
Oracle® Database
Administering Oracle GoldenGate

21c (21.1.0)
F25360-02
April 2021

Oracle Database Administering Oracle GoldenGate, 21c (21.1.0)

F25360-02

Copyright © 2017, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xviii

Documentation Accessibility xviii

Related Information xviii

Conventions xix

1 Oracle GoldenGate Administration Overview

2 Oracle GoldenGate Globalization Support

2.1 Preserving the Character Set 2-1

2.1.1 Character Set of Database Structural Metadata 2-1

2.1.2 Character Set of Character-type Data 2-1

2.1.3 Character Set of Database Connection 2-2

2.1.4 Character Set of Text Input and Output 2-2

2.2 Using Unicode and Native Characters 2-2

2.3 Character Map Translation 2-2

Part I Oracle GoldenGate Administration: Common Components and
Operations

3 Getting Started with the Oracle GoldenGate Process Interfaces

3.1 Using Command Line Interfaces 3-1

3.1.1 Using the Admin Client 3-1

3.1.2 Using GGSCI 3-4

3.1.3 Using Wildcards in Command Arguments 3-4

3.1.4 Globalization Support for the Command Interface 3-4

3.1.5 Using Command History 3-4

3.1.6 Storing and Calling Frequently Used Command Sequences 3-5

3.2 Controlling Oracle GoldenGate Processes 3-6

iii

3.2.1 Controlling Manager 3-6

3.2.2 Controlling Extract and Replicat 3-6

3.2.3 Deleting Extract and Replicat 3-7

3.3 Automating Commands 3-8

3.3.1 Issuing Commands Through the IBM i CLI 3-9

3.4 Specifying Object Names in Oracle GoldenGate Input 3-9

3.4.1 Specifying Filesystem Path Names in Parameter Files on Windows
Systems 3-10

3.4.2 Supported Database Object Names 3-10

3.4.2.1 Supported Special Characters 3-10

3.4.2.2 Non-supported Special Characters 3-11

3.4.3 Specifying Names that Contain Slashes 3-11

3.4.4 Qualifying Database Object Names 3-12

3.4.4.1 Two-part Names 3-12

3.4.4.2 Three-part Names 3-13

3.4.4.3 Applying Data from Multiple Containers or Catalogs 3-13

3.4.4.4 Specifying a Default Container or Catalog 3-13

3.4.5 Specifying Case-Sensitive Database Object Names 3-13

3.4.6 Using Wildcards in Database Object Names 3-15

3.4.6.1 Rules for Using Wildcards for Source Objects 3-15

3.4.6.2 Rules for Using Wildcards for Target Objects 3-16

3.4.6.3 Fallback Name Mapping 3-17

3.4.6.4 Wildcard Mapping from Pre-11.2.1 Trail Version 3-17

3.4.6.5 Asterisks or Question Marks as Literals in Object Names 3-18

3.4.6.6 How Wildcards are Resolved 3-18

3.4.6.7 Excluding Objects from a Wildcard Specification 3-18

3.4.7 Differentiating Case-Sensitive Column Names from Literals 3-18

4 Using Oracle GoldenGate Parameter Files

4.1 Globalization Support for Parameter Files 4-1

4.2 Working with the GLOBALS File 4-2

4.3 Working with Runtime Parameters 4-2

4.4 Creating a Parameter File 4-4

4.4.1 Creating a Parameter File in GGSCI and Admin Client 4-5

4.4.2 Creating a Parameter File with a Text Editor 4-6

4.5 Validating a Parameter File 4-7

4.6 Viewing a Parameter File 4-10

4.7 Changing a Parameter File 4-11

4.8 Simplifying the Creation of Parameter Files 4-11

4.8.1 Using Wildcards 4-12

4.8.2 Using OBEY 4-12

iv

4.8.3 Using Macros 4-12

4.8.4 Using Parameter Substitution 4-12

4.9 Getting Information about Oracle GoldenGate Parameters 4-13

5 Using Oracle GoldenGate for Live Reporting

5.1 Overview of the Reporting Configuration 5-1

5.1.1 Filtering and Conversion 5-2

5.1.2 Read-only vs. High Availability 5-2

5.1.3 Additional Information 5-2

5.2 Creating a Standard Reporting Configuration 5-3

5.2.1 Source System 5-3

5.2.2 Target System 5-4

5.3 Creating a Reporting Configuration with a Data Pump on the Source System 5-6

5.3.1 Source System 5-6

5.3.2 Target System 5-8

5.4 Creating a Reporting Configuration with a Data Pump on an Intermediary
System 5-9

5.4.1 Source System 5-11

5.4.2 Intermediary System 5-12

5.4.3 Target System 5-13

5.5 Creating a Cascading Reporting Configuration 5-15

5.5.1 Source System 5-17

5.5.2 Second System in the Cascade 5-18

5.5.3 Third System in the Cascade 5-21

6 Using Oracle GoldenGate for Real-time Data Distribution

6.1 Overview of the Data-distribution Configuration 6-1

6.2 Considerations for a Data-distribution Configuration 6-1

6.2.1 Fault Tolerance 6-2

6.2.2 Filtering and Conversion 6-2

6.2.3 Read-only vs. High Availability 6-2

6.2.4 Additional Information 6-2

6.3 Creating a Data Distribution Configuration 6-2

6.3.1 Source System 6-3

6.3.2 Target Systems 6-5

7 Configuring Oracle GoldenGate for Real-time Data Warehousing

7.1 Overview of the Data Warehousing Configuration 7-1

7.2 Considerations for a Data Warehousing Configuration 7-1

v

7.2.1 Isolation of Data Records 7-2

7.2.2 Data Storage 7-2

7.2.3 Filtering and Conversion 7-2

7.2.4 Additional Information 7-2

7.3 Creating a Data Warehousing Configuration 7-2

7.3.1 Source Systems 7-3

7.3.2 Target System 7-6

8 Configuring Oracle GoldenGate to Maintain a Live Standby
Database

8.1 Overview of a Live Standby Configuration 8-1

8.2 Considerations for a Live Standby Configuration 8-2

8.2.1 Trusted Source 8-2

8.2.2 Duplicate Standby 8-2

8.2.3 DML on the Standby System 8-2

8.2.4 Oracle GoldenGate Processes 8-2

8.2.5 Backup Files 8-3

8.2.6 Failover Preparedness 8-3

8.2.7 Sequential Values that are Generated by the Database 8-3

8.2.8 Additional Information 8-3

8.3 Creating a Live Standby Configuration 8-4

8.3.1 Prerequisites on Both Systems 8-4

8.3.2 Configuration from Active Source to Standby 8-5

8.4 Configuration from Standby to Active Source 8-7

8.5 Moving User Activity in a Planned Switchover 8-9

8.5.1 Moving User Activity to the Live Standby 8-9

8.5.2 Moving User Activity Back to the Primary System 8-10

8.6 Moving User Activity in an Unplanned Failover 8-12

8.6.1 Moving User Activity to the Live Standby 8-12

8.6.2 Moving User Activity Back to the Primary System 8-12

9 Configuring Oracle GoldenGate for Active-Active Configuration

9.1 Overview of an Active-Active Configuration 9-1

9.2 Considerations for an Active-Active Configuration 9-2

9.2.1 TRUNCATES 9-2

9.2.2 Application Design 9-2

9.2.3 Keys 9-3

9.2.4 Triggers and Cascaded Deletes 9-3

9.2.5 Database-Generated Values 9-3

vi

9.2.6 Database Configuration 9-4

9.3 Preventing Data Looping 9-4

9.3.1 Identifying Replicat Transactions 9-4

9.3.1.1 DB2 z/OS, DB2 LUW, and DB2 for i 9-5

9.3.1.2 MySQL 9-5

9.3.1.3 SQL Server 9-5

9.3.1.4 Oracle 9-6

9.3.2 Preventing the Capture of Replicat Operations 9-6

9.3.2.1 Preventing the Capture of Replicat Transactions (Oracle) 9-6

9.3.2.2 Preventing Capture of Replicat Transactions (Other Databases) 9-7

9.3.3 Replicating DDL in a Bi-directional Configuration 9-7

9.4 Managing Conflicts 9-7

9.5 Additional Information 9-8

9.6 Creating an Active-Active Configuration 9-9

9.6.1 Prerequisites on Both Systems 9-9

9.6.2 Configuration from Primary System to Secondary System 9-9

9.6.3 Configuration from Secondary System to Primary System 9-12

9.7 Configuring Conflict Detection and Resolution 9-15

9.7.1 Overview of the Oracle GoldenGate CDR Feature 9-15

9.7.2 Configuring the Oracle GoldenGate Parameter Files for Error Handling 9-16

9.7.2.1 Tools for Mapping Extra Data to the Exceptions Table 9-17

9.7.2.2 Sample Exceptions Mapping with Source and Target Columns
Only 9-18

9.7.2.3 Sample Exceptions Mapping with Additional Columns in the
Exceptions Table 9-18

9.7.3 Configuring the Oracle GoldenGate Parameter Files for Conflict
Resolution 9-20

9.7.4 Making the Required Column Values Available to Extract 9-21

9.7.5 Configuring Oracle GoldenGate CDR 9-21

9.7.5.1 Viewing CDR Statistics 9-21

9.7.6 CDR Example 1: All Conflict Types with USEMAX, OVERWRITE,
DISCARD 9-23

9.7.6.1 Table Used in this Example 9-23

9.7.6.2 MAP Statement with Conflict Resolution Specifications 9-23

9.7.6.3 Description of MAP Statement 9-23

9.7.6.4 Error Handling 9-24

9.7.6.5 INSERTROWEXISTS with the USEMAX Resolution 9-24

9.7.6.6 UPDATEROWEXISTS with the USEMAX Resolution 9-25

9.7.6.7 UPDATEROWMISSING with OVERWRITE Resolution 9-26

9.7.6.8 DELETEROWMISSING with DISCARD Resolution 9-27

9.7.6.9 DELETEROWEXISTS with OVERWRITE Resolution 9-28

9.7.7 CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX 9-29

vii

9.7.7.1 Table Used in this Example 9-29

9.7.7.2 MAP Statement 9-30

9.7.7.3 Description of MAP Statement 9-30

9.7.7.4 Error Handling 9-30

9.7.8 CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX,
and IGNORE 9-32

9.7.8.1 Table Used in this Example 9-32

9.7.8.2 MAP Statement 9-32

9.7.8.3 Description of MAP Statement 9-32

9.7.8.4 Error Handling 9-33

10

Mapping and Manipulating Data

10.1 Guidelines for Using Self-describing Trails 10-1

10.2 Parameters that Control Mapping and Data Integration 10-1

10.3 Mapping between Dissimilar Databases 10-2

10.4 Deciding Where Data Mapping and Conversion Will Take Place 10-2

10.4.1 Mapping and Conversion on Windows and UNIX Systems 10-2

10.4.2 Mapping and Conversion on NonStop Systems 10-2

10.5 Globalization Considerations when Mapping Data 10-2

10.5.1 Conversion between Character Sets 10-3

10.5.1.1 Database Object Names 10-3

10.5.1.2 Column Data 10-3

10.5.2 Preservation of Locale 10-4

10.5.3 Support for Escape Sequences 10-4

10.6 Mapping Columns Using TABLE and MAP 10-6

10.6.1 Supporting Case and Special Characters in Column Names 10-6

10.6.2 Configuring Table-level Column Mapping with COLMAP 10-6

10.6.2.1 Using USEDEFAULTS to Enable Default Column Mapping 10-7

10.6.2.2 Specifying the Columns to be Mapped in the COLMAP Clause 10-8

10.6.3 Configuring Global Column Mapping with COLMATCH 10-9

10.6.4 Understanding Default Column Mapping 10-12

10.6.5 Data Type Conversions 10-13

10.6.5.1 Numeric Columns 10-13

10.6.5.2 Character-type Columns 10-13

10.6.5.3 Datetime Columns 10-13

10.7 Selecting and Filtering Rows 10-14

10.7.1 Selecting Rows with a FILTER Clause 10-14

10.7.2 Selecting Rows with a WHERE Clause 10-17

10.7.3 Considerations for Selecting Rows with FILTER and WHERE 10-18

10.7.3.1 Ensuring Data Availability for Filters 10-18

10.7.3.2 Comparing Column Values 10-19

viii

10.7.3.3 Testing for NULL Values 10-19

10.8 Retrieving Before and After Values 10-19

10.9 Selecting Columns 10-20

10.10 Selecting and Converting SQL Operations 10-20

10.11 Using Transaction History 10-21

10.12 Testing and Transforming Data 10-22

10.12.1 Handling Column Names and Literals in Functions 10-24

10.12.2 Using the Appropriate Function 10-24

10.12.3 Transforming Dates 10-24

10.12.4 Performing Arithmetic Operations 10-25

10.12.4.1 Omitting @COMPUTE 10-25

10.12.5 Manipulating Numbers and Character Strings 10-26

10.12.6 Handling Null, Invalid, and Missing Data 10-26

10.12.6.1 Using @COLSTAT 10-27

10.12.6.2 Using @COLTEST 10-27

10.12.6.3 Using @IF 10-27

10.12.7 Performing Tests 10-27

10.12.7.1 Using @CASE 10-28

10.12.7.2 Using @VALONEOF 10-28

10.12.7.3 Using @EVAL 10-28

10.13 Using Tokens 10-28

10.13.1 Defining Tokens 10-29

10.13.2 Using Token Data in Target Tables 10-29

11

Associating Replicated Data with Metadata

11.1 Overview 11-1

11.2 Understanding Data Definition Files 11-1

11.2.1 Contents of the Definitions File 11-2

11.2.2 Which Definitions File Type to Use, and Where 11-2

11.2.3 Understanding the Effect of Character Sets on Definitions Files 11-3

11.2.3.1 Confining Data Mapping and Conversion to the Replicat Process 11-3

11.2.3.2 Avoiding File Corruptions Due to Operating System Character
Sets 11-3

11.2.3.3 Changing the Character Set of Existing Definitions Files 11-3

11.2.3.4 Downloading from a z/OS system to another platform 11-4

11.2.4 Using a Definitions Template 11-4

11.2.5 Configuring Oracle GoldenGate to Capture Data-definitions 11-4

11.2.5.1 Configure DEFGEN 11-4

11.2.5.2 Run DEFGEN 11-6

11.2.5.3 Transfer the Definitions File to the Remote System 11-7

11.2.5.4 Specify the Definitions File 11-7

ix

11.2.6 Adding Tables that Satisfy a Definitions Template 11-7

11.2.7 Examples of Using a Definitions File 11-7

11.2.7.1 Creating a Source-definitions file for Use on a Target System 11-8

11.2.7.2 Creating Target-definitions Files for Use on a Source System 11-8

11.2.7.3 Creating Multiple Source Definition Files for Use on a Target
System 11-9

11.3 Using Automatic Trail File Recovery 11-10

11.4 Configuring Oracle GoldenGate to Use Self-Describing Trail Files 11-10

11.4.1 Support Considerations 11-12

11.4.2 Using Self-Describing Trail Files 11-12

11.4.3 Examples of Parameter Files 11-13

11.5 Configuring Oracle GoldenGate to Assume Identical Metadata 11-14

11.6 Configuring Oracle GoldenGate to Assume Dissimilar Metadata 11-14

11.7 Configuring Oracle GoldenGate to Use a Combination of Similar and
Dissimilar Definitions 11-14

12

Configuring Online Change Synchronization

12.1 Overview of Online Change Synchronization 12-1

12.1.1 Initial Synchronization 12-2

12.2 Choosing Names for Processes and Files 12-2

12.2.1 Naming Conventions for Processes 12-2

12.2.2 Choosing File Names 12-3

12.3 Creating a Checkpoint Table 12-4

12.3.1 Options for Creating the Checkpoint Table 12-4

12.3.2 Adjusting for Coordinated Replicat in Oracle RAC 12-5

12.4 Creating an Online Extract Group 12-6

12.5 Creating a Trail 12-8

12.5.1 Assigning Storage for Oracle GoldenGate Trails 12-9

12.5.2 Estimating Space for the Trails 12-9

12.5.3 Adding a Trail 12-10

12.6 Creating a Parameter File for Online Extraction 12-10

12.7 Creating an Online Replicat Group 12-12

12.7.1 About Classic Replicat Mode 12-13

12.7.2 About Coordinated Replicat Mode 12-14

12.7.2.1 About Barrier Transactions 12-15

12.7.2.2 How Barrier Transactions are Processed 12-16

12.7.3 Integrated Replicat Mode 12-16

12.7.4 About Parallel Replicat Mode 12-16

12.7.5 Understanding Replicat Processing in Relation to Parameter Changes 12-17

12.7.6 About the Global Watermark 12-18

12.7.7 Creating the Replicat Group 12-18

x

12.8 Creating a Parameter File for Online Replication 12-20

13

Handling Processing Errors

13.1 Overview of Oracle GoldenGate Error Handling 13-1

13.2 Handling Extract Errors 13-1

13.3 Handling Replicat Errors during DML Operations 13-2

13.3.1 Handling Errors as Exceptions 13-2

13.3.1.1 Using EXCEPTIONSONLY 13-3

13.3.1.2 Using MAPEXCEPTION 13-4

13.3.1.3 About the Exceptions Table 13-5

13.4 Handling Replicat errors during DDL Operations 13-5

13.5 Handling TCP/IP Errors 13-5

13.6 Maintaining Updated Error Messages 13-6

13.7 Resolving Oracle GoldenGate Errors 13-6

14

Customizing Oracle GoldenGate Processing

14.1 Executing Commands, Stored Procedures, and Queries with SQLEXEC 14-1

14.1.1 Performing Processing with SQLEXEC 14-2

14.1.2 Using SQLEXEC 14-2

14.1.3 Executing SQLEXEC within a TABLE or MAP Statement 14-2

14.1.4 Executing SQLEXEC as a Standalone Statement 14-3

14.1.5 Using Input and Output Parameters 14-4

14.1.5.1 Passing Values to Input Parameters 14-4

14.1.5.2 Passing Values to Output Parameters 14-5

14.1.5.3 SQLEXEC Examples Using Parameters 14-5

14.1.6 Handling SQLEXEC Errors 14-6

14.1.6.1 Handling Missing Column Values 14-7

14.1.6.2 Handling Database Errors 14-7

14.1.7 Additional SQLEXEC Guidelines 14-7

14.2 Using Oracle GoldenGate Macros to Simplify and Automate Work 14-8

14.2.1 Defining a Macro 14-9

14.2.2 Calling a Macro 14-10

14.2.2.1 Calling a Macro that Contains Parameters 14-11

14.2.2.2 Calling a Macro without Input Parameters 14-13

14.2.3 Calling Other Macros from a Macro 14-14

14.2.4 Creating Macro Libraries 14-14

14.2.5 Tracing Macro Expansion 14-15

14.3 Using User Exits to Extend Oracle GoldenGate Capabilities 14-16

14.3.1 When to Implement User Exits 14-16

xi

14.3.2 Making Oracle GoldenGate Record Information Available to the
Routine 14-17

14.3.3 Creating User Exits 14-17

14.3.4 Supporting Character-set Conversion in User Exits 14-19

14.3.5 Using Macros to Check Name Metadata 14-19

14.3.6 Describing the Character Format 14-20

14.3.7 Upgrading User Exits 14-22

14.3.8 Viewing Examples of How to Use the User Exit Functions 14-22

14.4 Using the Oracle GoldenGate Event Marker System to Raise Database
Events 14-22

14.4.1 Case Studies in the Usage of the Event Marker System 14-24

14.4.1.1 Trigger End-of-day Processing 14-24

14.4.1.2 Simplify Transition from Initial Load to Change Synchronization 14-24

14.4.1.3 Stop Processing When Data Anomalies are Encountered 14-25

14.4.1.4 Trace a Specific Order Number 14-25

14.4.1.5 Execute a Batch Process 14-25

14.4.1.6 Propagate Only a SQL Statement without the Resultant
Operations 14-25

14.4.1.7 Committing Other Transactions Before Starting a Long-running
Transaction 14-26

14.4.1.8 Execute a Shell Script to Validate Data 14-26

15

Monitoring Oracle GoldenGate Processing

15.1 Using the Information Commands in GGSCI 15-1

15.2 Monitoring an Extract Recovery 15-2

15.3 Monitoring Lag 15-3

15.3.1 About Lag 15-3

15.3.2 Controlling How Lag is Reported 15-3

15.4 Using Automatic Heartbeat Tables to Monitor 15-4

15.4.1 Understanding Heartbeat Table End-To-End Replication Flow 15-5

15.4.2 Updating Heartbeat Tables 15-14

15.4.3 Purging the Heartbeat History Tables 15-14

15.4.4 Best Practice 15-14

15.4.5 Using the Automatic Heartbeat Commands 15-15

15.5 Monitoring Processing Volume 15-15

15.6 Using the Error Log 15-15

15.7 Using the Process Report 15-16

15.7.1 Scheduling Runtime Statistics in the Process Report 15-17

15.7.2 Viewing Record Counts in the Process Report 15-17

15.7.3 Preventing SQL Errors from Filling the Replicat Report File 15-17

15.8 Using the Discard File 15-18

xii

15.9 Maintaining the Discard and Report Files 15-18

15.10 Reconciling Time Differences 15-19

15.11 Getting Help with Performance Tuning 15-19

16

Tuning the Performance of Oracle GoldenGate

16.1 Using Multiple Process Groups 16-1

16.1.1 Considerations for Using Multiple Process Groups 16-2

16.1.1.1 Maintaining Data Integrity 16-3

16.1.1.2 Number of Groups 16-3

16.1.1.3 Memory 16-3

16.1.1.4 Isolating Processing-Intensive Tables 16-4

16.1.2 Using Parallel Replicat Groups on a Target System 16-4

16.1.2.1 To Create the Extract Group 16-4

16.1.2.2 To Create the Replicat Groups 16-5

16.1.3 Using Multiple Extract Groups with Multiple Replicat Groups 16-5

16.1.3.1 To Create the Extract Groups 16-5

16.1.3.2 To Create the Replicat Groups 16-6

16.2 Splitting Large Tables Into Row Ranges Across Process Groups 16-6

16.3 Configuring Oracle GoldenGate to Use the Network Efficiently 16-7

16.3.1 Detecting a Network Bottleneck that is Affecting Oracle GoldenGate 16-8

16.3.2 Working Around Bandwidth Limitations by Using Data Pumps 16-9

16.3.3 Increasing the TCP/IP Packet Size 16-9

16.4 Eliminating Disk I/O Bottlenecks 16-10

16.4.1 Improving I/O performance Within the System Configuration 16-10

16.4.2 Improving I/O Performance Within the Oracle GoldenGate
Configuration 16-10

16.5 Managing Virtual Memory and Paging 16-11

16.6 Optimizing Data Filtering and Conversion 16-12

16.7 Tuning Replicat Transactions 16-12

16.7.1 Tuning Coordination Performance Against Barrier Transactions 16-13

16.7.2 Applying Similar SQL Statements in Arrays 16-13

16.7.3 Preventing Full Table Scans in the Absence of Keys 16-14

16.7.4 Splitting Large Transactions 16-14

16.7.5 Adjusting Open Cursors 16-14

16.7.6 Improving Update Speed 16-14

16.7.7 Set a Replicat Transaction Timeout 16-15

16.8 Using Healthcheck Scripts to Monitor and Troubleshoot 16-15

16.8.1 Installing, Running, and Uninstalling Healthcheck Scripts 16-15

16.8.2 How to Deal with Healthcheck Information? 16-16

xiii

16.8.3 Components of Healthcheck Information 16-16

17

Performing Administrative Operations

17.1 Performing Application Patches 17-1

17.2 Initializing the Transaction Logs 17-2

17.3 Shutting Down the System 17-4

17.4 Changing Database Attributes 17-4

17.4.1 Changing Database Metadata 17-4

17.4.2 Adding Tables to the Oracle GoldenGate Configuration 17-6

17.4.3 Coordinating Table Attributes between Source and Target 17-7

17.4.4 Performing an ALTER TABLE to Add a Column on DB2 z/OS Tables 17-9

17.4.5 Dropping and Recreating a Source Table 17-9

17.4.6 Changing the Number of Oracle RAC Threads when Using Classic
Capture 17-10

17.4.7 Changing the ORACLE_SID 17-11

17.4.8 Purging Archive Logs 17-11

17.4.9 Reorganizing a DB2 Table (z/OS Platform) 17-12

17.5 Adding Process Groups to an Active Configuration 17-12

17.5.1 Before You Start 17-12

17.5.2 Adding Another Extract Group to an Active Configuration 17-12

17.5.3 Adding Another Data Pump to an Active Configuration 17-15

17.5.4 Adding Another Replicat Group to an Active Configuration 17-17

17.6 Changing the Size of Trail Files 17-19

17.7 Switching Extract from Classic Mode to Integrated Mode 17-19

17.8 Switching Extract from Integrated Mode to Classic Mode 17-20

17.9 Switching Replicat from Non-Integrated Mode to Integrated Mode 17-22

17.10 Switching Replicat from Integrated Mode to Non-Integrated Mode 17-23

17.11 Switching Replicat to Coordinated Mode 17-24

17.11.1 Procedure Overview 17-24

17.11.2 Performing the Switch to Coordinated Replicat 17-25

17.12 Administering a Coordinated Replicat Configuration 17-27

17.12.1 Performing a Planned Re-partitioning of the Workload 17-27

17.12.2 Recovering Replicat After an Unplanned Re-partitioning 17-28

17.12.2.1 Reprocessing From the Low Watermark with
HANDLECOLLISIONS 17-28

17.12.2.2 Using the Auto-Saved Parameter File 17-29

17.13 Synchronizing Threads After an Unclean Stop 17-30

17.14 Restarting a Primary Extract after System Failure or Corruption 17-31

17.14.1 Details of This Procedure 17-31

17.14.2 Performing the Recovery 17-31

xiv

17.15 Using Automatic Trail File Recovery 17-33

18

Using UDS for Monitoring Performance

18.1 How Does UDS Work? 18-1

18.2 Operating System Supported with Unix Domain Sockets 18-1

Part II Administering Oracle GoldenGate Microservices Architecture

19

Working with Oracle GoldenGate Sharding

19.1 Oracle GoldenGate With a Sharded Database 19-1

19.2 How to Configure Sharding in Oracle GoldenGate 19-2

20

Loading Data from File to Replicat in Microservices Architecture

Part III Administering Oracle GoldenGate Classic Architecture

21

Instantiating Oracle GoldenGate with an Initial Load

21.1 Overview of the Initial-Load Procedure 21-1

21.1.1 Improving the Performance of an Initial Load 21-1

21.1.2 Prerequisites for Initial Load 21-2

21.1.2.1 Disable DDL Processing 21-2

21.1.2.2 Prepare the Target Tables 21-2

21.1.2.3 Configure the Manager Process 21-3

21.1.2.4 Create a Data-definitions File 21-3

21.1.2.5 Create Change-synchronization Groups 21-3

21.1.2.6 Sharing Parameters between Process Groups 21-3

21.2 Initial Load in Classic Architecture 21-4

21.2.1 Loading Data with Oracle Data Pump 21-4

21.2.1.1 Using Automatic Per Table Instantiation 21-4

21.2.1.2 Using Oracle Data Pump Table Instantiation 21-5

21.2.2 Loading Data from File to Replicat 21-6

21.2.3 Loading Data with an Oracle GoldenGate Direct Load 21-11

21.2.4 Loading Data with a Direct Bulk Load to SQL*Loader 21-16

xv

A Connecting Microservices Architecture to Classic Architecture

B Connecting Oracle GoldenGate Classic Architecture to
Microservices Architecture

C Supported Character Sets

C.1 Supported Character Sets - Oracle C-1

C.2 Supported Character Sets - Non-Oracle C-8

D Supported Locales

E About the Oracle GoldenGate Trail

E.1 Trail Recovery Mode E-1

E.2 Trail Record Format E-1

E.3 Trail File Header Record E-2

E.3.1 Partition Name Record in Trail File Header E-3

E.3.2 Viewing the Partition Name and PNR Index in Logdump E-3

E.4 Example of an Oracle GoldenGate Record E-4

E.5 Record Header Area E-5

E.5.1 Description of Header Fields E-5

E.5.2 Using Header Data E-7

E.6 Record Data Area E-7

E.6.1 Full Record Image Format (NonStop Sources) E-8

E.6.2 Compressed Record Image Format (Windows, UNIX, Linux Sources) E-8

E.7 Tokens Area E-9

E.8 Oracle GoldenGate Operation Types E-9

F Using the Commit Sequence Number

G About Checkpoints

G.1 Extract Checkpoints G-1

G.1.1 About Extract read checkpoints G-3

G.1.1.1 Startup Checkpoint G-3

G.1.1.2 Recovery Checkpoint G-3

G.1.1.3 Current Checkpoint G-3

xvi

G.1.2 About Extract Write Checkpoints G-4

G.2 Replicat Checkpoints G-4

G.2.1 About Replicat Checkpoints G-5

G.2.1.1 Startup Checkpoint G-5

G.2.1.2 Current Checkpoint G-5

G.3 Internal Checkpoint Information G-5

G.4 Oracle GoldenGate Checkpoint Tables G-6

xvii

Preface

This guide contains instructions for:

• Working with the interface components that control Oracle GoldenGate.

• Monitoring and troubleshooting Oracle GoldenGate performance.

• Performing other administrative operations.

Topics:

• Audience

• Documentation Accessibility

• Related Information

• Conventions

Audience
This guide is intended for the person or persons who are responsible for operating
Oracle GoldenGate and maintaining its performance. This audience typically includes,
but is not limited to, systems administrators and database administrators.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Information
The Oracle GoldenGate Product Documentation Libraries are found at:

https://docs.us.oracle.com/en/middleware/goldengate/core/21.1/

The Oracle GoldenGate related product documentation libraries are found at:

https://docs.oracle.com/en/middleware/goldengate/index.html

For additional information on Oracle GoldenGate, refer to:

Preface

xviii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.us.oracle.com/en/middleware/goldengate/core/21.1/
https://docs.oracle.com/en/middleware/goldengate/emplugin/index.html

https://www.oracle.com/middleware/technologies/goldengate.html

https://www.oracle.com/database/technologies/high-availability/oracle-database-maa-
best-practices.html

For licensing information, refer to Licensing Information in the Oracle GoldenGate
Licensing Information guide.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, such as "From the File menu, select Save." Boldface
also is used for terms defined in text or in the glossary.

italic

italic

Italic type indicates placeholder variables for which you supply
particular values, such as in the parameter statement: TABLE
table_name. Italic type also is used for book titles and emphasis.

monospace

MONOSPACE

Monospace type indicates code components such as user exits and
scripts; the names of files and database objects; URL paths; and input
and output text that appears on the screen. Uppercase monospace
type is generally used to represent the names of Oracle GoldenGate
parameters, commands, and user-configurable functions, as well as
SQL commands and keywords.

UPPERCASE Uppercase in the regular text font indicates the name of a utility unless
the name is intended to be a specific case.

{ } Braces within syntax enclose a set of options that are separated by
pipe symbols, one of which must be selected, for example: {option1 |
option2 | option3}.

[] Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLICAT group_name
[, SAVE count]. Multiple options within an optional element are
separated by a pipe symbol, for example: [option1 | option2].

Preface

xix

https://www.oracle.com/middleware/technologies/goldengate.html
https://www.oracle.com/database/technologies/high-availability/oracle-database-maa-best-practices.html
https://www.oracle.com/database/technologies/high-availability/oracle-database-maa-best-practices.html

1
Oracle GoldenGate Administration
Overview

Administrative decisions for Oracle GoldenGate processes depend on the type of
architecture you are using.

As an administrator for Oracle GoldenGate, you need to ensure that the configuration
and processes are relevant to the type of architecture that’s implemented in
your production environment. This book is divided into two parts to describe the
configurations, processes, and tasks that are specific to the Classic Architecture and
the Microservices.

See Getting Started with the Oracle GoldenGate Architectures for conceptual details
about the Oracle GoldenGate architectures.

This book is divided into two parts to describe processes that are specific to each
architecture:

• Part 1: Administering Oracle GoldenGate Classic Architecture

• Part 2: Administering Oracle GoldenGate Microservices Architecture

1-1

2
Oracle GoldenGate Globalization Support

This chapter describes Oracle GoldenGate globalization support, which enables the
processing of data in its native language encoding.
Topics:

• Preserving the Character Set

• Using Unicode and Native Characters

• Character Map Translation

2.1 Preserving the Character Set
In order to process the data in its native language encoding, Oracle GoldenGate takes
into consideration the character set of the database and the operating system locale, if
applicable.

Topics:

• Character Set of Database Structural Metadata

• Character Set of Character-type Data

• Character Set of Database Connection

• Character Set of Text Input and Output

2.1.1 Character Set of Database Structural Metadata
Oracle GoldenGate processes catalog, schema, table and column names in their
native language as determined by the character set encoding of the source and
target databases. This processing is extended to the parameter files and command
interpreter, where they are processed according to the operating system locale. These
objects appear in their localized format throughout the client interface, on the console,
and in files.

2.1.2 Character Set of Character-type Data
The Oracle GoldenGate apply process (Replicat) supports the conversion of data
from one character set to another when the data is contained in character column
types. Character-set conversion support is limited to column-to-column mapping as
performed with the COLMAP or USEDEFAULTS clauses of a TABLE or MAP statement. It
is not supported by the column-conversion functions, by SQLEXEC, or by the TOKENS
feature.

See Mapping and Manipulating Data for more information about character sets,
conversion between them, and data mapping.

2-1

2.1.3 Character Set of Database Connection
The Extract and Replicat processes use a session character set when connecting
to the database. For Oracle Databases, the session character set is set to the
same as the database character set by both Extract and Replicat. For MySQL, the
session character set is taken from the SESSIONCHARSET option of SOURCEDB and
TARGETDB, or from the SESSIONCHARSET parameter set globally in the GLOBALS file. For
other database types, it is obtained programmatically. In addition, Oracle GoldenGate
processes use a session character set for communication and data transfer between
Oracle GoldenGate and the database, such as for SQL queries, fetches, and applying
data.

2.1.4 Character Set of Text Input and Output
Oracle GoldenGate supports text input and output in the default character set of the
host operating system for the following:

• Console

• Command-line input and output

• FORMATASCII, FORMATSQL, FORMATXML parameters, text files such as parameter files,
data-definitions files, error log, process reports, discard files, and other human-
readable files that are used by Oracle GoldenGate users to configure, run, and
monitor the Oracle GoldenGate environment.

In the event that the platform does not support a required character set as the default
in the operating system, you can use the following parameters to specify a character
set:

• CHARSET parameter to specify a character set to be used by processes to read their
parameter files.

• CHARSET option of the DEFSFILE parameter to generate a data-definitions file in a
specific character set.

The GGSCI command console always operates in the character set of the local
operating system for both keyboard and OBEY file input and console output.

2.2 Using Unicode and Native Characters
Oracle GoldenGate supports the use of an escape sequence to represent characters
in Unicode or in the native character encoding of the Windows, UNIX, and Linux
operating systems. You can use an escape sequence if the operating system does
not support the required character, or for any other purpose when needed. For more
information about this support, see Support for Escape Sequences.

2.3 Character Map Translation
The CHARMAP feature is available from Oracle GoldenGate 12.1.2.1.0 and higher.
Using CHARMAP, you can specify that a character mapping file and setup in Oracle
GoldenGate Replicat to override the character code point mapping. This feature is
useful when the target database character set is a subset of the source database
character set.

Chapter 2
Using Unicode and Native Characters

2-2

Note:

By enabling character set conversion for same character sets, you may
encounter performance degradation.

The following is an example replication from Oracle Database to Teradata.

• The trail file from the source is in UTF-8.

• The target database in Teradata is UTF-16.

When applying data to Teradata, the 6706 The string contains an untranslatable
character. error occurs in Teradata. Teradata doesn't implement all the valid Unicode
code points, for example, U+FFFD, the default substitution character for invalid
UNICODE in Oracle Database is not recognized by Teradata.

To avoid the errors, you can take the following steps to setup CHARMAP to
convert unsupported Unicode characters to supported Unicode characters by Teradata
database:

1. If source and target are same character set like map UTF-16 to UTF-16, you have
to enable strict character validation. Add following parameter to replicat parameter.

 REPLACEBADCHAR FORCECHECK

2. Create character mapping override definition file. In the following example source
is Oracle AL32UTF8 column and target is UTF-16, which maps U+FFFD to
U+0020 white space.

SOURCECHARSET AL32UTF8
TARGETCHARSET UTF-16
\xef\xbf\xbd \x20

3. Specify the preceding override definition file in Replicat parameter file. In the
following example, the file from step 2 is saved as ./dirprm/fffd.map. Add the
parameter before the MAP parameter, preferably before login parameter in case the
conversion happens upon login for database connection.

CHARMAP ./dirprm/fffd.map

The CHARMAP is supported by Oracle GoldenGate Replicat for all supported databases
including Oracle GoldenGate for DB2 LUW, iSeries, and DB2 z/OS among others.

Chapter 2
Character Map Translation

2-3

Part I
Oracle GoldenGate Administration:
Common Components and Operations

Learn about the common components and tasks required for managing Oracle
GoldenGate administration.

Topics

• Getting Started with the Oracle GoldenGate Process Interfaces

• Using Oracle GoldenGate Parameter Files

• Using Oracle GoldenGate for Live Reporting

• Using Oracle GoldenGate for Real-time Data Distribution

• Configuring Oracle GoldenGate for Real-time Data Warehousing

• Configuring Oracle GoldenGate to Maintain a Live Standby Database

• Configuring Oracle GoldenGate for Active-Active Configuration

• Mapping and Manipulating Data

• Associating Replicated Data with Metadata

• Configuring Online Change Synchronization

• Handling Processing Errors

• Customizing Oracle GoldenGate Processing

• Monitoring Oracle GoldenGate Processing

• Tuning the Performance of Oracle GoldenGate

• Performing Administrative Operations

• Using UDS for Monitoring Performance
Oracle GoldenGate uses the Unix Domain Sockets (UDS) to send montoring
points from Extract, Replicat, and other processes to the local Performance
Monitoring server process of the deployment.

3
Getting Started with the Oracle
GoldenGate Process Interfaces

This chapter describes how Oracle GoldenGate users provide instructions to the
processes through the GGSCI (Oracle GoldenGate Software Command Interface),
batch and shell scripts, and parameter files.
Topics:

• Using Command Line Interfaces

• Controlling Oracle GoldenGate Processes

• Automating Commands

• Specifying Object Names in Oracle GoldenGate Input

3.1 Using Command Line Interfaces
To start either the Admin Client or GGSCI, you need to change the current working
directory to the Oracle GoldenGate home directory (OGG_HOME).

Note:

The environment variable OGG_HOME and OGG_VAR_HOME must be set before
starting the Admin Client or GGSCI.

Topics:

• Using the Admin Client
Admin Client is a command line utility (similar to the classic GGSCI utility). It uses
the REST API published by the Microservices Servers to accomplish control and
configuration tasks in an Oracle GoldenGate deployment.

• Using GGSCI

• Using Wildcards in Command Arguments

• Globalization Support for the Command Interface

• Using Command History

• Storing and Calling Frequently Used Command Sequences

3.1.1 Using the Admin Client
Admin Client is a command line utility (similar to the classic GGSCI utility). It uses
the REST API published by the Microservices Servers to accomplish control and
configuration tasks in an Oracle GoldenGate deployment.

3-1

Admin Client is used to create, modify, and remove processes, instead of using the
Microservices web user interface.

If you need to automate the Admin Client connection with the deployment, you can use
an Oracle Wallet to store the user credentials. The credentials stored must have the
following characteristics:

• Single user name (account) and password

• Local to the environment where the Admin Client runs

• Available only to the currently logged user

• Managed by the Admin Client

• Referenced using a credential name

• Available for Oracle GoldenGate deployments and proxy connections.

Note:

To use the Admin Client for administration tasks, you need the user
credentials that work with both the Service Manager and Administration
Server.

To use the Admin Client, perform the following steps:

1. Set the environment variables: OGG_HOME, OGG_VAR_HOME.

Move to $OGG_HOME/bin and run the command:

[oracle@bigdatalite bin]$./adminclient
Oracle GoldenGate Administration Client for Oracle
Version 19.1.0.0.0 OGGCORE_19.1.0.0.0_PLATFORMS_yymmdd.HHMM_FBO

Copyright (C) 1995, 2019, Oracle and/or its affiliates. All rights
reserved.

Linux, x64, 64bit (optimized) on Dec 31 2016 23:58:36
Operating system character set identified as UTF-8.

OGG (not connected) 1>

2. Log into the deployment using the security user credentials. This is the user you
created while adding the deployment for your Oracle GoldenGate instance.

connect http(s)://localhost:port deployment deployment name as
security role user

3. To add users, other than the security role user, for the deployment, use the ADD
CREDENTIALS command. To know how this command works, see ADD CREDENTIALS
in Command Line Interface Reference for Oracle GoldenGate. Other commands
for user credentials are INFO CREDENTIALS and DELETE CREDENTIALS.

4. You can connect to a deployment or to a proxy server from the Admin Client.

Chapter 3
Using Command Line Interfaces

3-2

Note:

If your password to connect to a secure or non-secure deployment
from the Admin Client has an exclamation mark (!) at the end, then
you must enter the password in double quotes when using the CONNECT
command in a single line. Otherwise, the password is not accepted and
the connection fails. This is required for all deployments with a strong
password policy.

Syntax:

CONNECT - Connect to an Oracle GoldenGate Service Manager
 |CONNECT server-url [DEPLOYMENT deployment-name]
 |[(AS deployment-credentials-name|
 | USER deployment-user-name)
 |[PASSWORD deployment-password]]
 |[PROXY proxy-uri|
 |[(AS proxy-credentials-name
 |USER proxy-user-name)
 |[PASSWORD proxy-password]]] [!]

Note:

The deployment credentials cannot be stored as a USERIDALIAS in the
credential store because the Oracle wallet used for storing database
credentials is managed by the Administration Server. Instead, a separate
Oracle wallet is created for the Admin Client. The Oracle wallet is stored
in the users home directory.

The following example shows the connection to a deployment and to a proxy
server:

OGG (not connected) 1> ADD CREDENTIALS admin USER oggadmin PASSWORD
oggadmin-A1
2019-02-14T00:35:38Z INFO OGG-15114 Credential store altered.
OGG (not connected) 2> ADD CREDENTIALS proxy USER oggadmin PASSWORD
oggadmin-A2
2019-02-14T00:35:48Z INFO OGG-15114 Credential store altered.
OGG (not connected) 3> CONNECT http://abc.oracle.com:12000 AS admin
PROXY http:111.1.1.1:3128 as proxy
Using default deployment 'Local'
OGG (http://abc.oracle.com:12000 Local) 4>

If the credentials are invalid for a proxy connection, then an error similar to the
following error occurs:

OGG (not connected) 2> ADD CREDENTIALS proxy USER proxyadmin
PASSWORD invalid
2019-02-14T00:48:12Z INFO OGG-15114 Credential store altered.
OGG (not connected) 3> CONNECT http://abc.oracle.com:12000 AS admin

Chapter 3
Using Command Line Interfaces

3-3

PROXY http://111.1.1.1:3128 as proxy
ERROR: Proxy server user name 'proxyadmin' or password is incorrect.

5. You can view the full list of Admin Client commands using the HELP command. Use
the HELP SHOWSYNTAX command to view the syntax for specific commands.

3.1.2 Using GGSCI
Run the ggsci executable file.

If you don't set the current working directory to the Oracle GoldenGate home directory,
then errors similar to the following may occur:

GGSCI (20) 2> stop mgr
Manager process is required by other GGS processes. Are you sure you
want to stop it (y/n)?y
Transparent Integration with XAG is enabled. Sending the command STOP
MANAGER to XAG...
ERROR: No Oracle GoldenGate instance is found in XAG resource list.

3.1.3 Using Wildcards in Command Arguments
You can use wildcards with certain Oracle GoldenGate commands to control multiple
Extract and Replicat groups as a unit. The wildcard symbol that is supported by Oracle
GoldenGate is the asterisk (*). An asterisk represents any number of characters.
For example, to start all Extract groups whose names contain the letter X, issue the
following command.

START EXTRACT *X*

3.1.4 Globalization Support for the Command Interface
All command input and related console output are rendered in the default character
set of the local operating system. To specify characters that are not compatible with
the character set of the local operating system, use Unicode notation. For example,
the following Unicode notation is equivalent to the name of a table that has the Euro
symbol as its name:

ADD TRANDATA \u20AC1

For more information, see Support for Escape Sequences for more information about
using Unicode notation.

Note:

Oracle GoldenGate group names are case-insensitive.

3.1.5 Using Command History
The execution of multiple commands is made easier with the following tools:

Chapter 3
Using Command Line Interfaces

3-4

• Use the HISTORY command to display a list of previously executed commands.

• Use the ! command to execute a previous command again without editing it.

• Use the FC command to edit a previous command and then execute it again.

3.1.6 Storing and Calling Frequently Used Command Sequences
You can automate a frequently-used series of commands by using an OBEY file and the
OBEY command. The OBEY file takes the character set of the local operating system.
To specify a character that is not compatible with that character set, use the Unicode
notation.

See Support for Escape Sequences for more information about using Unicode
notation.

To use OBEY

1. Create and save a text file that contains the commands, one command per line.
This is your OBEY file. The name can be anything supported by the operating
system. You can nest other OBEY files within an OBEY file.

2. Run the Admin Client or GGSCI.

3. (Optional) If using an OBEY file that contains nested OBEY files, issue the following
command. This command enables the use of nested OBEY files for the current
session and is required whenever using nested OBEY files. See Reference for
Oracle GoldenGate for more information.

ALLOWNESTED

4. Call the OBEY file by using the OBEY command from the command line interface
(Admin Client or GGSCI).

OBEY file_name

Where:

file_name is the relative or fully qualified name of the OBEY file.

Example 3-1 OBEY command file

ADD EXTRACT myext, TRANLOG, BEGIN now
START EXTRACT myext

ADD REPLICAT myrep, EXTTRAIL /ggs/dirdat/aa
START REPLICAT myrep

INFO EXTRACT myext, DETAIL
INFO REPLICAT myrep, DETAIL

The following example illustrates an OBEY command file for use with the OBEY
command. It creates and starts Extract and Replicat groups and retrieves processing
information.

See Reference for Oracle GoldenGate for more information about the OBEY command.

Chapter 3
Using Command Line Interfaces

3-5

3.2 Controlling Oracle GoldenGate Processes
The standard way to control Oracle GoldenGate processes is through the GGSCI
interface. Typically, the first time that Oracle GoldenGate processes are started in a
production setting is during the initial synchronization process (also called instantiation
process). However, you will need to stop and start the processes at various points as
needed to perform maintenance, upgrades, troubleshooting, or other tasks.

These instructions show basic syntax.

Topics:

• Controlling Manager

• Controlling Extract and Replicat

• Deleting Extract and Replicat

3.2.1 Controlling Manager
Manager should not be stopped unless you want to stop replication processing.

To Stop Manager

1. From the Oracle GoldenGate directory, run GGSCI.

2. In GGSCI, issue the following command.

{START | STOP [!]} MANAGER

Where:

The ! bypasses the prompt that confirms the intent to shut down Manager.

Note:

When starting Manager from the command line or GGSCI with User Account
Control enabled, you will receive a UAC prompt requesting you to allow or
deny the program to run.

3.2.2 Controlling Extract and Replicat
This section contains basic directions for controlling Extract and Replicat processes.
See Reference for Oracle GoldenGate for additional command options.

To Start Extract or Replicat

START {EXTRACT | REPLICAT} group_name

Where:

group_name is the name of the Extract or Replicat group or a wildcard set of groups
(for example, * or fin*).

Chapter 3
Controlling Oracle GoldenGate Processes

3-6

To Stop Extract or Replicat Gracefully

STOP {EXTRACT | REPLICAT} group_name

Where:

group_name is the name of the Extract or Replicat group or a wildcard set of groups
(for example, * or fin*).

To Stop Replicat Forcefully

STOP REPLICAT group_name !

The current transaction is aborted and the process stops immediately. You cannot stop
Extract forcefully.

To Kill a Process that STOP Cannot Stop

KILL {EXTRACT | REPLICAT} group_name

Killing a process does not shut it down gracefully, and checkpoint information can be
lost.

To Control Multiple Processes at Once

command ER wildcard specification

Where:

• command is: KILL, START, or STOP

• wildcard specification is a wildcard specification for the names of the process
groups that you want to affect with the command. The command affects every
Extract and Replicat group that satisfies the wildcard. Oracle GoldenGate supports
up to 100,000 wildcard entries.

3.2.3 Deleting Extract and Replicat
This section contains basic directions for deleting Extract and Replicat processes. See
Reference for Oracle GoldenGate for additional command options.

To Delete an Extract Group

1. Run GGSCI.

2. Issue the DBLOGIN command as the Extract database user (or a user with the
same privileges). You can use either of the following commands, depending on
whether a local credential store exists.

DBLOGIN [SOURCEDB dsn] {USERID user, PASSWORD password
[encryption_options] | USERIDALIAS alias [DOMAIN domain]}

3. Stop the Extract process.

STOP EXTRACT group_name

4. Issue the following command.

DELETE EXTRACT group_name

5. (Oracle) Unregister the Extract group from the database.

Chapter 3
Controlling Oracle GoldenGate Processes

3-7

UNREGISTER EXTRACT group_name,database_name

To Delete a Replicat Group

1. Stop the Replicat process.

STOP REPLICAT group_name

2. Issue one of the following commands from GGSCI to log into the database.

DBLOGIN [SOURCEDB dsn] {USERID user, PASSWORD password
[encryption_options] | USERIDALIAS alias [DOMAIN domain]}

Where:

• SOURCEDB dsn supplies the data source name, if required as part of the
connection information.

• USERID user, PASSWORD password specifies an explicit database login
credential.

• USERIDALIAS alias [DOMAIN domain] specifies an alias and optional domain
of a credential that is stored in a local credential store.

• encryption_options is one of the options that encrypt the password.

3. Issue the following command to delete the group.

DELETE REPLICAT group_name

Deleting a Replicat group preserves the checkpoints in the checkpoint table (if being
used). Deleting a process group also preserves the parameter file. You can create the
same group again, using the same parameter file, or you can delete the parameter file
to remove the group's configuration permanently.

3.3 Automating Commands
Oracle GoldenGate supports the issuing of commands through scripts or jobs. This
section describes these options for UNIX- or Linux-based platforms and the IBMi
platform.

On a UNIX or Linux system, or within a runtime environment that supports UNIX or
Linux applications, you can issue Oracle GoldenGate commands from a script such
as a startup script, shutdown script, or failover script by running GGSCI and calling
an input file. The script file must be encoded in the operating system character set.
Unicode notation can be used for characters that are not supported by the operating
system character set. Before creating a script, see Globalization Support for the
Command Interface.

To Input a Script

Use the following syntax from the command line of the operating system.

ggsci < input_file

Where:

• The angle bracket (<) character pipes the file into the GGSCI program.

Chapter 3
Automating Commands

3-8

• input_file is a text file, known as an OBEY file, containing the commands that you
want to issue, in the order they are to be issued.

Note:

To stop the Manager process from a batch file, make certain to add the !
argument to the end of the STOP MANAGER command. Otherwise, GGSCI
issues a prompt that requires a response and causes the process to enter
into a loop.

• Issuing Commands Through the IBM i CLI

3.3.1 Issuing Commands Through the IBM i CLI
Oracle GoldenGate for IBM DB2 for i includes a set of native IBM i commands that
enables the operation of the most common Oracle GoldenGate programs from the
IBM i command-line interface (CLI). Because these commands are native, they do not
need to be run from a PASE environment. With this support, it is possible to issue
commands interactively or by using the typical job submission tools such as SBMJOB
to operate Oracle GoldenGate non-interactively.

The commands are as follows and correspond to the Oracle GoldenGate programs of
the same name. They reside in the Oracle GoldenGate installation library.

DEFGEN

EXTRACT

KEYGEN

LOGDUMP

MGR

REPLICAT

3.4 Specifying Object Names in Oracle GoldenGate Input
The following rules apply when specifying object names in parameter files (such as
in TABLE and MAP statements), column-conversion functions, commands, and in other
input.

Topics:

• Specifying Filesystem Path Names in Parameter Files on Windows Systems

• Supported Database Object Names

• Specifying Names that Contain Slashes

• Qualifying Database Object Names

• Specifying Case-Sensitive Database Object Names

• Using Wildcards in Database Object Names

• Differentiating Case-Sensitive Column Names from Literals

Chapter 3
Specifying Object Names in Oracle GoldenGate Input

3-9

3.4.1 Specifying Filesystem Path Names in Parameter Files on
Windows Systems

On Windows systems, if the name of any directory in a filesystem path name begins
with a number, the path must be specified with forward slashes, not backward
slashes, when listing that path in Oracle GoldenGate input, such as parameter files or
commands. This requirement prevents Oracle GoldenGate from interpreting the name
as an octal escape sequence. For example, the following paths contain a directory
named \2014 that will be interpreted as the octal sequence \201:

C:\ogg\2014\install\dirdat\aa
C:\ogg\install\2014\dirdat\aa

The preceding path can be used with forward slashes as follows:

C:/ogg/2014/install/dirdat/aa
C:/ogg/install/2014/dirdat/aa

For more information, see Support for Escape Sequences.

3.4.2 Supported Database Object Names
Object names in parameter files, command, and other input can be any length and in
any supported character set. For supported character sets, see Supported Character
Sets.

Oracle GoldenGate supports most characters in object and column names. Specify
object names in double quote marks if they contain special characters such as white
spaces or symbols.

The following lists of supported and non-supported characters covers all databases
supported by Oracle GoldenGate; a given database platform may or may not support
all listed characters.

Topics:

• Supported Special Characters

• Non-supported Special Characters

3.4.2.1 Supported Special Characters
Oracle GoldenGate supports all characters that are supported by the database,
including the following special characters. Object names that contain these special
characters must be enclosed within double quotes in parameter files.

Character Description

/ Forward slash (See Specifying Names that Contain Slashes)

* Asterisk (Must be escaped by a backward slash when used in parameter
file, as in: *)

? Question mark (Must be escaped by a backward slash when used in
parameter file, as in: \?)

Chapter 3
Specifying Object Names in Oracle GoldenGate Input

3-10

Character Description

@ At symbol (Supported, but is often used as a resource locator by
databases. May cause problems in object names)

Pound symbol

$ Dollar symbol

% Percent symbol (Must be %% when used in parameter file)

^ Caret symbol

() Open and close parentheses

_ Underscore

- Dash

<space> Space

3.4.2.2 Non-supported Special Characters
The following characters are not supported in object names and non-key column
names.

Character Description

\ Backward slash (Must be \\ when used in parameter file)

{ } Begin and end curly brackets (braces)

[] Begin and end brackets

= Equal symbol

+ Plus sign

! Exclamation point

~ Tilde

| Pipe

& Ampersand

: Colon

; Semi-colon

, Comma

' ' Single quotes

" " Double quotes

' Accent mark (Diacritical mark)

. Period

< Less-than symbol (or beginning angle bracket)

> Greater-than symbol (or ending angle bracket)

3.4.3 Specifying Names that Contain Slashes
If a table name contains a forward-slash character (/) in any part of its name, that
name component must be enclosed within double quotes unless the object name is
from an IBM i platform . The following are some examples:

Chapter 3
Specifying Object Names in Oracle GoldenGate Input

3-11

"c/d"
"/a".b
a."b/"

If the name contains a forward slash that is not enclosed within double quotes, Oracle
GoldenGate treats it as a name that originated on the IBM i platform (from a DB2 for i
database). The forward slash in the name is interpreted as a separator character.

3.4.4 Qualifying Database Object Names
Object names must be fully qualified in the parameter file. This means that every name
specification must be qualified, not only those supplied as input to Oracle GoldenGate
parameter syntax, but also names in a SQL procedure or query that is supplied as
SQLEXEC input, names in user exit input, and all other input supplied in the parameter
file.

Oracle GoldenGate supports two-part and three-part object names, as appropriate for
the database.

Topics:

• Two-part Names

• Three-part Names

• Applying Data from Multiple Containers or Catalogs

• Specifying a Default Container or Catalog

3.4.4.1 Two-part Names
Most databases require only two-part names to be specified, in the following format:

owner.object

For example: HR.EMP

Where:

owner is a schema or database, depending on how the database defines a logical
namespace that contains database objects. object is a table or other supported
database object.

The databases for which Oracle GoldenGate supports two-part names are as follows,
shown with their appropriate two-part naming convention:

• DB2 for i: schema.object and library/file(member)

• DB2 LUW: schema.object

• DB2 on z/OS: schema.object

• MySQL: database.object

• Oracle Database (non-CDB databases): schema.object

• SQL Server: schema.object

• Teradata: database.object

Chapter 3
Specifying Object Names in Oracle GoldenGate Input

3-12

3.4.4.2 Three-part Names
Oracle GoldenGate supports three-part names for the following databases:

• Oracle container databases (CDB)

Three-part names are required to capture from a source Oracle container database
because one Extract group can capture from more than one container. Thus, the name
of the container, as well as the schema, must be specified for each object or objects in
an Extract TABLE statement.

Specify a three-part Oracle CDB name as follows:

container.schema.object

For example: PDB1.HR.EMP

3.4.4.3 Applying Data from Multiple Containers or Catalogs
To apply data captured from multiple source containers or catalogs to a target Oracle
container database, both three- and two-part names are required. In the MAP portion of
the MAP statement, each source object must be associated with a container or catalog,
just as it was in the TABLE statement. This enables you (and Replicat) to properly map
data from multiple source containers or catalogs to the appropriate target objects. In
the TARGET portion of the MAP statement, however, only two-part names are required.
This is because Replicat can connect to only one target container or catalog at a
time, and schema.owner is a sufficient qualifier. Multiple Replicat groups are required to
support multiple target containers or catalogs. Specify the target container or catalog
with the TARGETDB parameter.

3.4.4.4 Specifying a Default Container or Catalog
You can use the SOURCECATALOG parameter to specify a default catalog for any
subsequent TABLE, MAP, (or Oracle SEQUENCE) specifications in the parameter file. The
following example shows the use of SOURCECATALOG to specify the default Oracle PDB
named pdb2 for schema2 and schema3 objects, and the default PDB named pdb3 for
schema4 objects. The objects in pdb1 are specified with a fully qualified three-part
name, which does not require a default catalog to be specified.

TABLE pdb1.schema1.table*;
SOURCECATALOG pdb2
TABLE schema2.table*;
TABLE schema3.table*;
SOURCECATALOG pdb3
TABLE schema4.table*;

3.4.5 Specifying Case-Sensitive Database Object Names
Oracle GoldenGate supports case-sensitive names. Follow these rules when
specifying case-sensitive objects.

• Specify object names from a case-sensitive database in the same case that is
used to store them in the host database. Keep in mind that, in some database
types, different levels of the database can have different case-sensitivity, such as
case-sensitive schema but case-insensitive table. If the database requires quotes

Chapter 3
Specifying Object Names in Oracle GoldenGate Input

3-13

to enforce case-sensitivity, put quotes around each object that is case-sensitive in
the qualified name.

Correct: TABLE "Sales"."ACCOUNT"

Incorrect: TABLE "Sales.ACCOUNT"

• Oracle GoldenGate converts case-insensitive names to the case in which they are
stored when required for mapping purposes.

Table 3-1 provides an overview of the support for case-sensitivity in object names, per
supported database. Refer to the database documentation for details on this type of
support.

Table 3-1 Case Sensitivity of Object Names Per Database

Database Requires quotes
to enforce case-
sensitivity?

Unquoted object
name

Quoted object name

DB2 Yes. Differentiates
between case-
sensitive and case-
insensitive by use of
quotes.

Case-insensitive,
stores in upper case

Case-sensitive, stores
in mixed case

MySQL

(Case-sensitive
database)

No

• Always case-
sensitive, stores
in mixed case

• The names
of columns,
triggers, and
procedures are
case-insensitive

No effect No effect

Oracle Database Yes. Differentiates
between case-
sensitive and case-
insensitive by use of
quotes.

Case-insensitive,
stores in upper case

Case-sensitive, stores
in mixed case

SQL Server

(Database created as
case-sensitive)

No

Always case-sensitive,
stores in mixed case

No effect No effect

SQL Server

(Database created as
case-insensitive)

No

Always case-
insensitive, stores in
mixed case

No effect No effect

Teradata No

Always case-
insensitive, stores in
mixed case

No effect No effect

Chapter 3
Specifying Object Names in Oracle GoldenGate Input

3-14

Note:

For all supported databases, passwords are always treated as case-sensitive
regardless of whether the associated object name is quoted or unquoted.

3.4.6 Using Wildcards in Database Object Names
You can use wildcards for any part of a fully qualified object name, if supported for
the specific database. These name parts can be the following: the container, database,
or catalog name, the owner (schema or database name), and table or sequence
name. For specifics on how object names and wildcards are supported, see the Oracle
GoldenGate installation and configuration guide for that database.

Where appropriate, Oracle GoldenGate parameters permit the use of two wildcard
types to specify multiple objects in one statement:

• A question mark (?) replaces one character. For example in a schema that
contains tables named TABn, where n is from 0 to 9, a wildcard specification
of HQ.TAB? returns HQ.TAB0, HQ.TAB1, HQ.TAB2, and so on, up to HQ.TAB9, but
no others. This wildcard is not supported for the DB2 LUW database nor for
DEFGEN. This wildcard can only be used to specify source objects in a TABLE or
MAP parameter. It cannot be used to specify target objects in the TARGET clause of
TABLE or MAP.

• An asterisk (*) represents any number of characters (including zero sequence).
For example, the specification of HQ.T* could return such objects as HQ.TOTAL,
HQ.T123, and HQ.T. This wildcard is valid for all database types throughout all
Oracle GoldenGate commands and parameters where a wildcard is allowed.

• In TABLE and MAP statements, you can combine the asterisk and question-mark
wildcard characters in source object names only.

Topics:

• Rules for Using Wildcards for Source Objects

• Rules for Using Wildcards for Target Objects

• Fallback Name Mapping

• Wildcard Mapping from Pre-11.2.1 Trail Version

• Asterisks or Question Marks as Literals in Object Names

• How Wildcards are Resolved

• Excluding Objects from a Wildcard Specification

3.4.6.1 Rules for Using Wildcards for Source Objects
For source objects, you can use the asterisk alone or with a partial name. For
example, the following source specifications are valid:

• TABLE HQ.*;

• TABLE PDB*.HQ.*;

• MAP HQ.T_*;

Chapter 3
Specifying Object Names in Oracle GoldenGate Input

3-15

• MAP HQ.T_*, TARGET HQ.*;

The TABLE, MAP and SEQUENCE parameters take the case-sensitivity and locale of
the database into account for wildcard resolution. For databases that are created
as case-sensitive or case-insensitive, the wildcard matches the exact name and
case. For example, if the database is case-sensitive, SCHEMA.TABLE is matched to
SCHEMA.TABLE, Schema.Table is matched to Schema.Table, and so forth. If the database
is case-insensitive, the matching is not case-sensitive.

For databases that can have both case-sensitive and case-insensitive object names in
the same database instance, with the use of quote marks to enforce case-sensitivity,
the wildcarding works differently. When used alone for a source name in a TABLE
statement, an asterisk wildcard matches any character, whether or not the asterisk is
within quotes. The following statements produce the same results:

TABLE hr.*;
TABLE hr."*";

Similarly, a question mark wildcard used alone matches any single character, whether
or not it is within quotes. The following produce the same results:

TABLE hr.?;
TABLE hr."?";

If a question mark or asterisk wildcard is used with other characters, case-sensitivity is
applied to the non-wildcard characters, but the wildcard matches both case-sensitive
and case-insensitive names.

• The following TABLE statements capture any table name that begins with lower-
case abc. The quoted name case is preserved and a case-sensitive match is
applied. It captures table names that include "abcA" and "abca" because the
wildcard matches both case-sensitive and case-insensitive characters.

TABLE hr."abc*";
TABLE hr."abc?";

• The following TABLE statements capture any table name that begins with upper-
case ABC, because the partial name is case-insensitive (no quotes) and is stored in
upper case by this database. However, because the wildcard matches both case-
sensitive and case-insensitive characters, this example captures table names that
include ABCA and "ABCa".

TABLE hr.abc*;
TABLE hr.abc?;

3.4.6.2 Rules for Using Wildcards for Target Objects
When using wildcards in the TARGET clause of a MAP statement, the target objects must
exist in the target database. (The exception is when DDL replication is being used,
which allows new schemas and their objects to be replicated as they are created.)

For target objects, only an asterisk can be used. If an asterisk wildcard is used with a
partial name, Replicat replaces the wildcard with the entire name of the corresponding
source object. Therefore, specifications such as the following are incorrect:

TABLE HQ.T_*, TARGET RPT.T_*;
MAP HQ.T_*, TARGET RPT.T_*;

Chapter 3
Specifying Object Names in Oracle GoldenGate Input

3-16

The preceding mappings produce incorrect results, because the wildcard in the target
specification is replaced with T_TEST (the name of a source object), making the whole
target name T_T_TESTn. The following illustrates the incorrect results:

• HQ.T_TEST1 maps to RPT.T_T_TEST1

• HQ.T_TEST2 maps to RPT.T_T_TEST2

• (The same pattern applies to all other HQ.T_TESTn mappings.)

The following examples show the correct use of asterisk wildcards.

MAP HQ.T_*, TARGET RPT.*;

The preceding example produces the following correct results:

• HQ.T_TEST1 maps to RPT.T_TEST1

• HQ.T_TEST2 maps to RPT.T_TEST2

• (The same pattern applies to all other HQ.T_TESTn mappings.)

3.4.6.3 Fallback Name Mapping
Oracle GoldenGate has a fallback mapping mechanism in the event that a source
name cannot be mapped to a target name. If an exact match cannot be found on
the target for a case-sensitive source object, Replicat tries to map the source name
to the same name in upper or lower case (depending on the database type) on the
target. Fallback name mapping is controlled by the NAMEMATCH parameters. For more
information, see Reference for Oracle GoldenGate.

3.4.6.4 Wildcard Mapping from Pre-11.2.1 Trail Version
If Replicat is configured to read from a trail file that is a version prior to Oracle
GoldenGate 11.2.1, the target mapping is made in the following manner to provide
backward compatibility.

• Quoted object names are case-sensitive.

• Unquoted object names are case-insensitive.

The following maps a case-sensitive table name "abc" to target "abc". This only
happens with a trail that was written by pre-11.2.1 Extract for SQL Server databases
with a case-sensitive configuration. In this example, if the target database is Oracle
Database or DB2 fallback name mapping is performed if the target database does not
contain case-sensitive "abc" but does have table ABC. (See Fallback Name Mapping.)

MAP hq."abc", TARGET hq.*;

The following example maps a case-insensitive table name abc to target table name
ABC. Previous releases of Oracle GoldenGate stored case-insensitive object names
to the trail in upper case; thus the target table name is always upper cased. For
case-insensitive name conversion, the comparison is in uppercase, A to Z characters
only, in US-ASCII without taking locale into consideration.

MAP hq.abc, TARGET hq.*;

Chapter 3
Specifying Object Names in Oracle GoldenGate Input

3-17

3.4.6.5 Asterisks or Question Marks as Literals in Object Names
If the name of an object itself includes an asterisk or a question mark, the entire name
must be escaped and placed within double quotes, as in the following example:

TABLE HT."\?ABC";

3.4.6.6 How Wildcards are Resolved
By default, when an object name is wildcarded, the resolution for that object occurs
when the first row from the source object is processed. (By contrast, when the name
of an object is stated explicitly, its resolution occurs at process startup.) To change
the rules for resolving wildcards, use the WILDCARDRESOLVE parameter. The default is
DYNAMIC.

3.4.6.7 Excluding Objects from a Wildcard Specification
You can combine the use of wildcard object selection with explicit object exclusion
by using the EXCLUDEWILDCARDOBJECTSONLY, CATALOGEXCLUDE, SCHEMAEXCLUDE,
MAPEXCLUDE, and TABLEEXCLUDE parameters.

3.4.7 Differentiating Case-Sensitive Column Names from Literals
By default, Oracle GoldenGate follows SQL-92 rules for specifying column names and
literals. In Oracle GoldenGate parameter files, conversion functions, user exits, and
commands, case-sensitive column names must be enclosed within double quotes if
the database requires quotes around a name to support case-sensitivity. For example:

"columnA"

Case-sensitive column names in databases that do not require quotes to enforce
case-sensitivity must be specified as they are stored in the database. For example:

ColumnA

Literals must be enclosed within single quotes. In the following example, Product_Code
is a case-sensitive column name in an Oracle database, and the other strings are
literals.

@CASE ("Product_Code", 'CAR', 'A car', 'TRUCK', 'A truck')

Chapter 3
Specifying Object Names in Oracle GoldenGate Input

3-18

4
Using Oracle GoldenGate Parameter Files

Most Oracle GoldenGate functionality is controlled by means of parameters specified
in parameter files. A parameter file is a plain text file that is read by an associated
Oracle GoldenGate process. Oracle GoldenGate uses two types of parameter files: a
GLOBALS file and runtime parameter files.

Topics:

• Globalization Support for Parameter Files

• Working with the GLOBALS File

• Working with Runtime Parameters

• Creating a Parameter File

• Validating a Parameter File

• Viewing a Parameter File

• Changing a Parameter File

• Simplifying the Creation of Parameter Files

• Getting Information about Oracle GoldenGate Parameters

4.1 Globalization Support for Parameter Files
Oracle GoldenGate creates parameter files in the default character set of the local
operating system. In the event that the local platform does not support a required
character set as the default in the operating system, you can use the CHARSET
parameter either globally or per-process to specify a character set for parameter files.

To avoid issues caused by character-set incompatibilities, create or edit a parameter
file on the server where the associated process will be running. Avoid creating it
on one system (such as your Windows laptop) and then transferring the file to
the UNIX server where Oracle GoldenGate is installed and where the operating
system character set is different. Oracle GoldenGate provides some tools to help
with character set incompatibilities if you must create the parameter file on a different
system:

• You can use the CHARSET parameter to specify a compatible character set for the
parameter file. This parameter must be placed on the first line of the parameter
file and allows you to write the file in the specified character set. After the file is
transferred to the other system, do not edit the file on that system.

• You can use Unicode notation to substitute for characters that are not compatible
with the character set of the operating system where the file will be used. See
Support for Escape Sequences for more information about Unicode notation.

See Reference for Oracle GoldenGate for more information about the CHARSET
parameter.

4-1

4.2 Working with the GLOBALS File
The GLOBALS file stores parameters that relate to the Oracle GoldenGate instance
as a whole. This is in contrast to runtime parameters, which are coupled with a
specific process such as Extract. The parameters in the GLOBALS file apply to all
processes in the Oracle GoldenGate instance, but can be overridden by specific
process parameters. A GLOBALS parameter file may or may not be required for your
Oracle GoldenGate environment.

Note:

The GLOBALS file is specific to Classic Architecture.

When used, a GLOBALS file must exist before starting any Oracle GoldenGate
processes, including GGSCI. The GGSCI program reads the GLOBALS file and passes
the parameters to processes that need them.

To Create a GLOBALS File

1. From the Oracle GoldenGate installation location, run GGSCI and enter the
following command, or open a file in a text editor.

EDIT PARAMS ./GLOBALS

Note:

The ./ portion of this command must be used, because the GLOBALS file
must reside at the root of the Oracle GoldenGate installation file.

2. In the file, enter the GLOBALS parameters, one per line.

3. Save the file. If you used a text editor, save the file as GLOBALS (uppercase, without
a file extension) at the root of the Oracle GoldenGate installation directory. If you
created the file correctly in GGSCI, the file is saved that way automatically. Do not
move this file.

4. Exit GGSCI. You must start from a new GGSCI session before issuing commands
or starting processes that reference the GLOBALS file.

4.3 Working with Runtime Parameters
Runtime parameters give you control over the various aspects of Oracle GoldenGate
synchronization, such as:

• Data selection, mapping, transformation, and replication

• DDL and sequence selection, mapping, and replication (where supported)

• Error resolution

• Logging

• Status and error reporting

Chapter 4
Working with the GLOBALS File

4-2

• System resource usage

• Startup and runtime behavior

There can only be one manager process for each Oracle GoldenGate installation. It is
configured using the mgr.prm parameter file. Although you can have multiple Extracts
and Replicats running in a single installation, each one can only be associated by
a single parameter file. For Extracts and Replicats, they are identified by their case-
insensitive name. For example, an Extract called EXT_DEMO, would have 1 associated
parameter file called EXT_DEMO.prm. See Simplifying the Creation of Parameter Files
for more information about simplifying the use of parameter files.

There are two types of parameters: global (not to be confused with GLOBALS
parameters) and object-specific:

• Global parameters apply to all database objects that are specified in a parameter
file. Some global parameters affect process behavior, while others affect such
things as memory utilization and so forth. USERIDALIAS in Example 4-1 and
Example 4-3 is an example of a global parameter. In most cases, a global
parameter can appear anywhere in the file before the parameters that specify
database objects, such as the TABLE and MAP statements in Example 4-1 and
Example 4-3. A global parameter should be listed only once in the file. When
listed more than once, only the last instance is active, and all other instances are
ignored.

• Object-specific parameters enable you to apply different processing rules for
different sets of database objects. GETINSERTS and IGNOREINSERTS in Example 4-3
are examples of object-specific parameters. Each precedes a MAP statement that
specifies the objects to be affected. Object-specific parameters take effect in the
order that each one is listed in the file.

Example 4-1 and Example 4-3 are examples of basic parameter files for Extract and
Replicat. Comments are preceded by double hyphens.

The preceding example reflects a case-insensitive Oracle database, where the object
names are specified in the TABLE statements in capitals. For a case-insensitive Oracle
database, it makes no difference how the names are entered in the parameter file
(upper, lower, mixed case). For other databases, the case of the object names may
matter. See Specifying Object Names in Oracle GoldenGate Input for more information
about specifying object names.

Note the use of single and double quote marks in the Replicat example in
Example 4-1. For databases that require quote marks to enforce case-sensitive object
names, such as Oracle, you must enclose case-sensitive object names within double
quotes in the parameter file as well. For other case-sensitive databases, specify the
names as they are stored in the database. For more information about specifying
names and literals, see Specifying Object Names in Oracle GoldenGate Input.

Example 4-1 Sample Extract Parameter File

-- Extract group name
EXTRACT capt
-- Extract database user login, with alias to credentials in the credential
store.
USERIDALIAS ogg1
-- Remote host to where captured data is sent in encrypted format:
RMTHOSTOPTIONS sysb, MGRPORT 7809, ENCRYPT AES192 KEYNAME mykey
-- Encryption specification for trail data
ENCRYPTTRAIL AES192
-- Remote trail on the remote host

Chapter 4
Working with Runtime Parameters

4-3

RMTTRAIL /ggs/dirdat/aa

With these lines:
-- Encryption specification for trail data
ENCRYPTTRAIL AES192
-- Local trail on the remote host
EXTTRAIL ./dirdat/aa

Example 4-2 Sample Extract Pump Parameter File

-- Extract Pump group name
EXTRACT pmp
-- Remote host to where captured data is sent in encrypted format:
RMTHOSTOPTIONS sysb, MGRPORT 7809, ENCRYPT AES192 KEYNAME mykey
-- Encryption specification for trail data
ENCRYPTTRAIL AES192
-- Remote trail on the remote host
RMTTRAIL /ggs/dirdat/bb
-- TABLE statements that identify data to capture.
TABLE FIN.*;
TABLE SALES.*;

Example 4-3 Sample Replicat Parameter File

-- Replicat group name
REPLICAT deliv
-- Replicat database user login, with alias to credentials in the credential
store
USERIDALIAS ogg2
-- Error handling rules
REPERROR DEFAULT, ABEND
-- Ignore INSERT operations
IGNOREINSERTS
-- MAP statement to map source objects to target objects and
-- specify column mapping
MAP "fin"."accTAB", TARGET "fin"."accTAB",
COLMAP ("Account" = "Acct",
"Balance" = "Bal",
"Branch" = "Branch");
-- Get INSERT operations
GETINSERTS
-- MAP statement to map source objects to target objects and
-- filter to apply only the 'NY' branch data.
MAP "fin"."teller", TARGET "fin"."tellTAB",
WHERE ("Branch" = 'NY');

4.4 Creating a Parameter File
Oracle recommends using GGSCI when writing the parameter file in the character set
of the operating system, but if using the CHARSET parameter and writing the file in a
different character set, use a text editor instead of GGSCI.

Topics:

• Creating a Parameter File in GGSCI and Admin Client

Chapter 4
Creating a Parameter File

4-4

• Creating a Parameter File with a Text Editor

4.4.1 Creating a Parameter File in GGSCI and Admin Client
To create a parameter file, use the EDIT PARAMS command within the command line
interface through GGSCI or Admin Client user interface or use a text editor directly.
When you use the command line interface, you are using a standard text editor, but
your parameter file is saved automatically with the correct file name and in the correct
directory.

When you create a parameter file with EDIT PARAMS, it is saved to the dirprm sub-
directory of the Oracle GoldenGate directory. You can create a parameter file in a
directory other than dirprm, but you also must specify the full path name with the
PARAMS option of the ADD EXTRACT or ADD REPLICAT command when you create your
process groups. Once paired with an Extract or Replicat group, a parameter file
must remain in its original location for Oracle GoldenGate to operate properly once
processing has started.

The EDIT PARAMS command launches the following text editors within the GGSCI or
Admin Client interface:

• Notepad on Microsoft Windows systems

• The vi editor on UNIX and Linux systems. DB2 for i only supports vi when
connected with SSH or xterm. For more information, see Creating a Parameter
File with a Text Editor.

Note:

You can change the default editor through the GGSCI or Admin Client
interface by using the SET EDITOR command.

1. From the directory where Oracle GoldenGate is installed, run GGSCI or Admin
Client.

2. In GGSCI or Admin Client, issue the following command to open the default text
editor.

EDIT PARAMS group_name

Where:

group_name is either mgr (for the Manager process) or the name of the Extract
or Replicat group for which the file is being created. The name of an Extract or
Replicat parameter file must match that of the process group.

The following creates or edits the parameter file for an Extract group named
extora.

EDIT PARAMS extora

The following creates or edits the parameter file for the Manager process.

EDIT PARAMS MGR

3. Using the editing functions of the text editor, enter as many comment lines as you
want to describe this file, making certain that each comment line is preceded with
two hyphens (--).

Chapter 4
Creating a Parameter File

4-5

4. On non-commented lines, enter the Oracle GoldenGate parameters, starting a
new line for each parameter statement.

Oracle GoldenGate parameters have the following syntax:

PARAMETER_NAME argument [, option] [&]

Where:

• PARAMETER_NAME is the name of the parameter.

• argument is a required argument for the parameter. Some parameters take
arguments, but others do not. Commas between arguments are optional.

EXTRACT myext
USERIDALIAS ogg1
ENCRYPT AES192 KEYNAME mykey
ENCRYPTTRAIL AES 192
EXTTRAIL ./dirdat/c1, PURGE
CUSEREXIT userexit.dll MyUserExit, INCLUDEUPDATEBEFORES, &
 PARAMS "init.properties"
TABLE myschema.mytable;

• [, option] is an optional argument.

• [&] is required at the end of each line in a multi-line parameter statement,
as in the CUSEREXIT parameter statement in the previous example. The
exceptions are the following, which can accept, but do not require, the
ampersand because they terminate with a semicolon:

– MAP

– TABLE

– SEQUENCE

– FILE

– QUERY

Note:

The RMTHOST and RMTHOSTOPTIONS parameters can be specified together;
the RMTHOST parameter is not required for RMTHOSTOPTIONS if the dynamic
IP assignment is properly configured. When RMTHOSTOPTIONS is used, the
MGRPORT option is ignored.

5. Save and close the file.

4.4.2 Creating a Parameter File with a Text Editor
You can create a parameter file outside GGSCI or Admin Client by using a text editor,
but make certain to:

• Save the parameter file with the name of the Extract or Replicat group that owns
it, or save it with the name mgr if the Manager process owns it. Use the .prm file
extension. For example: extfin.prm and mgr.prm.

• Save the parameter file in the dirprm directory of the Oracle GoldenGate
installation directory.

Chapter 4
Creating a Parameter File

4-6

• For DB2 for i systems, you can edit parameter files from a 5250 terminal using
SEU or EDTF. If you use SEU, you must copy the file using the CPYTOSTMF
command, specify an encoding of CCSID 1208, and line endings of *LF. If editing
with EDTF from F15 (services) ensure that you change the CCSID of the file to
1208 and the EOL option to *LF.

Alternatively, you can use the Rfile command from the IBM Portable Application
Solutions Environment for i.

4.5 Validating a Parameter File
The checkprm validation native command is run from the command line and gives an
assessment of the specified parameter file, with a configurable application and running
environment. It can provide either a simple PASS/FAIL or with optional details about
how the values of each parameter are stored and interpreted.

The CHECKPRM executable file can be found in the Oracle GoldenGate installation
directory for Classic Architecture and in the /bin directory of Microservices
Architecture. The input to checkprm is case insensitive. If a value string contains
spaces, it does not need to be quoted because checkprm can recognize meaningful
values. If no mode is specified to checkprm, then all parameters applicable to any
mode of the component will be accepted.

The output of checkprm is assembled with four possible sections:

• help messages

• pre-validation error

• validation result

• parameter details

A pre-validation error is typically an error that prevents a normal parameter validation
from executing, such as missing options or an inaccessible parameter file. If an option
value is specified incorrectly, a list of possible inputs for that option is provided. If the
result is FAIL, each error is in the final result message. If the result is PASS, a message
that some of the parameters are subject to further runtime validation. The parameter
detailed output contains the validation context, the values read from GLOBALS (if it
is present), and the specified parameters. The parameter and options are printed with
proper indentation to illustrate these relationships.

Table 4-1 describes all of the arguments that you can use with the checkprm
commands. When you use checkprm and do not use any of these arguments, then
checkprm attempts to automatically detect Extract or Replicat and the platform and
database of the Oracle GoldenGate installation.

Table 4-1 checkprm Arguments

Argument Purpose & Behavior

None Displays usage information

-v Displays banner. Cannot be combined with other options.

? | help Displays detailed usage information, include all possible values of each
option. Cannot be combine with other options.

Chapter 4
Validating a Parameter File

4-7

Table 4-1 (Cont.) checkprm Arguments

Argument Purpose & Behavior

parameter_file Specifies the name of the parameter file, has to be the first argument
if a validation is requested. You must specify the absolute path to the
parameter file. For example, CHECKPRM ./dirprm/myext.prm.

-COMPONENT | -C Specifies the running component (application) that this parameter file is
validated for. This option can be omitted for Extract or Replicat because
automatic detection is attempted. Valid values include:

CACHEFILEDUMP COBGEN CONVCHK CONVPRM DDLCOB DEFGEN
EMSCLNT EXTRACT GGCMD GGSCI KEYGEN LOGDUMP

MGR OGGERR REPLICAT RETRACE

REVERSE SERVER GLOBALS

There is no default for this option.

-MODE | -M Specifies the mode of the running application if applicable. This option
is optional, only applicable to Extract or Replicat. If no mode is
specified, the validation is performed for all Extract or Replicat modes.

Valid input of this option includes:

• Integrated Extract
• Initial Load Extract
• Remote Task Extract
• Data Pump Extract
• Passive Extract
• Classic Replicat
• Coordinated Replicat
• Integrated Replicat
• Parallel Integrated Replicat
• Parallel Nonintegrated Replicat
• Special Run Replicat
• Remote Task
When key in the value for this option, the application name is optional,
as long as it matches the va lue of component. For example, "Data
Pump Extract" is equivalent to "Data Pump" if the component is
Extract. However, it is invalid if the component is Replicat.

-PLATFORM | -P Specifies the platform the application is supposed to run on. The default
value is the platform that this checkprm executable is running on.

The possible values are:

AIX HP-OSS HPUX-IT HPUX-PA

Linux OS400 ZOS Solaris SPARC

Solaris x86 Windows x64 All

Chapter 4
Validating a Parameter File

4-8

Table 4-1 (Cont.) checkprm Arguments

Argument Purpose & Behavior

-DATABASE | -D Specifies the database the application is built against. The default value
is the database for your Oracle GoldenGate installation.

The database options are (case insensitive):

Generic
Oracle 8
Oracle 9i
Oracle 10g
Oracle 11g
Oracle 12c
Oracle 18c
Oracle 19c
Oracle 21c
Sybase
DB2LUW 9.5
DB2LUW 9.7
DB2LUW 10.5
DB2LUW 10.1
DB2LUW 11.1
DB2
Remote Teradata
Timesten
Timesten 7
Timesten 11.2.1
MySQL
Ctree8
Ctree9
DB2 for i
Remote MSSQL
MSSQL CDC
Informix
Informix1150
Informix1170
Informix1210
Ingres SQL/MX
DB2 z/OS
PostgreSQL

-VERBOSE | -V Directs checkprm to print out detailed parameter information, to
demonstrate how the values are read and interpreted.

It must be the last option specified in a validation.

