Oracle® Database

Using Oracle GoldenGate with Oracle
Database

21c (21.1.0)
F25355-01
March 2021

ORACLE"

Oracle Database Using Oracle GoldenGate with Oracle Database, 21c (21.1.0)
F25355-01

Copyright © 2019, 2021, Oracle and/or its affiliates.

Primary Author: Oracle Corp.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience Xii
Documentation Accessibility Xii
Related Information Xi
Conventions Xiii

1 Understanding What's Supported

1.1 Details of Support for Oracle Data Types and Objects 1-1
1.1.1 Non-Supported Oracle Data Types 1-5

1.2 Details of Support for Different Oracle Editions 1-7
1.3 Details of Support for Objects and Operations in Oracle DML 1-7
1.3.1 Multitenant Container Database 1-7
1.3.2 Tables, Views, and Materialized Views 1-8
1.3.2.1 Limitations of Support for Regular Tables 1-8

1.3.2.2 Limitations of Support for Views 1-10

1.3.2.3 Limitations of Support for Materialized Views 1-10

1.3.2.4 Limitations of Support for Clustered Tables 1-10

1.3.3 System Partitioning 1-10
1.3.4 Sequences and ldentity Columns 1-11
1.3.4.1 Limitations of Support for Sequences 1-11

1.3.5 Non-supported Objects and Operations in Oracle DML 1-11

1.4 Details of Support for Objects and Operations in Oracle DDL 1-11
1.4.1 Supported Objects and Operations in Oracle DDL 1-12
1.4.2 Non-supported Objects and Operations in Oracle DDL 1-15
1.4.2.1 Excluded Objects 1-15

1.4.2.2 Other Non-supported DDL 1-17

2 Preparing the Database for Oracle GoldenGate

2.1 Configuring Connections for Extract and Replicat Processes 2-1
2.2 Configuring Logging Properties 2-3
2.2.1 Enabling Subset Database Replication Logging 2-5

ORACLE iii

2.2.2 Enabling Schema-level Supplemental Logging 2-7
2.2.3 Enabling Table-level Supplemental Logging 2-8
2.3 Enabling Oracle GoldenGate in the Database 2-10
2.4 Setting Flashback Query 2-10
2.5 Managing Server Resources 2-12
2.6 Ensuring Row Unigueness in Source and Target Tables 2-12
3 Establishing Oracle GoldenGate Credentials
3.1 Assigning Credentials to Oracle GoldenGate 3-1
3.1.1 Oracle GoldenGate Users (Database) 3-1
3.1.1.1 Granting the Appropriate User Privileges 3-2
3.2 Securing the Oracle GoldenGate Credentials 3-5
4 Choosing Different Replicat Modes with Extract
4.1 Deciding Which Apply Method to Use 4-1
4.1.1 About Parallel Replicat 4-5
4.1.1.1 Benefits of Parallel Replicat 4-6
4.1.2 About Non-integrated Replicat 4-6
4.1.3 About Integrated Replicat 4-7
4.1.3.1 Benefits of Integrated Replicat 4-9
4.1.3.2 Integrated Replicat Requirements 4-10
4.2 About Extract 4-10
4.2.1 Integrated Capture Deployment Options 4-11
4.3 Using Different Replicat Modes with Extract 4-12
5 Configuring Oracle GoldenGate in a Multitenant Container
Database
5.1 Using CDB Root Capture from PDB 5-1
5.1.1 Applying to Pluggable Databases 5-1
5.1.2 Excluding Objects from the Configuration 5-2
5.2 Mining Mode Toggling 5-3
5.3 Other Requirements for Multitenant Container Databases 5-3
6 Configuring Extract
6.1 Prerequisites for Configuring Extract 6-1
6.2 What to Expect from these Instructions 6-2
6.3 Configuring Primary Extract 6-2
6.4 Setting up the Automatic Extract Mode 6-5
ORACLE Y

6.5 Configuring the Data Pump Extract 6-6
6.6 Next Steps 6-8

7 Configuring Oracle GoldenGate Apply

7.1 Prerequisites for Configuring Replicat 7-1
7.2 What to Expect from these Instructions 7-2
7.3 Creating a Checkpoint Table 7-2
7.3.1 Adding the Checkpoint Table to the Target Database 7-3
7.3.2 Specifying the Checkpoint Table in the Oracle GoldenGate Configuration 7-3
7.3.3 Disabling Default Asynchronous COMMIT to Checkpoint Table 7-3
7.4 Configuring Replicat 7-4
7.5 Next Steps 7-6

8 Additional Oracle GoldenGate Configuration Considerations

8.1 Installing Support for Oracle Sequences 8-1
8.2 Handling Special Data Types 8-3
8.2.1 Multibyte Character Types 8-3
8.2.2 Oracle Spatial Objects 8-4
8.2.3 TIMESTAMP 8-5
8.2.4 Large Objects (LOB) 8-5
8.25 XML 8-5
8.2.6 User Defined Types 8-6
8.3 Handling Other Database Properties 8-6
8.4 Controlling the Checkpoint Frequency 8-7
8.5 Excluding Replicat Transactions 8-7
8.6 Advanced Configuration Options for Oracle GoldenGate 8-8

O Additional Configuration Steps For Using Nonintegrated Replicat

9.1 Disabling Triggers and Referential Cascade Constraints on Target Tables 9-1

9.2 Deferring Constraint Checking on Target Tables 9-2
9.2.1 Handling Transient Primary-key Duplicates in Versions Earlier than

11.2.0.2 9-3

9.2.2 Handling Transient Primary-key Duplicates in Version 11.2.0.2 or Later 9-3

10 Configuring DDL Support

10.1 Prerequisites for Configuring DDL 10-2
10.1.1 Support for DDL Capture in Integrated Capture Mode 10-2
10.2 Overview of DDL Synchronization 10-2

ORACLE Y

10.3 Limitations of Oracle GoldenGate DDL Support

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9
10.3.10

DDL Statement Length

Supported Topologies

Filtering, Mapping, and Transformation

Renames

Interactions Between Fetches from a Table and DDL

Comments in SQL

Compilation Errors

Interval Partitioning

DML or DDL Performed Inside a DDL Trigger
LogMiner Data Dictionary Maintenance

10.4 Configuration Guidelines for DDL Support

10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.4.6
10.4.7

Database Privileges

Parallel Processing

Object Names

Data Definitions

Truncates

Initial Synchronization

Data Continuity After CREATE or RENAME

10.5 Understanding DDL Scopes

10.5.1
10.5.2
10.5.3

Mapped Scope
Unmapped Scope
Other Scope

10.6 Correctly Identifying Unqualified Object Names in DDL
10.7 Enabling DDL Support
10.8 Filtering DDL Replication

10.8.1

Filtering with the DDL Parameter

10.9 Special Filter Cases

10.9.1
10.9.2

DDL EXCLUDE ALL
Implicit DDL

10.10 How Oracle GoldenGate Handles Derived Object Names

10.10.1
10.10.2
10.10.3
10.10.4

MAP Exists for Base Object, But Not Derived Object
MAP Exists for Base and Derived Objects

MAP Exists for Derived Object, But Not Base Object
New Tables as Derived Objects

10.10.4.1 CREATE TABLE AS SELECT
10.10.4.2 RENAME and ALTER TABLE RENAME

10.10.5

Disabling the Mapping of Derived Objects

10.11 Using DDL String Substitution
10.12 Controlling the Propagation of DDL to Support Different Topologies

10.12.1

ORACLE

Propagating DDL in Active-Active (Bidirectional) Configurations

10-3
10-3
10-4
10-4
10-4
10-4
10-5
10-6
10-6
10-6
10-6
10-6
10-6
10-7
10-7
10-7
10-7
10-8
10-8
10-8
10-9
10-10
10-11
10-11
10-12
10-12
10-12
10-13
10-14
10-14
10-15
10-15
10-16
10-16
10-17
10-17
10-18
10-18
10-19
10-20
10-21

Vi

10.12.2 Propagating DDL in a Cascading Configuration 10-22

10.13 Adding Supplemental Log Groups Automatically 10-23
10.14 Removing Comments from Replicated DDL 10-23
10.15 Replicating an IDENTIFIED BY Password 10-23
10.16 How DDL is Evaluated for Processing 10-24
10.17 Viewing DDL Report Information 10-26

10.17.1 Viewing DDL Reporting in Replicat 10-26

10.17.2 Viewing DDL Reporting in Extract 10-27

10.17.3 Statistics in the Process Reports 10-28
10.18 Tracing DDL Processing 10-28
10.19 Using Edition-Based Redefinition 10-29

11 Creating Process Groups

11.1 Prerequisites 11-1
11.2 Registering Extract with the Mining Database 11-2
11.3 Add the Primary Extract 11-3
11.4 Add the Local Trail 11-5
11.5 Add the Data Pump Extract Group 11-5
11.6 Add the Remote Trail 11-5
11.7 Add the Replicat Group 11-6

12 Instantiating Oracle GoldenGate Replication

12.1 Overview of the Instantiation Process 12-1
12.2 Prerequisites for Instantiation 12-2
12.2.1 Configuring and Adding Change Synchronization Groups 12-2
12.2.2 Disabling DDL Processing 12-2
12.2.3 Adding Collision Handling 12-2
12.2.4 Preparing the Target Tables 12-3
12.3 Configuring the Initial Load 12-3
12.3.1 Configuring a Load with an Oracle Data Pump 12-3
12.3.2 Configuring a Direct Bulk Load to SQL*Loader 12-4
12.3.3 Configuring a Load from an Input File to SQL*Loader 12-7
12.4 Performing the Target Instantiation 12-9
12.4.1 Performing Instantiation with Oracle Data Pump 12-9
12.4.2 Performing Instantiation with Direct Bulk Load to SQL*Loader 12-10
12.4.3 Performing Instantiation From an Input File to SQL*Loader 12-11
12.5 Monitoring and Controlling Processing After the Instantiation 12-13
12.6 Verifying Synchronization 12-14

ORACLE vii

12.7 Backing up the Oracle GoldenGate Environment 12-14
13 Managing the DDL Replication Environment
13.1 Disabling DDL Processing Temporarily 13-2
13.2 Enabling and Disabling the DDL Trigger 13-2
13.3 Maintaining the DDL Marker Table 13-2
13.4 Deleting the DDL Marker Table 13-3
13.5 Maintaining the DDL History Table 13-3
13.6 Deleting the DDL History Table 13-4
13.7 Purging the DDL Trace File 13-4
13.8 Applying Database Patches and Upgrades when DDL Support is Enabled 13-5
13.9 Apply Oracle GoldenGate Patches and Upgrades when DDL support is
Enabled 13-5
13.10 Restoring an Existing DDL Environment to a Clean State 13-6
13.11 Removing the DDL Objects from the System 13-8
14 Automatic Conflict Detection and Resolution
14.1 About Automatic Conflict Detection and Resolution 14-1
14.1.1 Automatic Conflict Detection and Resolution 14-2
14.1.2 Requirements for Automatic Conflict Detection and Resolution 14-3
14.1.2.1 Compatibility and Migration 14-4
14.1.3 Column Groups 14-5
14.1.4 DELETE TOMBSTONE Table 14-7
14.1.5 Earliest Timestamp Conflict Detection and Resolution 14-7
14.1.6 Latest Timestamp Conflict Detection and Resolution 14-8
14.1.7 Delete Always Wins Timestamp CDR 14-10
14.1.8 Delta Conflict Detection and Resolution 14-10
14.1.9 Site Priority CDR 14-12
14.1.10 Track PK Updates in Delete Tombstone 14-12
14.2 Configuring Automatic Conflict Detection and Resolution 14-13
14.2.1 Configuring Latest Timestamp Conflict Detection and Resolution 14-14
14.2.2 Configuring Delta Conflict Detection and Resolution 14-15
14.3 Managing Automatic Conflict Detection and Resolution 14-16
14.3.1 Altering Conflict Detection and Resolution for a Table 14-16
14.3.2 Altering a Column Group 14-16
14.3.3 Purging Tombstone Rows 14-17
14.3.4 Removing Conflict Detection and Resolution From a Table 14-17
14.3.5 Removing a Column Group 14-18
14.3.6 Removing Delta Conflict Detection and Resolution 14-18
14.4 Monitoring Automatic Conflict Detection and Resolution 14-19
ORACLE viii

14.4.1 Displaying Information About the Tables Configured for Conflicts 14-19

14.4.2 Displaying Information About Conflict Resolution Columns 14-20

14.4.3 Displaying Information About Column Groups 14-21

15 Using Parallel Replicat

151
15.2
15.3

Parallel Replication Architecture 15-1
Basic Parameters for Parallel Replicat 15-2
Creating a Parallel Replicat 15-3

16 Using Procedural Replication

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

16.10

About Procedural Replication 16-1
Procedural Replication Process Overview 16-2
Enabling Procedural Replication 16-3
Determining Whether Procedural Replication Is On 16-3
Enabling and Disabling Supplemental Logging 16-4
Filtering Features for Procedural Replication 16-4
Handling Procedural Replication Errors 16-6
Procedural Replication Pragma Options 16-6
Listing the Procedures Supported for Oracle GoldenGate Procedural
Replication 16-37
Monitoring Oracle GoldenGate Procedural Replication 16-38

17 Using Oracle GoldenGate with Autonomous Database

17.1 About Capturing and Replicating Data Using Autonomous Databases 17-1
17.2 Understanding What is Supported When Using Oracle GoldenGate with
Autonomous Databases 17-2
17.3 Configuring Extract to Capture from an Autonomous Database 17-3
17.3.1 Establishing Oracle GoldenGate Credentials 17-4
17.3.2 Prerequisites for Configuring Oracle GoldenGate Extract to Capture
from Autonomous Databases 17-4
17.3.3 Configure Oracle GoldenGate Extract to Capture from an Autonomous
Database 17-5
17.4 Configuring Replicat to Apply to an Autonomous Databases 17-9
17.4.1 Prerequisites for Configuring Oracle GoldenGate Replicat to an
Autonomous Database 17-9
17.4.2 Configure Oracle GoldenGate Replicat for an Autonomous Database 17-10
17.4.3 Obtain the Autonomous Database Client Credentials 17-10

17.4.4 Configure Oracle GoldenGate Replicat to Apply to an Autonomous

ORACLE

Database 17-11

A Optional Parameters for Integrated Modes

A.1 Additional Parameter Options for Extract A-1
A.2 Additional Parameter Options for Integrated Replicat A-2
B Configuring a Downstream Mining Database
B.1 Evaluating Capture Options for a Downstream Deployment B-1
B.2 Preparing the Source Database for Downstream Deployment B-2
B.2.1 Creating the Source User Account B-2
B.2.2 Configuring Redo Transport from Source to Downstream Mining
Database B-2
B.3 Preparing the Downstream Mining Database B-4
B.3.1 Creating the Downstream Mining User Account B-4
B.3.2 Configuring the Mining Database to Archive Local Redo Log Files B-4
B.3.3 Preparing a Downstream Mining Database for Real-time Capture B-5
B.3.3.1 Create the Standby Redo Log Files B-6
B.3.3.2 Configure the Database to Archive Standby Redo Log Files
Locally B-7
B.4 Enabling Sourceless Extract Registration Using ADG Redirection in
Downstream Configuration B-7
C Example Downstream Mining Configuration
C.1 Example 1: Capturing from One Source Database in Real-time Mode C-1
C.1.1 Prepare the Mining Database to Archive its Local Redo C-2
C.1.2 Prepare the Mining Database to Archive Redo Received in Standby
Redo Logs from the Source Database C-2
C.1.3 Prepare the Source Database to Send Redo to the Mining Database C-2
C.1.4 Setup Extract (extl) on DBMSCAP C-3
C.2 Example 2: Capturing from Multiple Sources in Archive-log-only Mode C-4
C.2.1 Prepare the Mining Database to Archive its Local Redo C-4
C.2.2 Prepare the Mining Database to Archive Redo from the Source
Database C-5
C.2.3 Prepare the First Source Database to Send Redo to the Mining
Database C-5
C.2.4 Prepare the Second Source Database to Send Redo to the Mining
Database C-5
C.2.5 Set up Extracts at Downstream Mining Database C-6
C.3 Example 3: Capturing from Multiple Sources with Mixed Real-time and
Archive-log-only Mode C-6
C.3.1 Prepare the Mining Database to Archive its Local Redo C-7
C.3.2 Prepare the Mining Database to Accept Redo from the Source
Databases C-7

ORACLE

C.3.3 Prepare the First Source Database to Send Redo to the Mining

Database C-8
C.3.4 Prepare the Second Source Database to Send Redo to the Mining
Database C-8
C.3.5 Prepare the Third Source Database to Send Redo to the Mining
Database C-9
C.3.6 Set up Extracts at Downstream Mining Database C-9
C.3.6.1 Set up Extract (extl) to Capture Changes from Archived Logs
Sent by DBMS1 C-9
C.3.6.2 Set up Extract (ext2) to Capture Changes from Archived Logs
Sent by DBMS2 C-10
C.3.6.3 Set up Extract (ext3) to Capture Changes in Real-time Mode from
Online Logs Sent by DBMS3 C-10
D Supporting Changes to XML Schemas
D.1 Supporting RegisterSchema D-1
D.2 Supporting DeleteSchema D-1
D.3 Supporting CopyEvolve D-1
E Preparing DBFS for an Active-Active Configuration
E.1 Supported Operations and Prerequisites E-1
E.2 Applying the Required Patch E-2
E.3 Examples Used in these Procedures E-2
E.4 Partitioning the DBFS Sequence Numbers E-2
E.5 Configuring the DBFS file system E-3
E.6 Mapping Local and Remote Peers Correctly E-5

ORACLE

Xi

Preface

Preface

Audience

The Step by Step Data Replication Using Oracle GoldenGate Microservices
Architecture is a walk through the entire Oracle GoldenGate data replication cycle
using Microservices.

e Audience
e Documentation Accessibility
e Related Information

e Conventions

This guide is intended for administrators and users who are familiar with Oracle
GoldenGate concepts and architecture and who are interested in learning to use the
microservices and REST commands for performing various Oracle GoldenGate data
replication tasks.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at htt p: / / www. or acl e. conl pl s/t opi ¢/ | ookup?
ct x=acc& d=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=i nf o or visit htt p: / / wmw. or acl e. conf pl s/t opi c/ | ookup?
ctx=acc&i d=trs if you are hearing impaired.

Related Information

ORACLE

The other Oracle GoldenGate Veridata documents for this release are as follows:
* Upgrading Oracle GoldenGate Veridata

* Using Oracle GoldenGate Veridata

* Oracle GoldenGate Veridata Release Notes

* Installing Oracle GoldenGate Veridata

The Oracle GoldenGate Product Documentation Libraries are found at

https://docs.oracle.com/en/middleware/goldengate/index.html

Xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/goldengate/index.html

Preface

For additional information on Oracle GoldenGate, refer to, https://www.oracle.com/
middleware/technologies/goldengate.html

Conventions

The following text conventions are used in this document:

ORACLE

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, such as "From the File menu, select Save." Boldface
also is used for terms defined in text or in the glossary.

italic Italic type indicates placeholder variables for which you supply

italic particular values, such as in the parameter statement: TABLE
t abl e_nane. Italic type also is used for book titles and emphasis.

nonospace Monospace type indicates code components such as user exits and

MONOSPACE scripts; the names of files and database objects; URL paths; and input
and output text that appears on the screen. Uppercase monospace
type is generally used to represent the names of Oracle GoldenGate
parameters, commands, and user-configurable functions, as well as
SQL commands and keywords.

UPPERCASE Uppercase in the regular text font indicates the name of a utility unless
the name is intended to be a specific case.

{} Braces within syntax enclose a set of options that are separated by

pipe symbols, one of which must be selected, for example: { opti onl |
option2| option3}.

Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLI CAT gr oup_nane
[, SAVE count] . Multiple options within an optional element are
separated by a pipe symbol, for example: [optionl | option2].

Xiii

https://www.oracle.com/middleware/technologies/goldengate.html
https://www.oracle.com/middleware/technologies/goldengate.html

Understanding What's Supported

This chapter contains support information for Oracle GoldenGate on Oracle Database.
Topics:

» Details of Support for Oracle Data Types and Objects
This topic describes data types, objects and operations that are supported by
Oracle GoldenGate.

» Details of Support for Different Oracle Editions
This topic describes the different editions of Oracle database supported with the
current Oracle GoldenGate release.

* Details of Support for Objects and Operations in Oracle DML
This section outlines the Oracle objects and operations that Oracle
GoldenGatesupports for the capture and replication of DML operations.

* Details of Support for Objects and Operations in Oracle DDL
This topic outlines the Oracle objects and operation types that Oracle GoldenGate
supports for the capture and replication of DDL operations.

1.1 Details of Support for Oracle Data Types and Objects

ORACLE

This topic describes data types, objects and operations that are supported by Oracle
GoldenGate.

Within the database, you can use the Dictionary view DBA GOLDENGATE_SUPPORT _MODE
to get information about supported objects. There are different types for replication
support:

e Support by Capturing from Redo

e Procedural Replication Support

Most data types are supported (SUPPORT_MODE=FULL), which imply that Oracle
GoldenGate captures the changes out of the redo. In some unique cases, the
information cannot be captured, but the information can be fetched with a connection
to the database (SUPPORT_MODE=I D KEY).

From Oracle GoldenGate 21c (21.1.0) onward, DML on tables that are not supported
will be automatically skipped when DBA GOLDENGATE_SUPPORT _MCDE. SUPPORT _MODE=
NONE is set. However, DDLs for these objects are still captured based on the DDL

| NCLUDE/EXCLUDE settings. See Supported Objects and Operations in Oracle DDL for
DDL support.

Tables supported with | D KEY require a connection to the source database or an ADG
Standby database for fetching to support those tables. If using downstream Extract,
with NOUSERI D you must specify a FETCHUSERI D or FETCHUSER!I DALI AS connection.

Other changes can be replicated with Procedural Replication (SUPPORT_MODE=PLSQL)
that requires additional parameter setting of Extract. See About Procedural Replication

1-1

ORACLE

Chapter 1
Details of Support for Oracle Data Types and Objects

for details. In the unlikely case that there is no native support, no support by fetching
and no procedural replication support, there is no Oracle GoldenGate support.

To know more information about capture modes, see Deciding Which Capture Method
to Use..

Detailed support information for Oracle data types, objects, and operations starts with
Details of Support for Objects and Operations in Oracle DML.

Extract Redo Support:

The following data types allow capturing directly from the redo logs and do not require
any fetching. If used in a downstream mining configuration, the NOUSERI D parameter
may be used.

* NUMBER, BI NARY FLOAT, BI NARY DOUBLE, and (logical) UROA D
* DATE and TI MESTAMP
e CHAR, VARCHAR2, LONG, NCHAR, and NVARCHAR2

e RAW LONG RAW CLOB, NCLOB, BLOB, SECUREFI LE, BASI CFI LE, and BFI LE (LOB size
limited to 2GB)

e XM columns stored as CLOB, Bi nary and Object-Relational (OR)

* XM.Type columns and XM.Type tables stored as XM. CLOB, XM. Object Relational,
and XM. Bi nary

* Native JSON datatype identified by the DTYJSON code.

» UDTs (user-defined or abstract data types) on BYTE semantics with source
database compatibility 12.0.0.0.0 or higher

» ANYDATA data type with source database compatibility 12.0.0.0.0 or higher

» Hierarchy-enabled tables are managed by the Oracle XML database repository
with source database compatibility 12.2.0.0.0 or higher and enabled procedural
replication

* REF types with source database compatibility 12.2.0.0.0 or higher
e DI COMwith source database compatibility 12.0.0.0.0 or higher

e SDO _TOPO GEOVETRY, SDO GEORASTER, or ST_GEOVETRY with source database
compatibility 12.2.0.0.0 or higher and enabled procedural replication

* ldentity columns with source database compatibility 18.1.0.0.0 or higher
e SDO _RDF_TRI PLE_S with source database compatibility 19.1.0.0.0 or higher

Datatypes Fetched from the Database

Data types listed here are not readable in the redo logs and must be fetched by
the Extract process during it's processing. The method for fetching these records is
controlled by the use of the FETCHOPTI ONS parameter.

It is recommended that the database that is generating the redo data is the same
database that Oracle GoldenGate uses to fetch the data. However, if this is not
possible, an Active Data Guard Standby database open for read-only can also be
used as the fetch database.

SECUREFI LE LOBs

1-2

ORACLE

Chapter 1
Details of Support for Oracle Data Types and Objects

Modified with DBVS_LOB. FRAGVENT_* procedures
NOLOGAE NG LOBs

Deduplicated LOBs with a source database release less than 12gR2

UDTs that contain following data types:

TI MESTAVP W TH TI MEZONE, TI MESTAMP W TH LOCAL TI MEZONE
I NTERVAL YEAR TO MONTH, | NTERVAL DAY TO SECOND

Bl NARY FLQAT, Bl NARY DOUBLE

BFI LE

Object tables contain the following attributes:

Nested table
SDO TOP_GEQMETRY
SDO GECRASTER

Additional Considerations

NUMBER can be up to the maximum size permitted by Oracle. The support of the
range and precision for floating-point numbers depends on the host machine. In
general, the precision is accurate to 16 significant digits, but you should review
the database documentation to determine the expected approximations. Oracle
GoldenGate rounds or truncates values that exceed the supported precision.

Non-logical URON D columns will be identified by Extract. A warning message is
generated in the report file. The column information is not part of the trail record.
All other supported datatypes of the record are part of the trail record and are
replicated.

TI MESTAMP W TH TI ME ZONE as TZR (region ID) for initial loads, SQLEXEC or
operations where the column can only be fetched from the database. In those
cases, the region ID is converted to a time offset by the source database when the
column is selected. Replicat applies the timestamp as date and time data into the
target database with a time offset value.

VARCHAR expansion from 4K to 32K (extended or long VARCHAR)
— 32K long columns cannot be used as row identifiers:
* Columns as part of a key or unique index
* Columns in a KEYCOLS clause of the TABLE or MAP parameter.

— 32K long columns as resolution columns in a CDR (conflict resolution and
detection)

— If an extended VARCHAR column is part of unique index or constraint,
then direct path inserts to this table may cause Replicat to abend with a
warning. Verify that the extended VARCHAR caused the abend by checking
ALL_| NDEXES or ALL_| ND_COLUWNS for a unique index or ALL_CONS_COLUWNS
or ALL_CONSTRAI NTS for a unique constraint. Once you determine that an
extended VARCHAR, you can temporarily drop the index or disable the
constraint:

* Unique Index: DROP | NDEX i ndex_narre;

1-3

ORACLE

Chapter 1
Details of Support for Oracle Data Types and Objects

* Unique Constraint: ALTER TABLE t abl e_name MODI FY CONSTRAI NT
constraint_name DI SABLE;

BFI LE column are replicating the locator. The file on the server file system outside
of the database and is not replicated

Multi-byte character data: The source and target databases must be logically
identical in terms of schema definition for the tables and sequences being
replicated. Transformation, filtering, and other manipulation cannot be used.

The character sets between the two databases must be one of the following:
— ldentical on the source and on the target

— Equivalent, which is not the same character set but containing the same set of
characters

— Target is a superset of the source
Multi-byte data can be used in any semantics: bytes or characters.

UDTs can have different source and target schemas. UDTs, including values inside
object columns or rows, cannot be used within filtering criteria in TABLE or MAP
statements, or as input or output for the Oracle GoldenGate column-conversion
functions, SQLEXEC, or other built-in data manipulation tools. Support is only
provided for like-to-like Oracle source and targets.

To fully support object tables created using the CREATE TABLE as SELECT (CTAS)
statement, Extract must be configured to capture DML from the CTAS statement.
Oracle object table can be mapped to a non-Oracle object table in a supported
target database.

XM column type cannot be used for filtering and manipulation. You can map the
XM representation of an object to a character column by means of a COLMAP
clause in a TABLE or MAP statement.

Oracle recommends the AL32UTF8 character set as the database character

set when working with XM data. This ensures the correct conversion by

Oracle GoldenGate from source to target. With DDL replication enabled, Oracle
GoldenGate replicates the CTAS statement and allows it to select the data from
the underlying target tables. OIDs are preserved if TRANLOGOPTI ONS GETCTASDM
parameter is set. For XMLType tables, the row object IDs must match between
source and target.

For JSON datatype, DTYJSON is stored in the binary JSON format for query and
space efficiency as well as transportability between platforms. A column with
JSON data as text is declared using any of the text data types (VARCHAR2, CLOB)
and the | S JSON constraint. JSON datatype is supported by Oracle GoldenGate
Extract, and Replicat processes along with XStream Out, XStream In processes.
JSON support limits the inline text JSON to 4K to prevent Replicat from abending.

By default Extract writes native JSON columns in text format but using

bi nary_j son_f or mat parameter forces to write in native format. So, this paramater
must not be set for VARCHAR2, NVARVAR2, CLOB, NCLOB. The parameter is not set by
default. If you are only replicating from Oracle to Oracle you can set the parameter
and gain a bit of performance. Also the Column manipulation functions like str are
supported only for text JSON.

It is recommended that de-duplication is removed for LOB data types on the target
database. If DEDUPLI CATI ONis left enabled, it causes severe performance impact
on the apply side.

1-4

Chapter 1
Details of Support for Oracle Data Types and Objects

SQLEXEC Limitations

There might be a few cases where replication support exists, but there are limitations
of processing such as in case of using SQLEXEC. The following table lists these

limitations:

Datatypes Supported By SQLEXEC Support Limitations
NUVBER, BI NARY FLOAT, BI NARY DOUBLE Special cases of:
UROWN D e XML types

e UDTs
e Object tables
. Collections or nested tables

(N) CHAR, (N) VARCHAR2 LONG RAWLONG Not supported
RAW ('N) CLOB, CLOB, BLOB, SECUREFI LE,
BASI CFI LE and BFI LE

XM columns, XMLType Not supported

Native JSON datatype VARCHAR2, NVARCHAR2, CLOB, NCLOB not
supported with the Extract parameter
bi nary_j son_format.

upT Not supported
ANYDATA Not supported
Hierarchy-enabled tables Not supported
RET Types Not supported
DI COM Not supported
SDO_TOPO_GEQOVETRY, SDO_GEORASTER Not supported
Identity columns Not supported
SDO RDF_TRIPLE_S Not supported
¢ Note:

SECUREFI LE LOBs updated using DBMS_LOG. FRAGVENT or SECUREFI LE LOBs
that are set to NOLOGE NG are fetched instead of read from the redo.

Note:

Any datatype not listed in the table is fully supported by SQLEXEC with the
same limitations as the regular product.

* Non-Supported Oracle Data Types

1.1.1 Non-Supported Oracle Data Types

Oracle GoldenGate does not support the following data types.

ORACLE 1-5

ORACLE

Chapter 1
Details of Support for Oracle Data Types and Objects

Time offset values outside the range of +12:00 and -12:00..0Oracle GoldenGate
supports time offset values between +12:00 and -12:00.

Tables that only contain a single column and that column one of the following:
- uDT

— LOB (CLOB, NCLOB, BLOB, BFILE)

— XMLType column

— VARCHAR2 (MAX) where the data is greater than 32KB

Tables with LOB, UDT, XML, or XMLType column without one of the following:
— Primary Key

— Scalar columns with a unique constraint or unique index

Table where the combination of all scalar columns do not guarantee uniqueness
are unsupported.

Tables with the following XML characteristics:
— Tables with a primary key constraint made up of XML attributes
— XMLType tables with a primary key based on an object identifier (PKOID).

— XMLType tables, where the row object identifiers (OID) do not match between
source and target

— XMLType tables created by an empty CTAS statement.

— XML schema-based XMLType tables and columns where changes are made
to the XML schema (XML schemas must be registered on source and target
databases with the dbms_xm package).

— The maximum length for the entire SET value of an update to an XMLType
larger than 32K, including the new content plus other operators and XQuery
bind values.

— SQL*Loader direct-path insert for XML-Binary and XML-OR.
Tables with following UDT characteristics:
— UDTs that contain CFILE or OPAQUE (except of XMLType)

— UDTs with CHAR and VARCHAR attributes that contain binary or unprintable
characters

— UDTs using the RMTTASK parameter
UDTs and nested tables with following condition:
— Nested table UDTs with CHAR, NVARCHAR2 or NCLOB attributes.

— Nested tables with CLOB, BLOB, extended (32k) VARCHAR2 or RAW
attributes in UDTs.

— Nested table columns/attributes that are part of any other UDT.

When data in a nested table is updated, the row that contains the nested table
must be updated at the same time. Otherwise there is no support.

When VARRAYS and nested tables are fetched, the entire contents of the column
are fetched each time, not just the changes. Otherwise there is no support.

Object table contains the following attributes:

1-6

Chapter 1
Details of Support for Different Oracle Editions

— Nested table
— SDO_TOPO_GEOMETRY
— SDO_GEORASTER

See additional exclusions in Details of Support for Oracle Data Types and Objects.

1.2 Details of Support for Different Oracle Editions

This topic describes the different editions of Oracle database supported with the
current Oracle GoldenGate release.

Oracle Database Express Edition (XE) is supported for delivery only and does not
support any of the integrated features such as integrated Replicat or parallel Replicat
in integrated mode.

Oracle Database Standard Edition 2 (SE2) is supported, with the following limitations:

e Integration with RMAN (LOGRETENTI ON parameter) does not work because RMAN
isn't supported on SE2.

« Extract, integrated Replicat, and parallel Replicat in integrated mode are limited to
a single thread.

Oracle Database Enterprise Edition (EE) has full Oracle GoldenGate functionality.

Oracle Database Personal Edition (PE) is supported for delivery only, and does not
support any of the integrated features such as integrated or parallel Replicat in
integrated mode.

1.3 Details of Support for Objects and Operations in Oracle
DML

This section outlines the Oracle objects and operations that Oracle
GoldenGatesupports for the capture and replication of DML operations.

Supported Objects and Operations in Oracle DML
Topics:

* Multitenant Container Database

* Tables, Views, and Materialized Views

e System Partitioning

e Sequences and Identity Columns

* Non-supported Objects and Operations in Oracle DML

1.3.1 Multitenant Container Database

Oracle GoldenGate captures from, and delivers to, a multitenant container
database, see Configuring Oracle GoldenGate in a Multitenant Container Database .

ORACLE 1-7

Chapter 1
Details of Support for Objects and Operations in Oracle DML

1.3.2 Tables, Views, and Materialized Views

Oracle GoldenGate supports the following DML operations made to regular tables,
index-organized tables, clustered tables, and materialized views.

e | NSERT
* UPDATE
e DELETE

* Associated transaction control operations

Tip:

You can use the DBA GOLDENGATE_SUPPORT _MODE data dictionary view

to display information about the level of Oracle GoldenGate capture

process support for the tables in your database. The PLSQL value of

DBA GOLDENGATE_SUPPORT _MODE indicates that the table is supported natively,
but requires procedural supplemental logging. For more information,

see the DBA GOLDENGATE_SUPPORT_MODE. If you need to display all

tables that have no primary and no non-null unique indexes, you

can use the DBA_GOLDENGATE_NOT_UN QUE. For more information, see
DBA_GOLDENGATE_NOT_UNI QUE.

* Limitations of Support for Regular Tables
* Limitations of Support for Views
* Limitations of Support for Materialized Views

e Limitations of Support for Clustered Tables

1.3.2.1 Limitations of Support for Regular Tables

ORACLE

These limitations apply to Extract.

» Oracle GoldenGate supports tables that contain any number of rows.

* Arow can be up to 4 MB in length. If Oracle GoldenGate is configured to include
both the before and after image of a column in its processing scope, the 4 MB
maximum length applies to the total length of the full before image plus the length
of the after image. For example, if there are UPDATE operations on columns that
are being used as a row identifier, the before and after images are processed
and cannot exceed 4 MB in total. Before and after images are also required for
columns that are not row identifiers but are used as comparison columns in conflict
detection and resolution (CDR). Character columns that allow for more than 4
KB of data, such as a CLOB, only have the first 4 KB of data stored in-row and
contribute to the 4MB maximum row length. Binary columns that allow for more
than 4kb of data, such as a BLOB the first 8 KB of data is stored in-row and
contributes to the 4MB maximum row length.

* Oracle GoldenGate supports the maximum number of columns per table that is
supported by the database.

1-8

ORACLE

Chapter 1
Details of Support for Objects and Operations in Oracle DML

Oracle GoldenGate supports the maximum column size that is supported by the
database.

Oracle GoldenGate supports tables that contain only one column, except when the
column contains one of the following data types:

- LOB

— LONG

— LONG VARCHAR

— Nested table

— User Defined Type (UDT)
— VARRAY

— XM.Type

Set DBOPTI ONS ALLOMUNUSEDCOLUWN before you replicate from and to tables with
unused columns.

