variables that follow can contain a date
in the range of January 1, 4713 BC to December 31, 9999 AD.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 109

Parameter Description

INTEGER Specifies that the numeric variables that follow are used as
integers with a range of –2147483648 to +2147483647.

TEXT Specifies that the string variables that follow are text variables.

Example

The following example illustrates the DECLARE-VARIABLE command:

begin-setup
 declare-variable
 default-numeric=float
 decimal #decimal(10)
 integer #counter
 date $date
 end-declare
end-setup
.
.
let $date = strtodate('Jan 01 2004','Mon DD YYYY')
print $date (1,1)
position (+2,1)

let #counter = 0
while #counter < 10
 let #decimal = sqrt(#counter)
 add 1 to counter
 print #decimal (+1,1) 9.999999999
end-while

do sub1($date, 'day', 10)

do sub2

.

.
begin-procedure sub1(:$dvar, $units, #uval)
declare-variable
 date $dvar
 integer #uval
end-declare
let $dvar = dateadd($dvar, $units, #uval)
print $dvar (+1,1)
position (+2,1)
end-procedure
.
.
begin-procedure sub2 LOCAL
declare-variable
 date $mydate
end-declare
let $mydate = dateadd($_date, 'year', 5)
print $mydate (+1,1)
position (+2,1)
end-procedure
.
.

SQR Command Reference Chapter 2

110 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

#DEFINE

Syntax
#DEFINE substitution_variable value

Description
Declares a value for a substitution variable within the body of the report (rather than using the ASK
command).

#DEFINE is useful for specifying constants such as column locations, printer fonts, or any number or
string that is used in several locations in the program. When the value of the number or string must
be changed, you need only change the #DEFINE command. All references to that variable change
automatically, which makes modifying programs much simpler.

If the ASK command is used to obtain the value of a substitution variable that has already been defined,
ASK uses the previous value and the user is not prompted. This enables you to predefine some variables
and not others. When the report runs, ASK requests values for only those variables that have not had a
value assigned.

You can use #DEFINE commands inside an include file. This is a method of gathering commonly used
declarations into one place, and reusing them for more than one report.

The value in the #DEFINE command can have embedded spaces and does not need to be enclosed within
quotes. The entire string is used as is.

The #DEFINE command cannot be broken across program lines.

Parameters

Parameter Description

substitution_variable The variable to be used as the substitution variable. The
substitution variable is used to substitute any command,
 argument, or part of a SQL statement at compile time.

Value The value to be substituted.

Example

This code example defines several constants:

#define page_width 8.5
#define page_depth 11
#define light LS^10027
#define bold LS^03112
#define col1 1
#define col2 27
#define col3 54
#define order_by state, county, city, co_name

This code example from a report uses the definitions from the preceding example:

 begin-setup

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 111

declare-printer contacts

 type=hp

 paper-size=({page_width}, {page_depth})

end-declare
end-setup
begin-heading 5
 print 'Company Contacts' (1,1) center
 print 'Sort: {order_by}' (2,1) center
 print 'Company' (4,{col1})
 print 'Contact' (4,{col2})
 print 'Phone' (4,{col3})
end-heading
begin-procedure main
begin-select
company (1,{col1})
 print '{bold}' (0,{col2}) ! Print contact in boldface.
contact ()
 print '{light}' () ! Back to lightface.
phone (0,{col3}) ! Note: There must be enough
 next-listing ! space between col2
from customers ! and col3 for both
order by {order_by} ! font changes and the
end-select ! contact field.
end-procedure

See ASK

DISPLAY

Syntax
DISPLAY {any_lit|_var|_col} [[:$]edit_mask|NUMBER|MONEY|DATE][NOLINE]

Description
Displays the specified column, variable, or literal.

The DISPLAY command can display data to a terminal. The data is displayed to the current location on
the screen. If you want to display more than one field on the same line, use NOLINE on each display
except the last.

Dates can be contained in a date variable or column, or a string literal, column, or variable. When a date
variable or column is displayed without an edit mask, the date appears in the following manner:

• For DATETIME columns and SQR DATE variables, SQR uses the format specified by the
SQR_DB_DATE_FORMAT setting.

If this has not been set, SQR uses the first database-dependent format as listed in the Default Database
Formats table.

• For DATE columns, SQR uses the format specified by the SQR_DB_DATE_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format listed in the DATE Column Formats table.

• For TIME columns, SQR uses the format specified by the SQR_DB_TIME_ONLY_FORMAT
setting.

SQR Command Reference Chapter 2

112 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

If this has not been set, SQR uses the format listed in the TIME Column Formats table.

When the program displays a date in a string literal, column, or variable using EDIT or DATE, the
string uses the format specified by the SQR_DB_DATE_FORMAT setting, one of the database-
dependent formats as listed in the Default Database Formats table, or the database-independent format
SYYYYMMDD[HH24[MI[SS[NNNNNN]]]].

If you require more control over the display, use the SHOW command.

Parameters

Parameter Description

any_lit|_var|_col The text, number, or date to be displayed.

edit_mask Causes the field to be edited before being displayed. For
additional information regarding edit masks, see the PRINT
command.

NUMBER Indicates that any_lit|_var|_col is to be formatted using the
NUMBER-EDIT-MASK of the current locale. This option is
not valid with date variables.

MONEY Indicates that any_lit|_var|_col is to be formatted using the
MONEY-EDIT-MASK of the current locale. This option is
not valid with date variables.

DATE Indicates that any_lit|_var|_col is to be formatted using the
DATE-EDIT-MASK of the current locale. This option is not
valid with numeric variables. If DATE-EDIT-MASK has not
been specified, the date is displayed by the default format for
that database (see the Default Database Formats table).

NOLINE Suppresses the carriage return after the field is displayed.

Example

The following segments illustrate the various features of the DISPLAY command:

 !
 ! Display a string using an edit mask
 !
 display '123456789' xxx-xx-xxxx

Produces the following output:

123-45-6789

!
 ! Display a number using an edit mask
 !
 display 1234567.89 999,999,999.99

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 113

Produces the following output:

1,234,567.89

!
 ! Display a number using the default edit mask (specified in PSPSPSSQR.INI)
 !
 display 123.78

Produces the following output:

123.780000

!
 ! Display a number using the locale default numeric edit mask
 !
 alter-locale number-edit-mask = '99,999,999.99'
 display 123456.78 number

Produces the following output:

123,456.78

!
 ! Display a number using the locale default money edit mask
 !
 alter-locale money-edit-mask = '$$,$$$,$$9.99'
 display 123456.78 money

Produces the following output:

$123,456.78

!
 ! Display a date column using the locale default date edit mask
 !
 begin-select
 dcol
 from tables
 end-select
 alter-locale date-edit-mask = 'DD-Mon-YYYY'
 display &dcol date

Produces the following output:

01-Jan-2004

!
 ! Display two values on the same line
 !
 display 'Hello' noline
 display ' World'

Produces the following output:

Hello World

!
 ! Display two values on the same line with editing of the values
 !
 alter-locale money-edit-mask = '$$,$$$,$$9.99'
 let #taxes = 123456.78
 display 'You owe ' noline
 display #taxes money noline
 display ' in back taxes.'

SQR Command Reference Chapter 2

114 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Produces the following output:

You owe $123,456.78 in back taxes.

See The SHOW command for information about screen control

See The LET command for information about copying, editing, or converting fields

See The EDIT parameter of the PRINT command for a description of the edit masks

See The ALTER-LOCALE command for a description of the arguments NUMBER-EDIT-MASK,
MONEY-EDIT-MASK, and DATE-EDIT-MASK

DIVIDE

Syntax
DIVIDE {src_num_lit|_var|_col} INTO dst_num_var [ON-ERROR={HIGH|ZERO}][ROUND=nn]

Description
Divides one number into another.

The source field is divided into the destination field and the result is placed in the destination. The source
is always first, the destination always second.

When dealing with money-related values (dollars and cents), use decimal variables rather than float
variables. Float variables are stored as double-precision floating-point numbers, and small inaccuracies
can appear when many numbers are divided in succession. These inaccuracies can appear due to the way
different hardware and software implementations represent floating point numbers.

Parameters

Parameter Description

src_num_lit|_var|_col Divided into the contents of dst_num_var.

dst_num_var Contains the result after execution.

ON-ERROR Sets the result to the specified number when a division by zero
is attempted. If ON-ERROR is omitted and a division by zero
is attempted, SQR halts with an error message.

ROUND Rounds the result to the specified number of digits to the right
of the decimal point. For float variables, this value can be from
0 to 15. For decimal variables, this value can be from 0 to the
precision of the variable. For integer variables, this argument
is not appropriate.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 115

Example

The following example illustrates the DIVIDE command:

divide 37.5 into #price ! #price / 37.5
divide &rate into #tot on-error=high
divide #j into #subtot on-error=zero

Note: In the preceding example, High is the maximum value and zero is the lowest value.

See ADD

See The LET command for a discussion of complex arithmetic expressions

DO

Syntax
DO procedure_name[(arg1[, argi]...)]

Description
Invokes the specified procedure.

When the procedure ends, processing continues with the command following the DO command. You can
use arguments to send values to or receive values from a procedure.

Arguments passed by a DO command to a procedure must match in number:

• Database text columns, string variables, and literals can be passed to procedure string or date
arguments.

• Database numeric columns, numeric variables, and numeric literals can be passed to procedure
numeric arguments.

• Numeric variables (DECIMAL, INTEGER, FLOAT) can be passed to procedure numeric arguments
without regard to the argument type of the procedure.

SQR automatically converts the numeric values upon entering and leaving the procedure as required.

• Date variables can be passed to procedure date or string arguments.

When a field in a DO command receives a value back from a procedure (a colon indicates that it is a back
value, that is, a value that is being returned), it must be a string, numeric, or date variable, depending on
the procedure argument; however, a date can be returned to a string variable and vice versa.

When a date is passed to a string, the date is converted to a string according to the following rules:

• For DATETIME columns and SQR DATE variables, SQR uses the format specified by the
SQR_DB_DATE_FORMAT setting.

If this has not been set, SQR uses the first database-dependent format as listed in the Default Database
Formats table.

• For DATE columns, SQR uses the format specified by the SQR_DB_DATE_ONLY_FORMAT
setting.

SQR Command Reference Chapter 2

116 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

If this has not been set, SQR uses the format listed in the DATE Column Formats table.

• For TIME columns, SQR uses the format specified by the SQR_DB_TIME_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format as listed in the TIME Column Formats table.

Parameters

Parameter Description

procedure_name Specifies the name of the procedure to be run.

arg1 [, argi] Specifies the arguments to be passed to the procedure.
 Arguments can be any type of variable or constant value.

Example

The following example illustrates the DO command:

do get_names
do add_to_list ($name)
do print_list ('A', #total, &co_name, $name)

See The BEGIN-PROCEDURE command for information about passing arguments

See The PRINT command for information about date and time formats

#ELSE

Syntax
#ELSE

Description
Compiles the code following the #ELSE command when a preceding #IF, #IFDEF, or #IFNDEF
command is FALSE. (#ELSE is a compiler directive that works with the #IF, #IFDEF, and #IFNDEF
compiler directives.)

Related Links

See Also:The #IF, #IFDEF, and #IFNDEF commands for a description of each compiler directive.

ELSE

Syntax
ELSE

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 117

Description
ELSE is an optional command in an IF command.

Related Links

See Also:The IF command for a description and example.

ENCODE

Syntax
ENCODE src_code_string_lit INTO dst_txt_var

Description
Assigns a nondisplay or display character to a string variable.

The ENCODE command can define nondisplay characters or escape sequences sent to an output device.
These characters or sequences can perform complex output device manipulations. The ENCODE
command also displays characters not on the keyboard. If your keyboard does not have the euro symbol,
use the ENCODE feature to create a string variable for it.

The encode characters can be included in a report at the appropriate location using a PRINT or PRINT-
DIRECT command.

Unicode (UCS-2) code that points from <1> to <65535> can be defined in the ENCODE command.

Parameters

Parameter Description

src_code_string_lit Specifies a string of characters to be encoded and placed in dst
_txt_var.

dst_txt_var Contains the result after execution.

Example

The following example illustrates the ENCODE command:

encode '<27>L11233' into $bold ! Code sequence to turn bold on.
print $bold () code-printer=lp

See The chr function described in the Miscellaneous Functions table under the LET command

See PRINT, PRINT-DIRECT

SQR Command Reference Chapter 2

118 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

END-DECLARE, END-DOCUMENT, END-EVALUATE, END-FOOTING, END-
HEADING

Syntax
END-DECLARE END-DOCUMENT END-EVALUATE END-FOOTING
END-HEADING

Description
Completes a section or paragraph.

The END-DECLARE command completes a paragraph started with:

DECLARE-CHART
DECLARE-IMAGE
DECLARE-LAYOUT
DECLARE-PRINTER
DECLARE-PROCEDURE
DECLARE-REPORT
DECLARE-VARIABLE

Other END- commands complete the corresponding BEGIN- command:

BEGIN-DOCUMENT
EVALUATE
BEGIN-FOOTING
BEGIN-HEADING

Each command must begin on its own line.

Example

The following example illustrates the BEGIN-FOOTING and END-FOOTING commands:

begin-footing 2
 print 'Company Confidential' (1) center
end-footing

See DECLARE-paragraph, BEGIN-section

#END-IF, #ENDIF

Syntax
#END-IF

Description
Ends an #IF, #IFDEF, or #IFNDEF command. (#END-IF is a compiler directive.)

#ENDIF (without the hyphen) is a synonym for #END-IF.

Example

The following example illustrates the #END-IF compiler directive:

#ifdef debuga
 show 'DebugA: #j = ' #j edit 9999.99

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 119

 show 'Cust_num = ' &cust_num
#end-if

See commands for a description of each compiler directiveThe #IF, #IFDEF, #IFNDEF

END-IF

Syntax
END-IF

Ends an IF command.

See The IF command for a description and example

END-PROCEDURE, END-PROGRAM, END-SELECT, END-SETUP, END-SQL,
END-WHILE

Syntax
END-PROCEDURE END-PROGRAM END-SELECT END-SETUP
END-SQL END-WHILE

Description
Completes the corresponding section or paragraph.

Each END- command completes the corresponding BEGIN- command:

BEGIN-PROCEDURE
BEGIN-PROGRAM
BEGIN-SELECT
BEGIN-SETUP
BEGIN-SQL
WHILE

Each command must begin on its own line.

Example

The following example illustrates the END-PROGRAM command:

begin-program
 do main
end-program

See BEGIN-section, WHILE

EVALUATE

Syntax
EVALUATE {any_lit|_var|_col}

SQR Command Reference Chapter 2

120 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

This command is equivalent to case/switch in C or Java. The general format of an EVALUATE command
is:

EVALUATE {any_lit|_var|_col} WHEN comparison_operator
{any_lit|_var|_col} SQR_Command...
[BREAK] [WHEN comparison_operator {any_lit|_var|_col} SQR_Command... [BREAK]] [WHEN-
OTHER SQR_Command... [BREAK]] END-EVALUATE

Description
Determines the value of a column, literal, or variable and takes action based on that value.

The EVALUATE command is useful for branching to different commands depending on the value of a
specified variable or column.

EVALUATE commands can be nested.

Evaluating a date variable or column with a string results in a date comparison (chronological, not a
byte-by-byte comparison as is done for strings). The string must be in the proper format as shown in the
following list:

• For DATETIME columns and SQR DATE variables in the format specified by
the SQR_DB_DATE_FORMAT setting, SQR uses one of the database-dependent
formats (see the Default Database Formats table), or the database-independent format
'SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]'.

• For DATE columns, SQR uses the format specified by the SQR_DB_DATE_ONLY_FORMAT
setting, or the format listed in the DATE Column Formats table.

• For TIME columns, SQR uses the format specified by the SQR_DB_TIME_ONLY_FORMAT
setting, or the format as listed in the TIME Column Formats table.

Parameters

Parameter Description

any_lit|_var|_col Specifies a text or numeric column; a text, numeric, or
date variable; or a text or numeric literal to be used in the
evaluation. In short, this is an evaluation argument.

comparison_operator Any valid comparison operator. See the list of operators in the
#IF command.

See #IF.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 121

Parameter Description

WHEN Specifies the evaluation expression. The evaluation argument
is compared with the argument, beginning from the first
WHEN. If the expression is TRUE, SQR processes the
commands after the WHEN. If the expression is FALSE, SQR
processes the next WHEN expression. Each WHEN must be
on its own line.

If more than one WHEN expression appears directly before
a set of commands, any one of them, if TRUE, causes the
commands to be carried out.

BREAK Causes an immediate exit of the EVALUATE command. Use
BREAK at the end of a set of commands.

WHEN-OTHER Signifies the start of default commands to be processed if all
other WHEN expressions are FALSE. WHEN-OTHER must
appear after all other WHEN expressions.

Example

The following example illustrates the EVALUATE command:

evaluate &code
 when = 'A'
 move 1 to #j
 break
 when = 'B'
 when = 'C'
 move 2 to #j ! Will happen if &code is B or C.
 break
 when > 'D'
 move 3 to #j ! Move 3 to #j and continue checking.
 when > 'H'
 add 1 to #j ! Add 1 to #j and continue checking.
 when > 'W'
 add 2 to #j
 break
 when-other
 if isnull (&code)
 do null_code
 else
 move 0 to #j ! Unknown code.
 end-if
 break
end-evaluate

See The commands IF and LET for comparison operators

EXECUTE (Sybase and Microsoft SQL Server)

Syntax
EXECUTE [-XC][ON-ERROR=procedure[(arg1[,argi]...)]]
[DO=procedure[(arg1[,argi]...)]] [@#status_var=]stored_procedure_name
[[@param=]{any_col|_var|_lit}[,...]] [INTO any_coldata_type[(length_int_lit)]
[,...]][WITH RECOMPILE]

SQR Command Reference Chapter 2

122 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

The syntax of this command generally follows that of the Sybase Transact-SQL EXECUTE command,
with the exception of optional arguments and the INTO argument.

Description
Runs a stored procedure in Sybase or Microsoft SQL Server database.

If the stored procedure specified in stored_procedure_name contains a SELECT query, the EXECUTE
command must specify an INTO argument to process the values from the query. If no INTO argument is
specified, then the values from the query are ignored.

EXECUTE retrieves just the first row when the following conditions are met:

• The DO procedure is not specified.

• The stored procedure, stored_procedure_name, selects one or more rows.

• An INTO argument is specified.

This is useful for queries returning a single row.

Parameters

Parameter Description

-XC (Sybase only) Specifies that the EXECUTE command share
the same connection as the DO=procedure it can invoke. This
argument is required to share Sybase temporary tables.

ON-ERROR Declares an SQR procedure to run if an error occurs. If ON-
ERROR is omitted and an error occurs, SQR halts with an
error message. For severe errors (for example, passing too few
arguments) SQR halts, even if an error procedure is specified.

You can specify arguments to be passed to the ON-ERROR
procedure. Arguments can be any variable, column, or literal.

DO Specifies an SQR procedure to run for each row selected in the
query. Processing continues until all rows have been retrieved.
 You can specify arguments to be passed to the procedure.
 Arguments can be any variable, column, or literal.

@#status_variable Returns the procedure status in the specified numeric variable.
 The status is returned only after selected rows are retrieved.

stored_procedure_name Names the stored procedure to run.

@param Names the parameter to pass to the stored procedure.
 Parameters can be passed with or without names. If used
without names, they must be listed in the same sequence as
defined in the stored procedure.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 123

Parameter Description

any_lit|_var|_col Specifies the value passed to the stored procedure. It can be a
string, numeric, or date variable, a previously selected column,
 a numeric literal, or a string literal.

OUT[PUT] Indicates that the parameter receives a value from the stored
procedure. The parameter must be a string, numeric, or date
SQR variable. Output parameters receive their values only
after rows selected have been retrieved. If you specify multiple
output parameters, they must be in the same sequence as
defined in the stored procedure.

INTO Indicates where to store rows that are retrieved from the
stored procedure's SELECT statement. The INTO argument
contains the names of the columns with data types and
lengths (if needed). You must specify the columns in the
same sequence and match the data type used in the stored
procedure's SELECT statement.

If the stored procedure contains more than one SELECT query,
 only the first query is described with the INTO argument.
 Rows from subsequent queries are ignored.

WITH RECOMPILE Causes the query to recompile each time it is run rather than
using the plan stored with the procedure. Normally, this is not
required or recommended.

Example

The following code example invokes the stored procedure get_total with two parameters: a string literal
and a string variable. The result from the stored procedure is stored in the variable #total.

execute get_total 'S. Q. Reporter' $State #Total Output

The following code example invokes the stored procedure get_products with two parameters. The stored
procedure selects data into five column variables. The SQR procedure print_products is called for each
row retrieved. The return status from the stored procedure is placed in the variable #proc_return_status.

execute do=print_products
 @#proc_return_status=
 get_products
 @prodcode=&code, @max=#maximum
 INTO &prod_code int,
 &description char (45),
 &discount float,
 &restock char,
 &expire_date datetime

begin-procedure print_products
print &prod_code (+1,1)
print &description (+5,45)
print &discount (+5) edit 99.99
print &restock (+5) match Y 0 5 Yes N 0 5 No
print &expire_date (+5,) edit 'Month dd, yyyy'
end-procedure

SQR Command Reference Chapter 2

124 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

EXIT-SELECT

Syntax
EXIT-SELECT

Description
Exits a SELECT paragraph immediately.

EXIT-SELECT causes SQR to jump to the command immediately following the END-SELECT
command.

Use EXIT-SELECT when you need to end a query before all rows have been retrieved.

Example

The following example illustrates the EXIT-SELECT command:

begin-select
cust_num, co_name, contact, city, state, zip, employees
 add &employees to #tot_emps
 if #tot_emps >= 5000
 exit-select ! Have reached required total emps.
 end-if
 do print_company
from customers order by employees desc
end-select

See BEGIN-SELECT

EXTRACT

Syntax
EXTRACT {dst_txt_var|date_var} FROM {{src_txt_lit|_var|_col}|{src_date_var|_col}}
{start_num_lit|_var}{length_num_lit|_var}

Description
Copies a portion of a string into a string variable.

You must specify the starting location of the string as an offset from the beginning of the string and its
length. An offset of 0 (zero) begins at the leftmost character; an offset of 1 begins one character beyond
that, and so on.

If the source is a date variable or column, it is converted to a string before the extraction according to the
following rules:

• For DATETIME columns and SQR DATE variables, SQR specifies the SQR_DB_DATE_FORMAT
setting.

If this has not been set, SQR uses the first database-dependent format as listed in the Default Database
Formats table.

• For DATE columns, SQR uses the format specified by the SQR_DB_DATE_ONLY_FORMAT
setting.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 125

If this has not been set, SQR uses the format listed in the DATE Column Formats table.

• For TIME columns, SQR uses the format specified by the SQR_DB_TIME_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format as listed in the TIME Column Formats table.

If the destination is a date variable, the string extracted from the source must be in one of the following
formats:

• The format specified by the SQR_DB_DATE_FORMAT setting.

• One of the database-dependent formats (see the Default Database Formats table).

• The database-independent format 'SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]'.

Parameters

Parameter Description

dst_txt_var | date_var Specifies a text or date variable into which the extracted string
is placed.

{src_txt_lit|_var|_col}|

{src_date_var|_col}

Specifies a text or date variable, column, or literal from which
the string is to be extracted.

start_num_lit|_var Specifies starting location of the string to be extracted.

length_num_lit|_var Specifies length of the string to be extracted.

Example

The following example illustrates the EXTRACT command:

extract $state from $record 45 2
extract $foo from "SQR Rocks" 0 4 ! $foo='SQR'

code from &phone 0 3
extract $zip_four from &zip 5 4
extract $rec from $tape_block #loc #rec_len

Note: Oracle recommends that you not use the EXTRACT command when processing strings.

See The substr function described in the Miscellaneous Functions table under the LET command

See FIND

See The PRINT command for information about default date and time formats

SQR Command Reference Chapter 2

126 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

FIND

Syntax
FIND {{obj_txt_lit|_var|_col}|{date_var|_col}} IN {{src_txt_var|_col}|{date_var|_col}}
{start_int_lit|_var} dst_location_int_var

Description
Determines the location of a character sequence within a string.

FIND searches the specified string for a character sequence and, if the string is found, returns its location
as an offset from the beginning of the specified string. If the sequence is not found, FIND returns –1 in
dst_location_int_var.

You must specify an offset from which to begin the search and supply a numeric variable for the return of
the location.

If the source or search object is a date variable or column, it is converted to a string before the search
according to the following rules:

• For DATETIME columns and SQR DATE variables, SQR uses the format specified by the
SQR_DB_DATE_FORMAT setting.

If this has not been set, SQR uses the first database-dependent format as listed in the Default Database
Formats table.

• For DATE columns, SQR uses the format specified by the SQR_DB_DATE_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format listed in the DATE Column Formats table.

• For TIME columns, SQR uses the format specified by the SQR_DB_TIME_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format as listed in the TIME Column Formats table.

Parameters

Parameter Description

{obj_txt_lit|_var|_col}|{date_var|_col} Specifies a text variable, column, or literal that is to be sought
in src_txt_var|_col.

{src_txt_var|_col}|

{date_var|_col}

Specifies a text variable or column to be searched.

start_int_lit|_var Specifies the starting location of the search.

dst_location_int_var Specifies the returned starting location of the leftmost
character of the matching text in {src_txt_var|_col| date_var|_
col }.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 127

Example

The following example illustrates the FIND command:

find 'aw.2' in &code5 0 #loc
find ',' in &name 0 #comma_loc
if #comma_loc = -1
 ...comma not found...

See The instr function described in the Miscellaneous Functions table under the LET command

See EXTRACT

See The PRINT command for information about default date and time formats

GET

Syntax
GET dst_any_var...FROM src_array_name(element) [field[(occurs)]]...

Description
Retrieves data from an array and places it into a date, string, or numeric variable.

Parameters

Parameter Description

dst_any_var Date, string, or numeric variables (not database columns) can
be destination variables. Numeric variables (decimal, float,
 integer) are copied from number fields. String variables are
copied from the char, text, or date field. Date variables are
copied from the char, text, or date field.

When a date field is copied to a string variable, SQR converts
the date to a string in the format specified by the SQR_DB
_DATE_FORMAT setting. If this has not been set, SQR
uses the first database-dependent format listed in the Default
Database Formats table.

If the destination is a date variable, the string extracted
from the source must be in the format specified by
the SQR_DB_DATE_FORMAT setting, or one of the
database-dependent formats (see the Default Database
Formats table), or the database-independent format
'SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]'.

src_array_name(element) If the array's field names are listed, SQR takes the values from
the fields and occurrences specified. If the array's field names
are not listed, the values are taken from consecutively defined
fields in the array.

SQR Command Reference Chapter 2

128 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameter Description

field[(occurs)] Array element and field occurrence numbers can be numeric
literals (such as 123) or numeric variables (such as #j). If no
field occurrence is stated, occurrence zero is used.

Example

The following code example copies $name, $start_date, and #salary from the first three fields in the #jth
element of the emps array:

get $name $start_date #salary from emps(#j)

The following code example copies #city_tot and #county_tot from the fields cities and counties in the #jth
element of the states array:

get #city_tot #county_tot from states(#j) cities counties

The following code example copies $code from the #jth occurrence of the code field in the #nth element of
the codes array:

get $code from codes(#n) code(#j)

See The PUT command for information about moving data into an array

GET-COLOR

Syntax
GET-COLOR [PRINT-TEXT-FOREGROUND=({color_name_var |{rgb})] [PRINT-TEXT-
BACKGROUND=({color_name_var |{rgb})]

Description
Retrieves the current colors.

The GET-COLOR command is allowed wherever the PRINT command is allowed. If the requested color
settings do not map to a defined name, the name is returned as RGBredgreenblue, where each component
is a three-digit number—for example, RGB127133033. You can use this format wherever you use a color
name. The color name 'none' is returned if no color is associated with the specified area.

Parameters

Parameter Description

PRINT-TEXT-

FOREGROUND

Defines the color in which the text prints.

PRINT-TEXT-

BACKGROUND

Defines the color to print as a background behind the text.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 129

Parameter Description

{color_name_var} A color_name is composed of alphanumeric characters (
A–Z, 0–9), the underscore (_) character, and the hyphen (
-) character. The name must start with an alphabetical (A–
Z) character and is not case-sensitive. The name 'none' is
reserved and cannot be assigned a value. A name in the format
(RGBredgreenblue) cannot be assigned a value. The name
'default' is reserved and can be assigned a value. 'Default' is
used during execution when a referenced color is not defined
in the runtime environment.

{rgb} red_lit | _var | _col, green_lit | _var | _col, blue_lit | _var |
_col where each component is a value in the range of 000 to
255. In the BEGIN-SETUP section, only literal values are
allowed.

The default colors implicitly installed with SQR include:

black=(0,0,0)

white=(255,255,255)

gray=(128,128,128)

silver=(192,192,192)

red=(255,0,0)

green=(0,255,0)

blue=(0,0,255)

yellow=(255,255,0)

purple=(128,0,128)

olive=(128,128,0)

navy=(0,0,128)

aqua=(0,255,255)

lime=(0,128,0)

maroon=(128,0,0)

teal=(0,128,128)

fuchsia=(255,0,255)

SQR Command Reference Chapter 2

130 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Example

The following example illustrates the GET-COLOR command:

begin-setup
 declare-color-map
 light_blue = (193, 222, 229)
 end-declare
end-setup

begin-program
 alter-color-map name = 'light_blue' value = (193, 233, 230)

 print 'Yellow Submarine' ()
 foreground = ('yellow')
 background = ('light_blue')

 get-color print-text-foreground = ($print-foreground)
 set-color print-text-foreground = ('purple')
 print 'Barney' (+1,1)
 set-color print-text-foreground = ($print-foreground)
end-program

See DECLARE-COLOR-MAP, ALTER-COLOR-MAP, SET-COLOR

GOTO

Syntax
GOTO label

Description
Skips to the specified label.

Labels must end with a colon (:) and can appear anywhere within the same section or paragraph as the
GOTO command.

Parameters

Parameter Description

label Specifies a label within the same section or paragraph.

Example

The following example illustrates the GOTO command:

begin-select
price
 if &price < #old_price
 goto next
 end-if
 print &price (2,13,0) edit 999,999.99
 ...
next:
 add 1 to #count
from products
end-select

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 131

GRAPHIC BOX, GRAPHIC HORZ-LINE, GRAPHIC VERT-LINE

Syntax
The GRAPHIC commands have the following syntax:

GRAPHIC ({line_int_lit|_var},{column_int_lit|_var},
{width_int_lit|_var}) BOX {depth_int_lit|_var} [rule_width_int_lit|
_var[shading_int_lit|_var]]
GRAPHIC ({line_int_lit|_var},{column_int_lit|_var}, {length_int_lit|_var})
HORZ-LINE [rule_width_int_lit|_var] GRAPHIC ({line_int_lit|_var},{column_int_lit|
_var},
{length_int_lit|_var}) VERT-LINE [rule_width_int_lit|_var]

Description
Draws a box or line.

After GRAPHIC commands are carried out, SQR changes the current print location to the starting
location of the graphic. This is different from the way the PRINT command works.

The GRAPHIC command has the following variations:

• BOX

• HORZ-LINE

• VERT-LINE

The following sections describe the individual GRAPHIC commands:

Parameters

Parameter Description

BOX BOX draws a box of any size at any location on the page.
 Boxes can be drawn with any size rule and can be shaded or
left empty.

width and depth The width is the horizontal size in character columns; depth
is the vertical size in lines. The top left corner of the box is
drawn at the line and column specified. The bottom right
corner is calculated by the width and depth. You can specify
relative placement with (+), (-), or numeric variables, as with
regular print positions.

rule_width The default rule width is 2 decipoints (an inch has 720
decipoints). The top horizontal line is drawn just below the
base of the line above the starting point. The bottom horizontal
line is drawn just below the base of the ending line. Therefore,
 a one-line deep box surrounds a single line.

SQR Command Reference Chapter 2

132 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameter Description

shading A number between 1 and 100, specifying the percentage
of shading to apply. 1 is very light, and 100 is black. If no
shading is specified, the box is blank. Specify a rule-width of
zero if you do not want a border.

HORZ-LINE HORZ-LINE draws a horizontal line from the location
specified, for the length specified. Horizontal lines are drawn
just below the base.

rule_width The default rule width is 2 decipoints.

VERT-LINE VERT-LINE draws a vertical line from the location specified
for the length (in lines) specified. Vertical lines are drawn just
below the base line of the line position specified to just below
the base line of the line reached by the length specified. To
draw a vertical line next to a word printed on line 27, position
the vertical line to begin on line 26, for a length of 1 line.

rule_width The default rule width is 2 decipoints.

Example

The following code example shows the GRAPHIC BOX command:

graphic (1,1,66) box 58 20 ! Draw box around page
graphic (30,25,10) box 10 ! Draw a 10-characters-wide-by-10- characters-long b⇒
ox
graphic (1,1,66) box 5 0 8 ! Draw 5 line shaded box (without border)
graphic (50,8,30) box 1 ! Draw box around 1 line

The following code example shows the GRAPHIC HORZ-LINE command:

graphic (4,1,66) horz-line 10 ! Put line under page heading
graphic (+1,62,12) horz-line ! Put line under final total

The following code example shows the GRAPHIC VERT-LINE command:

graphic (1,27,54) vert-line ! Draw lines between columns
graphic (1,52,54) vert-line
graphic (3,+2,4) vert-line 6 ! Red line the paragraph

See The ALTER-PRINTER and DECLARE-PRINTER commands for information about setting
and changing the FONT, FONT-TYPE, POINT-SIZE, and PITCH

#IF

Syntax
#IF {txt_lit|num_lit}comparison_operator {txt_lit|num_lit}

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 133

Description
Indicates that the commands following #IF are to be compiled when the expression is TRUE. (#IF is a
compiler directive.)

SQR has five compiler directives that enable different pieces of SQR code to be compiled, depending on
the existence or value of substitution variables (not program variables, such as string, numeric, or date).

Substitution variables defined automatically for each -DEBUGxxx letter can also be used with the #IF,
#IFDEF, and #IFNDEF directives. They can enable or disable entire sections of an SQR program from the
command line, depending on the -DEBUGxxx flag.

You can nest #IF, #IFDEF, and #IFNDEF directives to a maximum of 10 levels.

The #IF, #IFDEF, and #IFNDEF directives cannot be broken across program lines.

The following table lists the compiler directives.

Directive Example Description

#IF #IF {option}='A' Compiles the commands following
the #IF directive if the substitution
variable option is equal to 'A'. The test
is not case-sensitive. Only one simple
expression is allowed per #IF command.

#ELSE #ELSE Compiles the commands following
the #ELSE directive when the #IF
expression is FALSE.

#ENDIF #ENDIF Ends the #IF directive. #ENDIF can also
be typed #END-IF (with a hyphen).

#IFDEF #IFDEF option Compiles the commands following the
#IFDEF directive if the substitution
variable option is defined.

#IFNDEF #IFNDEF option Compiles the command following the
#IFNDEF directive if the substitution
variable option is not defined.

Parameters

Parameter Description

txt_lit | num_lit Any text or numeric literal.

SQR Command Reference Chapter 2

134 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameter Description

comparison_operator Any of the comparison operators as shown here:

=Equal

!=Not Equal

<>Not Equal

<Less than

>Greater than

<=Less than or equal

>=Greater than or equal

Example

The following example illustrates the #IF compiler directive:

begin-setup
 ask type 'Use Male, Female or Both (M,F,B)'
end-setup
begin-procedure Main
#if {type} = 'M'
 ...code for M here
#else
#if {type} = 'F'
 ...code for F here
#else
#if {type} = 'B'
 ...code for B here
#else
 show 'M, F or B not selected. Report not created.'
 stop
#endif ! for B
#endif ! for F
#endif ! for M

#ifdef debug
 show 'DEBUG: Cust_num = ' &cust_num edit 099999
#endif

#ifndef debugB ! DebugB turned on with -DEBUGB on
 do test_procedure ! SQR command line.
#endif

See The #DEBUG command for information about the -DEBUG command-line flag

IF

Syntax
IF logical_expression

IF commands have the following structure:

IF logical_expression SQR Command... [ELSE SQR Command...] END-IF

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 135

Description
Carries out commands depending on the value of a condition.

The expression is evaluated as a logical TRUE or FALSE. A value or expression that evaluates to nonzero
is TRUE.

Each IF command must have a matching END-IF command.

IF commands can be nested.

Comparing a date variable or column with a string results in a date comparison (chronological, not a byte-
by-byte comparison as is done for strings). The string must be in the proper format as described in the
following list:

• For DATETIME columns and SQR DATE variables, SQR uses the format specified by the
SQR_DB_DATE_FORMAT setting, one of the database-dependent formats (see the Default Database
Formats table), or the database-independent format 'SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]'.

• For DATE columns, SQR uses the format specified by the SQR_DB_DATE_ONLY_FORMAT
setting, or the format listed in the Date Column Formats table.

• For TIME columns, SQR uses the format specified by the SQR_DB_TIME_ONLY_FORMAT
setting, or the format as listed in the Time Column Formats table.

Parameters

Parameter Description

logical_expression Any valid logical expression. See the LET command for a
description of logical expressions.

Example

The following example illustrates the IF command:

if &price > &old_price and instr(&code, 'M', 1) > 0
 add 1 to #price_count
 if #price_count > 50
 show 'More than 50 prices found.' noline
 input $x 'Continue? (Y/N)'
 if upper($x) = 'N'
 stop
 end-if
 end-if
else
 add 1 to #old_price_count
end-if
if #rows ! Will be TRUE if #rows is non-zero.
 do print-it
end-if

if $date1 > 'Apr 21 2004 23:59'
 do past_due
end-if

See The LET command for a description of logical expressions

See EVALUATE

SQR Command Reference Chapter 2

136 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

#IFDEF

Syntax
#IFDEF substitution_variable

Description
Indicates that the following commands are to be compiled when the substitution variable has been
declared by an ASK or #DEFINE command, or by the -DEBUG flag on the SQR command line. (#IFDEF
is a compiler directive.)

Parameters

Parameter Description

substitution_variable The variable to be used as the substitution variable.

See The #IF command for a description of each compiler directive

#IFNDEF

Syntax
#IFNDEF substitution_variable

Description
Indicates that the following commands are to be compiled when the substitution variable has not been
declared by an ASK or #DEFINE command, or by the -DEBUG flag on the SQR command line.
(#IFNDEF is a compiler directive.)

Parameters

Parameter Description

substitution_variable The variable to be used as the substitution variable.

See The #IF command for a description of each compiler directive

#INCLUDE

Syntax
#INCLUDE filename_lit

Description
Includes an external source file in the SQR report specification.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 137

You may want to keep commonly used routines in a single file and reference or include that file in
programs that use the routine. For example, you might have a set of #DEFINE commands for different
printers to control initialization, font changes, and page size declarations. You can reference the
appropriate include file depending on which printer you want to use.

Include files can be nested up to four levels. Variable substitution scanning takes place before the
#INCLUDE command is processed. This enables you to substitute all or part of the include file name at
runtime, adding flexibility for controlling which file is included for the run.

Parameters

Parameter Description

filename_lit A file name that is valid for the platform on which the
application is to be compiled.

Example

The following example illustrates the #INCLUDE command:

#include 'gethours.dat' ! Common procedure.
#include 'XYZheader.dat' ! Common report heading for XYZ Company.
#include 'printer{num}.dat' ! Include printer definitions for
 ! printer {num}, which is passed
 ! on the command line:
 ! SQR REP1A SAM/JOE 18
 ! where 18 is the arbitrary number
 ! assigned your printer
 ! definition file, 'printer18.dat'.
 ! The report would contain the
 ! command: ASK num
 ! in the SETUP section, preceding
 ! this #include statement.

INPUT

Syntax
INPUT input_var[MAXLEN=nn][prompt] [TYPE={CHAR|TEXT|NUMBER|INTEGER|DATE}]
[STATUS=num_var][NOPROMPT][BATCH-MODE] [FORMAT={txt_lit|_var|_col}]

Description
Accepts data entered by the user at a terminal.

Use MAXLEN to prevent the user from entering data that is too long. If an INSERT or UPDATE
command references a variable for which the length is greater than the length defined in the database, the
SQL is rejected and SQR halts. If the maximum length is exceeded, the terminal beeps (on some systems,
this may cause the screen to flash instead).

If prompt is omitted, SQR uses the default prompt. Enter [$|#]var: . In either case, a colon (:) and two
spaces are added to the prompt.

Specifying TYPE causes data type checking to occur. If the string entered is not the type specified, the
terminal beeps and an error message is displayed. The INPUT command is then rerun. If TYPE=DATE
is specified, then input_var can be a date or text variable; however, TYPE=DATE is optional if input_var

SQR Command Reference Chapter 2

138 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

is a date variable. If a numeric variable is used, it is validated as a numeric variable. The types CHAR,
TEXT, and DATE are invalid types. The data types supported are described in the following table:

Data Type Description

CHAR, TEXT Any character. This is the default datatype.

NUMBER A floating point number in the format [+|-]9999.999[E[+|-]99]

INTEGER An integer in the format [+|-]99999

DATE A date in one of the following formats:

• MM/DD/YYYY [BC|AD] [HH:MI[:SS[.NNNNNN]]
[AM|PM]]

• MM-DD-YYYY [BC|AD] [HH:MI[:SS[.NNNNNN]]
[AM|PM]]

• MM.DD.YYYY [BC|AD] [HH:MI[:SS[.NNNNNN]]
[AM|PM]]

• SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]

Specifying STATUS causes the INPUT command to finish regardless of what the user enters. No error
message is displayed. A nonzero error code is stored in the indicated numeric variable if the length or
datatype entered is incorrect.

The following table lists the values of the STATUS argument of the INPUT command:

Status Value Indicates

0 Successful.

1 Bad type (did not match the datatype of TYPE).

2 Too long (longer than MAXLEN, or the input for an
INTEGER variable is < –2147483648 or > +2147483647).

3 No arguments remain on the command line. The command
was ignored.

By using NOPROMPT and STATUS with the SHOW command, you can write a sophisticated data entry
routine.

FORMAT can be used only with dates. It can be a date edit mask or the keyword DATE. Use the keyword
DATE if the date must be in the format as specified with the INPUT-DATE-EDIT-MASK setting for the
current locale. If FORMAT has not been set, use a database-independent format for the data as listed in
the datatypes table.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 139

Parameters

Parameter Description

input_var Specifies a text, numeric, or date variable for the input data.

MAXLEN Specifies the maximum length for the data.

prompt Specifies the prompt displayed to the user.

TYPE Specifies the datatype required for the input.

STATUS Specifies a numeric variable for a return status code.

NOPROMPT Prevents the prompt from being displayed before the INPUT
command is processed.

BATCH-MODE If BATCH-MODE is specified and no more arguments are
in the command line, a value of 3 is returned in the STATUS
variable and the user is not prompted for input.

FORMAT Specifies the format for entering a date. The Date Edit Format
Codes table lists date edit format codes.

Example

The following example shows several INPUT commands:

input $state maxlen=2 'Please enter state abbreviation'
input #age 'Enter lower age boundary' type=integer
input $start_date 'Enter starting date for report' type=date
input $date_in format='Mon dd yyyy'
input $date format=date

The following example shows another INPUT command:

show clear-screen (5,32) reverse 'CUSTOMER SUMMARY' normal
Try_again:
show (12,20) 'Enter Start Date: ' clear-line
input $start-date noprompt status=#istat type=date
if #istat != 0
 show (24,1) 'Please enter date in format DD-MON-YY' beep
 goto try_again
end-if
show (24,1) clear-line ! Clear error message line.

The following example illustrates the use of the BATCH-MODE option:

begin-program
 while (1)
 input $A status=#stat batch-mode
 if #stat = 3
 break
 else
 do procedure ($a)
 end-if
 end-while
end-program

SQR Command Reference Chapter 2

140 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

See] ALTER-LOCALE

See The INPUT-DATE-EDIT-MASK setting in the topic“Using the PSPSPSPSSQR.INI File and the
PSSQR Command Line

LAST-PAGE

Syntax
LAST-PAGE position [pre_txt_lit[post_txt_lit]]

Description
Places the last page number on each page, as in page n of m.

The text strings specified in pre_txt_lit and post_txt_lit are printed immediately before and after the
number.

Using LAST-PAGE causes SQR and SQRT to delay printing until the last page has been processed so that
the number of the last page is known.

Parameters

Parameter Description

position Specifies the position for printing the last page number. See
the POSITION command for a description of the position
parameter.

pre_txt_lit Specifies a text string to be printed before the last page
number.

post_txt_lit Specifies a text string to be printed after the last page number.

Example

The following example illustrates the LAST-PAGE command:

begin-footing 1
 page-number (1,37) 'Page ' ! Will appear as
 last-page () ' of ' '.' ! "Page 12 of 25."
end-footing

See PAGE-NUMBER, BEGIN-HEADING, BEGIN-FOOTING

LET

Syntax
LET dst_var=expression

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 141

Description
Assigns the value of an expression to a string, numeric, or date variable.

Valid expressions are formed as a combination of operands, operators, and functions. String, numeric,
date, and array field operands can be used in an expression and embedded functions. SQR supports a
standardized set of mathematical operators and logical comparison operators working within a carefully
defined set of precedence rules. SQR also provides a rich set of mathematical, string, date, and file
manipulation functions along with a number of special purpose utility functions. All combined, the SQR
expression provides a powerful tool that can be tailored to suit any information processing need. The
following detail outlines the specific behavior of each expression component: (1) the operand, (2) the
operator, and (3) the function.

Parameters

Parameter Description

dst_var A string, numeric, or date variable or array field to which the
result of the expression is assigned.

expression The expression to evaluate.

Operands

Operands form the backbone of an SQR expression. Operands do not have to be the same type. You can
combine string, numeric, and array field operands to form a valid expression. SQR performs a sequence
of automatic operand conversions when it evaluates expressions that contain dissimilar operand types.
As the expression is evaluated, operands of lower precision are converted to match the operand of higher
precision. Consider the following code example:

let #answer = #float * #decimal / #integer

Because the multiply and divide operators are equal in precedence, the expression is evaluated as (#float
* #decimal) / #integer. Working from the inside out, the #float variable is converted to a decimal type
in which a multiply is performed yielding the simplified expression (#decimal)/#integer. SQR now
converts the #integer operand to a decimal type before performing the final divide. When finished with
the expression evaluation, SQR converts the result to match the type of the #answer variable.

Converting operands of lower precision to operands of higher precision preserves the number of
significant digits. The number of significant digits is not lost when an integer is converted to float or
decimal. In a similar manner, the number of significant digits is preserved when floating point operands
are converted to the decimal type. The number of significant digits is sacrificed only when the final result
is converted to match the type of the #answer variable and this variable is less precise than the highest of
the operands being evaluated. In the example, precision is not lost if the #answer is declared as a decimal
type. SQR considers integer variables as the lowest in the precision hierarchy, followed by float and then
decimal.

Here are a few simple expression examples:

let #discount = round (&price * #rate / 100, 2)
let $name = $first_name || ' ' || $last_name
let customer.total (#customer_id) =

 customer.total (#customer_id) + #invoice_total
if not range(upper($code), 'A', 'G')

SQR Command Reference Chapter 2

142 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

 ...processing when out of range...
let store.total (#store_id, #qtr) =

 store.total (#store_id, #qtr) + #invoice_total
let $date1 = strtodate ('Apr 10 2004', 'MON DD YYYY')

The following sections list operators and functions supported in expressions.

Operators

Operators of the same precedence are processed in the sequence in which they appear in the expression,
from left to right. Use parentheses to override the normal precedence rules. All numeric types (decimal,
float, integer) are supported for all operators.

This table lists operators in descending order of precedence (operators listed in the same row within the
table have the same precedence):

Operator Explanation

|| Concatenate two strings or dates

+, - Sign prefix (positive or negative)

^ Exponent

*, /, % Multiply, divide, remainder: a % b = mod(a,b) for integers

+, - Plus, minus

Note: SQR distinguishes between a sign prefix and arithmetic
operation by the context of the expression.

>, <, >=, <=, <>, !=, = Comparison operators: greater than, less than, greater or equal
to, less than or equal to, not equal to (!= or <>), equal to.

not Logical NOT

and Logical AND

or, xor Logical OR, XOR (exclusive OR)

Functions

This section lists numeric, file-related, and miscellaneous functions. The functions are listed in
alphabetical order.

Function arguments are enclosed in parentheses and can be nested. Arguments referenced as x, y, or z
indicate the first, second, or third argument of a function. Otherwise, functions take a single argument or
no arguments. All arguments are evaluated before a function is evaluated.

Not all functions support all numeric types (decimal, float, integer). Certain functions do not support
the decimal type directly, but convert input decimal operands to the float type before the function is

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 143

evaluated. The following table annotates the functions that directly support the decimal type and the ones
that do not.

Use parentheses to override the normal precedence rules.

This table describes numeric functions:

Function Description

abs Returns the absolute value of num_value. This function returns
a value of the same type as num_value.

Syntax:

 dst_var =
 abs(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression.

dst_var = decimal, float, or integer variable.

Example:

let #dabsvar = abs(#dvar)

acos Returns the arccosine of num_value in the range of 0 to p
radians. The value of num_value must be between –1 and 1.
This function returns a float value.

Syntax:

 dst_var =
 acos(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Example:

let #facosvar = acos(#fvar)

asin Returns the arcsine of num_value in the range of –p/2 to p/2
radians. The value of num_value must be between –1 and 1.
This function returns a float value.

Syntax:

 dst_var =
 asin(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

SQR Command Reference Chapter 2

144 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Function Description

dst_var = decimal, float, or integer variable.

Example:

let #fasinvar = asin(#fvar)

atan Returns the arctangent of num_value in the range of –p/2 to
p/2 radians. The value of num_value must be between –1 and
1. This function returns a float value.

Syntax:

 dst_var =
 atan(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Example:

let #fatanvar = atan(#fvar)

ceil Returns a value representing the smallest integer that is greater
than or equal to num_value. This function returns a value of
the same type as num_value.

Syntax:

 dst_var =
 ceil(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression.

dst_var = decimal, float, or integer variable.

Example:

let #fceilvar = ceil(#fvar)

cos Returns the cosine of num_value. This function returns a float
value.

Syntax:

 dst_var =
 cos(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 145

Function Description

Example:

let #fcosvar = cos(#fvar)

cosh Returns the hyperbolic cosine of num_value. This function
returns a float value.

Syntax:

 dst_var =
 cosh(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Example:

let #fcoshvar = cosh(#fvar)

deg Returns a value expressed in degrees of num_value, which is
expressed in radians. This function returns a float value.

Syntax:

 dst_var =
 deg(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Example:

let #fdegvar = deg(#fvar)

e10 Returns the value of 10 raised to num_value. This function
returns a float value.

Syntax:

 dst_var =
 e10(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

SQR Command Reference Chapter 2

146 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Function Description

Example:

let #fe10var = e10(#fvar)

exp Returns the value of e raised to num_value. This function
returns a float value.

Syntax:

 dst_var =
 exp(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Example:

let #fexpvar = exp(#fvar)

floor Returns a value representing the largest integer that is less than
or equal to num_value. This function returns a value of the
same type as num_value.

Syntax:

 dst_var =
 floor(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression.

dst_var = decimal, float, or integer variable.

Example:

let #ffloorvar = floor(#fvar)

log Returns the natural logarithm of num_value. This function
returns a float value.

Syntax:

 dst_var =
 log(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 147

Function Description

Example:

let #flogvar = log(#fvar)

log10 Returns the base-10 logarithm of num_value. This function
returns a float value.

Syntax:

 dst_var =
 log10(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Example:

let #flog10var = log10(#fvar)

mod Returns the fractional remainder, f, of x_value/ y_value such
that x_value = i * y_value + f, where i is an integer, f has the
same sign as x_value, and the absolute value of f is less than
the absolute value of y_value. The arguments are promoted
to the type of the greatest precision and the function returns a
value of that type.

Syntax:

 dst_var =
 mod(x_value, y_value)

x_value = decimal, float, or integer literal, column, variable, or
expression.

y_value = decimal, float, or integer literal, column, variable, or
expression.

dst_var = decimal, float, or integer variable.

Example:

let #fmodvar = mod(#fxvar, #fyvar)

power Returns the value of x_value raised to the power of y_value.
This function returns a float value.

Syntax:

 dst_var =
 power(x_value, y_value)

SQR Command Reference Chapter 2

148 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Function Description

x_value = decimal, float, or integer literal, column, variable, or
expression. The value is always converted to float.

y_value = decimal, float, or integer literal, column, variable, or
expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Example:

let #fpowervar = power(#fxvar, #fyvar)

rad Returns a value expressed in radians of num_value, which is
expressed in degrees. This function returns a float value.