Following are some use examples:

checkprm ?
checkprm ./dirprm/ext1.prm -C extract -m data pump -p Linux -v
checkprm ./dirprm/ext1.prm -m integrated
checkprm ./dirprm/rep1.prm -m integrated
checkprm ./dirprm/mgr.prm -C mgr -v
checkprm GLOBALS -c GLOBALS

Chapter 4
Validating a Parameter File

4-9

Verifying Using CHECKPARAMS Parameter

An alternative to using the recommended checkprm utility, is to check the syntax of
parameters in an Extract or Replicat parameter file for accuracy using the CHECKPARAMS
parameter. This process can be used with Extract or Replicat.

To Verify Parameter Syntax

1. Include the CHECKPARAMS parameter in the parameter file.

2. Start the associated process by issuing the START EXTRACT or START REPLICAT
command.

START {EXTRACT | REPLICAT} group_name

The process audits the syntax, writes the results to the report file or the screen,
and then stops.

3. Do either of the following:

• If the syntax is correct, remove the CHECKPARAMS parameter before starting the
process to process data.

• If the syntax is wrong, correct it based on the findings in the report. You can
run another test to verify the changes, if desired. Remove CHECKPARAMS before
starting the process to process data.

For more information about the report file, see Monitoring Oracle GoldenGate
Processing.

For more information about CHECKPARAMS, see Reference for Oracle GoldenGate.

4.6 Viewing a Parameter File
You can view a parameter file directly from the command shell of the operating
system, or you can view it from the GGSCI or Admin Client command line interface,
using the VIEW PARAMS command.

VIEW PARAMS group_name

Where:

group_name is either mgr (for Manager) or the name of the Extract or Replicat group
that is associated with the parameter file.

Caution:

Do not use VIEW PARAMS to view an existing parameter file that is in a
character set other than that of the local operating system (such as one
where the CHARSET option was used to specify a different character set). The
contents may become corrupted. View the parameter file from outside the
command line interface.

Chapter 4
Viewing a Parameter File

4-10

If the parameter file was created in a location other than the dirprm sub-directory of
the Oracle GoldenGate directory, specify the full path name as shown in the following
example.

VIEW PARAMS c:\lpparms\replp.prm

4.7 Changing a Parameter File
An Oracle GoldenGate process must be stopped before changing its parameter file,
and then started again after saving the parameter file. Changing parameter settings
while a process is running can have unexpected results, especially if you are adding
tables or changing mapping or filtering rules.

Caution:

Do not use the EDIT PARAMS command to view or edit an existing parameter
file that is in a character set other than that of the local operating system
(such as one where the CHARSET option was used to specify a different
character set). The contents may become corrupted. View the parameter file
from outside Admin Client or GGSCI.

To Change Parameters:

1. Stop the process by issuing the following command in Admin Client or GGSCI. To
stop Manager in a Windows cluster, use the Cluster Administrator.

STOP {EXTRACT | REPLICAT | MANAGER} group_name

2. Open the parameter file by using a text editor or the EDIT PARAMS command in
Admin Client GGSCI.

EDIT PARAMS mgr

3. Make the edits, and then save the file.

4. Start the process by issuing the following command in Admin Client GGSCI. Use
the Cluster Administrator if starting Manager in a Windows cluster.

START {EXTRACT | REPLICAT | MANAGER} group_name

When an Extract process or Replicat process is restarted, it picks up right where it
left off. You do not need to queisce database activity prior to bouncing the Oracle
GoldenGate process to replace a parameter file.

4.8 Simplifying the Creation of Parameter Files
You can reduce the number of times that a parameter must be specified by using the
following time-saving tools.

Topics:

• Using Wildcards

Chapter 4
Changing a Parameter File

4-11

• Using OBEY

• Using Macros

• Using Parameter Substitution

4.8.1 Using Wildcards
For parameters that accept object names, you can use asterisk (*) and question
mark (?) wildcards. The use of wildcards reduces the work of specifying numerous
object names or all objects within a given schema. For more information about using
wildcards, see Using Wildcards in Database Object Names.

4.8.2 Using OBEY
You can create a library of text files that contain frequently used parameter settings,
and then you can call any of those files from the active parameter file by means of the
OBEY parameter. The syntax for OBEY is:

OBEY file_name

Where:

file_name is the relative or full path name of the file.

Upon encountering an OBEY parameter in the active parameter file, Oracle GoldenGate
processes the parameters from the referenced file and then returns to the active file to
process any remaining parameters. OBEY is not supported for the GLOBALS parameter
file.

If using the CHARSET parameter in a parameter file that includes an OBEY parameter,
the referenced parameter file does not inherit the CHARSET character set. The CHARSET
character set is used to read wildcarded object names in the referenced file, but
you must use an escape sequence (\uX) for all other multibyte specifications in the
referenced file.

See Reference for Oracle GoldenGate for more information about OBEY.

See Reference for Oracle GoldenGate for more information about CHARSET.

4.8.3 Using Macros
You can use macros to automate multiple uses of a parameter statement. See Using
Oracle GoldenGate Macros to Simplify and Automate Work.

4.8.4 Using Parameter Substitution
You can use parameter substitution to assign values to Oracle GoldenGate
parameters automatically at run time, instead of assigning static values when you
create the parameter file. That way, if values change from run to run, you can avoid
having to edit the parameter file or maintain multiple files with different settings. You
can simply export the required value at runtime. Parameter substitution can be used
for any Oracle GoldenGate process.

Chapter 4
Simplifying the Creation of Parameter Files

4-12

To Use Parameter Substitution

1. For each parameter for which substitution is to occur, declare a runtime parameter
instead of a value, and precede the runtime parameter name with a question mark
(?) as shown in the following example.

SOURCEISFILE
EXTFILE ?EXTFILE
MAP scott?TABNAME, TARGET tiger ACCOUNT_TARG;

2. Before starting the Oracle GoldenGate process, use the shell of the operating
system to pass the runtime values by means of an environment variable, as shown
in Example 4-4 and Example 4-5.

Example 4-4 Parameter substitution on Windows

C:\GGS> set EXTFILE=C:\ggs\extfile
C:\GGS> set TABNAME=PROD.ACCOUNTS
C:\GGS> replicat paramfile c:\ggs\dirprm\parmfl

Example 4-5 Parameter substitution on UNIX (Korn shell)

$ EXTFILE=/ggs/extfile
$ export EXTFILE
$ TABNAME=PROD.ACCOUNTS
$ export TABNAME
$ replicat paramfile ggs/dirprm/parmfl

UNIX is case-sensitive, so the parameter declaration in the parameter file must be the
same case as the shell variable assignments.

4.9 Getting Information about Oracle GoldenGate
Parameters

You can use the INFO PARAM command to view a parameter's definition information
from GGSCI. The name provided in the command line can be a parameter, or an
option, but it must be a full name that is part of the names concatenated together using
a period (.) as the delimiter. For example:

INFO PARAM RMTHOST
RMTHOST.STREAMING
INFO PARAM RMTHOST.STREAMING

Using the GETPARAMINFO, you can query the runtime parameter values of a running
instance, including Extract, Replicat, and Manager. This command is similar to using
checkprm -v, see Validating a Parameter File. The default behavior is to display all
that has ever been queried by the application, parameters and their current values.
If a particular parameter name is specified, then the output is filtered by that name.
Optionally, the output can be redirect to a file specified by the -FILE option. For
example:

SEND ext1pmp GETPARAMINFO

For more information about these and all Oracle GoldenGate parameters including
exact syntax, see the Reference for Oracle GoldenGate.

Chapter 4
Getting Information about Oracle GoldenGate Parameters

4-13

5
Using Oracle GoldenGate for Live
Reporting

This chapter describes the usage of Oracle GoldenGate for live reporting.
Topics:

• Overview of the Reporting Configuration

• Creating a Standard Reporting Configuration

• Creating a Reporting Configuration with a Data Pump on the Source System

• Creating a Reporting Configuration with a Data Pump on an Intermediary System

• Creating a Cascading Reporting Configuration

5.1 Overview of the Reporting Configuration
The most basic Oracle GoldenGate configuration is a one-to-one configuration that
replicates in one direction: from a source database to a target database that is used
only for data retrieval purposes such as reporting and analysis. Oracle GoldenGate
supports like-to-like or heterogeneous transfer of data, with capabilities for filtering and
conversion on either system in the configuration (support varies by database platform).

Oracle GoldenGate is ideal for creating a reporting environment because the target
can be optimized for reporting, while allowing the source to be optimized for OLTP
workloads. This includes adding additional indexes or materialized views on the
target database to allow faster execution of queries. Oracle GoldenGate can also pull
metadata from the source database to help track how the records changed, when the
record changed, who changed it, and even track the history of how column values
changed.

Oracle GoldenGate supports different reporting topologies that enable you to custom-
configure the processes based on your requirements for scalability, availability, and
performance. This section contains things to take into consideration when choosing a
reporting configuration.

• Filtering and Conversion

• Read-only vs. High Availability

• Additional Information

5-1

5.1.1 Filtering and Conversion
Data filtering and data conversion both add overhead, and these activities are
sometimes prone to configuration errors. If Oracle GoldenGate must perform a large
amount of filtering and conversion, consider using one or more data pumps to handle
this work. You can use Replicat for this purpose, but you would be sending more
data across the network that way, as it will be unfiltered. You can split filtering and
conversion between the two systems by dividing it between the data pump and
Replicat.

To filter data, you can use:

• A FILTER or WHERE clause in a TABLE statement (Extract) or in a MAP statement
(Replicat)

• A SQLEXEC can perform a query or execute a stored procedure on the database.
The values returned can then be used to evaluate a FILTER clause.

• User exits

To transform data, you can use:

• The Oracle GoldenGate conversion functions. See Column Conversion Functions
in the Reference for Oracle GoldenGate.

• Metadata from the source database or trail. See GETENV function.

• A user exit from the Extract or Replicat process that applies rules from an external
transformation solution, then returns the manipulated data to Oracle GoldenGate.

• Replicat to deliver data directly to an ETL solution or other transformation engine.

For more information about Oracle GoldenGate's filtering and conversion support, see:

• Mapping and Manipulating Data

• Customizing Oracle GoldenGate Processing

5.1.2 Read-only vs. High Availability
The Oracle GoldenGate live reporting configuration supports a read-only target. See
Configuring Oracle GoldenGate for Active-Active Configuration if the target in this
configuration will also be used for transactional activity in support of high availability.

5.1.3 Additional Information
The following documentation provides additional information of relevance to
configuring Oracle GoldenGate.

• For additional system requirements, process configuration, and database setup
requirements, see the Oracle GoldenGate installation and configuration document
for your database type. These guides are listed in the Preface of this book.

• For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see Configuring Online Change Synchronization.

• For additional tuning options for Oracle GoldenGate, see Tuning the Performance
of Oracle GoldenGate.

Chapter 5
Overview of the Reporting Configuration

5-2

• For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

5.2 Creating a Standard Reporting Configuration
In the standard Oracle GoldenGate configuration, one Extract group sends captured
data over TCP/IP to a trail on the target system, where it is stored until processed by
one Replicat group.

Refer to the following figure for a representation of the objects you will be creating in
Classic Architecture.

Figure 5-1 Configuration Elements for Creating a Standard Reporting
Configuration

Refer to the following figure for a representation of the objects you will be creating in
Microservices Architecture.

• Source System

• Target System

5.2.1 Source System
Configure the Manager process and Extract group on the source system.

To Configure the Manager Process

On the source, configure the Manager process.

To Configure the Extract Group

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[option[, ...]]

Chapter 5
Creating a Standard Reporting Configuration

5-3

2. On the source, use the ADD RMTTRAIL command to specify a remote trail to be
created on the target system.

 ADD EXTTRAIL local_trail, EXTRACT ext

Use the EXTRACT argument to link this trail to the Extract group.

3. On the source, use the EDIT PARAMS command to create a parameter file for the
Extract group. Include the following parameters plus any others that apply to your
database environment.

For possible additional required parameters, see the Oracle GoldenGate
installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all of the supplementally logged columns if using
integrated Replicat
LOGALLSUPCOLS
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

To send the trail files to the target

1. For Classic Architecture, use the following command option:

ADD EXTRACT ext_pmp, EXTTRAILSOURCE remote_trail, BEGIN time
[option[,...]]

For Microservices Architecture, use the following command:

ADD DISTPATH path-name
 SOURCE source-uri
 TARGET target-uri|
 [TARGETTYPE (MANAGER | COLLECTOR | RECVSRVR)]|

2. Run the following command to add the remote trail:

ADD RMTTRAIL remote_trail, EXTRACT ext_pmp

3. Use the EDIT PARAMS command to create a parameter file for the target.

5.2.2 Target System
Configure the Manager process and Replicat group on the target system.

To Configure the Manager Process

1. On the target, configure the Manager process.

Chapter 5
Creating a Standard Reporting Configuration

5-4

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the local trail.

To Configure the Replicat Group

1. On the target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See Creating a Checkpoint Table for instructions. All Replicat groups
can use the same checkpoint table.

2. On the target, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep.

ADD REPLICAT rep
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail
, BEGIN time

Use the EXTTRAIL argument to link the Replicat group to the remote trail.

3. On the target, use the EDIT PARAMS command to create a parameter file for the
Replicat group. Include the following parameters plus any others that apply to
your database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated
Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF
template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on
the target tables if they are not already journaled. Alternatively, you
could use the STRJRNPF command to assign the tables to the appropriate
journal. If the target tables are not required to be replicated by Oracle
GoldenGate, the IMAGES(*AFTER) option can be used with STRJRNPF.
Since Oracle GoldenGate operates using transactions, all tables must be
journaled to support transactions and this is not the default with DB2 for
i.

Chapter 5
Creating a Standard Reporting Configuration

5-5

5.3 Creating a Reporting Configuration with a Data Pump on
the Source System

You can add a data pump on the source system to isolate the primary Extract from
TCP/IP functions, to add storage flexibility, and to offload the overhead of filtering and
conversion processing from the primary Extract.

In this configuration, the primary Extract writes to a local trail on the source system.
A local data pump reads that trail and moves the data to a remote trail on the target
system, which is read by Replicat.

You can, but are not required to, use a data pump to improve the performance and
fault tolerance of Oracle GoldenGate.

Here's a representation of the objects, you will be creating.

Figure 5-2 Configuration Elements for Replicating to One Target with a Data
Pump

Topics:

• Source System

• Target System

5.3.1 Source System
Configure the Manager process and Extract group on the source system.

To Configure the Manager Process

1. On the source, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the local trail.

To Configure the Primary Extract Group

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[option[, ...]]

Chapter 5
Creating a Reporting Configuration with a Data Pump on the Source System

5-6

See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

2. On the source, use the ADD EXTTRAIL command to create a local trail. The primary
Extract writes to this trail, and the data-pump Extract reads it.

ADD EXTTRAIL local_trail, EXTRACT ext

Use the EXTRACT argument to link this trail to the primary Extract group. The
primary Extract group writes to this trail, and the data pump group reads it.

3. On the source, use the EDIT PARAMS command to create a parameter file for the
primary Extract group. Include the following parameters plus any others that apply
to your database environment. For possible additional required parameters, see
the Oracle GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][,USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to and
-- encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

To Configure the Data Pump Extract Group

1. On the source, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump.

ADD EXTRACT pump, EXTTRAILSOURCE local_trail, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the local
trail.

2. On the source, use the ADD RMTTRAIL command to specify a remote trail that will
be created on the target system.

ADD RMTTRAIL remote_trail, EXTRACT pump

Use the EXTRACT argument to link the remote trail to the data pump group. The
linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

Chapter 5
Creating a Reporting Configuration with a Data Pump on the Source System

5-7

3. On the source, use the EDIT PARAMS command to create a parameter file for the
data pump. Include the following parameters plus any others that apply to your
database environment.

-- Identify the data pump group:
EXTRACT pump
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target, MGRPORT port_number, ENCRYPT
encryption_options
-- Specify the remote trail and encryption algorithm on the target
system:
ENCRYPTTRAIL alogrithm
RMTTRAIL remote_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

5.3.2 Target System
Configure the Manager process and Replicat group on the target system.

To Configure the Manager Process

1. On the target, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the local trail.

To Configure the Replicat Group

1. On the target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See Creating a Checkpoint Table for instructions.

2. On the target, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep.

ADD REPLICAT rep
[, INTEGRATED | PARALLEL | COORDINATED [MAXTHREADS number] |]
, EXTTRAIL remote_trail
, BEGIN time
(SPECIALRUN |
 (EXTFILE file-name |
 EXTTRAIL trail-name)
 [BEGIN (NOW | begin-datetime) |
 EXTSEQNO trail-sequence-number [EXTRBA trail-
offset-number]]
 [CHECKPOINTTABLE table-name | NODBCHECKPOINT])
 [DESC description]
 [CRITICAL [YES | NO]]
 [PROFILE profile-name

Chapter 5
Creating a Reporting Configuration with a Data Pump on the Source System

5-8

 [AUTOSTART [YES | NO]
 [DELAY delay-number]]
 [AUTORESTART [YES | NO]
 [RETRIES retries-number]
 [WAITSECONDS wait-number]
 [RESETSECONDS reset-number]
 [DISABLEONFAILURE [YES | NO]]]]

Use the EXTTRAIL argument to link the Replicat group to the remote trail.

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

3. On the target, use the EDIT PARAMS command to create a parameter file for the
Replicat group. Include the following parameters plus any others that apply to
your database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on
the target tables if they are not already journaled. Alternatively, you
could use the STRJRNPF command to assign the tables to the appropriate
journal. If the target tables are not required to be replicated by Oracle
GoldenGate, the IMAGES(*AFTER) option can be used with STRJRNPF.
Since Oracle GoldenGate operates using transactions, all tables must be
journaled to support transactions and this is not the default with DB2 for
i.

5.4 Creating a Reporting Configuration with a Data Pump on
an Intermediary System

You can use an intermediary system as a transfer point between the source and target
systems. In this configuration, a data pump on the source system sends captured data
to a remote trail on the intermediary system. A data pump on the intermediary system
reads the trail and sends the data to a remote trail on the target. A Replicat on the
target reads the remote trail and applies the data to the target database.

Chapter 5
Creating a Reporting Configuration with a Data Pump on an Intermediary System

5-9

Figure 5-3 Configuration Elements for Replication through an Intermediary
System

When considering this topology, take note of the following:

• This configuration is practical if the source and target systems are in different
networks and there is no direct connection between them. You can transfer the
data through an intermediary system that can connect to both systems.

• This configuration can be used to add storage flexibility to compensate for
deficiences on the source or target.

• This configuration can be used to perform data filtering and conversion if the
character sets on all systems are identical. If character sets differ, the data
pump cannot perform conversion between character sets, and you must configure
Replicat to perform the conversion and transformation on the target.

• This configuration is a form of cascaded replication. However, in this configuration,
data is not applied to a database on the intermediary system. See Creating a
Cascading Reporting Configuration to include a database on the intermediary
system in the Oracle GoldenGate configuration.

Topics:

• Source System

Chapter 5
Creating a Reporting Configuration with a Data Pump on an Intermediary System

5-10

• Intermediary System

• Target System

5.4.1 Source System
Here are the objects you will be creating.

To Configure the Manager Process

1. On the source, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Primary Extract Group on the Source

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

2. On the source, use the ADD EXTTRAIL command to create a local trail. The primary
Extract writes to this trail, and the data-pump Extract reads it.

ADD EXTTRAIL local_trail, EXTRACT ext

Use the EXTRACT argument to link this trail to the primary Extract group. The
primary Extract group writes to this trail, and the data pump group reads it.

3. On the source, use the EDIT PARAMS command to create a parameter file for the
primary Extract group. Include the following parameters plus any others that apply
to your database environment. For possible additional required parameters, see
the Oracle GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to and
-- encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Chapter 5
Creating a Reporting Configuration with a Data Pump on an Intermediary System

5-11

To Configure the Data Pump on the Source

1. On the source, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump_1.

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the local
trail. For a local Extract, you must use EXTTRAIL not RMTTRAIL.

2. On the source, use the ADD RMTTRAIL command to specify a remote trail that will
be created on the intermediary system.

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1

Use the EXTRACT argument to link the remote trail to the pump_1 data pump group.
The linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. On the source, use the EDIT PARAMS command to create a parameter file for the
pump_1 data pump. Include the following parameters plus any others that apply to
your database environment.

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the intermediary system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_1, MGRPORT port_number, ENCRYPT
encryption_options
-- Specify remote trail and encryption algorithm on intermediary
system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

5.4.2 Intermediary System
Configure the Manager process and data pump on the intermediary system.

To Configure the Manager Process on the Intermediary System

1. On the intermediary system, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

Chapter 5
Creating a Reporting Configuration with a Data Pump on an Intermediary System

5-12

To Configure the Data Pump on the Intermediary System

1. On the intermediary system, use the ADD EXTRACT command to create a data-
pump group. For documentation purposes, this group is called pump_2.

ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail_1, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the trail
that you created on this system

2. On the intermediary system, use the ADD RMTTRAIL command to specify a remote
trail on the target system.

ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

Use the EXTRACT argument to link the remote trail to the pump_2 data pump. The
linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. On the intermediary system, use the EDIT PARAMS command to create a parameter
file for the pump_2 data pump. Include the following parameters plus any others
that apply to your database environment.

-- Identify the data pump group:
EXTRACT pump_2
-- Note that no database login parameters are required in this case.
-- Specify the target definitions file if SOURCEDEFS was used:
TARGETDEFS full_pathname
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_2, MGRPORT port_number, ENCRYPT
encryption_options
-- Specify the remote trail and encryption algorithm on the target
system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

5.4.3 Target System
Configure the Manager process and Replicat group on the target system.

To Configure the Manager Process on the Target

1. On the target system, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

Chapter 5
Creating a Reporting Configuration with a Data Pump on an Intermediary System

5-13

To Configure the Replicat Group on the Target

1. On the target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See Creating a Checkpoint Table for instructions.

2. On the target, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep.

ADD REPLICAT rep
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_2,
, BEGIN time

Use the EXTTRAIL argument to link the Replicat group to the trail on this system.

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

3. On the target, use the EDIT PARAMS command to create a parameter file for the
Replicat group. Include the following parameters plus any others that apply to
your database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated
Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF
template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on
the target tables if they are not already journaled. Alternatively, you
could use the STRJRNPF command to assign the tables to the appropriate
journal. If the target tables are not required to be replicated by Oracle
GoldenGate, the IMAGES(*AFTER) option can be used with STRJRNPF.
Since Oracle GoldenGate operates using transactions, all tables must be
journaled to support transactions and this is not the default with DB2 for
i.

Chapter 5
Creating a Reporting Configuration with a Data Pump on an Intermediary System

5-14

5.5 Creating a Cascading Reporting Configuration
Oracle GoldenGate supports cascading synchronization, where Oracle GoldenGate
propagates data changes from the source database to a second database, and then
on to a third database. In this configuration:

• A primary Extract on the source writes captured data to a local trail, and a data
pump sends the data to a remote trail on the second system in the cascade.

• On the second system, Replicat applies the data to the local database.

• Another primary Extract on that same system captures the data from the local
database and writes it to a local trail.

• A data pump sends the data to a remote trail on the third system in the cascade,
where it is applied to the local database by another Replicat.

Note:

See Creating a Reporting Configuration with a Data Pump on an
Intermediary System if you do not need to apply the replicated changes
to a database on the secondary system.

Chapter 5
Creating a Cascading Reporting Configuration

5-15

Figure 5-4 Cascading Configuration

Use this configuration if:

• One or more of the target systems does not have a direct connection to the
source, but the second system can connect in both directions.

• You want to limit network activity from the source system.

• You are sending data to two or more servers that are very far apart geographically,
such as from Chicago to Los Angeles and then from Los Angeles to servers
throughout China.

When considering this topology, take note of the following:

Chapter 5
Creating a Cascading Reporting Configuration

5-16

• This configuration can be used to perform data filtering and conversion if the
character sets on all systems are identical. If character sets differ, a data pump
cannot perform conversion between character sets, and you must configure
Replicat to perform the conversion and transformation on the target.

• On the second system, you must configure the Extract group to capture Replicat
activity and to ignore local business application activity. The Extract parameters
that control this behavior are IGNOREAPPLOPS and GETREPLICATES.

• Source System

• Second System in the Cascade

• Third System in the Cascade

5.5.1 Source System
Refer to Figure 5-4 for a visual representation of the objects you will be creating.

To Configure the Manager Process on the Source

1. On the source, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Primary Extract Group on the Source

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_1.

ADD EXTRACT ext_1, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

2. On the source, use the ADD EXTTRAIL command to create a local trail.

ADD EXTTRAIL local_trail_1, EXTRACT ext_1

Use the EXTRACT argument to link this trail to the ext_1 Extract group.

3. On the source, use the EDIT PARAMS command to create a parameter file for the
ext_1 Extract group. Include the following parameters plus any others that apply to
your database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and encryption algorithm:
ENCRYPTTRAIL algorithm

Chapter 5
Creating a Cascading Reporting Configuration

5-17

EXTTRAIL local_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

To Configure the Data Pump on the Source

1. On the source, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump_1.

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail_1, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the local
trail.

2. On the source, use the ADD RMTTRAIL command to specify a remote trail that will
be created on the second system in the cascade.

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1

Use the EXTRACT argument to link the remote trail to the pump_1 data pump group.
The linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. On the source, use the EDIT PARAMS command to create a parameter file for the
pump_1 data pump. Include the following parameters plus any others that apply to
your database environment.

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information if using NOPASSTHROUGH:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of second system in cascade
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_1, MGRPORT port_number, ENCRYPT
encryption_options
-- Specify the remote trail and encryption algorithm on the second
system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

5.5.2 Second System in the Cascade
Configure the Manager process, Replicat group, and data pump on the second system
in the cascade.

Chapter 5
Creating a Cascading Reporting Configuration

5-18

To Configure the Manager Process on the Second System

1. On the second system, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Replicat Group on the Second System

1. Create a Replicat checkpoint table (unless using Oracle integrated Replicat). See
Creating a Checkpoint Table for instructions.

2. On the second system, use the ADD REPLICAT command to create a Replicat
group. For documentation purposes, this group is called rep_1.

ADD REPLICAT rep_1
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1,
, BEGIN time

Use the EXTTRAIL option to link the rep_1 group to the remote trail remote_trail_1
that is on the local system.

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

3. On the second system, use the EDIT PARAMS command to create a parameter file
for the Replicat group. Include the following parameters plus any others that apply
to your database environment. For possible additional required parameters, see
the Oracle GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep_1
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated
Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF
template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Chapter 5
Creating a Cascading Reporting Configuration

5-19

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on
the target tables if they are not already journaled. Alternatively, you
could use the STRJRNPF command to assign the tables to the appropriate
journal. If the target tables are not required to be replicated by Oracle
GoldenGate, the IMAGES(*AFTER) option can be used with STRJRNPF.
Since Oracle GoldenGate operates using transactions, all tables must be
journaled to support transactions and this is not the default with DB2 for
i.

To Configure an Extract Group on the Second System

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_2.

ADD EXTRACT ext_2, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

2. On the second system, use the ADD EXTTRAIL command to specify a local trail that
will be created on the third system.

ADD EXTTRAIL local_trail_2, EXTRACT ext_2

Use the EXTRACT argument to link this local trail to the ext_2 Extract group.

3. On the second system, use the EDIT PARAMS command to create a parameter file
for the ext_2 Extract group. Include the following parameters plus any others that
apply to your database environment. For possible additional required parameters,
see the Oracle GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_2
-- Ignore local DML, capture Replicat DML:
IGNOREAPPLOPS, GETREPLICATES
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Chapter 5
Creating a Cascading Reporting Configuration

5-20

Note:

If replicating DDL operations, IGNOREAPPLOPS, GETREPLICATES functionality
is controlled by the DDLOPTIONS parameter.

To Configure the Data Pump on the Second System

1. On the second system, use the ADD EXTRACT command to create a data pump
group. For documentation purposes, this group is called pump_2.

ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail_2, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the local
trail.

2. On the second system, use the ADD RMTTRAIL command to specify a remote trail
that will be created on the third system in the cascade.

ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

Use the EXTRACT argument to link the remote trail to the pump_2 data pump group.
The linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. On the second system, use the EDIT PARAMS command to create a parameter file
for the pump_2 data pump. Include the following parameters plus any others that
apply to your database environment.

-- Identify the data pump group:
EXTRACT pump_2
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of third system in cascade
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_2, MGRPORT port_number, ENCRYPT
encryption_options
-- Specify the remote trail and encryption algorithm on the third
system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

5.5.3 Third System in the Cascade
Configure the Manager process and Replicat group on the third system in the
cascade.

Chapter 5
Creating a Cascading Reporting Configuration

5-21

To Configure the Manager Process

1. On the third system, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Replicat Group

1. On the third system, create a Replicat checkpoint table (unless using Oracle
integrated Replicat). See Creating a Checkpoint Table for instructions.

2. On the third system, use the ADD REPLICAT command to create a Replicat group.
For documentation purposes, this group is called rep_2.

ADD REPLICAT rep_2
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_2,
, BEGIN time

Use the EXTTRAIL option to link the rep_2 group to the remote_trail_2 trail.

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

3. On the third system, use the EDIT PARAMS command to create a parameter file for
the Replicat group. Include the following parameters plus any others that apply to
your database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep_2
-- Specify database login information as needed for the database:
[TARGETDB dsn_3][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated
Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF
template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on
the target tables if they are not already journaled. Alternatively, you
could use the STRJRNPF command to assign the tables to the appropriate
journal. If the target tables are not required to be replicated by Oracle
GoldenGate, the IMAGES(*AFTER) option can be used with STRJRNPF.
Since Oracle GoldenGate operates using transactions, all tables must be
journaled to support transactions and this is not the default with DB2 for
i.

Chapter 5
Creating a Cascading Reporting Configuration

5-22

6
Using Oracle GoldenGate for Real-time
Data Distribution

This chapter describes the usage of Oracle GoldenGate for real-time data distribution.
Topics:

• Overview of the Data-distribution Configuration

• Considerations for a Data-distribution Configuration

• Creating a Data Distribution Configuration

6.1 Overview of the Data-distribution Configuration
A data distribution configuration is a one-to-many configuration. Oracle GoldenGate
supports synchronization of a source database to any number of target systems.
Oracle GoldenGate supports like-to-like or heterogeneous transfer of data, with
capabilities for filtering and conversion on any system in the configuration (support
varies by database platform).

6.2 Considerations for a Data-distribution Configuration
These sections describe considerations for a data-distribution configuration.

• Fault Tolerance

• Filtering and Conversion

• Read-only vs. High Availability

6-1

• Additional Information

6.2.1 Fault Tolerance
For a data distribution configuration, the use of data pumps on the source system
ensures that if network connectivity to any of the targets fails, the captured data still
can be sent to the other targets. Use a primary Extract group and one data-pump
Extract group for each target.

6.2.2 Filtering and Conversion
You can use any process to perform filtering and conversion. However, using the
data pumps to perform filtering operations removes that processing overhead from
the primary Extract group, and it reduces the amount of data that is sent across the
network. See Mapping and Manipulating Data for filtering and conversion options.

6.2.3 Read-only vs. High Availability
The data distribution configuration supports read-only targets. See Configuring Oracle
GoldenGate for Active-Active Configuration if any target in this configuration will also
be used for transactional activity in support of high availability.

6.2.4 Additional Information
The following documentation provides additional information of relevance to
configuring Oracle GoldenGate.

• For additional system requirements, process configuration, and database setup
requirements, see the Oracle GoldenGate installation and configuration document
for your database type. These guides are listed in the Preface of this book.

• For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see Configuring Online Change Synchronization.

• For additional tuning options for Oracle GoldenGate, see Tuning the Performance
of Oracle GoldenGate.

• For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

6.3 Creating a Data Distribution Configuration
Refer to Figure 6-1 for a visual representation of the objects you will be creating.

Chapter 6
Creating a Data Distribution Configuration

6-2

Figure 6-1 Oracle GoldenGate Configuration Elements for Data Distribution

• Source System

• Target Systems

6.3.1 Source System
Configure the Manager process and primary Extract on the source system.

To Configure the Manager Process

1. On the source, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the local trail.

To Configure the Primary Extract

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

2. On the source, use the ADD EXTTRAIL command to create a local trail.

ADD EXTTRAIL local_trail, EXTRACT ext

Use the EXTRACT argument to link this trail to the primary Extract group. The
primary Extract group writes to this trail, and the data pump groups read it

Chapter 6
Creating a Data Distribution Configuration

6-3

3. On the source, use the EDIT PARAMS command to create a parameter file for the
primary Extract group. Include the following parameters plus any others that apply
to your database environment. For possible additional required parameters, see
the Oracle GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Use EXTTRAIL to specify the local trail.

To Configure the Data Pump Extract Groups

1. On the source, use the ADD EXTRACT command to create a data pump for each
target system. For documentation purposes, these groups are called pump_1 and
pump_2.

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail, BEGIN time
ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail, BEGIN time

Use EXTTRAILSOURCE as the data source option, and supply the name of the local
trail.

2. On the source, use the ADD RMTTRAIL command to specify a remote trail that will
be created on each of the target systems.

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1
ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

Use the EXTRACT argument to link each remote trail to a different data pump group.
The linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. On the source, use the EDIT PARAMS command to create a parameter file for each
of the data pumps. Include the following parameters plus any others that apply to
your database environment.

Parameter file for pump_1:

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.

Chapter 6
Creating a Data Distribution Configuration

6-4

-- DECRYPTTRAIL
-- Specify the name or IP address of the first target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_1, MGRPORT port_number, ENCRYPT
encryption_options
-- Specify remote trail and encryption algorithm on first target
system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Parameter file for pump_2:

-- Identify the data pump group:
EXTRACT pump_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the second target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_2, MGRPORT port_number, ENCRYPT
encryption_options
-- Specify remote trail and encryption algorithm on second target
system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

6.3.2 Target Systems
Configure the Manager process and Replicat groups on the target systems.

To Configure the Manager Process

1. On each target, configure the Manager process.

2. In each Manager parameter file, use the PURGEOLDEXTRACTS parameter to control
the purging of files from the trail.

To Configure the Replicat Groups

1. On each target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See Creating a Checkpoint Table for instructions.

2. On each target, use the ADD REPLICAT command to create a Replicat group for the
remote trail on that system. For documentation purposes, these groups are called
rep_1 and rep_2.

Chapter 6
Creating a Data Distribution Configuration

6-5

Command on target_1:

ADD REPLICAT rep_1
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1, BEGIN time

Command on target_2:

ADD REPLICAT rep_2
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_2, BEGIN time

Use the EXTTRAIL argument to link the Replicat group to the correct trail.

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

3. On each target, use the EDIT PARAMS command to create a parameter file for
the Replicat group. Use the following parameters plus any others that apply to
your database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

Parameter file for rep_1:

-- Identify the Replicat group:
REPLICAT rep_1
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated
Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF
template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Parameter file for rep_2:

-- Identify the Replicat group:
REPLICAT rep_2
-- Specify database login information as needed for the database:
[TARGETDB dsn_3][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated
Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF
template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Chapter 6
Creating a Data Distribution Configuration

6-6

You can use any number of MAP statements for any given Replicat group. All MAP
statements for a given Replicat group must specify the same objects that are
contained in the trail that is linked to the group.

Chapter 6
Creating a Data Distribution Configuration

6-7

7
Configuring Oracle GoldenGate for Real-
time Data Warehousing

This chapter describes how to configure Oracle GoldenGate for real-time data
warehousing.
Topics:

• Overview of the Data Warehousing Configuration

• Considerations for a Data Warehousing Configuration

• Creating a Data Warehousing Configuration

7.1 Overview of the Data Warehousing Configuration
A data warehousing configuration is a many-to-one configuration. Multiple source
databases send data to one target warehouse database. Oracle GoldenGate supports
like-to-like or heterogeneous transfer of data, with capabilities for filtering and
conversion on any system in the configuration (support varies by database platform).

7.2 Considerations for a Data Warehousing Configuration
This section describes considerations for a data warehousing configuration.

• Isolation of Data Records

• Data Storage

• Filtering and Conversion

7-1

• Additional Information

7.2.1 Isolation of Data Records
This configuration assumes that each source database contributes different records to
the target system. If the same record exists in the same table on two or more source
systems and can be changed on any of those systems, conflict resolution routines are
needed to resolve conflicts when changes to that record are made on both sources at
the same time and replicated to the target table. See Configuring Oracle GoldenGate
for Active-Active Configuration for more information about resolving conflicts.

7.2.2 Data Storage
You can divide the data storage between the source systems and the target system
to reduce the need for massive amounts of disk space on the target system. This is
accomplished by using a data pump on each source, rather than sending data directly
from each Extract across the network to the target.

• A primary Extract writes to a local trail on each source.

• A data-pump Extract on each source reads the local trail and sends it across
TCP/IP to a dedicated Replicat group.

7.2.3 Filtering and Conversion
If not all of the data from a source system will be sent to the data warehouse, you
can use the data pump to perform the filtering. This removes that processing overhead
from the primary Extract group, and it reduces the amount of data that is sent across
the network. See Mapping and Manipulating Data for filtering and conversion options.

7.2.4 Additional Information
The following documentation provides additional information of relevance to
configuring Oracle GoldenGate.

• For additional system requirements, process configuration, and database setup
requirements, see the Oracle GoldenGate installation and configuration document
for your database type. These guides are listed in the Preface of this book.

• For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see Configuring Online Change Synchronization.

• For additional tuning options for Oracle GoldenGate, see Tuning the Performance
of Oracle GoldenGate.

• For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

7.3 Creating a Data Warehousing Configuration
Refer to Figure 7-1 for a visual representation of the objects you will be creating.

Chapter 7
Creating a Data Warehousing Configuration

7-2

Figure 7-1 Configuration for Data Warehousing

• Source Systems

• Target System

7.3.1 Source Systems
Configure the Manager process and primary Extract groups for the source systems.

To Configure the Manager Process

1. On each source, configure the Manager process.

2. In each Manager parameter file, use the PURGEOLDEXTRACTS parameter to control
the purging of files from the trail on the local system.

To Configure the primary Extract Groups

1. On each source, use the ADD EXTRACT command to create a primary Extract
group. For documentation purposes, these groups are called ext_1 and ext_2.

Command on source_1:

ADD EXTRACT ext_1, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[option[, ...]]

Chapter 7
Creating a Data Warehousing Configuration

7-3

Command on source_2:

ADD EXTRACT ext_2, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

2. On each source, use the ADD EXTTRAIL command to create a local trail.

Command on source_1:

ADD EXTTRAIL local_trail_1, EXTRACT ext_1

Command on source_2:

ADD EXTTRAIL local_trail_2, EXTRACT ext_2

Use the EXTRACT argument to link each Extract group to the local trail on the same
system. The primary Extract writes to this trail, and the data-pump reads it.

3. On each source, use the EDIT PARAMS command to create a parameter file for
the primary Extract. Include the following parameters plus any others that apply to
your database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

Parameter file for ext_1:

-- Identify the Extract group:
EXTRACT ext_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_1
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Parameter file for ext_2:

-- Identify the Extract group:
EXTRACT ext_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat or CDR
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_2

Chapter 7
Creating a Data Warehousing Configuration

7-4

-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

To Configure the Data Pumps

1. On each source, use the ADD EXTRACT command to create a data pump
Extract group. For documentation purposes, these pumps are called pump_1 and
pump_2.

Command on source_1:

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail_1, BEGIN time

Command on source_2:

ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail_2, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the trail
on the local system

2. On each source, use the ADD RMTTRAIL command to create a remote trail on the
target.

Command on source_1:

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1

Command on source_2:

ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

Use the EXTRACT argument to link each remote trail to a different data pump. The
data pump writes to this trail over TCP/IP, and a Replicat reads from it.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. On each source, use the EDIT PARAMS command to create a parameter file for the
data pump group. Include the following parameters plus any others that apply to
your database environment.

Parameter file for pump_1:

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target, MGRPORT port_number, ENCRYPT
encryption_options
-- Specify the remote trail and encryption algorithm on the target
system:
ENCRYPTTRAIL algorithm

Chapter 7
Creating a Data Warehousing Configuration

7-5

RMTTRAIL remote_trail_1
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Parameter file for pump_2:

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target, MGRPORT port_number, ENCRYPT
encryption_options
-- Specify the remote trail and encryption algorithm on the target
system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

7.3.2 Target System
Configure the Manager process and primary Replicat groups for the target system.

To Configure the Manager Process

1. Configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Replicat Groups

1. On the target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See Creating a Checkpoint Table for instructions.

2. On the target, use the ADD REPLICAT command to create a Replicat group for
each remote trail that you created. For documentation purposes, these groups are
called rep_1 and rep_2.

Command to add rep_1:

ADD REPLICAT rep_1
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1, BEGIN time

Chapter 7
Creating a Data Warehousing Configuration

7-6

Command to add rep_2:

ADD REPLICAT rep_2
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_2, BEGIN time

Use the EXTTRAIL argument to link the Replicat group to the trail.

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

3. On the target, use the EDIT PARAMS command to create a parameter file for each
Replicat group. Include the following parameters plus any others that apply to
your database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

Parameter file for rep_1:

-- Identify the Replicat group:
REPLICAT rep_1
-- Specify database login information as needed for the database:
[TARGETDB dsn_3][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated
Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF
template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Parameter file for rep_1:

-- Identify the Replicat group:
REPLICAT rep_2
-- Specify database login information as needed for the database:
[TARGETDB dsn_3][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated
Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF
template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

You can use any number of MAP statements for any given Replicat group. All MAP
statements for a given Replicat group must specify the same objects that are
contained in the trail that is linked to the group.

Chapter 7
Creating a Data Warehousing Configuration

7-7

8
Configuring Oracle GoldenGate to Maintain
a Live Standby Database

This chapter describes how to configure Oracle GoldenGate to maintain a live standby
database.
Topics:

• Overview of a Live Standby Configuration

• Considerations for a Live Standby Configuration

• Creating a Live Standby Configuration

• Configuration from Standby to Active Source

• Moving User Activity in a Planned Switchover

• Moving User Activity in an Unplanned Failover

8.1 Overview of a Live Standby Configuration
Oracle GoldenGate supports an active-passive bi-directional configuration, where
Oracle GoldenGate replicates data from an active primary database to a full replica
database on a live standby system that is ready for failover during planned and
unplanned outages.

In this configuration, there is an inactive Oracle GoldenGate Extract group and an
inactive data pump on the live standby system. Both of those groups remain stopped
until just before user applications are switched to the live standby system in a
switchover or failover. When user activity moves to the standby, those groups begin

8-1

capturing transactions to a local trail, where the data is stored on disk until the primary
database can be used again.

In the case of a failure of the primary system, the Oracle GoldenGate Manager
and Replicat processes work in conjunction with a database instantiation taken from
the standby to restore parity between the two systems after the primary system is
recovered. At the appropriate time, users are moved back to the primary system,
and Oracle GoldenGate is configured in ready mode again, in preparation for future
failovers.

8.2 Considerations for a Live Standby Configuration
These sections describe considerations for a live standby configuration.

• Trusted Source

• Duplicate Standby

• DML on the Standby System

• Oracle GoldenGate Processes

• Backup Files

• Failover Preparedness

• Sequential Values that are Generated by the Database

• Additional Information

8.2.1 Trusted Source
The primary database is the trusted source. This is the database that is the active
source during normal operating mode, and it is the one from which the other
database is derived in the initial synchronization phase and in any subsequent
resynchronizations. Maintain frequent backups of the trusted source data.

8.2.2 Duplicate Standby
In most implementations of a live standby, the source and target databases are
identical in content and structure. Data mapping, conversion, and filtering typically
are not appropriate practices in this kind of configuration, but Oracle GoldenGate
does support such functionality if required by your business model. To support these
functions, use the options of the TABLE and MAP parameters.

8.2.3 DML on the Standby System
If your applications permit, you can use the live standby system for reporting and
queries, but not DML. If there will be active transactional applications on the live
standby system that affect objects in the Oracle GoldenGate configuration, you should
configure this as an active-active configuration. See Configuring Oracle GoldenGate
for Active-Active Configuration for more information.

8.2.4 Oracle GoldenGate Processes
During normal operating mode, leave the primary Extract and the data pump on the
live standby system stopped, and leave the Replicat on the active source stopped.

Chapter 8
Considerations for a Live Standby Configuration

8-2

This prevents any DML that occurs accidentally on the standby system from being
propagated to the active source. Only the Extract, data pump, and Replicat that move
data from the active source to the standby system can be active.

8.2.5 Backup Files
Make regular backups of the Oracle GoldenGate working directories on the primary
and standby systems. This backup must include all of the files that are installed at the
root level of the Oracle GoldenGate installation directory and all of the sub-directories
within that directory. Having a backup of the Oracle GoldenGate environment means
that you will not have to recreate your process groups and parameter files.

8.2.6 Failover Preparedness
Make certain that the primary and live standby systems are ready for immediate user
access in the event of a planned switchover or an unplanned source failure. The
following components of a high-availability plan should be made easily available for
use on each system:

• Scripts that grant insert, update, and delete privileges.

• (Optional) Scripts that enable triggers and cascaded delete constraints on the live
standby system. (These may have been disabled during the setup procedures that
were outlined in the Oracle GoldenGate installation and configuration document
for your database type.)

Note:

Scripts to enable triggers and cascaded delete constraints on the live
standby system are not required with Oracle. It's controlled by the
DEFERREFCONST and SUPRESSTRIGGERS parameter settings.

• Scripts that switch over the application server, start applications, and copy
essential files that are not part of the replication environment.

• A failover procedure for moving users to the live standby if the source system fails.

8.2.7 Sequential Values that are Generated by the Database
If database-generated values, such as Oracle sequences, are used as part of a key,
the range of values must be different on each system, with no chance of overlap.
If the application permits, you can add a location identifier to the value to enforce
uniqueness.

For Oracle databases, Oracle GoldenGate can be configured to replicate sequences in
a manner that ensures uniqueness on each database. To replicate sequences, use the
SEQUENCE and MAP parameters. .

8.2.8 Additional Information
The following documentation provides additional information of relevance to
configuring Oracle GoldenGate.

Chapter 8
Considerations for a Live Standby Configuration

8-3

• For additional system requirements, process configuration, and database setup
requirements, see the Oracle GoldenGate installation and configuration document
for your database type. These guides are listed in the Preface of this book.

• For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see Configuring Online Change Synchronization.

• For additional tuning options for Oracle GoldenGate, see Tuning the Performance
of Oracle GoldenGate.

• For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

8.3 Creating a Live Standby Configuration
Refer to Figure 8-1 for a visual representation of the objects you will be creating.

Figure 8-1 Oracle GoldenGate configuration elements for live standby

• Prerequisites on Both Systems

• Configuration from Active Source to Standby

8.3.1 Prerequisites on Both Systems
Perform the following prerequisites on both systems.

1. Create a Replicat checkpoint table (unless using Oracle integrated Replicat). For
instructions, see Creating a Checkpoint Table.

2. Configure the Manager process.

Chapter 8
Creating a Live Standby Configuration

8-4

8.3.2 Configuration from Active Source to Standby
These steps configure Oracle GoldenGate to capture data from the primary database
and replicate it to the standby database.

To Configure the Primary Extract Group

Perform these steps on the active source.

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_1.

ADD EXTRACT ext_1, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

2. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes,
this trail is called local_trail_1.

ADD EXTTRAIL local_trail_1, EXTRACT ext_1

For EXTRACT, specify the ext_1 group to write to this trail.

3. Use the EDIT PARAMS command to create a parameter file for the ext_1
group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_1
-- Specify sequences to be captured:
SEQUENCE [container.]owner.sequence;
-- Specify tables to be captured:
TABLE [container.]owner.*;

To Configure the Data Pump

Perform these steps on the active source.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_1.

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail_1, BEGIN time

For EXTTRAILSOURCE, specify local_trail_1 as the data source.

2. Use the ADD RMTTRAIL command to specify a remote trail that will be created on
the standby system.

Chapter 8
Creating a Live Standby Configuration

8-5

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1

For EXTRACT, specify the pump_1 data pump to write to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. Use the EDIT PARAMS command to create a parameter file for the pump_1 group.
Include the following parameters plus any others that apply to your database
environment.

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the standby system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS system_2, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the standby system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify sequences to be captured:
SEQUENCE [container.]owner.sequence;
-- Specify tables to be captured:
TABLE [container.]owner.*;

To Configure the Replicat Group

Perform these steps on the live standby system.

1. Create a Replicat checkpoint table (unless using Oracle integrated Replicat). See
Creating a Checkpoint Table for instructions.

2. Use the ADD REPLICAT command to create a Replicat group. For documentation
purposes, this group is called rep_1.

ADD REPLICAT rep_1
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1, BEGIN time

For EXTTRAIL, specify remote_trail_1 as the trail that this Replicat reads.

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

3. Use the EDIT PARAMS command to create a parameter file for the rep_1
group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep_1
-- State that source and target definitions are identical:
ASSUMETARGETDEFS
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]

Chapter 8
Creating a Live Standby Configuration

8-6

[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

8.4 Configuration from Standby to Active Source
These steps configure Oracle GoldenGate in passive mode. In this mode, the Oracle
GoldenGate processes are ready, but not started, to capture data from the secondary
database and replicate it to the primary database after a switchover of transaction
activity to the secondary system.

Note:

This is a reverse image of the configuration that you just created.

To Configure the Primary Extract Group

Perform these steps on the live standby system.

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_2.

ADD EXTRACT ext_2, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

2. Start the TRANLOG Extract ext_2. Also see Preventing Data Looping.

3. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes,
this trail is called local_trail_2.

ADD EXTTRAIL local_trail_2, EXTRACT ext_2

For EXTRACT, specify the ext_2 group to write to this trail.

4. Use the EDIT PARAMS command to create a parameter file for the ext_2
group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail this Extract writes to and the encryption
algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_2
-- Specify sequences to be captured:
SEQUENCE [container.]owner.sequence;
-- Specify tables to be captured:
TABLE [container.]owner.*;

Chapter 8
Configuration from Standby to Active Source

8-7

To Configure the Data Pump

Perform these steps on the live standby system.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_2.

ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail_2, BEGIN time

For EXTTRAILSOURCE, specify local_trail_2 as the data source.

2. Use the ADD RMTTRAIL command to add a remote trail remote_trail_2 that will be
created on the active source system.

ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

For EXTRACT, specify the pump_2 data pump to write to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. Use the EDIT PARAMS command to create a parameter file for the pump_2 group.
Include the following parameters plus any others that apply to your database
environment.

-- Identify the data pump group:
EXTRACT pump_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the active source system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS system_1, MGRPORT port_number, ENCRYPT encryption_options
-- Specify remote trail and encryption algorithm on active source system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify sequences to be captured:
SEQUENCE [container.]owner.sequence;
-- Specify tables to be captured:
TABLE [container.]owner.*;

To Configure the Replicat Group

Perform these steps on the active source.

1. Use the ADD REPLICAT command to create a Replicat group. For documentation
purposes, this group is called rep_2.

ADD REPLICAT rep_2
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1, BEGIN time

For EXTTRAIL, specify remote_trail_2 as the trail that this Replicat reads.

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

2. Use the EDIT PARAMS command to create a parameter file for the rep_2
group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

Chapter 8
Configuration from Standby to Active Source

8-8

-- Identify the Replicat group:
REPLICAT rep_2
-- State that source and target definitions are identical:
ASSUMETARGETDEFS
-- Specify database login information as needed for the database:
[TARGETDB dsn_1][, USERIDALIAS alias]
-- Handle collisions between failback data copy and replication:
HANDLECOLLISIONS
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

8.5 Moving User Activity in a Planned Switchover
This procedure moves user application activity from a primary database to a live
standby system in a planned, graceful manner so that system maintenance and other
procedures that do not affect the databases can be performed on the primary system.

• Moving User Activity to the Live Standby

• Moving User Activity Back to the Primary System

8.5.1 Moving User Activity to the Live Standby
To move user activity to the live standby:

1. (Optional) If you need to perform system maintenance on the secondary system,
you can do so now or at the specified time later in these procedures, after moving
users from the secondary system back to the primary system. In either case, be
aware of the following risks if you must shut down the secondary system for any
length of time:

• The local trail on the primary system could run out of disk space as data
accumulates while the standby is offline. This will cause the primary Extract to
abend.

• If the primary system fails while the standby is offline, the data changes will
not be available to be applied to the live standby when it is functional again,
thereby breaking the synchronized state and requiring a full re-instantiation of
the live standby.

2. On the primary system, stop the user applications, but leave the primary Extract
and the data pump on that system running so that they capture any backlogged
transaction data.

3. On the primary system, issue the following command for the primary Extract
until it returns "At EOF, no more records to process." This indicates that all
transactions are now captured.

LAG EXTRACT ext_1

Chapter 8
Moving User Activity in a Planned Switchover

8-9

Note:

Since capture continues to read REDO, the non-production workload
continues to work. In this case, there is possibility that At EOF is
never returned even though the production workload has already
stopped8.5.1..

4. On the primary system, stop the primary Extract process

STOP EXTRACT ext_1

5. On the primary system, issue the following command for the data pump until it
returns "At EOF, no more records to process." This indicates that the pump
sent all of the captured data to the live standby.

LAG EXTRACT pump_1

6. On the live standby system, issue the STATUS REPLICAT command until it returns
"At EOF (end of file)." This confirms that Replicat applied all of the data from
the trail to the database.

STATUS REPLICAT rep_1

7. On the live standby system, stop Replicat.

STOP REPLICAT rep_1

8. On the live standby system, do the following:

• Run the script that grants insert, update, and delete permissions to the users
of the business applications.

• Run the script that enables triggers and cascade delete constraints.

• Run the scripts that switch over the application server, start applications, and
copy essential files that are not part of the replication environment.

9. Switch user activity to the live standby system.

10. On the primary system, perform the system maintenance.

8.5.2 Moving User Activity Back to the Primary System
To move user activity back to the primary system:

1. On the live standby system, stop the user applications, but leave the primary
Extract running so that it captures any backlogged transaction data.

2. On the primary system, start Replicat in preparation to receive changes from the
live standby system.

START REPLICAT rep_2

3. On the live standby system, start the data pump to begin moving the data that is
stored in the local trail across TCP/IP to the primary system.

START EXTRACT pump_2

Chapter 8
Moving User Activity in a Planned Switchover

8-10

4. On the live standby system, issue the following command for the primary Extract
until it returns "At EOF, no more records to process." This indicates that all
transactions are now captured.

LAG EXTRACT ext_2

5. On the live standby system, stop the primary Extract.

STOP EXTRACT ext_2

6. On the live standby system, issue the following command for the data pump until
it returns "At EOF, no more records to process." This indicates that the pump
sent all of the captured data to the primary system.

LAG EXTRACT pump_2

7. On the live standby system, stop the data pump.

STOP EXTRACT pump_2

8. On the primary system, issue the STATUS REPLICAT command until it returns "At
EOF (end of file)." This confirms that Replicat applied all of the data from the
trail to the database.

STATUS REPLICAT rep_2

9. On the primary system, stop Replicat.

STOP REPLICAT rep_2

10. On the primary system, do the following:

• Run the script that grants insert, update, and delete permissions to the users
of the business applications.

• Run the script that enables triggers and cascade delete constraints.

• Run the scripts that switch over the application server, start applications, and
copy essential files that are not part of the replication environment.

11. On the primary system, alter the primary Extract to begin capturing data based on
the current timestamp. Otherwise, Extract will spend unnecessary time looking for
operations that were already captured and replicated while users were working on
the standby system.

ALTER EXTRACT ext_1, BEGIN NOW

12. On the primary system, start the primary Extract so that it is ready to capture
transactional changes.

START EXTRACT ext_1

13. Switch user activity to the primary system.

14. (Optional) If system maintenance must be done on the live standby system, you
can do it now, before starting the data pump on the primary system. Note that
captured data will be accumulating on the primary system while the standby is
offline.

15. On the primary system, start the data pump.

START EXTRACT pump_1

16. On the live standby system, start Replicat.

START REPLICAT rep_1

Chapter 8
Moving User Activity in a Planned Switchover

8-11

8.6 Moving User Activity in an Unplanned Failover
These sections describe how to move user activity in an unplanned failover.

• Moving User Activity to the Live Standby

• Moving User Activity Back to the Primary System

8.6.1 Moving User Activity to the Live Standby
This procedure does the following:

• Prepares the live standby for user activity.

• Ensures that all transactions from the primary system are applied to the live
standby.

• Activates Oracle GoldenGate to capture transactional changes on the live standby.

• Moves users to the live standby system.

Perform these steps on the live standby system

To move users to the live standby

1. Issue the STATUS REPLICAT command until it returns "At EOF (end of file)" to
confirm that Replicat applied all of the data from the trail to the database.

STATUS REPLICAT rep_1

2. Stop the Replicat process.

STOP REPLICAT rep_1

3. Run the script that grants insert, update, and delete permissions to the users of
the business applications.

4. Run the script that enables triggers and cascade delete constraints.

5. Run the scripts that fail over the application server, start applications, and copy
essential files that are not part of the replication environment.

6. Start the primary Extract process on the live standby.

START EXTRACT ext_2

7. Move the users to the standby system and let them start working.

Note:

Do not start the data pump group on the standby. The user transactions
must accumulate there until just before user activity is moved back to the
primary system.

8.6.2 Moving User Activity Back to the Primary System
This procedure does the following:

Chapter 8
Moving User Activity in an Unplanned Failover

8-12

• Recovers the Oracle GoldenGate environment.

• Makes a copy of the live standby data to the restored primary system.

• Propagates user transactions that occurred while the copy was being made.

• Reconciles the results of the copy with the propagated changes.

• Moves users from the standby system to the restored primary system.

• Prepares replication to maintain the live standby again.

Perform these steps after the recovery of the primary system is complete.

To Recover the Source Oracle GoldenGate Environment

1. On the primary system, recover the Oracle GoldenGate directory from your
backups.

2. On the primary system, run GGSCI.

3. On the primary system, delete the primary Extract group.

DELETE EXTRACT ext_1

4. On the primary system, delete the local trail.

DELETE EXTTRAIL local_trail_1

5. On the primary system, add the primary Extract group again, using the same
name so that it matches the parameter file that you restored from backup. For
documentation purposes, this group is called ext_1. This step initializes the Extract
checkpoint from its state before the failure to a clean state.

ADD EXTRACT ext_1, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[, THREADS n]

• For TRANLOG and INTEGRATED TRANLOG, see Reference for Oracle GoldenGate.
INTEGRATED TRANLOG enables integrated capture for an Oracle database.

6. On the primary system, add the local trail again, using the same name as before.
For documentation purposes, this trail is called local_trail_1.

ADD EXTTRAIL local_trail_1, EXTRACT ext_1

• For EXTRACT, specify the ext_1 group to write to this trail.

7. On the primary system, start the Manager process.

START MANAGER

To Copy the Database from Standby to Primary System

1. On the primary system, run scripts to disable triggers and cascade delete
constraints.

2. On the standby system, start making a hot copy of the database.

3. On the standby system, record the time at which the copy finishes.

4. On the standby system, stop user access to the applications. Allow all open
transactions to be completed.

To Propagate Data Changes Made During the Copy

1. On the primary system, start Replicat.

Chapter 8
Moving User Activity in an Unplanned Failover

8-13

START REPLICAT rep_2

2. On the live standby system, start the data pump. This begins transmission of the
accumulated user transactions from the standby to the trail on the primary system.

START EXTRACT pump_2

3. On the primary system, issue the INFO REPLICAT command until you see that it
posted all of the data changes that users generated on the standby system during
the initial load. Refer to the time that you recorded previously. For example, if the
copy stopped at 12:05, make sure that change replication has posted data up to
that point.

INFO REPLICAT rep_2

4. On the primary system, issue the following command to turn off the
HANDLECOLLISIONS parameter and disable the initial-load error handling.

SEND REPLICAT rep_2, NOHANDLECOLLISIONS

5. On the primary system, issue the STATUS REPLICAT command until it returns "At
EOF (end of file)" to confirm that Replicat applied all of the data from the trail to
the database.

STATUS REPLICAT rep_2

6. On the live standby system, stop the data pump. This stops transmission of any
user transactions from the standby to the trail on the primary system.

STOP EXTRACT pump_2

7. On the primary system, stop the Replicat process.

STOP REPLICAT rep_2

At this point in time, the primary and standby databases should be in a state of
synchronization again.

(Optional) To Verify Synchronization

1. Use a compare tool, such as Oracle GoldenGate Veridata, to compare the source
and standby databases for parity.

2. Use a repair tool, such as Oracle GoldenGate Veridata, to repair any out-of-sync
conditions.

To Switch Users to the Primary System

1. On the primary system, run the script that grants insert, update, and delete
permissions to the users of the business applications.

2. On the primary system, run the script that enables triggers and cascade delete
constraints.

3. On the primary system, run the scripts that fail over the application server,
start applications, and copy essential files that are not part of the replication
environment.

4. On the primary system, start the primary Extract process.

START EXTRACT ext_1

5. On the primary system, allow users to access the applications.

Chapter 8
Moving User Activity in an Unplanned Failover

8-14

9
Configuring Oracle GoldenGate for Active-
Active Configuration

This chapter describes how to configure Oracle GoldenGate for active-active
configuration.
Topics:

• Overview of an Active-Active Configuration

• Considerations for an Active-Active Configuration

• Preventing Data Looping

• Managing Conflicts

• Additional Information

• Creating an Active-Active Configuration

• Configuring Conflict Detection and Resolution

9.1 Overview of an Active-Active Configuration
Oracle GoldenGate supports an active-active, bidirectional configuration, where there
are two systems with identical sets of data that can be changed by application users
on either system. Oracle GoldenGate replicates transactional data changes from each
database to the other to keep both sets of data current.

In a bidirectional configuration, there is a complete set of active Oracle GoldenGate
processes on each system. Data captured by an Extract process on one system is
propagated to the other system, where it is applied by a local Replicat process.

This configuration supports load sharing. It can be used for disaster tolerance if the
business applications are identical on any two peers.

Oracle GoldenGate supports active-active configurations for:

• DB2 on z/OS, LUW, and IBM i

• MySQL

• Oracle

• SQL Server

9-1

9.2 Considerations for an Active-Active Configuration
The following considerations apply in an active-active configuration. In addition,
review the Oracle GoldenGate installation and configuration document for your type
of database to see if there are any other limitations or requirements to support a
bi-directional configuration.

• TRUNCATES

• Application Design

• Keys

• Triggers and Cascaded Deletes

• Database-Generated Values

• Database Configuration

9.2.1 TRUNCATES
Bi-directional replication of TRUNCATES is not supported, but you can configure these
operations to be replicated in one direction, while data is replicated in both directions.
To replicate TRUNCATES (if supported by Oracle GoldenGate for the database) in an
active-active configuration, the TRUNCATES must originate only from one database, and
only from the same database each time.

Configure the environment as follows:

• Configure all database roles so that they cannot execute TRUNCATE from any
database other than the one that is designated for this purpose.

• On the system where TRUNCATE will be permitted, configure the Extract and
Replicat parameter files to contain the GETTRUNCATES parameter.

• On the other system, configure the Extract and Replicat parameter files to contain
the IGNORETRUNCATES parameter. No TRUNCATES should be performed on this
system by applications that are part of the Oracle GoldenGate configuration.

9.2.2 Application Design
When using Active-Active replication, the time zones must be the same on both
systems so that timestamp-based conflict resolution and detection can operate.

Active-active replication is not recommended for use with commercially available
packaged business applications, unless the application is designed to support it.
Among the obstacles that these applications present are:

• Packaged applications might contain objects and data types that are not supported
by Oracle GoldenGate.

• They might perform automatic DML operations that you cannot control, but which
will be replicated by Oracle GoldenGate and cause conflicts when applied by
Replicat.

• You probably cannot control the data structures to make modifications that are
required for active-active replication.

Chapter 9
Considerations for an Active-Active Configuration

9-2

9.2.3 Keys
For accurate detection of conflicts, all records must have a unique, not-null identifier.
If possible, create a primary key. If that is not possible, use a unique key or create a
substitute key with a KEYCOLS option of the MAP and TABLE parameters. In the absence
of a unique identifier, Oracle GoldenGate uses all of the columns that are valid in
a WHERE clause, but this will degrade performance if the table contains numerous
columns.

To maintain data integrity and prevent errors, the following must be true of the key that
you use for any given table:

• contain the same columns in all of the databases where that table resides.

• contain the same values in each set of corresponding rows across the databases.

9.2.4 Triggers and Cascaded Deletes
Triggers and ON DELETE CASCADE constraints generate DML operations that can be
replicated by Oracle GoldenGate. To prevent the local DML from conflicting with the
replicated DML from these operations, do the following:

• Modify triggers to ignore DML operations that are applied by Replicat. If the
target is an Oracle database, Replicat handles triggers without any additional
configuration when in integrated mode. Parameter options are available for a
nonintegrated Replicat for Oracle. See Diabling Triggers and Referential Cascade
Constraints on Target Tables in Using Oracle GoldenGate for Oracle Database.

• Disable ON DELETE CASCADE constraints and use a trigger on the parent table to
perform the required delete(s) to the child tables. Create it as a BEFORE trigger so
that the child tables are deleted before the delete operation is performed on the
parent table. This reverses the logical order of a cascaded delete but is necessary
so that the operations are replicated in the correct order to prevent "table not
found" errors on the target.

Note:

For MySQL targets, cascade delete queries result in the deletion of the
child of the parent operation.

Note:

For Oracle Database targets, if Replicat is in integrated mode,
constraints are handled automatically without special configuration.

9.2.5 Database-Generated Values
Do not replicate database-generated sequential values, such as Oracle sequences, in
a bi-directional configuration. The range of values must be different on each system,
with no chance of overlap. For example, in a two-database environment, you can have

Chapter 9
Considerations for an Active-Active Configuration

9-3

one server generate even values, and the other odd. For an n-server environment,
start each key at a different value and increment the values by the number of servers
in the environment. This method may not be available to all types of applications or
databases. If the application permits, you can add a location identifier to the value to
enforce uniqueness.

9.2.6 Database Configuration
One of the databases must be designated as the trusted source. This is the primary
database and its host system from which the other database is derived in the
initial synchronization phase and in any subsequent resynchronizations that become
necessary. Maintain frequent backups of the trusted source data.

9.3 Preventing Data Looping
In a bidirectional configuration, SQL changes that are replicated from one system to
another must be prevented from being replicated back to the first system. Otherwise, it
moves back and forth in an endless loop, as in this example:

1. A user application updates a row on system A.

2. Extract extracts the row on system A and sends it to system B.

3. Replicat updates the row on system B.

4. Extract extracts the row on system B and sends it back to system A.

5. The row is applied on system A (for the second time).

6. This loop continues endlessly.

To prevent data loopback, you may need to provide instructions that:

• prevent the capture of SQL operations that are generated by Replicat, but enable
the capture of SQL operations that are generated by business applications if they
contain objects that are specified in the Extract parameter file.

• identify local Replicat transactions, in order for the Extract process to ignore them.

• Identifying Replicat Transactions

• Preventing the Capture of Replicat Operations

• Replicating DDL in a Bi-directional Configuration

9.3.1 Identifying Replicat Transactions
To configure Extract to identify Replicat transactions, follow the instructions for the
database from which Extract will capture data.

Topics:

• DB2 z/OS, DB2 LUW, and DB2 for i

• MySQL

• SQL Server

• Oracle

Chapter 9
Preventing Data Looping

9-4

9.3.1.1 DB2 z/OS, DB2 LUW, and DB2 for i
Identify the Replicat user name by using the following parameter statement in the
Extract parameter file.

TRANLOGOPTIONS EXCLUDEUSER user

This parameter statement marks all DDL and DML transactions that are generated by
this user as Replicat transactions. The user name is included in the transaction record
that is read by Extract.

9.3.1.2 MySQL
Identify the name of the Replicat checkpoint table by using the following parameter
statement in the Extract parameter file.

TRANLOGOPTIONS FILTERTABLE table_name

Replicat writes a checkpoint to the checkpoint table at the end of each of its
transactions as part of its checkpoint procedure. (This is the table that is created with
the ADD CHECKPOINTTABLE command.) Because every Replicat transaction includes a
write to this table, it can be used to identify Replicat transactions in a bidirectional
configuration. FILTERTABLE identifies the name of the checkpoint table, so that Extract
ignores transactions that contain any operations on it.

9.3.1.3 SQL Server
(CDC Extract) Identify the name of the Replicat checkpoint table by using the following
parameter statement in the Extract parameter file and ensure that the Replicat
checkpoint table has been enabled for supplemental logging with the ADD TRANDATA
command.

TRANLOGOPTIONS FILTERTABLE table_name

Replicat writes a checkpoint to the checkpoint table at the end of each of its
transactions as part of its checkpoint procedure. (This is the table that is created with
the ADD CHECKPOINTTABLE command). Because every Replicat transaction includes a
write to this table, it can be used to identify Replicat transactions in a bi-directional
configuration. FILTERTABLE identifies the name of the checkpoint table, so that Extract
ignores transactions that contain any operations on it.

(Classic Extract) By default, Extract ignores the Replicat's transactions, however, if you
modify the Replicat's transaction name with the DBOPTIONS TRANSNAME parameter, then
you must exclude those transactions by using the following parameter statement in the
Extract parameter file.

TRANLOGOPTIONS EXCLUDETRANS transaction_name

This parameter statement is only required if the Replicat transaction name is set to
something other than the default of ggs_repl.

Chapter 9
Preventing Data Looping

9-5

9.3.1.4 Oracle
There are multiple ways to identify Replicat transaction in an Oracle environment.
When Replicat is in classic or integrated mode, you use the following parameters:

• Replicats set a tag of 00 by default. Use DBOPTIONS with the SETTAG option in
the Replicat parameter file to change the tag that Replicat sets. Replicat tags
the transactions being applied with the specified value, which identifies those
transactions in the redo stream. Valid values are a single TAG value consisting of
hexadecimal digits.

• Use the TRANLOGOPTIONS parameter with the EXCLUDETAG option in the Extract
parameter file. The logmining server associated with that Extract excludes redo
that is tagged with the SETTAG value.

The following shows how SETTAG can be set in the Replicat parameter file:

DBOPTIONS SETTAG 0935

The following shows how EXCLUDETAG can be set in the Extract parameter file:

TRANLOGOPTIONS EXCLUDETAG 0935

If you are excluding multiple tags, each must have a separate TRANLOGOPTIONS
EXCLUDETAG statement specified.

You can also use the transaction name or userid of the Replicat user to identify
Replicat transactions. You can choose which of these to ignore when you configure
Extract. See Preventing the Capture of Replicat Transactions (Oracle).

For more information, see Reference for Oracle GoldenGate.

9.3.2 Preventing the Capture of Replicat Operations
Depending on which database you are using, you may or may not need to provide
explicit instructions to prevent the capture of Replicat operations.

• Preventing the Capture of Replicat Transactions (Oracle)

• Preventing Capture of Replicat Transactions (Other Databases)

9.3.2.1 Preventing the Capture of Replicat Transactions (Oracle)
To prevent the capture of SQL that is applied by Replicat to an Oracle database, there
are different options depending on the Extract capture mode:

• When Extract is in classic or integrated capture mode, use the TRANLOGOPTIONS
parameter with the EXCLUDETAG tag option. This parameter directs the Extract
process to ignore transactions that are tagged with the specified redo tag. See
Identifying Replicat Transactions to set the tag value. This is the recommended
approach for Oracle.

• When Extract is in classic capture mode, use the Extract TRANLOGOPTIONS
parameter with the EXCLUDEUSER or EXCLUDEUSERID option to exclude the user
name or ID that is used by Replicat to apply the DDL and DML transactions.
Multiple EXCLUDEUSER statements can be used. The specified user is subject to
the rules of the GETREPLICATES or IGNOREREPLICATES parameter. See Preventing
Capture of Replicat Transactions (Other Databases) for more information.

Chapter 9
Preventing Data Looping

9-6

9.3.2.2 Preventing Capture of Replicat Transactions (Other Databases)
To prevent the capture of SQL that is applied by Replicat to other database types
(including Oracle, if Extract operates in classic capture mode), use the following
parameters:

• GETAPPLOPS | IGNOREAPPLOPS: Controls whether or not data operations (DML)
produced by business applications except Replicat are included in the content that
Extract writes to a specific trail or file.

• GETREPLICATES | IGNOREREPLICATES: Controls whether or not DML operations
produced by Replicat are included in the content that Extract writes to a specific
trail or file.

9.3.3 Replicating DDL in a Bi-directional Configuration
Additional consideration must be taken when replicating DDL bi-directionally, currently
only supported for Oracle database. For more information, see Managing the DDL
Replication Environment Using Oracle GoldenGate for Oracle Database.

9.4 Managing Conflicts
Uniform conflict-resolution procedures must be in place on all systems in an active-
active configuration. Conflicts should be identified immediately and handled with as
much automation as possible; however, different business applications will present
their own unique set of requirements in this area.

Because Oracle GoldenGate is an asynchronous solution, conflicts can occur when
modifications are made to identical sets of data on separate systems at (or almost at)
the same time. Conflicts occur when the timing of simultaneous changes results in one
of these out-of-sync conditions:

• A uniqueness conflict occurs when Replicat applies an insert or update
operation that violates a uniqueness integrity constraint, such as a PRIMARY KEY
or UNIQUE constraint. An example of this conflict type is when two transactions
originate from two different databases, and each one inserts a row into a table with
the same primary key value.

• An update conflict occurs when Replicat applies an update that conflicts with
another update to the same row. Update conflicts happen when two transactions
that originate from different databases update the same row at nearly the same
time. Replicat detects an update conflict when there is a difference between the
old values (the before values) that are stored in the trail record and the current
values of the same row in the target database.

• A delete conflict occurs when two transactions originate at different databases,
and one deletes a row while the other updates or deletes the same row. In this
case, the row does not exist to be either updated or deleted. Replicat cannot find
the row because the primary key does not exist.

For example, UserA on DatabaseA updates a row, and UserB on DatabaseB updates
the same row. If UserB's transaction occurs before UserA's transaction is synchronized
to DatabaseB, there will be a conflict on the replicated transaction.

A more complicated example involves three databases and illustrates a more complex
ordering conflict. Assume three databases A, B, and C. Suppose a user inserts a row

Chapter 9
Managing Conflicts

9-7

at database A, which is then replicated to database B. Another user then modifies the
row at database B, and the row modification is replicated to database C. If the row
modification from B arrives at database C before the row insert from database A, C will
detect a conflict.

Where possible, try to minimize or eliminate any chance of conflict. Some ways to do
so are:

• Configure the applications to restrict which columns can be modified in each
database. For example, you could limit access based on geographical area, such
as by allowing different sales regions to modify only the records of their own
customers. As another example, you could allow a customer service application
on one database to modify only the NAME and ADDRESS columns of a customer
table, while allowing a financial application on another database to modify only
the BALANCE column. In each of those cases, there cannot be a conflict caused by
concurrent updates to the same record.

• Keep synchronization latency low. If UserA on DatabaseA and UserB on
DatabaseB both update the same rows at about the same time, and UserA's
transaction gets replicated to the target row before UserB's transaction is
completed, conflict is avoided. See Tuning the Performance of Oracle GoldenGate
for suggestions on improving the performance of the Oracle GoldenGate
processes.

To avoid conflicts, replication latency must be kept as low as possible. When conflicts
are unavoidable, they must be identified immediately and resolved with as much
automation as possible, either through the Oracle GoldenGate Conflict Detection
and Resolution (CDR) feature, or through methods developed on your own. Custom
methods can be integrated into Oracle GoldenGate processing through the SQLEXEC
and user exit functionality. See Configuring Conflict Detection and Resolution for more
information about using Oracle GoldenGate to handle conflicts.

For Oracle database, the automatic Conflict Detection Resolution (CDR) feature
exists. To know more, see Oracle GoldenGate Automatic Conflict Detection and
Resolution in the Oracle Database XStream Guide.

9.5 Additional Information
The following documentation provides additional information of relevance to
configuring Oracle GoldenGate.

• For additional system requirements, process configuration, and database setup
requirements, see the Oracle GoldenGate installation and configuration document
for your database type.

• For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see Configuring Online Change Synchronization.

• For additional tuning options for Oracle GoldenGate, see Tuning the Performance
of Oracle GoldenGate.

• For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate.

Chapter 9
Additional Information

9-8

9.6 Creating an Active-Active Configuration
Refer to #unique_156/unique_156_Connect_42_BAGEBIAA for a visual
representation of the objects you will be creating.

• Prerequisites on Both Systems

• Configuration from Primary System to Secondary System

• Configuration from Secondary System to Primary System

9.6.1 Prerequisites on Both Systems
Perform these prerequisite tasks on both systems:

1. Create a Replicat checkpoint table (unless using Oracle integrated Replicat). See
Creating a Checkpoint Table for instructions.

2. Configure the Manager process.

9.6.2 Configuration from Primary System to Secondary System
These steps add the processes necessary to send data from the primary system to the
secondary database.

To Configure the Primary Extract Group

Perform these steps on the primary system.

1. Use the ADD EXTRACT command to create a primary Extract group. For
documentation purposes, this group is called ext_1.

ADD EXTRACT ext_1, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time

Chapter 9
Creating an Active-Active Configuration

9-9

2. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes,
this trail is called local_trail_1.

ADD EXTTRAIL local_trail_1, EXTRACT ext_1

For EXTRACT, specify the ext_1 group to write to this trail

3. Use the EDIT PARAMS command to create a parameter file for the ext_1
group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Specify the local trail that this Extract writes to
-- and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_1
-- Exclude Replicat transactions. Uncomment ONE of the following:
-- DB2 z/OS, DB2 LUW, DB2 IBM i, and Oracle (classic capture):
-- TRANLOGOPTIONS EXCLUDEUSER Replicat_user
-- Oracle (classic capture) alternative to EXCLUDEUSER:
-- EXCLUDEUSERID Oracle_uid
-- Oracle integrated capture:
-- EXCLUDETAG tag
-- SQL Server:
-- TRANLOGOPTIONS FILTERTABLE schema.checkpointtable"
-- -- Teradata:
-- SQLEXEC 'SET SESSION OVERRIDE REPLICATION ON;'
-- SQLEXEC 'COMMIT;'
-- Capture before images for conflict resolution:
GETBEFORECOLS (ON operation {ALL | KEY | KEYINCLUDING (col_list) |
ALLEXCLUDING (col_list)})
-- Log all scheduling columns for CDR and if using integrated Replicat
LOGALLSUPCOLS
-- Specify tables to be captured and (optional) columns to fetch:
TABLE [container.|catalog.]owner.* [, FETCHCOLS cols | FETCHCOLSEXCEPT
cols];

To Configure the Data Pump

Perform these steps on the primary system.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_1.

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail_1, BEGIN time

For EXTTRAILSOURCE, specify local_trail_1 as the data source.

2. Use the ADD RMTTRAIL command to add a remote trail that will be created
on the secondary system. For documentation purposes, this trail is called
remote_trail_1.

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1

For EXTRACT, specify the pump_1 data pump to write to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

Chapter 9
Creating an Active-Active Configuration

9-10

Use the EDIT PARAMS command to create a parameter file for the pump_1 group.
Include the following parameters plus any others that apply to your database
environment.

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the secondary system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS system_2, MGRPORT port_number, ENCRYPT encryption_options
-- Specify remote trail and encryption algorithm on secondary system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify tables to be captured:
TABLE [container.|catalog.]owner.*;

To Configure the Replicat Group

Perform these steps on the secondary system.

1. Create the Replicat checkpoint table after using the DBLOGIN command to connect
to the database. See ADD CHECKPOINTTABLE in Command Line Interface Reference
for Oracle GoldenGate.

2. Run the command:

ADD CHECKPOINTTABLE schema.checkpointtable

3. Use the ADD REPLICAT command to create a Replicat group. For documentation
purposes, this group is called rep_1.

ADD REPLICAT rep_1
[, PARALLEL | INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1, CHECKPOINTTABLE schema.checkpointtable

For EXTTRAIL, specify remote_trail_1 as the trail that this Replicat reads.

4. Use the EDIT PARAMS command to create a parameter file for the rep_1
group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep_1
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Set redo tag for Oracle only replicat via settag
-- Default is 00.
SETTAG tag_value
-- Valid for Oracle only. Specify tables for delivery, threads if
coordinated Replicat
-- and conflict-resolution:
MAP [container.|catalog.]owner.*, TARGET owner.*, COMPARECOLS (ON
operation {ALL | KEY | KEYINCLUDING (col_list) | ALLEXCLUDING
(col_list)}), RESOLVECONFLICT (conflict type (resolution_name,
resolution_type COLS (col[,...]))

Chapter 9
Creating an Active-Active Configuration

9-11

[, THREAD (thread_ID)]
[, THREADRANGE (thread_range[, column_list])]
;
-- Specify mapping of exceptions to exceptions table:
MAP [container.|catalog.]owner.*, TARGET owner.exceptions, EXCEPTIONSONLY;

9.6.3 Configuration from Secondary System to Primary System
These steps add the processes necessary to send data from the secondary system to
the primary database.

To Configure the Primary Extract Group

Perform these steps on the secondary system.

Note:

This is a reverse image of the configuration that you just created.

1. Use the ADD EXTRACT command to create a primary Extract group. For
documentation purposes, this group is called ext_2.

ADD EXTRACT ext_2, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time

2. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes,
this trail is called local_trail_2.

ADD EXTTRAIL local_trail_2, EXTRACT ext_2

For EXTRACT, specify the ext_2 group to write to this trail.

3. Use the EDIT PARAMS command to create a parameter file for the ext_2
group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Specify the local trail that this Extract writes to
-- and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_2
-- Exclude Replicat transactions. Uncomment ONE of the following:
-- DB2 z/OS, DB2 LUW, DB2 IBM i, and Oracle:
-- TRANLOGOPTIONS EXCLUDEUSER Replicat_user
-- Oracle alternative to EXCLUDEUSER:
-- EXCLUDEUSERID Oracle_uid
-- Oracle integrated capture:
-- EXCLUDETAG tag
-- SQL Server:
-- TRANLOGOPTIONS EXCLUDETRANS FILTERTABLE schema.checkpointtable
-- Oracle:
-- TRACETABLE trace_table_name
-- Log all scheduling columns for CDR and if using integrated Replicat

Chapter 9
Creating an Active-Active Configuration

9-12

LOGALLSUPCOLS
-- Capture before images for conflict resolution:
GETBEFORECOLS (ON operation {ALL | KEY | KEYINCLUDING (col_list) |
ALLEXCLUDING (col_list)})
-- Specify tables to be captured and (optional) columns to fetch:
TABLE [container.|catalog.]owner.* [, FETCHCOLS cols | FETCHCOLSEXCEPT
cols];

Note:

To replicate Oracle DBFS data, specify the internally generated local
read-write DBFS tables in the TABLE statement on each node. For
more information on identifying these tables and configuring DBFS for
propagation by Oracle GoldenGate, see Applying the Required Patch in
Using Oracle GoldenGate for Oracle Database.

To Configure the Data Pump

Perform these steps on the secondary system.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_2.

ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail_2, BEGIN time

For EXTTRAILSOURCE, specify local_trail_2 as the data source.

2. Use the ADD RMTTRAIL command to add a remote trail that will be created on the
primary system. For documentation purposes, this trail is called remote_trail_2.

ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

For EXTRACT, specify the pump_2 data pump to write to this trail.

3. Use the EDIT PARAMS command to create a parameter file for the pump_2 group.
Include the following parameters plus any others that apply to your database
environment.

-- Identify the data pump group:
EXTRACT pump_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the primary system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS system_1, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the primary system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify tables to be captured:
TABLE [container.|catalog.]owner.*;

Chapter 9
Creating an Active-Active Configuration

9-13

Note:

To replicate Oracle DBFS data, specify the internally generated local
read-write DBFS tables in the TABLE statement on each node. For
more information on identifying these tables and configuring DBFS for
propagation by Oracle GoldenGate, see Configuring the DBFS File
System in Using Oracle GoldenGate for Oracle Database.

To Configure the Replicat Group

Perform these steps on the primary system.

1. Create the Replicat checkpoint table after using the DBLOGIN command to connect
to the database. See ADD CHECKPOINTTABLE in Command Line Interface Reference
for Oracle GoldenGate.

2. Run the command:

ADD CHECKPOINTTABLE schema.checkpointtable

3. Use the ADD REPLICAT command to create a Replicat group. For documentation
purposes, this group is called rep_2.

ADD REPLICAT rep_2
[, PARALLEL | INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1, CHECKPOINTTABLE schema.checkpointtable

For EXTTRAIL, specify remote_trail_1 as the trail that this Replicat reads.

4. Use the EDIT PARAMS command to create a parameter file for the rep_2 group.
Include the following parameters plus any others that apply to your database
environment.

-- Identify the Replicat group:
REPLICAT rep_2
-- Specify database login information as needed for the database:
[TARGETDB dsn_1][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery, threads if coordinated Replicat
-- and conflict-resolution:
MAP [container.|catalog.]owner.*, TARGET owner.*, COMPARECOLS (ON
operation {ALL | KEY | KEYINCLUDING (col_list) | ALLEXCLUDING
(col_list)}), RESOLVECONFLICT (conflict type (resolution_name,
resolution_type COLS (col[,...]))
[, THREAD (thread_ID)]
[, THREADRANGE (thread_range[, column_list])]
;
-- Specify mapping of exceptions to exceptions table:
MAP [container.|catalog.]owner.*, TARGET owner.exceptions, EXCEPTIONSONLY;

Note:

To replicate Oracle DBFS data, specify the internally generated local
read-write DBFS tables in the TABLE statement on each node.