Oracle GoldenGate supports tables with these partitioning attributes:
— Range partitioning

— Hash Partitioning Interval Partitioning

— Composite Partitioning

— Virtual Column-Based Partitioning

— Reference Partitioning

— List Partitioning

Oracle GoldenGate supports tables with virtual columns, but does not capture
change data for these columns or apply change data to them: The database does
not write virtual columns to the transaction log, and the Oracle Database does
not permit DML on virtual columns. For the same reason, initial load data cannot
be applied to a virtual column. You can map the data from virtual columns to
non-virtual target columns.

Oracle GoldenGate will not consider unique/index with virtual columns.

Oracle GoldenGate supports replication to and from Oracle Exadata. To support
Exadata Hybrid Columnar Compression, the source database compatibility must
be set to 11.2.0.0.0 or higher.

Oracle GoldenGate supports Transparent Data Encryption (TDE).

Oracle GoldenGate supports TRUNCATE statements as part of its DDL replication
support, or as standalone functionality that is independent of the DDL support.

Oracle GoldenGate supports the capture of direct-load | NSERT, with the exception
of SQL*Loader direct-path insert for XML Binary and XML Object Relational.
Supplemental logging must be enabled, and the database must be in archive log
mode. The following direct-load methods are supported.

— [*+ APPEND */ hint
— /*+ PARALLEL */ hint (Not supported for RAC in classic capture mode)
— SQLLDRwith DI RECT=TRUE

Oracle GoldenGate fully supports capture from compressed objects for Extract.

1-9

Chapter 1
Details of Support for Objects and Operations in Oracle DML

Oracle GoldenGate supports XA and PDML distributed transactions in integrated
capture mode.

Oracle GoldenGate supports DML operations on tables with FLASHBACK ARCH VE
enabled. However, Oracle GoldenGate does not support DDL that creates tables
with the FLASHBACK ARCHI VE clause or DDL that creates, alters, or deletes the
flashback data archive itself.

1.3.2.2 Limitations of Support for Views

These limitations apply to Extract.

Oracle GoldenGate supports capture from a view when Extract is in initial-load
mode (capturing directly from the source view, not the redo log).

Oracle GoldenGate does not capture change data from a view, but it supports
capture from the underlying tables of a view.

Oracle GoldenGate can replicate to a view as long as the view is inherently
updateable. The structures of the source tables and a target view must be
identical.

1.3.2.3 Limitations of Support for Materialized Views

Materialized views are supported by Extract with the following limitations.

Materialized views created W TH ROA D are not supported.
The materialized view log can be created W TH ROW D.
The source table must have a primary key.

Truncates of materialized views are not supported. You can use a DELETE FROM
statement.

DML (but not DDL) from a full refresh of a materialized view is supported. If DDL
support for this feature is required, open an Oracle GoldenGate support case.

For Replicat the Creat e MW command must include the FOR UPDATE clause

Either materialized views can be replicated or the underlying base table(s), but not
both.

1.3.2.4 Limitations of Support for Clustered Tables

Indexed clusters are supported by Extract while hash clusters are not supported.

1.3.3 System Partitioning

System partitioning is an Oracle database feature that allows a table to be created with
named partitions. A system partitioned table is not maintained by the database. Each
DML must specify the partition where the row is to reside. Integrated Extract using
Integrated Dictionary and all configurations of Replicat support system partitioning as
of Oracle GoldenGate 12c (12.3.0.1). Each trail file record header pertaining to a
system patrtitioned table includes the partition name. From Oracle GoldenGate 21c
onward, a Partition Name Record (PNR) is generated for system partitioned tables, if it
is included in the PARTI TI ON parameter.

ORACLE

See PARTITION | PARTITIONEXCLUDE in the Reference for Oracle GoldenGate.

1-10

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

1.3.4 Sequences and Identity Columns

Identity columns are supported from Oracle database 18c onward and requires
Extract, Parallel Replicat in Integrated mode, or Integrated Replicat.

Oracle GoldenGate supports the replication of sequence values and identity
columns in a unidirectional and active-passive high-availability configuration.

Oracle GoldenGate ensures that the target sequence values will always be higher
than those of the source (or equal to them, if the cache is zero).

Limitations of Support for Sequences

1.3.4.1 Limitations of Support for Sequences

These limitations apply to Extract.

Oracle GoldenGate does not support the replication of sequence values in an
active-active hi-directional configuration.

The cache size and the increment interval of the source and target sequences
must be identical. The cache can be any size, including 0 (NOCACHE).

The sequence can be set to cycle or not cycle, but the source and target
databases must be set the same way.

Tables with default sequence columns are excluded from replication for Extract.

1.3.5 Non-supported Objects and Operations in Oracle DML

The following are additional Oracle objects or operations that are not supported by
Extract:

REF are supported natively for compatibility with Oracle Database 12.2 and higher,
but not primary-key based REFs (PKREFs)

Sequence values in an active-active bi-directional configuration
Database Replay
Tables created as EXTERNAL

1.4 Detalls of Support for Objects and Operations in Oracle

DDL

This topic outlines the Oracle objects and operation types that Oracle GoldenGate
supports for the capture and replication of DDL operations.

Topics:

ORACLE

Supported Objects and Operations in Oracle DDL
Non-supported Objects and Operations in Oracle DDL

1-11

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

1.4.1 Supported Objects and Operations in Oracle DDL

DDL capture support is integrated into the database logmining server. You must set
the database parameter compatibility to 11.2.0.4.0. Extract supports DDL that includes
password-based column encryption, such as:

ORACLE

o CREATE TABLE t1 (a nunber, b varchar2(32) ENCRYPT | DENTIFI ED BY
my_passwor d) ;

e ALTER TABLE t1 ADD COLUWN c varchar2(64) ENCRYPT | DENTI FI ED BY
nmy_passwor d;

The following additional statements apply to Extract with respect to DDL support.

» All Oracle GoldenGate topology configurations are supported for Oracle DDL
replication.

* Active-active (bi-directional) replication of Oracle DDL is supported between two
(and only two) databases that contain identical metadata.

* Oracle GoldenGate supports DDL on the following objects:

clusters
directories
functions
indexes
packages
procedure
tables
tablespaces
roles
sequences
synonyms
triggers
types

views

materialized views

users

invisible columns

» Oracle Edition-Based Redefinition (EBR) database replication of Oracle DDL is
supported for Extract for the following Oracle Database objects:

functions

library

packages (specification and body)

procedure

synonyms

1-12

ORACLE

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

— types (specification and body)
— views

From Oracle GoldenGate 21c onward, DDLs that are greater than 4 MB in size will
be provided replication support.

Oracle GoldenGate supports Global Temporary Tables (GTT) DDL operations to
be visible to Extract so that they can be replicated. You must set the DDLOPTI ONS
parameter to enable this operation because it is not set by default.

Oracle GoldenGate supports dictionary for use with NOUSERI D and TRANLOGOPTI ONS
GETCTASDM.. This means that Extract receives object metadata from the LogMiner
dictionary without querying the dictionary objects. Oracle GoldenGate uses the
dictionary automatically when the source database compatibility parameter is
greater than or equal to 11.2.0.4.

When using dictionary and trail format in the Oracle GoldenGate release 12.2.x,
Extract requires the Logminer patch to be applied on the mining database if the
Oracle Database release is earlier than 12.1.0.2.

Oracle GoldenGate supports replication of invisible columns in Extract. Trail
format release 12.2 is required. Replicat must specify the MAPI NVI S| BLECOLUWNS
parameter or explicitly map to invisible columns in the COLMAP clause of the MAP
parameter.

If SOURCEDEFS or TARGETDEFS is used, the metadata format of a definition file for
Oracle tables must be compatible with the trail format. Metadata format 12.2

is compatible with trail format 12.2, and metadata format earlier than 12.2 is
compatible with trail format earlier than 12.2. To specify the metadata format of a
definition file, use the FORVAT RELEASE option of the DEFSFI LE parameter when the
definition file is generated in DEFGEN.

DDL statements to create a namespace context (CREATE CONTEXT) are captured by
Extract and applied by Replicat.

Extract in pump mode supports the following DDL options:

— DDL INCLUDE ALL

— DDL EXCLUDE ALL

— DDL EXCLUDE OBJNAME

The SOURCECATALOG and ALLCATALOG option of DDL EXCLUDE is also supported.

If no DDL parameter is specified, then all DDLs are written to trail. If DDL EXCLUDE
OBJNAME is specified and the object owner is does not match an exclusion rule,
then it is written to the trail.

Starting with Oracle database 21c, the following DDL is available to support
blocking of DML/DDL changes that are not replicated by Oracle GoldenGate:

ALTER DATABASE [ENABLE | DI SABLE] gol dengate bl ocki ng node;

When Oracle GoldenGate blocking mode is enabled, DMLs that use support _node
NONE in tables and execute unsupported Oracle PL/SQL statements will fail with
the following error:

ORA-26981: "operation was unsupported during Oracle Gol denGate
bl ocki ng node"

1-13

ORACLE

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

For Oracle database 21c, the following features cause a table to have
support _node NONE in Oracle GoldenGate:

— BFILE as an attribute of ADT column, or typed table

— Table with no scalars

— OLAP AWS table

— Sharded queue table

— Sorted Hash Cluster Table

— Primary key constraint on ADT attribute in relational table

— Primary key/unigue key constraint on long r aw/var char (over 4000 bytes)

— VSDATABASE column, Gol dengat e_Bl ocki ng_Mde can be queried to determine
the current blocking mode status.

The following operations are supported for partition related DDLs and partition
maintenance operations

— Drop partition:

If a partition is recreated with the same name, then it will get a new object
number. The internal caches are cleared to minimize space consumption when
a drop partition DDL is processed.

— Truncate partition:

Partition name and object number stays the same. Base table object version
stays the same.

— Rename patrtition:

The partition object number stays the same but gets a new name. The base
table's object version gets bumped. In memory name cache will get invalidated
upon seeing this DDL and repopulated upon the next DML. The cache, which
stores if a given partition object number is interesting or not will also need to
be reevaluated as a the new partition name may switch from filtered to not
filtered or vice versa.

— Exchange partition:

Exchanges data in a partition with that in a table or vice versa. The obj# of the
partition being exchanged does not change. Dataobj# does change but is not
used by Extract. The partition itself still belongs to the same table.

— Merge partition:

Merges one or more partitions into a new partition. The DDL creates the new
partition and drops the partitions from which it was merged. In memory caches
should be cleared to save space and the user should ensure proper filter rules
for the newly created partition.

— Split partition:

The partition being split keeps its original name and object number and new
partition is created for the split data. The user must ensure partition filter rules
are correct for the newly created partition.

— Coalesce patrtition:

Reduces the number of partitions in a hash partitioned table. The specific
partition that is coalesced is selected by the database, and is dropped after

1-14

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

its contents have been redistributed. The remaining partitions keep their same
name and object number. The internal caches should be cleared to minimize
space consumption.

Modify partition:

Modifies default and real attributes of partitions, apart from adding or dropping
of values for list partitions. All modifications leave the partitions name and
object number intact.

Move patrtition:

Partition data is moved to a new tablespace. Partition name and number
remain the same.

Redef table:

dbns_redefinition can be used to partition a table through the use of an
interim table. The patrtitions are created on the interim table and after the
fini sh_redef operation, the tables swap names. The partitions created on
the interim table keep their names and object numbers when the tables

are swapped. The Extract filter cache, needs to be reevaluated upon
finish_redef as the partitions now belong to the base table. The user must
ensure proper filter rules.

Redef partition:

When redefining a table, the partitions follow from the original table to the
interim table. For example, consider the case where the original table has
partitions, which live in the USER tablespace, and the interim table is created
with no partitions and the table lives in the NEWtablespace. In this case, after
the fini sh_redef operation, when the tables are swapped the partition still
lives in the USER tablespace. Redef partition allows a partition to be moved to
the interim table's NEWtablespace. The partition retains its name and object
number.

System generated partition names:

When partitions are created automatically for hash partitions and operations
such as split partition, the partition name is in the form of SYS P sequence

val ue. Similarly, subpartitions are of the form SYS_SUBP sequence val ue. Itis
recommended that the partition is renamed before excepting DML to conform
to filter rules.

1.4.2 Non-supported Objects and Operations in Oracle DDL

Here's a list of non-supported objects and operations in Oracle DDL.

Excluded Objects
Other Non-supported DDL

1.4.2.1 Excluded Objects

ORACLE

The following names or name prefixes are considered Oracle-reserved and must be
excluded from the Oracle GoldenGate DDL configuration. Oracle GoldenGate will
ignore objects that contain these names.

Excluded schemas:

1-15

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

"ANONYMOUS", // HTTP access to XDB

" APPQOSSYS", [/ QOS system user

"AUDSYS', // audit super user

"Bl", // Business Intelligence

"CTXSYS", /| Text

"DBSNVP", // SNWP agent for CEM

"DIP", /] Directory Integration Platform
"DVMBYS", // Data Mning

"DVF", |/ Database Vault

"DVSYS", // Database Vault

"EXDSYS', // External ODCI System User
"EXFSYS', // Expression Filter

" GSMADM N_I NTERNAL", // @G obal Service Mnager
" GSMCATUSER', // d obal Service Manager
"GSMUSER', // O obal Service Manager
"LBACSYS", // Label Security

"MDSYS", [/ Spati al

"MGMI_VI EW, // CEM Dat abase Control

" MDDATA" ,

"MISSYS', // Ms Transaction Server

"ODM', // Data M ning

"ODM MIR', // Data Mning Repository
"QIVMBYS', /] Java Policy SRO Schema
"OLAPSYS"', /] OLAP catal ogs

"ORACLE_OCM', // Oracle Configuration Manager User
"ORDDATA", // Internedia

"ORDPLUG@ NS, // Intermedia

"ORDSYS", // Intermedia

"QUTLN', // Qutlines (Plan Stability)

"Sl _| NFORMIN_SCHEMA", // SQL/MM Still |mage
"SPATI AL_CSWADM N', // Spatial Catal og Services for Wb
" SPATI AL_CSW ADM N_USR",

"SPATI AL_WS ADM N', // Spatial Wb Feature Service
" SPATI AL_WFS_ADM N_USR',

"SYs',

" SYSBACKUP",

" SYSDG',

" SYSKM',

"SYSMAN', // Admi nstrator CEM

" SYSTEM',

"TSMBYS', // Transparent Session Mgration
"WKPROXY", // Utrasearch

"WKSYS", // Utrasearch

"WK_TEST",

"WWBYS", // Workspace Manager

"XDB", // XML DB

" XSENULL",

"XTISYS', // Time |ndex

Special schemas:

" AUROCRA$JI SSUTI LI TY$", // JSERV

" AURORASORBSUNAUTHENTI CATED', // JSERV

"DSSYS', // Dynam c Services Secured Wb Service
" OSE$HTTP$ADM N', // JSERV

"PERFSTAT", // STATSPACK

" REPADM N*,

"TRACESVR' // Trace server for OEM

Excluded tables (the * wildcard indicates any schema or any character):

ORACLE 1-16

L T . T

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

.A@*", // advanced queues

.DR$*$*", [/ oracle text

M _*$$", // Spatial index

MOGH*", [/ materialized views

. OeeqQr$* ",

.OGGs*", |/ AQ OGG queue table

.ET$*", /] Data Punp external tables

.RUPD$*", [/ materialized views

.SYS_C", /] constraints

.MDR*_*$" // Spatial Sequence and Table

. SYS_| MPORT_TABLE*",

.CWP*$*" /| space managenent, rdbnms >= 12.1

. DBMS_TABCOWP_TEMP_*", // space managenent, rdbms < 12.1
. MDXT_*$*" /] Spatial extended statistics tables

1.4.2.2 Other Non-supported DDL

Oracle GoldenGate does not support the following:

ORACLE

DDL on nested tables.
DDL on identity columns.

ALTER DATABASE and ALTER SYSTEM(these are not considered to be DDL)

Using dictionary, you can replicate ALTER DATABASE DEFAULT EDI TI ON and ALTER
PLUGGABLE DATABASE DEFAULT EDI TI ON. All other ALTER [PLUGABLE] DATABASE
commands are ignored.

DDL on a standby database.
Database link DDL.

DDL that creates tables with the FLASHBACK ARCHI VE clause and DDL that creates,
alters, or deletes the flashback data archive itself. DML on tables with FLASHBACK
ARCHI VE is supported.

Some DDL will generate system generated object names. The names of system
generated objects may not always be the same between two different databases.
So, DDL operations on objects with system generated names should only be done
if the name is exactly the same on the target.

1-17

Preparing the Database for Oracle
GoldenGate

Learn how to prepare your database for Oracle GoldenGate, including how to
configure connections and logging, how to enable Oracle GoldenGate in your
database, how to set the flashback query, and how to manage server resources.

Topics:

Configuring Connections for Extract and Replicat Processes
Capture and integrated Replicat require a dedicated server connection in the
t nsnanes. or a file.

Configuring Logging Properties

Oracle GoldenGate relies on the redo logs to capture the data that it needs to
replicate source transactions. The Oracle redo logs on the source system must be
configured properly before you start Oracle GoldenGate processing.

Enabling Oracle GoldenGate in the Database

The database services required to support Oracle GoldenGate capture and apply
must be enabled explicitly for all Oracle database versions. This is required for all
Extract and Replicat modes.

Setting Flashback Query
To process certain update records, Extract fetches additional row data from the
source database.

Managing Server Resources

Extract interacts with an underlying logmining server in the source database and
Replicat interacts with an inbound server in the target database. This section
provides guidelines for managing the shared memory consumed by the these
servers.

Ensuring Row Uniqueness in Source and Target Tables
Oracle GoldenGate requires a unigue row identifier on the source and target
tables to locate the correct target rows for replicated updates and deletes.

2.1 Configuring Connections for Extract and Replicat
Processes

Capture and integrated Replicat require a dedicated server connection in the
t nsnanes. or a file.

ORACLE

You direct the processes to use these connections with the USERI D or USERI DALI AS
parameter in the Extract and Replicat parameter files when you configure those
processes.

The following is an example of the dedicated connection required for Extract and
integrated Replicat.

2-1

ORACLE

Chapter 2
Configuring Connections for Extract and Replicat Processes

TEST =
(DESCRI PTI ON =
(ADDRESS LI ST =
(ADDRESS = (PROTOCOL = TCP) (HOST = test2) (PORT = 1521))
)
(CONNECT_DATA =
(SERVER = DEDI CATED)
(SERVI CE_NAME = test)
)
)

The following are the security options for specifying the connection string in the Extract
or Replicat parameter file.

Password encryption method:

USERI D i ntext @est, PASSWORD mypasswor d

Credential store method:

USERI DALI AS ext

In the case of USERI DALI AS, the alias ext is stored in the Oracle GoldenGate credential
store with the actual connection string, as in the following example:

Admi nC i ent | NFO CREDENTI ALSTORE DOMAI N support
Domai n: Support

Alias: ext

Userid: intext@est

Setting up a Bequeath connection

Oracle GoldenGate can connect to a database instance without using the network
listener if a Bequeath connect descriptor is added in the t nsnanes. or a.

The following example shows the configuration for connecting to a database using
Bequeath connect descriptor:

dbbeq = (DESCRI PTI ON=
(ADDRESS=(PROTOCOL=beq)
(ENVS=' ORACLE_SI D=sal es, ORACLE_HOVE=/ app/ db_hone/
oracl e, LD_LI BRARY_PATH=/ app/ db_home/ oracl e/lib")
(PROGRAM=/ app/ db_horre/ or acl e/ bi n/ or acl e)
(ARGVO=or acl esal es)
(ARGS=" (DESCRI PTI ON=(LOCAL=YES) (ADDRESS=(PROTOCCOL=beq)))"'))
(CONNECT_DATA=(Sl D=sal es)))

In this example:
[app/ db_hone is the target Oracle database installation directory

sal es is the database service name

The ORACLE_SI D, ORACLE_HOWME, and LD _LI BRARY_PATH in the ENVS parameter refers to
the target database.

2-2

2.2 Configuring Logging Properties

ORACLE

< Note:

Chapter 2

Configuring Logging Properties

Make sure that there is no white space between these environment variable

settings.

Oracle GoldenGate relies on the redo logs to capture the data that it needs to replicate
source transactions. The Oracle redo logs on the source system must be configured
properly before you start Oracle GoldenGate processing.

This section addresses the following logging levels that apply to Oracle GoldenGate.
Which logging level that you use is dependent on the Oracle GoldenGate feature or
features that you are using.

Note:

logging.

Redo volume is increased as the result of this required logging. You can
wait until you are ready to start Oracle GoldenGate processing to enable the

This table shows the Oracle GoldenGate use cases for the different logging properties.

Logging option

GGSCI command

What it does

Use case

Forced logging mode

Minimum database-
level supplemental
logging

Schema-level
supplemental logging,
default setting
See Enabling

Schema-level
Supplemental

Logging.

ALTER DATABASE
FORCE LOGGA NG

ALTER DATABASE
ADD SUPPLEMENTAL
LOG DATA

ADD
SCHEMATRANDATA

Forces the logging of
all transactions and
loads.

Enables minimal
supplemental logging
to add row-chaining
information to the redo
log.

Enables unconditional
supplemental logging
of the primary

key and conditional
supplemental logging
of unique key(s) and
foreign key(s) of all
tables in a schema. All
of these keys together
are known as the
scheduling columns.

Strongly
recommended for all
Oracle GoldenGate
use cases. FORCE
LOGGE NGoverrides
any table-level
NOLOGAE NG settings.

Required for all
Oracle GoldenGate
use cases

Enables the logging
for all current and
future tables in the
schema. If the primary
key, unique key, and
foreign key columns
are not identical at
both source and
target, use ALLCOLS.
Required when using
DDL support.

2-3

ORACLE

Chapter 2

Configuring Logging Properties

Logging option

GGSCI command

What it does

Use case

Schema-level
supplemental logging
with unconditional
logging for

all supported
columns. (See
Enabling Schema-
level Supplemental
Logging for non-
supported column
types.)

Schema-level
supplemental logging,
minimal setting

Table-level
supplemental logging
with built-in support for
integrated Replicat
See Enabling Table-
level Supplemental
Logging

ADD
SCHEMATRANDATA with
ALLCOLS option

ADD
SCHEMATRANDATA with
NOSCHEDULI NGCOLS
option

ADD TRANDATA

Enables unconditional
supplemental logging
of all of the columns
in a table, for all of the
tables in a schema.

Enables unconditional
supplemental logging
of the primary key
and all valid unique
indexes of all tables in
a schema.

Enables unconditional
supplemental logging
of the primary

key and conditional
supplemental logging
of unique key(s) and
foreign key(s) of a
table. All of these keys
together are known
as the scheduling
columns.

Used for bidirectional
and active-active
configurations where
all column values

are checked, not just
the changed columns,
when attempting to
perform an update

or delete. This

takes more resources
though allows for the
highest level of real-
time data validation
and thus conflict
detection.

This method should
also be used if

they are going

to be using the
HANDLECOLLI SI ONS
parameter for initial
loads.

Use only

for nonintegrated
Replicat. This is

the minimum required
schema-level logging.

Required for all Oracle
GoldenGate use
cases unless schema-
level supplemental
logging is used. If the
primary key, unique
key, and foreign

key columns are

not identical at both
source and target, use
ALLCQLS.

2-4

Chapter 2

Configuring Logging Properties

Logging option

GGSCI command

What it does

Use case

Table-level
supplemental logging
with unconditional
logging for all
supported columns.
(See Enabling Table-
level Supplemental
Logging for non-
supported column
types.)

Table-level
supplemental logging,
minimal setting

ADD TRANDATA with
ALLCOLS option

ADD TRANDATA with
NOSCHEDULI NGCOLS
option

Enables unconditional
supplemental logging
of all of the columns of
the table.

Enables unconditional
supplemental logging
of the primary key
and all valid unique
indexes of a table.

Used for bidirectional
and active-active
configurations where
all column values

are checked, not just
the changed columns,
when attempting to
perform an update

or delete. This

takes more resources
though allows for the
highest level of real-
time data validation
and thus conflict
detection.

It can also be used
when the source and
target primary, unique,
and foreign keys are
not the same or are
constantly changing
between source and
target.

Use for nonintegrated
Replicat and non-
parallel Replicat. This
is the minimum
required table-level

logging.

" Note:

the log files.

* Enabling Subset Database Replication Logging

* Enabling Schema-level Supplemental Logging

* Enabling Table-level Supplemental Logging

2.2.1 Enabling Subset Database Replication Logging

Oracle strongly recommends putting the Oracle source database into forced logging
mode. Forced logging mode forces the logging of all transactions and loads, overriding
any user or storage settings to the contrary. This ensures that no source data in the
Extract configuration gets missed.

ORACLE

Oracle Databases must be in ARCH VELOG mode so that Extract can process

In addition, from Oracle GoldenGate 19c onward, a fine-granular database
supplemental logging mode called Subset Database Replication is included in
LogMiner, which is the basic recommended mode for all Oracle GoldenGate and
XStream clients. It replaces the previously used Minimum Supplemental Logging

2-5

ORACLE

Chapter 2
Configuring Logging Properties

mode. To know more, see ALTER DATABASE in the Oracle Database SQL Language
Reference.

The subset database replication logging is enabled at COB$ROOT (and all user-PDBs
inherit it) currently.

¢ Note:

Database-level primary key (PK) and unique index (Ul) logging is only
discouraged if you are replicating a subset of tables. You can use it with
Live Standby, or if Oracle GoldenGate is going to replicate all tables, like to
reduce the downtime for a migration or upgrade.

Perform the following steps to verify and enable, if necessary, subset database
replication logging and forced logging.

1. Loginto SQL*Plus as a user with ALTER SYSTEMprivilege.

2. Issue the following command to determine whether the database is in
supplemental logging mode and in forced logging mode. If the result is YES for
both queries, the database meets the Oracle GoldenGate requirement.

SELECT suppl emental | og_data mn, force_|oggi ng FROM v$dat abase;

3. If the result is NOfor either or both properties, continue with these steps to enable
them as needed:

SQ> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA SUBSET DATABASE
REPLI CATI ON,
SQ> ALTER DATABASE FORCE LOGA NG

4. Issue the following command to verify that these properties are now enabled.

SELECT suppl emental | og data _mn, force_| oggi ng FROM v$dat abase;

The output of the query must be YES for both properties.
5. Switch the log files.

SQ> ALTER SYSTEM SW TCH LOGFI LE;

To perform dictionary validation, run the following command:

select con_id, nminimal, subset_rep, primry_key, UN QUE_I NDEX
FOREI GN_KEY, ALL_COLUWN from cdb_suppl ement al _| oggi ng;

The output of this query should be YES.

subset _rep = YES

2-6

Chapter 2
Configuring Logging Properties

For the following query:

sel ect nane, |og_node, force_logging, SUPPLEMENTAL_LOG DATA M N,
SUPPLEMENTAL_LOG DATA PK PK, SUPPLEMENTAL LOG DATA U U,
SUPPLEMENTAL_LOG DATA FK FK,

SUPPLEVENTAL_LOG DATA ALL,

SUPPLEMENTAL _LOG DATA SRfrom v$dat abase;

For the query for SUPPLEMENTAL _LOG DATA SR the output should be YES and for
SUPPLEMENTAL_LOG_DATA_M N the output should be | MPLI CI T.

To switch from earlier minimum supplemental logging to the new subset supplemental
logging:
1. Drop the earlier higher levels on CDB$ROOT.

ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (PRI MARY KEY) COLUWNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (UNI QUE) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA;

2. Add only subset database replication mode:

ALTER PLUGGABLE DATABASE ADD SUPPLEMENTAL LOG DATA SUBSET
DATABASEREPLI CATI ON;

3. Ensure that all PDBs inherit this subset dat abase replication mode.

2.2.2 Enabling Schema-level Supplemental Logging

Oracle GoldenGate supports schema-level supplemental logging. Schema-level
logging is required for an Oracle source database when using the Oracle GoldenGate
DDL replication feature. In all other use cases, it is optional, but then you must use
table-level logging instead (see Enabling Table-level Supplemental Logging).

By default, schema-level logging automatically enables unconditional supplemental
logging of the primary key and conditional supplemental logging of unique key(s) and
foreign key(s) of all tables in a schema. Options enable you to alter the logging as
needed.

Note:

Oracle strongly recommends using schema-level logging rather than table-
level logging, because it ensures that any new tables added to a schema
are captured if they satisfy wildcard specifications. This method is also
recommended because any changes to key columns are automatically
reflected in the supplemental log data too. For example, if a key changes,
there is no need to issue ADD TRANDATA.

Perform the following steps on the source system to enable schema-level
supplemental logging.

1. Run GGSCI on the source system.

ORACLE .

Chapter 2
Configuring Logging Properties

2. Issue the DBLOG N command with the alias of a user in the credential store who
has privilege to enable schema-level supplemental logging.

DBLOG N USERI DALI AS al i as

See USERIDALIAS in Reference for Oracle GoldenGate for more information
about USERI DALI AS and additional options.

3. When using ADD SCHEMATRANDATA or ADD TRANDATA on a multitenant database, you
can either log directly into the PDB and perform the command. Alternately, if you
are logging in at the root level (using a C## user), then you must include the PDB.
Issue the ADD SCHEMATRANDATA command for each schema for which you want to
capture data changes with Oracle GoldenGate.

ADD SCHEMATRANDATA pdb. schema [ALLCOLS | NOSCHEDULI NGCOLS]

Where:

* Without options, ADD SCHEMATRANDATA schema enables the unconditional
supplemental logging on the source system of the primary key and the
conditional supplemental logging of all unique key(s) and foreign key(s) of
all current and future tables in the given schema. Unconditional logging forces
the primary key values to the log whether or not the key was changed in the
current operation. Conditional logging logs all of the column values of a foreign
or unique key if at least one of them was changed in the current operation.
The default is optional to support nonintegrated Replicat but is required to
support integrated Replicat because primary key, unique keys, and foreign
keys must all be available to the inbound server to compute dependencies.
For more information about integrated Replicat, see Deciding Which Apply
Method to Use.

e ALLCOLS can be used to enable the unconditional supplemental logging of all of
the columns of a table and applies to all current and future tables in the given
schema. Use to support integrated Replicat when the source and target tables
have different scheduling columns. (Scheduling columns are the primary key,
the unique key, and the foreign key.)

e NOSCHEDULI NGCOLS logs only the values of the primary key and all valid unique
indexes for existing tables in the schema and new tables added later. This
is the minimal required level of schema-level logging and is valid only for
Replicat in nonintegrated mode.

In the following example, the command enables default supplemental logging for
the fi nance schema.

ADD SCHEMATRANDATA MY_PDB. FI NANCE ALLCOLS

In the following example, the command enables the supplemental logging only for
the primary key and valid unique indexes for the HR schema.

ADD SCHEMATRANDATA My_PDB. HR NOSCHEDULI NGCOLS

2.2.3 Enabling Table-level Supplemental Logging

Enable table-level supplemental logging on the source system in the following cases:

e To enable the required level of logging when not using schema-level logging
(see Enabling Schema-level Supplemental Logging). Either schema-level or
table-level logging must be used. By default, table-level logging automatically

ORACLE 2-8

Chapter 2
Configuring Logging Properties

enables unconditional supplemental logging of the primary key and conditional
supplemental logging of unique key(s) and foreign key(s) of a table. Options
enable you to alter the logging as needed.

* To prevent the logging of the primary key for any given table.

* Tolog non-key column values at the table level to support specific Oracle
GoldenGate features, such as filtering and conflict detection and resolution logic.

» If the key columns change on a table that only has table-level supplemental
logging, you must perform ADD TRANDATA on the table prior to allowing any DML
activity on the table.

Perform the following steps on the source system to enable table-level supplemental
logging or use the optional features of the command.

1. Run GGSCI on the source system.

2. Issue the DBLOG N command using the alias of a user in the credential store who
has privilege to enable table-level supplemental logging.

DBLOG N USERI DALI AS al i as

See USERIDALIAS in Reference for Oracle GoldenGatefor more information
about DBLOG N and additional options.

3. Issue the ADD TRANDATA command.

ADD TRANDATA [PDB.]schena.table [, COLS (colums)] [, NOKEY] [, ALLCQLS |
NOSCHEDUL| NGCOLS]

Where:

- PDBis the name of the root container or pluggable database if the table is in a
multitenant container database.

e schenn is the source schema that contains the table.

e tabl e is the name of the table. See Specifying Object Names in Oracle
GoldenGate Input in Administering Oracle GoldenGate for instructions for
specifying object names.

» ADD TRANDATA without other options automatically enables unconditional
supplemental logging of the primary key and conditional supplemental logging
of unique key(s) and foreign key(s) of the table. Unconditional logging forces
the primary key values to the log whether or not the key was changed
in the current operation. Conditional logging logs all of the column values
of a foreign or unique key if at least one of them was changed in the
current operation. The default is optional to support nonintegrated Replicat
(see also NOSCHEDULI NGCOLS) but is required to support integrated Replicat
because primary key, unique keys, and foreign keys must all be available
to the inbound server to compute dependencies. For more information about
integrated Replicat, see Deciding Which Apply Method to Use.

e ALLCOLS enables the unconditional supplemental logging of all of the columns
of the table. Use to support integrated Replicat when the source and
target tables have different scheduling columns. (Scheduling columns are the
primary key, the unique key, and the foreign key.)

e NOSCHEDULI NGCOLS is valid for Replicat in nonintegrated mode only. It issues
an ALTER TABLE command with an ADD SUPPLEMENTAL LOG DATA ALWAYS
clause that is appropriate for the type of unique constraint that is defined for

ORACLE 2-9

Chapter 2
Enabling Oracle GoldenGate in the Database

the table, or all columns in the absence of a unique constraint. This command
satisfies the basic table-level logging requirements of Oracle GoldenGate
when schema-level logging will not be used. See Ensuring Row Uniqueness in
Source and Target Tables for how Oracle GoldenGate selects a key or index.

e COLS col ums logs non-key columns that are required for a KEYCOLS clause or
for filtering and manipulation. The parentheses are required. These columns
will be logged in addition to the primary key unless the NOKEY option is also
present.

* NOKEY prevents the logging of the primary key or unique key. Requires a
KEYCOLS clause in the TABLE and MAP parameters and a COLS clause in the ADD
TRANDATA command to log the alternate KEYCOLS columns.

4. If using ADD TRANDATA with the COLS option, create a unique index for those
columns on the target to optimize row retrieval. If you are logging those columns
as a substitute key for a KEYCCLS clause, make a note to add the KEYCOLS clause
to the TABLE and MAP statements when you configure the Oracle GoldenGate
processes.

2.3 Enabling Oracle GoldenGate in the Database

The database services required to support Oracle GoldenGate capture and apply must
be enabled explicitly for all Oracle database versions. This is required for all Extract
and Replicat modes.

To enable Oracle GoldenGate, set the following database initialization parameter. All
instances in Oracle RAC must have the same setting.

ENABLE_GOLDENGATE_REPLI CATI ON=t r ue

This parameter alters the DBA_FEATURE_USAGE_STATI STI CS view. For more information
about this parameter, see Initialization Parameters.

2.4 Setting Flashback Query

ORACLE

To process certain update records, Extract fetches additional row data from the source
database.

Oracle GoldenGate fetches data for the following:
e User-defined types

* Nested tables

e XMLType objects

By default, Oracle GoldenGate uses Flashback Query to fetch the values from the
undo (rollback) tablespaces. That way, Oracle GoldenGate can reconstruct a read-
consistent row image as of a specific time or SCN to match the redo record.

For best fetch results, configure the source database as follows:

1. Set a sufficient amount of redo retention by setting the Oracle initialization
parameters UNDO_MANAGEMENT and UNDO_RETENTI ON as follows (in seconds).

UNDO_MANAGEMENT=AUTO

UNDO_RETENTI ON=86400

2-10

ORACLE

Chapter 2
Setting Flashback Query

UNDO_RETENTI ON can be adj usted upward in hi gh-vol une environnents.

2. Calculate the space that is required in the undo tablespace by using the following
formula.

undo_space = UNDO RETENTION * UPS + over head

Where:

undo_space is the number of undo blocks.
UNDO_RETENTI ONis the value of the UNDO_RETENTI ON parameter (in seconds).
UPS is the number of undo blocks for each second.

over head is the minimal overhead for metadata (transaction tables, etc.).

Use the system view VSUNDOSTAT to estimate UPS and over head.

3. For tables that contain LOBs, do one of the following:

Set the LOB storage clause to RETENTI ON. This is the default for tables that are
created when UNDO_MANAGEMENT is set to AUTO.

If using PCTVERSI ON instead of RETENTI ON, set PCTVERSI ON to an initial value

of 25. You can adjust it based on the fetch statistics that are reported

with the STATS EXTRACT command. If the value of the STAT_OPER ROAFETCH
CURRENTBYROW D or STAT_OPER_ROAFETCH_CURRENTBYKEY field in these statistics
is high, increase PCTVERSI ON in increments of 10 until the statistics show low
values.

4. Grant either of the following privileges to the Oracle GoldenGate Extract user:

GRANT FLASHBACK ANY TABLE TO db_user

GRANT FLASHBACK ON schena.tabl e TO db_user

Oracle GoldenGate provides the following parameters to manage fetching.