Syntax:

 dst_var =
 rad(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

place_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Example:

let #fradvar = rad(#fvar)

round Returns a value that is num_value rounded to place_value
digits after the decimal separator. This function returns a value
of the same type as num_value.

Syntax:

 dst_var =
 round(num_value, place_value)

num_value = decimal, float, or integer literal, column,
variable, or expression.

place_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 149

Function Description

Example:

let #frndvar = round(#fvar, #fplace) (#x,
 #y)

sign Returns a –1, 0, or +1 depending on the sign of num_value.
This function returns a float value.

Syntax:

 dst_var =
 sign(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression.

dst_var = decimal, float, or integer variable.

Example:

let #fsignvar = sign(#fvar)

sin Returns the sine of num_value. This function returns a float
value.

Syntax:

 dst_var =
 sin(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Example:

let #fsinvar = sin(#fvar)

sinh Returns the hyperbolic sine of num_value. This function
returns a float value.

Syntax:

 dst_var =
 sinh(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

SQR Command Reference Chapter 2

150 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Function Description

Example:

let #fsinhvar = sinh(#fvar)

sqrt Returns the square root of num_value. This function returns a
float value.

Syntax:

 dst_var =
 sqrt(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Example:

let #fsqrtvar = sqrt(#fvar)

tan Returns the tangent of num_value. This function returns a float
value.

Syntax:

 dst_var =
 tan(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Example:

let #ftanvar = tan(#fvar)

tanh Returns the hyperbolic tangent of num_value. This function
returns a float value.

Syntax:

 dst_var =
 tanh(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 151

Function Description

Example:

let #ftanhvar = tanh(#fvar)

trunc Returns a value that is num_value truncated to place_value
digits after the decimal separator. This function returns a value
of the same type as num_value.

Syntax:

 dst_var =
 trunc(num_value, place_value)

num_value = decimal, float, or integer literal, column,
variable, or expression.

place_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = decimal, float, or integer variable.

Example:

let #ftruncvar = trunc(#fvar, #fplace)

The transcendental functions sin, cos, tan, sinh, cosh, and tanh take their arguments in radians. The
functions asin, acos, and atan return radian values. To convert from radians to degrees or degrees to
radians, use the rad or deg functions as shown here:

let #x = sin(rad(45)) ! Sine of 45 degrees.
let #y = deg(asin(#x)) ! Convert back to degrees.

If arguments or intermediate results passed to a numeric function are invalid for that function, SQR halts
with an error message.

For example, passing a negative number to the sqrt function causes an error. Use the cond function
described in the Miscellaneous Functions table to prevent division by zero or other invalid function or
operator argument values.

The following table lists file-related functions. These functions return 0 (zero) when successful;
otherwise, they return the system error code.

Function Description

delete Deletes the file filename. The function returns either a 0 (zero)
to indicate success or the value returned from the operating
system to indicate an error.

Syntax:

 stat_var =
 delete(filename)

filename = text literal, column, variable, or expression.

SQR Command Reference Chapter 2

152 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Function Description

stat_var = decimal, float, or integer variable.

Example:

let #fstatus = delete($filename)

exists Determines whether the file filename exists. The function
returns either a 0 (zero) to indicate success or the value
returned from the operating system to indicate an error.

Syntax:

 stat_var =
 exists(filename)

filename = text literal, column, variable, or expression.

stat_var = decimal, float, or integer variable.

Example:

let #fstatus = exists($filename)

rename Renames old_filename to new_filename. The function returns
either a 0 (zero) to indicate success or the value returned from
the operating system to indicate an error.

Syntax:

stat_var =
 rename(old_filename, new_filename)

old_filename = text literal, column, variable, or expression.

new_filename = text literal, column, variable, or expression.

stat_var = decimal, float, or integer variable.

Example:

let #fstatus = rename($old_filename,
 $new_filename)

The following table lists miscellaneous functions. These functions return a string value unless otherwise
indicated.

In these functions where a string argument is expected and a date variable, column, or expression is
entered, SQR converts the date to a string according to the following rules:

• For DATETIME columns and SQR DATE variables, SQR uses the format specified by the
SQR_DB_DATE_FORMAT setting.

If this has not been set, SQR uses the first database-dependent format as listed in the Default Database
Formats table.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 153

• For DATE columns, SQR uses the format specified by the SQR_DB_DATE_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format listed in the DATE Column Formats table.

• For TIME columns, SQR uses the format specified by the SQR_DB_TIME_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format as listed in the TIME Column Formats table.

Except where noted in an individual function, if a string variable, column, or expression is entered where
a date argument is expected, the string must be in the format specified by the SQR_DB_DATE_FORMAT
setting, one of the database-dependent formats listed in the Default Database Formats table, or the
database-independent format 'SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]'.

Function Explanation

array Returns a pointer to the starting address of the specified array
field. The value returned from this function can be used only
by a user-defined function. See the routine printarray in the
file UFUNC.C for complete instructions on how to use this
function.

Syntax:

 array_var =
 array(array_name, field_name)

array_name = text literal, column, variable, or expression

field_name = text literal, column, variable, or expression

array_var = text variable

Example:

let #fstatus =
 printarray(array('products', 'name'), 10,
 2, 'c')

ascii Returns the numeric value for the first character in str_value.
This function returns a float value.

Syntax:

 ascii_var =
 ascii(str_value)

str_value = date or text literal, column, variable, or expression

ascii_var = decimal, float, or integer variable

Example:

let #fascii = ascii($filename)

SQR Command Reference Chapter 2

154 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Function Explanation

asciic Returns the numeric value for the first character (rather than
byte) of the specified string.

Syntax:

 ascii_var =
 asciic(str_value)

str_value = date or text literal, column, variable, or expression

ascii_var = decimal, float, or integer variable

Example:

let #fascii = asciic($filename)

chr Returns a string that is composed of a character with the
numeric value of num_value.

Syntax:

 dst_var =
 chr(num_value)

num_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = text variable.

Example:

let $svar = chr(#num)

cond Returns y_value if the x_value is nonzero; otherwise,
returns z_value. If y_value is numeric, the z_value must
also be numeric; otherwise, date and textual arguments are
compatible. If either the y_value or z_value is a date variable,
column, or expression, a date is returned. The return value of
the function depends on which value is returned.

Syntax:

 dst_var =
 cond(x_value, y_value, z_value)

x_value = decimal, float, or integer literal, column, variable, or
expression. The value is always converted to float.

y_value = Any literal, column, variable, or expression

z_value = Any literal, column, variable, or expression

dst_var = Any variable

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 155

Function Explanation

Example:

let #avg = #total / cond(&rate != 0,
 &rate, 1)

dateadd Returns a date after adding (or subtracting) the specified units
to the date_value.

Syntax:

 dst_var =
 dateadd(date_value, units_value, quantity_valu⇒
e)

date_value = date variable or expression.

units_value = text literal, column, variable, or expression.
Valid units are 'year', 'quarter', 'week', 'month', 'day', 'hour',
'minute', and 'second'.

quantity_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to float.

dst_var = date variable

Example:

let $date = dateadd($startdate, 'day',
 7.5)

datediff Returns the difference between the specified dates expressed
in units_value. The function returns a float value. The result
can be negative if the first date is earlier than the second date.

Syntax:

 dst_var =
 datediff(date1_value, date2_value, units_value)

date1_value = date variable or expression.

date2_value = date variable or expression.

units_value = text literal, column, variable, or expression.
Valid units are 'year', 'quarter', 'week', 'month', 'day', 'hour',
'minute', and 'second'

dst_var = decimal, float, or integer variable.

Example:

let #diff = datediff($date1, $date2,
 'hour')

SQR Command Reference Chapter 2

156 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Function Explanation

datenow Returns the current local date and time from the client
machine.

Syntax:

 dst_var =
 datenow()

dst_var = date variable

Example:

let $date = datenow()

datetostr Converts the date date_value to a string in the format
format_mask.

Syntax:

 dst_var =
 datetostr(date_value [, format_mask])

date_value = date variable or expression.

format_mask = text literal, column, variable, or expression.
The keyword DATE can be used to specify the DATE-
EDIT-MASK setting from the current locale. If this
argument is not specified, the format specified by the
SQR_DB_DATE_FORMAT setting is used. If this has not
been set, the first database-dependent format listed in the
Default Database Formats table is used.

dst_var = text variable

Example: let $formdate = datetostr($date, 'Day Mon DD,
YYYY') let $localedate = datetostr($date, DATE)

edit Formats source_value according to edit_mask and returns a
string containing the result.

Syntax:

 dst_var =
 edit(source_value, edit_mask)

source_value = Any literal, column, variable, or expression

edit_mask = text literal, column, variable, or expression

dst_var = text variable

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 157

Function Explanation

Example:)

let $phone = edit(&phone, '(xxx)
 xxx-xxxxx') let $price = edit(#price,
 '999.99') ⇒
let $today = edit($date, 'DD/MM/YYYY'

getenv Returns the value of the specified environment variable. If
the environment variable does not exist, an empty string is
returned.

Syntax:

 dst_var =
 getenv(env_value)

env_value = text literal, column, variable, or expression

dst_var = text variable

Example:

let $myuser = getenv('USER')

instr Returns the numeric position of sub_value in source_value or
0 (zero) if not found. The search begins at offset offset_value.
This function returns a float value.

Syntax:

 dst_var =
 instr(source_value, sub_value, offset_value)

source_value = date or text literal, column, variable, or
expression.

sub_value = text literal, column, variable, or expression.

offset_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to
integer.

dst_var = decimal, float, or integer variable.

Example:

let #offset = instr(&description, 'auto',
 10)

instrb Performs the same functionality as the instr function except
that the starting point and returned value are expressed in bytes
rather than in characters.

SQR Command Reference Chapter 2

158 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Function Explanation

Syntax:

 dst_var =
 instrb(source_value, sub_value, offset_value)

source_value = date or text literal, column, variable, or
expression.

sub_value = text literal, column, variable, or expression.

offset_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to
integer.

dst_var = decimal, float, or integer variable.

Example:

let #offset = instrb(&description, 'auto',
 10)

isblank Returns a value of 1 (one) if source_val is an empty string,
null string, or composed entirely of white-space characters;
otherwise, returns a value of 0 (zero).

Syntax:

 dst_var =
 isblank(source_value)

source_value = date or text literal, column, variable, or
expression

dst_var = decimal, float, or integer variable

Example:

let #blank = isblank(&description)

isnull Returns a value of 1 (one) if source_val is null; otherwise,
returns a value of 0 (zero).

Syntax:

 dst_var =
 isnull(source_value)

source_value = date or text literal, column, variable, or
expression

dst_var = decimal, float, or integer variable

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 159

Function Explanation

Example:

let #null = isnull($date)

length Returns the number of characters in source_value.

Syntax:

 dst_var =
 length(source_value)

source_value = date or text literal, column, variable, or
expression

dst_var = decimal, float, or integer variable

Example:

let #length = length(&description)

Note: Oracle recommends that you use either the lengthp or
lengtht function instead of the length function.

lengthb (Multibyte versions of SQR only) Has the same functionality
as the length function except that the return value is expressed
in bytes rather than in characters.

Syntax:

 dst_var =
 lengthb(source_value)

source_value = date or text literal, column, variable, or
expression

dst_var = decimal, float, or integer variable

Example:

let #length = lengthb(&description)

Note: Oracle recommends that you use either the lengthp or
lengtht function instead of the lengthb function.

lengthp Returns the length of a given string in print positions.

Syntax:

 dst_var =
 lengthp(source_value)

source_value = date or text literal, column, variable, or
expression

SQR Command Reference Chapter 2

160 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Function Explanation

dst_var = decimal, float, or integer variable

Example:

let #printlen = lengthp(&string)

lengtht Returns the length of a given string in bytes when converted
(transformed) to a specified encoding.

Syntax:

 dst_var =
 lengtht(source_value, encoding_value)

source_value = date or text literal, column, variable, or
expression

encoding_value = text literal, column, variable, or expression

dst_var = decimal, float, or integer variable

Example:

let #sjislen = lengtht($string, 'Shift-
JIS')

lower Converts the contents of source_value to lowercase and returns
the result.

Syntax:

 dst_var =
 lower(source_value)

source_value = date or text literal, column, variable, or
expression

dst_var = text variable

Example:

let $lower = lower(&description)

lpad Pads the source_value on the left to a length of length_value
using pad_value and returns the result.

Syntax:

 dst_var =
 lpad(source_value, length_value, pad_value)

source_value = date or text literal, column, variable, or
expression.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 161

Function Explanation

length_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to
integer.

pad_value = text literal, column, variable, or expression.

dst_var = text variable.

Example:

let $lpad = lpad($notice, 25, '.')

ltrim Trims characters in source_value from the left until a character
is not in set_value and returns the result.

Syntax:

 dst_var =
 ltrim(source_value, set_value)

source_value = date or text literal, column, variable, or
expression

set_value = text literal, column, variable, or expression

dst_var = text variable

Example:

let $ltrim = ltrim(&description, '.')

nvl Returns y_value if the x_value is null; otherwise, returns
x_value. If x_value is numeric, y_value must also be numeric;
otherwise, date and textual arguments are compatible. In any
case, the x_value determines the type of expression returned.
The return value of the function depends on which value is
returned.

Syntax:

 dst_var =
 nvl(x_value, y_value)

x_value = Any literal, column, variable, or expression

y_value = Any literal, column, variable, or expression

dst_var = Any variable

Example:

let $city = nvl(&city, '-- not city --')

If x_value is a date and y_value is textual, y_value is validated
according to the following rules:

SQR Command Reference Chapter 2

162 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Function Explanation

For DATETIME columns and SQR DATE variables, SQR
uses the format specified by the SQR_DB_DATE_FORMAT
setting, one of the database-dependent formats (see the Default
Database Formats table), or the database-independent format
'SYYYYMDD[HH24[MI[SS[NNNNNN]]]]'.

For DATE columns, SQR uses the format specified by the
SQR_DB_DATE_ONLY_FORMAT setting, or the format
listed in the DATE Column Formats table.

For TIME columns, SQR uses the format specified by the
SQR_DB_TIME_ONLY_FORMAT setting, or the format as
listed in the TIME Column Formats table.

range Returns a value of 1 (one) if x_value is between y_value and
z_value; otherwise, returns a value of 0 (zer0). If the first
argument is text or numeric, the other arguments must be of
the same type. If the first argument is a date, the remaining
arguments can be dates, text, or both. You can also perform
a date comparison on a mix of date and text arguments, for
example, where x_value is a date and y_value and z_value
are text arguments. In a comparison of this sort, y_value must
represent a date that is earlier than that of z_value.

Syntax:

 dst_var =
 range(x_value, y_value, z_value)

x_value = Any literal, column, variable, or expression

y_value = Any literal, column, variable, or expression

z_value = Any literal, column, variable, or expression

dst_var = decimal, float, or integer variable

Example:

let #inrange = range(&grade, 'A', 'D')
 let #inrange = range($date, $startdate,
 $end⇒
date) let #inrange = range($date,
 $startdate, '15-Apr-04') let #inrange =
 range(#pr⇒
ice, #low, #high)

If x_value is a date and y_value and/or z_value is textual, then
y_value and/or z_value is validated according to the following
rules:

For DATETIME columns and SQR DATE variables, SQR
uses the format specified by the SQR_DB_DATE_FORMAT
setting, one of the database-dependent formats (see the Default

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 163

Function Explanation

Database Formats table), or the database-independent format
'SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]'.

For DATE columns, SQR uses the format specified by the
SQR_DB_DATE_ONLY_FORMAT setting, or the format
listed in the table DATE Column Formats.

For TIME columns, SQR uses the format specified by the
SQR_DB_TIME_ONLY_FORMAT setting, or the format as
listed in table TIME Column Formats.

replace Inspects the contents of source_value and replaces all
occurrences of from_string with to_string and returns the
modified string.

Syntax:

 dst_var =
 replace(source_value, from_string, to_string)

source_value = date or text literal, column, variable, or
expression

from_string = text literal, column, variable, or expression

to_string = text literal, column, variable, or expression

dst_var = text variable

Example:
let $replaced = replace($paragraph,
 'good', 'excellent')

roman Returns a string that is the character representation of
source_value expressed in lowercase roman numerals.

Syntax:

 dst_var =
 roman(source_value)

source_value = text literal, column, variable, or expression

dst_var = text variable

Example:

let $roman = roman(#page-count)

rpad Pads the source_value on the right to a length of length_value
using pad_value and returns the result.

Syntax:

SQR Command Reference Chapter 2

164 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Function Explanation

 dst_var =
 rpad(source_value, length_value, pad_value)

source_value = date or text literal, column, variable, or
expression

length_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to
integer.

pad_value = text literal, column, variable, or expression

dst_var = text variable

Example:

let $rpad = rpad($notice, 25, '.')

rtrim Trims characters in source_value from the right until a
character is not in set_value and returns the result.

Syntax:

 dst_var =
 rtrim(source_value, set_value)

source_value = date, or text literal, column, variable, or
expression

set_value = text literal, column, variable, or expression

dst_var = text variable

Example:

let $rtrim = rtrim(&description, '.')

strtodate Converts the string source_value in the format format_mask to
a date type.

Syntax:

 dst_var =
 strtodate(source_value [, format_mask])

source_value = text literal, column, variable, or expression.

format_mask = text literal, column, variable, or expression
that describes the exact format of the source_value. The
keyword DATE can be used to specify the DATE-EDIT-
MASK setting from the current locale. If this argument
is not specified, then source_value must be in the format
specified by the SQR_DB_DATE_FORMAT setting,
one of the database-dependent formats (see the Default
Database Formats table), or the database-independent format

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 165

Function Explanation

'SYYYYMDD[HH24[MI[SS[NNNNNN]]]]'. Valid format
codes are specified in the Date Edit Format Codes table.

dst_var = date variable

Example: let $date = strtodate($str_date, 'Mon DD, YYYY')
let $date = strtodate($str_date, DATE)

substr Extracts the specified portion source_value. The extraction
begins at offset_value (origin is 1) for a length of length_value
characters.

Syntax:

 dst_var =
 substr(source_value, offset_value, length_valu⇒
e)

source_value = date or text literal, column, variable, or
expression.

offset_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to
integer.

length_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to
integer.

dst_var = text variable.

Example:

let $piece = substr(&record, 10, #len)

Note: Oracle recommends that you use either the substrp or
substrt function instead of the substr function.

substrb Has the same functionality as the substr function except that
the starting point and length are expressed in bytes rather than
in characters.

Syntax:

 dst_var =
 substrb(source_value, offset_value, length_val⇒
ue)

source_value = date or text literal, column, variable, or
expression.

SQR Command Reference Chapter 2

166 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Function Explanation

offset_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to
integer.

length_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to
integer.

dst_var = text variable.

Example:

let $piece = substrb(&record, 10, #len)

Note: Oracle recommends that you use either the substrp or
substrt function instead of the substrb function.

substrp Returns a substring of a given string starting at a specified
print position into the string and of a specified print length.

Syntax:

 dst_var =
 substrp(source_value, offset_value, length_val⇒
ue)

source_value = date or text literal, column, variable, or
expression.

offset_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to
integer.

length_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to
integer.

dst_var = decimal, float, or integer variable.

Example:

let $sub = substrp(&string, #printpos,
 #printlen)

substrt Returns a substring of a given string starting at a specified byte
and byte length in a given encoding.

Syntax:

 dst_var =
 substrt(source_value, offset_value, length_val⇒
ue, encoding_value)

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 167

Function Explanation

source_value = date or text literal, column, variable, or
expression.

offset_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to
integer.

length_value = decimal, float, or integer literal, column,
variable, or expression. The value is always converted to
integer.

encoding_value = text literal, column, variable, or expression.

dst_var = text variable.

Example:

let $sjisPrep = substrt(&string, 1, 10,
 'Shift-JIS')

to_char Converts source_value to a string, using maximum precision.

Syntax:

 dst_var =
 to_char(source_value)

source_value = decimal, float, or integer literal, column,
variable, or expression

dst_var = text variable

Example:

let $string = to_char(#number)

to_multi_byte Converts the specified string in the following way: Any
occurrence of a double-byte character that also has a single-
byte representation (numerals, punctuation, roman characters,
and katakana) is converted.

Syntax:

 dst_var =
 to_multi_byte (source_value)

source_value = date or text literal, column, variable, or
expression

Example:

let $multi = to_multi_byte (&text)

to_number Converts source_value to a number. This function returns a
float value.

SQR Command Reference Chapter 2

168 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Function Explanation

Syntax:

 dst_var =
 to_number(source_value)

source_value = date or text literal, column, variable, or
expression

dst_var = decimal, float, or integer variable

Example:

let #value = to_number($number)

to_single_byte Converts the specified string in the following way: For
SJIS, EBCDIK290, and EBCDIK1027, any occurrence of a
single-byte character that also has a multibyte representation
(numerals, punctuation, roman characters, and katakana) is
converted. This function also converts a sequence of kana
characters followed by certain grammatical marks into a
single-byte character that combines the two elements. For all
other encodings, the string is not modified.

Syntax:

 dst_var =
 to_single_byte(source_value)

source_value = date or text literal, column, variable, or
expression

Example:

let $single = to_single_byte (&text)

translate Inspects the contents of source_value and converts characters
that match those in from_set to the corresponding character in
to_set and returns the translated string.

Syntax:

 dst_var =
 translate(source_value, from_set, to_set)

source_value = date or text literal, column, variable, or
expression

from_set = text literal, column, variable, or expression

to_set = text literal, column, variable, or expression

dst_var = text variable

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 169

Function Explanation

Example:

let $translated = translate(edit(&price,
 '999,999.99'),',',',')

transform Returns a Unicode string that is a specified transform of a
given string.

Syntax:

 dst_var =
 transform(source_value, transform_value)

source_value = date or text literal, column, variable or
expression

transform_value = text literal, column, variable, or expression

dst_var = text variable

Example:

let $hiragana = transform($string,
 'ToHiragana')

unicode Returns a Unicode string from the string of hexadecimal
values provided.

Syntax:

 dst_var =
 unicode(source_value)

source_value = text literal, column, variable or expression

dst_var = text variable

Example:

let $uniStr = unicode('u+5e73 u+2294')

upper Converts the contents of source_value to uppercase and returns
the result.

Syntax:

 dst_var =
 upper(source_value)

source_value = date or text literal, column, variable, or
expression

dst_var = text variable

SQR Command Reference Chapter 2

170 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Function Explanation

Example:

let $upper = upper(&description)

wrapdepth Returns the number of print lines required by source_value.
See the PRINTWRAP command for detailed descriptions of
the parameters to this function. This function returns a float
value.

Syntax:

 dst_var =
 wrapdepth(source_value, wrap_width, line_heigh⇒
t, on, strip)

source_value = text literal, column, variable, or expression

wrap_width = decimal, float, or integer literal, column,
variable, or expression

line_height = decimal, float, or integer literal, column,
variable, or expression

on = text literal, column, variable, or expression

strip = text literal, column, variable, or expression

dst_var = decimal, float, or integer variable

Example:

let #depth =
 wrapdepth(&description,40,1,'<13>','')

Writing Custom Functions

In addition to using the preceding built-in functions, you can write your own functions in C, using the
supplied source file UFUNC.C .

You can pass any number of arguments to your function and values can be returned by the function or
passed back in variables.

After editing and recompiling UFUNC.C, you must relink SQR.

The following step-by-step example shows how to add a user-defined function to SQR so that it can be
invoked using the LET, IF, or WHILE command.

The example adds the C function random, which returns a random number. The function accepts a
parameter that is used as the seed to start a new sequence of numbers. If the seed is zero, then the same
sequence is used.

When adding functions to UFUNC, remember the following considerations:

• String functions require the following arguments:

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 171

• (int) Number of arguments.

• (char *) or (double *) Array of argument pointers, to either char[] or double.

• (char *) Address for result string. If unchanged, function returns a NULL string.

• (int) Maximum length of result string, in bytes.

• Numeric functions require the following arguments:

• (int) Number of arguments.

• (char *) or (double *) Array of argument pointers, to either char[] or double.

• (double *) Address for result numeric value. If unchanged, function returns zero.

To add the random function to SQR, add the following modifications to the UFUNC.C file that was
provided with SQR:

• Add the prototype for the random function: static void random CC_ARGS((char *, char *));

• Add the function name to the declaration list. The name of the function called from SQR is random.
The return type is n for numeric. The number of arguments passed is 1, and the argument type is n for
numeric. The function name in UFUNC.C is random. The characters PVR must be entered before the
function name.

Name Return_type Number of
Arguments

Arg_Types Function

"max", 'n', 0, "n", PVR max,

"max", 'n', 0, "n", PVR max,

"split", 'n', 0, "C", PVR split,

"printarray", 'n', 4, "cnnc", PVR printarray,

"random", 'n', 1, "n", PVR random,

/* Last entry must be NULL -- do not change */
"", '\0', 0, "", 0
};

At the end the of UFUNC.C file, add the following random routine. The routine name must be lowercase;
however, in your SQR program it can be referenced in either uppercase or lowercase.

static void random CC_ARGL((argc, argv, result))
CC_ARG(int, argc) /* The number arguments passed */
CC_ARG(double *, argv[]) /* The argument list */
CC_LARG(double *, result) /* Where to store result */
{
if (*argv[0] != 0)
 srand(*argv[0]);
*result = rand();
return;

SQR Command Reference Chapter 2

172 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

}

After these modifications, recompile UFUNC.C and relink SQR. See the programmer's reference manual
for details about your particular machine.

This is a simple SQR program that uses the random function:

 begin-program
 do get-random-number
 do process-calculations
 end-program

 begin-procedure
 let #seed = 44
 let #ran = random(#seed)
 end-procedure

 begin-procedure process-calculations
 .
 .
 .

Example

These examples show some complex expressions:

let #j = ((#a + #b) * #c) ^ 2
if #j > 2 and sqrt(#j) < 20 or #i + 2 > 17.4
while upper(substr(&descrip,1,#j+2)) != 'XXXX'

and not isnull(&price)
let #len = length(&fname || &initial || &lname) + 2
let $s = edit(&price * &rate, '99999.99')
let summary.total(#j) = summary.total(#j) + (&price * &rate)
if summary.total(#j) > 1000000
let store.total (#store_id, #dept)

 = store.total (#store_id, #dept) + #total
let #diff = datediff(datenow(), strtodate('1995','YYYY'),'day')
let $newdate = dateadd(datenow(),'month',50)
let $date1 = datetostr(strtodate(&sale_date), 'Day Month DD, YYYY')

SQR analyzes LET, IF, and WHILE expressions when it compiles your code and saves the result in an
internal format so that repetitive execution is at maximum speed.

LOAD-LOOKUP

Syntax
In the SETUP section:

LOAD-LOOKUP NAME=lookup_table_name TABLE=database_table_name
KEY=key_column_name RETURN_VALUE=return_column_name
[ROWS=initial_row_estimate_int_lit]
[EXTENT=size_to_grow_by_int_lit] [WHERE=where_clause_txt_lit] [SORT=sort_mode]
[QUIET] [SCHEMA=schema_name] [PROCEDURE=procedure_name] [COMMAND=command_string]
[GETDATA=getdata_string] [PARAMETERS=(...)] [FROM-ROWSET=(m,n,-n,m-,all)]
[FROM-PARAMETER=rowset_name]

In the body of the report:

LOAD-LOOKUP NAME=lookup_table_name TABLE=database_table_name
KEY=key_column_name RETURN_VALUE=return_column_name [ROWS=initial_row_estimate_lit|
_var|_col]

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 173

[EXTENT=size_to_grow_by_lit|_var|_col] [WHERE=where_clause_txt_lit|_var|_col]
[SORT=sort_mode] [QUIET] [SCHEMA=schema_name] [PROCEDURE=procedure_name]
[COMMAND=command_string] [GETDATA=getdata_string] [PARAMETERS=(...)]
[FROM-ROWSET=(m,n,-n,m-,all)] [FROM-PARAMETER=rowset_name]

Description
Loads an internal table with columns from the database. Enables a quick search using the LOOKUP
command.

Use the LOAD-LOOKUP command in conjunction with one or more LOOKUP commands.

LOAD-LOOKUP retrieves two columns from the database, the KEY field and the RETURN_VALUE
field. Rows are ordered by KEY and stored in an array.

LOAD-LOOKUP commands specified in the SETUP section are always loaded and cannot reference
variables for the ROWS, EXTENT, and WHERE arguments.

When you use the LOOKUP command, SQR searches the array (with a binary search) to find the
RETURN_VALUE corresponding to the KEY referenced in the lookup.

Usually this type of lookup can be done with a database join , but joins take substantially longer.
However, if your report is small and the number of rows to be joined is small, a lookup table can be
slower because the entire table has to be loaded and sorted for each report run.

By default, SQR lets the database sort the data. This works well if the database and SQR both use the
same character set and collating sequence. The SORT argument enables you to specify the sorting method
if this is not true. Additionally, if the machine that SQR is running on is faster than the machine that the
database is running on, letting SQR perform the sort could decrease the execution time of the report.

The only limit to the size of a lookup table is the amount of memory that your computer has available.
You could conceivably load an array with many thousands of rows. The binary search is performed
quickly regardless of how many rows are loaded.

Except for the amount of available memory, the number of lookup tables that can be defined is unlimited.

Parameters

Parameter Description

NAME The name of the lookup table. The array name is referenced in
the LOOKUP command.

TABLE The name of the table in the database, where the KEY and
RETURN_VALUE columns or expressions are stored.

KEY The name of the column that is used as the key in the array
that is used for looking up the information. Keys can be
character, date, or numeric data types. If the key is numeric,
SQR permits only integers with 12 digits or fewer for the KEY
column. Keys can be any database-supported expression. See
the RETURN_VALUE argument.

SQR Command Reference Chapter 2

174 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameter Description

RETURN_VALUE The name of the column (expression) that is returned for each
corresponding key.

The following example is for ORACLE. See your database
manual for the correct syntax.

RETURN_VALUE='name||''-''||country||''-''||population'

ROWS The initial size of the lookup table. This argument is optional,
 and if it is not specified, a value of 100 is used.

EXTENT The amount to increase the array when it becomes full. This
argument is optional, and if it is not specified, a value of 25%
of the ROWS value is used.

WHERE A WHERE clause used to select a subset of all the rows in
the table. If it is specified, the selection begins after the word
WHERE. The WHERE clause is limited to 255 characters.

SORT The sorting method to be used. The following values are
permitted:

DC: Database sorts data, case-sensitive sort

DI: Database sorts data, case-insensitive sort

SC: SQR sorts data, case-sensitive sort

SI: SQR sorts data, case-insensitive sort

The default is SC or the method specified by the -LL
command-line flag. The DI method is applicable only to
databases that provide this feature and have been installed in
that manner.

QUIET Suppresses the message Loading lookup array... when the
command executes. The warning message stating the number
of duplicate keys found is also suppressed.

Example

The following command loads the array states with the columns abbr and name from the database table
stateabbrs, where country is USA.

load-lookup

name=states

rows=50

table=stateabbrs

key=abbr

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 175

return_value=name

where=country='USA'

The preceding array is used in the example for the LOOKUP command to retrieve the full text of a state
name from the abbreviation.

The following example uses the LOOKUP command to validate data entered by a user using an INPUT
command:

get_state:
input $state 'Enter state abbreviation'
uppercase $state
lookup states $state $name
if $name = '' ! Lookup didn't find a match
 show 'No such state.'
 goto get_state
end-if

Enclose any command argument with embedded spaces by single quotes, as shown in the following
example:

where='country=''USA'' and region = ''NE'''

The entire WHERE clause is surrounded by quotes. The two single quotes around USA and NE are
translated to one single quote in the SQL statement.

The following example uses joins in a LOAD-LOOKUP command by including two tables in TABLE and
the join in WHERE:

load-lookup

name=states

rows=50

sort=sc

table='stateabbrs s, regions r'

key=abbr

return_value=name

where='s.abbr = r.abbr and r.location = ''ne'''

LOOKUP

Syntax
LOOKUP lookup_table_name{key_any_lit|_var|_col} {ret_txt_var|_date_var}

Description
Searches a lookup table (an array) for a key value and returns the corresponding text string.

Speeds up processing for long reports. For example, if you want to print the entire state name rather than
the abbreviation, you could use LOAD-LOOKUP and then LOOKUP to do this.

SQR Command Reference Chapter 2

176 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameters

Parameter Description

lookup_table_name Specifies the lookup table. This table must have been loaded
previously with a LOAD- LOOKUP command.

key_any_lit | _var | _col The key used for the lookup.

ret_txt_var | _date_var A string variable into which the corresponding value is
returned.

Example

The following example works in conjunction with the example for the LOAD-LOOKUP command:

lookup states &state_abbr $state_name

This example searches the states lookup table for a matching &state_abbr value; if the value is found,
the example returns the corresponding state name in $state_name. If it is not found, a null is placed in
$state_name.

See The LOAD-LOOKUP command

LOWERCASE

Syntax
LOWERCASE txt_var

Description
Converts the contents of a text variable to lowercase.

Parameters

Parameter Description

txt_var Specifies a text variable to be converted to lowercase.

Example

The following example illustrates the LOWERCASE command:

input $answer 'Type EXIT to stop'
lowercase $answer ! Allows user to enter
 ! upper or lowercase.
if $answer = 'exit'
 ...etc...

See The lower function listed in the Miscellaneous Functions table

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 177

MBTOSBS

Syntax
MBTOSBS {txt_var}

Description
Converts a double-byte string to its single-byte equivalent.

This command converts the specified string in the following way: any occurrence of a double-byte
character that also has a single-byte representation (numerals, punctuation, roman characters, and
katakana) is converted.

Parameters

Parameter Description

txt_var Specifies the string to be converted.

See The TO_SINGLE_BYTE function of the LET command

MOVE

Syntax
MOVE {src_any_lit|_var|_col} TO dst_any_var [[:$]format_mask|NUMBER|MONEY|DATE]

Description
Moves the source field to the destination field. Optionally, you can reformat the field using the
format_mask argument. Source and destination fields can be different types: numeric, text, or date.
MOVE is also useful for converting from one type to another; however, date and numeric variables are
incompatible.

When a date variable or column is moved to a string variable, the date is converted according to the
following rules:

• For DATETIME columns and SQR DATE variables, SQR uses the format specified by the
SQR_DB_DATE_FORMAT setting.

If this has not been set, SQR uses the first database-dependent format as listed in the Default Database
Formats table.

• For DATE columns, SQR uses the format specified by the SQR_DB_DATE_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format listed in the DATE Column Formats table.

• For TIME columns, SQR uses the format specified by the SQR_DB_TIME_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format as listed in the TIME Column Formats table.

SQR Command Reference Chapter 2

178 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Finally, as the example shows, the edit mask can be contained in a string variable.

Parameters

Parameter Description

src_any_lit | _var | _col Specifies any source column, variable, or literal. Note that
a date can be stored in a date variable or column, or a string
literal, column, or variable. When you are using a date format
_mask or the keyword DATE with the MOVE command, the
source, if a string literal, column, or variable, must be in the
format specified by the SQR_DB_DATE_FORMAT setting,
 one of the database-dependent formats as listed in the Default
Database Formats table, or the database-independent format
'SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]'.

dst_any_var Specifies a destination variable.

format_mask Specifies an optional format mask. For additional information
regarding edit masks, see the PRINT command.

NUMBER Indicates that src_any_lit|_var|_col is to be formatted using the
NUMBER-EDIT-MASK from the current locale. This option
is not allowed with date variables. (See the ALTER_LOCALE
command.)

MONEY Indicates that src_any_lit|_var|_col is to be formatted using the
MONEY-EDIT-MASK from the current locale. This option is
not allowed with date variables. (See the ALTER_LOCALE
command.)

DATE Indicates that src_any_lit|_var|_col is to be formatted using
the DATE-EDIT-MASK from the current locale. This option
is not allowed with numeric variables. (See the ALTER_
LOCALE command.)

Example

The following example illustrates the various features of the MOVE command:

 !
 ! Convert a string in place
 !
 move '123456789' to $ssn
 move $ssn to $ssn xxx-xx-xxxx
 show '$SSN = ' $ssn

Produces the following output:

$SSN = 123-45-6789

 !
 ! Convert a number to a string using an edit mask
 !
 move 1234567.89 to #value

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 179

 move #value to $value 999,999,999.99
 show '$Value = ' $value

Produces the following output:

$Value = 1,234,567.89

 !
 ! Convert a number to a string using a variable edit mask
 !
 move 123 to #counter
 move '099999' to $mask
 move #counter to $counter :$mask
 show '$Counter = ' $counter

Produces the following output:

$Counter = 000123

 !
 ! Convert a number to a string using the default edit mask
 !
 ! SQR, by default, outputs six digits of precision.
 ! If you require more or less precision, specify an edit mask.
 !
 move 123.78 to #defvar
 move #defvar to $defvar
 show '$DefVar = ' $defvar

Produces the following output:

$DefVar = 123.780000

 !
 ! Convert the number to a string using the locale default
 ! numeric edit mask
 !
 alter-locale number-edit-mask = '99,999,999.99'
 move 123456.78 to #nvar
 move #nvar to $nvar number
 show '$NVar = ' $nvar

Produces the following output:

$NVar = 123,456.78

 !
 ! Convert the money value to a string using the locale default
 ! money edit mask
 !
 alter-locale money-edit-mask = '$9,999,999.99'
 move 123456.78 to #mvar
 move #mvar to $mvar money
 show '$MVar = ' $mvar

Produces the following output:

$MVar = $ 123,456.78

 !
 ! Convert the date column to a string using the locale default
 ! date edit mask
 !
 begin-select
 dcol
 from tables
 end-select
 alter-locale date-edit-mask = 'Mon-DD-YYYY'
 move &dcol to $dvar date

SQR Command Reference Chapter 2

180 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

 show '$DVar = ' $dvar

Produces the following output:

$DVar = Jan-01-2004

 !
 ! Reset date to first day of the month
 ! ($date1 and $date2 have been defined as date variables)
 !
 let $date1 = datenow()
 move $date1 to $date2 'MMYYYY'
 show '$Date2 = ' $date2 edit 'MM/DD/YY HH:MI'

Produces the following output if the report was run in October of 2004:

$Date2 = 10/01/04 00:00

 !
 ! Convert date to a string
 ! ($date1 has been defined as a date variable)
 !
 move $date1 to $str_date 'DD-MON-YYYY'
 show '$Str_Date = ' $str_date

Produces the following output:

$Str_Date = 01-DEC-2004

 !
 ! Convert string (in partial format of SYYYYMMDDHHMISSNNN) to a
 ! date
 !
 move '20041129' to $date1
 show '$Date1 = ' $date1 edit 'Mon DD YYYY HH:MI'

Produces the following output:

$Date1 = Nov 29 2004 00:00

See The LET command for information about copying, editing, or converting fields

See The EDIT parameter of the PRINT command for a description of the edit masks

See The ALTER-LOCALE command for a description of the arguments NUMBER-EDIT-MASK,
MONEY-EDIT-MASK, and DATE-EDIT-MASK

See The PRINT command regarding the default date-time components as a result of moving an
incomplete date to a date variable

MULTIPLY

Syntax
MULTIPLY {src_num_lit|_var|_col} TIMES dst_num_var [ROUND=nn]

Description
Multiplies the first field by the second and places the result into the second field.

When dealing with money-related values (dollars and cents), use decimal variables rather than float
variables. Float variables are stored as double-precision floating-point numbers, and small inaccuracies

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 181

can appear when the program multiplies many numbers in succession. These inaccuracies can appear due
to the way different hardware and software implementations represent floating point numbers.

Parameters

Parameter Description

src_num_lit | _var | _col Specifies a numeric source column, variable, or literal.

dst_num_var Specifies a destination numeric variable.

ROUND Rounds the result to the specified number of digits to the right
of the decimal point. For float variables, this value can be from
0 to 15. For decimal variables, this value can be from 0 to the
precision of the variable. For integer variables, this argument
is not appropriate.

See The ADD command for more information

See The LET command for a discussion of complex arithmetic expressions

Example

The following example illustrates the MULTIPLY command:

multiply &quantity times #cost
multiply 1.5 times #result

NEW-PAGE

Syntax
NEW-PAGE [erase_from_line_num_lit|_var|_col]

Description
Writes the current page and begins a new one.

For line printers, this command can optionally erase the old page starting at a specified line. After this
action is performed, the location on the page is unchanged—that is, the value of #current-line is the same.
The default action is to erase the entire page and reset #current-line to its initial value for the page.

In reports in which an overflow page is needed, sometimes retaining information from the first page on
succeeding pages is useful.

Each NEW-PAGE occurrence adds a form feed character to the output file unless you specify
FORMFEED=NO in the DECLARE-LAYOUT for this program in the SETUP section.

Note: A NEW-PAGE automatically occurs if page overflow is detected. Tabular reports do not require
explicit NEW-PAGE commands; use NEXT-LISTING instead.

SQR Command Reference Chapter 2

182 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameters

Parameter Description

erase_from_line_num_lit | _var | _col Specifies a numeric column, variable, or literal for line
printers.

Example

The following example illustrates the NEW-PAGE command:

! Write current page, then erase it
! beginning at line 5.
new-page 5

NEW-REPORT

Syntax
NEW-REPORT {report_filename_txt_lit|_var|_col}

Description
Closes the current report output file and opens a new one with the specified file name.

This command is normally used with single reports only. When used with multiple report declarations,
this command affects the current report only.

The internal page counter is reset to 1 when NEW-REPORT is executed.

Note: SQR does not create a report output file until the first page is completed. NEW-REPORT might not
create a new file, for example, if no data is selected and nothing is printed on the page.

Parameters

Parameter Description

{report_filename_txt_lit | _var | _col} Specifies a new file name.

Example

The following example shows the NEW-REPORT command:

new-report 'rep2a.lis'
new-report $next-file

Assign the report file name within an SQR report by issuing the NEW-REPORT command before
printing. You might even prompt for the file name to use, as shown in the following example:

begin-report
 input $file 'Enter report file name'
 new-report $file
 ...

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 183

After execution of this command, the reserved variable $sqr-report is updated to reflect the new report
name.

See DECLARE-REPORT, USE-REPORT

See The -F command-line flag

NEXT-COLUMN

Syntax
NEXT-COLUMN [AT-END={NEWLINE|NEWPAGE}] [GOTO-TOP={num_lit|_var|_col}] [ERASE-
PAGE={num_lit|_var|_col}]

Description
Sets the current position on the page to the next column defined with the COLUMNS command.

Parameters

Parameter Description

AT-END Takes effect if the current column is the last one defined when
NEXT-COLUMN is invoked.

GOTO-TOP Causes the current line in the next column to be num_lit|_var|
_col. This argument is useful when you are printing columns
down the page.

ERASE-PAGE Specifies where to begin erasing the page when an AT-
END=NEWPAGE occurs.

Example

The following example prints columns across the page:

columns 10 50 ! Define two columns
begin-select
name (0,1,20)
phone (0,+3,0) edit (xxx)bxxx-xxxx
 next-column at-end=newline ! Print names
 ! across the page
from phonelist ! within two columns.
order by name
end-select

The following example prints columns down the page:

columns 10 50
move 55 to #bottom_line
begin-select
name (0,1,20)
phone (0,+3,0) edit (xxx)bxxx-xxxx
 if #current-line >= #bottom_line
 next-column goto-top=1 at-end=newpage
 else
 position (+1,1)

SQR Command Reference Chapter 2

184 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

 end-if
from phonelist
order by name
end-select

See COLUMNS, USE-COLUMN

NEXT-LISTING

Syntax
NEXT-LISTING[NO-ADVANCE] [SKIPLINES={num_lit|_var|_col}] [NEED={num_lit|_var|_col}]

Description
Ends the current set of detail lines and begins another.

NEXT-LISTING is used in tabular reports. This command causes a new vertical offset in the page to
begin.

After NEXT-LISTING is executed, line 1 is reset one line below the deepest line previously printed in the
page body. That is, if you then write PRINT (1, 5), the string is printed on the next available line starting
in column 5. Note that the SQR-reserved variable #current-line still reflects the actual line number within
the page body.

The value of SKIPLINES must be a nonnegative integer. If it is less than 0 (zero), then 0 is assumed.

The value of NEED must be an integer greater than 0. If it is less than or equal to 0, then 1 is assumed.

Parameters

Parameter Description

NO-ADVANCE Suppresses any line movement when no printing has occurred
since the previous NEXT-LISTING or NEW-PAGE. The
default increments the line position even when nothing was
printed.

SKIPLINES Causes the specified number of lines to be skipped before
setting up the new offset.

NEED Specifies the minimum number of lines needed to begin a new
listing or set of detail lines. If this number of lines does not
exist, a new page is started. You can use NEED to prevent a
group of detail lines from being broken across two pages.

Example

The following example shows the NEXT-LISTING command:

begin-select
cust_num (1,1) edit 099999 ! Each detail group prints
city (,+3) ! starting on line 1 since
name (2,10,30) ! NEXT-LISTING keeps
address (,+2) ! moving line 1 down the

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 185

 next-listing skiplines=1 need=2 ! page. NEED=2 keeps 2
from customers order by cust_num ! line detail groups from
end-select ! breaking across pages.

Note: The NEXT-LISTING command automatically issues a Use-Column 1 command if columns are
active.

OPEN

Syntax
OPEN {filename_lit|_var|_col} AS {filenum_num_lit|_var|_col} {FOR-READING|FOR-WRITING|
FOR-APPEND} {RECORD=length_num_lit[:FIXED|:FIXED_NOLF|:VARY]}
[STATUS=num_var]

Description
Opens an operating system file for reading or writing. After a file is opened, it remains open until
explicitly closed by the CLOSE command. A maximum of 256 files can be opened at one time.

Parameters

Parameter Description

{filename_lit | _var | _col} Specifies the file name. The file name can be literal, variable,
 or column. This makes prompting for a file name at runtime
easy.

{filenum_num_lit | _var | _col} Specifies a number that identifies the file in the application.
 All file commands use the file number to reference the file.
 File numbers can be numeric variables and literals. The
number can be any positive integer less than 64,000.

FOR-READING When a file is opened for reading, SQR procures all data
sequentially. SQR does not allow for random access of
information.

FOR-WRITING When a file is opened for writing, a new file is created. If a
file of the same name already exists, it can be overwritten (this
depends on the operating system).

FOR-APPEND When a file is opened in append mode, the current file
contents are preserved. All data written is placed at the end
of the file. SQR creates the file if one does not already exist.
 For existing files, make sure that the attributes used are the
same as those used when the file was created. Failure to do this
causes the unpredictable results.

RECORD For the VARY file type , this is the maximum size for a record.
For the FIXED file type , this is the size of each record without
the line terminator. For the FIXED_NOLF file type , this is the
size of each record.

SQR Command Reference Chapter 2

186 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameter Description

FIXED This file type assumes that all records contained within the file
are the same length. Terminate each record by a line terminator
(system-dependent). You can use this file type when writing or
reading binary data.

FIXED_NOLF This file type specifies that all records contained within the
file are the same length with no line terminators. When writing
records, SQR pads short records with blank characters to
ensure that each record is the same length. This file type can
be used when SQR is writing or reading binary data.

VARY This file type specifies that the records can be of varying
length. Each record is terminated by a line terminator (system-
dependent). Only records containing display characters (no
binary data) can be used safely. When SQR is reading records,
 any data beyond the maximum length specified is ignored.
 This is the default file type.

STATUS Sets the numeric variable to zero if the OPEN command
succeeds and to –1 if it fails. Without the STATUS argument,
 a failure on OPEN causes SQR to halt. By using a STATUS
variable, you can control what processing occurs when a file
cannot be opened.

Example

This section contains two examples: a regular open command and an expanded command:

open 'stocks.dat' as 1 for-reading record=100
open 'log.dat' as 5 for-writing record=70
open $filename as #j for-append record=80:fixed
open $filename as 2 for-reading record=80:fixed_nolf

open $filename as 6 for-reading record=132:vary status=#filestat
if #filestat != 0
 ... error processing ...
end-if

An encoding directive added to the OPEN command allows differently encoded files to be managed in a
single run of SQR. When no ENCODING is specified on the OPEN command, SQR uses the file input
or output encoding specified in the INI file unless the file is UCS-2 encoded and auto-detection of UCS-2
files is enabled. The complete syntax of the OPEN command is:

OPEN {filename_lit | _var | _col} AS {filenum_num_lit |
_var | _col}
{ FOR-READING | FOR-WRITING | FOR-APPEND }
{ RECORD = length_num_lit[:FIXED | :FIXED_NOLF |
:VARY]}
[STATUS = num_var]
[ENCODING = { _var | _col | ASCII | ANSI | SJIS | JEUC
| EBCDIC |
EBCDIK290 | EBCDIK1027 | UCS-2 | UTF-8 | others... }

The ENCODING directive is allowed only when you are converting to Unicode internally.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 187

See The READ, WRITE, and CLOSE commands for information about using files

PAGE-NUMBER

Syntax
PAGE-NUMBER position[pre_txt_lit[post_txt_lit]]

Description
Places the current page number on the page.

The text specified in pre_txt_lit and post_txt_lit is printed immediately before and after the number.

Parameters

Parameter Description

position Specifies the position of the page number. See the POSITION
command for a description and examples of the position
parameter.

pre_txt_lit Specifies a text string to be printed before the page number.

post_txt_lit Specifies a text string to be printed after the page number.

Example

The following example shows the PAGE-NUMBER command:

begin-footing 1
 page-number (1,37) 'Page ' ! Will appear as
 last-page () ' of ' '.' ! "Page 12 of 25."
end-footing

See LAST-PAGE

POSITION

Syntax
POSITION position [@document_marker[COLUMNS{num_lit|_var|_col}
[num_lit|_var|_col]...]]

Description
Sets the current position on a page.

SQR Command Reference Chapter 2

188 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameters

Parameter Description

position A position qualifier consisting of (line, column, width), where
column and width are numbers that denote characters and
spaces. Line, column, and width are all optional. If line or
column is omitted, the print position is set by default to the
current position, which is the position following the last
printed item. Width is set by default to the width of the text
that is being printed. A plus sign or minus sign indicates
relative positioning in SQR. A plus sign moves the print
position forward from the current position, and a minus sign
moves it back.

@document_markerg References a location defined in a document paragraph . In this
case, the position used is the location of that marker in the text
of the document.

COLUMNS Defines columns beginning at the location of the document
marker. The columns defined are relative to the position of the
document marker.

When COLUMNS is used, the entire command cannot be
broken across more than one program line.

Example

The following example shows the POSITION command:

position (12,5) ! Set current position to line 12, column 5.
position (+2,25) ! Set position 2 lines down, at 25th column.
position () @total_location ! Set position to document
print #total () edit 999,999,999 ! marker @total_location.
position () @name_loc columns 1 30
print name () ! Columns are defined at @name_loc and
next-column ! 29 characters to the right of @name_loc
print title ()

See The COLUMNS command for more information

Related Links
"Sample Program for Form Letters" (PeopleTools 8.53: SQR for PeopleSoft Developers)

PRINT

Syntax
PRINT {any_lit|_var|_col} position[format_command[format_cmd_params]...]...

Description
Puts data on the page at a specified position.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 189

Parameters

Parameter Description

{any_lit | _var | _col} Specifies the data to be printed.

Dates can be contained in a date column or variable, or in a
string literal, column, or variable. When you are using EDIT
or DATE with the PRINT command, a date in a string literal,
 column, or variable must be in an acceptable format. See the
description of EDIT for further details.

position A position qualifier consisting of (line, column, width),
 where column and width are numbers that denote characters
and spaces. Line, column, and width are all optional. If line
or column is omitted, the print position is set by default to
the current position, which is the position following the
last printed item. Width is set by default to the width of the
text that is being printed. Position can be relative. See the
POSITION command for a full description and examples of
relative positioning.

format_command

[format_cmd_params]

Specifies optional formatting commands and parameters.

Format Commands

The PRINT command has the following format commands::

• BACKGROUND

• BOLD

• BOX

• CENTER

• CODE-PRINTER

• DATE

• EDIT

• FILL

• FOREGROUND

• MONEY

• NOP

• NUMBER

• ON-BREAK

SQR Command Reference Chapter 2

190 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

• SHADE

• UNDERLINE

• WRAP

Note: The SHADE and BOX format options are not supported for output to HTML format.

Some of these format commands can be used in combination with others and some are mutually
exclusive. The following tables show which can be used together. An X indicates that they can be used
together.