Chapter 9
Creating an Active-Active Configuration

9-14

9.7 Configuring Conflict Detection and Resolution
This chapter contains instructions for using the Oracle GoldenGate Conflict Detection
and Resolution (CDR) feature. Conflict detection and resolution is required in active-
active configurations, where Oracle GoldenGate must maintain data synchronization
among multiple databases that contain the same data sets.
Topics:

• Overview of the Oracle GoldenGate CDR Feature

• Configuring the Oracle GoldenGate Parameter Files for Error Handling

• Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution

• Making the Required Column Values Available to Extract

• Configuring Oracle GoldenGate CDR

• CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

• CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX

• CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

9.7.1 Overview of the Oracle GoldenGate CDR Feature
Oracle GoldenGate Conflict Detection and Resolution (CDR) provides basic conflict
resolution routines that:

• Resolve a uniqueness conflict for an INSERT.

• Resolve a "no data found" conflict for an UPDATE when the row exists, but the
before image of one or more columns is different from the current value in the
database.

• Resolve a "no data found" conflict for an UPDATE when the row does not exist.

• Resolve a "no data found" conflict for a DELETE when the row exists, but the before
image of one or more columns is different from the current value in the database.

• Resolve a "no data found" conflict for a DELETE when the row does not exist.

To use conflict detection and resolution (CDR), the target database must reside on a
Windows, Linux, or UNIX system. It is not supported for databases on the NonStop
platform.

 CDR supports scalar data types such as:

• NUMERIC

• DATE

• TIMESTAMP

• CHAR/NCHAR

• VARCHAR/ NVARCHAR

This means that these column types can be used with the COMPARECOLS parameter,
the GETBEFORECOLS parameter, and as the resolution column in the USEMIN and USEMAX
options of the RESOLVECONFLICT parameter. Only NUMERIC columns can be used for the

Chapter 9
Configuring Conflict Detection and Resolution

9-15

USEDELTA option of RESOLVECONFLICT. Do not use CDR for columns that contain LOBs,
abstract data types (ADT), or user-defined types (UDT).

Conflict resolution is not performed when Replicat operates in BATCHSQL mode. If a
conflict occurs in BATCHSQL mode, Replicat reverts to GROUPTRANSOPS mode, and then
to single-transaction mode. Conflict detection occurs in all three modes. For more
information, see Reference for Oracle GoldenGate.

9.7.2 Configuring the Oracle GoldenGate Parameter Files for Error
Handling

CDR should be used in conjunction with error handling to capture errors that were
resolved and errors that CDR could not resolve.

1. Conflict resolution is performed before these other error-handling parameters:
HANDLECOLLSIONS, INSERTMISSINGUPDATES, and REPERROR. Use the REPERROR
parameter to assign rules for handling errors that cannot be resolved by CDR, or
for errors that you do not want to handle through CDR. It might be appropriate to
have REPERROR handle some errors, and CDR handle others; however, if REPERROR
and CDR are configured to handle the same conflict, CDR takes precedence.
The INSERTMISSINGUPDATES and HANDLECOLLISIONS parameters also can be used
to handle some errors not handled by CDR. See the Reference for Oracle
GoldenGate for details about these parameters.

2. (Optional) Create an exceptions table. When an exceptions table is used with
an exceptions MAP statment (see Configuring the Oracle GoldenGate Parameter
Files for Error Handling), Replicat sends every operation that generates a conflict
(resolved or not) to the exceptions MAP statement to be mapped to the exceptions
table. Omit a primary key on this table if Replicat is to process UPDATE and DELETE
conflicts; otherwise there can be integrity constraint errors.

At minimum, an exceptions table should contain the same columns as the target
table. These rows will contain each row image that Replicat applied to the target
(or tried to apply).

In addition, you can define additional columns to capture other information that
helps put the data in transactional context. Oracle GoldenGate provides tools to
capture this information through the exceptions MAP statement (see Configuring the
Oracle GoldenGate Parameter Files for Error Handling). Such columns can be, but
are not limited to, the following:

• The before image of the trail record. This is a duplicate set of the target
columns with names such as col1_before, col2_before, and so forth.

• The current values of the target columns. This also is a duplicate set of the
target columns with names such as col1_current, col2_current, and so forth.

• The name of the target table

• The timestamp of the conflict

• The operation type

• The database error number

• (Optional) The database error message

• Whether the conflict was resolved or not

Chapter 9
Configuring Conflict Detection and Resolution

9-16

3. Create an exceptions MAP statement to map the exceptions data to the exceptions
table. An exceptions MAP statement contains:

• (Required) The INSERTALLRECORDS option. This parameter converts all mapped
operations to INSERTs so that all column values are mapped to the exceptions
table.

• (Required) The EXCEPTIONSONLY option. This parameter causes Replicat to
map operations that generate an error, but not those that were successful.

• (Optional) A COLMAP clause. If the names and definitions of the columns in the
exceptions table are identical to those of the source table, and the exceptions
table only contains those columns, no COLMAP is needed. However, if any
names or definitions differ, or if there are extra columns in the exceptions table
that you want to populate with additional data, use a COLMAP clause to map all
columns.

• Tools for Mapping Extra Data to the Exceptions Table

• Sample Exceptions Mapping with Source and Target Columns Only

• Sample Exceptions Mapping with Additional Columns in the Exceptions Table

9.7.2.1 Tools for Mapping Extra Data to the Exceptions Table
The following are some tools that you can use in the COLMAP clause to populate extra
columns:

• If the names and definitions of the source columns are identical to those of the
target columns in the exceptions table, you can use the USEDEFAULTS keyword
instead of explicitly mapping names. Otherwise, you must map those columns in
the COLMAP clause, for example:

COLMAP (exceptions_col1 = col1, [...])

• To map the before image of the source row to columns in the exceptions table,
use the @BEFORE conversion function, which captures the before image of a column
from the trail record. This example shows the @BEFORE usage.

COLMAP (USEDEFAULTS, exceptions_col1 = @BEFORE (source_col1), &
exceptions_col2 = @BEFORE (source_col2), [...])

• To map the current image of the target row to columns in the exceptions table, use
a SQLEXEC query to capture the image, and then map the results of the query to
the columns in the exceptions table by using the 'queryID.column' syntax in the
COLMAP clause, as in the following example:

COLMAP (USEDEFAULTS, name_current = queryID.name, phone_current =
queryID.phone, [...])

• To map timestamps, database errors, and other environmental information, use
the appropriate Oracle GoldenGate column-conversion functions. For example,
the following maps the current timestamp at time of execution.

res_date = @DATENOW ()

See Sample Exceptions Mapping with Additional Columns in the Exceptions Table , for
how to combine these features in a COLMAP clause in the exceptions MAP statement to
populate a detailed exceptions table.

See Reference for Oracle GoldenGate for Windows and UNIX for the usage and
syntax of the parameters and column-conversion functions shown in these examples.

Chapter 9
Configuring Conflict Detection and Resolution

9-17

9.7.2.2 Sample Exceptions Mapping with Source and Target Columns Only
The following is a sample parameter file that shows error handling and simple
exceptions mapping for the source and target tables that are used in the CDR
examples that begin. This example maps source and target columns, but no extra
columns. For the following reasons, a COLMAP clause is not needed in the exceptions
MAP statement in this example:

• The source and target exceptions columns are identical in name and definition.

• There are no other columns in the exceptions table.

Note:

This example intentionally leaves out other parameters that are required
in a Replicat parameter file, such as process name and login credentials,
as well as any optional parameters that may be required for a given
database type. When using line breaks to split a parameter statement
into multiple lines, use an ampersand (&) at the end of each line.

 -- REPERROR error handling: DEFAULT represents all error types. DISCARD
 -- writes operations that could not be processed to a discard file.
REPERROR (DEFAULT, DISCARD)
 -- Specifies a discard file.
DISCARDFILE /users/ogg/discards/discards.dsc, PURGE
 -- The regular MAP statement with the CDR parameters
MAP fin.src, TARGET fin.tgt, &
COMPARECOLS (ON UPDATE ALL, ON DELETE ALL), &
RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD)), &
);
 -- Starts the exceptions MAP statement by mapping the source table to the
 -- exceptions table.
MAP fin.src, TARGET fin.exception, &
 -- directs Replicat only to map operations that caused the error
specified
 -- in REPERROR.
EXCEPTIONSONLY, &
 -- directs Replicat to convert all the exceptions to inserts into the
 -- exceptions table. This is why there cannot be a primary key constraint
 -- on the exceptions table.
INSERTALLRECORDS
;

9.7.2.3 Sample Exceptions Mapping with Additional Columns in the Exceptions
Table

The following is a sample parameter file that shows error handling and complex
exceptions mapping for the source and target tables that are used in the CDR
examples that begin. In this example, the exceptions table has the same rows as
the source table, but it also has additional columns to capture context data.

Chapter 9
Configuring Conflict Detection and Resolution

9-18

Note:

This example intentionally leaves out other parameters that are required in a
Replicat parameter file, such as process name and login credentials, as well
as any optional parameters that may be required for a given database type.
When using line breaks to split a parameter statement into multiple lines, use
an ampersand (&) at the end of each line.

 -- REPERROR error handling: DEFAULT represents all error types. DISCARD
 -- writes operations that could not be processed to a discard file.
REPERROR (DEFAULT, DISCARD)
 -- Specifies the discard file.
DISCARDFILE /users/ogg/discards/discards.dsc, PURGE
 -- The regular MAP statement with the CDR parameters
MAP fin.src, TARGET fin.tgt, &
COMPARECOLS (ON UPDATE ALL, ON DELETE ALL), &
RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD))
);
 -- Starts the exceptions MAP statement by mapping the source table to the --
exceptions table.
MAP fin.src, TARGET fin.exception, &
 -- directs Replicat only to map operations that caused the error specified
 -- in REPERROR.
EXCEPTIONSONLY, &
 -- directs Replicat to convert all the exceptions to inserts into the
 -- exceptions table. This is why there cannot be a primary key constraint
 -- on the exceptions table.
INSERTALLRECORDS &
 -- SQLEXEC query to select the values from the target record before the
 -- Replicat statement is applied. These are mapped to the *_target
 -- columns later.
SQLEXEC (id qry, query 'select name, phone, address, salary, balance, & comment,
last_mod_time from fin.tgt where name = :p1', PARAMS(p1 = name)), &
 -- Start of the column mapping, specifies use default column definitions.
COLMAP (&
 -- USEDEFAULTS maps the source columns to the target exceptions columns
 -- that receive the after image that Replicat applied or tried to apply.
 -- In this case, USEDEFAULTS can be used because the names and definitions
 -- of the source and target exceptions columns are identical; otherwise
 -- the columns must be mapped explicitly in the COLMAP clause.
USEDEFAULTS, &
 -- captures the timestamp when the resolution was performed.
res_date = @DATENOW (), &
 -- captures and maps the DML operation type.
optype = @GETENV ('LASTERR', 'OPTYPE'), &
 -- captures and maps the database error number that was returned.
dberrnum = @GETENV ('LASTERR', 'DBERRNUM'), &
 -- captures and maps the database error that was returned.
dberrmsge = @GETENV ('LASTERR', 'DBERRMSG'), &
 -- captures and maps the name of the target table
tabname = @GETENV ('GGHEADER', 'TABLENAME'), &
 -- If the names and definitions of the source columns and the target
 -- exceptions columns were not identical, the columns would need to
 -- be mapped in the COLMAP clause instead of using USEDEFAULTS, as

Chapter 9
Configuring Conflict Detection and Resolution

9-19

 -- follows:
 -- name_after = name, &
 -- phone_after = phone, &
 -- address_after = address, &
 -- salary_after = salary, &
 -- balance_after = balance, &
 -- comment_after = comment, &
 -- last_mod_time_after = last_mod_time &
 -- maps the before image of each column from the trail to a column in the
 -- exceptions table.
name_before = @BEFORE (name), &
phone_before = @BEFORE (phone), &
address_before = @BEFORE (address), &
salary_before = @BEFORE (salary), &
balance_before = @BEFORE (balance), &
comment_before = @BEFORE (comment), &
last_mod_time_before = @BEFORE (last_mod_time), &
 -- maps the results of the SQLEXEC query to rows in the exceptions table
 -- to show the current image of the row in the target.
name_current = qry.name, &
phone_current = qry.phone, &
address_current = qry.address, &
salary_current = qry.salary, &
balance_current = qry.balance, &
comment_current = qry.comment, &
last_mod_time_current = qry.last_mod_time)
;

For more information about creating an exceptions table and using exceptions
mapping, see Handling Replicat Errors during DML Operations.

Once you are confident that your routines work as expected in all situations, you
can reduce the amount of data that is logged to the exceptions table to reduce the
overhead of the resolution routines.

9.7.3 Configuring the Oracle GoldenGate Parameter Files for Conflict
Resolution

The following parameters are required to support conflict detection and resolution.

1. Use the GETBEFORECOLS option of the Extract TABLE parameter to specify columns
for which you want Extract to capture the before image of an update or delete
operation. For DB2 databases, use the GETUPDATEBEFORES parameter instead of
GETBEFORECOLS, which is not supported for DB2.

2. Use the COMPARECOLS option of the MAP parameter in the Replicat parameter file
to specify columns that are to be used with before values in the Replicat WHERE
clause. The before values are compared with the current values in the target
database to detect update and delete conflicts. (By default, Replicat only uses the
primary key in the WHERE clause; this may not be enough for conflict detection).

3. Use the RESOLVECONFLICT option of the MAP parameter to specify conflict resolution
routines for different operations and conflict types. You can use RESOLVECONFLICT
multiple times in a MAP statement to specify different resolutions for different
conflict types. However, you cannot use RESOLVECONFLICT multiple times for the
same type of conflict. Use identical conflict-resolution procedures on all databases,
so that the same conflict produces the same end result. One conflict-resolution
method might not work for every conflict that could occur. You might need to create

Chapter 9
Configuring Conflict Detection and Resolution

9-20

several routines that can be called in a logical order of priority so that the risk of
failure is minimized.

Note:

Additional consideration should be given when a table has a primary key and
additional unique indexes or unique keys. The automated routines provided
with the COMPARECOLS and RESOLVECONFLICT parameters require a consistent
way to uniquely identify each row. Failure to consistently identify a row will
result in an error during conflict resolution. In these situations the additional
unique keys should be disabled or you can use the SQLEXEC feature to handle
the error thrown and resolve the conflict.

For detailed information about these parameters, see Reference for Oracle
GoldenGate. See the examples starting on CDR Example 1: All Conflict Types with
USEMAX, OVERWRITE, DISCARD, for more information on these parameters.

9.7.4 Making the Required Column Values Available to Extract
To use CDR, the following column values must be logged so that Extract can write
them to the trail.

• The full before image of each record. Some databases do not provide a before
image in the log record, and must be configured to do so with supplemental
logging. For most supported databases, you can use the ADD TRANDATA command
for this purpose.

• Use the LOGALLSUPCOLS parameter to ensure that the full before and after images
of the scheduling columns are written to the trail. Scheduling columns are primary
key, unique index, and foreign key columns. LOGALLSUPCOLS causes Extract
to include in the trail record the before image for UPDATE operations and the
before image of all supplementally logged columns for both UPDATE and DELETE
operations.

For detailed information about these parameters and commands, see the Reference
for Oracle GoldenGate. See the examples starting on CDR Example 1: All Conflict
Types with USEMAX, OVERWRITE, DISCARD for more information on how these
parameters work with CDR.

9.7.5 Configuring Oracle GoldenGate CDR
Here are the steps to configure the source database, target database, and Oracle
GoldenGate for conflict detection and resolution.

Topics:

• Viewing CDR Statistics

9.7.5.1 Viewing CDR Statistics
The CDR feature provides the following methods for viewing the results of conflict
resolution.

Chapter 9
Configuring Conflict Detection and Resolution

9-21

• Report File

• GGSCI

• Column-conversion Functions

9.7.5.1.1 Report File
Replicat writes CDR statistics to the report file:

Total CDR conflicts 7
 CDR resolutions succeeded 6
 CDR resolutions failed 1
 CDR INSERTROWEXISTS conflicts 1
 CDR UPDATEROWEXISTS conflicts 4
 CDR UPDATEROWMISSING conflicts
 CDR DELETEROWEXISTS conflicts 1
 CDR DELETEROWMISSING conflicts 1

9.7.5.1.2 GGSCI
You can view CDR statistics from GGSCI by using the STATS REPLICAT command with
the REPORTCDR option:

STATS REPLICAT group, REPORTCDR

9.7.5.1.3 Column-conversion Functions
The following CDR statistics can be retrieved and mapped to an exceptions table
or used in other Oracle GoldenGate parameters that accept input from column-
conversion functions, as appropriate.

• Number of conflicts that Replicat detected

• Number of resolutions that Replicat resolved

• Number of resolutions that Replicat could not resolve

To retrieve these statistics, use the @GETENV column-conversion function with the
'STATS' or 'DELTASTATS' information type. The results are based on the current
Replicat session. If Replicat stops and restarts, it resets the statistics.

You can return these statistics for a specific table or set of wildcarded tables:

@GETENV ('STATS','TABLE','SCHEMA.TABLNAME','CDR_CONFLICTS')
@GETENV ('STATS','TABLE','SCHEMA.TABLNAME','CDR_RESOLUTIONS_SUCCEEDED')
@GETENV ('STATS','TABLE','SCHEMA.TABLNAME','CDR_RESOLUTIONS_FAILED')

You can return these statistics for all of the tables in all of the MAP statements in the
Replicat parameter file:

@GETENV ('STATS','CDR_CONFLICTS')
@GETENV ('STATS','CDR_RESOLUTIONS_SUCCEEDED')
@GETENV ('STATS','CDR_RESOLUTIONS_FAILED')

The 'STATS' information type in the preceding examples can be replaced by
'DELTASTATS' to return the requested counts since the last execution of 'DELTASTATS'.

For more information about @GETENV, see Reference for Oracle GoldenGate.

Chapter 9
Configuring Conflict Detection and Resolution

9-22

9.7.6 CDR Example 1: All Conflict Types with USEMAX,
OVERWRITE, DISCARD

This example resolves all conflict types by using the USEMAX, OVERWRITE, and DISCARD
resolutions.

• Table Used in this Example

• MAP Statement with Conflict Resolution Specifications

• Description of MAP Statement

• Error Handling

• INSERTROWEXISTS with the USEMAX Resolution

• UPDATEROWEXISTS with the USEMAX Resolution

• UPDATEROWMISSING with OVERWRITE Resolution

• DELETEROWMISSING with DISCARD Resolution

• DELETEROWEXISTS with OVERWRITE Resolution

9.7.6.1 Table Used in this Example
The examples assume identical Oracle databases.

CREATE TABLE tgt(
 name varchar2(30) primary key,
 phone varchar2(10),
 address varchar2(100),
 salary number,
 balance number,
 comment varchar2(100),
 last_mod_time timestamp);

At the source database, all columns are supplementally logged:

ADD TRANDATA scott.src, COLS (name, phone, address, salary, balance, comment,
last_mod_time);

9.7.6.2 MAP Statement with Conflict Resolution Specifications
MAP fin.src, TARGET fin.tgt,
 COMPARECOLS (ON UPDATE ALL, ON DELETE ALL),
 RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)),
 RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)),
 RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)),
 RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)),
 RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD)),
);

9.7.6.3 Description of MAP Statement
The following describes the MAP statement:

• Per COMPARECOLS, use the before image of all columns in the trail record in the
Replicat WHERE clause for updates and deletes.

Chapter 9
Configuring Conflict Detection and Resolution

9-23

• Per DEFAULT, use all columns as the column group for all conflict types; thus the
resolution applies to all columns.

• For an INSERTROWEXISTS conflict, use the USEMAX resolution: If the row exists
during an insert, use the last_mod_time column as the resolution column for
deciding which is the greater value: the value in the trail or the one in the
database. If the value in the trail is greater, apply the record but change the insert
to an update. If the database value is higher, ignore the record.

• For an UPDATEROWEXISTS conflict, use the USEMAX resolution: If the row exists
during an update, use the last_mod_time column as the resolution column: If the
value in the trail is greater, apply the update.

• If you use USEMIN or USEMAX, and the values are exactly the same, then
RESOLVECONFLICT isn't triggered and the incoming row is ignored. If you use
USEMINEQ or USEMAXEQ, and the values are exactly the same, then the resolution is
triggered.

• For a DELETEROWEXISTS conflict, use the OVERWRITE resolution: If the row exists
during a delete operation, apply the delete.

• For an UPDATEROWMISSING conflict, use the OVERWRITE resolution: If the row does
not exist during an update, change the update to an insert and apply it.

• For a DELETROWMISSING conflict use the DISCARD resolution: If the row does not
exist during a delete operation, discard the trail record.

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to
apply a >= condition. For more information, see Reference for Oracle
GoldenGate.

9.7.6.4 Error Handling
For an example of error handling to an exceptions table, see Configuring the Oracle
GoldenGate Parameter Files for Error Handling.

9.7.6.5 INSERTROWEXISTS with the USEMAX Resolution
For this example, the USEMAX resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve an
insert where the row exists in the source and target, but some or all row values are
different.

Table 9-1 INSERTROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Before image in trail
None (row was inserted on the
source).

N/A

Chapter 9
Configuring Conflict Detection and Resolution

9-24

Table 9-1 (Cont.) INSERTROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

After image in trail
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00'

last_mod_time='9/1/10 3:00 is the after
image of the resolution column. Since there
is an after image, this will be used to
determine the resolution.

Target database image
name='Mary'
phone='111111'
address='Ralston'
salary=200
balance=500
comment='aaa'
last_mod_time='9/1/10 1:00'

last_mod_time='9/1/10 1:00 is the
current image of the resolution column in the
target against which the resolution column
value in the trail is compared.

Initial INSERT applied by
Replicat that detects the
conflict

SQL bind variables:

1)'Mary'
2)'1234567890'
3)'Oracle Pkwy'
4)100
5)100
6)NULL
7)'9/1/10 3:00'

This SQL returns a uniqueness conflict on
'Mary'.

UPDATE applied by Replicat
to resolve the conflict

SQL bind variables:

1)'1234567890'
2)'Oracle Pkwy'
3)100
4)100
5)NULL
6)'9/1/10 3:00'
7)'Mary'
8)'9/1/10 3:00'

Because USEMAX is specified for
INSERTROWEXISTS, Replicat converts the
insert to an update, and it compares the
value of last_mod_time in the trail record
with the value in the database. The value
in the record is greater, so the after images
for columns in the trail file are applied to the
target.

9.7.6.6 UPDATEROWEXISTS with the USEMAX Resolution
For this example, the USEMAX resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve an
update where the row exists in the source and target, but some or all row values are
different.

Chapter 9
Configuring Conflict Detection and Resolution

9-25

Table 9-2 UPDATEROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Before image in trail
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00'

last_mod_time='9/1/10 3:00 is the
before image of the resolution column.

After image in trail
phone='222222'
address='Holly'
last_mod_time='9/1/10 5:00'

last_mod_time='9/1/10 5:00 is the
after image of the resolution column.
Since there is an after image, this will be
used to determine the resolution.

Target database image
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=600
comment='com'
last_mod_time='9/1/10 6:00'

last_mod_time='9/1/10 6:00 is the
current image of the resolution column
in the target against which the resolution
column value in the trail is compared.

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'222222'
2)'Holly'
3)'9/1/10 5:00'
4)'Mary'
5)'1234567890'
6)'Oracle Pkwy'
7)100
8)100
9)NULL
10)'9/1/10 3:00'

This SQL returns a no-data-found error
because the values for the balance,
comment, and last_mod_time are
different in the target.

All columns are used in the WHERE clause
because the COMPARECOLS statement is
set to ALL.

UPDATE applied by Replicat to
resolve the conflict

SQL bind variables:

1)'Mary'
2)'222222'
3)'Holly'
4)100
5)100
6)NULL
7)'9/1/10 5:00'
8)'Mary'
9)'9/1/10 5:00'

Because the after value of
last_mod_time in the trail record is less
than the current value in the database,
the database value is retained. Replicat
applies the operation with a WHERE clause
that contains the primary key plus a
last_mod_time value set to less than
9/1/10 5:00. No rows match this
criteria, so the statement fails with a "data
not found" error, but Replicat ignores the
error because a USEMAX resolution is
expected to fail if the condition is not
satisfied.

9.7.6.7 UPDATEROWMISSING with OVERWRITE Resolution
For this example, the OVERWRITE resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve the

Chapter 9
Configuring Conflict Detection and Resolution

9-26

case where the target row is missing. The logical resolution, and the one used, is to
overwrite the row into the target so that both databases are in sync again.

Table 9-3 UPDATEROWMISSING Conflict with OVERWRITE Resolution

Image SQL Comments

Before image in trail
name='Jane'
phone='333'
address='Oracle Pkwy'
salary=200
balance=200
comment=NULL
last_mod_time='9/1/10 7:00'

N/A

After image in trail
phone='4444'
address='Holly'
last_mod_time='9/1/10 8:00'

Target database image
None (row for Jane is missing)

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'4444'
2)'Holly'
3)'9/1/10 8:00'
4)'Jane'
5)'333'
6)'Oracle Pkwy'
7)200
8)200
9)NULL
10)'9/1/10 7:00'

This SQL returns a no-data-found error.
All columns are used in the WHERE
clause because the COMPARECOLS
statement is set to ALL.

INSERT applied by Replicat
to resolve the conflict

SQL bind variables:

1)'Jane'
2)'4444'
3)'Holly'
4)200
5)200
6)NULL
7)'9/1/10 8:00'

The update is converted to an insert
because OVERWRITE is the resolution.
The after image of a column is used if
available; otherwise the before image is
used.

9.7.6.8 DELETEROWMISSING with DISCARD Resolution
For this example, the DISCARD resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve
the case where the target row is missing. In the case of a delete on the source, it is
acceptable for the target row not to exist (it would need to be deleted anyway), so the
resolution is to discard the DELETE operation that is in the trail.

Chapter 9
Configuring Conflict Detection and Resolution

9-27

Table 9-4 DELETEROWMSING Conflict with DISCARD Resolution

Image SQL Comments

Before image in trail
name='Jane'
phone='4444'
address='Holly'
salary=200
balance=200
comment=NULL
last_mod_time='9/1/10 8:00'

N/A

After image in trail
None

N/A

Target database image
None (row missing)

N/A

Initial DELETE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'Jane'
2)'4444'
3)'Holly'
4)200
5)200
6)NULL
7)'9/1/10 8:00'

This SQL returns a no-data-found error.
All columns are used in the WHERE
clause because the COMPARECOLS
statement is set to ALL.

SQL applied by Replicat to
resolve the conflict

None Because DISCARD is specified as the
resolution for DELETEROWMISSING, so
the delete from the trail goes to the
discard file.

9.7.6.9 DELETEROWEXISTS with OVERWRITE Resolution
For this example, the OVERWRITE resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve
the case where the source row was deleted but the target row exists. In this case, the
OVERWRITE resolution applies the delete to the target.

Table 9-5 DELETEROWEXISTS Conflict with OVERWRITE Resolution

Image SQL Comments

Before image in trail
name='Mary'
phone='222222'
address='Holly'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 5:00'

N/A

After image in trail
None

N/A

Chapter 9
Configuring Conflict Detection and Resolution

9-28

Table 9-5 (Cont.) DELETEROWEXISTS Conflict with OVERWRITE Resolution

Image SQL Comments

Target database image
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=600
comment=com
last_mod_time='9/1/10 7:00'

The row exists on the target, but the
phone, address, balance, comment,
and last_mod_time columns are
different from the before image in the
trail.

Initial DELETE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'Mary'
2)'222222'
3)'Holly'
4)100
5)100d
6)NULL
7)'9/1/10 5:00'

All columns are used in the WHERE
clause because the COMPARECOLS
statement is set to ALL.

A no-data-found error occurs because of
the difference between the before and
current values.

DELETE applied by Replicat
to resolve the conflict

SQL bind variables:

1)'Mary'

Because OVERWRITE is the resolution.
the DELETE is applied using only the
primary key (to avoid an integrity error).

9.7.7 CDR Example 2: UPDATEROWEXISTS with USEDELTA and
USEMAX

This example resolves the condition where a target row exists on UPDATE but non-key
columns are different, and it uses two different resolution types to handle this condition
based on the affected column.

• Table Used in this Example

• MAP Statement

• Description of MAP Statement

• Error Handling

9.7.7.1 Table Used in this Example
The examples assume identical Oracle databases.

CREATE TABLE tgt(
 name varchar2(30) primary key,
 phone varchar2(10),
 address varchar2(100),
 salary number,
 balance number,
 comment varchar2(100),
 last_mod_time timestamp);

At the source database, all columns are supplementally logged:

Chapter 9
Configuring Conflict Detection and Resolution

9-29

ADD TRANDATA scott.src, COLS (name, phone, address, salary, balance, comment,
last_mod_time);

9.7.7.2 MAP Statement
MAP fin.src, TARGET fin.tgt,
 COMPARECOLS
 (ON UPDATE KEYINCLUDING (address, phone, salary, last_mod_time),
 ON DELETE KEYINCLUDING (address, phone, salary, last_mod_time)),
 RESOLVECONFLICT (
 UPDATEROWEXISTS,
 (delta_res_method, USEDELTA, COLS (salary)),
 (DEFAULT, USEMAX (last_mod_time)));

9.7.7.3 Description of MAP Statement
For an UPDATEROWEXISTS conflict, where a target row exists on UPDATE but non-key
columns are different, use two different resolutions depending on the column:

• Per the delta_res_method resolution, use the USEDELTA resolution logic for the
salary column so that the change in value will be added to the current value of the
column.

• Per DEFAULT, use the USEMAX resolution logic for all other columns in the table (the
default column group), using the last_mod_time column as the resolution column.
This column is updated with the current time whenever the row is modified; the
value of this column in the trail is compared to the value in the target. If the
value of last_mod_time in the trail record is greater than the current value of
last_mod_time in the target database, the changes to name, phone, address,
balance, comment and last_mod_time are applied to the target.

Per COMPARECOLS, use the primary key (name column) plus the address, phone,
salary, and last_mod_time columns as the comparison columns for conflict detection
for UPDATE and DELETE operations. (The balance and comment columns are not
compared.)

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to apply a
>= condition. For more information, see Reference for Oracle GoldenGate.

9.7.7.4 Error Handling
For an example of error handling to an exceptions table, see Configuring the Oracle
GoldenGate Parameter Files for Error Handling.

Chapter 9
Configuring Conflict Detection and Resolution

9-30

Table 9-6 UPDATEROWEXISTS with USEDELTA and USEMAX

Image SQL Comments

Before image in trail
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00'

last_mod_time='9/1/10 3:00 is the
before image of the resolution column
for the USEMAX resolution.

salary=100 is the before image for the
USEDELTA resolution.

After image in trail
phone='222222'
address='Holly'
salary=200
comment='new'
last_mod_time='9/1/10 5:00'

last_mod_time='9/1/10 5:00 is the
after image of the resolution column
for USEMAX. Since there is an after
image, this will be used to determine the
resolution.

Target database image
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=600
balance=600
comment='com'
last_mod_time='9/1/10 4:00'

last_mod_time='9/1/10 4:00 is the
current image of the resolution column
in the target against which the resolution
column value in the trail is compared.

salary=600 is the current image of
the target column for the USEDELTA
resolution.

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'222222'
2)'Holly'
3)200
4)'new'
5)'9/1/10 5:00'
6)'Mary'
7)'1234567890'
8)'Oracle Pkwy'
9)100
10)'9/1/10 3:00'

This SQL returns a no-data-found error
because the values for the salary
and last_mod_time are different. (The
values for comment and balance are
also different, but these columns are not
compared.)

UPDATE applied by Replicat
to resolve the conflict for
salary, using USEDELTA.

SQL bind variables:

1)200
2)100
3)'Mary'

Per USEDELTA, the difference between
the after image of salary (200) in the
trail and the before image of salary
(100) in the trail is added to the current
value of salary in the target (600). The
result is 700.

600 + (200 - 100) = 700

UPDATE applied by Replicat
to resolve the conflict for
the default columns, using
USEMAX.

SQL bind variables:

1)'222222'
2)'Holly'
3)'new'
4)'9/1/10 5:00'
5)'Mary'
6)'9/1/10 5:00'

Per USEMAX, because the after value
of last_mod_time in the trail record
is greater than the current value in the
database, the row is updated with the
after values from the trail record.

Note that the salary column is not set
here, because it is resolved with the
UPDATE from the USEDELTA resolution.

Chapter 9
Configuring Conflict Detection and Resolution

9-31

9.7.8 CDR Example 3: UPDATEROWEXISTS with USEDELTA,
USEMAX, and IGNORE

This example resolves the conflict where a target row exists on UPDATE but non-key
columns are different, and it uses three different resolution types to handle this
condition based on the affected column.

• Table Used in this Example

• MAP Statement

• Description of MAP Statement

• Error Handling

9.7.8.1 Table Used in this Example
The examples assume identical Oracle databases.

CREATE TABLE tgt(
 name varchar2(30) primary key,
 phone varchar2(10),
 address varchar2(100),
 salary number,
 balance number,
 comment varchar2(100),
 last_mod_time timestamp);

At the source database, all columns are supplementally logged:

ADD TRANDATA scott.src, COLS (name, phone, address, salary, balance, comment,
last_mod_time);

9.7.8.2 MAP Statement
MAP fin.src, TARGET fin.tgt,
 COMPARECOLS
 (ON UPDATE ALLEXCLUDING (comment)),
 RESOLVECONFLICT (
 UPDATEROWEXISTS,
 (delta_res_method, USEDELTA, COLS (salary, balance)),
 (max_res_method, USEMAX (last_mod_time), COLS (address, last_mod_time)),
 (DEFAULT, IGNORE));

9.7.8.3 Description of MAP Statement
• For an UPDATEROWEXISTS conflict, where a target row exists on UPDATE but non-key

columns are different, use two different resolutions depending on the column:

– Per the delta_res_method resolution, use the USEDELTA resolution logic for the
salary and balance columns so that the change in each value will be added
to the current value of each column.

– Per the max_res_method resolution, use the USEMAX resolution logic for the
address and last_mod_time columns. The last_mod_time column is the
resolution column. This column is updated with the current time whenever
the row is modified; the value of this column in the trail is compared to the

Chapter 9
Configuring Conflict Detection and Resolution

9-32

value in the target. If the value of last_mod_time in the trail record is greater
than the current value of last_mod_time in the target database, the changes
to address and last_mod_time are applied to the target; otherwise, they are
ignored in favor of the target values.

– Per DEFAULT, use the IGNORE resolution logic for the remaining columns (phone
and comment) in the table (the default column group). Changes to these
columns will always be ignored by Replicat.

• Per COMPARECOLS, use all columns except the comment column as the comparison
columns for conflict detection for UPDATE operations. Comment will not be used in
the WHERE clause for updates, but all other columns that have a before image in the
trail record will be used.

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to
apply a >= condition. For more information, see Reference for Oracle
GoldenGate.

9.7.8.4 Error Handling
For an example of error handling to an exceptions table, see Configuring the Oracle
GoldenGate Parameter Files for Error Handling.

Table 9-7 UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

Image SQL Comments

Before image in trail
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00

last_mod_time='9/1/10 3:00 is the
before image of the resolution column
for the USEMAX resolution.

salary=100 and balance=100 are
the before images for the USEDELTA
resolution.

After image in trail
phone='222222'
address='Holly'
salary=200
comment='new'
last_mod_time='9/1/10 5:00'

last_mod_time='9/1/10 5:00 is the
after image of the resolution column
for USEMAX. Since there is an after
image, this will be used to determine the
resolution.

salary=200 is the only after image
available for the USEDELTA resolution.
For balance, the before image will be
used in the calculation.

Chapter 9
Configuring Conflict Detection and Resolution

9-33

Table 9-7 (Cont.) UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

Image SQL Comments

Target database image
name='Mary'
phone='1234567890'
address='Ralston'
salary=600
balance=600
comment='com'
last_mod_time='9/1/10 4:00'

last_mod_time='9/1/10 4:00 is the
current image of the resolution column
in the target against which the resolution
column value in the trail is compared for
USEMAX.

salary=600 and balance=600 are the
current images of the target columns for
USEDELTA.

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'222222'
2)'Holly'
3)200
4)'new'
5)'9/1/10 5:00'
6)'Mary'
7)'1234567890'
8)'Oracle Pkwy'
9)100
10)100
11)'9/1/10 3:00'

This SQL returns a no-data-found error
because the values for the address,
salary, balance and last_mod_time
columns are different.

UPDATE applied by Replicat
to resolve the conflict for
salary, using USEDELTA.

SQL bind variables:

1)200
2)100
3)'Mary'

For salary, there is a difference of
100, but there was no change in value
for balance, so it is not needed in
the update SQL. Per USEDELTA, the
difference (delta) between the after (200)
image and the before image (100) of
salary in the trail is added to the
current value of salary in the target
(600). The result is 700.

UPDATE applied by Replicat
to resolve the conflict for
USEMAX.

SQL bind variables:

1)'Holly'
2)'9/1/10 5:00'
3)'Mary'
4)'9/1/10 5:00'

Because the after value of
last_mod_time in the trail record is
greater than the current value in the
database, that column plus the address
column are updated with the after values
from the trail record.

Note that the salary column is not set
here, because it is resolved with the
UPDATE from the USEDELTA resolution.

UPDATE applied by Replicat
for IGNORE.

SQL bind variables:

1)'222222'
2)'new'
3)'Mary'

IGNORE is specified for the DEFAULT
column group (phone and comment), so
no resolution SQL is applied.

Chapter 9
Configuring Conflict Detection and Resolution

9-34

10
Mapping and Manipulating Data

This chapter describes how you can integrate data between source and target tables.
Topics:

• Guidelines for Using Self-describing Trails

• Parameters that Control Mapping and Data Integration

• Mapping between Dissimilar Databases

• Deciding Where Data Mapping and Conversion Will Take Place

• Globalization Considerations when Mapping Data

• Mapping Columns Using TABLE and MAP

• Selecting and Filtering Rows

• Retrieving Before and After Values

• Selecting Columns

• Selecting and Converting SQL Operations

• Using Transaction History

• Testing and Transforming Data

• Using Tokens

10.1 Guidelines for Using Self-describing Trails
Self-describing trail files are the default if the trail file format is 12.2 or higher, if you
are not using SOURCEDEFS OVERRIDE or TARGETDEFS OVERRIDE. Oracle recommends
that you use self-describing trail files. You should only use SOURCEDEFS OVERRIDE and
TARGETDEFS OVERRIDE for backward compatibility requirements.

The following are the guidelines for using self-describing trails:

• If using the self-describing trails, then the column names on the source are
mapped to the column names in the target table. Order of columns doesn't matter
and if column names are different, then they need to be explicitly mapped using
COLMAP.

• If the source Oracle GoldenGate release is 12.1 or earlier, then you need to use
SOURCEDEFS OVERRIDE or TARGETDEFS OVERRIDE. See SOURCEDEFS OVERRIDE and
TARGETDEFS OVERRIDE in the Reference for Oracle GoldenGate.

10.2 Parameters that Control Mapping and Data Integration
All data selection, mapping, and manipulation that Oracle GoldenGate performs is
accomplished by using one or more options of the TABLE and MAP parameters.

• Use TABLE in the Extract parameter file.

10-1

• Use MAP in the Replicat parameter file.

TABLE and MAP specify the database objects that are affected by the other parameters
in the parameter file. See Specifying Object Names in Oracle GoldenGate Input for
instructions for specifying object names in these parameters.

10.3 Mapping between Dissimilar Databases
Mapping and conversion between tables that have different data structures requires
either a source-definitions file, a target-definitions file, or in some cases both. Mapping
between dissimilar databases is controlled by the self-describing trails, and mapping is
done by column name, regardless of the data type for the source or target column.

If you don't want automatic mapping based on the self-describing trails or want
backward compatibility then you can use SOURCEDEFS or TARGETDEFS.

10.4 Deciding Where Data Mapping and Conversion Will
Take Place

If the configuration you are planning involves a large amount of column mapping
or data conversion, observe the following guidelines to determine which process or
processes will perform these functions.

• Mapping and Conversion on Windows and UNIX Systems

• Mapping and Conversion on NonStop Systems

10.4.1 Mapping and Conversion on Windows and UNIX Systems
When Oracle GoldenGate is operating only on Windows-based and UNIX-based
systems, column mapping and conversion can be performed in the Extract process,
or in the Replicat process. To prevent the added overhead of this processing on the
Extract process, you can configure the mapping and conversion to be performed on
the Replicat process or on an intermediary system.

In the case where there are multiple sources and one target, it might be more efficient
to perform the mapping and conversion on the source.

10.4.2 Mapping and Conversion on NonStop Systems
If you are mapping or converting data from a Windows or UNIX system to a NonStop
Enscribe target, the mapping or conversion must be performed on the Windows or
UNIX source system. Replicat for NonStop cannot convert three-part or two-part SQL
table names and data types to the three-part file names that are used for the Enscribe
platform. Extract can format the trail data with Enscribe names and target data types.

10.5 Globalization Considerations when Mapping Data
When planning to map and convert data between databases and platforms, take into
consideration what is supported or not supported by Oracle GoldenGate in terms of
globalization.

Topics:

Chapter 10
Mapping between Dissimilar Databases

10-2

• Conversion between Character Sets

• Preservation of Locale

• Support for Escape Sequences

10.5.1 Conversion between Character Sets
Oracle GoldenGate converts between source and target character sets if they
are different, so that object names and column data are compared, mapped, and
manipulated properly from one database to another. See Supported Character Sets,
for a list of supported character sets.

To ensure accurate character representation from one database to another, the
following must be true:

• The character set of the target database must be a superset or equivalent of the
character set of the source database. Equivalent means not equal, but having the
same set of characters. For example, Shift-JIS and EUC-JP technically are not
completely equal, but have the same characters in most cases.

• If your client applications use different character sets, the database character
set must also be a superset or equivalent of the character sets of the client
applications.

• In many databases, including Oracle, it is possible to force a character into a
database that is not part of the Character Set. Oracle GoldenGate considers this
as an invalid value, and may not map this character correctly when replicating
data. For these types of situations you can use the REPLACEBADCHAR parameter as
described in the Reference for Oracle GoldenGate.

In this configuration, every character is represented when converting from a client or
source character set to the local database character set.

A Replicat process can support conversion from one source character set to one
target character set.

• Database Object Names

• Column Data

10.5.1.1 Database Object Names
Oracle GoldenGate processes catalog, schema, table and column names in their
native language as determined by the character set encoding of the source and target
databases. This support preserves single-byte and multibyte names, symbols, accent
characters, and case-sensitivity with locale taken into account where available, at all
levels of the database hierarchy.

10.5.1.2 Column Data
Oracle GoldenGate supports the conversion of column data between character sets
when the data is contained in the following column types:

• Character-type columns: CHAR/VARCHAR/CLOB to CHAR/VARCHAR/CLOB of another
character set; and CHAR/VARCHAR/CLOB to and from NCHAR/NVARCHAR/NCLOB.

• Columns that contain string-based numbers and date-time data. Conversions of
these columns is performed between z/OS EBCDIC and non-z/OS ASCII data.

Chapter 10
Globalization Considerations when Mapping Data

10-3

Conversion is not performed between ASCII and ASCII versions of this data,
nor between EBCDIC and EBCDIC versions, because the data are compatible in
these cases.

Note:

Oracle GoldenGate supports timestamp data from 0001-01-03 00:00:00
to 9999-12-31 23:59:59. If a timestamp is converted from GMT to local
time, these limits also apply to the resulting timestamp. A value of zero
month, zero day field, or an all zero date value isn't supported. For
example, values such as 0000-00-00 00:00:00, or any date value that
includes a zero month or zero day field isn't supported.

Character-set conversion for column data is limited to a direct mapping of a source
column and a target column in the COLMAP or USEDEFAULTS clauses of the Replicat
MAP parameter. A direct mapping is a name-to-name mapping without the use of a
stored procedure or column-conversion function. Replicat performs the character-set
conversion. No conversion is performed by Extract or a data pump.

10.5.2 Preservation of Locale
Oracle GoldenGate takes the locale of the database into account when comparing
case-insensitive object names. See Supported Locales for a list of supported locales.

10.5.3 Support for Escape Sequences
Oracle GoldenGate supports the use of an escape sequence to represent a string
column, literal text, or object name in the parameter file. You can use an escape
sequence if the operating system does not support the required character, such as a
control character, or for any other purpose that requires a character that cannot be
used in a parameter file.

An escape sequence can be used anywhere in the parameter file, but is particularly
useful in the following elements within a TABLE or MAP statement:

• An object name

• WHERE clause

• COLMAP clause to assign a Unicode character to a Unicode column, or to assign a
native-encoded character to a column.

• Oracle GoldenGate column conversion functions within a COLMAP clause.

Oracle GoldenGate supports the following types of escape sequence:

• \uFFFF Unicode escape sequence. Any UNICODE code point can be used except
surrogate pairs.

• \377 Octal escape sequence

• \xFF Hexadecimal escape sequence

The following rules apply:

• If used for mapping of an object name in TABLE or MAP, no restriction apply. For
example, the following TABLE specification is valid:

Chapter 10
Globalization Considerations when Mapping Data

10-4

TABLE schema."\u3000ABC";

• If used with a column-mapping function, any code point can be used, but only for
an NCHAR/NVARCHAR column. For an CHAR/VARCHAR column, the code point is limited
to the equivalent of 7-bit ASCII.

• The source and target data types must be identical (for example, NCHAR to NCHAR).

• Begin each escape sequence with a reverse solidus (code point U+005C), followed
by the character code point. (A solidus is more commonly known as the backslash
symbol.) Use the escape sequence, instead of the actual character, within your
input string in the parameter statement or column-conversion function.

Note:

To specify an actual backslash in the parameter file, specify a double
backslash. For example, the following finds a backslash in COL1: @STRFIND
(COL1, '\\').

To Use the \uFFFF Unicode Escape Sequence

• The \uFFFF Unicode escape sequence must begin with a lowercase u, followed by
exactly four hexadecimal digits.

• Supported ranges are as follows:

– 0 to 9 (U+0030 to U+0039)

– A to F (U+0041 to U+0046)

– a to f (U+0061 to U+0066)

\u20ac is the Unicode escape sequence for the Euro currency sign.

Note:

For reliable cross-platform support, use the Unicode escape sequence.
Octal and hexadecimal escape sequences are not standardized on different
operating systems.

To Use the \377 Octal Escape Sequence

• Must contain exactly three octal digits.

• Supported ranges:

– Range for first digit is 0 to 3 (U+0030 to U+0033)

– Range for second and third digits is 0 to 7 (U+0030 to U+0037)

\200 is the octal escape sequence for the Euro currency sign on Microsoft
Windows

To Use the \xFF Hexadecimal Escape Eequence

• Must begin with a lowercase x followed by exactly two hexadecimal digits.

Chapter 10
Globalization Considerations when Mapping Data

10-5

• Supported ranges:

– 0 to 9 (U+0030 to U+0039)

– A to F (U+0041 to U+0046)

– a to f (U+0061 to U+0066)

\x80 is the hexadecimal escape sequence for the Euro currency sign on Microsoft
Windows 1252 Latin1 code page.

10.6 Mapping Columns Using TABLE and MAP
Oracle GoldenGate provides for column mapping at the table level and at the global
level. Default column mapping is also provided in the absence of explicit column
mapping rules.

This section contains the following guidelines for mapping columns:

Topics:

• Supporting Case and Special Characters in Column Names

• Configuring Table-level Column Mapping with COLMAP

• Configuring Global Column Mapping with COLMATCH

• Understanding Default Column Mapping

• Data Type Conversions

10.6.1 Supporting Case and Special Characters in Column Names
By default, Oracle GoldenGate follows SQL-92 rules for specifying column names
and literals. In Oracle GoldenGate parameter files, conversion functions, user exits,
and commands, case-sensitive column names must be enclosed within double quotes
if double quotes are required by the database to enforce case-sensitivity. For other
case-sensitive databases that do not require quotes, case-sensitive column names
must be specified as they are stored in the database. Literals must be enclosed within
single quotes. See Differentiating Case-Sensitive Column Names from Literals for
more information.

10.6.2 Configuring Table-level Column Mapping with COLMAP
If you are using self-describing trails then any column on the source object is mapped
to the same column name on the target object. You only need to manage column
names that are different between source and target or if you need to transform a
column.

However, if not using self-describing trails then the default mapping is done by column
order and not the column name. So column 1 on the source will be mapped to column
1 on the target, column 2 to column 2 and so on.

Use the COLMAP option of the MAP and TABLE parameters to:

• map individual source columns to target columns that have different names.

• specify default column mapping when an explicit column mapping is not needed.

Chapter 10
Mapping Columns Using TABLE and MAP

10-6

• Provide instructions for selecting, mapping, translating, and moving data from a
source column into a target column.

Topics:

• Using USEDEFAULTS to Enable Default Column Mapping

• Specifying the Columns to be Mapped in the COLMAP Clause

10.6.2.1 Using USEDEFAULTS to Enable Default Column Mapping
You can use the USEDEFAULTS option of COLMAP to specify automatic default column
mapping for any corresponding source and target columns that have identical names.
USEDEFAULTS can save you time by eliminating the need to map every target column
explicitly.

Default mapping causes Oracle GoldenGate to map those columns and, if required,
translate the data types based on the data-definitions file. Do not specify default
mapping for columns that are mapped already with an explicit mapping statement.

The following example of a column mapping illustrates the use of both default and
explicit column mapping for a source table ACCTBL and a target table ACCTTAB. Most
columns are the same in both tables, except for the following differences:

• The source table has a CUST_NAME column, whereas the target table has a NAME
column.

• A ten-digit PHONE_NO column in the source table corresponds to separate
AREA_CODE, PHONE_PREFIX, and PHONE_NUMBER columns in the target table.

• Separate YY, MM, and DD columns in the source table correspond to a single
TRANSACTION_DATE column in the target table.

To address those differences, USEDEFAULTS is used to map the similar columns
automatically, while explicit mapping and conversion functions are used for dissimilar
columns.

The following sample shows the column mapping using the COLMAP option of the MAP
and TABLE parameters. It describes the mapping of the source table ACCTBL to the
target table ACCTTAB.

MAP SALES.ACCTBL, TARGET SALES.ACCTTAB,
 COLMAP (USEDEFAULTS,
 NAME = CUST_NAME,
 TRANSACTION_DATE = @DATE ('YYYY-MM-DD',
'YY',YEAR, 'MM', MONTH, 'DD', DAY),
 AREA_CODE = @STREXT (PHONE_NO, 1, 3),
 PHONE_PREFIX = @STREXT (PHONE_NO, 4, 6),
 PHONE_NUMBER = @STREXT (PHONE_NO, 7, 10)
)
;

Chapter 10
Mapping Columns Using TABLE and MAP

10-7

Table 10-1 Sample Column Mapping

Parameter statement Description

COLMAP
Begins the COLMAP statement.

USEDEFAULTS,
Maps source columns as-is when the target column names
are identical.

NAME = CUST_NAME,
Maps the source column CUST_NAME to the target column
NAME.

TRANSACTION_DATE =
@DATE ('YYYY-MM-DD',
'YY', YEAR, 'MM', MONTH,
'DD', DAY),

Converts the transaction date from the source date
columns to the target column TRANSACTION_DATE by
using the @DATE column conversion function.

AREA_CODE =
@STREXT (PHONE_NO, 1, 3),
PHONE_PREFIX =
@STREXT (PHONE_NO, 4, 6),
PHONE_NUMBER =
@STREXT (PHONE_NO, 7,
10))
;

Converts the source column PHONE_NO into the separate
target columns of AREA_CODE, PHONE_PREFIX, and
PHONE_NUMBER by using the @STREXT column conversion
function.

See Understanding Default Column Mapping for more information about the rules
followed by Oracle GoldenGate for default column mapping.

10.6.2.2 Specifying the Columns to be Mapped in the COLMAP Clause
The COLMAP syntax is the following:

COLMAP ([USEDEFAULTS,] target_column = source_expression)

In this syntax, target_column is the name of the target column and
source_expression. Some examples of source_expressions are:

• The name of a source column, such as ORD_DATE.

• Numeric constant, such as 123.

• String constant enclosed within single quotes, such as 'ABCD'.

• An expression using an Oracle GoldenGate column-conversion function. Within a
COLMAP statement, you can use any of the Oracle GoldenGate column-conversion
functions to transform data for the mapped columns, for example:

Chapter 10
Mapping Columns Using TABLE and MAP

10-8

@STREXT (COL1, 1, 3)

• Here's an example of using BEFORE column_name: BEFORE ORD_DATE

• Here's an example of using AFTER column_name : AFTER ORD_DATE. This is the
default option if a column name is listed.

If the column mapping involves case-sensitive columns from different database types,
specify each column as it is stored in the database.

• If the database requires double quotes to enforce case-sensitivity, specify the
case-sensitive column name within double quotes.

• If the database is case-sensitive without requiring double quotes, specify the
column name as it is stored in the database.

The following shows a mapping between a target column in an Oracle database and a
source column in a case-sensitive SQL Server database.

COLMAP ("ColA" = ColA)

See Specifying Object Names in Oracle GoldenGate Input for more information about
specifying names to Oracle GoldenGate.

See Globalization Considerations when Mapping Data for globalization considerations
when mapping source and target columns in databases that have different character
sets and locales.

Avoid using COLMAP to map a value to a key column (which causes the operation to
become a primary key update), The WHERE clause that Oracle GoldenGate uses to
locate the target row will not use the correct before image of the key column. Instead,
it will use the after image. This will cause errors if you are using any functions based
on that key column, such as a SQLEXEC statement.

Column Mapping Limitations

Here are the column mapping limitations:

• LOB columns cannot be used in FILTER, WHERE columns, or as a
source_expression in a COLMAP statement. LOB columns are BLOB, CLOB, NCLOB,
XMLType, User-Defined Data Types, Nested Tables, VARRAYs and other special data
types.

• If the source column contains more than 4000 bytes, it cannot be used in
transformation routines, as the value is stored in the trail as an LOB record. For
example a VARCHAR2(4000 CHAR) in Oracle and the Japanese character set is
stored as 3 bytes for each character. This implies that the column could be 12000
bytes long and Oracle GoldenGate would store this value as an LOB field.

• The full SQL statement that Oracle GoldenGate would execute would exceed
4MB in size. For example, if you have a table with thousands of VARCHAR2(4000)
columns and you want to put 4000 bytes in each one, this could cause the
total SQL statement that Oracle GoldenGate is going to execute to exceed the
maximum size of 4MB.

10.6.3 Configuring Global Column Mapping with COLMATCH
Use the COLMATCH parameter to create global rules for column mapping. With
COLMATCH, you can map between similarly structured tables that have different column

Chapter 10
Mapping Columns Using TABLE and MAP

10-9

names for the same sets of data. COLMATCH provides a more convenient way to map
columns of this type than does using table-level mapping with a COLMAP clause in
individual TABLE or MAP statements.

Case-sensitivity is supported as follows:

• For MySQL, SQL Server, and Teradata, if the database is case-sensitive,
COLMATCH looks for an exact case and name match regardless of whether or not a
name is specified in quotes.

• For Oracle Database and DB2 databases, where names can be either case-
sensitive or case-insensitive in the same database and double quotes are required
to show case-sensitivity, COLMATCH requires an exact case and name match when
a name is in quotes in the database.

Syntax

COLMATCH
{NAMES target_column = source_column |
PREFIX prefix |
SUFFIX suffix |
RESET}

Argument Description

NAMES target_column = source_column
Maps based on column names.

Put double quotes around the column name
if it is case-sensitive and the database
requires quotes to enforce case-sensitivity. For
these database types, an unquoted column
name is treated as case-insensitive by Oracle
GoldenGate.

For databases that support case-sensitivity
without requiring quotes, specify the column
name as it is stored in the database.

If the COLMATCH is between columns
in different database types, make certain
the names reflect the appropriate case
representation for each one. For example,
the following specifies a case-sensitive target
column name "aBc" in an Oracle Database
and a case-sensitive source column name aBc
in a case-sensitive SQL Server database.

COLMATCH NAMES "aBc" = aBc

Chapter 10
Mapping Columns Using TABLE and MAP

10-10

Argument Description

PREFIX prefix | SUFFIX suffix
Ignores the specified name prefix or suffix.

Put double quotes around the prefix or suffix
if the database requires quotes to enforce
case-sensitivity, for example "P_". For those
database types, an unquoted prefix or suffix is
treated as case-insensitive.

For databases that support case-sensitivity
without requiring quotes, specify the prefix or
suffix as it is stored in the database. For
example, P_ specifies a capital P prefix.

The following example specifies a case-
insensitive prefix to ignore. The target column
name P_ABC is mapped to source column
name ABC, and target column name P_abc is
mapped to source column name abc.

COLMATCH PREFIX p_

The following example specifies a case-
sensitive suffix to ignore. The target column
name ABC_k is mapped to the source column
name ABC, and the target column name
"abc_k" is mapped to the source column
name "abc".

SUFFIX "_k"

RESET Turns off previously defined COLMATCH rules
for subsequent TABLE or MAP statements.

The following example illustrates when to use COLMATCH. The source and target tables
are identical except for slightly different table and column names.The database is
case-insensitive.

ACCT Table ORD Table

CUST_CODE
CUST_NAME
CUST_ADDR
PHONE
S_REP
S_REPCODE

CUST_CODE
CUST_NAME
ORDER_ID
ORDER_AMT
S_REP
S_REPCODE

ACCOUNT Table ORDER Table

CUSTOMER_CODE
CUSTOMER_NAME
CUSTOMER_ADDRESS
PHONE
REP
REPCODE

CUSTOMER_CODE
CUSTOMER_NAME
ORDER_ID
ORDER_AMT
REP
REPCODE

Chapter 10
Mapping Columns Using TABLE and MAP

10-11

To map the source columns to the target columns in this example, as well as to handle
subsequent maps for other tables, the syntax is:

COLMATCH NAMES CUSTOMER_CODE = CUST_CODE
COLMATCH NAMES CUSTOMER_NAME = CUST_NAME
COLMATCH NAMES CUSTOMER_ADDRESS = CUST_ADDR
COLMATCH PREFIX S_
MAP SALES.ACCT, TARGET SALES.ACCOUNT, COLMAP (USEDEFAULTS);
MAP SALE.ORD, TARGET SALES.ORDER, COLMAP (USEDEFAULTS);
COLMATCH RESET
MAP SALES.REG, TARGET SALE.REG;
MAP SALES.PRICE, TARGET SALES.PRICE;

Based on the rules in the example, the following occurs:

• Data is mapped from the CUST_CODE columns in the source ACCT and ORD tables to
the CUSTOMER_CODE columns in the target ACCOUNT and ORDER tables.

• The S_ prefix will be ignored.

• Columns with the same names, such as the PHONE and ORDER_AMT columns, are
automatically mapped by means of USEDEFAULTS without requiring explicit rules.
See Understanding Default Column Mapping for more information.

• The previous global column mapping is turned off for the tables REG and PRICE.
Source and target columns in those tables are automatically mapped because all
of the names are identical.

10.6.4 Understanding Default Column Mapping
For self-describing trails, if an explicit column mapping does not exist, either by using
COLMATCH or COLMAP, Oracle GoldenGate maps source and target columns by default
according to the following rules.

This doesn't apply if you are using SOURCEDEFS or TARGETDEFS.

• If a source column is found whose name and case exactly match those of the
target column, the two are mapped.

• If no case match is found, fallback name mapping is used. Fallback mapping
performs a case-insensitive target table mapping to find a name match. Inexact
column name matching is applied using upper cased names. This behavior
is controlled by the GLOBALS parameter NAMEMATCHIGNORECASE. You can disable
fallback name matching with the NAMEMATCHEXACT parameter, or you can keep it
enabled but with a warning message by using the NAMEMATCHNOWARNING parameter.

• Target columns that do not correspond to any source column take default values
determined by the database.

If the default mapping cannot be performed, the target column defaults to one of the
values shown in the following table.

Column Type Value

Numeric Zero (0)

Character or VARCHAR Spaces

Date or Datetime Current date and time

Chapter 10
Mapping Columns Using TABLE and MAP

10-12

Column Type Value

Columns that can take a NULL value Null

10.6.5 Data Type Conversions
The following explains how Oracle GoldenGate maps data types.

Topics:

• Numeric Columns

• Character-type Columns

• Datetime Columns

10.6.5.1 Numeric Columns
Numeric columns are converted to match the type and scale of the target column.
If the scale of the target column is smaller than that of the source, the number is
truncated on the right. If the scale of the target column is larger than that of the source,
the number is padded with zeros on the right.

You can specify a substitution value for invalid numeric data encountered when
mapping number columns by using the REPLACEBADNUM parameter. See Reference for
Oracle GoldenGate for more information.

10.6.5.2 Character-type Columns
Character-type columns can accept character-based data types such as VARCHAR,
numeric in string form, date and time in string form, and string literals. If the scale of
the target column is smaller than that of the source, the column is truncated on the
right. If the scale of the target column is larger than that of the source, the column is
padded with spaces on the right.

Literals must be enclosed within single quotes.

You can control the response of the Oracle GoldenGate process when a valid code
point does not exist for either the source or target character set when mapping
character columns by using the REPLACEBADCHAR parameter. See Reference for Oracle
GoldenGate for more information.

10.6.5.3 Datetime Columns
Datetime (DATE, TIME, and TIMESTAMP) columns can accept datetime and character
columns, as well as string literals. Literals must be enclosed within single quotes. To
map a character column to a datetime column, make certain it conforms to the Oracle
GoldenGate external SQL format of YYYY-MM-DD HH:MI:SS.FFFFFF.

Oracle GoldenGate supports timestamp data from 0001-01-03 00:00:00 to
9999-12-31 23:59:59. If a timestamp is converted from GMT to local time, these limits
also apply to the resulting timestamp. Depending on the timezone, conversion may
add or subtract hours, which can cause the timestamp to exceed the lower or upper
supported limit.

Chapter 10
Mapping Columns Using TABLE and MAP

10-13

Required precision varies according to the data type and target platform. If the scale
of the target column is smaller than that of the source, data is truncated on the right. If
the scale of the target column is larger than that of the source, the column is extended
on the right with the values for the current date and time.

10.7 Selecting and Filtering Rows
Filtering can only be performed on columns that are available to Oracle GoldenGate.
In the TRANLOG Extract Oracle GoldenGate has access to all columns that are present
in the redo logs and in the database. If the columns are not in the redo logs, they must
be explicitly fetched (using FETCHCOLS) to be able to filter them. In the Extract pump
and in the Replicat, the columns must be available in the trail file. Because of this,
any column that you want to use in a FILTER or WHERE clause must be explicitly logged
using ADD TRANDATA COLS, and you have to retain the default of LOGALLSUPCOLS.

To filter out or select rows for extraction or replication, use the FILTER and WHERE
clauses of the TABLE and MAP parameters.

The FILTER clause offers you more functionality than the WHERE clause because you
can employ any of the Oracle GoldenGate column conversion functions, whereas the
WHERE clause accepts basic WHERE operators.

Topics:

• Selecting Rows with a FILTER Clause

• Selecting Rows with a WHERE Clause

• Considerations for Selecting Rows with FILTER and WHERE

10.7.1 Selecting Rows with a FILTER Clause
Use a FILTER clause to select rows based on a numeric value by using basic
operators or one or more Oracle GoldenGate column-conversion functions.

Note:

To filter a column based on a string, use one of the Oracle GoldenGate string
functions or use a WHERE clause.

The syntax for FILTER in a TABLE statement is as follows:

TABLE source_table,
, FILTER (
[, ON INSERT | ON UPDATE| ON DELETE]
[, IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE]
, filter_clause);

The syntax for FILTER in a MAP statement is as follows and includes an error-handling
option.

MAP source_table, TARGET target_table,
, FILTER (
[, ON INSERT | ON UPDATE| ON DELETE]
[, IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE]

Chapter 10
Selecting and Filtering Rows

10-14

[, RAISEERROR error_number]
, filter_clause);

Valid FILTER clause elements are the following:

• An Oracle GoldenGate column-conversion function. These functions are built
into Oracle GoldenGate so that you can perform tests, manipulate data, retrieve
values, and so forth. See Testing and Transforming Data for more information
about Oracle GoldenGate conversion functions.

• Numbers

• Columns that contain numbers

• Functions that return numbers

• Arithmetic operators:

– + (plus)

– - (minus)

– * (multiply)

– / (divide)

– \ (remainder)

• Comparison operators:

– > (greater than)

– >= (greater than or equal)

– < (less than)

– <= (less than or equal)

– = (equal)

– <> (not equal)

– Results derived from comparisons can be zero (indicating FALSE) or non-zero
(indicating TRUE).

• Parentheses (for grouping results in the expression)

• Conjunction operators: AND, OR

Use the following FILTER options to specify which SQL operations a filter clause
affects. Any of these options can be combined.

ON INSERT | ON UPDATE | ON DELETE IGNORE INSERT | IGNORE UPDATE | IGNORE
DELETE

Use the RAISEERROR option of FILTER in the MAP parameter to generate a user-defined
error when the filter fails. This option is useful when you need to trigger an event in
response to the failure.

Use the @RANGE function within a FILTER clause to distribute the processing workload
among multiple MAP or TABLE statements.

Here's a sample:

REPERROR (9999, EXCEPTION)
MAP OWNER.SRCTAB, TARGET OWNER.TARGTAB,

Chapter 10
Selecting and Filtering Rows

10-15

 SQLEXEC (ID CHECK, ON UPDATE, QUERY ' SELECT COUNT
FROM TARGTAB WHERE PKCOL = :P1 ', PARAMS (P1 = PKCOL)),
 FILTER (BALANCE > 15000),
 FILTER (ON UPDATE, @BEFORE (COUNT) = CHECK.COUNT)
;
MAP OWNER.SRCTAB, TARGET OWNER.TARGEXC,
EXCEPTIONSONLY,
COLMAP (USEDEFAULTS,
ERRTYPE = 'UPDATE FILTER FAILED'
)
;

Table 10-2 Using Multiple FILTER Statements

Parameter file Description

REPERROR (9999, EXCEPTION)
Raises an exception for the specified
error.

MAP OWNER.SRCTAB,
TARGET OWNER.TARGTAB,

Starts the MAP statement.

SQLEXEC (ID CHECK, ON UPDATE,
QUERY ' SELECT COUNT FROM TARGTAB '
'WHERE PKCOL = :P1 ',
PARAMS (P1 = PKCOL)),

Performs a query to retrieve the
present value of the COUNT column
whenever an update is encountered.
There is a BEFOREFILTER option
also that allows the query or stored
procedure to be executed prior to
processing the FILTER clause. This
allows values from the SQLEXEC portion
to be used inside the FILTER at
runtime.

FILTER (BALANCE > 15000), Uses a FILTER clause to select rows
where the balance is greater than
15000.

FILTER (ON UPDATE, @BEFORE (COUNT) =
CHECK.COUNT)

Uses another FILTER clause to ensure
that the value of the source COUNT
column before an update matches
the value in the target column before
applying the target update.

; The semicolon concludes the MAP
statement.

MAP OWNER.SRCTAB,
TARGET OWNER.TARGEXC,
EXCEPTIONSONLY,
COLMAP (USEDEFAULTS,
ERRTYPE = 'UPDATE FILTER FAILED');

Designates an exceptions MAP
statement. The REPERROR clause for
error 9999 ensures that the exceptions
map to TARGEXC will be executed.

Example 10-1 Calling the @COMPUTE Function

The following example calls the @COMPUTE function to extract records in which the price
multiplied by the amount exceeds 10,000.

Chapter 10
Selecting and Filtering Rows

10-16

MAP SALES.TCUSTORD, TARGET SALES.TORD,
FILTER (@COMPUTE (PRODUCT_PRICE * PRODUCT_AMOUNT) > 10000);

Example 10-2 Calling the @STREQ Function

The following uses the @STREQ function to extract records where the value of a
character column is 'JOE'.

TABLE ACCT.TCUSTORD, FILTER (@STREQ ("Name", 'joe') > 0);

Example 10-3 Selecting Records

The following selects records in which the AMOUNT column is greater than 50 and
executes the filter on UPDATE and DELETE operations.

TABLE ACT.TCUSTORD, FILTER (ON UPDATE, ON DELETE, AMOUNT > 50);

Example 10-4 Using the @RANGE Function

(Replicat group 1 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (1, 2, ID));

(Replicat group 2 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (2, 2, ID));

You can combine several FILTER clauses in one MAP or TABLE statement, as shown
in Table 10-2, which shows part of a Replicat parameter file. Oracle GoldenGate
executes the filters in the order listed, until one fails or until all are passed. If one filter
fails, they all fail.

10.7.2 Selecting Rows with a WHERE Clause
Use any of the elements in Table 10-3 in a WHERE clause to select or exclude rows (or
both) based on a conditional statement. Each WHERE clause must be enclosed within
parentheses. Literals must be enclosed within single quotes.

Table 10-3 Permissible WHERE Operators

Element Examples

Column names
PRODUCT_AMT

Numeric values
-123, 5500.123

Literal strings
'AUTO', 'Ca'

Built-in column tests @NULL, @PRESENT, @ABSENT (column is null, present or absent in the
row). These tests are built into Oracle GoldenGate. See Considerations
for Selecting Rows with FILTER and WHERE.

Comparison operators =, <>, >, <, >=, <=

Conjunctive operators
AND, OR

Chapter 10
Selecting and Filtering Rows

10-17

Table 10-3 (Cont.) Permissible WHERE Operators

Element Examples

Grouping parentheses Use open and close parentheses () for logical grouping of multiple
elements.

Oracle GoldenGate does not support FILTER for columns that have a multi-byte
character set or a character set that is incompatible with the character set of the local
operating system.

Arithmetic operators and floating-point data types are not supported by WHERE. To use
more complex selection conditions, use a FILTER clause or a user exit routine. See
Using User Exits to Extend Oracle GoldenGate Capabilities for more information.

The syntax for WHERE is identical in the TABLE and MAP statements:

TABLE table, WHERE (clause);

MAP source_table, TARGET target_table, WHERE (clause);

10.7.3 Considerations for Selecting Rows with FILTER and WHERE
The following suggestions can help you create a successful selection clause.

Note:

The examples in this section assume a case-insensitive database.

• Ensuring Data Availability for Filters

• Comparing Column Values

• Testing for NULL Values

10.7.3.1 Ensuring Data Availability for Filters
If the database only logs values for changed columns to the transaction log, there can
be errors if any of the unchanged columns are referenced by selection criteria. Oracle
GoldenGate ignores such row operations, outputs them to the discard file, and issues
a warning.

To avoid missing-column errors, create your selection conditions as follows:

• Use only primary-key columns as selection criteria, if possible.

• Make required column values available by enabling supplemental logging for those
columns. Alternatively, you can use the FETCHCOLS or FETCHCOLSEXCEPT option of
the TABLE parameter. These options are valid for all supported databases. They
query the database to fetch the values if they are not present in the log. To
retrieve the values before the FILTER or WHERE clause is executed, include the
FETCHBEFOREFILTER option in the TABLE statement before the FILTER or WHERE
clause. For example:

Chapter 10
Selecting and Filtering Rows

10-18

TABLE DEMO.PEOPLE, FETCHBEFOREFILTER, FETCHCOLS (age), FILTER (age > 50);

• Test for a column's presence first, then for the column's value. To test for a
column's presence, use the following syntax.

column_name {= | <>} {@PRESENT | @ABSENT}

The following example returns all records when the amount column is over 10,000
and does not cause a record to be discarded when amount is absent.

WHERE (amount = @PRESENT AND amount > 10000)

10.7.3.2 Comparing Column Values
To ensure that elements used in a comparison match, compare appropriate column
types:

• Character columns to literal strings.

• Numeric columns to numeric values, which can include a sign and decimal point.

• Date and time columns to literal strings, using the format in which the column is
retrieved by the application.

10.7.3.3 Testing for NULL Values
To evaluate columns for NULL values, use the following syntax.

column {= | <>} @NULL

The following returns TRUE if the column value is NULL, and thereby replicates the row.
It returns FALSE for all other cases (including a column missing from the record).

WHERE (amount = @NULL)

The following returns TRUE only if the column is present in the record and is not NULL.

WHERE (amount = @PRESENT AND amount <> @NULL)

Note:

If a value in the trail contains more than 4000 bytes then the @NULL function
will return TRUE.

10.8 Retrieving Before and After Values
For update and delete operations, it can be useful to retrieve the BEFORE values of the
source columns (the values before the update occurred). For inserts, all column values
are considered AFTER images.

These values are stored in the trail and can be used in filters and column mappings.
For example, you can:

• Retrieve the before image of a row as part of a column-mapping specification in an
exceptions MAP statement, and map those values to an exceptions table for use in
testing or troubleshooting conflict resolution routines.

Chapter 10
Retrieving Before and After Values

10-19

• Perform delta calculations. For example, if a table has a Balance column, you
can calculate the net result of a particular transaction by subtracting the original
balance from the new balance, as in the following example:

MAP "owner"."src", TARGET "owner"."targ",
COLMAP (PK1 = PK1, delta = balance – @BEFORE (balance));

Note:

The previous example indicates a case-sensitive database such as
Oracle. The table names are in quote marks to reflect case-sensitivity.

To Reference the Before Value

1. Use the @BEFORE column conversion function with the name of the column for
which you want a before value, as follows:

@BEFORE (column_name)

2. Use the GETUPDATEBEFORES parameter in the Extract parameter file to capture
before images from the transaction record, or use it in the Replicat parameter
file to use the before image in a column mapping or filter. If using the Conflict
Resolution and Detection (CDR) feature, you can use the GETBEFORECOLS option of
TABLE. To use these parameters, all columns must be present in the transaction
log. If the database only logs the values of columns that changed, using the
@BEFORE function may result in a "column missing" condition and the column map
is executed as if the column were not in the record. See Ensuring Data Availability
for Filters to ensure that column values are available.

Oracle GoldenGate also provides the @AFTER function to retrieve after values when
needed for filtering, for use in conversion functions, or other purposes. For more
information about @BEFORE and @AFTER, see Reference for Oracle GoldenGate.

10.9 Selecting Columns
To control which columns of a source table are extracted by Oracle GoldenGate, use
the COLS and COLSEXCEPT options of the TABLE parameter. Use COLS to select columns
for extraction, and use COLSEXCEPT to select all columns except those designated by
COLSEXCEPT.

Restricting the columns that are extracted can be useful when a target table does not
contain the same columns as the source table, or when the columns contain sensitive
information, such as a personal identification number or other proprietary business
information.

10.10 Selecting and Converting SQL Operations
By default, Oracle GoldenGate captures and applies INSERT, UPDATE, and DELETE
operations. You can use the following parameters in the Extract or Replicat parameter
file to control which kind of operations are processed, such as only inserts or only
inserts and updates.

GETINSERTS | IGNOREINSERTS

Chapter 10
Selecting Columns

10-20

GETUPDATES | IGNOREUPDATES

GETDELETES | IGNOREDELETES

You can convert one type of SQL operation to another by using the following
parameters in the Replicat parameter file:

• Use INSERTUPDATES to convert source update operations to inserts into the target
table. This is useful for maintaining a transaction history on that table. The
transaction log record must contain all of the column values of the table, not just
changed values. Some databases do not log full row values to their transaction
log, but only values that changed.

• Use INSERTDELETES to convert all source delete operations to inserts into the
target table. This is useful for retaining a history of all records that were ever in the
source database.

• Use UPDATEDELETES to convert source deletes to updates on the target.

10.11 Using Transaction History
Oracle GoldenGate enables you to retain a history of changes made to a target record
and to map information about the operation that caused each change. This history can
be useful for creating a transaction-based reporting system that contains a separate
record for every operation performed on a table, as opposed to containing only the
most recent version of each record.

For example, the following series of operations made to a target table named
CUSTOMER would leave no trace of the ID of Dave. The last operation deletes the record,
so there is no way to find out Dave's account history or his ending balance.

Table 10-4 Operation History for Table CUSTOMER

Sequence Operation ID BALANCE

1 Insert Dave 1000

2 Update Dave 900

3 Update Dave 1250

4 Delete Dave 1250

Retaining this history as a series of records can be useful in many ways. For example,
you can generate the net effect of transactions.

To Implement Transaction Reporting

1. To prepare Extract to capture before values, use the GETUPDATEBEFORES parameter
in the Extract parameter file. A before value (or before image) is the existing
value of a column before an update is performed. Before images enable Oracle
GoldenGate to create the transaction record.

2. To prepare Replicat to post all operations as inserts, use the INSERTALLRECORDS
parameter in the Replicat parameter file. Each operation on a table becomes a
new record in that table.

Chapter 10
Using Transaction History

10-21

3. To map the transaction history, use the return values of the GGHEADER option of
the @GETENV column conversion function. Include the conversion function as the
source expression in a COLMAP statement in the TABLE or MAP parameter.

Using the sample series of transactions shown in Table 10-4 the following parameter
configurations can be created to generate a more transaction-oriented view of
customers, rather than the latest state of the database.

Process Parameter statements

Extract
GETUPDATEBEFORES
TABLE ACCOUNT.CUSTOMER;

Replicat
INSERTALLRECORDS
MAP SALES.CUSTOMER, TARGET SALES.CUSTHIST,
COLMAP (TS = @GETENV ('GGHEADER', 'COMMITTIMESTAMP'),
BEFORE_AFTER = @GETENV ('GGHEADER', 'BEFOREAFTERINDICATOR'),
OP_TYPE = @GETENV ('GGHEADER', 'OPTYPE'),
ID = ID,
BALANCE = BALANCE);

Note:

This is not representative of a complete parameter file for an Oracle
GoldenGate process. Also note that these examples represent a case-
insensitive database.

This configuration makes possible queries such as the following, which returns the net
sum of each transaction along with the time of the transaction and the customer ID.

SELECT AFTER.ID, AFTER.TS, AFTER.BALANCE - BEFORE.BALANCE
FROM CUSTHIST AFTER, CUSTHIST BEFORE
WHERE AFTER.ID = BEFORE.ID AND AFTER.TS = BEFORE.TS AND
AFTER.BEFORE_AFTER = 'A' AND BEFORE.BEFORE_AFTER = 'B';

10.12 Testing and Transforming Data
Data testing and transformation can be performed by either Extract or Replicat and
is implemented by using the Oracle GoldenGate built-in column-conversion functions
within a COLMAP clause of a TABLE or MAP statement. With these conversion functions,
you can:

• Transform dates.

• Test for the presence of column values.

• Perform arithmetic operations.

• Manipulate numbers and character strings.

• Handle null, invalid, and missing data.

• Perform tests.

Chapter 10
Testing and Transforming Data

10-22

This chapter provides an overview of some of the Oracle GoldenGate functions
related to data manipulation. For the complete reference, see Reference for Oracle
GoldenGate for Windows and UNIX.

If you need to use logic beyond that which is supplied by the Oracle GoldenGate
functions, you can call your own functions by implementing Oracle GoldenGate user
exits. See Using User Exits to Extend Oracle GoldenGate Capabilities for more
information about user exits.

Oracle GoldenGate conversion functions take the following general syntax:

Syntax

@function (argument)

Table 10-5 Conversion Function Syntax

Syntax element Description

@function
The Oracle GoldenGate function name.
Function names have the prefix @, as in
@COMPUTE or @DATE. A space between the
function name and the open-parenthesis
before the input argument is optional.

argument
A function argument.

Table 10-6 Function Arguments

Argument element Example

A numeric constant
123

A string literal enclosed within single quote
marks

'ABCD'

The name of a source column
PHONE_NO or phone_no, or "Phone_No"
or Phone_no

Depends on whether the database is case-
insensitive, is case-sensitive and requires
quote marks to enforce the case, or is case-
sensitive and does not require quotes.

An arithmetic expression
COL2 * 100

A comparison expression
((COL3 > 100) AND (COL4 > 0))

Other Oracle GoldenGate functions
AMOUNT = @IF (@COLTEST (AMT,
MISSING, INVALID), 0, AMT)

• Handling Column Names and Literals in Functions

• Using the Appropriate Function

Chapter 10
Testing and Transforming Data

10-23

• Transforming Dates

• Performing Arithmetic Operations

• Manipulating Numbers and Character Strings

• Handling Null, Invalid, and Missing Data

• Performing Tests

10.12.1 Handling Column Names and Literals in Functions
By default, literal strings must be enclosed in single quotes in a column-conversion
function. Case-sensitive column names must be enclosed within double quotes if
required by the database, or otherwise entered in the case in which they are stored in
the database.

10.12.2 Using the Appropriate Function
Use the appropriate function for the type of column that is being manipulated or
evaluated. For example, numeric functions can be used only to compare numeric
values. To compare character values, use one of the Oracle GoldenGate character-
comparison functions. LOB columns cannot be used in conversion functions.

This statement would fail because it uses @IF, which is a numerical function, to
compare string values.

@IF (SR_AREA = 'Help Desk', 'TRUE', 'FALSE')

The following statement would succeed because it compares a numeric value.

@IF (SR_AREA = 20, 'TRUE', 'FALSE')

See Manipulating Numbers and Character Strings for more information.

Note:

Errors in argument parsing sometimes are not detected until records are
processed. Verify syntax before starting processes.

10.12.3 Transforming Dates
Use the @DATE, @DATEDIF, and @DATENOW functions to retrieve dates and times, perform
computations on them, and convert them.

This example computes the time that an order is filled

Example 10-5 Computing Time

ORDER_FILLED = @DATE (
 'YYYY-MM-DD HH:MI:SS',
 'JTS',
 @DATE ('JTS',
 'YYMMDDHHMISS',
 ORDER_TAKEN_TIME) +
 ORDER_MINUTES * 60 * 1000000)

Chapter 10
Testing and Transforming Data

10-24

10.12.4 Performing Arithmetic Operations
To return the result of an arithmetic expression, use the @COMPUTE function. The value
returned from the function is in the form of a string. Arithmetic expressions can be
combinations of the following elements.

• Numbers

• The names of columns that contain numbers

• Functions that return numbers

• Arithmetic operators:

– + (plus)

– - (minus)

– * (multiply)

– / (divide)

– \ (remainder)

• Comparison operators:

– > (greater than)

– >= (greater than or equal)

– < (less than)

– <= (less than or equal)

– = (equal)

– <> (not equal)

Results that are derived from comparisons can be zero (indicating FALSE) or non-
zero (indicating TRUE).

• Parentheses (for grouping results in the expression)

• The conjunction operators AND, OR. Oracle GoldenGate only evaluates the
necessary part of a conjunction expression. Once a statement is FALSE, the rest of
the expression is ignored. This can be valuable when evaluating fields that may be
missing or null. For example, if the value of COL1 is 25 and the value of COL2 is 10,
then the following are possible:

@COMPUTE ((COL1 > 0) AND (COL2 < 3)) returns 0.
@COMPUTE ((COL1 < 0) AND (COL2 < 3)) returns 0. COL2 < 3 is never
evaluated.
@COMPUTE ((COL1 + COL2)/5) returns 7.

• Omitting @COMPUTE

10.12.4.1 Omitting @COMPUTE
The @COMPUTE keyword is not required when an expression is passed as a function
argument.

@STRNUM ((AMOUNT1 + AMOUNT2), LEFT)

Chapter 10
Testing and Transforming Data

10-25

The following expression returns the same result as the previous one:

@STRNUM ((@COMPUTE (AMOUNT1 + AMOUNT2), LEFT)

10.12.5 Manipulating Numbers and Character Strings
To convert numbers and character strings, Oracle GoldenGate supplies the following
functions:

Table 10-7 Conversion Functions for Numbers and Characters

Purpose Conversion Function

Convert a binary or character string to a number. @NUMBIN

@NUMSTR

Convert a number to a string. @STRNUM

Compare strings. @STRCMP

@STRNCMP

Concatenate strings. @STRCAT

@STRNCAT

Extract from a string. @STREXT

@STRFIND

Return the length of a string. @STRLEN

Substitute one string for another. @STRSUB

Convert a string to upper case. @STRUP

Trim leading or trailing spaces, or both. @STRLTRIM

@STRRTRIM

@STRTRIM

10.12.6 Handling Null, Invalid, and Missing Data
When column data is missing, invalid, or null, an Oracle GoldenGate conversion
function returns a corresponding value.

If BALANCE is 1000, but AMOUNT is NULL, the following expression returns NULL:

NEW_BALANCE = @COMPUTE (BALANCE + AMOUNT)

These exception conditions render the entire calculation invalid. To ensure a
successful conversion, use the @COLSTAT, @COLTEST and @IF functions to test for, and
override, the exception condition.

• Using @COLSTAT

• Using @COLTEST

• Using @IF

Chapter 10
Testing and Transforming Data

10-26

10.12.6.1 Using @COLSTAT
Use the @COLSTAT function to return an indicator to Extract or Replicat that a column
is missing, null, or invalid. The indicator can be used as part of a larger manipulation
formula that uses additional conversion functions.

The following example returns a NULL into target column ITEM.

ITEM = @COLSTAT (NULL)

The following @IF calculation uses @COLSTAT to return NULL to the target column if
PRICE and QUANTITY are less than zero.