Parameter or Command Description

STATS EXTRACT Shows Extract fetch statistics on demand.
command with
REPORTFETCH option

STATOPTI ONS parameter Sets the STATS EXTRACT command so that it always shows fetch
with REPORTFETCH option statistics.

MAXFETCHSTATEMENTS Controls the number of open cursors for prepared queries that

parameter Extract maintains in the source database, and also for SQLEXEC
operations.

MAXFETCHSTATEMENTS Controls the default fetch behavior of Extract: whether Extract

parameter performs a flashback query or fetches the current image from the
table.

FETCHOPTI ONS Handles the failure of an Extract flashback query, such as if the

parameter with the undo retention expired or the structure of a table changed. Extract

USELATESTVERSI ONor can fetch the current image from the table or ignore the failure.
NOUSELATESTVERSI ON

option

REPFETCHEDCOLOPTI ONS Controls the response by Replicat when it processes trail records
parameter that include fetched data or column-missing conditions.

2-11

Chapter 2
Managing Server Resources

2.5 Managing Server Resources

Extract interacts with an underlying logmining server in the source database and
Replicat interacts with an inbound server in the target database. This section provides
guidelines for managing the shared memory consumed by the these servers.

The shared memory that is used by the servers comes from the Streams pool portion
of the System Global Area (SGA) in the database. Therefore, you must set the
database initialization parameter STREAMS_PQOOL_SI ZE high enough to keep enough
memory available for the number of Extract and Replicat processes that you expect to
run in integrated mode. Note that Streams pool is also used by other components of
the database (like Oracle Streams, Advanced Queuing, and Datapump export/import),
so make certain to take them into account while sizing the Streams pool for Oracle
GoldenGate.

By default, one Extract requests the logmining server to run with MAX_SGA Sl ZE of
1GB. Thus, if you are running three Extracts in the same database instance, you need
at least 3 GB of memory allocated to the Streams pool. As a best practice, keep

25 percent of the Streams pool available. For example, if there are 3 Extracts, set
STREAMS_POOL_SI ZE for the database to the following value:

3@B*1.25=375GB

2.6 Ensuring Row Uniqueness in Source and Target Tables

ORACLE

Oracle GoldenGate requires a unique row identifier on the source and target tables to
locate the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate
selects a row identifier to use in the following order of priority, depending on the
number and type of constraints that were logged (see Configuring Logging Properties).

1. Primary key if it does not contain any extended (32K) VARCHAR2/ NVARCHAR2
columns. Primary key without invisible columns.

2. Unique key. Unique key without invisible columns.

In the case of a nonintegrated Replicat, the selection of the unique key is as
follows:

e First unigue key alphanumerically with no virtual columns, no UDTs, no
function-based columns, no nullable columns, and no extended (32K)
VARCHAR2/ NVARCHAR2 columns. To support a key that contains columns that
are part of an invisible index, you must use the ALLON NVI S| BLEI NDEXKEYS
parameter in the Oracle GoldenGate GLOBALS file.

* First unique key alphanumerically with no virtual columns, no UDTs, no
extended (32K) VARCHAR2/ NVARCHAR2 columns, or no function-based columns,
but can include nullable columns. To support a key that contains columns that
are part of an invisible index, you must use the ALLON NVI S| BLEI NDEXKEYS
parameter in the Oracle GoldenGate GLOBALS file.

3. If none of the preceding key types exist (even though there might be other
types of keys defined on the table) Oracle GoldenGate constructs a pseudo
key of all columns that the database allows to be used in a unique key,
excluding virtual columns, UDTs, function-based columns, extended (32K)

2-12

ORACLE

Chapter 2
Ensuring Row Uniqueness in Source and Target Tables

VARCHAR2/ NVARCHAR?2 columns, and any columns that are explicitly excluded from
the Oracle GoldenGate configuration by an Oracle GoldenGate user.

Unless otherwise excluded due to the preceding restrictions, invisible columns are
allowed in the pseudo key.

Note:

If there are other, non-usable keys on a table or if there are no keys at all
on the table, Oracle GoldenGate logs an appropriate message to the report
file. Constructing a key from all of the columns impedes the performance of
Oracle GoldenGate on the source system. On the target, this key causes
Replicat to use a larger, less efficient WHERE clause.

If a table does not have an appropriate key, or if you prefer the existing key(s) not to
be used, you can define a substitute key if the table has columns that always contain
unique values. You define this substitute key by including a KEYCOLS clause within
the Extract TABLE parameter and the Replicat MAP parameter. The specified key will
override any existing primary or unique key that Oracle GoldenGate finds. For more
information, see Reference for Oracle GoldenGate.

2-13

Establishing Oracle GoldenGate
Credentials

Learn how to create database users for the processes that interacts with the database,
assign the correct privileges, and secure the credentials from unauthorized use.

Topics

* Assigning Credentials to Oracle GoldenGate
The Oracle GoldenGate processes require one or more database credentials with
the correct database privileges for the database version, database configuration,
and Oracle GoldenGate features that you are using.

e Securing the Oracle GoldenGate Credentials
To preserve the security of your data, and to monitor Oracle GoldenGate
processing accurately, do not permit other users, applications, or processes to
log on as, or operate as, an Oracle GoldenGate database user.

3.1 Assigning Credentials to Oracle GoldenGate

The Oracle GoldenGate processes require one or more database credentials with
the correct database privileges for the database version, database configuration, and
Oracle GoldenGate features that you are using.

Create users for the source and target database instances, each one dedicated to
Oracle GoldenGate. The assigned user can be the same user for all the Oracle
GoldenGate processes that must connect to a source or target Oracle Database.

See Creating and Populating the Credential Store to learn about creating and using
the credential store.

» Oracle GoldenGate Users (Database)

3.1.1 Oracle GoldenGate Users (Database)

ORACLE

A user is required in the source database for the Service Manager in MA or the
Manager process in CA if you are using Oracle GoldenGate DDL support. This user
performs maintenance on the Oracle GoldenGate database objects that support DDL
capture.

A user is required in either the source or target database for the DEFGEN utility.

The location depends on where the data definition file is being generated. This

user performs local metadata queries to build a data-definitions file that supplies the
metadata to remote Oracle GoldenGate instances.

* Granting the Appropriate User Privileges

3-1

Chapter 3

Assigning Credentials to Oracle GoldenGate

3.1.1.1 Granting the Appropriate User Privileges

The user privileges that are required for Oracle GoldenGate depend on the database
version and the Extract or Replicat process mode. For more information about process
modes, see Choosing Different Replicat Modes with Extract.

e Oracle Database Privileges

» About the dbms_goldengate auth.grant_admin_privilege Package

e Optional Grants for doms_goldengate_auth.grant_admin_privilege

3.1.1.1.1 Oracle Database Privileges

ORACLE

The following privileges apply to Oracle database.

Privilege Replicat All Purpose
Modes
CREATE SESSI ON X Connect to the database
RESOURCE X Create objects
In Oracle Database 12cR1 and
later, instead of RESCURCE,
grant the following privilege:
ALTER USER user QUCTA
{size | UNLIMTED} ON
t abl espace;
ALTER SYSTEM X Perform administrative changes,
such as enabling logging.
ALTER USER X Required for multitenant
architecture and GGADM N
should be a valid Oracle
GoldenGate administrator
schema.
SQ.> exec Yes This is required for Autonomous
dbns_gol dengat e_aut h. gran Databases (ATP and ADW)
t _admin_privil ege(' REPUSE Extract and Replicat. Extracts in
R, cont ai ner=>' PDBL'); the Root container (CDBSROOT))
might require a value of ALL or
a specific PDB.
Privileges granted through X (Extract) Grants privileges for
dbns_gol dengat e_aut h. gran Extract, including the logmining
t _admin_privilege server.
(Replicat) Grants privileges
for both non-integrated and
integrated Replicat, including
the database inbound server.
Any or all of optional privileges X e Capture from Virtual Private

of
dbns_gol dengat e_aut h. gran
t _admin_privilege

Database
e Capture redacted data
See About the

dbms_goldengate_auth.grant_a
dmin_privilege Package for
more information.

3-2

ORACLE

Chapter 3
Assigning Credentials to Oracle GoldenGate

privileges connected as
SYS user to the capture and
the apply user:

exec
dbns_gol dengate_auth
.grant_admn_privile
ge(' GGADM N
User','*',

grant _optional _privi
| eges=>"*");

grant
DV_GOLDENGATE_ADM N,

DV_GOLDENGATE_REDO A
CCESS to GGADM N
USER

Grant Replicat the
privileges in
DBVS_MACADM ADD AUTH_
TO_REALMif applying to a
realm.

Connect as Dat abase
Vault owner and
execute the
followi ng sctipts
BEG N

DVSYS. DBMS_MACADM AD
D_AUTH TO REALM
REALM NAME =>
"Oracl e Defaul t
Cormponent
Protection

Real ni , GRANTEE =>

' GGADM N

USER , AUTH_OPTI ONS
=>1)

END ;

/

execut e
dbns_nmacadm aut hori z
e_ddl (' SYS',

' SYSTEM) ;

If DDL replication is
performed please grant the

Privilege Extract Replicat All Purpose
Modes
Grant the following X X Capture from Data Vault

3-3

Chapter 3
Assigning Credentials to Oracle GoldenGate

Privilege Extract Replicat All Purpose
Modes

below as Database Vault
owner:

execut e

dbns_nacadm aut hori z
e_ddl

(' GGADM N USER

* SCHEMA FOR DDL');

| NSERT, UPDATE, DELETE on NA X Apply replicated DML to target
target tables objects

DDL privileges on target objects NA X Issue replicated DDL on target
(if using DDL support) objects

LOCK ANY TABLE NA X Lock target tables. Only

required for initial load using
direct bulk load to SQL*Loader.

SELECT ANY TRANSACTI ON X NA Use a newer Oracle ASM API.
See #unique_55.

3.1.1.1.2 About the dbms_goldengate auth.grant_admin_privilege Package

Most of the privileges that are needed for Extract and Replicat to operate are granted
through the dbns_gol dengat e_aut h. grant _adni n_pri vi | ege package.

The first example is the default, which grants to both Extract and Replicat. The second
shows how to explicitly grant to either Extract or Replicat (in this case, Extract).

grant _admin_privilege(' ggadn)
grant _adnmin_privilege(' ggadm , ' capture');

The following example shows Extract on Oracle 12¢ multitenant database:

BEG N

dbns_gol dengat e_aut h. grant _admi n_privil ege

(grantee => 'CH#GGADM N, privilege type => ' CAPTURE ,
grant_select_privileges => TRUE, do_grants => TRUE, container =>
"ALLY),

END;

Also see Establishing Oracle GoldenGate Credentials if you are using per-PDB
capture mode.

3.1.1.1.3 Optional Grants for doms_goldengate auth.grant_admin_privilege

ORACLE

This procedure grants the privileges needed by a user to be a Oracle GoldenGate
administrator.

See DBM5_GOLDENGATE _AUTH in Oracle Database PL/SQL Packages and Types
Reference

3-4

Chapter 3
Securing the Oracle GoldenGate Credentials

3.2 Securing the Oracle GoldenGate Credentials

To preserve the security of your data, and to monitor Oracle GoldenGate processing
accurately, do not permit other users, applications, or processes to log on as, or
operate as, an Oracle GoldenGate database user.

Oracle GoldenGate provides different options for securing the log-in credentials
assigned to Oracle GoldenGate processes. The recommended option is to use a
credential store. You can create one credential store and store it in a shared location
where all installations of Oracle GoldenGate can access it, or you can create a
separate one on each system where Oracle GoldenGate is installed.

The credential store stores the user name and password for each of the assigned
Oracle GoldenGate users. A user ID is associated with one or more aliases, and it is
the alias that is supplied in commands and parameter files, not the actual user name
or password. The credential file can be partitioned into domains, allowing a standard
set of aliases to be used for the processes, while allowing the administrator on each
system to manage credentials locally.

See Creating and Populating the Credential Store in Oracle GoldenGate Security
Guide for more information about creating a credential store and adding user
credentials.

ORACLE 3-5

Choosing Different Replicat Modes with
Extract

This chapter contains information that helps you determine the appropriate Replicat
modes to use with Extract for your database environment.
Topics:

» Deciding Which Apply Method to Use
The Replicat process is responsible for the application of replicated data to an
Oracle target database.

e About Extract

e Using Different Replicat Modes with Extract
The recommended Oracle GoldenGate configuration, when supported by the
Oracle version, is to use one Extract on an Oracle source and one integrated
Replicat per source database on an Oracle target.

4.1 Deciding Which Apply Method to Use

The Replicat process is responsible for the application of replicated data to an Oracle
target database.

For an Oracle target database, you can run Replicat in parallel, non-integrated or
integrated mode. Oracle recommends that you use the parallel Replicat unless a
specific feature requires a different type of Replicat.

The following table lists the features supported by the respective Replicats.

Feature Parallel Integrated Coordinated Replicat Classic
Replicat Replicat Replicat

Batch Yes Yes Yes Yes

Processing

Barrier Yes Yes Yes No

Transactions

Dependency Yes Yes No No

Computation

ORACLE 4-1

ORACLE

Chapter 4
Deciding Which Apply Method to Use

Feature

Parallel
Replicat

Integrated
Replicat

Coordinated Replicat Classic
Replicat

Auto-
parallelism

Yes

OO ToTOOWTOoOnW TN TTOT T TTOT OO >

-+ T Cc o *"To o T

<—50"

Yes

No No

4-2

Chapter 4
Deciding Which Apply Method to Use

Feature Parallel Integrated Coordinated Replicat Classic
Replicat Replicat Replicat

neQe s T FToOoWnW T CY PTOQOD®TS TS QDM CCO T YOO YO® T ST T C O

SO TO0O0 "SS9 SsSCcOoOK T

ORACLE 4.3

Chapter 4

Deciding Which Apply Method to Use

Feature Parallel Integrated Coordinated Replicat Classic
Replicat Replicat Replicat
g
e
R
e
p
I
i
c
a
t
t
o]
u
s
e
M
I
N
P
A
R
A
L
L
E
L
I
S
Mand MAX_PARALLELI SMthen auto-parallelism is used.
DML Handler Yes, Integrated Yes No No
mode
Procedural Yes, used for Yes No No
Replication integrated
Parallel
Replicat (iPR)
Auto CDR Yes, used by Yes No No
iPR only
Dependency- Yes No No No
aware
Transaction
Split
Cross-RAC- Yes No Yes No
node
Processing

ORACLE

4-4

Chapter 4
Deciding Which Apply Method to Use

Feature Parallel Integrated Coordinated Replicat Classic
Replicat Replicat Replicat

ALLONDUPTAR No. Oracle No, Oracle Yes Yes

CETMAP Database with Database

See iPR

ALLOWDUPTAR

CETVAP |

NOALLOADUPT

ARGETNAP

Topics:

e About Parallel Replicat
* About Non-integrated Replicat
e About Integrated Replicat

4.1.1 About Parallel Replicat

ORACLE

Parallel Replicat is another variant of Replicat that applies transactions in parallel to
improve performance.

It takes into account dependencies between transactions, similar to Integrated
Replicat. The dependency computation, parallelism of the mapping and apply is
performed outside the database so can be off-loaded to another server. The
transaction integrity is maintained in this process. In addition, parallel Replicat
supports the parallel apply of large transactions by splitting a large transaction into
chunks and applying them in parallel.

< Note:

For best performance for an OLTP workload, parallel Replicat in non-
integrated mode is recommended.

Only Oracle database supports parallel Replicat and integrated parallel Replicat.
However, parallel Replicat supports all databases when using the non-integrated
option.

To use parallel Replicat, you need to ensure that you have the following values, which
are also the default values:

e Metadata in the trail (which means you can't use parallel Replicat if your trails are
formatted below 12.1.

e You must have schedulding columns in your trail file.
¢ You must use UPDATERCORDFORMAT COVPACT.

With integrated parallel Replicat, the Replicat sends the LCRs to the inbound server,
which applies the data to the target database, and in regular parallel Replicat, Oracle
GoldenGate applies the LCR as a SQL statement directly to the database, similar to
how the other non-integrated Replicats work.

4-5

Chapter 4
Deciding Which Apply Method to Use

The components of parallel Replicat are:

Mappers operate in parallel to read the trail, map trail records, convert the mapped
records to the Integrated Replicat LCR format, and send the LCRs to the Merger
for further processing. While one Mapper maps one set of transactions, the next
Mapper maps the next set of transactions. The the trail information is split and the
trail file is untouched because it orders trail information in order.

Master processes have two threads, Collater and Scheduler. The Collater receives
mapped transactions from the Mappers and puts them back into trail order

for dependency calculation. The Scheduler calculates dependencies between
transactions, groups transactions into independent batches, and sends the
batches to the Appliers to be applied to the target database.

Appliers reorder records within a batch for array execution. It applies the batch to
the target database and performs error handling. It also tracks applied transactions
in checkpoint tables.

Note:

Parallel Replicat requires that any foreign key columns are indexed.

Benefits of Parallel Replicat

4.1.1.1 Benefits of Parallel Replicat

The following are the benefits of using parallel Replicat.

Integrated Parallel Replicat enables heavy workloads to be partitioned
automatically among parallel apply processes that apply multiple transactions
concurrently, while preserving the integrity and atomicity of the source transaction.
Both a minimum and maximum number of apply processes can be configured with
the PARALLELI SMand MAX_PARALLELI SMparameters. Replicat automatically adds
additional servers when the workload increases, and then adjusts downward again
when the workload lightens.

Integrated Parllel Replicat requires minimal work to configure. All work is
configured within one Replicat parameter file, without configuring range patrtitions.

High-performance apply streaming is enabled for integrated parallel Replicat by
means of a lightweight application programming interface (API) between Replicat
and the inbound server.

Barrier transactions are coordinated by integrated parallel Replicat among multiple
server apply processes.

DDL operations are processed as direct transactions that force a barrier by waiting
for server processing to complete before the DDL execution.

Transient duplicate primary key updates are handled by integrated parallel
Replicat in a seamless manner.

Parallel Replicat can break a single large transaction into smaller chunks and
apply those chunks in parallel. See the SPLI T_TRANS_RECS for details.

4.1.2 About Non-integrated Replicat

ORACLE

4-6

Chapter 4
Deciding Which Apply Method to Use

In non-integrated mode, the Replicat process uses standard SQL to apply data directly
to the target tables. In this mode, Replicat operates as follows:

* Reads the Oracle GoldenGate trail.
* Performs data filtering, mapping, and conversion.

e Constructs SQL statements that represent source database DML or DDL
transactions (in committed order).

» Applies the SQL to the target through Oracle Call Interface (OCI).

The following diagram illustrates the configuration of Replicat in non-integrated mode.

= L] ™ : g —>g @ N S=a —>
Source Extract Trail Replicat SQL QOracle
Database i Oracle Call Target
v Interface (OCI)
- Network
3
P —
\ Trail Data F’umpJ

(Optional)

Use non-integrated Replicat when you want to make heavy use of features that are not
supported in integrated Replicat mode, see About Integrated Replicat.

You can apply transactions in parallel with a non-integrated Replicat by using a
coordinated Replicat configuration.

4.1.3 About Integrated Replicat

ORACLE

In integrated mode, the Replicat process leverages the apply processing functionality
that is available within the Oracle Database. In this mode, Replicat operates as
follows:

* Reads the Oracle GoldenGate trail.
* Performs data filtering, mapping, and conversion.

e Constructs logical change records (LCR) that represent source database DML
transactions (in committed order). DDL is applied directly by Replicat.

» Attaches to a background process in the target database known as a database
inbound server by means of a lightweight streaming interface.

» Transmits the LCRs to the inbound server, which applies the data to the target
database.

The following figure illustrates the configuration of Replicat in integrated mode.

4-7

ORACLE

Chapter 4
Deciding Which Apply Method to Use

A I
—_—
—_— 9 ® : > — — L] Y S —

Source Extract Trail Replicat _LCR Oracle
Database | Lightweight Target &
v Streaming Database
API

=, Network Inbound
= Server

3

P —

L Trail Data Pump)
A
(Optional)

Within a single Replicat configuration, multiple inbound server child processes known
as apply servers apply transactions in parallel while preserving the original transaction
atomicity. You can increase this parallelism as much as your target system will support
when you configure the Replicat process or dynamically as needed. The following
diagram illustrates integrated Replicat configured with two parallel apply servers.

Database %__

Inbound Server -
L

o — \ 4
—— \/*
W —

-/ o * Applier 1
Ol —+@r—

- NA Y v 1
Reader Coordinator N PVAK
v —

Applier 2

Integrated Replicat applies transactions asynchronously. Transactions that do not have
interdependencies can be safely executed and committed out of order to achieve fast
throughput. Transactions with dependencies are guaranteed to be applied in the same
order as on the source.

A reader process in the inbound server computes the dependencies among

the transactions in the workload based on the constraints defined at the target
database (primary key, unique, foreign key). Barrier transactions and DDL operations
are managed automatically, as well. A coordinator process coordinates multiple
transactions and maintains order among the apply servers.

If the inbound server does not support a configured feature or column type, Replicat
disengages from the inbound server, waits for the inbound server to complete
transactions in its queue, and then applies the transaction to the database in direct

4-8

Chapter 4
Deciding Which Apply Method to Use

apply mode through OCI. Replicat resumes processing in integrated mode after
applying the direct transaction.

The following features are applied in direct mode by Replicat:
e DDL operations

e Sequence operations

e SQLEXEC parameter within a TABLE or MAP parameter

* EVENTACTI ONS processing

o« UDT

" Note:

By default, UDT's are applied with the inbound server. Only if
NOUSENATI VEOBJSUPPCRT is in place, then Extract handling is done by
Replicat directly.

Because transactions are applied serially in direct apply mode, heavy use of such
operations may reduce the performance of the integrated Replicat mode. Integrated
Replicat performs best when most of the apply processing can be performed in
integrated mode, see Monitoring and Controlling Processing After the Instantiation in
Using Oracle GoldenGate for Oracle Database.

" Note:

User exits are executed in integrated mode. However, user exit may produce
unexpected results, if the exit code depends on data in the replication
stream.

" Note:

Integrated Replicat requires that any foreign key columns are indexed.

* Benefits of Integrated Replicat

* Integrated Replicat Requirements

4.1.3.1 Benefits of Integrated Replicat

ORACLE

The following are the benefits of using integrated Replicat versus nonintegrated
Replicat.

* Integrated Replicat enables heavy workloads to be partitioned automatically
among parallel apply processes that apply multiple transactions concurrently,
while preserving the integrity and atomicity of the source transaction. Both a
minimum and maximum number of apply processes can be configured with
the PARALLELI SMand MAX_PARALLELI SMparameters. Replicat automatically adds

4-9

Chapter 4
About Extract

additional servers when the workload increases, and then adjusts downward again
when the workload lightens.

* Integrated Replicat requires minimal work to configure. All work is configured
within one Replicat parameter file, without configuring range partitions.

* High-performance apply streaming is enabled for integrated Replicat by means of
a lightweight application programming interface (API) between Replicat and the
inbound server.

» Barrier transactions are coordinated by integrated Replicat among multiple server
apply processes.

» DDL operations are processed as direct transactions that force a barrier by waiting
for server processing to complete before the DDL execution.

» Transient duplicate primary key updates are handled by integrated Replicat in a
seamless manner.

4.1.3.2 Integrated Replicat Requirements

To use integrated Replicat, the following must be true.

» Supplemental logging must be enabled on the source database to support
the computation of dependencies among tables and scheduling of concurrent
transactions on the target. Instructions for enabling the required logging are in
Configuring Logging Properties. This logging can be enabled at any time up to, but
before, you start the Oracle GoldenGate processes.

* Integrated Parallel Replicat is supported on Oracle Database 12.2.0.1 and greater.

4.2 About Extract

The Oracle GoldenGate Extract process interacts directly with a database logmining
server to receive data changes in the form of logical change records (LCR). The
following diagram illustrates the configuration of Extract.

Database
Logmining
Server

-
— BN () o O

»>

I Extract
YT

LCRHs
Oracle
Database

Oracle
Redo/Archive Trail Data Pump)
Logs Y
(Optional)

Metwork

Some of the additional features of Oracle GoldenGate Extract are:

ORACLE 4-10

Chapter 4
About Extract

Because Extract is fully integrated with the database, features such as Oracle
RAC, ASM, and TDE work seamlessly with Oracle GoldenGate.

Extract uses the database logmining server to access the Oracle redo stream,
with the benefit of being able to automatically switch between different copies of
archive logs or different mirrored versions of the online logs. Thus, capture can
transparently handle the absence of a log file caused by disk corruption, hardware
failure, or operator error, assuming that additional copies of the archived and
online logs are available

Capture enables faster filtering of tables.
Capture handles point-in-time recovery and RAC integration more efficiently.

Capture features integrated log management. The Oracle Recovery Manager
(RMAN) automatically retains the archive logs that are needed by Extract.

Capture supports capture from a multitenant container database and from per-
PDB capture mode.

Because capture and integrated apply are both database objects, the naming
of the objects follow the same rules as other Oracle Database objects, see
Specifying Object Names in Oracle GoldenGate Input in Administering Oracle
GoldenGate.

Integrated Capture Deployment Options

4.2.1 Integrated Capture Deployment Options

The deployment options for integrated capture are described in this section and
depend on where the mining database is deployed. The mining database is the one
where the logmining server is deployed.

ORACLE

Local deployment: For a local deployment, the source database and the mining
database are the same. The source database is the database for which you want
to mine the redo stream to capture changes, and also where you deploy the
logmining server. Because integrated capture is fully integrated with the database,
this mode does not require any special database setup.

Downstream deployment: In a downstream deployment, the source and mining
databases are different databases. You create the logmining server at the
downstream database. You configure redo transport at the source database to
ship the redo logs to the downstream mining database for capture at that location.
Using a downstream mining server for capture may be desirable to offload the
capture overhead and any other overhead from transformation or other processing
from the production server, but requires log shipping and other configuration.

When using a downstream mining configuration, the source database and mining
database must be of the same platform. For example, if the source database is
running on Windows 64-bit, the downstream database must also be on a Windows
64-bit platform. See Configuring a Downstream Mining Database and Example
Downstream Mining Configuration to configure a downstream mining database.

Downstream sourceless Extract deployment: In the Extract parameter file,
replace the USERI D parameter with NOUSERI D. You must use TRANLOGOPTI ONS

M NI NGUSER. Extract obtains all required information from the downstream mining
database. Extract is not dependent on any connection to the source database. The
source database can be shutdown and restarted without affecting Extract.

4-11

Chapter 4
Using Different Replicat Modes with Extract

Extract will abend if it encounters redo changes that require data to be fetched
from the source database.

To capture any tables that are listed as | D KEY in the

dba_gol dengat e_support _node view, you need to have a FETCHUSERI D or
FETCHUSERI DALI AS connection to the support the tables. Tables that are listed

as FULL do not require this. We also need to state that if a customer wants to
perform SQLEXEC operations that perform a query or execute a stored procedure
they cannot use this method as it is incompatible with NOUSERI D because SQLEXEC
works with USERI D or USERI DALI AS.

4.3 Using Different Replicat Modes with Extract

ORACLE

The recommended Oracle GoldenGate configuration, when supported by the Oracle
version, is to use one Extract on an Oracle source and one integrated Replicat per
source database on an Oracle target.

One integrated Replicat configuration supports all Oracle data types either through
the inbound server or by switching to direct apply when necessary, and it preserves
source transaction integrity. You can adjust the parallelism settings to the desired
apply performance level as needed.

Each Extract group must process objects that are suited to the processing mode,
based on table data types and attributes. No objects in one Extract can have DML or
DDL dependencies on objects in the other Extract. The same type of segregation must
be applied to the Replicat configuration.

If the target database is an Oracle version that does not support integrated Replicat,
or if it is a non-Oracle database, you can use a coordinated or parallel Replicat
configuration.

4-12

Configuring Oracle GoldenGate in a
Multitenant Container Database

This chapter contains additional configuration instructions when configuring Oracle
GoldenGate using the per-PDB capture mode or the CDB root capture mode.
Topics:

* Using CDB Root Capture from PDB
* Mining Mode Toggling

e Other Requirements for Multitenant Container Databases
This topic describes the special requirements that apply to replication to and from
multitenant container databases.

5.1 Using CDB Root Capture from PDB

To capture from a multitenant database, you must use an Extract that is configured
at the root level using a c## account. To apply data into a multitenant database, a
separate Replicat is needed for each PDB, because a Replicat connects at the PDB
level and doesn't have access to objects outside of that PDB

One Extract group can capture from multiple pluggable databases to a single trail. In
the parameter file, source objects must be specified in TABLE and SEQUENCE statements
with their fully qualified three-part names in the format of cont ai ner. schena. obj ect .

As an alternative to specifying three-part names, you can specify a default pluggable
database with the SOURCECATALOG parameter, and then specify only the schena. obj ect
in subsequent TABLE or SEQUENCE parameters. You can use multiple instances of this
configuration to handle multiple source pluggable databases. For example:

SOURCECATALOG pdb1
TABLE phoeni x. t ab;
SEQUENCE phoeni x. seq;
SOURCECATALOG pdb2
TABLE dal | as. t ab;
SEQUENCE dal | as. seq;

* Applying to Pluggable Databases

* Excluding Objects from the Configuration

5.1.1 Applying to Pluggable Databases

Replicat can only connect and apply to one pluggable database. To specify the correct
one, use a SQL*Net connect string for the database user that you specify with the
USERI D or USERI DALI AS parameter. For example: GGADM N@ | NANCE. In the parameter
file, specify only the schema. obj ect in the TARGET portion of the MAP statements. In the
MAP portion, identify source objects captured from more than one pluggable database

ORACLE 5-1

Chapter 5
Using CDB Root Capture from PDB

with their three-part names or use the SOURCECATALOG parameter with two-part names.
The following is an example of this configuration.

SOURCECATALOG pdb1
MAP schema_1.tab, TARCET 1;
MAP schema_1.seq, TARCET 1;
SOURCECATALOG pdb2
MAP schema_2.tab, TARCET 2;
MAP schema_2.seq, TARCET 2;

The following is an example without the use of SOURCECATALOG to identify the source
pluggable database. In this case, the source objects are specified with their three-part
names.

MAP pdbl.schema_1.tab, TARGET 1,
MAP pdbl. schema_1.seq, TARGET 1,

To configure replication from multiple source pluggable databases to multiple target
pluggable databases, you can configure parallel Extract and Replicat streams, each
handling data for one pluggable database. Alternatively, you can configure one Extract
capturing from multiple source pluggable databases, which writes to one trail that

is read by multiple Replicat groups, each applying to a different target pluggable
database. Yet another alternative is to use one Extract writing to multiple trails, each
trail read by a Replicat assigned to a specific target pluggable database :

Source Multitenant — Source Multitenant — —
Container Database Container Database o o B
- I
LCR Oracle
n n n Lightweight Target &
R ! ! Streaming Database
bbb ! APl Inbound
Server
- . * . L . .)
Extract Replicat Replicat HReplicat
tot
= Trail Trail Trail
- T Iy
‘ E =
[_. -E—
Trail ‘ £
»> E >
— J Network
Data Pumps

5.1.2 Excluding Objects from the Configuration

ORACLE

To exclude pluggable databases, schemas, and objects from the configuration,
you can use the CATALOGEXCLUDE, SCHEMAEXCLUDE, TABLEEXCLUDE, MAPEXCLUDE, and
EXCLUDEW LDCARDCBJECTSONLY parameters.

5-2

Chapter 5
Mining Mode Toggling

5.2 Mining Mode Toggling

Mining mode toggling is not supported. This implies that after you create mining in
ROOT, then the session will stay mining in ROOT and if the you choose to create mining
in PDB, then the session will stay mining in that particular PDB.

However, for a specific need if you need to migrate some previous Oracle GoldenGate
session mining in CDB$ROOT to mining in specific PDB, then there is a migration
process that you can follow:

1. Register a new per-PDB Extract. For example, the SCN returned is X.
2. Let the old ROOT Extract mine the past X (RECOVERYSCN X).

3. Stop the old Extract

4. Alter the new Extract so that its current SCN is set to be VY.

5

Start the new Extract.

This new Extract picks up from where the old Extract left off.

Note:

There may be some duplicate transactions at SCN Y, if there were multiple
t xs committing at the same SCN Y. However, Replicat can handle duplicate
t xs by default.

5.3 Other Requirements for Multitenant Container
Databases

ORACLE

This topic describes the special requirements that apply to replication to and from
multitenant container databases.

The requirements are:

* The different pluggable databases in the multitenant container database can have
different character sets. Oracle GoldenGate captures data from any multitenant
database with different character sets into one trail file and replicates the data
without corruption due to using different character sets.

» Extract must connect to the root container (cdb$r oot) as a common user in
order to interact with the logmining server. To specify the root container, use
the appropriate SQL*Net connect string for the database user that you specify
with the USERI D or USERI DALI AS parameter. For example: C##GGADM N@| NANCE.
See Establishing Oracle GoldenGate Credentials for how to create a user for the
Oracle GoldenGate processes and grant the correct privileges.

e To support source CDB 12.2, Extract must specify the trail format as release 12.3.
Due to changes in the redo logs, to capture from a multitenant database that is
Oracle 12.2 or higher, the trail format release must be 12.3 or higher.

e The dbns_gol dengat e_aut h. grant _admi n_pri vi | ege package grants the
appropriate privileges for capture and apply within a multitenant container

5-3

ORACLE

Chapter 5
Other Requirements for Multitenant Container Databases

database. This includes the cont ai ner parameter, which must be set to ALL, as
shown in the following example:

exec
dbns_gol dengat e_aut h. grant _admi n_pri vi | ege(' C##GGADM N , cont ai ner=>"al | ")

e DDL replication works as a normal replication for multitenant databases. However,
DDL on the root container should not be replicated because Replicats must not
connect to the root container, only to PDBs.

FLUSH SEQUENCE for Multitenant Database

FLUSH SEQUENCE must be issued at the PDB level, so the user will need to create an
Oracle GoldenGate user in each PDB that they wish to do sequence replication for,
and then use DBLOG Nto log into that PDB, and then perform the FLUSH SEQUENCE
command.

It is recommended that you use the same schema in each PDB, so that it works with
the GGSCHEMA GLOBALS parameter file. Here is an example:

Envi ronment Information OGG 18.1 Oracle 12c to Oracle 12c Replication,
Integrated Extract, Parallel Replicat
Source: CDB GOLD, PDB CERTM SSN
Target: CDB PLAT, PDB CERTDSQ
Sour ce OGG Configuration
Cont ai ner User: CH#GGADM N
PDB User for Sequences: GGATE
sql plus / as sysdbao
SQ.> alter session set container=CERTM SSN;
SQ.> create user ggate identified by password default tablespace users
tenporary tabl espace tenp quota unlimted on users container=current;

Run @equence

sqgl plus / as sysdba

SQ.> alter session set container=CERTM SSN;
SQ> @equence

When prompted enter

GGATE GLOBALS
GGSCHEMA GGATE

FLUSH SEQUENCE:

GGSCl > DBLOG N USERI DALI AS GGADM N DOMAI N GOLD_QC_CDB$ROCT

GGSCl > FLUSH SEQUENCE CERTM SSN. SRCSCHEMAL. *

Target Oracle GoldenGate Configuration:

PDB User: GGATE
Run @equence

5-4

Chapter 5
Other Requirements for Multitenant Container Databases

sql plus / as sysdba

SQ.> alter session set container=CERTDSQ
SQ> @equence

When prompted enter GGATE.

This also applies to the @equence. sql scri pt, which must also be run at each PDB
that you are going to capture from.

ORACLE 5-5

Configuring Extract

This chapter contains instructions for configuring the Oracle GoldenGate capture
process to capture transaction data.

When Extract is running from a remote system, Oracle GoldenGate automatically
enables cross endian interoperability. This implies that if the endian value where
Extract is running is different from the endian value where the Oracle database is
running, then the cross endian support is automatically enabled. For cross endian
Extract to work, the compatibility parameter of the source database must be 11.2.0.4
or higher.

Topics:

Prerequisites for Configuring Extract
You must adhere to the guidelines provided in this topic before configuring an
Extract.

What to Expect from these Instructions

These instructions show you how to configure Extract parameter (configuration)
file for the primary Extract, which captures transaction data from the data source,
and for a data-pump Extract, which propagates captured data that is stored locally
in a trail from the source system to the target system.

Configuring Primary Extract

The mining database from which the primary Extract captures log change records
from the logmining server, can be either local or downstream from the source
database.

Setting up the Automatic Extract Mode
The automatic Extract mode captures changes for all the tables that are enabled
for logical replication.

Configuring the Data Pump Extract

A data pump can perform data filtering, mapping, and conversion, or it can

be configured in pass-through mode, where data is passively transferred as-is,
without manipulation.

Next Steps

A parameter file is a plain text file that is read by an associated Oracle
GoldenGate process. Oracle GoldenGate uses two types of parameter files: a
GLOBALS file and runtime parameter files.