BACKGROUND/
FOREGROUND

BOLD BOX CENTER CODE-
PRINTER

DATE/ EDIT/
MONEY/
NUMBER

BACKGROUND/
FOREGROUND

X X X

BOLD X X X X

BOX X X X X

CENTER X X X X

CODE-
PRINTER

DATE/ EDIT/
MONEY/
NUMBER

X X X X

FILL X X X X

MATCH X X X X

NOP X X X X X X

ON-BREAK X X X X X

SHADE X X X X X

UNDERLINE X X X X

WRAP X X X

FILL MATCH NOP ON-BREAK SHADE UNDERLINE WRAP

BACKGROUND/
FOREGROUND

X X X X X X

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 191

FILL MATCH NOP ON-BREAK SHADE UNDERLINE WRAP

BOLD X X X X X X X

BOX X X X X X X

CENTER X X X X X X

CODE-
PRINTER

X

DATE/ EDIT/
MONEY/
NUMBER

X X X X

FILL X X X X X

MATCH X X X X

NOP X X X X X X

ON- BREAK X X X X X X

SHADE X X X X X X

UNDERLINE X X X X X X

WRAP X X X X X

The following sections describe the PRINT format commands.

BOLD

BOLD causes the string or number to print in bold type.

For HP LaserJet printers, the appropriate boldface font must be loaded in the printer.

For PostScript printers, the appropriate boldface must be defined in the PostScript startup file, postscri.str.

See the DECLARE-PRINTER Command Arguments table for information about which fonts can be in
boldface font.

For line printers, when the BEFORE-BOLD and AFTER-BOLD arguments on the DECLARE-PRINTER
command are used, the specified strings are added before and after the data that is to be in boldface. If
BEFORE-BOLD and AFTER-BOLD are not specified, BOLD has no effect.

For example:

print &name (+1, 20) bold
print 'Your account is in arrears' (1,1) bold

SQR Command Reference Chapter 2

192 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

BOX

BOX draws a one-line-deep graphical box around the printed data. This option has no effect for line
printers.

For example:

print &grand_total (+5, 20) box
print 'Happy Birthday !!' (1,1) box

Note: For HP LaserJet printers using proportional fonts, BOX and SHADE cannot determine the correct
length of the box because it varies with the width of the characters printed. BOX and SHADE work well
with fixed-pitch fonts and with all PostScript fonts.

Note: The BOX format option is not supported for output to HTML format.

CENTER

CENTER centers the field on a line. The position qualifier for column is ignored. For example:

print 'Quarterly Sales' (1) center

 CODE-PRINTER

CODE-PRINTER has the following syntax:

CODE-PRINTER = printer_type

Valid values for printer_type are HT, HP, PS, LP, HTML, HPLASERJET, POSTSCRIPT, and
LINEPRINTER.

CODE-PRINTER

Adds nondisplay characters to the program for the purpose of sending a sequence to the printer. CODE-
PRINTER causes the string to be placed behind the page buffer, rather than within it, so alignment of
printed data is not affected by the white space consumed by the nondisplay characters. Only strings can be
printed by means of CODE-PRINTER.

Because the report might be printed on different types of printers, you should specify for which type this
data is to be used. The report is ignored if it is printed to a different type. If necessary, you can send a
different sequence to another type with a second PRINT statement.

For example:

encode '<27>[5U' into $big_font
encode '<27>[6U' into $normal_font
...
print $big_font (0, +2) code-printer=lp
print &phone () edit '(xxx) xxx-xxxx'
print $normal_font () code-printer=lp

In the previous example, the two CODE-PRINTER arguments put the $big_font and $normal_font
sequences into the output, without overwriting any data in the page buffer. Sequences printed with the
CODE- PRINTER argument are positioned by the regular line and column positioning. However, unlike
the PRINT command, the current print location after execution is the beginning location where the
CODE-PRINTER string was placed. Multiple coded strings printed using the same line and column
location appear in the output in the same sequence in which they were printed.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 193

DATE

You cannot use DATE with numeric columns or variables. DATE indicates that the field is to be formatted
with the DATE-EDIT-MASK from the current locale. (See the ALTER_LOCALE command.) If this entry
is not set, then the date is printed according to the following rules shown in the Date table.

Column Type Default Mask If not set

DATETIME SQR_DB_DATE_FORMAT See the Default Database Formats table
for the format that is used.

DATE SQR_DB_DATE_ONLY_FORMAT See the DATE Column Formats table for
the format that is used.

TIME SQR_DB_TIME_ONLY_FORMAT See the TIME Column Formats table for
the format that is used.

EDIT

EDIT has the following syntax:

EDIT edit_format

EDIT causes each field to be edited before it is printed. The three types of edits are::

• Text edit

• Numeric edit

• Date edit

The following table lists the text edit format characters:

Character Description

X Use character in field.

B Insert blank.

~ (tilde) Skip character in field.

R[n] Reverse sequence of string for languages such as Hebrew.
The optional number indicates right justification within length
indicated.

Any other character, such as punctuation, in a text edit mask is treated as a constant and is included in the
edited field.

The characters 8, 9, 0, V, and $ are illegal in a text edit mask because they are used to indicate that the
mask is for a numeric edit.

The following table lists the numeric edit format characters:

SQR Command Reference Chapter 2

194 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Character Description

8 Digit, zero fill to the right of the decimal point, trim leading
blanks (left-justify the number).

9 Digit, zero fill to the right of the decimal point, space fill to the
left.

0 Digit, zero fill to the left.

$ Dollar sign, optionally floats to the right.

B Treated as a 9, but if a value is zero, the field is converted to
blanks.

C Entered at the end of the mask, causes the comma and period
characters to be transposed when the edit occurs. This is to
support monetary values for which periods delimit thousands
and commas delimit decimals. (Example: 1.234,56).

E Scientific format. The number of 9s after the decimal point
determines the number of significant digits displayed. The E
can be uppercase or lowercase; the display follows the case of
the mask.

V Implied decimal point.

MI Entered at the end of the mask, causes a minus to appear at the
right of the number.

PR Entered at the end of the mask, causes angle brackets (< >) to
be displayed around the number if the number is negative.

PS Entered at the end of the mask, causes parentheses to be
displayed around the number if the number is negative.

PF Entered at the end of the mask, causes floating parentheses to
be displayed around the number if the number is negative.

NA Entered at the end of the mask, causes NA to be displayed if
the numeric column variable is null. The case of NA follows
that of the mask.

NU Entered at the end of the mask, causes blanks to be displayed if
the numeric column variable is null.

. Decimal point.

, Comma.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 195

Characters other than those listed in the Numeric Edit Format Characters table are not allowed for
numeric edit masks and cause errors during processing.

The following table shows sample edit masks and resulting fields:

Mask Value Display

999.99 34.568 34.57

9,999,999V9999 123,456.7890 123,4567890

8,888,888.888 123,456.789 123,456.789

9,999 1234 1,234

9,999 123 123

09999 1234 01234

9999 –123 –123

9999 –1234 ****

9999 12345 ****

9999mi –123 123-

9999pr –123 < 123>

999999ps –123 (123)

999999pf –123 (123)

9999na (null) NA

9999nu (null) (blank)

$$9,999.99c 1234.56 $1.234,56

$$9,999.99 1234.56 $1,234.56

$$9,999.99 12.34 $ 12.34

$$$,$$9.99 12.34 $12.34

9.999e 123456 1.235e+05

B9,999 0 (blank)

B9,999 12345 12,345

SQR Command Reference Chapter 2

196 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Mask Value Display

(xxx)bxxx-xxxx 2169910551 (216) 991-0551

xxx-xx-xxxx 123456789 123-45-6789

~~xx~xx ABCDEFGHIJ CDFG

r10 ABCDEFG GFEDCBA

The following example shows some uses of edit masks:

print #total (7,55,0) edit $999,999.99 ! $ 12,345.67
print #total (7,55,0) edit $$$9,999.99 ! $12,345.67
print #total (7,55,0) edit 999,999.99pr ! < 12,345.67>(if neg)
print #comm (7,55,0) edit b99,999.99 ! Blank if zero
print &cnum (16,1,0) edit 099999 ! 001234
print #cat (5,10,0) edit 9.999E ! 1.235E+04
print #phone (16,60,0) edit (xxx)bxxx-xxxx ! (216) 397-0551
print #total (7,55,0) edit £££9,999.99 ! Dollar-Symbol £

The following table lists the date edit format codes:

Character Description

YYY YY Y Last 3, 2, or 1 digit of the year. On input, for calculating the
4-digit year, the current century, decade, or both are used. For
example, a 9 using the Y mask would result in the year 1999 if
the current year is in the 1990s.

YYYY SYYYY 4-digit year, S prefixes BC dates with "-".

RR Last 2 digits of year; for years in other centuries. See the Date
Edit Format Code-RR table.

CC or SCC Century; S prefixes BC dates with "–".

BC AD BC/AD indicator.

Q Quarter of year (1,2,3,4; JAN–MAR=1).

RM Roman numeral month (I–XII; JAN=I).

WW Week of year (1–53) when week 1 starts on the first day of the
year and continues to the seventh day of the year.

W Week of the month (1–5) when week 1 starts on the first day of
the month and ends on the seventh.

DDD Day of year (1–366).

DD Day of month (1–31).

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 197

Character Description

D Day of week (1–7). Sunday is the first day of the week.

DAY Name of day.

DY Abbreviated name of day.

ER Japanese Imperial Era. Returns the name of the Japanese
Imperial Era in the appropriate kanji (Heisei is the current era).

EY Year of the Japanese Imperial Era. Returns the current year
within the Japanese Imperial Era.

Note: The common Japanese date format is
'YYYY<nen>MM<gatsu>DD<nichi>' where <nen>, <gatsu>,
and <nichi> are the kanji strings for year, month, and day
respectively.

J Julian day; the number of days since Jan 1, 4713 BC. Numbers
specified with J must be integers.

AM PM Meridian indicator.

HH Assumes 24-hour clock unless meridian indicator is specified.

HH12 Hour of day (1–12).

HH24 Hour of day (0–23).

SSSSS Seconds past midnight (0–86399).

N NN NNN NNNN NNNNN NNNNNN Fractions of a second. Precise to microseconds; however,
for most hardware and databases, this much accuracy is not
attainable.

MONTH Name of month.

MON Abbreviated name of month.

MM Month (01–12; JAN=01).

MI Minute (0–59).

SS Second (0–59).

| Used to concatenate different masks.

Note: If the last two digits of the year are between 00 and 49, the return date is in the current century. If
the last two digits of the year are between 50 and 99, the return date is in the century after the current one.

SQR Command Reference Chapter 2

198 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Last 2 Digits of Current Year 2-Digit Year is 00–49 2-Digit Year is 50–99

00–49 The return date is in the current century. The return date is in the century before
the current one.

50–99 The return date is in the century after the
current one.

The return date is in the current century.

All masks can be used by the strtodate function except for CC, SCC, Q, W, and WW.

A backslash forces the next character into the output from the mask. For example, a mask of The cu\rre\nt
\mo\nth is Month results in the output string of The current month is January. Without the backslashes, the
output string would be The cu04e7t january is January.

A vertical bar can be used as a delimiter between format codes; however, in most cases the bar is not
necessary. For example, the mask 'YYYY|MM|DD' is the same as 'YYYYMMDD'.

Any other character, such as punctuation, in a date edit mask is treated as a constant and is included in the
edited field. If the edit mask contains spaces, it must be enclosed in single quotes (').

The masks MON, MONTH, DAY, DY, AM, PM, BC, AD, and RM are case-sensitive and follow the case
of the mask entered. For example, if the month is January, the mask Mon yields Jan and MON yields
JAN.

All other masks are case-insensitive and can be entered in either uppercase or lowercase. In addition,
National Language Support is provided for the following masks: MON, MONTH, DAY, DY, AM, PM,
BC, and AD.

See the ALTER-LOCALE command in the SQR Samples section for additional information.

If the value of the date field being edited is Mar 14 2004 9:35, the edit masks produce the results in the
following table.

Edit Mask Result

dd/mm/yy 14/03/04

DD-MON-YYYY 14-MAR-2004

'Month dd, YYYY' March 14, 2004

MONTH-YYYY MARCH-2004

HH:MI 09:35

'HH:MI PM' 09:35 AM

YYYYMMDD 20040314

MM.DD.YYYY 03.14.2004

Mon Mar

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 199

Edit Mask Result

DD|D|DDD 143073

In addition to being used with the EDIT argument, edit masks can be used with the MOVE, CONCAT,
DISPLAY, and SHOW commands, and with the edit function of the LET command. You edit the field
using the supplied mask before storing or displaying it.

When a date with missing date components, time components, or both is displayed or printed, the defaults
are as shown in this list:

• The default year is the current year.

• The default month is the current month.

• The default day is one.

• The default time is zero (00:00:00.000000).

For example, assuming today is September 7, 2004, the following assignment would produce an
equivalent date-time of September 1, 2004 13:21:00.000000:

let $date1 = strtodate('13:21','HH:MI')

Edit masks can be changed dynamically by storing them in a string variable and referencing the variable
name preceded by a colon (:). For example:

move '$999,999.99' to $mask
print #total (5,10) edit :$mask
show #total edit :$mask

When a date that is stored in a string literal, column, or variable is printed with an edit mask, it must be in
one of the following formats:

• The format specified by the environment variable SQR_DB_DATE_FORMAT, or the corresponding
setting in the pssqr.ini file.

• One of the database-dependent formats, as listed in the Default Database Formats table.

• The database-independent format, 'SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]'.

When a date column or variable is printed without an edit mask, the date is printed in the format specified
by the environment variable SQR_DB_DATE_FORMAT or the corresponding setting in the pssqr.ini file.
If this has not been set, then the date is printed in the primary database format (the first entry) listed in the
Default Database Formats table.

This applies to DISPLAY, MOVE, and SHOW commands as well as PRINT.

The following table lists default date formats for each database.

Database Default Database Formats

Oracle DD-MON-YY

SQR Command Reference Chapter 2

200 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Database Default Database Formats

Informix YYYY-MM-DD HH:MI:SS.NNN MM/DD/YYYY MM-DD-
YYYY MM.DD.YYYY

ODBC MM-DD-YYYY

DB2 YYYY-MM-DD-HH:MI:SS.NNNNNN YYYY-MM-DD

Sybase MON DD YYYY HH:MIPM MON DD YYYY
[HH:MI[:SS[:NNN]][PM] MON DD YYYY
[HH:MI[:SS[.NNN]][PM] YYYYMMDD
[HH:MI[:SS[:NNN]]PM] YYYYMMDD
[HH:MI[:SS[.NNN]]PM]

Database DATE Column Formats

DB2 YYYY-MM-DD

Informix MM/DD/YYYY

ODBC DD-MON-YYYY

Database TIME Column Formats

DB2 HH24.MI.SS

ODBC HH24:MI:SS

FILL

FILL fills the page with the specified character or string as indicated by the print position and length.

The following example prints a line of stars and then a line of dashes followed by stars:

print '*' (1,1,79) fill ! Fill line with *'s
print '-*' (+1,20,40) fill ! Fill with '-*' characters.

FOREGROUND/BACKGROUND

When you specify a color on the PRINT command, its scope is that of the PRINT command. If you do not
define the specified color name, then the setting for default is used. Use the color name none to deactivate
color for the specified area.

PRINT {any_lit|_var|_col}
[FOREGROUND =({color_name_lit|_var|_col}|{rgb})]
[BACKGROUND =({color_name_lit|_var|_col}|{rgb})]

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 201

MATCH

MATCH has the following syntax:

MATCH match_text { line_num_lit|_var|_col }
{ column_num_lit|_var|_col } print_text ...

MATCH compares a field to a list of key values and if a match is found, prints the corresponding string at
the specified line and column. If the match_text contains white space, it must be enclosed in single quotes
('). Any number of match texts can be tested, but each must have its own line, column, and print_text. If
a match is not found, the unmatched field is printed at the position specified in the parentheses. Line and
column positions for each matched string are treated as fixed or relative positions depending on the type
of positioning used in the position qualifier for the PRINT command. For example:

 print &type_buyer (20,12) match
 A 20 12 Casual
 B 20 22 Impulsive
 C 21 12 Informed
 D 21 22 Choosey

To use relative line and fixed-column positioning, for example, you could use the following code:

print $state (0,25) match
 OH 0 25 Ohio
 MI 0 37 Michigan
 NY 0 25 'New York'

The column positions are treated as fixed locations due to the fixed 25 positions declared in parentheses.

MONEY

MONEY indicates that the column or variable is to be formatted using the MONEY-EDIT-MASK from
the current locale (see the ALTER_LOCALE command). This can be used only with a numeric column or
variable.

NOP

NOP suppresses the print command, causing no operation to be executed. This argument is useful for
temporarily preventing a field from printing. For example:

print &ssn (1,1) nop
 Hide the social security number.

NUMBER

NUMBER indicates that the column or variable is to be formatted with the NUMBER-EDIT-MASK from
the current locale (see the ALTER-LOCALE command). This argument can be used only with a numeric
column or variable.

ON-BREAK

ON-BREAK has the following syntax:

 ON-BREAK [PRINT={ALWAYS|CHANGE|CHANGE/TOP-PAGE|NEVER}]
[SKIPLINES={num_lit|_var|_col}]
[PROCEDURE=procedure_name[(arg1[,argi]...)]]
[AFTER=procedure_name[(arg1[,argi]...)]]
[BEFORE=procedure_name[(arg1[,argi]...)]]
[SAVE=txt_var]
[LEVEL=nn]

SQR Command Reference Chapter 2

202 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

[SET=nn]

ON-BREAK causes the specified action in a tabular report when the value of a field changes (a break
occurs). The default action prints the field only when its value changes (PRINT=CHANGE). ON-BREAK
has the following qualifiers:

• PRINT specifies when the break field is printed.

• ALWAYS duplicates the break field for each detail group.

• CHANGE prints the value only when it changes.

This is the default.

• CHANGE/TOP-PAGE prints the value both when it changes and at the top of each new page.

• NEVER suppresses printing.

• SKIPLINES specifies how many lines to skip when the value changes.

• PROCEDURE specifies the procedure to be invoked when the value changes.

This qualifier cannot be used with either the AFTER or BEFORE qualifier.

• AFTER and BEFORE procedures specify procedures to invoke either after or before the value
changes.

If no rows are fetched, neither procedure is run. AFTER and BEFORE can be used only within a
SELECT paragraph.

• The sequence of events is shown here:

• SAVE indicates a string variable in which the previous value of a break field is stored.

• LEVEL specifies the level of the break for reports containing multiple breaks.

For example, a report sorted by state, county, and city might have three break levels: state is level
1 (the most major), and city is level 3 (the most minor). When a break occurs, other breaks with
equal or higher level numbers are cleared. The level number also affects the sequence in which
AFTER and BEFORE procedures are processed.

• SET assigns a number to the set of leveled breaks in reports with more than one set of
independent breaks.

Following is the sequence of events for a query containing ON-BREAK fields:

1. Any BEFORE procedures are processed in ascending LEVEL sequence before the first row of the
query is retrieved.

2. When a break occurs in the query, the following events occur:

• AFTER procedures are processed in descending sequence from the highest level to the level of the
current break field.

• SAVE variables are set with the new value.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 203

• BEFORE procedures are processed in ascending sequence from the current level to the highest
level break.

• Any breaks with the same or higher level numbers are cleared so that they do not break on the
next value.

• If a PROCEDURE has been declared, the procedure is invoked.

• If SKIPLINES was specified, the current line position is advanced.

• The value is printed (unless PRINT=NEVER was specified).

3. After the query finishes (at END-SELECT) any AFTER procedures are processed in descending level
sequence, for example:

begin-select
state (+1,1,2) on-break level=1 after=state-tot skiplines=2
county (,+2,14) on-break level=2 after=cnty-tot skiplines=1
city (,+2,14) on-break level=3 after=city-tot
...
end-select

The breaks are processed in the following way:

• When city breaks, the city-tot procedure is executed.

• When county breaks, first the city-tot procedure is executed, then the cnty-tot procedure is
executed.

• When state breaks, the city-tot, cnty-tot, and state-tot procedures are processed in that sequence.

If any BEFORE breaks were indicated, they would also be processed automatically, after all of the
AFTER breaks and in sequence from lower to higher level numbers, for example:

begin-select
state (+1,1,2) on-break level=1 before=bef-state after=state-tot
county (,+2,14) on-break level=2 before=bef-cnty after=cnty-tot
city (,+2,14) on-break level=3 before=bef-city after=city-tot
...
end-select

Now when state breaks, this sequence of procedures is executed:

• City-tot

• Cnty-tot

• State-tot

• Bef-state

• Bef-cnty

• Bef-city

When program flow enters the query at BEGIN-SELECT, the three BEFORE procedures are executed in
sequence:

SQR Command Reference Chapter 2

204 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

• Bef-state

• Bef-cnty

• Bef-city

After the last row is retrieved, at END-SELECT, the three AFTER procedures are executed in sequence:

• City-tot

• Cnty-tot

• State-tot

The SAVE qualifier saves the previous break value in the specified string variable for use in an AFTER
procedure. You may want to print the previous break field with a summary line:

print &state (+1,1) on-break after=state-tot save=$old-state

The SET qualifier enables you to have subreports with leveled breaks. Because the ON-BREAKs are
separated into sets, the associated leveled breaks in each set do not interfere with each other.

begin-select
state (+1,1,2) on-break set=1 after=state-tot level=1

SET=1 associates this leveled break with other breaks having the same set number.

SHADE

Draws a one-line deep, shaded graphical box around the printed data. For line printers, this argument has
no effect.

print 'Company Confidential' (1,1) shade
print &state (+2, 40) shade

Note: For HP LaserJet printers using proportional fonts, BOX and SHADE cannot determine the correct
length of the box because it varies with the width of the characters printed. BOX and SHADE work well
with fixed-pitch fonts and with all PostScript fonts.

Note: The SHADE format option is not supported for output to HTML format.

UNDERLINE

UNDERLINE prints the specified data with underlined characters. For line printers, UNDERLINE
generates backspace and underscore characters, which emulates underlining. For example:

print &name (+1, 45) underline
print 'Your account is in arrears' (1,1) underline

WRAP

WRAP wraps text at word spaces. Additional text is moved to a new line. WRAP has the following
syntax:

WRAP {line_length_lit|_var|_col}
{max_lines_lit|_var|_col}[KEEP-TOP]
[STRIP=strip_chars][ON=break_chars][R]
[LINE-HEIGHT={line_height_lit|_var|_col}]

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 205

line_length_lit|_var|_col

WRAP specifies the maximum paragraph width in characters.

Note: After a string wraps, the current position is one character to the right of the last character in the
column. When a string ends on the last position of a line, an implicit line feed causes the new current
position to be the first character of the following line. In the SETUP section, use the DECLARE-
LAYOUT command to make the page width one character wider than the right edge of the wrapped text
to avoid generating an implicit line feed.

In this example, the line position is 1 for each of the three wrapped fields: note1, note2, and note3.

print &comment (48,20,0) wrap 50 3 ! Paragraph is 50
 ! characters wide,
 ! with a maximum
 ! depth of 3 lines.

print ¬e1 (1,20,30) wrap 30 4
print ¬e2 (1,+2,30) wrap 30 4
print ¬e3 (1,+2,30) wrap 30 4

The current print position after a wrap occurs at the bottom right edge of the wrapped paragraph. To
continue printing on the same line, you must use a fixed line number for the next field.

max_lines_lit|_var|_col

Specifies the maximum paragraph depth in lines. Usually, the line length and maximum lines are
indicated with numeric literals. However, WRAP can also reference numeric variables or columns. This is
useful when you want to change the width or depth of a wrapped paragraph during report processing. The
numeric variable can optionally be preceded by a colon (:), for example:

print $comments (1,30) wrap #wrap_width 6
print $message (5,45) wrap #msg_wid #msg_lines

KEEP-TOP retains the current line position except if a page break occurs, in which case, line 1 is used as
the current line position. The default action is to set the next print position at the bottom of the wrapped
data.

In the following example, the column &resolution prints on the same line as the first line of the column
&instructions:

print &phone (+1,10) edit '(xxx) xxx-xxxx'
print &instructions (+1,10,30) wrap 6 30 keep-top
print &resolution (0,+3,25)

The STRIP and ON arguments affect which characters are to be converted before wrapping, and which
characters force a wrap to occur.

• Characters in the STRIP string argument are converted to spaces before the wrap occurs.

• Characters in the ON string argument cause a wrap at each ON character found. The ON character is
not printed.

Both arguments accept regular characters and nondisplay characters for which decimal values are
surrounded by angled brackets, <nn>, where nn is a decimal number between 1 and 255, representing the
character in the current character set of the operating system. For example, to print a long data type that
contains embedded carriage returns, the setup would be:

print &long_field (5,20) wrap 42 30 on=<13>

SQR Command Reference Chapter 2

206 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

The paragraph wraps at each carriage return, rather than at the usual word boundaries. If the ON character
is not found within the width specified for the paragraph, the wrap occurs at a word space. The following
example converts the STRIP characters to spaces before wrapping on either a line feed <10> or a space
(the default):

print &description (20,10) wrap 50 22 strip=/\^@<13> on=<10>

WRAP can also be used to print reversed characters, for support of languages such as Hebrew. An R
after the length and max_lines arguments causes the field to be reversed before the wrap takes place. In
addition, the entire paragraph is right-justified within the length indicated.

! Reverse wrap, in 30 character field.
print &comment (2,35) wrap 30 5 r
print $notes (1,50) wrap 50 7 r

LINE-HEIGHT specifies the number of lines to skip between each line of the wrapped data. By default, a
value of 1 (single space) is assumed. The following example prints the comment column with one blank
line between each printed line for a maximum of four printed lines:

print &comment (1,1) wrap 40 4 line-height = 2 ! Double space text

See The LET command for information about copying, editing, or converting fields

See The ALTER-LOCALE command for a description of the arguments NUMBER-EDIT-MASK,
MONEY-EDIT-MASK, and DATE-EDIT-MASK

See DISPLAY, SHOW

PRINT-BAR-CODE

Syntax
PRINT-BAR-CODE position {TYPE={bar_code_type_num_lit|_var|_col}}
{HEIGHT={bar_code_height_num_lit|_var|_col}} {TEXT={bar_code_txt_lit|_var|_col}}
[CAPTION={bar_code_caption_txt_lit|_var|_col}] [CHECKSUM={checksum_lit}]

Description
Prints industry standard bar codes. SQR supports the bar code types listed in the following table.

Type Description Text Length Text Type CHECKSUM
RECOGNIZED

1 UPC-A 11, 13, or 16 9

2 UPC-E 11, 13, or 16 9

3 EAN/JAN-13 12, 14, or 17 9

4 EAN/JAN-8 7, 9, or 12 9

5 3 of 9 (Code 39) 1 to 30 9, X, p y

6 Extended 3 of 9 1 to 30 9, X, x, p, c y

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 207

Type Description Text Length Text Type CHECKSUM
RECOGNIZED

7 Interleaved 2 of 5 2 to 30 9 y

8 Code 128 1 to 30 9, X, x, p, c

9 Codabar 1 to 30 9 y

10 Zip+4 Postnet 5, 9, or 11 9

11 MSI Plessey 1 to 30 9 y

12 Code 93 1 to 30 9, X, p y

13 Extended 93 1 to 30 9, X, x, p y

14 UCC-128 19 9

15 HIBC 1 to 30 9 y

Parameters

Parameter Description

position Specifies the position of the upper left corner. Position
parameters can be relative. See the POSITION command for
examples of relative positioning. Document markers are not
allowed. After the statement executes, the current position is
returned to this location; however, the next listing line is the
next line below the bottom of the bar code. (This is different
from the way the PRINT command works.)

TYPE Specifies the type of bar code to be printed. Types are shown
in the Bar Code Types table.

HEIGHT Specifies the height of the bar code in inches. The height must
be between 0.1 and 2 inches. The code prints to the nearest
one-tenth of an inch. For Zip+4 Postnet, the height of the bar
code is fixed. The height should be between 0.2 and 2.0 for
Zip+4 Postnet. If it is less than 0.2, the bar code extends above
the position specified.

TEXT Specifies the text to be encoded and printed. The number and
type of text characters permitted or required depends on the
bar code type. See the Bar Code Types table for specifications.

SQR Command Reference Chapter 2

208 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameter Description

CAPTION Specifies optional text to be printed under the bar code in the
current font. SQR attempts to center the caption under the bar
code; however, for proportional fonts this may vary slightly.

CAPTION is not valid for Zip+4 Postnet. If specified, it is
ignored.

CHECKSUM Specifies an optional check sum to be computed and printed
within the bar code. Valid values are YES and NO, where NO
is the default.

Note: Some barcode types ignore the CHECKSUM qualifier.
 See the Bar Code Types table for those barcode types for
which CHECKSUM is relevant.

Example

This example shows how to use the PRINT-BAR-CODE command to create a UPC-A bar code:

begin-program
 print 'Sample UPC-A Barcode' (1,1)
 print-bar-code (3,1)
 type=1 ! UPC-A
 height=0.3
 text='01234567890'
 caption='0 12345 67890'
end-program

This example shows how to use the PRINT-BAR-CODE command to create a ZIP+4 Postnet code:

begin-program
 print 'Sample Zip+4 Postnet' (1,1)
 print 'John Q. Public' (3,1)
 print '1234 Main Street' (4,1)
 print 'AnyTown, USA 12345-6789' (5,1)
 print-bar-code (7,1)
 type=10
 height=0.2
 text='12345678934'
end-program

Note: SQR does not check bar code syntax. See your bar code documentation for the proper formatting of
certain bar codes.

PRINT-CHART

Syntax
PRINT-CHART[chart_name]position DATA-ARRAY-ROW-COUNT={x_num_lit|_var|_col}
DATA-ARRAY-COLUMN-COUNT={x_num_lit|_var|_col} DATA-ARRAY=array_name [DATA-
LABELS=data_labels_lit | _var | _col] [COLOR-PALETTE=color_palette_lit | _var
| _col]] [ITEM-COLOR=(Chart_item_keyword, txt_lit |var | (r,g,b))] [DATA-ARRAY-
COLUMN-LABELS={NONE|array_name| {({txt_lit|_var}[,{txt_lit|_var}]...)}}] [CHART-
SIZE=(chart_width_num_lit|_var, chart_depth_num_lit|_var)] [TITLE={title_txt_lit|_var|
_col}] [SUB-TITLE={subtitle_txt_lit|_var|_col}] [FILL={fill_lit|txt_var|_col}] [3D-
EFFECTS={3d_effects_lit|txt_var|_col}] [BORDER={border_lit|txt_var|_col}] [POINT-

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 209

MARKERS={point_markers_lit|txt_var|_col}] [TYPE={chart_type_lit|txt_var|_col}]
[LEGEND={legend_lit|txt_var|_col}] [LEGEND-TITLE={legend_title_txt_lit|_var|_col}]
[LEGEND-PLACEMENT={legend_placement_lit|txt_var|_col}] [LEGEND-
PRESENTATION={legend_presentation_lit|txt_var|_col}] [PIE-SEGMENT-
QUANTITY-DISPLAY= {pie_segment_quantity_display_lit|txt_var|
_col}] [PIE-SEGMENT-PERCENT- DISPLAY={pie_segment_percent_display_lit
|txt_var|_col}] [PIE-SEGMENT-EXPLODE={pie_segment_explode_lit
|txt_var|_col}] [X-AXIS-LABEL={x_axis_label_txt_lit|_var|_col}]
[X-AXIS-MIN-VALUE={x_axis_min_value_lit|_num_lit|_var |_col}] [X-
AXIS-MAX-VALUE={x_axis_max_value_lit|_num_lit|_var |_col}] [X-
AXIS-SCALE={x_axis_scale_lit|txt_var|_col}] [X-AXIS-MAJOR-TICK-
MARKS={x_axis_major_tick_marks_lit |txt_var|_col}] [X-AXIS-MINOR-
TICK-MARKS={x_axis_minor_tick_marks_lit |txt_var|_col}] [X-AXIS-MAJOR-
INCREMENT={x_axis_major_increment_lit |_num_lit|_var|_col}] [X-AXIS-MINOR-
INCREMENT={x_axis_minor_increment_lit |_num_lit|_var|_col}] X-AXIS-TICK-
MARK-PLACEMENT= {x_axis_tick_mark_placement_lit|txt_var|_col}] [X-AXIS-
GRID={x_axis_grid_lit|txt_var|_col}] [Y-AXIS-LABEL={y_axis_label_lit|txt_var|
_col}] [Y-AXIS-MIN-VALUE={y_axis_min_value_lit|_num_lit |_var|_col}]
[Y-AXIS-MAX-VALUE={y_axis_max_value_lit|_num_lit |_var|_col}] [Y-
AXIS-SCALE={y_axis_scale_lit|txt_var|_col}] [Y-AXIS-MAJOR-TICK-
MARKS={y_axis_major_tick_marks_lit |txt_var|_col}] [Y-AXIS-MINOR-
TICK-MARKS={y_axis_minor_tick_marks_lit |txt_var|_col}] [Y-AXIS-MAJOR-
INCREMENT={y_axis_major_increment_lit |_num_lit|_var|_col}] [Y-AXIS-MINOR-
INCREMENT={y_axis_minor_increment_lit |_num_lit|_var|_col}] [Y-AXIS-TICK-
MARK-PLACEMENT= {y_axis_tick_mark_placement_lit|txt_var|_col}] [Y-AXIS-
GRID={y_axis_grid_lit|txt_var|_col}]

Note: If you do not define CHART-SIZE with this command, you must define it with DECLARE-
CHART.

Description
Prints a chart. Only PostScript printers or HP printers that support HPGL (generally, this is HPLaserJet 3
and higher) render chart output.

The PRINT-CHART command directs SQR to generate a chart according to the named chart, if any, and
the overridden attributes, if any.

Note: PRINT-CHART can be used without referencing a named chart if all required attributes for
the DECLARE-CHART are supplied in addition to all its required parameters. The PRINT-CHART
command directs SQR to display the chart on the current page using the attribute values at the moment
the command is executed. Manipulation of chart attribute values has no effect on the appearance
of the chart after the PRINT-CHART command has been executed. For example, if you execute a
PRINT-CHART with TITLE=$ttl and $ttl='Encouraging Results', and then change the value of $ttl to
'Discouraging Results' immediately afterward, then the chart is printed with first value, 'Encouraging
Results'. PRINT-CHART expects the DATA-ARRAY to be organized in a particular way. See the Chart
Array Field Types (fewer than four fields) table for details. PRINT-CHART fills the area defined by
CHART-SIZE as much as possible while maintaining an aesthetically pleasing ratio of height to width.
In cases in which the display area is not well suited to the chart display, the chart is centered within the
specified region, and the dimensions are scaled to accommodate the region. Do not be alarmed if the
chart does not fit exactly inside the box that you have specified. It means that SQR has accommodated
the shape of the region to provide the best looking chart possible. Chart commands used to send output to
a line printer are ignored. Only PostScript printers or HP printers that support Hewlett Packard's HPGL
(generally, this is HP LaserJet model 3 and higher) render chart output. If you attempt to print a chart to
a LaserJet printer that does not support HPGL, the HPGL command output might become part of your
output, leaving one or more lines of meaningless data across your report.

All the attributes defined for DECLARE-CHART are valid for the PRINT-CHART command. PRINT-
CHART has five additional parameters. The position of the chart is described with the first parameter. The

SQR Command Reference Chapter 2

210 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

data that supports the chart is defined in the additional attributes: DATA-ARRAY, DATA-ARRAY-ROW-
COUNT, DATA-ARRAY-COLUMN-COUNT, and DATA-ARRAY-COLUMN-LABELS.

As mentioned, each chart type meets a specific organizational requirement. The Chart Array Field Types
(fewer than four fields) table describes these requirements.

Note: If the first field in the array designated by DATA-ARRAY is of type CHAR, then the value on
the x-axis is the contents of that column. If the first field is not of type CHAR, then the value of the x-
axis is the row number of the array designated by DATA-ARRAY, beginning with 1. Pie charts show the
character value in the legend area. Histograms show the character value on the y-axis. XY-Scatter charts
do not use the character value and none is needed in the array.

Note: If a PIE chart contains many small slices, the user must set the PIE-SEGMENT-QUANTITY-
DISPLAY argument, the PIE-SEGMENT-PERCENT-DISPLAY argument, or both to NO to prevent the
values from one slice overwriting the values of another slice.

Chart Type Field 0 Field 1 Field 2 Field 3

PIE Type=char Pie segment
labels, the names
associated with each
segment

Type=num The value
associated with each
pie segment

(Optional) Type=char
Pie segment explode
flag setting, 'Y' or 'N'

LINE BAR
STACKED-
BAR 100%-BAR
OVERLAPPED-BAR
HISTOGRAM AREA
STACKED-AREA
100%-AREA

Type=char X-Axis
values

Type=num Series 1 Y-
Axis values

(Optional) Type=num
Series 2 Y-Axis values

(Optional) Type=num
Series 3… Y-Axis
values

XY-SCATTER-PLOT Type=num Series 1 X-
Axis values

Type=num Series 1 Y-
Axis values

(Optional) Type=num
Series 2 X-Axis values

(Optional) Type=num
Series 2 ... Y-Axis
values

FLOATING-BAR Type=char X-Axis
values

Type=num Series 1 Y-
Axis offset

Type=num Series 1 Y-
Axis duration

(Optional) Type=Num
Series 2 ... Y-Axis
offset

Chart Type Field 0 Field 1 Field 2 Field 3 Field 4

HIGH-LOW-
CLOSE

Type=char X-Axis
values

Type=num High
value

Type=num Low
value

Type=num Closing
value

(Optional)
Type=num
Opening value

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 211

Parameters

Parameter Description

chart_name Specifies the name of the chart from the DECLARE-CHART
command. This name is not necessary if you specify the
CHART-SIZE and all other pertinent attributes in the PRINT-
CHART command.

Position (row, column) Specifies the position of the upper left corner.
 Position parameters can be relative. See the POSITION
command for examples of relative positioning. Document
markers are not allowed. After execution, the current position
is returned to this location; however, the next listing line is the
next line below the bottom of the chart area. (This is different
from the way the PRINT command works.)

DATA-ARRAY Specifies the name of the array containing the data to be
plotted. This must be the name of an array defined with
CREATE-ARRAY.

DATA-ARRAY- ROW-COUNT Specifies the number of rows or sets of data to be used from
the DATA-ARRAY. If the DATA-ARRAY has a greater
number of rows, only DATA-ARRAY-ROW- COUNT is
included in the chart.

DATA-ARRAY- COLUMN-COUNT Specifies the number of columns to be used from the DATA-
ARRAY. If the DATA-ARRAY has a greater number of
columns, only DATA-ARRAY- COLUMN-COUNT is
included in the chart.

DATA-ARRAY- COLUMN-LABELS Specifies labels for each Y-Axis value of the data set (fields)
in DATA-ARRAY. These labels are displayed in the legend
box. Column labels are ignored for pie charts. See the Chart
Array Field Types (fewer than four fields) table for applicable
fields for each type of chart.

For definitions of the other arguments, see the DECLARE-
CHART Command Arguments table.

Example

In this example, a pie chart is printed without explicit reference to a chart declared with DECLARE-
CHART. All necessary arguments must be supplied in PRINT-CHART.

.

.
create-array
 name=unit_sales
 size=12
 field=product:char
 field=units:number
 field=explode:char
.

SQR Command Reference Chapter 2

212 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

.
print-chart (15, 20)
 title = 'Green City Store Sales'
 sub-title = '(Second Quarter)'
 chart-size = (50, 28)
 type = pie
 data-array = unit_sales
 data-array-column-count = 3
 data-array-row-count = 7
 3d-effects = yes
 fill = color

See DECLARE-CHART

PRINT-DIRECT

Syntax
PRINT-DIRECT [NOLF] [PRINTER={LINEPRINTER|POSTSCRIPT|HPLASERJET|HTML|LP|PS|HP|HT}]
{txt_lit|_var|_col}...

Description
Writes directly to the print output file without using the SQR page buffer.

PRINT-DIRECT can be used for special applications that cannot be accomplished directly with PRINT
commands, such as initializing a page with graphics or other special sequences. Because this text is often
printer-dependent and because the report can be printed on different types of printers that require different
control characters, you can use the PRINTER qualifier to specify the printer type. If no PRINTER
qualifier is specified, the command applies to all printer types.

When using PRINT-DIRECT in conjunction with PRINT commands, be aware that the SQR page
buffer is copied to the output file only when each page is full or when a NEW-PAGE command is
issued. One approach is to use PRINT-DIRECT commands inside a BEFORE-PAGE or AFTER-PAGE
procedure (declared with the DECLARE-PROCEDURE command) so that they are coordinated with the
information coming out of the page buffer.

Parameters

Parameter Description

NOLF Specifies that no carriage return and line feed is to be printed.
 By default, printed text is followed by a carriage return and
line feed character.

PRINTER Specifies the type of printer to which this text applies.

{txt_lit | _var | _col} The text to be printed.

Example

The following example shows the PRINT-DIRECT command:

print-direct printer=ps '%%Page: ' $page-number
print-direct nolf printer=lp reset

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 213

PRINT-IMAGE

Syntax
PRINT-IMAGE[image_name]position [TYPE={image_type_lit|_var|_col}]
[IMAGE-SIZE=(width_num_lit|_var|_col,height_num_lit |_var|_col)]
[SOURCE={file_name_txt_lit|_var|_col}]

Note: If TYPE, IMAGE-SIZE, and SOURCE are not defined in PRINT-IMAGE, they must be defined in
DECLARE-IMAGE.

Description
Prints an image.

The PRINT-IMAGE command can be placed in any section of a report with the exception of the SETUP
section. The image file pointed to can be any file of the proper format.

PRINT-IMAGE can be used without referencing a named image if all required attributes for the
DECLARE-IMAGE are supplied in addition to all its required parameters.

Parameters

Parameter Description

image_name Specifies the name of an image specified by a DECLARE-
IMAGE.

position (row, column) Specifies the position of the upper left corner.
 Position parameters can be relative. See the POSITION
command for examples of relative positioning. Document
markers are not allowed. After execution, the current position
is returned to this location. (This is different from the way the
PRINT command works.)

TYPE Specifies the image type. Types can be EPS-FILE, HPGL-
FILE, GIF-FILE, JPEG-FILE, or BMP-FILE (for Microsoft
Windows).

IMAGE-SIZE Specifies the width and height of the image.

SOURCE Specifies the name of a file containing the image.

Example

For PostScript:

print-image office-signature (50, 20)
print-image (50, 20)
 type = eps-file
 source = 'sherman.eps'
 image-size = (10, 3)

SQR Command Reference Chapter 2

214 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

For Microsoft Windows:

print-image company-logo (+21, 25)
 type=bmp-file
 source='m:\logos\gustavs.bmp'
 image-size=(75,50)

See DECLARE-IMAGE

PUT

Syntax
PUT {src_any_lit|_var|_col}... INTO dst_array_name(element)[field[(occurs)]]...

Description
Moves data into an array.

Columns retrieved from the database and SQR variables or literals can be moved into an array. The array
must have been created previously by the CREATE-ARRAY command.

Considerations for Using PUT

When a date variable or column is moved into a text or char array field, the date is converted to a string
according to the following rules:

• For DATETIME columns and SQR DATE variables, SQR uses the format specified by the
SQR_DB_DATE_FORMAT setting.

If this has not been set, SQR uses the first database-dependent format as listed in the Default Database
Formats table.

• For DATE columns, SQR uses the format specified by the SQR_DB_DATE_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format listed in the DATE Column Formats table.

• For TIME columns, SQR uses the format specified by the SQR_DB_TIME_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format as listed in the TIME Column Formats table.

When a string variable, column, or literal is moved to a date array field, the string must be in
the format specified by the SQR_DB_DATE_FORMAT setting, one of the database-dependent
formats as listed in the DATE Column Formats table is used, or the database-independent format
'SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]' is used.

dst_array_name(element)

If array fields are listed, data is placed into each field in the sequence in which it is listed, in the
occurrence specified for that field.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 215

If array fields are not listed, data is placed into consecutive fields in the order in which they were defined
in the CREATE-ARRAY command; data is copied into occurrence zero of each field of the element
specified in the array.

 field [(occurs)]

Array element and field occurrence numbers can be numeric literals (123) or numeric variables (#j).

If no occurrence is specified, occurrence zero is used.

Parameters

Parameter Description

src_any_var The source variable or literal to be moved into the array.
 Numeric variables, literals, and database columns can be put
into number (decimal, float, integer) fields. String variables,
 literals, and database columns can be put into char, text, or
date fields. Date variables can be put into date, char, or text
fields.

Example

In the following example, the four variables &name, #count, $date1, and $code are placed in the first four
fields defined in the names array. The data is put into the #jth element of the array.

put &name #count $date1 $code into names(#j)

The following command places #j2, #j3, and #j4 into the zero through 2nd occurrences of the tot field in
the #jth element of the totals array.

put #j2 #j3 #j4 into totals(#j) tot(0) tot(1) tot(2)

The following command copies #count into the #j2th occurrence of the count field in the #jth element of
the states array.

put #count into states(#j) count(#j2)

READ

Syntax
READ {filenum_lit|_var|_col} INTO {any_var:length_int_lit}...[STATUS=status_num_var]

Description
Reads the next record of a file into the specified variables.

Text and binary data are parsed according to the following criteria:

• Text data is any string of characters. The length of the variable name indicates how many characters to
place in the variable.

After text is transferred, trailing blanks in the variable are omitted.

SQR Command Reference Chapter 2

216 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

• If the field was written as a date variable, then it can be read into a date variable or text variable.

When reading a date into a date variable, it must be in the format specified by
the SQR_DB_DATE_FORMAT setting, one of the database-dependent formats
as listed in the DATE Column Formats table, or the database-independent format
'SYYYYMMDD[HH24[MI[SS[NNNNNN]'.

• Binary numbers can be 1, 2, or 4 bytes in length.

They must be read into numeric variables. Note that the bytes making up the binary number must be
in the standard sequence expected by your operating system.

• When the program is reading binary data, the file must be opened with the FIXED or FIXED-NOLF
qualifier.

• Only the integer portion of the number is represented with binary numbers.

To maintain the decimal portion of the number, convert the number to a string variable.

• If you use binary numbers, the file is not portable across platforms.

Different hardware represents binary numbers differently.

The total length indicated for the variables must be less than or equal to the length of the record being
read.

If no more records exist to read, the #end-file reserved variable is set to 1; otherwise, it is set to 0 (zero).
Your program should check this variable after each READ command.

If STATUS is specified, SQR returns 0 if the read is successful; otherwise, it returns the value of errno,
which is system-dependent.

Parameters

Parameter Description

filenum_lit|_var | _col Specifies the number assigned in the OPEN command to the
file to be read.

any_var :length_int_lit Specifies one or more variables into which data from the
record that is read are to be put. length_int_lit specifies the
length of each field of data.

STATUS Specifies an optional variable into which a read status is
returned.

Example

The following example shows several READ commands:

read 1 into $name:30 $addr:30 $city:20 $state:2 $zip:5
read 3 into $type:2 #amount:2 #rate:1 $code:5 $date:11
read #j into #sequence:2 $name:20 $title:15

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 217

The following example shows a READ command that reads two dates. One is loaded into a date variable;
the other is loaded into a string variable, which is then converted to a date using the strtodate function.

.

.

.
declare-variable
 date $date1 $date2
 text $text
end-declare
.
.
.
read 4 into $date1:18 $text1:18
let $date2 = strtodate($text1,'SYYYYMMDDHHMISSNNN')
 or
let $date2 = strtodate($text1)

The following example shows a READ command with an INSERT loop:

begin-sql
 begin transaction
end-sql

while 1 ! Infinite loop, exited by BREAK, below.
 read 10 into $company:40 $parent:30 $location:50
 if #end-file
 break ! End of file reached.
 end-if
 begin-sql
 insert into comps (name, parent, location)
 values ($company, $parent, $location)
 end-sql
 add 1 to #inserts
 if #inserts >= 100
 begin-sql
 end transaction;
 begin transaction
 end-sql
 move 0 to #inserts
 end-if
end-while

begin-sql
 end transaction
end-sql

See commands for information about filesOPEN, CLOSE, WRITE

ROLLBACK

Syntax
ROLLBACK

Description
An automatic rollback is performed whenever SQR ends due to program errors. ROLLBACK is useful for
testing or for certain error conditions.

ROLLBACK is an SQR command and should not be used inside an SQL paragraph.

SQR Command Reference Chapter 2

218 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Note: The ROLLBACK command can be used with Oracle, DB2 , Informix, and ODBC (Microsoft
SQL Server is accessible only with SQR Server for ODBC). For Sybase and Microsoft SQL Server , use
BEGIN TRANSACTION and ROLLBACK TRANSACTION within SQL paragraphs as in the following
example. See the COMMIT command for an example of ROLLBACK.

Example

The following example shows the ROLLBACK command:

if #error-status = 1
 rollback
 stop
end-if

See The COMMIT command

SBTOMBS

Syntax
SBTOMBS { txt_var }

Description
Converts a single-byte character into a multibyte equivalent.

This command converts the specified string in the following way: Any occurrence of a single-byte
character that also has a multibyte representation (numerals, punctuation, roman characters, and katakana)
is converted. This command also converts a sequence of a kana character followed by certain grammatical
marks into a single multibyte character, which combines the two elements.

Parameters

Parameter Description

txt_var Specifies the string to be converted.

See The TO_MULTI_BYTE function of the LET command

SECURITY

Syntax
SECURITY [SET=(sid [,sid]...)] [APPEND=(sid [,sid]...)] [REMOVE=(sid [,sid]...)]
[MODE=mode]

Description
Enables you to mark sections of a report for security purposes.

The SECURITY command can be repeated as many times as desired for the current report. After the
SECURITY command is carried out, all subsequent commands for the current report are constrained by
the designated sids until the report ends or another SECURITY command executes.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 219

You can use the SECURITY command wherever you use the PRINT command.

Parameters

Parameter Description

SET Sets the list of security IDs for subsequent commands. The
previous list of security IDs is replaced by the specified
security IDs. This argument is optional and can be used only
once.

sid Can be any string literal, column, or variable. The value is
case-sensitive.

APPEND Appends the specified security IDS to the current list. This
argument is optional and can be used multiple times.

REMOVE Removes the specified security IDS from the current list. This
argument is optional and can be used multiple times.

MODE Used to enable (reactivate) or disable (suspend) the security
feature for the current report. This argument is optional and
can be used only once.

mode Can be any string literal, column, or variable. The value is not
case-sensitive and can be either ON or OFF.

Example

The following example shows the SECURITY command:

Begin-Report
 Security Set=('Directors', 'Vice-Presidents')
 .
 . ! Only Directors and VPS can see this.
 Security Remove=('Directors').
 . ! Only VPS can see this.
 Security Mode='Off'.
 . ! Anybody can see this.
 Security Mode='On' Append=('Managers').
 . ! Only VPs and Managers can see this.
 Security Append=('Engineers').
 . ! Only VPs, Managers, and Engineers can see this.
End-report

SET-COLOR

Syntax
SET-COLOR [PRINT-TEXT-FOREGROUND=({color_name_lit|_var|_col|{rgb})] [PRINT-TEXT-
BACKGROUND=({color_name_lit|_var|_col|{rgb})]

Description
Defines default colors.

SQR Command Reference Chapter 2

220 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

The SET-COLOR command is allowed wherever the PRINT command is allowed. If the specified color
name is not defined, SQR uses the settings for the color name 'default.' Use the color name 'none' to color
for the specified area.

Parameters

Parameter Description

PRINT-TEXT- FOREGROUND Defines the color in which the text is printed.

PRINT-TEXT- BACKGROUND Defines the color to print as a background for the text.

{color_name_lit | _var | _col} A color_name is composed of alphanumeric characters (
A–Z, 0–9), the underscore (_) character, and the hyphen (-)
character. It must start with an alphabetical (A–Z) character
and is case-insensitive. The name 'none' is reserved and cannot
be assigned a value. A name in the format (RGBredgreenblue)
cannot be assigned a value. The name 'default' is reserved and
can be assigned a value. 'Default' is used during execution
when a referenced color is not defined in the runtime
environment.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 221

Parameter Description

{rgb} red_lit | _var | _col, green_lit | _var | _col, blue_lit | _var |
_col where each component is a value in the range of 000 to
255. In the BEGIN-SETUP section, only literal values are
allowed.

The default colors implicitly installed with SQR include:

black=(0,0,0)

white=(255,255,255)

gray=(128,128,128)

silver=(192,192,192)

red=(255,0,0)

green=(0,255,0)

blue=(0,0,255)

yellow=(255,255,0)

purple=(128,0,128)

olive=(128,128,0)

navy=(0,0,128)

aqua=(0,255,255)

lime=(0,128,0)

maroon=(128,0,0)

teal=(0,128,128)

fuchsia=(255,0,255)

Example

The following example shows the SET-COLOR command:

begin-setup
 declare-color-map
 light_blue = (193, 222, 229)
 end-declare
end-setup

begin-program
 alter-color-map name = 'light_blue' value = (193, 233, 230)

 print 'Yellow Submarine' ()
 foreground = ('yellow')
 background = ('light_blue')

 get-color print-text-foreground = ($print-foreground)

SQR Command Reference Chapter 2

222 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

 set-color print-text-foreground = ('purple')
 print 'Barney' (+1,1)
 set-color print-text-foreground = ($print-foreground)
end-program

See DECLARE-COLOR-MAP, ALTER-COLOR-MAP, GET-COLOR

SET-GENERATIONS

Syntax
SET-GENERATIONS=(dimension, hierarchy, dimension, hierarchy, dimension,
hierarchy,...,...)