ORDER_TOTAL = PRICE * QUANTITY, @IF ((PRICE < 0) AND (QUANTITY < 0), @COLSTAT
(NULL))

10.12.6.2 Using @COLTEST
Use the @COLTEST function to check for the following conditions:

• PRESENT tests whether a column is present and not null.

• NULL tests whether a column is present and null.

• MISSING tests whether a column is not present.

• INVALID tests whether a column is present but contains invalid data.

The following example checks whether the AMOUNT column is present and NULL and
whether it is present but invalid.

@COLTEST (AMOUNT, NULL, INVALID)

10.12.6.3 Using @IF
Use the @IF function to return one of two values based on a condition. Use it with the
@COLSTAT and @COLTEST functions to begin a conditional argument that tests for one or
more exception conditions and then directs processing based on the results of the test.

NEW_BALANCE = @IF (@COLTEST (BALANCE, NULL, INVALID) OR
@COLTEST (AMOUNT, NULL, INVALID), @COLSTAT (NULL), BALANCE + AMOUNT)

This conversion returns one of the following:

• NULL when BALANCE or AMOUNT is NULL or INVALID

• MISSING when either column is missing

• The sum of the columns.

10.12.7 Performing Tests
The @CASE, @VALONEOF, and @EVAL functions provide additional methods for
performing tests on data before manipulating or mapping it.

• Using @CASE

• Using @VALONEOF

• Using @EVAL

Chapter 10
Testing and Transforming Data

10-27

10.12.7.1 Using @CASE
Use @CASE to select a value depending on a series of value tests.

@CASE (PRODUCT_CODE, 'CAR', 'A car', 'TRUCK', 'A truck')

This example returns the following:

• A car if PRODUCT_CODE is CAR

• A truck if PRODUCT_CODE is TRUCK

• A FIELD_MISSING indication if PRODUCT_CODE fits neither of the other conditions

10.12.7.2 Using @VALONEOF
Use @VALONEOF to compare a column or string to a list of values.

@IF (@VALONEOF (STATE, 'CA', 'NY'), 'COAST', 'MIDDLE')

In this example, if STATE is CA or NY, the expression returns COAST, which is the
response returned by @IF when the value is non-zero (meaning TRUE).

10.12.7.3 Using @EVAL
Use @EVAL to select a value based on a series of independent conditional tests.

@EVAL (AMOUNT > 10000, 'high amount', AMOUNT > 5000, 'somewhat high')

This example returns the following:

• high amount if AMOUNT is greater than 10000

• somewhat high if AMOUNT is greater than 5000, and less than or equal to 10000,
(unless the prior condition was satisfied)

• A FIELD_MISSING indication if neither condition is satisfied.

10.13 Using Tokens
You can capture and store data within the user token area of a trail record header.
Token data can be retrieved and used in many ways to customize the way that Oracle
GoldenGate delivers information. For example, you can use token data in:

• Column maps

• Stored procedures called by a SQLEXEC statement

• User exits

• Macros

• Defining Tokens

• Using Token Data in Target Tables

Chapter 10
Using Tokens

10-28

10.13.1 Defining Tokens
To use tokens, you define the token name and associate it with data. The data
can be any valid character data or values retrieved from Oracle GoldenGate column-
conversion functions.

The token area in the record header permits up to 16,000 bytes of data. Token names,
the length of the data, and the data itself must fit into that space.

To define a token, use the TOKENS option of the TABLE parameter in the Extract
parameter file.

Syntax

TABLE table_spec, TOKENS (token_name = token_data [, ...]);

Where:

• table_spec is the name of the source table. A container or catalog name, if
applicable, and an owner name must precede the table name.

• token_name is a name of your choice for the token. It can be any number of
alphanumeric characters and is not case-sensitive.

• token_data is a character string of up to 2000 bytes. The data can be either a
string that is enclosed within single quotes or the result of an Oracle GoldenGate
column-conversion function. The character set of token data is not converted. The
token must be in the character set of the source database for Extract and in the
character set of the target database for Replicat. In the trail file, user tokens are
stored in UTF-8.

TABLE ora.oratest, TOKENS (
TK-OSUSER = @GETENV ('GGENVIRONMENT' , 'OSUSERNAME'),
TK-GROUP = @GETENV ('GGENVIRONMENT' , 'GROUPNAME')
TK-HOST = @GETENV('GGENVIRONMENT' , 'HOSTNAME'));

As shown in this example, the Oracle GoldenGate @GETENV function is an effective
way to populate token data. This function provides several options for capturing
environment information that can be mapped to tokens and then used on the target
system for column mapping.

10.13.2 Using Token Data in Target Tables
To map token data to a target table, use the @TOKEN column-conversion function in the
source expression of a COLMAP clause in a Replicat MAP statement. The @TOKEN function
provides the name of the token to map. The COLMAP syntax with @TOKEN is:

Syntax

COLMAP (target_column = @TOKEN ('token_name'))

The following MAP statement maps target columns host, gg_group, and so forth to
tokens tk-host, tk-group, and so forth. Note that the arguments must be enclosed
within single quotes.

Chapter 10
Using Tokens

10-29

User tokens Values

tk-host :sysA

tk-group :extora

tk-osuser :jad

tk-domain :admin

tk-ba_ind :B

tk-commit_ts :2011-01-24 17:08:59.000000

tk-pos :3604496

tk-rba :4058

tk-table :oratest

tk-optype :insert

Example 10-6 MAP Statement

MAP ora.oratest, TARGET ora.rpt,
COLMAP (USEDEFAULTS,
host = @token ('tk-host'),
gg_group = @token ('tk-group'),
osuser= @token ('tk-osuser'),
domain = @token ('tk-domain'),
ba_ind= @token ('tk-ba_ind'),
commit_ts = @token ('tk-commit_ts'),
pos = @token ('tk-pos'),
rba = @token ('tk-rba'),
tablename = @token ('tk-table'),
optype = @token ('tk-optype'));

The tokens in this example will look similar to the following within the record header in
the trail:

Chapter 10
Using Tokens

10-30

11
Associating Replicated Data with Metadata

This chapter describes the uses of metadata and how to associate replicated data with
metadata.
Topics:

• Overview

• Understanding Data Definition Files

• Using Automatic Trail File Recovery

• Configuring Oracle GoldenGate to Use Self-Describing Trail Files

• Configuring Oracle GoldenGate to Assume Identical Metadata

• Configuring Oracle GoldenGate to Assume Dissimilar Metadata

• Configuring Oracle GoldenGate to Use a Combination of Similar and Dissimilar
Definitions

11.1 Overview
When replicating data from one table to another, an important consideration is whether
the column structures (metadata) of the source and target tables are identical. Oracle
GoldenGate looks up metadata for the following purposes:

• On the source, to supply complete information about captured operations to the
Replicat process.

• On the target, to determine the structures of the target tables, so that the
replicated data is correctly mapped and converted (if needed) by Replicat.

In each of the following scenarios, you must use a different parameter or set of
parameters to describe the metadata properly to the Oracle GoldenGate process that
is processing it:

• You are replicating a source table to a target table that has identical metadata
definitions (homogeneous replication).

• You are replicating a source table to a target table that has different metadata
definitions.

• You are replicating a source table to two target tables, one with identical definitions
and one that has different definitions.

11.2 Understanding Data Definition Files
Oracle GoldenGate can query the local database to get one set of definitions, but it
must rely on a data-definitions file to get definitions from the remote database. The
data-definitions file contains information about the metadata of the data that is being
replicated. There are two types of definitions files:

• A source-definitions file contains the definitions of source tables.

11-1

• A target-definitions file contains the definitions of the target tables.

You can use multiple data-definitions files in a parameter file. For example, each one
can contain the definitions for a distinct application.

• Contents of the Definitions File

• Which Definitions File Type to Use, and Where

• Understanding the Effect of Character Sets on Definitions Files

• Using a Definitions Template

• Configuring Oracle GoldenGate to Capture Data-definitions

• Adding Tables that Satisfy a Definitions Template

• Examples of Using a Definitions File

11.2.1 Contents of the Definitions File
The format of a data-definitions file is for internal use and should not be edited by
an Oracle GoldenGate user unless instructed to do so in documented procedures or
by a support representative. The file begins with a file header that shows the version
of DEFGEN, information about character sets, the database type, the locale, and
internal metadata that indicates other data properties. Following the header are the
table-definition sections. Each table-definition section contains a table name, record
length, number of columns, and one or more column definitions.

11.2.2 Which Definitions File Type to Use, and Where
The type of definitions file to use depends on where column mapping and conversion
will be performed.

• When replicating from any type of Windows or UNIX-based database system to
any other Windows or UNIX-based system, the mapping and conversion can be
performed by Extract, a data-pump Extract, or Replicat, but is usually performed
by Replicat on the target system. However, if Oracle GoldenGate must convert
between different character sets, the mapping and conversion must be performed
by Replicat on the target. See Understanding the Effect of Character Sets on
Definitions Files.

• When replicating from any Windows, UNIX, or Linux-based database system to
an Enscribe target on a NonStop system, the mapping and conversion must be
performed on the Windows, UNIX, or Linux system: Only Extract can convert
two- and three-part SQL names and data types to the three-part file names that
are used on the NonStop platform. In this scenario, Oracle GoldenGate cannot
convert between source and target character sets. See Understanding the Effect
of Character Sets on Definitions Files.

Therefore:

• To perform column mapping and conversion on the target, use a source-definitions
file that was generated on the source to supply the source definitions to Replicat.

• To perform column mapping and conversion on the source, use a target-definitions
file that was generated on the target to supply target definitions to the primary
Extract or a data-pump Extract, depending on which process does the conversion.

• To perform column mapping or transformation on an intermediary system, you may
need to use multiple definition file types. See Creating a Reporting Configuration

Chapter 11
Understanding Data Definition Files

11-2

with a Data Pump on an Intermediary System and Creating a Cascading Reporting
Configuration. Note that if there is not a Replicat on the intermediary system,
conversion between character sets cannot be performed.

11.2.3 Understanding the Effect of Character Sets on Definitions Files
Oracle GoldenGate takes into consideration the character set encoding of the
database when performing data conversion, and it takes into consideration the
character set of the local operating system when creating a definitions file. Take
the following guidelines into account when the source and target data have different
character sets.

• Confining Data Mapping and Conversion to the Replicat Process

• Avoiding File Corruptions Due to Operating System Character Sets

• Changing the Character Set of Existing Definitions Files

• Downloading from a z/OS system to another platform

11.2.3.1 Confining Data Mapping and Conversion to the Replicat Process
Replicat is the only process that converts replicated data between different character
sets. It converts data from the source database character set to the target database
character set (or to the character set of the database on an intermediary system
in a cascading configuration). As a result, data mapping and conversion must be
performed by Replicat if source and target character sets are different. It cannot be
performed on a source system, nor on an intermediary system that only contains a
data pump. A target-definitions file is invalid in these cases.

11.2.3.2 Avoiding File Corruptions Due to Operating System Character Sets
By default, DEFGEN writes the definitions file itself in the character set of the local
operating system. A definitions file can be created on the local system and transferred
to the remote system without any encoding-related problems if the following is true:

• The remote system to which you are transferring the definitions file has the same
or equivalent operating-system character set as the local system

• The operating-system character set of the remote system is a subset of the
operating-system character set of the local system, For example, if the source
and target character sets both are ASCII-compatible or EBCDIC-compatible and
all table and column names use only 7-bit US-ASCII or equivalent characters, you
can move the definition file between those systems.

Many operating-system character sets have little or no compatibility between them. To
write the definitions file in a character set that is compatible with, or the same as, the
one used by the remote system, use the CHARSET option of the DEFSFILE parameter
when you configure DEFGEN.

11.2.3.3 Changing the Character Set of Existing Definitions Files
In the case of an existing definitions file that is transferred to an operating system
with an incompatible character set, you can run the DEFGEN utility on that system
to convert the character set of the file to the required one. This procedure takes two
input arguments: the name of the definitions file and the UPDATECS character_set
parameter. For example:

Chapter 11
Understanding Data Definition Files

11-3

defgen ./dirdef/source.def UPDATECS UTF-8

UPDATECS helps in situations such as when a Japanese table name on Japanese
Windows is written in Windows CP932 to the data-definitions file, and then the
definitions file is transferred to Japanese UNIX. The file cannot be used unless the
UNIX is configured in PCK locale. Thus, you must use UPDATECS to convert the
encoding of the definitions file to the correct format.

11.2.3.4 Downloading from a z/OS system to another platform
Definitions files generated on an IBM z/OS platform must be downloaded in BINARY
mode when transferring them to a non-z/OS platform.

11.2.4 Using a Definitions Template
When you create a definitions file, you can specify a definitions template that
reduces the need to create new definitions files when tables are added to the Oracle
GoldenGate configuration after the initial startup. To use a template, all of the new
tables must have identical structures, such as in a customer database where there are
separate but identical tables for each customer.

If you do not use a template and new tables are added after startup, you must
generate a definitions file for each new table that is added to the Oracle GoldenGate
configuration, then copy their contents to the existing master definitions file, and then
restart the process.

11.2.5 Configuring Oracle GoldenGate to Capture Data-definitions
To configure Oracle GoldenGate to use a data-definitions file and template (if needed),
you will:

Topics:

• Configure DEFGEN

• Run DEFGEN

• Transfer the Definitions File to the Remote System

• Specify the Definitions File

11.2.5.1 Configure DEFGEN
Perform these steps on the system from which you want to obtain metadata
definitions.

Note:

Do not create a data-definitions file for Oracle sequences. It is not needed
and DEFGEN does not support it.

1. From the Oracle GoldenGate directory, run GGSCI.

Chapter 11
Understanding Data Definition Files

11-4

2. In GGSCI, issue the following command to create a DEFGEN parameter file.

EDIT PARAMS DEFGEN

3. Enter the parameters listed in Table 11-1 in the order shown, starting a new line for
each parameter statement.

Table 11-1 DEFGEN Parameters

Parameter Description

CHARSET character_set Use this parameter to specify a character set that
DEFGEN will use to read the parameter file. By default,
the character set of the parameter file is that of the local
operating system. If used, CHARSET must be the first line
of the parameter file.

DEFSFILE file_name [APPEND | PURGE] [CHARSET
character_set] [FORMAT RELEASE major.minor]

• APPEND directs DEFGEN to write new content (from
the current run) at the end of any existing content, if
the specified file already exists.

• PURGE directs DEFGEN to purge the specified file
before writing new content from the current run.
This is the default.

• CHARSET generates the definitions file in the
specified character set instead of the default
character set of the operating system.

• FORMAT RELEASE specifies the Oracle GoldenGate
release version of the definitions file. Use when the
definitions file will be read by a process that is in
an earlier version of Oracle GoldenGate than the
DEFGEN process.

Specifies the relative or fully qualified name of the data-
definitions file that is to be the output of DEFGEN.

See Reference for Oracle GoldenGate for important
information about these parameter options and their
effect on character sets.

See Understanding the Effect of Character Sets on
Definitions Files for more information.

[{SOURCEDB | TARGETDB} datasource]
{USERIDALIAS alias | USERID user, PASSWORD
password [encryption_options]}

• SOURCEDB | TARGETDB specifies a data source
name, if required as part of the connection
information. Not required for Oracle.

• USERID user, PASSWORD password
[encryption_options] specifies a user name
and password, with optional encryption options.

• USERIDALIAS supplies database authentication
through credentials stored in the Oracle
GoldenGate credential store.

Specifies database connection information.

The datasource can be a DSN (Datasource Name),
or a container of an Oracle container database (CDB).
If connecting to an Oracle container database, connect
to the root container as the common user if you need
to generate definitions for objects in more than one
container. Otherwise, you can connect to a specific
container to generate definitions only for that container.

For more information about SOURCEDB, USERID, and
USERIDALIAS, including the databases they support,
see Reference for Oracle GoldenGate.

NOCATALOG Removes the container name (Oracle) from table names
before their definitions are written to the definitions file.
Use this parameter if the definitions file is to be used
for mapping to a database that only supports two-part
names (owner.object).

Chapter 11
Understanding Data Definition Files

11-5

Table 11-1 (Cont.) DEFGEN Parameters

Parameter Description

TABLE container. owner.table
[, {DEF | TARGETDEF} template];

Where:

• container is a container in an Oracle container
database.

• owner is the name of the schema that contains the
table to be defined.

• table is the table that is to be defined.
• [, {DEF | TARGETDEF} template] additionally

creates a definitions template based on the
metadata of this table. This option is not
supported for initial loads. See Reference for Oracle
GoldenGate for information about this option.

Specifies the fully qualified name of a table or tables
for which definitions will be defined and optionally
uses the metadata of the table as a basis for a
definitions template. Case-sensitivity of both table name
and template name is preserved for case-sensitive
databases. See Specifying Object Names in Oracle
GoldenGate Input for instructions on wildcarding and
case-sensitivity.

Specify a source table(s) if generating a source-
definitions file or a target table(s) if generating a target-
definitions file.

To exclude tables from a wildcard specification, use the
TABLEEXCLUDE parameter.

Note that DEFGEN does not support UDTs.

defsfile defsfile_name
userid user_id password
associated_password
table table_name,KEYCOLS (id,name);

DEFGEN utility marks all columns from either Primary
Key or from any unique index(es) if PK is missing, as
key columns in generated source definition for the table.
When KEYCOLS is specified in DEFGEN parameter file,
it will mark only the columns from this KEYCOLS opion
as key columns for the table in source definition file used
by.

4. Save and close the file.

5. Exit GGSCI.

11.2.5.2 Run DEFGEN
1. From the directory where Oracle GoldenGate is installed, run DEFGEN using the

following arguments. This example shows a UNIX file system structure.

defgen paramfile dirprm/defgen.prm [reportfile dirrpt/defgen.rpt]
[NOEXTATTR]

Where:

• defgen is the name of the program.

• paramfile is a required keyword. dirprm/defgen.prm is the relative or full
path name of the DEFGEN parameter file. (The typical location is shown in the
example.)

• reportfile is a required keyword. dirrpt/defgen.rpt sends output to the
screen and to the designated report file. (The typical location is shown in the
example.) You can omit the reportfile argument to print to the screen only.

• NOEXTATTR can be used to support backward compatibility with Oracle
GoldenGate versions that are older than Release 11.2.1 and do not support
character sets other than ASCII, nor case-sensitivity or object names that
are quoted with spaces. NOEXTATTR prevents DEFGEN from including the
database locale and character set that support the globalization features
that were introduced in Oracle GoldenGate Release 11.2.1. If the table or
column name has multi-byte or special characters such as white spaces,

Chapter 11
Understanding Data Definition Files

11-6

DEFGEN does not include the table definition when NOEXTATTR is specified. If
APPEND mode is used in the parameter file, NOEXTATTR is ignored, and the new
table definition is appended in the existing file format, whether with the extra
attributes or not.

2. Repeat these steps for any additional definitions files that you want to create.

3. Using ASCII mode, FTP the definitions file (or files) from the local Oracle
GoldenGate dirdef sub-directory to the remote dirdef sub-directory.

11.2.5.3 Transfer the Definitions File to the Remote System
Use BINARY mode to FTP the data definitions file to the remote system if the local and
remote operating systems are different and the definitions file is created for the remote
operating system character set. This avoids unexpected characters to be placed in
the file by the FTP program, such as new-line and line-feed characters. Always use
BINARY mode when transferring definitions files from z/OS to a non-z/OS platform.

11.2.5.4 Specify the Definitions File
Associate a data-definitions file with the correct Oracle GoldenGate process in the
following ways:

• Associate a target-definitions file with an Extract group or data pump by using the
TARGETDEFS parameter in the Extract parameter file.

• Associate a source-definitions file with the Replicat group by using the SOURCEDEFS
parameter in the Replicat parameter file.

• If Oracle GoldenGate is to perform mapping or conversion on an intermediary
system that contains neither the source nor target database, associate a source-
definitions file and a target-definitions file with the data pump Extract by using
SOURCEDEFS and TARGETDEFS in the parameter file. For Oracle databases, the
Oracle libraries also must be present on the intermediary system.

See Examples of Using a Definitions File for the correct way to specify multiple
definitions files.

Do not use SOURCEDEFS and ASSUMETARGETDEFS in the same parameter file. See
Configuring Oracle GoldenGate to Assume Identical Metadata for more information
about ASSUMETARGETDEFS.

11.2.6 Adding Tables that Satisfy a Definitions Template
To map a new table in the Oracle GoldenGate configuration to a definitions template,
use the following options of the TABLE and MAP parameters, as appropriate:

• DEF to specify the name of a source-definitions template.

• TARGETDEF to specify the name of a target-definitions template.

Because these options direct the Extract or Replicat process to use the same
definitions as the specified template, you need not create a new definitions file for
the new table, nor restart the process.

11.2.7 Examples of Using a Definitions File
This topic contains some basic use cases that include a definitions file.

Chapter 11
Understanding Data Definition Files

11-7

Topics:

• Creating a Source-definitions file for Use on a Target System

• Creating Target-definitions Files for Use on a Source System

• Creating Multiple Source Definition Files for Use on a Target System

11.2.7.1 Creating a Source-definitions file for Use on a Target System
The following configuration uses a DEFGEN parameter file that creates a source-
definitions file as output. This example is for tables from an Oracle database.

DEFSFILE C:\ggs\dirdef\record.def
USERIDALIAS ogg
TABLE acct.cust100, DEF custdef;
TABLE ord.*;
TABLE hr.*;

The results of this DEFGEN configuration are:

• Individual definitions by name are created for all tables in the ord and hr schemas.

• A custdef template is created based on table acct.cust100. In the database,
there are other acct.cust* tables, each with identical definitions to acct.cust100.

The tables are mapped in the Replicat parameter file as follows:

-- This is a simplified parameter file. Your requirements may vary.
REPLICAT acctrep
USERIDALIAS ogg
SOURCEDEFS c:\ggs\dirdef\record.def
MAP acct.cust*, TARGET acct.cust*, DEF custdef;
MAP ord.prod, TARGET ord.prod;
MAP ord.parts, TARGET ord.parts;
MAP hr.emp, TARGET hr.emp;
MAP hr.salary, TARGET hr.salary;

Note that definitions for tables that satisfy the wildcard specification acct.cust* are
obtained from the custdef template, as directed by the DEF option of the first MAP
statement.

11.2.7.2 Creating Target-definitions Files for Use on a Source System
If target definitions are required for the same tables, those tables can be mapped for a
primary Extract or a data pump.

• Target definitions are required instead of source definitions if the target is an
Enscribe database.

• Target definitions are required in addition to source definitions if mapping and
conversion are to be done on an intermediary system.

The DEFGEN configuration to make the target-definitions file looks similar to the
following:

DEFSFILE C:\ggs\dirdef\trecord.def
USERIDALIAS ogg
TABLE acct.cust100, DEF tcustdef;
TABLE ord.*;
TABLE hr.*;

Chapter 11
Understanding Data Definition Files

11-8

Note:

See the previous example for the DEFGEN configuration that makes the
source-definitions file.

The Extract configuration looks similar to the following:

-- This is a simplified parameter file. Your requirements may vary.
EXTRACT acctex
USERIDALIAS ogg
RMTHOSTOPTIONS sysb, MGRPORT 7890, ENCRYPT AES192 KEYNAME mykey1
ENCRYPTTRAIL AES192
RMTTRAIL $data.ggsdat.rt
SOURCEDEFS c:\ggs\dirdef\record.def
TARGETDEFS c:\ggs\dirdef\trecord.def
TABLE acct.cust*, TARGET acct.cust*, DEF custdef, TARGETDEF tcustdef;
TABLE ord.prod, TARGET ord.prod;
TABLE ord.parts, TARGET ord.parts;
TABLE hr.emp, TARGET hr.emp;
TABLE hr.salary, TARGET hr.salary;

In this example, the source template named custdef (from the record.def file)
and a target template named tcustdef (from the trecord.def file) are used for the
acc.cust* tables. Definitions for the tables from the ord and hr schemas are obtained
from explicit definitions based on the table names (but a wildcard specification could
have been used here, instead)

11.2.7.3 Creating Multiple Source Definition Files for Use on a Target System
This is a simple example of how to use multiple definitions files. Your parameter
requirements may vary, based on the Oracle GoldenGate topology and database type.

The following is the DEFGEN parameter file that creates the first data-definitions file.

DEFSFILE C:\ggs\dirdef\sales.def
USERIDALIAS ogg
TABLE ord.*;

The following is the DEFGEN parameter file that creates the second data-definitions
file. Note the file name and table specification are different from the first one.

DEFSFILE C:\ggs\dirdef\admin.def
USERIDALIAS ogg
TABLE hr.*;

The tables for the first and second definitions file are mapped in the same Replicat
parameter file as follows:

REPLICAT acctrep
USERIDALIAS ogg
SOURCEDEFS c:\ggs\dirdef\sales.def
MAP ord.*, TARGET ord.*;
SOURCEDEFS c:\ggs\dirdef\admin.def
MAP hr.*, TARGET hr.*;

Chapter 11
Understanding Data Definition Files

11-9

11.3 Using Automatic Trail File Recovery
The trail recovery process has the ability to, in some cases, automatically rebuild
trail files that are corrupt or missing by Oracle GoldenGate. When an Extract pump
restarts, if the last trail that the pump was writing to is missing, then the Extract
pump attempts to rebuild the missing trail file on the target system. This is done
automatically using the checkpoint information for the process and the last valid trail
file. The Replicat process automatically skips over any duplicate data in the trail files
that have been rebuilt by the new trail recovery feature. This recovery will occur as
long as there is at least 1 target trail from this sequence and that the trail files still exist
on the source where the Extract pump is reading them.

This process can also be used to rebuild corrupt or invalid trail files on the target.
Simply delete the corrupt trail file, and any trail files after that, and then restart the
Extract pump. With this new behavior, Oracle recommends that PURGEOLDEXTRACTS
MINKEEP rules are properly configured to ensure that there are trail files from the
source that can be used to rebuild the target environment. This feature requires that
Oracle GoldenGate release 12.1.2.1.8 or greater is used on both the source and target
servers. Do not attempt to start the Replicat with NOFILTERDUPTRANSACTIONS because it
will override Replicat's default behavior and may cause transactions that have already
been applied to the target database to be applied again.

11.4 Configuring Oracle GoldenGate to Use Self-Describing
Trail Files

The default behavior in this release is to store and forward metadata from the source
to the target and encapsulates it in each of the trail files. In other words, a self-
describing Extract trail or file is created by adding the metadata records in each file.
There are two types of metadata records:

• Database Definition Record (DDR)

A DDR provides information about a specific database, such as character set and
time zone. A Database Definition Record is added to the trail to store the database
metadata for each pluggable database being captured. All the row change records
from a pluggable database will have character and timestamp with local time zone
data based on the corresponding DDR for that pluggable database. DDRs are
generated for both consolidated and non-consolidated databases.

• Table Definition Record (TDR)

A TDR provides details about the definition about a table and the columns that it
contains. The content of this record is similar to what is provided in a definitions
file, which is a subset of the information found in the file_def and col_def
classes. Each database can embed its own database specific information to each
TDR. A TDR contains a complete table definition and is used to describe many
row change records for the same table. A new TDR is written when the output trail
rolls over to a new file or the source table definition has changed.

It is important to note that a TDR describes the definition of a table object
represented by the row change records. It will be similar though may not be
identical to the table definition in the source. For example, if a column-conversion
function is applied to a source column, the metadata for that value in the database
will be different from the metadata that shows up in a trail file.

Chapter 11
Using Automatic Trail File Recovery

11-10

The metadata records in a self-describing trail file format operate as follows:

Using self-described trail files eliminates the need for SOURCEDEFS and
ASSUMETARGETDEFS so parameter files are simpler and it is simpler to configure
heterogeneous replication and provides:

• A reduction in trail file size due to object name compression.

• The ability to extract data from multiple catalogs with different character sets and
time zones into one trail.

• The ability to configure DDL replication among more than two Oracle databases.
There is no need to use the GETREPLICATS, UPDATEMETADATA, and NOTAG
parameters. You can replicate DDLs when source and target tables are not alike
and without having to synchronize Oracle GoldenGate processes .

• No necessity to create and maintain source definitions files.

Understanding the Self-Describing Trail Behavior

When you are modifying the Source Table Definition the following criteria must be met
to update the new TDR into the Extract's memory, as well as the trail file.

Oracle Database Sources
Integrated Extract (with Oracle Database 11.2.0.4 or higher and compatible = 11.2.0.4
or higher): No manual steps are needed because Integrated Extract seamlessly
generates updated metadata records after a DDL is performed on the source table.
This is true irrespective of whether DDL replication is enabled or not.
Classic Extract: The Extract parameter file should include DDL parameter for Extract
to seamlessly generate updated metadata records after a DDL. Alternatively, as

Chapter 11
Configuring Oracle GoldenGate to Use Self-Describing Trail Files

11-11

in-releases earlier than 12.2 , DDL should be performed only after Extract has
completely output all the relevant database changes to the trail and is stopped. After
DDL is executed, you must restart the Extract. Unlike previous releases, there is no
need to stop Replicat and regenerate SOURCEDEFS using DEFGEN.

Heterogeneous Database Sources
As in releases earlier than 12.2, DDL should be performed only after Extract has
completely output all the relevant database changes to the trail and is stopped. After
DDL is executed, you must restart the Extract should be restarted. Unlike previous
releases, there is no need to stop Replicat and regenerate SOURCEDEFS using DEFGEN.

Topics:

• Support Considerations

• Using Self-Describing Trail Files

• Examples of Parameter Files

11.4.1 Support Considerations
Review the following support information:

• Trail File Formats:

– Must be Oracle GoldenGate release 12c (12.2.0.1) or greater to contain
metadata records.

– Cannot generate a 12c (12.2.0.1) trail format with the older trail format in a
multi-trail configuration.

– FORMATASCII, FORMATSQL and FORMATXML trails will not contain metadata
records.

• For existing trail file configurations, you can easily switch between the previous
and self-describing extract trail methods of resolving the table metadata by:

– Use the USE_TRAILDEFS GLOBALS parameter to control all pumps and
Replicats.

– Use the OVERRIDE option of SOURCEDEFS and ASSUMETARGETDEFS to control an
individual pump or Replicat. Oracle does not recommend this.

• Logdump displays the metadata records similar to DEFGEN output.

• Reverse is not supported in the 12c (12.2.0.1) trail format.

• If a table is mapped, the generated TDR is based on the definition of the mapped
table not the source table.

• Metadata in the trail is supported for all databases except HP NonStop (Guardian).

11.4.2 Using Self-Describing Trail Files
Use the USE_TRAILDEFS GLOBALS parameter to enable or disable all pumps and
Replicats. This command usage in relation to the SOURCDEFS and ASSUMETARGETDEF,
and its source table definitions are described as follows.

Chapter 11
Configuring Oracle GoldenGate to Use Self-Describing Trail Files

11-12

Figure 11-1 USE_TRAILDEFS | NOUSE_TRAILDEFS USAGE

You must use the OVERRIDE option with the ASSUMETARGETDEFS and SOURCEDEFS
parameters when using self-describing trail files.

11.4.3 Examples of Parameter Files
The following is an example of an Extract parameter file:

EXTRACT ext1
USERID tkggadmin@inst1, password tkggadmin
DDL include objname hr.*, include objname st_hr.*
RMTTRAIL $data/ggs12.2/a1
TABLE hr.*;
TABLE st_hr.salary, TARGET hr.salary, COLMAP (USEDEFAULTS,
 ts = @GETENV('GGHEADER' , 'COMMITTIMESTAMP'));
RMTTRAIL $data/ggs12.2/a2, NO_OBJECTDEFS
TABLE orders.*;

The following is an example of an Replicat parameter file:

REPLCAT rep1
USERID tkggadmin@inst2, password tkggadmin
DDLERROR default discard
DDL include all
DISCARDFILE ./dirrpt/rep1.dsc purge
MAP hr.*, TARGET hr.*;

Chapter 11
Configuring Oracle GoldenGate to Use Self-Describing Trail Files

11-13

11.5 Configuring Oracle GoldenGate to Assume Identical
Metadata

Note:

This section does not apply to self-describing trail files.

When source and target tables have identical metadata definitions, use the
ASSUMETARGETDEFS parameter in the Replicat parameter file. This parameter directs
Replicat to assume that the target definitions are the same as those of the source, and
to apply those definitions to the replicated data when constructing SQL statements.
The source and target tables must be identical in every way, thus needing no
conversion processing, although their catalogs or containers, owners and/or names
can be different.

11.6 Configuring Oracle GoldenGate to Assume Dissimilar
Metadata

When source and target table definitions are dissimilar, Oracle GoldenGate must
perform a conversion from one format to the other. To perform conversions, both sets
of definitions must be known to Oracle GoldenGate.

11.7 Configuring Oracle GoldenGate to Use a Combination
of Similar and Dissimilar Definitions

Note:

This section does not apply to self-describing trail files.

ASSUMETARGETDEFS and SOURCEDEFS can be used in the same parameter file. This can
be done when column mapping or conversion must be performed between some of
the source-target table pairs, but not for other table pairs that are identical.

The following is an example of how to use SOURCEDEFS and ASSUMETARGETDEFS in the
same parameter file. This example builds on the previous examples where tables in
the acct, ord, and hr schemas require SOURCEDEFS, but it adds a rpt schema with
tables that are dynamically created with the name stock appended with a random
numerical value. For Oracle GoldenGate to replicate the DDL as well as the DML, the
target tables must be identical. In that case, ASSUMETARGETDEFS is required.

REPLICAT acctrep
USERIDALIAS ogg
SOURCEDEFS c:\ggs\dirdef\record.def

Chapter 11
Configuring Oracle GoldenGate to Assume Identical Metadata

11-14

MAP acct.cust*, TARGET acct.cust*, DEF custdef;
MAP ord.prod, TARGET ord.prod;
MAP ord.parts, TARGET ord.parts;
MAP hr.emp, TARGET hr.emp;
MAP hr.salary, TARGET hr.salary;
ASSUMETARGETDEFS
MAP rpt.stock, TARGET rpt.stock;

Chapter 11
Configuring Oracle GoldenGate to Use a Combination of Similar and Dissimilar Definitions

11-15

12
Configuring Online Change
Synchronization

This chapter describes how to configure online change synchronization.
Topics:

• Overview of Online Change Synchronization

• Choosing Names for Processes and Files

• Creating a Checkpoint Table

• Creating an Online Extract Group

• Creating a Trail

• Creating a Parameter File for Online Extraction

• Creating an Online Replicat Group

• Creating a Parameter File for Online Replication

12.1 Overview of Online Change Synchronization
Online change synchronization extracts and replicates data changes continuously
to maintain a near real-time target database. The number of Extract and Replicat
processes and trails that you will need depends on the replication topology that you
want to deploy and the process mode that you will be using.

For detailed information about deploying specific replication topologies, see:

• Using Oracle GoldenGate for Live Reporting

• Using Oracle GoldenGate for Real-time Data Distribution

• Configuring Oracle GoldenGate to Maintain a Live Standby Database

• Configuring Oracle GoldenGate for Active-Active Configuration

You may need to configure multiple Replicat processes if you are replicating between
Oracle multitenant container databases.

You may need to configure multiple process groups to achieve a certain performance
level. For example, you may want to keep lag below a certain threshold. Lag is the
difference between when changes are made within your source applications and when
those changes are applied to the target database.

Oracle GoldenGate supports up to 5,000 concurrent Extract and Replicat groups per
instance of Oracle GoldenGate Manager. At the supported level, all groups can be
controlled and viewed in full with GGSCI commands such as the INFO and STATUS
commands. Oracle GoldenGate recommends keeping the number of Extract and
Replicat groups (combined) at the default level of 300 or below in order to manage
your environment effectively.

12-1

See Tuning the Performance of Oracle GoldenGate for more information about
configuring Oracle GoldenGate for best performance.

• Initial Synchronization

12.1.1 Initial Synchronization
After you configure your change-synchronization groups and trails following the
directions in this chapter, see Instantiating Oracle GoldenGate with an Initial Load
to prepare the target tables for synchronization. An initial load takes a copy of entire
source tables, transforms the data if necessary, and applies it to the target tables so
that the movement of transaction data begins from a synchronized state. The first
time that you start change synchronization should be during the initial synchronization
process. Change synchronization keeps track of ongoing transactional changes while
the load is being applied.

12.2 Choosing Names for Processes and Files
It is helpful to develop consistent naming conventions for the Oracle GoldenGate
processes and files before you start configuration steps. Choosing meaningful names
helps you differentiate among multiple processes and files in displays, error logs, and
external monitoring programs. In addition, it accommodates the naming of additional
processes and files later, as your environment changes or expands.

This section contains instructions for:

• Naming Conventions for Processes

• Choosing File Names

12.2.1 Naming Conventions for Processes
When specifying a process or group name, follow these rules.

• For the following types of processes, you can use up to eight characters, including
non-alphanumeric characters such as the underscore (_):

– Online Extract group

– Initial-load Extract

– Online Replicat group created in classic (non-coordinated) mode

– Online Replicat group created in integrated mode (Oracle only)

• For coordinated and parallel Replicat process group, you can use up to five
characters, including non-alphanumeric characters such as the underscore (_).
Internally, a three-character thread ID is appended to the base name for each
thread that is created based on the MAXTHREADS option of the ADD REPLICAT
command. The resulting names cannot be duplicated for any other Replicat
group. For example, if a coordinated Replicat group named fin is created with
a MAXTHREADS of 50 threads, the resulting thread names could span from fin000
through fin050, assuming those are the IDs specified in the MAP statements. Thus,
no other Replicat group can be named fin000 through fin0050. See the following
rule for more information.

• You can include a number in a group name, but it is not recommended that a
name end in any numerals. Understand that using a numeric value at the end of

Chapter 12
Choosing Names for Processes and Files

12-2

a group name (such as fin1) can cause duplicate report file names and errors,
because the writing process appends a number to the end of the group name
when generating a report. In addition, ending a group name with numeric values is
not recommended when running Replicat in coordinated mode. Because numeric
thread IDs are appended to a group name internally, if the base group name
also ends in a number it can make the output of informational commands more
complicated to analyze. Thread names could be confused with the names of other
Replicat groups if the numeric appendages satisfy wildcards. Duplicate report file
names also can occur. It may be more practical to put a numeric value at the
beginning of a group name, such as 1_fin, 1fin, and so forth.

• Any character can be used in the name of a process, so long as the character
set of the local operating system supports it, and the operating system allows
that character to be in a file name. This is because a group is identified by its
associated checkpoint file and parameter file.

• The following characters are not allowed in the name of a process:

\ / : * ? " < > |

• On HP UX, Linux, and Solaris, it is possible to create a file name with a colon (:) or
an asterisk (*), although it is not recommended.

• In general, process names and parameter file names are not case-sensitive
within Oracle GoldenGate. For example, finance, Finance, and FINANCE are
all considered to be the same. However, on Linux, the process name (and
its parameter file name if explicitly defined in the ADD command) must be all
uppercase or all lowercase. Mixed-case names specified for processes and
parameter files will result in errors when starting the process.

• Use only one word for a name.

• The word port can be the full name for a process or parameter file. However, the
string port can be part of a name.

12.2.2 Choosing File Names
Captured data must be processed into a series of files called a trail, where it is
stored for processing by the next Oracle GoldenGate process downstream. The basic
configuration is:

• A local trail on the source system

• A remote trail on the target system

The actual trail name contains only two characters, such as ./dirdat/tr. Oracle
GoldenGate appends this name with a nine-digit sequence number whenever a
new file is created, such as ./dirdat/aa000000002. It is recommended that you
establish naming conventions for trails, because they are linked to Oracle GoldenGate
processes and may need to be identified for the purposes of troubleshooting.

On Windows systems, if the name of any directory in the trail path name begins with a
number, the path must be specified with forward slashes, not backward slashes, when
listing the trail in a parameter file. For more information, see Specifying Filesystem
Path Names in Parameter Files on Windows Systems.

See What is a Trail? for more information about Oracle GoldenGate trails.

Chapter 12
Choosing Names for Processes and Files

12-3

12.3 Creating a Checkpoint Table
Replicat maintains checkpoints that provide a known position in the trail from which to
start after an expected or unexpected shutdown. To store a record of its checkpoints,
Replicat uses a checkpoint table in the target database. This enables the Replicat
checkpoint to be included within the Replicat transaction itself, to ensure that a
transaction will only be applied once, even if there is a failure of the Replicat process
or the database process. The checkpoint table remains small because rows are
deleted when no longer needed, and it does not affect database performance. About
Checkpoints for more information about the checkpoint table.

• Options for Creating the Checkpoint Table

• Adjusting for Coordinated Replicat in Oracle RAC

12.3.1 Options for Creating the Checkpoint Table
The checkpoint table can reside in a schema of your choice. Use one that is dedicated
to Oracle GoldenGate if possible.

More than one instance of Oracle GoldenGate (multiple installations) can use the
same checkpoint table. Oracle GoldenGate keeps track of the checkpoints, even if
Replicat group names are the same in different instances.

More than one checkpoint table can be used as needed. For example, you can use
different ones for different Replicat groups.

You can install your checkpoint tables in these ways:

• You can specify a default checkpoint table in the GLOBALS file. New Replicat groups
created with the ADD REPLICAT command will use this table automatically, without
requiring any special instructions. See "To Specify a Default Checkpoint Table in
the GLOBALS File" for instructions.

• You can provide specific checkpoint table instructions when you create any given
Replicat group with the ADD REPLICAT command:

– To use a specific checkpoint table for a group, use the CHECKPOINTTABLE
argument of ADD REPLICAT. This checkpoint table overrides any default
specification in the GLOBALS file. If using only one Replicat group, you can
use this command and skip creating the GLOBALS file altogether.

– To omit using a checkpoint table for a group, use the NODBCHECKPOINT
argument of ADD REPLICAT. Without a checkpoint table, Replicat still maintains
checkpoints in a checkpoint file on disk, but you introduce the risk of data
inconsistency.

However you implement the checkpoint table, you must create it in the target database
prior to using the ADD REPLICAT command.

To Add a Checkpoint Table to the Target Database

The following steps, which create the checkpoint table through GGSCI, can be
bypassed by running the chkpt_db_create.sql script instead, where db is an
abbreviation of the database type. By using the script, you can specify custom storage
or other attributes. Do not change the names or attributes of the columns in this table.

Chapter 12
Creating a Checkpoint Table

12-4

1. From the Oracle GoldenGate directory, run GGSCI and issue the DBLOGIN
command to log into the database. The user issuing this command must have
CREATE TABLE permissions. See Reference for Oracle GoldenGate for the correct
syntax to use for your database.

2. In GGSCI, issue the following command to add the checkpoint table to the
database.

ADD CHECKPOINTTABLE container owner.table

Where:

owner.table is the owner and name of the table, container is the name of a PDB
if installing into an Oracle multitenant container database. The owner and name
can be omitted if you are using this table as the default checkpoint table and this
table is specified with CHECKPOINTTABLE in the GLOBALS file. The name of this table
must not exceed the maximum length permitted by the database for object names.
The checkpoint table name cannot contain any special characters, such as quotes,
backslash, pound sign, and so forth.

To Specify a Default Checkpoint Table in the GLOBALS File

This procedure specifies a global name for all checkpoint tables in the Oracle
GoldenGate instance. You can override this name for any given Replicat group by
specifying a different checkpoint table when you create the Replicat group.

1. Create a GLOBALS file (or edit the existing one, if applicable). The file name must
be all capital letters on UNIX or Linux systems, without a file extension, and must
reside in the root Oracle GoldenGate directory. You can use an ASCII text editor
to create the file, making certain to observe the preceding naming conventions,
or you can use GGSCI to create and save it with the correct name and location
automatically. When using GGSCI, use the following command, typing GLOBALS in
upper case.

EDIT PARAMS ./GLOBALS

2. Enter the following parameter:

CHECKPOINTTABLE container.owner.table

Where:

catalog.owner.table is the fully qualified name of the default checkpoint table,
including the name of the container if the database is an Oracle multitenant
container database (CDB).

3. Note the name of the table, then save and close the GLOBALS file. Make certain the
file was created in the root Oracle GoldenGate directory. If there is a file extension,
remove it.

12.3.2 Adjusting for Coordinated Replicat in Oracle RAC
If the Replicat for which you are creating a checkpoint table will run in an Oracle
RAC configuration, it is recommended that you increase the PCTFREE attribute of the
Replicat checkpoint table to as high a value as possible, as high as 90 if possible.
This accommodates the more frequent checkpointing that is inherent in coordinated
processing. This change must be made before starting the Replicat group for the first
time. See Creating an Online Replicat Group for more information about coordinated
Replicat.

Chapter 12
Creating a Checkpoint Table

12-5

12.4 Creating an Online Extract Group
To create an online Extract group, run GGSCI on the source system and issue the ADD
EXTRACT command. Separate all command arguments with a comma. There are two
syntax forms:

• Syntax to Create a Regular, Passive, or Data Pump Extract Group

• Syntax to Create an Alias Extract Group

Syntax to Create a Regular, Passive, or Data Pump Extract Group

ADD EXTRACT group
{, datasource}
{, BEGIN start_point} | {position_point}
[, PASSIVE]
[, THREADS n]
[, PARAMS pathname]
[, REPORT pathname]
[, DESC 'description']

Where:

• group is the name of the Extract group. A group name is required.

• datasource is required to specify the source of the data to be extracted. Use one
of the following:

– TRANLOG specifies the transaction log as the data source. When using this
option for Oracle Enterprise Edition, you must issue the DBLOGIN command as
the Extract database user (or a user with the same privileges) before using
ADD EXTRACT (and also before issuing DELETE EXTRACT to remove an Extract
group).

Use the bsds option for DB2 running on z/OS to specify the Bootstrap Data
Set file name of the transaction log.

– INTEGRATED TRANLOG specifies that this Extract will operate in integrated
capture mode to receive logical change records (LCR) from an Oracle
Database logmining server. This parameter applies only to Oracle Databases..

– EXTTRAILSOURCE trail name to specify the relative or fully qualified name of
a local trail. Use to create a data pump. A data pump can be used with any
Oracle GoldenGate extraction method.

• BEGIN start_point defines an online Extract group by establishing an initial
checkpoint and start point for processing. Transactions started before this point
are discarded. Use one of the following:

– NOW to begin extracting changes that are timestamped at the point when the
ADD EXTRACT command is executed to create the group or, for an Oracle
Extract in integrated mode, from the time the group is registered with the
REGISTER EXTRACT command. Do not use NOW for a data pump Extract unless
you want to bypass any data that was captured to the Oracle GoldenGate trail
prior to the ADD EXTRACT statement.

Chapter 12
Creating an Online Extract Group

12-6

YYYY-MM-DD HH:MM[:SS[.CCCCCC]] as the format for specifying an exact
timestamp as the begin point. Use a begin point that is later than the time
at which replication or logging was enabled.

• position_point specifies a specific position within a specific transaction log file at
which to start processing. For the specific syntax to use for your database, see ADD
EXTRACT in Reference for Oracle GoldenGate.

• PASSIVE indicates that the group is a passive Extract. When using PASSIVE, you
must also use an alias Extract. This option can appear in any order among other
ADD EXTRACT options.

• THREADS n is required only if Extract is operating in classic capture mode in an
Oracle Real Application Cluster (RAC). It specifies the number of redo log threads
being used by the cluster.

• PARAMS pathname is required if the parameter file for this group will be stored in a
location other than the dirprm sub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

• REPORT pathname is required if the process report for this group will be stored in
a location other than the dirrpt sub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

• DESC 'description' specifies a description of the group.

Syntax to Create an Alias Extract Group

ADD EXTRACT group
, RMTHOST {host | IP address}
, {MGRPORT port} | {PORT port}
[, RMTNAME name]
[, DESC 'description']

Where:

• RMTHOST identifies this group as an alias Extract and specifies either the DNS
name of the remote host or its IP address.

• MGRPORT specifies the port on the remote system where Manager is running. Use
this option when using a dynamic Collector.

• PORT specifies a static Collector port. Use instead of MGRPORT only if running a
static Collector.

• RMTNAME specifies the passive Extract name, if different from that of the alias
Extract.

• DESC 'description' specifies a description of the group.

Example 12-1 Adding an Extract Group for Log-based Capture

This example creates an Extract group named finance. Extraction starts with records
generated at the time when the group was created.

ADD EXTRACT finance, TRANLOG, BEGIN NOW

Example 12-2 Adding a Data-pump Extract Group

This example creates a data-pump Extract group named finance. It reads from the
Oracle GoldenGate trail c:\ggs\dirdat\lt.

ADD EXTRACT finance, EXTTRAILSOURCE c:\ggs\dirdat\lt

Chapter 12
Creating an Online Extract Group

12-7

Example 12-3 Adding a Passive Extract Group

This example creates a passive Extract group named finance. Extraction starts with
records generated at the time when the group was created. Because this group is
marked as passive, an alias Extract on the target will initiate connections to this
Extract.

ADD EXTRACT finance, TRANLOG, BEGIN NOW, PASSIVE

Example 12-4 Adding a Passive Data-pump Extract Group

This example creates a data-pump Extract group named finance. This is a passive
data pump Extract that reads from the Oracle GoldenGate trail c:\ggs\dirdat\lt.
Because this data pump is marked as passive, an alias Extract on the target will
initiate connections to it.

ADD EXTRACT finance, EXTTRAILSOURCE c:\ggs\dirdat\lt, PASSIVE

Example 12-5 Adding an Alias Extract Group

This example creates an alias Extract group named alias.

ADD EXTRACT alias, RMTHOST sysA, MGRPORT 7800, RMTNAME finance

Example 12-6 Adding a Primary Extract in Integrated Mode for Oracle

This example creates an Extract in integrated capture mode for an Oracle source
database and sets the start point to the time when the Extract group is registered with
the Oracle database by means of the REGISTER EXTRACT command. Integrated capture
is available only for an Oracle database.

ADD EXTRACT finance INTEGRATED TRANLOG, BEGIN NOW

12.5 Creating a Trail
After data has been extracted, it must be processed into one or more trails, where it is
stored for processing by another Oracle GoldenGate process. A trail is a sequence of
files that are created and aged as needed. Processes that read a trail are:

• Data-pump Extract: Extracts data from a local trail for further processing, if
needed, and transfers it to the target system.

• Replicat: Reads a trail to apply change data to the target database.

You can create more than one trail to separate the data of different tables or
applications, or to satisfy the requirements of a specific replication topology, such as a
cascading topology. You link tables specified with a TABLE statement to a trail specified
with an EXTTRAIL or RMTTRAIL parameter statement in the Extract parameter file. See
About the Oracle GoldenGate Trail for detailed information about Oracle GoldenGate
trails.

• Assigning Storage for Oracle GoldenGate Trails

• Estimating Space for the Trails

• Adding a Trail

Chapter 12
Creating a Trail

12-8

12.5.1 Assigning Storage for Oracle GoldenGate Trails
In a typical configuration, there is at least one trail on the source system and one on
the target system. Allocate enough disk space to allow for the following:

• The primary Extract process captures transactional data from the source database
and writes it to the local trail. A data-pump Extract reads that trail and then
transfers the data over the network to a remote trail on the target. If the network
fails, the data pump fails but the primary Extract continues to process data to the
local trail. There must be enough disk space to contain the data accumulation, or
the primary Extract will abend.

• For a trail at the target location, provide enough disk space to handle data
accumulation according to the purge rules set with the PURGEOLDEXTRACTS
parameter. Even with PURGEOLDEXTRACTS in use, data will always accumulate on
the target because it is transferred across the network faster than it can be applied
to the target database.

To prevent trail activity from interfering with business applications, assign a separate
disk or file system to contain the trail files. Trail files can reside on drives that are local
to the Oracle GoldenGate installation, or they can reside on NAS or SAN devices. In
an Oracle cluster, they can reside on ASM or DBFS storage.

12.5.2 Estimating Space for the Trails
The following are guidelines for estimating the amount of disk space that will be
required to store Oracle GoldenGate trail data.

1. Estimate the longest time that the network could be unavailable. Plan to store
enough data to withstand the longest possible outage, because otherwise you
will need to resynchronize the source and target data if the outage outlasts disk
capacity.

2. Estimate how much transaction log volume your business applications generate in
one hour.

3. Use the following formula to calculate the required disk space.

[log volume in one hour] x [number of hours downtime] x .4 = trail disk
space

This equation uses a multiplier of 40 percent because only about 40 percent of the
data in a transaction log is needed by Oracle GoldenGate.

Note:

This formula is a conservative estimate, and you should run tests once
you have configured Oracle GoldenGate to determine exactly how much
space you need.

Chapter 12
Creating a Trail

12-9

12.5.3 Adding a Trail
When you create, or add, a trail, you do not physically create any files on disk. The
files are created automatically by an Extract process. Rather, you specify the name of
the trail and associate it with the Extract group that writes to it.

To add a trail, issue the following command in GGSCI on the source system.

ADD {RMTTRAIL | EXTTRAIL} pathname, EXTRACT group
[, MEGABYTES n]

Where:

• RMTTRAIL specifies a trail on a remote system.

• EXTTRAIL specifies a trail on the local system.

– EXTTRAIL cannot be used for an Extract in PASSIVE mode.

– EXTTRAIL must be used to specify a local trail that is read by a data pump.

• pathname is the relative or fully qualified name of the trail, including a two-
character name that can be any two alphanumeric characters, for example
c:\ggs\dirdat\rt. Oracle GoldenGate appends a serial number to each trail
file as it is created during processing. Typically, trails are stored in the dirdat
sub-directory of the Oracle GoldenGate directory.

• EXTRACT group specifies the name of the Extract group that writes to this trail.
Only one Extract group can write to a trail.

• MEGABYTES n is an optional argument with which you can set the size, in
megabytes, of each trail file (default is 100).

Example 12-7 Creating a Local Trail

This example creates a local trail named /ggs/dirdat/lt for Extract group ext.

ADD EXTTRAIL /ggs/dirdat/lt, EXTRACT ext

Example 12-8 Creating a Remote Trail

This example creates a trail named c:\ggs\dirdat\rt for Extract group finance, with
each file sized at approximately 50 megabytes.

ADD RMTTRAIL c:\ggs\dirdat\rt, EXTRACT finance, MEGABYTES 200

12.6 Creating a Parameter File for Online Extraction
Follow these instructions to create a parameter file for an online Extract group. A
parameter file is not required for an alias Extract group.

1. In GGSCI on the source system, issue the following command.

EDIT PARAMS name

Where:

name is either the name of the Extract group that you created with the ADD EXTRACT
command or the fully qualified name of the parameter file if you defined an
alternate location when you created the group.

Chapter 12
Creating a Parameter File for Online Extraction

12-10

2. Enter the parameters in the order shown in the following table, starting a new
line for each parameter statement. Some parameters apply only for certain
configurations.

Parameter Description

EXTRACT group

• group is the name of the Extract
group that you created with the ADD
EXTRACT command.

Configures Extract as an online process with checkpoints.

[SOURCEDB dsn | container |
catalog]
[, USERIDALIAS alias options |
, USERID user, options]

Specifies database connection information.

SOURCEDB specifies the source data source name (DSN). See for more
information.

USERID and USERIDALIAS specify database credentials if required.

The database connection can be omitted if the group is a data pump
on an intermediary system that does not have a database. In this case,
there can be no column mapping or conversion performed.

RMTHOSTOPTIONS host,
MGRPORT port,
[, ENCRYPT algorithm KEYNAME
key_name]

Specifies the target system, the port where Manager is running, and
optional encryption of data across TCP/IP. Only required when sending
data over IP to a remote system (if ADD RMTTRAIL was used to
create the trail). Not required if the trail is on the local system (if ADD
EXTTRAIL was used).

Not valid for a passive Extract group.

ENCRYPTTRAIL algorithm Encrypts all trails that are specified after this entry.

DECRYPTTRAIL (For a data pump) Decrypts the data in the input trail. Use only if the
data pump must process the data before writing it to the output trail.

RMTTRAIL pathname |
EXTTRAIL pathname

• Use RMTTRAIL to specify the relative
or fully qualified name of a remote
trail created with the ADD RMTTRAIL
command.

• Use EXTTRAIL to specify the relative
or fully qualified name of a local
trail created with the ADD EXTTRAIL
command (to be read by a data
pump or VAM-sort Extract).

Specifies a trail. If specifying multiple trails, follow each designation with
the appropriate TABLE statements.

EXTTRAIL is not valid for a passive Extract group.

If trails or files will be of different versions, use the FORMAT option
of RMTTRAIL or EXTTRAIL. See EXTTRAILin Reference for Oracle
GoldenGate

LOGALLSUPCOLS Use when using integrated Replicat for an Oracle target, or when
using Conflict Detection and Resolution (CDR) support. Writes the
before images of scheduling columns to the trail. (Scheduling columns
are primary key, unique index, and foreign key columns.) See
LOGALLSUPCOLS in Reference for Oracle GoldenGate.

SOURCECATALOG Specifies a default container in an Oracle multitenant container
database or SEQUENCE statements. Enables the use of two-part
names (schema.object) where three-part names otherwise would be
required for those databases. You can use multiple instances of this
parameter to specify different default containers or catalogs for different
sets of TABLE or SEQUENCE parameters.

Chapter 12
Creating a Parameter File for Online Extraction

12-11

Parameter Description

SEQUENCE
[container.]owner.sequence;

Specifies the fully qualified name of an Oracle sequence to capture.
Include the container name if the database is a multitenant container
database (CDB).

TABLE [container. |
catalog.]owner.object;

Specifies the fully qualified name of an object or a fully qualified
wildcarded specification for multiple objects. If the database is an
Oracle multitenant container database, the object name must include
the name of the container or catalog unless SOURCECATALOG is
used. See Specifying Object Names in Oracle GoldenGate Input for
guidelines for specifying object names in parameter files.

CATALOGEXCLUDE

SCHEMAEXCLUDE

TABLEEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one another to exclude
specific objects from a wildcard specification in the associated TABLE
statement.

3. Enter any appropriate optional Extract parameters listed in the Oracle GoldenGate
Parameters in Reference for Oracle GoldenGate.

4. Save and close the parameter file.

Parameter Description

VAM library,
PARAMS ('param'
[, 'param'] [, ...])

Supplies the name of the library and parameters that
must be passed to the Oracle GoldenGate API, such as
the name of the TAM initialization file and the program
that interacts with the library as the callback library.

Example:

VAM vam.dll, PARAMS ('inifile',
'vamerge1.ini', 'callbacklib', 'extract.exe')

NA

12.7 Creating an Online Replicat Group
Before creating a Replicat group, you should evaluate which of the Replicat modes is
appropriate for your environment: classic mode (also known as nonintegrated mode in
Oracle environments), coordinated mode, and integrated mode.

Topics:

• About Classic Replicat Mode

• About Coordinated Replicat Mode

• Integrated Replicat Mode

• About Parallel Replicat Mode

• Understanding Replicat Processing in Relation to Parameter Changes

• About the Global Watermark

• Creating the Replicat Group

Chapter 12
Creating an Online Replicat Group

12-12

12.7.1 About Classic Replicat Mode
In classic mode, Replicat is a single-threaded process that uses standard SQL to
apply data to the target tables. In this mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs SQL statements that represent source database DML or DDL
transactions (in committed order).

• Applies the SQL to the target through the SQL interface that is supported for the
given target database, such as ODBC or the native database interface.

Figure 12-1 Classic Replicat

As shown in Figure 12-1, you can apply transactions in parallel with a classic Replicat,
but only by partitioning the workload across multiple Replicat processes. A parameter
file must be created for each Replicat.

To determine whether to use classic mode for any objects, you must determine
whether the objects in one Replicat group will ever have dependencies on objects
in any other Replicat group, transactional or otherwise. Not all workloads can be
partitioned across multiple Replicat groups and still preserve the original transaction
atomicity. For example, tables for which the workload routinely updates the primary
key cannot easily be partitioned in this manner. DDL replication (if supported for the
database) is not viable in this mode, nor is the use of some SQLEXEC or EVENTACTIONS
features that base their actions on a specific record.

If your tables do not have any foreign- key dependencies or updates to primary keys,
classic mode may be suitable. Classic mode requires less overhead than coordinated
mode.

For more information about using parallel Replicat groups, see Tuning the
Performance of Oracle GoldenGate.

Chapter 12
Creating an Online Replicat Group

12-13

12.7.2 About Coordinated Replicat Mode
In coordinated mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Processes operations sent to each thread in a committed order.

• Applies the SQL to the target through the SQL interface that is supported for the
given target database, such as ODBC or the native database interface.

The difference between classic mode and coordinated mode is that Replicat is multi-
threaded in coordinated mode. Within a single Replicat instance, multiple threads read
the trail independently and apply transactions in parallel. Each thread handles the
filtering, mapping, conversion, SQL construction, and error handling for its assigned
workload. A coordinator thread coordinates the transactions across threads to account
for dependencies among the threads.

The source transactions could be split across CR processes such that the integrity of
the total source transaction is not maintained. The portion of the transaction processed
by a CR process is done in committed order but the whole transaction across all CR
processes is not.

Coordinated Replicat allows for user-defined partitioning of the workload so as to
apply high volume transactions concurrently. In addition, it automatically coordinates
the execution of transactions that require coordination, such as DDL, and primary
key updates with THREADRANGE partitioning. Such a transaction is executed as one
transaction in the target with full synchronization: it waits until all prior transactions are
applied first, and all transactions after this barrier transaction have to wait until this
barrier transaction is applied.

Only one parameter file is required for a coordinated Replicat, regardless of the
number of threads. You use the THREAD or THREADRANGE option in the MAP statement
to specify which threads process the transactions for those objects, and you specify
the maximum number of threads when you create the Replicat group.

Chapter 12
Creating an Online Replicat Group

12-14

Figure 12-2 Coordinated Replicat

• About Barrier Transactions

• How Barrier Transactions are Processed

12.7.2.1 About Barrier Transactions
Barrier transactions are managed automatically in a coordinated Replicat
configuration. Barrier transactions are transactions that require coordination across
threads. Examples include DDL statements, transactions that include updates to
primary keys, and certain EVENTACTIONS actions.

Optionally, you can force other transactions to be treated like a barrier transaction
through the use of the COORDINATED keyword in a MAP statement. One use case for this
would be force a SQLEXEC to be executed in a manner similar to a serial execution.
This could be beneficial if the results can become ambiguous unless the state of the
target is consistent across all transactions.

Note:

Coordinated Replicat doesn't do dependency calculations for non-barrier
transactions when a mapped table is partitioned based on THNREADRANGE.
It relies on specified THREADRANGE columns to compute a hash value. It
partitions the incoming data based on the hash value and sends all the
records that match this hash value to same thread.

Chapter 12
Creating an Online Replicat Group

12-15

12.7.2.2 How Barrier Transactions are Processed
All threads converge and wait at the start of a barrier transaction. The barrier
transaction is suspended until the other threads reach its start position. If any
threads were already processing part of the barrier transaction, those threads perform
a rollback. Grouped transactions, such as those controlled by the BATCHSQL or
GROUPTRANSOPS parameters, are also rolled back and then reapplied until they reach
the start of the barrier transaction.

All of the threads converge and wait at the start of the next transaction after the
barrier transaction as well. The two synchronization points, before and after the barrier
transaction, ensure that metadata operations and EVENTACTIONS actions all occur in
the proper order relevant to the data operations.

Once the threads are synchronized at the start of the barrier transaction, the
barrier transaction is processed serially by the thread that has the lowest thread
ID among all of the threads specified in the MAP statements, and then parallel
processing across threads is resumed. You can force barrier transactions to be
processed through a specific thread, which is always thread 0, by specifying the
USEDEDICATEDCOORDINATIONTHREAD parameter in the Replicat parameter file.

12.7.3 Integrated Replicat Mode
In integrated mode, available for Oracle databases of version 11.2.0.4 or later, Replicat
leverages the apply processing functionality that is available within the target Oracle
database. In this mode, Replicat reads the trail, constructs logical change records that
represent source DML or DDL transactions, and transmits these records to an inbound
server in the Oracle target database. The inbound server applies the data to the target
database.

Note:

Integrated Replicat is an online process only. Do not use it to perform initial
loads.

12.7.4 About Parallel Replicat Mode
It takes into account dependencies between transactions, similar to Integrated
Replicat. The dependency computation, parallelism of the mapping and apply is
performed outside the database so can be off-loaded to another server. The
transaction integrity is maintained in this process. In addition, parallel Replicat
supports the parallel apply of large transactions by splitting a large transaction into
chunks and applying them in parallel.

Note:

For best performance for an OLTP workload, parallel Replicat in non-
integrated mode is recommended.

Chapter 12
Creating an Online Replicat Group

12-16

Only Oracle database supports parallel Replicat and integrated parallel Replicat.
However, parallel Replicat supports all databases when using the non-integrated
option.

To use parallel Replicat, you need to ensure that you have the following values, which
are also the default values:

• Metadata in the trail (which means you can't use parallel Replicat if your trails are
formatted below 12.1.

• You must have schedulding columns in your trail file.

• You must use UPDATERCORDFORMAT COMPACT.

With integrated parallel Replicat, the Replicat sends the LCRs to the inbound server,
which applies the data to the target database, and in regular parallel Replicat, Oracle
GoldenGate applies the LCR as a SQL statement directly to the database, similar to
how the other non-integrated Replicats work.

The components of parallel Replicat are:

• Mappers operate in parallel to read the trail, map trail records, convert the mapped
records to the Integrated Replicat LCR format, and send the LCRs to the Merger
for further processing. While one Mapper maps one set of transactions, the next
Mapper maps the next set of transactions. The the trail information is split and the
trail file is untouched because it orders trail information in order.

• Master processes have two threads, Collater and Scheduler. The Collater receives
mapped transactions from the Mappers and puts them back into trail order
for dependency calculation. The Scheduler calculates dependencies between
transactions, groups transactions into independent batches, and sends the
batches to the Appliers to be applied to the target database.

• Appliers reorder records within a batch for array execution. It applies the batch to
the target database and performs error handling. It also tracks applied transactions
in checkpoint tables.

Note:

Parallel Replicat requires that any foreign key columns are indexed.

12.7.5 Understanding Replicat Processing in Relation to Parameter
Changes

Changes to the object specifications in the Replicat configuration cannot be made to
affect transactions that are already applied, but only for those not yet applied. This is
an important consideration when using coordinated or integrated Replicat.

For a Replicat in classic mode, the boundary between applied and non-applied
transactions is a clean one, because transactions are applied serially. For a
coordinated or integrated Replicat, however, there is no single point in the trail that
marks applied and unapplied transactions, because transactions are being applied
asynchronously in parallel.

Chapter 12
Creating an Online Replicat Group

12-17

In coordinated or integrated modes, there are a low watermark, below which all
transactions were applied, and a high watermark above which no transactions were
applied. In between those boundaries there may be transactions that may or may not
have been applied, depending on the progress of individual threads. As a result, if
Replicat is forced changes to object specifications in the Replicat configuration may
be reflected unevenly in the target after Replicat is restarted. Examples of parameter
changes for which this applies are changes to MAP mappings, FILTER clauses, and
EXCLUDE parameters.

Changes to the Replicat configuration should not be made after Replicat abends or
is forcibly terminated. Replicat should be allowed to recover to its last checkpoint
after startup. For coordinated Replicat, you can follow the administrative procedures in
Administering a Coordinated Replicat Configuration.. Once the recovery is complete,
Replicat can be shut down gracefully with the STOP REPLICAT command, and then you
can make the changes to the object specifications.

12.7.6 About the Global Watermark
A clean shutdown of a Replicat ensures that all threads stop at the same transaction
boundary in the trail, known as the global watermark. This is defined as the
synchronized point where all records before this position were either committed or
ignored by all of their respective threads. If a clean shutdown is not possible, you
can use the SYNCHRONIZE REPLICAT command to return all of the threads to the
position of the thread that made the most recent checkpoint. This command is valid for
coordinated, integrated, and parallel Replicats. See Synchronizing Threads After an
Unclean Stop for more information about recovering a coordinated Replicat group.

Note:

Coordinated Replicat is an online process only. Do not use it to perform initial
loads.

12.7.7 Creating the Replicat Group
To create an online Replicat group, run GGSCI on the target system and issue the ADD
REPLICAT command. Separate all command arguments with a comma.

ADD REPLICAT group, EXTTRAIL path
[, {INTEGRATED | COORDINATED [MAXTHREADS number]}]
[, BEGIN start_point | , EXTSEQNO seqno, EXTRBA rba]
[, CHECKPOINTTABLE owner.table]
[, NODBCHECKPOINT]
[, PARAMS path]
[, REPORT path]

Where:

• group is the name of the Replicat group. A group name is required. See Naming
Conventions for Processes for Oracle GoldenGate naming conventions.

• EXTTRAIL path is the relative or fully qualified name of the trail that you defined
with the ADD RMTTRAIL command.

Chapter 12
Creating an Online Replicat Group

12-18

• INTEGRATED specified that this Replicat group will operate in integrated mode. This
mode is available for Oracle databases..

• COORDINATED specifies that this Replicat group will operate in coordinated mode.
MAXTHREADS specifies the maximum number of threads allowed for this group. Valid
values are from 1 through 500. MAXTHREADS is optional. The default number of
threads without MAXTHREADS is 25.

Note:

Each Replicat thread is considered a Replicat group in the context of
the MAXGROUPS parameter. MAXGROUPS controls the maximum number of
process groups allowed in the Oracle GoldenGate instance. MAXTHREADS
plus the number of other process groups in the Oracle GoldenGate
instance must not exceed the value set with MAXGROUPS (default is 1000).

• BEGIN start_point defines an online Replicat group by establishing an initial
checkpoint and start point for processing. Use one of the following:

– NOW to begin replicating changes timestamped at the point when the ADD
REPLICAT command is executed to create the group.

– YYYY-MM-DD HH:MM[:SS[.CCCCCC]] as the format for specifying an exact
timestamp as the begin point.

• EXTSEQNO seqno, EXTRBA rba specifies the sequence number of the file in a trail
in which to begin reading data and the relative byte address within that file. By
default, processing begins at the beginning of a trail unless this option is used. For
the sequence number, specify the number, but not any zeroes used for padding.
For example, if the trail file is c:\ggs\dirdat\aa000000026, specify EXTSEQNO 26.
Contact Oracle Support before using this option.

• CHECKPOINTTABLE owner.table specifies the owner and name of a checkpoint table
other than the default specified in the GLOBALS file. To use this argument, you must
add the checkpoint table to the database with the ADD CHECKPOINTTABLE command
(see Creating a Checkpoint Table).

• NODBCHECKPOINT specifies that this Replicat group will not use a checkpoint table.

• PARAMS path is required if the parameter file for this group will be stored in a
location other than the dirprm sub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

• REPORT path is required if the process report for this group will be stored in a
location other than the dirrpt sub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

Example 12-9 Creating an Online Replicat Group

This example creates an online Replicat group named finance and specifies a
trail of c:\ggs\dirdat\rt. The parameter file is stored in the alternate location of
\ggs\params, and the report file is stored in its default location.

ADD REPLICAT finance, EXTTRAIL c:\ggs\dirdat\rt, PARAMS \ggs\params

Chapter 12
Creating an Online Replicat Group

12-19

12.8 Creating a Parameter File for Online Replication
Follow these instructions to create a parameter file for an online Replicat group.

1. In GGSCI on the target system, issue the following command.

EDIT PARAMS name

Where:

name is either the name of the Replicat group that you created with the ADD
REPLICAT command or the fully qualified name of the parameter file if you defined
an alternate location when you created the group.

2. Enter the parameters listed in Table 12-1 in the order shown, starting a new line for
each parameter statement.

Table 12-1 Online Change-Replication Parameters

Parameter Description

REPLICAT group

• group is the name of the Replicat group that you
created with the ADD REPLICAT command.

Configures Replicat as an online process with
checkpoints.

{SOURCEDEFS path} |
ASSUMETARGETDEFS

• Use SOURCEDEFS if the source and target tables
have different definitions. Specify the source data-
definitions file generated by DEFGEN.

• Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

Specifies how to interpret data definitions.

For Oracle databases that use multi-byte character sets,
you must use SOURCEDEFS (with a DEFGEN-generated
definitions file) if the source semantics setting is in
bytes and the target is in characters. This is required
even when the source and target data definitions are
identical.

[DEFERAPPLYINTERVAL n unit]

• n is a numeric value for the amount of time to delay
before applying transactions. Minimum is set by the
EOFDELAY parameter. Maximum is seven days.

• unit can be:

S | SEC | SECS | SECOND | SECONDS | MIN
| MINS | MINUTE | MINUTES | HOUR | HOURS
| DAY | DAYS

Optional. Specifies an amount of time for Replicat
to wait before applying its transactions to the target
system.

[TARGETDB dsn | container | catalog]
[, USERIDALIAS alias options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target datasource name (DSN).
See TARGETDB in Reference for Oracle GoldenGatefor
more information .

USERID and USERIDALIAS specify database credentials
if required.

Chapter 12
Creating a Parameter File for Online Replication

12-20

Table 12-1 (Cont.) Online Change-Replication Parameters

Parameter Description

HANDLECOLLISIONS Specifies collision handling. Use only if you are
performing an initial load concurrently with starting
online processing and the source database will remain
active during the load. HANDLECOLLISIONS resolves
the results of the copy with the ongoing replicated
transactional changes. It resolves insert operations for
which the row already exists and update and delete
operations for which the row does not exist. It can be
used globally for all MAP statements in a parameter file
or within a MAP statement, or both.

SOURCECATALOG Specifies a default container in a source Oracle
multitenant container database. Enables the use of two-
part names (schema.object) where three-part names
otherwise would be required for those databases. You
can use multiple instances of this parameter to specify
different default containers or catalogs for different sets
of MAP parameters.

MAP [container. | catalog.]owner.object,
TARGET owner.object[, DEF template]
[THREAD (thread_ID)]
[THREADRANGE (thread_range[, column_list])]
[COORDINATED]
;

Specifies a relationship between a source object or
objects and a target object or objects. MAP specifies the
source object, and TARGET specifies the target object.

For the source object, specify the fully qualified
name of the object or a fully qualified wildcarded
specification for multiple objects. For an Oracle
multitenant container database the source object name
must include the name of the container or catalog
unless SOURCECATALOG is used.

For the target object, specify only the owner.object
components of the name, regardless of the type of
database. Replicat can only connect to one Oracle
container. Use a separate Replicat process for each
container or catalog to which you want to apply data.

SeeSpecifying Object Names in Oracle GoldenGate
Input for guidelines for specifying object names in
parameter files.

The THREAD, THREADRANGE, and COORDINATED options
are valid for Replicat when in coordinated mode. They
enable you to partition the workload to one or more
specific Replicat threads. See in Reference for Oracle
GoldenGatefor syntax and usage.

The DEF option specifies a definitions template.

CATALOGEXCLUDE

SCHEMAEXCLUDE

MAPEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific source objects from a
wildcard specification in the associated MAP statement.

1. Enter any appropriate optional Replicat parameters listed in the Reference for
Oracle GoldenGate.

2. Save and close the file.

Chapter 12
Creating a Parameter File for Online Replication

12-21

Note:

If using integrated Replicat for Oracle, see Understanding Replicat
Processing in Relation to Parameter Changes for important information
about making configuration changes to Replicat once processing is started.

Chapter 12
Creating a Parameter File for Online Replication

12-22

13
Handling Processing Errors

This chapter describes how to configure the Oracle GoldenGate processes to handle
errors.
Oracle GoldenGate reports processing errors in several ways by means of its
monitoring and reporting tools. For more information about these tools, see Monitoring
Oracle GoldenGate Processing.

Topics:

• Overview of Oracle GoldenGate Error Handling

• Handling Extract Errors

• Handling Replicat Errors during DML Operations

• Handling Replicat errors during DDL Operations

• Handling TCP/IP Errors

• Maintaining Updated Error Messages

• Resolving Oracle GoldenGate Errors

13.1 Overview of Oracle GoldenGate Error Handling
Oracle GoldenGate provides error-handling options for:

• Extract

• Replicat

• TCP/IP

13.2 Handling Extract Errors
There is no specific parameter to handle Extract errors when DML operations are
being extracted, but Extract does provide a number of parameters that can be used
to prevent anticipated problems. These parameters handle anomalies that can occur
during the processing of DML operations, such as what to do when a row to be
fetched cannot be located, or what to do when the transaction log is not available. The
following is a partial list of these parameters.

• FETCHOPTIONS

• WARNLONGTRANS

• DBOPTIONS

• TRANLOGOPTIONS

To handle extraction errors that relate to DDL operations, use the DDLERROR parameter.

For a complete parameter list, see Reference for Oracle GoldenGate.

13-1

13.3 Handling Replicat Errors during DML Operations
To control the way that Replicat responds to an error during one of its DML
statements, use the REPERROR parameter in the Replicat parameter file. You can
use REPERROR as a global parameter or as part of a MAP statement. You can handle
most errors in a default fashion (for example, to cease processing) with DEFAULT and
DEFAULT2 options, and also handle other errors in a specific manner.

The following comprise the range of REPERROR responses:

• ABEND: roll back the transaction and stop processing.

• DISCARD: log the error to the discard file and continue processing.

• EXCEPTION: send the error for exceptions processing. See Handling Errors as
Exceptions for more information.

• IGNORE: ignore the error and continue processing.

• RETRYOP [MAXRETRIES n]: retry the operation, optionally up to a specific number of
times.

• TRANSABORT [, MAXRETRIES n] [, DELAY[C]SECS n]: abort the transaction and
reposition to the beginning, optionally up to a specific number of times at specific
intervals.

• RESET: remove all previous REPERROR rules and restore the default of ABEND.

• TRANSDISCARD: discard the entire replicated source transaction if any operation
within that transaction, including the commit, causes a Replicat error that is listed
in the error specification. This option is useful when integrity constraint checking is
disabled on the target.

• TRANSEXCEPTION: perform exceptions mapping for every record in the replicated
source transaction, according to its exceptions-mapping statement, if any
operation within that transaction (including the commit) causes a Replicat error
that is listed in the error specification.

Most options operate on the individual record that generated an error, and Replicat
processes the other, successful operations in the transaction. The exceptions are
TRANSDISCARD and TRANSEXCEPTION: These options affect all records in a transaction if
any record in that transaction generates an error. (The ABEND option also applies to the
entire transaction, but does not apply error handling.)

See Reference for Oracle GoldenGate for REPERROR syntax and usage.

• Handling Errors as Exceptions

13.3.1 Handling Errors as Exceptions
When the action of REPERROR is EXCEPTION or TRANSEXCEPTION, you can map the
values of operations that generate errors to an exceptions table and, optionally, map
other information about the error that can be used to resolve the error. See About the
Exceptions Table.

To map the exceptions to the exceptions table, use either of the following options of
the MAP parameter:

• MAP with EXCEPTIONSONLY

Chapter 13
Handling Replicat Errors during DML Operations

13-2

• MAP with MAPEXCEPTION

• Using EXCEPTIONSONLY

• Using MAPEXCEPTION

• About the Exceptions Table

13.3.1.1 Using EXCEPTIONSONLY
EXCEPTIONSONLY is valid for one pair of source and target tables that are explicitly
named and mapped one-to-one in a MAP statement; that is, there cannot be wildcards.
To use EXCEPTIONSONLY, create two MAP statements for each source table that you
want to use EXCEPTIONSONLY for on the target:

• The first, a standard MAP statement, maps the source table to the actual target
table.

• The second, an exceptions MAP statement, maps the source table to the
exceptions table (instead of to the target table). An exceptions MAP statement
executes immediately after an error on the source table to send the row values to
the exceptions table.

To identify a MAP statement as an exceptions MAP statement, use the
INSERTALLRECORDS and EXCEPTIONSONLY options. The exceptions MAP statement
must immediately follow the regular MAP statement that contains the same source
table. Use a COLMAP clause in the exceptions MAP statement if the source and
exceptions-table columns are not identical, or if you want to map additional
information to extra columns in the exceptions table, such as information that is
captured by means of column-conversion functions or SQLEXEC.

For more information about these parameters, see Reference for Oracle GoldenGate.

• A regular MAP statement that maps the source table ggs.equip_account to its
target table equip_account2.

• An exceptions MAP statement that maps the same source table to the exceptions
table ggs.equip_account_exception.

In this case, four extra columns were created, in addition to the same columns that the
table itself contains:

DML_DATE
OPTYPE
DBERRNUM
DBERRMSG

To populate the DML_DATE column, the @DATENOW column-conversion function is used
to get the date and time of the failed operation, and the result is mapped to the
column. To populate the other extra columns, the @GETENV function is used to return
the operation type, database error number, and database error message.

The EXCEPTIONSONLY option of the exceptions MAP statement causes the statement to
execute only after a failed operation on the source table. It prevents every operation
from being logged to the exceptions table.

The INSERTALLRECORDS parameter causes all failed operations for the specified source
table, no matter what the operation type, to be logged to the exceptions table as
inserts.

Chapter 13
Handling Replicat Errors during DML Operations

13-3

Note:

There can be no primary key or unique index restrictions on the exception
table. Uniqueness violations are possible in this scenario and would generate
errors.

Example 13-1 EXCEPTIONSONLY

This example shows how to use REPERROR with EXCEPTIONSONLY and an exceptions
MAP statement. This example only shows the parameters that relate to REPERROR; other
parameters not related to error handling are also required for Replicat.

REPERROR (DEFAULT, EXCEPTION)
MAP ggs.equip_account, TARGET ggs.equip_account2,
COLMAP (USEDEFAULTS);
MAP ggs.equip_account, TARGET ggs.equip_account_exception,
EXCEPTIONSONLY,
INSERTALLRECORDS
COLMAP (USEDEFAULTS,
DML_DATE = @DATENOW (),
OPTYPE = @GETENV ('LASTERR', 'OPTYPE'),
DBERRNUM = @GETENV ('LASTERR', 'DBERRNUM'),
DBERRMSG = @GETENV ('LASTERR', 'DBERRMSG'));

In this example, the REPERROR parameter is set for DEFAULT error handling, and the
EXCEPTION option causes the Replicat process to treat failed operations as exceptions
and continue processing.

13.3.1.2 Using MAPEXCEPTION
MAPEXCEPTION is valid when the names of the source and target tables in the
MAP statement are wildcarded. Place the MAPEXCEPTION clause in the regular MAP
statement, the same one where you map the source tables to the target tables.
Replicat maps all operations that generate errors from all of the wildcarded tables to
the same exceptions table; therefore, the exceptions table should contain a superset
of all of the columns in all of the wildcarded tables.

Because you cannot individually map columns in a wildcard configuration, use the
COLMAP clause with the USEDEFAULTS option to handle the column mapping for the
wildcarded tables (or use the COLMATCH parameter if appropriate), and use explicit
column mappings to map any additional information, such as that captured with
column-conversion functions or SQLEXEC.

When using MAPEXCEPTION, include the INSERTALLRECORDS parameter in the
MAPEXCEPTION clause. INSERTALLRECORDS causes all operation types to be applied to
the exceptions table as INSERT operations. This is required to keep an accurate record
of the exceptions and to prevent integrity errors on the exceptions table.

For more information about these parameters, see Reference for Oracle GoldenGate.

Example 13-2 MAPEXCEPTION

This is an example of how to use MAPEXCEPTION for exceptions mapping. The MAP and
TARGET clauses contain wildcarded source and target table names. Exceptions that

Chapter 13
Handling Replicat Errors during DML Operations

13-4

occur when processing any table with a name beginning with TRX are captured to the
fin.trxexceptions table using the designated mapping.

MAP src.trx*, TARGET trg.*,
MAPEXCEPTION (TARGET fin.trxexceptions,
INSERTALLRECORDS,
COLMAP (USEDEFAULTS,
ACCT_NO = ACCT_NO,
OPTYPE = @GETENV ('LASTERR', 'OPTYPE'),
DBERR = @GETENV ('LASTERR', 'DBERRNUM'),
DBERRMSG = @GETENV ('LASTERR', 'DBERRMSG')
)
);

13.3.1.3 About the Exceptions Table
Use an exceptions table to capture information about an error that can be used for
such purposes as troubleshooting your applications or configuring them to handle the
error. At minimum, an exceptions table should contain enough columns to receive the
entire row image from the failed operation. You can define extra columns to contain
other information that is captured by means of column-conversion functions, SQLEXEC,
or other external means.

To ensure that the trail record contains values for all of the columns that you map to
the exceptions table, you can use either the LOGALLSUPCOLS parameter or the following
parameters in the Extract parameter file:

• Use the NOCOMPRESSDELETES parameter so that all columns of a row are written to
the trail for DELETE operations.

• Use the GETUPDATEBEFORES parameter so that Extract captures the before image of
a row and writes them to the trail.

13.4 Handling Replicat errors during DDL Operations
To control the way that Replicat responds to an error that occurs for a DDL operation
on the target, use the DDLERROR parameter in the Replicat parameter file. For more
information, see Reference for Oracle GoldenGate.

13.5 Handling TCP/IP Errors
To provide instructions for responding to TCP/IP errors, use the TCPERRS file. This file
is in the Oracle GoldenGate directory

Table 13-1 TCPERRS Columns

Column Description

Error
Specifies a TCP/IP error for which you are defining a response.

Response
Controls whether or not Oracle GoldenGate tries to connect again after the
defined error. Valid values are either RETRY or ABEND.

Delay
Controls how long Oracle GoldenGate waits before attempting to connect again.