6.1 Prerequisites for Configuring Extract

You must adhere to the guidelines provided in this topic before configuring an Extract.

The guidelines for configuring an Extract in integrated mode are:

1.
2.
3.

ORACLE

Preparing the Database for Oracle GoldenGate.
Establishing Oracle GoldenGate Credentials.

Choosing Different Replicat Modes with Extract.

6-1

Chapter 6
What to Expect from these Instructions

4. For Microservices Architecture, the deployment needs to be up and running for the
Extract process. To know more about starting a deployment, see How to Start or
Stop Deployments and Services.

For Classic Architecture, Manager must be started prior to adding or starting
Extract.

5. Additionally, review the guidelines in Administering Oracle GoldenGate.

6.2 What to Expect from these Instructions

These instructions show you how to configure Extract parameter (configuration) file for
the primary Extract, which captures transaction data from the data source, and for a
data-pump Extract, which propagates captured data that is stored locally in a trail from
the source system to the target system.

Your business requirements probably will require a more complex topology, but this
procedure forms a basis for the rest of your configuration steps.

By performing these steps, you can:

» get the basic configuration files established.

* build upon them later by adding more parameters as you make decisions about
features or requirements that apply to your environment.

» use copies of them to make the creation of additional parameter files faster than
starting from scratch.

6.3 Configuring Primary Extract

ORACLE

The mining database from which the primary Extract captures log change records from
the logmining server, can be either local or downstream from the source database.

These steps configure the primary Extract to capture transaction data from either
location. See Configuring a Downstream Mining Database and Example Downstream
Mining Configuration for more information about capturing from a downstream mining
database.

Note:

One Extract group is generally sufficient to capture from a single database

or multiple pluggable databases within a multitenant container database. See
Configuring Oracle GoldenGate in a Multitenant Container Database . You
can also choose per-PDB capture mode when working in an Autonomous
Data Warehouse (ADW) or cloud environment. See Configuring Extract to
Capture from an Autonomous Database.

1. In GGSCI, Admin Client, or REST API client on the source system, create the
Extract parameter file.

EDI T PARAMS nane

Where: nane is the name of the primary Extract.

6-2

ORACLE

Chapter 6
Configuring Primary Extract

< Note:

To learn about using Oracle GoldenGate microservices to perform this
task, see How to Add Extracts.

Enter the Extract parameters in the order shown, starting a new line for

each parameter statement. Examples are shown for a regular database, a
multitenant container database, and downstream deployments for both non-CDB
and multitenant databases. The difference between the two is whether you must
use two-part or three-part object names in the TABLE and SEQUENCE specifications.
See the basic parameters for primary Extract for more information and parameter
descriptions.

Basic parameters for Extract mining a non-mulitenant database

EXTRACT fi nancep

USERI DALI AS c## alias

DDL | NCLUDE MAPPED
EXTTRAIL /ggs/dirdat/ It
SEQUENCE hr. enpl oyees_seq;
TABLE hr. *;

Basic parameters for Extract capturing from a multitenant database

EXTRACT fi nancep

USERI DALI AS c## alias
DDL | NCLUDE MAPPED
EXTTRAIL /ggs/dirdat/lt
TABLE test.ogg.tabl;
SEQUENCE hr . enpl oyees_seq;
TABLE hr. *;

TABLE sal es. *;

TABLE acct. *;

Basic parameters for Extract where the mining database is a downstream
database and is a non-CDB database

EXTRACT fi nancep

USERI DALI AS c## _ali as

TRANLOGOPTI ONS M NI NGUSERALI AS c##_al i as
TRANLOGOPTI ONS | NTEGRATEDPARAMS (DOANSTREAM REAL_TI ME_M NE V)
LOGALLSUPCOLS

UPDATERECORDFORVAT COVPACT

DDL | NCLUDE MAPPED

ENCRYPTTRAI L AES192

EXTTRAIL /ggs/dirdat/It

SEQUENCE hr. enpl oyees_seq;

TABLE hr. *;

Basic parameters for the primary Extract where the mining database is a
downstream database and is a multitenant container database

EXTRACT fi nancep

USERI DALI AS tigerl

TRANLOGOPTI ONS M NI NGUSERALI AS ti ger 2

TRANLOGOPTI ONS | NTEGRATEDPARAMS (MAX_SGA SI ZE 164, &
DOWNSTREAM REAL_TI ME_M NE)

LOGALLSUPCOLS

6-3

Chapter 6
Configuring Primary Extract

UPDATERECORDFORMAT COVPACT

DDL | NCLUDE MAPPED SOURCECATALOG pdbl | NCLUDE MAPPED SOURCECATALOG pdb2
ENCRYPTTRAI L AES192EXTTRAIL /ggs/dirdat/It

TABLE test.ogg.tabl;

SOURCECATALQG pdb1

SEQUENCE hr . enpl oyees_seq;

TABLE hr. *;

SOURCECATALOG pdb2
TABLE sal es. *;
TABLE acct. *;

Parameter

Description

EXTRACT group

gr oup is the name of the Extract group. For more information, see Reference
for Oracle GoldenGate.

USERI DALI AS al i as

Specifies the alias of the database login credential of the user that is
assigned to Extract. This credential must exist in the Oracle GoldenGate
credential store.

LOGALLSUPCOLS

Writes all supplementally logged columns to the trail, including those
required for conflict detection and resolution and the scheduling columns
required to support integrated Replicat. (Scheduling columns are primary
key, unique index, and foreign key columns.) You configure the database
to log these columns with GGSCI commands. See Establishing Oracle
GoldenGate Credentials.

UPDATERECORDFORVAT COMPACT

Combines the before and after images of an UPDATE operation into a
single record in the trail. This parameter is valid for Oracle Databases
version 12c and later to support Replicat in integrated mode. Although not
a required parameter, UPDATERECORDFORVMAT COMPACT is a best practice
and significantly improves Replicat performance.

TRANLOGOPTI ONS
M NI NGUSERALI AS al i as

Specifies connection information for the logmining server at the downstream
mining database, if being used.

M NI NGUSERALI AS specifies the alias of the Extract user for the downstream
mining database. This is the user that you created in Configuring a
Downstream Mining Database . The credential for this user must be stored in
the Oracle GoldenGate credential store.

Use M NI NGUSERALI AS only if the database logmining server is in a different
database from the source database; otherwise just use USERI DALI AS.
When using M NI NGUSERALI AS, use it in addition to USERI DALI AS, because
credentials are required for both databases.

TRANLOGOPTI ONS
[| NTEGRATEDPARANMS
(paraneter[, ...])]

Optional, passes parameters to the Oracle Database that contains the
database logmining server. Use only to change logmining server parameters
from their default settings. See Additional Parameter Options for Extract.

TRANLOGOPTI ONS
CHECKPOI NTRETENTI ONTI ME days

Optional, controls the number of days that Extract retains checkpoints
before purging them automatically. Partial days can be specified using
decimal values. For example, 8.25 specifies 8 days and 6 hours. For more
information, see Reference for Oracle GoldenGate.

DDL incl ude_cl ause

Required if replicating DDL operations. See Configuring DDL Support for
more information.

ENCRYPTTRAI L al gorithm

Encrypts the local trail.

ORACLE

6-4

Chapter 6
Setting up the Automatic Extract Mode

Parameter

Description

EXTTRAIL pat hnane

Specifies the path name of the local trail to which the primary Extract writes
captured data.

SOURCECATALQG cont ai ner

Use this parameter when the source database is a multitenant container
database. Specifies the name of a pluggable database that is to be
used as the default container for all subsequent TABLE and SEQUENCE
parameters that contain two-part names. This parameter enables you

to use two-part object names (schena. obj ect) rather than three-part
names (cont ai ner. schena. obj ect). It remains in effect until another
SOURCECATALOG parameter is encountered or a full three-part TABLE or
SEQUENCE specification is encountered.

{TABLE | SEQUENCE}
[cont ai ner.] schema. obj ect;

Specifies the database object for which to capture data.

e TABLE specifies a table or a wildcarded set of tables.

« SEQUENCE specifies a sequence or a wildcarded set of sequences.

- cont ai ner is the name of the pluggable database (PDB) that contains
the object, if this database is a multitenant container database. The
container part of the name is not required if this Extract group will only
process data from one PDB and the default PDB is specified with the
SOURCECATALQOG parameter.

e schena is the schema name or a wildcarded set of schemas.

. obj ect is the table or sequence name, or a wildcarded set of those
objects.

Terminate the parameter statement with a semi-colon.

To exclude a name from a wildcard specification, use the CATALOGEXCLUDE,

SCHEMAEXCLUDE, TABLEEXCLUDE, and EXCLUDEW LDCARDOBJECTSONLY

parameters as appropriate.

MAPI NVI SI BLECOLUWNS

Controls whether or not Replicat includes invisible columns in Oracle target
tables for default column mapping. Configure the invisible columns in your
column mapping using SQL to explicitly specify column names. For example:

CREATE TABLE tabl (id NUMBER data CLOB | NVI SIBLE);
I NSERT | NTO tabl VALUES (1, 'a');ERROR ORA-913
INSERT INTO tabl (id, data) VALUES (1, 'a'); K

You can change the column visibility using ALTER TABLE. The invisible
column can be part of an index, including primary key and unique index.

3. Enter any optional Extract parameters that are recommended for your
configuration. You can edit this file at any point before starting processing by using
the EDI T PARAMS command in GGSCI.

4. Save and close the file.

6.4 Setting up the Automatic Extract Mode

The automatic Extract mode captures changes for all the tables that are enabled for
logical replication.

To set up an auto Extract, you must have Oracle Database 21c and higher. A table is
enabled for logical replication or auto capture when:

* It has sufficient ID or scheduling-key supplemental log data at table or schema

level.

ORACLE

6-5

Chapter 6
Configuring the Data Pump Extract

* It has primary key (PK), unique identifier (Ul), foreign key (FK) supplemental log
data, and ALLKEYS supplemental log data. ALLKEYS is required in addition to
PK, Ul and FK because it logs all unique keys at the schema-wide supplemental
logging level in the absence of a primary key.

Benefits of Using the Auto Extract Mode

» Easy to configure captured table set

* When captured table set changes, you don't need to update the TABLE/
TABLEEXCLUDE parameter, or stop and restart Extract.

Enabling Auto Capture

See TRANLOGOPTI ONS | NTEGRATEDPARAMS for syntax and usage.

Use the following DDLs to enable auto capture at the table level:
CREATE/ATLER TABLEt abl e_name ENABLE LOG CAL REPLI CATI ON ALLKEYS
or

CREATE/ ALTER TABLE tabl e_name ENABLE LOG CAL REPLI CATI ON
ALLOANONVAL| DATEDKEYS

6.5 Configuring the Data Pump Extract

ORACLE

A data pump can perform data filtering, mapping, and conversion, or it can be
configured in pass-through mode, where data is passively transferred as-is, without
manipulation.

These steps configure the data pump that reads the local trail and sends the data
across the network to a remote trail. The data pump is optional, but recommended.

" Note:

If you want to perform this task using microservices, see How to Add a Path
in Using the Oracle GoldenGate Microservices Architecture.

1. In GGSCI on the source system, create the data-pump parameter file.

EDI T PARAMS nane

Where: nane is the name of the data pump Extract.

2. Enter the data pump parameters in the order shown, starting a new line for each
parameter statement. Your input variables will be different.

Basic parameters for the data pump Extract group using two-part object
names from a hon-CDB database:

EXTRACT ext punp

USERI DALI AS tigerl

RMIHOST finl, MGRPORT 7809 ENCRYPT AES192, KEYNAME securekey?
RMITRAIL /ggs/dirdat/rt

SEQUENCE hr . enpl oyees_seq;

TABLE hr. *;

6-6

Chapter 6
Configuring the Data Pump Extract

Basic parameters for the data pump Extract group using three-part object
names from a trail that contains multitenant database data (including a
pluggable database):

EXTRACT ext punp

USERI DALI AS tigerl
RMIHOST finl, MGERPORT 7809 ENCRYPT AES192, KEYNAME secur ekey?2
RMITRAIL /ggs/dirdat/rt
TABLE test.ogg.tabl;
SOURCECATALQG pdb1
SEQUENCE hr . enpl oyees_seq;
TABLE hr. *;
SOURCECATALOG pdb2
TABLE sal es. *;

TABLE acct. *;

Parameter Description

EXTRACT group group is the name of the data pump Extract. For more information, see Reference for
Oracle GoldenGate.

USERI DALI AS al i as Specifies the alias of the database login credential of the user that is assigned to
Extract. This credential must exist in the Oracle GoldenGate credential store.

RMTHCST host name « RMIHOST specifies the name or IP address of the target system.
MGRPORT por t nunbér MGRPORT specifies the port number where Manager is running on the target.
[, ENCRYPT al gorithm ° ENCRYPT specifies optional encryption of data across TCP/IP.

KEYNAME keynane]

RMITRAI L pat hnane Specifies the path name of the remote trail.
SOURCECATALOG Use this parameter when the source database is a multitenant container database.
cont ai ner Specifies the name of a pluggable database that is to be used as the default

container for all subsequent TABLE and SEQUENCE parameters that contain two-part
names. This parameter enables you to use two-part object names (schema. obj ect)
rather than three-part names (cont ai ner. schena. obj ect). It remains in effect
until another SOURCECATALQCG parameter is encountered or a full three-part TABLE
or SEQUENCE specification is encountered. Use this parameter when the source
database is a multitenant container database.

{TABLE | SEQUENCE} Specifies a table or sequence, or multiple objects specified with a wildcard. In most
[contai ner.]schema. ob cases, this listing will be the same as that in the primary Extract parameter file.
j ect; « TABLE specifies a table or a wildcarded set of tables.

» SEQUENCE specifies a sequence or a wildcarded set of sequences.

- contai ner is the name of the root container or pluggable database that
contains the table or sequence, if this source database is a multitenant container
database. See the SOURCECATALOG description in this table.

« schenn is the schema name or a wildcarded set of schemas.
« obj ect is the name of a table or sequence, or a wildcarded set of those objects.
Terminate this parameter statement with a semi-colon.

To exclude tables or sequences from a wildcard specification, use the TABLEEXCLUDE
or SEQUENCEEXCLUDE parameter after the TABLE statement.

3. Enter any optional Extract parameters that are recommended for your
configuration. You can edit this file at any point before starting processing by using
the EDI T PARAMS command in GGSCI.

ORACLE .

Chapter 6
Next Steps

4. Save and close the file.

6.6 Next Steps

ORACLE

A parameter file is a plain text file that is read by an associated Oracle GoldenGate
process. Oracle GoldenGate uses two types of parameter files: a GLOBALS file and
runtime parameter files.

Once you have created a basic parameter file, see the following for related
configuration steps.

Configuring Oracle GoldenGate Apply

Configuring Oracle GoldenGate in a Multitenant Container Database
Additional Oracle GoldenGate Configuration Considerations
Configuring DDL Support (to use Oracle GoldenGate DDL support)
Creating Process Groups (to use Oracle GoldenGate DDL support)
Instantiating Oracle GoldenGate Replication

Optional Parameters for Integrated Modes

Configuring a Downstream Mining Database

Example Downstream Mining Configuration

Supporting Changes to XML Schemas

6-8

Configuring Oracle GoldenGate Apply

This chapter contains instructions for configuring the Replicat apply process in either
nonintegrated or integrated mode.
Topics:

e Prerequisites for Configuring Replicat
This topic provides the best practices for configuring Replicat.

* What to Expect from these Instructions
These instructions show you how to configure a basic Replicat parameter
(configuration) file.

e Creating a Checkpoint Table
The checkpoint table is a required component of Replicat.

e Configuring Replicat
Configure a Replicat process to configure Replicat against a pluggable database.
Replicat can operate in any mode within a pluggable database.

* Next Steps
Once you have created a basic parameter file for Replicat, see the following for
additional configuration steps.

7.1 Prerequisites for Configuring Replicat

ORACLE

This topic provides the best practices for configuring Replicat.
The guidelines to follow before configuring Replicat are:

1. Preparing the Database for Oracle GoldenGate.
2. Establishing Oracle GoldenGate Credentials.

3. Choosing Different Replicat Modes with Extract.
4.

Create the Oracle GoldenGate instance on the target system by configuring the
Manager process.

See How to Add a Replicat in Using the Oracle GoldenGate Microservices
Architecture.

" Note:

To switch an active Replicat configuration from one mode to the other,
perform these configuration steps and then see Administering Oracle
GoldenGate.

7-1

Chapter 7
What to Expect from these Instructions

7.2 What to Expect from these Instructions

These instructions show you how to configure a basic Replicat parameter
(configuration) file.

Your business requirements probably will require a more complex topology, but this
procedure forms a basis for the rest of your configuration steps.

By performing these steps, you can:

» get the basic configuration file established.

* build upon it later by adding more parameters as you make decisions about
features or requirements that apply to your environment.

* use copies of it to make the creation of additional Replicat parameter files faster
than starting from scratch.

¢ Note:

These instructions do not configure Replicat to apply DDL to the target.
To support DDL, create the basic Replicat parameter file and then see
Configuring DDL Support for configuration instructions.

7.3 Creating a Checkpoint Table

The checkpoint table is a required component of Replicat.

A Replicat maintains its recovery checkpoints in the checkpoint table, which is

stored in the target database. Checkpoints are written to the checkpoint table within
the Replicat transaction. Because a checkpoint either succeeds or fails with the
transaction, Replicat ensures that a transaction is only applied once, even if there

is a failure of the process or the database. See Before Creating Replicat in the Using
the Oracle GoldenGate Microservices Architecture to learn to create checkpoint tables
from the Microservices web Ul.

< Note:

Oracle recommends using checkpoint tables. Multiple classic or coordinated
Replicats can share the same checkpoint table, but that may not result in
the best performance. With high volume environments, you must ensure
that the checkpoint tables do not reside on different drives to become a
point of conflict. See Instantiating Oracle GoldenGate Replication for more
information.

e Adding the Checkpoint Table to the Target Database
e Specifying the Checkpoint Table in the Oracle GoldenGate Configuration
e Disabling Default Asynchronous COMMIT to Checkpoint Table

ORACLE 7-2

Chapter 7
Creating a Checkpoint Table

7.3.1 Adding the Checkpoint Table to the Target Database

1. From the Oracle GoldenGate directory on the target, run GGSCI and issue the
DBLOA N command to log into the target database.

DBLOG N USERI DALI AS al i as

Where:

» alias specifies the alias of the database login credential of a user that can
create tables in a schema that is accessible to Replicat. This credential must
exist in the Oracle GoldenGate credential store. For more information, see
Establishing Oracle GoldenGate Credentials.

2. In GGSCI or Admin Client, create the checkpoint table in a schema of your choice
(ideally dedicated to Oracle GoldenGate).

ADD CHECKPO NTTABLE [contai ner.]schema.tabl e

Where:

e contai ner is the name of the container if schena. t abl e is in a multitenant
container database. This container can be the root container or a pluggable
database that contains the table.

* schema. tabl e are the schema and name of the table. See Administering
Oracle GoldenGate for instructions for specifying object names.

7.3.2 Specifying the Checkpoint Table in the Oracle GoldenGate
Configuration

To specify the checkpoint table in the Oracle GoldenGate configuration:
1. Create a GLOBALS file (or edit the existing one).
EDI T PARAMS ./ GLOBALS

< Note:

EDI T PARANS creates a simple text file. When you save the file after EDI T
PARAMS, it is saved with the name GLOBALS in upper case, without a file
extension. It must remain as such, and the file must remain in the root
Oracle GoldenGate directory.

2. Inthe GLOBALS file, enter the CHECKPQO NTTABLE parameter.

CHECKPO NTTABLE [cont ai ner.]schena. tabl e
3. Save and close the GLOBALS file.

7.3.3 Disabling Default Asynchronous COMMIT to Checkpoint Table

When a nonintegrated Replicat uses a checkpoint table, it uses an asynchronous
COW T with the NOAAI T option to improve performance. Replicat can continue

ORACLE a

Chapter 7
Configuring Replicat

processing immediately after applying this COWM T, while the database logs the
transaction in the background. You can disable the asynchronous COW T with NOMI T
by using the DBOPTI ONS parameter with the DI SABLECOMM TNOWAI T option in the
Replicat parameter file.

¢ Note:

When the configuration of a nonintegrated Replicat group does not include
a checkpoint table, the checkpoints are maintained in a file on disk. In this
case, Replicat uses COW T with WAI T to prevent inconsistencies in the event
of a database failure that causes the state of the transaction, as in the
checkpoint file, to be different than its state after the recovery.

7.4 Configuring Replicat

Configure a Replicat process to configure Replicat against a pluggable database.
Replicat can operate in any mode within a pluggable database.

These steps configure the Replicat process.

1. In GGSCI on the target system, create the Replicat parameter file.
EDI T PARAMS nane
Where: name is the name of the Replicat group.
2. Enter the Replicat parameters in the order shown, starting a new line for each
parameter statement. See Basic Parameters for Replicat for descriptions.
Basic parameters for the Replicat group in nonintegrated mode:
REPLI CAT fi nancer
USERI DALI AS tiger2
ASSUMETARGETDEFS
MAP hr.*, TARGET hr2.*;
Basic parameters for the Replicat group in integrated Replicat mode:
REPLI CAT fi nancer
DBOPTI ONS | NTEGRATEDPARAMS(par al | el i sm 6)
USERI DALI AS tiger2
ASSUMETARGETDEFS
MAP hr.*, TARGET hr2.*;
Parameter Description
REPLI CAT group group is the name of the Replicat group.
DBOPTI ONS DEFERREFCONST Applies to Replicat in nonintegrated mode. DEFERREFCONST sets constraints

to DEFERRABLE to delay the enforcement of cascade constraints by the target
database until the Replicat transaction is committed. See Reference for Oracle
GoldenGate for additional important information.

ORACLE

7-4

Chapter 7
Configuring Replicat

Parameter

Description

DBOPTI ONS | NTEGRATEDPARANMS This parameter specification applies to Replicat in integrated mode. It specifies

(paraneter[, ...])

optional parameters for the inbound server.

See Optional Parameters for Integrated Modesfor additional important
information about these DBOPTI ONS options.

USERI DALI AS al i as

Specifies the alias of the database login credential of the user that is assigned
to Replicat. This credential must exist in the Oracle GoldenGate credential
store. For more information, see Establishing Oracle GoldenGate Credentials

MAP

Specifies the relationship between a source table or sequence, or multiple

[cont ai ner.]schema. obj ect, objects, and the corresponding target object or objects.

TARGET schena. obj ect ;

« MAP specifies the source table or sequence, or a wildcarded set of
objects.

« TARGET specifies the target table or sequence or a wildcarded set of
objects.

- contai ner is the name of a container, if the source database is a
multitenant container database.

e schena is the schema name or a wildcarded set of schemas.

. obj ect is the name of a table or sequence, or a wildcarded set of
objects.

Terminate this parameter statement with a semi-colon.

To exclude objects from a wildcard specification, use the MAPEXCLUDE

parameter.

For more information and for additional options that control data filtering,
mapping, and manipulation, see MAP in Reference for Oracle GoldenGate.

3. If using integrated Replicat or parallel Replicat in integrated mode, add the
following parameters to the Extract parameter file:

LOGALLSUPCOLS: This parameter ensures the capture of the supplementally
logged columns in the before image. It's the default parameter and shouldn't
be turned off or disabled. It is valid for any source database that is supported
by Oracle GoldenGate. For Extract versions older than 12c, you can use
CGETUPDATEBEFORES and NOCOVPRESSDELETES parameters to satisfy the same
requirement. The database must be configured to log the before and after
values of the primary key, unique indexes, and foreign keys.

The UPDATERECORDFORMAT parameter set to COMPACT: This setting causes
Extract to combine the before and after images of an UPDATE operation into a
single record in the trail. This is the default option and it is recommended that
you don't change the default setting.

4. Enter any optional Replicat parameters that are recommended for your
configuration. You can edit this file at any point before starting processing by using
the EDI T PARAMS command in GGSCI. For more information, see the Reference for
Oracle GoldenGate and Optional Parameters for Integrated Modes for additional
configuration considerations..

5. Save and close the file.

ORACLE

7-5

Chapter 7
Next Steps

< Note:

See Administering Oracle GoldenGate for important information about
making configuration changes to Replicat once processing is started, if using
integrated Replicat.

7.5 Next Steps

ORACLE

Once you have created a basic parameter file for Replicat, see the following for
additional configuration steps.

Configuring Extract if you have not configured capture yet.

Additional Configuration Steps For Using Nonintegrated Replicat (if using
nonintegrated Replicat)

Additional Oracle GoldenGate Configuration Considerations
Configuring DDL Support (to use Oracle GoldenGate DDL support)
Creating Process Groups

Instantiating Oracle GoldenGate Replication

7-6

Additional Oracle GoldenGate
Configuration Considerations

This chapter contains additional configuration considerations that may apply to your
database environment.
Topics:

Installing Support for Oracle Sequences
To support Oracle sequences, you must install some database procedures.

Handling Special Data Types
It addresses special configuration requirements for different Oracle data types

Handling Other Database Properties
This topic describes the database properties that may affect Oracle GoldenGate
and the parameters that you can use to resolve or work around the condition.

Controlling the Checkpoint Frequency

The CHECKPQO NTRETENTI ONTI ME option of the TRANLOGOPTI ONS parameter controls
the number of days that Extract in integrated mode retains checkpoints before
purging them automatically.

Excluding Replicat Transactions

In a bidirectional configuration, Replicat must be configured to mark its
transactions, and Extract must be configured to exclude Replicat transactions so
that they do not propagate back to their source.

Advanced Configuration Options for Oracle GoldenGate
You may need to configure Oracle GoldenGate with advanced options to suit your
business needs.

8.1 Installing Support for Oracle Sequences

To support Oracle sequences, you must install some database procedures.

ORACLE

To Install Oracle Sequence Objects

1.
2.

In SQL*Plus, connect to the source and target Oracle systems as SYSDBA.

If you already assigned a database user to support the Oracle GoldenGate
DDL replication feature, you can skip this step. Otherwise, in SQL*Plus on both
systems create a database user that can also be the DDL user.

CREATE USER DDLuser | DENTIFIED BY password;
GRANT CONNECT, RESCURCE, DBA TO DDLuser;

From the Oracle GoldenGate installation directory on each system, run GGSCI.
In GGSCI, issue the following command on each system.
EDI T PARAMS ./ GLOBALS

In each GLOBALS file, enter the GGSCHEMA parameter and specify the schema of the
DDL user that you created earlier in this procedure.

8-1

ORACLE

Chapter 8
Installing Support for Oracle Sequences

GGSCHEMA schema
6. Save and close the files.

7. In SQL*Plus on both systems, run the sequence. sql script from the root of the
Oracle GoldenGate installation directory. This script creates some procedures
for use by Oracle GoldenGate processes. (Do not run them yourself.) You are
prompted for the user information that you created in the first step.

@equence. sql

8. In SQL*Plus on the source system, grant EXECUTE privilege on the updat eSequence
procedure to a database user that can be used to issue the DBLOG N command.
Remember or record this user. You use DBLOG Nto log into the database prior to
issuing the FLUSH SEQUENCE command, which calls the procedure.

GRANT EXECUTE on DDLuser . updat eSequence TO DBLOGQ Nuser;

9. In SQL*Plus on the target system, grant EXECUTE privilege on the
replicat eSequence procedure to the Replicat database user.

GRANT EXECUTE on DDLuser . replicateSequence TO Repli cat user;
10. In SQL*Plus on the source system, issue the following statement in SQL*Plus.

ALTER TABLE sys. seq$ ADD SUPPLEMENTAL LOG DATA (PRI MARY KEY) COLUMNS;

To capture the sequence from a multitenant database

1. Create an Oracle GoldenGate user in each PDB that you need to capture
sequences from.

2. Add the user to the GLOBALS parameter file. It is easier if you use the same user
for each PDB, if you don't then you need to change the GLOBALS file each time
you do step 3.

3. Run the sequence. sql script on each PDB using the user created in step 1.
4. Log into Admin Client or GGSCI.

5. Connect to the root container on the source using DBLOG N.

6. Issue the FLUSH SEQUENCE command for each PDB.

If replicating sequences into a multitenant database:

1. On the target, create a user as created in step 1 in the previous section, for each
PDB you are replicating sequences into.

2. Connect to the PDB using that user and run the sequence. sqgl script.

If you don't want to keep these database accounts, you can drop the user or
deactivate the account.

Here is an example of the entire process:

Envi ronment information
0GG 19.1 Oracle 12¢c to Oracle 12c Replication, Integrated
Extract, Parallel Replicat
Source: CDB GOLD, PDB CERTM SSN
Target: CDB PLAT, PDB CERTDSQ
Source Oracle Gol denGate Configuration

8-2

Chapter 8
Handling Special Data Types

Cont ai ner User: C##GGADM N
PDB User for Sequences: GGATE

sqlplus / as sysdba
SQ> alter session set container=CERTM SSN
SQ > create user ggate identified by password default
t abl espace
users tenporary tabl espace tenp quota unlimted on users
cont ai ner=current;
Run @equence
sqgl plus / as sysdba
SQ> alter session set container=CERTM SSN

SQ> @equence

When prompted enter GGATE

GLOBALS
GGSCHEMA GGATE
Fl ush Sequence
GGSCl > DBLOG N USERI DALI AS GGADM N DOVAI N GOLD_QC_CDB$ROOT
GGSCl > FLUSH SEQUENCE CERTM SSN. SRCSCHEMAL
Target OGG Configuration
PDB User: GGATE
Run @equence
sqgl plus / as sysdba
SQL> alter session set container=CERTDSQ

SQ.> @equence

When prompted enter GGATE.

8.2 Handling Special Data Types

It addresses special configuration requirements for different Oracle data types

This section applies whether Extract operates in classic or integrated capture mode,
unless otherwise noted.

e Multibyte Character Types
* Oracle Spatial Objects

e TIMESTAMP

e Large Objects (LOB)

e XML

» User Defined Types

8.2.1 Multibyte Character Types

ORACLE

Multi-byte characters are supported as part of a supported character set. If the
semantics setting of an Oracle source database is BYTE and the setting of an Oracle
target is CHAR, use the Replicat parameter SOURCEDEFS in your configuration, and place
a definitions file that is generated by the DEFGEN utility on the target. These steps are

8-3

Chapter 8
Handling Special Data Types

required to support the difference in semantics, whether or not the source and target
data definitions are identical. Replicat refers to the definitions file to determine the
upper size limit for fixed-size character columns.

8.2.2 Oracle Spatial Objects

ORACLE

To replicate tables that contain one or more columns of SDO_ GEORASTER object type
from an Oracle source to an Oracle target, follow these instructions to configure Oracle
GoldenGate to process them correctly.

1. Create a TABLE statement and a MAP statement for the georaster tables and also
for the related raster data tables.

2. If the METADATA attribute of the SDO_GEORASTER data type in any of the values
exceeds 1 MB, use the DBOPTI ONS parameter with the XMLBUFSI ZE option to
increase the size of the memory buffer that stores the embedded SYS. XMLTYPE
attribute of the SDO_GEORASTER data type. If the buffer is too small, Extract abends.
See XMLBUFSI ZE in Reference for Oracle GoldenGate.

3. To ensure the integrity of the target georaster tables and the spatial data, keep
the trigger enabled on both source and target. Use the REPERROR option of the
MAP parameter to handle the "ORA-01403 No data found" error that occurs as a
result of keeping the trigger enabled on the target. It occurs when a row in the
source georaster table is deleted, and the trigger cascades the delete to the raster
data table. Both deletes are replicated. The replicated parent delete triggers the
cascaded (child) delete on the target. When the replicated child delete arrives, it is
redundant and generates the error. To use REPERRCR, do the following:

* Use a REPERRCR statement in each MAP statement that contains a raster data
table.

e Use Oracle error 1403 as the SQL error.
* Use any of the response options as the error handling.

A sufficient way to handle the errors on raster tables caused by active triggers on
target georaster tables is to use REPERROR with DI SCARD to discard the cascaded delete
that triggers them. The trigger on the target georaster table performs the delete to the
raster data table, so the replicated one is not needed.

MAP geo.st _rdt, TARGET geo.st_rdt, REPERROR (-1403, DI SCARD) ;

If you need to keep an audit trail of the error handling, use REPERROR with EXCEPTI ON
to invoke exceptions handling. For this, you create an exceptions table and map the
source raster data table twice:

e once to the actual target raster data table (with REPERROR handling the 1403
errors).

* again to the exceptions table, which captures the 1403 error and other relevant
information by means of a COLMAP clause.

For more information about using an exceptions table, see Administering Oracle
GoldenGate for Windows and UNIX.

For more information about REPERRCR options, see Reference for Oracle GoldenGate.

8-4

Chapter 8
Handling Special Data Types

8.2.3 TIMESTAMP

To replicate timestamp data, Oracle Database normalizes TI MESTAMP W TH LOCAL

TI ME ZONE data to the local time zone of the database that receives it, the target
database in case of Oracle GoldenGate. To preserve the original time stamp of

the data that it applies, Replicat sets its session to the time zone of the source
database. You can override this default and supply a different time zone by using the
SOURCETI MEZONE parameter in the Replicat parameter file. To force Replicat to set its
session to the target time zone, use the PRESERVETARCGETTI MEZONE parameter.

To prevent Oracle GoldenGate from abending on TI MESTAMP W TH TI ME ZONE as

TZR, use the Extract parameter TRANLOGOPTI ONS with | NCLUDEREG ONI DW THOFFSET to
replicate TI MESTAMP W TH TI MEZONE as TZR from an Oracle source that is at least
version 10g to an earlier Oracle target, or from an Oracle source to a non-Oracle
target. This option allows replicating to Oracle versions that do not support TI MESTAMP
W TH TI ME ZONE as TZR and to database systems that only support time zone as a
UTC offset.

You can also use the SOURCETI MEZONE parameter to specify the source time zone for
data that is captured by an Extract that is earlier than version 12.1.2. Those versions
do not write the source time zone to the trail.

8.2.4 Large Objects (LOB)

8.2.5 XML

ORACLE

The following are some configuration guidelines for LOBs in both classic capture and
integrated capture mode.

1. Store large objects out of row if possible.

2. (Applies only to integrated capture) Integrated capture captures LOBs from the
redo log. For UPDATE operations on a LOB document, only the changed portion
of the LOB is logged. To force whole LOB documents to be written to the trail
when only the changed portion is logged, use the TRANLOGOPTI ONS parameter
with the FETCHPARTI ALLOB option in the Extract parameter file. When Extract
receives partial LOB content from the logmining server, it fetches the full LOB
image instead of processing the partial LOB. Use this option when replicating to a
non-Oracle target or in other conditions where the full LOB image is required.

The following are tools for working with XML within Oracle GoldenGate constraints.

» Although both classic and integrated capture modes do not support the capture
of changes made to an XML schema, you may be able to evolve the schemas
and then resume replication of them without the need for a resynchronization, see
Supporting Changes to XML Schemas.

* (Applies only to integrated capture) Integrated capture captures XML from the
redo log. For UPDATE operations on an XML document, only the changed portion
of the XML is logged if it is stored as OBJECT RELATI ONAL or Bl NARY. To force
whole XML documents to be written to the trail when only the changed portion
is logged, use the TRANLOGOPTI ONS parameter with the FETCHPARTI ALXM. option
in the Extract parameter file. When Extract receives partial XML content from the
logmining server, it fetches the full XML document instead of processing the partial

8-5

Chapter 8
Handling Other Database Properties

XML. Use this option when replicating to a non-Oracle target or in other conditions
where the full XML image is required.

8.2.6 User Defined Types

If Oracle Database is compatible with releases greater than or equal to 12.0.0.0.0,
then Extract captures data from redo (no fetch), see Setting Flashback Query.

If replicating source data that contains user-defined types with the NCHAR, NVARCHAR2,
or NCLOB attribute to an Oracle target, use the HAVEUDTW THNCHAR parameter in

the Replicat parameter file. When this type of data is encountered in the trail,
HAVEUDTW THNCHAR causes Replicat to connect to the Oracle target in AL32UTFS8,
which is required when a user-defined data type contains one of those attributes.
HAVEUDTW THNCHAR is required even if NLS_LANGis set to AL32UTF8 on the target. By
default Replicat ignores NLS_LANG and connects to an Oracle Database in the native
character set of the database. Replicat uses the OCl St ri ng object of the Oracle Call
Interface, which does not support NCHAR, NVARCHAR2, or NCLOB attributes, so Replicat
must bind them as CHAR. Connecting to the target in AL32UTF8 prevents data loss

in this situation. HAVEUDTW THNCHAR must appear before the USERI D or USERI DALI AS
parameter in the parameter file.

8.3 Handling Other Database Properties

This topic describes the database properties that may affect Oracle GoldenGate and
the parameters that you can use to resolve or work around the condition.

The following table lists the database properties and the associated concern/
resolution.

Database Property

Concern/Resolution

Table with interval
partitioning

To support tables with interval partitioning, make certain that the W LDCARDRESOLVE
parameter remains at its default of DYNAM C.