Description
Specifies dimension hierarchy for the previously declared dimension.

Returns the set of members in the dimension 'product' that are at the 5th generation in the dimension's
hierarchy. (Returns all 'Brand Name' members (Generation Level 5) under the product hierarchy of 'all
products.drink.alcoholic beverages.beer and wine.' This would increase the result set to a list of beers
and wines.) Returns the set of members in the dimension 'time' that are at the 1st generation deep into the
dimension. (Returns all 'Year' members (Generation Level 1) under the time hierarchy of '2004.Q1.2'.
This reduces result set to '2004'.)

Example

The following example shows the SET-GENERATIONS command:

set-generations=('product',5,'time',1)

SET-LEVELS

Syntax
Set-levels=(dimension,
level, dimension, level,...,...)

Description
Extends the dimension hierarchy for the previously declared dimension.

Set-levels used with only the previous 'set-members' returns all members under the product hierarchy
and the next two generations (Product SubCategory and Brand Name) for the product hierarchy of all
products.drink.alcoholic beverages.beer and wine'. Set-levels used with the previous 'set-members' and
'set-generations' returns all members for generation levels 5 through 7 under the product hierarchy of all
products.drink.alcoholic beverages.beer and wine.'

Example

The following example shows the SET-LEVELS command:

set-levels=('product',2)

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 223

SET-MEMBERS

Syntax
set-members=(dimension,
hierarchy, dimension, hierarchy,..., ...)

Description
Returns the set of members in a dimension, level, or hierarchy for which name is specified by a string.

Example

Returns the set of members in the dimension 'product' at the specific hierarchy of 'all products', at a
specific level of 'drink', at a specific level of 'alcoholic beverages', at a specific level of 'beer and wine'.
Returns the set of members in the dimension 'time' at the specific hierarchy of '2004', at the specific level
of 'Q1', at the specific level of '2'.

set-members=('product','all products.drink.alcoholic beverages.beer and wine','time⇒
','2004.Q1.2')

SHOW

Syntax
SHOW[cursor_position] [CLEAR-SCREEN|CS|CLEAR-LINE|CL][any_lit|_var|_col]
[EDITedit_mask|NUMBER|MONEY|DATE][BOLD][BLINK]
[UNDERLINE][REVERSE][NORMAL][BEEP][NOLINE]...

Description
Displays one or more variables or literals on the screen. In addition, cursor control is supported for ANSI
terminals.

Any number of variables and screen positions can be used in a single command. Each one is processed in
sequence.

Screen locations can be indicated by either fixed or relative positions in the format (A,B), where A is the
line and B is the column on the screen. A, B, or both can also be numeric variables. Relative positions
depend on where the previous SHOW command ended. If the line was advanced, the screen cursor is
usually immediately to the right of the previously displayed value and one line down.

Fixed or relative cursor positioning can be used only within the boundaries of the terminal screen.
Scrolling off the screen using relative positioning, for example (+1,1), is not supported. Instead, use a
SHOW command without any cursor position when you want to scroll. Also, you cannot mix SHOW and
DISPLAY commands while referencing relative cursor positions.

The SHOW command does not advance to the next line if a cursor location (...), CLEAR-SCREEN,
CLEAR-LINE, or BEEP is used. (A SHOW command without any of these arguments automatically
advances the line.) To add a line advance, add (+1,1) to the end of the line or use an extra empty SHOW
command.

Only ANSI terminals are supported for cursor control, screen blanking, line blanking, and display
characteristics.

SQR Command Reference Chapter 2

224 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Dates can be contained in a date variable or column, or a string literal, column, or variable. When the
program displays a date variable or column without an edit mask, the date is displayed according to the
following rules:

• For DATETIME columns and SQR DATE variables, SQR uses the format specified by the
SQR_DB_DATE_FORMAT setting.

If this has not been set, SQR uses the first database-dependent format as listed in the Default Database
Formats table.

• For DATE columns, SQR uses the format specified by the SQR_DB_DATE_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format listed in the Default Database Formats table.

• For TIME columns, SQR uses the format specified by the SQR_DB_TIME_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format as listed in the TIME Column Formats table.

When displaying a date in a string literal, column, or variable using EDIT or DATE, the string
must be in the format specified by the SQR_DB_DATE_FORMAT setting, one of the database-
dependent formats as listed in the Default Database Formats table, or the database-independent format
'SYYYYMMDD[HH24[MI[SS[NNNNNN]]]].

Parameters

Parameter Description

cursor_position Specifies the position on the screen to begin the display.

{CLEAR-SCREEN | CS} Clears the screen and sets the cursor position to (1,1).

{CLEAR-LINE | CL} Clears a line from the current cursor position to the end of the
line.

{any_lit | _var | _col} Specifies the information to be displayed.

EDIT Shows variables under an edit mask. If the mask contains
spaces, enclose it in single quotes. For additional information
regarding edit masks, see the PRINT command.

NUMBER Indicates that any_lit|_var|_col is to be formatted with the
NUMBER-EDIT-MASK from the current locale. (See the
ALTER-LOCALE command.) This option is not valid for date
variables.

MONEY Indicates that any_lit|_var|_col is to be formatted with the
MONEY-EDIT-MASK from the current locale. (See the
ALTER-LOCALE command.) This option is not valid for date
variables.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 225

Parameter Description

DATE Indicates that any_lit|_var|_col is to be formatted with the
DATE-EDIT-MASK from the current locale. (See the ALTER-
LOCALE command.) This option is not valid for numeric
variables. If DATE-EDIT-MASK has not been specified, the
date is displayed with the default format for that database (see
the Default Database Formats table).

BOLD, BLINK, UNDERLINE, and REVERSE Changes the display of characters on terminals that support
those characteristics. Some terminals support two or more
characteristics at the same time for the same text. To disable
all special display characteristics, use NORMAL.

NORMAL Disables all special display characteristics set with BOLD,
 BLINK, UNDERLINE, and REVERSE.

BEEP Causes the terminal to beep.

NOLINE Inhibits a line advance.

Example

The following program segments illustrate the various features of the SHOW command:

 !
 ! Show a string using an edit mask
 !
 let $ssn = '123456789'
 show $ssn edit xxx-xx-xxxx

Produces the following output:

123-45-6789

 !
 ! Show a number using an edit mask
 !
 show 1234567.89 edit 999,999,999.99

Produces the following output:

1,234,567.89

 !
 ! Show a number using the default edit mask
 !
 show 123.78

Produces the following output:

123.780000

 !
 ! Show a number using the locale default numeric edit mask
 !
 alter-locale number-edit-mask = '99,999,999.99'
 show 123456.78 number

SQR Command Reference Chapter 2

226 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Produces the following output:

 123,456.78

 !
 ! Show a number using the locale default money edit mask
 !
 alter-locale money-edit-mask = '$$,$$$,$$8.99'
 show 123456.78 money

Produces the following output:

$123,456.78

 !
 ! Show a date column using the locale default date edit mask
 !
 begin-select
 dcol
 from tables
 end-select
 alter-locale date-edit-mask = 'DD-Mon-YYYY'
 show &dcol date

Produces the following output:

01-Jan-2004

 !
 ! Show two values on the same line
 !
 show 'Hello' ' World'

Produces the following output:

Hello World

 !
 ! Show two values on the same line with editing of the values
 !
 let #taxes = 123456.78
 show 'You owe ' #taxes money ' in back taxes.'

Produces the following output:

You owe $123,456.78 in back taxes.

The following program illustrates the usage of additional options of the SHOW command. Only terminals
that support the ANSI escape characters can use the cursor control, screen blanking, line blanking, and
display attributes.

begin-program
 !
 ! Produces a menu for the user to select from
 !
 show clear-screen
 (3,30) bold 'Accounting Reports for XYZ Company' normal
 (+2,10) '1. Monthly Details of Accounts'
 (+1,10) '2. Monthly Summary'
 (+1,10) '3. Quarterly Details of Accounts'
 (+1,10) '4. Quarterly Summary'

 !
 ! Show a line of text and numerics combined
 !
 show (+2,1)
 'The price is ' #price edit 999.99

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 227

 ' Total = ' #total edit 99999.99

 !
 ! Put an error message on a particular line
 !
 show (24,1) clear-line 'Error in SQL. Please try again.' beep
end-program

See The LET command for information about copying, editing, or converting fields

See The EDIT parameter of the PRINT command for a description of the edit masks

See The ALTER-LOCALE command for a description of the arguments NUMBER-EDIT-MASK,
MONEY-EDIT-MASK, and DATE-EDIT-MASK

See DISPLAY

STOP

Syntax
STOP [QUIET]

Description
The STOP command halts SQR and executes a ROLLBACK command (not in Sybase, Microsoft SQL
Server, or Informix). All report page buffers are flushed if they contain data; however, no headers or
footers are printed and the AFTER-PAGE and AFTER-REPORT procedures are not executed.

STOP is useful in testing.

Parameters

Parameter Description

QUIET Causes the report to finish with the "SQR: End Of Run"
message, instead of ending with an error message.

Example

The following example shows the STOP command:

if #error-status = 1
 rollback
 stop
else
 commit
 stop quiet
end-if

STRING

Syntax
STRING {src_any_lit|_var|_col}...BY {delim_txt_lit|_var|_col} INTO dst_txt_var

SQR Command Reference Chapter 2

228 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Description
Concatenates a list of variables, columns, or literals into a single text variable. Each member of the list is
separated by the specified delimiter string.

The destination string must not be included in the list of source strings.

Parameters

Parameter Description

{src_any_lit|_var|_col} Specifies one or more fields to be concatenated, separated by
the delim_txt_lit|_var|_col character or characters, and placed
into the dst_txt_var variable.

If the source is a date variable or column, it is converted to a
string according to the following rules:

For DATETIME columns and SQR DATE variables, SQR
uses the format specified by the SQR_DB_DATE_FORMAT
setting.

If this has not been set, SQR uses the first database-dependent
format as listed in the Default Database Formats table.

For DATE columns, SQR uses the format specified by the
SQR_DB_DATE_ONLY_FORMAT setting.

If this has not been set, SQR uses the format listed in the
Default Database Formats table.

For TIME columns, SQR uses the format specified by the
SQR_DB_TIME_ONLY_FORMAT setting.

If this has not been set, SQR uses the format as listed in the
TIME Column Formats table.

{delim_txt_lit|_var|_col} Specifies one or more characters to be used as separator
characters between the source fields.

dst_txt_var Specifies the destination field for the concatenated result.

Example

The following example shows the STRING command:

string &name &city &state &zip by ' - ' into $show-info
 ! Result: Sam Mann - New York - NY - 11287
string &cust_num &entry-date &total by ',' into $cust-data
 ! Result: 100014,12-MAR-04,127
 ! Use null delimiter.
string &code1 &code2 &code3 by '' into $codes123
 ! Result: AGL

See The UNSTRING command for additional information

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 229

See The "||" concatenation operator in the Operators table under the LET command

SUBTRACT

Syntax
SUBTRACT {src_num_lit|_var|_col} FROM dst_num_var[ROUND=nn]

Description
Subtracts the first value from the second and moves the result into the second field.

When dealing with money-related values (dollars and cents), use decimal variables rather than float
variables. Float variables are stored as double-precision floating-point numbers, and small inaccuracies
can appear when you are subtracting many numbers in succession. These inaccuracies can appear due to
the way floating point numbers are represented by different hardware and software implementations.

Parameters

Parameter Description

{src_num_lit | _var | _col} Is subtracted from the contents of dst_num_var.

dst_num_var Contains the result after execution.

ROUND Rounds the result to the specified number of digits to the right
of the decimal point. For float variables this value can be from
0 (zero) to 15. For decimal variables, this value can be from
0 to the precision of the variable. For integer variables, this
argument is not appropriate.

Example

The following example shows the SUBTRACT command:

subtract 1 from #total ! #total - 1
subtract &discount from #price ! #price - &discount

See The ADD command for more information

See The LET command for information about complex arithmetic expressions

TOC-ENTRY

Syntax
TOC-ENTRY TEXT={src_txt_lit|_var|_col} [LEVEL={level_num_lit|_var|_col}]

Description
Enter the text in the table of contents at the desired level.

SQR Command Reference Chapter 2

230 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameters

Parameter Description

TEXT Specifies the text to be placed in the table of contents.

LEVEL Specifies the level at which to place the text. If this argument
is not specified, the value of the previous level is used.

Example

The following example shows the TOC-ENTRY command:

toc-entry text = &heading
toc-entry text = &caption level=2

See The DECLARE-TOC command

UNSTRING

Syntax
UNSTRING {{src_txt_lit|_var|_col}|{src_date_var|_col}}
BY {delim_txt_lit|_var|_col} INTO dst_txt_var...

Description
Copies portions of a string into one or more text variables.

Each substring is located usingby means of the specified delimiter. The source string must not be included
in the list of destination strings.

If more destination strings than substrings are found in the source strings, the extra destination strings are
each set to an empty string.

If more substrings are found in the source string than in the destination strings, the extra substrings are not
processed. The programmer is responsible for ensuring that enough destination strings are specified.

If the source is a date variable or column, it is converted to a string according to the following rules:

• For DATETIME columns and SQR DATE variables, SQR uses the format specified by the
SQR_DB_DATE_FORMAT setting.

If this has not been set, SQR uses the first database-dependent format as listed in the Default Database
Formats table.

• For DATE columns, SQR uses the format specified by the SQR_DB_DATE_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format listed in the Default Database Formats table.

• For TIME columns, SQR uses the format specified by the SQR_DB_TIME_ONLY_FORMAT
setting.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 231

If this has not been set, SQR uses the format as listed in the TIME Column Formats table.

Parameters

Parameter Description

{src_txt_lit|_var|_col}|{ src_date_var|_col} Specifies the source field to be parsed.

delim_txt_lit|_var|_col Specifies one or more characters to be used to delimit the
fields within {src_txt_lit|_var|_col}|{src_date_var|_col}

dst_txt_var Specifies one or more destination fields to receive the results.

Example

The following example shows the UNSTRING command:

unstring $show-info by ' - ' into $name $city $state $zip
unstring $cust-data by ',' into $cust_num $entry-date $total

See STRING, EXTRACT

See The substr and instr functions in the Miscellaneous Functions table under the LET command

UPPERCASE

Syntax
UPPERCASE txt_var

Description
Converts a string variable to uppercase.

Parameters

Parameter Description

txt_var Specifies a text variable to be converted to uppercase.

Example

The following example shows the UPPERCASE command:

input $state 'Enter state abbreviation'
uppercase $state ! Force uppercase.

See The upper function in the Miscellaneous Functions table under the LET command.

SQR Command Reference Chapter 2

232 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

USE

Syntax
USE database

Description
Uses the named database rather than the default database associated with your username. (Sybase and
Microsoft SQL Server only.)

Use USE in the SETUP section only. When used, it must appear at the top of your report, before any
queries are defined.

To reference more than one database in a program, specify secondary databases explicitly. For example:

from sqdb.sqr.customers

You cannot issue the Sybase or Microsoft SQL Server USE command from within an SQL paragraph.

Parameters

Parameter Description

database Specifies the name of the database to use.

Example

The following example shows the USE command:

begin-setup
 use pubs
end-setup

Related Links
Running SQR Execute

USE-COLUMN

Syntax
USE-COLUMN {column_number_int_lit|_var|_col}

Description
Sets the current column.

The column must have been defined previously with the COLUMNS command.

To stop printing within columns, use a column number of 0 (zero). Printing returns to normal; however,
the columns remain defined for subsequent NEXT-COLUMN or USE-COLUMN commands.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 233

Parameters

Parameter Description

{column_number_int_lit|_var|_col} Specifies the number of the defined column (not the location
on the page). For example, if five columns are defined, the
column_number_int_lit|_var|_col can be 1 to 5.

Example

The following example shows the USE-COLUMN command:

use-column 3 ! Print total in 3rd column.
print #total () 999,999
use-column 0 ! End of column printing.

USE-PRINTER-TYPE

Syntax
USE-PRINTER-TYPE printer-type

Description
Sets the printer type to be used for the current report.

The USE-PRINTER-TYPE command sets or alters the printer type to be used for the current report. The
USE-PRINTER-TYPE command must appear before the first output is written to that report. If output has
already been written to the report file, the USE-PRINTER-TYPE command is ignored.

Parameters

Parameter Description

printer-type Specifies the printer type to be used for the current report. See
DECLARE-PRINTER for valid types.

Example

The following example shows the USE-PRINTER-TYPE command:

use-report customer_orders
use-printer-type PostScript
print (1, 1) 'Customer Name: '
print () $customer_name

See DECLARE-PRINTER, DECLARE-REPORT, USE-REPORT

SQR Command Reference Chapter 2

234 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

USE-PROCEDURE

Syntax
USE-PROCEDURE [FOR-REPORTS=(report_name1[,report_namei]...)]
[BEFORE-REPORT=procedure_name[(arg1[,argi]...)]] [AFTER-
REPORT=procedure_name[(arg1[,argi]...)]] [BEFORE-
PAGE=procedure_name[(arg1[,argi]...)]] [AFTER-PAGE=procedure_name[(arg1[,argi]...)]]

Description
Changes the procedure usage.

The USE-PROCEDURE command must be issued in the PROGRAM or PROCEDURE sections of an
SQR program. USE-PROCEDURE is a runtime command; its compile-time equivalent is DECLARE-
PROCEDURE. You can use the command as often as required to change to the necessary procedures
required by the reports. If you issue multiple USE-PROCEDURE commands, each remains in effect for
that report until altered by another USE-PROCEDURE command for that report. In this way, you can use
one to change common procedures for ALL reports and others to change unique procedures for individual
reports. The referenced procedures can accept arguments.

If no FOR-REPORTS is specified, ALL is assumed. Initially, the default for each of the four procedure
types is NONE. If a procedure is defined in one DECLARE-PROCEDURE for a report, that procedure is
used unless NONE is specified.

You can change the BEFORE-REPORT only before the first output is written to that report, because that
causes the BEFORE-REPORT procedure to be executed.

Parameters

Parameter Description

FOR-REPORTS Specifies the reports that are to use these procedures. This
argument is required only for a program with multiple reports.
 If you are writing a program that produces a single report, you
can ignore this argument.

BEFORE-REPORT Specifies a procedure to execute at the time of execution of the
first command, which causes output to be generated. You can
use the command, for example, to create a report heading.

AFTER-REPORT Specifies a procedure to execute just before the report file is
closed at the end of the report. This argument can be used to
print totals or other closing summary information. If no report
was generated, the procedure does not execute.

BEFORE-PAGE Specifies a procedure to execute at the beginning of every
page, just before the first output command for the page. It can
be used, for example, to set up page totals.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 235

Parameter Description

AFTER-PAGE Specifies a procedure to execute just before each page is
written to the file. This argument can be used, for example, to
display page totals.

You can also specify arguments to be passed to the procedure.
 Arguments can be any variable, column, or literal.

Example

The following example shows the USE-PROCEDURE command:

use-procedure ! These procedures will

for-reports=(all) ! be used by all reports

before-report=report_heading

after-report=report_footing
use-procedure ! These procedures will

for-reports=(customer) ! be used by the customer

before-page=page_setup ! report

after-page=page_totals
use-procedure ! The after-report

for-reports=(summary) ! procedure will be

after-report=none ! disabled for the

 ! summary report

See DECLARE-PROCEDURE

USE-REPORT

Syntax
USE-REPORT {report_name_lit|_var|_col}

Description
For programs with multiple reports, enables the user to switch between reports.

The USE-REPORT command specifies which report files the subsequent report output is to be written to.
An application can contain several USE-REPORT statements to control several reports.

You must specify the report name and report characteristics in a DECLARE-REPORT paragraph and in
the associated DECLARE-LAYOUT and DECLARE- PRINTER paragraphs.

SQR Command Reference Chapter 2

236 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Parameters

Parameter Description

{report_name_lit|_var|_col} Specifies the report to become the current report. All
subsequent PRINT and PRINT-DIRECT statements are
written to this report until the next USE- REPORT is
encountered.

Example

The following example shows the USE-REPORT command:

use-report customer_orders
use-printer-type PostScript
print (1, 1) 'Customer Name: '
print () $customer_name

See DECLARE-REPORT, DECLARE-LAYOUT, DECLARE-PRINTER , USE-PRINTER-TYPE

WHILE

Syntax
WHILE logical_expression

The general format of a WHILE command is:

WHILE logical_expression SQR_commands...
[BREAK] SQR_commands... END-WHILE

Description
Begins a WHILE ... END-WHILE loop.

The WHILE loop continues until the condition being tested is FALSE.

An expression returning 0 (zero) is considered FALSE; an expression returning nonzero is TRUE.

BREAK causes an immediate exit of the WHILE loop; SQR continues with the command immediately
following END-WHILE.

WHILE commands can be nested to any level and can include or be included within IF and EVALUATE
commands.

Parameters

Parameter Description

logical_expression A valid logical expression. See the LET command for a
description of logical expressions.

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 237

Example

This example shows an IF nested within a WHILE:

while #count < 50
 do get_statistics
 if #stat_count = 100
 break ! Exit WHILE loop.
 end-if
 add 1 to #count
end-while

You can use single numeric variables in your expression to make your program more readable, for
example, when using flags:

move 1 to #have_data
...
 while #have_data
 ...processing...
end-while

This example sets up an infinite loop:

while 1
 ...processing...
 if ...
 break ! Exit loop
 end-if
end-while

Any complex expression can be used in the WHILE command, as shown in this example:

while #count < 100 and (not #end-file or isnull(&state))
 ...
end-while

SeeThe LET command for a description of expressions.

WRITE

Syntax
WRITE {filenum_lit|_var|_col} FROM {{{txt_lit|_var|_col}|{date_var|_col}|num_col}
[:len_int_lit]}|{num_lit|_var:len_int_lit}}... [STATUS=status_num_var]

Description
Writes a record to a file from data stored in variables, columns, or literals.

The file must already be opened for writing.

If length is specified, the variable is either truncated at that length or padded with spaces to that length. If
length is not specified (for string variables or database columns), the current length of the variable is used.

When you are writing numeric variables, the length argument is required. Only 1-byte, 2-byte, or 4-byte
binary integers are written. Floating point values are not supported directly in the WRITE command.
However, you can first convert floating point numbers to strings and then write the string.

When you are writing binary data, you must open the file using the FIXED or FIXED-NOLF qualifiers.
The file is not portable across platforms because binary numbers are represented differently.

SQR Command Reference Chapter 2

238 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

When writing a date variable or column, the date is converted to a string according to the following rules:

• For DATETIME columns and SQR DATE variables, SQR uses the format specified by the
SQR_DB_DATE_FORMAT setting.

If this has not been set, SQR uses the first database-dependent format as listed in the Default Database
Formats table.

• For DATE columns, SQR uses the format specified by the SQR_DB_DATE_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format listed in the DATE Column Formats table.

• For TIME columns, SQR uses the format specified by the SQR_DB_TIME_ONLY_FORMAT
setting.

If this has not been set, SQR uses the format as listed in the TIME Column Formats table.

Text literals take the length of the literal.

Files opened for writing are treated as having variable-length records. If you need a fixed-length record,
specify a length for each variable written to the file.

The total length of the variables and literals being written must not be greater (but can be less) than the
record length specified when the file was opened. Records are not padded, but are written with the total
length of all variables in the WRITE command.

If STATUS is specified, SQR returns 0 if the write is successful; otherwise, it returns the value of errno,
which is system-dependent.

Parameters

Parameter Description

filenum_lit|_var |_col Specifies the number assigned in the OPEN command to the
file to be written.

{{txt_lit|_var|_col}|

{date_var|_col}|num_col}

[:len_int_lit]}|

{num_lit|_var:len_int_lit}

Specifies one or more variables to be written. len_int_lit
specifies the length of each field of data.

STATUS Specifies an optional variable into which a write status is
returned.

Example

The following example shows the WRITE command:

write 5 from $name:20 $city:15 $state:2
write 17 from $company ' - ' $city ' - ' $state ' ' $zip
write #j2 from #rate:2 #amount:4 #quantity:1

Chapter 2 SQR Command Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 239

move #total to $tot 99999.99 ! Convert floating point to string.
write 1 from $tot
let $date1 = datenow() ! Put the current date and time
 ! into DATE variable
write 3 from $date1:20

See OPEN, CLOSE, READ

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 241

Chapter 3

Generating HTML Output

HTML General Purpose Procedures

An SQR program without HTML procedures has limited HTML capabilities; therefore, adding HTML
procedures to an SQR program enhances the appearance of the HTML output.

See "Generating HTML Output" (PeopleTools 8.53: SQR for PeopleSoft Developers).

The following table describes HTML general purpose procedures:

Procedure Description

html_br Produces the specified number of line breaks in a paragraph by
using the HTML
 tag. The paragraph continues onto the
next line.

Syntax:

html_br(number count, string attributes)

Count: The number of HTML
 tags that are inserted.

Attributes: The HTML attributes that are incorporated inside
the HTML
 tag.

Example:

print 'Here is some text' ()
do html_br(3,'')
print 'Here is some text three lines
 down' ()

html_center Marks the start of text to be centered in the HTML document
by using the HTML <CENTER> tag. You can also accomplish
this by using the SQR print statement with CENTER specified
in the code.

Syntax:

html_center()

Attributes: The HTML attributes that are incorporated inside
the HTML <CENTER> tag.

Example:

do html_center(‘’)
print ‘Here is some centered text’ ()
do html_center_end

Generating HTML Output Chapter 3

242 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Procedure Description

html_center_ end Marks the end of text that was previously specified as
centered.

Syntax:

html_center_end

html_hr Produces a horizontal divider between sections of text by
using the HTML <HR> tag.

Syntax:

html_hr(string attributes)

Attributes: The HTML attributes that are incorporated inside
the HTML <HR> tag.

Example:

print 'Here is some text' ()
do html_hr('')
print 'Text after a horizonal divider' ()

html_img Inserts an image by using the HTML tag. You can
also do this by using the PRINT-IMAGE command; however,
 the html_img procedure enables you to specify the full set of
available HTML attributes.

Syntax:

html_img(string attributes)

Attributes: The HTML attributes that are incorporated inside
the HTML tag. Some common attributes include:

• src: The URL of the image to be inserted.

Example: src=/images/abc.gif

• height: The height of the image in pixels.

Example: height=200

• width: The width of the image in pixels.

Example: width=400

Example:

do html_img('src="/images/stop.gif"')

Chapter 3 Generating HTML Output

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 243

Procedure Description

html_nobr Marks the start of text that cannot be wrapped by using the
HTML <NOBR> tag.

Syntax:

html_nobr

Example:

do html_nobr('')
print 'Long line of text that shouldn't
 wrap' ()
do html_nobr_end

html_nobr_end Marks the end of text that cannot be wrapped by using the
HTML </NOBR> tag.

Syntax:

html_nobr_end

html_on Activates the HTML procedures. Call this procedure at the
start of an SQR program; otherwise, the HTML procedures
are not activated. After the HTML procedures are activated,
 format the appearance of the web page by using the various
HTML procedures.

Syntax:

html_on

Example:

do html_on

html_p Marks the start of a new paragraph by using the HTML <P>
tag.

Syntax:

html_p(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <P> tag. A common attribute is align = left|
right|center, which specifies the alignment of the paragraph.

Example:

do html_p('ALIGN=RIGHT')
print 'Right aligned text' (1,1)
do html_p_end
print 'Normally aligned text' (+1,1)

html_p_end Marks the end of a paragraph by using the HTML </P>
tag. The end of a paragraph is typically implied and the
procedure is technically not needed; however, specifying it for
completeness is a good practice.

Syntax:

html_p_end

Generating HTML Output Chapter 3

244 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Procedure Description

html_set_body_attributes Specifies the attributes that are incorporated into the HTML
<BODY> tag. Call this procedure at the start of the SQR
program.

Syntax:

html_set_body_attributes(string
 attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <BODY> tag. Some common attributes
include:

• background: Specifies the image to display in the
background of the web page.

Example: background=/images/logo.gif

• bgcolor=#rrggbb: Specifies the background color of the
web page.

Example: bgcolor=#80FFF

Example:

do html_set_body_attributes('BACKGROUND="/
images/x.gif"')

html_set_head_tags Specifies the tags that are incorporated between the HTML
<HEAD> and </HEAD> tags. These tags are empty by
default. One common tag to set is the HTML <TITLE> tag,
 which specifies the title to display for the web page. Call this
procedure at the start of the SQR program.

Syntax:

html_set_head_tags(string attributes)

Attributes: Defines the HTML attributes that are incorporated
between the HTML <HEAD> and </HEAD> tags.

Example:

do html_set_head_tags('<TITLE>My Report</
TITLE>')

HTML Heading Procedures

The following table describes HTML heading procedures:

Chapter 3 Generating HTML Output

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 245

Procedure Description

html_h1 Marks the start of text for heading level one by using the
HTML <H1> tag. This heading text appears more prominently
than heading level two text.

Syntax:

html_h1(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <H1> tag.

Example:

do html_h1('')
print 'This is a heading' ()
do html_h1_end

html_h1_end Marks the end of text for heading level one by using the
HTML </H1> tag.

Syntax:

html_h1_end

html_h2 Marks the start of text for heading level two by using the
HTML <H2> tag. This heading text appears less prominently
than heading level one text and more prominently than heading
level three text.

Syntax:

html_h2(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <H2> tag.

Example:

do html_h2('')
print 'This is a heading' ()
do html_h2_end

html_h2_end Marks the end of text for heading level two by using the
HTML </H2> tag.

Syntax:

html_h2_end

Generating HTML Output Chapter 3

246 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Procedure Description

html_h3 Marks the start of text for heading level three by using the
HTML <H3> tag. This heading text appears less prominently
than heading level two text and more prominently than
heading level four text.

Note: This heading level is the default value.

Syntax:

html_h3(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <H3> tag.

html_h3_end Marks the end of text for heading level three by using the
HTML </H3> tag.

Syntax:

html_h3_end

html_h4 Marks the start of text for heading level four by using the
HTML <H4> tag. This heading text appears less prominently
than heading level three text and more prominently than
heading level five text.

Syntax:

html_h4(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <H4> tag.

html_h4_end Marks the end of text for heading level four by using the
HTML </H4> tag.

Syntax:

html_h4_end

html_h5 Marks the start of text for heading level five by using the
HTML <H5> tag. This heading text appears less prominently
than heading level four text and more prominently than
heading level six text.

Syntax:

html_h5(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <H5> tag.

html_h5_end Marks the end of text for heading level five by using the
HTML </H5> tag.

Syntax:

html_h5_end

Chapter 3 Generating HTML Output

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 247

Procedure Description

html_h6 Marks the start of text for heading level six by using the
HTML <H6> tag. This heading text appears less prominently
than heading level five text.

Syntax:

html_h6(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <H6> tag.

html_h6_end Marks the end of text for heading level six by using the HTML
</H6> tag.

Syntax:

html_h6_end

HTML Highlighting Procedures

The following table describes HTML highlighting procedures:

Procedure Description

html_blink Marks the start of blinking style text by using the HTML
<BLINK> tag.

Syntax:

html_blink(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <BLINK> tag.

Example:

do html_blink('')
print 'This is blinking text' ()
do html_blink_end

html_blink_end Marks the end of blinking style text by using the HTML </
BLINK> tag.

Syntax:

html_blink_end

Generating HTML Output Chapter 3

248 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Procedure Description

html_cite Marks the start of text in citation style by using the HTML
<CITE> tag.

Syntax:

html_cite(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <CITE> tag.

Example:

do html_cite('')
print 'This is a citation' ()
do html_cite_end

html_cite_end Marks the end of text in citation style by using the HTML </
CITE> tag.

Syntax:

html_cite_end

html_code Marks the start of text in code style by using the HTML
<CODE> tag.

Syntax:

html_code(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <CODE> tag.

Example:

do html_code('')
print 'Here is code style text' ()
do html_code_end

html_code_end Marks the end of text in code style by using the HTML </
CODE> tag.

Syntax:

html_code_end

html_kbd Marks the start of text in keyboard input style by using the
HTML <KBD> tag.

Syntax:

html_kbd(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <KBD> tag.

Example:

do html_kbd('')
print 'Here is keyboard style text' ()
do html_kbd_end

Chapter 3 Generating HTML Output

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 249

Procedure Description

html_kbd_end Marks the end of text in keyboard style by using the HTML </
KBD> tag.

Syntax:

html_kbd_end

html_samp Marks the start of text in sample style by using the HTML
<SAMP> tag.

Syntax:

html_samp(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <SAMP> tag.

Example:

do html_samp('')
print 'Here is sample style text' ()
do html_samp_end

html_samp_end Marks the end of text in sample style by using the HTML </
SAMP> tag.

Syntax:

html_samp_end

html_strike Marks the start of text in strikethrough style by using the
HTML <STRIKE> tag.

Syntax:

html_strike(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <STRIKE> tag.

Example:

do html_strike('')
print 'Here is strikethrough text' ()
do html_strike_end

html_strike_end Marks the end of text in strikethrough style by using the
HTML </STRIKE> tag.

Syntax:

html_strike_end

Generating HTML Output Chapter 3

250 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Procedure Description

html_sub Marks the start of text in subscript style by using the HTML
<SUB> tag.

Syntax:

html_sub(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <SUB> tag.

Example:

print 'Here is' ()
do html_sub('')
print 'subscript text' ()
do html_sub_end

html_sub_end Marks the end of text in subscript style by using the HTML </
SUB> tag.

Syntax:

html_sub_end

html_sup Marks the start of text in superscript style by using the HTML
<SUP> tag.

Syntax:

html_sup(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <SUP> tag.

Example:

print 'Here is' ()
do html_sup('')
print 'superscript text' ()
do html_sup_end

html_sup_end Marks the end of text in superscript style by using the HTML
</SUP> tag.

Syntax:

html_sup_end

HTML Hypertext Link Procedures

The following table describes HTML hypertext link procedures:

Chapter 3 Generating HTML Output

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 251

Procedure Description

html_a Marks the start of a hypertext link by using the HTML <A>
tag. When the user clicks the area with the hypertext link, the
web browser switches to the specified HTML document.

Syntax:

html_a(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <A> tag. At a minimum, you should define
the href attribute, which specifies the URL of an HTML
document.

Some common attributes include:

• href: Indicates where the hypertext link points.

Example: href=home.html

• name: Indicates an anchor to which a hypertext link can
point.

Example: name=marker1

Example:

The anchor is positioned at the top of the document. The first
hypertext link points to the HTML document named otherdoc.
html. The second hypertext link points to the anchor named
TOP:

do html_a('NAME=TOP')
do html_a_end
print 'At the top of document' ()
do html_br(20, '')
do html_a('HREF=otherdoc.html')
print 'Go to other document' ()
do html_a_end
do html_p('')
do html_a('HREF=#TOP')
print 'Go to top of document' ()
do html_a_end

html_a_end Marks the end of a hypertext link by using the HTML
tag.

Syntax:

html_a_end

HTML List Procedures

The following table describes HTML list procedures:

Generating HTML Output Chapter 3

252 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Procedure Description

html_dd Marks the start of a definition in a definition list by using the
HTML <DD> tag.

Syntax:

html_dd(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <DD> tag.

html_dd_end Marks the end of a definition in a definition list by using the
HTML </DD> tag. The end of a definition in a definition list
is typically implied and not needed; however, specifying it for
completeness is a good practice.

Syntax:

html_dd_end

html_dir Marks the start of a directory list by using the HTML <DIR>
tag.

Syntax:

html_dir(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <DIR> tag.

Example:

do html_dir('')
do html_li('')
print 'First item' ()
do html_li('')
print 'Second item' ()
do html_li('')
print 'Last item' ()
do html_dir_end

html_dir_end Marks the end of a directory list by using the HTML </DIR>
tag.

Syntax:

html_dir_end

Chapter 3 Generating HTML Output

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 253

Procedure Description

html_dl Marks the start of a definition list by using the HTML <DL>
tag. A definition list displays a list of terms and definitions.
 The term appears before and to the left of the definition. Use
the html_dt procedure to display a term. Use the html_dd
procedure to display a definition.

Syntax:

html_dl(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <DL> tag.

Example:

do html_dl('')
do html_dt('')
print 'A Daisy' ()
do html_dd('')
print 'A sweet and innocent flower.' ()
do html_dt('')
print 'A Rose' ()
do html_dd('')
print 'A very passionate flower.' ()
do html_dl_end

html_dl_end Marks the end of a definition list by using the HTML </DL>
tag.

Syntax:

html_dl_end

html_dt Marks the start of a term in a definition list by using the
HTML <DT> tag.

Syntax:

html_dt(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <DT> tag.

html_dt_end Marks the end of a term in a definition list by using the HTML
</DT> tag.

Syntax:

html_dt_end

html_li Marks the start of a list item by using the HTML tag.

Syntax:

html_li(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML tag.

Generating HTML Output Chapter 3

254 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Procedure Description

html_li_end Marks the end of a list item by using the HTML tag.
 The end of a list item is typically implied and not needed;
however, you should specify it for completeness.

Syntax:

html_li_end

html_menu Marks the start of a menu by using the HTML <MENU> tag.
 Use the html_li procedure to identify each item in a list.

Syntax:

html_menu(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <MENU> tag.

Example:

do html_menu('')
do html_li('')
print 'First item' ()
do html_li('')
print 'Second item' ()
do html_li('')
print 'Last item' ()
do html_menu_end

html_menu_end Marks the end of a menu by using the HTML </MENU> tag.

Syntax:

html_menu_end

html_ol Marks the start of an ordered list by using the HTML
tag. Each item in the list typically appears indented to the right
with a number to the left. Use the html_li procedure to identify
each item in a list.

Syntax:

html_ol(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML tag.

Example:

do html_ol('')
do html_li('')
print 'First item' ()
do html_li('')
print 'Second item' ()
do html_li('')
print 'Last item' ()
do html_ol_end

Chapter 3 Generating HTML Output

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 255

Procedure Description

html_ol_end Marks the end of an ordered list by using the HTML
tag.

Syntax:

html_ol_end

html_ul Marks the start of an unordered list by using the HTML
tag. Each item in the list typically appears indented to the right
with a bullet to the left. Use the html_li procedure to identify
each item in a list.

Syntax:

html_ul(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML tag.

Example:

do html_ul('')
do html_li('')
print 'First item' ()
do html_li('')
print 'Second item' ()
do html_li('')
print 'Last item' ()
do html_ul_end

html_ul_end Marks the end of an unordered list by using the HTML
tag.

Syntax:

html_ul_end

HTML Table Procedures

The following table describes HTML table procedures:

Procedure Description

html_caption Marks the start of a table caption by using the HTML
<CAPTION> tag.

Syntax:

html_caption(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <CAPTION> tag.

Generating HTML Output Chapter 3

256 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Procedure Description

html_caption_end Marks the end of a table caption by using the HTML </
CAPTION> tag. The end of a table caption is typically
implied and not needed; however, you should specify it for
completeness.

Syntax:

html_caption_end

html_table Marks the start of a table by using the HTML <TABLE> tag.

Syntax:

html_table(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <TABLE> tag.

Some common attributes include:

• border: Specifies that a border appears around each cell of
a table.

• width: Specifies the width of an entire table in pixels.

• cols: Specifies the number of columns in a table.

Example: COLS=4

Example: Displaying database records in a tabular format. The
html_caption_end, html_tr_end, html_td_end, and html_th_
end procedures are used for completeness; however, they are
typically implied and not needed.

! start the table & display the column
 headings
do html_table('border')
do html_caption('')
print 'Customer Records' (1,1)
do html_caption_end
do html_tr('')
do html_th('')
print 'Cust No' (+1,1)
do html_th_end
do html_th('')
print 'Name" (,10)
do html_th_end
do html_tr_end
! display each record
begin-select
do html_tr('')
do html_td('')
cust_num (1,1,6) edit 099999
do html_td_end
do html_td('')
name (1,10,25)
do html_td_end
do html_tr_end
next-listing skiplines=1 need=1
from customers
end-select
! end the table
do html_table_end

Chapter 3 Generating HTML Output

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 257

Procedure Description

html_table_end Marks the end of a table by using the HTML </TABLE> tag.

Syntax:

html_table_end

html_td Marks the start of a new column in a table row by using the
HTML <TD> tag. This tag specifies that the text that follows
appears in the column.

Syntax:

html_td(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <TD> tag.

html_td_end Marks the end of a column in a table by using the HTML </
TD> tag. The end of a column is typically implied and not
needed; however, you should specify it for completeness.

Syntax:

html_td_end

html_th Marks the start of a new column header in a table row by
using the HTML <TH> tag. This tag specifies that the text that
follows appears as the header of the column.

Syntax:

html_th(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <TH> tag.

html_th_end Marks the end of a column header in a table by using the
HTML </TH> tag. The end of a column header is typically
implied and not needed; however, you should specify it for
completeness.

Syntax:

html_th_end

html_tr Marks the start of a new row in a table by using the HTML
<TR> tag.

Syntax:

html_tr(string attributes)

Attributes: Defines the HTML attributes that are incorporated
inside the HTML <TR> tag.

Generating HTML Output Chapter 3

258 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Procedure Description

html_tr_end Marks the end of a row by using the HTML </TR> tag. The
end of a row in a table is typically implied and not needed;
however, you should specify it for completeness.

Syntax:

html_tr_end

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 259

Chapter 4

Generating Tagged PDF Output

Generating Tagged PDF Output from an SQR Program

PDF is a file which contains list of text, graphics, bookmarks, links and other elements to make an
electronic document.

PDF file follows a logical reading order which also has images with descriptions, tagged tables with a
structure and tagged contents with headings, lists and paragraphs depending on the usage.

Starting with SQR 8.53, SQR uses PDFLib 8.0.1 upgraded from PDFlib 3.0.3 library supplied by PDFLib
GMBH to generate the tagged PDF documents by calling the respective Tagged PDF API calls.

SQR Commands to Create Tagged PDF Table

The following table describes PDF tagged commands:

SQR Command PDF tag Description

begin_tag_table,

end_tag_table

Table Marks the begin and end of the tagged
table.

begin_tag_table_head,

end_tag_table_head

TH Marks the begin and end of the tagged
table header.

begin_table_td,

end_table_td

TD Marks the begin and end of the tagged
table data.

begin_table_tr,

end_table_tr

TR Marks the begin and end of the tagged
table row.

SQR Commands to Create Tagged PDF Lists

The following table describes PDF tagged lists:

Generating Tagged PDF Output Chapter 4

260 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

SQR Command PDF tag Description

begin_tag_list

end_tag_list

L Marks the begin and end of the tagged
table list.

begin_tag_list_index

end_tag_list_index

LI Marks the begin and end of the tagged
table list index.

begin_tag_list_label

end_tag_list_label

LBl Marks the begin and end of the tagged
table list index label.

begin_tag_list_body

end_tag_list_body

LBody Marks the begin and end of the tagged
table list body.

SQR Commands to Create Heading and Paragraph

The following table describes Heading and Paragraph PDF tagged commands:

SQR Command PDF tag Description

begin_tag_heading,

end_tag_heading

H Marks the begin and end of the tagged
table heading.

begin_tag_paragraph,

end_tag_paragraph

P Marks the begin and end of the tagged
table paragraph.

SQR Commands to Create Alternate Text

The following table describes Alternate Text PDF tagged commands:

SQR Command Description

begin_tag_alt_text_figure end_tag_alt_text_figure Marks the begin and the end of an alternate text.

Tagged PDF Support for SQR

1. What is Tagged PDF Report in SQR?

Starting with Tools 8.53,Tagged PDF report is accessible through SQR. Use PDF type while
producing Tagged PDF output.

Chapter 4 Generating Tagged PDF Output

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 261

The Tagged PDF reports uses high level SQR program structure where the tags are used in a
procedural way.

For more information on SQR Program Structure, please refer to:

The SQR Language

Tagged PDF feature for screen reading software supports vision-impaired computer users.

Tagged PDF is supported on all platforms except Z/OS where PDF library is PDFLib 3.0.3.

2. How are the predefined commands processed by SQR Program generate tagged PDF output against
non-PDF output?

The SQR engine processes the commands only if the output type is PDF else it will work in normal
way and have no effect on other output types.

Non-PDF outputs like HTML, SPF and LIS will use pre 8.53 functionality.

3. Can users generate Tagged PDF Report through command line?

If you are generating Tagged PDF Report using command line, specify flag PDF_TAG.

For example: sqrw %PS_HOME%\sqr\test.sqr user/password@DBNAME "-i
%PS_HOME%\sqr\;" -zif%PS_HOME%\sqr\pssqr.ini "-fD:\temp\test.PDF" -
pdf_tag -PRINTER:PD

4. Are there any general guidelines in creating a Tagged PDF using predefined SQR commands?

SQR commands for Tagged PDF document uses the below guidelines:

• Use begin_XXXXX and end_XXXXX predefined SQR commands.

For example: begin_tag_heading print 'SAMPLE HEADING‘ (+2,
{C_MenuName}) end_tag_heading

• Do not nest the tagged items, headings, paragraphs and nested tables. The following SQR
command produces Accessibility Checker error for nested tags.

For example: begin_tag_heading print 'SAMPLE HEADING‘ (+2,
{C_MenuName}) begin_tag_heading print 'SAMPLE HEADING‘ (+2,
{C_MenuName}) end_tag_heading end_tag_heading

• To create lists and table, follow a procedure to call the predefined SQR commands.

• To create tagged table and list which is similar to HTML tables and list such as Table, TH, TR and
TD

See also:

SQR Commands to Create Tagged PDF Table

SQR Commands to Create Tagged PDF Lists

Generating Tagged PDF Output Chapter 4

262 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

• Use SQR command tags to effectively tag the contents in pdf file. Partially tagged contents are not
recognized by Screen readers like Jaws in logic order.

5. How do I check whether the Tagged PDF report is effectively tagged?

Accessibility Checkers available in market can be used to check the tagged pdf report.

For more information on Accessibility Checker, please access the following link:

"Accessibility Checkers" (PeopleTools 8.53: SQR for PeopleSoft Developers)

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 263

Chapter 5

Invoking SQR Execute

Running SQR Execute

SQR Execute is a runtime program that enables you to run a previously compiled SQR program.

To run SQR Execute, enter the following command. (If you are using Microsoft Windows, invoke
SQRWT rather than SQRT.)

SQRT [program][connectivity][flags...][args...][@file...]

Using SQR Execute Flags

The following table describes the SQR Execute command-line flags. See the SQR command-line
arguments section for information about program, connectivity, args, and @file.

See SQR Command-Line Arguments.

Flag Description

-A Appends the output to an existing output file of the same
name. If the file does not exist, it creates a new one. This flag
is useful when you want to run the same report more than
once, but you want to create only one output file.

-C (Microsoft Windows) Specifies that the Cancel dialog box
appears while the program is running so that you can easily
terminate the program.

Invoking SQR Execute Chapter 5

264 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Flag Description

-BURST:{xx} Specifies the type of bursting to be performed.

-BURST:T generates the table of contents file only.

-BURST:S generates the report output according to the
symbolic table of contents entries that are set in the program
with the LEVEL argument of the TOC- ENTRY command.
 In -BURST:S[{l}], l is the level at which to burst. The -
BURST:S setting is equivalent to -BURST:S1.

-BURST:P generates the report output by report page numbers.
 In -BURST:P[{l} , {s} [, {s}] …]] , l is the number of
logical report pages that each .htm file contains and s is the
page selection: n, n-, m, -m, or n-. The -BURST:P setting is
equivalent to -BURST:P0,1- when using -PRINTER:HT or -
BURST:P1 when using -PRINTER:EH.

Note: -BURST:P and -BURST:S require -PRINTER:EH or -
PRINTER:HT. The page range selection feature of -BURST:P
requires -PRINTER:HT. -BURST:T requires -PRINTER:HT.

-CB (Microsoft Windows) Forces the communication box.

-Dnn (Non-Microsoft Windows) Causes SQR to display the report
output on the terminal at the same time that it is being written
to the output file. The nn variable is the maximum number of
lines to display before pausing. If you do not enter a number
after -D, the display scrolls continuously. The printer type
must be LP; otherwise, SQR does not display any output. If
the program is producing more than one report, SQR displays
only the first report.

-DBdatabase (Sybase) Causes the SQR program to use the specified
database, overriding any USE command in the SQR program.

-E[file] Directs error messages to the named file or to the default file,
 program.err. If no errors occur, no file is created.

-EH_APPLETS:dir Specifies the directory location of the enhanced HTML
applets. The default directory for theses applets is IMAGES.

Note: The -EH flags in this table are applicable only when
either the -PRINTER:EH or -PRINTER:EP flag is specified.

-EH_BQD Generates a {report}.bqd file from the report data. Also
associates a BQD icon with {report}.bqd in the navigation bar.

-EH_BQD:file Associates the BQD icon with the specified file.

Chapter 5 Invoking SQR Execute

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 265

Flag Description

-EH_BROWSER:xx Specifies the target browser. When set to ALL, SQR
automatically determines which browser is being used,
 invokes a browser-specific file, and generates HTML that is
designed for that browser.

When set to BASIC, SQR generates HTML that is suitable for
all browsers.

When set to IE, SQR generates HTML that is designed for
Microsoft Internet Explorer.

-EH_CSV Generates a {report}.csv file from the report data.

-EH_CSV:file Associates the CSV icon with the specified file.

-EH_CSVONLY Creates a CSV file but does not create an HTML file.

-EH_FULLHTML:xx Switches between HTML 3.0 and HTML 3.2. When set to
TRUE, SQR generates HTML 3.2. When set to FALSE, SQR
generates HTML 3.0.

-EH_Icons:dir Specifies the directory for the referenced icons.

-EH_LANGUAGE:xx Sets the language that is used for the HTML navigation
bar. You can specify English, French, German, Portuguese,
 Spanish, Japanese, Simplified Chinese, and Korean.

-EH_PDF Associates a PDF icon with {report}.pdf in the navigation bar.

-EH_Scale:{nn} Sets the scaling factor from 50 to 200.

-F[file|directory] Overrides the default output file name, program.lis. The
default action places the program.lis file in the same directory
as the program.sqr file.

To use the current directory, specify -F without an argument.

To change the name of the output file, specify -F with the new
name. If the new name does not specify a directory, the file is
created in the current directory.

The output file is not created until data is actually printed on
the page. If no data is printed, no output file is created.

Specify the file name and directory for different operating
systems:

• UNIX\Linux

• MVS

-GPRINT=YES | NO (MVS) -GPRINT=YES causes ANSI control characters to be
written to the first column of each record of the SQR output
file.

-ID Displays the copyright banner on the console.

Invoking SQR Execute Chapter 5

266 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Flag Description

-KEEP In addition to .lis files, creates an .spf file for each report that
the program generates.

-NOLIS Prevents the creation of .lis files. Instead, creates .spf files.

-O[file] Directs log messages to the specified file or to programt.log
if no file is specified. By default, the sqr.log file is used in the
current working directory.

-P (MVS) Suppresses printer control characters from column 1.

-PB (Informix) Causes column data to retain trailing blanks.

-PRINTER:xx Causes printer type xx to be used when creating output files:

• EH

• EP

• HP

• HT

• LP

• PD

• PS

• WP

Types LP, HP, and PS produce files with the .lis extension.

Types EH and HT produce .htm file output.

Type HT produces files in HTML version 2.0 with the report
content inside the <PRE></PRE> tags.

Type EH produces reports in which content is fully formatted
with HTML version 3.0 or 3.2 tags.

In Microsoft Windows systems, the WP extension sends
the output to the default Microsoft Windows printer. To
specify a nondefault Microsoft Windows printer, enter -
PRINTER:WP:{printer name}. The {printer name} is the
name that is assigned to the printer. For example, to send
output to a Microsoft Windows printer named NewPrinter, use
- PRINTER:WP:NewPrinter. If the printer name has spaces,
 enclose the entire argument in quotes. If you also want to
create an .spf file, use -KEEP.

-S Requests that the status of all cursors appear at the end of the
report run. Status includes the text of each SQL statement, the
number of times that each was compiled and run, and the total
number of rows selected.

Chapter 5 Invoking SQR Execute

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 267

Flag Description

-Tnn Specifies that you want to test the report for nn pages. SQR
ignores all Order By clauses in Select statements to save time
during testing. If the program is producing more than one
report, SQR stops after the specified number of pages that are
defined for the first report have been printed.

-T{B|Z|BZ|ZB} (IBM MVS and DB2):

• -TB prevents SQR from removing trailing blanks from
database character columns.