Chapter 13
Handling Replicat errors during DDL Operations

13-5

Table 13-1 (Cont.) TCPERRS Columns

Column Description

Max Retries
Controls the number of times that Oracle GoldenGate attempts to connect again
before aborting.

If a response is not explicitly defined in the TCPERRS file, Oracle GoldenGate responds
to TCP/IP errors by abending.

Example 13-3 TCPERRS File

TCP/IP error handling parameters
Default error response is abend
#
Error Response Delay(csecs) Max Retries

ECONNABORTED RETRY 1000 10
ECONNREFUSED RETRY 1000 12
ECONNRESET RETRY 500 10
ENETDOWN RETRY 3000 50
ENETRESET RETRY 1000 10
ENOBUFS RETRY 100 60
ENOTCONN RETRY 100 10
EPIPE RETRY 500 10
ESHUTDOWN RETRY 1000 10
ETIMEDOUT RETRY 1000 10
NODYNPORTS RETRY 100 10

The TCPERRS file contains default responses to basic errors. To alter the instructions
or add instructions for new errors, open the file in a text editor and change any of the
values in the columns shown in Table 13-1:

13.6 Maintaining Updated Error Messages
The error, information, and warning messages that Oracle GoldenGate processes
generate are stored in a data file named ggmessage.dat in the Oracle GoldenGate
installation directory. The version of this file is checked upon process startup and must
be identical to that of the process in order for the process to operate.

13.7 Resolving Oracle GoldenGate Errors
To get help with specific troubleshooting issues, go to My Oracle Support at http://
support.oracle.com and search the Knowledge Base.

Chapter 13
Maintaining Updated Error Messages

13-6

http://support.oracle.com
http://support.oracle.com

14
Customizing Oracle GoldenGate
Processing

This chapter describes how to customize Oracle GoldenGate processing.
Topics:

• Executing Commands, Stored Procedures, and Queries with SQLEXEC

• Using Oracle GoldenGate Macros to Simplify and Automate Work

• Using User Exits to Extend Oracle GoldenGate Capabilities

• Using the Oracle GoldenGate Event Marker System to Raise Database Events

14.1 Executing Commands, Stored Procedures, and
Queries with SQLEXEC

The SQLEXEC parameter of Oracle GoldenGate enables Extract and Replicat to
communicate with the database to do the following:

• Execute a database command, stored procedure, or SQL query to perform a
database function, return results (SELECT statements) or perform DML (INSERT,
UPDATE, DELETE) operations.

• Retrieve output parameters from a procedure for input to a FILTER or COLMAP
clause.

Note:

SQLEXEC provides minimal globalization support. To use SQLEXEC in the
capture parameter file of the source capture, make sure that the client
character set in the source .prm file is either the same or a superset of the
source database character set.

• Performing Processing with SQLEXEC

• Using SQLEXEC

• Executing SQLEXEC within a TABLE or MAP Statement

• Executing SQLEXEC as a Standalone Statement

• Using Input and Output Parameters

• Handling SQLEXEC Errors

• Additional SQLEXEC Guidelines

14-1

14.1.1 Performing Processing with SQLEXEC
SQLEXEC extends the functionality of both Oracle GoldenGate and the database by
allowing Oracle GoldenGate to use the native SQL of the database to execute custom
processing instructions.

• Stored procedures and queries can be used to select or insert data into the
database, to aggregate data, to denormalize or normalize data, or to perform
any other function that requires database operations as input. Oracle GoldenGate
supports stored procedures that accept input and those that produce output.

• Database commands can be issued to perform database functions required to
facilitate Oracle GoldenGate processing, such as disabling triggers on target
tables and then enabling them again.

14.1.2 Using SQLEXEC
The SQLEXEC parameter can be used as follows:

• as a clause of a TABLE or MAP statement

• as a standalone parameter at the root level of the Extract or Replicat parameter
file.

14.1.3 Executing SQLEXEC within a TABLE or MAP Statement
When used within a TABLE or MAP statement, SQLEXEC can pass and accept
parameters. It can be used for procedures and queries, but not for database
commands.

Syntax

This syntax executes a procedure within a TABLE or MAP statement.

SQLEXEC (SPNAME sp_name,
[ID logical_name,]
{PARAMS param_spec | NOPARAMS})

Argument Description

SPNAME
Required keyword that begins a clause to execute a stored
procedure.

sp_name
Specifies the name of the stored procedure to execute.

ID logical_name
Defines a logical name for the procedure. Use this option to
execute the procedure multiple times within a TABLE or MAP
statement. Not required when executing a procedure only once.

PARAMS param_spec |
NOPARAMS

Specifies whether or not the procedure accepts parameters. One
of these options must be used (see Using Input and Output
Parameters).

Syntax

This syntax executes a query within a TABLE or MAP statement.

Chapter 14
Executing Commands, Stored Procedures, and Queries with SQLEXEC

14-2

SQLEXEC (ID logical_name, QUERY ' query ',
{PARAMS param_spec | NOPARAMS})

Argument Description

ID logical_name
Defines a logical name for the query. A logical name is
required in order to extract values from the query results. ID
logical_name references the column values returned by the
query.

QUERY ' sql_query '
Specifies the SQL query syntax to execute against the database.
It can either return results with a SELECT statement or change
the database with an INSERT, UPDATE, or DELETE statement.
The query must be within single quotes and must be contained
all on one line. Specify case-sensitive object names the way they
are stored in the database, such as within quotes for Oracle
case-sensitive names.

SQLEXEC 'SELECT "col1" from "schema"."table"'

PARAMS param_spec |
NOPARAMS

Defines whether or not the query accepts parameters. One
of these options must be used (see Using Input and Output
Parameters).

If you want to execute a query on a table residing on a different database than the
current database, then the different database name has to be specified with the table.
The delimiter between the database name and the tablename should be a colon (:).
The following are some example use cases:

select col1 from db1:tab1
select col2 from db2:schema2.tab2
select col3 from tab3
select col3 from schema4.tab4

14.1.4 Executing SQLEXEC as a Standalone Statement
When used as a standalone parameter statement in the Extract or Replicat parameter
file, SQLEXEC can execute a stored procedure, query, or database command. As
such, it need not be tied to any specific table and can be used to perform general
SQL operations. For example, if the Oracle GoldenGate database user account is
configured to time-out when idle, you could use SQLEXEC to execute a query at a
defined interval, so that Oracle GoldenGate does not appear idle. As another example,
you could use SQLEXEC to issue an essential database command, such as to disable
target triggers. A standalone SQLEXEC statement cannot accept input parameters or
return output parameters.

Parameter syntax Purpose

SQLEXEC 'call procedure_name()'
Execute a stored procedure

SQLEXEC 'sql_query'
Execute a query

SQLEXEC 'database_command'
Execute a database command

Chapter 14
Executing Commands, Stored Procedures, and Queries with SQLEXEC

14-3

Argument Description

'call
procedure_name ()'

Specifies the name of a stored procedure to execute. The statement
must be enclosed within single quotes.

Example:

SQLEXEC 'call prc_job_count ()'

'sql_query'
Specifies the name of a query to execute. The query must be
contained all on one line and enclosed within single quotes.

Specify case-sensitive object names the way they are stored in the
database, such as within double quotes for Oracle object names that
are case-sensitive.

SQLEXEC 'SELECT "col1" from "schema"."table"'

'database_command'
Specifies a database command to execute. Must be a valid command
for the database.

SQLEXEC provides options to control processing behavior, memory usage, and error
handling. For more information, see Reference for Oracle GoldenGate.

14.1.5 Using Input and Output Parameters
Oracle GoldenGate provides options for passing input and output values to and from a
procedure or query that is executed with SQLEXEC within a TABLE or MAP statement.

• Passing Values to Input Parameters

• Passing Values to Output Parameters

• SQLEXEC Examples Using Parameters

14.1.5.1 Passing Values to Input Parameters
To pass data values to input parameters within a stored procedure or query, use the
PARAMS option of SQLEXEC.

Syntax

PARAMS ([OPTIONAL | REQUIRED] param = {source_column | function}
[, ...])

Where:

• OPTIONAL indicates that a parameter value is not required for the SQL to execute.
If a required source column is missing from the database operation, or if a column-
conversion function cannot complete successfully because a source column is
missing, the SQL executes anyway.

• REQUIRED indicates that a parameter value must be present. If the parameter value
is not present, the SQL will not be executed.

• param is one of the following:

– For a stored procedure, it is the name of any parameter in the procedure that
can accept input, such as a column in a lookup table.

Chapter 14
Executing Commands, Stored Procedures, and Queries with SQLEXEC

14-4

– For an Oracle query, it is the name of any input parameter in the query
excluding the leading colon. For example, :param1 would be specified as
param1 in the PARAMS clause.

– For a non-Oracle query, it is pn, where n is the number of the parameter within
the statement, starting from 1. For example, in a query with two parameters,
the param entries are p1 and p2.

• {source_column | function} is the column or Oracle GoldenGate conversion
function that provides input to the procedure.

14.1.5.2 Passing Values to Output Parameters
To pass values from a stored procedure or query as input to a FILTER or COLMAP
clause, use the following syntax:

Syntax

{procedure_name | logical_name}.parameter

Where:

• procedure_name is the actual name of the stored procedure. Use this argument
only if executing a procedure one time during the life of the current Oracle
GoldenGate process.

• logical_name is the logical name specified with the ID option of SQLEXEC. Use this
argument if executing a query or a stored procedure that will be executed multiple
times.

• parameter is either the name of the parameter or RETURN_VALUE, if extracting
returned values.

14.1.5.3 SQLEXEC Examples Using Parameters
These examples use stored procedures and queries with input and output parameters.

Note:

Additional SQLEXEC options are available for use when a procedure or query
includes parametes. See the full SQLEXEC documentation in Reference for
Oracle GoldenGate.

Example 14-1 SQLEXEC with a Stored Procedure

This example uses SQLEXEC to run a stored procedure named LOOKUP that performs
a query to return a description based on a code. It then maps the results to a target
column named NEWACCT_VAL.

CREATE OR REPLACE PROCEDURE LOOKUP
(CODE_PARAM IN VARCHAR2, DESC_PARAM OUT VARCHAR2)
BEGIN
 SELECT DESC_COL
 INTO DESC_PARAM
 FROM LOOKUP_TABLE

Chapter 14
Executing Commands, Stored Procedures, and Queries with SQLEXEC

14-5

 WHERE CODE_COL = CODE_PARAM
END;

Contents of MAP statement:

MAP sales.account, TARGET sales.newacct, &
 SQLEXEC (SPNAME lookup, PARAMS (code_param = account_code)), &
 COLMAP (newacct_id = account_id, newacct_val = lookup.desc_param);

SQLEXEC executes the LOOKUP stored procedure. Within the SQLEXEC clause, the PARAMS
(code_param = account_code) statement identifies code_param as the procedure
parameter to accept input from the account_code column in the account table.

Replicat executes the LOOKUP stored procedure prior to executing the column map, so
that the COLMAP clause can extract and map the results to the newacct_val column.

Example 14-2 SQLEXEC with a Query

This example implements the same logic as used in the previous example, but it
executes a SQL query instead of a stored procedure and uses the @GETVAL function in
the column map.

A query must be on one line. To split an Oracle GoldenGate parameter statement into
multiple lines, an ampersand (&) line terminator is required.

Query for an Oracle database:

MAP sales.account, TARGET sales.newacct, &
SQLEXEC (ID lookup, &
QUERY 'select desc_col desc_param from lookup_table where code_col
= :code_param', &
PARAMS (code_param = account_code)), &
COLMAP (newacct_id = account_id, newacct_val = &
@getval (lookup.desc_param));

Query for a non-Oracle database:

MAP sales.account, TARGET sales.newacct, &
SQLEXEC (ID lookup, &
QUERY 'select desc_col desc_param from lookup_table where code_col = ?', &
PARAMS (p1 = account_code)), &
COLMAP (newacct_id = account_id, newacct_val = &
@getval (lookup.desc_param));

14.1.6 Handling SQLEXEC Errors
There are two types of error conditions to consider when implementing SQLEXEC:

• The column map requires a column that is missing from the source database
operation. This can occur for an update operation if the database only logs
the values of columns that changed, rather than all of the column values. By
default, when a required column is missing, or when an Oracle GoldenGate
column-conversion function results in a "column missing" condition, the stored
procedure does not execute. Subsequent attempts to extract an output parameter
from the stored procedure results in a "column missing condition" in the COLMAP or
FILTER clause.

• The database generates an error.

Chapter 14
Executing Commands, Stored Procedures, and Queries with SQLEXEC

14-6

• Handling Missing Column Values

• Handling Database Errors

14.1.6.1 Handling Missing Column Values
Use the @COLTEST function to test the results of the parameter that was passed, and
then map an alternative value for the column to compensate for missing values, if
desired. Otherwise, to ensure that column values are available, you can use the
FETCHCOLS or FETCHCOLSEXCEPT option of the TABLE parameter to fetch the values from
the database if they are not present in the log. As an alternative to fetching columns,
you can enable supplemental logging for those columns.

14.1.6.2 Handling Database Errors
Use the ERROR option in the SQLEXEC clause to direct Oracle GoldenGate to respond in
one of the following ways:

Table 14-1 ERROR Options

Action Description

IGNORE
Causes Oracle GoldenGate to ignore all errors associated with the stored
procedure or query and continue processing. Any resulting parameter
extraction results in a "column missing" condition. This is the default.

REPORT
Ensures that all errors associated with the stored procedure or query are
reported to the discard file. The report is useful for tracing the cause of the
error. It includes both an error description and the value of the parameters
passed to and from the procedure or query. Oracle GoldenGate continues
processing after reporting the error.

RAISE Handles errors according to rules set by a REPERROR parameter specified in the
Replicat parameter file. Oracle GoldenGate continues processing other stored
procedures or queries associated with the current TABLE or MAP statement
before processing the error.

FINAL Performs in a similar way to RAISE except that when an error associated with
a procedure or query is encountered, any remaining stored procedures and
queries are bypassed. Error processing is called immediately after the error.

FATAL
Causes Oracle GoldenGate to abend immediately upon encountering an error
associated with a procedure or query.

14.1.7 Additional SQLEXEC Guidelines
Observe the following SQLEXEC guidelines:

• Up to 20 stored procedures or queries can be executed per TABLE or MAP entry.
They execute in the order listed in the parameter statement.

• A database login by the Oracle GoldenGate user must precede the SQLEXEC
clause. Use the SOURCEDB and/or USERID or USERIDALIAS parameter in the Extract
parameter file or the TARGETDB and/or USERID or USERIDALIAS parameter in
the Replicat parameter file, as needed for the database type and configured
authentication method.

• The SQL is executed by the Oracle GoldenGate user. This user must have the
privilege to execute stored procedures and call RDBM-supplied procedures.

Chapter 14
Executing Commands, Stored Procedures, and Queries with SQLEXEC

14-7

• Database operations within a stored procedure or query are committed in same
context as the original transaction.

• Do not use SQLEXEC to update the value of a primary key column. If SQLEXEC is
used to update the value of a key column, then the Replicat process will not be
able to perform a subsequent update or delete operation, because the original
key value will be unavailable. If a key value must be changed, you can map
the original key value to another column and then specify that column with the
KEYCOLS option of the TABLE or MAP parameter.

• For DB2, Oracle GoldenGate uses the ODBC SQLExecDirect function to execute
a SQL statement dynamically. This means that the connected database server
must be able to prepare the statement dynamically. ODBC prepares the SQL
statement every time it is executed (at the requested interval). Typically, this
does not present a problem to Oracle GoldenGate users. See the IBM DB2
documentation for more information.

• Do not use SQLEXEC for objects being processing by a data-pump Extract in pass-
through mode.

• All object names in a SQLEXEC statement must be fully qualified with their two-part
or three-part names, as appropriate for the database.

• All objects that are affected by a SQLEXEC stored procedure or query must exist
with the correct structures prior to the execution of the SQL. Consequently, DDL
on these objects that affects structure (such as CREATE or ALTER) must happen
before the SQLEXEC executes.

• All objects affected by a standalone SQLEXEC statement must exist before the
Oracle GoldenGate processes start. Because of this, DDL support must be
disabled for those objects; otherwise, DDL operations could change the structure
or delete the object before the SQLEXEC procedure or query executes on it.

14.2 Using Oracle GoldenGate Macros to Simplify and
Automate Work

You can use Oracle GoldenGate macros in parameter files to configure and reuse
parameters, commands, and conversion functions. reducing the amount of text you
must enter to do common tasks. A macro is a built-in automation tool that enables you
to call a stored set of processing steps from within the Oracle GoldenGate parameter
file. A macro can consist of a simple set of frequently used parameter statements to
a complex series of parameter substitutions, calculations, or conversions. You can call
other macros from a macro. You can store commonly used macros in a library, and
then call the library rather than call the macros individually.

Oracle GoldenGate macros work with the following parameter files:

• DEFGEN

• Extract

• Replicat

Do not use macros to manipulate data for tables that are being processed by a
data-pump Extract in pass-through mode.

There are two steps to using macros:

Defining a Macro

Chapter 14
Using Oracle GoldenGate Macros to Simplify and Automate Work

14-8

Calling a Macro

Topics:

• Defining a Macro

• Calling a Macro

• Calling Other Macros from a Macro

• Creating Macro Libraries

• Tracing Macro Expansion

14.2.1 Defining a Macro
To define an Oracle GoldenGate macro, use the MACRO parameter in the parameter file.
MACRO defines any input parameters that are needed and it defines the work that the
macro performs.

Syntax

MACRO #macro_name
PARAMS (#p1, #p2 [, ...])
BEGIN
macro_body
END;

Table 14-2 Macro Definition Arguments

Argument Description

MACRO
Required. Indicates the start of an Oracle GoldenGate macro
definition.

#macro_name
The name of the macro. Macro and parameter names must
begin with a macro character. The default macro character is
the pound (#) character, as in #macro1 and #param1.

A macro or parameter name can be one word consisting of
letters and numbers, or both. Special characters, such as the
underscore character (_) or hyphen (-), can be used. Some
examples of macro names are: #mymacro, #macro1, #macro_1,
#macro-1, #macro$. Some examples of parameter names are
#sourcecol, #s, #col1, and #col_1.

To avoid parsing errors, the macro character cannot be used
as the first character of a macro name. For example, ##macro
is invalid. If needed, you can change the macro character by
using the MACROCHAR parameter. See Reference for Oracle
GoldenGate for Windows and UNIX.

Macro and parameter names are not case-sensitive. Macro or
parameter names within quotation marks are ignored.

PARAMS (#p1, #p2)
Optional definition of input parameters. Specify a comma-
separated list of parameter names and enclose it within
parentheses. Each parameter must be referenced in the macro
body where you want input values to be substituted. You can
list each parameter on a separate line to improve readability
(making certain to use the open and close parentheses to
enclose the parameter list). See Calling a Macro that Contains
Parameters for more information.

Chapter 14
Using Oracle GoldenGate Macros to Simplify and Automate Work

14-9

Table 14-2 (Cont.) Macro Definition Arguments

Argument Description

BEGIN
Begins the macro body. Must be specified before the macro
body.

macro_body
The macro body. The body is a syntax statement that defines the
function that is to be performed by the macro. A macro body can
include any of the following types of statements.

• Simple parameter statements, as in:

COL1 = COL2

• Complex parameter statements with parameter substitution
as in:

MAP #o.#t, TARGET #o.#t, KEYCOLS (#k), COLMAP
(USEDEFAULTS);

• Invocations of other macros, as in:

#colmap (COL1, #sourcecol)

END;
Ends the macro definition. The semicolon is required to complete
the definition.

The following is an example of a macro definition that includes parameters. In this
case, the macro simplifies the task of object and column mapping by supplying the
base syntax of the MAP statement with input parameters that resolve to the names of
the owners, the tables, and the KEYCOLS columns.

MACRO #macro1
PARAMS (#o, #t, #k)
BEGIN
MAP #o.#t, TARGET #o.#t, KEYCOLS (#k), COLMAP (USEDEFAULTS);
END;

The following is an example of a macro that does not define parameters. It executes a
frequently used set of parameters.

MACRO #option_defaults
BEGIN
GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
END;

14.2.2 Calling a Macro
This section shows you how to call a macro. (To define a macro, see Defining a
Macro).

To call a macro, use the following syntax where you want the macro to run within the
parameter file.

Syntax

[target =] macro_name (val[, ...])

Chapter 14
Using Oracle GoldenGate Macros to Simplify and Automate Work

14-10

[target =] macro_name (val | {val, val, ...}[, ...])

Table 14-3 Syntax Elements for Calling a Macro

Argument Description

target = Optional. Specifies the target to which the results of the macro
are assigned or mapped. For example, target can be used to
specify a target column in a COLMAP statement. In the following
call to the #make_date macro, the column DATECOL1 is the
target and will be mapped to the macro results.

DATECOL1 = #make_date (YR1, MO1, DAY1)

Without a target, the syntax to call #make_date is:

#make_date (YR1, MO1, DAY1)

macro_name The name of the macro that is being called, for example:
#make_date.

(val[, ...]) The parameter input values. This component is required whether
or not the macro defines parameters. If the macro defines
parameters, specify a comma-separated list of input values, in
the order that corresponds to the parameter definitions in the
MACRO parameter, and enclose the list within parentheses. If the
macro does not define parameters, specify the open and close
parentheses with nothing between them (). For more information
about this syntax, see the following:

Calling a Macro that Contains Parameters.

Calling a Macro without Input Parameters.

(val | {val,
val, ...})[, ...]

The parameter input values. This component is required whether
or not the macro defines parameters. If the macro defines
parameters, specify a comma-separated list of input values,
in the order that corresponds to the parameter definitions in
the MACRO parameter, and enclose the list within parentheses.
To pass multiple values to one parameter, separate them
with commas and enclose the list within curly brackets. If the
macro does not define parameters, specify the open and close
parentheses with nothing between them (). For more information
about this syntax, see the following:

Calling a Macro that Contains Parameters.

Calling a Macro without Input Parameters.

• Calling a Macro that Contains Parameters

• Calling a Macro without Input Parameters

14.2.2.1 Calling a Macro that Contains Parameters
To call a macro that contains parameters, the call statement must supply the input
values that are to be substituted for those parameters when the macro runs. See the
syntax in Table 14-3.

Valid input for a macro parameter is any of the following, preceded by the macro
character (default is #):

Chapter 14
Using Oracle GoldenGate Macros to Simplify and Automate Work

14-11

• A single value in plain or quoted text, such as: #macro (#name, #address,
#phone) or #macro (#"name", #"address", #"phone").

• A comma-separated list of values enclosed within curly brackets, such as: #macro1
(SCOTT, DEPT, {DEPTNO1, DEPTNO2, DEPTNO3}). The ability to substitute a block
of values for any given parameter add flexibility to the macro definition and its
usability in the Oracle GoldenGate configuration.

• Calls to other macros, such as: #macro (#mycalc (col2, 100), #total). In this
example, the #mycalc macro is called with the input values of col2 and 100.

Oracle GoldenGate substitutes parameter values within the macro body according to
the following rules.

1. The macro processor reads through the macro body looking for instances of
parameter names specified in the PARAMS statement.

2. For each occurrence of the parameter name, the corresponding parameter value
specified during the call is substituted.

3. If a parameter name does not appear in the PARAMS statement, the macro
processor evaluates whether or not the item is, instead, a call to another macro.
(See Calling Other Macros from a Macro.) If the call succeeds, the nested macro
is executed. If it fails, the whole macro fails.

Example 14-3 Using Parameters to Populate a MAP Statement

The following macro definition specifies three parameter that must be resolved. The
parameters substitute for the names of the table owner (parameter #o), the table
(parameter #t), and the KEYCOLS columns (parameter #k) in a MAP statement.

MACRO #macro1 PARAMS (#o, #t, #k) BEGIN MAP #o.#t, TARGET #o.#t, KEYCOLS
(#k), COLMAP (USEDEFAULTS); END;

Assuming a table in the MAP statement requires only one KEYCOLS column, the following
syntax can be used to call #macro1. In this syntax, the #k parameter can be resolved
with only one value.

#macro1 (SCOTT, DEPT, DEPTNO1)

To call the macro for a table that requires two KEYCOLS columns, the curly brackets are
used as follows to enclose both of the required values for the column names:

#macro1 (SCOTT, DEPT, {DEPTNO1, DEPTNO2})

The DEPTNO1 and DEPTNO2 values are passed as one argument to resolve the #t
parameter. Tables with three or more KEYCOLS can also be handled in this manner,
using additional values inside the curly brackets.

Example 14-4 Using a Macro to Perform Conversion

In this example, a macro defines the parameters #year, #month, and #day to convert a
proprietary date format.

MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE ('YYYY-MM-DD', 'CC', @IF (#year < 50, 20, 19), 'YY', #year, 'MM', #month,
'DD', #day)
END;

The macro is called in the COLMAP clause:

Chapter 14
Using Oracle GoldenGate Macros to Simplify and Automate Work

14-12

MAP sales.acct_tab, TARGET sales.account,
COLMAP
(
targcol1 = sourcecol1,
datecol1 = #make_date(YR1, MO1, DAY1),
datecol2 = #make_date(YR2, MO2, DAY2)
);

The macro expands as follows:

MAP sales.acct_tab, TARGET sales.account,
COLMAP
(
targcol1 = sourcecol1,
datecol1 = @DATE ('YYYY-MM-DD', 'CC', @IF (YR1 < 50, 20, 19),'YY', YR1, 'MM',
MO1, 'DD', DAY1),
datecol2 = @DATE ('YYYY-MM-DD', 'CC', @IF (YR2 < 50, 20, 19),'YY', YR2, 'MM',
MO2, 'DD', DAY2)
);

14.2.2.2 Calling a Macro without Input Parameters
To call a macro without input parameters, the call statement must supply the open and
close parentheses, but without any input values: #macro ().

The following macro is defined without input parameters. The body contains frequently
used parameters.

MACRO #option_defaults
BEGIN
GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
END;

This macro is called as follows:

#option_defaults ()
IGNOREUPDATES
MAP owner.srctab, TARGET owner.targtab;

#option_defaults ()
MAP owner.srctab2, TARGET owner.targtab2;

The macro expands as follows:

GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
IGNOREUPDATES
MAP owner.srctab, TARGET owner.targtab;

GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
MAP owner.srctab2, TARGET owner.targtab2;

Chapter 14
Using Oracle GoldenGate Macros to Simplify and Automate Work

14-13

14.2.3 Calling Other Macros from a Macro
To call other macros from a macro, create a macro definition similar to the following. In
this example, the #make_date macro is nested within the #assign_date macro, and it is
called when #assign_date runs.

The nested macro must define all, or a subset of, the same parameters that are
defined in the base macro. In other words, the input values when the base macro is
called must resolve to the parameters in both macros.

The following defines #assign_date:

MACRO #assign_date
PARAMS (#target_col, #year, #month, #day)
BEGIN
#target_col = #make_date (#year, #month, #day)
END;

The following defines #make_date. This macro creates a date format that includes
a four-digit year, after first determining whether the two-digit input date should be
prefixed with a century value of 19 or 20. Notice that the PARAMS statement of
#make_date contains a subset of the parameters in the #assign_date macro.

MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE ('YYYY-MM-DD', 'CC', @IF (#year < 50, 20, 19), 'YY', #year, 'MM', #month,
'DD', #day)
END;

The following syntax calls #assign_date:

#assign_date (COL1, YEAR, MONTH, DAY)

The macro expands to the following given the preceding input values and the
embedded #make_date macro:

COL1 = @DATE ('YYYY-MM-DD', 'CC', @IF (YEAR < 50, 20, 19),'YY', YEAR, 'MM',
MONTH, 'DD', DAY)

14.2.4 Creating Macro Libraries
You can create a macro library that contains one or more macros. By using a macro
library, you can define a macro once and then use it within many parameter files.

To Create a Macro Library

1. Open a new file in a text editor.

2. Use commented lines to describe the library, if needed.

3. Using the syntax described in Defining a Macro, enter the syntax for each macro.

4. Save the file in the dirprm sub-directory of the Oracle GoldenGate directory as:

filename.mac

Where:

Chapter 14
Using Oracle GoldenGate Macros to Simplify and Automate Work

14-14

filename is the name of the file. The .mac extension defines the file as a macro
library.

The following sample library named datelib contains two macros, #make_date and
#assign_date.

-- datelib macro library
--
MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE ('YYYY-MM-DD', 'CC', @IF (#year < 50, 20, 19), 'YY', #year, 'MM', #month,
'DD', #day)
END;

MACRO #assign_date
PARAMS (#target_col, #year, #month, #day)
BEGIN
#target_col = #make_date (#year, #month, #day)
END;

To use a macro library, use the INCLUDE parameter at the beginning of a parameter file,
as shown in the following sample Replicat parameter file.

INCLUDE /ggs/dirprm/datelib.mac
REPLICAT rep
ASSUMETARGETDEFS
USERIDALIAS ogg
MAP fin.acct_tab, TARGET fin.account;

When including a long macro library in a parameter file, you can use the NOLIST
parameter to suppress the listing of each macro in the Extract or Replicat report file.
Listing can be turned on and off by placing the LIST and NOLIST parameters anywhere
within the parameter file or within the macro library file. In the following example,
NOLIST suppresses the listing of each macro in the hugelib macro library. Specifying
LIST after the INCLUDE statement restores normal listing to the report file.

NOLIST
INCLUDE /ggs/dirprm/hugelib.mac
LIST
INCLUDE /ggs/dirprm/mdatelib.mac
REPLICAT REP

14.2.5 Tracing Macro Expansion
You can trace macro expansion with the CMDTRACE parameter. With CMDTRACE enabled,
macro expansion steps are shown in the Extract or Replicat report file.

Syntax

CMDTRACE [ON | OFF | DETAIL]

Where:

• ON enables tracing.

• OFF disables tracing.

• DETAIL produces a verbose display of macro expansion.

Chapter 14
Using Oracle GoldenGate Macros to Simplify and Automate Work

14-15

In the following example, tracing is enabled before #testmac is called, then disabled
after the macro's execution.

REPLICAT REP
MACRO #testmac
BEGIN
COL1 = COL2,
COL3 = COL4,
END;
...
CMDTRACE ON
MAP test.table1, TARGET test.table2,
COLMAP (#testmac);
CMDTRACE OFF

14.3 Using User Exits to Extend Oracle GoldenGate
Capabilities

User exits are custom routines that you write in C programming code and call during
Extract or Replicat processing. User exits extend and customize the functionality of
the Extract and Replicat processes with minimal complexity and risk. With user exits,
you can respond to database events when they occur, without altering production
programs.

Topics:

• When to Implement User Exits

• Making Oracle GoldenGate Record Information Available to the Routine

• Creating User Exits

• Supporting Character-set Conversion in User Exits

• Using Macros to Check Name Metadata

• Describing the Character Format

• Upgrading User Exits

• Viewing Examples of How to Use the User Exit Functions

14.3.1 When to Implement User Exits
You can employ user exits as an alternative to, or in conjunction with, the column-
conversion functions that are available within Oracle GoldenGate. User exits can be a
better alternative to the built-in functions because a user exit processes data only once
(when the data is extracted) rather than twice (once when the data is extracted and
once to perform the transformation).

The following are some ways in which you can implement user exits:

• Perform arithmetic operations, date conversions, or table lookups while mapping
from one table to another.

• Implement record archival functions offline.

• Respond to unusual database events in custom ways, for example by sending an
e-mail message or a page based on an output value.

Chapter 14
Using User Exits to Extend Oracle GoldenGate Capabilities

14-16

• Accumulate totals and gather statistics.

• Manipulate a record.

• Repair invalid data.

• Calculate the net difference in a record before and after an update.

• Accept or reject records for extraction or replication based on complex criteria.

• Normalize a database during conversion.

14.3.2 Making Oracle GoldenGate Record Information Available to the
Routine

The basis for most user exit processing is the EXIT_CALL_PROCESS_RECORD function.
For Extract, this function is called just before a record buffer is output to the trail.
For Replicat, it is called just before a record is applied to the target. If source-target
mapping is specified in the parameter file, the EXIT_CALL_PROCESS_RECORD event takes
place after the mapping is performed.

When EXIT_CALL_PROCESS_RECORD is called, the record buffer and other record
information are available to it through callback routines. The user exit can map,
transform, clean, or perform any other operation with the data record. When it is
finished, the user exit can return a status indicating whether the record should be
processed or ignored by Extract or Replicat.

14.3.3 Creating User Exits
The following instructions help you to create user exits on Windows and UNIX
systems. For more information about the parameters and functions that are described
in these instructions, see Reference for Oracle GoldenGate for Windows and UNIX.

Note:

User exits are case-sensitive for database object names. Names are
returned exactly as they are defined in the hosting database. Object names
must be fully qualified.

To Create User Exits

1. In C code, create either a shared object (UNIX systems) or a DLL (Windows) and
create or export a routine to be called from Extract or Replicat. This routine is
the communication point between Oracle GoldenGate and your routines. Name
the routine whatever you want. The routine must accept the following Oracle
GoldenGate user exit parameters:

• EXIT_CALL_TYPE: Indicates when, during processing, the routine is called.

• EXIT_CALL_RESULT: Provides a response to the routine.

• EXIT_PARAMS: Supplies information to the routine. This function enables you to
use the EXITPARAM option of the TABLE or MAP statement to pass a parameter
that is a literal string to the user exit. This is only valid during the exit call to
process a specific record. This function also enables you to pass parameters

Chapter 14
Using User Exits to Extend Oracle GoldenGate Capabilities

14-17

specified with the PARAMS option of the CUSEREXIT parameter at the exit call
startup.

2. In the source code, include the usrdecs.h file. The usrdecs.h file is the include
file for the user exit API. It contains type definitions, return status values, callback
function codes, and a number of other definitions. The usrdecs.h file is installed
within the Oracle GoldenGate directory. Do not modify this file.

3. Include Oracle GoldenGate callback routines in the user exit when applicable.
Callback routines retrieve record and application context information, and they
modify the contents of data records. To implement a callback routine, use the
ERCALLBACK function in the shared object. The user callback routine behaves
differently based on the function code that is passed to the callback routine.

ERCALLBACK (function_code, buffer, result_code);

Where:

• function_code is the function to be executed by the callback routine.

• buffer is a void pointer to a buffer containing a predefined structure
associated with the specified function code.

• result_code is the status of the function that is executed by the callback
routine. The result code that is returned by the callback routine indicates
whether or not the callback function was successful.

• On Windows systems, Extract and Replicat export the ERCALLBACK function
that is to be called from the user exit routine. The user exit must explicitly load
the callback function at run-time using the appropriate Windows API calls.

4. Include the CUSEREXIT parameter in your Extract or Replicat parameter file. This
parameter accepts the name of the shared object or DLL and the name of the
exported routine that is to be called from Extract or Replicat. You can specify the
full path of the shared object or DLL or let the operating system's standard search
strategy locate the shared object.

CUSEREXIT {DLL | shared_object} routine
[, INCLUDEUPDATEBEFORES]
[, PARAMS 'startup_string']

Where:

• DLL is a Windows DLL and shared_object is a UNIX shared object that
contains the user exit function.

• INCLUDEUPDATEBEFORES gets before images for UPDATE operations.

• PARAMS 'startup_string' supplies a startup string, such as a startup
parameter.

Example 14-5 Example of Base Syntax, UNIX

CUSEREXIT eruserexit.so MyUserExit

Example 14-6 Example Base Syntax, Windows

CUSEREXIT eruserexit.dll MyUserExit

Chapter 14
Using User Exits to Extend Oracle GoldenGate Capabilities

14-18

14.3.4 Supporting Character-set Conversion in User Exits
To maintain data integrity, a user exit needs to understand the character set of the
character-type data that it exchanges with an Oracle GoldenGate process. Oracle
GoldenGate user exit logic provides globalization support for:

• character-based database metadata, such as the names of catalogs, schemas,
tables, and columns

• the values of character-type columns, such as CHAR, VARCHAR2, CLOB, NCHAR,
NVARCHAR2, and NCLOB, as well as string-based numbers, date-time, and intervals.

Properly converting between character sets allows column data to be compared,
manipulated, converted, and mapped properly from one type of database and
character set to another. Most of this processing is performed when the
EXIT_CALL_PROCESS_RECORD call type is called and the record buffer and other record
information is made available through callback routines.

The user exit has its own session character set. This is defined by the
GET_SESSION_CHARSET and SET_SESSION_CHARSET callback functions. The caller
process provides conversion between character sets if the character set of the user
exit is different from the hosting context of the process.

To enable this support in user exits, there is the GET_DATABASE_METADATA callback
function code. This function enables the user exit to get database metadata, such as
the locale and the character set of the character-type data that it exchanges with the
process that calls it (Extract, data pump, Replicat). It also returns how the database
treats the case-sensitivity of object names, how it treats quoted and unquoted names,
and how it stores object names.

For more information about these components, see Reference for Oracle GoldenGate
for Windows and UNIX.

14.3.5 Using Macros to Check Name Metadata
The object name that is passed by the user exit API is the exact name that is encoded
in the user-exit session character set, and exactly the same name that is retrieved
from the database. If the user exit compares the object name with a literal string, the
user exit must retrieve the database locale and then normalize the string so that it is
compared with the object name in the same encoding.

Oracle GoldenGate provides the following macros that can be called by the user exit
to check the metadata of database object names. For example, a macro can be used
to check whether a quoted table name is case-sensitive and whether it is stored as
mixed-case in the database server. These macros are defined in the usrdecs.h file.

Table 14-4 Macros for metadata checking

Macro What it verifies

supportsMixedCaseIdentifiers(nameMe
ta, DbObjType)

Whether the database treats a mixed-case
unquoted name of a specified data type as
case-sensitive and stores the name in mixed
case.

Chapter 14
Using User Exits to Extend Oracle GoldenGate Capabilities

14-19

Table 14-4 (Cont.) Macros for metadata checking

Macro What it verifies

supportsMixedCaseQuotedIdentifiers(
nameMeta, DBObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
sensitive and stores the name in mixed case.

storesLowerCaseIdentifiers(nameMeta
, DbObjType)

Whether the database treats the mixed-case
unquoted name of a specified data type as
case-insensitive and stores the name in lower
case.

storesLowerCaseQuotedIdentifiers(na
meMeta, DbObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
insensitive and stores the name in lower case.

storesMixedCaseIdentifiers(nameMeta
, DbObjType)

Whether the database treats the mixed-case
unquoted name of a specified data type as
case-insensitive and stores the name in mixed
case.

storesMixedCaseQuotedIdentifiers(na
meMeta, DbObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
insensitive and stores the name in mixed case.

storesUpperCaseIdentifiers(nameMeta
, DbObjType)

Whether the database treats the mixed-case
unquoted name of a specified data type as
case-insensitive and stores the name in upper
case.

storesUpperCaseQuotedIdentifiers(na
meMeta, DbObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
insensitive and stores the name in upper case.

14.3.6 Describing the Character Format
The input parameter column_value_mode describes the character format of the data
that is being processed and is used in several of the function codes. The following
table describes the meaning of the EXIT_FN_RAW_FORMAT, EXIT_FN_CHAR_FORMAT, and
EXIT_FN_CNVTED_SESS_FORMAT format codes, per data type.

Table 14-5 column_value_mode_matrix Meanings

Data Type EXIT_FN_RAW_FORMAT EXIT_FN_CHAR_FORMAT EXIT_FN_CNVTED_SESS_
FORMAT

CHAR

"abc"

2-byte null indicator +

2-byte length info

+ column value

0000 0004 61 62 63 20

"abc" encoded in ASCII or
EBCDIC.

NULL terminated.

Tailing spaces are trimmed.

"abc" encoded in user exit
session character set.

NOT NULL terminated.

Tailing spaces are
trimmed by default unless
the GLOBALS parameter
NOTRIMSPACES is specified.

Chapter 14
Using User Exits to Extend Oracle GoldenGate Capabilities

14-20

Table 14-5 (Cont.) column_value_mode_matrix Meanings

Data Type EXIT_FN_RAW_FORMAT EXIT_FN_CHAR_FORMAT EXIT_FN_CNVTED_SESS_
FORMAT

NCHAR

0061 0062 0063
0020

2-byte null indicator +

2-byte length info +

column value.

0000 0008 00 61 0062 0063
0020

"abc" (encoded in UTF8)
or truncated at the first
byte, depending on whether
NCHAR is treated as UTF-8.

NULL terminated.

Trailing spaces are trimmed.

"abc" encoded in user exit
session character set.

NOT NULL terminated.

Tailing spaces are
trimmed by default unless
the GLOBALS parameter
NOTRIMSPACES is specified.

VARCHAR2

"abc"

2-byte null indicator +

2-byte length info +

column value

"abc" encoded in ASCII or
EBCDIC.

NULL terminated.

No trimming.

"abc" encoded in user exit
session character set.

NOT NULL terminated.

No trimming.

NVARCHAR2

0061 0062 0063
0020

2-byte null indicator +

2-byte length info +

column value

"abc" (encoded in UTF8)
or truncated at the first
byte, depending on whether
NVARCHAR2 is treated as
UTF-8.

NULL terminated.

No trimming.

"abc"encoded in user exit
session character set.

NOT NULL terminated.

No trimming.

CLOB 2-byte null indicator +

2-byte length info +

column value

Similar to VARCHAR2, but
only output up to 4K bytes.

NULL Terminated.

No trimming.

Similar to VARCHAR2, but
only output data requested
in user exit session character
set.

NOT NULL terminated.

No trimming.

NCLOB 2-byte null indicator +

2-byte length info +

column value

Similar to NVARCHAR2, but
only output up to 4K bytes.

NULL terminated.

No trimming.

Similar to NVARCHAR2, but
only output data requested
in user exit session character
set.

NOT NULL terminated.

No trimming.

NUMBER

123.89

2-byte null indicator +

2-byte length info +

column value

"123.89" encoded in ASCII
or EBCDIC.

NULL terminated.

"123.89" encoded in user exit
session character set.

NOT NULL terminated.

DATE

31-May-11

2-byte null indicator +

2-byte length info +

column value

"2011-05-31" encoded in
ASCII or EBCDIC.

NULL terminated.

"2011-05-31" encoded in
user exit session character
set.

NOT NULL terminated.

TIMESTAMP

31-May-11
12.00.00 AM

2-byte null indicator +

2-byte length info +

column value

"2011-05-31 12.00.00 AM"
encoded in ASCII or
EBCDIC.

NULL terminated.

"2011-05-31 12.00.00 AM"
encoded in user exit session
character set.

NOT NULL terminated.

Interval Year to
Month or Interval
Day to Second

2-byte null indicator +

2-byte length info +

column value

NA NA

Chapter 14
Using User Exits to Extend Oracle GoldenGate Capabilities

14-21

Table 14-5 (Cont.) column_value_mode_matrix Meanings

Data Type EXIT_FN_RAW_FORMAT EXIT_FN_CHAR_FORMAT EXIT_FN_CNVTED_SESS_
FORMAT

RAW 2-byte null indicator +

2-byte length info +

column value

2-byte null indicator +

2-byte length info +

column value

2-byte null indicator +

2-byte length info +

column value

14.3.7 Upgrading User Exits
The usrdecs.h file is versioned to allow backward compatibility with existing user
exits when enhancements or upgrades, such as new functions or structural changes,
are added to a new Oracle GoldenGate release. The version of the usrdecs.h file is
printed in the report file at the startup of Replicat or Extract.

To use new user exit functionality, you must recompile your routines to include the new
usrdecs file. Routines that do not use new features do not need to be recompiled.

14.3.8 Viewing Examples of How to Use the User Exit Functions
Oracle GoldenGate installs the following sample user exit files into the
UserExitExamples directory of the Oracle GoldenGate installation directory:

• exitdemo.c shows how to initialize the user exit, issue callbacks at given exit
points, and modify data. It also demonstrates how to retrieve the fully qualified
table name or a specific metadata part, such as the name of the catalog or
container, or the schema, or just the unqualified table name. In addition, this demo
shows how to process DDL data. The demo is not specific to any database type.

• exitdemo_utf16.c shows how to use UTF16-encoded data (both metadata and
column data) in the callback structures for information exchanged between the
user exit and the caller process.

• exitdemo_more_recs.c shows an example of how to use the same input record
multiple times to generate several target records.

• exitdemo_lob.c shows an example of how to get read access to LOB data.

• exitdemo_pk_befores.c shows how to access the before and after image portions
of a primary key update record, as well as the before images of regular updates
(non-key updates). It also shows how to get target row values with SQLEXEC in
the Replicat parameter file as a means for conflict detection. The resulting fetched
values from the target are mapped as the target record when it enters the user
exit.

Each directory contains the *.c files as well as makefiles and a readme.txt file.

14.4 Using the Oracle GoldenGate Event Marker System to
Raise Database Events

Oracle GoldenGate provides an event marker system, also known as the event
marker infrastructure (EMI), which enables the Oracle GoldenGate processes to take
a defined action based on an event record in the transaction log or in the trail

Chapter 14
Using the Oracle GoldenGate Event Marker System to Raise Database Events

14-22

(depending on the data source of the process). The event record is a record that
satisfies a specific filter criterion for which you want an action to occur. You can use
this system to customize Oracle GoldenGate processing based on database events.

For example, you can use the event marker system to start, suspend, or stop a
process, to perform a transformation, or to report statistics. The event marker system
can be put to use for purposes such as:

• To establish a synchronization point at which SQLEXEC or user exit functions can be
performed

• To execute a shell command that executes a data validation script or sends an
email

• To activate tracing when a specific account number is detected

• To capture lag history

• To stop or suspend a process to run reports or batch processes at the end of the
day

The event marker feature is supported for the replication of data changes, but not for
initial loads.

The system requires the following input components:

1. The event record that triggers the action can be specified with FILTER, WHERE, or
SQLEXEC in a TABLE or MAP statement. Alternatively, a special TABLE statement in
a Replicat parameter file enables you to perform EVENTACTIONS actions without
mapping a source table to a target table.

2. In the TABLE or MAP statement where you specify the event record, include the
EVENTACTIONS parameter with the appropriate option to specify the action that is to
be taken by the process.

You can combine EVENTACTIONS options, as shown in the following examples.

The following causes the process to issue a checkpoint, log an informational message,
and ignore the entire transaction (without processing any of it), plus generate a report.

EVENTACTIONS (CP BEFORE, REPORT, LOG, IGNORE TRANSACTION)

The following writes the event record to the discard file and ignores the entire
transaction.

EVENTACTIONS (DISCARD, IGNORE TRANS)

The following logs an informational message and gracefully stop the process.

EVENTACTIONS (LOG INFO, STOP)

The following rolls over the trail file and does not write the event record to the new file.

EVENTACTIONS (ROLLOVER, IGNORE)

For syntax details and additional usage instructions, see Reference for Oracle
GoldenGate.

• Case Studies in the Usage of the Event Marker System

Chapter 14
Using the Oracle GoldenGate Event Marker System to Raise Database Events

14-23

14.4.1 Case Studies in the Usage of the Event Marker System
These examples highlight some use cases for the event marker system.

Topics:

• Trigger End-of-day Processing

• Simplify Transition from Initial Load to Change Synchronization

• Stop Processing When Data Anomalies are Encountered

• Trace a Specific Order Number

• Execute a Batch Process

• Propagate Only a SQL Statement without the Resultant Operations

• Committing Other Transactions Before Starting a Long-running Transaction

• Execute a Shell Script to Validate Data

14.4.1.1 Trigger End-of-day Processing
This example specifies the capture of operations that are performed on a special
table named event_table in the source database. This table exists solely for the
purpose of receiving inserts at a predetermined time, for example at 5:00 P.M.
every day. When Replicat receives the transaction record for this operation, it stops
gracefully to allow operators to start end-of-day processing jobs. By using the insert
on the event_table table every day, the operators know that Replicat has applied all
committed transactions up to 5:00. IGNORE causes Replicat to ignore the event record
itself, because it has no purpose in the target database. LOG INFO causes Replicat to
log an informational message about the operation.

TABLE source.event_table, EVENTACTIONS (IGNORE, LOG INFO, STOP);

14.4.1.2 Simplify Transition from Initial Load to Change Synchronization
Event actions and event tables can be used to help with the transition from an initial
load to ongoing change replication. For example, suppose an existing, populated
source table must be added to the Oracle GoldenGate configuration. This table must
be created on the target, and then the two must be synchronized by using an export/
import. This example assumes that an event table named source.event_table exists
in the source database and is specified in a Replicat TABLE statement.

TABLE source.event_table, EVENTACTIONS (IGNORE, LOG INFO, STOP);

To allow users to continue working with the new source table, it is added to the Extract
parameter file, but not to the Replicat parameter file. Extract begins capturing data
from this table to the trail, where it is stored.

At the point where the source and target are read-consistent after the export, an
event record is inserted into the event table on the source, which propagates to
the target. When Replicat receives the event record (marking the read-consistent
point), the process stops as directed by EVENTACTIONS STOP. This allows the new
table to be added to the Replicat MAP statement. Replicat can be positioned to start
replication from the timestamp of the event record, eliminating the need to use the

Chapter 14
Using the Oracle GoldenGate Event Marker System to Raise Database Events

14-24

HANDLECOLLISIONS parameter. Operations in the trail from before the event record can
be ignored because it is known that they were applied in the export.

The event record itself is ignored by Replicat, but an informational message is logged.

14.4.1.3 Stop Processing When Data Anomalies are Encountered
This example uses ABORT to stop Replicat immediately with a fatal error if an anomaly
is detected in a bank record, where the customer withdraws more money than the
account contains. In this case, the source table is mapped to a target table in a
Replicat MAP statement for actual replication to the target. A TABLE statement is also
used for the source table, so that the ABORT action stops Replicat before it applies the
anomaly to the target database. ABORT takes precedence over processing the record.

MAP source.account, TARGET target.account;
TABLE source.account, FILTER (withdrawal > balance), EVENTACTIONS (ABORT);

14.4.1.4 Trace a Specific Order Number
The following example enables Replicat tracing only for an order transaction that
contains an insert operation for a specific order number (order_no = 1). The trace
information is written to the order_1.trc trace file. The MAP parameter specifies the
mapping of the source table to the target table.

MAP sales.order, TARGET rpt.order;
TABLE source.order,
FILTER (@GETENV ('GGHEADER', 'OPTYPE') = 'INSERT' AND order_no = 1), &
EVENTACTIONS (TRACE order_1.trc TRANSACTION);

14.4.1.5 Execute a Batch Process
In this example, a batch process executes once a month to clear the source database
of accumulated data. At the beginning of the transaction, typically a batch transaction,
a record is written to a special job table to indicate that the batch job is starting.
TRANSACTION is used with IGNORE to specify that the entire transaction must be ignored
by Extract, because the target system does not need to reflect the deleted records.
By ignoring the work on the Extract side, unnecessary trail and network overhead is
eliminated.

TABLE source.job, FILTER (@streq (job_type = 'HOUSEKEEPING')=1), &
EVENTACTIONS (IGNORE TRANSACTION);

Note:

If a logical batch delete were to be composed of multiple smaller batches,
each smaller batch would require an insert into the job table as the first
record in the transaction.

14.4.1.6 Propagate Only a SQL Statement without the Resultant Operations
This example shows how different EVENTACTIONS clauses can be used in combination
on the source and target to replicate just a SQL statement rather than the operations
that result from that statement. In this case, it is an INSERT INTO...SELECT transaction.

Chapter 14
Using the Oracle GoldenGate Event Marker System to Raise Database Events

14-25

Such a transaction could generate millions of rows that would need to be propagated,
but with this method, all that is propagated is the initial SQL statement to reduce trail
and network overhead. The SELECTs are all performed on the target. This configuration
requires perfectly synchronized source and target tables in order to maintain data
integrity.

Extract:

TABLE source.statement, EVENTACTIONS (IGNORE TRANS INCLUDEEVENT);

Replicat:

TABLE source.statement, SQLEXEC (execute SQL statement), &
EVENTACTIONS (INFO, IGNORE);

To use this configuration, a statement table is populated with the first operation in the
transaction, that being the INSERT INTO...SELECT, which becomes the event record.

Note:

For large SQL statements, the statement can be written to multiple columns
in the table. For example, eight VARCHAR (4000) columns could be used to
store SQL statements up to 32 KB in length.

Because of the IGNORE TRANS INCLUDEEVENT, Extract ignores all of the subsequent
inserts that are associated with the SELECT portion of the statement, but writes the
event record that contains the SQL text to the trail. Using a TABLE statement, Replicat
passes the event record to a SQLEXEC statement that concatenates the SQL text
columns, if necessary, and executes the INSERT INTO...SELECT statement using the
target tables as the input for the SELECT sub-query.

14.4.1.7 Committing Other Transactions Before Starting a Long-running
Transaction

This use of EVENTACTIONS ensures that all open transactions that are being processed
by Replicat get committed to the target before the start of a long running transaction.
It forces Replicat to write a checkpoint before beginning work on the large transaction.
Forcing a checkpoint constrains any potential recovery to just the long running
transaction. Because a Replicat checkpoint implies a commit to the database, it frees
any outstanding locks and makes the pending changes visible to other sessions.

TABLE source.batch_table, EVENTACTIONS (CHECKPOINT BEFORE);

14.4.1.8 Execute a Shell Script to Validate Data
This example executes a shell script that runs another script that validates data after
Replicat applies the last transaction in a test run. On the source, an event record is
written to an event table named source.event. The record inserts the value COMPARE
into the event_type column of the event table, and this record gets replicated at the
end of the other test data. In the TABLE statement in the Replicat parameter file, the
FILTER clause qualifies the record and then triggers the shell script compare_db.sh
to run as specified by SHELL in the EVENTACTIONS clause. After that, Replicat stops
immediately as specified by FORCESTOP.

Chapter 14
Using the Oracle GoldenGate Event Marker System to Raise Database Events

14-26

Extract:

TABLE src.*;
TABLE test.event;

Replicat:

MAP src.*, TARGET targ.*;
MAP test.event, TARGET test.event, FILTER (@streq (event_type, 'COMPARE')=1), &
EVENTACTIONS (SHELL 'compare_db.sh', FORCESTOP);

Chapter 14
Using the Oracle GoldenGate Event Marker System to Raise Database Events

14-27

15
Monitoring Oracle GoldenGate Processing

This chapter describes the monitoring of Oracle GoldenGate processing.
Topics:

• Using the Information Commands in GGSCI

• Monitoring an Extract Recovery

• Monitoring Lag

• Using Automatic Heartbeat Tables to Monitor

• Monitoring Processing Volume

• Using the Error Log

• Using the Process Report

• Using the Discard File

• Maintaining the Discard and Report Files

• Reconciling Time Differences

• Getting Help with Performance Tuning

15.1 Using the Information Commands in GGSCI
The primary way to view processing information is through GGSCI. For more
information about these commands, see Reference for Oracle GoldenGate.

Table 15-1 Commands to View Process Information

Command What it shows

INFO {EXTRACT | REPLICAT} group
[DETAIL]

Run status, checkpoints, approximate lag, and
environmental information.

INFO MANAGER Run status and port number

INFO ALL INFO output for all Oracle GoldenGate
processes on the system

STATS {EXTRACT | REPLICAT} group Statistics on processing volume, such as
number of operations performed.

STATUS {EXTRACT | REPLICAT} group Run status (starting, running, stopped,
abended)

STATUS MANAGER Run status

LAG {EXTRACT | REPLICAT} group Latency between last record processed and
timestamp in the data source

INFO {EXTTRAIL | RMTTRAIL} trail Name of associated process, position of last
data processed, maximum file size

15-1

Table 15-1 (Cont.) Commands to View Process Information

Command What it shows

SEND MANAGER Run status, information about child processes,
port information, trail purge settings

SEND {EXTRACT | REPLICAT} group Depending on the process and selected
options, returns information about memory
pool, lag, TCP statistics, long-running
transactions, process status, recovery
progress, and more.

VIEW REPORT group Contents of the discard file or process report

VIEW GGSEVT Contents of the Oracle GoldenGate error log

COMMAND ER wildcard Information dependent on the COMMAND type:

INFO

LAG

SEND

STATS

STATUS

wildcard is a wildcard specification for the
process groups to be affected, for example:

INFO ER ext*
STATS ER *

INFO PARAM Queries for and displays static information.

GETPARAMINFO Displays currently-running parameter values.

15.2 Monitoring an Extract Recovery
If Extract abends when a long-running transaction is open, it can seem to take a long
time to recover when it is started again. To recover its processing state, Extract must
search back through the online and archived logs (if necessary) to find the first log
record for that long-running transaction. The farther back in time that the transaction
started, the longer the recovery takes, in general, and Extract can appear to be stalled.

To confirm that Extract is recovering properly, use the SEND EXTRACT command with
the STATUS option. One of the following status notations appears, and you can follow
the progress as Extract changes its log read position over the course of the recovery.

• In recovery[1] – Extract is recovering to its checkpoint in the transaction log.
Meaning that it is reading from either:

a) reading from BR checkpoint files and then archived/online logs,

or

b) reading from Recovery Checkpoint in archived/online log.

• In recovery[2] – Extract is recovering from its checkpoint to the end of the trail.
Meaning that a recovery marker is appended to the output trail when the last
transaction was not completely written then rewriting the transaction.

Chapter 15
Monitoring an Extract Recovery

15-2

• Recovery complete – The recovery is finished, and normal processing will
resume.

15.3 Monitoring Lag
Lag statistics show you how well the Oracle GoldenGate processes are keeping pace
with the amount of data that is being generated by the business applications. With this
information, you can diagnose suspected problems and tune the performance of the
Oracle GoldenGate processes to minimize the latency between the source and target
databases. See Tuning the Performance of Oracle GoldenGate for help with tuning
Oracle GoldenGate to minimize lag.

Topics:

• About Lag

• Controlling How Lag is Reported

15.3.1 About Lag
For Extract, lag is the difference, in seconds, between the time that a record was
processed by Extract (based on the system clock) and the timestamp of that record in
the data source.

For Replicat, lag is the difference, in seconds, between the time that the last record
was processed by Replicat (based on the system clock) and the timestamp of the
record in the trail.

To view lag statistics, use either the LAG or SEND command in GGSCI. For more
information, see Reference for Oracle GoldenGate.

Note:

The INFO command also returns a lag statistic, but this statistic is taken from
the last record that was checkpointed, not the current record that is being
processed. It is less accurate than LAG or INFO.

15.3.2 Controlling How Lag is Reported
Use the LAGREPORTMINUTES or LAGREPORTHOURS parameter to specify the interval
at which Manager checks for Extract and Replicat lag. See Reference for Oracle
GoldenGate.

Use the LAGCRITICALSECONDS, LAGCRITICALMINUTES, or LAGCRITICALHOURS parameter
to specify a lag threshold that is considered critical, and to force a warning message
to the error log when the threshold is reached. This parameter affects Extract and
Replicat processes on the local system. See Reference for Oracle GoldenGate.

Use the LAGINFOSECONDS, LAGINFOMINUTES, or LAGINFOHOURS parameter to specify
a lag threshold; if lag exceeds the specified value, Oracle GoldenGate reports lag
information to the error log. If the lag exceeds the value specified with the LAGCRITICAL
parameter, Manager reports the lag as critical; otherwise, it reports the lag as an
informational message. A value of zero (0) forces a message at the frequency

Chapter 15
Monitoring Lag

15-3

specified with the LAGREPORTMINUTES or LAGREPORTHOURS parameter. See Reference
for Oracle GoldenGate.

15.4 Using Automatic Heartbeat Tables to Monitor
You can use the default automatic heartbeat table functionality to monitor end-to-end
replication lag. Automatic heartbeats are sent from each source database into the
replication streams, by updating the records in a heartbeat seed table and a heartbeat
table, and constructing a heartbeat history table. Each of the replication processes
in the replication path process these heartbeat records and update the information in
them. These heartbeat records are inserted or updated into the heartbeat table at the
target databases.

The heartbeat tables contain the following information:

• Source database

• Destination database

• Information about the outgoing replication streams:

– Names of the Extract, pump/distribution server, and or Replicat processes in
the path

– Timestamps when heartbeat records were processed by the replication
processes.

• Information about the incoming replication streams:

– Names of the extract, pump/distribution server, and or replicat processes in
the path

– Timestamps when heartbeat records were processed by the replication
processes.

Using the information in the heartbeat table and the heartbeat history table, the current
and historical lags in each of the replication can be computed.

From 19c onward, Replicat can track the current restart position of Extract with
automatic heartbeat tables (LOGBSN). This allows regenerating the trail files from
the source database, if required and minimizes the redo log retention period of the
source database. In addition, by tracking the most recent Extract restart position, the
tombstone tables for automatic Conflict Detection and Resolution (ACDR) tables can
be purged more frequently.

In a bidirectional configuration, the heartbeat table has as many entries as the number
of replication paths to neighbors that the database has and in a unidirectional setup,
the table at the source is empty. The outgoing columns have the timestamps and
the outgoing path, the local Extract and the downstream processes. The incoming
columns have the timestamps and path of the upstream processes and local Replicat.

In a unidirectional configuration, the target database will populate only the incoming
columns in the heartbeat table.

Chapter 15
Using Automatic Heartbeat Tables to Monitor

15-4

Note:

The Automatic Heartbeat functionality is not supported on MySQL version
5.5.

Topics:

• Understanding Heartbeat Table End-To-End Replication Flow

• Updating Heartbeat Tables

• Purging the Heartbeat History Tables

• Best Practice

• Using the Automatic Heartbeat Commands

15.4.1 Understanding Heartbeat Table End-To-End Replication Flow
The end-to-end replication process for heartbeat tables relies on using the Oracle
GoldenGate trail format. The process is as follows:

Add a heartbeat table to each of your databases with the ADD HEARTBEATTABLE
command. Add the heartbeat table to all source and target instances and then restart
existing Oracle GoldenGate processes to enable heartbeat functionality. Depending
on the database, you may or may not be required to create or enable a job to
populate the heartbeat table data.
See the following sample:

GGSCI>DBLOGIN {[SOURCEDB data_source] |[, database@host:port] |USERID
{/ | userid}[, PASSWORD password]
[algorithm ENCRYPTKEY {keyname | DEFAULT}] |USERIDALIAS alias [DOMAIN
domain]|[SYSDBA | SQLID sqlid][SESSIONCHARSET character_set]}
GGSCI>ADD HEARTBEATTABLE

(Optional) For Oracle Databases, you must ensure that the Oracle DBMS_SCHEDULER
is operating correctly as the heartbeat update relies on it. You can query the
DBMS_SCHEDULER by issuing:

select START_DATE, LAST_START_DATE, NEXT_RUN_DATE
from dba_scheduler_jobs

Where job_name ='GG_UPDATE_HEARTBEATS';
Then look for valid entries for NEXT_RUN_DATE, which is the next time the scheduler will
run. If this is a timestamp in the past, then no job will run and you must correct it.
A common reason for the scheduler not working is when the parameter
job_queue_processes is set too low (typically zero). Increase the number of
job_queue_processes configured in the database with the ALTER SYSTEM SET
JOB_QUEUE_PROCESSES = ##; command where ## is the number of job queue
processes.

Chapter 15
Using Automatic Heartbeat Tables to Monitor

15-5

Run an Extract, which on receiving the logical change records (LCR) checks the value
in the OUTGOING_EXTRACT column.

• If the Extract name matches this value, the OUTGOING_EXTRACT_TS column is
updated and the record is entered in the trail.

• If the Extract name does not match then the LCR is discarded.

• If the OUTGOING_EXTRACT value is NULL, it is populated along with
OUTGOING_EXTRACT_TS and the record is entered in the trail.

The Pump or Distribution server on reading the record, checks the value in the
OUTGOING_ROUTING_PATH column. This column has a list of distribution paths.
If the value is NULL, the column is updated with the current group name (and path if
this is a Distribution server),"*", update the OUTGOING_ROUTING_TS column, and the
record is written into its target trail file.
If the value has a "*" in the list, then replace it with group name[:pathname],"*"',
update the OUTGOING_ROUTING_TS column, and the record is written into its target trail
file. When the value does not have a asterisk (*) in the list and the pump name
is in the list, then the record is sent to the path specified in the relevant group
name[:pathname],"*"' pair in the list. If the pump name is not in the list, the record is
discarded.
Run a Replicat, which on receiving the record checks the value in the
OUTGOING_REPLICAT column.

• If the Replicat name matches the value, the row in the heartbeat table is updated
and the record is inserted into the history table.

• If the Replicat name does not match, the record is discarded.

• If the value is NULL, the row in the heartbeat and heartbeat history tables are
updated with an implicit invocation of the Replicat column mapping.

Automatic Replicat Column Mapping:

REMOTE_DATABASE = LOCAL_DATABASE
INCOMING_EXTRACT = OUTGOING_EXTRACT
INCOMING_ROUTING_PATH = OUTGOING_ROUTING_PATH with "*"
removed
INCOMING_REPLICAT = @GETENV ("GGENVIRONMENT", "GROUPNAME")
INCOMING_HEARTBEAT_TS = HEARTBEAT_TIMESTAMP
INCOMING_EXTRACT_TS = OUTGOING_EXTRACT_TS
INCOMING_ROUTING_TS = OUTGOING_ROUTING_TS
INCOMING_REPLICAT_TS = @DATE ('UYYYY-MM-DD
HH:MI:SS.FFFFFF','JTSLCT',@GETENV ('JULIANTIMESTAMP'))
LOCAL_DATABASE = REMOTE_DATABASE
OUTGOING_EXTRACT = INCOMING_EXTRACT
OUTGOING_ROUTING_PATH = INCOMING_ROUTING_PATH
OUTGOING_HEARTBEAT_TS = INCOMING_HEARTBEAT_TS
OUTGOING_REPLICAT = INCOMING_REPLICAT
OUTGOING_HEARTBEAT_TS = INCOMING_HEARTBEAT_TS

There is just one column for OUTGOING_ROUTING_TS. If a record passes through
multiple pump before being applied by a Replicat, each pump will overwrite the
OUTGOING_ROUTING_TS column so that the pumps lag that is calculated is not specific
to a single pump and refers to the lag across all the pumps specified in PUMP_PATH.

Chapter 15
Using Automatic Heartbeat Tables to Monitor

15-6

Additional Considerations:

Computing lags as the heartbeat flows through the system relies on the clocks of the
source and target systems to be set up correctly. It is possible that the lag can be
negative if the target system is ahead of the source system. The lag is shown as a
negative number so that you are aware of their clock discrepancy and can take actions
to fix it.

The timestamp that flows through the system is in UTC. There is no time zone
associated with the timestamp so when viewing the heartbeat tables, the lag can be
viewed quickly even if different components are in different time zones. You can write
any view you want on top of the underlying tables; UTC is recommended.

All the heartbeat entries are written to the trail in UTF-8.

The outgoing and incoming paths together uniquely determine a row. Meaning that if
you have two rows with same outgoing path and a different incoming path, then it is
considered two unique entries.

Heartbeat Table Details

The GG_HEARTBEAT table displays timestamp information of the end-to-end replication
time and the timing information at the different components primary and secondary
Extract and Replicat.

In a unidirectional environment, only the target database contains information about
the replication lag. That is the time when a record is generated at the source database
and becomes visible to clients at the target database.

Note:

The automatic heartbeat tables don’t populate the OUTGOING_% columns
with data, when both the source and remote databases have the same
name. To change the database name, use the utility DBNEWID. For details,
see the DBNEWID Utility.

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the
replication time from the
remote database is measured.

HEARTBEAT_TIMESTAMP TIMESTAMP(6) The point in time when a
timestamp is generated at the
remote database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated

INCOMING_EXTRACT VARCHAR2 Name of the primary Extract
(capture) at the remote
database

INCOMING_ROUTING_PATH VARCHAR2 Name of the secondary
Extract (pump) at the remote
database

INCOMING_REPLICAT VARCHAR2 Name of the Replicat on the
local database.

Chapter 15
Using Automatic Heartbeat Tables to Monitor

15-7

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/sutil/oracle-dbnewid-utility.html#GUID-D138A757-6A2A-41A2-B722-A98708C5F5AD

Column Data Type Description

INCOMING_HEARTBEAT_TS TIMESTAMP(6) Final timestamp when the
information is inserted into the
GG_HEARTBEAT table at the
local database.

INCOMING_EXTRACT_TS TIMESTAMP(6) Timestamp of the generated
timestamp is processed by the
primary Extract at the remote
database.

INCOMING_ROUTING_TS TIMESTAMP(6) Timestamp of the generated
timestamp is processed by
the secondary Extract at the
remote database.

INCOMING_REPLICAT_TS TIMESTAMP(6) Timestamp of the generated
timestamp is processed by
Replicat at the local database.

OUTGOING_EXTRACT VARCHAR2 Bidirectional/N-way replication:
Name of the primary Extract
on the local database.

OUTGOING_ROUTING_PATH VARCHAR2 Bidirectional/N-way replication:
Name of the secondary
Extract on the local database.

OUTGOING_REPLICAT VARCHAR2 Bidirectional/N-way replication:
Name of the Replicat on the
remote database.

OUTGOING_HEARTBEAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Final timestamp when the
information is inserted into the
table at the remote database.

OUTGOING_EXTRACT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp of the generated
timestamp is processed by the
primary Extract on the local
database.

OUTGOING_ROUTING_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp of the generated
timestamp is processed by the
secondary Extract on the local
database.

OUTGOING_REPLICAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp of the generated
timestamp is processed by
Replicat on the remote
database.

The GG_HEARTBEAT_HISTORY table displays historical timestamp information of the end-
to-end replication time and the timing information at the different components primary
and secondary Extract and Replicat.

In a unidirectional environment, only the destination database contains information
about the replication lag.

Chapter 15
Using Automatic Heartbeat Tables to Monitor

15-8

Timestamps are managed in UTC time zone. That is the time when a record is
generated at the source database and becomes visible to clients at the target
database.

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the
end-to-end lag is measured.

HEARTBEAT_RECEIVED_TS TIMESTAMP(6) Point in time when a
timestamp from the remote
database receives at the local
database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

INCOMING_EXTRACT VARCHAR2 Name of the primary Extract
on the remote database.

INCOMING_ROUTING_PATH VARCHAR2 Name of the secondary
Extract of the remote
database.

INCOMING_REPLICAT VARCHAR2 Name of the Replicat on the
local database.

INCOMING_HEARTBEAT_TS TIMESTAMP(6) Final timestamp when the
information is inserted into
the GG_HEARTBEAT_HISTORY
table on the local database.

INCOMING_EXTRACT_TS TIMESTAMP(6) Timestamp when the
generated timestamp is
processed by the primary
Extract on the remote
database.

INCOMING_ROUTING_TS TIMESTAMP(6) Timestamp when the
generated timestamp is
processed by the secondary
Extract on the remote
database.

INCOMING_REPLICAT_TS TIMESTAMP(6) Timestamp when the
generated timestamp is
processed by Replicat on the
local database.

OUTGOING_EXTRACT VARCHAR2 Bidirectional/N-way replication:
Name of the primary Extract
from the local database.

OUTGOING_ROUTING_PATH VARCHAR2 Bidirectional/N-way replication:
Name of the secondary
Extract from the local
database.

OUTGOING_REPLICAT VARCHAR2 Bidirectional/N-way replication:
Name of the Replicat on the
remote database.

Chapter 15
Using Automatic Heartbeat Tables to Monitor

15-9

Column Data Type Description

OUTGOING_HEARTBEAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Final timestamp when the
information is persistently
inserted into the table of the
remote database.

OUTGOING_EXTRACT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp when the
generated timestamp is
processed by the primary
Extract on the local database.

OUTGOING_ROUTING_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp when the
generated timestamp is
processed by the secondary
Extract on the local database.

OUTGOING_REPLICAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp when the
generated timestamp is
processed by Replicat on the
remote database.

REPLICAT_LOW_WATERMARK_
CSN

String This column is populated by
Replicat when it processes
this heartbeat record. It
populates this column with its
current low watermark (LWM)
when it processes this record.
This allows us to choose a
LOGBSN from a heartbeat
record which is as of the
Replicat LWM.

SOURCE_EXTRACT_HEARTBEA
T_CSN

String This column is populated
by Extract and contains
the source commit SCN for
the heartbeat transaction in
the source database. The
heartbeat job on the source
database cannot populate this
value as it will not know the
commit SCN apriori.

SOURCE_EXTRACT_RESTART_
CSN

String This column will be populated
by Extract and will contain
the current LOGBSN when
Extract processes this
particular heartbeat record.
The heartbeat job on the
source database will not
populate this value.

Chapter 15
Using Automatic Heartbeat Tables to Monitor

15-10

Column Data Type Description

SOURCE_EXTRACT_RESTART_
CSN_TS

TIMESTAMP This column will be
populated by Extract and will
contain the redo timestamp
in UTC that corresponds
to the current LOGBSN
when Extract processes this
particular heartbeat record.
The heartbeat job on the
source database will not
populate this value.

The GG_LAG view displays information about the replication lag between the local and
remote databases.

In a unidirectional environment, only the destination database contains information
about the replication lag. The lag is measured in seconds.

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the
end-to-end replication lag
from the remote database is
measured.

CURRENT_LOCAL_TS TIMESTAMP(6) Current timestamp of the local
database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

INCOMING_HEARTBEAT_AGE NUMBER The age of the most recent
heartbeat received from the
remote database.

INCOMING_PATH VARCHAR2 Replication path from the
remote database to the local
database with Extract and
Replicat components.

INCOMING_LAG NUMBER Replication lag from the
remote database to the local
database. This is the time
where the heartbeat where
generated at the remote
database minus the time
where the information was
persistently inserted into the
table at the local database.

OUTGOING_HEARTBEAT_AGE NUMBER The age of the most recent
heartbeat from the local
database to the remote
database.

OUTGOING_PATH VARCHAR2 Replication Path from Local
database to the remote
database with Extract and
Replicat components

Chapter 15
Using Automatic Heartbeat Tables to Monitor

15-11

Column Data Type Description

OUTGOING_LAG NUMBER Replication Lag from the
local database to the remote
database. This is the time
where the heartbeat where
generated at the local
database minus the time
where the information was
persistently inserted into the
table at the remote database.

REMOTE_EXTRACT_RESTART_
CSN

String Source Extract restart
position.

REMOTE_DATABASE
DB_UNIQUE_NAME

String Remote database unique
name is displayed. If no
unique name exists, then the
DB_NAME value is displayed.

REMOTE_EXTRACT_RESTART_
CSN_TIME

Timestamp Timestamp associated with
source Extract redo position.

REMOTE_DB_OLDEST_OPEN_T
XN_AGE

Timestamp Age of the oldest open
transaction at the source
database that Extract is
currently processing. This
column can be calculated as
SYSTIMESTAMP -
REMOTE_EXTRACT_RESTART_
TIME.

LOCAL_REPLICAT_LWM_CSN String Low watermark CSN of
the local Replicat when it
processed the heartbeat.

The GG_LAG_HISTORY view displays the history information about the replication lag
history between the local and remote databases.

In a unidirectional environment, only the destination database contains information
about the replication lag.

The unit of the lag units is in seconds.

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the
end-to-end replication lag
from the remote database is
measured.

HEARTBEAT_RECEIVED_TS TIMESTAMP(6) Point in time when a
timestamp from the remote
database receives on the local
database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

DB_NAME String Remote database name.

Chapter 15
Using Automatic Heartbeat Tables to Monitor

15-12

Column Data Type Description

DB_UNIQUE_NAME String Remote database unique
name. If the database
unique name doesn't exist,
then the DB_NAME and
DB_UNIQUE_NAME will be
same.
In a switchover to
standby scenario, the
db_unique_name will change
but the db_name and
replication path remain the
same

INCOMING_HEARTBEAT_AGE NUMBER The age of the heartbeat
table.

INCOMING_PATH VARCHAR2 Replication path from the
remote database to local
database with Extract and
Replicat components.

INCOMING_LAG NUMBER Replication lag from the
remote database to the local
database. This is the time
where the heartbeat was
generated at the remote
database minus the time
where the information was
persistently inserted into the
table on the local database.

OUTGOING_HEARTBEAT_AGE NUMBER

OUTGOING_PATH VARCHAR2 Replication path from local
database to the remote
database with Extract and
Replicat components.

OUTGOING_LAG NUMBER Replication lag from the
local database to the remote
database. This is the time
where the heartbeat was
generated at the local
database minus the time
where the information was
persistently inserted into the
table on the remote database.

REMOTE_EXTRACT_RESTART_
CSN

String Source Extract restart
position.

REMOTE_EXTRACT_RESTART_
CSN_TIME

TIMESTAMP Timestamp associated with
source Extract redo position.

Chapter 15
Using Automatic Heartbeat Tables to Monitor

15-13

Column Data Type Description

REMOTE_DB_OLDEST_OPEN_T
XN_AGE

TIMESTAMP Age of the oldest open
transaction at the source
database that Extract is
currently processing. This
column can be calculated as:
SYSTIMESTAMP -
REMOTE_EXTRACT_RESTART_
TIME

LOCAL_REPLICAT_LWM_CSN String Low watermark CSN of
the local Replicat when it
processed the heartbeat.

INCOMING_EXTRACT_LAG

INCOMING_ROUTINE_LAG

INCOMING_REPLICAT_READ_
LAG

INCOMING_REPICAT_LAG

OUTGOING_EXTRACT_LAG

OUTGOING_ROUTINE_LAG

OUTGOING_REPLICAT_READ_
LAG

OUTGOING_REPLICAT_LAG

15.4.2 Updating Heartbeat Tables
The HEARTBEAT_TIMESTAMP column in the heartbeat seed table must be updated
periodically by a database job. The default heartbeat interval is 1 minute and this
interval can be specified or overridden using a GGSCI or administration server
command. For Oracle Database, the database job is created automatically; for all
other supported databases, you must create background jobs to update the heartbeat
timestamp using the database specific scheduler functionality.

15.4.3 Purging the Heartbeat History Tables
The heartbeat history table is purged periodically using a job. The default interval is 30
days and this interval can be specified or overridden using a GGSCI or administration
server command. For Oracle Database, the database job is created automatically;
for all other supported databases, you must create background jobs to purge the
heartbeat history table using the database specific scheduler functionality.

15.4.4 Best Practice
Oracle recommends that you:

• Use the same heartbeat frequency on all the databases to makes diagnosis
easier.

• Adjust the retention period if space is an issue.

Chapter 15
Using Automatic Heartbeat Tables to Monitor

15-14

• Retain the default heartbeat table frequency; the frequency set to be 30 to 60
seconds gives the best results for most workloads.

• Use lag history statistics to collect lag and age information.

15.4.5 Using the Automatic Heartbeat Commands
You can use the heartbeat table commands to control the Oracle GoldenGate
automatic heartbeat functionality as follows.

Command Description

ADD HEARTBEATTABLE Creates the heartbeat tables required for automatic heartbeat
functionality including the LOGBSN columns.

ALTER HEARTBEATTABLE Alters existing heartbeat objects.

ALTER HEARTBEATTABLE
UPGRADE

Alters the heartbeat tables to add the LOGBSN columns to the
heartbeat tables. This is optional.

DELETE HEARTBEATTABLE Deletes existing heartbeat objects.

DELETE HEARTBEATENTRY Deletes entries in the heartbeat table.

INFO HEARTBEATTABLE Displays heartbeat table information.

For more information, see the Reference for Oracle GoldenGate for Windows and
UNIX.

15.5 Monitoring Processing Volume
The STATS commands in GGSCI show you the amount of data that is being processed
by an Oracle GoldenGate process, and how fast it is being moved through the Oracle
GoldenGate system. With this information, you can diagnose suspected problems and
tune the performance of the Oracle GoldenGate processes. These commands provide
a variety of options to select and filter the output.

The STATS commands are: STATS EXTRACT, STATS REPLICAT, or STATS ER command.

You can send interim statistics to the report file at any time with the SEND EXTRACT or
SEND REPLICAT command with the REPORT option.

15.6 Using the Error Log
Use the Oracle GoldenGate error log to view:

• a history of GGSCI commands

• Oracle GoldenGate processes that started and stopped

• processing that was performed

• errors that occurred

• informational and warning messages

Because the error log shows events as they occurred in sequence, it is a good tool for
detecting the cause (or causes) of an error. For example, you might discover that:

• someone stopped a process

Chapter 15
Monitoring Processing Volume

15-15

• a process failed to make a TCP/IP or database connection

• a process could not open a file

To view the error log, use any of the following:

• Standard shell command to view the ggserr.log file within the root Oracle
GoldenGate directory

• Oracle GoldenGate Director or Oracle GoldenGate Monitor

• VIEW GGSEVT command in GGSCI.

You can control the ggserr.log file behavior to:

• Roll over the file when it reaches a maximum size, which is the default to avoid
disk space issues.

• All messages are appended to the file by all processes without regard to disk
space.

• Disable the file.

• Route messages to another destination, such as the system log.

This behavior is controlled and described in the ogg-ggserr.xml file in one of the
following locations:

Microservices Architecture
$OGG_HOME/etc/conf/logging/

Classic Architecture
diretc/logging/

15.7 Using the Process Report
Use the process report to view (depending on the process):

• parameters in use

• table and column mapping

• database information

• runtime messages and errors

• runtime statistics for the number of operations processed

Every Extract, Replicat, and Manager process generates a report file. The report can
help you diagnose problems that occurred during the run, such as invalid mapping
syntax, SQL errors, and connection errors.

To view a process report, use any of the following:

• standard shell command for viewing a text file

• Oracle GoldenGate Monitor

• VIEW REPORT command in GGSCI.

• To view information if a process abends without generating a report, use the
following command to run the process from the command shell of the operating
system (not GGSCI) to send the information to the terminal.

process paramfile path.prm

Chapter 15
Using the Process Report

15-16

Where:

– The value for process is either extract or replicat.

– The value for path.prm is the fully qualified name of the parameter file, for
example:

replicat paramfile /ogg/dirdat/repora.prm

By default, reports have a file extension of .rpt, for example EXTORA.rpt. The default
location is the dirrpt sub-directory of the Oracle GoldenGate directory. However,
these properties can be changed when the group is created. Once created, a report
file must remain in its original location for Oracle GoldenGate to operate properly after
processing has started.

To determine the name and location of a process report, use the INFO EXTRACT, INFO
REPLICAT, or INFO MANAGER command in GGSCI.

• Scheduling Runtime Statistics in the Process Report

• Viewing Record Counts in the Process Report

• Preventing SQL Errors from Filling the Replicat Report File

15.7.1 Scheduling Runtime Statistics in the Process Report
By default, runtime statistics are written to the report once, at the end of each run. For
long or continuous runs, you can use optional parameters to view these statistics on a
regular basis, without waiting for the end of the run.

To set a schedule for reporting runtime statistics, use the REPORT parameter in the
Extract or Replicat parameter file to specify a day and time to generate runtime
statistics in the report. See REPORT.

To send runtime statistics to the report on demand, use the SEND EXTRACT or SEND
REPLICAT command with the REPORT option to view current runtime statistics when
needed.

15.7.2 Viewing Record Counts in the Process Report
Use the REPORTCOUNT parameter to report a count of transaction records that Extract
or Replicat processed since startup. Each transaction record represents a logical
database operation that was performed within a transaction that was captured by
Oracle GoldenGate. The record count is printed to the report file and to the screen. For
more information, see Reference for Oracle GoldenGate.

15.7.3 Preventing SQL Errors from Filling the Replicat Report File
Use the WARNRATE parameter to set a threshold for the number of SQL errors that can
be tolerated on any target table before being reported to the process report and to
the error log. The errors are reported as a warning. If your environment can tolerate a
large number of these errors, increasing WARNRATE helps to minimize the size of those
files. For more information, see Reference for Oracle GoldenGate.

Chapter 15
Using the Process Report

15-17

15.8 Using the Discard File
By default, a discard file is generated whenever a process is started with the
START command through GGSCI. The discard file captures information about Oracle
GoldenGate operations that failed. This information can help you resolve data errors,
such as those that involve invalid column mapping.

The discard file reports such information as:

• The database error message

• The sequence number of the data source or trail file

• The relative byte address of the record in the data source or trail file

• The details of the discarded operation, such as column values of a DML statement
or the text of a DDL statement.

To view the discard file, use a text editor or use the VIEW REPORT command in GGSCI.
See Reference for Oracle GoldenGate.

The default discard file has the following properties:

• The file is named after the process that creates it, with a default extension of .dsc.
Example: finance.dsc.

• The file is created in the dirrpt sub-directory of the Oracle GoldenGate
installation directory.

• The maximum file size is 50 megabytes.

• At startup, if a discard file exists, it is purged before new data is written.

You can change these properties by using the DISCARDFILE parameter. You can
disable the use of a discard file by using the NODISCARDFILE parameter. See Reference
for Oracle GoldenGate.

If a proces is started from the command line of the operating system, it does not
generate a discard file by default. You can use the DISCARDFILE parameter to specify
the use of a discard file and its properties.

Once created, a discard file must remain in its original location for Oracle GoldenGate
to operate properly after processing has started.

15.9 Maintaining the Discard and Report Files
By default, discard files and report files are aged the same way. A new discard or
report file is created at the start of a new process run. Old files are aged by appending
a sequence number from 0 (the most recent) to 9 (the oldest) to their names.