Table with virtual columns

Virtual columns are not logged, and Oracle does not permit DML on virtual columns.
You can, however, capture this data and map it to a target column that is not a virtual
column by doing the following:

Include the table in the Extract TABLE statement and use the FETCHCOLS option of
TABLE to fetch the value from the virtual column in the database.

In the Replicat MAP statement, map the source virtual column to the non-virtual target
column.

Table with inherently
updateable view

To replicate to an inherently updateable view, define a key on the unique columns in
the updateable view by using a KEYCOLS clause in the same MAP statement in which
the associated source and target tables are mapped.

Redo logs or archives in
different locations

The TRANLOGOPTI ONS parameter contains options to handle environments where the
redo logs or archives are stored in a different location than the database default or

on a different platform from that on which Extract is running. These options may be
required when Extract operates in classic capture mode. For more information, see
Reference for Oracle GoldenGate.

ORACLE

8-6

Chapter 8
Controlling the Checkpoint Frequency

Database Property Concern/Resolution

TRUNCATE operations To replicate TRUNCATE operations, choose one of two options:

« Standalone TRUNCATE support by means of the GETTRUNCATES parameter
replicates TRUNCATE TABLE, but no other TRUNCATE options. Use only if not
using Oracle GoldenGate DDL support.

e The full DDL support replicates TRUNCATE TABLE, ALTER TABLE TRUNCATE
PARTI Tl ON, and other DDL. To install this support, see #unique_110..

Sequences

To replicate DDL for sequences (CREATE, ALTER, DROP, RENAME), use Oracle
GoldenGate DDL support.
To replicate just sequence values, use the SEQUENCE parameter in the Extract

parameter file. This does not require the Oracle GoldenGate DDL support
environment. For more information, see Reference for Oracle GoldenGate.

8.4 Controlling the Checkpoint Frequency

The CHECKPO NTRETENTI ONTI ME option of the TRANLOGOPTI ONS parameter controls the
number of days that Extract in integrated mode retains checkpoints before purging
them automatically.

Partial days can be specified using decimal values. For example, 8.25 specifies 8 days
and 6 hours. The default is seven days. For more information about this parameter,
see Reference for Oracle GoldenGate.

8.5 Excluding Replicat Transactions

ORACLE

In a bidirectional configuration, Replicat must be configured to mark its transactions,
and Extract must be configured to exclude Replicat transactions so that they do not
propagate back to their source.

There are two methods to accomplish this as follows:

Method 1
Valid only for Oracle to Oracle implementations.

Replicat can be in either integrated or nonintegrated mode. Use the following
parameters:

* Use DBOPTI ONS with the SETTAG option in the Replicat parameter file. The inbound
server tags the transactions of that Replicat with the specified value, which
identifies those transactions in the redo stream. The default value for SETTAGIs
00.

e Use the TRANLOGOPTI ONS parameter with the EXCLUDETAG option in an Extract
parameter file. The logmining server associated with that Extract excludes redo
that is tagged with the SETTAG value. Multiple EXCLUDETAG statements can be used
to exclude different tag values, if desired.

For Oracle to Oracle, this is the recommended method.

Method 2

Valid for any implementation; Oracle or heterogeneous database configurations.

8-7

Chapter 8
Advanced Configuration Options for Oracle GoldenGate

Alternatively, you could use the Extract TRANLOGOPTI ONS parameter with the
EXCLUDEUSER or EXCLUDEUSERI D option to ignore the Replicat DDL and DML
transactions based on its user name or ID. Multiple EXCLUDEUSER statements can
be used. The specified user is subject to the rules of the GETREPLI CATES or

| GNOREREPLI CATES parameter.

For more information, see Reference for Oracle GoldenGate.

8.6 Advanced Configuration Options for Oracle GoldenGate

You may need to configure Oracle GoldenGate with advanced options to suit your
business needs.

ORACLE

See the following:

» For additional configuration guidelines to achieve specific replication topologies,
see Administering Oracle GoldenGate. This guide includes instructions for the
following configurations:

Using Oracle GoldenGate for live reporting

Using Oracle GoldenGate for real-time data distribution
Configuring Oracle GoldenGate for real-time data warehousing
Using Oracle GoldenGate to maintain a live standby database

Using Oracle GoldenGate for active-active high availability

That guide also contains information about:

Oracle GoldenGate architecture

Oracle GoldenGate commands

Oracle GoldenGate initial load methods
Configuring security

Using customization features

Configuring data filtering and manipulation

» If either the source or target database is non-Oracle, follow the installation and
configuration instructions in the Oracle GoldenGate installation and setup guide
for that database, and then refer to the Oracle GoldenGate administration and
reference documentation for further information.

8-8

Additional Configuration Steps For Using
Nonintegrated Replicat

This chapter contains instructions that are specific only to Replicat when operating
in nonintegrated mode. When Replicat operates in nonintegrated mode, triggers,
cascade constraints, and unique identifiers must be properly configured in an Oracle
GoldenGate environment.

This chapter is a supplement to the basic configuration requirements that are
documented in Configuring Oracle GoldenGate Apply.

Topics:

» Disabling Triggers and Referential Cascade Constraints on Target Tables
Triggers and cascade constraints must be disabled on Oracle target tables when
Replicat is in nonintegrated mode.

» Deferring Constraint Checking on Target Tables
When Replicat is in nonintegrated mode, you may need to defer constraint
checking on the target.

9.1 Disabling Triggers and Referential Cascade Constraints
on Target Tables

ORACLE

Triggers and cascade constraints must be disabled on Oracle target tables when
Replicat is in nonintegrated mode.

Oracle GoldenGate provides some options to handle triggers or cascade constraints
automatically, depending on the Oracle version:

e For Oracle 11.2.0.2 and later 11gR2 versions, Replicat automatically disables
the work performed by triggers during its session. It does not disable a trigger,
but instead prevents the trigger body from executing. The WHEN portion of the
trigger must still compile and execute correctly to avoid database errors. To enable
triggers to fire, or to disable them manually, use the NOSUPPRESSTRI GGERS option
of DBOPTI ONS and place the statement after the USERI DALI AS parameter. To allow
a specific trigger to fire, you can use the following database procedure, where
trigger_owner is the owner of the trigger and t ri gger _nane is the name of the
trigger. Once the procedure is called with FALSE for a particular trigger, it remains
set until the procedure is called with TRUE.

e dbrms_ddl.set_trigger_firing_property(trigger_owner "trigger_name", FALSE)

e For Oracle 11.2.0.2 and later 11gR2 versions, you can use the DBOPTI ONS
parameter with the DEFERREFCONST option to delay the checking and enforcement
of cascade update and cascade delete constraints until the Replicat transaction
commits.

* For other Oracle versions, you must disable triggers and integrity constraints or
alter them manually to ignore the Replicat database user.

9-1

Chapter 9
Deferring Constraint Checking on Target Tables

Constraints must be disabled in nonintegrated Replicat mode because Oracle
GoldenGate replicates DML that results from the firing of a trigger or a cascade
constraint. If the same trigger or constraint gets activated on the target table, it
becomes redundant because of the replicated version, and the database returns
an error. Consider the following example, where the source tables are enp_src¢ and
sal ary_src and the target tables are enp_targ and sal ary_targ.

A delete is issued for enp_src.

It cascades a delete to sal ary_src.

Oracle GoldenGate sends both deletes to the target.
The parent delete arrives first and is applied to enp_tar g.
The parent delete cascades a delete to sal ary_targ.

The cascaded delete from sal ary_src is applied to sal ary_t arg.

N o g ;M w NP

The row cannot be located because it was already deleted in step 5.

9.2 Deferring Constraint Checking on Target Tables

ORACLE

When Replicat is in nonintegrated mode, you may need to defer constraint checking
on the target.

Perform the following steps to defer the constraints:

1. If constraints are DEFERRABLE on the source, the constraints on the target must
also be DEFERRABLE. You can use one of the following parameter statements to
defer constraint checking until a Replicat transaction commits:

» Use SQLEXEC at the root level of the Replicat parameter file to defer the
constraints for an entire Replicat session.

SQLEXEC ("alter session set constraint deferred")

* Use the Replicat parameter DBOPTI ONS with the DEFERREFCONST option to delay
constraint checking for each Replicat transaction.

2. You might need to configure Replicat to overcome integrity errors caused by
transient primary-key duplicates. Transient primary-key duplicates are duplicates
that occur temporarily during the execution of a transaction, but are resolved by
transaction commit time. This kind of operation typically uses a SET x = x+n
formula or some other manipulation that shifts values so that a new value equals
an existing one.

The following illustrates a sequence of value changes that can cause a transient
primary-key duplicate if constraints are not deferred. The example assumes the
primary key column is CODE and the current key values (before the updates) are 1,
2,and 3.

update itemset code = 2 where code = 1;
update itemset code = 3 where code = 2;
update itemset code = 4 where code = 3;

In this example, when Replicat applies the first update to the target, there is an
ORA-00001 (unique constraint) error because the key value of 2 already exists in the
table. The Replicat transaction returns constraint violation errors. By default, Replicat
does not handle these violations and abends.

e Handling Transient Primary-key Duplicates in Versions Earlier than 11.2.0.2

9-2

Chapter 9
Deferring Constraint Checking on Target Tables

» Handling Transient Primary-key Duplicates in Version 11.2.0.2 or Later

9.2.1 Handling Transient Primary-key Duplicates in Versions Earlier
than 11.2.0.2

To handle transient primary-key duplicates in versions earlier than 11.2.0.2, use the
Replicat parameter HANDLETPKUPDATE. In this configuration, a nonintegrated Replicat
handles transient primary-key updates by temporarily deferring constraints. To support
this functionality, you must create or alter the constraints as DEFERRABLE | NI TI ALLY

| MVEDI ATE on the target tables. If the constraints are not DEFERRABLE, Replicat handles
the errors according to rules that are specified with the HANDLECOLLI SI ONS and
REPERRCR parameters, if they exist, or else it abends.

9.2.2 Handling Transient Primary-key Duplicates in Version 11.2.0.2 or
Later

For versions later than 11.2.0.2, a nonintegrated Replicat by default tries to resolve
transient primary-key duplicates automatically by using a workspace in Oracle
Workspace Manager. In this configuration, Replicat can defer the constraint checking
until commit time without requiring the constraints to be explicitly defined as
deferrable.

The requirements for automatic handling of transient primary-key duplicates are:

e Grant the Replicat database user access to the following Oracle function:
DBMS_XSTREAM GG. ENABLE_TDUP_WORKSPACE()

e The target tables cannot have deferrable constraints; otherwise Replicat returns
an error and abends.

To handle tables with deferrable constraints, make certain the constraints are
DEFERRABLE | NI TI ALLY | MVEDI ATE, and use the HANDLETPKUPDATE parameter in the
MAP statement that maps that table. The HANDLETPKUPDATE parameter overrides the
default of handling the duplicates automatically.The use of a workspace affects the
following Oracle GoldenGate error handling parameters:

* HANDLECOLLI SI ONS
* REPERRCR

When Replicat enables a workspace in Oracle Workspace Manager, it ignores

the error handling that is specified by Oracle GoldenGate parameters such as
HANDLECOLLI SI ONS and REPERRCR. Instead, Replicat aborts its grouped transaction (if
BATCHSQL is enabled), and then retries the update in normal mode by using the active
workspace. If ORA-00001 occurs again, Replicat rolls back the transaction and then
retries the transaction with error-handling rules in effect again.

Note:

If Replicat encounters ORA-00001 for a non-update record, the error-
handling parameters such as HANDLECOLLI SI ONS and REPERROR handle it.

ORACLE 9-3

ORACLE

Chapter 9
Deferring Constraint Checking on Target Tables

A workspace cannot be used if the operation that contains a transient primary-key
duplicate also has updates to any out-of-line columns, such as LOB and XMLType.
Therefore, these cases are not supported, and any such cases can result in
undetected data corruption on the target. An example of this is:

update T set PK = PK + 1, C LOB = ' ABC ;

9-4

Configuring DDL Support

ORACLE

This chapter contains information to help you understand and configure DDL support
in Oracle GoldenGate.
Topics:

e Prerequisites for Configuring DDL
Extract can capture DDL operations from a source Oracle database natively
through the Oracle logmining server.

e Overview of DDL Synchronization
Oracle GoldenGate supports the synchronization of DDL operations from one
database to another.

e Limitations of Oracle GoldenGate DDL Support
This topic contains some limitations of the DDL feature.

e Configuration Guidelines for DDL Support
The following are guidelines to take into account when configuring Oracle
GoldenGate processes to support DDL replication.

e Understanding DDL Scopes
Database objects are classified into scopes. A scope is a category that defines
how DDL operations on an object are handled by Oracle GoldenGate.

e Correctly Identifying Unqualified Object Names in DDL
Extract captures the current schema (also called session schema) that is in effect
when a DDL operation is executed. The current container is also captured if the
source is a multitenant container database.

e Enabling DDL Support
Data Definition Language (DDL) is useful in dynamic environments which change
constantly.

e Filtering DDL Replication
By default, all DDL is passed to Extract.

e Special Filter Cases
This topic describes the special cases that you must consider before creating your
DDL filters.

e How Oracle GoldenGate Handles Derived Object Names
DDL operations can contain a base object name and also a derived object name.

e Using DDL String Substitution
You can substitute strings within a DDL operation while it is being processed by
Oracle GoldenGate.

e Controlling the Propagation of DDL to Support Different Topologies
To support bidirectional and cascading replication configurations, it is important for
Extract to be able to identify the DDL that is performed by Oracle GoldenGate and
by other applications, such as the local business applications.

e Adding Supplemental Log Groups Automatically
Use the DDLOPTI ONS parameter with the ADDTRANDATA option for performing tasks
described in this topic.

10-1

Chapter 10
Prerequisites for Configuring DDL

* Removing Comments from Replicated DDL
You can use the DDLOPTI ONS parameter with the REMOVECOMVENTS BEFORE and
REMOVECOMMENTS AFTER options to prevent comments that were used in the source
DDL from being included in the target DDL.

* Replicating an IDENTIFIED BY Password
Use the DDLOPTI ONS parameter with the DEFAULTUSERPASSWORDAL I AS and
REPLI CATEPASSWORD | NOREPLI CATEPASSWORD options to control how the password
of a replicated { CREATE | ALTER} USER nane | DENTI FI ED BY password statement
is handled. These options must be used together.

* How DDL is Evaluated for Processing
This topic explains how Oracle GoldenGate processes DDL statements on the
source and target systems.

* Viewing DDL Report Information
By default, Oracle GoldenGate shows basic statistics about DDL at the end of the
Extract and Replicat reports.

e Tracing DDL Processing
If you open a support case with Oracle GoldenGate Technical Support, you might
be asked to turn on tracing. TRACE and TRACE2 control DDL tracing.

e Using Edition-Based Redefinition
Oracle GoldenGate supports the use of Edition-based Redefinition (EBR) with
Oracle Databases enabling you to upgrade the database component of an
application while it is in use, thereby minimizing or eliminating down time.

10.1 Prerequisites for Configuring DDL

Extract can capture DDL operations from a source Oracle database natively through
the Oracle logmining server.

Which of these methods you can use depends on the Extract capture mode and the
version of the source Oracle database. This section describes the available support in
each capture mode, see Choosing Different Replicat Modes with Extract.

e Support for DDL Capture in Integrated Capture Mode

10.1.1 Support for DDL Capture in Integrated Capture Mode

The integrated capture mode supports the DDL capture method for Oracle 11.2.0.4 or
later.

Oracle databases that have the COVPATI BLE parameter set to 11.2.0.4 or higher
support DDL capture through the database logmining server. This method is known
as native DDL capture (also known as triggerless DDL capture). No trigger or installed
supportive objects are required. Native DDL capture is the only supported method for
capturing DDL from a multitenant container database. For downstream mining, the
source database must also have database COVPATI BLE set to 11.2.0.4 or higher to
support DDL capture through the database logmining server.

10.2 Overview of DDL Synchronization

ORACLE

Oracle GoldenGate supports the synchronization of DDL operations from one
database to another.

10-2

Chapter 10
Limitations of Oracle GoldenGate DDL Support

DDL synchronization can be active when:

» business applications are actively accessing and updating the source and target
objects.

» Oracle GoldenGate transactional data synchronization is active.

The components that support the replication of DDL and the replication of
transactional data changes (DML) are independent of each other. Therefore, you can
synchronize:

e just DDL changes

e just DML changes
* both DDL and DML

10.3 Limitations of Oracle GoldenGate DDL Support

This topic contains some limitations of the DDL feature.

For any additional limitations that were found after this documentation was published,
see the Release Notes for Oracle GoldenGate.

 DDL Statement Length

e Supported Topologies

» Filtering, Mapping, and Transformation

* Renames

* Interactions Between Fetches from a Table and DDL
e« Comments in SQL

e Compilation Errors

* Interval Partitioning

DML or DDL Performed Inside a DDL Trigger

* LogMiner Data Dictionary Maintenance

10.3.1 DDL Statement Length

ORACLE

Oracle GoldenGate measures the length of a DDL statement in bytes, not in
characters. The supported length is approximately 4 MB, allowing for some internal
overhead that can vary in size depending on the name of the affected object and its
DDL type, among other characteristics. If the DDL is longer than the supported size,
Extract will issue a warning and ignore the DDL operation.

If Extract is capturing DDL by means of the DDL trigger, the ignored DDL is saved in
the marker table. You can capture Oracle DDL statements that are ignored, as well as
any other Oracle DDL statement, by using the ddl _ddl 2fi | e. sql script, which saves
the DDL operation to a text file in the USER_DUMP_DEST directory of Oracle. The script
prompts for the following input:

* The name of the schema that contains the Oracle GoldenGate DDL objects, which
is specified in the GLOBALS file.

10-3

Chapter 10
Limitations of Oracle GoldenGate DDL Support

* The Oracle GoldenGate marker sequence number, which is recorded in the
Extract report file when DDLOPTI ONS with the REPORT option is used in the Extract
parameter file.

e A name for the output file.

10.3.2 Supported Topologies

Oracle GoldenGate supports DDL synchronization only in a like-to-like configuration.
The source and target object definitions must be identical.

DDL replication is only supported for Oracle to Oracle replication. It is not supported
between different databases, like Oracle to Teradata, or SQL Server to Oracle.

Oracle GoldenGatedoes not support DDL on a standby database.

Oracle GoldenGate supports DDL replication in all supported unidirectional
configurations, and in bidirectional configurations between two, and only two, systems.
For special considerations in an Oracle active-active configuration, see Propagating
DDL in Active-Active (Bidirectional) Configurations.

10.3.3 Filtering, Mapping, and Transformation

DDL operations cannot be transformed by any Oracle GoldenGate process. However,
source DDL can be mapped and filtered to a different target object by a primary
Extract or a Replicat process. Mapping or filtering of DDL by a data-pump Extract is
not permitted, and the DDL is passed as it was received from the primary Extract.

For example, ALTER TABLE Tabl eAis processed by a data pump as ALTER TABLE
Tabl eA. It cannot be mapped by that process as ALTER TABLE Tabl eB, regardless of
any TABLE statements that specify otherwise.

10.3.4 Renames

RENAME operations on tables are converted to the equivalent ALTER TABLE RENAMVE
so that a schema name can be included in the target DDL statement. For example
RENAME tabl TO tab2 could be changed to ALTER TABLE schena.tabl RENAME TO
schenma. t ab2. The conversion is reported in the Replicat process report file.

10.3.5 Interactions Between Fetches from a Table and DDL

Oracle GoldenGate supports some data types by identifying the modified row from the
redo stream and then querying the underlying table to fetch the changed columns. For
instance, in classic capture, partial updates on LOBs (modifications done via dbns_| ob
package) are supported by identifying the modified row and the LOB column from

the redo log, and then querying for the LOB column value for the row from the base
table. A similar technique is employed to support UDT (both in classic and integrated
capture).

ORACLE 10-4

Chapter 10
Limitations of Oracle GoldenGate DDL Support

< Note:

Integrated capture only requires fetch for UDT when not using native object
support.

Such fetch-based support is implemented by issuing a flashback query to the
database based on the SCN (System Change Number) at which the transaction
committed. The flashback query feature has certain limitations. Certain DDL
operations act as barriers such that flashback queries to get data prior to these DDLs
do not succeed. Examples of such DDL are ALTER TABLE MODI FY COLUWN and ALTER
TABLE DROP COLUWN.

Thus, in cases where there is Extract capture lag, an intervening DDL may cause fetch
requests for data prior to the DDL to fail. In such cases, Extract falls back and fetches
the current snapshot of the data for the modified column. There are several limitations
to this approach: First, the DDL could have modified the column that Extract needs

to fetch (for example, suppose the intervening DDL added a new attribute to the UDT
that is being captured). Second, the DDL could have modified one of the columns

that Extract uses as a logical row identifier. Third, the table could have been renamed
before Extract had a chance to fetch the data.

To prevent fetch-related inconsistencies such as these, take the following precautions
while modifying columns.

1. Pause all DML to the table.

2. Wait for Extract to finish capturing all remaining redo, and wait for Replicat to finish
processing the captured data from trail. To determine whether Replicat is finished,
issue the following command in GGSCI until you see a message that there is no
more data to process.

| NFO REPLI CAT group
3. Execute the DDL on the source.

4. Resume source DML operations.

10.3.6 Comments in SQL

ORACLE

If a source DDL statement contains a comment in the middle of an object name, that
comment will appear at the end of the object name in the target DDL statement. For
example:

Source:
CREATE TABLE hr./*comrent*/enp ...
Target:

CREATE TABLE hr.enp /*coment*/ ...

This does not affect the integrity of DDL synchronization. Comments in any other area
of a DDL statement remain in place when replicated.

10-5

Chapter 10
Configuration Guidelines for DDL Support

10.3.7 Compilation Errors

If a CREATE operation on a trigger, procedure, function, or package results in
compilation errors, Oracle GoldenGate executes the DDL operation on the target
anyway. Technically, the DDL operations themselves completed successfully and
should be propagated to allow dependencies to be executed on the target, for example
in recursive procedures.

10.3.8 Interval Partitioning

DDL replication is unaffected by interval partitioning, because the DDL is implicit.
However, this is system generated name so Replicat cannot convert this to the target.
believe this is expected behavior. You must drop the partition on the source. For
example:

alter table t2 drop partition for (20);

10.3.9 DML or DDL Performed Inside a DDL Trigger

DML or DDL operations performed from within a DDL trigger are not captured.

10.3.10 LogMiner Data Dictionary Maintenance

Oracle recommends that you gather dictionary statistics after the Extract is registered
(logminer session) and the logminer dictionary is loaded, or after any significant DDL
activity on the database.

10.4 Configuration Guidelines for DDL Support

The following are guidelines to take into account when configuring Oracle GoldenGate
processes to support DDL replication.

» Database Privileges

» Parallel Processing

e Object Names

» Data Definitions

e Truncates

e Initial Synchronization

» Data Continuity After CREATE or RENAME

10.4.1 Database Privileges

For database privileges that are required for Oracle GoldenGate to support DDL
capture and replication, see Establishing Oracle GoldenGate Credentials .

ORACLE 10-6

Chapter 10
Configuration Guidelines for DDL Support

10.4.2 Parallel Processing

If using parallel Extract and/or Replicat processes, keep related DDL and DML
together in the same process stream to ensure data integrity. Configure the processes
so that:

- all DDL and DML for any given object are processed by the same Extract group
and by the same Replicat group.

- all objects that are relational to one another are processed by the same process
group.

For example, if Repl i cat A processes DML for Tabl el, then it should also process
the DDL for Tabl el. If Tabl e2 has a foreign key to Tabl el, then its DML and DDL
operations also should be processed by Repl i cat A.

If an Extract group writes to multiple trails that are read by different Replicat groups,
Extract sends all of the DDL to all of the trails. Use each Replicat group to filter the
DDL by using the filter options of the DDL parameter in the Replicat parameter file.

10.4.3 Object Names

Oracle GoldenGate preserves the database-defined object name, case, and character
set. This support preserves single-byte and multibyte names, symbols, and accent
characters at all levels of the database hierarchy.

Object names must be fully qualified with their two-part or three-part names when
supplied as input to any parameters that support DDL synchronization. You can

use the question mark (?) and asterisk (*) wildcards to specify object names

in configuration parameters that support DDL synchronization, but the wildcard
specification also must be fully qualified as a two-part or three-part name. To process
wildcards correctly, the W LDCARDRESCLVE parameter is set to DYNAM C by default. If
W LDCARDRESQOLVE is set to anything else, the Oracle GoldenGate process that is
processing DDL operations will abend and write the error to the process report.

10.4.4 Data Definitions

Because DDL support requires a like-to-like configuration, the ASSUMETARGETDEFS
parameter must be used in the Replicat parameter file. Replicat will abend if objects
are configured for DDL support and the SOURCEDEFS parameter is being used. For more
information about ASSUMETARGETDEFS, see Reference for Oracle GoldenGate.

For more information about using a definitions file, see Administering Oracle
GoldenGate.

10.4.5 Truncates

TRUNCATE statements can be supported as follows:

e As part of the Oracle GoldenGate full DDL support, which supports TRUNCATE
TABLE, ALTER TABLE TRUNCATE PARTI TI ON, and other DDL. This is controlled by
the DDL parameter (see Enabling DDL Support.)

ORACLE 10-7

Chapter 10
Understanding DDL Scopes

* As standalone TRUNCATE support. This support enables you to replicate TRUNCATE
TABLE, but no other DDL. The GETTRUNCATES parameter controls the standalone
TRUNCATE feature. For more information, see Reference for Oracle GoldenGate.

To avoid errors from duplicate operations, only one of these features can be active at
the same time.

10.4.6 Initial Synchronization

To configure DDL replication, start with a target database that is synchronized with the
source database. DDL support is compatible with the Replicat initial load method.

Before executing an initial load, disable DDL extraction and replication. DDL
processing is controlled by the DDL parameter in the Extract and Replicat parameter
files.

After initial synchronization of the source and target data, use all of the source
sequence values at least once with NEXTVAL before you run the source applications.
You can use a script that selects NEXTVAL from every sequence in the system. This
must be done while Extract is running.

10.4.7 Data Continuity After CREATE or RENAME

To replicate DML operations on new Oracle tables resulting from a CREATE or RENAME
operation, the names of the new tables must be specified in TABLE and MAP statements
in the parameter files. You can use wildcards to make certain that they are included.

To create a new user with CREATE USER and then move new or renamed tables into
that schema, the new user name must be specified in TABLE and MAP statements.

To create a new user fi n2 and move new or renamed tables into that schema, the
parameter statements could look as follows, depending on whether you want the f i n2
objects mapped to the same, or different, schema on the target:

Extract:

TABLE fin2.*;

Replicat:

MAP fin2.*, TARGET different_schena.*;

10.5 Understanding DDL Scopes

ORACLE

Database objects are classified into scopes. A scope is a category that defines how
DDL operations on an object are handled by Oracle GoldenGate.

The scopes are:

* MAPPED
* UNMAPPED
 OTHER

The use of scopes enables granular control over the filtering of DDL operations, string
substitutions, and error handling.

* Mapped Scope

10-8

Chapter 10
Understanding DDL Scopes

* Unmapped Scope
e Other Scope

10.5.1 Mapped Scope

Objects that are specified in TABLE and MAP statements are of MAPPED scope. Extraction
and replication instructions in those statements apply to both data (DML) and DDL on
the specified objects, unless override rules are applied.

For objects in TABLE and MAP statements, the DDL operations listed in the following
table are supported.

Operations On any of these Objects?
CREATE TABLE3
ALTER | NDEX
DRCOP TRI GGER
RENAME SEQUENCE
COMVENT ON? MATERI ALI ZED VI EW
VI EW
FUNCTI ON
PACKAGE
PROCEDURE
SYNONYM
PUBLI C SYNONYM
GRANT TABLE
REVOKE SEQUENCE
MATERI ALI ZED VI EW
ANALYZE TABLE
| NDEX
CLUSTER

TABLE and MAP do not support some special characters that could be used in an object name affected
by these operations. Objects with non-supported special characters are supported by the scopes of
UNMAPPED and OTHER.

2 Applies to COWENT ON TABLE, COWENT ON COLUWN

3 Includes AS SELECT

4 Table name must be qualified with schema name.

For Extract, MAPPED scope marks an object for DDL capture according to the
instructions in the TABLE statement. For Replicat, MAPPED scope marks DDL for
replication and maps it to the object specified by the schema and name in the TARGET
clause of the MAP statement. To perform this mapping, Replicat issues ALTER SESSI ON
to set the schema of the Replicat session to the schema that is specified in the TARGET
clause. If the DDL contains unqualified objects, the schema that is assigned on the
target depends on circumstances described in Understanding DDL Scopes.

Assume the following TABLE and MAP statements:

Extract (source)

ORACLE 10-9

Chapter 10
Understanding DDL Scopes

TABLE fin. expen;
TABLE hr.tab*;

Replicat (target)

MAP fin.expen, TARGET fin2.expen2;
MAP hr.tab*, TARGET hrBackup. bak_*;

Also assume a source DDL statement of:

ALTER TABLE fin. expen ADD notes varchar2(100);

In this example, because the source table fi n. expen is in a MAP statement with
a TARGET clause that maps to a different schema and table name, the target DDL
statement becomes:

ALTER TABLE fin2. expen2 ADD notes varchar2(100);

Likewise, the following source and target DDL statements are possible for the second
set of TABLE and MAP statements in the example:

Source:

CREATE TABLE hr.tabPayables ... ;

Target:

CREATE TABLE hrBackup. bak_t abPayabl es .. .;
When objects are of MAPPED scope, you can omit their names from the DDL
configuration parameters, unless you want to refine their DDL support further. If you

ever need to change the object names in TABLE and MAP statements, the changes will
apply automatically to the DDL on those objects.

If you include an object in a TABLE statement, but not in a MAP statement, the DDL for
that object is MAPPED in scope on the source but UNVAPPED in scope on the target.

10.5.2 Unmapped Scope

If a DDL operation is supported for use in a TABLE or MAP statement, but its base object
name is not included in one of those parameters, it is of UNVAPPED scope.

An object name can be of UNVAPPED scope on the source (not in an Extract TABLE
statement), but of MAPPED scope on the target (in a Replicat MAP statement), or
the other way around. When Oracle DDL is of UNVAPPED scope in the Replicat
configuration, Replicat will by default do the following:

1. Setthe current schema of the Replicat session to the schema of the source DDL
object.

2. Execute the DDL as that schema.
3. Restore Replicat as the current schema of the Replicat session.

See Understanding DDL Scopes.

ORACLE 10-10

Chapter 10
Correctly Identifying Unqualified Object Names in DDL

10.5.3 Other Scope

DDL operations that cannot be mapped are of OTHER scope. When DDL is of OTHER
scope in the Replicat configuration, it is applied to the target with the same schema
and object name as in the source DDL.

An example of OTHER scope is a DDL operation that makes a system-specific
reference, such as DDL that operates on data file names.

Some other examples of OTHER scope:

CREATE USER j oe | DENTI FI ED by j oe;
CREATE ROLE ggs_gguser _rol e | DENTI FI ED GLOBALLY;
ALTER TABLESPACE gg_user TABLESPACE GROUP gg_grp_user;

See Understanding DDL Scopes.

10.6 Correctly Identifying Ungualified Object Names in DDL

ORACLE

Extract captures the current schema (also called session schema) that is in effect
when a DDL operation is executed. The current container is also captured if the source
is a multitenant container database.

The container and schema are used to resolve unqualified object names in the DDL.
Consider the following example:

CONNECT SCOTT/ Tl GER
CREATE TABLE TAB1 (X NUMBER);
CREATE TABLE SRCL. TAB2(X NUMBER) AS SELECT * FROM TABL,

In both of those DDL statements, the unqualified table TAB1 is resolved as SCOTT. TABL
based on the current schema SCOTT that is in effect during the DDL execution.

There is another way of setting the current schema, which is to set the
current _schema for the session, as in the following example:

CONNECT SCOTT/ Tl GER

ALTER SESSI ON SET CURRENT_SCHEMA=SRC,

CREATE TABLE TABl (X NUMBER);

CREATE TABLE SRCL. TAB2(X NUMBER) AS SELECT * FROM TABL,;

In both of those DDL statements, the unqualified table TAB1 is resolved as SRC. TAB1
based on the current schema SRC that is in effect during the DDL execution.

In both classic and integrated capture modes, Extract captures the current schema
that is in effect during DDL execution, and it resolves the unqualified object names (if
any) by using the current schema. As a result, MAP statements specified for Replicat
work correctly for DDL with unqualified object names.

You can also map a source session schema to a different target session schema,

if that is required for the DDL to succeed on the target. This mapping is global and
overrides any other mappings that involve the same schema names. To map session
schemas, use the DDLOPTI ONS parameter with the MAPSESSI ONSCHEMA option.

10-11

Chapter 10
Enabling DDL Support

If the default or mapped session schema mapping fails, you can handle the error with
the following DDLERROR parameter statement, where error 1435 means that the schema
does not exist.

DDLERROR 1435 | GNORE | NCLUDE OPTYPE ALTER OBJTYPE SESSI ON

10.7 Enabling DDL Support

Data Definition Language (DDL) is useful in dynamic environments which change
constantly.

By default, the status of DDL replication support is as follows:

e Onthe source, Oracle GoldenGate DDL support is disabled by default. You must
configure Extract to capture DDL by using the DDL parameter.

* On the target, DDL support is enabled by default, to maintain the integrity of
transactional data that is replicated. By default, Replicat will process all DDL
operations that the trail contains. If needed, you can use the DDL parameter to
configure Replicat to ignore or filter DDL operations.

10.8 Filtering DDL Replication

By default, all DDL is passed to Extract.

You can use the filtering with DDL parameter method to filter DDL operations so that
specific (or all) DDL is applied to the target database according to your requirements.
Valid for native DDL capture. This is the preferred method of filtering and is performed
within Oracle GoldenGate, and both Extract and Replicat can execute filter criteria.
Extract can perform filtering, or it can send the entire DDL to a trail, and then Replicat
can perform the filtering. Alternatively, you can filter in a combination of different
locations. The DDL parameter gives you control over where the filtering is performed,
and it also offers more filtering options, including the ability to filter collectively based
on the DDL scope (for example, include all MAPPED scope).

" Note:

If a DDL operation fails in the middle of a TRANSACTI QN, it forces a commit,
which means that the transaction spanning the DDL is split into two. The first
half is committed and the second half can be restarted. If a recovery occurs,
the second half of the transaction cannot be filtered since the information
contained in the header of the transaction is no longer there.

» Filtering with the DDL Parameter

10.8.1 Filtering with the DDL Parameter

This method is valid for integrated capture.

The DDL parameter is the main Oracle GoldenGate parameter for filtering DDL within
the Extract and Replicat processes.

ORACLE 10-12

Chapter 10
Special Filter Cases

When used without options, the DDL parameter performs no filtering, and it causes all
DDL operations to be propagated as follows:

* As an Extract parameter, it captures all supported DDL operations that are
generated on all supported database objects and sends them to the trail.

* As a Replicat parameter, it replicates all DDL operations from the Oracle
GoldenGate trail and applies them to the target. This is the same as the default
behavior without this parameter.

When used with options, the DDL parameter acts as a filtering agent to include or
exclude DDL operations based on:

e scope

* oObject type

e operation type

e oObject name

e strings in the DDL command syntax or comments, or both

Only one DDL parameter can be used in a parameter file, but you can combine multiple
inclusion and exclusion options, along with other options, to filter the DDL to the
required level.

- DDL filtering options are valid for a primary Extract that captures from the
transaction source, but not for a data-pump Extract.

* When combined, multiple filter option specifications are linked logically as AND
statements.

» Allfilter criteria specified with multiple options must be satisfied for a DDL
statement to be replicated.

* When using complex DDL filtering criteria, it is recommended that you test your
configuration in a test environment before using it in production.

For DDL parameter syntax and additional usage guidelines, see Reference for Oracle
GoldenGate.

Note:

Before you configure DDL support, it might help to review How DDL is
Evaluated for Processing.

10.9 Special Filter Cases

ORACLE

This topic describes the special cases that you must consider before creating your
DDL filters.

The following are the special cases for creating filter conditions.

 DDL EXCLUDE ALL
* Implicit DDL

10-13

Chapter 10
Special Filter Cases

10.9.1 DDL EXCLUDE ALL

DDL EXCLUDE ALL is a special processing option that is intended primarily for Extract.
DDL EXCLUDE ALL blocks the replication of DDL operations, but ensures that Oracle
GoldenGate continues to keep the object metadata current. When Extract receives
DDL directly from the logmining server (triggerless DDL capture mode), current
metadata is always maintained.

You can use DDL EXCLUDE ALL when using a method other than Oracle GoldenGate to
apply DDL to the target and you want Oracle GoldenGate to replicate data changes to
the target objects. It provides the current metadata to Oracle GoldenGate as objects
change, thus preventing the need to stop and start the Oracle GoldenGate processes.
The following special conditions apply to DDL EXCLUDE ALL:

e DDL EXCLUDE ALL does not require the use of an | NCLUDE clause.

e When using DDL EXCLUDE ALL, you can set the W LDCARDRESOLVE parameter to
| MVEDI ATE to allow immediate DML resolution if required.