• -TZ prevents SQR from removing trailing zeros from the
decimal portion of numeric columns.

• -TBZ or -TZB prevents both.

(Windows/DB2, Sybase CT-Lib, and ODBC): -TB trims
trailing blanks from database character columns.

Note: The -TB flag only has an effect if SQR is connecting
to either a DB2, Sybase CT LIB, or ODBC (MSS) database.
 Confusingly, the behavior of the -TB command-line flag
varies depending on your platform. If you are using one of the
previously mentioned databases and running SQR on z/OS, the
-TB flag behaves as follows:
If you do not use the -TB flag, trailing blanks are trimmed.
If you do use the -TB flag, trailing blanks are not trimmed.
If you are running SQR on any other platform, the behavior of
-TB is the opposite:
If you do not use the -TB flag, trailing blanks are not trimmed.
If you do use the -TB flag, trailing blanks are trimmed.

-Vserver (Sybase) Uses the named server.

-XB (Non-Microsoft Windows) Suppresses the SQR banner and the
SQR.... End of Run message.

-XCB (Microsoft Windows) Does not use the communication box.

-XL Prevents SQR from signing in to the database. Programs that
are run in this mode cannot contain any SQL statements.

-XL enables you to run SQR without accessing the database.
 You still must supply at least an empty slash (/) in the
command line as a placeholder for the connectivity
information. For example: sqr myprog / -xl

Some database files must be available for SQR to run whether
SQR signs in to the database or not.

See information about your particular operating system and
database to determine which files you need.

-XMB (Microsoft Windows) Disables the error message display
so that a program can be run without interruption by error
message boxes. Error messages are sent only to an .err file.
 See the -E flag for more information.

Invoking SQR Execute Chapter 5

268 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Flag Description

-XNAV Prevents SQR from creating the navigation bar in .htm files
that are generated with -PRINTER:HT. This occurs when
only a single .htm file is produced. Multiple .htm files that are
generated from a single report always contain the navigation
bar.

-XP (Sybase DBLib) Prevents SQR from creating temporary stored
procedures. See BEGIN-SELECT for more information.

-XTB Preserves the trailing blanks in an .lis file at the end of a line.

-XTOC Prevents SQR from generating the table of contents for
the report. SQR ignores this flag when -PRINTER:EH or -
PRINTER:HT is also specified.

-ZIF{file} Sets the full path and name of the SQR initialization file, pssqr.
ini.

-ZIV Invokes the SPF Viewer after generating the program.spf file.
 This flag implicitly invokes the -KEEP flag to create program.
spf. In the case of multiple output files, only the first report file
is passed to the viewer.

-ZMF{file} Specifies the full path and name of the SQR error message file,
 sqrerr.dat.

Related Links
SQR Command-Line Arguments

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 269

Chapter 6

Using SQR Print

Understanding SQR Print

SQR Print enables you to create printer-specific reports for any of the file types that SQR supports. SQR
Print converts portable printer-independent files (spfs) into printer-specific files. SQR and SQRT (or
SQRWT for Windows) create .spf files when you use the -KEEP and -NOLIS command-line flags.

Generating Output from the Command Line

To begin running SQR Print, enter the following command. (If you are in Microsoft Windows, invoke
SQRWP rather than SQRP.)

SQRP [spf-file] [flags...]

The following table describes the spf-file and flags variables.

SQR Print writes an .lis file with the same name as the .spf file but with an lis extension. You can override
this name with the -F command-line flag.

The -PRINTER command-line flag specifies the printer type. SQR offers these printer type options:

• Line printer

• HP LaserJet

• PostScript

• HTML

• Enhanced HTML

• Adobe PDF

• Enhanced HTML and Adobe PDF

If the report contains graphics and you select a line printer, then SQR Print will ignore graphic elements
(such as lines, boxes, and charts) and print only the text.

Using SQR Print Command-Line Flags

The following table describes the SQR Print command-line flags:

Using SQR Print Chapter 6

270 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Command-line Flag Description

-A Appends the output to an existing output file of the same
name. If the file does not exist, it creates a new one. This flag
is useful when you want to run the same report more than
once, but you want to create only one output file.

-BURST:{xx} Specifies the type of bursting to be performed.

-BURST:T generates the table of contents file only.

-BURST:S generates the report output according to the
symbolic table of contents entries that are set in the program
with the LEVEL argument of the TOC-ENTRY command.
 In -BURST:S[{l}], l is the level at which to burst. The -
BURST:S setting is equivalent to -BURST:S1.

-BURST:P generates the report output by report page numbers.
 In -BURST:P[{l}, {s} [, {s}] …]], l is the number of logical
report pages that each .htm file contains and s is the page
selection: {n}, {n}-{m}, -{m}, or n-. The -BURST:P setting is
equivalent to -BURST:P0,1- when using -PRINTER:HT or -
BURST:P1 when using -PRINTER:EH.

Note: -BURST:P and -BURST:S require -PRINTER:EH or -
PRINTER:HT. The page range selection feature of -BURST:P
requires -PRINTER:HT.
BURST:T requires -PRINTER:HT.

-Dnn (Non-Microsoft Windows) Displays the report output on the
terminal at the same time that it is being written to the output
file. The variable nn is the maximum number of lines that
appear before pausing. If you do not enter a number after -D,
 the displayed output scrolls continuously. The printer type
must be LP or no output appears. If the program is producing
more than one report, then only the first report appears.

-E[file] Directs error messages to the named file or to the default file,
 program.err. If no errors occur, no file is created.

Note: The following -EH flags are applicable only when either
the −PRINTER:EH or −PRINTER:EP flag is specified.

-EH_APPLETS:dir Specifies the directory location of the enhanced HTML
applets. The default directory for theses applets is IMAGES.

-EH_BQD Generates a {report}.bqd file from the report data. Also
associates a BQD icon with {report}.bqd in the navigation bar.

-EH_BQD:file Associates the BQD icon with the specified file.

Chapter 6 Using SQR Print

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 271

Command-line Flag Description

-EH_BROWSER:xx Specifies the target browser. When set to ALL, SQR
automatically determines which browser is being used,
 invokes a browser-specific file, and generates HTML that is
designed for that browser.

When set to BASIC, SQR generates HTML that is suitable for
all browsers.

When set to IE, SQR generates HTML that is designed for
Microsoft Internet Explorer.

-EH_CSV Generates a {report}.csv file from the report data.

-EH_CSV:file Associates the CSV icon with the specified file.

-EH_CSVONLY Creates a CSV file, but does not create an HTML file.

-EH_FULLHTM L:xx Switches between HTML 3.0 and HTML 3.2.

When set to TRUE, SQR generates HTML 3.2.

When set to FALSE, SQR generates HTML 3.0

-EH_Icons:dir Specifies the directory in which the HTML should find the
referenced icons.

-EH_LANGUAGE:xx Sets the language that is used for the HTML navigation
bar. You can specify English, French, German, Portuguese,
 Spanish, Japanese, Simplified Chinese, or Korean.

-EH_PDF Associates a PDF icon with {report}.pdf in the navigation bar.

-EH_Scale:{nn} Sets the scaling factor from 50 to 200.

-F[file | directory] Overrides the default output file name, program.lis. The
default action places program.lis in the same directory as the
program.sqr file.

To use the current directory, specify -F without an argument.

To change the name of the output file, specify -F with the new
name. If the new name does not specify a directory, the file is
created in the current directory. The output file is not created
until data is actually printed on the page. If no data is printed,
 no output file is created.

Specify these file names and directories for different operating
systems:

• UNIX\Linux

• MVS

-ID Displays the copyright banner on the console.

Using SQR Print Chapter 6

272 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Command-line Flag Description

-O[file] Directs log messages to the specified file or to programt.log
if no file is specified. By default, the sqr.log file is used in the
current working directory.

-P (IBM MVS) Suppresses printer control characters from
column 1.

-PRINTER:xx Causes SQR to use printer type xx when creating output files:

• EH

• EP

• HP

• HT

• LP

• PD

Types LP, HP, and PS produce files with the .lis extension.

Types EH and HT produce .htm file output.

In Microsoft Windows systems, the WP extension sends
output to the default Microsoft Windows printer. To specify a
nondefault Microsoft Windows printer, enter -PRINTER:WP:
{printer name}. The {printer name} is the name that is
assigned to the printer. For example, to send output to
a Microsoft Windows printer named NewPrinter, use -
PRINTER:WP:NewPrinter. If your printer name has spaces,
 enclose the entire argument in quotes. If you also want to
create an .spf file, use -KEEP.

-XB (Non-Microsoft Windows) Suppresses the SQR banner and the
SQR.... End of Run message.

-XNAV Prevents SQR from creating the navigation bar in .htm files
that are generated with -PRINTER:HT. This occurs when
only a single .htm file is produced. Multiple .htm files that are
generated from a single report always contain the navigation
bar.

-XTB Preserves the trailing blanks in a .lis file at the end of a line.

-XTOC Prevents SQR from generating the table of contents for
the report. This flag is ignored when -PRINTER:EH or -
PRINTER:HT is also specified.

-ZIF{file} Sets the full path and name of the SQR initialization file, pssqr.
ini.

-ZMF{file} Specifies the full path and name of the SQR error message file,
 sqrerr.dat.

Chapter 6 Using SQR Print

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 273

Generating Output in Microsoft Windows

In Microsoft Windows, the SQR Print graphical user interface enables you to generate output from the
Print dialog box. In addition to the previously mentioned SQR Print output options, you can also select
a Microsoft Windows printer. This selection spools the SQR output to your default Microsoft Windows
printer or print server.

To generate output in Microsoft Windows:

1. Select File, Print.

The Print dialog box appears.

2. Under Generate output for, select the option next to the type of output that you want.

3. Specify a file path.

4. Select the Print to file check box.

5. Click OK.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 275

Chapter 7

Avoiding Older SQR Commands

Understanding Older SQR Commands

Avoid incorporating the commands covered in this topic in your SQR code. Even though they are
technically supported by this release, they do not interact well with the current SQR lexicon and may
cause unpredictable results. SQR may not support these commands in future releases, so you should
remove these commands from your code as soon as feasible.

If your code still contains older SQR commands, refer to this table as you replace them with their updated
alternatives:

Old Command Alternative to Use Instead

BEGIN-REPORT (END-REPORT) BEGIN-PROGRAM (END-PROGRAM)

DATE-TIME datenow function

DECLARE PRINTER DECLARE-PRINTER

DECLARE PROCEDURE DECLARE-PROCEDURE

DOLLAR-SYMBOL ALTER-LOCALE

GRAPHIC FONT ALTER-PRINTER

MONEY-SYMBOL ALTER-LOCALE

NO-FORMFEED DECLARE-LAYOUT

PAGE-SIZE DECLARE-LAYOUT

PRINTER-DEINIT DECLARE-PRINTER

PRINTER-INIT DECLARE-PRINTER

PRINT … CODE PRINT … CODE-PRINTER

Note: Two older commands, DECLARE PRINTER and DECLARE PROCEDURE, do not contain
hyphens. The new commands, DECLARE-PRINTER and DECLARE-PROCEDURE, contain hyphens.

Using Older SQR Commands

This section discusses each of the older SQR commands.

Avoiding Older SQR Commands Chapter 7

276 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

BEGIN-REPORT
You should no longer use this command because it may be discontinued in a future release. To use the
newer SQR functionality, use BEGIN-PROGRAM.

Syntax
Use this syntax:

BEGIN-REPORT

Description
Begins a report.

After processing the commands in the SETUP section, SQR starts running the program at the BEGIN-
REPORT section. The PROGRAM section typically contains a list of DO commands, though you can also
use other commands. This section is the only required section in an SQR program.

Example
For example:

begin-report
 do startup
 do main
 do finish
end-report

DATE-TIME
You should no longer use this command because it may be discontinued in a future release. To use the
newer SQR functionality, use the datenow function in the LET command.

Syntax
Use this syntax:

DATE-TIME position [date_format[col_var]]

Description
Retrieves the current date and time from the local machine (or from the database for Oracle and some
IBM DB2 platforms) and places it in the output file at the specified position or into a column variable.

If col_var is specified, then date_format must be supplied and the current date and time is retrieved each
time this command is run. Otherwise, the date is retrieved only at the program start, and the same date and
time is printed each time.

If date_format is not specified, the date is returned in the default format for that database. The following
table provides the default date-time formats for SQR-supported databases:

Database Default Date-Time Format

Oracle DD-Mon-YYYY HH:MI PM

Chapter 7 Avoiding Older SQR Commands

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 277

Database Default Date-Time Format

Informix YYYY-MM-DD HH:MI YYYY-MM-DD HH:MI:SS.NNN

IBM DB2 YYYY-MM-DD-HH:MI YYYY-MM-DD- HH:MI:SS.
NNNNNN

Sybase DD-MON-YYYY HH:MI

Some databases have two default formats. The first format prints the date-time, as in the following
example:

date-time (+1,1)

The second format retrieves the date-time into a column variable:

date-time () '' &date1

For databases with only one default format, that format is always used in either of these cases.

See the table showing miscellaneous functions under the LET command for information about the valid
edit mask format codes.

Parameters
position Specifies the position for printing the date.

date_format Represents a string literal containing the date format mask.

col_var Places the retrieved date-time into a column variable rather than
in the output file.

Example
For example:

date-time (1,50) MM/DD/YY
date-time (1,1) 'Day Mon DD, YYYY'
date-time () HH:MI &time
date-time (+1,70) 'MON DD YYYY HH24:MI' &datetime
date-time (#i, #j) 'YYYY-MM-DD' &date1

See the $current-date reserved and datenow functions that are described in the table showing
miscellaneous functions under the LET command.

See ALTER-LOCALE.

DECLARE PRINTER
You should no longer use this command because it may be discontinued in a future release. To use the
newer SQR functionality, use DECLARE-LAYOUT and DECLARE-PRINTER.

Avoiding Older SQR Commands Chapter 7

278 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Syntax
Use this syntax:

DECLARE PRINTER
[TYPE=printer_type_lit]
[ORIENTATION=orientation_lit]
[LEFT-MARGIN=left_margin_num_lit]
[TOP-MARGIN=top_margin_num_lit]
[LINE-SIZE=line_size_num_lit]
[CHAR-SIZE=char_size_num_lit]
[LINES-INCH=lines_inch_int_lit]
[CHARS-INCH=chars_inch_num_lit]
[POINT-SIZE=point_size_num_lit]
[FONT-TYPE=font_type_txt_lit]
[SYMBOL-SET=symbol_set_id_lit]
[STARTUP-FILE=file_name_txt_lit]
[FONT=font_int_lit]
[BEFORE-BOLD=before_bold_string_txt_lit]
[AFTER-BOLD=after_bold_string_txt_lit]

Description
Specifies the printer type and sets printer characteristics.

Use the DECLARE PRINTER command either in the SETUP section or in the body of the report.
Generally, you should use it in the SETUP section. However, if you do not know what type of printer you
will be using until the report is run, or if you need to change some of the arguments depending on user
selection, you can put several DECLARE PRINTER commands in the body of the report and run the one
that you need.

The following arguments take effect only once, upon execution of the first PRINT command, and
thereafter have no effect even if changed:

 LINE-SIZE
 CHAR-SIZE
 LINES-INCH
 CHARS-INCH
 ORIENTATION

SQR maps its line and column positions on the page by using a grid that is determined by the LINE-SIZE
and CHAR-SIZE (or LINES-INCH and CHARS-INCH) arguments. Each printed piece of text is placed
on the page by means of this grid. Because the characters in proportional fonts vary in width, a word
or string may be wider than the horizontal space that you have allotted, especially in words containing
uppercase letters. To account for this behavior, you can either move the column position in the PRINT
statement or indicate a larger CHAR-SIZE value in the DECLARE PRINTER command.

Arguments
The following table describes the arguments for the DECLARE PRINTER command:

Chapter 7 Avoiding Older SQR Commands

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 279

Argument Choice or Measure Default Value Description

TYPE LINEPRINTER,
 POSTSCRIPT,
HPLASERJET

LINEPRINTER SQR creates output that is
specific to each printer.

Line printer files generally
contain ASCII characters and
can be viewed by a text editor.

PostScript files contain ASCII
characters, but you need to
know PostScript to understand
what will appear on the
printer.

HP LaserJet files are binary
files and cannot be edited or
viewed.

ORIENTATION PORTRAIT, LANDSCAPE PORTRAIT Portrait pages are printed
vertically.

Landscape pages are printed
horizontally.

Printing in landscape mode on
HP LaserJet printers requires
landscape fonts.

LEFT-MARGIN inches 0.5 This argument does not apply
to line printers.

This is the amount of blank
space to leave at the left side
of the page.

TOP-MARGIN inches 0.5 This argument does not apply
to line printers.

This is the amount of blank
space to leave at the top of the
page.

Avoiding Older SQR Commands Chapter 7

280 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Argument Choice or Measure Default Value Description

LINE-SIZE points 12 This argument does not apply
to line printers.

This is the size of each SQR
line on the page. There are 72
points per inch. If LINE-SIZE
is not specified, it follows
the value for POINT-SIZE, if
specified. The default value
of 12 points yields 6 lines per
inch.

CHAR-SIZE points 7.2 This argument does not apply
to line printers.

This is the size of each SQR
horizontal character column
on the page (for example, the
distance between the locations
[1,12] and [1,13]). If CHAR-
SIZE is not specified and the
point size is less than 8.6,
 CHAR-SIZE is set to 4.32,
 which yields 16.6 characters
per inch. The default value of
7.2 yields 10 characters per
inch.

LINES-INCH lines 6 This argument does not apply
to line printers.

This is an alternate way of
indicating the, in lines per
inch rather than in points (as
in LINE-SIZE).

CHARS-INCH characters 10 This argument does not apply
to line printers.

This is an alternate way of
indicating the width of each
SQR character column, in
characters per inch rather than
in points (as in CHAR-SIZE).

POINT-SIZE points 12 This argument does not apply
to line printers.

This is the beginning size of
the selected font.

Chapter 7 Avoiding Older SQR Commands

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 281

Argument Choice or Measure Default Value Description

FONT-TYPE PROPORTIONAL, FIXED Depends on the font This argument applies only
to HP LaserJet printers and
must be specified only for
font types that are not listed
as being available for HP
LaserJet printers in SQR in
the previous DECLARE-
PRINTER section.

SYMBOL-SET HP defined sets 0U This argument applies only
to HP LaserJet printers. The
default value, 0U, is for the
ASCII symbol set. Additional
symbol sets exist.

See HP LaserJet Technical
Reference Manual.

STARTUP-FILE filename POSTSCRI.STR This argument applies only
to PostScript printers. Use
it to specify an alternate
startup file. Unless otherwise
specified, the default
startup file is located in the
directory that is specified
by the environment variable
SQRDIR.

Avoiding Older SQR Commands Chapter 7

282 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Argument Choice or Measure Default Value Description

FONT font_number 3 This is the font number of
the typeface to use. For HP
LaserJet printers, this is the
typeface value as defined by
Hewlett-Packard.

See HP LaserJet Technical
Reference Manual.

For PostScript printers,
 SQR supplies a list of fonts
and arbitrary font number
assignments in the postscri.
str file. The font numbers
are the same as those for HP
LaserJet printers, wherever
possible, so that you can
use the same font number
for reports to be printed on
both types of printers. You
can modify the font list in
postscri.str to add or delete
fonts. Read the postscri.
str file for instructions.
 See the fonts that are listed
as being available for HP
LaserJet printers in SQR in
the previous DECLARE-
PRINTER section. See also
the table that lists the fonts
that are available in the
SQR postscri.str file, also in
the DECLARE-PRINTER
section.

Chapter 7 Avoiding Older SQR Commands

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 283

Argument Choice or Measure Default Value Description

BEFORE-BOLD any string None The BEFORE-BOLD and
AFTER- BOLD arguments
are for line printers only.
 They specify the character
string to turn bold on and off.
 If the string contains blank
characters, enclose it in single
quotation marks. To specify
nonprintable characters, such
as ESC, enclose the decimal
value within angle brackets
as follows: BEFORE-
BOLD=<27>[r ! Turn on bold
AFTER-BOLD=<27>[u !
Turn it off

These arguments work with
the BOLD argument of the
PRINT command.

AFTER-BOLD any string None See BEFORE-BOLD.

The font that you choose—its orientation, typeface, and point size—must be an internal font (available in
a font cartridge) or downloaded to the printer.

For fonts that are not listed as being available for HP LaserJet printers in SQR in the “DECLARE-
PRINTER” section in the “SQR Command Reference” topic, you must indicate the font style by using the
FONT-TYPE argument; otherwise, the printer cannot select the correct typeface.

DECLARE PROCEDURE
You should no longer use this command because it may be discontinued in a future release. To use the
newer SQR functionality, use DECLARE-PROCEDURE.

Syntax
Use this syntax:

DECLARE PROCEDURE
[BEFORE-REPORT=procedure_name]
[AFTER-REPORT=procedure_name]
[BEFORE-PAGE=procedure_name]
[AFTER-PAGE=procedure_name]

Description
Defines specific event procedures.

Use the DECLARE PROCEDURE command either in the SETUP section or in the body of the report.
You can use the command as often as you like.

Avoiding Older SQR Commands Chapter 7

284 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

If you issue multiple DECLARE PROCEDURE commands, the last one takes precedence. In this way,
you can turn procedures on and off while a report is running. The referenced procedures do not take any
arguments; however, they may be local. In addition, they can print only into the body of the report; that is,
they cannot print into the header and footer areas.

Parameters
BEFORE-REPORT Specifies a procedure to run at the time of the first PRINT

command. For example, you use this to create a report heading.

AFTER-REPORT Specifies a procedure to run just before the report file is closed
at the end of the report. Use this to print totals or other closing
summary information. If no report was generated, the procedure
does not run.

BEFORE-PAGE Specifies a procedure to run at the beginning of every page, just
before the first PRINT command for the page. For example, you
use this to set up page totals.

AFTER-PAGE Specifies a procedure to run just before each page is written to
the file. For example, you use this to display page totals.

Example
For example:

declare procedure
 before-page=page_setup
 after-page=page_totals

DOLLAR-SYMBOL
You should no longer use this command because it may be discontinued in a future release. To use the
newer SQR functionality, use ALTER-LOCALE.

Syntax
Use this syntax:

DOLLAR-SYMBOL new_symbol

Description
Redefines the currency symbol within numeric edit masks .

The dollar sign ($) is the default currency symbol for coding edit masks in the program that prints on
report listings. DOLLAR-SYMBOL provides a way to change that symbol for both the edit mask and for
printing.

To change the symbol that prints on the report, use MONEY-SYMBOL in the PROCEDURE section. Use
DOLLAR-SYMBOL and MONEY-SYMBOL together to configure SQR programs and the reports that
they produce.

Use this command only in the SETUP section.

Chapter 7 Avoiding Older SQR Commands

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 285

Note: The MONEY-SYMBOL command has the same effect as these options of the ALTER-LOCALE
command: MONEY-SIGN and MONEY-SIGN-LOCATION=LEFT.

The following table lists the characters that DOLLAR-SYMBOL cannot take:

Type Character

Numbers 0 8 9

Alphabetical b e n r v B E N R V

Symbols . , - + ! * _ ` < > ()

Parameters
new_symbol Specifies a new, single character to be used in edit masks instead

of the dollar sign ($).

Example
For example:

begin-setup
 dollar-symbol £ ! Define £ as the currency symbol
end-setup
begin-procedure
...
print #amount () edit £££,999.99
...
end-procedure

In the previous example, if you used the dollar sign in the edit mask after defining the dollar symbol as £,
the following error message appears:

Bad numeric 'edit' format: $$$,999.99

See the ALTER-LOCALE command for a description of other locale-specific parameters.

GRAPHIC FONT
You should no longer use this command because it may be discontinued in a future release. To use the
newer SQR functionality, use ALTER-PRINTER and DECLARE-PRINTER to set the FONT, FONT-
TYPE, POINT-SIZE, and PITCH.

Syntax
Use this syntax:

GRAPHIC ()
FONT { font_number_int_lit|_var }
[point_size_int_lit|_var[{1|0}
[pitch_int_lit|_var]]]

Avoiding Older SQR Commands Chapter 7

286 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Description
Changes a font.

Parameters
font_number For HP LaserJet printers, the specified font must be installed in

the printer. For PostScript printers, the font must be defined in
the postscri.str file.

point_size If point_size is omitted, the size from the most recent
DECLARE-PRINTER or GRAPHIC FONT command is used.

{1|0} This argument is for HP LaserJet printers only. It is needed only
if you are using a font that SQR does recognize. (See the fonts
that are listed as being available for HP LaserJet printers in
SQR in the DECLARE-PRINTER section of the topic “SQR
Command Reference.”) A 1 indicates a proportional font, and a
0 indicates a fixed-pitch font. The default is proportional.

pitch If the specified font is fixed pitch, also indicate the pitch in
characters per inch.

Example
For example:

graphic () font 23 8.5 ! Century Schoolbook, 8.5 points
graphic () font 6 12 0 10 ! Letter Gothic, 12 points,
 ! fixed, 10 characters per inch
graphic () font :#font_number :#point_size

See ALTER-PRINTER and DECLARE-PRINTER for information about setting and changing the FONT,
FONT-TYPE, POINT-SIZE, and PITCH.

MONEY-SYMBOL
You should no longer use this command because it may be discontinued in a future release. To use the
newer SQR functionality, use ALTER-LOCALE.

Syntax
Use this syntax:

MONEY-SYMBOL new_symbol

Description
Redefines the currency symbol to be printed.

To change the symbol that prints on the report, use the MONEY-SYMBOL in the PROCEDURE section.
When the MONEY-SYMBOL is set, that value is used until the next MONEY-SYMBOL command runs.

Use DOLLAR-SYMBOL and MONEY-SYMBOL together to configure SQR programs and the reports
that they produce.

Chapter 7 Avoiding Older SQR Commands

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 287

To indicate a nonedit character, surround its decimal value with angle brackets (<>). See the table under
the DOLLAR-SYMBOL command for characters that cannot be used with MONEY-SYMBOL.

Note: The MONEY-SYMBOL command has the same effect as the MONEY-SIGN and MONEY-SIGN-
LOCATION=LEFT options of the ALTER- LOCALE command.

Parameters
new_symbol Specifies a new, single character to replace the dollar sign ($) or

DOLLAR-SYMBOL character on the printed report.

Example
For example:

begin-setup
 dollar-symbol £! Define £ as the

 ! currency symbol
end-setup
begin-procedure! If #Amount=1234.56
...
money-symbol £
print #Amount () Edit £££,999.99 ! Prints as: £1,234.56
...
money-symbol $
print #Amount () Edit £££,999.99 ! Prints as: $1,234.56
...
money-symbol
print #Amount () Edit £££,999.99 ! Prints as: 1,234.56
...
end-procedure

See the DOLLAR-SYMBOL and ALTER-LOCALE commands.

NO-FORMFEED
You should no longer use this command because it may be discontinued in a future release. To use the
newer SQR functionality, use the FORMFEED parameter of the DECLARE-LAYOUT command.

Syntax
Use this syntax:

NO-FORMFEED

Description
Prevents form-feed characters from being written to the output file.

NO-FORMFEED is useful for certain types of reports; for example, flat file output. It is used only in the
SETUP section.

Do not write form-feed control characters directly into the output file between pages.

Avoiding Older SQR Commands Chapter 7

288 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Example
For example:

begin-setup
 no-formfeed
end-setup

PAGE-SIZE
You should no longer use this command because it may be discontinued in a future release. To use the
newer SQR functionality, use the MAX-LINES and MAX-COLUMNS parameters of the DECLARE-
LAYOUT command.

Syntax
Use this syntax:

PAGE-SIZE page_depth_num_lit page_width_num_lit

Description
Sets the page size.

If you are printing multiple reports, you must use the PAPER-SIZE parameter of the DECLARE-
LAYOUT command.

This command is used in the SETUP section only.

Specify the page depth in lines and the page width in columns. An average report that is printed on 8 1/2
by 11 inch paper might have a page size of 60 lines by 80 columns. A 3-inch by 5-inch sales lead card
might have a size of 18 by 50.

If the page size is not specified, the default of 62 lines by 132 columns is used.

For line printers, SQR stores one complete page in a buffer before writing the page to the output file when
you issue a NEW-PAGE command or when a page overflow occurs.

You can define a page to be 1 line deep and 4,000 characters wide, which you can use for writing large
flat files, perhaps for copying to magnetic tape. Each time a NEW-PAGE occurs, one record is written.
Use the NO-FORMFEED command in the SETUP section to suppress form-feed characters between
pages.

Use a page width that is at least one character larger than the rightmost position that will be written.
This prevents unwanted wrapping when printing. When the last column position on a line is printed, the
current position becomes the first position of the next line. This can cause confusion when using relative
line positioning with the NEXT-LISTING command. Having a wider page than necessary does not waste
any file space because SQR trims trailing blanks on each line before writing the report file.

Determine the size of the internal page buffer that stores a complete page in memory by multiplying
the page depth by the width in the PAGE-SIZE command. For personal computers, the page buffer is
limited to 64K bytes. On other computers, the page buffer is limited only by the amount of memory that is
available.

Chapter 7 Avoiding Older SQR Commands

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 289

Example
For example:

begin-setup
 page-size 57 132! 57 lines long by 132 columns wide
end-setup

PRINT … CODE
You should no longer use this command because it may be discontinued in a future release. To use the
newer SQR functionality, use PRINT … CODE-PRINTER.

If you use CODE, the sequence is assumed to be for the printer type that is specified in the DECLARE-
REPORT or for the default printer, if none is specified.

Syntax
Use this syntax:

PRINT . . . CODE

Parameters
CODE CODE is a qualifier that may be discontinued in a future release.

 Use CODE-PRINTER instead.

PRINTER-DEINIT
You should no longer use this command because it may be discontinued in a future release. To use the
newer SQR functionality, use the RESET-STRING parameter of the DECLARE-PRINTER command.

Syntax
Use this syntax:

PRINTER-DEINIT initialization_string

Description
Sends control or other characters to the printer at the end of a report.

Specify nondisplay characters by placing their decimal values inside angle brackets. For example, <27> is
the ESC or escape character.

The PRINTER-DEINIT command is used only in the SETUP section and is designed for use with line
printers. It has limited functionality with HP LaserJet and PostScript printers.

Example
For example:

begin-setup
 printer-deinit<27>[7J ! Reset the printer
end-setup

Avoiding Older SQR Commands Chapter 7

290 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

PRINTER-INIT
You should no longer use this command because it may be discontinued in a future release. To use the
newer SQR functionality, use the INIT-STRING parameter of the DECLARE-PRINTER command.

Syntax
Use this syntax:

PRINTER-INIT initialization_string

Description
Sends control or other characters to the printer at the beginning of a report.

Specify nondisplay characters by placing their decimal values inside angle brackets. For example, <27> is
the ESC or escape character.

The PRINTER-INIT command is used only in the SETUP section and is designed for use with line
printers. It has limited functionality with HP LaserJet and PostScript printers.

Example
For example:

begin-setup
 printer-init<27>[7J ! Set the printer
end-setup

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 291

Chapter 8

Using the PSSQR.INI File and the PSSQR
Command Line

Installing PSSQR.INI

The pssqr.ini file is the initialization file for SQR for PeopleSoft . SQR uses the settings and parameters in
this file during the compile and execution phases.

The installation process installs a default initialization file called pssqr.ini, which is located in the SQR
directory under the <PS_CFG_HOME> directory. The installation process also installs files named
pssqr<language_cd>.ini, which are used to create language-specific configurations.

Microsoft Windows Platforms
In Microsoft Windows, SQR looks for the initialization file in the following locations in this order:

1. The file name specified by the -ZIF{file} command-line flag.

2. The directory in which the executable image resides.

3. The Microsoft Windows system directory.

z/OS
In z/OS, SQRINI is required during initialization. You must specify the dataset member
&PSHLQ..SQRSRC(PSSQRINI) in the JCL to start the SQR process.

All Other Platforms
In all other platforms, SQR looks for the initialization file in the following locations in this order:

1. The file name specified by the -ZIF{file} command-line flag.

2. The current working directory.

3. The directory specified using the SQRDIR environment variable.

SQR automatically sets up SQRDIR.

You can make changes or additions to the pssqr.ini file.

This example shows the format of the pssqr.ini file:

; Comments are lines that start with a semicolon. The semicolon
; must be the first character of the line and therefore cannot be
; part of another line.
;
; Leading and trailing space characters are ignored. To preserve
; the space characters you must surround the value with either

Using the PSSQR.INI File and the PSSQR Command Line Chapter 8

292 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

; single (') or double (") quote characters. SQR will remove
; them when the entry is processed.
;
[Section_Name]
Entry = Value
 .
 .

[Another_Section_Name]
Entry = Value
 .
 .

Chapter 8 Using the PSSQR.INI File and the PSSQR Command Line

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 293

Default Settings Section

This table describes the SQR default settings:

Entry Value Description

ForceSpaceAfterComma={TRUE|
FALSE}

TRUE | FALSE The default setting is FALSE.

DB2 only: Forces a space after every
comma not in a literal value to support
the DECIMAL=COMMA setting on the
OS390.

ShowDBWarnings={TRUE|FALSE} TRUE | FALSE The default setting is FALSE.

DB2 only: If set to TRUE, SQR displays
database warnings in the SQR output
file.

AllowDateAsChar={TRUE|
FALSE}

TRUE | FALSE The default setting is FALSE.

By default, SQR produces an error when
a dynamic column specification does
not match the database definition of
the column. That is, character equals
character, date equals date, and numeric
equals numeric.

When this value is set to TRUE, SQR
allows character to be equal to either
character or date columns.

When a date column is type cast to
be a character, SQR creates the string
according to the following rules:

• For DATETIME columns, SQR uses
the format specified by the SQR_
DB_DATE_FORMAT setting. If
this is not set, SQR uses the first
database-dependent format listed in
the table showing default database
formats in the Edit section under the
PRINT command.

• For DATE columns, SQR uses the
format specified by the SQR_DB_
DATE_ONLY_FORMAT setting. If
this is not set, SQR uses the format
listed in the table showing default
database formats in the Edit section
under the PRINT command.

• For TIME columns, SQR uses the
format specified by the SQR_DB_
TIME_ONLY_FORMAT setting. If
this is not set, SQR uses the format
listed in the table showing the TIME

Using the PSSQR.INI File and the PSSQR Command Line Chapter 8

294 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Entry Value Description

column formats in the Edit section
under the PRINT command.

In the following example,
 AllowDateAsChar=True. This setting
allows $Col1 to be either date or text.

Begin-Select
 [$Col1] &col1=Text
 [$Col2] &col2=Date
 [$Col3] &col3=Number
 from MyTable
End-Select

OUTPUT-FILE-MODE LONG | SHORT Specifies the file name convention used
for HTML output. SHORT specifies
DOS style (8.3) and LONG specifies
UNIX\Linux style (non 8.3). The default
is LONG. This setting is ignored on 16-
bit platforms. The DECLARE-TOC and
-BURST commands force Output-File-
Mode = LONG.

The following list items represents the
file formats for UNIX\Linux, DOS, and
Windows.

SQR and SQRT: {Program} is the
name of the SQR/SQRT file without the
extension.

OUTPUT-FILE-MODE

(continued)

LONG | SHORT (Continued)

For Output-File-Mode = SHORT, SQR-
generated file names are limited to a
DOS 8.3 format.

• Output file = {program}.lis for first,
 and {program}.lnn for multi-reports

• SPF file = {program}.spf for first,
and {program}.snn for multi-reports

• PDF file = {program}.pdf for first;
and {program}.pnn for multi-reports

• HTM file = {program}.htm for
“frame, and {program}.hbb for
report bodies

• GIF file={program}.gxx for all
reports

bb ranges from 00 to 99 and represents
the report number.

nn ranges from 01 to 99 and represents
the report number.

Chapter 8 Using the PSSQR.INI File and the PSSQR Command Line

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 295

Entry Value Description

xx ranges from 00 to ZZ and represents
the graphic number.

OUTPUT-FILE-MODE

(continued)

LONG | SHORT (Continued)

For Output-File-Mode = LONG,
 SQR-generated file names are not
constrained to a DOS 8.3 format.
 {output}={program} of first report and
{program}_nn for multi-reports.

• Output file = {output}..lis

• SPF file = {output}..spf

• PDF file = {output}..pdf

• GIF file = {output}_zz..spf

• HTM files = {output}..htm,
 {output}_bb..htm, {output}_frm.
.htm, {output}_toc./htm, {output}_
nav.htm

bb ranges from 01 to ZHJOZI and
represents the bursted page group
number.

nn ranges from 01 to 99 and represents
the report number.

zz ranges from 00 to ZHJOZI and
represent the graphic number.

OUTPUT-FILE-MODE

(continued)

LONG | SHORT (Continued)

SQRP: {file name} is the name of the
SPF file without the extension

For Output-File-Mode = SHORT, SQR-
generated file names are limited to a
DOS 8.3 format.

• Output file = {file name}.lis

• GIF file = {file name}.gxx

• PDF file = {file name}.pdf

• HTM file = .htm and {file name}.
h00

xx ranges from 00 to ZZ and represents
the graphic number.

OUTPUT-FILE-MODE

(continued)

LONG | SHORT (Continued)

For Output-File-Mode = LONG, SQR-
generated file names are not limited to a
DOS 8.3 format.

Using the PSSQR.INI File and the PSSQR Command Line Chapter 8

296 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Entry Value Description

• Output file = {file name}.lis

• PDF file = {file name}.pdf

• GIF file = {file name}_zz.spf

• HTM files = {file name}.htm, {file
name}_bb.htm, {file name}_frm.
HTM, {file name}_toc.htm {file
name}_nav.htm

bb ranges from 01 to ZHJOZI and
represents the bursted page group
number.

zz ranges from 00 to ZHJOZI and
represents the graphic number.

LOCALE Name of a locale defined in the pssqr.ini
file or the name SYSTEM.

Specifies the initial locale that SQR
loads when the program starts. The value
of SYSTEM is used to reference the
default locale.

See ALTER-LOCALE.

DEFAULT-NUMERIC INTEGER | FLOAT | DECIMAL[(p)] |
V30

Specifies the default numeric type for
variables. The command line flag -
DNT overrides this setting. Similarly,
 the DECLARE-VARIABLE command
overrides this setting.

See DECLARE-VARIABLE.

OutputFormFeedWithDashD={TRUE|
FALSE}

TRUE | FALSE The default value is FALSE.

When set to TRUE, the -Dnn command
line flag outputs the Form-Feed character
that denotes a page break.

OutputTwoDigitYearWarningMsg={TRUE|
FALSE}

TRUE | FALSE The default value is TRUE.

When set to TRUE, SQR generates a
warning message (sent to the warning
file) when a YY or RR date edit mask
is encountered during a program run.
 This setting affects only SQR code that
is processed.

UseY2kCenturyAlgorithm={TRUE|
FALSE}

TRUE | FALSE The default value is FALSE.

When set to TRUE, SQR treats the YY
date edit mask as though it is an RR edit
mask. See the RR edit mask.

Note: Use the setting V30 to process numbers in the same manner as in previous (before V4.0) releases.
Specifically, all numeric variables and literals are declared as FLOAT, including integer literals.

Chapter 8 Using the PSSQR.INI File and the PSSQR Command Line

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 297

Processing-Limits Section

Use the Processing-Limits section to define the sizes and limitations of some of the internal structures
used by SQR; these definitions directly affect memory requirements. The entries are the same as those
used in the file specified with the -MFILE command-line flag. If the -MFILE command-line flag is used,
the Processing-Limits section of the file is not processed.

Using the PSSQR.INI File and the PSSQR Command Line Chapter 8

298 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

This table describes some of the internal structures used by SQR:

Entry Default Value Maximum Value Entry Size Description

BREAKS 100 2147483648 4 Number of BREAK
arguments allowed for
each EVALUATE or IF
command.

DYNAMICARGS 70 2147483648 14 Maximum number
of dynamic SQL
arguments.

EXPRESSIONSPACE 8192 2147483648 1 Maximum length, in
bytes, of temporary
string storage used
during LET operations.

FORWARDREFS 200 2147483648 8 Maximum number
of column forward
references.

LONGSPACE 32K-2 2147483648 1 Maximum buffer size to
transfer text and image
data in bytes.

ONBREAKS 30 2147483648 8 Maximum number
of ON-BREAK
LEVEL=values per
SET.

POSITIONS 1800 2147483648 14 Maximum number of
placement parameters,
 for example, (10,5,30).

PROGLINEPARS 18000 2147483648 2 Maximum number
of arguments for all
program lines. This
value is generally 3 or
4 times the value set for
PROGLINES.

PROGLINES 5000 2147483648 8 Maximum number of
program lines (SQR
commands).

QUERIES 60 2147483648 60 Maximum number
of BEGIN-SQL and
BEGIN-SELECT
paragraphs. This
value is database
dependent and can vary.
 This size is a close
approximation.

QUERYARGS 240 2147483648 6 Maximum number
of arguments (bind
variables) for all
SQL or SELECT
statements. The number

Chapter 8 Using the PSSQR.INI File and the PSSQR Command Line

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 299

Entry Default Value Maximum Value Entry Size Description

of arguments required
is one more than the
number used in your
report file.

SQLSIZE 4000 2147483648 1 Maximum length of
an SQL statement in
characters.

STRINGSPACE 15000 2147483648 1 Maximum size of string
space for program line
arguments, in bytes.

SUBVARS 100 2147483648 8 Maximum number of
runtime substitution
variables.

VARIABLES 1500 2147483648 18 Maximum number of
variables (string, float,
integer, decimal), literal
values, and database
columns. Add 4 to the
entry size for Informix.

WHENS 70 2147483648 4 Maximum number
of WHEN arguments
allowed for each
EVALUATE command.

The maximum value refers to the number of entries allowed, as shown in the previous table; however,
limits are lower for 32-bit machines. In either case, SQR indicates the limit if you exceed it.

In addition to increasing the sizes, you may also decrease them to decrease the amount of memory
used. Decreasing them might be advantageous, for example, for certain applications running in the PC
environment, where memory is limited.

Note: Ignore the value for the keyword NUMVARIABLES that appears in $PS_HOME/sqr/pssqr.ini.

Environment Sections

The Environment sections { Common | Oracle | Informix | ODBC | DB2 | RDB | Sybase] } define the
environment variables used by SQR. You can define an environment variable in multiple environment
sections; however, a definition in a database-specific environment section takes precedence over an
assignment in the Environment:Common section.

You can set these environment variables: SQRDIR, SQRFLAGS, and DSQUERY. In Microsoft
Windows systems, SQRDIR is required and is automatically defined in the appropriate database-
specific environment section during the SQR installation. The other environment variables are optional.
SQRFLAGS specifies the default command-line flags for all invocations of SQR. DSQUERY (Sybase
only) identifies the default Sybase server to use.

Using the PSSQR.INI File and the PSSQR Command Line Chapter 8

300 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

In Microsoft Windows systems only, the SQR Extension section defines DLLs containing new user
functions (UFUNC) and user calls (UCALL). UFUNC and UCALL reside inside SQREXT.DLL and
other DLLs, or in one or the other.

When SQRW.DLL and SQRWT.DLL are being loaded, they look for SQREXT.DLL in the same directory
and for any DLLs specified in the SQR Extension section in pssqr.ini, such as:

[SQR Extension]
c:\sqrexts\sqrext1.dll=
c:\sqrexts\sqrext2.dll=
c:\sqrexts\sqrext3.dll=

Any new extension DLLs containing new user functions must be listed in the SQR Extension section in
pssqr.ini.

For Oracle on Windows, SQR uses dynamic binding of Oracle routines. When SQR attempts to access an
Oracle database, it searches for the Oracle DLL as follows:

• The file described by the value of ORACLE_DLL entry in the Environment:Oracle section of the
pssqr.ini file.

• OCIW32.DLL (Oracle supplied).

• ORANT71.DLL (Oracle supplied).

This table describes SQRParseSQLEnable:

Entry Value Description

SQRParseSQLEnable={TRUE|FALSE} TRUE | FALSE The default setting is FALSE. If
SQRParseSQLEnable=TRUE is added
to the PSPSPSPSSQR.INI file (in
the Common or Oracle stanza), SQR
performs SQL parsing.

Note: The function required to perform
this parsing is not supported by Oracle
8.X, but it does appear to function. If
a customer wants to assume the risk of
using a feature that might not be fixed
if a problem is found, then they can turn
on this parameter. Oracle 9.X customers
can use this feature without any problem,
 although it has a performance hit of
between 2-10 percent.

Locale Section

This section specifies the default settings for the locale identified by locale-name (which can consist
of letters from A to Z, numbers from 0 to 9, a hyphen, and an underscore). A number of locales are
predefined in the pspssqr.ini file. Depending on your application, you may have to alter the settings
for these locales or add new locales. You can reference or alter a locale at runtime using the ALTER-
LOCALE command. The following table describes the entries for a locale section.

Chapter 8 Using the PSSQR.INI File and the PSSQR Command Line

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 301

Note: The SYSTEM locale is provided for your reference but is commented out. The settings for the
SYSTEM locale, if set, are ignored. Use the ALTER-LOCALE command to change the SYSTEM locale
settings at runtime.

Using the PSSQR.INI File and the PSSQR Command Line Chapter 8

302 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

See Understanding Older SQR Commands.

Entry Description

NUMBER-EDIT-MASK Specifies the default numeric edit mask format when the
keyword NUMBER accompanies the DISPLAY, MOVE,
 PRINT, or SHOW command.

MONEY-EDIT-MASK Specifies the default numeric edit mask format when the
keyword MONEY accompanies the DISPLAY, MOVE,
 PRINT, or SHOW command.

DATE-EDIT-MASK Specifies the default date edit mask format when the keyword
DATE accompanies the DISPLAY, MOVE, PRINT, or SHOW
command, or the LET datetostr() or strtodate()
functions.

INPUT-DATE-EDIT-MASK Specifies the default date format to use with the INPUT
command when TYPE=DATE is specified with the command
or the input variable is a DATE variable.

MONEY-SIGN Specifies the characters to replace the ($) edit character.

MONEY-SIGN-LOCATION Specifies the location of the MONEY-SIGN character. Valid
values are LEFT and RIGHT.

THOUSAND-SEPARATOR Specifies the character to replace the comma (,) edit character.

DECIMAL-SEPARATOR Specifies the character to replace the period (.) edit character.

DATE-SEPARATOR Specifies the character to replace the slash (/) character.

TIME-SEPARATOR Specifies the character to replace the colon (:) character.

EDIT-OPTION-NA Specifies the characters to replace the NA option.

EDIT-OPTION-AM Specifies the characters to replace AM

EDIT-OPTION-PM Specifies the characters to replace PM.

EDIT-OPTION-AD Specifies the characters to replace AD.

EDIT-OPTION-BC Specifies the characters to replace BC.

DAY-OF-WEEK-CASE Specifies how the case for the DAY-OF-WEEK-FULL or
DAY-OF-WEEK-SHORT entries are affected when used
with the format codes DAY or DY. Valid values are UPPER,
 LOWER, EDIT, and NO-CHANGE.

Use UPPER and LOWER to force the output to either all
uppercase or lowercase, ignoring the case of the format code in
the edit mask.

Use EDIT to follow the case as specified with the format code
in the edit mask.

Chapter 8 Using the PSSQR.INI File and the PSSQR Command Line

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 303

Entry Description

Use NO-CHANGE to ignore the case of the format code and
output the day of week as explicitly listed in the DAY-OF-
WEEK-FULL or DAY-OF-WEEK-SHORT entries.

DAY-OF-WEEK-FULL Specifies the full names of the days of the week. SQR
considers the first day of the week to be Sunday. You must
specify all seven days.

DAY-OF-WEEK-SHORT Specifies the abbreviated names for the days of the week. SQR
considers the first day of the week to be Sunday. You must
specify all seven abbreviations.

MONTHS-CASE Specifies how the case for the MONTHS-FULL or MONTHS-
SHORT entries is affected when used with the format codes
MONTH or MON. Valid values are UPPER, LOWER, EDIT,
 and NO-CHANGE.

Use UPPER and LOWER to force the output to either all
uppercase or lowercase, ignoring the case of the format code in
the edit mask.

Use EDIT to follow the case as specified with the format code
in the edit mask.

Use NO-CHANGE to ignore the case of the format code and
output the month as explicitly listed in the MONTHS-FULL or
MONTHS-SHORT entries.

MONTHS-FULL Specifies the full names for the months of the year. SQR
considers the first month of the year to be January. You must
specify all 12 months.

MONTHS-SHORT Specifies the abbreviated names for the months of the year.
 SQR considers the first month of the year to be January. You
must specify all 12 abbreviations.

Fonts Section

The Fonts section lists the fonts available to SQR when printing on Microsoft Windows printer devices
(using the -PRINTER:WP command-line flag), viewing SPF output using SPF Viewer on Microsoft
Windows (SQRWV), and creating style sheet for Enhanced HTML output. This section does not apply to
PostScript or HP LaserJet printer types.

This section provides an overview of fonts available to SQR and discusses how to:

• Add font entries.

• Specify character sets in Windows.

See DECLARE-PRINTER, Understanding Older SQR Commands.

Using the PSSQR.INI File and the PSSQR Command Line Chapter 8

304 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Adding Font Entries
The Fonts section contains a number of predefined font entries. You can add entries by using the font
numbers 900 through 999. Each entry consists of a font name, a font style (fixed or proportional), and a
bold indicator, all of which are associated with a font number, for example:

 4=Arial,proportional
 or
 300=Courier New,fixed,bold

Note: A proportional font style is assumed if the second parameter starts with a P. Bold is assumed if a
third parameter is supplied.

Using the font number, commands such as ALTER-PRINTER and DECLARE-PRINTER can reference a
particular font style.

Specifying Character Sets in Windows
In Microsoft Windows, you can use the CharacterSet entry either to determine the Microsoft Windows
default character set or to specify a character set. The CharacterSet entry enables you to print any standard
character set to a Windows printer (-PRINTER:WP) or to view an SPF file that displays the appropriate
character set.

The syntax is:

CharacterSet=DEFAULT|AUTO|character_set

The arguments are:

• DEFAULT reflects current SQR functionality.

• AUTO automatically determines the default character set of the Microsoft Windows installation and
uses the default set when generating reports.

CharacterSet specifies one of these keywords: ANSI, ARABIC, BALTIC, CHINESEBIG5,
EASTEUROPE, GB2312, GREEK, HANGUL, HEBREW, JOHAB, MAC, OEM, RUSSIAN,
SHIFTJIS, SYMBOL, THAI, TURKISH, VIETNAMESE.

HTML-Images Section

The HTML-Images section defines the parameters that SQR uses when generating HTML report output
files. This table describes the parameters SQR uses when generating HTML report output files:

Entry Value DefaultValue Description

FIRST-PAGE HEIGHT, WIDTH, NAME 60,60,firstpg.gif Specifies the NAME of
the graphic image file that
accesses the first page of the
report. The HEIGHT and
WIDTH values are specified
in pixels.

Chapter 8 Using the PSSQR.INI File and the PSSQR Command Line

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 305

Entry Value DefaultValue Description

PREV-PAGE HEIGHT, WIDTH, NAME 60,60,prevpg.gif Specifies the NAME of
the graphic image file that
accesses the previous page of
the report. The HEIGHT and
WIDTH values are specified
in pixels.

NEXT-PAGE HEIGHT, WIDTH, NAME 60,60,nextpg.gif Specifies the NAME of
the graphic image file that
accesses the next page of the
report. The HEIGHT and
WIDTH values are specified
in pixels.

LAST-PAGE HEIGHT, WIDTH, NAME 60,60,lastpg.gif Specifies the NAME of
the graphic image file that
accesses the last page of the
report. The HEIGHT and
WIDTH values are specified
in pixels.

WALLPAPER NAME Specifies the NAME of the
graphic image file used as
the background image for the
report.

Navbar Background NAME Specifies the background
image of the navigation bar.

Note: SQR does not validate any of the graphic image file names provided. The user is responsible for
ensuring that the graphic image files are in a location that the browser can access.

PDF Fonts Section

The PDF Fonts section lists the available fonts for SQR when printing using the -PRINTER:PD
command-line flag. Fonts specified are case sensitive.

Unlike the Fonts section, the PDF Fonts section uses a list of fonts mapped to a single font number. You
can specify up to 10 fonts for a single font number. Depending on the character to print, SQR determines
the font to use from the list. The following is the syntax of this font list:

Font Number=Font1, Font2, Font3 ...

The list is ordered by priority from the left. If Font1 has a glyph (an image of a character) for the
character you want to print, then used; but if Font1 does not have a glyph, then Font2 is checked and used
if it has a glyph for that character.

Font Number is a decimal number that specifies fonts in the SQR program using statements like DEFINE-
PRINTER or ALTER-PRINTER.