If the active report or discard file reaches its maximum file size before the end
of a run (or over a continuous run), the process abends unless there is an aging
schedule in effect. Use the DISCARDROLLOVER and REPORTROLLOVER parameters to set
aging schedules for the discard and report files respectively. These parameters set
instructions for rolling over the files at regular intervals, in addition to when the process
starts. Not only does this control the size of the files and prevent process outages,
but it also provides a predictable set of archives that can be included in your archiving
routine. For more information, see the following documentation:

Chapter 15
Using the Discard File

15-18

• DISCARDROLLOVER

• REPORTROLLOVER

No process ever has more than ten aged reports or discard files and one active report
or discard file. After the tenth aged file, the oldest is deleted when a new report is
created. It is recommended that you establish an archiving schedule for aged reports
and discard files in case they are needed to resolve a service request.

Table 15-2 Current Extract and Manager Reports Plus Aged Reports

Permissions X Date Report

-rw-rw-rw-
1 ggs ggs 1193 Oct 11 14:59 MGR.rpt

-rw-rw-rw-
1 ggs ggs 3996 Oct 5 14:02 MGR0.rpt

-rw-rw-rw- 1 ggs ggs 4384 Oct 5 14:02 TCUST.rpt

-rw-rw-rw- 1 ggs ggs 1011 Sep 27 14:10 TCUST0.rpt

-rw-rw-rw- 1 ggs ggs 3184 Sep 27 14:10 TCUST1.rpt

-rw-rw-rw- 1 ggs ggs 2655 Sep 27 14:06 TCUST2.rpt

-rw-rw-rw- 1 ggs ggs 2655 Sep 27 14:04 TCUST3.rpt

-rw-rw-rw- 1 ggs ggs 2744 Sep 27 13:56 TCUST4.rpt

-rw-rw-rw- 1 ggs ggs 3571 Aug 29 14:27 TCUST5.rpt

15.10 Reconciling Time Differences
To account for time differences between source and target systems, use the
TCPSOURCETIMER parameter in the Extract parameter file. This parameter adjusts the
timestamps of replicated records for reporting purposes, making it easier to interpret
synchronization lag. For more information, see Reference for Oracle GoldenGate.

15.11 Getting Help with Performance Tuning
See Tuning the Performance of Oracle GoldenGate for help with tuning the
performance of Oracle GoldenGate.

Chapter 15
Reconciling Time Differences

15-19

16
Tuning the Performance of Oracle
GoldenGate

This chapter contains suggestions for improving the performance of Oracle
GoldenGate components.
Topics:

• Using Multiple Process Groups

• Splitting Large Tables Into Row Ranges Across Process Groups

• Configuring Oracle GoldenGate to Use the Network Efficiently

• Eliminating Disk I/O Bottlenecks

• Managing Virtual Memory and Paging

• Optimizing Data Filtering and Conversion

• Tuning Replicat Transactions

• Using Healthcheck Scripts to Monitor and Troubleshoot
Oracle GoldenGate Healthcheck script provides database site information for
Oracle Databases to allow monitoring and troubleshooting.

16.1 Using Multiple Process Groups
Typically, only one Extract group is required to efficiently capture from a database.
However, depending on the redo (transactional) values, or the data and operation
types, you may find that you are required to add one or more Extract group to the
configuration.

Similarly, only one Replicat group is typically needed to apply data to a target database
if using Replicat in coordinated mode. (See About Coordinated Replicat Mode for more
information.) However, even in some cases when using Replicat in coordinated mode,
you may be required to use multiple Replicat groups. If you are using Replicat in
classic mode and your applications generate a high transaction volume, you probably
will need to use parallel Replicat groups.

Because each Oracle GoldenGate component — Extract, data pump, trail, Replicat —
is an independent module, you can combine them in ways that suit your needs. You
can use multiple trails and parallel Extract and Replicat processes (with or without
data pumps) to handle large transaction volume, improve performance, eliminate
bottlenecks, reduce latency, or isolate the processing of specific data.

Figure 16-1 shows some of the ways that you can configure Oracle GoldenGate to
improve throughput speed and overcome network bandwidth issues.

16-1

Figure 16-1 Load-balancing configurations that improve performance

The image labels imply the following:

• A: Parallel Extracts divide the load. For example, by schema or to isolate tables
that generate fetches.

• B: A data pump with local trail can be used for filtering, conversion, and network
false tolerance.

• C: Multiple data pumps work around network per-process bandwidth limitations to
enable TCP/IP throughput. Divide the TABLE parameter statements among them.

• D: Parallel Replicats increase throughput to the database. Any trail can be read by
one or more Replicats. Divide MAP statements among them.

• Considerations for Using Multiple Process Groups

• Using Parallel Replicat Groups on a Target System

• Using Multiple Extract Groups with Multiple Replicat Groups

16.1.1 Considerations for Using Multiple Process Groups
Before configuring multiple processing groups, review the following considerations
to ensure that your configuration produces the desired results and maintains data
integrity.

• Maintaining Data Integrity

• Number of Groups

• Memory

Chapter 16
Using Multiple Process Groups

16-2

• Isolating Processing-Intensive Tables

16.1.1.1 Maintaining Data Integrity
Not all workloads can be partitioned across multiple groups and still preserve the
original transaction atomicity. You must determine whether the objects in one group
will ever have dependencies on objects in any other group, transactional or otherwise.
For example, tables for which the workload routinely updates the primary key cannot
easily be partitioned in this manner. DDL replication (if supported for the database) is
not viable in this mode, nor is the use of some SQLEXEC or EVENTACTIONS features that
base their actions on a specific record.

If your tables do not have any foreign- key dependencies or updates to primary keys,
you may be able to use multiple processes. Keep related DML together in the same
process stream to ensure data integrity.

16.1.1.2 Number of Groups
The number of concurrent Extract and Replicat process groups that can run on a
system depends on how much system memory is available. Each Classic Extract and
Replicat process needs approximately 25-55 MB of memory or more, depending on
the size of the transactions and the number of concurrent transactions. The Oracle
GoldenGate GGSCI command interface fully supports up to 5,000 concurrent Extract
and Replicat groups (combined) per instance of Oracle GoldenGate Manager. At the
supported level, all groups can be controlled and viewed in full with GGSCI commands
such as the INFO and STATUS commands. Beyond the supported level, group
information is not displayed and errors may occur. Oracle GoldenGate recommends
keeping the number of Extract and Replicat groups (combined) at a more manageable
level, such as 100 or below, in order to manage your environment effectively. The
maximum number of groups is controlled by the MAXGROUPS parameter, whose default
is 1000.

For Windows Server environments, the number of process groups that can be run are
tightly coupled to the ‘non-interactive’ Windows desktop heap memory settings. The
default settings for Windows desktop heap may be enough to run very small numbers
of process groups, but as you approach larger amounts of process groups, more than
60 or so, you will either need to adjust the ‘non-interactive’ value of the SharedSection
field in the registry, based on this information from Microsoft (Windows desktop heap
memory), or increase the number of Oracle GoldenGate homes and spread the total
number of desired process groups across these homes.

Note:

For more information on modifying the Windows Desktop Heap memory,
review the following Oracle Knowledge Base document (Doc ID 2056225.1).

16.1.1.3 Memory
The system must have sufficient swap space for each Oracle GoldenGate Extract and
Replicat process that will be running. To determine the required swap space:

1. Start up one Extract or Replicat.

2. Run GGSCI.

Chapter 16
Using Multiple Process Groups

16-3

3. View the report file and find the line PROCESS VM AVAIL FROM OS (min).

4. Round up the value to the next full gigabyte if needed. For example, round up
1.76GB to 2 GB.

5. Multiply that value by the number of Extract and Replicat processes that will be
running. The result is the maximum amount of swap space that could be required

See the CACHEMGR parameter in Reference for Oracle GoldenGate for more information
about how memory is managed.

16.1.1.4 Isolating Processing-Intensive Tables
You can use multiple process groups to support certain kinds of tables that tend to
interfere with normal processing and cause latency to build on the target. For example:

• Extract may need to perform a fetch from the database because of the data type of
the column, because of parameter specifications, or to perform SQL procedures.
When data must be fetched from the database, it affects the performance of
Extract. You can get fetch statistics from the STATS EXTRACT command if you
include the STATOPTIONS REPORTFETCH parameter in the Extract parameter file.
You can then isolate those tables into their own Extract groups, assuming that
transactional integrity can be maintained.

• In its classic mode, Replicat process can be a source of performance bottlenecks
because it is a single-threaded process that applies operations one at a time
by using regular SQL. Even with BATCHSQL enabled (see Reference for Oracle
GoldenGate) Replicat may take longer to process tables that have large or long-
running transactions, heavy volume, a very large number of columns that change,
and LOB data. You can then isolate those tables into their own Replicat groups,
assuming that transactional integrity can be maintained.

16.1.2 Using Parallel Replicat Groups on a Target System
This section contains instructions for creating a configuration that pairs one Extract
group with multiple Replicat groups. Although it is possible for multiple Replicat
processes to read a single trail (no more than three of them to avoid disk contention)
it is recommended that you pair each Replicat with its own trail and corresponding
Extract process.

For detailed instructions on configuring change synchronization, see Configuring
Online Change Synchronization.

Topics:

• To Create the Extract Group

• To Create the Replicat Groups

16.1.2.1 To Create the Extract Group

Note:

This configuration includes Extract data-pumps.

Chapter 16
Using Multiple Process Groups

16-4

1. On the source, use the ADD EXTRACT command to create a primary Extract group.

2. On the source, use the ADD EXTTRAIL command to specify as many local trails
as the number of Replicat groups that you will be creating. All trails must be
associated with the primary Extract group.

3. On the source create a data-pump Extract group.

4. On the source, use the ADD RMTTRAIL command to specify as many remote trails
as the number of Replicat groups that you will be creating. All trails must be
associated with the data-pump Extract group.

5. On the source, use the EDIT PARAMS command to create Extract parameter
files, one for the primary Extract and one for the data pump, that contain the
parameters required for your database environment. When configuring Extract, do
the following:

• Divide the source tables among different TABLE parameters.

• Link each TABLE statement to a different trail. This is done by placing the TABLE
statements after the EXTTRAIL or RMTTRAIL parameter that specifies the trail
you want those statements to be associated with.

16.1.2.2 To Create the Replicat Groups
1. On the target, create a Replicat checkpoint table. For instructions, see Creating a

Checkpoint Table. All Replicat groups can use the same checkpoint table.

2. On the target, use the ADD REPLICAT command to create a Replicat group for each
trail that you created. Use the EXTTRAIL argument of ADD REPLICAT to link the
Replicat group to the appropriate trail.

3. On the target, use the EDIT PARAMS command to create a Replicat parameter file
for each Replicat group that contains the parameters required for your database
environment. All MAP statements for a given Replicat group must specify the same
objects that are contained in the trail that is linked to that group.

4. In the Manager parameter file on the target system, use the PURGEOLDEXTRACTS
parameter to control the purging of files from the trails.

16.1.3 Using Multiple Extract Groups with Multiple Replicat Groups
Multiple Extract groups write to their own trails. Each trail is read by a dedicated
Replicat group.

For detailed instructions on configuring change synchronization, see Configuring
Online Change Synchronization.

• To Create the Extract Groups

• To Create the Replicat Groups

16.1.3.1 To Create the Extract Groups

Note:

This configuration includes data pumps.

Chapter 16
Using Multiple Process Groups

16-5

1. On the source, use the ADD EXTRACT command to create the primary Extract
groups.

2. On the source, use the ADD EXTTRAIL command to specify a local trail for each of
the Extract groups that you created.

3. On the source create a data-pump Extract group to read each local trail that you
created.

4. On the source, use the ADD RMTTRAIL command to specify a remote trail for each
of the data-pumps that you created.

5. On the source, use the EDIT PARAMS command to create an Extract parameter file
for each primary Extract group and each data-pump Extract group.

16.1.3.2 To Create the Replicat Groups
1. On the target, create a Replicat checkpoint table. For instructions, see Creating a

Checkpoint Table. All Replicat groups can use the same checkpoint table.

2. On the target, use the ADD REPLICAT command to create a Replicat group for each
trail. Use the EXTTRAIL argument of ADD REPLICAT to link the group to the trail.

3. On the target, use the EDIT PARAMS command to create a Replicat parameter file
for each Replicat group. All MAP statements for a given Replicat group must specify
the same objects that are contained in the trail that is linked to the group.

4. In the Manager parameter files on the source system and the target system, use
the PURGEOLDEXTRACTS parameter to control the purging of files from the trails.

16.2 Splitting Large Tables Into Row Ranges Across
Process Groups

You can use the @RANGE function to divide the rows of any table across two or more
Oracle GoldenGate processes. It can be used to increase the throughput of large and
heavily accessed tables and also can be used to divide data into sets for distribution
to different destinations. Specify each range in a FILTER clause in a TABLE or MAP
statement.

@RANGE is safe and scalable. It preserves data integrity by guaranteeing that the same
row will always be processed by the same process group.

It might be more efficient to use the primary Extract or a data pump to calculate the
ranges than to use Replicat. To calculate ranges, Replicat must filter through the entire
trail to find data that meets the range specification. However, your business case
should determine where this filtering is performed.

Chapter 16
Splitting Large Tables Into Row Ranges Across Process Groups

16-6

Figure 16-2 Dividing rows of a table between two Extract groups

Figure 16-3 Dividing rows of a table between two Replicat groups

16.3 Configuring Oracle GoldenGate to Use the Network
Efficiently

Inefficiencies in the transfer of data across the network can cause lag in the Extract
process and latency on the target. If not corrected, it can eventually cause process
failures.

When you first start a new Oracle GoldenGate configuration:

1. Establish benchmarks for what you consider to be acceptable lag and throughput
volume for Extract and for Replicat. Keep in mind that Extract will normally be
faster than Replicat because of the kind of tasks that each one performs. Over
time you will know whether the difference is normal or one that requires tuning or
troubleshooting.

Chapter 16
Configuring Oracle GoldenGate to Use the Network Efficiently

16-7

2. Set a regular schedule to monitor those processes for lag and volume, as
compared to the benchmarks. Look for lag that remains constant or is growing,
as opposed to occasional spikes. Continuous, excess lag indicates a bottleneck
somewhere in the Oracle GoldenGate configuration. It is a critical first indicator
that Oracle GoldenGate needs tuning or that there is an error condition.

To view volume statistics, use the STATS EXTRACT or STATS REPLICAT command. To
view lag statistics, use the LAG EXTRACT or LAG REPLICAT command.

Topics:

• Detecting a Network Bottleneck that is Affecting Oracle GoldenGate

• Working Around Bandwidth Limitations by Using Data Pumps

• Increasing the TCP/IP Packet Size

16.3.1 Detecting a Network Bottleneck that is Affecting Oracle
GoldenGate

To detect a network bottleneck that is affecting the throughput of Oracle GoldenGate,
follow these steps.

1. Issue the following command to view the ten most recent Extract checkpoints. If
you are using a data-pump Extract on the source system, issue the command for
the primary Extract and also for the data pump.

INFO EXTRACT group, SHOWCH 10

2. Look for the Write Checkpoint statistic. This is the place where Extract is writing
to the trail.

Write Checkpoint #1

GGS Log Trail
Current Checkpoint (current write position):
 Sequence #: 2
 RBA: 2142224
 Timestamp: 2011-01-09 14:16:50.567638
 Extract Trail: ./dirdat/eh

3. For both the primary Extract and data pump:

• Determine whether there are more than one or two checkpoints. There can be
up to ten.

• Find the Write Checkpoint n heading that has the highest increment number
(for example, Write Checkpoint #8) and make a note of the Sequence, RBA,
and Timestamp values. This is the most recent checkpoint.

4. Refer to the information that you noted, and make the following validation:

• Is the primary Extract generating a series of checkpoints, or just the initial
checkpoint?

• If a data pump is in use, is it generating a series of checkpoints, or just one?

5. Issue INFO EXTRACT for the primary and data pump Extract processes again.

• Has the most recent write checkpoint increased? Look at the most recent
Sequence, RBA, and Timestamp values to see if their values were incremented
forward since the previous INFO EXTRACT command.

Chapter 16
Configuring Oracle GoldenGate to Use the Network Efficiently

16-8

6. Issue the following command to view the status of the Replicat process.

SEND REPLICAT group, STATUS

• The status indicates whether Replicat is delaying (waiting for data to process),
processing data, or at the end of the trail (EOF).

There is a network bottleneck if the status of Replicat is either in delay mode or at the
end of the trail file and either of the following is true:

• You are only using a primary Extract and its write checkpoint is not increasing or is
increasing too slowly. Because this Extract process is responsible for sending data
across the network, it will eventually run out of memory to contain the backlog of
extracted data and abend.

• You are using a data pump, and its write checkpoint is not increasing, but the write
checkpoint of the primary Extract is increasing. In this case, the primary Extract
can write to its local trail, but the data pump cannot write to the remote trail.
The data pump will abend when it runs out of memory to contain the backlog of
extracted data. The primary Extract will run until it reaches the last file in the trail
sequence and will abend because it cannot make a checkpoint.

Note:

Even when there is a network outage, Replicat will process in a normal
manner until it applies all of the remaining data from the trail to the target.
Eventually, it will report that it reached the end of the trail file.

16.3.2 Working Around Bandwidth Limitations by Using Data Pumps
Using parallel data pumps may enable you to work around bandwidth limitations that
are imposed on a per-process basis in the network configuration. You can use parallel
data pumps to send data to the same target system or to different target systems. Data
pumps also remove TCP/IP responsibilities from the primary Extract, and their local
trails provide fault tolerance.

16.3.3 Increasing the TCP/IP Packet Size
Use the TCPBUFSIZE option of the RMTHOST parameter to control the size of the TCP
socket buffer that Extract maintains. By increasing the size of the buffer, you can send
larger packets to the target system. See Reference for Oracle GoldenGate for more
information.

Use the following steps as a guideline to determine the optimum buffer size for your
network.

1. Use the ping command from the command shell obtain the average round trip
time (RTT), shown in the following example:

C:\home\ggs>ping ggsoftware.com
Pinging ggsoftware.com [192.168.116.171] with 32 bytes of data:
Reply from 192.168.116.171: bytes=32 time=31ms TTL=56
Reply from 192.168.116.171: bytes=32 time=61ms TTL=56
Reply from 192.168.116.171: bytes=32 time=32ms TTL=56
Reply from 192.168.116.171: bytes=32 time=34ms TTL=56

Chapter 16
Configuring Oracle GoldenGate to Use the Network Efficiently

16-9

Ping statistics for 192.168.116.171:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 31ms, Maximum = 61ms, Average = 39ms

2. Multiply that value by the network bandwidth. For example, if average RTT is .08
seconds, and the bandwidth is 100 megabits per second, then the optimum buffer
size is:

0.08 second * 100 megabits per second = 8 megabits

3. Divide the result by 8 to determine the number of bytes (8 bits to a byte). For
example:

8 megabits / 8 = 1 megabyte per second

The required unit for TCPBUFSIZE is bytes, so you would set it to a value of
1000000.

The maximum socket buffer size for non-Windows systems is usually limited by
default. Ask your system administrator to increase the default value on the source
and target systems so that Oracle GoldenGate can increase the buffer size configured
with TCPBUFSIZE.

16.4 Eliminating Disk I/O Bottlenecks
I/O activity can cause bottlenecks for both Extract and Replicat.

• A regular Extract generates disk writes to a trail and disk reads from a data
source.

• A data pump and Replicat generate disk reads from a local trail.

• Each process writes a recovery checkpoint to its checkpoint file on a regular
schedule.

• Improving I/O performance Within the System Configuration

• Improving I/O Performance Within the Oracle GoldenGate Configuration

16.4.1 Improving I/O performance Within the System Configuration
If there are I/O waits on the disk subsystems that contain the trail files, put the trails on
the fastest disk controller possible.

Check the RAID configuration. Because Oracle GoldenGate writes data sequentially,
RAID 0+1 (striping and mirroring) is a better choice than RAID 5, which uses
checksums that slow down I/O and are not necessary for these types of files.

16.4.2 Improving I/O Performance Within the Oracle GoldenGate
Configuration

You can improve I/O performance by making configurations changes within Oracle
GoldenGate. Try increasing the values of the following parameters.

• Use the CHECKPOINTSECS parameter to control how often Extract and Replicat
make their routine checkpoints.

Chapter 16
Eliminating Disk I/O Bottlenecks

16-10

Note:

CHECKPOINTSECS is not valid for an integrated Replicat on an Oracle
database system.

• Use the GROUPTRANSOPS parameter to control the number of SQL operations
that are contained in a Replicat transaction when operating in its normal mode.
Increasing the number of operations in a Replicat transaction improves the
performance of Oracle GoldenGate by reducing the number of transactions
executed by Replicat, and by reducing I/O activity to the checkpoint file and
the checkpoint table, if used. Replicat issues a checkpoint whenever it applies
a transaction to the target, in addition to its scheduled checkpoints.

Note:

GROUPTRANSOPS is not valid for an integrated Replicat on an Oracle
database system, unless the inbound server parameter parallelism is
set to 1.

• Use the EOFDELAY or EOFDELAYCSECS parameter to control how often Extract, a data
pump, or Replicat checks for new data after it has reached the end of the current
data in its data source. You can reduce the system I/O overhead of these reads by
increasing the value of this parameter.

Note:

Increasing the values of these parameters improves performance, but it also
increases the amount of data that must be reprocessed if the process fails.
This has an effect on overall latency between source and target. Some
testing will help you determine the optimal balance between recovery and
performance.

16.5 Managing Virtual Memory and Paging
Because Oracle GoldenGate replicates only committed transactions, it stores the
operations of each transaction in a managed virtual-memory pool known as a
cache until it receives either a commit or a rollback for that transaction. One global
cache operates as a shared resource of an Extract or Replicat process. The Oracle
GoldenGate cache manager takes advantage of the memory management functions of
the operating system to ensure that Oracle GoldenGate processes work in a sustained
and efficient manner. The CACHEMGR parameter controls the amount of virtual memory
and temporary disk space that is available for caching uncommitted transaction data
that is being processed by Oracle GoldenGate.

When a process starts, the cache manager checks the availability of resources for
virtual memory, as shown in the following example:

Chapter 16
Managing Virtual Memory and Paging

16-11

CACHEMGR virtual memory values (may have been adjusted)CACHESIZE:
32GCACHEPAGEOUTSIZE (normal): 8M PROCESS VM AVAIL FROM OS (min):
63.97GCACHESIZEMAX (strict force to disk): 48G

If the current resources are not sufficient, a message like the following may be
returned:

2013-11-11 14:16:22 WARNING OGG-01842 CACHESIZE PER DYNAMIC DETERMINATION (32G)
LESS THAN RECOMMENDED: 64G (64bit system)vm found: 63.97GCheck swap space.
Recommended swap/extract: 128G (64bit system).

If the system exhibits excessive paging and the performance of critical processes is
affected, you can reduce the CACHESIZE option of the CACHEMGR. parameter. You can
also control the maximum amount of disk space that can be allocated to the swap
directory with the CACHEDIRECTORY option. For more information about CACHEMGR, see
Reference for Oracle GoldenGate.

16.6 Optimizing Data Filtering and Conversion
Heavy amounts of data filtering or data conversion add processing overhead. The
following are suggestions for minimizing the impact of this overhead on the other
processes on the system.

• Avoid using the primary Extract to filter and convert data. Keep it dedicated to data
capture. It will perform better and is less vulnerable to any process failures that
result from those activities. The objective is to make certain the primary Extract
process is running and keeping pace with the transaction volume.

• Use Replicat or a data-pump to perform filtering and conversion. Consider any of
the following configurations:

– Use a data pump on the source if the system can tolerate the overhead. This
configuration works well when there is a high volume of data to be filtered,
because it uses less network bandwidth. Only filtered data gets sent to the
target, which also can help with security considerations.

– Use a data pump on an intermediate system. This configuration keeps the
source and target systems free of the overhead, but uses more network
bandwidth because unfiltered data is sent from the source to the intermediate
system.

– Use a data pump or Replicat on the target if the system can tolerate the
overhead, and if there is adequate network bandwidth for sending large
amounts of unfiltered data.

• If you have limited system resources, a least-best option is to divide the filtering
and conversion work between Extract and Replicat.

16.7 Tuning Replicat Transactions
Replicat uses regular SQL, so its performance depends on the performance of the
target database and the type of SQL that is being applied (inserts, versus updates or
deletes). However, you can take certain steps to maximize Replicat efficiency.

Topics:

• Tuning Coordination Performance Against Barrier Transactions

• Applying Similar SQL Statements in Arrays

Chapter 16
Optimizing Data Filtering and Conversion

16-12

• Preventing Full Table Scans in the Absence of Keys

• Splitting Large Transactions

• Adjusting Open Cursors

• Improving Update Speed

• Set a Replicat Transaction Timeout

16.7.1 Tuning Coordination Performance Against Barrier Transactions
In a coordinated Replicat configuration, barrier transactions such as updates to the
primary key cause an increased number of commits to the database, and they
interrupt the benefit of the GROUPTRANSOPS feature of Replicat. When there is a high
number of barrier transactions in the overall workload of the coordinated Replicat,
using a high number of threads can actually degrade Replicat performance.

To maintain high performance when large numbers of barrier transactions are
expected, you can do the following:

• Reduce the number of active threads in the group. This reduces the overall
number of commits that Replicat performs.

• Move the tables that account for the majority of the barrier transactions, and any
tables with which they have dependencies, to a separate coordinated Replicat
group that has a small number of threads. Keep the tables that have minimal
barrier transactions in the original Replicat group with the higher number of
threads, so that parallel performance is maintained without interruption by barrier
transactions.

• (Oracle RAC) In a new Replicat configuration, you can increase the PCTFREE
attribute of the Replicat checkpoint table. However, this must be done before
Replicat is started for the first time. The recommended value of PCTFREE is 90.

16.7.2 Applying Similar SQL Statements in Arrays
Use the BATCHSQL parameter to increase the performance of Replicat. BATCHSQL
causes Replicat to organize similar SQL statements into arrays and apply them at
an accelerated rate. In its normal mode, Replicat applies one SQL statement at a time.

When Replicat is in BATCHSQL mode, smaller row changes will show a higher gain in
performance than larger row changes. At 100 bytes of data per row change, BATCHSQL
has been known to improve the performance of Replicat by up to 300 percent, but
actual performance benefits will vary, depending on the mix of operations. At around
5,000 bytes of data per row change, the benefits of using BATCHSQL diminish.

The gathering of SQL statements into batches improves efficiency but also consumes
memory. To maintain optimum performance, use the following BATCHSQL options:

BATCHESPERQUEUE
BYTESPERQUEUE
OPSPERBATCH
OPSPERQUEUE

As a benchmark for setting values, assume that a batch of 1,000 SQL statements at
500 bytes each would require less than 10 megabytes of memory.

Chapter 16
Tuning Replicat Transactions

16-13

You can use BATCHSQL with the BATCHTRANSOPS option to tune array sizing.
BATCHTRANSOPS controls the maximum number of batch operations that can be grouped
into a transaction before requiring a commit. The default for non-integrated Replicat is
1000. The default for integrated Replicat is 50. If there are many wait dependencies
when using integrated Replicat, try reducing the value of BATCHTRANSOPS. To
determine the number of wait dependencies, view the TOTAL_WAIT_DEPS column of
the V$GG_APPLY_COORDINATOR database view in the Oracle database.

See Reference for Oracle GoldenGate for additional usage considerations and syntax.

16.7.3 Preventing Full Table Scans in the Absence of Keys
If a target table does not have a primary key, a unique key, or a unique index, Replicat
uses all of the columns to build its WHERE clause. This is, essentially, a full table scan.

To make row selection more efficient, use a KEYCOLS clause in the TABLE and MAP
statements to identify one or more columns as unique. Replicat will use the specified
columns as a key. The following example shows a KEYCOLS clause in a TABLE
statement:

TABLE hr.emp, KEYCOLS (FIRST_NAME, LAST_NAME, DOB, ID_NO);

For usage guidelines and syntax, see the TABLE and MAP parameters in Reference for
Oracle GoldenGate.

16.7.4 Splitting Large Transactions
If the target database cannot handle large transactions from the source database,
you can split them into a series of smaller ones by using the Replicat parameter
MAXTRANSOPS. See Reference for Oracle GoldenGate for more information.

Note:

MAXTRANSOPS is not valid for an integrated Replicat on an Oracle database
system.

16.7.5 Adjusting Open Cursors
The Replicat process maintains cursors for cached SQL statements and for SQLEXEC
operations. Without enough cursors, Replicat must age more statements. By default,
Replicat maintains as many cursors as allowed by the MAXSQLSTATEMENTS parameter.
You might find that the value of this parameter needs to be increased. If so, you might
also need to adjust the maximum number of open cursors that are permitted by the
database. See Reference for Oracle GoldenGate for more information.

16.7.6 Improving Update Speed
Excessive block fragmentation causes Replicat to apply SQL statements at a slower
than normal speed. Reorganize heavily fragmented tables, and then stop and start
Replicat to register the new object ID.

Chapter 16
Tuning Replicat Transactions

16-14

16.7.7 Set a Replicat Transaction Timeout
Use the TRANSACTIONTIMEOUT parameter to prevent an uncommitted Replicat target
transaction from holding locks on the target database and consuming its resources
unnecessarily. You can change the value of this parameter so that Replicat can work
within existing application timeouts and other database requirements on the target.

TRANSACTIONTIMEOUT limits the amount of time that Replicat can hold a target
transaction open if it has not received the end-of-transaction record for the last source
transaction in that transaction. By default, Replicat groups multiple source transactions
into one target transaction to improve performance, but it will not commit a partial
source transaction and will wait indefinitely for that last record. The Replicat parameter
GROUPTRANSOPS controls the minimum size of a grouped target transaction.

The following events could last long enough to trigger TRANSACTIONTIMEOUT:

• Network problems prevent trail data from being delivered to the target system.

• Running out of disk space on any system, preventing trail data from being written.

• Collector abends (a rare event).

• Extract abends or is terminated in the middle of writing records for a transaction.

• An Extract data pump abends or is terminated.

• There is a source system failure, such as a power outage or system crash.

See Reference for Oracle GoldenGate for more information.

16.8 Using Healthcheck Scripts to Monitor and Troubleshoot
Oracle GoldenGate Healthcheck script provides database site information for Oracle
Databases to allow monitoring and troubleshooting.

The Healtcheck script gathers all replication related configuration and performance
information from a database in one single run. Within the scripts, there are many
queries regarding the database instance and the database specific information from
Extract and Replicat. You can run the script periodically to obtain the latest database
side performance information regarding replication.

The output is one of the key information that is needed for support for a qualitative
analysis of the replication environment.

Topics:

• Installing, Running, and Uninstalling Healthcheck Scripts
The Healthcheck script is available for Oracle GoldenGate Classic and
Microservices.

• How to Deal with Healthcheck Information?

• Components of Healthcheck Information
The Healthcheck script generates an HTML file with JSON objects and HTML
code, which you can view using a web browser.

16.8.1 Installing, Running, and Uninstalling Healthcheck Scripts
The Healthcheck script is available for Oracle GoldenGate Classic and Microservices.

Chapter 16
Using Healthcheck Scripts to Monitor and Troubleshoot

16-15

The Healtcheck directory contains three files to install, run and deinstall the
Healthcheck script. Once the PL/SQL package is installed with ogghc_install.sql,
you can frequently run the ohgghc_run.sql script to generate an output file. You can
deinstall the Healthcheck script with the ogghc_deinstall.sql script.

The Healthcheck script is located in:

• $OGG_HOME/lib/sql/healthcheck for MA

• $OGG_HOME/healthcheck for CA

To gather information, Oracle recommends you to install and run the Healthcheck as
a SYS user. However, you can also install and run the script as an Oracle GoldenGate
Administration User. In this case, some system information is not available. The
Healthcheck output displays the information that requires SYS privileges.

16.8.2 How to Deal with Healthcheck Information?

The output file of the Healthcheck script contains the instance name and a timestamp.
By default, information about Integrated Extract and Replicat is gathered. However,
you can retrieve information from the legacy Oracle GoldenGate schema or database
profile. For this reason, you have to take out the argument of the EXCLUDE_TAG
parameter.

Depending of the amount of information being queried, the run time of the script varies
(in minutes).

You can eliminate a query that takes too long to process using the Healthcheck script
and run another query in a parallel session to get the output.

16.8.3 Components of Healthcheck Information
The Healthcheck script generates an HTML file with JSON objects and HTML code,
which you can view using a web browser.

The output of the Healthcheck script contains the following sections:

• Overview

• Extract

• Replicat

• Table Statistics and Errors

• Tools

• Report Map (Legacy)

Each of these sections contain menus and sub-menus depending on the type of data
available.

The following table describes the sections and the data available in those sections
based on the query used to generate the Healthcheck output.

Chapter 16
Using Healthcheck Scripts to Monitor and Troubleshoot

16-16

Menu Description

Overview The Overview section contains information
about the following:
• General Findings
• Database, Extract and Replicat

Summary
• Capture Parameters
• Apply Parameters

Database Main Menu (The Main menu
already contains the query
information)

Database Objects This sub-menu option
displays information about the
following:
• Tables Not Supported

By Oracle GoldenGate
Integrated Capture

• Instantiation SCNs for
Apply Schema and
Database (DDL)

Database Details This sub-menu has a detailed
database related various
connections and services
along with key Oracle
GoldenGate parameters and
the manual or modified
database parameters. The
second part shows the
basic information about
the components, software
and patch level of the
database. The information
is distributed amongst the
following sections.
• Connection Information
• Key init.ora parameters
• Database dictionary and

fixed table statistics
• Software edition
• Registry information

including History
• Replication bundled patch

information
• NLS Database

parameters
• Registered log files for

capture
• Current Database

incarnation
• Standby redo longs
• GoldenGate Administrator

User

Chapter 16
Using Healthcheck Scripts to Monitor and Troubleshoot

16-17

Menu Description

Replication SQL Analysis This section provides
a complete log of
Oracle GoldenGate related
information from the session
at run time of the script
and active session history.
This contains complete details
about Waits, Events, IO,
Contention and SQL.

Objects Instantiation This sub-menu provides
details about the schemas
and table-level supplemental
logging for Oracle
GoldenGate:
• Schemas prepared for

capture
• Table-level supplemental

log groups enabled for
capture

Extract Main Menu

Extract Details The Extract details covered in
this sub-menu are:
• Capture Runtime

Information
• Capture Transaction

Processing
• Capture Processing

Information
• Logminer Session

Statistics
• Capture Rules & Rulesets

Extract Performance This sub-menu displays
information about the Extract
performance depending on the
type of Extract being used.
It displays the progress of
the Extract which includes the
following details:

• Capture Name - Name of
the Extract

• Client Name - Name
of the client where the
Extract is running

• Client Status - Status
of the client where the
Extract is running

• Processed Low SCN -
Processed SCN value of
the Extract

• Oldest SCN - Oldest SCN
value of the Extract

Extract Logminer This sub-menu contains
information mainly used for
debugging issues.

Chapter 16
Using Healthcheck Scripts to Monitor and Troubleshoot

16-18

Menu Description

Replicat Main Menu

Replicat Performance The Replicat performance
provides the following
information:
• Apply Progress
• GoldenGate Inbound

Progress Table
• Information about Apply

Progress table
• Apply Network Receiver

(ANR)
• Apply Reader
• Apply Reader - Dequeue

Information
• Apply Coordinator
• Apply Coordinator

Watermarks
• Open GoldenGate Apply

Transactions
• Open GoldenGate Apply

Transactions -Details
• Apply Server Transactions

ordered by Server_id
• Apply Server Statstics -

Summary
• Apply Server Statistics -

Details
• Apply Server Statistics -

Auto Tuning
• Apply Server Wait Events
• Apply Server Session

Events
• Apply Reader Processes
• Apply Coordinator

Processes
• Apply Server Processes

CDR This sub-menu provides a
detailed log of the Replicat
error handlers.

Apply Handler This sub-menu contains
information about the Replicat
name, DDL handler, and
precommit handler.

Error Management Main Menu

Chapter 16
Using Healthcheck Scripts to Monitor and Troubleshoot

16-19

Menu Description

Error Management Details This sub-menu has details
about the Oracle GoldenGate
table statistics sorted by
table. It includes information
such as server name,
source table owner, source
table name, destination
table owner, destination
table name, total operations,
inserts, updates, deletes,
insert/update/delete collisions,
REPERROR discards,
REPERROR ignores, WAIT
dependencies, and CDR
related updates.

Tools Main Menu

History This sub-menu is dependent
on the type of query you have
run and displays subscriber
history, Extract, and Replicat
history.

Report Map Main Menu (Legacy).

It provides information on all
the queries, which includes
details such as:

• Run time of the query
• Number of Returned

Rows
• Information if the query

has succeeded or failed
• Information if this is

internal information that is
only visible if the script is
run as SYS

• Disabled Queries
The hyperlinks directs you to
the appropriate query.

Hints/Description This sub-menu is a map of
all the activities logged in the
Healthcheck report.

Alerts This sub-menu provides a
log of the alerts from
the general findings about
the database, Extract, and
Replicat along with general
system information.

Chapter 16
Using Healthcheck Scripts to Monitor and Troubleshoot

16-20

Menu Description

Truncates This sub-menu displays the
Oracle GoldenGate related
information from the
V$ACTIVE_SESSSION_HISTO
RY and V$SQLAREA database
views.

N

o

t

e

:

Y
o
u
c
a
n
v
i
e
w
o
n
l
y
p
a
r
ti
a
l
r
e
s
u
lt
s
f
o
r
V
$
A
C
T
I
V
E
_

Chapter 16
Using Healthcheck Scripts to Monitor and Troubleshoot

16-21

Menu Description

S
E
S
S
S
I
O
N
_
H
I
S
T
O
R
Y
,
a
s
t
h
e
o
ri
g
i
n
a
l
s
i
z
e
o
f
t
h
e
q
u
e
r
y
e
x
c
e
e
d
s
t
h
e
m

Chapter 16
Using Healthcheck Scripts to Monitor and Troubleshoot

16-22

Menu Description

a
x
i
m
u
m
li
m
it
.

Config This sub-menu allows you to
add rules to the following
sections that are available on
this page:
• Column Rules: There can

be any number of rules
on a single table and they
will be applied one after
the other in the order they
appear in the rules table.
It can be an expression
using the values of the
columns in a row.

• Menu Items Exclusions:
This option is used to
exclude any menu item
from the Healthcheck
output. Click Add to set
the rule.

• Group By: This section is
used to group by keys and
aggregates. You can go to
any statistic and click G to
add a group by sorting.

Chapter 16
Using Healthcheck Scripts to Monitor and Troubleshoot

16-23

Menu Description

JS Errors Main Menu. This
page displays debugging
information for this framework.

N

o

t

e

:

It
i
s
v
i
s
i
b
l
e
o
n
l
y
i
n
c
a
s
e
o
f
e
r
r
o
r
s
.

Chapter 16
Using Healthcheck Scripts to Monitor and Troubleshoot

16-24

17
Performing Administrative Operations

This chapter contains instructions for making changes to applications, systems, and
Oracle GoldenGate while the replication environment is active and processing data
changes.
Topics:

• Performing Application Patches

• Initializing the Transaction Logs

• Shutting Down the System

• Changing Database Attributes

• Adding Process Groups to an Active Configuration

• Changing the Size of Trail Files

• Switching Extract from Classic Mode to Integrated Mode

• Switching Extract from Integrated Mode to Classic Mode

• Switching Replicat from Non-Integrated Mode to Integrated Mode

• Switching Replicat from Integrated Mode to Non-Integrated Mode

• Switching Replicat to Coordinated Mode

• Administering a Coordinated Replicat Configuration

• Synchronizing Threads After an Unclean Stop

• Restarting a Primary Extract after System Failure or Corruption

• Using Automatic Trail File Recovery

17.1 Performing Application Patches
Application patches and application upgrades typically perform DDL such as adding
new objects or changing existing objects. To apply applications patches or upgrades in
an Oracle GoldenGate environment, you can do one of the following:

• If Oracle GoldenGate supports DDL replication for your database type, you can
use it to replicate the DDL without stopping replication processes. To use this
method, the source and target table structures must be identical.

• You can apply the patch or upgrade manually on both source and target after
taking the appropriate steps to ensure replication continuity.

To Use Oracle GoldenGate to Replicate Patch DDL

1. If you have not already done so, dedicate some time to learn, install, and configure
the Oracle GoldenGate DDL support. See the instructions for your database in
this documentation. Once the DDL environment is in place, future patches and
upgrades will be easier to apply.

17-1

2. If the application patch or upgrade adds new objects that you want to include
in data replication, make certain that you include them in the DDL parameter
statement. To add new objects to your TABLE and MAP statements, see the
procedure on Adding Tables to the Oracle GoldenGate Configuration.

3. If the application patch or upgrade installs triggers or cascade constraints, disable
those objects on the target to prevent collisions between DML that they execute on
the target and the same DDL that is replicated from the source trigger or cascaded
operation.

To Apply a Patch Manually on the Source and Target

1. Stop access to the source database.

2. Allow Extract to finish capturing the transaction data that remains in the
transaction log. To determine when Extract is finished, issue the following
command in GGSCI until it returns At EOF.

SEND EXTRACT group GETLAG

3. Stop Extract.

STOP EXTRACT group

4. Start applying the patch on the source.

5. Wait until the data pump (if used) and Replicat are finished processing the data
in their respective trails. To determine when they are finished, use the following
commands until they return At EOF.

SEND EXTRACT group GETLAG
SEND REPLICAT group GETLAG

6. Stop the data pump and Replicat.

STOP EXTRACT group
STOP REPLICAT group

At this point, the data in the source and target should be identical, because all
of the replicated transactional changes from the source have been applied to the
target.

7. Apply the patch on the target.

8. If the patches changed table definitions, run DEFGEN for the source tables to
generate updated source definitions, and then replace the old definitions with the
new ones in the existing source definitions file on the target system.

9. Start the Oracle GoldenGate processes whenever you are ready to begin
capturing user activity again.

17.2 Initializing the Transaction Logs
When you initialize a transaction log, you must ensure that all of the data is processed
by Oracle GoldenGate first, and then you must delete and re-add the Extract group
and its associated trail.

1. Stop the application from accessing the database. This stops more transaction
data from being logged.

Chapter 17
Initializing the Transaction Logs

17-2

2. Run GGSCI and issue the SEND EXTRACT command with the LOGEND option for the
primary Extract group. This command queries Extract to determine whether or not
Extract is finished processing the records that remain in the transaction log.

SEND EXTRACT group LOGEND

3. Continue issuing the command until it returns a YES status, indicating that there
are no more records to process.

4. On the target system, run GGSCI and issue the SEND REPLICAT command with the
STATUS option. This command queries Replicat to determine whether or not it is
finished processing the data that remains in the trail.

SEND REPLICAT group STATUS

5. Continue issuing the command until it shows 0 records in the current transaction,
for example:

Sending STATUS request to REPLICAT REPSTAB...
Current status:
 Seqno 0, Rba 9035
 0 records in current transaction.

6. Stop the primary Extract group, the data pump (if used), and the Replicat group.

STOP EXTRACT group
STOP EXTRACT pump_group
STOP REPLICAT group

7. Delete the Extract, data pump, and Replicat groups.

DELETE EXTRACT group
DELETE EXTRACT pump_group
DELETE REPLICAT group

8. Using standard operating system commands, delete the trail files.

9. Stop the database.

10. Initialize and restart the database.

11. Recreate the primary Extract group.

ADD EXTRACT group TRANLOG, BEGIN NOW

12. Recreate the local trail (if used).

ADD EXTTRAIL trail, EXTRACT group

13. Recreate the data pump (if used).

ADD EXTRACT pump_group, EXTTRAILSOURCE trail

14. Recreate the remote trail.

ADD RMTTRAIL trail, EXTRACT pump_group

15. Recreate the Replicat group.

ADD REPLICAT group, EXTTRAIL trail

16. Start Extract, the data pump (if used), and Replicat.

START EXTRACT group
START EXTRACT pump_group
START REPLICAT group

Chapter 17
Initializing the Transaction Logs

17-3

17.3 Shutting Down the System
When shutting down a system for maintenance and other procedures that affect
Oracle GoldenGate, follow these steps to make certain that Extract has processed
all of the transaction log records. Otherwise, you might lose synchronization data.

1. Stop all application and database activity that generates transactions that are
processed by Oracle GoldenGate.

2. Run GGSCI.

3. In GGSCI, issue the SEND EXTRACT command with the LOGEND option. This
command queries the Extract process to determine whether or not it is finished
processing the records in the data source.

SEND EXTRACT group LOGEND

4. Continue issuing the command until it returns a YES status. At that point, all
transaction log data has been processed, and you can safely shut down Oracle
GoldenGate and the system.

17.4 Changing Database Attributes
This section addresses administrative operations that are performed on database
tables and structures.

Topics:

• Changing Database Metadata

• Adding Tables to the Oracle GoldenGate Configuration

• Coordinating Table Attributes between Source and Target

• Performing an ALTER TABLE to Add a Column on DB2 z/OS Tables

• Dropping and Recreating a Source Table

• Changing the Number of Oracle RAC Threads when Using Classic Capture

• Changing the ORACLE_SID

• Purging Archive Logs

• Reorganizing a DB2 Table (z/OS Platform)

17.4.1 Changing Database Metadata
This procedure is required to prevent Replicat errors when changing the following
metadata of the source database:

• Database character set

• National character set

• Locale

• Timezone

• Object name case-sensitivity

Chapter 17
Shutting Down the System

17-4

If these changes are made without performing this procedure, the following error
occurs:

2013-05-26 20:10:09 ERROR OGG-05500 Detected database metadata mismatch
between current trail file ./dirdat/_p/v1000000003 and the previous sequence.
*DBTIMEZONE: [GMT]/[UTC].

This procedure stops Extract, and then creates a new trail file. The new database
metadata is included in this new file with the transactions that started after the change.

1. Stop transaction activity on the source database. Do not make the metadata
change to the database yet.

2. In GGSCI on the source system, issue the SEND EXTRACT command with the
LOGEND option until it shows there is no more redo data to capture.

SEND EXTRACT group LOGEND

3. Stop Extract.

STOP EXTRACT group

4. On each target system, issue the SEND REPLICAT command with the STATUS option
until it shows a status of "At EOF" to indicate that it finished processing all of
the data in the trail. This must be done on all target systems until all Replicat
processes return "At EOF."

SEND REPLICAT group STATUS

5. Stop the data pumps and Replicat.

STOP EXTRACT group
STOP REPLICAT group

6. Change the database metadata.

7. In in GGSCI on the source system, issue the ALTER EXTRACT command with the
ETROLLOVER option for the primary Extract to roll over the local trail to the start of a
new file.

ALTER EXTRACT group, ETROLLOVER

8. Issue the ALTER EXTRACT command with the ETROLLOVER option for the data pumps
to roll over the remote trail to the start of a new file.

ALTER EXTRACT pump, ETROLLOVER

9. Start Extract.

START EXTRACT group

10. In GGSCI, reposition the data pumps and Replicat processes to start at the new
trail sequence number.

ALTER EXTRACT pump, EXTSEQNO seqno, EXTRBA RBA
ALTER REPLICAT group, EXTSEQNO seqno, EXTRBA RBA

11. Start the data pumps.

START EXTRACT group

12. Start the Replicat processes.

START REPLICAT group

Chapter 17
Changing Database Attributes

17-5

17.4.2 Adding Tables to the Oracle GoldenGate Configuration
This procedure assumes that the Oracle GoldenGate DDL support feature is not in
use, or is not supported for, your database.

Note:

For Oracle and MySQL databases, you can enable the DDL support feature
of Oracle GoldenGate to automatically capture and apply the DDL that adds
new tables, instead of using this procedure. See the appropriate instructions
for your database in this documentation.

Review these steps before starting. The process varies slightly, depending on whether
or not the new tables satisfy wildcards in the TABLE parameter, and whether or not
names or data definitions must be mapped on the target.

Prerequisites for Adding Tables to the Oracle GoldenGate Configuration

• This procedure assumes that the source and target tables are either empty or
contain identical (already synchronized) data.

• You may be using the DBLOGIN and ADD TRANDATA commands. Before starting this
procedure, see Reference for Oracle GoldenGate for the proper usage of these
commands for your database.

To Add a Table to the Oracle GoldenGate Configuration

1. Stop user access to the new tables.

2. (If new tables do not satisfy a wildcard) If you are adding numerous tables that
do not satisfy a wildcard, make a copy of the Extract and Replicat parameter files,
and then add the new tables with TABLE and MAP statements. If you do not want to
work with a copy, then edit the original parameter files after you are prompted to
stop each process.

3. (If new tables satisfy wildcards) In the Extract and Replicat parameter files, make
certain the WILDCARDRESOLVE parameter is not being used, unless it is set to the
default of DYNAMIC.

4. (If new tables do not satisfy a wildcard) If the new tables do not satisfy a wildcard
definition, stop Extract.

STOP EXTRACT group

5. Add the new tables to the source and target databases.

6. If required for the source database, issue the ADD TRANDATA command in GGSCI
for the new tables. Before using ADD TRANDATA, issue the DBLOGIN command.

7. Depending on whether the source and target definitins are identical or different,
use either ASSUMETARGETDEFS or SOURCEDEFS in the Replicat parameter file. If
SOURCEDEFS is needed, you can do either of the following:

• Run DEFGEN, then copy the new definitions to the source definitions file on
the target.

Chapter 17
Changing Database Attributes

17-6

• If the new tables match a definitions template, specify the template with the
DEF option of the MAP parameter. (DEFGEN not needed.)

8. To register the new source definitions or new MAP statements, stop and then start
Replicat.

STOP REPLICAT group
START REPLICAT group

9. Start Extract, if applicable.

START EXTRACT group

10. Permit user access to the new tables.

17.4.3 Coordinating Table Attributes between Source and Target
Follow this procedure if you are changing an attribute of a source table that is in the
Oracle GoldenGate configuration, such as adding or changing columns or partitions, or
changing supplemental logging details (Oracle). It directs you how to make the same
change to the target table without incurring replication latency.

Note:

See also Performing an ALTER TABLE to Add a Column on DB2 z/OS
Tables.

Note:

This procedure assumes that the Oracle GoldenGate DDL support feature
is not in use, or is not supported for your database. For Oracle and MySQL
databases, you can enable the DDL support feature of Oracle GoldenGate to
propagate the DDL changes to the target, instead of using this procedure.

1. On the source and target systems, create a table, to be known as the marker
table, that can be used for the purpose of generating a marker that denotes a
stopping point in the transaction log. Just create two simple columns: one as a
primary key and the other as a regular column. For example:

CREATE TABLE marker
(
id int NOT NULL,
column varchar(25) NOT NULL,
PRIMARY KEY (id)
);

2. Insert a row into the marker table on both the source and target systems.

INSERT INTO marker VALUES (1, 1);
COMMIT;

3. On the source system, run GGSCI.

4. Open the Extract parameter file for editing.

Chapter 17
Changing Database Attributes

17-7

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit
an existing parameter file that is in a character set other than that of
the local operating system (such as one where the CHARSET option was
used to specify a different character set). View the parameter file from
outside GGSCI if this is the case; otherwise, the contents may become
corrupted..

5. Add the marker table to the Extract parameter file in a TABLE statement.

TABLE marker;

6. Save and close the parameter file.

7. Add the marker table to the TABLE statement of the data pump, if one is being
used.

8. Stop the Extract and data pump processes, and then restart them immediately to
prevent capture lag.

STOP EXTRACT group
START EXTRACT group
STOP EXTRACT pump_group
START EXTRACT pump_group

9. On the target system, run GGSCI.

10. Open the Replicat parameter file for editing.

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit
an existing parameter file that is in a character set other than that of
the local operating system (such as one where the CHARSET option was
used to specify a different character set). View the parameter file from
outside GGSCI if this is the case; otherwise, the contents may become
corrupted.

11. Add the marker table to the Replicat parameter file in a MAP statement, and use the
EVENTACTIONS parameter as shown to stop Replicat and ignore operations on the
marker table.

MAP marker, TARGET marker, EVENTACTIONS (STOP, IGNORE);

12. Save and close the parameter file.

13. Stop, and then immediately restart, the Replicat process.

STOP REPLICAT group
START REPLICAT group

14. When you are ready to change the table attributes for both source and target
tables, stop all user activity on them.

15. On the source system, perform an UPDATE operation to the marker table as the
only operation in the transaction.

Chapter 17
Changing Database Attributes

17-8

UPDATE marker
SET column=2,
WHERE id=1;
COMMIT;

16. On the target system, issue the following command until it shows that Replicat is
stopped as a result of the EVENTACTIONS rule.

STATUS REPLICAT group

17. Perform the DDL on the source and target tables, but do not yet allow user activity.

18. Start Replicat.

START REPLICAT group

19. Allow user activity on the source and target tables.

17.4.4 Performing an ALTER TABLE to Add a Column on DB2 z/OS
Tables

To add a fixed length column to a table that is in reordered row format and contains
one or more variable length columns, one of the following will be required, depending
on whether the table can be quiesced or not.

If the Table can be Quiesced

1. Allow Extract to finish capturing transactions that happened prior to the quiesce.

2. Alter the table to add the column.

3. Reorganize the tablespace.

4. Restart Extract.

5. Allow table activity to resume.

If the Table cannot be Quiesced

1. Stop Extract.

2. Remove the table from the TABLE statement in the parameter file.

3. Restart Extract.

4. Alter the table to add the column.

5. Reorganize the tablespace.

6. Stop Extract.

7. Add the table back to the TABLE statement.

8. Resynchronize the source and target tables.

9. Start Extract.

10. Allow table activity to resume.

17.4.5 Dropping and Recreating a Source Table
Dropping and recreating a source table requires caution when performed while Oracle
GoldenGate is running.

Chapter 17
Changing Database Attributes

17-9

1. Stop access to the table.

2. Allow Extract to process any remaining changes to that table from the transaction
logs. To determine when Extract is finished, use the INFO EXTRACT command in
GGSCI.

INFO EXTRACT group

3. Stop Extract.

STOP EXTRACT group

4. Drop and recreate the table.

5. If supported for this database, run the ADD TRANDATA command in GGSCI for the
table.

6. If the recreate action changed the source table's definitions so that they are
different from those of the target, run the DEFGEN utility for the source table
to generate source definitions, and then replace the old definitions with the new
definitions in the existing source definitions file on the target system.

7. Permit user access to the table.

17.4.6 Changing the Number of Oracle RAC Threads when Using
Classic Capture

Valid for Extract in classic capture mode for Oracle. When Extract operates in classic
capture mode, the Extract group must be dropped and re-added any time the number
of redo threads in an Oracle RAC cluster changes. To drop and add an Extract group,
perform the following steps:

1. On the source and target systems, run GGSCI.

2. Stop Extract and Replicat.

STOP EXTRACT group
STOP REPLICAT group

3. On the source system, issue the following command to delete the primary Extract
group and the data pump.

DELETE EXTRACT group
DELETE EXTRACT pump_group

4. On the target system, issue the following command to delete the Replicat groups.

DELETE REPLICAT group

5. Using standard operating system commands, remove the local and remote trail
files.

6. Add the primary Extract group again with the same name as before, specifying the
new number of RAC threads.

ADD EXTRACT group TRANLOG, THREADS n, BEGIN NOW

7. Add the local trail again with the same name as before.

ADD EXTTRAIL trail, EXTRACT group

8. Add the data pump Extract again, with the same name as before.

ADD EXTRACT group EXTTRAILSOURCE trail, BEGIN NOW

Chapter 17
Changing Database Attributes

17-10

9. Add the remote trail again with the same name as before.

ADD RMTTRAIL trail, EXTRACT group

10. Add the Replicat group with the same name as before. Leave off any BEGIN
options so that processing begins at the start of the trail.

ADD REPLICAT group EXTTRAIL trail

11. Start all processes, using wildcards as appropriate. If the re-created processes are
the only ones in the source and target Oracle GoldenGate instances, you can use
START ER * instead of the following commands.

START EXTRACT group
START REPLICAT group

17.4.7 Changing the ORACLE_SID
You can change the ORACLE_SID and ORACLE_HOME without having to change
environment variables at the operating-system level. Depending on whether the
change is for the source or target database, set the following parameters in the
Extract or Replicat parameter files. Then, stop and restart Extract or Replicat for the
parameters to take effect.

SETENV (ORACLE_HOME=location)
SETENV (ORACLE_SID='SID')

17.4.8 Purging Archive Logs
An Oracle archive log can be purged safely once Extract's read and write checkpoints
are past the end of that log. Extract does not write a transaction to a trail until it has
been committed, so Extract must keep track of all open transactions. To do so, Extract
requires access to the archive log where each open transaction started and all archive
logs thereafter.

Extract reads the current archive log (the read checkpoint) for new transactions and
also has a checkpoint (the recovery checkpoint) in the oldest archive log for which
there is an uncommitted transaction.

Use the following command in GGSCI to determine Extract's checkpoint positions.

INFO EXTRACT group, SHOWCH

• The Input Checkpoint field shows where Extract began processing when it was
started.

• The Recovery Checkpoint field shows the location of the oldest uncommitted
transaction.

• The Next Checkpoint field shows the position in the redo log that Extract is
reading.

• The Output Checkpoint field shows the position where Extract is writing.

You can write a shell script that purges all archive logs no longer needed by Extract
by capturing the sequence number listed under the Recovery Checkpoint field. All
archive logs prior to that one can be safely deleted.

Chapter 17
Changing Database Attributes

17-11

17.4.9 Reorganizing a DB2 Table (z/OS Platform)
When using IBM's REORG utility to reorganize a DB2 table that has compressed
tablespaces, specify the KEEPDICTIONARY option if the table is being processed by
Oracle GoldenGate. This prevents the REORG utility from recreating the compression
dictionary, which would cause log data that was written prior to the change not to be
decompressed and cause Extract to terminate abnormally. As an alternative, ensure
that all of the changes for the table have been extracted by Oracle GoldenGate before
doing the reorganization, or else truncate the table.

17.5 Adding Process Groups to an Active Configuration
This section describes how to add process groups.

Topics:

• Before You Start

• Adding Another Extract Group to an Active Configuration

• Adding Another Data Pump to an Active Configuration

• Adding Another Replicat Group to an Active Configuration

17.5.1 Before You Start
These instructions are for adding process groups to a configuration that is already
active. The procedures should be performed by someone who has experience with
Oracle GoldenGate. They involve stopping processes for a short period of time and
reconfiguring parameter files. The person performing them must:

• Know the basic components of an Oracle GoldenGate configuration

• Understand Oracle GoldenGate parameters and commands

• Have access to GGSCI to create groups and parameter files

• Know which parameters to use in specific situations

Instructions are provided for:

• Adding Another Extract Group to an Active Configuration

• Adding Another Data Pump to an Active Configuration

• Adding Another Replicat Group to an Active Configuration

17.5.2 Adding Another Extract Group to an Active Configuration
This procedure splits the workload of an existing Extract group into multiple Extract
groups. It also provides instructions for including a data pump group (if applicable) and
a Replicat group to propagate data that is captured by the new Extract group.

Steps are performed on the source and target systems.

1. Make certain the archived transaction logs are available in case the online logs
recycle before you complete this procedure.

2. Choose a name for the new Extract group.

Chapter 17
Adding Process Groups to an Active Configuration

17-12

3. Decide whether or not to use a data pump.

4. On the source system, run GGSCI.

5. Create a parameter file for the new Extract group.

EDIT PARAMS group

Note:

You can copy the original parameter file to use for this group, but
make certain to change the Extract group name and any other relevant
parameters that apply to this new group.

6. In the parameter file, include:

• EXTRACT parameter that specifies the new group.

• Appropriate database login parameters.

• Other appropriate Extract parameters for your configuration.

• EXTTRAIL parameter that points to a local trail (if you will be adding a data
pump) or a RMTTRAIL parameter (if you are not adding a data pump).

• RMTHOST parameter if this Extract will write directly to a remote trail.

• TABLE statement(s) (and TABLEEXCLUDE, if appropriate) for the tables that are to
be processed by the new group.

7. Save and close the file.

8. Edit the original Extract parameter file(s) to remove the TABLE statements for the
tables that are being moved to the new group or, if using wildcards, add the
TABLEEXCLUDE parameter to exclude them from the wildcard specification.

9. (Oracle) If you are using Extract in integrated mode, register the new Extract group
with the source database.

REGISTER EXTRACT group DATABASE [CONTAINER (container[, ...])]

10. Lock the tables that were moved to the new group, and record the timestamp for
the point when the locks were applied. For Oracle tables, you can run the following
script, which also releases the lock after it is finished.

-- temp_lock.sql
-- use this script to temporary lock a table in order to
-- get a timestamp

lock table &schema . &table_name in EXCLUSIVE mode;
SELECT TO_CHAR(sysdate,'MM/DD/YYYY HH24:MI:SS') "Date" FROM dual;
commit;

11. Unlock the table(s) if you did not use the script in the previous step.

12. Stop the old Extract group(s) and any existing data pumps.

STOP EXTRACT group

13. Add the new Extract group and configure it to start at the timestamp that you
recorded.

ADD EXTRACT group, TRANLOG, BEGIN YYYY/MM/DD HH:MI:SS:CCCCCC

Chapter 17
Adding Process Groups to an Active Configuration

17-13

14. Add a trail for the new Extract group.

ADD {EXTTRAIL | RMTTRAIL} trail, EXTRACT group

Where:

• EXTTRAIL creates a local trail. Use this option if you will be creating a data
pump for use with the new Extract group. Specify the trail that is specified with
EXTTRAIL in the parameter file. After creating the trail, go To Link a Local Data
Pump to the New Extract Group .

• RMTTRAIL creates a remote trail. Use this option if a data pump will not be
used. Specify the trail that is specified with RMTTRAIL in the parameter file.
After creating the trail, go To Link a Remote Replicat to the New Data Pump

You can specify a relative or full path name. Examples:

ADD RMTTRAIL dirdat/rt, EXTRACT primary
ADD EXTTRAIL c:\ogg\dirdat\lt, EXTRACT primary

To Link a Local Data Pump to the New Extract Group

1. On the source system, add the data-pump Extract group using the EXTTRAIL trail
as the data source.

ADD EXTRACT pump, EXTTRAILSOURCE trail

For example:

ADD EXTRACT pump2, EXTTRAILSOURCE dirdat\lt

2. Create a parameter file for the data pump.

EDIT PARAMS pump

3. In the parameter file, include the appropriate Extract parameters for your
configuration, plus:

• RMTHOST parameter to point to the target system.

• RMTTRAIL parameter to point to a new remote trail (to be specified later).

• TABLE parameter(s) for the tables that are to be processed by this data pump.

4. In GGSCI on the source system, add a remote trail for the data-pump. Use the trail
name that you specified with RMTTRAIL in the parameter file.

ADD RMTTRAIL trail, EXTRACT pump

For example:

ADD RMTTRAIL dirdat/rt, EXTRACT pump2

5. Follow the steps in To Link a Remote Replicat to the New Data Pump.

To Link a Remote Replicat to the New Data Pump

1. In GGSCI on the target system, add a Replicat group to read the remote trail. For
EXTTRAIL, specify the same trail as in the RMTTRAIL Extract parameter and the ADD
RMTTRAIL command.

ADD REPLICAT group, EXTTRAIL trail

For example:

Chapter 17
Adding Process Groups to an Active Configuration

17-14

ADD REPLICAT rep2, EXTTRAIL /home/ggs/dirdat/rt

2. Create a parameter file for this Replicat group. Use MAP statement(s) to specify the
same tables that you specified for the new primary Extract and the data pump (if
used).

3. On the source system, start the Extract groups and data pumps.

START EXTRACT group
START EXTRACT pump

4. On the target system, start the new Replicat group.

START REPLICAT group

17.5.3 Adding Another Data Pump to an Active Configuration
This procedure adds a data-pump Extract group to an active primary Extract group on
the source system. It makes these changes:

• The primary Extract will write to a local trail.

• The data pump will write to a new remote trail after the data in the old trail is
applied to the target.

• The old Replicat group will be replaced by a new one.

Steps are performed on the source and target systems.

1. On the source system, run GGSCI.

2. Add a local trail, using the name of the primary Extract group for group.

ADD EXTTRAIL trail, EXTRACT group

For example:

ADD EXTTRAIL dirdat\lt, EXTRACT primary

3. Open the parameter file of the primary Extract group, and replace the RMTTRAIL
parameter with an EXTTRAIL parameter that points to the local trail that you
created.

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit
an existing parameter file that is in a character set other than that of
the local operating system (such as one where the CHARSET option was
used to specify a different character set). View the parameter file from
outside GGSCI if this is the case; otherwise, the contents may become
corrupted..

Example EXTTRAIL parameter:

EXTTRAIL dirdat\lt

4. Remove the RMTHOST parameter.

5. Save and close the file.

Chapter 17
Adding Process Groups to an Active Configuration

17-15

6. Add a new data-pump Extract group, using the trail that you specified in step 2 as
the data source.

ADD EXTRACT group, EXTTRAILSOURCE trail

For example:

ADD EXTRACT pump, EXTTRAILSOURCE dirdat\lt

7. Create a parameter file for the new data pump.

EDIT PARAMS group

8. In the parameter file, include the appropriate Extract parameters for your
configuration, plus:

• TABLE parameter(s) for the tables that are to be processed by this data pump.

• RMTHOST parameter to point to the target system.

• RMTTRAIL parameter to point to a new remote trail (to be created later).

9. In GGSCI on the source system, add a remote trail for the data-pump. Use the trail
name that is specified with RMTTRAIL in the data pump's parameter file, and specify
the group name of the data pump for EXTRACT.

ADD RMTTRAIL trail, EXTRACT group

For example:

ADD RMTTRAIL dirdat/rt, EXTRACT pump

Note:

This command binds a trail name to an Extract group but does not
actually create the trail. A trail file is created when processing starts.

10. On the target system, run GGSCI.

11. Add a new Replicat group and link it with the remote trail.

ADD REPLICAT group, EXTTRAIL trail

For example:

ADD REPLICAT rep, EXTTRAIL dirdat/rt

12. Create a parameter file for this Replicat group. You can copy the parameter
file from the original Replicat group, but make certain to change the REPLICAT
parameter to the new group name.

13. On the source system, stop the primary Extract group, then start it again so that
the parameter changes you made take effect.

STOP EXTRACT group
START EXTRACT group

14. On the source system, start the data pump.

START EXTRACT group

15. On the target system, issue the LAG REPLICAT command for the old Replicat, and
continue issuing it until it reports At EOF, no more records to process.

Chapter 17
Adding Process Groups to an Active Configuration

17-16

LAG REPLICAT group

16. Stop the old Replicat group.

STOP REPLICAT group

17. If using a checkpoint table for the old Replicat group, log into the database from
GGSCI.

DBLOGIN [SOURCEDB datasource] [{, USERIDALIAS alias | USERID user
[,options]]

18. Delete the old Replicat group.

DELETE REPLICAT group

19. Start the new Replicat group.

START REPLICAT group

Note:

Do not delete the old remote trail, just in case it is needed later on for a
support case or some other reason. You can move it to another location,
if desired.

17.5.4 Adding Another Replicat Group to an Active Configuration
This procedure adds a new Replicat group to an existing Replicat group. The new
Replicat reads from the same trail as the original Replicat.

Multiple Replicat groups may be required when Replicat is configured in classic mode,
for the purpose of isolating transactions on certain tables or improving performance.
Multiple Replicat groups usually are not required if using coordinated Replicat,
because you can divide the workload among multiple processing threads within the
same Replicat group. See Creating an Online Replicat Group for more information
about Replicat modes.

Steps are performed on the source and target systems.

1. Choose a name for the new group.

2. On the target system, run GGSCI.

3. Create a parameter file for the new Replicat group.

EDIT PARAMS group

Note:

You can copy the original parameter file to use for this group, but
make certain to change the Replicat group name and any other relevant
parameters that apply to this new group.

4. Add MAP statements (or edit copied ones) to specify the tables that you are adding
or moving to this group. If this group will be a coordinated Replicat group, include
the appropriate thread specifications.

Chapter 17
Adding Process Groups to an Active Configuration

17-17

5. Save and close the parameter file.

6. On the source system, run GGSCI.

7. Stop the Extract group.

STOP EXTRACT group

8. Issue the INFO REPLICAT command for the old Replicat group, and continue
issuing it until it reports At EOF, no more records to process.

INFO REPLICAT group

9. On the target system, edit the old Replicat parameter file to remove MAP
statements that specified the tables that you moved to the new Replicat group.
Keep only the MAP statements that this Replicat will continue to process.

10. Save and close the file.

11. Issue the INFO REPLICAT command for the old Replicat group, and continue
issuing it until it reports At EOF, no more records to process.

INFO REPLICAT group

12. Obtain the current Replicat checkpoint.

INFO REPLICAT group

13. Stop the old Replicat group. If you are stopping a coordinated Replicat, make
certain the stop is clean so that all threads stop at the same trail record.

STOP REPLICAT group

14. Alter the new Replicat to position at the same trail sequence number and RBA as
the old replicat group

ALTER REPLICAT group, EXTSEQNO seqno, EXTRBA rba

The seqno is the trail sequence number from the old group checkpoint obtained in
step 11 and the rba is the trail record RBA number from the old group checkpoint.

15. Add the new Replicat group. For EXTTRAIL, specify the trail that this Replicat group
is to read.

ADD REPLICAT group, EXTTRAIL trail

For example:

ADD REPLICAT rep, EXTTRAIL dirdat/rt

16. Issue the INFORM COMMAND to alter the Replicat to the trail file sequence number
and RBA displayed.

INFORM COMMAND

17. On the source system, start the Extract group.

START EXTRACT group

18. On the target system, start the old Replicat group.

START REPLICAT group

19. Start the new Replicat group.

START REPLICAT group

Chapter 17
Adding Process Groups to an Active Configuration

17-18

17.6 Changing the Size of Trail Files
You can change the size of trail files with the MEGABYTES option of either the ALTER
EXTTRAIL or ALTER RMTTRAIL command, depending on whether the trail is local or
remote. To change the file size, follow this procedure.

1. Issue one of the following commands, depending on the location of the trail, to
view the path name of the trail you want to alter and the name of the associated
Extract group. Use a wildcard to view all trails.

(Remote trail)

INFO RMTTRAIL *

(Local trail)

INFO EXTTRAIL *

2. Issue one of the following commands, depending on the location of the trail, to
change the file size.

(Remote trail)

ALTER RMTTRAIL trail, EXTRACT group, MEGABYTES n

(Local trail)

ALTER EXTTRAIL trail, EXTRACT group, MEGABYTES n

3. Issue the following command to cause Extract to switch to the next file in the trail.

SEND EXTRACT group, ROLLOVER

17.7 Switching Extract from Classic Mode to Integrated
Mode

Valid for Oracle only.

This procedure switches an existing Extract group from classic mode to integrated
mode. For more information about Extract modes for an Oracle database, see
Choosing Capture and Apply Modes in Using Oracle GoldenGate for Oracle Database.

To support the transition to integrated mode, the transaction log that contains the start
of the oldest open transaction must be available on the source or downstream mining
system, depending on where Extract will be running.

To determine the oldest open transaction, issue the SEND EXTRACT command with
the SHOWTRANS option. You can use the FORCETRANS or SKIPTRANS options of this
command to manage specific open transactions, with the understanding that skipping
a transaction may cause data loss and forcing a transaction to commit to the trail may
add unwanted data if the transaction is rolled back by the user applications. Review
these options in SEND EXTRACT Reference for Oracle GoldenGatebefore using them.

GGSCI> SEND EXTRACT group, SHOWTRANS�
GGSCI> SEND EXTRACT group, { SKIPTRANS ID [THREAD n] [FORCE] |�
FORCETRANS ID [THREAD n] [FORCE] }�

Chapter 17
Changing the Size of Trail Files

17-19

To Switch Extract Modes

1. Back up the current Oracle GoldenGate working directories.

2. While the Oracle GoldenGate processes continue to run in their current
configuration, so that they keep up with current change activity, copy the Extract
parameter file to a new name.

3. Grant the appropriate privileges to the Extract user and perform the required
configuration steps to support your business applications in integrated capture
mode. See Assigning Credentials to Oracle GoldenGate in Using Oracle
GoldenGate for Oracle Databasefor information about configuring and running
Extract in integrated mode.

4. Log into the mining database with one of the following commands, depending on
where the mining database is located.

DBLOGIN USERIDALIAS alias

MININGDBLOGIN USERIDALIAS alias

Where: alias specifies the alias of a user in the credential
store who has the privileges granted through the Oracle
dbms_goldengate_auth.grant_admin_privilege procedure.

5. Register the Extract group with the mining database. Among other things, this
creates the logmining server.

REGISTER EXTRACT group DATABASE

6. Issue the following command to determine whether the upgrade command can be
issued. Transactions that started before the registration command must be written
to the trail before you can proceed with the upgrade. You may have to issue this
command more than once until it returns a message stating that Extract can be
upgraded.

INFO EXTRACT group UPGRADE

7. Stop the Extract group.

STOP EXTRACT group

8. Switch the Extract group to integrated mode. See Oracle RAC options for this
command in STOP EXTRACTin Reference for Oracle GoldenGate, if applicable.

ALTER EXTRACT group UPGRADE INTEGRATED TRANLOG

9. Replace the old parameter file with the new one, keeping the same name.

10. Start the Extract group.

START EXTRACT group

17.8 Switching Extract from Integrated Mode to Classic
Mode

Valid for Oracle only.

Chapter 17
Switching Extract from Integrated Mode to Classic Mode

17-20

This procedure switches an existing Extract group from integrated mode to classic
mode. For more information about Extract modes for an Oracle database, see
Choosing Capture and Apply Modesin Using Oracle GoldenGate for Oracle Database.

To support the transition to classic mode, the transaction log that contains the start
of the oldest open transaction must be available on the source or downstream mining
system. To determine the oldest open transaction, issue the SEND EXTRACT command
with the SHOWTRANS option. You can use the FORCETRANS or SKIPTRANS options of this
command to manage specific open transactions, with the understanding that skipping
a transaction may cause data loss and forcing a transaction to commit to the trail
may add unwanted data if the transaction is rolled back by the user applications.
Review these options in Oracle GoldenGate Parametersin Reference for Oracle
GoldenGatebefore using them.

GGSCI> SEND EXTRACT group, SHOWTRANS�
GGSCI> SEND EXTRACT group, { SKIPTRANS ID [THREAD n] [FORCE] |�
FORCETRANS ID [THREAD n] [FORCE] }�

To Switch Extract Modes

1. Back up the current Oracle GoldenGate working directories.

2. While the Oracle GoldenGate processes continue to run in their current
configuration, so that they keep up with current change activity, copy the Extract
parameter file to a new name.

3. Grant the appropriate privileges to the Extract user and perform the required
configuration steps to support your business applications in classic capture mode.
See Assigning Credentials to Oracle GoldenGatein Using Oracle GoldenGate for
Oracle Databasefor information about configuring and running Extract in classic
mode.

4. Issue the following command to determine whether the downgrade command can
be issued. Transactions that started before the downgrade command is issued
must be written to the trail before you can proceed. You may have to issue this
command more than once until it returns a message stating that Extract can be
downgraded.

INFO EXTRACT group DOWNGRADE

5. Stop the Extract group.

STOP EXTRACT group

6. Log into the mining database with one of the following commands, depending on
where the mining database is located.

DBLOGIN USERIDALIAS alias

MININGDBLOGIN USERIDALIAS alias

Where: alias is the alias of a user in the credential store who has the privileges
granted through the Oracle dbms_goldengate_auth.grant_admin_privilege
procedure.

7. Switch the Extract group to classic mode.

ALTER EXTRACT group DOWNGRADE INTEGRATED TRANLOG

If on a RAC system, then the THREADS option has to be used with the downgrade
command to specify the number of RAC threads.

Chapter 17
Switching Extract from Integrated Mode to Classic Mode

17-21

8. Unregister the Extract group from the mining database. Among other things, this
removes the logmining server.

UNREGISTER EXTRACT group DATABASE

9. Replace the old parameter file with the new one, keeping the same name.

10. Start the Extract group.

START EXTRACT group

17.9 Switching Replicat from Non-Integrated Mode to
Integrated Mode

Valid for Oracle only. For more information about Replicat modes for an Oracle
database, see Choosing Capture and Apply Modes in Using Oracle GoldenGate for
Oracle Database.

This procedure switches an existing Replicat group from non-integrated to integrated
mode.

Note:

Do not configure the switch between Replicat modes to occur immediately
after Extract recovers from a failure or is repositioned to a different location in
the transaction log.

1. Back up the Oracle GoldenGate working directories.

2. While the Oracle GoldenGate processes continue to run in their current
configuration, so that they keep up with current change activity, copy the Replicat
parameter file to a new name.

3. Grant the appropriate privileges to the Replicat user and perform the required
configuration steps to support your business applications in integrated Replicat
mode. See Assigning Credentials to Oracle GoldenGate in Using Oracle
GoldenGate for Oracle Databasefor information about configuring and running
Replicat in integrated mode.

4. Run GGSCI.

5. Stop Replicat.

STOP REPLICAT group

6. Log into the target database from GGSCI.

DBLOGIN USERIDALIAS alias

Where: alias is the alias of a user in the credential store who has the privileges
granted through the Oracle dbms_goldengate_auth.grant_admin_privilege
procedure.

7. Alter Replicat to integrated mode.

ALTER REPLICAT group, INTEGRATED

Chapter 17
Switching Replicat from Non-Integrated Mode to Integrated Mode

17-22

8. Replace the old parameter file with the new one, keeping the same name.

9. Start Replicat.

START REPLICAT group

10. Verify that Replicat is in integrated mode.

INFO REPLICAT group

When you start Replicat in integrated mode for the first time, the START command
registers the Replicat group with the database and starts an inbound server to which
Replicat attaches. When you convert a Replicat group to integrated mode, the use of
the Oracle GoldenGate checkpoint table is discontinued and recovery information is
maintained internally by the inbound server and by the checkpoint file going forward.
You can retain the checkpoint table in the event that you decide to switch back to
non-integrated mode.

17.10 Switching Replicat from Integrated Mode to Non-
Integrated Mode

Valid for Oracle only. For more information about Replicat modes for an Oracle
database, see About Integrated Replicat in Using Oracle GoldenGate for Oracle
Database.

You can, at any time, switch Replicat from integrated mode to non-integrated mode.
This switch automatically unregisters the Replicat group from the target database,
which removes the inbound server.

Note:

Do not configure the switch between Replicat modes to occur immediately
after Extract recovers from a failure or is repositioned to a different location in
the transaction log.

1. Back up the Oracle GoldenGate working directories.

2. While the Oracle GoldenGate processes continue to run in their current
configuration, so that they keep up with current change activity, copy the Replicat
parameter file to a new name.

3. Grant the appropriate privileges to the Replicat user and perform the required
configuration steps to support your business applications in non-integrated
Replicat mode. See Assigning Credentials to Oracle GoldenGatein Using Oracle
GoldenGate for Oracle Databasefor information about configuring and running
Replicat in integrated mode.

4. Run GGSCI.

5. Log into the target database from GGSCI.

DBLOGIN USERIDALIAS alias

Chapter 17
Switching Replicat from Integrated Mode to Non-Integrated Mode

17-23

Where: alias is the alias of a user in the credential store who has the privileges
granted through the Oracle dbms_goldengate_auth.grant_admin_privilege
procedure.

6. Create a checkpoint table in the target database for the non-integrated Replicat
to use to store its recovery checkpoints. If a checkpoint table was previously
associated with this Replicat group and still exists, you can omit this step. See
Creating a Checkpoint Table for more information about options for using a
checkpoint table.

ADD CHECKPOINTTABLE [container.]table

7. Stop Replicat.

STOP REPLICAT group

8. Alter Replicat to non-integrated mode. For the CHECKPOINTTABLE argument, specify
the checkpoint table that you created for this Replicat group.

ALTER REPLICAT group, NONINTEGRATED, CHECKPOINTTABLE [container.]table

9. Replace the old parameter file with the new one, keeping the same name.

10. Start Replicat.

START REPLICAT group

After issuing this command, wait until there is some activity on the source
database so that the switchover can be completed. (Replicat waits until its
internal high-water mark is exceeded before removing the status of "switching from
integrated mode.")

11. Verify that Replicat switched to non-integrated mode.

INFO REPLICAT group

17.11 Switching Replicat to Coordinated Mode
Valid for all database types supported by Oracle GoldenGate.

This procedure upgrades a regular Replicat configuration (non-coordinated) to a
coordinated configuration. This procedure assumes you are replacing a configuration
that partitions data across multiple Extract and Replicat processes with a configuration
that uses one Extract and one coordinated Replicat. The coordinated Replicat
replaces the need for using multiple Replicat processes. A coordinated Replicat
requires only one trail, so there is no need for multiple Extract processes or data
pumps.

See Configuring Online Change Synchronization for more information about
coordinated Replicat.

• Procedure Overview

• Performing the Switch to Coordinated Replicat

17.11.1 Procedure Overview
This procedure makes use of the EVENTACTIONS parameter with a STOP action, which
enables all of the Replicat processes to stop at the same point in the trail. The
EVENTACTIONS action is triggered by a transaction that contains an INSERT to a dummy

Chapter 17
Switching Replicat to Coordinated Mode

17-24

table. The INSERT causes each process to finish processing everything up to, and
including, the event transaction and then stop cleanly. An additional event action
of IGNORE is specified for Replicat to prevent the multiple Replicat processes from
attempting to insert the same record to the target. The result of this procedure is that
all processes stop at the same point in the data stream: after completing the INSERT
transaction to the dummy table.

After the processes stop, you move all of the TABLE statements to one primary Extract
group. You move the same TABLE statements to the data pump that reads the trail
of the Extract group that you retained. You move all of the MAP statements to a new
coordinated Replicat group that reads the remote trail that is associated with the
retained data pump. Once all of the MAP statements are in one parameter file, you edit
them to add the thread specifications to support a coordinated Replicat. (This can be
done ahead of time.) Then you drop the Replicat group and add it back in coordinated
mode with the same name.

17.11.2 Performing the Switch to Coordinated Replicat

Note:

Do not create the Replicat group until prompted by these instructions.

1. Back up the current parameter files of all of the Extract groups, data pumps, and
Replicat groups. You will be editing them.

2. Create a working directory outside the Oracle GoldenGate directory. You will use
this directory to create and stage new versions of the parameter files. If needed,
you can create a working directory on the source and target systems.

3. In the working directory, create a parameter file for a coordinated Replicat. Copy
the MAP parameters from the active parameter files of all of the Replicat groups
to this parameter file, and then add the thread specifications and any other
parameters that support your required coordinated Replicat configuration

4. If using multiple primary Extract groups, select one to keep, and then save a copy
of its current parameter file to the working directory.

5. Copy all of the TABLE statements from the other Extract groups to the new
parameter file of the primary Extract that you are keeping.

6. In the working directory, save a copy of the parameter file of the data pump that is
linked to the primary Extract that you are keeping.

7. Copy all of the TABLE statements from the other data pumps to the copied
parameter file of the kept data pump.

8. In the source database, create a simple dummy table on which a simple INSERT
statement can be performed. For this procedure, the name schema.event is used.

9. Create the same table on the target system, to avoid the need for additional
configuration parameters.

10. Edit the active parameter files (not the copies) of all primary and data-pump
Extract groups to add the following EVENTACTIONS parameter to each one.

TABLE schema.event, EVENTACTIONS(STOP);

Chapter 17
Switching Replicat to Coordinated Mode

17-25

11. Edit the active parameter files (not the copies) of all of the Replicat groups to add
the following EVENTACTIONS parameter to each one.

MAP schema.event, TARGET schema.event, EVENTACTIONS(IGNORE, STOP);

12. Stop the Oracle GoldenGate processes gracefully in the following order:

• Stop all Replicat processes.

• Stop all data pumps.

• Stop all Extract processes.

13. Restart the Oracle GoldenGate processes in the following order so that the
EVENTACTIONS parameters take effect:

• Start all Extract processes.

• Start all data pumps.

• Start all Replicat processes.

14. On the source system, issue a transaction on the schema.event table that contains
one INSERT statement. Make certain to commit the transaction.

15. In GGSCI, issue the STATUS command for all of the primary Extract and data pump
processes on the source system, and issue the same command for all of the
Replicat processes on the target system, until the commands show that all of the
processes are STOPPED.

STATUS EXTRACT *
STATUS REPLICAT *

16. Replace the active parameter files of the primary Extract and data pump that you
kept with the new parameter files from the working directory.

17. Delete the unneeded Extract and data pump groups and their parameter files.

18. Log into the target database by using the DBLOGIN command.

19. Delete all of the Replicat groups and their active parameter files.

20. Copy or move the new coordinated Replicat parameter file from the working
directory to the Oracle GoldenGate directory.

21. In GGSCI, issue the INFO EXTRACT command for the data pump and make note of
its write checkpoint position in the output (remote) trail.

INFO EXTRACT pump, DETAIL

22. Add a new coordinated Replicat group with the following parameters.

ADD REPLICAT group, EXTTRAIL trail, EXTSEQNO sequence_number, EXTRBA rba,
COORDINATED MAXTHREADS number

Where:

• group is the name of the coordinated Replicat group. The name must match
that of the new parameter file created for this group.

• EXTTRAIL trail is the name of the trail that the data pump writes to.

• EXTSEQNO sequence_number is the sequence number of the trail as shown in
the write checkpoint returned by the INFO EXTRACT that you issued for the data
pump.