To prevent all DDL metadata and operations from being replicated, omit the DDL
parameter entirely.

10.9.2 Implicit DDL

ORACLE

User-generated DDL operations can generate implicit DDL operations. For example,
the following statement generates two distinct DDL operations.

CREATE TABLE customers (cust|D nunber, nane varchar?2(50), address varchar2(75),
address2 varchar2(75), city varchar2(50), state (varchar2(2), zip number,
contact varchar2(50), areacode nunber(3), phone nunber(7), primary key (custiD));

The first (explicit) DDL operation is the CREATE TABLE statement itself.

The second DDL operation is an implicit CREATE UNI QUE | NDEX statement that creates
the index for the primary key. This operation is generated by the database engine, not
a user application.

Guidelines for Filtering Implicit DDL

How to filter implicit DDL depends on the mechanism that you are using to filter DDL.
See Filtering DDL Replication for more information.

e When the DDL parameter is used to filter DDL operations, Oracle GoldenGate
filters out any implicit DDL by default, because the explicit DDL will generate
the implicit DDL on the target. For example, the target database will create the
appropriate index when the CREATE TABLE statement in the preceding example is
applied by Replicat.

e — Ifyour filtering rules exclude the explicit DDL from being propagated, you must
also create a rule to exclude the implicit DDL. For example, if you exclude
the CREATE TABLE statement in the following example, but do not exclude the
implicit CREATE UNI QUE | NDEX statement, the target database will try to create
the index on a non-existent table.

CREATE TABLE customers (custlD nunber, nane varchar2(50), address
varchar2(75), address2 varchar2(75), city varchar2(50), state

10-14

Chapter 10
How Oracle GoldenGate Handles Derived Object Names

(varchar2(2), zip nunber, contact varchar2(50), areacode nunber(3),
phone nunber (7), primary key (custiD));

— If your filtering rules permit the propagation of the explicit DDL, you do
not need to exclude the implicit DDL. It will be handled correctly by Oracle
GoldenGate and the target database.

10.10 How Oracle GoldenGate Handles Derived Object

Names

DDL operations can contain a base object name and also a derived object name.

A base object is an object that contains data. A derived object is an object that inherits
some attributes of the base object to perform a function related to that object. DDL
statements that have both base and derived objects are:

* RENAME and ALTER RENAME
» CREATE and DROP on an index, synonym, or trigger
Consider the following DDL statement:

CREATE | NDEX hr. i ndexPayrol | Date ON TABLE hr.tabPayrol | (payDate);

In this case, the table is the base object. Its name (hr . t abPayr ol |) is the base name
and is subject to mapping with TABLE or MAP under the MAPPED scope. The derived
object is the index, and its name (hr . i ndexPayr ol | Dat e) is the derived name.

You can map a derived name in its own TABLE or MAP statement, separately from that
of the base object. Or, you can use one MAP statement to handle both. In the case of
MAP, the conversion of derived object names on the target works as follows.

* MAP Exists for Base Object, But Not Derived Object
* MAP Exists for Base and Derived Objects

* MAP Exists for Derived Object, But Not Base Object
* New Tables as Derived Objects

» Disabling the Mapping of Derived Objects

10.10.1 MAP Exists for Base Object, But Not Derived Object

ORACLE

If there is a MAP statement for the base object, but not for the derived object, the result
is a schema based on the mapping that matches the derived object name. Derived
objects are only mapped if the MAPDERI VED option is enabled, which is also the default
option.

For example, consider the following:
Extract (source)

Tabl e hr.*;

Replicat (target)

MAP hr.*, TARGET hrBackup. *;

Assume the following source DDL statement:

10-15

Chapter 10
How Oracle GoldenGate Handles Derived Object Names

CREATE | NDEX hr. i ndexPayrol | Date ON TABLE hr. Payrol | (payDate);

The CREATE | NDEX statement is executed by Replicat on the target as follows:

CREATE | NDEX hr Backup. i ndexPayrol | Date ON TABLE hrBackup. Payrol | (payDate);

In this example, the mapping is such that it matches the derived object name because
of which the derived object schema is changed from hr to hr Backup.

Here’s another example, where there is no mapping that matches the derived object
name so the derived object name remains the same.

Extract (source)

Tabl e hr.tab*;

Replicat (target)

MAP hr.tab*, TARGET hrBackup. *;

Assume the following source DDL statement:

CREATE | NDEX hr. i ndexPayrol | Date ON TABLE hr.tabPayroll (payDate);
The CREATE | NDEX statement is executed by Replicat on the target as follows:

CREATE | NDEX hr. i ndexPayrol | Date ON TABLE hrBackup.tabPayrol| (payDate);

10.10.2 MAP Exists for Base and Derived Objects

If there is a MAP statement for the base object and also one for the derived object, the
result is an explicit mapping. Assuming the DDL statement includes MAPPED, Replicat
converts the schema and name of each object according to its own TARGET clause. For
example, assume the following:

Extract (source)

TABLE hr.tab*; TABLE hr.index*;
Replicat (target)
MAP hr.tab*, TARGET hrBackup.*; MAP hr.index*, TARGET hrl ndex. *;

Assume the following source DDL statement:

CREATE | NDEX hr. i ndexPayrol | Date ON TABLE hr.tabPayrol | (payDate);

The CREATE | NDEX statement is executed by Replicat on the target as follows:

CREATE | NDEX hr | ndex. i ndexPayrol | Date ON TABLE hrBackup. t abPayrol | (payDate);
Use an explicit mapping when the index on the target must be owned by a different

schema from that of the base object, or when the name on the target must be different
from that of the source.

10.10.3 MAP Exists for Derived Object, But Not Base Object

If there is a MAP statement for the derived object, but not for the base object, Replicat
does not perform any name conversion for either object. The target DDL statement is
the same as that of the source. To map a derived object, the choices are:

ORACLE 10-16

Chapter 10
How Oracle GoldenGate Handles Derived Object Names

* Use an explicit MAP statement for the base object.

e If names permit, map both base and derived objects in the same MAP statement by
means of a wildcard.

» Create a MAP statement for each object, depending on how you want the names
converted.

10.10.4 New Tables as Derived Objects

The following explains how Oracle GoldenGate handles new tables that are created
from:

° RENAME and ALTER RENAME
e CREATE TABLE AS SELECT

e CREATE TABLE AS SELECT
* RENAME and ALTER TABLE RENAME

10.10.4.1 CREATE TABLE AS SELECT

ORACLE

The CREATE TABLE AS SELECT (CTAS) statements include SELECT statements and

| NSERT statements that reference any number of underlying objects. By default, Oracle
GoldenGate obtains the data for the AS SELECT clause from the target database. You
can force the CTAS operation to preserve the original inserts using this parameter.

Note:

For this reason, Oracle XM_.Type tables created from a CTAS (CREATE
TABLE AS SELECT) statement cannot be supported. For XM.Type tables,
the row object IDs must match between source and target, which cannot
be maintained in this scenario. XM_.Type tables created by an empty CTAS
statement (that does not insert data in the new table) can be maintained
correctly.

In addition, you could use the GETCTASDM. parameter that allows CTAS to
replay the inserts of the CTAS thus preserving OIDs during replication. This
parameter is only supported with Integrated Dictionary and any downstream
Replicat must be 12.1.2.1 or greater to consume the trail otherwise, there
may be divergence.

The objects in the AS SELECT clause must exist in the target database, and their
names must be identical to the ones on the source.

In a MAP statement, Oracle GoldenGate only maps the name of the new table (CREATE
TABLE nane) to the TARGET specification, but does not map the names of the underlying
objects from the AS SELECT clause. There could be dependencies on those objects

that could cause data inconsistencies if the names were converted to the TARGET
specification.

The following shows an example of a CREATE TABLE AS SELECT statement on the
source and how it would be replicated to the target by Oracle GoldenGate.

10-17

Chapter 10
How Oracle GoldenGate Handles Derived Object Names

CREATE TABLE a.tabl AS SELECT * FROM a.tab2;

The MAP statement for Replicat is as follows:

MAP a.tab*, TARGET a.x*;

The target DDL statement that is applied by Replicat is the following:
CREATE TABLE a. xtabl AS SELECT * FROM a.tab2;

The name of the table in the AS SELECT * FROMclause remains as it was on the
source: t ab2 (rather than xt ab2).

To keep the data in the underlying objects consistent on source and target, you can
configure them for data replication by Oracle GoldenGate. In the preceding example,
you could use the following statements to accommodate this requirement:

Source

TABLE a.t ab*;

Target

MAPEXCLUDE a. t ab2
MAP a.tab*, TARGET a.x*;
MAP a.tab2, TARGET a.tab2;

See Correctly Identifying Unqualified Object Names in DDL.

10.10.4.2 RENAME and ALTER TABLE RENAME

In RENAME and ALTER TABLE RENAME operations, the base object is always the new
table name. In the following example, the base object name is considered to be
i ndex_paydat e.

ALTER TABLE hr.i ndexPayrol | Dat e RENAME TO i ndex_paydat €;

or...

RENAMVE hr. i ndexPayrol | Date TO i ndex_paydat e;

The derived object name is hr. i ndexPayr ol | Dat e.

10.10.5 Disabling the Mapping of Derived Objects

ORACLE

Use the DDLOPTI ONS parameter with the NOVAPDER! VED option to prevent the
conversion of the name of a derived object according to a TARGET clause of a MAP
statement that includes it. NOVAPDERI VED overrides any explicit MAP statements that
contain the name of the base or derived object. Source DDL that contains derived
objects is replicated to the target with the same schema and object names as on the
source.

The following table shows the results of MAPDERI VED compared to NOVAPDERI VED,
based on whether there is a MAP statement just for the base object, just for the derived
object, or for both.

10-18

Chapter 10

Using DDL String Substitution

Base Object Derived Object MAP/NOMAP Derived object Derived object
DERIVED? converted pera gets schema of
MAP? base object?

mapped?! mapped MAPDERI VED yes no

mapped not mapped MAPDERI VED no yes

not mapped mapped MAPDERI VED no no

not mapped not mapped MAPDERI VED no no

mapped mapped NOVAPDERI VED no no

mapped not mapped NOVAPDERI VED no no

not mapped mapped NOVAPDERI VED no no

not mapped not mapped NOVAPDERI VED no no

1 Mapped means included in a MAP statement.

The following examples illustrate the results of MAPDERI VED as compared to
NOMAPDERI VED. In the following table, both trigger and table are owned by r pt on the
target because both base and derived names are converted by means of MAPDERI VED.

MAP statement Source DDL statement captured Target DDL statement applied by

by Extract Replicat
MAP fin.*, TARGET rpt.*; CREATE TRIGGER fin.act _trig CREATE TRIGGER rpt.act trig
ON fin.acct; ON rpt.acct;

In the following table, the trigger is owned by fi n, because conversion is prevented by
means of NOVAPDERI VED.

MAP statement Source DDL statement captured Target DDL statement applied by

by Extract Replicat
MAP fin.*, TARCET rpt.*; CREATE TRIGCGER fin.act_trig CREATE TRIGGER fin.act _trig
ON fin.acct; ON rpt.acct;

Note:

In the case of a RENAME statement, the new table name is considered to be
the base table name, and the old table name is considered to be the derived
table name.

10.11 Using DDL String Substitution

You can substitute strings within a DDL operation while it is being processed by Oracle
GoldenGate.

This feature provides a convenience for changing and mapping directory names,
comments, and other things that are not directly related to data structures. For
example, you could substitute one tablespace name for another, or substitute a string

ORACLE 10-19

Chapter 10
Controlling the Propagation of DDL to Support Different Topologies

within comments. String substitution is controlled by the DDLSUBST parameter. For more
information, see Reference for Oracle GoldenGate.

Note:

Before you create a DDLSUBST parameter statement, it might help to review
How DDL is Evaluated for Processing in this chapter.

10.12 Controlling the Propagation of DDL to Support
Different Topologies

ORACLE

To support bidirectional and cascading replication configurations, it is important for
Extract to be able to identify the DDL that is performed by Oracle GoldenGate and by
other applications, such as the local business applications.

Depending on the configuration that you want to deploy, it might be appropriate to
capture one or both of these sources of DDL on the local system.

¢ Note:

Oracle GoldenGate DDL consists of ALTER TABLE statements performed by
Extract to create log groups and the DDL that is performed by Replicat to
replicate source DDL changes.

The following options of the DDLOPTI ONS parameter control whether DDL on the local
system is captured by Extract and then sent to a remote system, assuming Oracle
GoldenGate DDL support is configured and enabled:

e The GETREPLI CATES and | GNOREREPL| CATES options control whether Extract
captures or ignores the DDL that is generated by Oracle GoldenGate. The default
is | GNOREREPLI CATES, which does not propagate the DDL that is generated by
Oracle GoldenGate. To identify the DDL operations that are performed by Oracle
GoldenGate, the following comment is part of each Extract and Replicat DDL
statement:

[* GOLDENGATE_DDL_REPLI CATI ON */

e The GETAPPLOPS and | GNOREAPPLOPS options control whether Extract captures or
ignores the DDL that is generated by applications other than Oracle GoldenGate.
The default is GETAPPLOPS, which propagates the DDL from local applications
(other than Oracle GoldenGate).

The result of these default settings is that Extract ignores its own DDL and the DDL
that is applied to the local database by a local Replicat, so that the DDL is not sent
back to its source, and Extract captures all other DDL that is configured for replication.
The following is the default DDLOPTI ONS configuration.

DDLOPTI ONS CGETAPPLOPS, | GNOREREPLI CATES

This behavior can be modified. See the following topics:

10-20

Chapter 10
Controlling the Propagation of DDL to Support Different Topologies

Propagating DDL in Active-Active (Bidirectional) Configurations

Propagating DDL in a Cascading Configuration

10.12.1 Propagating DDL in Active-Active (Bidirectional)

Configurations

ORACLE

Oracle GoldenGate supports active-active DDL replication between two systems. For
an active-active bidirectional replication, the following must be configured in the Oracle
GoldenGate processes:

1.

DDL that is performed by a business application on one system must be replicated
to the other system to maintain synchronization. To satisfy this requirement,
include the GETAPPLOPS option in the DDLOPTI ONS statement in the Extract
parameter files on both systems.

DDL that is applied by Replicat on one system must be captured by the local
Extract and sent back to the other system. To satisfy this requirement, use the
CGETREPLI CATES option in the DDLOPTI ONS statement in the Extract parameter files
on both systems.

Note:

An internal Oracle GoldenGate token will cause the actual Replicat

DDL statement itself to be ignored to prevent loopback. The purpose

of propagating Replicat DDL back to the original system is so that

the Replicat on that system can update its object metadata cache, in
preparation to receive incoming DML, which will have the new metadata.

Each Replicat must be configured to update its object metadata cache whenever
the remote Extract sends over a captured Replicat DDL statement. To satisfy this
requirement, use the UPDATEMETADATA option in the DDLOPTI ONS statement in the
Replicat parameter files on both systems.

The resultant DDLOPTI ONS statements should look as follows:

Extract (primary and secondary)

DDLOPTI ONS GETREPLI CATES, GETAPPLOPS

Replicat (primary and secondary)

DDLOPTI ONS UPDATEMETADATA

WARNING:

Before you allow new DDL or DML to be issued for the same object(s) as
the original DDL, allow time for the original DDL to be replicated to the
remote system and then captured again by the Extract on that system. This
will ensure that the operations arrive in correct order to the Replicat on the
original system, to prevent DML errors caused by metadata inconsistencies.
See the following diagram for more information.

10-21

Chapter 10
Controlling the Propagation of DDL to Support Different Topologies

1 0
2 bQ T |
B rd e Pr.L --> = - A R 3-»| ------ > e M L -

i Primary Trail ALTER Trail Replicat |

o Extract TABLE !

5 v
Source/ Target/
Target Source

Replicat Trail

Data I'rail Primary
Pump Extract

Metwork

The labels in the diagrams imply the following:

1. ALTER TABLE Customer ADD Birth_Date date

* 2; New metadata: First_ Name varchar2(50), Last Name varchar2(50), Address
varchar2(50), City varchar2(50), Country varchar2(25), Birth_Date date

e 3! ALTER TABLE

* 4. New metadata: First_Name varchar2(50), Last Name varchar2(50), Address
varchar2(50), City varchar2(50), Country varchar2(25), Birth_Date date

e 5:ALTER TABLE

 6: DDLOPTIONS UPDATEMETADATA New metadata: First_ Name varchar2(50),
Last_Name varchar2(50), Address varchar2(50), City varchar2(50), Country
varchar2(25), Birth_Date date

For more information about DDLOPTI ONS, see Reference for Oracle GoldenGate.

For more information about configuring a bidirectional configuration, see Administering
Oracle GoldenGate.

10.12.2 Propagating DDL in a Cascading Configuration

ORACLE

In a cascading configuration, use the following setting for DDLOPTI ONS in the Extract
parameter file on each intermediary system. This configuration forces Extract to
capture the DDL from Replicat on an intermediary system and cascade it to the next
system downstream.

DDLOPTI ONS CGETREPLI CATES, | GNOREAPPLOPS

For more information about DDLOPTI ONS, see DDLOPTI ONS in Reference for Oracle
GoldenGate.

10-22

Chapter 10
Adding Supplemental Log Groups Automatically

10.13 Adding Supplemental Log Groups Automatically

Use the DDLOPTI ONS parameter with the ADDTRANDATA option for performing tasks
described in this topic.

You can perform the following tasks using the DDLOPTI ONS:

» Enable Oracle's supplemental logging automatically for new tables created with a
CREATE TABLE.

» Update Oracle's supplemental logging for tables affected by an ALTER TABLE to
add or drop columns.

* Update Oracle's supplemental logging for tables that are renamed.

» Update Oracle's supplemental logging for tables where unique or primary keys are
added or dropped.

To use DDLOPTI ONS ADDSCHEMATRANDATA, the ADD SCHEMATRANDATA command must be
issued in GGSCI to enable schema-level supplemental logging.

By default, the ALTER TABLE that adds the supplemental logging is not replicated to the
target unless the GETREPLI| CATES parameter is in use.

DDLOPTI ONS ADDTRANDATA is not supported for multitenant container databases, see
Configuring Logging Properties for more information.

10.14 Removing Comments from Replicated DDL

You can use the DDLOPTI ONS parameter with the REMOVECOMVENTS BEFORE and
REMOVECOMMENTS AFTER options to prevent comments that were used in the source
DDL from being included in the target DDL.

By default, comments are not removed, so that they can be used for string
substitution.

10.15 Replicating an IDENTIFIED BY Password

ORACLE

Use the DDLOPTI ONS parameter with the DEFAULTUSERPASSWORDALI AS and

REPLI CATEPASSWORD | NOREPLI CATEPASSWORD options to control how the password of
a replicated { CREATE | ALTER} USER nane | DENTI FI ED BY passwor d statement is
handled. These options must be used together.

See the USEPASSWORDVERI FI ERLEVEL option of DDLOPTI ONS for important information
about specifying the password verifier when Replicat operates against an Oracle 10g
or 11g database.

" Note:

Replication of CREATE | ALTER PROFI LE will fail as the profile/password
verification function must exist in the SYS schema. To replicate these DDLs
successfully, password verification function must be created manually on
both source/target(s) since DDL to SYS schema is excluded.

10-23

Chapter 10
How DDL is Evaluated for Processing

10.16 How DDL is Evaluated for Processing

ORACLE

This topic explains how Oracle GoldenGate processes DDL statements on the source
and target systems.

It shows the order in which different criteria in the Oracle GoldenGate parameters are
processed, and it explains the differences between how Extract and Replicat each
process the DDL.

Extract

1. Extract captures a DDL statement.

2. Extract separates comments, if any, from the main statement.

3. Extract searches for the DDL parameter. (This example assumes it exists.)
4

Extract searches for the | GNOREREPLI CATES parameter. If it is present, and if
Replicat produced this DDL on this system, Extract ignores the DDL statement.
(This example assumes no Replicat operations on this system.)

5. Extract determines whether the DDL statement is a RENAME. If so, the rename is
flagged internally.

6. Extract gets the base object name and, if present, the derived object name.
7. If the statement is a RENAME, Extract changes it to ALTER TABLE RENAME.

8. Extract searches for the DDLOPTI ONS REMOVECOMVENTS BEFORE parameter. If it
is present, Extract removes the comments from the DDL statement, but stores
them in case there is a DDL | NCLUDE or DDL EXCLUDE clause that uses | NSTR or
| NSTRCOMVENTS.

9. Extract determines the DDL scope: MAPPED, UNVAPPED or OTHER:

» Itis MAPPED if the operation and object types are supported for mapping, and
the base object name and/or derived object name (if RENAME) is in a TABLE
parameter.

» Itis UNVAPPED if the operation and object types are not supported for mapping,
and the base object name and/or derived object name (if RENAME) is not in a
TABLE parameter.

* Otherwise the operation is identified as OTHER.

10. Extract checks the DDL parameter for | NCLUDE and EXCLUDE clauses, and it
evaluates the DDL parameter criteria in those clauses. All options must evaluate
to TRUE in order for the | NCLUDE or EXCLUDE to evaluate to TRUE. The following
occurs:

» If an EXCLUDE clause evaluates to TRUE, Extract discards the DDL statement
and evaluates another DDL statement. In this case, the processing steps start
over.

« If an | NCLUDE clause evaluates to TRUE, or if the DDL parameter does not have
any | NCLUDE or EXCLUDE clauses, Extract includes the DDL statement, and the
processing logic continues.

11. Extract searches for a DDLSUBST parameter and evaluates the | NCLUDE and
EXCLUDE clauses. If the criteria in those clauses add up to TRUE, Extract performs
string substitution. Extract evaluates the DDL statement against each DDLSUBST

10-24

ORACLE

12.

13.

14.

Chapter 10
How DDL is Evaluated for Processing

parameter in the parameter file. For all true DDLSUBST specifications, Extract
performs string substitution in the order that the DDLSUBST parameters are listed
in the file.

Now that DDLSUBT has been processed, Extract searches for the REMOVECOMVENTS
AFTER parameter. If it is present, Extract removes the comments from the DDL
statement.

Extract searches for DDLOPTI ONS ADDTRANDATA. If it is present, and if the operation
is CREATE TABLE, Extract issues the ALTER TABLE nanme ADD SUPPLEMENTAL LOG
GROUP command on the table.

Extract writes the DDL statement to the trail.

Replicat

1.
2.
3.

10.

Replicat reads the DDL statement from the trail.
Replicat separates comments, if any, from the main statement.

Replicat searches for DDLOPTI ONS REMOVECOWMENTS BEFORE. If it is present,
Replicat removes the comments from the DDL statement.

Replicat evaluates the DDL synchronization scope to determine if the DDL
gualifies for name mapping. Anything else is of OTHER scope.

Replicat evaluates the MAP statements in the parameter file. If the source base
object name for this DDL (as read from the trail) appears in any of the MAP
statements, the operation is marked as MAPPED in scope. Otherwise it is marked as
UNMAPPED in scope.

Replicat replaces the source base object name with the base object name that is
specified in the TARGET clause of the MAP statement.

If there is a derived object, Replicat searches for DDLOPTI ONS MAPDERI VED. If it is
present, Replicat replaces the source derived name with the target derived name
from the MAP statement.

Replicat checks the DDL parameter for | NCLUDE and EXCLUDE clauses, and it
evaluates the DDL parameter criteria contained in them. All options must evaluate
to TRUE in order for the | NCLUDE or EXCLUDE to evaluate to TRUE. The following
occurs:

» If any EXCLUDE clause evaluates to TRUE, Replicat discards the DDL statement
and starts evaluating another DDL statement. In this case, the processing
steps start over.

e If any | NCLUDE clause evaluates to TRUE, or if the DDL parameter does not have
any | NCLUDE or EXCLUDE clauses, Replicat includes the DDL statement, and
the processing logic continues.

Replicat searches for the DDLSUBST parameter and evaluates the | NCLUDE and
EXCLUDE clauses. If the options in those clauses add up to TRUE, Replicat performs
string substitution. Replicat evaluates the DDL statement against each DDLSUBST
parameter in the parameter file. For all true DDLSUBST specifications, Replicat
performs string substitution in the order that the DDLSUBST parameters are listed in
the file.

Now that DDLSUBT has been processed, Replicat searches for the REMOVECOMVENTS
AFTER parameter. If it is present, Replicat removes the comments from the DDL
statement.

10-25

Chapter 10
Viewing DDL Report Information

11. Replicat executes the DDL statement on the target database.

12. If there are no errors, Replicat processes the next DDL statement. If there are
errors, Replicat performs the following steps.

13. Replicat analyzes the | NCLUDE and EXCLUDE rules in the Replicat DDLERROR
parameters in the order that they appear in the parameter file. If Replicat finds a
rule for the error code, it applies the specified error handling; otherwise, it applies
DEFAULT handling.

14. If the error handling does not enable the DDL statement to succeed, Replicat does
one of the following: abends, ignores the operation, or discards it as specified in
the rules.

" Note:

If there are multiple targets for the same source in a MAP statement, the
processing logic executes for each one.

10.17 Viewing DDL Report Information

By default, Oracle GoldenGate shows basic statistics about DDL at the end of the
Extract and Replicat reports.

To enable expanded DDL reporting, use the DDLOPTI ONS parameter with the REPORT
option. Expanded reporting includes the following information about DDL processing:

* A step-by-step history of the DDL operations that were processed by Oracle
GoldenGate.

» The DDL filtering and processing parameters that are being used.

Expanded DDL report information increases the size of the report file, but it might
be useful in certain situations, such as for troubleshooting or to determine when an
ADDTRANDATA to add supplemental logging was applied.

To view a report, use the VI EW REPORT command in GGSCI.
VI EW REPORT gr oup

* Viewing DDL Reporting in Replicat

* Viewing DDL Reporting in Extract

e Statistics in the Process Reports

10.17.1 Viewing DDL Reporting in Replicat

ORACLE

The Replicat report lists:

e The entire syntax and source Oracle GoldenGate SCN of each DDL operation
that Replicat processed from the trail. You can use the source SCN for tracking
purposes, especially when there are restores from backup and Replicat is
positioned backward in the trail.

10-26

Chapter 10
Viewing DDL Report Information

* A subsequent entry that shows the scope of the operation (MAPPED, UNVAPPED,
OTHER) and how object names were mapped in the target DDL statement, if
applicable.

» Another entry that shows how processing criteria was applied.

« Additional entries that show whether the operation succeeded or failed, and
whether or not Replicat applied error handling rules.

The following excerpt from a Replicat report illustrates a sequence of steps, including
error handling:

2011-01-20 15:11:45 GGS INFO 2104 DDL found, operation [drop table
nmyTabl eTenp], Source SCN [1186713.0].

2011-01-20 15:11:45 GGS INFO 2100 DDL is of mapped scope, after mapping
new operation [drop table "QATEST2"." MYTABLETEMP"].

2011-01-20 15:11:45 GGS INFO 2100 DDL operation included [include objnane
nyTabl e*], optype [DROP], objtype [TABLE], objname [QATEST2. M\YTABLETEMP] .

2011-01-20 15:11:45 GGS INFO 2100 Executing DDL operati on.

2011-01-20 15:11:48 GGS INFO 2105 DDL error ignored for next retry: error
code [942], filter [include objname nyTabl eTenp], error text [ORA-00942: table
or view does not exist], retry [1].

2011-01-20 15:11:48 GGS INFO 2100 Executing DDL operation , trying again
due to RETRYCP paraneter.

2011-01-20 15:11:51 GGS INFO 2105 DDL error ignored for next retry: error
code [942], filter [include objname nyTabl eTenp], error text [ORA-00942: table
or view does not exist], retry [2].

2011-01-20 15:11:51 GGS INFO 2100 Executing DDL operation, trying again
due to RETRYCP paraneter.

2011-01-20 15:11:54 GGS I NFO 2105 DDL error ignored for next retry: error
code [942], filter [include objname nyTabl eTenp], error text [ORA-00942: table
or view does not exist], retry [3].

2011-01-20 15:11:54 GGS I NFO 2100 Executing DDL operation, trying again
due to RETRYCP paraneter.

2011-01-20 15:11:54 GGS I NFO 2105 DDL error ignored: error code [942],
filter [include objname nyTabl eTenp], error text [ORA-00942: table or view does
not exist].

10.17.2 Viewing DDL Reporting in Extract

ORACLE

The Extract report lists the following:

* The entire syntax of each captured DDL operation, the start and end SCN, the
Oracle instance, the DDL sequence number (from the SEQNO column of the history
table), and the size of the operation in bytes.

* A subsequent entry that shows how processing criteria was applied to the
operation, for example string substitution or | NCLUDE and EXCLUDE filtering.

* Another entry showing whether the operation was written to the trail or excluded.

The following, taken from an Extract report, shows an included operation and an
excluded operation. There is a report message for the included operation, but not for
the excluded one.

2011-01-20 15:11:41 GGS INFO 2100 DDL found, operation [create table
myTabl e (

myld nunber (10) not null,

myNunber nunber,

myString varchar2(100),

myDate date,

primary key (nyld)

10-27

Chapter 10
Tracing DDL Processing

)], start SCN [1186754], commit SCN [1186772] instance [test1lg (1)], DDL seqno
[4134] .

2011-01-20 15:11:41 GGS INFO 2100 DDL operation included [NCLUDE OBJNAME
nmyTabl e*], optype [CREATE], objtype [TABLE], objname [QATEST1. MYTABLE] .

2011-01-20 15:11:41 GGS INFO 2100 DDL operation witten to extract trail
file.

2011-01-20 15:11:42 GGS INFO 2100 Successfully added TRAN DATA

for table with the key, table [QATEST1. \TABLE], operation [ALTER TABLE
"QATEST1". "MYTABLE" ADD SUPPLEMENTAL LOG GROUP "GGS_MYTABLE_53475" (MYI D)
ALWAYS /* GOLDENGATE_DDL_REPLI CATION */ .

2011-01-20 15:11:43 GGS INFO 2100 DDL found, operation [create table
nmyTabl eTenp (

vid varchar2(100),

sonmeDat e date,

primary key (vid)
)], start SCN [1186777], conmit SCN [1186795] instance [testllg (1)], DDL seqgno
[4137].

2011-01-20 15:11:43 GGS INFO 2100 DDL operation excluded [EXCLUDE
OBJNAME nyTabl eTenp OPTYPE CREATE], optype [CREATE], objtype [TABLE], objnane
[QATEST1. MYTABLETEMP] .

10.17.3 Statistics in the Process Reports

You can send current statistics for DDL processing to the Extract and Replicat reports
by using the SEND command in GGSCI.

SEND { EXTRACT | REPLI CAT} group REPORT

The statistics show totals for:

e Al DDL operations

e Operations that are MAPPED in scope

* Operations that are UNVWPPED in scope

e Operations that are OTHER in scope

* Operations that were excluded (number of operations minus included ones)
* Errors (Replicat only)

» Retried errors (Replicat only)

» Discarded errors (Replicat only)

» Ignored operations (Replicat only)

10.18 Tracing DDL Processing

If you open a support case with Oracle GoldenGate Technical Support, you might be
asked to turn on tracing. TRACE and TRACE2 control DDL tracing.

ORACLE 10-28

Chapter 10
Using Edition-Based Redefinition

10.19 Using Edition-Based Redefinition

ORACLE

Oracle GoldenGate supports the use of Edition-based Redefinition (EBR) with Oracle
Databases enabling you to upgrade the database component of an application while it
is in use, thereby minimizing or eliminating down time.

Editions are non-schema objects that Editioned objects belong to. Editions can be
thought of as owning editioned objects or as a namespace. Every database starts
with one edition named, ORA$BASE; this includes upgraded databases. More than one
edition can exist in a database and each can only have one child. For example, if you
create three editions in succession, editionl, edition2, edition3, then editionl is the
parent of edition2 which is the parent of edition3. This is irrespective of the user or
database session that creates them or which edition was current when the new one is
created. When you create an edition, it inherits all the editioned objects of its parent.
To use editions with Oracle GoldenGate, you must create them.

An object is considered editioned if it is an editionable type, it is created with the

EDI TI ONABLE attribute, and the schema is enabled for editioning of that object type.
When you create, alter, or drop an editioned object, the redo log will contain the name
of the edition in which it belongs. In a container database, editions belong to the
container and each container has its own default edition.

The CREATE | DRCP EDI TI ON DDLs are captured for all Extract configurations. They
fall into the OTHER category and assigned an OBJTYPE option value of EDI TI ON. The
OBJTYPE option can be used for filtering, for example:

DDL EXCLUDE OBJTYPE EDI TI ON

DDL EXCLUDE OBJTYPE EDI TI ON OPTYPE CREATE

DDL EXCLUDE OBJTYPE EDI TI ON OPTYPE DRCP

DDL EXCLUDE OBJTYPE EDI TI ON OPTYPE DROP ALLOAEMPTYOANER OBJNAME edi tion_nane

You must use the following syntax to exclude an edition from Extract or Replicat:

EXCLUDE OBJTYPE EDI TI ON, ALLOVEMPTYOANER OBJNAME editi on_nane

Editions fall into the OTHER category so no mapping is performed on the edition

name. When applied, the USE permission is automatically granted to the Replicat user.
Replicat will also perform a grant use on edition nane with grant option tothe
original creating user if that user exists on the target database. Because editions are
not mappable operations, they do not have owners so the standard EXCLUDE statement
does not work.

The DDLs used to create or alter editions does not actually enable the user for
editions, rather they enable the schema for editions. This is an important distinction
because it means that the Replicat user does not need to be enabled for editions to
apply DDLs to editioned objects. When Replicat applies a CREATE EDI TI ONDDL, it
grants the original creating user permission to USE it if the original user exists on the
target database. For any unreplicated CREATE EDI Tl ON statements, you must issue a
USE W TH GRANT OPTI ON grant to the Replicat user.

Whether or not an editionable objects becomes editioned is controlled by the schema
it is applied in. Replicat switches its current session Edition before applying a DDL if
the edition name attribute exists in the trail file and it is not empty.

Container database environments are supported for both Extract and Replicat. No
additional configuration is necessary. The Replicat user's schema can not be enabled

10-29

ORACLE

Chapter 10
Using Edition-Based Redefinition

for editions if it is a common user. The Replicat user's schema does not need to be
enabled for editions when applying DDLs to editioned objects in other schemas.

Note:

EBR support is limited to Integrated Dictionary; it is not supported when
using a DDL trigger.

10-30

Creating Process Groups

This chapter contains instructions for creating Oracle GoldenGate process groups,
collectively known as the "change-synchronization" processes. At minimum, you will
create one primary Extract, one data pump, and one Replicat process group.
Topics:

e Prerequisites
This chapter assumes you have installed Oracle GoldenGate, understand
the different processing options available to you, and have performed the
following prerequisite configuration steps before proceeding to configure Oracle
GoldenGate process groups.

* Registering Extract with the Mining Database
If you are using Extract in integrated mode, you need to create a database
logmining server to capture redo data. You do this from the GGSCI interface by
registering the primary Extract process with the mining database.

e Add the Primary Extract
The primary Extract writes to a trail.

* Add the Local Trail
These steps add the local trail to which the primary Extract writes captured data.

e Add the Data Pump Extract Group
These steps add the data pump that reads the local trail and sends the data to the
target.

e Add the Remote Trail

Although it is read by Replicat, this trail must be associated with the data pump, so

it must be added on the source system, not the target.

e Add the Replicat Group
These steps add the Replicat group that reads the remote trail and applies the
data changes to the target Oracle Database.

11.1 Prerequisites

ORACLE

This chapter assumes you have installed Oracle GoldenGate, understand the different

processing options available to you, and have performed the following prerequisite
configuration steps before proceeding to configure Oracle GoldenGate process
groups.

» Establishing Oracle GoldenGate Credentials

» Preparing the Database for Oracle GoldenGate
» Configuring Extract

e #unique_177

* Configuring Oracle GoldenGate Apply

» Configuring DDL Support (to use DDL support)

11-1

Chapter 11
Registering Extract with the Mining Database

11.2 Registering Extract with the Mining Database

ORACLE

If you are using Extract in integrated mode, you need to create a database logmining
server to capture redo data. You do this from the GGSCI interface by registering the
primary Extract process with the mining database.

The creation of the logmining server extracts a snapshot of the source database in
the redo stream of the source database. In a source multitenant container database,
you register Extract with each of the pluggable databases that you want to include for
capture.

WARNING:

Make certain that you know the earliest SCN of the log stream at which
you want Extract to begin processing. Extract cannot have a starting SCN
value that is lower than the first SCN that is specified when the underlying
database capture process is created with the REG STER EXTRACT command.
You can use the SCN option

1. Log into the mining database then use the commands appropriate to your
environment. The use of DBLOG N always refers to the source database.