Font numbers that are multiples of 100 (300, 3200, and so on) are recognized as a bold version of the base
font. For example, font 300 is the bold version of Font3.

Using the PSSQR.INI File and the PSSQR Command Line Chapter 8

306 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Font numbers 30 to 39 are recognized as italic fonts, and multiples of 30 to 39 (3000, 3100, and so on) are
bold italic versions of the font. If you assign nonbold fonts for a font number recognized as bold, such as
600, the text is printed in bold.

Font1, Font2, and Font3 represent the font name. You can use Adobe Reader core fonts, Adobe Reader
Asian Font Pack fonts, or TrueType fonts.

Adobe Reader core fonts are the fonts that Adobe Reader natively supports. The core fonts are:

• Courier

• Courier-Bold

• Courier-Oblique

• Courier-BoldOblique

• Helvetica

• Helvetica-Bold

• Helvetica-Oblique

• Helvetica-BoldOblique

• Times-Roman

• Times-Bold

• Times-Italic

• Times-BoldItalic

• Symbol

• ZapfDingbats

Adobe Reader Asian Font Pack fonts are the font packages Adobe provides as an add-on to Adobe Reader
for the purpose of viewing Asian text. You can download these fonts from the Adobe website or, if
you use Adobe Reader 6, the Asian Font Pack automatically downloads when you open a PDF file that
contains a font from the Asian Font Pack. Alternatively, you can use the Adobe Reader localized to any of
the Japanese, Chinese, or Korean languages. These localized versions come with the same fonts that are
included in the Asian Font Pack. These Asian Font Pack fonts are used with SQR:

• HeiseiKakuGo-W5 (Japanese)

• HeiseiMin-W3 (Japanese)

• MHei-Medium (Traditional Chinese)

• MSung-Light (Traditional Chinese)

• STSong-Light (Simplified Chinese)

• HYGoThic-Medium (Korean)

Chapter 8 Using the PSSQR.INI File and the PSSQR Command Line

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 307

• HYSMyeongJo-Medium (Korean)

In addition, you can use TrueType/OpenType fonts that exist on the machine where you run SQR. If you
use TrueType fonts for PDF output, they will be always embedded as subset of the original font. To use
TrueType fonts for PDF output, you need to specify the mapping between the font name and the font file
path in the [TrueType Fonts] section, and then include the font name in the font list under the [PDF Fonts]
section. More information about TrueType fonts is included in a later section in this topic “PDF Fonts
Section”.

See TrueType Font Section.

PDF Fonts: Exclusion Ranges Section

The PDF Fonts: Exclusion Ranges section defines character ranges you want to exclude from the range
a font covers. Without an exclusion range, SQR uses all of the character ranges a font covers, and then
checks the font listed in the next priority only when it does not cover a character. By specifying an
exclusion range, you can use a font in a lower priority for a specific character or a range of characters.
This mechanism allows users to control which font to use down to a single character level.

The syntax in this section is as follows:

Font Number=Font1 Exclusion Range, Font2 Exclusion Range, ...

Exclusion ranges apply to the list of fonts defined in the PDF Fonts section. For example, if you have a
PDF Fonts section like the following:

3=Courier,Cumberland,HeiseiKakuGo-W5,...

In addition, if you define the PDF Fonts: Exclusion Ranges section like this

 3=0x20AC,0x3070-0x30FF,,

then you are defining that Euro currency symbol (0x20AC in Unicode) is rendered using the Cumberland
font, even though Courier has it. In addition, Greek characters (from 0x3070 to 0x30FF in Unicode) are
rendered using HeiseiKakuGo-W5 font, even though Cumberland has them.

Each Exclusion range is specified using Unicode (UCS-2) codepoint, in decimal or in hexadecimal, in the
following ways:

0x20AC (single character)

160-255 (range)

0x20AC|0x00A0-0x00FF (multiple characters and ranges)

Hexadecimal numbers need to be preceded by 0x; otherwise, they are recognized as decimal.

TrueType Font Section

The TrueType Font section defines the mapping of font name, which is an alias SQR uses internally to
look up a font and physical font file name. You need to specify the font in the full path, unless you have

Using the PSSQR.INI File and the PSSQR Command Line Chapter 8

308 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

placed fonts in a directory specified in the Font Path parameter or in a Windows font folder if you are
running SQR on Windows.

The syntax is:

font name=fontfile path

For example, if you have the font courier.ttf in the c:\user\fonts directory, you set the following in this
section:

CourierNew=c:\user\fonts\courier.ttf

Font name can be any string that is convenient for you to identify the font, and it does not need to
correspond to the internal name of the font. You should not use the same font name that is used for Adobe
core fonts or for Asian Font Pack fonts. If you set the same name for any of Adobe core fonts or Asian
Font Pack fonts, then the TrueType font is used.

Note: TrueType font embedding is now supported by SQR running on z/OS. However, the Font Path
parameter under the TrueType Font section is not supported for z/OS. If you are on z/OS, you need to
specify the full path to each entry.

If you have a TrueType Collection (TTC) file, you will also need to specify the font number to access
the specific font included in the collection. For example, if MS P Mincho is included in the TrueType
Collection file msmincho.ttc, then you will need to specify:

MSPMincho=c:\winnt\fonts\msmincho.ttc,1

The font number within the TrueType collection starts at 0. msmincho.ttc contains MS Mincho and MS P
Mincho in this order; thus the number 0 represents MS Mincho and 1 represents MS P Mincho. If you do
not specify a font number, SQR uses font with font number 0 from the TrueType Collection file.

Note: You can use only Microsoft type of Unicode-based TrueType/OpenType fonts with SQR. SQR
requires TrueType/OpenType font to have CMAP table with Platform ID 3 (Microsoft), Encoding ID 0
(Symbol), 4 (UCS-2), or 10 (UCS-4) and table format 4 or 12. SQR does not support OpenType fonts
with CFF (Postscript) outline. You can use OpenType fonts with TrueType outlines, but SQR does not
make use of advanced layout features provided with OpenType font.

Enhanced-HTML Section

The Enhanced-HTML section is used to define various default actions that SQR takes when generating
HTML output using the -EH command-line flag. This table describes the default actions that SQR takes
when generating HTML output using the -EH command-line flag:

Chapter 8 Using the PSSQR.INI File and the PSSQR Command Line

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 309

Entry Value Description

Browser={ALL|IE|NETS CAPE} ALL|IE|NETSCAPE When set to ALL, the generated HTML
automatically determines which browser
is being used and invokes the proper
browser-specific file.

When set to IE, the generated HTML is
designed for Internet Explorer.

The default action is to generate HTML
suitable for all browsers.

Note: NETSCAPE is not supported in
PeopleTools 8.52

Language={English|French| German|
Portuguese|Spanish|Japanese| Simplified
Chinese|Korean}

English|French| German| Portuguese|
Spanish|Japanese| Simplified Chinese|
Korean

Sets the language used for the HTML
navigation bar.

The default setting is English.

FullHTML={TRUE | FALSE} TRUE | FALSE When set to TRUE, HTML 3.2 is
generated. When set to FALSE, HTML
3.0 is generated. The default setting is
FALSE.

Colors Section

The Colors section defines the default colors that you can use in your SQRs. Enter the default colors in
this format:

[Colors]
color_name = ({rgb])
color_name = ({rgb])
...
color_name = ({rgb])

The default colors implicitly installed are:

• black=(0,0,0)

• white=(255,255,255)

• gray=(128,128,128)

• silver=(192,192,192)

• red=(255,0,0)

• green=(0,255,0)

• blue=(0,0,255)

• yellow=(255,255,0)

• purple=(128,0,128)

Using the PSSQR.INI File and the PSSQR Command Line Chapter 8

310 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

• olive=(128,128,0)

• navy=(0,0,128)

• aqua=(0,255,255)

• lime=(0,128,0)

• maroon=(128,0,0)

• teal=(0,128,128)

• fuchsia=(255,0,255)

Using PSSQR.EXE Command-Line Options

The PeopleSoft system provides a shell called pssqr.exe that extends SQR to handle the submission of
SQR programs under Microsoft Windows and UNIX/Linux operating systems. Pssqr.exe implements a
process that ensures that output is sent to the appropriate destination in a way that is consistent across
platforms.

Note: PeopleSoft does not support running pssqr.exe directly from a DOS or Unix/Linux command
line. Pssqr.exe is a wrapper program used by PeopleSoft Process Scheduler to run SQR reports; it is not
designed to run manually outside of Process Scheduler.

Pssqr.exe does not run on OS/390, however, all output formats are supported on all platforms.

Pssqr.exe provides the following features:

• Expanded output formats: SQR Viewer, HTML, PDF, CSV (Spreadsheet Standard), HP, Postscript,
Line Printer.

• Expanded printer format: Microsoft Windows Default Printer (Win32 only), HP, Postscript, Line
Printer.

• Enhanced delivery of reports to printers: PSSQR sends reports to the printer instead of SQR, which
resolves issues that can be encountered on non-Microsoft networks.

• File output and logs with unique names. If the process instance is sent, the file names will be <SQR
Program>_<Instance>.xxx.

If not, then the log names will be <SQR Program>_<timestamp>.xxx.

• Common command line interface for both Microsoft Windows and UNIX/Linux.

• Capability to read Configuration Manager settings to determine the flags (SQRFLAGS) to use.

• Support for multiple report output.

Default values come from Configuration Manager if run from the command line.

This table describes the command-line parameters:

Chapter 8 Using the PSSQR.INI File and the PSSQR Command Line

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 311

Command-Line Parameter Description

-CT Database type. Valid values are ORACLE, DB2, DB2390,
 INFORMIX, MICROSFT, and SYBASE.

-CS Server name.

-COWN Database owner. This parameter applies to OS/390 only.

-CD Database name.

-CA Access ID.

-CAP Access password.

-RP Program name.

-I Process instance.

-R Run control ID.

-CO User ID.

-OT Output type:

• 2 (File)

• 3 (Printer)

• 4 (Window)

-OF Output format. Column headings refer to the -OT parameter.

• 2 (Adobe Acrobat)

• 3 (Comma delimited)

• 4 (HP format)

• 5 (HTML documents)

• 6 (Line printer)

• 10 (Postscript)

• 13 (SQRiBE portable)

• 14 (Text files)

• 15 (Windows default printer)

-OP Output destination.

-MR Multiple report output. Values: # (maximum 99)

-AF Additional flags.

-AP Additional information.

Using the PSSQR.INI File and the PSSQR Command Line Chapter 8

312 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Command-Line Parameter Description

-TR Enable trace.

-DL Display log file.

-FILE Enter the name of a parameter file containing the parameters
you want to pass to PSSQR. The system deletes the file
immediately after use.

-LG Language Code. Takes a three-letter language code used
across PeopleSoft systems. This flag is used to determine
which language version of the PSPSPSPSSQR.INI file to
use. If you specify LG JPN, then pssqr.exe picks up the
Japanese configuration file (PSSQRJPN.INI) instead of
PSPSPSPSSQR.INI. This parameter takes effect only when
the %LANGUAGE_CD% variable is used for specifying the
PSPSPSPSSQR.INI file in PSSQRFLAGS entry of the Process
Scheduler configuration or Configuration Manager.

-LPFLAGS "<flags>" UNIX\Linux only: Overrides the flags passed to the lp
command.

-DEBUGLP ON Displays command used to print the SQR report.

Note: Avoid using a hyphen (-) or @ sign in the PSSQR.EXE command line, for instance, as part of the
run control ID. The hyphen (-) and @ sign characters are SQR-reserved characters.

Related Links
"Using Reserved Characters" (PeopleTools 8.53: SQR for PeopleSoft Developers)

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 313

Appendix A

Understanding SQR Messages

Unnumbered Messages

This table describes all unnumbered SQR messages:

Message Description

Out of memory. This error occurs when a call to the C routine 'malloc()' fails.

(32-bit machines) Use the -Mfile command-line flag to
reduce some of the different memory requirements. Remove
unneeded TSRs.

(UNIX\Linux) Increase the size of the system swap file.

No cursors defined. This message is issued from the -S command-line flag. The
SQR program did not contain any commands that required a
database cursor.

Not processed due to report errors. This message is issued from the -S command-line flag. SQR
cannot provide information about the cursor due to errors in
the program.

Enter `01`02 This message prompts the user to type the value to be assigned
to the specified variable.

`01 = First character of the variable name.

`02 = Rest of the variable name.

NOPROMPT used - Enter value below (Microsoft Windows) This message appears when an INPUT
command is defined with the NOPROMPT argument.

Enter `01 This message prompts the user to enter the value to be
assigned to the specified substitution variable.

`01 - Name of the substitution variable

Enter this run's parameters: This message prompts the user to enter the values for the
parameters defined in the program.

Error on line `01:

`02

SQR detected an error while processing the report file. Correct
the error and rerun.

`01 - Source line number.

`02 - Source line.

Understanding SQR Messages Appendix A

314 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Message Description

Error in include file "`01" on line `02:

`03

SQR detected an error while processing the report file. Correct
the error and rerun.

`01 - Name of the include file.

`02 - Source line number.

`03 - Source line.

Warning on line `01:

`02

SQR detected a nonfatal error while processing the report file.

`01 - Source line number.

`02 - Source line.

Warning in include file "`01" on line `02:

`03

SQR detected a nonfatal error while processing the report file.

`01 - Name of the include file.

`02 - Source line number.

`03 - Source line.

Type RETURN for more, C to continue w/o display, X to exit
run:

This informational message is used in conjunction with the -D
command-line flag.

Error at: `01

Loading Oracle DLL Failed!!!

(Oracle) This title for the dialog box informs the user that SQR
could not load the Oracle DLL.

Errors were found in the program file. This error message tells the user that there were errors in the
program. The user can correct the errors and rerun.

Errors were found during the program run. This error message tells the user to there were errors running
the program. The user can correct the errors and rerun.

`01: End of Run. This is an informational message.

`01 - Image name (for example, SQR)

Enter report name: This message prompts the user to enter the name of the report (
.sqr or .sqt) to run.

Enter database name: This message prompts the user to enter the name of the
database.

Enter database[/username]:

Enter Username:

This message prompts the user to enter the user name to log
onto the database.

Enter Password: This message prompts the user to enter the password. For
security reasons, the password is not echoed.

Customer ID: This is a text message.

Press Enter to close... This is a text message.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 315

Message Description

`01: Program Aborting. This is an informational message. `01 - Image name (for
example, SQR)

*** Internal Coding Error *** This is an informational message.

SQL DataServer Message (Microsoft Windows) This message is a title for the error
message dialog box.

Operating-System error (Microsoft Windows) This message is a title for the error
message dialog box.

DB-Library error (Microsoft Windows) This message is a title for the error
message dialog box.

`01 is running.

Click the Cancel button to interrupt it.

(Microsoft Windows) This message is the body of the -C
cancel dialog box. The user can quit the program run by
clicking the Cancel button.

Table of Contents This message is the text for HTML driver.

Previous This message is the text for HTML driver.

Next This message is the text for HTML driver.

First Page This message is the text for HTML driver.

Last Page This message is the text for HTML driver.

PAGE This message is the text for HTML driver.

Numbered Messages

This table describes numbered messages:

Error Number Error Message Suggestion/Interpretation

000001 Error while opening the message file:
'`01' (`02): `03

Try reloading the sqrerr.dat file from
the release media. If the error persists,
 contact technical support.

`01 = Name of the error message file.

`02 = System error code.

`03 = System error message.

Understanding SQR Messages Appendix A

316 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

000002 Error while reading the message file. (
`01): `02

Try reloading the sqrerr.dat file from
the release media. If the error persists,
 contact technical support.

`01 = Name of the error message file.

`02 = System error code.

`03 = System error message.

000003 Error while closing the message file. (
`01): `02

Try reloading the sqrerr.dat file from
the release media. If the error persists,
 contact technical support.

`01 = Name of the error message file.

`02 = System error code.

`03 = System error message.

000004 Error while seeking the message file. (
`01): `02

Try reloading the sqrerr.dat file from
the release media. If the error persists,
 contact technical support.

`01 = Name of the error message file.

`02 = System error code.

`03 = System error message.

000005 Corrupt message file: Invalid header
information.

Try reloading the sqrerr.dat file from
the release media. If the error persists,
 contact technical support.

000006 Corrupt message file: Invalid count (Got
`01, Should be `02).

The header contains an invalid entry
count.

1. Make sure SQRDIR points to the
correct directory.

2. Try reloading the sqrerr.dat file
from the release media. If the error
persists, contact technical support.

`01 = The value read from the
header.

`02 = The correct value.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 317

Error Number Error Message Suggestion/Interpretation

000007 Cannot handle message file version `01. This message occurs when the release
of SQR does not support the header
version.

1. Make sure SQRDIR points to the
correct directory.

2. Try reloading the sqrerr.dat file
from the release media. If the error
persists, contact technical support.

`01 = Unsupported version read
from the header.

000010 Invalid SEMCode encountered: `01. An invalid code was passed to the error
message handler. Try reloading the
files from the release media. If the error
persists, contact technical support.

`01 = Invalid code.

000011 Unknown conversion type (`01) for code
`02.

Try reloading the sqrerr.dat file from
the release media. If the error persists,
 contact technical support.

`01 = Invalid type.

`02 = Internal error code.

000012 Message `01 must be either Preload or
BuiltIn.

The type error code is not correct. Try
reloading the sqrerr.dat file from the
release media. If the error persists,
 contact technical support.

`01 = Error code.

000013 Cannot point to message `01. The error handler cannot position to the
desired error code. Try reloading the
sqrerr.dat file from the release media.
 If the error persists, contact technical
support.

`01 = Error code.

000014 The required environment variable `01
has not been defined.

Define the named environment variable
and restart SQR.

`01 = Environment variable name.

000015 The Meta ESC characters do not match (
Got '`01', Should be '`02').

The meta escape character defined in
the header does not match what the error
message handler expects. Try reloading
the sqrerr.dat file from the release media.
 If the error persists, contact technical
support.

`01 = What was found in the header.

`02 = What was expected to be found

Understanding SQR Messages Appendix A

318 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

000016 `01() called to process (`02) and the
message file is not open.

The specified error routine was called
but the error message file was not open.
 Try reloading the files from the release
media. If the error persists, contact
technical support.

`01 = Name of the routine

`02 = Error code

000017 Message `01 must be ReportParameters
or CopyrightNotice.

Try reloading the sqrerr.dat file from
the release media. If the error persists,
 contact technical support. `01 = Error
code

000018 Allocation header does not point to a
valid heap.

(Microsoft Windows) This message is
the result of a memory overwrite. Record
the steps leading up to the error and
contact technical support.

000019 Allocation header has an invalid size. (Microsoft Windows) This message is
the result of a memory overwrite. Record
the steps leading up to the error and
contact technical support.

000020 GLOBAL header has an invalid size. (Microsoft Windows) This message is
the result of a memory overwrite. Record
the steps leading up to the error, and
contact technical support.

000021 Cannot free GLOBAL allocation. (Microsoft Windows) This message is
the result of a memory overwrite. Record
the steps leading up to the error and
contact technical support.

000028 Cannot access the initialization file: `01 (
`02): `03

The initialization file specified by the
-ZIF command line flag cannot be
accessed.

`01 = Name of the file.

`02 = System error code.

`03 = System error message.

000202 DPUT: Bad field number. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000203 DARRAY: Unknown command number. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 319

Error Number Error Message Suggestion/Interpretation

000204 `01: Cannot find `02 command. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Name of the routine.

`02 = Name of the command.

000205 DDO: DO arguments do not match
procedure's.

<obsolete>

000206 SDO: Bad params for DO command. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000207 SDO: Bad params for BEGIN-
PROCEDURE command.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000208 SGOTO: Bad command numbers. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000209 SGOTO: Bad goto function parameters. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000210 SGOTO: Could not find beginning of
section or paragraph.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000211 SGOTO: Bad label: from parameters. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000212 COMPAR: Unknown relational (
numeric) operator.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000213 COMPAR: Unknown relational (string)
operator.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000214 DONBRK: Unknown case for putlin. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

Understanding SQR Messages Appendix A

320 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

000215 `01: Bad length case for numeric `02. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Name of the routine.

`02 = name of the variable.

000216 GARRAY: Unknown command number. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000217 GCMDS: No Gfunc found. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000218 GDOC: Unknown document type. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000219 GLET: Bad operator. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000220 GLET: Stack incorrect for expression -
arg `01.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Number of the argument.

000221 GLET: Unknown operator type. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000222 GLET: Unknown operator in expression. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000223 GPARS: Column not SCOL, TCOL or
NCOL type.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 321

Error Number Error Message Suggestion/Interpretation

000224 GPARS: Bad parameter format: `01
=`02=

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Internal command format string.

`02 = Bad format field found.

000225 GPARS: No end of required word in
parfmt: `01

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Internal command format string.

000226 GPARS: Bad parfmt entry: `01 This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Internal command format string.

000227 GPARS: Bad parameter string. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000228 GPARS: Repeat count bad: `01 This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Internal command format string.

000229 GPARS: Only a,b,8,9 allowed for
repeats: `01

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Internal command format string.

000230 GPARS: Missing required x: `01 This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Internal command format string.

000231 GPARS: Bad type in 'ckvrpr()'. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000232 GPROC: No Gfunc found. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

Understanding SQR Messages Appendix A

322 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

000233 GRDWRT: Unknown command number. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000234 GSHOW: Unknown SHOW option. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000235 PGMPARS: 'addvar()' passed maxlen but
not column.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000238 PGMPARS: '`01' passed invalid
parameter number: `02.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Routine name.

`02 = Invalid parameter number.

000239 PGMPARS: 'fxclrf()' encountered bad
column reference type: `01.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Internal variable type code.

000240 PLCMNT: 'getplc()' passed invalid
element number: `01.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Invalid element number.

000241 RDPGM: Command array size exceeded
(change COMDMAX to at least `01).

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Maximum internal command
number supported.

000242 RDPGM: Bad match adding internal
variable: `01

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Internal variable name.

000243 RDPGM: No cmdget function found for
BEGIN_S.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 323

Error Number Error Message Suggestion/Interpretation

000244 Function `01 not included in run-time
package.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Name of the SQR routine.

000245 SETSQL: Could not find variable '`01',
 in Run Time.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Variable name.

000248 SIFWHL: Command number incorrect. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000249 SPINIT: Bad parameters. This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000251 DBFFIX: DBDATLEN returned out of
range status.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000252 DPRPST: Error converting Sybase type
for EXECUTE.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

000254 SETSQL: Could not find variable entry
in list.

(Oracle) This is an internal error that
should never occur during normal
operations. Record the steps leading
up to the error and contact technical
support.

000255 DBDESC: SQLD not = number of select
columns.

(DB2, Informix) This is an internal error
that should never occur during normal
operations. Record the steps leading
up to the error and contact technical
support.

000256 DBFETCH: Unknown variable dbtype
encountered: `01 (`02)

(DB2, Informix) This is an internal error
that should never occur during normal
operations. Record the steps leading
up to the error and contact technical
support.

`01 = Variable name.

`02 = Unknown database type.

Understanding SQR Messages Appendix A

324 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

000257 WRITE_SPF: Unknown code
encountered: `01

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Unknown SPF code.

000258 `01: Cannot find LOAD-LOOKUP table:
`02

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Name of the routine.

`02 = Name of the table.

000259 PGMPARS: '`01' called with wrong
variable '`02'

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Name of the routine.

`02 = Name of the variable.

000260 SQTMGT: Could not find 'vars' entry
with 'nvars' index of '`01'.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Index into nvars table.

000261 MODIFYVAR: Attempt to change
variable which is not xVAR (`01).

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = name of the variable.

000262 MODIFYVAR: Incompatible variable
types (`01) and (`02).

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Variable type (from).

`02 = Variable type (to).

001100 Out of query arguments; use -Mfile to
increase QUERYARGS.

This is the total number of variable
references ($Var, #Var, &Col) allowed in
the context of a BEGIN-SQL or BEGIN-
SELECT command. Use the -Mfile flag
on the command line to specify a file
containing an entry that increases the
currently defined value.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 325

Error Number Error Message Suggestion/Interpretation

001201 Cannot open the argument file: '`01'. (
`02): `03

Depends on the system error message.

`01 = Name of the file.

`02 = System error code.

`03 = System error message.

001202 Cannot close the argument file. (`01): `02 Depends on the system error message.

`01 = System error code.

`02 = System error message.

001203 Cannot open the - Mfile: '`01'. (`02): `03 Depends on the system error message.

`01 = Name of the file.

`02 = System error code.

`03 = System error message.

001204 Minimum value for '`01' in the -Mfile is
`02.

Correct the -Mfile entry.

`01 = Keyword in question.

`02 = Minimum value allowed.

001205 Maximum value for '`01' in the -Mfile is
`02.

Correct the -Mfile entry.

`01 = Keyword in question.

`02 = Maximum value allowed.

001206 Invalid -Mfile entry: '`01'. Correct the -Mfile entry.

`01 = The line from the -Mfile.

001207 Cannot close the - Mfile. (`01): `02 Depends on the system error message.

`01 = System error code.

`02 = System error message.

001209 The minimum value for '`01' (`02) is `03. Value out of range.

`01 = Entry name.

`02 = Specified value.

`03 = Minimum value.

001210 The maximum value for '`01' (`02) is
`03.

Value out of range.

`01 = Entry name.

`02 = Specified value.

`03 = Maximum value.

Understanding SQR Messages Appendix A

326 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

001211 The value for '`01' (`02) is not an integer
number.

Value must be a integer value.

`01 = Entry name.

`02 = Specified value.

001300 Bind list does not match query (do not
use '@__p' string).

SQR reserves the variable names that
start with "@__p" for internal use.
 Edit the source code and use different
variable names.

001301 Forward references not permitted in
select list bind variables.

Within the body of BEGIN-SQL
paragraphs, forward references to
&column names are not permitted. Move
the BEGIN-SQL paragraph after the
&column definition.

001302 SQL buffer too small; use -Mfile to
increase SQLSIZE.

The SQL statement exceeds the size of
the internal SQL buffer. Use the -Mfile
flag on the command line to specify a
file containing an entry that increases the
currently defined value.

001303 Error in SQL (perhaps missing &name
after expression):

The database server has determined that
the SQL statement is in error. The actual
error text from the server follows this
message. Correct the SQL statement.

001304 Check SELECT columns, expressions
and 'where' clause for syntax.

The database server has determined that
the SQL statement is in error. The actual
error text from the server follows this
message. Correct the SQL statement.

001305 CMPSQL: Unknown data type in
database: `01.

Contact technical support with the
version of the database you are
connected to.

`01 = Datatype in question.

001306 Bind value too large (IMAGE, TEXT not
allowed).

IMAGE and TEXT data types cannot
be used as bind variables. Modify your
SQL statement to use other columns to
perform the same selection logic.

001307 CMPSQL: DBDEFN failed. (Oracle, ODBC, Informix) This is an
internal error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 327

Error Number Error Message Suggestion/Interpretation

001308 `01: Could not bind column `02. (Oracle, ODBC, Informix) This is an
internal error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

`01 = Name of the SQR routine.

`02 = Name of the column.

001309 The type for '&`01' (`02) does not match
the type from the database (`03).

Correct the source code.

`01 = Name of the column/expression
pseudonym.

`02 = User specified type.

`03 = Database type.

001400 Only numerics allowed for arithmetic. Only #numeric variables, &columns, and
literals are permitted in the arithmetic
commands. Correct the source code.

001401 Optional qualifier is ROUND=n (0-`01). Correct the syntax.

`01 = Maximum value for ROUND.

001402 Optional qualifiers for DIVIDE are
ON- ERROR={HIGH|ZER O} and
ROUND=n.

Correct the syntax.

001403 Attempting division by zero. Use the ON-ERROR = HIGH | ZERO
option to prevent this error from halting
the program.

001404 Bad number of digits to ROUND or
TRUNC (0-15).

Correct the syntax.

001405 WARNING: The ROUND or TRUNC
qualifier is greater than the number's
precision.

Correct the syntax.

001500 Array element out of range (`01) for
array '`02' on line `03.

Correct the source logic.

`01 = Element number passed.

`02 = Name of the array.

`03 = Program line number.

Understanding SQR Messages Appendix A

328 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

001501 Field element out of range (`01) for array
'`02', field '`03', on line `04.

Correct the source logic.

`01 = Element number passed.

`02 = Name of the array.

`03 = Name of the field.

`04 = Program line number.

001502 WARNING: Attempting division by zero
on line `01. Array field '`02' unchanged.
 Run continuing...

The ARRAY-DIVIDE command has
attempted division by zero. The division
has been ignored; the result field is
unchanged. Add logic to account for this
possibility.

`01 = Program line number.

`02 = Name of field.

001601 'FILL' not appropriate for numeric data. The FILL argument to the PRINT
command may be used only for text
fields. Move the #numeric variable to a
$string variable, and then print the string
variable.

001700 Report '`01': Columns must be between 1
and the page width (`02).

The specified value is wider than the
width of the page. Correct the source
line.

`01 = Name of the current report.

`02 = Page width.

001702 Report '`01': GOTO- TOP=`02 must be
between 0 and the page depth (`03).

The value specified on the GOTO-TOP
argument of the NEXT-COLUMN
command was either less than 1 or
greater than the page depth. Correct the
source line.

`01 = Name of the current report.

`02 = Goto-Top value.

`03 = Page width.

001703 Report '`01': ERASE- PAGE=`02 must
be between 0 and the page depth (`03).

The line number specified on the
ERASE- PAGE argument of the NEXT-
COLUMN command is greater than the
page depth. Correct the source line.

`01 = Name of the current report.

`02 = Erase-Page value.

`03 = Page width.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 329

Error Number Error Message Suggestion/Interpretation

001704 Report '`01': The NEXT-COLUMN
command is not legal in the `02 section
with the qualifier AT- END=NEWPAGE.

Correct the source line.

`01 = Name of the current report

`02 = Name of the section

001705 Report '`01': Column number `02 is not
defined.

The column number specified with the
USE- COLUMN command is greater
than the highest column defined in the
COLUMNS command. Correct the
source line. `01 = Name of the current
report `02 = Column number

001800 Format for CONNECT: username/
password [ON-ERROR=procedure[(
arg1[,argi]...)]]

Correct the syntax.

001801 Cannot use CONNECT while SQL
statements are active.

Correct the program logic to ensure
that all BEGIN-SELECT paragraphs
have completed before executing the
CONNECT command.

001802 Logoff failed prior to CONNECT. The database server returned an error
while trying to log off from the database.
 SQR ends the program run since it
cannot continue.

001803 CONNECT failed. Perhaps user name/
password incorrect.

The specified connectivity information
is incorrect or there might have been a
network failure. Use the ON-ERROR
flag to trap any errors during the
program run; otherwise SQR ends the
program run.

001804 Sybase extensions SET and SETUSER
not permitted in SQR.

Remove SET and SETUSER from the
source.

001805 USE allowed once in SETUP section
only, not in BEGIN-SQL. Elsewhere,
 specify db.[user].table...

Correct the source.

001806 Out of query space. Use -Mfile to
increase QUERIES.

The number of SQL statements has been
exceeded. Use the -Mfile flag on the
command line specify a file that contains
an entry that increases a greater value
than is currently defined.

001807 The requested database connection (`01)
is already active.

The -Cnn value specified is being used
by another BEGIN-SELECT paragraph
that is currently selecting data. Use
another connection number.

`01 = Connection number

Understanding SQR Messages Appendix A

330 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

001808 Cannot find inactive database cursor.
 Program too large.

Too many BEGIN-SELECT and
BEGIN-SQL paragraphs are active at the
same time. Reduce the complexity of the
program.

001809 Database commit failed. (Oracle, DB2, ODBC) This is an error
that should never occur during normal
operations. Record the steps leading
up to the error and contact your system
administrator.

001810 Database rollback failed. (Oracle, DB2, ODBC) This is an error
that should never occur during normal
operations. Record the steps leading
up to the error and contact your system
administrator.

001811 Cannot open database cursor. (Oracle, ODBC) This is an error that
should never occur during normal
operations. Record the steps leading
up to the error and contact your system
administrator.

001901 Variable for date-time must begin with
'&'.

Correct the syntax.

001913 Format code must be SYYYY when
specifying signed year.

Correct the edit mask.

001914 Bad input data (`01) for edit mask: '`02'. Correct the input.

`01 = Data being converted `02 = Edit
mask

001915 Year cannot be zero. Correct the date.

001916 Year must be between -4713 and 9999
inclusive.

Correct the date.

001917 Ambiguous date-time. Correct the date.

001918 '`01' is not a valid date part. Correct the date part.

`01 = Date part.

001919 Invalid day of week. Correct the date.

001920 Format code cannot appear in date input
format: '`01'.

Correct the edit mask.

`01 = Improper format characters.

001921 Bad date mask starting at: '`01'. Correct the edit mask.

`01 = Improper format characters.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 331

Error Number Error Message Suggestion/Interpretation

001922 Seconds past midnight must be between
0 and 86399.

Correct the date.

001923 Seconds must be between 0 and 59. Correct the date.

001924 Minutes must be between 0 and 59. Correct the date.

001925 Month must be between 1 and 12. Correct the date.

001926 Day must be between 1 and `01. Correct the date.

001927 Hour must be between 1 and 12. Correct the date.

001928 Hour must be between 0 to 23. Correct the date.

001929 HH24 precludes the use of meridian
indicator.

Correct the edit mask.

001930 HH12 requires meridian indicator. Correct the edit mask.

001931 Day of year must be between 1 and 365 (
366 for leap year).

Correct the date.

001932 Date string too long. Correct the date.

001933 The month (`01) is not valid for the
current locale or database.

Correct the date.

`01 = Name of the month.

001934 The format mask must be a literal
when the date-time is not loaded into a
variable.

Correct the format mask. The format
mask must be a literal when the date-
time is not loaded into a variable.

001935 Date-time format too long. Correct the format mask.

001936 Bad date-time format. Correct the format mask.

001937 Bad SQL for default date-time. (Table
DUAL required for syntax.)

(Oracle) The format mask needs to be
corrected or there is a problem with the
database server.

 001937 Bad SQL for default date-time. (Table
DUAL required for syntax.)

(DB2) The format mask needs to be
corrected or there is a problem with the
database server.

001938 Cannot recompile sql. A fatal error relating to the SQL
statement used to retrieve the date-
time was encountered. Record the steps
leading up to the error and contact your
system administrator.

Understanding SQR Messages Appendix A

332 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

001939 Problem executing cursor. A fatal error relating to the SQL
statement used to retrieve the date-
time was encountered. Record the steps
leading up to the error and contact your
system administrator.

001940 Error fetching row. A fatal error relating to the SQL
statement used to retrieve the date-
time was encountered. Record the steps
leading up to the error and contact your
system administrator.

001941 Cannot redefine variable addresses. A fatal error relating to the SQL
statement used to retrieve the date-
time was encountered. Record the steps
leading up to the error and contact your
system administrator.

001942 The date '`01' is not in the format
SYYYYMMDD[HH24[MI[SS[N
NNNNN]]]].

When specifying an SQR date, at a
minimum, the date must be specified.
The time is optional.

`01 = The invalid date.

001943 The date '`01' is not in one of the
accepted formats listed below: MM/
DD/YYYY [BC | AD] [HH:MI[:SS[.
NNNNN N]] [AM | PM]]

MM-DD-YYYY [BC | AD]
[HH:MI[:SS[.NNNNN N]] [AM |
PM]] MM.DD.YYYY [BC | AD]
[HH:MI[:SS[.NNNNN N]] [AM | PM]]
SYYYYMMDD[HH24[MI[SS[N
NNNNN]]]]

The date specified with the INPUT
command was not in one the default
formats. Reenter the date in a valid
format.

`01 = The invalid date.

001944 The date '`01' is not in the format
specified by SQR_DB_DATE_FORMAT
or in one of the accepted formats listed
below:

DD-MON-YY
SYYYYMMDD[HH24[MI[SS[N
NNNNN]]]]

(Oracle) The date was not in one of the
expected formats for this database.

`01 = The invalid date.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 333

Error Number Error Message Suggestion/Interpretation

001944 The date '`01' is not in the format
specified by SQR_DB_DATE_FORMAT
or in one of the accepted formats listed
below:

Mon DD YYYY [HH:MI[:SS[.NNN]]
[AM | PM]]

Mon DD YYYY [HH:MI[:SS[:NNN]]
[AM | PM]]

YYYYMMDD [HH:MI[:SS[.NNN]]
[AM | PM]]

YYYYMMDD [HH:MI[:SS[:NNN]]
[AM | PM]]

SYYYYMMDD[HH24[MI[SS[N
NNNNN]]]]

(Sybase) The date was not in one of the
expected formats for this database.

`01 = The invalid date.

001944 The date '`01' is not in the format
specified by SQR_DB_DATE_FO
RMAT or in one of the accepted formats
listed below:

Mon DD YYYY [HH:MI[:SS[.NNN]]
[AM | PM]]

Mon DD YYYY [HH:MI[:SS[:NNN]]
[AM | PM]]

YYYYMMDD [HH:MI[:SS[.NNN]]
[AM | PM]]

YYYYMMDD [HH:MI[:SS[:NNN]]
[AM | PM]]

SYYYYMMDD[HH24[MI[SS[N
NNNNN]]]]

(ODBC) The date was not in one of the
expected formats for this database.

`01 = The invalid date.

001944 The date '`01' is not in the format
specified by SQR_DB_DATE_FO
RMAT or in one of the accepted formats
listed below:

YYYY-MM-DD HH:MI:SS.NNN

SYYYYMMDD[HH24[MI[SS[N
NNNNN]]]]

(Informix) The date was not in one of the
expected formats for this database.

`01 = The invalid date.

Understanding SQR Messages Appendix A

334 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

001944 The date '`01' is not in the format
specified by SQR_DB_DATE_FORMAT
or in one of the accepted formats listed
below:

YYYY-MM-DD[- HH.MI.SS[.
NNNNNN]]

MM/DD/YYYY DD.MM.YYYY

SYYYYMMDD[HH24[MI[SS[N
NNNNN]]]]

(DB2) The date was not in one of the
expected formats for this database.

`01 = The invalid date.

001945 SQR does not support dates before '`01'. SQR does not support dates before the
one specified in the message.

`01 = Smallest date

001946 The date variables are incompatible with
each other.

The SQR function references two date
variables that cannot logically be used
together, for example, DateDiff of 'date-
only' and 'time-only' dates.

002000 Procedure name used more than once:
'`01'.

Specify a unique name for the procedure.

`01 = Procedure name

002001 Could not find procedure: '`01'. Verify the spelling of the procedure
name.

`01 = Procedure name

002002 DO arguments do not match procedure's. The argument lists for the DO and
BEGIN- PROCEDURE commands must
match in both type and count. Correct the
source line.

002003 DO argument must be $string or
#number to accept returned value.

Correct the syntax.

002100 Edit string too long. The edit mask must be less than 255
characters. Reduce the length of the edit
mask.

002101 Bad numeric 'edit' format: `01 The numeric edit mask contains an
invalid character. See the PRINT
command for the valid numeric edit
mask characters.

`01 = Invalid character

002103 DOLLAR-SYMBOL must be a single
alphanumeric character or its decimal
value enclosed in brackets: <nnn>.

Correct the syntax.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 335

Error Number Error Message Suggestion/Interpretation

002104 DOLLAR-SYMBOL cannot be any of
the following characters: `01

Correct the syntax.

`01 = List of invalid characters

002106 MONEY-SYMBOL must be a single
alphanumeric character or its decimal
value enclosed in brackets: <nnn>.

Correct the syntax.

002107 MONEY-SYMBOL cannot be any of the
following characters: `01

Correct the syntax.

002200 ENCODE string too large; maximum is
`01.

Break up the ENCODE command.

`01 = Maximum length of an ENCODE
string supported by this version of SQR
for PeopleSoft.

002300 EXIT-SELECT failed. The database command to cancel the
query returned an error. Try running the
SQR program again. The error could be
related to a network or server problem.
 If the error persists, contact your system
administrator.

002301 EXIT-SELECT valid only within
SELECT paragraph.

Remove the EXIT-SELECT command.

002400 Duplicate label's - do not know which
one to GOTO.

Labels must be unique within the section
or paragraph where they are defined.
 Give each label a unique name.

002401 (Labels must be in same section or
paragraph as GOTO.) Cannot find a
matching label for GOTO command.

Check the source code.

002500 Error getting INPUT. The C routine "fgets()" returned an error
and SQR ends the program run.

002501 Unknown INPUT datatype: type={char|
number|integer|date}

Correct the syntax.

002502 INPUT STATUS= must reference
#variable.

Correct the syntax.

002503 Unknown qualifier for INPUT. Correct the syntax.

002506 Too long. Maximum `01 characters. The response to the INPUT statement
was too long. Re-enter the data.

`01 = Maximum characters allowed

002507 Incorrect. Format for floating point
number: [+|-]99.99[E99]

Invalid number was entered for an
INPUT request. Re-enter the data.

002508 Incorrect. Format for integer:
[+|-]999999

Invalid integer was entered for an
INPUT request. Re-enter the data.

Understanding SQR Messages Appendix A

336 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

002510 A format mask can only be specified
when TYPE=DATE is used.

Correct the syntax.

002511 The format mask cannot be stored in a
date variable.

Correct the syntax.

002512 The input variable type does not match
the TYPE qualifier.

Correct the syntax.

002513 Number too large for INTEGER. Valid
range is -2147483648 to 2147483647.

The number was too large to be stored as
an integer. Values are from -2147483648
to 2147483647. Re-enter the data.

002514 Enter a date in one of the following
formats:

MM/DD/YYYY [HH:MI[:SS[.NNNNN
N]] [AM | PM]]

MM-DD-YYYY [HH:MI[:SS[.NNNNN
N]] [AM | PM]]

MM.DD.YYYY [HH:MI[:SS[.NNNNN
N]] [AM | PM]]

SYYYYMMDD[HH24[MI[SS[N
NNNNN]]]]

The date cannot be blank. Enter a date in
one of the specified formats.

002515 `01 required user interaction but user
interaction was disabled by the -XI
command line flag.

The specified command required user
interaction, but user interaction was
disabled by the -XI command line flag.
 `01 = Name of the command

002600 LOAD-LOOKUP table '`01' has not been
defined.

Add a LOAD-LOOKUP command.

`01 = Load lookup table name

002601 Missing value for `01= in LOAD-
LOOKUP.

Correct the syntax.

`01 = Name of missing required
parameter

002602 Bad value for `01= in LOAD-LOOKUP. Correct the syntax.

`01 = Name of the parameter

002603 LOAD-LOOKUP `01= cannot reference
a variable in the Setup section.

Either move the LOAD-LOOKUP
command from the Setup section or
remove the variable reference.

`01 = Name of the parameter

002604 LOAD-LOOKUP names must be unique. Give each LOAD-LOOKUP array a
unique name.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 337

Error Number Error Message Suggestion/Interpretation

002605 Cannot compile SQL for LOAD-
LOOKUP table '`01'.

The database server returned an error
while trying to compile the SQL
statement needed to process the LOAD-
LOOKUP command. Check the column
and table names. Also check the
WHERE= clause for errors.

`01 = Load lookup table name

002606 Could not set up cursor for LOAD-
LOOKUP table '`01'.

The database server returned an error
while trying to compile the SQL
statement needed to set up the LOAD-
LOOKUP command. Verify the column
and table names. Review the WHERE=
clause for errors.

`01 = Load lookup table name

002607 Problem executing the cursor for LOAD-
LOOKUP table '`01'.

The database server returned an error
while trying to execute the SQL
statement needed to process the LOAD-
LOOKUP command.

`01 = Load lookup table name

002609 Integers only allowed in numeric lookup
keys.

Correct the source line.

002610 Numeric lookup keys must be <= `01
digits.

Correct the source line.

`01 = maximum length supported

002611 Bad return fetching row from database in
LOAD-LOOKUP table '`01'.

The database server returned an error
while fetching the data.

`01 = Load lookup table name

002613 Loading '`01' lookup table ... This message can be inhibited by using
the QUIET argument on the LOAD-
LOOKUP command.

`01 = Name of the load lookup table

`02 = Number of rows loaded

002615 Warning: `01 duplicate keys found in
'`02' lookup table.

This message can be inhibited by using
the QUIET argument on the LOAD-
LOOKUP command.

`01 = Number of duplicate keys

`02 = Name of the load lookup table

002616 LOAD-LOOKUP `01= must reference a
numeric variable or literal.

Correct the source line.

`01 = Name of the parameter

Understanding SQR Messages Appendix A

338 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

002617 LOAD-LOOKUP `01= must reference a
string variable or literal.

Correct the source line.

`01 = Name of the parameter

002618 LOAD-LOOKUP `01= variable '`02' has
not been defined.

Correct the source line.

`01 = Name of the parameter

`02 = Name of the undefined variable

002619 LOAD-LOOKUP cannot support `01
rows; maximum is `02.

Reduce the ROWS= value.

`01 = ROWS= value

`02 = Maximum value allowed

002620 `01 command not allowed with -XL
option in effect.

Either use the #IF command to
conditionally compile the program when
-XL is being used or do not execute this
SQR report with the -XL option.

`01 = SQR command

002700 Line to stop erasing for 'NEW-PAGE' is
larger than the page depth.

Correct the source line.

002800 'ON-BREAK' not appropriate for
numeric data.

The ON-BREAK argument to the PRINT
command may be used only for text
fields. Move the #numeric variable to
a $string variable, and then print the
$string variable.

002801 SET= and LEVEL= must be >= zero
when indicated.

Correct the source line.

002802 Cannot use old style PROCEDURE=
with BEFORE= or AFTER=.

Correct the syntax.

002803 Out of ON-BREAKS;

use -Mfile to increase ONBREAKS.

Use the -Mfile flag on the command line
to specify a file containing an entry that
increases the currently defined value.

002804 SET= must be same for all ON-BREAKs
in Select.

All the ON-BREAKS in a query must
belong to the same SET. Use SET= to
differentiate between ON-BREAKs in
different queries. Correct the source line.

002805 ON-BREAK with BEFORE or AFTER
must be inside Select.

Correct the source line.

002806 SAVE= must be a $string variable. Correct the syntax.

002900 Record :types are FIXED, VARY or
FIXED_NOLF (default is VARY).

Correct the syntax.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 339

Error Number Error Message Suggestion/Interpretation

002901 STATUS variable for `01 must be
#Numeric.

Correct the syntax.

`01 = SQR command affected

002902 OPEN missing required qualifiers:
RECORD={rec_len} FOR-READING|
FOR- WRITING|FOR- APPEND

Correct the syntax.

002903 Too many external files opened;
maximum is `01.

Reduce the number of open external files
needed by the program.

`01 = Maximum number of open external
files supported by this version of SQR

002904 File number already opened. Verify the program logic.

002905 Cannot open file '`01' AS `02.(`03): `04 SQR stops.

`01 = Filename

`02 = File number

`03 = System error code

`04 = System error message

002906 Cannot close file `01. (`02): `03 SQR stops.

`01 = File number

`02 = System error code

`03 = System error message

002907 Problem closing user file(s) at the end of
run.

This message may indicate system
problems.

002908 Warning: Cannot CLOSE file `01 -- file
not opened.

While not an error, this message
indicates a problem with your SQR code.

`01 = File number

003000 PAGE-NUMBER strings too long. The pre-and post-PAGE-NUMBER
strings must be less than 74 characters.
 Correct the source line.

003100 Cannot find document marker referenced
in POSITION command.

Defines the specified @ marker in a
BEGIN- DOCUMENT paragraph. Verify
that the @ marker names are spelled
correctly.

003101 Only 'COLUMNS nn...' allowed
after document marker in POSITION
command.

Correct the syntax.

Understanding SQR Messages Appendix A

340 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

003200 Specified file number not opened for
reading.

Files must be opened for reading in order
to use the READ command with them.
 Correct the program logic.

003201 Line `01: Error reading the file. (`02):
`03

`01 = Program line number

`02 = System error code

`03 = System error message

003202 Specified file number not opened for
writing.

Files must be opened for writing in order
to use the WRITE command with them.
 Correct the program logic.

003203 Line `01: Error writing the file. (`02): `03 `01 = Program line number

`02 = System error code

`03 = System error message

003204 Length of variables exceeds record
length.

The total of the lengths indicated in
the command must be less than the
RECORD= argument used on the OPEN
command. Search for a typographical
error or recalculate the RECORD= value.

003205 Numeric binary transfer allowed with
FIXED or FIXED_NOLF records only.

By default, all files are opened in VARY
(variable length) mode, thus prohibiting
the transfer of numeric binary data. Add
the:FIXED or FIXED_NOLF option
to the RECORD= argument on the
appropriate OPEN command.

003206 Command not complete. Correct the syntax.

003207 File number must be a numeric literal,
 variable, or column.

Correct the syntax.

003208 Missing required length in READ
command.

Correct the syntax.

003209 Bad length for READ or WRITE
command.

Correct the syntax.

003210 $String or #numeric variables required
for READ.

Correct the syntax.

003211 #Numeric variables and literals must
have :length of 1, 2 or 4 bytes.

Correct the syntax.

003212 #Numeric variables and literals on CDC
may only have :length of 1 or 3 bytes.

Correct the syntax.

003213 :Length not allowed for $date variables,
 length of 18 is assumed.

Correct the syntax.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 341

Error Number Error Message Suggestion/Interpretation

003300 Unknown qualifier for STOP. Correct the syntax.

003301 Program stopped by user request. This is an informational message.

003400 Wrap not appropriate for numeric data. The WRAP argument to the PRINT
command may be used only for text
fields. Move the #numeric variable to a
$string variable first, and then print the
$string variable.

003401 Max `01 chars/line for reverse WRAP. Reduce the number of characters
specified.

`01 = Maximum number of characters
supported by this version of SQR.

003402 Max `01 chars/line for WRAP with ON=
or STRIP=

Reduce the number of characters
specified.

`01 = Maximum number of characters
supported by this version of SQR

003403 Bad <number> in WRAP qualifier. The number inside the angled brackets
must be a valid number (1 - 255).
 Correct the source line.

003404 Missing '>' in WRAP qualifier. A leading "<" in the ON= or STRIP=
qualifier indicates that a numeric value
is following, which must be ended by a
closing ">". Correct the source line.

003405 The value for '`01' (`02) must be `03 0. The value specified for the specified
qualifier is invalid. Correct the program
logic.

`01 = Qualifier name

`02 = Value encountered

`03 = Relation to zero (<,<=,=,>=,>)

003500 PUT, GET or ARRAY- xxxx command
incomplete. Required word missing.

Correct the syntax.

003501 Did not find end of literal. The ending quote character (') was not
found at the end of the literal. Add the
ending quote character.

003502 Literal too long. Literal strings can be up to 256
characters long. Break up the literal into
smaller pieces and combine using the
LET command.

003503 Unknown variable type. Variable names must begin with $, #, or
&. Correct the source line.

Understanding SQR Messages Appendix A

342 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

003504 Cannot find 'array_name (#element)'. The element number was not specified.
 Correct the source line.

003505 '(#Element)' variable not found for array. Each GET or PUT command must
indicate the element or row number to
access in the array. Correct the source
line.

003506 Array specified not defined with
CREATE-ARRAY.

Use the CREATE-ARRAY command to
define each array before referencing that
array in other commands. Verify that the
array names are spelled correctly.

003507 Bad element reference for array (
#variable|123).

The element number is larger than the
number of rows defined in the CREATE-
ARRAY command. Review the program
logic to make sure that the element
number was not inadvertently changed.

003508 Did not find ending ')' for field. The "occurs" number for an array field is
missing a right parenthesis. Correct the
source line.

003509 Field not defined in array: `01 Verify that there are no misspelled
field names in the CREATE-ARRAY
command.

`01 = Undefined field name

003510 More variables than fields specified in
array command.

The ARRAY command must not have
more variables listed to the left of the
array name than there are matching fields
defined for the array. Check against the
CREATE-ARRAY command.

003511 More variables in command than fields
in array.

The ARRAY command must not have
more variables listed to the left of the
array name than there are matching fields
defined for the array. Check against the
CREATE-ARRAY command.

003512 Only numeric variables and fields
allowed with array arithmetic
commands.

The ARRAY-ADD, ARRAY-
SUBTRACT, ARRAY-MULTIPLY, and
ARRAY-DIVIDE commands may have
only numeric variables or literals as the
source fields. Move the string data into a
#numeric variable and then reference the
#numeric variable.

003513 GET can only be used with $string or
#numeric variables.

You can move array fields only into
$string variables or #numeric variables.
 Correct the source line.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 343

Error Number Error Message Suggestion/Interpretation

003514 PUT and GET variables must match
array field types.

When moving data into or out of arrays,
 the source or destination variables must
match the array fields in type. CHAR
fields can be stored into/from strings,
 NUMBER fields into/from numeric
variables. Check the CREATE-ARRAY
command.