Chapter 17
Switching Replicat to Coordinated Mode

17-26

• EXTRBA rba is the relative byte address in the trail as shown in the write
checkpoint returned by INFO EXTRACT. Together, these position Replicat to
resume processing at the correct point in the trial.

• MAXTHREADS number specifies the maximum number of threads allowed for this
group. This value should be appropriate for the number of threads that are
specified in the parameter file.

23. Start the primary Extract group.

24. Start the data pump group.

25. Start the coordinated Replicat group.

17.12 Administering a Coordinated Replicat Configuration
This section contains instructions for coordinating threads and re-partitioning the
workload among new or different threads. A coordinated Replicat should be stopped
cleanly with the STOP REPLICAT command before making modifications to the partition
specifications in THREAD or THREADRANGE clauses of the MAP statements. A clean stop
ensures that all of the threads, which may be at different locations in the trail at any
given point, all finish their work and arrive at a common trail location.

At startup, Replicat issues an error and abends if it detects that the last shutdown
was not clean and the partitioning in the MAP statements was changed to contain
a different number of threads (threads were added or removed). However, if the
same threads are kept in the parameter file but simply rearranged among different
MAP statements, Replicat issues a warning but does not abend. This can result in
missing or duplicate records, because there is no way to ensure continuity of the
thread-to-workload allocations from the previous run.

The following is an example of this condition.

Following is the original partitioning scheme:

MAP source, target, THREADRANGE(1-5);
MAP source1, target1, THREADRANGE(6-10);

The following re-partitioning of the original scheme produces only a warning:

MAP source, target, THREADRANGE(1-4);
MAP source1, target1, THREADRANGE(5-10);

This section provides instructions for cleanly shutting down Replicat before performing
a re-partitioning, as well as instructions for attempting to recover Replicat continuity
when a re-partitioning is performed after an unclean shutdown.

The following tasks can be performed for a Replicat group in coordinated mode.

• Performing a Planned Re-partitioning of the Workload

• Recovering Replicat After an Unplanned Re-partitioning

17.12.1 Performing a Planned Re-partitioning of the Workload
A planned re-partitioning is when Replicat is allowed to shut down cleanly before it is
started again with a new parameter file that contains updated thread partitioning. A
clean shutdown enables all of the threads to arrive at a common checkpoint position
in the trail. At that point, the new partitioning scheme can be applied in the next run.

Chapter 17
Administering a Coordinated Replicat Configuration

17-27

If Replicat does not shut down cleanly in this procedure, for example if there is an
apply error, use the procedure in Synchronizing Threads After an Unclean Stop to
re-synchronize the threads before you re-partition them.

1. Run GGSCI.

2. Stop Replicat.

STOP REPLICAT group

3. Open the parameter file for editing.

EDIT PARAMS group

4. Make the required changes to the THREAD or THREADRANGE specifications in the MAP
statements.

5. Save and close the parameter file.

6. Start Replicat.

START REPLICAT group

17.12.2 Recovering Replicat After an Unplanned Re-partitioning
An unplanned re-partitioning is when Replicat is not allowed to shut down cleanly
before it is started again with a new parameter file that contains updated thread
partitioning. In this scenario, some or all of the old threads were not able to finish
their work and arrive at a common checkpoint. Upon restart, the coordinator thread
attempts to apply the old partitioning scheme, and Replicat abends with an error. You
can recover the coordinated Replicat group from this condition in one of the following
ways:

• Use the auto-saved copy of the parameter file

• Reprocess from the low watermark with HANDLECOLLISIONS

• Reprocessing From the Low Watermark with HANDLECOLLISIONS

• Using the Auto-Saved Parameter File

17.12.2.1 Reprocessing From the Low Watermark with HANDLECOLLISIONS
In this procedure, you reposition all of the threads to the low watermark position.
This is the earliest checkpoint position performed among all of the threads. To
state it another way, the low watermark position is the last record processed by
the slowest thread before the unclean stop. When you start Replicat, the threads
reprocess the operations that they were processing before Replicat stopped, and the
HANDLECOLLISIONS parameter handles any duplicate-record and missing-record errors
that occur as the faster threads reprocess operations that they applied before the
unclean stop.

1. Add the HANDLECOLLISIONS parameter to the Replicat parameter file. It is not
necessary to use any THREADS options.

2. Issue the INFO REPLICAT command for the Replicat group as a whole (the
coordinator thread). Make a record of the RBA of the checkpoint. This is the
low watermark value. This output also shows you the active thread IDs under the
Group Name column. Make a record of these, as well.

Chapter 17
Administering a Coordinated Replicat Configuration

17-28

INFO REPLICAT group

GGSCI (slc03jgo) 3> info ra detailREPLICAT RA Last
Started 2013-05-01 14:15 Status ABENDEDCOORDINATED
Coordinator MAXTHREADS 15Checkpoint Lag 00:00:00
(updated 00:00:07 ago)Process ID 11445Log Read Checkpoint
File ./dirdat/withMaxTransOp/bg000000001 2013-05-02
07:49:45.975662 RBA 44704Lowest Log BSN value: (requires database
login)Active Threads: ID Group Name PID Status Lag at Chkpt Time Since
Chkpt1 RA001 11454 ABENDED 00:00:00 00:00:01 2 RA002
11455 ABENDED 00:00:00 00:00:04 3 RA003 11456 ABENDED
00:00:00 00:00:01 5 RA005 11457 ABENDED 00:00:00
00:00:02 6 RA006 11458 ABENDED 00:00:00 00:00:04 7
RA007 11459 ABENDED 00:00:00 00:00:04

3. Issue the INFO REPLICAT command for each processing thread ID and record the
RBA position of each thread. Make a note of the highest RBA. This is the high
watermark of the Replicat group.

INFO REPLICAT threadID

 info ra002
REPLICAT RA002 Last Started 2013-05-01 14:15 Status
ABENDEDCOORDINATED Replicat Thread Thread
2Checkpoint Lag 00:00:00 (updated 00:00:06 ago)Process ID
11455
Log Read Checkpoint File ./dirdat/withMaxTransOp/
bg000000001 2013-05-02 07:49:15.837271 RBA 45603

4. Issue the ALTER REPLICAT command for the coordinator thread (Replicat as a
whole, without any thread ID) and position to the low watermark RBA that you
recorded.

ALTER REPLICAT group EXTRBA low_watermark_rba

5. Start Replicat.

START REPLICAT group

6. Issue the basic INFO REPLICAT command until it shows an RBA that is higher than
the high watermark that you recorded. HANDLECOLLISIONS handles any collisions
that occur due to previously applied transactions.

INFO REPLICAT group

7. Stop Replicat.

STOP REPLICAT group

8. Remove or comment out the HANDLECOLLISIONS parameter.

9. Start Replicat.

START REPLICAT group

17.12.2.2 Using the Auto-Saved Parameter File
A copy of the original parameter file is saved whenever the parameter file is edited
before shutting down Replicat cleanly. You can revert to this parameter file and then
resynchronize the threads so that they all catch up to the thread that had the most
recent checkpoint position. Once the threads are synchronized, you can switch to the
new parameter file and then start Replicat.

Chapter 17
Administering a Coordinated Replicat Configuration

17-29

1. Save the new parameter file to a different name, and then rename the saved
original parameter file to the correct name (same as the group name). The saved
parameter file has a .backup suffix and is stored in the dirprm subdirectory of the
Oracle GoldenGate installation directory.

2. Issue the following command to synchronize the Replicat threads to the maximum
checkpoint position. This command automatically starts Replicat and executes the
threads until they reach the maximum checkpoint position.

SYNCHRONIZE REPLICAT group

3. Issue the STATUS REPLICAT command until it shows that Replicat stopped cleanly.

STATUS REPLICAT group

4. Save the original parameter file to a different name, and then rename the new
parameter file to the group name.

5. Start Replicat.

START REPLICAT group

17.13 Synchronizing Threads After an Unclean Stop
When a Replicat group stops in an unclean manner, not all of the threads will reach
a common checkpoint position in the trail. Unclean stops can be caused by issuing
STOP REPLICAT with the ! option, issuing the KILL REPLICAT command, or by transient
errors related to Replicat, the database, or other local processes. You can restore the
threads to the same position in the trail after an unclean stop and then start Replicat
again from the correct checkpoint position.

In this procedure, the restore position is the high watermark. This is the most recent
checkpoint position performed among all of the threads (the last record processed by
the fastest thread before the unclean stop). Before starting Replicat, you can make
changes to the parameter file, such as to repartition the workload among different
or new threads. The repartitioning takes effect in a seamless manner after you start
Replicat, because the threads can start from a synchronized state.

1. Run GGSCI.

2. Synchronize the Replicat threads to the maximum checkpoint position. Replicat
performs the synchronization and then stops.

SYNCHRONIZE REPLICAT group

3. (Optional) To re-partition the workload among different or new threads, open the
parameter file for editing and then make the required changes to the THREAD or
THREADRANGE specifications in the MAP statements.

EDIT PARAMS group

4. Save and close the parameter file.

5. Start Replicat.

START REPLICAT group

Chapter 17
Synchronizing Threads After an Unclean Stop

17-30

17.14 Restarting a Primary Extract after System Failure or
Corruption

This procedure enables Oracle GoldenGate to recover from certain conditions, such
as a file system corruption or a system failure, that corrupt the Extract checkpoint
file, trail, or both, and which prevent Extract from being able to start. It enables you
to establish a safe starting point in the transaction log for the primary Extract after
the system has been restored. It also shows you how to reposition downstream data
pumps and Replicat to read from the correct Extract write position in the trails, and to
filter out any transactions that Replicat already applied to the target.

• Details of This Procedure

• Performing the Recovery

17.14.1 Details of This Procedure
Extract passes a log begin sequence number, or LOGBSN, to the trail files. The
BSN is the native database sequence number that identifies the oldest uncommitted
transaction that is held in Extract memory. For example, the BSN in an Oracle
installation would be the Oracle system change number (SCN). Each trail file contains
the lowest LOGBSN value for all of the transactions in that trail file. Once you know the
LOGBSN value, you can reposition Extract at the correct read position to ensure that the
appropriate transactions are re-generated to the trail and propagated to Replicat.

Note:

In an Oracle RAC environment, the lowest SCN of all of the threads is
transmitted to Replicat. Transactions that may already have been committed
by Replicat are handled as duplicates at startup. However, any thread that
has been idle past a certain threshold will not be considered for the BSN
value, to avoid Extract having to read too far back in the log stream when
restarted.

The bounded recovery checkpoint is not taken into account when calculating the
LOGBSN. The failure that affected the Extract checkpoint file may also involve a
loss of the persisted bounded recovery data files and bounded recovery checkpoint
information.

17.14.2 Performing the Recovery
Follow these steps in the order shown to recover the Oracle GoldenGate processes.

1. In GGSCI on the target system, issue the DBLOGIN command.

DBLOGIN {USERID Replicat_user | USERIDALIAS alias_of_Replicat_user}

2. On the target, obtain the LOGBSN value by issuing the INFO REPLICAT command
with the DETAIL option.

INFO REPLICAT group, DETAIL

Chapter 17
Restarting a Primary Extract after System Failure or Corruption

17-31

The BSN is included in the output as a line similar to the following:

Current Log BSN value: 1151679

3. (Classic capture mode only. Skip if using integrated capture mode.) Query the
source database to find the sequence number of the transaction log file that
contains the value of the LOGBSN that you identified in the previous step. This
example assumes 1855798 is the LOGBSN value and shows that the sequence
number of the transaction log that contains that LOGBSN value is 163.

SQL> select name, thread#, sequence# from v$archived_log
where 1855798 between first_change# and next_change#;

NAME THREAD# SEQUENCE#
------------------------------------- ---------- ----------/oracle/dbs/
arch1_163_800262442.dbf 1 163

4. Issue the following commands in GGSCI to reposition the primary Extract to the
LOGBSN start position.

• (Classic capture mode)

ALTER EXTRACT group EXTSEQNO 163
ALTER EXTRACT group EXTRBA 0
ALTER EXTRACT group ETROLLOVER

• (Integrated capture mode)

ALTER EXTRACT group SCN 1151679
ALTER EXTRACT group ETROLLOVER

Note:

There is a limit on how far back Extract can go in the transaction stream,
when in integrated mode. If the required SCN is no longer available, the
ALTER EXTRACT command fails.

5. Issue the following command in GGSCI to the primary Extract to view the new
sequence number of the Extract Write Checkpoint. This command shows the
trail and RBA where Extract will begin to write new data. Because a rollover was
issued, the start point is at the beginning (RBA 0) of the new trail file, in this
example file number 7.

INFO EXTRACT group SHOWCH
Sequence #: 7
RBA: 0

6. Issue the following command in GGSCI to reposition the downstream data pump
and start a new output trail file.

ALTER EXTRACT pump EXTSEQNO 7
ALTER EXTRACT pump EXTRBA 0
ALTER EXTRACT pump ETROLLOVER

7. Issue the following command in GGSCI to the data pump Extract to view the new
sequence number of the data pump Write Checkpoint, in this example trail number
9.

Chapter 17
Restarting a Primary Extract after System Failure or Corruption

17-32

INFO EXTRACT pump SHOWCH
Sequence #: 9
RBA: 0

8. Reposition Replicat to start reading the trail at the new Write Checkpoint of the
data pump.

ALTER REPLICAT group EXTSEQNO 9
ALTER REPLICAT group EXTRBA 0

9. Start the primary Extract and the data pump.

START EXTRACT group
START REPLICAT group

10. Issue the following command in GGSCI to start Replicat. If Replicat is
operating in integrated mode (Oracle targets only), you do not need the
FILTERDUPTRANSACTIONS option. Integrated Replicat handles duplicate transactions
transparently.

START REPLICAT group[, FILTERDUPTRANSACTIONS]

Note:

The LOGBSN gives you the information needed to set Extract back in time
to reprocess transactions. Some filtering by Replicat is necessary because
Extract will likely re-generate a small amount of data that was already
applied by Replicat. FILTERDUPTRANSACTIONS directs Replicat to find and filter
duplicates at the beginning of the run.

17.15 Using Automatic Trail File Recovery
The trail recovery process has the ability to, in some cases, automatically rebuild
trail files that are corrupt or missing by Oracle GoldenGate. When an Extract pump
restarts, if the last trail that the pump was writing to is missing, then the Extract
pump attempts to rebuild the missing trail file on the target system. This is done
automatically using the checkpoint information for the process and the last valid trail
file. The Replicat process automatically skips over any duplicate data in the trail files
that have been rebuilt by the new trail recovery feature. This recovery will occur as
long as there is at least 1 target trail from this sequence and that the trail files still exist
on the source where the Extract pump is reading them.

This process can also be used to rebuild corrupt or invalid trail files on the target.
Simply delete the corrupt trail file, and any trail files after that, and then restart the
Extract pump. With this new behavior, Oracle recommends that PURGEOLDEXTRACTS
MINKEEP rules are properly configured to ensure that there are trail files from the
source that can be used to rebuild the target environment. This feature requires that
Oracle GoldenGate release 12.1.2.1.8 or greater is used on both the source and target
servers. Do not attempt to start the Replicat with NOFILTERDUPTRANSACTIONS because it
will override Replicat's default behavior and may cause transactions that have already
been applied to the target database to be applied again.

Chapter 17
Using Automatic Trail File Recovery

17-33

18
Using UDS for Monitoring Performance

Oracle GoldenGate uses the Unix Domain Sockets (UDS) to send montoring points
from Extract, Replicat, and other processes to the local Performance Monitoring server
process of the deployment.

The Performance Metrics server for a deployment is local to the machine, so it is more
secure to use Unix Domain Sockets (UDS) for communicating with the server as there
is no need to open UDP ports. This reduces the possible attack surface for external
threats and improves overall performance.

Topics:

• How Does UDS Work?
Unix Domain Sockets is available with Microservices and Classic architectures for
Oracle and non-Oracle databases.

• Operating System Supported with Unix Domain Sockets

18.1 How Does UDS Work?
Unix Domain Sockets is available with Microservices and Classic architectures for
Oracle and non-Oracle databases.

The UDS file is located in the /temp directory of the deployment. For Microservices,
the location is $OGG_HOME/var/temp and for Classic, the location is $OGG_HOME/dirtmp.

18.2 Operating System Supported with Unix Domain
Sockets

UDS will be the only communication protocol for Performance Metrics Server, but UDP
is retained for Windows. For Windows and other operating systems that don't support
UDS, UDP will be the default parameter.

The following operating systems support Unix Domain Sockets (UDS) in Oracle
GoldenGate:

• Linux, zLinux

• Solaris Sparc, Solaris x86

• AIX

• HP-UX

18-1

Part II
Administering Oracle GoldenGate
Microservices Architecture

The Oracle GoldenGate Microservices provides all the tools you need to configure,
monitor, and administer deployments and security. It is designed with the industry-
standard HTTPS communication protocol and the JavaScript Object Notation (JSON)
data interchange format. In addition, the architecture provides you with the ability to
verify the identity of clients with basic authentication or Secure Sockets Layer client
certificates.

• Working with Oracle GoldenGate Sharding
Oracle GoldenGate provides a cohesive platform for a sharded Oracle Database,
allowing data replication across various sharded database topologies.

• Loading Data from File to Replicat in Microservices Architecture
By following the steps provided in this topic, data can be precisely replicated from
a source to a target database with zero data loss using a combination of file-based
initial load and change data capture (CDC) processes.

19
Working with Oracle GoldenGate Sharding

Oracle GoldenGate provides a cohesive platform for a sharded Oracle Database,
allowing data replication across various sharded database topologies.

All the functionality of a sharded database, in addition to providing pre-configured
Oracle GoldenGate replication as part of the GDSCTL DEPLOY command, is included.

• Oracle GoldenGate With a Sharded Database
Sharding is only available with Oracle Database 12.2.0.1 or later, over a secure
Microservices deployment.

• How to Configure Sharding in Oracle GoldenGate
If you enable sharding, you must set up a secure deployment.

19.1 Oracle GoldenGate With a Sharded Database
Sharding is only available with Oracle Database 12.2.0.1 or later, over a secure
Microservices deployment.

You need to make sure that you setup your SSL certificate before you setup sharding.
To configure a sharded Oracle Database with Oracle GoldenGate, see Configuring
Sharding for Oracle GoldenGate.

Advantages of Oracle GoldenGate Sharding

Oracle GoldenGate provides a complete data replication platform for sharded
databases.

This is a powerful capability with the following advantages:

• Horizontally partitions data and workload across numerous discrete Oracle
databases that do not share hardware or software

• Enables automatic partitioning and replication, elastic scaling, rebalancing, data-
dependent routing for single-shard and cross-shard queries

• Provides an enterprise-class database platform for new generation developers
who:

– Explicitly design applications to scale linearly with fault tolerance

– Assume schema flexibility with JSON

– See benefits in the power of relational SQL and ACID

• Active replication within and across shardgroups

• Flexible Deployment, which could have single shardgroup for high availability,
multiple shardgroups with varying replication factors

• Different shardgroups can have different replication factors, different number
of shards, different hardware platforms and OS versions, or different database
versions and patch sets.

19-1

19.2 How to Configure Sharding in Oracle GoldenGate
If you enable sharding, you must set up a secure deployment.

Prerequisites

With Oracle Database 21c release, only container databases are supported. This
makes it mandatory to use container databases with a single PDB use for sharding
support in Oracle GoldenGate. Here are the constraints for using sharding with Oracle
GoldenGate 21c with Oracle Database 21c:

• Sharding support is restricted to container databases (CDB) with a single
pluggable database (PDB) only.

• Only ADD SHARD is supported, as the base sharding functionality does not support
CREATE SHARD.

• There is no upgrade support for an individual non-conatiner (non-CDB) based
shard to a container database (CDB) based shard. You need to add a new shard,
and drop the old shard.

See About a Sharded Database in Using Oracle Sharding.

Before you begin with the sharding setup:

• Complete Oracle Database install for the catalog and each shard database.

• Create ggshd_wallet directory for storing Oracle GoldenGate client certificate
under $ORACLE_BASE/admin (if $ORACLE_BASE is defined) or $ORACLE_HOME/admin
(when $ORACLE_HOME is defined).

• Add one microservices deployment per host where shard catalog or shards is set
up.

• Generate Oracle GoldenGate Microservices server and client wallets and
certificates.

• Authorize a sharding client user identified by SSL certificate.

(Recommended) Assign only one Oracle GoldenGate deployment for each shard
for High Availability and simplified patching of shards.

For more information on generating security certificates, see Secure Deployment
Requirements.

Sharding Configuration in Oracle GoldenGate

As a best practice, a deployment should be dedicated to each shard. This ensures
high availability. For more information on the advantages of using Oracle GoldenGate
sharding, see How Does Oracle GoldenGate Work for a Sharded Database.

The following steps are required to configure sharding in cases where you add a shard
from a shardcatalog or create a shard:

1. Add a deployment using Oracle GoldenGate Configuration Assistant (OGGCA) in
secure mode.

2. Import the client certificate to ggshd_wallet. Ensure Oracle GoldenGate
Microservicesservers are up and running on Shards.

Chapter 19
How to Configure Sharding in Oracle GoldenGate

19-2

3. Prepare to set up a sharded database by connecting to the Oracle Sharding
Coordinator (catalog database).

4. Load the Oracle GoldenGate sharding bootstrap scripts located in
the $OGG_HOME/lib/sql/sharding directory. This is a one-time task.

5. Run the following command from the Oracle Sharding Coordinator:

shardcatalog load (as SYS):

$OGGHOME/lib/sql/sharding/ggsys_setup.sql

6. Before adding shards, load the following command (as SYS):

$OGGHOME/lib/sql/sharding/orashard_setup.sql
A serviceManagerURI/OGGDeployName
ggadmin_password shardconnect_string

Note:

This command is not required when you create a shard.

There are two ways to configure shards for Oracle GoldenGate:

• Add shards: It converts an existing single instance database into a shard.
However, the instance must not contain any user data and should be an empty
database.

• Create shard: It sets up a new database at runtime. These commands are issued
from the GDSCTL shell interface.

See Adding a Shard in Using Oracle Sharding

create shardcatalog -database bpodb12s:1521/sdbcat1 -user gsmcatuser/
gsmcatuser -repl OGG -sharding SYSTEM -chunks 36

add gsm -gsm gsm1 -listener 1540 -catalog bpodb12s:1521/sdbcat1 -pwd
gsmcatuser

add shardgroup -shardgroup shgrp1 -repfactor 3
add shardgroup -shardgroup shgrp2 -repfactor 2
…
create shard -shardgroup shgrp1 -destination host01 -CREDENTIAL
gds_oracle -netparam none
-gg_service host01:9000/deploy1
-gg_password ggadmin pw
create shard -shardgroup shgrp1 -destination host02 -CREDENTIAL
gds_oracle -netparam none
-gg_service host02:9000/deploy2 -gg_password ggadmin status
configure
add service ...
start service ..

Chapter 19
How to Configure Sharding in Oracle GoldenGate

19-3

20
Loading Data from File to Replicat in
Microservices Architecture

By following the steps provided in this topic, data can be precisely replicated from a
source to a target database with zero data loss using a combination of file-based initial
load and change data capture (CDC) processes.

In Loading Data from File to Replicat, the initial load process is implemented using
files. However, Microservices uses a different approach. The process of creating and
running a replication solution constitutes:

• Initial Load: Used to copy the existing contents of one or more tables from the
source to the target database.

• Change Data Capture: Used to copy transactional changes from the source to the
target database.

Note:

Microservices doesn’t support loading data with an Oracle GoldenGate direct
load.

File-based initial load process is the preferred method for performing data replication
in Microservices. It’s key components are:

• Initial Load Extract and Replicat: Replicates the existing content of the database
tables.

• Primary Extract and Replicat: Replicates change data from the database tables.

• Distribution Paths: Transfers trail files to the target system.

Before you begin, make sure that the database credential alias is created.

20-1

Important:

This topic demonstrates the steps for initial load processing using the
AdminClient. However, you can also use curl to perform these steps.

Step 1: Creating a Primary Extract

Precise instantiation is used to replicate database resources correctly from the source
to the target database. The primary Extract is started first to initiate change data
capture early. Precise instantiation is based on the following assumptions:

Note:

For precise instantiation to work, the instantiation SCN must come after the
registration SCN.

• The primary Extract is started. It is responsible for change data capture and noting
it’s registration SCN.

• The database is monitored. The database waits for the oldest open transaction’s
SCN to come after the registration SCN. This is the instantiation SCN.

• The instantiation SCN is used when creating the initial load Extract and Replicat
processes.

• The instantiation SCN is used to create the primary Replicat, once the initial load
replication is complete.

To begin, create and start the primary Extract EXTPRIM from the AdminClient, as shown
in the following example:

OGG (not connected) 1> connect https://phoenix.oggdevops.us:9100 as
oggadmin password oggadmin !
Using default deployment 'Phoenix'

OGG (https://phoenix.oggdevops.us:9100 Phoenix) 2> dblogin useridalias
oggadmin
Successfully logged into database.

OGG (https://phoenix.oggdevops.us:9100 Phoenix as oggadmin) 3> add
extract EXTPRIM integrated tranlog begin now
2018-03-16T13:37:07Z INFO OGG-08100 EXTRACT (Integrated) added.

OGG (https://phoenix.oggdevops.us:9100 Phoenix as oggadmin) 4> register
extract EXTPRIM database
2018-03-16T13:37:30Z INFO OGG-02003 Extract EXTPRIM successfully
registered with database at SCN 1608891.

OGG (https://phoenix.oggdevops.us:9100 Phoenix as oggadmin) 5> edit
params EXTPRIM

OGG (https://phoenix.oggdevops.us:9100 Phoenix as oggadmin) 6> view
params EXTPRIM

Chapter 20

20-2

--
-- E X T P R I M . p r m
-- Primary Extract Parameter File
--
Extract EXTPRIM
UseridAlias oggadmin
ExtTrail AA
Table user01.*;

OGG (https://phoenix.oggdevops.us:9100 Phoenix as oggadmin) 7> add
exttrail AA extract EXTPRIM
2018-03-16T13:37:55Z INFO OGG-08100 EXTTRAIL added.

OGG (https://phoenix.oggdevops.us:9100 Phoenix as oggadmin) 8> start
extract EXTPRIM
2018-03-16T13:38:02Z INFO OGG-00975 EXTRACT EXTPRIM starting
2018-03-16T13:38:02Z INFO OGG-15426 EXTRACT EXTPRIM started

In this example, oggadmin is the database credential alias.

After creating the primary Extract, retrieve the SCN registration number. Run the
REGISTER EXTRACT command in the AdminClient. The following example retrieves an
SCN value of 1608891.

OGG (https://phoenix.oggdevops.us:9100 Phoenix as oggadmin) 4> register
extract EXTPRIM database
2018-03-16T13:37:30Z INFO OGG-02003 Extract EXTPRIM successfully
registered with database at SCN 1608891.

Step 2: Determining the Instantiation SCN

In Oracle GoldenGate 19c (19.1.0) and later, the Administration Server provides an
endpoint for retrieving information about open database transactions. This information
can be used to identify the SCN to use when instantiating the initial load extract. In
the following example, the instantiation SCN is 1609723, which is the oldest SCN of all
open transactions that is also past the registration SCN of 1608891, identified in the
previous step.

-- Query for active transactions
--
Select T.START_SCN, T.STATUS TSTATUS, T.START_DATE,
 S.SID, S.SERIAL#, S.INST_ID, S.USERNAME, S.OSUSER, S.STATUS
SSTATUS, S.LOGON_TIME
 From gv$transaction T
 Inner
 Join gv$session S
 on S.SADDR = T.SES_ADDR

Union All

--
-- Query for current status
--
Select current_scn, 'CURRENT', CURRENT_DATE,

Chapter 20

20-3

 NULL, NULL, NULL, 'SYS', NULL, NULL, NULL
 from v$database

Order by 1;

The results of this query can be used to determine the instantiation SCN. The results
for this specific query are:

1538916 ACTIVE 2018-03-16 18:10:31.0 3865 9176 1 GGADMIN
oracle INACTIVE 2018-03-16 18:10:26.0 1540555 CURRENT 2018-03-16
18:21:50.0 SYS

The SCN used to instantiate the initial load Extract is obtained using SQL*Plus. In the
following example, the SQL query uses the instantiation SCN value as 1624963, which
is the oldest SCN of all open transactions that are also past the registration SCN of
1608891.

OGG (https://phoenix.oggdevops.us:9100 Phoenix as oggadmin) 14> shell
echo 'Select MIN(START_SCN) From gv$transaction;' | ${ORACLE_HOME}/bin/
sqlplus -S / as sysdba

MIN(START_SCN)

 1624963

If there are no open transactions, then this SQL query returns an empty result.
A detailed query that takes into account the situation where there are no open
transactions is:

Select MIN(SCN) as INSTANTIATION_SCN
 From (Select MIN(START_SCN) as SCN
 From gv$transaction
 Union All
 Select current_scn
 From gv$database);

Step 3: Creating and Starting the Initial Load Replicat

Before you begin this step, make sure that the checkpoint table
oggadmin.checkpoints, already exists on the target system. The initial load Replicat
is responsible for populating the target database. Run the following command on the
AdminClient to create and start the initial load Replicat (REPINIT):

OGG (not connected) 1> connect https://dallas.oggdevops.us:9100 as
oggadmin password oggadmin !
Using default deployment 'Dallas'

OGG (https://dallas.oggdevops.us:9100 Dallas) 2> dblogin useridalias
oggadmin
Successfully logged into database.

OGG (https://dallas.oggdevops.us:9100 Dallas as oggadmin) 3> add
checkpointtable oggadmin.checkpoints

Chapter 20

20-4

ADD "oggadmin.checkpoints" succeeded.

OGG (https://dallas.oggdevops.us:9100 Dallas as oggadmin) 4> add
replicat REPINIT exttrail DD checkpointtable oggadmin.checkpoints
2018-03-16T13:56:41Z INFO OGG-08100 REPLICAT added.

OGG (https://dallas.oggdevops.us:9100 Dallas as oggadmin) 5> edit
params REPINIT

OGG (https://dallas.oggdevops.us:9100 Dallas as oggadmin) 6> view
params REPINIT
--
-- R E P I N I T . p r m
-- File-Based Initial Load Replicat Parameter File
--
Replicat REPINIT
UseridAlias oggadmin
Map user01.*
 Target user01.*;

OGG (https://dallas.oggdevops.us:9100 Dallas as oggadmin) 7> start
replicat REPINIT
2018-03-16T13:58:21Z INFO OGG-00975 REPLICAT REPINIT starting
2018-03-16T13:58:21Z INFO OGG-15426 REPLICAT REPINIT started

Step 4: Creating and starting the Initial Load Extract

Using the instantiation SCN that you retrieved (1624963), the initial load Extract is
created to write contents of the database tables to the trail.

Create and start the initial load extract, EXTINIT.

OGG (https://phoenix.oggdevops.us:9100 Phoenix as oggadmin) 15> add
extract EXTINIT sourceistable
2018-03-16T14:08:38Z INFO OGG-08100 EXTRACT added.

OGG (https://phoenix.oggdevops.us:9100 Phoenix as oggadmin) 16> edit
params EXTINIT

OGG (https://phoenix.oggdevops.us:9100 Phoenix as oggadmin) 17> view
params EXTINIT
--
-- E X T I N I T . p r m
-- File-Based Initial Load Extract Parameter File
--
Extract EXTINIT
UseridAlias oggadmin
ExtFile CC Megabytes 2000 Purge
Table user01.*, SQLPredicate "As Of SCN 1609723";

OGG (https://phoenix.oggdevops.us:9100 Phoenix as oggadmin) 18> start
extract EXTINIT
2018-03-16T14:13:42Z INFO OGG-00975 EXTRACT EXTINIT starting
2018-03-16T14:13:42Z INFO OGG-15426 EXTRACT EXTINIT started

Chapter 20

20-5

Step 5: Creating the Distribution Paths

Create two distribution paths (AABB and CCDD) for copying the local trails to the remote
host from the Admin Client:

OGG (https://phoenix.oggdevops.us:9100 Phoenix) 15> add distpath AABB
source trail://phoenix.oggdevops.us:9102/services/v2/sources?trail=AA
target wss://dallas.oggdevops.us:9103/services/v2/targets?trail=BB
2018-03-16T17:28:27Z INFO OGG-08511 The path 'AABB' has been added.

OGG (https://phoenix.oggdevops.us:9100 Phoenix) 16> add distpath CCDD
source trail://phoenix.oggdevops.us:9102/services/v2/sources?trail=CC
target wss://dallas.oggdevops.us:9103/services/v2/targets?trail=DD
2018-03-16T17:28:35Z INFO OGG-08511 The path 'CCDD' has been added.

OGG (https://phoenix.oggdevops.us:9100 Phoenix) 17> start distpath AABB
2018-03-16T17:28:42Z INFO OGG-08513 The path 'AABB' has been
started.

OGG (https://phoenix.oggdevops.us:9100 Phoenix) 18> start distpath CCDD
2018-03-16T17:28:47Z INFO OGG-08513 The path 'CCDD' has been
started.

If you use the ogg protocol instead of wss, then you must use the TARGETTYPE option.
The syntax in that case would be:

ADD DISTPATH path-name SOURCE source-uri TARGET target-uri [TARGETTYPE
(MANAGER | COLLECTOR | RECVSRVR)]

TARGETTYPE specifies the target type in case the distribution path uses the legacy
protocol. This argument is only valid if the target URI schema is ogg.

Step 6: Creating the Primary Replicat REPPRIM

Once the initial load Extract and Replicat complete, they can be deleted. Then, the
primary Replicat process is created on the remote host for applying change data to the
target database.

Use the AdminClient to create the primary Replicat process.

Note:

The primary Replicat is started at the instantiation SCN.

OGG (https://dallas.oggdevops.us:9100 Dallas as oggadmin) 12> add
replicat REPPRIM exttrail BB checkpointtable oggadmin.checkpoints
2018-03-16T17:37:46Z INFO OGG-08100 REPLICAT added.

OGG (https://dallas.oggdevops.us:9100 Dallas as oggadmin) 13> edit
params REPPRIM

Chapter 20

20-6

OGG (https://dallas.oggdevops.us:9100 Dallas as oggadmin) 14> view
params REPPRIM
--
-- R E P P R I M . p r m
-- Replicat Parameter File
--
Replicat REPPRIM
UseridAlias oggadmin
Map user01.*
 Target user01.*;

OGG (https://dallas.oggdevops.us:9100 Dallas as oggadmin) 15> start
replicat REPPRIM atcsn 1624963
2018-03-16T17:38:10Z INFO OGG-00975 REPLICAT REPPRIM starting
2018-03-16T17:38:10Z INFO OGG-15426 REPLICAT REPPRIM started

Chapter 20

20-7

Part III
Administering Oracle GoldenGate Classic
Architecture

The Oracle GoldenGate Classic Architecture provides the processes and files required
to effectively move data across a variety of topologies. These processes and files form
the main components of the Classic Architecture.

• Instantiating Oracle GoldenGate with an Initial Load

21
Instantiating Oracle GoldenGate with an
Initial Load

This chapter describes running an initial data load to instantiate the replication
environment.

The initial load can be done in Classic Architecture and in Microservices.

If working in a heterogeneous environment, there are traditional methods for the initial
load, whereas, if you are working with an Oracle to Oracle replication, there are
optimized methods because the instantiation has the highest precision based on the
SCN value. In this case, the HANDLECOLLISIONS parameter isn't required. See
HANDLECOLLISIONS | NOHANDLECOLLISIONS.

• Overview of the Initial-Load Procedure

• Initial Load in Classic Architecture

21.1 Overview of the Initial-Load Procedure
You can use Oracle GoldenGate to:

• Perform a standalone batch load to populate database tables for migration or other
purposes.

• Load data into database tables as part of an initial synchronization run in
preparation for change synchronization with Oracle GoldenGate.

• Improving the Performance of an Initial Load

• Prerequisites for Initial Load

21.1.1 Improving the Performance of an Initial Load
For all initial load methods except those performed with a database utility, you can load
large databases more quickly by using parallel Oracle GoldenGate processes. To use
parallel processing, take the following steps.

1. Follow the directions in this chapter for creating an initial-load Extract and an
initial-load Replicat for each set of parallel processes that you want to use.

2. With the TABLE and MAP parameters, specify a different set of tables for each pair
of Extract-Replicat processes, or you can use the SQLPREDICATE option of TABLE to
partition the rows of large tables among the different Extract processes.

For all initial load methods, testing has shown that using the TCPBUFSIZE option in
the RMTHOST parameter produced three times faster throughput than loads performed
without it. Do not use this parameter if the target system is NonStop.

21-1

21.1.2 Prerequisites for Initial Load
Verify that you meet the prerequisites for executing an initial load that are described in
the following sections.

• Disable DDL Processing

• Prepare the Target Tables

• Configure the Manager Process

• Create a Data-definitions File

• Create Change-synchronization Groups

• Sharing Parameters between Process Groups

21.1.2.1 Disable DDL Processing
Before executing an initial load, disable DDL extraction and replication. DDL
processing is controlled by the DDL parameter in the Extract and Replicat parameter
files.

21.1.2.2 Prepare the Target Tables
The following are suggestions that can make the load go faster and help you to avoid
errors.

• Data: Make certain that the target tables are empty. Otherwise, there may be
duplicate-row errors or conflicts between existing rows and rows that are being
loaded.

• Constraints: Disable foreign-key constraints and check constraints. Foreign-key
constraints can cause errors, and check constraints can slow down the loading
process. Constraints can be reactivated after the load concludes successfully.

• Indexes: Remove indexes from the target tables. Indexes are not necessary for
inserts. They will slow down the loading process significantly. For each row that is
inserted into a table, the database will update every index on that table. You can
add back the indexes after the load is finished.

Note:

A primary index is required for all applications that access DB2 for z/OS
target tables. You can delete all other indexes from the target tables,
except for the primary index.

• Keys: For Oracle GoldenGate to reconcile the replicated incremental data
changes with the results of the load, each target table must have a primary or
unique key. If you cannot create a key through your application, use the KEYCOLS
option of the TABLE and MAP parameters to specify columns as a substitute key for
Oracle GoldenGate's purposes. A key helps identify which row to process. If you
cannot create keys, the source database must be quiesced for the load.

Chapter 21
Overview of the Initial-Load Procedure

21-2

21.1.2.3 Configure the Manager Process
On the source and target systems, configure and start a Manager process. One
Manager can be used for the initial-load processes and the change-synchronization
processes. For enhanced security, the target manager parameter file should have the
following parameter for RMTTASK to access Replicat on target:

ACCESSRULE, PROG *, IPADDR *, ALLOW

21.1.2.4 Create a Data-definitions File
A data-definitions file is required if the source and target databases have dissimilar
definitions. Oracle GoldenGate uses this file to convert the data to the format required
by the target database.

21.1.2.5 Create Change-synchronization Groups
To prepare for the capture and replication of transactional changes during the initial
load, create online Extract and Replicat groups. You will start these groups during the
load procedure. See Configuring Online Change Synchronization for more information.

Note:

If the load is performed from a quiet source database and will not be followed
by continuous change synchronization, you can omit these groups.

Do not start the Extract or Replicat groups until instructed to do so in the initial-load
instructions. Change synchronization keeps track of transactional changes while the
load is being applied, and then the target tables are reconciled with those changes.

Note:

The first time that Extract starts in a new Oracle GoldenGate configuration,
any open transactions will be skipped. Only transactions that begin after
Extract starts are captured.

21.1.2.6 Sharing Parameters between Process Groups
Some of the parameters that you use in a change-synchronization parameter file also
are required in an initial-load Extract and initial-load Replicat parameter file. You can
copy those parameters from one parameter file to another, or you can store them
in a central file and use the OBEY parameter in each parameter file to retrieve them.
Alternatively, you can create an Oracle GoldenGate macro for the shared parameters
and then call the macro from each parameter file with the MACRO parameter.

See Getting Started with the Oracle GoldenGate Process Interfaces for more
information about using OBEY and using macros.

Chapter 21
Overview of the Initial-Load Procedure

21-3

21.2 Initial Load in Classic Architecture
In Classic Architecture you can load data using various options. The processes and
steps do so, are described in this topic.

Topics:

• Loading Data with Oracle Data Pump

• Loading Data from File to Replicat

• Loading Data with an Oracle GoldenGate Direct Load

• Loading Data with a Direct Bulk Load to SQL*Loader

21.2.1 Loading Data with Oracle Data Pump
This method uses the Oracle Data Pump utility to establish the target data. After
you apply the copy to the target, you record the SCN at which the copy stopped.
Transactions that were included in the copy are skipped to avoid collisions from
integrity violations. With the data pump method, Replicat has the information about
the consistent SCN from the export of each table. Replicat will ignore changes that
belongs to transactions up to this SCN. Transactions after this SCN will be applied. No
initial-load Oracle GoldenGate processes are required for these methods.

• Using Automatic Per Table Instantiation

• Using Oracle Data Pump Table Instantiation

21.2.1.1 Using Automatic Per Table Instantiation
You can automatically instantiate per table CSN filtering for Oracle Database with
Oracle data pump, which avoids having all of your tables at the same SCN.

On the Source Database

1. Use ADD TRANDATA and ADD SCHEMATRANDATA. ADD TRANDATA/
SCHEMATRANDATA.PREPARECSN automatically prepares the tables at the source so
the Oracle data pump export dump file includes instantiation CSNs. Replicat uses
the per table instantiation CSN set by the Oracle data pump (on import) to filter out
trail records.

Use INFO TRANDATA to make sure that your table is prepared for instantiation and
at what point it was done. Here's a sample of the report file:

2016-09-29 15:30:00 INFO OGG-10154 Schema level PREPARECSN set to
mode NOWAIT on schema
 SCOTT

2. Stop Replicat on the target database.

3. Start Extract with the correct TABLE statement.

The EXPORT datapump option FLASHBACK_SCN is not needed as the tables have been
prepared earlier.

Chapter 21
Initial Load in Classic Architecture

21-4

On the Target Database

1. Import your exported tables using Oracle data pump, which populates system
tables and views with instantiation SCNs, as well as the specified table data.

2. Start Replicat using one of the following:

Set the DBOPTIONS ENABLE_INSTANTIATION_FILTERING parameter in the Replicat
parameter file to enable table-level instantiation filtering.

You can remove this parameter when replicat has processed all transactions
beyond the instantiation SCN.

For all other Replicats, set the DBOPTIONS source_dbase_name global_name
parameter in the Replicat parameter file where global_name is the global name
of the Oracle source database that the trail is coming from.

Note:

When the source has no DOMAIN, do not specify a DOMAIN for the
downstream database.

Replicat queries the instantiation SCN on any new mapping and filter records
accordingly. For example, see the following report file output:

2015-06-29 17:12:39 INFO OGG-10155 Oracle GoldenGate Delivery for
Oracle, r1.prm:
Instantiation CSN filtering is enabled on table SCOTT.EMP at CSN
1,851,797.

You can use other methods for instantiation instead of using the data pump to export
and import tables also. One such method is using the create table as a select
command or RMAN. It's steps are:

1. Use create table with an at SCN of parameter, using the following command:

SET_INSTANTIATION_CSN SCN for object from global_name

For example:

SET_INSTANTIATION_CSN 1 FOR u1.t1 FROM
DBS1.REGRESS.RDBMS.DEV.US.ORACLE.COM

2. If you want to remove the manual setting of the instantiation CSN later, you can
use the following command:

CLEAR_INSTANTIATION_CSN for object from global_name

21.2.1.2 Using Oracle Data Pump Table Instantiation
To perform instantiation with Oracle Data Pump, see My Oracle Support document
1276058.1. To obtain this document, do the following:

1. Go to http://support.oracle.com.

Chapter 21
Initial Load in Classic Architecture

21-5

2. Under Sign In, select your language and then log in with your Oracle Single
Sign-On (SSO).

3. On the Dashboard, expand the Knowledge Base heading.

4. Under Enter Search Terms, paste or type the document ID of 1276058.1 and then
click Search.

5. In the search results, select Oracle GoldenGate Best Practices: Instantiation
from an Oracle Source Database [Article ID 1276058.1].

6. Click the link under Attachments to open the article.

21.2.2 Loading Data from File to Replicat
To use Replicat to establish the target data, you use an initial-load Extract to extract
source records from the source tables and write them to an extract file in canonical
format. From the file, an initial-load Replicat loads the data using the database
interface. During the load, the change-synchronization groups extract and replicate
incremental changes, which are then reconciled with the results of the load.

During the load, the records are applied to the target database one record at a time,
so this method is considerably slower than any of the other initial load methods. This
method permits data transformation to be done on either the source or target system.

You can also use the Microservices to load data from file to Replicat. See
#unique_479.

To Load Data From File to Replicat

1. Make certain that you have addressed the requirements in Prerequisites for Initial
Load.

2. On the source and target systems, run GGSCI and start Manager.

START MANAGER

Chapter 21
Initial Load in Classic Architecture

21-6

Note:

In a Windows cluster, start the Manager resource from the Cluster
Administrator.

3. On the source system, issue the following command to create an initial-load
Extract parameter file.

EDIT PARAMS initial-load_Extract

4. Enter the parameters in the same order as shown in the following example,
starting a new line for each parameter statement. The following is a sample initial-
load Extract parameter file for loading data from file to Replicat.

SOURCEISTABLE
SOURCEDB mydb, USERIDALIAS ogg
RMTHOSTOPTIONS ny4387, MGRPORT 7888, ENCRYPT AES 192 KEYNAME mykey
ENCRYPTTRAIL AES192
RMTFILE /ggs/dirdat/initld, MEGABYTES 2, PURGE
TABLE hr.*;
TABLE sales.*;

Parameter Description

SOURCEISTABLE Designates Extract as an initial load process
extracting records directly from the source tables.

SOURCEDB dsn [, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

SOURCEDB specifies the source data source name
(DSN).

USERID and USERIDALIAS specify database
credentials if required.

RMTHOSTOPTIONS hostname,
MGRPORT portnumber
[, ENCRYPT algorithm KEYNAME keyname]

Specifies the target system, the port where Manager
is running, and optional encryption of data across
TCP/IP.

ENCRYPTTRAIL algorithm Encrypts the data in the remote file.

RMTFILE path,
[MEGABYTES n]

• path is the relative or fully qualified name of the file.
• MEGABYTES designates the size of each file.

Specifies the extract file to which the load data will be
written. Oracle GoldenGate creates this file during the
load. Checkpoints are not maintained with RMTFILE.

Note that the size of an extract file cannot exceed
2GB.

TABLE container.owner.object; Specifies the fully qualified name of an object or
a fully qualified wildcarded specification for multiple
objects. If the database is an Oracle multitenant
container database, the object name must include
the name of the container or catalog unless
SOURCECATALOG is used.

See Specifying Object Names in Oracle GoldenGate
Input for guidelines for specifying object names in
parameter files.

Chapter 21
Initial Load in Classic Architecture

21-7

Parameter Description

CATALOGEXCLUDE

SCHEMAEXCLUDE

TABLEEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific objects from a wildcard
specification in the associated TABLE statement.

5. Enter any appropriate optional Extract parameters listed in the Reference for
Oracle GoldenGate.

6. Save and close the parameter file.

7. On the target system, issue the following command to create an initial-load
Replicat parameter file.

EDIT PARAMS initial-load_Replicat

8. Enter the parameters listed in Table 21-1 in the order shown, starting a new
line for each parameter statement. The following is a sample initial-load Replicat
parameter file for loading data from file to Replicat.

SPECIALRUN
END RUNTIME
TARGETDB mydb, USERIDALIAS ogg
EXTFILE /ggs/dirdat/initld
SOURCEDEFS /ggs/dirdef/source_defs
MAP hr.*, TARGET hr.*;
MAP sales.*, TARGET hr.*;

Table 21-1 Initial-load Replicat parameters

Parameter Description

SPECIALRUN Implements the initial-load Replicat as a one-time run
that does not use checkpoints.

END RUNTIME Directs the initial-load Replicat to terminate when the
load is finished.

TARGETDB dsn
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target data source name
(DSN).

USERID and USERIDALIAS specify database
credentials if required.

EXTFILE path

• path is the relative or fully qualified name of the file.

Specifies the input extract file specified with the Extract
parameter RMTFILE.

{SOURCEDEFS file} |
ASSUMETARGETDEFS

• Use SOURCEDEFS if the source and target tables
have different definitions. Specify the relative or
fully qualified name of the source-definitions file
generated by DEFGEN.

• Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

Specifies how to interpret data definitions.

Chapter 21
Initial Load in Classic Architecture

21-8

Table 21-1 (Cont.) Initial-load Replicat parameters

Parameter Description

SOURCECATALOG Specifies a default source Oracle container. Enables
the use of two-part names (schema.object) where
three-part names otherwise would be required for those
databases. You can use multiple instances of this
parameter to specify different default containers or
catalogs for different sets of MAP parameters.

MAP container.owner.object,
TARGET owner.object[, DEF template]
;

Specifies a relationship between a source object or
objects and a target object or objects. MAP specifies the
source object, and TARGET specifies the target object.

For the source object, specify the fully qualified
name of the object or a fully qualified wildcarded
specification for multiple objects. For an Oracle
multitenant container database, the source object name
must include the name of the container or catalog
unless SOURCECATALOG is used.

For the target object, specify only the owner.object
components of the name, regardless of the database.
Replicat can only connect to one Oracle container.
Use a separate Replicat process for each container or
catalog to which you want to load data.

See Specifying Object Names in Oracle GoldenGate
Input for guidelines for specifying object names in
parameter files.

The DEF option specifies a definitions template.

CATALOGEXCLUDE

SCHEMAEXCLUDE

MAPEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific source objects from a
wildcard specification in the associated MAP statement..

9. Enter any appropriate optional Replicat parameters listed in the Reference for
Oracle GoldenGate.

10. Save and close the file.

11. View the Replicat parameter file to make certain that the HANDLECOLLISIONS
parameter is listed. If not, add the parameter to the file.

12. On the source system, start change extraction.

START EXTRACT group

13. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who
has EXECUTE privilege on update.Sequence.

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password [encryption_options]

14. (Oracle, if replicating sequences) Issue the following command to update each
source sequence and generate redo. From the redo, Replicat performs initial
synchronization of the sequences on the target. You can use an asterisk wildcard
for any or all characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE owner.sequence

15. From the directory where Oracle GoldenGate is installed on the source system,
start the initial-load Extract.

Chapter 21
Initial Load in Classic Architecture

21-9

UNIX and Linux:

$ /GGS directory/extract paramfile dirprm/initial-load_Extract.prm
reportfile path

Windows:

C:\> GGS directory\extract paramfile dirprm\initial-load_Extract.prm
reportfile path

Where:

initial-load_Extract is the name of the initial-load Extract that you used when
creating the parameter file, and path is the relative or fully qualified name of the
Extract report file.

16. Verify the progress and results of the initial extraction by viewing the Extract report
file using the operating system's standard method for viewing files.

17. Wait until the initial extraction is finished.

18. On the target system, start the initial-load Replicat.

UNIX and Linux:

$ /GGS directory/replicat paramfile dirprm/initial-load_Replicat.prm
reportfile path

Windows:

C:\> GGS directory\replicat paramfile dirprm\initial-load_Replicat.prm
reportfile path

Where:

initial-load_Replicat is the name of the initial-load Replicat that you used
when creating the parameter file, and path is the relative or fully qualified name of
the Replicat report file.

19. When the initial-load Replicat is finished running, verify the results by viewing the
Replicat report file using the operating system's standard method for viewing files.

20. On the target system, start change replication.

START REPLICAT group

21. On the target system, issue the following command to verify the status of change
replication.

INFO REPLICAT group

22. Continue to issue the INFO REPLICAT command until you have verified that
Replicat posted all of the change data that was generated during the initial load.
For example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that point.

23. On the target system, issue the following command to turn off the
HANDLECOLLISIONS parameter and disable the initial-load error handling.

SEND REPLICAT group, NOHANDLECOLLISIONS

24. On the target system, edit the Replicat parameter file to remove the
HANDLECOLLISIONS parameter. This prevents HANDLECOLLISIONS from being
enabled again the next time Replicat starts.

Chapter 21
Initial Load in Classic Architecture

21-10

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit
an existing parameter file that is in a character set other than that of
the local operating system (such as one where the CHARSET option was
used to specify a different character set). View the parameter file from
outside GGSCI if this is the case; otherwise, the contents may become
corrupted.

25. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data
changes.

21.2.3 Loading Data with an Oracle GoldenGate Direct Load
To use an Oracle GoldenGate direct load, you run an Oracle GoldenGate initial-load
Extract to extract the source records and send them directly to an initial-load Replicat
task. A task is started dynamically by the Manager process and does not require the
use of a Collector process or file. The initial-load Replicat task delivers the load in
large blocks to the target database. Transformation and mapping can be done by
Extract, Replicat, or both. During the load, the change-synchronization groups extract
and replicate incremental changes, which are then reconciled with the results of the
load.

To control which port is used by Replicat, and to speed up the search and bind
process, use the DYNAMICPORTLIST parameter in the Manager parameter file. Manager
passes the list of port numbers that are specified with this parameter to the Replicat
task process. Replicat first searches for a port from this list, and only if no ports
are available from the list does Replicat begin scanning in ascending order from the
default Manager port number until it finds an available port.

This method supports standard character, numeric, and datetime data types, as well
as CLOB, NCLOB, BLOB, LONG, XML, and user-defined datatypes (UDT) embedded with
the following attributes: CHAR, NCHAR, VARCHAR, NVARCHAR, RAW, NUMBER, DATE, FLOAT,
TIMESTAMP, CLOB, BLOB, XML, and UDT. Character sets are converted between source
and target where applicable.

Chapter 21
Initial Load in Classic Architecture

21-11

This method supports Oracle internal tables, but does not convert between the source
and target character sets during the load.

To Load Data with an Oracle GoldenGate Direct Load

1. Make certain to satisfy "Prerequisites for Initial Load".

2. On the source and target systems, run GGSCI and start Manager.

START MANAGER

Note:

In a Windows cluster, start the Manager resource from the Cluster
Administrator.

3. On the source, issue the following command to create the initial-load Extract.

ADD EXTRACT initial-load_Extract, SOURCEISTABLE

Where:

• initial-load_Extract is the name of the initial-load Extract, up to eight
characters.

• SOURCEISTABLE designates Extract as an initial-load process that reads
complete records directly from the source tables. Do not use any of the other
ADD EXTRACT service options or datasource arguments.

4. On the source system, issue the following command to create an initial-load
Extract parameter file.

EDIT PARAMS initial-load_Extract

5. Enter the parameters listed in Table 21-2 in the order shown, starting a new line for
each parameter statement. The following is a sample initial-load Extract parameter
file for an Oracle GoldenGate direct load.

EXTRACT initext
SOURCEDB mydb, USERIDALIAS ogg
RMTHOSTOPTIONS ny4387, MGRPORT 7888, ENCRYPT AES 192 KEYNAME mykey
RMTTASK REPLICAT, GROUP initrep
TABLE hr.*;
TABLE sales.*;

Table 21-2 Initial-load Extract Parameters for Oracle GoldenGate Direct Load

Parameter Description

EXTRACT initial-load_Extract Specifies the initial-load Extract.

SOURCEDB dsn
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

SOURCEDB specifies the source datasource name
(DSN). See Reference for Oracle GoldenGate for more
information.

USERID and USERIDALIAS specify database credentials if
required.

Chapter 21
Initial Load in Classic Architecture

21-12

Table 21-2 (Cont.) Initial-load Extract Parameters for Oracle GoldenGate Direct Load

Parameter Description

RMTHOSTOPTIONS hostname,
MGRPORT portnumber
[, ENCRYPT algorithm KEYNAME keyname]

Specifies the target system, the port where Manager is
running, and optional encryption of data across TCP/IP.

RMTTASK replicat,
GROUP initial-load_Replicat

• initial-load_Replicat is the name of the
initial-load Replicat group

Directs Manager on the target system to dynamically start
the initial-load Replicat as a one-time task.

TABLE container.owner.object; Specifies the fully qualified name of an object or a fully
qualified wildcarded specification for multiple objects. If the
database is an Oracle multitenant database, the object
name must include the name of the container or catalog
unless SOURCECATALOG is used.

CATALOGEXCLUDE

SCHEMAEXCLUDE

TABLEEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific objects from a wildcard
specification in the associated TABLE statement. See
Reference for Oracle GoldenGate for details.

6. Enter any appropriate optional Extract parameters listed in Reference for Oracle
GoldenGate.

7. Save and close the file.

8. On the target system, issue the following command to create the initial-load
Replicat task.

ADD REPLICAT initial-load_Replicat, SPECIALRUN

Where:

• initial-load_Replicat is the name of the initial-load Replicat task.

• SPECIALRUN identifies the initial-load Replicat as a one-time run, not a
continuous process.

9. On the target system, issue the following command to create an initial-load
Replicat parameter file.

EDIT PARAMS initial-load_Replicat

10. Enter the parameters listed in Table 21-3 in the order shown, starting a new
line for each parameter statement. The following is a sample initial-load Replicat
parameter file for an Oracle GoldenGate direct load.

REPLICAT initrep
TARGETDB mydb, USERIDALIAS ogg
SOURCEDEFS /ggs/dirdef/source_defs
MAP hr.*, TARGET hr.*;
MAP sales.*, TARGET hr.*;

Chapter 21
Initial Load in Classic Architecture

21-13

Table 21-3 Initial-load Replicat parameters for Oracle GoldenGate Direct Load

Parameter Description

REPLICAT initial-load_Replicat Specifies the initial-load Replicat task to be started by
Manager. Use the name that you specified when you
created the initial-load Replicat.

[TARGETDB dsn | container]
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target datasource name
(DSN) or Oracle container. See Reference for Oracle
GoldenGate for more information.

USERID and USERIDALIAS specify database credentials
if required.

{SOURCEDEFS full_pathname} |
ASSUMETARGETDEFS

• Use SOURCEDEFS if the source and target tables
have different definitions. Specify the source-
definitions file generated by DEFGEN.

• Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

Specifies how to interpret data definitions.

SOURCECATALOG Specifies a default source Oracle container . Enables
the use of two-part names (schema.object) where
three-part names otherwise would be required for those
databases. You can use multiple instances of this
parameter to specify different default containers or
catalogs for different sets of MAP parameters.

MAP container.owner.object,
TARGET owner.object[, DEF template]
;

Specifies a relationship between a source object or
objects and a target object or objects. MAP specifies the
source object, and TARGET specifies the target object.

For the source object, specify the fully qualified
name of the object or a fully qualified wildcarded
specification for multiple objects. For an Oracle
multitenant container database, the source object name
must include the name of the container or catalog unless
SOURCECATALOG is used.

For the target object, specify only the owner.object
components of the name, regardless of the database.
Replicat can only connect to one Oracle container.
Use a separate Replicat process for each container or
catalog to which you want to load data.

See Specifying Object Names in Oracle GoldenGate
Input for guidelines for specifying object names in
parameter files.

The DEF option specifies a definitions template.

CATALOGEXCLUDE

SCHEMAEXCLUDE

MAPEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific source objects from a
wildcard specification in the associated MAP statement.
See Reference for Oracle GoldenGate for details.

11. Enter any appropriate optional Replicat parameters listed in the Reference for
Oracle GoldenGate.

Chapter 21
Initial Load in Classic Architecture

21-14

12. Save and close the parameter file.

13. On the source system, start change extraction.

START EXTRACT group

14. View the Replicat parameter file to make certain that the HANDLECOLLISIONS
parameter is listed. If not, add the parameter to the file.

15. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who
has EXECUTE privilege on update.Sequence.

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password [encryption_options]

16. (Oracle, if replicating sequences) Issue the following command to update each
source sequence and generate redo. From the redo, Replicat performs initial
synchronization of the sequences on the target. You can use an asterisk wildcard
for any or all characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE owner.sequence

17. On the source system, start the initial-load Extract.

START EXTRACT initial-load_Extract

Note:

Do not start the initial-load Replicat. The Manager process starts it
automatically and terminates it when the load is finished.

18. On the target system, issue the following command to find out if the load is
finished. Wait until the load is finished before going to the next step.

VIEW REPORT initial-load_Replicat

19. On the target system, start change replication.

START REPLICAT group

20. On the target system, issue the following command to verify the status of change
replication.

INFO REPLICAT group

21. Continue to issue the INFO REPLICAT command until you have verified that
Replicat posted all of the change data that was generated during the initial load.
For example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that point.

22. On the target system, issue the following command to turn off the
HANDLECOLLISIONS parameter and disable the initial-load error handling.

SEND REPLICAT group, NOHANDLECOLLISIONS

23. On the target system, edit the Replicat parameter file to remove the
HANDLECOLLISIONS parameter. This prevents HANDLECOLLISIONS from being
enabled again the next time Replicat starts.

Chapter 21
Initial Load in Classic Architecture

21-15

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit
an existing parameter file that is in a character set other than that of
the local operating system (such as one where the CHARSET option was
used to specify a different character set). View the parameter file from
outside GGSCI if this is the case; otherwise, the contents may become
corrupted.

24. Save and close the parameter file. From this point forward, Oracle GoldenGate
continues to synchronize data changes.

21.2.4 Loading Data with a Direct Bulk Load to SQL*Loader
To use Oracle's SQL*Loader utility to establish the target data, you run an Oracle
GoldenGate initial-load Extract to extract the source records and send them directly
to an initial-load Replicat task. A task is a process that is started dynamically by the
Manager process and does not require the use of a Collector process or file. The
initial-load Replicat task interfaces with the API of SQL*Loader to load data as a direct-
path bulk load. Data mapping and transformation can be done by either the initial-load
Extract or initial-load Replicat, or both. During the load, the change-synchronization
groups extract and replicate incremental changes, which are then reconciled with the
results of the load.

To control which port is used by Replicat, and to speed up the search and bind
process, use the DYNAMICPORTLIST parameter in the Manager parameter file. Manager
passes the list of port numbers that are specified with this parameter to the Replicat
task process. Replicat first searches for a port from this list, and only if no ports
are available from the list does Replicat begin scanning in ascending order from the
default Manager port number until it finds an available port.

This method supports standard character, numeric, and datetime data types, as well
as CLOB, NCLOB, BLOB, LONG, XML, and user-defined datatypes (UDT) embedded with
the following attributes: CHAR, NCHAR, VARCHAR, NVARCHAR, RAW, NUMBER, DATE, FLOAT,
TIMESTAMP, CLOB, BLOB, XML, and UDT. VARRAYS are not supported. Character sets are
converted between source and target where applicable.

This method supports Oracle internal tables, but does not convert between the source
and target character sets during the load.

Chapter 21
Initial Load in Classic Architecture

21-16

To Load Data With a Direct Bulk Load to SQL*Loader

1. Make certain that you have addressed the requirements in "Prerequisites for Initial
Load".

2. Grant LOCK ANY TABLE to the Replicat database user on the target Oracle
database.

3. On the source and target systems, run GGSCI and start Manager.

START MANAGER

4. On the source system, issue the following command to create the initial-load
Extract.

ADD EXTRACT initial-load_Extract, SOURCEISTABLE

Where:

• initial-load_Extract is the name of the initial-load Extract, up to eight
characters.

• SOURCEISTABLE designates Extract as an initial-load process that reads
complete records directly from the source tables. Do not use any of the other
ADD EXTRACT service options or datasource arguments.

5. On the source system, issue the following command to create an initial-load
Extract parameter file.

EDIT PARAMS initial-load_Extract

6. Enter the parameters listed in Table 21-4 in the order shown, starting a new line for
each parameter statement. The following is a sample initial-load Extract parameter
file for a direct bulk load to SQL*Loader.

EXTRACT initext
SOURCEDB mydb, USERIDALIAS ogg
RMTHOSTOPTIONS ny4387, MGRPORT 7888, ENCRYPT AES 192 KEYNAME mykey
RMTTASK REPLICAT, GROUP initrep
TABLE hr.*;
TABLE sales.*;

Table 21-4 Initial-load Extract Parameters for a Direct Bulk Load to SQL*Loader

Parameter Description

EXTRACT initial-load_Extract Specifies the initial-load Extract.

[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

USERID and USERIDALIAS specify database credentials
if required.

RMTHOSTOPTIONS hostname,
MGRPORT portnumber
[, ENCRYPT algorithm KEYNAME keyname]

Specifies the target system, the port where Manager is
running, and optional encryption of data across TCP/IP.

Chapter 21
Initial Load in Classic Architecture

21-17

Table 21-4 (Cont.) Initial-load Extract Parameters for a Direct Bulk Load to SQL*Loader

Parameter Description

RMTTASK replicat,
GROUP initial-load_Replicat

• initial-load_Replicat is the name of the
initial-load Replicat group.

Directs Manager on the target system to dynamically
start the initial-load Replicat as a one-time task.

TABLE [container.]owner.object; Specifies the fully qualified name of an object or a fully
qualified wildcarded specification for multiple objects.
If the database is an Oracle multitenant container
database, the object name must include the name
of the container unless SOURCECATALOG is used. See
Specifying Object Names in Oracle GoldenGate Input for
guidelines for specifying object names in parameter files.

CATALOGEXCLUDE

SCHEMAEXCLUDE

TABLEEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific objects from a wildcard
specification in the associated TABLE statement. See
Reference for Oracle GoldenGate for details.

7. Enter any appropriate optional parameters.

8. Save and close the file.

9. On the target system, issue the following command to create the initial-load
Replicat.

ADD REPLICAT initial-load_Replicat, SPECIALRUN

Where:

• initial-load_Replicat is the name of the initial-load Replicat task.

• SPECIALRUN identifies the initial-load Replicat as a one-time task, not a
continuous process.

10. On the target system, issue the following command to create an initial-load
Replicat parameter file.

EDIT PARAMS initial-load_Replicat

11. Enter the parameters listed in Table 21-5 in the order shown, starting a new
line for each parameter statement. The following is a sample initial-load Replicat
parameter file for a direct load to SQL*Loader.

REPLICAT initrep
USERIDALIAS ogg
BULKLOAD
SOURCEDEFS /ggs/dirdef/source_defs
MAP hr.*, TARGET hr.*;
MAP sales.*, TARGET hr.*;

Chapter 21
Initial Load in Classic Architecture

21-18

Table 21-5 Initial-load Replicat Parameters for Direct Load to SQL*Loader

Parameter Description

REPLICAT initial-load_Replicat Specifies the initial-load Replicat task to be started by Manager.
Use the name that you specified when you created the initial-
load Replicat.

[TARGETDB container]
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target Oracle container. See Reference
for Oracle GoldenGate for more information.

USERID and USERIDALIAS specify database credentials if
required.

BULKLOAD Directs Replicat to interface directly with the Oracle SQL*Loader
interface. See Reference for Oracle GoldenGate for more
information.

{SOURCEDEFS full_pathname} |
ASSUMETARGETDEFS

• Use SOURCEDEFS if the source and target
tables have different definitions. Specify
the source-definitions file generated by
DEFGEN.

• Use ASSUMETARGETDEFS if the source and
target tables have the same definitions.

Specifies how to interpret data definitions.

SOURCECATALOG Specifies a default source Oracle container for subsequent
MAP statements. Enables the use of two-part names
(schema.object) where three-part names otherwise would be
required. You can use multiple instances of this parameter
to specify different default containers for different sets of MAP
parameters.

MAP [container.]owner.object,
TARGET owner.object[, DEF template]
;

Specifies a relationship between a source object or objects and
a target object or objects. MAP specifies the source object, and
TARGET specifies the target object.

For the source object, specify the fully qualified name of the
object or a fully qualified wildcarded specification for multiple
objects. For an Oracle multitenant container database, the
source object name must include the name of the container
unless SOURCECATALOG is used.

For the target object, specify only the owner.object
components of the name, regardless of the database. Replicat
can only connect to one Oracle container. Use a separate
Replicat process for each container to which you want to load
data.

See Specifying Object Names in Oracle GoldenGate Input for
guidelines for specifying object names in parameter files.

The DEF option specifies a definitions template.

CATALOGEXCLUDE

SCHEMAEXCLUDE

MAPEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one another
to exclude specific source objects from a wildcard specification
in the associated MAP statement. See Reference for Oracle
GoldenGate for details.

Chapter 21
Initial Load in Classic Architecture

21-19

12. Enter any appropriate optional Replicat parameters listed in Reference for Oracle
GoldenGate.

13. Save and close the parameter file.

14. On the source system, start change extraction.

START EXTRACT group

15. View the Replicat parameter file to make certain that the HANDLECOLLISIONS
parameter is listed. If not, add the parameter to the file.

16. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who
has EXECUTE privilege on update.Sequence.

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password [encryption_options]

17. (Oracle, if replicating sequences) Issue the following command to update each
source sequence and generate redo. From the redo, Replicat performs initial
synchronization of the sequences on the target. You can use an asterisk wildcard
for any or all characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE owner.sequence

18. On the source system, start the initial-load Extract.

START EXTRACT initial-load_Extract

Caution:

Do not start the initial-load Replicat. The Manager process starts it
automatically and terminates it when the load is finished.

19. On the target system, issue the following command to determine when the load is
finished. Wait until the load is finished before proceeding to the next step.

VIEW REPORT initial-load_Extract

20. On the target system, start change replication.

START REPLICAT group

21. On the target system, issue the following command to verify the status of change
replication.

INFO REPLICAT group

22. Continue to issue the INFO REPLICAT command until you have verified that
Replicat posted all of the change data that was generated during the initial load.
For example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that point.

23. On the target system, issue the following command to turn off the
HANDLECOLLISIONS parameter and disable the initial-load error handling.

SEND REPLICAT group, NOHANDLECOLLISIONS

24. On the target system, edit the Replicat parameter file to remove the
HANDLECOLLISIONS parameter. This prevents HANDLECOLLISIONS from being
enabled again the next time Replicat starts.

Chapter 21
Initial Load in Classic Architecture

21-20

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit
an existing parameter file that is in a character set other than that of
the local operating system (such as one where the CHARSET option was
used to specify a different character set). View the parameter file from
outside GGSCI if this is the case; otherwise, the contents may become
corrupted..

25. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data
changes.

Chapter 21
Initial Load in Classic Architecture

21-21

A
Connecting Microservices Architecture to
Classic Architecture

For establishing a connection to Classic Architecture, the Distribution Server in Oracle
GoldenGate Microservices must know where to place the remote trail file for reading.

To connect Oracle GoldenGate Microservices and Classic Architecture follow these
steps:

Note:

For this procedure to work only the ogg protocol is supported and an existing
Extract must be running in Microservices.

Task 1: Add a Distribution Path

1. Launch the Distribution Server web interface.

2. Click the plus (+) sign next to Path. The Add Path page is displayed.

3. Enter the details:

A-1

Rule Configuration Description

Enable filtering If you enable filtering by selecting it
from the toggle button and click the
Add Rule button, you’ll see the
Rule Definition dialog box.
• Rule Name

• Rule Action: Select either
Exclude or Include

• Filter Type: Select from
the following list of options:
– Object Type: Select

from three object
types: DML, DDL, and
Procedure

– Object Names:
Select this option to
provide an existing object
name. A 3–part naming
convention depends on
whether you are using
CDB. With CDB, you
need to use a 3–
part naming convention,
otherwise a 2–part
convention is mandatory.
3–part convention includes
container, schema,
object. 2–part convention
includes schema, object
name.

– Procedure Feature
Name: Select this option
to filter, based on existing
procedure feature name.

– Column Based: If you
select this option, you are
presented with the option
to enter the table and
column name to which the
rule applies. You can filter
out using column value
with LT, GT, EQ, LE, GE,
NE conditions. You can
also specify if you want to
have before image or after
image in filtered data.

– Tag: Select this option
to set the filter based on
tags.

– Chunk ID: Displays the
configuration details of

Appendix A

A-2

Rule Configuration Description

database shards, however,
the details can’t be edited.

• Negate: Select this check box
if you need to negate any
existing rule.

You can also see the JSON script
for the rule by clicking the JSON
tab.

Additional Options Description

Eof Delay (cent sec) You can specify the Eof Delay in
centiseconds. On Linux platforms,
the default settings can be retained.
However, on non-Linux platforms,
you may need to adjust this setting
for high bandwidth, high latency
networks, or for networks that have
Quality of Service (QoS) settings
(DSCP and Time of Service (ToS)).

Checkpoint Frequency Frequency of the path that is taking
the checkpoint (in seconds).

TCP Flush Bytes Enter the TCP flush size in bytes.

TCP Flush Seconds Enter the TCP flush interval in
seconds.

TCP Options Section

DSCP Select the Differentiated Services
Code Point (DSCP) value from the
drop-down list, or search for it from
the list.

TOS Select the Type of service (TOS)
value from the drop-down list.

TCP_NODELAY Enable this option to prevent delay
when using the Nagle’s option.

Quick ACK Enable this option to send quick
acknowledgment after receiving
data.

TCP_CORK Enable this option to allow using the
Nagle’s algorithm cork option.

System Send Buffer Size You can set the value for the send
buffer size for flow control.

System Receive Buffer Size You can set the value for the
receive buffer size for flow control.

Keep Alive Timeout for keep-alive.

4. Click Create Path or Create and Run, as required. Select Cancel if you
need to get out of the Add Path page without adding a path.

Appendix A

A-3

Once the path is created, you’ll be able to see the new path in the Overview page of
the Distribution Server.

Task 2: Start Manager in Classic Architecture

1. Log in to GGSCI.

2. Use the command:

START MANAGER

For more information, see START MANAGER in Reference for Oracle GoldenGate.

Task 3: Create and start Replicat in Classic Architecture
If you are already logged into GGSCI, use the command:

ADD REPLICAT group_name

group_name is the name of the Replicat group. For more information, see Creating
an Online Replicat Group in Administering Oracle GoldenGate and GGSCI Command
Interface Help. in Reference for Oracle GoldenGate.

Appendix A

A-4

B
Connecting Oracle GoldenGate Classic
Architecture to Microservices Architecture

Oracle GoldenGate Classic Architecture uses the data pump Extract in Admin Client
and GGSCI to connect to Microservices.

Follow these steps for establishing a connection between a non-secure Microservices
deployment and Classic Architecture:

Create a data pump Extract

Note:

To perform this task, an existing data pump Extract must be running in
Classic Architecture.

1. Log in to Admin Client or GGSCI.

2. Add a data pump Extract using the command:

ADD EXTRACT dp_name, EXTTRAILSOURCE ./dirdat/aa

This example uses, dp_name as the name of the data pump Extract.

3. Add the remote trail to the data pump Extract using the command:

ADD RMTTRAIL ab, EXTRACT dp_name, MEGABYTES 500

4. Edit the parameter file for the data pump Extract using the command:

EDIT PARAMS dp_name

Here’s an example of the data pump Extract parameter file:

EXTRACT dp_name
RMTHOST hostname/IP address, PORT receiver service port
RMTTRAIL ab
PASSTHRU
TABLE pdb.schema.table;

Start the data pump Extract
Use the following command to start the data pump Extract dp_name:

START EXTRACT dp_name

B-1

Once the data pump Extract has started, the Receiver Server establishes a
path and begins reading the remote trail file. The remote trail file appears in
the $OGG_VAR_HOME/lib/data of the associated deployment running the Receiver
Server.

Appendix B

B-2

C
Supported Character Sets

This appendix lists the character sets that Oracle GoldenGate supports when
converting data from source to target.
The identifiers that are shown should be used for Oracle GoldenGate parameters or
commands when a character set must be specified, instead of the actual character
set name. Currently Oracle GoldenGate does not provide a facility to specify the
database-specific character set.