Command for source database deployment:

DBLOG N USERI DALI AS al i as

Command for downstream mining database deployment:

DBLOG N USERI DALI AS al i as
M NI NGDBLOG N USERI DALI AS al i as2

Where: al i as specifies the alias of the database login credential that is assigned
to Extract. This credential must exist in the Oracle GoldenGate credential store.
For more information, see Establishing Oracle GoldenGate Credentials. For
more information about DBLOG N and M NI NGDBLOG N, see Reference for Oracle
GoldenGate.

2. Register the Extract process with the mining database.

REG STER EXTRACT group DATABASE [CONTAI NER (container[, ...])] [SCN
syst em change_nunber]

Where:
e group is the name of the Extract group.

o CONTAINER (container[, ...]) specifies a pluggable database (PDB) within
a multitenant container database, or a list of PDBs separated with commas.
The specified PDBs must exist before the REG STER command is executed.
Extract will capture only from the PDBs that are listed in this command. For
example, the following command registers PDBs nypdb1 and nypdb4. Changes
from any other PDBs in the multitenant container database are ignored by
Oracle GoldenGate.

REG STER EXTRACT nyextract DATABASE CONTAINER (nypdbl, nypdb4, nydb5)

11-2

Chapter 11
Add the Primary Extract

You can add or drop pluggable databases at a later date by stopping Extract,
issuing a DBLOG N command, and then issuing REG STER EXTRACT with the
{ ADD | DROP} CONTAI NER option of DATABASE.

" Note:

Adding CONTAI NERs at particular SCN on an existing Extract is not
supported.

* Registers Extract to begin capture at a specific SCN in the past. Without
this option, capture begins from the time that REG STER EXTRACT is issued.
The specified SCN must correspond to the begin SCN of a dictionary build
operation in a log file. You can issue the following query to find all valid SCN
values:

SELECT first_change#
FROM v$ar chi ved_| og
WHERE di ctionary_begin = 'YES AND
standby_dest = 'NO AND
nane |'S NOT NULL AND
status = "A';

To register additional Extracts with a downstream database for the same source
database, issue this REG STER command.

If you want to have more than one extract per source database, you can do

that using the SHARE with REG STER EXTRACT for better performance and metadata
management. The specified SCN must correspond to the SCN where mining should
begin in the archive logs.

REG STER EXTRACT group DATABASE [CONTAI NER (container[, ...])]
[SCN syst em change_nunber] SHARE

" Note:

The register process may take a few to several minutes to complete, even
though the REG STER command returns immediately.

11.3 Add the Primary Extract

The primary Extract writes to a trail.

ORACLE

These steps add the primary Extract that captures change data.

1.

If using downstream capture, set the RMAN archive log deletion policy to the
following value in the source database:

CONFI GURE ARCHI VELOG DELETI ON PCLI CY TO APPLI ED ON ALL STANDBY

This must be done before you add the primary Extract.
Run GGSCI.

If using integrated capture, issue the DBLOG N command.

11-3

Chapter 11
Add the Primary Extract

DBLOG N USERI DALI AS al i as

Where: al i as specifies the alias of the database login credential that is assigned
to Extract. This credential must exist in the Oracle GoldenGate credential store.

4. Issue the ADD EXTRACT command to add the primary Extract group.

ADD EXTRACT group name

{, TRANLOG | , | NTEGRATED TRANLOG

{, BEG N {NOW| yyyy-mmdd[hh:mi:[ss[.cccccc]]]} | SCN val ue}
[, THREADS n]

Where:

e group nane is the name of the Extract group.

» TRANLOG specifies the transaction log as the data source; for classic capture
only. See Example 11-1.

e | NTEGRATED TRANLOG specifies that Extract receives logical change records
through a database logmining server; for integrated capture only. See
Example 11-2. Before issuing ADD EXTRACT with this option, make certain
you logged in to the database with the DBLOG N command and that you
registered this Extract with the database. See Registering Extract with the
Mining Database for more information.

» BEQ N specifies to begin capturing data as of a specific time:

— NOWstarts at the first record that is time stamped at the same time that ADD
EXTRACT is issued.

— yyyy-mmdd[hh:m:[ss[.cccccc]]] starts at an explicit timestamp. Logs
from this timestamp must be available. For Extract in integrated mode, the
timestamp value must be greater than the timestamp at which the Extract
was registered with the database.

— SCNval ue starts Extract at the transaction in the redo log that has the
specified Oracle system change number (SCN). For Extract in integrated
mode, the SCN value must be greater than the SCN at which the Extract
was registered with the database. See Registering Extract with the Mining
Database for more information.

e THREADS n is required in classic capture mode for Oracle Real Application
Cluster (RAC), to specify the number of redo log threads being used by the
cluster. Extract reads and coordinates each thread to maintain transactional
consistency. Not required for integrated capture.

< Note:

Additional options are available. See Reference for Oracle GoldenGate.

Example 11-1 Classic capture with timestamp start point

ADD EXTRACT finance, TRANLOG BEG N 2011-01-01 12:00:00. 000000

ORACLE 11-4

Chapter 11
Add the Local Trail

Example 11-2 Integrated capture with timestamp start point

DBLOG N USERI DALI AS nyal i as
ADD EXTRACT finance, | NTEGRATED TRANLOG, BEG N NOW

11.4 Add the Local Trall

These steps add the local trail to which the primary Extract writes captured data.
In GGSCI on the source system, issue the ADD EXTTRAI L command:

ADD EXTTRAIL pat hname, EXTRACT group narme

Where:

* EXTTRAI L specifies that the trail is to be created on the local system.

e pat hnane is the relative or fully qualified name of the trail, including the two-
character name.

e EXTRACT group nane is the name of the primary Extract group.

¢ Note:

Oracle GoldenGate creates this trail automatically during processing.

Example 11-3
ADD EXTTRAIL /ggs/dirdat/It, EXTRACT finance

11.5 Add the Data Pump Extract Group

These steps add the data pump that reads the local trail and sends the data to the
target.

In GGSCI on the source system, issue the ADD EXTRACT command.

ADD EXTRACT group name, EXTTRAILSOURCE trail name

Where:

e group name is the name of the Extract group.

e EXTTRAILSOURCE trail nane is the relative or fully qualified name of the local trail.
Example 11-4

ADD EXTRACT financep, EXTTRAILSOURCE c:\ggs\dirdat\It

11.6 Add the Remote Trall

Although it is read by Replicat, this trail must be associated with the data pump, so it
must be added on the source system, not the target.

These steps add the remote trail:

ORACLE 11-5

Chapter 11
Add the Replicat Group

In GGSCI on the source system, issue the following command:
ADD RMITRAI L pat hname, EXTRACT group name
Where:

* RMITRAI L specifies that the trail is to be created on the target system.

* pathname is the relative or fully qualified name of the trail, including the two-
character name.

» EXTRACT group narme is the name of the data-pump Extract group.

¢ Note:

Oracle GoldenGate creates this trail automatically during processing.

Example 11-5
ADD RMITRAIL /ggs/dirdat/rt, EXTRACT financep

11.7 Add the Replicat Group

ORACLE

These steps add the Replicat group that reads the remote trail and applies the data
changes to the target Oracle Database.

1. Run GGSCI on the target system.

2. If using integrated Replicat, issue the DBLOG N command to log into the database
from GGSCI.

DBLOG N USERI DALI AS al i as

Where: al i as specifies the alias of the database login credential that is assigned
to Replicat. This credential must exist in the Oracle GoldenGate credential store.
For more information, see Establishing Oracle GoldenGate Credentials

3. Issue the ADD REPLI CAT command with the following syntax.

ADD REPLI CAT group name, [INTEGRATED,] EXTTRAIL pat hnane

Where:
e group nane is the name of the Replicat group.
* | NTEGRATED creates an integrated Replicat group.

e EXTTRAIL pat hnane is the relative or fully qualified name of the remote trail,
including the two-character name.

For more information, see Reference for Oracle GoldenGate.
Example 11-6 Adds a Nonintegrated Replicat
ADD REPLI CAT financer, EXTTRAIL c:\ggs\dirdat\rt

Example 11-7 Adds an Integrated Replicat

ADD REPLI CAT financer, |NTEGRATED, EXTTRAIL c:\ggs\dirdat\rt

11-6

Instantiating Oracle GoldenGate
Replication

This chapter contains instructions for configuring and performing an instantiation of
the replication environment to establish and maintain a synchronized state between
two or more databases. In a synchronized state, the source and target objects contain
identical or appropriately corresponding values, depending on whether any conversion
or transformation is performed on the data before applying it to the target objects.
Topics:

e Overview of the Instantiation Process
In the instantiation procedure, you make a copy of the source data and load the
copy to the target database.

e Prerequisites for Instantiation
The following steps must be taken before starting any Oracle GoldenGate
processes or native database load processes.

* Configuring the Initial Load
Oracle GoldenGate supports theses load methods in this section specifically for
Oracle Database.

* Performing the Target Instantiation
This procedure instantiates the target tables while Oracle GoldenGate captures
ongoing transactional changes on the source and stores them until they can be
applied on the target.

* Monitoring and Controlling Processing After the Instantiation
After the target is instantiated and replication is in effect, you can control
processes and view the overall health of the replication environment.

» Verifying Synchronization
To verify that the source and target data are synchronized, you can use the Oracle
GoldenGate Veridata product or use your own scripts to select and compare
source and target data.

» Backing up the Oracle GoldenGate Environment
After you start Oracle GoldenGate processing, an effective backup routine is
critical to preserving the state of processing in the event of a failure. Unless
the Oracle GoldenGate working files can be restored, the entire replication
environment must be re-instantiated, complete with new initial loads.

12.1 Overview of the Instantiation Process

ORACLE

In the instantiation procedure, you make a copy of the source data and load the copy
to the target database.

The initial load captures a point-in-time snapshot of the data, while Oracle GoldenGate
maintains that consistency by applying transactional changes that occur while the
static data is being loaded. After instantiation is complete, Oracle GoldenGate
maintains the synchronized state throughout ongoing transactional changes.

12-1

Chapter 12
Prerequisites for Instantiation

When you instantiate Oracle GoldenGate processing, it is recommended that you

do so first in a test environment before deploying live on your production machines.
This is especially important in an active-active or high availability configuration, where
trusted source data may be touched by the replication processes. Testing enables
you to find and resolve any configuration mistakes or data issues without the need

to interrupt user activity for re-loads on the target or other troubleshooting activities.
Testing also ensures that your instantiation process is configured properly. Parameter
files can be copied to the production equipment after successful testing, and then you
can perform a predictable instantiation with production data.

12.2 Prerequisites for Instantiation

The following steps must be taken before starting any Oracle GoldenGate processes
or native database load processes.

e Configuring and Adding Change Synchronization Groups
e Disabling DDL Processing

e Adding Collision Handling

e Preparing the Target Tables

12.2.1 Configuring and Adding Change Synchronization Groups

To perform an instantiation of the target database and the replication environment, the
online change capture and apply groups must exist and be properly configured. See:

» Configuring Extract
e #unique_177
» Configuring Oracle GoldenGate Apply

* Creating Process Groups

12.2.2 Disabling DDL Processing

You must disable DDL activities before performing an instantiation. You can resume
DDL after the instantiation is finished. See Disabling DDL Processing Temporarily for
instructions.

12.2.3 Adding Collision Handling

ORACLE

This prerequisite applies to the following instantiation methods:
e Configuring a Direct Bulk Load to SQL*Loader
e Configuring a Load from an Input File to SQL*Loader

This prerequisite does not apply to the instantiation method described in Configuring a
Load with an Oracle Data Pump.

If the source database will remain active during one of those initial load methods,
collision-handling logic must be added to the Replicat parameter file. This logic
handles conflicts that occur because static data is being loaded to the target tables
while Oracle GoldenGate replicates transactional changes to those tables.

12-2

Chapter 12
Configuring the Initial Load

To handle collisions, add the HANDLECOLLI SI ONS parameter to the Replicat parameter
file to resolve these collisions:

e | NSERT operations for which the row already exists
e UPDATE and DELETE operations for which the row does not exist

HANDLECCLLI SI ONS should be removed from the Replicat parameter file at the end of
the instantiation steps (as prompted in the instructions).

To use the HANDLECOLLI SI ONS function to reconcile incremental data changes with the
load, each target table must have a primary or unique key. If you cannot create a key
through your application, use the KEYCOLS option of the TABLE and MAP parameters to
specify columns as a substitute key for Oracle GoldenGate to use. If you cannot create
keys, the affected source table must be quiesced for the load.

12.2.4 Preparing the Target Tables

The following are suggestions that can make the load go faster and help you to avoid
errors.

- Data: Make certain that the target tables are empty. Otherwise, there may be
duplicate-row errors or conflicts between existing rows and rows that are being
loaded.

* Indexes: Remove indexes from the target tables. Indexes are not necessary for
the inserts performed by the initial load process and will slow it down. You can add
back the indexes after the load is finished.

12.3 Configuring the Initial Load

Oracle GoldenGate supports theses load methods in this section specifically for Oracle
Database.

Select a method and follow its configuration steps to create the load processes
and parameter files. To work with parameter files, see Using Oracle GoldenGate
Parameter Files in Administering Oracle GoldenGate.

» Configuring a Load with an Oracle Data Pump
» Configuring a Direct Bulk Load to SQL*Loader

e Configuring a Load from an Input File to SQL*Loader

12.3.1 Configuring a Load with an Oracle Data Pump

This method uses the Oracle Data Pump utility to establish the target data. You
start Extract, the data pumps, and Replicat at the SCN at which the copy stopped.
Transactions that were included in the copy are skipped to avoid collisions from
integrity violations. From the process start point, Oracle GoldenGate maintains data
synchronization.

No initial-load Oracle GoldenGate processes are required for this method.

ORACLE 12-3

Chapter 12
Configuring the Initial Load

O Y

o

2 m
r

Source
SOURCEDB Utility
i : A . Target
- S - B i
S o & . foJ
Transaction Change Collector Trail Change
Log, VAM, Extract Network Replicat
or Log Table

12.3.2 Configuring a Direct Bulk Load to SQL*Loader

With this method, you configure and run an Oracle GoldenGate initial-load Extract to
extract complete source records and send them directly to an initial-load Replicat task.
The initial-load Replicat task communicates with SQL*Loader to load data as a direct-
path bulk load. Data mapping and transformation can be done by either the initial-load
Extract or initial-load Replicat, or both. During the load, the change-synchronization
groups that you configured in Configuring Extract or #unique_177 and Configuring
Oracle GoldenGate Apply replicate incremental changes, which are then reconciled
with the results of the load.

The following diagram shows configuring a direct bulk load to SQL*Loader.

Az
RO -
I e
Source Initial-Load SQL *Loader
SOUBCEDB Extract
: Rt . Target
! {a, : A a TARGETDB
g o {=] . [
Transaction Change Collector Trail Change
Log or Extract Network Replicat
Log Table
Limitations:

* This method does not support extraction of LOB or LONG data. As an alternative,
see Performing Instantiation From an Input File to SQL*Loader.

* This method does not support materialized views that contain LOBs, regardless of
their size. It also does not support data encryption.

ORACLE"

12-4

Chapter 12
Configuring the Initial Load

To Configure a Direct Bulk Load to SQL*Loader

1. Grant LOCK ANY TABLE to the Replicat database user on the target Oracle
Database.

2. On the source and target systems, run GGSCI.
3. Start Manager on both systems.
START MANAGER
4. On the source system, create the initial-load Extract.

ADD EXTRACT initial-load Extract, SOURCEI STABLE

Where:

 initial-load_Extract isthe name of the initial-load Extract, up to eight
characters.

e SOURCEI STABLE directs Extract to read complete records directly from the
source tables.

5. On the source system, create the initial-load Extract parameter file.
EDI T PARAMS i nitial-1oad Extract

6. Enter the initial-load Extract parameters in the order shown, starting a new line
for each parameter statement. This example shows a three-part table name
associated with a multitenant container database.

EXTRACT i ni t ext

USERI DALI AS tigerl

RMIHOST finl, MGERPORT 7809 ENCRYPT AES192, KEYNAME securekey?2
RMITASK replicat, GROUP initrep

TABLE hq. hr. *;

Parameter Description

EXTRACT initial - Specifies the name of the initial-load Extract, as stated
| oad_Extract with ADD EXTRACT.

USERI DALI AS al i as Specifies the alias of the database login credential

that is assigned to Extract. This credential must
exist in the Oracle GoldenGate credential store. For
more information, see Establishing Oracle GoldenGate

Credentials
RMTHOST host nane, Specifies the target system, the port where Manager is
MERPORT port nunber [, running, and optional encryption of data across TCP/IP.
ENCRYPT al gorit hm KEYNAME
keynang]
RMITASK REPLI CAT, GROUP Specifies the process type (must be REPLI CAT) and
initial-Ioad_Replicat the name of the initial-load Replicat. Directs Manager

on the target system to dynamically start the initial-load
Replicat as a one-time task.

ORACLE 12-5

Chapter 12
Configuring the Initial Load

Parameter Description

TABLE Specifies the tables to capture.

[container.]schema.table; . container isthe name of the pluggable database,
if this is a multitenant container database. You can
use the SOURCECATALOG parameter to specify a
default pluggable database instead of using three-
part names.

« schenn is the schema name.
« tabl e is the table name.

7. Save and close the file.
8. On the target system, create the initial-load Replicat.

ADD REPLICAT initial-load Replicat, SPECI ALRUN

Where:
e initial-load Replicat isthe name of the initial-load Replicat task.

* SPECI ALRUN identifies the initial-load Replicat as a one-time task, not a
continuous process.

9. On the target system, create the initial-load Replicat parameter file.
EDI T PARAMS initial-1oad Replicat

10. Enter the initial-load Replicat parameters in the order shown, starting a new line
for each parameter statement. This example shows a three-part source table
name associated with a multitenant container database.

REPLI CAT initrep

USERI DALI AS tiger?2
BULKLOAD

ASSUMETARGETDEFS

MAP hq. hr.*, TARGET hr2.*;

Parameter Description

REPLI CAT initial-load Specifies the name of the initial-load Replicat task, as stated
Repl i cat with ADD REPLI CAT.

USERI DALI AS al i as Specifies the alias of the database login credential that is

assigned to Replicat. This credential must exist in the Oracle
GoldenGate credential store.

BULKLOAD Directs Replicat to interface directly with the Oracle
SQL*Loader interface.
ASSUMETARGETDEFS Assumes the source and target tables are identical, including

semantics. If source and target definitions are different, you
must create and specify a source-definitions file that both the
change-synchronization and initial-load processes will use.

ORACLE 12-6

Chapter 12
Configuring the Initial Load

Parameter

Description

MAP Specifies a relationship between a source and target table or
[container.]schema.ta tables.

bl e, TARGET .
schenn. t abl e;

If the source is a multitenant container database,

cont ai ner is the name of the pluggable database

that contains the source objects specified with this MAP
statement. You can use the SOURCECATALOG parameter
to specify a default source pluggable database instead of
using three-part names.

schema is the schema name.

t abl e is the table name.

12.3.3 Configuring a Load from an Input File to SQL*Loader

With this method, an initial-load Extract extracts source records from the source tables
and writes them to an extract file in external ASCII format. The files are read by
SQL*Loader. During the load, the change-synchronization groups that you configured
in Chapter 4 replicate incremental changes, which are then reconciled with the results
of the load. As part of the load procedure, Oracle GoldenGate uses the initial-load
Replicat to create run and control files required by the database utility. Any data
transformation must be performed by the initial-load Extract on the source system
because the control files are generated dynamically and cannot be pre-configured with

ORACLE

transformation rules.

Source
SOURCEDB

g

Transaction
Log or
Log Table

>
]

Initial-Load
Extract

L
]
L

Change
Extract

A

)M
A r.
BCP/DTS Run &
i . WM Control
—— . = Files
> - » » .
- -
_— .
LOADUTIL A
Collector EXTRACT N
FILE -~ —
- —
[
SQL "Loader
Target
TARGETDB
A
L]
> >
Q
MNetwork Collector Trail Change
Replicat

To Configure a Load from File to SQL*Loader

1. On the source and target systems, run GGSCI.

2. Start Manager on both systems.

START MANAGER

EDIT PARAMS initial-load Extract

On the source system, create the initial-load Extract parameter file.

12-7

ORACLE

Chapter 12
Configuring the Initial Load

Enter the initial-load Extract parameters in the order shown, starting a new line
for each parameter statement. This example shows a three-part table name
associated with a multitenant container database.

SOURCEI STABLE

USERI DALI AS tigerl

RMIHOST finl, MGERPORT 7809 ENCRYPT AES192, KEYNAME secur ekey?2
ENCRYPTTRAI L AES192

FORMATASCI |, SQLLOADER

RMIFI LE /ggs/dirdat/ie

TABLE hq. hr.*;

Parameter Description

SOURCEI STABLE Designates Extract as an initial load process that extracts
records directly from the source tables.

USERI DALI AS al i as Specifies the alias of the database login credential that
is assigned to Extract. This credential must exist in the
Oracle GoldenGate credential store, see Establishing Oracle
GoldenGate Credentials

RMIHOST host nane, Specifies the target system, the port where Manager is
MGRPORT portnunber[, running, and optional encryption of data across TCP/IP.
ENCRYPT al gorithm

KEYNAME keynane]

ENCRYPTTRAI L Encrypts the data in the remote file. For more information.

al gorithm

FORMATASCI |, Produces a fixed-length, ASCII-formatted remote file that is

SQ.LOADER compatible with SQL*Loader. This parameter must be listed
before RMIFI LE.

RMTFI LE path Specifies the absolute or full path name of an extract file that
Extract creates and to which it writes the load data.

TABLE Specifies the tables to capture.

[container.]schema.ta . container is the name of the pluggable database,

ble; if this is a multitenant container database. You can

use the SOURCECATALOG parameter to specify a default
pluggable database instead of using three-part names.
« schena is the schema name.
« tabl e is the table name.

Save and close the parameter file.
On the target system, create the initial-load Replicat parameter file.
EDI T PARAMS initial-1oad Replicat

Enter the initial-load Replicat parameters in the order shown, starting a new line
for each parameter statement. This example shows a three-part source table
name associated with a multitenant container database.

GENLQADFI LES sql I dr. tpl
USERI DALI AS tiger2

EXTFI LE /ggs/dirdat/ie
ASSUMETARGETDEFS

MAP hq. hr.*, TARGET hr2.*;

12-8

Chapter 12
Performing the Target Instantiation

Parameter Description

CGENLQADFI LES t enpl at e Generates run and control files for the database utility.

USERI DALI AS al i as Specifies the alias of the database login credential of the user
that is assigned to Replicat. This credential must exist in the
Oracle GoldenGate credential store, see Establishing Oracle
GoldenGate Credentials

EXTFI LE path Specifies the extract file that you specified with the Extract
parameter RMIFI LE.
ASSUVETARGETDEFS Assumes the source and target tables are identical, including

semantics. If source and target definitions are different, you
must create and specify a source-definitions file that both the
change-synchronization and initial-load processes will use.

MAP Specifies a relationship between a source and target table or
[container.]schema.ta tables.

ble, TARGET « Ifthe source is a multitenant container database,
schena. tabl e; cont ai ner is the name of the pluggable database

that contains the source objects specified with this MAP
statement. You can use the SOURCECATALOG parameter
to specify a default source pluggable database instead of
using three-part names.

« schenn is the schema name.

« tabl eis the table name.

8. Save and close the parameter file.

12.4 Performing the Target Instantiation

This procedure instantiates the target tables while Oracle GoldenGate captures
ongoing transactional changes on the source and stores them until they can be
applied on the target.

By the time you perform the instantiation of the target tables, the entire Oracle
GoldenGate environment should be configured for change capture and delivery, as
should the initial-load processes if using Oracle GoldenGate as an initial-load utility.

" Note:

The first time that Extract starts in a new Oracle GoldenGate configuration,
any open source transactions will be skipped. Only transactions that begin
after Extract starts are captured.

e Performing Instantiation with Oracle Data Pump
» Performing Instantiation with Direct Bulk Load to SQL*Loader

e Performing Instantiation From an Input File to SQL*Loader

12.4.1 Performing Instantiation with Oracle Data Pump

To perform instantiation with Oracle Data Pump, see My Oracle Support document
1276058.1. To obtain this document, do the following:

ORACLE 12-9

6.

Chapter 12
Performing the Target Instantiation

Gotohttp://support.oracle.com

Under Sign In, select your language and then log in with your Oracle Single
Sign-On (SSO).

On the Dashboard, expand the Knowledge Base heading.

Under Enter Search Terms, paste or type the document ID of 1276058. 1 and then
click Search.

In the search results, select Oracle GoldenGate Best Practices: Instantiation
from an Oracle Source Database [Article ID 1276058.1].

Click the link under Attachments to open the article.

12.4.2 Performing Instantiation with Direct Bulk Load to SQL*Loader

ORACLE

1.
2.

On the source system, run GGSCI.

Start the primary change-capture Extract group.
START EXTRACT group

Start the data-pump Extract group.

START EXTRACT dat a_punp

If replicating sequence values:

e Issue the DBLOG@ N command with the alias of a user in the credential store who
has EXECUTE privilege on updat e. Sequence.

DBLOG N USERI DALI AS al i as

» Issue the following command to update each source sequence and generate
redo. From the redo, Replicat performs initial synchronization of the
sequences on the target.

FLUSH SEQUENCE [cont ai ner.] schenma. sequence
Start the initial-load Extract.

START EXTRACT initial-load Extract

WARNING:

Do not start the initial-load Replicat. The Manager process starts it
automatically and terminates it when the load is finished.

On the target system, run GGSCI.

Issue the VI EW REPORT command to determine when the initial load to SQL*Loader
is finished.

VIEWREPCRT initial-load Extract
When the load is finished, start the change-data Replicat group.
START REPLI CAT group

Issue the | NFO REPLI CAT command, and continue to issue it until it shows that
Replicat posted all of the change data that was generated during the initial load.

12-10

http://support.oracle.com

Chapter 12
Performing the Target Instantiation

For example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that time.

I NFO REPLI CAT group

10. Turn off HANDLECOLLI SI ONS for the change-delivery Replicat to disable initial-load
error handling.

SEND REPLI CAT group, NOHANDLECCLLI SI ONS

11. Edit the change-delivery Replicat parameter file to remove the HANDLECOLLI SI ONS
parameter.

EDI T PARAMS group
12. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data changes.

12.4.3 Performing Instantiation From an Input File to SQL*Loader

ORACLE

¢ Note:

The SQL*Loader method is not recommended if the data has multibyte
characters, especially when the character set of the operating system is
different from the database character set.

1. On the source system, run GGSCI.

2. Start the primary change-capture Extract group.
START EXTRACT group

3. Start the data-pump Extract group.
START EXTRACT dat a_punp

4. |If replicating sequence values:

* |ssue the DBLOA N command with the alias of a user in the credential store who
has EXECUTE privilege on updat e. Sequence.

DBLOG N USERI DALI AS al i as

* Issue the following command to update each source sequence and generate
redo. From the redo, Replicat performs initial synchronization of the
sequences on the target.

FLUSH SEQUENCE [cont ai ner.] schema. sequence

5. From the Oracle GoldenGate installation directory on the source system, start the
initial-load Extract from the command line of the operating system (not GGSCI).

UNIX and Linux:

$ /OCG directory/extract paranfile dirprminitial-load_Extract.prm
reportfile path

Windows:

12-11

10.

11.

12.

13.

14.

Chapter 12
Performing the Target Instantiation

C\> OGG directory\extract paranfile dirprminitial-load Extract.prm
reportfile path

Where: initial-l1oad_Extract is the name of the initial-load Extract and pat h
is the relative or fully qualified path where you want the Extract report file to be
created.

Wait until the initial extraction from the source is finished. Verify its progress and
results by viewing the Extract report file from the command line.

On the target system, start the initial-load Replicat.
UNIX and Linux:

$ /OCG directory/replicat paranfile dirprndinitial-load_Replicat
name.prmreportfile path

Windows:
C\> OGG directory\replicat paranfile dirprminitial-load Replicat.prm
reportfile path

Where: initial-1oad Extract is the name of the initial-load Replicat and pat h
is the relative or fully qualified path where you want the Replicat report file to be
created.

When the initial-load Replicat stops, verify its results by viewing the Replicat report
file from the command line.

Using the ASCII-formatted file and the run and control files that the initial-load
Replicat created, load the data with SQL*Loader.

When the load is finished, start the change-delivery Replicat group.
START REPLI CAT group

Issue the | NFO REPLI CAT command, and continue to issue it until it shows that
Replicat posted all of the change data that was generated during the initial load.
For example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that time.

I NFO REPLI CAT group

Turn off HANDLECOLLI SI ONS for the change-delivery Replicat to disable initial-load
error handling.

SEND REPLI CAT group, NOHANDLECOLLI SI ONS

Edit the change-delivery Replicat parameter file to remove the HANDLECOLLI SI ONS
parameter.

EDI T PARANG gr oup

Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data changes.

ORACLE

12-12

Chapter 12
Monitoring and Controlling Processing After the Instantiation

12.5 Monitoring and Controlling Processing After the
Instantiation

ORACLE

After the target is instantiated and replication is in effect, you can control processes
and view the overall health of the replication environment.

If you configured Replicat in integrated mode, you can use the STATS REPLI CAT
command to view statistics on the number of transactions that are applied in integrated
mode as compared to those that are applied in direct apply mode.

STATS REPLI CAT group

The output of this command shows the number of transactions applied, the number
of transactions that were redirected to direct apply, and the direct transaction ratio,
among other statistics. The statistics help you determine whether integrated Replicat
is performing as intended. If the environment is satisfactory and there is a high ratio
of direct apply operations, consider using nonintegrated Replicat. You can configure
parallelism with nonintegrated Replicat.

Note:

To ensure realistic statistics, view apply statistics only after you are

certain that the Oracle GoldenGate environment is well established, that
configuration errors are resolved, and that any anticipated processing errors
are being handled properly.

You can also view runtime statistics for integrated Replicat in the V$views for each of
the inbound server components.

* The reader statistics are recorded in V$GG_APPLY_READER and include statistics on
number of messages read, memory used, and dependency counts.

* The apply coordinator statistics are recorded in V$GG_APPLY_COORDI NATCR and
record statistics at the transaction level.

* The apply server statistics are recorded in V$GG_APPLY_SERVER. This view records
information for each of the apply server processes (controlled by paral | el i sm
and max_par al | el i smparameters) as separate rows. The statistics for each apply
server are identified by the SERVER | D column. If a SERVER | D of 0 exists, this
represents an aggregate of any apply servers that exited because the workload
was reduced.

» Statistics about the number of messages received by the database from Replicat
are recorded in the V$GG_APPLY_RECEI VER table.

To control processes, see Controlling Oracle GoldenGate Processes in Administering
Oracle GoldenGate.

To ensure that all processes are running properly and that errors are being

handled according to your error handling rules, see Handling Processing Errors in
Administering Oracle GoldenGate. Oracle GoldenGate provides commands and logs
to view process status, lag, warnings, and other information.

12-13

Chapter 12
Verifying Synchronization

To know more about querying the following views, see Oracle Database Reference.

* V$GOLDENGATE_TABLE_STATS to see statistics for DML and collisions that occurred
for each replicated table that the inbound server processed.

e V$GOLDENGATE_TRANSACTI ON to see information about transactions that are being
processed by Oracle GoldenGate inbound servers.

12.6 Verifying Synchronization

To verify that the source and target data are synchronized, you can use the Oracle
GoldenGate Veridata product or use your own scripts to select and compare source
and target data.

12.7 Backing up the Oracle GoldenGate Environment

ORACLE

After you start Oracle GoldenGate processing, an effective backup routine is critical
to preserving the state of processing in the event of a failure. Unless the Oracle
GoldenGate working files can be restored, the entire replication environment must be
re-instantiated, complete with new initial loads.

As a best practice, include the entire Oracle GoldenGate home installation in your
backup routines. There are too many critical sub-directories, as well as files and
programs at the root of the directory, to keep track of separately. In any event, the
most critical files are those that consume the vast majority of backup space, and
therefore it makes sense just to back up the entire installation directory for fast, simple
recovery.

12-14

Managing the DDL Replication
Environment

This chapter contains instructions for making changes to the database environment
or the Oracle GoldenGate environment when the Oracle GoldenGate DDL trigger is
being used to support DDL replication. See #unique_110 for more information about
the DDL objects.

For instructions on configuring Oracle GoldenGate DDL support, see Configuring DDL
Support .

" Note:

This chapter is only relevant for classic capture mode or integrated capture
mode in which trigger-based DDL capture is being used.

Topics:

» Disabling DDL Processing Temporarily
You must disable DDL activities before performing an instantiation or other tasks, if
directed.

* Enabling and Disabling the DDL Trigger
You can enable and disable the trigger that captures DDL operations without
making any configuration changes within Oracle GoldenGate.

* Maintaining the DDL Marker Table
You can purge rows from the marker table at any time. It does not keep DDL
history.

* Deleting the DDL Marker Table
Do not delete the DDL marker table unless you want to discontinue synchronizing
DDL.

* Maintaining the DDL History Table
You can purge the DDL history table to control its size, but do so carefully.

* Deleting the DDL History Table
The history table and the DDL trigger are interdependent. An attempt to drop the
history table fails if the DDL trigger is enabled. This is a safety measure to prevent
the trigger from becoming invalid and missing DDL operations.

e Purging the DDL Trace File
To prevent the DDL trace file from consuming excessive disk space, run the
ddl _cl eartrace script on a regular basis.

* Applying Database Patches and Upgrades when DDL Support is Enabled
Database patches and upgrades usually invalidate the Oracle GoldenGate DDL
trigger and other Oracle GoldenGate DDL objects.

ORACLE 13-1

Chapter 13
Disabling DDL Processing Temporarily

* Apply Oracle GoldenGate Patches and Upgrades when DDL support is Enabled
Use the following steps to apply a patch or upgrade to the DDL objects.

* Restoring an Existing DDL Environment to a Clean State
Follow these steps to completely remove, and then reinstall, the Oracle
GoldenGate DDL objects.

* Removing the DDL Objects from the System
This procedure removes the DDL environment and removes the history that
maintains continuity between source and target DDL operations.

13.1 Disabling DDL Processing Temporarily

You must disable DDL activities before performing an instantiation or other tasks, if
directed.

You can resume DDL processing after the task is finished.

1. Disable user DDL operations on the source database.

2. If there are previous DDL replication processes that are still active, make certain
that the last executed DDL operation was applied to the target before stopping
those processes, so that the load data is applied to objects that have the correct
metadata.

3. Comment out the DDL parameter in the Extract and Replicat parameter files that
you configured for the new Oracle GoldenGate environment. Comment out any
other parameters that support DDL.

4. Disable the Oracle GoldenGate DDL trigger, if one is in use. See Enabling and
Disabling the DDL Trigger.

13.2 Enabling and Disabling the DDL Trigger

You can enable and disable the trigger that captures DDL operations without making
any configuration changes within Oracle GoldenGate.

The following scripts control the DDL trigger.

e ddl _di sabl e: Disables the trigger. No further DDL operations are captured or
replicated after you disable the trigger.

e ddl _enabl e: Enables the trigger. When you enable the trigger, Oracle GoldenGate
starts capturing current DDL changes, but does not capture DDL that was
generated while the trigger was disabled.

Before running these scripts, disable all sessions that ever issued DDL, including
those of the Oracle GoldenGate processes, SQL*Plus, business applications, and

any other software that uses Oracle. Otherwise the database might generate an
ORA-04021 error. Do not use these scripts if you intend to maintain consistent DDL on
the source and target systems.

13.3 Maintaining the DDL Marker Table

You can purge rows from the marker table at any time. It does not keep DDL history.

To purge the marker table, use the Manager parameter PURGEMARKERHI STORY. Manager
gets the name of the marker table from one of the following:

ORACLE 13-2

Chapter 13
Deleting the DDL Marker Table

1. The name given with the MARKERTABLE parameter in the GLOBALS file, if specified.
2. The default name of GGS_MARKER.

PURGEMARKERHI STCRY provides options to specify maximum and minimum lengths of
time to keep a row, based on the last modification date.

13.4 Deleting the DDL Marker Table

Do not delete the DDL marker table unless you want to discontinue synchronizing
DDL.

The marker table and the DDL trigger are interdependent. An attempt to drop the
marker table fails if the DDL trigger is enabled. This is a safety measure to prevent the
trigger from becoming invalid and missing DDL operations. If you remove the marker
table, the following error is generated:

ORA-04098: trigger 'SYS. GGS_DDL_TRIGGER BEFORE' is invalid and failed re-
val i dation

The proper way to remove an Oracle GoldenGate DDL object depends on your plans
for the rest of the DDL environment. To choose the correct procedure, see one of the
following:

e Restoring an Existing DDL Environment to a Clean State

¢ Removing the DDL Objects from the System

13.5 Maintaining the DDL History Table

You can purge the DDL history table to control its size, but do so carefully.

The DDL history table maintains the integrity of the DDL synchronization environment.
Purges to this table cannot be recovered through the Oracle GoldenGate interface.