003515 More fields than variables found in array
command.

The ARRAY command must not have
more variables listed to the left of the
array name than there are matching fields
defined for the array. Check against the
CREATE-ARRAY command.

003516 Too many arrays defined; maximum is
`01.

Reduce the number of arrays needed by
the program.

`01 = Maximum number of arrays
supported by this version of SQR

003517 Missing '=specifier' in qualifier: `01 Correct the syntax.

01 = Name of missing required
parameter

003518 Duplicate array name: `01 Change the name of the array.

`01 = Array name in question

003519 Too many fields defined; maximum is
`01.

Reduce the number of fields.

`01 = Maximum number of fields
allowed per array

003520 Missing ':type' in CREATE-ARRAY
FIELD= `01

Correct the syntax.

`01 = The name of the field

003521 Duplicate FIELD name: `01 Change the name of one of the fields.

`01 = The name of the field

003522 Optional :nn for FIELD must be between
1 and 64K.

Correct the source line.

003523 CREATE-ARRAY FIELDS :type must
be one of the following: `01

Correct the syntax.

003525 Missing NAME= in CREATE-ARRAY. Correct the syntax.

003526 Missing or incorrect SIZE= in CREATE-
ARRAY.

Correct the syntax.

003527 Missing FIELD= statements in
CREATE-ARRAY.

Correct the syntax.

Understanding SQR Messages Appendix A

344 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

003528 Array dimensioned too large for PC in
CREATE-ARRAY.

On 32-bit systems, the maximum
allocation that can be made is 65520
characters. The array as specified would
exceed this limit. Reduce the number of
entries.

003529 Missing or invalid initialization value for
field `01.

Correct the syntax.

01 = Name of the field

003600 Missing 'ask' variable name. Correct the syntax.

003601 Out of substitution or #DEFINE
variables; use -Mfile to increase
SUBVARS.

Use the -Mfile flag on the command line
to specify a file containing an entry that
increases the currently defined value.

003603 WARNING: Substitution variables do
not vary when saved with run-time.

This is an informational message.

003605 No substitution variable entered. The C routine "fgets()" returned an error
and SQR ends the program run.

003700 Did not find end of paragraph: `01 The END-paragraph command to match
the specified paragraph is missing.
 Correct the source file. `01 - BEGIN-
paragraph in question

003701 Invalid command. Verify the spelling of the command.

003702 Command not allowed in this section:
`01

Correct the syntax.

`01 = Offending command name

003703 Paragraph not allowed inside procedure. The BEGIN-paragraph command is not
allowed here. Review your SQR code for
a misplaced paragraph.

003704 Missing procedure name. Correct the syntax.

003705 Extra argument found. Correct the syntax.

003706 Missing Comma. Correct the syntax.

003707 Bad Argument List. The DO or BEGIN-PROCEDURE
command has an error in its argument
list, possibly extra characters after the
final right parentheses. Correct the
source line.

003708 Empty Argument. The DO or BEGIN-PROCEDURE
command has an error in its argument
list, possibly two commas in a row inside
the parentheses. Correct the source line.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 345

Error Number Error Message Suggestion/Interpretation

003709 Only $string and #number variables
allowed for BEGIN-PROCEDURE
parameters.

Correct the syntax.

003710 Unknown argument type. An argument in a DO or BEGIN-
PROCEDURE command is incorrect.
 Verify the spelling of the variable types.

003711 Indicate :$string or :#number returned
values in BEGIN- PROCEDURE only.

Correct the syntax.

003712 Missing). Correct the syntax.

003713 `01 paragraph not allowed with -XL
option in effect.

Either use the #IF command to
conditionally compile the program when
-XL is being used or do not execute this
SQR report with the -XL option. `01 =
Name of the BEGIN-paragraph

003714 Bad database connection number. The -Cnn value must be a non-zero
value. Correct the source line.

003715 Did not find end of paragraph: `01 (No
'from...' clause found.)

Correct the source code.

`01 = BEGIN-command in question

003716 Error in SQL statement. The database server has determined that
the SQL statement is in error. The actual
error text from the server follows this
message. Correct the SQL statement.

003717 Extra characters after expression
continuation.

Remove the extra characters after the
dash.

003718 Did not find end of expression. An expression in a SELECT list must
end with either a &column variable or
a position parameter "(Row,Col,Len)".
 Correct the source line.

003719 Columns names and expressions must be
unique or be given unique pseudonyms (
&name).

You are trying to select the same
&column name more than once. Change
the assigned &column name by using an
alias after the name. Columns retrieved
from the database are assigned names by
prepending an "&" to the beginning of
the name.

003720 Bad number specified for 'LOOPS=' on
'BEGIN-SELECT; Maximum is 32767'.

If your program logic requires that you
stop processing after more than 32767
rows have been retrieved, you could
count the rows manually and use the
EXIT-SELECT command to break out of
the SELECT loop.

Understanding SQR Messages Appendix A

346 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

003721 Bad param found on 'BEGIN-
SELECT' line; Format is: BEGIN-
SELECT [DISTINCT] [-Cnn] [- Bnn]
[LOOPS=nn] [ON-ERROR=procedure[(
arg1[,argi]...)]]

(DB2) Correct the syntax.

003721 Bad param found on 'BEGIN-SELECT'
line; Format is: BEGIN-SELECT
[DISTINCT] [-Cnn] [LOOPS=nn] [ON-
ERROR=procedure[(arg1[,argi]...)]]

(Informix) Correct the syntax.

003721 Bad param found on 'BEGIN-SELECT'
line; Format is: BEGIN-SELECT
[DISTINCT] [-Cnn] [LOOPS=nn] [ON-
ERROR=procedure[(arg1[,argi]...)]] [-
DB=database]

(ODBC) Correct the syntax.

 003721 Bad param found on 'BEGIN-
SELECT' line; Format is: BEGIN-
SELECT [DISTINCT] [-Cnn] [- Bnn]
[LOOPS=nn] [ON-ERROR=procedure[(
arg1[,argi]...)]]

(Oracle) Correct the syntax.

 003721 Bad param found on 'BEGIN-
SELECT' line; Format is: BEGIN-
SELECT [DISTINCT] [-Cnn]
[- XP] [LOOPS=nnn] [ON-
ERROR=procedure[(arg1[,argi]...)]]

(Sybase) Correct the syntax.

003722 Could not set up cursor. An error occurred while trying to
compile the SQL statement. Review
any $string variable references. Correct
the SQL statement or use the ON-
ERROR= option to trap the error during
the program run.

003723 Problem executing cursor. An error occurred while trying to execute
the SQL statement. Review the $string
variable references. Correct the SQL
statement or use the ON-ERROR=
option to trap the error during the
program run.

003724 Could not exit query loop. The database command to cancel the
query returned an error. Try running the
SQR program again. The error could be
related to a network or server problem.
 If the error persists, contact your system
administrator.

003725 Bad return fetching row from database. The database returned an error status
for the last row that was fetched. This is
commonly due to the buffer not being
large enough. If selecting expressions,
 make sure that the length of the first
expression is adequate for all rows
selected.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 347

Error Number Error Message Suggestion/Interpretation

003726 Literal in SQL expression missing
closing quote.

Literals must be surrounded by single
quotes ('). To embed a quote within a
literal use two single quotes in sequence
(''). Correct the source line.

003727 SQL expression not ended, perhaps
parentheses not balanced.

An expression in a SELECT list must
end with either a &column variable or
a position parameter "(Row,Col,Len)".
 Correct the source line.

003728 SQL expression not ended, perhaps
missing &name.

An expression in a SELECT list must
end with either a &column variable or
a position parameter "(Row,Col,Len)".
 Correct the source line.

003729 SQL expression is missing &name or has
unbalanced parentheses.

An expression in a SELECT list must
end with either a &column variable or
a position parameter "(Row,Col,Len)".
 Correct the source line.

003730 Incorrect arguments for BEGIN-SQL: [-
Cnn] [ON- ERROR=procedure[(arg1[,
argi]...)]]

(DB2) Correct the syntax.

003730 Incorrect arguments for BEGIN-SQL: [-
Cnn] [ON- ERROR=procedure[(arg1[,
argi]...)]]

(Informix) Correct the syntax.

003730 Incorrect arguments for BEGIN-SQL: [-
Cnn] [-NR] [ON- ERROR=procedure(
arg1[,argi]...)]] [-DB=]

(ODBC) Correct the syntax.

003730 Incorrect arguments for BEGIN-SQL: [-
Cnn] [ON- ERROR=procedure[(arg1[,
argi]...)]]

(Oracle) Correct the syntax.

003730 Incorrect arguments for BEGIN-SQL: [-
Cnn] [-XP] [ON- ERROR=procedure[(
arg1[,argi]...)]]

(Sybase) Correct the syntax.

003731 Did not find 'END- SQL' after 'BEGIN-
SQL'.

Correct the source file.

003732 ON-ERROR= for 'BEGIN-SQL' in
SETUP section must be STOP, WARN or
SKIP.

Correct the syntax.

003733 Could not create procedure for SQL. (Sybase) SQR could not create a stored
procedure for the SQL statement. The
most likely cause for failure is that
the user name you are using to run the
report under does not have the proper
privileges. Either grant the user CREATE
PROCEDURE privilege or use the -
XP command line option to inhibit
SQR from creating temporary stored
procedures for SQL statements.

Understanding SQR Messages Appendix A

348 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

003734 Could not compile SQL. Correct the SQL statement or use the
ON-ERROR= option to trap the error
during the program run.

003735 Could not execute SQL. An error occurred while trying to
compile the SQL statement. Correct
the SQL statement or use the ON-
ERROR= option to trap the error during
the program run.

003736 Please use BEGIN-SELECT - END-
SELECT section for SELECT
statements.

(Oracle, Informix, ODBC) Correct the
source code.

003737 Bad fetch buffer count. (Oracle, Sybase) The -B flag specifies an
illegal value. Correct the source code.

003738 Report interrupted by request. This is an informational message.

003741 Dynamic column must be $string
variable.

Correct the syntax.

003742 Dynamic column missing '`01'. Correct the syntax.

`01 = Missing character

003743 Dynamic columns must have a
&pseudonym.

Correct the syntax.

003744 &pseudonym =type must be 'char',
 'number', or 'date'.

Correct the syntax.

003745 Only a variable name may be between
the '`01' and '`02' characters.

Correct the syntax.

`01 = Leading character

`02 = Trailing character

003746 When dynamic columns are used all non-
dynamic columns and expressions must
be defined with &name=type.

Add &name=type to all expressions and
non-dynamic columns.

003747 When the table name is dynamic each
column and expression must be defined
with &name=type.

Add &name=type to all expressions and
non-dynamic columns.

003800 Too many document paragraphs;
maximum is `01.

There are too many BEGIN-
DOCUMENT paragraphs. Reduce the
number of DOCUMENT paragraphs
needed by the program.

`01 = Maximum number supported by
this version of SQR

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 349

Error Number Error Message Suggestion/Interpretation

003801 Too many document markers; maximum
is `01.

There are too many BEGIN-
DOCUMENT paragraphs. Reduce the
number of DOCUMENT paragraphs
needed by the program.

`01 = Maximum number supported by
this version of SQR

003802 Duplicate document marker. Specify a unique name for the the
document marker.

003803 Did not find 'END- DOCUMENT' after
'BEGIN-DOCUMENT'.

The BEGIN-DOCUMENT paragraph
must end with END-DOCUMENT.
 Correct the source code.

003900 EXECUTE command is incomplete. Correct the syntax.

003901 Bad -Cnn connection number for
EXECUTE.

The -Cnn value must be a nonzero value.
 Correct the source line.

003902 @#Return_status must be #numeric (
missing #).

Correct the source line.

003903 Missing '=' after `01. Correct the source line.

`01 = The parameter in question

003904 Unknown variable type. Variable names must begin with $, #, or
&. Correct the source line.

003905 OUT[PUT] variables for EXECUTE
may only be $variable or #variable.

Correct the syntax.

003906 The only EXECUTE option is WITH
RECOMPILE.

Correct the syntax.

003907 You must EXECUTE ... INTO
&columns.

Correct the syntax.

003908 Unknown datatype for EXECUTE...
INTO &columns.

Verify the spelling of the data type. If
the data type is correct, then contact
customer technical support so SQR can
be updated.

003909 EXECUTE...INTO &columns must be
unique.

The &column name assigned to the
column must be unique throughout the
report. Specify a unique name for the
column.

003910 Missing (length) for datatype in
EXECUTE.

Correct the source line.

003911 Datatype should not have (length) in
EXECUTE.

Correct the source line.

Understanding SQR Messages Appendix A

350 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

003912 DO= in EXECUTE requires INTO...
 variables.

Correct the syntax.

003913 Could not EXECUTE stored procedure. Record the database error message
displayed with this message. If needed,
 contact your system administrator.

003914 Bad return fetching row from database. Record the database error message
displayed with this message. If
necessary, contact your system
administrator.

003915 Could not set up EXECUTE cursor. The database server returned an
error while trying to compile the
SQL statement needed to set up the
EXECUTE command.

004000 Result #variable or $variable or '='
missing in expression.

The LET command is not properly
formatted. Correct the source line.

004001 Expression too complex. The expression is either too long or is too
deeply nested. Break the expression into
smaller expressions.

004002 Parentheses unbalanced in expression. A left or right parenthesis is missing.
 Correct the source line.

004003 Too many variables; maximum is `01. Break the expression into smaller
expressions.

`01 = Maximum number supported by
this version of SQR

004004 Empty expression. The expression is invalid. Correct the
source line.

004005 Extra comma in expression. An argument is missing after a comma in
the expression. Correct the source line.

004006 Unknown operator '`01'. Do you mean
`02 ?

The concatenation operator is ||. Correct
the source line.

004007 Too many &column forward references
in expression; maximum is `01.

The expression contains too many
forward references. Break the expression
into smaller expressions.

`01 = Maximum number supported by
this version of SQR

004008 Unknown function or variable in
expression: `01

The specified function is not an SQR
built-in function nor does it exist in the
user-modifiable file UFUNC.C. Verify
that the function names are spelled
correctly.

`01 = Function name

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 351

Error Number Error Message Suggestion/Interpretation

004009 Function '`01' missing parentheses. All functions in an expression must be
followed by their arguments enclosed in
parentheses. Correct the source line.

004010 Empty parentheses or expression. A pair of parentheses were found with
nothing inside them. Remove the () in
question from the source line.

004011 User function '`01' has incorrect number
of arguments.

Look at the file UFUNC.C to determine
the correct number and type of
arguments required for the specified
function.

`01 = User function name

004012 Function '`01' has incorrect number of
arguments.

Correct the syntax of the function.
 Functions are described under the LET
command.

`01 = SQR function name

004013 Missing operator in expression. Correct the source line.

004014 Operator '`01' missing argument. Correct the syntax of the function.
 Functions are described under the LET
command.

`01 = Operator

004015 Function '`01' missing argument. Correct the syntax of the function.
 Functions are described under the LET
command.

`01 = SQR function name

004016 Function or operator '`01' missing
arguments.

Correct the syntax of the function.
 Functions are described under the LET
command.

`01 = SQR function name

004017 User function '`01' requires character
argument.

Look at the file UFUNC.C to determine
the correct number and type of
arguments required for the specified
function.

`01 = User function name

004018 User function '`01' requires numeric
argument.

Look at the file UFUNC.C to determine
the correct number and type of
arguments required for the specified
function.

`01 = User function name

Understanding SQR Messages Appendix A

352 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

004019 User function '`01' requires $string
variable.

Look at the file UFUNC.C to determine
the correct number and type of
arguments required for the specified
function.

`01 = User function name

004020 User function '`01' requires #numeric
variable.

Look at the file UFUNC.C to determine
the correct number and type of
arguments required for the specified
function.

`01 = User function name

004021 User function '`01' has incorrect
argument type list. Must be of: c,n,C,N

The UFUNC.C file has a bad definition
for the specified function. Correct the
UFUNC.C program file, recompile
UFUNC.C, and recreate the SQR
executable.

`01 = User function name

004022 User function '`01' missing arguments. Look at the file UFUNC.C to determine
the correct number and type of
arguments required for the specified
function. `01 = User function name

004023 User function '`01' has incorrect return
type. Must be c or n.

The UFUNC.C file has a bad definition
for the specified function. Correct the
UFUNC.C program file, recompile
UFUNC.C, and recreate the SQR
executable. `01 = User function name

004024 'isnull' requires a &column, $string or
$date argument.

#numeric variables cannot be NULL.
 Correct the source line.

004025 'nvl' requires a &column, $string or $date
as its first argument.

#numeric variables cannot be NULL.
 Correct the source line.

004026 Function or operator '`01' requires
character argument.

Correct the source line.

`01 = Function or operator

004027 Function or operator '`01' requires
numeric argument.

Correct the source line.

`01 = Function or operator

004028 IF or WHILE expression must return
logical result.

The expression used must evaluate a
statement that will be TRUE or FALSE.
 Correct the source line.

004029 Attempting division by zero in
expression.

The expression tried to divide a number
by zero. Use the COND() function to
determine whether the divisor is zero;
then divide by something else (for
example, 1).

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 353

Error Number Error Message Suggestion/Interpretation

004030 Attempting division by zero with '%'. An attempt was made to divide a number
using the " %" operator. Use the COND()
function to determine whether the divisor
is zero; then divide by something else (
for example, 1).

004031 The number used with '%' (`01) is out of
range.

The "%" operator works only with
integers. Correct the program logic.

`01 = Maximum value allowed

004032 User function has unknown return type
-- expecting n or c -- need to recompile
Run-Time file?

SQR detected an error while processing
a user defined function. If you are
running an .sqt file, it probably needs
to be recompiled because the user
function has changed its definition. If
you are running an .sqr file, you need
to correct the UFUNC.C program file,
 recompile UFUNC.C, and recreate the
SQR executable.

004033 In user function use C type with
allocated string to change $variable.

SQR detected an error while processing
a user defined function. Correct the
UFUNC.C program file, recompile
UFUNC.C, and recreate the SQR
executable.

004034 Could not find array '`01' in ARRAY
function.

Verify the spelling of the array name.

`01 = Array name

004035 Could not find array field '`01' in
ARRAY function.

Verify the spelling of the array field
name.

`01 = Array field name

004036 Math error in expression (usually over-
or under-flow).

Most of the SQR mathematical built-in
functions have a corresponding C library
routine. One returned an error. Break the
expression into discrete expressions in
order to identify the function that caused
the error.

004037 Error executing expression. Record the steps leading up to the error
and contact technical support.

004038 Out of space while processing
expression;

Use -Mfile to increase
EXPRESSIONSPACE.

The expression requires more temporary
string storage than is currently allocated.
 Use the -Mfile flag on the command line
to specify a file that contains an entry
that increases by a greater value than is
currently defined.

004039 '`01' assumed to be a variable name, not
an expression.

Warning message.

`01 = Expression in question

Understanding SQR Messages Appendix A

354 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

004040 The array '`01' has not been defined. Define the array using the CREATE-
ARRAY command. `01 = Array name

004041 The field '`01' is not valid for array '`02'. Correct the source code.

`01 = Field name

`02 = Array name

004042 The array reference '`01' has an incorrect
number of parameters specified.

Correct the source code.

`01 = Array name

004043 The array reference '`01' requires
numeric parameters for the element and
occurs arguments.

Correct the source code.

`01 = Array name.

004045 Function or operator '`01' requires date
argument.

Correct the source code.

`01 = Array name

004046 Incompatible types between expression
and variable.

Correct the source code.

004047 The field '`01' is must be 'char' or 'float'. Correct the source code.

`01 = Field name

004048 Function or operator '`01' must be a
string or date argument.

Correct the source line.

`01 = Function or operator

004100 Use 'print' command to format data
outside SELECT query.

You must precede PRINT command
arguments (WRAP, ON-BREAK.) with
an explicit PRINT command when
outside of a BEGIN-SELECT paragraph.
 Correct the source line.

004101 Cannot find required parameter. Correct the syntax.

004102 Bad number found. A command expecting a numeric literal
or :#numeric variable reference found an
illegal number definition or a reference
to a string variable or column. Correct
the source line.

004103 Cannot find required numeric parameter. Correct the syntax.

004104 Cannot find placement parameters. The position qualifier "(Row,Col,Len)"
was not found. Search for a missing
parentheses.

004105 Placement parameter incorrect. The "Row", "Column" or "Length" fields
are invalid or ill-formed. Correct the
source line.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 355

Error Number Error Message Suggestion/Interpretation

004106 Invalid second function on line. An SQR command used as a qualifier
for a primary command (for example,
 PRINT) is incorrect. Correct the source
line.

004107 Second function must be FORMAT type. The PRINT command may have format
command qualifiers such as WRAP,
 CENTER, or FILL. Other qualifier
commands are not permitted.

004108 Missing operator =, <, >, ... Correct the source line.

004109 Invalid operator. Correct the source line.

004110 Missing variable. Correct the syntax.

004111 Please give this expression a
&pseudonym.

Expressions selected in a BEGIN-
SELECT paragraph should be given
an &Name or be followed by a print
position "(Row,Col,Len)". Correct the
source line.

004112 Wrong variable type. Correct the syntax.

004113 Command incomplete, expected '`01'. Correct the syntax.

`01 = What was expected

004114 Expecting '`01', found '`02'. Correct the syntax.

`01 = What was expected

`02 = What was encountered

004115 Unknown command or extra parameters
found (missing quotes?).

Correct the syntax.

004116 Duplicate references to parameter '`01'. Correct the syntax.

`01 = Duplicated parameter

004117 Unexpected equal sign found with '`01'. Correct the syntax.

`01 = Parameter name

004118 Qualifier '`01' cannot be used with the
following qualifiers:

Correct the syntax.

`01 = Qualifier name

004119 Expecting numeric column, found string
column.

Correct the syntax.

004120 Date variables (`01) cannot be used with
this command.

Correct the syntax.

`01 = Parameter name

Understanding SQR Messages Appendix A

356 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

004200 Page width and depth must be > 0 and <
32767.

The values specified with the PAGE-
SIZE command are out of specified
range. Specify legal values.

004201 Page buffer must be < 65536 on PC
SQR.

The maximum page buffer allocation on
a PC is 65536. The Page-Depth * Page-
Width cannot exceed this value. Reduce
the Page-Depth or Page-Width.

004202 Cannot generate line printer output for
this report because position qualifier(s)
may be out of range. If you are running
this report, specify PRINTER:{HP,EH,
HT ,PS,WP} for graphical printer output.

The report output cannot be generated
for a Line Printer. If your report was
designed for a graphics printer, specify
- PRINTER:{HP,EH,HT,PS,WP} for
graphical printer output.

004300 Missing end of placement (...) in SHOW. The placement parameter is ill-formed.
 Correct the source line.

004301 Bad (...) location in SHOW. Screen positions must be valid numbers.
 Correct the source line.

004302 Missing literal or variable name to EDIT
in SHOW.

A literal or variable name must
immediately precede the EDIT,
 NUMBER, MONEY, or DATE
keywords.

004303 Missing edit mask in SHOW. The word EDIT must be followed by a
valid edit mask. Correct the source line.

004304 Only string variable allowed for dynamic
edit mask.

Dynamic edit masks may only be stored
in $variables. Correct the line.

004305 Unknown option for SHOW. Correct the syntax.

004400 Program too large; use -Mfile to increase
PROGLINES.

The SQR program contains too many
SQR command lines. Use the -Mfile flag
on the command line to specify a file
containing an entry that increases the
currently defined value.

004401 Out of param storage; use -Mfile to
increase PROGLINEPARS.

The SQR program contains too many
SQR command line parameters. Use
the -Mfile flag on the command line to
specify a file containing an entry that
increases the currently defined value.

004402 Out of string storage; use -Mfile to
increase STRINGSPACE.

The space allocated to hold the static
string variables ('...') has been used. Use
the - Mfile flag on the command line to
specify a file containing an entry that
increases the currently defined value.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 357

Error Number Error Message Suggestion/Interpretation

004403 Out of variables; use - Mfile to increase
VARIABLES.

There are too many variables (string,
 numeric), literals and database columns.
 Use the -Mfile flag on the command line
to specify a file containing an entry that
increases the currently defined value.

004405 Out of forward &column or $variable
references; use -Mfile to increase
FORWARDREFS.

A forward referenced variable is a
variable that is referenced before it
is defined. Use the -Mfile flag on the
command line to specify a file containing
an entry that increases the currently
defined value.

004406 Number `01 not allowed. Use a different value.

`01 = Internal number

004407 Referenced variables not defined: References were made to column
variables (&var) that are not defined in
the program. The list of variable names
follows this message.

004500 Out of Print positions; use -Mfile to
increase POSITIONS.

A print position is the "(Row,Col,Len)"
parameter. Use the -Mfile flag on the
command line to specify a file containing
an entry that increases the currently
defined value.

004501 Use '+' and negate variable for reverse
relative placement.

The use of "-#variable" is not legal here.
 Negate the #variable value and use
"+#variable".

004503 Fixed line placement #variable must be >
0. Use relative positioning, (+#line,10,0).

Correct the source line as indicated.

004504 Fixed column placement #variable must
be > 0. Use relative positioning, (5,
+#col,0).

Correct the source line as indicated.

004505 Length placement #variable must be >=
0.

The length field cannot be a negative
value. Correct the source line.

004600 CODE not appropriate for numeric data. The CODE qualifier to the PRINT
command may only be used for text
fields. Move the “#Variable” to a
“$Variable” first and then print the
“$Variable”.

004601 Unknown option for GRAPHIC
command: BOX, HORZ-LINE, VERT-
LINE or FONT

Correct the syntax.

Understanding SQR Messages Appendix A

358 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

004602 GRAPHIC BOX out of bounds. Row:
`01, Column: `02, Width: `03, Depth: `04

SQR ends the program run.

`01 = Row

`02 = Column

`03 = Width

`04 = Depth

004603 GRAPHIC VERT- LINE out of bounds.
 Row: `01, Column: `02, Length: `03

SQR ends the program run.

`01 = Row

`02 = Column

`03 = Length

004604 GRAPHIC HORZ- LINE out of bounds.
 Row: `01, Column: `02, Length: `03

SQR ends the program run.

`01 = Row

`02 = Column

`03 = Length

004700 Cannot open the program file: '`01' (`02):
`03

Depends on the system error message.

`01 = Name of the program file

`02 = System error code

`03 = System error message

004701 Cannot logon to the database. The connectivity information is either
incorrect or the database server is
unavailable. Verify the connectivity
information and the server availability.

004702 Line found outside paragraph. All commands must be within BEGIN-.
.. END-statements. Correct the source
code.

004703 Cannot close the program file. (`01): `02 Depends on the system error message.

`01 = System error code

`02 = System error message

004704 #ENDIF not found for #IF. Missing an #ENDIF to complete
conditional compilation. Correct the
source code.

004705 Program line too long; maximum is `01. Break the program line into smaller
lines.

`01 = Maximum line length supported by
this version of SQR

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 359

Error Number Error Message Suggestion/Interpretation

004706 Substitution variable {`01} would cause
this line to exceed the maximum line
length of `02 characters.

The substitution variable value would
cause this line to exceed the maximum
line size. Break the program line into
smaller lines.

`01 = Name of the substitution variable

`02 = Maximum line length supported by
this version of SQR

004707 No value found for substitution variable:
{`01}

An empty value was found for the
substitution variable. Verify the spelling
of the substitution variable.

`01 = Name of the substitution variable

004708 #ELSE without preceding #IF. Missing an #IF or #IFDEF or #IFNDEF
to begin conditional compilation. Correct
the source code.

004709 #ENDIF without preceding #IF. Missing an #IF or #IFDEF or #IFNDEF
to begin conditional compilation. Correct
the source code.

004710 #IF's nested too deeply; maximum is `01. Reduce the number of nested #IF
directives.

`01 = The maximum depth supported by
this version of SQR

004711 #INCLUDE files nested too deeply;
maximum is `01.

Reduce the number of nested
#INCLUDE directives.

`01 = The maximum depth supported by
this version of SQR

004712 Include file name too long; Modify -I
flag.

The combined -I directory name with
the #INCLUDE file name exceeds
the maximum length permitted for a
complete path name. Verify the spelling
of both the -I command flag and the
#INCLUDE filename.

004713 Cannot open the #INCLUDE file: '`01' (
`02): `03

`01 = Include file name

`02 = System error code

`03 = System error message

004714 Cannot close the #INCLUDE file: '`01' (
`02): `03

`01 = Include file name

`02 = System error code

`03 = System error message

004716 'BEGIN-REPORT' command not found
in program.

This section is required for all reports.
 Correct the source code.

Understanding SQR Messages Appendix A

360 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

004717 Cannot open the report output file: '`01' (
`02): `03

`01 = Output file name

`02 = System error code

`03 = System error message

004719 Cannot logoff the database. The database server returned an error
while trying to log off from the database.
 SQR ends the program run.

004720 Cannot open the run-time file: '`01'. (
`02): `03

SQR ends the program run.

`01 = Run-Time file name

`02 = System error code

`03 = System error message

004721 Cannot close the run-time file. (`01): `02 SQR ends the program run.

`01 = System error code

`02 = System error message

004722 Error reading the run-time file. (`01): `02 SQR ends the program run.

`01 = System error code

`02 = System error message

004723 Run time file must be recreated for this
version of SQR.

The runtime file was created by a earlier
version of SQR and is incompatible with
the current version. Recreate the .sqt (
runtime) file.

004724 The -XL option cannot be specified with
this run-time file because access to the
database is required.

Do not use the -XL option.

004725 Cannot open cursor. The database server returned an error
indicating that a new database cursor or
logon could not be completed. See the
error message from the database server.

004726 Cannot create procedure for SQL
statement.

(Sybase) SQR could not create a stored
procedure for the SQL statement. The
most likely cause for failure is that
the user name you are running the
report under does not have the proper
privileges. Either grant the user CREATE
PROCEDURE privilege or use the -
XP command line option to inhibit
SQR from creating temporary stored
procedures for SQL statements.

004727 Error writing the runtime file. (`01): `02 `01 = System error code

`02 = System error message

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 361

Error Number Error Message Suggestion/Interpretation

004728 You must specify a Partitioned Data
Set name and member to build a .sqt(
member) run-time file. Could not create
the run-time file.

(MVS) Use the proper format to specify
the name of the .sqt file.

004729 Cannot find inactive database cursor.
 Program too large.

(Oracle, DB2) The program has too
many concurrent database cursors.
 Reduce the complexity of the program.

004730 Run-time saved in file: `01 This is an informational message.

`01 = Name of the .sqt file created

004735 Unknown variable type encountered in
run-time file: `01

SQR ends loading the runtime file.

`01 = Variable type

004736 Unexpected End-Of-File while
processing the run-time file.

SQR ends loading the runtime file.

004737 Cannot load the run- time file because it
was built for the `01database and `02 is
built for the `03 database.

SQR ends loading the runtime file.

`01 = Database name from runtime file

`02 = SQR image name

`03 = Database that SQR is built for

004738 'END-REPORT' not paired with
'BEGIN- REPORT'.

Correct the source code.

004739 'END-PROGRAM' not paired with
'BEGIN- PROGRAM'.

Correct the source code.

004743 #INCLUDE filename must be enclosed
in quotation marks.

Correct the syntax.

004744 #INCLUDE command format is:
#Include 'filename'.

Correct the syntax.

004745 Array field (`01.`02) specification
exceeds the PC 64K limit.

Reduce the size of the field
requirements.

`01 = Array name

`02 = Field name

004746 Layout '`01' specifications exceeds the
PC 64K limit.

The layout is too large for the 32–bit
version of SQR to handle.

`01 = Layout name

004747 The SQT file is corrupted and cannot be
processed.

SQR ends loading the runtime file.

Understanding SQR Messages Appendix A

362 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

004748 The user function '`01' needs to be
defined as entry `02 in the user function
table. It requires a definition of: Return
Type = '`03' Arg Count = `04 Arg Types
= "`05"

The SQT file requires that the specified
user function be defined.

`01 = User function name

`02 = Entry in the user function table

`03 = Return type

`04 = Argument count

`05 = Argument types

004749 An attempt was made to move `01
characters into '`02'. The maximum
allowed is `03 characters.

An attempt was made to move too much
data into an SQR string variable.

`01 = Number of characters to be moved

`02 = Variable name

`03 = Maximum characters allowed

004802 PRINTER TYPE must be HTML,
 HPLASERJET, POSTSCRIPT, or
LINEPRINTER.

Correct the syntax.

004805 Both BEFORE-BOLD and AFTER-
BOLD must be specified.

Correct the syntax.

004807 Unknown DECLARE qualifier. Correct the syntax.

004900 Out of dynamic SQL arguments [$...];

use -Mfile to increase
DYNAMICARGS.

Use the -Mfile flag on the command line
to specify a file containing an entry that
increases the currently defined value.

004901 Date variables (`01) cannot be used
in BEGIN-SQL or BEGIN-SELECT
paragraphs.

Correct the source code.

`01 = Variable name

005000 Report '`01' heading section size exceeds
the page depth.

Reduce the size of the heading or
increase the page depth.

005001 Report '`01' footing location must be less
than the page depth.

Reduce the size of the footing or increase
the page depth.

005002 Check 'BEGIN- HEADING' commands:
Discovered 2nd page- initialization while
heading in progress.

The BEGIN-HEADING procedure
either caused an overflow of the current
page or it issued a command that caused
a page eject to occur. Review any
procedure invoked by the BEGIN-
HEADING section to ensure that the
commands do not overflow the page or
cause a page eject.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 363

Error Number Error Message Suggestion/Interpretation

005003 Check 'BEGIN-FOOTING' commands;
perhaps number of footing lines is too
small. Discovered 2nd page- write while
footing in progress.

The BEGIN-FOOTING procedure either
caused an overflow of the current page
or it issued a command that caused
a page eject to occur. Review any
procedure invoked by the BEGIN-
FOOTING section to ensure that the
commands do not overflow the page or
cause a page eject.

005004 Attempt to execute the `01 command
while processing the `02 section.

Change the SQR program logic to
prevent the command from executing
while the specified section is active.

`01 = Command name

`02 = Section name

005005 Report '`01' already has been assigned a
`02 section.

Correct the source code.

`01 = Report name

`02 = Duplicated section name

005006 You cannot define more than one default
'`01' section.

Correct the source code.

`01 = Duplicated section name

005007 Report '`01' has overlapping heading and
footing sections.

Correct the source code.

`01 = Report name

005008 TOC '`01' already has been assigned a
`02 section.

Correct the source code.

`01 = Table of Contents name

`02 = Duplicated section name

005100 'IF', 'WHILE', 'EVALUATE' commands
nested too deeply; maximum is `01.

Reduce the nested commands.

`01 = Maximum depth allowed by this
version of SQR

005101 'BREAK' found outside 'WHILE' or
'EVALUATE' statement.

The BREAK command is valid only in
the context of a WHILE or EVALUATE
statement. Correct the source code.

005102 Out of Break commands; Use -Mfile to
increase BREAKS.

This is the number of BREAK
commands allowed per EVALUATE
command. Use the -Mfile flag on the
command line to specify a file containing
an entry that increases the currently
defined value.

005103 END-WHILE found without matching
'WHILE'.

Correct the source code.

005104 'IF' or 'EVALUATE' command not
completed before 'END-WHILE'.

Correct the syntax.

Understanding SQR Messages Appendix A

364 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

005105 'ELSE' found without matching 'IF'. ELSE can be used only within the
context of an IF command. Correct the
source code.

005106 Single 'ELSE' found inside 'WHILE' or
'EVALUATE' statement.

ELSE can be used only within the
context of an IF command. Correct the
source code.

005107 Only one 'ELSE' allowed per 'IF'. Rewrite the source code to use nested IF
statements.

005108 Found 'END-IF' without matching 'IF'. Each IF command must have a matching
END-IF command. Correct the source
code.

005109 'WHILE' or 'EVALUATE' command not
completed before 'END-IF'.

You are missing a closing END-WHILE
or END-EVALUATE command before
END- IF. IF, WHILE, and EVALUATE
statements can be nested, but they cannot
cross each other's boundaries. Each inner
statement must be complete before a
closing statement is ended. Correct the
source code.

005110 EVALUATE statements nested too deep;
maximum is `01.

Reduce the number of nested statements.

`01 = Maximum depth supported by this
version of SQR

005111 'WHEN' found outside 'EVALUATE'
clause.

WHEN may be used only in the context
of an EVALUATE clause. Correct the
source code.

005112 'IF' or 'WHILE' not completed before
'WHEN' statement.

Correct the syntax.

005113 Out of When commands; Use -Mfile to
increase WHENS.

Use the -Mfile flag on the command line
to specify a file containing an entry that
increases the currently defined value.

005114 Incorrect types for comparison. Both
must be of the same type (string, numeric
or date).

Correct the source line.

005115 'When-other' found outside 'Evaluate'
statement.

WHEN can be used only in the context
of an EVALUATE statement. Correct the
source code.

005116 'IF' or 'WHILE' not ended before
'WHEN- OTHER' command.

Correct the syntax.

005117 Only one 'WHEN- OTHER' allowed per
'EVALUATE'.

Correct the syntax.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 365

Error Number Error Message Suggestion/Interpretation

005118 Found 'END-EVALUATE' without
matching 'EVALUATE'.

Each EVALUATE command must have a
matching END-EVALUATE command.
 Correct the source code.

005119 'IF' or 'WHILE' command not completed
before 'END- EVALUATE'.

Correct the syntax.

005120 'WHEN-OTHER' must be after all
'WHEN's.

Correct the syntax.

005121 No 'WHEN's found inside 'EVALUATE'
statement.

Correct the syntax.

005122 'IF', 'EVALUATE' and 'WHILE'
statements cannot cross sections or
paragraphs.

These commands must be contained
within a single section or paragraph.
 Correct the source code.

005200 Did not find '>' after <.... A leading left angled bracket (<)
indicates that you are beginning an
decimal value representing a character,
 which must be ended by a right angled
bracket (>). Correct the source line.

005201 Bad character in <...>. Numbers in angled brackets (<>) must
be between 1 and 255. Correct the source
line.

005202 Bad number in <...>. Numbers in angled brackets (<>) must
be between 1 and 255. Correct the source
line.

005203 <...> string is too long; maximum is `01
characters.

Reduce the length of the string. If
this is not possible, use a PRINT-
DIRECT command in a BEGIN-
REPORT or END-REPORT procedure.
 `01 = Maximum number of characters
supported by this version of SQR

005300 Did not find '=' after qualifier: `01 Correct the syntax.

`01 = Qualifier name

005301 Qualifier '`01' requires a numeric value. Correct the syntax.

`01 = Qualifier name

005302 Incorrect value for qualifier '`01'. Valid
values are:

Correct the source line.

`01 = Qualifier name

005303 Invalid qualifier '`01'. Valid qualifiers
are:

Correct the source line.

`01 = Qualifier name

Understanding SQR Messages Appendix A

366 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

005304 Qualifier '`01' requires a numeric literal,
 variable, or column.

Correct the source line.

`01 = Qualifier name

005305 Qualifier '`01' references a numeric
variable that has not been defined.

Correct the source line.

`01 = Qualifier name

005306 Qualifier '`01' requires a string literal,
 variable, or column.

Correct the source line.

`01 = Qualifier name

005307 List not terminated. Correct the syntax.

005308 Missing comma in list. Correct the syntax.

005309 Required argument '`01' was not
specified.

Correct the source line.

`01 = Qualifier name

005310 Qualifier '`01' has already been specified. Correct the source line.

`01 = Qualifier name

005311 Qualifier '`01' requires a string literal. Correct the source line.

`01 = Qualifier name

005312 Qualifier '`01' requires a list of values: (
val [,val]...).

Correct the source line.

`01 = Qualifier name

005313 Qualifier '`01' requires a integer value. Correct the source line.

`01 = Qualifier name

005314 Invalid character in variable name '`01'. Correct the source line.

`01 = Invalid character

005315 Qualifier '`01' references a string variable
that has not been defined.

Correct the source line.

`01 = Qualifier name

005316 Qualifier '`01' uses an invalid Unit-Of-
Measure suffix. Valid suffixes are: dp pt
mm cm in

Correct the source line.

`01 = Qualifier name

005400 Second page write attempted while
writing current page. Check BEFORE-
PAGE, AFTER-PAGE procedures.

Review any procedure invoked by the
BEFORE-PAGE or AFTER-PAGE
procedures to ensure that the commands
do not overflow the page or cause a page
eject.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 367

Error Number Error Message Suggestion/Interpretation

005402 String cannot be placed on page: `01 --
placement specified is out of range. (`02,
`03,`04)

Ensure the values are within the page
limits.

`01 = Text value

`02 = Row

`03 = Column

`04 = Length

005403 Error writing the output file. (`01): `02 `01 = System error code

`02 = System error message

005404 Cannot open the Postscript startup file:
`01 (`02): `03

`01 = Name of the file

`02 = System error code

`03 = System error message

005405 SQR trial copy exiting after `01 pages. `01 = Number of pages.

005406 Exiting after requested number of test
pages (`01).

`01 = Number of pages.

005408 Program stopped by user request. This is an informational message.

005500 Cannot set parse_only option. (Sybase) The DB-Library routine
dbsetopt() returned an error. This error
should never occur. Contact technical
support.

005501 Cannot reset parse_only option. (Sybase) The DB-Library routine
dbclropt() returned an error. This error
should never occur. Contact technical
support.

005502 Cannot drop SQR generated stored
procedure: `01.

(Sybase) See the database server error
message that was also output. This error
should never occur. Contact technical
support.

`01 = Stored procedure name

005503 Cannot use `01 datatype as bind variable. (Sybase) Use another database column.

`01 = The database datatype.

005504 Unknown datatype for bind variable: `01
Cannot create stored procedure.

(Sybase) Contact technical support.

`01 = Unknown database datatype

Understanding SQR Messages Appendix A

368 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

005505 SQL too large to create stored procedure. (Sybase) The size of the SQL text
needed to create the stored procedure
is too large for SQR to process. Add
the -XP option to the BEGIN-SQL or
BEGIN-SELECT command.

005506 SQR's EXECUTE command not
available for this version of Sybase.

(Sybase) Some early versions of Sybase
SQL Server or Microsoft SQL Server do
not support Remote Procedure Calls (
RPCs). Update your database server.

005507 Could not add param to remote
procedure call.

(Sybase) A DB-Library routine returned
an unexpected error. See the error
message from the database.

005508 The number of EXECUTE...INTO
&columns does not match the procedure.

(Sybase) Verify the definition for the
stored procedure you are referencing.

005509 Incorrect number of INTO &columns
defined in EXECUTE.

(Sybase) Verify the definition for the
stored procedure you are referencing.

005510 Error converting OUTPUT Sybase type
for EXECUTE.

(Sybase) The DB-Library routine
dbconvert() failed to convert the data
from the stored procedure. Contact
technical support.

005511 Number of OUTPUT parameters from
EXECUTE is incorrect.

(Sybase) Verify the definition for the
stored procedure you are referencing.

005512 Missing default database name for USE. (Sybase) Correct the syntax.

005512 Missing default database name for USE. (ODBC) Could not connect to the
specified datasource.

005513 You may only specify 'USE db' once,
before any SQL statements are executed.

(Sybase) Only one USE command is
allowed in a report. Place the SETUP
section at the beginning of the SQR
report.

005515 Undefined variable referenced in -DB
flag: `01

(ODBC) Verify that there are no
misspellings. `01 = Variable name

005523 Database commit failed. The database command to perform a
commit returned an error. Try running
the SQR program again. The error
could be related to a network or server
problem. If the error persists, contact
your system administrator.

005524 Cannot close database cursor. The database command to close the
database cursor returned an error. Try
running the SQR program again. The
error could be related to a network or
server problem. If the error persists,
 contact your system administrator.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 369

Error Number Error Message Suggestion/Interpretation

005528 DB2 SQL `01 error `02 in cursor `03: (DB2) `01 = Routine name

`02 = Error code

`03 = SQR cursor number

005528 INFORMIX SQL `01 error `02 (ISAM:
`03) in cursor `04: `05

(Informix)

`01 = Routine name

`02 = Error code

`03 = ISAM code

`04 = SQR cursor number

`05 = Error message from database

005528 ODBC SQL `01 error `02 in cursor `03:
`04

(ODBC)

`01 = Routine name

`02 = Error code

`03 = SQR cursor number

`04 = Error message from database

 005528 ORACLE `01 error `02 in cursor `03: `04 (Oracle)

`01 = Routine name

`02 = Error code

`03 = SQR cursor number

`04 = Error message from database

 005528 Sybase `01 error in cursor `02: `03 (Sybase)

`01 = Routine name

`02 = SQR cursor number

`03 = Error message from database

005532 System 10 files are missing. (Sybase) Contact your system
administrator.

005533 Not a System 10 SQL Server. (Sybase) The CT-Library version of
SQR can only connect to a System 10
server. Use the DB-Library version of
SQR to connect to a version earlier than
System 10 server.

005534 SQL too long for PREPARE/DECLARE;
maximum `01 characters.

(DB2) The SQL statement is too large.

`01 = Maximum number of characters
supported by this version of SQR

Understanding SQR Messages Appendix A

370 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

005536 Unknown error message number: `01. (DB2)

`01 = Error message number

005537 Empty error message returned from
system for error number: `01.

(DB2)

`01 = Error message number

005538 Invalid SELECT statement; COMPUTE
clauses are not supported.

(Sybase) The select statement contains a
COMPUTE clause that is not supported.

005539 Could not connect to datasource
specified in -db variable: '`01'.

(ODBC) Could not connect to the
specified datasource.

005540 Not connected to a database, database
access is not allowed.

The SQR program is no longer
connected to a database. Commands
that access the database can no longer
be used. This situation can occur if the
CONNECT fails and the ON-ERROR
option was used.

005543 Specify the Oracle DLL name in the
pssqr.ini file in [Environment:Oracle]
section for ORACLE_DLL entry, such as
ORACLE_DLL=orant 71.dll

(Oracle) SQR was unable to load the
Oracle DLL. By default, SQR looks
first for ociw32.dll or the DLL specified
by the ORACLE_DLL entry in the
[Environment:Oracle] section of the
pssqr.ini file. If that DLL could not
be loaded, then SQR attempts to load
orant71.dll.

005600 GETWRD: Word too long; maximum is
`01.

Reduce the length of the "word".

`01 = Maximum size of a "word"
supported by this version of SQR

005700 Cannot call SQR recursively. SQR cannot be called recursively. This
error can only occur if a User Function
from either UFUNC.C or UCALL.C
calls the sqr() routine. Do not call sqr()
from a UFUNC.C or UCALL.C routine.

005701 Too many SQR command line
arguments; maximum is `01

To pass more than this number of
arguments, use a @file argument file
containing one argument per line.

`01 = Maximum number supported by
this version of SQR.

005702 Log file name specified is too long. Reduce the length of the log file name.

005703 Error opening the SQR log file: '`01' (
`02): `03

`01 = Name of the file

`02 = System error code

`03 = System error message

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 371

Error Number Error Message Suggestion/Interpretation

005704 Missing program name. The name of the program file was
not found on the command line.
 The program name must be the first
parameter on the command line.

005705 Program file name specified is too long. Reduce the length of the program file
name.

005707 Error opening the -E error file: '`01' (
`02): `03

`01 = Name of the file

`02 = System error code

`03 = System error message

005708 Cannot find `01 in SQRDIR, PATH or
\SQR.

The specified file cannot be located
in any of the directories pointed to by
the mentioned environment variables
or default directories. Make sure the
"file" is present in one of the locations
searched.

`01 = File name

005709 `01 environment variable is not defined. As of version 2.5, the environment
variable SQRDIR must be defined.

`01 = Name of the environment variable

005710 `01 path too long. The length of the directory path plus the
length of the file name to be opened is
too long for SQR to handle. Reduce the
length of the directory path.

`01 = Environment variable name

005711 Bad number in -T test flag. The number specified must be > zero.
 Correct the value.

005716 Unknown flag on command line: `01 Correct the syntax.

`01 = Unknown command line flag

005720 Error opening tty. (`01): `02 (Tru64, UNIX/Linux) This is an error
that should never occur during normal
operations. Record the steps leading
up to the error and contact your system
administrator.

`01 = System error code

`02 = System error message

Understanding SQR Messages Appendix A

372 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

005721 Error with 'ioctl()'. (`01): `02 (Tru64, UNIX/Linux) This is an error
that should never occur during normal
operations. Record the steps leading
up to the error and contact your system
administrator.

`01 = System error code

`02 = System error message

005722 Error reading tty. (`01): `02 (Tru64, UNIX/Linux) This is an error
that should never occur during normal
operations. Record the steps leading
up to the error and contact your system
administrator.

`01 = System error code

`02 = System error message

005723 Error closing tty. (`01): `02 (Tru64, UNIX/Linux) This is an error
that should never occur during normal
operations. Record the steps leading
up to the error and contact your system
administrator.

`01 = System error code

`02 = System error message

005724 Bad number in -B flag. (Oracle, Sybase) The number specified
must be greater than zero. Correct the
value.

005734 No program name given. The report name must be the first
command line argument.

005737 Unknown printer type specified with -
PRINTER: switch.

The printer type can be EH, HT, LP, HP,
 PS, or WP. WP is valid only with PC/
Windows.

005738 Database name needs to be included with
- DB switch.

(ODBC) Could not connect to the
specified datasource.

005738 Database name needs to be included with
- DB switch.

(Sybase) Supply the database name.

005739 Too many -F switches; maximum is `01. Reduce the number of -F switches.

`01 = Maximum number allowed

005740 -F and outfile name are required with
DDN or DD style SQR {program} name.

(MVS) Correct the JCL stream.

005741 Attempting to use SQR {program} file
for outfile.

(MVS) Correct the JCL stream.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 373

Error Number Error Message Suggestion/Interpretation

005742 Attempt to invoke viewer (using
WinExec) failed; error code = `01.

(Windows)

`01 = System error code

005743 Unknown numeric type specified with -
DNT: switch.

Correct the command line.

005744 -DNT:Decimal precision (`01) is out of
range (`02 - `03).

Correct the command line.

`01 = Specified precision

`02 = Minimum allowed

`03 = Maximum allowed

005745 The specified default numeric type '`01 =
`02' is invalid.

Correct the pssqr.ini file entry.

`01 = Entry

`02 = Value

005746 The decimal precision '`01 = `02' is out
of range (`03 - `04).

Correct the pssqr.ini file entry.

`01 = Entry

`02 = Value

`03 = Minimum allowed

`04 = Maximum allowed

005747 The following error(s) occurred while
processing the [`01] section from the
pssqr.ini file.

See the error message(s) that follow.

`01 = Name of the section

005750 The -Burst switch is not properly
formatted.

The “Burst” command line flag is not
properly formatted.

005751 The -Burst switch cannot be used with
the -NOLIS switch.

The “Burst” command line flag cannot
be specified when the -NOLIS command
line flag is also specified.

005752 The -Burst switch requires either the -
Printer:HT or - Printer:EH switch to be
specified.

The “Burst” command line flag is
applicable only when HTML code is
produced. You must specify either the -
PRINTER:HT or - PRINTER:EH switch.

005753 The -Burst:S and - Burst:T switches can
only be used against an SPF file which
was generated with SQR v4.1 and above.

The “Burst” command line flag can only
be specified when processing a SPF file
that was generated by SQR v4.1 and
above. Older SPF files do not contain the
proper information that permits bursting.

005754 The -Burst switch caused no output to be
generated.

The “Burst” command line flag was
specified with a set of page ranges that
prevented any output to be created.
 Change the page ranges.

Understanding SQR Messages Appendix A

374 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

005900 Bad number in -`01 (Windows) Specify a valid number.

`01 = Command line option

005901 Bad filename in -`01 (Windows) Specify a valid file name.

`01 = Command line option

005902 Bad directory in -`01 (Windows) Specify a valid directory
path.

`01 = Command line option

005903 Cannot access the @ parameter file (
`01): `02

(Windows) Depends on the system error
message.

`01 = System error code

`02 = System error message

005904 The argument list is too long; maximum
is `01.

(Windows) To pass more than this
number of arguments, use a @file
argument file containing one argument
per line.

`01 = Maximum number supported by
this version of SQR.

005905 Cannot open the report file (`01): `02 (Windows) Depends on the system error
message.

`01 = System error code

`02 = System error message

005906 Invalid filename entered. (Windows) Re-enter with a valid file
name.

006000 Error writing the printer file. (`01): `02 This is an error that can occur during
normal operations due to the system
environment (for example, file locking
and permissions). Record the steps
leading up to the error and contact your
system administrator.

`01 = System error code

`02 = System error message

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 375

Error Number Error Message Suggestion/Interpretation

006001 Error reading the printer file. (`01): `02 This is an error that can occur during
normal operations due to the system
environment (for example, file locking
and permissions). Record the steps
leading up to the error and contact your
system administrator.