Topics:

• Supported Character Sets - Oracle

• Supported Character Sets - Non-Oracle

C.1 Supported Character Sets - Oracle
Table C-1 Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

ar8ados710t Arabic MS-DOS 710 8-bit Latin/Arabic

ar8ados710 Arabic MS-DOS 710 Server 8-bit Latin/Arabic

ar8ados720t Arabic MS-DOS 720 8-bit Latin/Arabic

ar8ados720 Arabic MS-DOS 720 Server 8-bit Latin/Arabic

ar8aptec715t APTEC 715 8-bit Latin/Arabic

ar8aptec715 APTEC 715 Server 8-bit Latin/Arabic

ar8arabicmacs Mac Server 8-bit Latin/Arabic

ar8arabicmact Mac 8-bit Latin/Arabic

ar8arabicmac Mac Client 8-bit Latin/Arabic

ar8asmo708plus ASMO 708 Plus 8-bit Latin/Arabic

ar8asmo8x ASMO Extended 708 8-bit Latin/Arabic

ar8ebcdic420s EBCDIC Code Page 420 Server 8-bit Latin/Arabic

ar8ebcdicx EBCDIC XBASIC Server 8-bit Latin/Arabic

ar8hparabic8t HP 8-bit Latin/Arabic

ar8iso8859p6 ISO 8859-6 Latin/Arabic

ar8mswin1256 MS Windows Code Page 1256 8-Bit Latin/Arabic

ar8mussad768t Mussa'd Alarabi/2 768 8-bit Latin/Arabic

ar8mussad768 Mussa'd Alarabi/2 768 Server 8-bit Latin/Arabic

ar8nafitha711t Nafitha International 711 Server 8-bit Latin/Arabic

C-1

Table C-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

ar8nafitha711 Nafitha Enhanced 711 Server 8-bit Latin/Arabic

ar8nafitha721t Nafitha International 721 8-bit Latin/Arabic

ar8nafitha721 Nafitha International 721 Server 8-bit Latin/Arabic

ar8sakhr706 SAKHR 706 Server 8-bit Latin/Arabic

ar8sakhr707t SAKHR 707 8-bit Latin/Arabic

ar8sakhr707 SAKHR 707 Server 8-bit Latin/Arabic

ar8xbasic XBASIC 8-bit Latin/Arabic

az8iso8859p9e ISO 8859-9 Azerbaijani

bg8mswin MS Windows 8-bit Bulgarian Cyrillic

bg8pc437s IBM-PC Code Page 437 8-bit (Bulgarian Modification)

blt8cp921 Latvian Standard LVS8-92(1) Windows/Unix 8-bit Baltic

blt8ebcdic1112s EBCDIC Code Page 1112 8-bit Server Baltic Multilingual

blt8ebcdic1112 EBCDIC Code Page 1112 8-bit Baltic Multilingual

blt8iso8859p13 ISO 8859-13 Baltic

blt8mswin1257 MS Windows Code Page 1257 8-bit Baltic

blt8pc775 IBM-PC Code Page 775 8-bit Baltic

bn8bscii Bangladesh National Code 8-bit BSCII

cdn8pc863 IBM-PC Code Page 863 8-bit Canadian French

ce8bs2000 Siemens EBCDIC.DF.04-2 8-bit Central European

cel8iso8859p14 ISO 8859-13 Celtic

ch7dec DEC VT100 7-bit Swiss (German/French)

cl8bs2000 Siemens EBCDIC.EHC.LC 8-bit Latin/Cyrillic-1

cl8ebcdic1025c EBCDIC Code Page 1025 Client 8-bit Cyrillic

cl8ebcdic1025r EBCDIC Code Page 1025 Server 8-bit Cyrillic

cl8ebcdic1025s EBCDIC Code Page 1025 Server 8-bit Cyrillic

cl8ebcdic1025 EBCDIC Code Page 1025 8-bit Cyrillic

cl8ebcdic1025x EBCDIC Code Page 1025 (Modified) 8-bit Cyrillic

cl8ebcdic1158r EBCDIC Code Page 1158 Server 8-bit Cyrillic

cl8ebcdic1158 EBCDIC Code Page 1158 8-bit Cyrillic

cl8iso8859p5 ISO 8859-5 Latin/Cyrillic

cl8isoir111 SOIR111 Cyrillic

cl8koi8r RELCOM Internet Standard 8-bit Latin/Cyrillic

cl8koi8u KOI8 Ukrainian Cyrillic

cl8maccyrillics Mac Server 8-bit Latin/Cyrillic

Appendix C
Supported Character Sets - Oracle

C-2

Table C-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

cl8maccyrillic Mac Client 8-bit Latin/Cyrillic

cl8mswin1251 MS Windows Code Page 1251 8-bit Latin/Cyrillic

d7dec DEC VT100 7-bit German

d7siemens9780x Siemens 97801/97808 7-bit German

d8bs2000 Siemens 9750-62 EBCDIC 8-bit German

d8ebcdic1141 EBCDIC Code Page 1141 8-bit Austrian German

d8ebcdic273 EBCDIC Code Page 273/1 8-bit Austrian German

dk7siemens9780x Siemens 97801/97808 7-bit Danish

dk8bs2000 Siemens 9750-62 EBCDIC 8-bit Danish

dk8ebcdic1142 EBCDIC Code Page 1142 8-bit Danish

dk8ebcdic277 EBCDIC Code Page 277/1 8-bit Danish

e7dec DEC VT100 7-bit Spanish

e7siemens9780x Siemens 97801/97808 7-bit Spanish

e8bs2000 Siemens 9750-62 EBCDIC 8-bit Spanish

ee8bs2000 Siemens EBCDIC.EHC.L2 8-bit East European

ee8ebcdic870c EBCDIC Code Page 870 Client 8-bit East European

ee8ebcdic870s EBCDIC Code Page 870 Server 8-bit East European

ee8ebcdic870 EBCDIC Code Page 870 8-bit East European

ee8iso8859p2 ISO 8859-2 East European

ee8macces Mac Server 8-bit Central European

ee8macce Mac Client 8-bit Central European

ee8maccroatians Mac Server 8-bit Croatian

ee8maccroatian Mac Client 8-bit Croatian

ee8mswin1250 MS Windows Code Page 1250 8-bit East European

ee8pc852 IBM-PC Code Page 852 8-bit East European

eec8euroasci EEC Targon 35 ASCI West European/Greek

eec8europa3 EEC EUROPA3 8-bit West European/Greek

el8dec DEC 8-bit Latin/Greek

el8ebcdic423r IBM EBCDIC Code Page 423 for RDBMS server-side

el8ebcdic875r EBCDIC Code Page 875 Server 8-bit Greek

el8ebcdic875s EBCDIC Code Page 875 Server 8-bit Greek

el8ebcdic875 EBCDIC Code Page 875 8-bit Greek

el8gcos7 Bull EBCDIC GCOS7 8-bit Greek

el8iso8859p7 ISO 8859-7 Latin/Greek

Appendix C
Supported Character Sets - Oracle

C-3

Table C-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

el8macgreeks Mac Server 8-bit Greek

el8macgreek Mac Client 8-bit Greek

el8mswin1253 MS Windows Code Page 1253 8-bit Latin/Greek

el8pc437s IBM-PC Code Page 437 8-bit (Greek modification)

el8pc737 IBM-PC Code Page 737 8-bit Greek/Latin

el8pc851 IBM-PC Code Page 851 8-bit Greek/Latin

el8pc869 IBM-PC Code Page 869 8-bit Greek/Latin

et8mswin923 MS Windows Code Page 923 8-bit Estonian

f7dec DEC VT100 7-bit French

f7siemens9780x Siemens 97801/97808 7-bit French

f8bs2000 Siemens 9750-62 EBCDIC 8-bit French

f8ebcdic1147 EBCDIC Code Page 1147 8-bit French

f8ebcdic297 EBCDIC Code Page 297 8-bit French

hu8abmod Hungarian 8-bit Special AB Mod

hu8cwi2 Hungarian 8-bit CWI-2

i7dec DEC VT100 7-bit Italian

i7siemens9780x Siemens 97801/97808 7-bit Italian

i8ebcdic1144 EBCDIC Code Page 1144 8-bit Italian

i8ebcdic280 EBCDIC Code Page 280/1 8-bit Italian

in8iscii Multiple-Script Indian Standard 8-bit Latin/Indian

is8macicelandics Mac Server 8-bit Icelandic

is8macicelandic Mac Client 8-bit Icelandic

is8pc861 IBM-PC Code Page 861 8-bit Icelandic

iw7is960 Israeli Standard 960 7-bit Latin/Hebrew

iw8ebcdic1086 EBCDIC Code Page 1086 8-bit Hebrew

iw8ebcdic424s EBCDIC Code Page 424 Server 8-bit Latin/Hebrew

iw8ebcdic424 EBCDIC Code Page 424 8-bit Latin/Hebrew

iw8iso8859p8 ISO 8859-8 Latin/Hebrew

iw8machebrews Mac Server 8-bit Hebrew

iw8machebrew Mac Client 8-bit Hebrew

iw8mswin1255 MS Windows Code Page 1255 8-bit Latin/Hebrew

iw8pc1507 IBM-PC Code Page 1507/862 8-bit Latin/Hebrew

ja16dbcs IBM EBCDIC 16-bit Japanese

ja16ebcdic930 IBM DBCS Code Page 290 16-bit Japanese

Appendix C
Supported Character Sets - Oracle

C-4

Table C-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

ja16euctilde Same as ja16euc except for the way that the wave dash and the tilde
are mapped to and from Unicode

ja16euc EUC 24-bit Japanese

ja16eucyen EUC 24-bit Japanese with '\' mapped to the Japanese yen character

ja16macsjis Mac client Shift-JIS 16-bit Japanese

ja16sjistilde Same as ja16sjis except for the way that the wave dash and the tilde
are mapped to and from Unicode.

ja16sjis Shift-JIS 16-bit Japanese

ja16sjisyen Shift-JIS 16-bit Japanese with '\' mapped to the Japanese yen character

ja16vms JVMS 16-bit Japanese

ko16dbcs IBM EBCDIC 16-bit Korean

ko16ksc5601 KSC5601 16-bit Korean

ko16ksccs KSCCS 16-bit Korean

ko16mswin949 MS Windows Code Page 949 Korean

la8iso6937 ISO 6937 8-bit Coded Character Set for Text Communication

la8passport German Government Printer 8-bit All-European Latin

lt8mswin921 MS Windows Code Page 921 8-bit Lithuanian

lt8pc772 IBM-PC Code Page 772 8-bit Lithuanian (Latin/Cyrillic)

lt8pc774 IBM-PC Code Page 774 8-bit Lithuanian (Latin)

lv8pc1117 IBM-PC Code Page 1117 8-bit Latvian

lv8pc8lr Latvian Version IBM-PC Code Page 866 8-bit Latin/Cyrillic

lv8rst104090 IBM-PC Alternative Code Page 8-bit Latvian (Latin/Cyrillic)

n7siemens9780x Siemens 97801/97808 7-bit Norwegian

n8pc865 IBM-PC Code Page 865 8-bit Norwegian

ndk7dec DEC VT100 7-bit Norwegian/Danish

ne8iso8859p10 ISO 8859-10 North European

nee8iso8859p4 ISO 8859-4 North and North-East European

nl7dec DEC VT100 7-bit Dutch

ru8besta BESTA 8-bit Latin/Cyrillic

ru8pc855 IBM-PC Code Page 855 8-bit Latin/Cyrillic

ru8pc866 IBM-PC Code Page 866 8-bit Latin/Cyrillic

s7dec DEC VT100 7-bit Swedish

s7siemens9780x Siemens 97801/97808 7-bit Swedish

s8bs2000 Siemens 9750-62 EBCDIC 8-bit Swedish

s8ebcdic1143 EBCDIC Code Page 1143 8-bit Swedish

Appendix C
Supported Character Sets - Oracle

C-5

Table C-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

s8ebcdic278 EBCDIC Code Page 278/1 8-bit Swedish

se8iso8859p3 ISO 8859-3 South European

sf7ascii ASCII 7-bit Finnish

sf7dec DEC VT100 7-bit Finnish

th8macthais Mac Server 8-bit Latin/Thai

th8macthai Mac Client 8-bit Latin/Thai

th8tisascii Thai Industrial Standard 620-2533 - ASCII 8-bit

th8tisebcdics Thai Industrial Standard 620-2533 - EBCDIC Server 8-bit

th8tisebcdic Thai Industrial Standard 620-2533 - EBCDIC 8-bit

tr7dec DEC VT100 7-bit Turkish

tr8dec DEC 8-bit Turkish

tr8ebcdic1026s EBCDIC Code Page 1026 Server 8-bit Turkish

tr8ebcdic1026 EBCDIC Code Page 1026 8-bit Turkish

tr8macturkishs Mac Server 8-bit Turkish

tr8macturkish Mac Client 8-bit Turkish

tr8mswin1254 MS Windows Code Page 1254 8-bit Turkish

tr8pc857 IBM-PC Code Page 857 8-bit Turkish

us7ascii ASCII 7-bit American

us8bs2000 Siemens 9750-62 EBCDIC 8-bit American

us8icl ICL EBCDIC 8-bit American

us8pc437 IBM-PC Code Page 437 8-bit American

vn8mswin1258 MS Windows Code Page 1258 8-bit Vietnamese

vn8vn3 VN3 8-bit Vietnamese

we8bs2000e Siemens EBCDIC.DF.04-F 8-bit West European with Euro symbol

we8bs2000l5 Siemens EBCDIC.DF.04-9 8-bit WE & Turkish

we8bs2000 Siemens EBCDIC.DF.04-1 8-bit West European

we8dec DEC 8-bit West European

we8dg DG 8-bit West European

we8ebcdic1047e Latin 1/Open Systems 1047

we8ebcdic1047 EBCDIC Code Page 1047 8-bit West European

we8ebcdic1140c EBCDIC Code Page 1140 Client 8-bit West European

we8ebcdic1140 EBCDIC Code Page 1140 8-bit West European

we8ebcdic1145 EBCDIC Code Page 1145 8-bit West European

we8ebcdic1146 EBCDIC Code Page 1146 8-bit West European

Appendix C
Supported Character Sets - Oracle

C-6

Table C-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

we8ebcdic1148c EBCDIC Code Page 1148 Client 8-bit West European

we8ebcdic1148 EBCDIC Code Page 1148 8-bit West European

we8ebcdic284 EBCDIC Code Page 284 8-bit Latin American/Spanish

we8ebcdic285 EBCDIC Code Page 285 8-bit West European

we8ebcdic37c EBCDIC Code Page 37 8-bit Oracle/c

we8ebcdic37 EBCDIC Code Page 37 8-bit West European

we8ebcdic500c EBCDIC Code Page 500 8-bit Oracle/c

we8ebcdic500 EBCDIC Code Page 500 8-bit West European

we8ebcdic871 EBCDIC Code Page 871 8-bit Icelandic

we8ebcdic924 Latin 9 EBCDIC 924

we8gcos7 Bull EBCDIC GCOS7 8-bit West European

we8hp HP LaserJet 8-bit West European

we8icl ICL EBCDIC 8-bit West European

we8iso8859p15 ISO 8859-15 West European

we8iso8859p1 ISO 8859-1 West European

we8iso8859p9 ISO 8859-9 West European & Turkish

we8isoicluk ICL special version ISO8859-1

we8macroman8s Mac Server 8-bit Extended Roman8 West European

we8macroman8 Mac Client 8-bit Extended Roman8 West European

we8mswin1252 MS Windows Code Page 1252 8-bit West European

we8ncr4970 NCR 4970 8-bit West European

we8nextstep NeXTSTEP PostScript 8-bit West European

we8pc850 IBM-PC Code Page 850 8-bit West European

we8pc858 IBM-PC Code Page 858 8-bit West European

we8pc860 IBM-PC Code Page 860 8-bit West European

we8roman8 HP Roman8 8-bit West European

yug7ascii ASCII 7-bit Yugoslavian

zhs16cgb231280 CGB2312-80 16-bit Simplified Chinese

zhs16dbcs IBM EBCDIC 16-bit Simplified Chinese

zhs16gbk GBK 16-bit Simplified Chinese

zhs16maccgb23128
0

Mac client CGB2312-80 16-bit Simplified Chinese

zht16big5 BIG5 16-bit Traditional Chinese

zht16ccdc HP CCDC 16-bit Traditional Chinese

zht16dbcs IBM EBCDIC 16-bit Traditional Chinese

Appendix C
Supported Character Sets - Oracle

C-7

Table C-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

zht16dbt Taiwan Taxation 16-bit Traditional Chinese

zht16hkscs31 MS Windows Code Page 950 with Hong Kong Supplementary Character
Set HKSCS-2001 (character set conversion to and from Unicode is
based on Unicode 3.1)

zht16hkscs MS Windows Code Page 950 with Hong Kong Supplementary Character
Set HKSCS-2001 (character set conversion to and from Unicode is
based on Unicode 3.0)

zht16mswin950 MS Windows Code Page 950 Traditional Chinese

zht32euc EUC 32-bit Traditional Chinese

zht32sops SOPS 32-bit Traditional Chinese

zht32tris TRIS 32-bit Traditional Chinese

C.2 Supported Character Sets - Non-Oracle

Identifier to use
in parameter files
and commands

Character set

UTF-8
ISO-10646 UTF-8, surrogate pairs are 4 bytes per character

UTF-16
ISO-10646 UTF-16

UTF-16BE
UTF-16 Big Endian

UTF-16LE
UTF-16 Little Endian

UTF-32
ISO-10646 UTF-32

UTF-32BE
UTF-32 Big Endian

UTF-32LE
UTF-32 Little Endian

CESU-8
Similar to UTF-8, correspond to UCS-2 and surrogate pairs are 6 bytes
per character

US-ASCII
US-ASCII, ANSI X34-1986

windows-1250
Windows Central Europe

windows-1251
Windows Cyrillic

Appendix C
Supported Character Sets - Non-Oracle

C-8

Identifier to use
in parameter files
and commands

Character set

windows-1252
Windows Latin-1

windows-1253
Windows Greek

windows-1254
Windows Turkish

windows-1255
Windows Hebrew

windows-1256
Windows Arabic

windows-1257
Windows Baltic

windows-1258
Windows Vietnam

windows-874
Windows Thai

cp437
DOS Latin-1

ibm-720
DOS Arabic

cp737
DOS Greek

cp775
DOS Baltic

cp850
DOS multilingual

cp851
DOS Greek-1

cp852
DOS Latin-2

cp855
DOS Cyrillic

cp856
DOS Cyrillic / IBM

cp857
DOS Turkish

cp858
DOS Multilingual with Euro

cp860
DOS Portuguese

cp861
DOS Icelandic

Appendix C
Supported Character Sets - Non-Oracle

C-9

Identifier to use
in parameter files
and commands

Character set

cp862
DOS Hebrew

cp863
DOS French

cp864
DOS Arabic

cp865
DOS Nordic

cp866
DOS Cyrillic / GOST 19768-87

ibm-867
DOS Hebrew / IBM

cp868
DOS Urdu

cp869
DOS Greek-2

ISO-8859-1
ISO-8859-1 Latin-1/Western Europe

ISO-8859-2
ISO-8859-2 Latin-2/Eastern Europe

ISO-8859-3
ISO-8859-3 Latin-3/South Europe

ISO-8859-4
ISO-8859-4 Latin-4/North Europe

ISO-8859-5
ISO-8859-5 Latin/Cyrillic

ISO-8859-6
ISO-8859-6 Latin/Arabic

ISO-8859-7
ISO-8859-7 Latin/Greek

ISO-8859-8
ISO-8859-8 Latin/Hebrew

ISO-8859-9
ISO-8859-9 Latin-5/Turkish

ISO-8859-10
ISO-8859-10 Latin-6/Nordic

ISO-8859-11
ISO-8859-11 Latin/Thai

ISO-8859-13
ISO-8859-13 Latin-7/Baltic Rim

ISO-8859-14
ISO-8859-14 Latin-8/Celtic

Appendix C
Supported Character Sets - Non-Oracle

C-10

Identifier to use
in parameter files
and commands

Character set

ISO-8859-15
ISO-8859-15 Latin-9/Western Europe

IBM037
IBM 037-1/697-1 EBCDIC, Brazil, Canada, Netherlands, Portugal, US,
and 037/1175 Traditional Chinese

IBM01140
IBM 1140-1/695-1 EBCDIC, Brazil, Canada, Netherlands, Portugal, US,
and 1140/1175 Traditional Chinese

IBM273
IBM 273-1/697-1 EBCDIC, Austria, Germany

IBM01141
IBM 1141-1/695-1 EBCDIC, Austria, Germany

IBM277
IBM 277-1/697-1 EBCDIC, Denmark, Norway

IBM01142
IBM 1142-1/695-1 EBCIDC, Denmark, Norway

IBM278
IBM 278-1/697-1 EBCDIC, Finland, Sweden

IBM01143
IBM 1143-1/695-1 EBCDIC, Finland, Sweden

IBM280
IBM 280-1/697-1 EBCDIC, Italy

IBM01144
IBM 1144-1/695-1 EBCDIC, Italy

IBM284
IBM 284-1/697-1 EBCDIC, Latin America, Spain

IBM01145
IBM 1145-1/695-1 EBCDIC, Latin America, Spain

IBM285
IBM 285-1/697-1 EBCDIC, United Kingdom

IBM01146
IBM 1146-1/695-1 EBCDIC, United Kingdom

IBM290
IBM 290 EBCDIC, Japan (Katakana) Extended

IBM297
IBM 297-1/697-1 EBCDIC, France

IBM01147
IBM 1147-1/695-1 EBCDIC, France

IBM420
IBM 420 EBCDIC, Arabic Bilingual

IBM424
IBM 424/941 EBCDIC, Israel (Hebrew - Bulletin Code)

IBM500
IBM 500-1/697-1 EBCDIC, International

Appendix C
Supported Character Sets - Non-Oracle

C-11

Identifier to use
in parameter files
and commands

Character set

IBM01148
IBM 1148-1/695-1 EBCDIC International

IBM870
IBM 870/959 EBCDIC, Latin-2 Multilingual

IBM871
IBM 871-1/697-1 EBCDIC Iceland

IBM918
IBM EBCDIC code page 918, Arabic 2

IBM1149
IBM 1149-1/695-1, EBCDIC Iceland

IBM1047
IBM 1047/103 EBCDIC, Latin-1 (Open Systems)

ibm-803
IBM 803 EBCDIC, Israel (Hebrew - Old Code)

IBM875
IBM 875 EBCDIC, Greece

ibm-924
IBM 924-1/1353-1 EBCDIC International

ibm-1153
IBM 1153/1375 EBCDIC, Latin-2 Multilingual

ibm-1122
IBM 1122/1037 EBCDIC, Estonia

ibm-1157
IBM 1157/1391 EBCDIC, Estonia

ibm-1112
IBM 1112/1035 EBCDIC, Latvia, Lithuania

ibm-1156
IBM 1156/1393 EBCDIC, Latvia, Lithuania

ibm-4899
IBM EBCDIC code page 4899, Hebrew with Euro

ibm-12712
IBM 12712 EBCDIC, Hebrew (max set including Euro)

ibm-1097
IBM 1097 EBCDIC, Farsi

ibm-1018
IBM 1018 EBCDIC, Finland Sweden (ISO-7)

ibm-1132
IBM 1132 EBCDIC, Laos

ibm-1137
IBM EBCDIC code page 1137, Devanagari

ibm-1025
IBM 1025/1150 EBCDIC, Cyrillic

Appendix C
Supported Character Sets - Non-Oracle

C-12

Identifier to use
in parameter files
and commands

Character set

ibm-1154
IBM EBCDIC code page 1154, Cyrillic with Euro

IBM1026
IBM 1026/1152 EBCDIC, Latin-5 Turkey

ibm-1155
IBM EBCDIC code page 1155, Turkish with Euro

ibm-1123
IBM 1123 EBCDIC, Ukraine

ibm-1158
IBM EBCDIC code page 1158, Ukranian with Euro

IBM838
IBM 838/1173 EBCDIC, Thai

ibm-1160
IBM EBCDIC code page 1160, Thai with Euro

ibm-1130
IBM 1130 EBCDIC, Vietnam

ibm-1164
IBM EBCDIC code page 1164, Vietnamese with Euro

ibm-4517
IBM EBCDIC code page 4517, Arabic French

ibm-4971
IBM EBCDIC code page 4971, Greek

ibm-9067
IBM EBCDIC code page 9067, Greek 2005

ibm-16804
IBM EBCDIC code page 16804, Arabic

KOI8-R
Russian and Cyrillic (KOI8-R)

KOI8-U
Ukranian (KOI8-U)

eucTH
EUC Thai

ibm-1162
Windows Thai with Euro

DEC-MCS
DEC Multilingual

hp-roman8
HP Latin-1 Roman8

ibm-901
IBM Baltic ISO-8 CCSID 901

ibm-902
IBM Estonia ISO-8 with Euro CCSID 902

Appendix C
Supported Character Sets - Non-Oracle

C-13

Identifier to use
in parameter files
and commands

Character set

ibm-916
IBM ISO8859-8 CCSID

ibm-922
IBM Estonia ISO-8 CCSID 922

ibm-1006
IBM Urdu ISO-8 CCSID 1006

ibm-1098
IBM Farsi PC CCSID 1098

ibm-1124
Ukranian ISO-8 CCSID 1124

ibm-1125
Ukranian without Euro CCSID 1125

ibm-1129
IBM Vietnamese without Euro CCSID 1129

ibm-1131
IBM Belarusi CCSID 1131

ibm-1133
IBM Lao CCSID 1133

ibm-4909
IBM Greek Latin ASCII CCSID 4909

JIS_X201
JIS X201 Japanese

windows-932
Windows Japanese

windows-936
Windows Simplified Chinese

ibm-942
IBM Windows Japanese

windows-949
Windows Korean

windows-950
Windows Traditional Chinese

eucjis
EUC Japanese

EUC-JP
IBM/MS EUC Japanese

EUC-CN
EUC Simplified Chinese, GBK

EUC-KR
EUC Korean

EUC-TW
EUC Traditional Chinese

Appendix C
Supported Character Sets - Non-Oracle

C-14

Identifier to use
in parameter files
and commands

Character set

ibm-930
IBM 930/5026 Japanese

ibm-933
IBM 933 Korean

ibm-935
IBM 935 Simplified Chinese

ibm-937
IBM 937 Traditional Chinese

ibm-939
IBM 939/5035 Japanese

ibm-1364
IBM 1364 Korean

ibm-1371
IBM 1371 Traditional Chinese

ibm-1388
IBM 1388 Simplified Chinese

ibm-1390
IBM 1390 Japanese

ibm-1399
IBM 1399 Japanese

ibm-5123
IBM CCSID 5123 Japanese

ibm-8482
IBM CCSID 8482 Japanese

ibm-13218
IBM CCSID 13218 Japanese

ibm-16684
IBM CCSID 16684 Japanese

shiftjis
Japanese Shift JIS, Tilde 0x8160 mapped to U+301C

gb18030
GB-18030

GB2312
GB-2312-1980

GBK
GBK

HZ
HZ GB2312

Ibm-1381
IBM CCSID 1381 Simplified Chinese

Big5
Big5, Traditional Chinese

Appendix C
Supported Character Sets - Non-Oracle

C-15

Identifier to use
in parameter files
and commands

Character set

Big5-HKSCS
Big5, HongKong ext.

Big5-HKSCS2001
Big5, HongKong ext. HKSCS-2001

ibm-950
IBM Big5, CCSID 950

ibm-949
CCSID 949 Korean

ibm-949C
IBM CCSID 949 Korean, has backslash

ibm-971
IBM CCSID 971 Korean EUC, KSC5601 1989

x-IBM1363
IBM CCSID 1363, Korean

Appendix C
Supported Character Sets - Non-Oracle

C-16

D
Supported Locales

This appendix lists the locales that are supported by Oracle GoldenGate. The locale is
used when comparing case-insensitive object names.

af

af_NA

af_ZA

am

am_ET

ar

ar_AE

ar_BH

ar_DZ

ar_EG

ar_IQ

ar_JO

ar_KW

ar_LB

ar_LY

ar_MA

ar_OM

ar_QA

ar_SA

ar_SD

ar_SY

ar_TN

ar_YE

as

as_IN

az

az_Cyrl

az_Cyrl_AZ

az_Latn

az_Latn_AZ

be

be_BY

bg

bg_BG

bn

bn_BD

bn_IN

ca

ca_ES

D-1

cs

cs_CZ

cy

cy_GB

da

da_DK

de

de_AT

de_BE

de_CH

de_DE

de_LI

de_LU

el

el_CY

el_GR

en

en_AU

en_BE

en_BW

en_BZ

en_CA

en_GB

en_HK

en_IE

en_IN

en_JM

en_MH

en_MT

en_NA

en_NZ

en_PH

en_PK

en_SG

en_TT

en_US

en_US_POSIX

en_VI

en_ZA

en_ZW

eo

es

es_AR

es_BO

es_CL

es_CO

es_CR

es_DO

Appendix D

D-2

es_EC

es_ES

es_GT

es_HN

es_MX

es_NI

es_PA

es_PE

es_PR

es_PY

es_SV

es_US

es_UY

es_VE

et

et_EE

eu

eu_ES

fa

fa_AF

fa_IR

fi

fi_FI

fo

fo_FO

fr

fr_BE

fr_CA

fr_CH

fr_FR

fr_LU

fr_MC

ga

ga_IE

gl

gl_ES

gu

gu_IN

gv

gv_GB

haw

haw_US

he

he_IL

hi

hi_IN

hr

hr_HR

Appendix D

D-3

hu

hu_HU

hy

hy_AM

hy_AM_REVISED

id

id_ID

is

is_IS

it

it_CH

it_IT

ja

ja_JP

ka

ka_GE

kk

kk_KZ

kl

kl_GL

km

km_KH

kn

kn_IN

ko

ko_KR

kok

kok_IN

kw

kw_GB

lt

lt_LT

lv

lv_LV

mk

mk_MK

ml

ml_IN

mr

mr_IN

ms

ms_BN

ms_MY

mt

mt_MT

nb

nb_NO

nl

Appendix D

D-4

nl_BE

nl_NL

nn

nn_NO

om

om_ET

om_KE

or

or_IN

pa

pa_Guru

pa_Guru_IN

pl

pl_PL

ps

ps_AF

pt

pt_BR

pt_PT

ro

ro_RO

ru

ru_RU

ru_UA

sk

sk_SK

sl

sl_SI

so

so_DJ

so_ET

so_KE

so_SO

sq

sq_AL

sr

sr_Cyrl

sr_Cyrl_BA

sr_Cyrl_ME

sr_Cyrl_RS

sr_Latn

sr_Latn_BA

sr_Latn_ME

sr_Latn_RS

sv

sv_FI

sv_SE

sw

Appendix D

D-5

sw_KE

sw_TZ

ta

ta_IN

te

te_IN

th

th_TH

ti

ti_ER

ti_ET

tr

tr_TR

uk

uk_UA

ur

ur_IN

ur_PK

uz

uz_Arab

uz_Arab_AF

uz_Cyrl

uz_Cyrl_UZ

uz_Latn

uz_Latn_UZ

vi

vi_VN

zh

zh_Hans

zh_Hans_CN

zh_Hans_SG

zh_Hant

zh_Hant_HK

zh_Hant_MO

zh_Hant_TW

Appendix D

D-6

E
About the Oracle GoldenGate Trail

This appendix contains information about the Oracle GoldenGate trail that you may
need to know for troubleshooting, for a support case, or for other purposes. To view
the Oracle GoldenGate trail records, use the Logdump utility.
Topics:

• Trail Recovery Mode

• Trail Record Format

• Trail File Header Record

• Example of an Oracle GoldenGate Record

• Record Header Area

• Record Data Area

• Tokens Area

• Oracle GoldenGate Operation Types

E.1 Trail Recovery Mode
By default, Extract operates in append mode, where if there is a process failure, a
recovery marker is written to the trail and Extract appends recovery data to the file so
that a history of all prior data is retained for recovery purposes.

In append mode, the Extract initialization determines the identity of the last complete
transaction that was written to the trail at startup time. With that information, Extract
ends recovery when the commit record for that transaction is encountered in the data
source; then it begins new data capture with the next committed transaction that
qualifies for extraction and begins appending the new data to the trail. A data pump or
Replicat starts reading again from that recovery point.

Overwrite mode is another version of Extract recovery that was used in versions of
Oracle GoldenGate prior to version 10.0. In these versions, Extract overwrites the
existing transaction data in the trail after the last write-checkpoint position, instead
of appending the new data. The first transaction that is written is the first one that
qualifies for extraction after the last read checkpoint position in the data source.

If the version of Oracle GoldenGate on the target is older than version 10, Extract
will automatically revert to overwrite mode to support backward compatibility. This
behavior can be controlled manually with the RECOVERYOPTIONS parameter.

E.2 Trail Record Format
Each change record written by Oracle GoldenGate to a trail or extract file includes a
header area, a data area, and possibly a user token area. The record header contains
information about the transaction environment, and the data area contains the actual
data values that were extracted. The token area contains information that is specified
by Oracle GoldenGate users for use in column mapping and conversion.

E-1

Oracle GoldenGate trail files are unstructured. You can view Oracle GoldenGate
records with the Logdump utility provided with the Oracle GoldenGate software. For
more information, see Logdump Reference for Oracle GoldenGate.

Note:

As enhancements are made to the Oracle GoldenGate software, the trail
record format is subject to changes that may not be reflected in this
documentation. To view the current structure, use the Logdump utility.

E.3 Trail File Header Record
Each file of a trail contains a file header record that is stored at the beginning of the
file. The file header contains information about the trail file itself. Previous versions of
Oracle GoldenGate do not contain this header.

The file header is stored as a record at the beginning of a trail file preceding the data
records. The information that is stored in the trail header provides enough information
about the records to enable an Oracle GoldenGate process to determine whether the
records are in a format that the current version of Oracle GoldenGate supports.

The trail header fields are stored as tokens, where the token format remains the same
across all versions of Oracle GoldenGate. If a version of Oracle GoldenGate does
not support any given token, that token is ignored. Depracated tokens are assigned a
default value to preserve compatibility with previous versions of Oracle GoldenGate.

To ensure forward and backward compatibility of files among different Oracle
GoldenGate process versions, the file header fields are written in a standardized
token format. New tokens that are created by new versions of a process can be
ignored by older versions, so that backward compatibility is maintained. Likewise,
newer Oracle GoldenGate versions support older tokens. Additionally, if a token is
deprecated by a new process version, a default value is assigned to the token so that
older versions can still function properly. The token that specifies the file version is
COMPATIBILITY and can be viewed in the Logdump utility and also by retrieving it with
the GGFILEHEADER option of the @GETENV function.

A trail or Extract file must have a version that is equal to, or lower than, that of
the process that reads it. Otherwise the process will abend. Additionally, Oracle
GoldenGate forces the output trail or file of a data pump to be the same version as that
of its input trail or file. Upon restart, Extract rolls a trail to a new file to ensure that each
file is of only one version (unless the file is empty).

From Oracle GoldenGate 21c onward, for Oracle databases, you can specify a
globally unique name for the database using the DB_UNIQUE_NAME parameter. If this
database parameter is not set, then the DB_UNIQUE_NAME is the same as DB_NAME. This
feature allows unique identification of the source of the trail data by viewing the trail file
header.

See GETENV parameter to know about the use of the DbUniqueName token.

Appendix E
Trail File Header Record

E-2

Note:

The DbUniqueName token will be written to trail files with 19.1
compatibility level, however prior Oracle GoldenGate releases supporting
that compatibility level will ignore the new token. The token belongs to the
Database Information group. The field will be limited to 65536 bytes, to allow
fitting all possible values of DB_UNIQUE_NAME, limited to 30 characters.

Because the Oracle GoldenGate processes are decoupled and can be of different
Oracle GoldenGate versions, the file header of each trail file contains a version
indicator. By default, the version of a trail file is the current version of the process
that created the file. If you need to set the version of a trail, use the FORMAT option of
the EXTTRAIL, EXTFILE, RMTTRAIL, or RMTFILE parameter.

You can view the trail header with the FILEHEADER command in the Logdump utility.
For more information about the tokens in the file header, see Logdump Reference for
Oracle GoldenGate.

• Partition Name Record in Trail File Header

• Viewing the Partition Name and PNR Index in Logdump

E.3.1 Partition Name Record in Trail File Header
Each DML record in the trail file header can contain an index to a partition name
record (PNR). Because the full partition name can be long, a PNR is created in each
trail file for the first time the partition is written. Each PNR, contains the partition name
and partition object ID.

For primary Extract, PNR is generated only for partition matching and included by
PARTITION and PARTITIONEXCLUDE parameters. DML records from these partitions
have an index to the table definition record and another index to the partition name
record. DML records from all other tables such as non-partitioned tables or partitioned
tables not matching or excluded by the PARTITION or PARTITIONEXCLUDE parameters,
only have an index to the table definition record as done today. For Data Pump and
Distribution Server, the PNR is written if source trail record contains a PNR index.

E.3.2 Viewing the Partition Name and PNR Index in Logdump
Use the Logdump utility to display the partition name record and the DML containing
the PNR index.

Here's an example that shows capturing the display in a file.

$ logdump > output.txt <<EOF
ghdr on
detail data
open ./dirdat/tr000000000
n 200
EOF

Appendix E
Trail File Header Record

E-3

The output displays the PNR and the DML with the PNR index values, as shown in the
following example:

HDR-IND : E (X45) PARTITION : . (XFF80)
UNDOFLAG : . (X00) BEFOREAFTER: A (X41)
RECLENGTH : 0 (X0000) IO TIME : 2019/01/17
16:48:01.129.045
IOTYPE : 170 (XAA) ORIGNODE : 4 (X04)
TRANSIND : . (X03) FORMATTYPE : R (X52)
SYSKEYLEN : 0 (X00) INCOMPLETE : . (X00)
TDR/PNR IDX: (001, 002) AUDITPOS : 13287580
CONTINUED : N (X00) RECCOUNT : 1 (X01)

2019/01/17 16:48:01.129.045 METADATA LEN 0 RBA 3425
PARTITION NAME: P1 PARTITION ID: 75,234 FLAGS: X00000001

HDR-IND : E (X45) PARTITION : . (XFF8C)
UNDOFLAG : . (X00) BEFOREAFTER: A (X41)
RECLENGTH : 18 (X0012) IO TIME : 2019/01/17
16:47:58.000.000
IOTYPE : 5 (X05) ORIGNODE : 255 (XFF)
TRANSIND : . (X00) FORMATTYPE : R (X52)
SYSKEYLEN : 0 (X00) INCOMPLETE : . (X00)
AUDITRBA : 15 AUDITPOS : 13287580
CONTINUED : N (X00) RECCOUNT : 1 (X01)

2019/01/17 16:47:58.000.000 INSERT LEN 18 RBA 3486
NAME: TKGGU1.T1 (PARTITION: P1, TDR/PNR INDEX: 1/2)
AFTER IMAGE: PARTITION
X8C G B
 0000 0500 0000 0100 3101 0005 0000 0001 0031 |1........1
COLUMN 0 (X0000), LEN 5 (X0005)
 0000 0100 31 |1
COLUMN 1 (X0001), LEN 5 (X0005)
 0000 0100 31 |1

E.4 Example of an Oracle GoldenGate Record
The following illustrates an Oracle GoldenGate record as viewed with Logdump. The
first portion (the list of fields) is the header and the second portion is the data area.
The record looks similar to this on all platforms supported by Oracle GoldenGate.

Appendix E
Example of an Oracle GoldenGate Record

E-4

E.5 Record Header Area
The Oracle GoldenGate record header provides metadata of the data that is contained
in the record and includes the following information.

• The operation type, such as an insert, update, or delete

• The before or after indicator for updates

• Transaction information, such as the transaction group and commit timestamp

• Description of Header Fields

• Using Header Data

E.5.1 Description of Header Fields
The following describes the fields of the Oracle GoldenGate record header. Some
fields apply only to certain platforms.

Table E-1 Oracle GoldenGate record header fields

Field Description

Hdr-Ind Should always be a value of E, indicating that the record was created
by the Extract process. Any other value indicates invalid data.

UndoFlag (NonStop) Conditionally set if Oracle GoldenGate is extracting
aborted transactions from the TMF audit trail. Normally, UndoFlag is
set to zero, but if the record is the backout of a previously successful
operation, then UndoFlag will be set to 1. An undo that is performed
by the disc process because of a constraint violation is not marked as
an undo.

RecLength The length, in bytes, of the record buffer.

IOType The type of operation represented by the record. See Table E-2 for a
list of operation types.

Appendix E
Record Header Area

E-5

Table E-1 (Cont.) Oracle GoldenGate record header fields

Field Description

TransInD The place of the record within the current transaction. Values are:

0 — first record in transaction

1 — neither first nor last record in transaction

2 — last record in the transaction

3 — only record in the transaction

SyskeyLen (NonStop) The length of the system key (4 or 8 bytes) if the source
is a NonStop file and has a system key. If a system key exists, the
first Syskeylen bytes of the record are the system key. Otherwise,
SyskeyLen is 0.

AuditRBA Identifies the transaction log identifier, such as the Oracle redo log
sequence number.

Continued (Windows and UNIX) Identifies whether or not the record is a segment
of a larger piece of data that is too large to fit within one record. LOBs,
CLOBS, and some VARCHARs are stored in segments. Unified records
that contain both before and after images in a single record (due
to the UPDATERECORDFORMAT parameter) may exceed the maximum
length of a record and may also generate segments.

Y — the record is a segment; indicates to Oracle GoldenGate that this
data continues to another record.

N — there is no continuation of data to another segment; could be the
last in a series or a record that is not a segment of larger data.

Partition For Windows and UNIX records, this field will always be a value
of 4 (FieldComp compressed record in internal format). For these
platforms, the term Partition does not indicate that the data
represents any particular logical or physical partition within the
database structure.

For NonStop records, the value of this field depends on the record
type:

• In the case of BulkIO operations, Partition indicates the
number of the source partition on which the bulk operation was
performed. It tells Oracle GoldenGate which source partition the
data was originally written to. Replicat uses the Partition field
to determine the name of the target partition. The file name in the
record header will always be the name of the primary partition.
Valid values for BulkIO records are 0 through 15.

• For other non-bulk NonStop operations, the value can be either 0
or 4. A value of 4 indicates that the data is in FieldComp record
format.

BeforeAfter Identifies whether the record is a before (B) or after (A) image of an
update operation. Records that combine both before and after images
as the result of the UPDATERECORDFORMAT parameter are marked
as after images. Inserts are always after images, deletes are always
before images.

IO Time The time when the operation occurred, in local time of the source
system, in GMT format. This time may be the same or different for
every operation in a transaction depending on when the operation
occurred.

Appendix E
Record Header Area

E-6

Table E-1 (Cont.) Oracle GoldenGate record header fields

Field Description

OrigNode (NonStop) The node number of the system where the data was
extracted. Each system in a NonStop cluster has a unique node
number. Node numbers can range from 0 through 255.

For records other than NonStop in origin, OrigNode is 0.

FormatType Identifies whether the data was read from the transaction log or
fetched from the database.

F — fetched from database

R — readable in transaction log

Incomplete This field is obsolete.

AuditPos Identifies the position in the transaction log of the data.

RecCount (Windows and UNIX) Used for LOB data when it must be split into
chunks to be written to the Oracle GoldenGate file. RecCount is used
to reassemble the chunks.

E.5.2 Using Header Data
Some of the data available in the Oracle GoldenGate record header can be used for
mapping by using the GGHEADER option of the @GETENV function or by using any of the
following transaction elements as the source expression in a COLMAP statement in the
TABLE or MAP parameter.

• GGS_TRANS_TIMESTAMP

• GGS_TRANS_RBA

• GGS_OP_TYPE

• GGS_BEFORE_AFTER_IND

E.6 Record Data Area
The data area of the Oracle GoldenGate trail record contains the following:

• The time that the change was written to the Oracle GoldenGate file

• The type of database operation

• The length of the record

• The relative byte address within the trail file

• The table name

• The data changes in hex format

The following explains the differences in record image formats used by Oracle
GoldenGate on Windows, UNIX, Linux, and NonStop systems.

• Full Record Image Format (NonStop Sources)

• Compressed Record Image Format (Windows, UNIX, Linux Sources)

Appendix E
Record Data Area

E-7

E.6.1 Full Record Image Format (NonStop Sources)
A full record image contains the values of all of the columns of a processed row. Full
record image format is generated in the trail when the source system is HP NonStop,
and only when the IOType specified in the record header is one of the following:

3 — Delete
5 — Insert
10 — Update

Each full record image has the same format as if retrieved from a program reading
the original file or table directly. For SQL tables, datetime fields, nulls, and other data
is written exactly as a program would select it into an application buffer. Although
datetime fields are represented internally as an eight-byte timestamp, their external
form can be up to 26 bytes expressed as a string. Enscribe records are retrieved as
they exist in the original file.

When the operation type is Insert or Update, the image contains the contents of the
record after the operation (the after image). When the operation type is Delete, the
image contains the contents of the record before the operation (the before image).

For records generated from an Enscribe database, full record images are output
unless the original file has the AUDITCOMPRESS attribute set to ON. When AUDITCOMPRESS
is ON, compressed update records are generated whenever the original file receives an
update operation. (A full image can be retrieved by the Extract process by using the
FETCHCOMPS parameter.)

E.6.2 Compressed Record Image Format (Windows, UNIX, Linux
Sources)

A compressed record image contains only the key (primary, unique, KEYCOLS) and
the columns that changed in the processed row. By default, trail records written by
processes on Windows and UNIX systems are always compressed. The format of a
compressed record is as follows:

column_index column_length column_data[...]

Where:

• column_index is the ordinal index of the column within the source table (2 bytes).

• colum_length is the length of the data (2 bytes).

• column_data is the data, including NULL or VARCHAR length indicators.

Enscribe records written from the NonStop platform may be compressed. The format
of a compressed Enscribe record is as follows:

field_offset field_length field_value[...]

Where:

• field_offset is the offset within the original record of the changed value (2
bytes).

• field_length is the length of the data (2 bytes).

Appendix E
Record Data Area

E-8

• field_value is the data, including NULL or VARCHAR length indicators.

The first field in a compressed Enscribe record is the primary or system key.

E.7 Tokens Area
The trail record also can contain two areas for tokens. One is for internal use and
is not documented here, and the other is the user tokens area. User tokens are
environment values that are captured and stored in the trail record for replication to
target columns or other purposes. If used, these tokens follow the data portion of the
record and appear similar to the following when viewed with Logdump:

Parameter Value

TKN-HOST
TKN-GROUP
TKN-BA_IND
TKN-COMMIT_TS
TKN-POS
TKN-RBA
TKN-TABLE
TKN-OPTYPE
TKN-LENGTH
TKN-TRAN_IND

: syshq
: EXTORA
: AFTER
: 2011-01-24 17:08:59.000000
: 3604496
: 4058
: SOURCE.CUSTOMER
: INSERT
: 57
: BEGIN

E.8 Oracle GoldenGate Operation Types
The following are some of the Oracle GoldenGate operation types. Types may be
added as new functionality is added to Oracle GoldenGate. For a more updated list,
use the SHOW RECTYPE command in the Logdump utility.

Table E-2 Oracle GoldenGate Operation Types

Type Description Platform

1-Abort A transaction aborted. NSK TMF

2-Commit A transaction committed. NSK TMF

3-Delete A record/row was deleted. A Delete record usually
contains a full record image. However, if the
COMPRESSDELETES parameter was used, then only
key columns will be present.

All

4-EndRollback A database rollback ended NSK TMF

5-Insert A record/row was inserted. An Insert record contains
a full record image.

All

6-Prepared A networked transaction has been prepared to
commit.

NSK TMF

7-TMF-Shutdown A TMF shutdown occurred. NSK TMF

8-TransBegin No longer used. NSK TMF

9-TransRelease No longer used. NSK TMF

Appendix E
Tokens Area

E-9

Table E-2 (Cont.) Oracle GoldenGate Operation Types

Type Description Platform

10-Update A record/row was updated. An Update record
contains a full record image. Note: If the partition
indicator in the record header is 4, then the record
is in FieldComp format (see below) and the update is
compressed.

All

11-UpdateComp A record/row in TMF AuditComp format was updated.
In this format, only the changed bytes are present. A
4-byte descriptor in the format of 2-byte_offset2-
byte_length precedes each data fragment. The byte
offset is the ordinal index of the column within the
source table. The length is the length of the data.

NSK TMF

12-FileAlter An attribute of a database file was altered. NSK

13-FileCreate A database file was created. NSK

14-FilePurge A database file was deleted. NSK

15-FieldComp A row in a SQL table was updated. In this format,
only the changed bytes are present. Before images
of unchanged columns are not logged by the
database. A 4-byte descriptor in the format of 2-
byte_offset2-byte_length precedes each data
fragment. The byte offset is the ordinal index of the
column within the source table. The length is the
length of the data. A partition indicator of 4 in the
record header indicates FieldComp format.

All

16-FileRename A file was renamed. NSK

17-AuxPointer Contains information about which AUX trails have new
data and the location at which to read.

NSK TMF

18-NetworkCommit A networked transaction committed. NSK TMF

19-NetworkAbort A networked transaction was aborted. NSK TMF

90-(GGS)SQLCol A column or columns in a SQL table were added, or
an attribute changed.

NSK

100-
(GGS)Purgedata

All data was removed from the file (PURGEDATA). NSK

101-
(GGS)Purge(File)

A file was purged. NSK non-TMF

102-
(GGS)Create(File)

A file was created. The Oracle GoldenGate record
contains the file attributes.

NSK non-TMF

103-(GGS)Alter(File) A file was altered. The Oracle GoldenGate record
contains the altered file attributes.

NSK non-TMF

104-
(GGS)Rename(File)

A file was renamed. The Oracle GoldenGate record
contains the original and new names.

NSK non-TMF

105-(GGS)Setmode A SETMODE operation was performed. The Oracle
GoldenGate record contains the SETMODE information.

NSK non-TMF

106-
GGSChangeLabel

A CHANGELABEL operation was performed. The
Oracle GoldenGate record contains the CHANGELABEL
information.

NSK non-TMF

Appendix E
Oracle GoldenGate Operation Types

E-10

Table E-2 (Cont.) Oracle GoldenGate Operation Types

Type Description Platform

107-(GGS)Control A CONTROL operation was performed. The Oracle
GoldenGate record contains the CONTROL information.

NSK non-TMF

115 and 117

(GGS)KeyFieldCom
p(32)

A primary key was updated. The Oracle GoldenGate
record contains the before image of the key and the
after image of the key and the row. The data is in
FieldComp format (compressed), meaning that before
images of unchanged columns are not logged by the
database.

Windows and
UNIX

116-LargeObject

116-LOB

Identifies a RAW, BLOB, CLOB, or LOB column. Data of
this type is stored across multiple records.

Windows and
UNIX

132-(GGS)
SequenceOp

Identifies an operation on a sequence. Windows and
UNIX

134-UNIFIED
UPDATE

135-UNIFIED
PKUPDATE

Identifies a unified trail record that contains both
before and after values in the same record. The
before image in a UNIFIED UPDATE contains all of the
columns that are available in the transaction record for
both the before and after images. The before image in
a UNIFIED PKUPDATE contains all of the columns that
are available in the transaction record, but the after
image is limited to the primary key columns and the
columns that were modified in the UPDATE.

Windows and
UNIX

160 - DDL_Op Identifies a DDL operation Windows and
UNIX

161-

RecordFragment

Identifies part of a large row that must be stored
across multiple records (more than just the base
record).

Windows and
UNIX

200-
GGSUnstructured
Block

200-BulkIO

A BULKIO operation was performed. The Oracle
GoldenGate record contains the RAW DP2 block.

NSK non-TMF

201 through 204 These are different types of NonStop trace records.
Trace records are used by Oracle GoldenGate support
analysts. The following are descriptions.

• ARTYPE_FILECLOSE_GGS 201 — the source
application closed a file that was open for
unstructured I/O. Used by Replicat

• ARTYPE_LOGGERTS_GGS 202 — Logger
heartbeat record

• ARTYPE_EXTRACTERTS_GGS 203 — unused
• ARTYPE_COLLECTORTS_GGS 204 — unused

NSK non-TMF

205-GGSComment Indicates a comment record created by the Logdump
utility. Comment records are created by Logdump at
the beginning and end of data that is saved to a file
with Logdump's SAVE command.

All

Appendix E
Oracle GoldenGate Operation Types

E-11

Table E-2 (Cont.) Oracle GoldenGate Operation Types

Type Description Platform

249 through 254 These are different types of NonStop trace records.
Trace records are used by Oracle GoldenGate support
analysts. The following are descriptions.

• ARTYPE_LOGGER_ADDED_STATS 249 — a stats
record created by Logger when the source
application closes its open on Logger (if
SENDERSTATS is enabled and stats are written to
the logtrail)

• ARTYPE_LIBRARY_OPEN 250 — written by
BASELIB to show that the application opened a
file

• ARTYPE_LIBRARY_CLOSE 251 — written by
BASELIB to show that the application closed a
file.

• ARTYPE_LOGGER_ADDED_OPEN 252 — unused
• ARTYPE_LOGGER_ADDED_CLOSE 253 — unused
• ARTYPE_LOGGER_ADDED_INFO 254 — written

by Logger and contains information about the
source application that performed the I/O in the
subsequent record (if SENDERSTATS is enabled
and stats are written to the logtrail). The file
name in the trace record is the object file of the
application. The trace data has the application
process name and the name of the library (if any)
that it was running with.

NSK non-TMF

Appendix E
Oracle GoldenGate Operation Types

E-12

F
Using the Commit Sequence Number

This appendix contains information about using the Oracle GoldenGate Commit
Sequence Number (CSN) with Oracle and non-Oracle databases.

All database platforms except Oracle, DB2 LUW, and DB2 z/OS have fixed-length
CSNs, which are padded with leading zeroes as required to fill the fixed length. CSNs
that contain multiple fields can be padded within each field. For more information on
CSN, see Overview of CSN in Understanding Oracle GoldenGate

MySQL does not create a transaction ID as part of its event data, so Oracle
GoldenGate considers a unique transaction identifier to be a combination of the
following:

• the log file number of the log file that contains the START TRANSACTION record for
the transaction that is being identified

• the record offset of that record

Table F-1 Oracle GoldenGate CSN Values Per Database

Database CSN Value

DB2 for i sequence_number

Where:

• sequence_number is the fixed-length, 20 digit, decimal-based DB2 for
i system sequence number.

Example:

12345678901234567890

DB2 LUW LRI

Where:

For version 10.1 and later, LRI is a period-separated pair of numbers for
the DB2 log record identifier.

Example:

123455.34645

DB2 z/OS
RBA

where:

• RBA is the 6-byte relative byte address of the commit record within the
transaction log.

Example:

1274565892

F-1

Table F-1 (Cont.) Oracle GoldenGate CSN Values Per Database

Database CSN Value

MySQL
LogNum:LogPosition

Where:
• LogNum is the the name of the log file that contains the START

TRANSACTION record for the transaction that is being identified.
• LogPosition is the event offset value of that record. Event offset

values are stored in the record header section of a log record.
For example, if the log number is 12 and the log position is 121, the CSN
is:

000012:000000000000121

Oracle
system_change_number

Where:
• system_change number is the Oracle SCN value.
Example:

6488359

SQL Server Can be any of these, depending on how the database returns it:

• Colon separated hex string (8:8:4) padded with leading zeroes and
0X prefix

• Colon separated decimal string (10:10:5) padded with leading
zeroes

• Colon separated hex string with 0X prefix and without leading zeroes
• Colon separated decimal string without leading zeroes
• Decimal string
Where:
• The first value is the virtual log file number, the second is the

segment number within the virtual log, and the third is the entry
number.

Examples:

0X00000d7e:0000036b:01bd
0000003454:0000000875:00445
0Xd7e:36b:1bd
3454:875:445
3454000000087500445

Appendix F

F-2

G
About Checkpoints

This appendix provides information about checkpoints. When working with Oracle
GoldenGate, you might need to refer to the checkpoints that are made by a
process. Checkpoints save the state of the process for recovery purposes. Extract
and Replicat use checkpoints.

Topics:

• Extract Checkpoints

• Replicat Checkpoints

• Internal Checkpoint Information

• Oracle GoldenGate Checkpoint Tables

G.1 Extract Checkpoints
Extract checkpoint positions are composed of read checkpoints in the data source and
write checkpoints in the trail. The following is a sampling of checkpoint information
displayed with the INFO EXTRACT command with the SHOWCH option. In this case, the
data source is an Oracle RAC database cluster, so there is thread information included
in the output. You can view past checkpoints by specifying the number of them that
you want to view after the SHOWCH argument.

Example G-1 INFO EXTRACT with SHOWCH

EXTRACT JC108XT Last Started 2011-01-01 14:15 Status ABENDED
Checkpoint Lag 00:00:00 (updated 00:00:01 ago)
Log Read Checkpoint File /orarac/oradata/racq/redo01.log
 2011-01-01 14:16:45 Thread 1, Seqno 47, RBA 68748800
Log Read Checkpoint File /orarac/oradata/racq/redo04.log
 2011-01-01 14:16:19 Thread 2, Seqno 24, RBA 65657408

Current Checkpoint Detail:

Read Checkpoint #1

 Oracle RAC Redo Log
 Startup Checkpoint (starting position in data source):
 Thread #: 1
 Sequence #: 47
 RBA: 68548112
 Timestamp: 2011-01-01 13:37:51.000000
 SCN: 0.8439720
 Redo File: /orarac/oradata/racq/redo01.log

Recovery Checkpoint (position of oldest unprocessed transaction in data source):
 Thread #: 1
 Sequence #: 47
 RBA: 68748304
 Timestamp: 2011-01-01 14:16:45.000000
 SCN: 0.8440969

G-1

 Redo File: /orarac/oradata/racq/redo01.log

 Current Checkpoint (position of last record read in the data source):
 Thread #: 1
 Sequence #: 47
 RBA: 68748800
 Timestamp: 2011-01-01 14:16:45.000000
 SCN: 0.8440969
 Redo File: /orarac/oradata/racq/redo01.log

Read Checkpoint #2

 Oracle RAC Redo Log

 Startup Checkpoint(starting position in data source):
 Sequence #: 24
 RBA: 60607504
 Timestamp: 2011-01-01 13:37:50.000000
 SCN: 0.8439719
 Redo File: /orarac/oradata/racq/redo04.log

Recovery Checkpoint (position of oldest unprocessed transaction in data source):
 Thread #: 2
 Sequence #: 24
 RBA: 65657408
 Timestamp: 2011-01-01 14:16:19.000000
 SCN: 0.8440613
 Redo File: /orarac/oradata/racq/redo04.log

 Current Checkpoint (position of last record read in the data source):
 Thread #: 2
 Sequence #: 24
 RBA: 65657408
 Timestamp: 2011-01-01 14:16:19.000000
 SCN: 0.8440613
 Redo File: /orarac/oradata/racq/redo04.log

Write Checkpoint #1

 GGS Log Trail

 Current Checkpoint (current write position):

 Sequence #: 2
 RBA: 2142224
 Timestamp: 2011-01-01 14:16:50.567638
 Extract Trail: ./dirdat/eh

 Header:
 Version = 2
 Record Source = A
 Type = 6
 # Input Checkpoints = 2
 # Output Checkpoints = 1

 File Information:
 Block Size = 2048
 Max Blocks = 100
 Record Length = 2048
 Current Offset = 0

Appendix G
Extract Checkpoints

G-2

 Configuration:
 Data Source = 3
 Transaction Integrity = 1
 Task Type = 0

 Status:
 Start Time = 2011-01-01 14:15:14
 Last Update Time = 2011-01-01 14:16:50
 Stop Status = A
 Last Result = 400

See Internal Checkpoint Informationfor information about the internal information that
starts with the Header entry in the SHOWCH output.

• About Extract read checkpoints

• About Extract Write Checkpoints

G.1.1 About Extract read checkpoints
Extract places read checkpoints in the data source.

• Startup Checkpoint

• Recovery Checkpoint

• Current Checkpoint

G.1.1.1 Startup Checkpoint
The startup checkpoint is the first checkpoint that is made in the data source when the
process starts. This statistic is composed of the following:

• Thread #: The number of the Extract thread that made the checkpoint, if Oracle
GoldenGate is running in an Oracle RAC environment. Otherwise, this statistic is
not displayed.

• Sequence #: The sequence number of the transaction log where the checkpoint
was made.

• RBA: The relative byte address of the record at which the checkpoint was made.

• Timestamp: The timestamp of the record at which the checkpoint was made.

• SCN: The system change number of the record at which the checkpoint was made.

• Redo File: The path name of the transaction log containing the record where the
checkpoint was made.

G.1.1.2 Recovery Checkpoint
The recovery checkpoint is the position in the data source of the record containing
the oldest transaction not yet processed by Extract. The fields for this statistic are the
same as those of the other read checkpoint types.

G.1.1.3 Current Checkpoint
The current checkpoint is the position of the last record read by Extract in the data
source. This should match the Log Read Checkpoint statistic shown in the summary

Appendix G
Extract Checkpoints

G-3

and in the basic INFO EXTRACT command without options. The fields for this statistic
are the same as those of the other read checkpoint types.

G.1.2 About Extract Write Checkpoints
Extract places a write checkpoint, known as the current checkpoint, in the trail. The
current checkpoint is the position in the trail where Extract is currently writing. This
statistic is composed of the following:

• Sequence #: The sequence number of the trail file where the checkpoint was
written.

• RBA: The relative byte address of the record in the trail file at which the checkpoint
was made.

• Timestamp: The timestamp of the record at which the checkpoint was made.

• Extract trail: The relative path name of the trail.

• Trail Type: Identifies the trail type. EXTTRAIL identifies the trail as a local
trail, which means that it is directly accessible by Oracle GoldenGate processes
through the host filesystem. RMTTRAIL identifies the trail as a remote trail, which
means it is not directly accessible by Oracle GoldenGate processes through the
host filesystem. A trail stored on a shared network device and accessible through
NFS-like services are considered local because they are accessible transparently
through the host filesystem.

G.2 Replicat Checkpoints
Replicat makes checkpoints in the trail file to mark its last read position. To view
process checkpoints, use the INFO REPLICAT command with the SHOWCH option. The
basic command shows current checkpoints. To view a specific number of previous
checkpoints, type the value after the SHOWCH argument.

Example G-2 INFO REPLICAT, SHOWCH

REPLICAT JC108RP Last Started 2011-01-12 13:10 Status RUNNING
Checkpoint Lag 00:00:00 (updated 111:46:54 ago)
Log Read Checkpoint File ./dirdat/eh000000000
 First Record RBA 3702915
Current Checkpoint Detail:
 Read Checkpoint #1
 GGS Log Trail
 Startup Checkpoint(starting position in data source):
 Sequence #: 0
 RBA: 3702915
 Timestamp: Not Available
 Extract Trail: ./dirdat/eh
 Current Checkpoint (position of last record read in the data source):
 Sequence #: 0
 RBA: 3702915
 Timestamp: Not Available
 Extract Trail: ./dirdat/eh
 Header:
 Version = 2
 Record Source = A
 Type = 1
 # Input Checkpoints = 1
 # Output Checkpoints = 0

Appendix G
Replicat Checkpoints

G-4

 File Information:
 Block Size = 2048
 Max Blocks = 100
 Record Length = 2048
 Current Offset = 0
 Configuration:
 Data Source = 0
 Transaction Integrity = -1
 Task Type = 0
 Status:
 Start Time = 2011-01-12 13:10:13
 Last Update Time = 2011-01-12 21:23:31
 Stop Status = A
 Last Result = 400

See Internal Checkpoint Information for information about the internal information that
starts with the Header entry in the SHOWCH output.

• About Replicat Checkpoints

G.2.1 About Replicat Checkpoints
The following describes the detail of the Replicat checkpoints in the trail.

• Startup Checkpoint

• Current Checkpoint

G.2.1.1 Startup Checkpoint
The startup checkpoint is the first checkpoint made in the trail when the process
starts. Comprising this statistic are:

• Sequence #: The sequence number of the trail file where the checkpoint was
written.

• RBA: The relative byte address of the record at which the checkpoint was made.

• Timestamp: The timestamp of the record at which the checkpoint was made.

• Extract Trail: The relative path name of the trail.

G.2.1.2 Current Checkpoint
The current checkpoint is the position of the last record read by Replicat in the trail.
This should match the Log Read Checkpoint statistic shown in the summary and in
the basic INFO REPLICAT command without options. The fields for this statistic are the
same as those of the Startup Checkpoint.

G.3 Internal Checkpoint Information
The INFO command with the SHOWCH option not only displays current checkpoint
entries, but it also displays metadata information about the record itself. This
information is not documented and is for use by the Oracle GoldenGate processes
and by support personnel when resolving a support case. The metadata is contained
in the following entries in the SHOWCH output.

Appendix G
Internal Checkpoint Information

G-5

 Header:
 Version = 2
 Record Source = A
 Type = 1
 # Input Checkpoints = 1
 # Output Checkpoints = 0
 File Information:
 Block Size = 2048
 Max Blocks = 100
 Record Length = 2048
 Current Offset = 0
 Configuration:
 Data Source = 0
 Transaction Integrity = -1
 Task Type = 0
 Status:
 Start Time = 2011-01-12 13:10:13
 Last Update Time = 2011-01-12 21:23:31
 Stop Status = A
 Last Result = 400

G.4 Oracle GoldenGate Checkpoint Tables
When database checkpoints are being used, Oracle GoldenGate creates a
checkpoint table with a user-defined name in the database upon execution of the
ADD CHECKPOINTTABLE command, or a user can create the table by using the
chkpt_db_create.sql script (where db is an abbreviation of the type of database that
the script supports).

There are two tables: the main checkpoint table and an auxiliary checkpoint table that
is created automatically. The auxiliary table, known as the transaction table, bears the
name of the primary checkpoint table appended with _lox. Each Replicat, or each
thread of a coordinated Replicat, uses one row in the checkpoint table to store its
progress information.

At checkpoint time, there typically are some number of transactions (among the total
n transactions) that were applied, and the rest are still in process. For example,
if Replicat is processing a group of n transactions ranging from CSN1 to CSN3.
CSN1 is the high watermark and CSN3 is the low watermark. Any transaction with a
CSN higher than the high watermark has not been processed, and any transaction
with a CSN lower than the low watermark has already been processed. Completed
transactions are stored in the LOG_CMPLT_XID column of the checkpoint table. Any
overflow of these transactions is stored in the transaction table (auxiliary checkpoint
table) in the LOG_CMPLT_XID column of that table.

Currently, Replicat (or each Replicat thread of a coordinated Replicat) applies
transactions serially (not in parallel); therefore, the high watermark (the LOG_CSN value
in the table) is always the same as the low watermark (the LOG_CMPLT_CSN value in the
table), and there typically is only one transaction ID in the LOG_CMPLT_XID column. The
only exception is when there are multiple transactions sharing the same CSN.

Do not change the names or attributes of the columns in these tables. You can change
table storage attributes as needed.

Appendix G
Oracle GoldenGate Checkpoint Tables

G-6

Table G-1 Checkpoint table definition

Column Description

GROUP_NAME (primary
key)

The name of a Replicat group using this table for checkpoints.
There can be multiple Replicat groups using the same table. This
column is part of the primary key.

GROUP_KEY (primary
key)

A unique identifier that, together with GROUPNAME, uniquely
identifies a checkpoint regardless of how many Replicat groups
are writing to the same table. This column is part of the primary
key.

SEQNO The sequence number of the input trail that Replicat was reading
at the time of the checkpoint.

RBA The relative byte address that Replicat reached in the trail
identified by SEQNO. RBA + SEQNO provide an absolute position
in the trail that identifies the progress of Replicat at the time of
checkpoint.

AUDIT_TS The timestamp of the commit of the source transaction.

CREATE_TS The date and time when the checkpoint table was created.

LAST_UPDATE_TS The date and time when the checkpoint table was last updated.

CURRENT_DIR The current Oracle GoldenGate home directory or folder.

LOG_BSN The

LOG_BSN

provides information needed to set Extract back in time to
reprocess transactions. Some filtering by Replicat is necessary
because Extract will likely re-generate a small amount of data
that was already applied by Replicat.

LOG_CSN Stores the high watermark, or the upper boundary, of the CSNs.
Any transaction with a CSN higher than this value has not been
processed.

LOG_XID Not used. Retained for backward compatibility.

LOG_CMPLT_CSN Stores the low watermark, or the lower boundary, of the CSNs.
Any transaction with a lower CSN than this value has already
been processed.

LOG_CMPLT_XIDS Stores the transactions between the high and low watermarks
that are already applied.

VERSION The version of the checkpoint table format. Enables future
enhancements to be identified as version numbers of the table.

Table G-2 Transaction table definition

Column Description

GROUP_NAME The name of a Replicat group using this table for checkpoints.
There can be multiple Replicat groups using the same table. This
column is part of the primary key of the transaction table.

Appendix G
Oracle GoldenGate Checkpoint Tables

G-7

Table G-2 (Cont.) Transaction table definition

Column Description

GROUP_KEY A unique identifier that, together with GROUPNAME, uniquely
identifies a checkpoint regardless of how many Replicat groups
are writing to the same table. This column is part of the primary
key of the transaction table.

LOG_CMPLT_CSN The foreign key that references the checkpoint table. This
column is part of the primary key of the transaction table.

LOG_CMPLT_XIDS_SEQ Creates unique rows in the event there are so many overflow
transactions that multiple rows are required to store them all.
This column is part of the primary key of the transaction table.

LOG_CMPLT_XIDS Stores the overflow of transactions between the high and low
watermarks that are already applied.

Appendix G
Oracle GoldenGate Checkpoint Tables

G-8

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Information
	Conventions

	1 Oracle GoldenGate Administration Overview
	2 Oracle GoldenGate Globalization Support
	2.1 Preserving the Character Set
	2.1.1 Character Set of Database Structural Metadata
	2.1.2 Character Set of Character-type Data
	2.1.3 Character Set of Database Connection
	2.1.4 Character Set of Text Input and Output

	2.2 Using Unicode and Native Characters
	2.3 Character Map Translation

	Part I Oracle GoldenGate Administration: Common Components and Operations
	3 Getting Started with the Oracle GoldenGate Process Interfaces
	3.1 Using Command Line Interfaces
	3.1.1 Using the Admin Client
	3.1.2 Using GGSCI
	3.1.3 Using Wildcards in Command Arguments
	3.1.4 Globalization Support for the Command Interface
	3.1.5 Using Command History
	3.1.6 Storing and Calling Frequently Used Command Sequences

	3.2 Controlling Oracle GoldenGate Processes
	3.2.1 Controlling Manager
	3.2.2 Controlling Extract and Replicat
	3.2.3 Deleting Extract and Replicat

	3.3 Automating Commands
	3.3.1 Issuing Commands Through the IBM i CLI

	3.4 Specifying Object Names in Oracle GoldenGate Input
	3.4.1 Specifying Filesystem Path Names in Parameter Files on Windows Systems
	3.4.2 Supported Database Object Names
	3.4.2.1 Supported Special Characters
	3.4.2.2 Non-supported Special Characters

	3.4.3 Specifying Names that Contain Slashes
	3.4.4 Qualifying Database Object Names
	3.4.4.1 Two-part Names
	3.4.4.2 Three-part Names
	3.4.4.3 Applying Data from Multiple Containers or Catalogs
	3.4.4.4 Specifying a Default Container or Catalog

	3.4.5 Specifying Case-Sensitive Database Object Names
	3.4.6 Using Wildcards in Database Object Names
	3.4.6.1 Rules for Using Wildcards for Source Objects
	3.4.6.2 Rules for Using Wildcards for Target Objects
	3.4.6.3 Fallback Name Mapping
	3.4.6.4 Wildcard Mapping from Pre-11.2.1 Trail Version
	3.4.6.5 Asterisks or Question Marks as Literals in Object Names
	3.4.6.6 How Wildcards are Resolved
	3.4.6.7 Excluding Objects from a Wildcard Specification

	3.4.7 Differentiating Case-Sensitive Column Names from Literals

	4 Using Oracle GoldenGate Parameter Files
	4.1 Globalization Support for Parameter Files
	4.2 Working with the GLOBALS File
	4.3 Working with Runtime Parameters
	4.4 Creating a Parameter File
	4.4.1 Creating a Parameter File in GGSCI and Admin Client
	4.4.2 Creating a Parameter File with a Text Editor

	4.5 Validating a Parameter File
	4.6 Viewing a Parameter File
	4.7 Changing a Parameter File
	4.8 Simplifying the Creation of Parameter Files
	4.8.1 Using Wildcards
	4.8.2 Using OBEY
	4.8.3 Using Macros
	4.8.4 Using Parameter Substitution

	4.9 Getting Information about Oracle GoldenGate Parameters

	5 Using Oracle GoldenGate for Live Reporting
	5.1 Overview of the Reporting Configuration
	5.1.1 Filtering and Conversion
	5.1.2 Read-only vs. High Availability
	5.1.3 Additional Information

	5.2 Creating a Standard Reporting Configuration
	5.2.1 Source System
	5.2.2 Target System

	5.3 Creating a Reporting Configuration with a Data Pump on the Source System
	5.3.1 Source System
	5.3.2 Target System

	5.4 Creating a Reporting Configuration with a Data Pump on an Intermediary System
	5.4.1 Source System
	5.4.2 Intermediary System
	5.4.3 Target System

	5.5 Creating a Cascading Reporting Configuration
	5.5.1 Source System
	5.5.2 Second System in the Cascade
	5.5.3 Third System in the Cascade

	6 Using Oracle GoldenGate for Real-time Data Distribution
	6.1 Overview of the Data-distribution Configuration
	6.2 Considerations for a Data-distribution Configuration
	6.2.1 Fault Tolerance
	6.2.2 Filtering and Conversion
	6.2.3 Read-only vs. High Availability
	6.2.4 Additional Information

	6.3 Creating a Data Distribution Configuration
	6.3.1 Source System
	6.3.2 Target Systems

	7 Configuring Oracle GoldenGate for Real-time Data Warehousing
	7.1 Overview of the Data Warehousing Configuration
	7.2 Considerations for a Data Warehousing Configuration
	7.2.1 Isolation of Data Records
	7.2.2 Data Storage
	7.2.3 Filtering and Conversion
	7.2.4 Additional Information

	7.3 Creating a Data Warehousing Configuration
	7.3.1 Source Systems
	7.3.2 Target System

	8 Configuring Oracle GoldenGate to Maintain a Live Standby Database
	8.1 Overview of a Live Standby Configuration
	8.2 Considerations for a Live Standby Configuration
	8.2.1 Trusted Source
	8.2.2 Duplicate Standby
	8.2.3 DML on the Standby System
	8.2.4 Oracle GoldenGate Processes
	8.2.5 Backup Files
	8.2.6 Failover Preparedness
	8.2.7 Sequential Values that are Generated by the Database
	8.2.8 Additional Information

	8.3 Creating a Live Standby Configuration
	8.3.1 Prerequisites on Both Systems
	8.3.2 Configuration from Active Source to Standby

	8.4 Configuration from Standby to Active Source
	8.5 Moving User Activity in a Planned Switchover
	8.5.1 Moving User Activity to the Live Standby
	8.5.2 Moving User Activity Back to the Primary System

	8.6 Moving User Activity in an Unplanned Failover
	8.6.1 Moving User Activity to the Live Standby
	8.6.2 Moving User Activity Back to the Primary System

	9 Configuring Oracle GoldenGate for Active-Active Configuration
	9.1 Overview of an Active-Active Configuration
	9.2 Considerations for an Active-Active Configuration
	9.2.1 TRUNCATES
	9.2.2 Application Design
	9.2.3 Keys
	9.2.4 Triggers and Cascaded Deletes
	9.2.5 Database-Generated Values
	9.2.6 Database Configuration

	9.3 Preventing Data Looping
	9.3.1 Identifying Replicat Transactions
	9.3.1.1 DB2 z/OS, DB2 LUW, and DB2 for i
	9.3.1.2 MySQL
	9.3.1.3 SQL Server
	9.3.1.4 Oracle

	9.3.2 Preventing the Capture of Replicat Operations
	9.3.2.1 Preventing the Capture of Replicat Transactions (Oracle)
	9.3.2.2 Preventing Capture of Replicat Transactions (Other Databases)

	9.3.3 Replicating DDL in a Bi-directional Configuration

	9.4 Managing Conflicts
	9.5 Additional Information
	9.6 Creating an Active-Active Configuration
	9.6.1 Prerequisites on Both Systems
	9.6.2 Configuration from Primary System to Secondary System
	9.6.3 Configuration from Secondary System to Primary System

	9.7 Configuring Conflict Detection and Resolution
	9.7.1 Overview of the Oracle GoldenGate CDR Feature
	9.7.2 Configuring the Oracle GoldenGate Parameter Files for Error Handling
	9.7.2.1 Tools for Mapping Extra Data to the Exceptions Table
	9.7.2.2 Sample Exceptions Mapping with Source and Target Columns Only
	9.7.2.3 Sample Exceptions Mapping with Additional Columns in the Exceptions Table

	9.7.3 Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution
	9.7.4 Making the Required Column Values Available to Extract
	9.7.5 Configuring Oracle GoldenGate CDR
	9.7.5.1 Viewing CDR Statistics
	9.7.5.1.1 Report File
	9.7.5.1.2 GGSCI
	9.7.5.1.3 Column-conversion Functions

	9.7.6 CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD
	9.7.6.1 Table Used in this Example
	9.7.6.2 MAP Statement with Conflict Resolution Specifications
	9.7.6.3 Description of MAP Statement
	9.7.6.4 Error Handling
	9.7.6.5 INSERTROWEXISTS with the USEMAX Resolution
	9.7.6.6 UPDATEROWEXISTS with the USEMAX Resolution
	9.7.6.7 UPDATEROWMISSING with OVERWRITE Resolution
	9.7.6.8 DELETEROWMISSING with DISCARD Resolution
	9.7.6.9 DELETEROWEXISTS with OVERWRITE Resolution

	9.7.7 CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX
	9.7.7.1 Table Used in this Example
	9.7.7.2 MAP Statement
	9.7.7.3 Description of MAP Statement
	9.7.7.4 Error Handling

	9.7.8 CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE
	9.7.8.1 Table Used in this Example
	9.7.8.2 MAP Statement
	9.7.8.3 Description of MAP Statement
	9.7.8.4 Error Handling

	10 Mapping and Manipulating Data
	10.1 Guidelines for Using Self-describing Trails
	10.2 Parameters that Control Mapping and Data Integration
	10.3 Mapping between Dissimilar Databases
	10.4 Deciding Where Data Mapping and Conversion Will Take Place
	10.4.1 Mapping and Conversion on Windows and UNIX Systems
	10.4.2 Mapping and Conversion on NonStop Systems

	10.5 Globalization Considerations when Mapping Data
	10.5.1 Conversion between Character Sets
	10.5.1.1 Database Object Names
	10.5.1.2 Column Data

	10.5.2 Preservation of Locale
	10.5.3 Support for Escape Sequences

	10.6 Mapping Columns Using TABLE and MAP
	10.6.1 Supporting Case and Special Characters in Column Names
	10.6.2 Configuring Table-level Column Mapping with COLMAP
	10.6.2.1 Using USEDEFAULTS to Enable Default Column Mapping
	10.6.2.2 Specifying the Columns to be Mapped in the COLMAP Clause

	10.6.3 Configuring Global Column Mapping with COLMATCH
	10.6.4 Understanding Default Column Mapping
	10.6.5 Data Type Conversions
	10.6.5.1 Numeric Columns
	10.6.5.2 Character-type Columns
	10.6.5.3 Datetime Columns

	10.7 Selecting and Filtering Rows
	10.7.1 Selecting Rows with a FILTER Clause
	10.7.2 Selecting Rows with a WHERE Clause
	10.7.3 Considerations for Selecting Rows with FILTER and WHERE
	10.7.3.1 Ensuring Data Availability for Filters
	10.7.3.2 Comparing Column Values
	10.7.3.3 Testing for NULL Values

	10.8 Retrieving Before and After Values
	10.9 Selecting Columns
	10.10 Selecting and Converting SQL Operations
	10.11 Using Transaction History
	10.12 Testing and Transforming Data
	10.12.1 Handling Column Names and Literals in Functions
	10.12.2 Using the Appropriate Function
	10.12.3 Transforming Dates
	10.12.4 Performing Arithmetic Operations
	10.12.4.1 Omitting @COMPUTE

	10.12.5 Manipulating Numbers and Character Strings
	10.12.6 Handling Null, Invalid, and Missing Data
	10.12.6.1 Using @COLSTAT
	10.12.6.2 Using @COLTEST
	10.12.6.3 Using @IF

	10.12.7 Performing Tests
	10.12.7.1 Using @CASE
	10.12.7.2 Using @VALONEOF
	10.12.7.3 Using @EVAL

	10.13 Using Tokens
	10.13.1 Defining Tokens
	10.13.2 Using Token Data in Target Tables

	11 Associating Replicated Data with Metadata
	11.1 Overview
	11.2 Understanding Data Definition Files
	11.2.1 Contents of the Definitions File
	11.2.2 Which Definitions File Type to Use, and Where
	11.2.3 Understanding the Effect of Character Sets on Definitions Files
	11.2.3.1 Confining Data Mapping and Conversion to the Replicat Process
	11.2.3.2 Avoiding File Corruptions Due to Operating System Character Sets
	11.2.3.3 Changing the Character Set of Existing Definitions Files
	11.2.3.4 Downloading from a z/OS system to another platform

	11.2.4 Using a Definitions Template
	11.2.5 Configuring Oracle GoldenGate to Capture Data-definitions
	11.2.5.1 Configure DEFGEN
	11.2.5.2 Run DEFGEN
	11.2.5.3 Transfer the Definitions File to the Remote System
	11.2.5.4 Specify the Definitions File

	11.2.6 Adding Tables that Satisfy a Definitions Template
	11.2.7 Examples of Using a Definitions File
	11.2.7.1 Creating a Source-definitions file for Use on a Target System
	11.2.7.2 Creating Target-definitions Files for Use on a Source System
	11.2.7.3 Creating Multiple Source Definition Files for Use on a Target System

	11.3 Using Automatic Trail File Recovery
	11.4 Configuring Oracle GoldenGate to Use Self-Describing Trail Files
	11.4.1 Support Considerations
	11.4.2 Using Self-Describing Trail Files
	11.4.3 Examples of Parameter Files

	11.5 Configuring Oracle GoldenGate to Assume Identical Metadata
	11.6 Configuring Oracle GoldenGate to Assume Dissimilar Metadata
	11.7 Configuring Oracle GoldenGate to Use a Combination of Similar and Dissimilar Definitions

	12 Configuring Online Change Synchronization
	12.1 Overview of Online Change Synchronization
	12.1.1 Initial Synchronization

	12.2 Choosing Names for Processes and Files
	12.2.1 Naming Conventions for Processes
	12.2.2 Choosing File Names

	12.3 Creating a Checkpoint Table
	12.3.1 Options for Creating the Checkpoint Table
	12.3.2 Adjusting for Coordinated Replicat in Oracle RAC

	12.4 Creating an Online Extract Group
	12.5 Creating a Trail
	12.5.1 Assigning Storage for Oracle GoldenGate Trails
	12.5.2 Estimating Space for the Trails
	12.5.3 Adding a Trail

	12.6 Creating a Parameter File for Online Extraction
	12.7 Creating an Online Replicat Group
	12.7.1 About Classic Replicat Mode
	12.7.2 About Coordinated Replicat Mode
	12.7.2.1 About Barrier Transactions
	12.7.2.2 How Barrier Transactions are Processed

	12.7.3 Integrated Replicat Mode
	12.7.4 About Parallel Replicat Mode
	12.7.5 Understanding Replicat Processing in Relation to Parameter Changes
	12.7.6 About the Global Watermark
	12.7.7 Creating the Replicat Group

	12.8 Creating a Parameter File for Online Replication

	13 Handling Processing Errors
	13.1 Overview of Oracle GoldenGate Error Handling
	13.2 Handling Extract Errors
	13.3 Handling Replicat Errors during DML Operations
	13.3.1 Handling Errors as Exceptions
	13.3.1.1 Using EXCEPTIONSONLY
	13.3.1.2 Using MAPEXCEPTION
	13.3.1.3 About the Exceptions Table

	13.4 Handling Replicat errors during DDL Operations
	13.5 Handling TCP/IP Errors
	13.6 Maintaining Updated Error Messages
	13.7 Resolving Oracle GoldenGate Errors

	14 Customizing Oracle GoldenGate Processing
	14.1 Executing Commands, Stored Procedures, and Queries with SQLEXEC
	14.1.1 Performing Processing with SQLEXEC
	14.1.2 Using SQLEXEC
	14.1.3 Executing SQLEXEC within a TABLE or MAP Statement
	14.1.4 Executing SQLEXEC as a Standalone Statement
	14.1.5 Using Input and Output Parameters
	14.1.5.1 Passing Values to Input Parameters
	14.1.5.2 Passing Values to Output Parameters
	14.1.5.3 SQLEXEC Examples Using Parameters

	14.1.6 Handling SQLEXEC Errors
	14.1.6.1 Handling Missing Column Values
	14.1.6.2 Handling Database Errors

	14.1.7 Additional SQLEXEC Guidelines

	14.2 Using Oracle GoldenGate Macros to Simplify and Automate Work
	14.2.1 Defining a Macro
	14.2.2 Calling a Macro
	14.2.2.1 Calling a Macro that Contains Parameters
	14.2.2.2 Calling a Macro without Input Parameters

	14.2.3 Calling Other Macros from a Macro
	14.2.4 Creating Macro Libraries
	14.2.5 Tracing Macro Expansion

	14.3 Using User Exits to Extend Oracle GoldenGate Capabilities
	14.3.1 When to Implement User Exits
	14.3.2 Making Oracle GoldenGate Record Information Available to the Routine
	14.3.3 Creating User Exits
	14.3.4 Supporting Character-set Conversion in User Exits
	14.3.5 Using Macros to Check Name Metadata
	14.3.6 Describing the Character Format
	14.3.7 Upgrading User Exits
	14.3.8 Viewing Examples of How to Use the User Exit Functions

	14.4 Using the Oracle GoldenGate Event Marker System to Raise Database Events
	14.4.1 Case Studies in the Usage of the Event Marker System
	14.4.1.1 Trigger End-of-day Processing
	14.4.1.2 Simplify Transition from Initial Load to Change Synchronization
	14.4.1.3 Stop Processing When Data Anomalies are Encountered
	14.4.1.4 Trace a Specific Order Number
	14.4.1.5 Execute a Batch Process
	14.4.1.6 Propagate Only a SQL Statement without the Resultant Operations
	14.4.1.7 Committing Other Transactions Before Starting a Long-running Transaction
	14.4.1.8 Execute a Shell Script to Validate Data

	15 Monitoring Oracle GoldenGate Processing
	15.1 Using the Information Commands in GGSCI
	15.2 Monitoring an Extract Recovery
	15.3 Monitoring Lag
	15.3.1 About Lag
	15.3.2 Controlling How Lag is Reported

	15.4 Using Automatic Heartbeat Tables to Monitor
	15.4.1 Understanding Heartbeat Table End-To-End Replication Flow
	15.4.2 Updating Heartbeat Tables
	15.4.3 Purging the Heartbeat History Tables
	15.4.4 Best Practice
	15.4.5 Using the Automatic Heartbeat Commands

	15.5 Monitoring Processing Volume
	15.6 Using the Error Log
	15.7 Using the Process Report
	15.7.1 Scheduling Runtime Statistics in the Process Report
	15.7.2 Viewing Record Counts in the Process Report
	15.7.3 Preventing SQL Errors from Filling the Replicat Report File

	15.8 Using the Discard File
	15.9 Maintaining the Discard and Report Files
	15.10 Reconciling Time Differences
	15.11 Getting Help with Performance Tuning

	16 Tuning the Performance of Oracle GoldenGate
	16.1 Using Multiple Process Groups
	16.1.1 Considerations for Using Multiple Process Groups
	16.1.1.1 Maintaining Data Integrity
	16.1.1.2 Number of Groups
	16.1.1.3 Memory
	16.1.1.4 Isolating Processing-Intensive Tables

	16.1.2 Using Parallel Replicat Groups on a Target System
	16.1.2.1 To Create the Extract Group
	16.1.2.2 To Create the Replicat Groups

	16.1.3 Using Multiple Extract Groups with Multiple Replicat Groups
	16.1.3.1 To Create the Extract Groups
	16.1.3.2 To Create the Replicat Groups

	16.2 Splitting Large Tables Into Row Ranges Across Process Groups
	16.3 Configuring Oracle GoldenGate to Use the Network Efficiently
	16.3.1 Detecting a Network Bottleneck that is Affecting Oracle GoldenGate
	16.3.2 Working Around Bandwidth Limitations by Using Data Pumps
	16.3.3 Increasing the TCP/IP Packet Size

	16.4 Eliminating Disk I/O Bottlenecks
	16.4.1 Improving I/O performance Within the System Configuration
	16.4.2 Improving I/O Performance Within the Oracle GoldenGate Configuration

	16.5 Managing Virtual Memory and Paging
	16.6 Optimizing Data Filtering and Conversion
	16.7 Tuning Replicat Transactions
	16.7.1 Tuning Coordination Performance Against Barrier Transactions
	16.7.2 Applying Similar SQL Statements in Arrays
	16.7.3 Preventing Full Table Scans in the Absence of Keys
	16.7.4 Splitting Large Transactions
	16.7.5 Adjusting Open Cursors
	16.7.6 Improving Update Speed
	16.7.7 Set a Replicat Transaction Timeout

	16.8 Using Healthcheck Scripts to Monitor and Troubleshoot
	16.8.1 Installing, Running, and Uninstalling Healthcheck Scripts
	16.8.2 How to Deal with Healthcheck Information?
	16.8.3 Components of Healthcheck Information

	17 Performing Administrative Operations
	17.1 Performing Application Patches
	17.2 Initializing the Transaction Logs
	17.3 Shutting Down the System
	17.4 Changing Database Attributes
	17.4.1 Changing Database Metadata
	17.4.2 Adding Tables to the Oracle GoldenGate Configuration
	17.4.3 Coordinating Table Attributes between Source and Target
	17.4.4 Performing an ALTER TABLE to Add a Column on DB2 z/OS Tables
	17.4.5 Dropping and Recreating a Source Table
	17.4.6 Changing the Number of Oracle RAC Threads when Using Classic Capture
	17.4.7 Changing the ORACLE_SID
	17.4.8 Purging Archive Logs
	17.4.9 Reorganizing a DB2 Table (z/OS Platform)

	17.5 Adding Process Groups to an Active Configuration
	17.5.1 Before You Start
	17.5.2 Adding Another Extract Group to an Active Configuration
	17.5.3 Adding Another Data Pump to an Active Configuration
	17.5.4 Adding Another Replicat Group to an Active Configuration

	17.6 Changing the Size of Trail Files
	17.7 Switching Extract from Classic Mode to Integrated Mode
	17.8 Switching Extract from Integrated Mode to Classic Mode
	17.9 Switching Replicat from Non-Integrated Mode to Integrated Mode
	17.10 Switching Replicat from Integrated Mode to Non-Integrated Mode
	17.11 Switching Replicat to Coordinated Mode
	17.11.1 Procedure Overview
	17.11.2 Performing the Switch to Coordinated Replicat

	17.12 Administering a Coordinated Replicat Configuration
	17.12.1 Performing a Planned Re-partitioning of the Workload
	17.12.2 Recovering Replicat After an Unplanned Re-partitioning
	17.12.2.1 Reprocessing From the Low Watermark with HANDLECOLLISIONS
	17.12.2.2 Using the Auto-Saved Parameter File

	17.13 Synchronizing Threads After an Unclean Stop
	17.14 Restarting a Primary Extract after System Failure or Corruption
	17.14.1 Details of This Procedure
	17.14.2 Performing the Recovery

	17.15 Using Automatic Trail File Recovery

	18 Using UDS for Monitoring Performance
	18.1 How Does UDS Work?
	18.2 Operating System Supported with Unix Domain Sockets

	Part II Administering Oracle GoldenGate Microservices Architecture
	19 Working with Oracle GoldenGate Sharding
	19.1 Oracle GoldenGate With a Sharded Database
	19.2 How to Configure Sharding in Oracle GoldenGate

	20 Loading Data from File to Replicat in Microservices Architecture

	Part III Administering Oracle GoldenGate Classic Architecture
	21 Instantiating Oracle GoldenGate with an Initial Load
	21.1 Overview of the Initial-Load Procedure
	21.1.1 Improving the Performance of an Initial Load
	21.1.2 Prerequisites for Initial Load
	21.1.2.1 Disable DDL Processing
	21.1.2.2 Prepare the Target Tables
	21.1.2.3 Configure the Manager Process
	21.1.2.4 Create a Data-definitions File
	21.1.2.5 Create Change-synchronization Groups
	21.1.2.6 Sharing Parameters between Process Groups

	21.2 Initial Load in Classic Architecture
	21.2.1 Loading Data with Oracle Data Pump
	21.2.1.1 Using Automatic Per Table Instantiation
	21.2.1.2 Using Oracle Data Pump Table Instantiation

	21.2.2 Loading Data from File to Replicat
	21.2.3 Loading Data with an Oracle GoldenGate Direct Load
	21.2.4 Loading Data with a Direct Bulk Load to SQL*Loader

	A Connecting Microservices Architecture to Classic Architecture
	B Connecting Oracle GoldenGate Classic Architecture to Microservices Architecture
	C Supported Character Sets
	C.1 Supported Character Sets - Oracle
	C.2 Supported Character Sets - Non-Oracle

	D Supported Locales
	E About the Oracle GoldenGate Trail
	E.1 Trail Recovery Mode
	E.2 Trail Record Format
	E.3 Trail File Header Record
	E.3.1 Partition Name Record in Trail File Header
	E.3.2 Viewing the Partition Name and PNR Index in Logdump

	E.4 Example of an Oracle GoldenGate Record
	E.5 Record Header Area
	E.5.1 Description of Header Fields
	E.5.2 Using Header Data

	E.6 Record Data Area
	E.6.1 Full Record Image Format (NonStop Sources)
	E.6.2 Compressed Record Image Format (Windows, UNIX, Linux Sources)

	E.7 Tokens Area
	E.8 Oracle GoldenGate Operation Types

	F Using the Commit Sequence Number
	G About Checkpoints
	G.1 Extract Checkpoints
	G.1.1 About Extract read checkpoints
	G.1.1.1 Startup Checkpoint
	G.1.1.2 Recovery Checkpoint
	G.1.1.3 Current Checkpoint

	G.1.2 About Extract Write Checkpoints

	G.2 Replicat Checkpoints
	G.2.1 About Replicat Checkpoints
	G.2.1.1 Startup Checkpoint
	G.2.1.2 Current Checkpoint

	G.3 Internal Checkpoint Information
	G.4 Oracle GoldenGate Checkpoint Tables