`01 = System error code

`02 = System error message

006002 Cannot open the printer file: `01 (`02):
`03

This is an error that can occur during
normal operations due to the system
environment (for example, file locking
and permissions). Record the steps
leading up to the error and contact your
system administrator.

`01 = Name of the file

`02 = System error code

`03 = System error message

006003 Unexpected End-Of- File while
processing the printer file.

The file might be corrupted. Try to
recreate the .spf file. If the error persists,
 contact technical support.

006004 Encountered unknown SPF code (`01)
while reading the printer file.

The file might be corrupted. Try to
recreate the .spf file. If the error persists,
 contact technical support.

`01 = Unknown SPF code

006100 Duplicate chart (`01). Each chart must be given a unique name.

`01 = Chart name

006101 Unknown chart (`01). Chart could not be found.

`01 = Chart name

006102 Number of chart data- array columns
specified (`01) exceeds the number of
array columns (`02).

Correct the source code.

`01 = Number of data-array columns

`02 = Number of array columns

006103 Number of chart data- array rows
specified (`01) exceeds the number of
array rows (`02).

Correct the source code.

`01 = Number of data-array rows

`02 = Number of array rows

Understanding SQR Messages Appendix A

376 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

006104 Too many pie segments (`01). Max is
`02.

Correct the source code.

`01 = Number of segments

`02 = Maximum allowed segments

006105 Chart module is not initialized. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006106 XY charts may have only numeric
columns.

Correct the syntax.

006107 The 3rd column in the data array must be
a character column to specify USE-3RD-
DATA-COLUMN.

Correct the syntax.

006108 Invalid chart size or placement. Correct the source code.

006120 INTERNAL: Bad chart index from stack
(`01).

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Chart index

006121 INTERNAL: Unknown SQR BG
Interface message (`01).

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Message code

006122 INTERNAL: Unsupported Grafsman
chart type (`01).

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Chart type

006123 INTERNAL: Unsupported pie-explode
setting (`01).

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Setting value

006124 INTERNAL: Unsupported tick-mark
placement (`01).

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Placement value

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 377

Error Number Error Message Suggestion/Interpretation

006125 Grafsman interface message (`01) not
supported.

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

`01 = Message code

006126 Unrecognized return code (`01) from
Grafsman command message (`02).

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

`01 = Return code

`02 = Message code

006127 Cannot fit Chart/Image into the current
page. Position: (`01, `02) Size: (`03, `04)

Correct the source code. SQR ends the
program run.

`01 = Row

`02 = Column

`03 = Width

`04 = Depth

006128 Check coordinate values. Correct the syntax.

006140 Duplicate image (`01). Images must be given unique names.

`01 = Image name

006141 Unknown image (`01). Image name could not be found.

`01 = Image name

006142 Cannot open image file (`01). (`02): `03 `01 = Name of the file

`02 = System error code

`03 = System error message

006150 INTERNAL: Bad image index from
stack (`01).

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Image name

006200 This report has already been defined. Each report must be given a unique
name.

006201 This layout has already been defined. Each layout must be given a unique
name.

006202 This printer has already been defined. Each printer must be given a unique
name.

Understanding SQR Messages Appendix A

378 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

006203 The values for '01' must be > 0. Correct the syntax.

`01 = Qualifier name

006204 Qualifiers '01' and '02' are mutually
exclusive.

Correct the syntax.

`01 = Qualifier name

`02 = Qualifier name

006205 Qualifier '01' is not applicable with a
'default' printer.

Correct the syntax.

`01 = Qualifier name

006206 The list must contain report names or
ALL.

Correct the syntax.

006207 'ALL' must be specified by itself. Correct the syntax.

006208 No report name was specified. Correct the syntax.

006209 No layout name was specified. Correct the syntax.

006210 No printer name was specified. Correct the syntax.

006211 The name cannot be 'ALL'. Correct the syntax.

006212 The name can only contain characters
[0-9 A-Z _ -].

Correct the syntax.

006213 Report '01' is referenced by multiple '`02'
printers.

Correct the syntax.

`01 = Report name

`02 = Printer type

006214 Qualifier '01' is not allowed with a '02'
printer.

Correct the syntax.

`01 = Qualifier name

`02 = Printer type

006215 The value for '01' must be ‘02 0. Correct the syntax.

`01 = Qualifier name

`02 = Relation to zero (<,<=,=,>=,>)

006216 Report '01' does not exist. Correct the syntax.

`01 = Report name

006217 The report name can be a string literal,
 variable, or column.

Correct the syntax.

`01 = Report name

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 379

Error Number Error Message Suggestion/Interpretation

006218 Referenced layouts not defined: A list of undefined layouts follows this
message.

006219 Referenced reports not defined: A list of undefined reports follows this
message.

006220 Referenced printers not defined: A list of undefined printers follows this
message.

006221 The following SQR commands (listed
below) cannot be used when any of the
following NEW SQR commands are also
used in the same report:

Correct the syntax.

006224 No printer type was specified. Correct the syntax.

006225 Incorrect value for printer type. Valid
values are:

Correct the syntax. A list of valid printer
types follows this message.

006226 Attempt to execute the `01 command
while processing the `02 procedure.

SQR ends the program run.

`01 = SQR command

`02 = Procedure name

006227 Incorrect value for 'paper-size'. Specify
the actual dimensions or one of the
following names:

Correct the syntax. A list of valid
predefined paper-size names follows this
message.

006228 Referenced TOC (Table Of Contents) not
defined:

A list of undefined Table of Contents
follows this message.

006229 This TOC (Table Of Contents) has
already been defined.

Each Table of Contents must be given a
unique name.

006230 The list must contain TOC (Table of
Contents) names or ALL.

Correct the syntax.

006231 The TOC (Table Of Contents) entry
cannot be positioned given the LEVEL (
`01) and INDENTATION (`02) values.

The Table of Contents entry will not
fit given the specified level and current
indentation values.

`01 = Specified LEVEL= value

`02 = Current INDENTATION= value

006232 `01 command not allowed while
generating the Table of Contents.

The specified command cannot be used
while the Table of Contents is being
generated.

`01 = SQR command

Understanding SQR Messages Appendix A

380 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

006233 The TOC (Table of Contents) entry "A"
cannot be processed because the existing
entry "B" is positioned below it.

A: Line = `01, Level = `02, Text = '`03'

B: Line = `04, Level = `05, Text = '`06'

Correct the program logic to eliminate
the conflict between the two TOC (Table
of Contents) entries.

`01 = A: Line number

`02 = A: Level value

`03 = A: Text value

`04 = B: Line number

`05 = B: Level value

`06 = B: Text value

006300 Unknown parameter (`01). Correct the syntax.

`01 = Parameter name

006301 Value not valid for parameter (`01). Correct the syntax.

`01 = Parameter name

006302 Invalid option (`02) for parameter (`01). Correct the syntax.

`01 = Parameter name

`02 = Option

006303 Parameter (`01) is required, but has not
been specified.

Correct the syntax.

`01 = Parameter name

006304 Parameter (`01) already specified. Correct the syntax.

`01 = Parameter name

006305 Parameter (`01) does not support
&columns.

Correct the syntax.

`01 = Parameter name

006306 Parameter (`01) requires equal sign. Correct the syntax.

`01 = Parameter name

006307 Parameter (`01) has an unquoted string. Correct the syntax.

`01 = Parameter name

006308 Missing part of specification for
parameter (`01).

Correct the syntax.

`01 = Parameter name

006309 Parameter (`01) requires literal. Correct the syntax.

`01 = Parameter name

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 381

Error Number Error Message Suggestion/Interpretation

006310 Parameter (`01) requires valid numeric
value.

Correct the syntax.

`01 = Parameter name

006311 Parameter (`01) requires integer value. Correct the syntax.

`01 = Parameter name

006312 Parameter (`01) does not support type
supplied.

Correct the syntax.

`01 = Parameter name

006313 Parameter (`01) requires valid string.
 Perhaps quote or $ is missing.

Correct the syntax.

`01 = Parameter name

006314 Parameter (`01) does not accept 'NONE'
in this context.

Correct the syntax.

`01 = Parameter name

006315 Parameter (`01) requires proper object
name.

Correct the syntax.

`01 = Parameter name

006316 Parameter (`01) requires array name. Correct the syntax.

`01 = Parameter name

006317 Parameter (`01) does not accept
'AUTOSCALE' in this context.

Correct the syntax.

`01 = Parameter name

006318 Parameter (`01) has improper value list. Correct the syntax.

`01 = Parameter name

006320 Parameter (`01) does not support relative
values.

Correct the syntax.

`01 = Parameter name

006350 Conversion [(`01) to (`02)] is not
supported.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = From type

`02 = To type

006352 INTERNAL: Unsupported option/
request (`01) in (`02).

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Option/request code

`02 = Function name

Understanding SQR Messages Appendix A

382 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

006354 INTERNAL: Unknown data type, (`01). This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Data type

006355 INTERNAL: Unable to retrieve
parameter value, (`01).

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Parameter name

006356 INTERNAL: Data type (`02) not valid
for parameter (`01).

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Parameter name

`02 = Data type

006357 INTERNAL: Data location (`02) not
valid for data type (`01).

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Data location

`02 = Data type

006358 INTERNAL: Cannot decode string (`01)
to index.

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = String to decode

006359 INTERNAL: Cannot set bit value (`02)
for parameter (`01).

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = Parameter name

`02 = Value

006360 INTERNAL: Unknown program state (
`01).

This is an internal error that should never
occur during normal operations. Record
the steps leading up to the error and
contact technical support.

`01 = State

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 383

Error Number Error Message Suggestion/Interpretation

006400 Unsupported background color. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006401 Unsupported border color. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006402 Border width out of range. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006403 X position out of range. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006404 Y position out of range. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006405 X size out of range. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006406 Y size out of range. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006407 Unsupported font. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006408 Unsupported font style. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006409 Unsupported font color. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006410 Unsupported horizontal text justification
value.

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

Understanding SQR Messages Appendix A

384 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

006411 Unsupported vertical text justification
value.

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006412 Unsupported font path. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006413 Unsupported font rotation. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006414 Font size out of range. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006415 Text line id# out of range. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006416 Unsupported chart type. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006417 Unsupported chart sub-type. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006418 Unsupported chart orientation (not H or
V).

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006419 Unsupported perspective (not 2D or 3D). This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006420 Unsupported axis (not X or Y). This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006421 Unsupported axis label data type. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 385

Error Number Error Message Suggestion/Interpretation

006422 Dataset id# out of range. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006423 Unsupported dataset type. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006424 Unsupported dataset color. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006425 Unsupported dataset line style. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006426 Unsupported dataset fill pattern. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006427 Unsupported dataset marker. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006428 Chart type does not support Y-axis
datasets.

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006429 Pie-chart segment id# is out of range. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006430 Unsupported pie-segment color. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006431 Unsupported pie-segment border color. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006432 Unsupported pie-segment pattern. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

Understanding SQR Messages Appendix A

386 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

006433 Unsupported pie- segment explode
setting.

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006434 Command only valid for charts of type
'pie'.

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006435 Pie-chart radius out of range. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006436 Pie-chart starting angle out of range. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006437 Unsupported pie-chart fill direction.
 Must be clockwise or counter-
clockwise.

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006438 Unsupported pie- segment label position. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006439 Unsupported pie- segment quantity
display position.

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006440 Unsupported pie- segment per-cent
display position.

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006441 Unsupported legend style. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006442 Unsupported legend horizontal position. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006443 Unsupported legend vertical position. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 387

Error Number Error Message Suggestion/Interpretation

006444 Text charts do not support legend. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006445 Number of datasets specified does not
match data.

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006446 Unsupported axis label position. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006447 Unsupported axis type (not LINEAR or
LOG).

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006448 Pie and text charts do not support axis
control.

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006449, 006450 Unsupported axis min scaling. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006451 Unsupported axis max scaling. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006452 Beginning of tickmarks is after end. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006453 Unsupported tickmark type. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006454 Unsupported grid type. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006455 Unsupported grid color. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

Understanding SQR Messages Appendix A

388 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

006456 Grid line width out of range. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006457 Unable to open grafcap file. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006458 Unsupported grafcap device. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006459 Error in grafcap entry specification. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006460 Unable to open chart output destination. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006461 Internal error during ggDraw. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006462 Improper parameters passed to gscale. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006463 The shared library specified in the
grafcap file could not be found.

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006464 A function called from the shared library
specified in the grafcap file could not be
found.

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006500 The bar code could not be positioned
on the page. Row: `01, Column: `02,
 Height: `03

Correct the source code.

`01 = Row

`02 = Column

`03 = Height

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 389

Error Number Error Message Suggestion/Interpretation

006501 Unknown BCL error (`01) encountered. This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

`01 = BCL error code

006502 Invalid bar code type (`01): Valid values
are from 1 to 15.

Correct the source code.

`01 = Bar code type.

006503 The length of the bar code text ‘01' must
be between 1 and 30 characters.

Correct the source code.

`01 = Bar code text

006504 The length of the caption text '01' must
be between 1 and 30 characters.

Correct the source code.

`01 = Caption text

006505 Invalid printer type (`01): Valid values
are from 0 to 13.

Correct the source code.

`01 = Printer type

006506 Invalid offset: Valid values are from 0 to
250.

Correct the source code.

006507 Invalid height (`01): Valid values are
from 0.1 to 2.0 inches.

Correct the source code.

`01 = Height

006508 Invalid checksum: Valid values are from
0 to 2.

Correct the source code.

006509 Invalid pass: Valid values are from 1 to
6.

Correct the source code.

006510 The bar code text '01' is not valid for the
type of bar code (`02) selected.

Correct the source code.

`01 = Bar code text

`02 = Bar code type

006511 Internal error: Could not generate the bar
code.

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006512 Internal error: Bar code buffer required
too large (>32K).

This is an error that should never occur
during normal operations. Record the
steps leading up to the error and contact
technical support.

006601 Cannot allocate the device context for
the default printer.

(Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

Understanding SQR Messages Appendix A

390 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

006602 Failed to start printing the document. (Windows) This is an error that can
occur due to lack of system resources or
a problem with the printer. Record the
steps leading up to the error and contact
your system administrator.

006603 New-page (start) failed on page `01. (Windows) This is an error that can
occur due to lack of system resources or
a problem with the printer. Record the
steps leading up to the error and contact
your system administrator.

`01 = Page number

006604 New-page (end) failed on page `01. (Windows) This is an error that can
occur due to lack of system resources or
a problem with the printer. Record the
steps leading up to the error and contact
your system administrator.

`01 = Page number

006605 End document failed. (Windows) This is an error that can
occur due to lack of system resources or
a problem with the printer. Record the
steps leading up to the error and contact
your system administrator.

006606 Error reading font information from the
[Fonts] section in pssqr.ini. Using the
default font.

(Windows) Correct the [Fonts] section in
the pssqr.ini file.

006607 Failed to create a brush for shading. (Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

006608 Failed to select font `01. (Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

`01 = Font name

006609 Failed to modify font `01. (Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

`01 = Font name

006610 Failed to create a pen that was required
to draw a box.

(Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 391

Error Number Error Message Suggestion/Interpretation

006611 Failed to create a pen that was required
to draw a horizontal line.

(Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

006612 Failed to create a pen that was required
to draw a vertical line.

(Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

006613 Failed to open the image bitmap file (
`01). (`02): `03

(Windows) This is an error that can
occur during normal operations due to
the system environment (file locking,
 permissions). Record the steps leading
up to the error and contact your system
administrator. `01 = Name of the file `02
= System error code `03 = System error
message

006614 The file (`01) does not contain a valid
bitmap.

(Windows) Specify a valid bitmap file.
 `01 = Name of the file

006615 Failed to create the palette for image (
`01).

(Windows) This is an error that can
occur due to lack of system resources
or an invalid bitmap. Record the steps
leading up to the error and contact your
system administrator. `01 = Name of the
file

006616 Failed to load RLE into memory for
image (`01).

(Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

`01 = Name of the file

006617 Failed to convert DIB to DDB for image
(`01).

(Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

`01 = Name of the file

006618 Failed to draw the bitmap image (`01). (Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

`01 = Name of the file

006619 Cannot access the default printer's driver. (Windows) This is an error that can
occur due to lack of system resources or
a problem with the printer. Record the
steps leading up to the error and contact
your system administrator.

Understanding SQR Messages Appendix A

392 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

006620 Cannot select the charting clip area onto
the printers DC.

(Windows) This is an error that can
occur due to lack of system resources or
a problem with the printer. Record the
steps leading up to the error and contact
your system administrator.

006621 Cannot select create a metafile required
for business graphics.

(Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

006622 Cannot create a region required for
business graphics.

(Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

006623 Cannot create a DC required for business
graphics.

(Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

006624 Cannot create a bitmap required for
business graphics.

(Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

006625 Business graphics failed while setting up
the device (ggWinDevice).

(Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

006626 Cannot draw business graphics. (Windows) This is an error that can
occur due to lack of system resources
or due to a damaged LIBSTI.INI file.
 The LIBSTI.INI file resides in the
Windows main directory. Make sure that
the GPATH= and IPT= entries point to a
valid SQR BINW directory. Record the
steps leading up to the error and contact
your system administrator.

006700 SQRDIR is not defined. (Windows) The variable SQRDIR must
be defined in the pssqr.ini file.

006701 Could not allocate memory while
attempting to register the .spf filename
extension.

(Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

006702 Could not allocate memory for the page
cache.

(Windows) This is an error that should
never occur during normal operations.
 Record the steps leading up to the error
and contact technical support.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 393

Error Number Error Message Suggestion/Interpretation

006704 Cannot open or read file (`01) (`02): `03 (Windows) This is an error that can
occur during normal operations due to
the system environment (for example,
file locking and permissions). Record the
steps leading up to the error and contact
your system administrator.

`01 = Name of the file

`02 = System error code

`03 = System error message

006705 File (`01) is not in SPF packet format. (Windows) The file was not produced by
SQR or has been corrupted.

`01 = Name of the file

006706 Failed to identify the start of the report (
`01).

(Windows) The file was not produced by
SQR or has been corrupted.

`01 = Name of the file

006707 An invalid seek was made for page `01. (Windows) This is an internal error
which should not occur under normal
operations. Contact technical support.

`01 = Page number

006708 Too many errors were encountered while
processing the file. Processing has been
stopped.

(Windows) This is an error that can
occur due to lack of system resources.
 Record the steps leading up to the error
and contact your system administrator.

006709 Failed to open the image bitmap file
(`01). (`02): `03 This message is
displayed only once per SPF file.

(Windows) This is an error that can
occur during normal operations due to
the system environment (for example,
file locking and permissions). Record the
steps leading up to the error and contact
your system administrator.

`01 = Name of the file

`02 = System error code

`03 = System error message

006800 `01: Detected internal program error. This is an internal error that should never
occur during normal operation. Record
the steps leading up to the error and
contact technical support.

`01 = Name of the routine

Understanding SQR Messages Appendix A

394 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

006801 `01: Null Operand Passed as input. This is an internal error that should never
occur during normal operation. Record
the steps leading up to the error and
contact technical support.

`01 = Name of the routine

006802 `01: Decimal Exponent Under/Overflow. Exponent Under/Overflow: Exponent of
decimal number has exceeded the valid
boundaries established for the decimal
type. Review the documentation for the
current upper and lower bounds of a
decimal object.

`01 = Name of the routine

006803 `01: Decimal to Integer Conversion
Under/Overflow.

Integer Under/Overflow: Cannot convert
input decimal object into a valid integer
number. Decimal object exceeds the
established integer boundaries for
this machine architecture. Review the
magnitude and sign of the decimal object
to ensure that it falls within the upper
and lower bounds of an integer number.
 `01 = Name of the routine

006804 `01: Decimal to Float Conversion Under/
Overflow.

Floating Point Under/Overflow: Cannot
convert input decimal object into a valid
floating point number. The decimal
object exceeds the established floating
point boundaries for this machine
architecture. Review the magnitude and
sign of the decimal object to ensure
that it falls within the upper and lower
bounds of a floating point number. `01 =
Name of the routine

006805 `01: Decimal Precision Under/Overflow. Decimal Precision Under/Overflow:
Attempt made to initialize decimal
object with an invalid precision. Verify
the input precision value against the
documented upper and lower boundaries
for a decimal object. `01 = Name of the
routine

006806 `01: String to Decimal Object
Conversion Error.

String To Decimal Conversion Error:
The length of input string is greater than
the precision of underlying decimal
object. Either increase the precision of
the decimal object or reduce the size of
the input mantissa to match the decimal
object precision. `01 = Name of the
routine

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 395

Error Number Error Message Suggestion/Interpretation

006807 `01: Truncation/Rounding Error -
Outside Valid Range for Decimal Object.

Truncation/Rounding Error: Input
truncation or round value is outside
the valid range for this decimal object.
 Ensure that the truncation/round value
is greater than or equal to zero and less
than the precision of the underlying
decimal object. `01 = Name of the
routine

006808 `01: Decimal Error: Cannot Divide by
Zero.

Decimal Math Divide by Zero Error:
Attempt made to divide a decimal object
by zero. Ensure that the divisor does not
equal zero before attempting to divide.
 `01 = Name of the routine

006900 There is no default printer set up on your
system. Use the Control Panel "Printers"
applet to define it.

(Windows) SQR Print requires that
a default printer be defined. Use the
"Printers" applet in the Control Panel to
define one.

007000 The locale '`01' is not defined in the
pssqr.ini file.

Verify the spelling of the locale name or
the pssqr.ini file.

`01 = Locale name

007001 At least one qualifier must be specified. Correct the source code.

007002 The value for '01' must be a list of 02
string literals, variables or columns.

Correct the source code.

`01 = Qualifier

`02 = Number of entities in list

007003 The values for '01' and '02' cannot be the
same.

Correct the source code.

`01 = Qualifier

`02 = Qualifier

007004 The value for '01' (`02) must be a single
character which is not in the list: "03".

Correct the source code.

`01 = Qualifier

`02 = Value

`03 = List of invalid characters

007005 The value for '`01' (`02) is invalid. Valid
values are:

Correct the source code.

`01 = Qualifier

`02 = Value

007006 The last character of the '`01' value (`02)
cannot be a digit or the minus sign or the
same as either of the separators.

Correct the source code.

`01 = Qualifier

`02 = Invalid character

Understanding SQR Messages Appendix A

396 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

007007 The first character of the '`01' value (`02)
cannot be a digit or the minus sign or the
same as either of the separators.

Correct the source code.

`01 = Qualifier

`02 = Invalid character

00700 The following errors occurred while
processing the (`01) locale from the
pssqr.ini file.

This message precedes error messages
encountered while processing the pssqr.
ini file.

`01 = Locale name

007009 The value for '`01' cannot be 'DEFAULT'
or 'SYSTEM'.

Correct the syntax.

`01 = Qualifier

007010 The value for '`01' (`02) is not properly
formatted: Did not find the '>' for the
'<nnn>' construct.

Correct the syntax.

`01 = Qualifier

`02 = Value

007011 The value for '`01' (`02) is not properly
formatted: The value of an '<nnn>'
construct must be from 1 to 255.

Correct the syntax.

`01 = Qualifier

`02 = Value

007012 The default locale (`01) specified in the
[`02] section of the pssqr.ini file has not
been defined.

Correct the syntax.

`01 = Locale name

`02 = Section name

007013 The value for '`01' (`02) must be a list of
`03 quoted string literals.

Correct the syntax.

`01 = Qualifier

`02 = Value

`03 = Number of entities in list

007014 The entry (`01 = `02) is not valid. Correct the pssqr.ini entry.

`01 = Qualifier from the pssqr.ini file

`02 = Qualifier's value

007100 The use of an edit mask or the keywords
NUMBER, MONEY or DATE is not
legal when storing numeric variables.

Correct the source code.

007101 The last keyword is not '`01'. Correct the source code.

`01 = Keyword

007102 Incompatible source and destination
variable types.

Correct the source code.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 397

Error Number Error Message Suggestion/Interpretation

007103 The keyword (`01) is not compatible
with the variable (`02).

Correct the source code.

`01 = Keyword

`02 = Variable name

007104 The use of an edit mask or the keyword
DATE is not legal if both variables are
date variables.

Correct the source code.

007200 The specified precision (`01) is out of
range (`02 - `03).

Correct the source code.

`01 = Specified precision

`02 = Minimum precision

`03 = Maximum precision

007201 The precision is specified by a
value from `01 to `02 surrounded by
parentheses.

Correct the source code.

`01 = Minimum precision

`02 = Maximum precision

007202 Variable (`01) is not a decimal variable
and cannot have a precision associated
with it.

Correct the source code.

`01 = Variable name

007203 A string variable name is required here. Correct the source code.

007204 A numeric variable name is required
here.

Correct the source code.

007205 The variable (`01) has already been
defined as '`02' and may not be
redefined.

Correct the source code.

`01 = Variable name

`02 = Variable type

007206 The variable type has not been specified. Correct the source code.

007207 This command is only allowed within
local procedures.

Correct the source code.

007208 This command must be before all other
commands in the procedure.

Correct the source code.

007209 Only string ($) and numeric (#) variables
may be declared.

Correct the source code.

007210 Invalid variable name specified. Correct the source code.

007211 You cannot declare a global variable
from within a procedure.

Correct the source code.

007400 The specified character is invalid in the
current character set.

Correct the program logic.

Understanding SQR Messages Appendix A

398 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

007401 '`01' is not a valid value for the
ENCODING environment variable.

The specified encoding scheme is not
known by SQR.

`01 = ENCODING environment variable
setting.

007402 The Double-Byte LET function '`01' is
not supported in this version of SQR.

The SQT file contains a reference to a
LET function, which is not supported by
this version of SQR.

`01 = LET function name

007403 The Double-Byte SQR command '`01' is
not supported in this version of SQR.

The SQT file contains a reference to an
SQR command, which is not supported
by this version of SQR.

`01 = SQR command name

007404 Double-Byte .sqt files are not supported
by this version of SQR.

The runtime file was created by the
double-byte version of SQR and is
incompatible with the current version.

007405 The barcode text '`01' cannot contain
double- byte characters.

Correct the source code.

`01 = Bar code text

007501 Using `01 edit mask from (`02) against (
`03)

A date edit mask element, which
could cause date data to be incorrectly
interpreted, was detected. This warning
message can be turned off by setting
the “OutputTwoDigitYearWarningMsg”
entry in the [Default- Settings] section of
the pssqr.ini file to FALSE.

`01 = Edit mask element

`02 = Edit mask being used

`03 = Value being applied to the edit
mask

007601 Cannot access the Java file (`01) (`02):
`03

SQR cannot access the required file.

`01 = Name of the file

`02 = System error code

`03 = System error message

007602 -EH_Scale: value (`01) is out of range (
`02 - `03).

Correct the command line.

`01 = Specified scale

`02 = Minimum allowed

`03 = Maximum allowed

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 399

Error Number Error Message Suggestion/Interpretation

007603 -Printer:EH functionality is not available
on this platform.

Enhanced HTML functionality is not
available on this platform.

007604 -Printer:PD functionality is not available
on this platform.

PDF functionality is not available on this
platform.

007701 Did not find end of paragraph: `01 (No
'end-execute' clause found.)

Correct the source code.

`01 = BEGIN-command in question.

007702 Invalid entry for keyword, '`01=`02' Correct the source code.

007703 May only specify either PROCEDURE=,
 or COMMAND=, or GETDATA=,
 exclusive.

Correct the source code.

007704 Must specify a SCHEMA. Correct the source code.

007705 Must specify either a PROCEDURE,
 COMMAND, or GETDATA.

Correct the source code.

007706 CONNECTION '`01' not found. No such
connection.

Correct the source code.

007707 The returned set of Procedure parameters
(INOUT and OUT) (length = `01 items)
did not include one or more of the
specified items.

Stored procedure error.

007708 Encountered a parameter of type '`01'.
 Valid types are either IN, OUT, or
INOUT. If no type is entered, the type
defaults to IN.

Stored procedure error.

007709 The datasource failed to provide the
expected return status value. Verify the
query metadata.

Datasource error.

007710 The datasource failed to provide the
expected number of elements in the
return status list.

Datasource error.

007711 Failed to login to the requested
datasource (Connection='`01',
 username='`02'). DETAILS: `03

Logon failed.

007712 The requested rowset (`01) was not
available. Verify the query metadata.

Not enough row sets.

007713 Missing or invalid Registry.properties
file. Verify that the CLASSPATH
includes SQRDIR, that SQRDIR
contains the folder with the Registry.
properties file, and that the Registry.
properties file is valid.

Incorrect environment setup.

Understanding SQR Messages Appendix A

400 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

007714 The datasource ('`01') does not support
the requested capability ('`02'). Check
the capabilities list for the datasource,
 located in the Properties folder.

Invalid query for datasource.

007715 Failed to start the Java Virtual Machine
(JVM). Possible causes are: missing or
invalid jdk files, incorrect CLASSPATH,
 or insufficient resources.

Incorrect environment setup.

007716 The current rowset (`01) contained no
rows. Check the return status and/or
metadata for the requested service to
determine the cause.

No data.

007717 The query failed. DETAILS: `01 Query failed.

007718 Failure setting property '`01'. DETAILS:
`02

Property-set failed.

007719 The value for keyword '`01' exceeds the
maximum length of '02 characters.

Keyword value too long.

007720 A fatal error occurred while fetching
against the current rowset: DETAILS:
`01

A failure occurred during row fetch.

007721 Parameter `01 (`02) was passed to
the PROCEDURE as data type `03;
expected (`04) type `05. Verify the query
metadata.

A failure occurred during row fetch.

007722 Invalid query parameter: Reason: `01 Bad procedure parameter.

007723 Too many parameters (= `01) were
supplied to the query. Verify the query
metadata.

Bad procedure parameter.

007724 Parameter `01 (`02) was passed to the
PROCEDURE as type `03; expected
type `04. Verify the query metadata.

Bad procedure parameter.

007725 Parameter `01 ('`02', JDO-type `03),
 specified 'NULL', is a required-
parameter. Specify a value or variable
name.

Bad procedure parameter.

007726 The list-variable parameter to the
query is too long. Maximum number of
elements is 30.

List too long.

007727 Unable to retrieve metadata for
Procedure=`01, Schema=`02. DETAILS:
`03

Metadata check failed.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 401

Error Number Error Message Suggestion/Interpretation

007728 Parameter list type mismatch (#`01, SQR
type = `02). The datasource expected a
parameter of type `03. Verify the query
metadata.

Parameter list mismatch.

007729 List size mismatch detected while
fetching data of type ROW, `01 items,
 into SQR list- variable, `02 items.
Fetching will proceed to the smaller size.

List size mismatch.

007730 Incorrect syntax for BEGIN-SELECT .
.. FROM. Options are: FROM
ROWSETS=... FROM PARAMETER=
$strvar | strlit

Bad BEGIN-SELECT syntax.

007731 Attempted to pass as INOUT or OUT a
parameter which was of type ROWSET
(`01). Use of such parameters is
supported as IN only, after which they
may be used in a BEGIN- SELECT
construct.

Bad parameter keyword.

007732 Attempt to use a scalar SQR variable (
'01') to reference a ROWSET procedure
parameter ('02'). Use either the keyword
'NULL', or an SQR LIST variable (
%var). Verify the query metadata.

Bad proc parameter.

007733 The list of keywords entered to the
PARAMETERS keyword must be
terminated with a semicolon.

Bad proc parameter. Correct the source
code.

007734 Datasource '01' not found. The
Connection being used by this query
specifies a datasource which is not listed
in the DDO Registry ('02'). DETAILS:
`03.

<obsolete>

007735 Missing one or more DDO {fname} .jar
files. Verify the location of the original-
installation files, and that they are
accessible. Error code: `01. Classpath:
`02.

<obsolete>

007736 Unable to open Connection ('01') to
datasource ('02'). Possible causes: (a)
the Declare-Connection specification is
invalid, or (b) the datasource is no longer
available. DETAILS: `03.

Bad environment.

007737 Unable to locate one or more entry
points in an SQR {fname}.jar file. Verify
that the original-installation files have
not become corrupted.

Bad environment.

Understanding SQR Messages Appendix A

402 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

007738 At least one JNI method pointer was
lost. This should never occur: record
the steps leading up to this failure, and
contact Technical Support. DETAILS:
Schema='`01', Proc='`02'.

Bad environment.

007739 Unable to locate query object '`01' in the
specified schema (`02). DETAILS: `03.

Bad environment.

007740 Invalid &pseudonym or 'TYPE=' data-
type specified for a begin- select column-
variable. Valid types are: CHAR, TEXT,
 DATE, NUMBER.

Correct the syntax.

007741 Illegal attempt to fetch a non-scalar
field into a column variable. Correct the
query.

Correct the syntax.

007742 The output parameter specified in
'Begin- Select ... From Parameter = `01'
is not available. Available parameters:
`02.

Bad command.

007743 The output parameter specified in
'Begin- Select ... From Parameter = `01'
is not of type ROWSET. Verify the query
metadata.

Bad command.

007744 Illegal attempt to assign an SQR variable
('01') of type '02' the value from a DDO
object ('03') of type '04'. Verify the query
metadata.

<obsolete>

007745 Illegal attempt to assign an SQR column
variable ('01') of type '02' the value from
a DDO object of type '03'. Verify the
query metadata.

<obsolete>

007746 Failed to locate the requested Rowset (
`01) while processing the query. The last
available Rowset number is `02. Verify
the query metadata.

Not enough row sets.

007747 The query raised a DDO exception.
 DETAILS: `01.

<obsolete>

007748 A BEGIN-SELECT paragraph was
coded, but the query returned no Rows.

No data warning.

007749 Invalid syntax for PARAMETERS=(
...) statement. Use: PARAMETERS=(
 %v | $v | #v | &v | NULL | SKIP | numlit
| datelit | textlit [IN | INOUT], ...) All
parameters must be specified. Optional
parameters which are to be ignored may
be specified by the keyword 'NULL' or
'SKIP'. Correct the syntax.

Incorrect syntax.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 403

Error Number Error Message Suggestion/Interpretation

007750 FATAL: Failure creating Java object. General failure.

007751 Attempt to create a List variable of size
greater than the maximum size of `01
items.

General failure.

007752 Parameter-list item '`01' is not a member
of the parameter list for this Query.
 Verify the query metadata.

No such input/inout parameter.

007753 Attempt to access List- row (`01) beyond
the List size (`02 rows).

Bad list assignment/setup.

007754 Attempt to assign/modify a List row is
not compatible with the List definition.

Bad list assignment/setup.

007755 Attempt to assign a row to a non-existent
List variable. Define the List first, using
the syntax: let %lname[size] = list(
 NUMBER | DATE | TEXT #var | $var [,
 ...])

Bad list assignment/setup.

007756 Incorrect syntax for List-variable
reference. Use: let [$ | #]var =
%listname[nlit | #var].colname

Bad list assignment/setup.

007757 Alter-connection statement missing
'DSN=...'.

Improper alter-conn.

007758 List-definition size specifier must be
literal.

Improper alter-conn.

007759 Attempt to access a non-existent List-
column ('01').

No such list column name.

007760 Must specify one of the keywords,
 FROM- ROWSETS or FROM_
PARAMETER .

Incorrect syntax for LOAD_LOOKUP.

007761 Incorrect syntax to Load-lookup
'PARAMETERS=' keyword. Use:
PARAMETERS=(slit | nlit | $var | #var
| %var | &var, ...) No line wrapping is
allowed for this usage.

Incorrect syntax for LOAD_LOOKUP.

007762 Too many parameters (`02) entered
to Load- Lookup command. Max
parameters is `01.

Incorrect syntax for LOAD_LOOKUP.

007763 Problem executing the cursor for LOAD-
LOOKUP table '`01'. DETAILS: `02.

The database server returned an error
while trying to execute the SQL
statement needed to process the LOAD-
LOOKUP command.

`01 = Load lookup table name

Understanding SQR Messages Appendix A

404 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

007764 Bad return fetching row from database in
LOAD-LOOKUP table '`01'. DETAILS:
`02

The database server returned an error
while fetching the data.

`01 = Load lookup table name

007765 DC, DI sort options not supported with
this SQR version. To sort, use SORT=SC
or SORT=SI.

Database sort not supported for LOAD_
LOOKUP with DDO. <obsolete>

007766 Must specify a query keyword;
PROCEDURE=, COMMAND= or
GETDATA=.

Incorrect syntax for Load-lookup.
 Specify a keyword representing the
query.

007767 Unknown column variable type. Unknown data type returned by the
server.

007768 The property `01` was not found in
the property sheet for the specified
datasource (`02). Available property
names are: `03.The datasource property
sheet does not include the named
property.

Verify the metadata and correct the
syntax.

007769 The specified CONNECTION ('01')
references a datasource whose property
sheet does not show support for the
Get-Data query method.The datasource
property sheet does not show support for
Get-Data.

Verify the metadata and property sheet
and correct the syntax.

007770 Attempt to create a Selector (or
MDSelector) object failed. This event
should not occur. Contact your system
administrator.

Failed to create the requested object.
 Contact your system administrator.

009000 Error reading the font information from
the [`01] section in pssqr.ini. Font name
`02 is too long. The maximum length
allowed for a font name is `03.

Use a shorter font name in pssqr.ini.

`01 = Printing device specific font
configuration section.

`02 = Font name.

`03 = Internal limit for font name.

009001 Error reading the font information from
the [`01] section in pssqr.ini. Font file
path `02 is too long. The maximum
length allowed for a font file path is `03.

Use a shorter font file path in pssqr.ini.
 Relocate font file if necessary.

`01 = Font configuration section name.

`02 = Font file path.

`03 = Internal limit for file path.

Appendix A Understanding SQR Messages

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 405

Error Number Error Message Suggestion/Interpretation

009002 Font `01 is not valid for `02 output.
 Please correct the font configuration in
the [`02 Fonts] section of the pssqr.ini
file.

Use a valid font. Refer to the
documentation for supported fonts.
 If you are using disk based fonts like
TrueType, also ensure that the font
type specific configuration section (
like [TrueType Fonts]) is correctly
configured.

`01 = Font name.

`02 = Selected output type.

009003 File name for `01 font `02 is not
specified correctly. Please correct the
configuration in the [`01 Fonts] section
of pssqr.ini file.

The font file path is not specified
correctly. Correct the pssqr.ini file.

`01 = Font type.

`02 = Font name.

009004 `01 font file `02 cannot be opened.
 Please check if the file exists, or correct
the font configuration in the [`01 Fonts]
section of the pssqr.ini file.

Either the font file does not exist in the
location specified in pssqr.ini file, or
the path specified in pssqr.ini file is not
correct. Correct the error and try again.

`01 = Font type.

`02 = Font file path.

009005 The directory ID specified for `01 in the
[TrueType Fonts] section of the pssqr.
ini file exceeds the actual number of
fonts included in the TrueType collection
font file. `02 includes `03 fonts. Please
specify a valid directory ID.

Correct the configuration in pssqr.ini so
that the directory ID is set correctly for
the font. Note that the directory ID starts
from 0.

`01 = Font name.

`02 = Font file path.

`03 = Actual number of fonts included in
TrueType collection.

009006 Font `01 is not a supported type of
TrueType/OpenType font.

Currently, SQR does not support CFF
based OpenType font. Remove the font
from the configuration and try again.

009007 Font `01 is not a supported type of
TrueType/OpenType font. The '`02' table
is missing from the font file.

This TrueType/OpenType font does not
have the table SQR needs for processing.
 Remove the font from the configuration
and try again.

`01 = Font name.

`02 = Table name.

Understanding SQR Messages Appendix A

406 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Error Number Error Message Suggestion/Interpretation

009008 Font `01 is not a supported type of
TrueType/OpenType font. This font does
not allow embedding in a document.

SQR requires TrueType/OpenType
font with embedding feature allowed
to include the subset of the font in the
print output. This TrueType/OpenType
font does not allow embedding. Remove
the font from the configuration and try
again.

009009 Font `01 is not a supported type of
TrueType/OpenType font. This font does
not have a supported type of character to
glyph mapping (CMAP) table.

SQR requires a TrueType/OpenType font
with CMAP table with Platform ID 3 (
Microsoft), Encoding ID 0 (Symbol), 4 (
UCS-2), or 10 (UCS-4) and table format
4 or 12. Other CMAP table types and
encodings are currently not supported.
 Remove the font from the configuration
and try again.

`01 = Font name

009010 Error in the [`01:Exclusion Ranges]
section in theINI file. Start character
code must be greater than the end
character code.

In the exclusion range section, the start
character code must be smaller than
the end character code. Review the
section in INI file and correct error.
 You can specify the range in a decimal
or hexadecimal number. If you use a
hexadecimal number, you must prefix
the number with '0x' or the number is
recognized as a decimal.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 407

Appendix B

Using SQR Sample Programs

SQR Samples Library

SQR Samples is a library of SQR programs that you can use to adapt and experiment with programs.
These programs are stored in the <PS_HOME>\bin\sqr\<database_platform>\SAMPLE (SAMPLEW for
Microsoft Windows) directory. You can modify these programs to create configured SQRs.

SQR Sample Programs
Each program comprises a report specification and a sample of the output. This table describes all of the
sample SQR programs:

Name Description

_______.DAT Data files that are used by the loadall.sqr programs.

_______.MEM SQR startup files for running small, medium, and large SQR
programs.

APPEND.SQR Demonstrates the APPEND and FIXED-NOLF (no line feed)
commands.

APTDIARY.SQR Demonstrates columns and text wrapping.

AREA100.SQR Demonstrates a 100 percent area chart.

BAR100.SQR Demonstrates a 100 percent bar chart.

BARCODE.SQR Demonstrates printing a bar code.

CALENDAR.SQR Demonstrates nondatabase formatting.

COMP_FOR.SQR Prints a graph of the forecasted and actual sales for a given
employee.

COMP_F_G.SQR Prints a graph of the forecasted and actual sales for a month or
quarter.

COMP_PLN.SQR Prints a graph of the planned and actual sales for a given
employee.

COMP_P_G.SQR Prints a graph of the planned and actual sales for month or
quarter.

COVLET02.SQR Uses SQR to input data from a user, enter the data in the
database, and write a form letter by using a DOCUMENT
paragraph.

Using SQR Sample Programs Appendix B

408 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Name Description

CUST.SQR Prints a list of all of the customers, bursted by page.

CUSTLBLS.SQR Demonstrates printing mailing labels within columns.

CUSTOMER.SQR Demonstrates multiple detail lines and the NEXT-LISTING
command.

CUSTOMR2.SQR Demonstrates the use of the ON-BREAK argument to the
PRINT command.

CUSTOMR3.SQR Demonstrates the use of the INPUT command to change the
report output.

CUSTOMR4.SQR Demonstrates the use of arrays.

CUSTOMR5.SQR Demonstrates dynamic queries to enable the user to qualify a
report as it runs.

CUST_SUM.SQR Prints a group of information about each customer in the
customer table.

CUSTTAPE.SQR Demonstrates the flat file output for magnetic tape or other
postprocessing.

DATAA.DAT Needed for append.sqr.

DATAB.DAT Needed for append.sqr.

DROPALL.SQR Drops all of the SQR sample tables that are created by the
LOADALL program.

DROPPROC.SQR (Sybase) Deletes leftover, temporary stored procedures
belonging to the user.

DYNAMCOL.SQR Demonstrates the use of dynamic columns, dynamic tables,
 and variables that are passed to the ON-ERROR procedure.

EMP.SQR Prints a list of all of the employees, bursted by page.

EMP_COMM.SQR Calculates each employee's commission, based on sales.

EMP_M_Q.SQR Lists all employee quotas for a given month or quarter.

ENVELOPE.SQR Demonstrates the use of printing envelope with proper bar
codes.

EXPORT.SQR Creates two SQR reports: one to export a database table and
one to import that table. Data from the table is stored in an
external operating system file in compressed format, with
trailing blanks removed.

FLATFILE.SQR Creates an SQR report to extract a database table and place it
in a flat file.

Appendix B Using SQR Sample Programs

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 409

Name Description

FLOATBAR.SQR Demonstrates a floating bar chart.

FOR_CUST.SQR Creates a sales forecast for a given customer, grouped by
month or quarter.

FOR_EMP.SQR Creates a sales forecast for a given employee, grouped by
month or quarter.

FOR_PROD.SQR Creates a sales forecast for a given product, grouped by month
or quarter.

FOR_REG.SQR Creates a sales forecast for a given region, grouped by month
or quarter.

FOR_SUM.SQR Creates a table of projected product sales with links to more
information.

FORMLETR.SQR Demonstrates form letters by using a document paragraph.

HILO.SQR Demonstrates a high-low-close chart.

HISTGRAM.SQR Demonstrates a histogram chart.

INQUIRY.SQR Creates an SQR program to display rows at your terminal
that are selected from a database table that you specify. The
resulting SQR program prompts you to qualify the rows to be
selected, display those rows, then repeat.

INVOICE.SQR Demonstrates creating multiple reports, printing invoices, and
printing envelopes.

LOADALL.SQR Creates and loads the sample tables that are used in the
preceding SQR programs.

MAKEDATA.SQR Creates a data file with a fixed length and NOLF attributes.

MAKEREPT.SQR Helps you create SQR reports more quickly.

MULTIPLE.SQR Demonstrates creating multiple reports.

NESTREPT.SQR Demonstrates nesting procedures.

ORDERS.SQR Lists all of the orders and the order lines that are associated
with them.

ORD_MONG.SQR Lists all orders for a given month and groups them by
employee number.

ORD_M_Q.SQR Lists all orders for a given month or quarter.

ORD_PROD.SQR Lists all orders for a given product.

ORD_REGG.SQR Creates a report of all orders from a given region, grouped by
month or quarter.

Using SQR Sample Programs Appendix B

410 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Name Description

ORD_SUM.SQR Displays an summary of orders, grouped by month.

ORD_S_Q.SQR Prints a graph of the percent of orders for each region (in a
year) and four graphs of the percent of orders for each region (
one for each quarter of that year).

OVERBAR.SQR Demonstrates an overlapped bar chart.

PHONELST.SQR Demonstrates printing within columns, page headings, and
page footings.

PLN_EMP.SQR Creates a sales plan for a given employee, grouped by month
or quarter.

PLN_GEN.SQR Creates a sales plan, grouped by month or quarter.

PLN_REG.SQR Creates a sales plan for given region, grouped by month or
quarter.

PRODUCT.SQR Lists products and their prices and graphs orders of products.

SALELEAD.SQR Demonstrates DOCUMENT paragraphs.

SALES.SQR Demonstrates charting from stored data and printing several
charts on one page.

SCATTER.SQR Demonstrates a scatter chart.

SHOWPROC.SQR (Sybase) Displays leftover, temporary stored procedures
belonging to the user.

STCKAREA.SQR Demonstrates a stacked area chart.

SQR3DBAR.SQR Demonstrates a three-dimensional bar chart.

SQRLASER.SQR Demonstrates graphic and file input/output commands.

SQRLINE.SQR Demonstrates a line chart.

SQRLOGO.SQR Demonstrates printing images.

SQRPIE.SQR Demonstrates a pie chart.

TABREP.SQR Creates a tabular SQR report for a table that you select.

UPDATE.SQR Generates an SQR program that enables you to query and
update database tables. The created program uses the SHOW
command to simulate a menu interface.

	Oracle Legal Notices
	Contents
	Preface
	Understanding the PeopleSoft Online Help and PeopleBooks
	PeopleSoft Hosted Documentation
	Locally Installed Help
	Downloadable PeopleBook PDF Files
	Common Help Documentation
	Field and Control Definitions
	Typographical Conventions
	ISO Country and Currency Codes
	Region and Industry Identifiers
	Access to Oracle Support
	Documentation Accessibility

	Using and Managing the PeopleSoft Online Help
	PeopleTools Related Links
	Contact Us
	Follow Us

	Understanding SQR for PeopleSoft
	SQR for PeopleSoft Tools
	The SQR Language
	Understanding the SQR Language
	SQR Program Structure
	SQR Syntax Conventions
	Rules for Entering SQR Commands

	SQR Command Line
	SQR Command-Line Arguments
	SQR Command-Line Flags

	SQR Data Elements
	Columns
	Variables
	Literals

	Sample Reports

	SQR Command Reference
	SQR Command Overview
	SQR Commands
	ADD
	ALTER-COLOR-MAP
	ALTER-LOCALE
	ALTER-PRINTER
	ALTER-REPORT
	ARRAY-ADD, ARRAY-DIVIDE, ARRAY-MULTIPLY, ARRAY-SUBTRACT
	ASK
	BEGIN-DOCUMENT
	BEGIN-EXECUTE
	BEGIN-FOOTING
	BEGIN-HEADING
	BEGIN-PROCEDURE
	BEGIN-PROGRAM
	BEGIN-SELECT
	BEGIN-SETUP
	BEGIN-SQL
	BREAK
	CALL, CALL SYSTEM
	CLEAR-ARRAY
	CLOSE
	COLUMNS
	COMMIT
	CONCAT
	CONNECT
	CREATE-ARRAY
	CREATE-COLOR-PALETTE
	#DEBUG
	DECLARE-CHART
	DECLARE-COLOR-MAP
	DECLARE-CONNECTION
	DECLARE-IMAGE
	DECLARE-LAYOUT
	DECLARE-PRINTER
	DECLARE-PROCEDURE
	DECLARE-REPORT
	DECLARE-TOC
	DECLARE-VARIABLE
	#DEFINE
	DISPLAY
	DIVIDE
	DO
	#ELSE
	ELSE
	ENCODE
	END-DECLARE, END-DOCUMENT, END-EVALUATE, END-FOOTING, END-HEADING
	#END-IF, #ENDIF
	END-IF
	END-PROCEDURE, END-PROGRAM, END-SELECT, END-SETUP, END-SQL, END-WHILE
	EVALUATE
	EXECUTE (Sybase and Microsoft SQL Server)
	EXIT-SELECT
	EXTRACT
	FIND
	GET
	GET-COLOR
	GOTO
	GRAPHIC BOX, GRAPHIC HORZ-LINE, GRAPHIC VERT-LINE
	#IF
	IF
	#IFDEF
	#IFNDEF
	#INCLUDE
	INPUT
	LAST-PAGE
	LET
	LOAD-LOOKUP
	LOOKUP
	LOWERCASE
	MBTOSBS
	MOVE
	MULTIPLY
	NEW-PAGE
	NEW-REPORT
	NEXT-COLUMN
	NEXT-LISTING
	OPEN
	PAGE-NUMBER
	POSITION
	PRINT
	PRINT-BAR-CODE
	PRINT-CHART
	PRINT-DIRECT
	PRINT-IMAGE
	PUT
	READ
	ROLLBACK
	SBTOMBS
	SECURITY
	SET-COLOR
	SET-GENERATIONS
	SET-LEVELS
	SET-MEMBERS
	SHOW
	STOP
	STRING
	SUBTRACT
	TOC-ENTRY
	UNSTRING
	UPPERCASE
	USE
	USE-COLUMN
	USE-PRINTER-TYPE
	USE-PROCEDURE
	USE-REPORT
	WHILE
	WRITE

	Generating HTML Output
	HTML General Purpose Procedures
	HTML Heading Procedures
	HTML Highlighting Procedures
	HTML Hypertext Link Procedures
	HTML List Procedures
	HTML Table Procedures

	Generating Tagged PDF Output
	Generating Tagged PDF Output from an SQR Program
	SQR Commands to Create Tagged PDF Table
	SQR Commands to Create Tagged PDF Lists
	SQR Commands to Create Heading and Paragraph
	SQR Commands to Create Alternate Text
	Tagged PDF Support for SQR

	Invoking SQR Execute
	Running SQR Execute
	Using SQR Execute Flags

	Using SQR Print
	Understanding SQR Print
	Generating Output from the Command Line
	Using SQR Print Command-Line Flags
	Generating Output in Microsoft Windows

	Avoiding Older SQR Commands
	Understanding Older SQR Commands
	Using Older SQR Commands
	BEGIN-REPORT
	DATE-TIME
	DECLARE PRINTER
	DECLARE PROCEDURE
	DOLLAR-SYMBOL
	GRAPHIC FONT
	MONEY-SYMBOL
	NO-FORMFEED
	PAGE-SIZE
	PRINT … CODE
	PRINTER-DEINIT
	PRINTER-INIT

	Using the PSSQR.INI File and the PSSQR Command Line
	Installing PSSQR.INI
	Default Settings Section
	Processing-Limits Section
	Environment Sections
	Locale Section
	Fonts Section
	Adding Font Entries
	Specifying Character Sets in Windows

	HTML-Images Section
	PDF Fonts Section
	PDF Fonts: Exclusion Ranges Section
	TrueType Font Section
	Enhanced-HTML Section
	Colors Section
	Using PSSQR.EXE Command-Line Options

	Understanding SQR Messages
	Unnumbered Messages
	Numbered Messages

	Using SQR Sample Programs
	SQR Samples Library
	SQR Sample Programs