1. To prevent any possibility of DDL history loss, make regular full backups of the
history table.

2. To ensure that purged DDL can be recovered, enable Oracle Flashback for the
history table. Set the flashback retention time well past the point where it could
be needed. For example, if your full backups are at most one week old, retain
two weeks of flashback. Oracle GoldenGate can be positioned backward into the
flashback for reprocessing.

3. If possible, purge the DDL history table manually to ensure that essential rows
are not purged accidentally. If you require an automated purging mechanism, use
the PURGEDDLHI STCORY parameter in the Manager parameter file. You can specify
maximum and minimum lengths of time to keep a row.

ORACLE 13-3

Chapter 13
Deleting the DDL History Table

< Note:

Temporary tables created by Oracle GoldenGate to increase performance
might be purged at the same time as the DDL history table, according to the
same rules. The names of these tables are derived from the name of the
history table, and their purging is reported in the Manager report file. This is
normal behavior.

13.6 Deleting the DDL History Table

The history table and the DDL trigger are interdependent. An attempt to drop the
history table fails if the DDL trigger is enabled. This is a safety measure to prevent the
trigger from becoming invalid and missing DDL operations.

Do not delete the DDL history table unless you want to discontinue synchronizing
DDL. The history table contains a record of DDL operations that were issued. Once an
Extract switches from using the DDL trigger to not using the trigger, as when source
database redo compatibility is advanced to 11.2.0.4 or greater, these objects can be
deleted though not immediately. It is imperative that all mining of the redo generated
before the compatibility change be complete and that this redo not need to be mined
again.

If you remove the history table, the following error is generated:

ORA-04098: trigger 'SYS. GGS_DDL_TRIGGER BEFORE' is invalid and failed re-
val i dation

The proper way to remove an Oracle GoldenGate DDL object depends on your plans
for the rest of the DDL environment. To choose the correct procedure, see one of the
following:

» Restoring an Existing DDL Environment to a Clean State

* Removing the DDL Objects from the System

13.7 Purging the DDL Trace File

To prevent the DDL trace file from consuming excessive disk space, run the
ddl _cl eartrace script on a regular basis.

This script deletes the trace file, but Oracle GoldenGate will create it again.

The default name of the DDL trace file is ggs_ddl _trace. | og. Itisin the
USER_DUMP_DEST directory of Oracle. The ddl _cl eartrace script is in the Oracle
GoldenGate directory.

ORACLE 13-4

Chapter 13
Applying Database Patches and Upgrades when DDL Support is Enabled

13.8 Applying Database Patches and Upgrades when DDL
Support is Enabled

Database patches and upgrades usually invalidate the Oracle GoldenGate DDL trigger
and other Oracle GoldenGate DDL objects.

Before applying a database patch, do the following.
1. Loginto SQL*Plus as a user that has SYSDBA privileges.

2. Disable the Oracle GoldenGate DDL trigger by running the ddl _di sabl e script in
SQL*Plus.

3. Apply the patch.
4. Enable the DDL trigger by running the ddl _enabl e script in SQL*Plus.

" Note:

Database upgrades and patches generally operate on Oracle objects.
Because Oracle GoldenGate filters out those objects automatically, DDL
from those procedures is not replicated when replication starts again.

To avoid recompile errors after the patch or upgrade, which are caused if the trigger
is not disabled before the procedure, consider adding calls to @dl _di sabl e and
@ldl _enabl e at the appropriate locations within your scripts.

13.9 Apply Oracle GoldenGate Patches and Upgrades when
DDL support is Enabled

Use the following steps to apply a patch or upgrade to the DDL obijects.

This section explains how to apply Oracle GoldenGate patches and upgrades when
DDL support is enabled.

Note:

If the release notes or upgrade documentation for your Oracle GoldenGate
release contain instructions similar to those provided in this section, follow
those instructions instead the ones in this section. Do not use this procedure
for an upgrade from an Oracle GoldenGate version that does not support
DDL statements that are larger than 30K (pre-version 10.4). To upgrade in
that case, follow the instructions in Restoring an Existing DDL Environment
to a Clean State.

This procedure may or may not preserve the current DDL synchronization
configuration, depending on whether the new build requires a clean installation.

ORACLE 13-5

10.
11.

12.

Chapter 13
Restoring an Existing DDL Environment to a Clean State

Run GGSCI. Keep the session open for the duration of this procedure.
Stop Extract to stop DDL capture.

STOP EXTRACT group

Stop Replicat to stop DDL replication.

STOP REPLI CAT group

Download or extract the patch or upgrade files according to the instructions
provided by Oracle GoldenGate.

Change directories to the Oracle GoldenGate installation directory.
Log in to SQL*Plus as a user that has SYSDBA privileges.

Disconnect all sessions that ever issued DDL, including those of Oracle
GoldenGate processes, SQL*Plus, business applications, and any other software
that uses Oracle. Otherwise the database might generate an ORA-04021 error.

Run the ddl _di sabl e script to disable the DDL trigger.

Run the ddl _set up script. You are prompted for the name of the Oracle
GoldenGate DDL schema. If you changed the schema name, use the new one.

Run the ddl _enabl e. sql script to enable the DDL trigger.
In GGSCI, start Extract to resume DDL capture.

START EXTRACT group

Start Replicat to start DDL replication.

START REPLI CAT group

13.10 Restoring an Existing DDL Environment to a Clean

State

ORACLE

Follow these steps to completely remove, and then reinstall, the Oracle GoldenGate
DDL objects.

This procedure creates a new DDL environment and removes any current DDL history.

< Note:

Due to object interdependencies, all objects must be removed and reinstalled
in this procedure.

If you are performing this procedure in conjunction with the installation of a new
Oracle GoldenGate version, download and install the Oracle GoldenGate files, and
create or update process groups and parameter files as necessary.

(Optional) To preserve the continuity of source and target structures, stop DDL
activities and then make certain that Replicat finished processing all of the DDL
and DML data in the trail. To determine when Replicat is finished, issue the
following command until you see a message that there is no more data to process.

I NFO REPLI CAT group

13-6

10.

11.

12.

13.

ORACLE

Chapter 13
Restoring an Existing DDL Environment to a Clean State

< Note:

Instead of using | NFO REPLI CAT, you can use the EVENTACTI ONS option of
TABLE and MAP to stop the Extract and Replicat processes after the DDL
and DML has been processed.

Run GGSCI.

Stop Extract to stop DDL capture.

STOP EXTRACT group

Stop Replicat to stop DDL replication.

STOP REPLI CAT group

Change directories to the Oracle GoldenGate installation directory.
Log in to SQL*Plus as a user that has SYSDBA privileges.

Disconnect all sessions that ever issued DDL, including those of Oracle
GoldenGate processes, SQL*Plus, business applications, and any other software
that uses Oracle. Otherwise the database might generate an ORA-04021 error.

Run the ddl _di sabl e script to disable the DDL trigger.

Run the ddl _r emove script to remove the Oracle GoldenGate DDL trigger, the DDL
history and marker tables, and other associated objects. This script produces a
ddl _renove_spool . txt file that logs the script output and a ddl _renove_set . t xt
file that logs environment settings in case they are needed for debugging.

Run the mar ker _r enove script to remove the Oracle GoldenGate marker support
system. This script produces a mar ker _remve_spool . t xt file that logs the script
output and a mar ker _renove_set . t xt file that logs environment settings in case

they are needed for debugging.

If you are changing the DDL schema for this installation, grant the following
permission to the Oracle GoldenGate schema.

GRANT EXECUTE ON utl _file TO schenm;

If you are changing the DDL schema for this installation, the schema's default
tablespace must be dedicated to that schema; do not allow any other schema to
share it. AUTOEXTEND must be set to ON for this tablespace, and the tablespace
must be sized to accommodate the growth of the GGS_DDL_HI ST and GGS_MARKER
tables. The GGS_DDL_HI ST table, in particular, will grow in proportion to overall DDL
activity.

13-7

14.

15.

16.

17.

18.

19.

Chapter 13
Removing the DDL Objects from the System

< Note:

If the DDL tablespace fills up, Extract stops capturing DDL. To cause
user DDL activity to fail when that happens, edit the par ans. sql script
and setthe ddl _fire error_in_trigger parameter to TRUE. Stopping
user DDL gives you time to extend the tablespace size and prevent

the loss of DDL capture. Managing tablespace sizing this way, however,
requires frequent monitoring of the business applications and Extract

to avoid business disruptions. Instead, Oracle recommends that you
size the tablespace appropriately and set AUTOEXTEND to ON so that the
tablespace does not fill up.

WARNING:

Do not edit any other parameters in par ans. sql except if you need to
follow documented instructions to change certain object names.

If you are changing the DDL schema for this installation, edit the GLOBALS file and
specify the new schema name with the following parameter.

GGSCHEMA schema_name

Run the mar ker _set up script to reinstall the Oracle GoldenGate marker support
system. You are prompted for the name of the Oracle GoldenGate schema.

Run the ddl _set up script. You are prompted for the name of the Oracle
GoldenGate DDL schema.

Run the r ol e_set up script to recreate the Oracle GoldenGate DDL role.

Grant the role to all Oracle GoldenGate users under which the following Oracle
GoldenGate processes run: Extract, Replicat, GGSCI, and Manager. You might
need to make multiple grants if the processes have different user names.

Run the ddl _enabl e. sql script to enable the DDL trigger.

13.11 Removing the DDL Objects from the System

This procedure removes the DDL environment and removes the history that maintains
continuity between source and target DDL operations.

ORACLE

1.
2.

Note:

Due to object interdependencies, all objects must be removed.

Run GGSCI.
Stop Extract to stop DDL capture.
STOP EXTRACT group

13-8

ORACLE

Chapter 13
Removing the DDL Objects from the System

Stop Replicat to stop DDL replication.

STOP REPLI CAT group

Change directories to the Oracle GoldenGate installation directory.
Run SQL*Plus and log in as a user that has SYSDBA privileges.

Disconnect all sessions that ever issued DDL, including those of Oracle
GoldenGate processes, SQL*Plus, business applications, and any other software
that uses Oracle. Otherwise the database might generate an ORA-04021 error.

Run the ddl _di sabl e script to disable the DDL trigger.

Run the ddl _renove script to remove the Oracle GoldenGate DDL trigger, the
DDL history and marker tables, and the associated objects. This script produces a
ddl _renove_spool . txt file that logs the script output and a ddl _r enpve_set . t xt
file that logs current user environment settings in case they are needed for
debugging.

Run the mar ker _r enove script to remove the Oracle GoldenGate marker support
system. This script produces a mar ker _renove_spool . t xt file that logs the script
output and a mar ker _renove_set . t xt file that logs environment settings in case

they are needed for debugging.

13-9

Automatic Conflict Detection and
Resolution

You can configure Oracle GoldenGate to automatically detect and resolve conflicts that
occur when same data is updated concurrently at different sites.

Topics:

* About Automatic Conflict Detection and Resolution
When Oracle GoldenGate replicates changes between Oracle Databases, you
can configure and manage Oracle GoldenGate automatic conflict detection and
resolution in these databases. To do this, you must ensure that PL/SQL call is
done at the source and the target databases.

* Configuring Automatic Conflict Detection and Resolution
You can configure Oracle GoldenGate automatic conflict detection and resolution
in Oracle Database with the DBMS_GOLDENGATE_ADMpackage.

* Managing Automatic Conflict Detection and Resolution
You can manage Oracle GoldenGate automatic conflict detection and resolution in
Oracle Database with the DBMS_GOLDENGATE_ADMpackage.

* Monitoring Automatic Conflict Detection and Resolution
You can monitor Oracle GoldenGate automatic conflict detection and resolution in
an Oracle Database by querying data dictionary views.

14.1 About Automatic Conflict Detection and Resolution

ORACLE

When Oracle GoldenGate replicates changes between Oracle Databases, you can
configure and manage Oracle GoldenGate automatic conflict detection and resolution
in these databases. To do this, you must ensure that PL/SQL call is done at the source
and the target databases.

This feature is intended for use with bi-directional replication.

" Note:

This chapter is for the automatic conflict detection and resolution feature that
is specific to Oracle GoldenGate 21c (21.1.0) and Oracle Database 21c and
later, which is configured in an Oracle Database. There is also a general
Oracle GoldenGate feature for conflict detection and resolution, which is
called Oracle GoldenGate conflict detection and resolution (CDR). Oracle
GoldenGate CDR is configured in the Replicat parameter file.

You can configure only one of the following types of automatic conflict detection and
resolution for a single table:

14-1

Chapter 14
About Automatic Conflict Detection and Resolution

» The automatic conflict detection and resolution feature that is specific to Oracle
Database 21c

* Oracle GoldenGate CDR

* Automatic Conflict Detection and Resolution

* Requirements for Automatic Conflict Detection and Resolution
Learn the requirements for automatic conflict detection and resolution (ACDR).

e Column Groups

e DELETE TOMBSTONE Table

» Earliest Timestamp Conflict Detection and Resolution
* Latest Timestamp Conflict Detection and Resolution
* Delete Always Wins Timestamp CDR

» Delta Conflict Detection and Resolution

e Site Priority CDR

* Track PK Updates in Delete Tombstone

14.1.1 Automatic Conflict Detection and Resolution

ORACLE

You can configure automatic conflict detection and resolution in an Oracle GoldenGate
configuration that replicates tables between Oracle Databases. To configure conflict
detection and resolution for a table, call the ADD_AUTO CDR procedure in the
DBMS_GOLDENGATE_ADMpackage. These are administration APIs, which are expected to
be called by an Oracle GoldenGate administrator who is granted privileges through the
DBVS_GOLDENGATE_AUTH. GRANT_ADM N_PRI VI LEGE. This user needs to have privileges
to modify the affected table. These APIs result in the version number being bumped for
the object and also lock the object due to DDL execution.

The administrator user must be logged in to the appropriate PDB when calling these
APIs. Three constants, which represent bit flags are now added:

e EARLI EST_TI MESTAMP_RESCLUTI ON=0x0001 sets TOVBSTONE KEY VERSI ONI NG
automatically

e DELETE ALWAYS W NS=0x0002 sets TOVBSTONE KEY VERSI ONI NG automatically.
e | GNORE_SI TE_PRI ORI TY=0x0004

When Oracle GoldenGate captures changes that originated at an Oracle Database,
each change is encapsulated in a row logical change record (LCR). Arow LCR is a
structured representation of a DML row change. Each row LCR includes the operation
type, old column values, and new column values. Multiple row LCRs can be part of a
single database transaction.

When more than one replica of a table allows changes to the table, a conflict can
occur when a change is made to the same row in two different databases at nearly
the same time. Oracle GoldenGate replicates changes using the row LCRs. It detects
a conflict by comparing the old values in the row LCR for the initial change from

the origin database with the current values of the corresponding table row at the
destination database identified by the key columns. If any column value does not
match, then there is a conflict.

14-2

Chapter 14
About Automatic Conflict Detection and Resolution

After a conflict is detected, Oracle GoldenGate can resolve the conflict by overwriting
values in the row with some values from the row LCR, ignoring the values in the row
LCR, or computing a delta to update the row values.

Automatic conflict detection and resolution does not require application changes for
the following reasons:

e Oracle Database automatically creates and maintains invisible timestamp
columns.

e Inserts, updates, and deletes use the delete tombstone log table to determine if a
row was deleted.

e LOB column conflicts can be detected.

e Oracle Database automatically configures supplemental logging on required
columns.

Note:

If you use the classic Replicat on tables that have Automatic Change
Detection and Resolution enabled, the Extract might abend with the
OGG-10461 Failed to retrieve timestamp error. This is because the internal
trigger that inserts the records into tombstone tables, only fires on user
DMLs. A classic Replicat suppresses all the triggers from firing, which results
in missing inserts on tombstone tables.

¢ See Also:

e Oracle Database Ultilities for information about supplemental logging

14.1.2 Requirements for Automatic Conflict Detection and Resolution

ORACLE

Learn the requirements for automatic conflict detection and resolution (ACDR).

Supplemental logging is required to ensure that each row LCR has the information
required to detect and resolve a conflict. Supplemental logging places additional
information in the redo log for the columns of a table when a DML operation is
performed on the table. When you configure a table for Oracle GoldenGate conflict
detection and resolution, supplemental logging is configured automatically for all of the
columns in the table. The additional information in the redo log is placed in an LCR
when a table change is replicated.

Extract must be used for capturing. Integrated Replicat or parallel Replicat in
integrated mode must be used on the apply side. Replicat needs to add the parameter
MAPI NVI SI BLECOLUWNS. LOGALLSUPCCLS should remain the default.

There is a hidden field KEYVER$$ of type timestamp that is optionally added to
the DELETE TOVBSTONE table. This field is required for EARLI EST TI MESTAMP, DELETE
ALWAYS WNS, and SI TE PRI ORI TY resolution and it also exists in the base table. The

14-3

Chapter 14
About Automatic Conflict Detection and Resolution

existence of the field in the base table needs to be provided in the trail file metadata as
a flag or token.

Primary Key updates is also supported in the DELETE TOVBSTONE table. An entry is
inserted into the DELETE TOVBSTONE table for the row of the original key value (before
image). The logic in the Extract which matches inserts in the DELETE TOVBSTONE table
to deletes also needs to be matched to PK updates, or unique key (UK) with at least
one non-nullable field, if there is no PK.

Site priority needs support from the Replicat, both the parameters are implemented
and the setting is passed to the apply.

e Compatibility and Migration
14.1.2.1 Compatibility and Migration

Replicating from a base table which doesn’t have a KEYVER$$ to a target, which has
EARLI EST TI MESTANP resolution support, DELETE ALWAYS W NS resolution, or SITE
PRIORITY, will receive an error in cases involving DELETE or PK Update.

Replicating from a base table, which has a KEYVER$$ to a target, which does not, will
ignore the KEYVER$$, when replicating to an earlier release, then the field is dropped or
is not supported).

Example

The following table shows EARLI EST TI MESTAMP resolution on Sitel with no keyver $$
column or earlier RDBMS version replication to Site 2

Site 1 Site 2 Description

insert insert If the Sitel CDRTS$ timestamp
is earlier then Sitel wins else
Site2 wins

insert update Same as insert insert.

insert delete Conflict cannot be resolved,

depending on configuration,
error goes to error queue,
discard and so on.

insert pkupdate Same as insert delete
update insert Same as insert insert
update update Same as insert insert
update delete Same as insert delete
update pkupdate Same as insert delete
delete insert Same as insert delete
delete update Same as insert delete
pkupdate insert Same as insert delete
pkupdate update Same as insert delete
pkupdate delete Same as insert delete

Primary Key Updates (pkupdate) interoperability will not resolve correctly without
a backport. Besides the interoperability problems listed above, pkupdates that are

ORACLE 14-4

Chapter 14
About Automatic Conflict Detection and Resolution

replicated to earlier versions of the RDBMS, will not resolve correctly. A conflicting
insert and replicated pkupdate on the earlier RDBMS may result in 2 rows. The insert
will succeed to the original row and the pkupdate will succeed to update or create the
new row.

No upgrage or downgrade scripts are needed because the changes are just to
procedure attributes and view columns.

14.1.3 Column Groups

ORACLE

A column group is a logical grouping of one or more columns in a replicated table.
When you add a column group, conflict detection and resolution is performed on the
columns in the column group separately from the other columns in the table.

When you configure a table for Oracle GoldenGate conflict detection and resolution
with the ADD_AUTO_CDR procedure, all of the scalar columns in the table are added
to a default column group. To define other column groups for the table, run the
ADD_AUTO_CDR_COLUWN_GROUP procedure. Any columns in the table that are not part
of a user-defined column group remain in the default column group for the table.

Column groups enable different databases to update different columns in the same
row at nearly the same time without causing a conflict. When column groups are
configured for a table, conflicts can be avoided even if different databases update the
same row in the table. A conflict is not detected if the updates change the values of
columns in different column groups.

14-5

Chapter 14
About Automatic Conflict Detection and Resolution

Database A .

{ Name { RowTS ‘ { Office {T51 ‘ {Title { Salary {TSE J

[Scott ﬂ @T10 [1080 \ @T10 [MTS 1 \ [100 ﬂ @T10

Update column group (Office)

Name RowTS Office | TS1 { Title { Salary {TSE J
Scott @T22 1103 @T22 [MTS 1 \ [100 ﬂ @T10
Name RowTS Office TS1
Scott @T22 1080 @T22

Database B .

{ Name ﬂ RowTS { Office TS {Title \ { Salary ﬂ TS2

{ Scott {@Tﬂ] ‘ { 1080 {@Tﬂ) ‘ { MTS 1 { 100 {@Tﬂ) J

Update column group (Title, Salary)

Name RowTS Office TS1
son | (o120 | [1050 | (@722 o |
Name RowTS Office TS1 { Title { Salary {TSE J
Scott @T22 1103 @T22 [MTS 2 \ [100 ﬂ @T20

E Invisible Column

This example shows a row being replicated at database A and database B. The
following two column groups are configured for the replicated table at each database:

e One column group includes the Of fi ce column. The invisible timestamp column
for this column group is TS1.

e Another column group includes the Ti t| e and Sal ary columns. The invisible
timestamp column for this column group is TS2.

These column groups enable database A and database B to update the same row at
nearly the same time without causing a conflict. Specifically, the following changes are

made:

ORACLE

14-6

Chapter 14
About Automatic Conflict Detection and Resolution

e At database A, the value of O f i ce was changed from 1080 to 1030.
e At database B, the value of Ti t | e was changed from MI'S1 to MIS2.

Because the O fi ce column and the Ti t| e column are in different column groups, the
changes are replicated without a conflict being detected. The result is that values in
the row are same at both databases after each change has been replicated.

Piecewise LOB Updates

A set of lob operations composed of LOB WRI TE, LOB ERASE, and LOB TRl Mis a
piecewise LOB update. When a table that contains LOB columns is configured for
conflict detection and resolution, each LOB column is placed in its own column group,
and the column group has its own hidden timestamp column. The timestamp column is
updated on the first piecewise LOB operation.

For a LOB column, a conflict is detected and resolved in the following ways:

» If the timestamp for the LOB’s column group is later than the corresponding LOB
column group in the row, then the piecewise LOB update is applied.

» If the timestamp for the LOB’s column group is earlier than the corresponding LOB
column group in the row, then the LOB in the table row is retained.

* If the row does not exist in the table, then an error occurs

14.1.4 DELETE TOMBSTONE Table

DELETE TOVBSTONE table is a marker for a deleted record to distinguish it from a
record, which never existed. A DELETE TOVBSTONE table contains at minimum the key
columns and operation timestamp. This information is required for delete convergence
becasue some incoming updates and inserts may be delayed from another site and
the incoming LCR needs to be filtered against the tombstone operation timestamp to
determine whether it should be applied.

14.1.5 Earliest Timestamp Conflict Detection and Resolution

ORACLE

Columns with names of the form CDRTS$ col urm gr oup and CDRTS$ROWare used to
contain timestamps that reflect modification times for column groups and the row. The
DBVMS_GOLDENGATE_ADMprocedures ADD_AUTO CDR(), ADD AUTO CDR_COLUWMN_GROUP(),
REMOVE_AUTO_CDR() , REMOVE_AUTO_CDR_COLUWN_GROUP(), ALTER _AUTO CDR(), and
ALTER AUTO CDR COLUWMN_GROUP() are presently used to configure ACDR with latest
timestamp resolution. They are also used in configuration of ACDR with earliest
timestamp resolution, The field ADDI TI ONAL_OPTI ONS in both ADD AUTO CDR() and
ALTER _AUTO CDR() turn on the use of earliest timestamp. Turning on earliest timestamp
automatically turn on versioning, which adds a new hidden column KEYVERS (version
number) of type timestamp. A new flag value is added to acdrfl ags_kgl dt vc to
indicate earliest timestamp usage. This field is also added to the DELETE TOVBSTONE
table. Delete conflicts are the reason that version number is needed. With an earliest
timestamp resolution, delete conflicts, which can be transparent, might not only
incorrectly succeed, they might prevent new inserts of the row (new versions). With

a version timestamp, the delete can be correctly resolved against a row DML for the
same row version.

The original insert of the row receives the current timestamp from its default value.
The delete of this row then inserts the version number and the time when this row

14-7

Chapter 14
About Automatic Conflict Detection and Resolution

was inserted, into the tombstone table when there is a delete. On a new insert, by
default, the version number receives the current timestamp again, thereby avoiding a
false conflict with the present delete entries in the tombstone table.

Example

For key version kv and timestamp t s

Database 1:insert tabl keyl kvl tsl

Database 2: del ete tabl keyl kvl tsl

Insertion to DELETE TOMBSTONE table keyl kvl tsl
Database 1:insert tabl keyl kv2 ts2

Without using the key version, the insert would be ignoreed, the delete timestamp is
earlier. As the key version is used, you know that kv2 is not the version of the row that
was deleted and the insert succeeds.

14.1.6 Latest Timestamp Conflict Detection and Resolution

When you run the ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package to
configure a table for automatic Oracle GoldenGate conflict detection and resolution,
a hidden timestamp column is added to the table. This hidden timestamp column
records the time of a row change, and this information is used to detect and resolve
conflicts.

When a row LCR is applied, a conflict can occur for an | NSERT, UPDATE, or DELETE
operation. The following table describes each type of conflict and how it is resolved.

Operation Conflict Detection Conflict Resolution

| NSERT A conflict is detected when the If the timestamp of the
table has the same value for a row LCR is later than the
key column as the new value timestamp in the table row,
in the row LCR. then the values in the row LCR
replace the values in the table.

If the timestamp of the row
LCR is earlier than the
timestamp in the table row,
then the row LCR is discarded,
and the table values are
retained.

ORACLE 14-8

ORACLE

Chapter 14

About Automatic Conflict Detection and Resolution

Operation Conflict Detection Conflict Resolution
UPDATE A conflict is detected in each If there is a value mismatch
of the following cases: and the timestamp of the
« There is a mismatch row LCR is later than the
between the timestamp ~ timestamp in the table row,
value in the row LCR and then the values in the row LCR
the timestamp value of replace the values in the table.
the corresponding row in If there is a value mismatch
the table. and the timestamp of the
« There is a mismatch row LCR is earlier than the
between an old value in timestamp in the table row,
a column group in the then the row LCR is discarded,
row LCR does not match and the table values are
the column value inthe retained.
corresponding table row. |f the table row does not
A column group is a exist and the timestamp of
logical grouping of one the row LCR is later than the
or more columns in a timestamp in the tombstone
replicated table. table row, then the row LCR
e The table row does not is converted from an UPDATE
exist. If the row is in operation to an | NSERT
the tombstone table, then operation and inserted into the
this is referred to as an table.
update-delete conflict. If the table row does not
exist and the timestamp of the
row LCR is earlier than the
timestamp in the tombstone
table row, then the row LCR is
discarded.
If the table row does not exist
and there is no corresponding
row in the tombstone table,
then the row LCR is converted
from an UPDATE operation
to an | NSERT operation and
inserted into the table.
DELETE A conflict is detected in each If the timestamp of the

of the following cases:

There is a mismatch
between the timestamp
value in the row LCR and
the timestamp value of
the corresponding row in
the table.

The table row does not
exist.

row LCR is later than the
timestamp in the table, then
delete the row from the table.

If the timestamp of the row
LCR is earlier than the
timestamp in the table, then
the row LCR is discarded, and
the table values are retained.

If the delete is successful,
then log the row LCR by
inserting it into the tombstone
table.

If the table row does not exist,
then log the row LCR by
inserting it into the tombstone
table.

14-9

Chapter 14
About Automatic Conflict Detection and Resolution

14.1.7 Delete Always Wins Timestamp CDR

DELETE ALWAYS W NS is enabled through the field ADDI TI ONAL_OPTI ONS in both
DBMS_GOLDENGATE_ADMprocedures ADD_AUTO CDR() and ALTER AUTO CDR() . This is
again a delete conflict resolution method, which is not using latest timestamp
resolution, therefore, versioning is needed. Turning on DELETE ALWAYS W NS
automatically turns on versioning, which adds a new hidden column KEYVER$$ (version
number) of type timestamp. A new flag value is also added to acdr f| ags_kql dtvc to
indicate DELETE ALWAYS W NS usage. This field is also added to the DELETE TOVBSTONE
table. The same versioning issues exist as the EARLIEST TIMESTAMP resolution.

Exmaple:

Key Version kv and Timestamp t s

Database 1:insert tabl keyl kvl tsl
Database 2: del ete tabl keyl kvl tsl

Insertion to DELETE TOVBSTONE table keyl kvl tsl
Database 1:insert tabl keyl kv2 ts2

Without using the key version, the insert would be ignored, the delete always wins.
As the key version is used, you know that kv2 is not the version of the row that was
deleted and the insert succeeds.

14.1.8 Delta Conflict Detection and Resolution

ORACLE

With delta conflict detection, a conflict occurs when a value in the old column list of the
row LCR differs from the value for the corresponding row in the table.

To configure delta conflict detection and resolution for a table, run the
ADD_AUTO_CDR DELTA RES procedure in the DBMS_GOLDENGATE_ADMpackage. The delta
resolution method does not depend on a timestamp or an extra resolution column.
With delta conflict resolution, the conflict is resolved by adding the difference between
the new and old values in the row LCR to the value in the table. This resolution
method is generally used for financial data such as an account balance. For example,
if a bank balance is updated at two sites concurrently, then the converged value
accounts for all debits and credits.

14-10

Chapter 14
About Automatic Conflict Detection and Resolution

Database A .

{ Name { RowTS] { Office {T51] {Title { Salary {TSE J

[Scott @T10 [1080 @T10 [MTS 1 [100 @T10

Update column group (Office)

Name RowTS Office TS1 { Title { Salary { TS2 J

Scott @T22 1103 @T22 [MTS 1 [100 @T10

Name RowTS Office TS1
son | [o122 | 1000 | [o722

Database B .
Office TS { Title { Salary TS2

{ Scott {@Tﬂ)] { 1080

!

{ Name RowTS

@T10

.
—
—

{ MTS 1 { 100 {@Tﬂ) J

Update column group (Title, Salary)

Scott @T20 1080 @Tz22 m @T20

Y
Name RowTS Office TS1 { Title { Salary {TSE J
Scott @T22 1103 @T22 { MTS 2 { 100 @T20

‘: Invisible Column

This example shows a row being replicated at database A and database B. The

Bal ance column is designated as the column on which delta conflict resolution is
performed, and the TS1 column is the invisible timestamp column to track the time

of each change to the Bal ance column. A change is made to the Bal ance value in

the row in both databases at nearly the same time (@20 in database A and @22 in
database B). These changes result in a conflict, and delta conflict resolution is used to
resolve the conflict in the following way:

* At database A, the value of Bal ance was changed from 100 to 110. Therefore, the
value was increased by 10.

ORACLE 14-11

Chapter 14
About Automatic Conflict Detection and Resolution

* At database B, the value of Bal ance was changed from 100 to 120. Therefore, the
value was increased by 20.

« To resolve the conflict at database A, the value of the difference between the new
and old values in the row LCR to the value in the table. The difference between
the new and old values in the LCR is 20 (120-100=20). Therefore, the current
value in the table (110) is increased by 20 so that the value after conflict resolution
is 130.

» To resolve the conflict at database B, the value of the difference between the new
and old values in the row LCR to the value in the table. The difference between
the new and old values in the LCR is 10 (110-100=10). Therefore, the current
value in the table (120) is increased by 10 so that the value after conflict resolution
is 130.

After delta conflict resolution, the value of the Bal ance column is the same for the row
at database A and database B.

14.1.9 Site Priority CDR

" Note:

SI TE PRI ORI TY resolution takes precedence over all COLUWN GROUP resolution
settings.

" Note:

If SI TE PRI ORI TY Replicat parameter is not placed before applicable map
statements in the parameter file, it will not work. This parameter must be
placed before the applicable map statements.

Priority resolution specified in Replicat parameter file between source and target in
conflict resolution.

SITE PRI ORI TY is turned on for a database or PDB in the Replicat parameter file

with the parameter ACDR SI TE_PRI ORI TY {source_db_nane}{ OVERWRI TE | | GNORE }
specified to turn on SI TE PRI ORI TY resolution for a table. If OVERWRI TE is specified,
then the source table has priority and conflicts are resolved by OVERWRI TE. Conversely,
if | GNORE is specified, then the target table has priority and source table change

are ignored in a conflict. SI TE PRI ORI TY resolution can be turned off by the field

ADDI Tl ONAL_OPTI ONS in both DBMS_GOLDENGATE_ADMprocedure ADD_AUTO CDR() and
ALTER AUTO CDR() setting the bit | GNORE_SI TE_PRI ORI TY. Every Replicat source-target
relationship can be set up differently, therefore, convergence is dependent on user
setup.

14.1.10 Track PK Updates in Delete Tombstone

Full support of primary key (PK) updates requires handling conflicts on both the rows
represented by the before image of the key and the row represented by the after
image of the key. A PK update is an autonomous delete and insert, so, the PK update

ORACLE 14-12

Chapter 14
Configuring Automatic Conflict Detection and Resolution

conflicts must be supported as a delete for conflicts with the before image of the key
and inserts with the after image of the key (and row).

Supporting the PK update as a delete of the row represented by the before image

of the key means that it should insert into the delete tombstone table as a delete.

An update internal trigger is added to insert into the tombstone table when the PK is
updated (actually the row identifying key, either the PK if it exists or the chosen UK
with at least one non-nullable column). As a PK update may lead to two conflicts, up
to two resolutions are attempted at the row level, delete of the row with the original PK
and the insert of the row with the new PK.

Example: Using latest timestamp resolution

Database 1: Update totabl keyl at tsl

Database 2: Update to t abl keyl set keyl to key2 ts2
Database 3: Update tot abl key2 ts3

In this scenario, it appears that at the row level t abl row with key1 should be deleted
and the database 3 update should be the final modification of t abl row key2. If instead
the database 2 is at t s3 and database 3 is at t s3, then the PK update at database 2
would be the final modification of t abl row key?2.

Now, consider a case where the database 1 was at t s3, database 2 att s2 and
database 3 att s1, then the update to t abl row keyl on database 1 should succeed
and the PK update from database 2 on t abl row key?2 should succeed. At this point, it
looks like the complete resolution is that both the delete at the before image and the
insert at the after image must be resolved separately. This implies that they are not
dependent on each other and a loss for one, is not a loss for both.

14.2 Configuring Automatic Conflict Detection and
Resolution

You can configure Oracle GoldenGate automatic conflict detection and resolution in
Oracle Database with the DBMS_GOLDENGATE_ADMpackage.

For the Replicat parameter file you need to add a MAP statement that includes the table
to be replicated and the MAPI NVI S| BLECOLUWNS parameter.

» Configuring Latest Timestamp Conflict Detection and Resolution
The ADD_AUTO _CDR procedure in the DBMS_GOLDENGATE_ADMpackage
configures latest timestamp conflict detection and resolution. The
ADD AUTO CDR_COLUMN_GROUP procedure adds optional column groups.

» Configuring Delta Conflict Detection and Resolution
The ADD_AUTO CDR_DELTA RES procedure in the DBMS_GOLDENGATE_ADMpackage
configures delta conflict detection and resolution.

ORACLE 14-13

Chapter 14
Configuring Automatic Conflict Detection and Resolution

14.2.1 Configuring Latest Timestamp Conflict Detection and

Resolution

ORACLE

The ADD_AUTO _CDR procedure in the DBMS_GOLDENGATE_ADMpackage configures
latest timestamp conflict detection and resolution. The ADD_AUTO CDR_COLUWN_GROUP
procedure adds optional column groups.

With latest timestamp conflict detection and resolution, a conflict is detected when the
timestamp column of the row LCR does not match the timestamp of the corresponding
table row. The row LCR is applied if its timestamp is later. Otherwise, the row LCR

is discarded, and the table row is not changed. When you run the ADD_AUTO_CDR
procedure, it adds an invisible timestamp column for each row in the specified

table and configures timestamp conflict detection and resolution. When you use the
ADD_AUTO CDR_COLUMN_GROUP procedure to add one or more column groups, it adds

a timestamp for the column group and configures timestamp conflict detection and
resolution for the column group.

You can configure an Oracle GoldenGate administrator using the
GRANT_ADM N_PRI VI LEGE procedure in the DBMS_GOLDENGATE _ADMpackage.

1. Connect to the inbound server database as a Oracle GoldenGate administrator.

2. Run the ADD_AUTO _CDR procedure and specify the table to configure for latest
timestamp conflict detection and resolution.

3. Optional: Run the ADD_AUTO CDR_CCOLUMN_GRCUP procedure and specify one or
more column groups in the table.

4. Repeat the previous steps in each Oracle Database that replicates the table.

Example 14-1 Configuring the Latest Timestamp Conflict Detection and
Resolution for a Table

This example configures latest timestamp conflict detection and resolution for the
hr. empl oyees table.

BEG N
DBVS_GOLDENGATE_ADM ADD_AUTO_CDR(
schema_name => 'hr',
tabl e nane => 'enployees');
END;
/

Example 14-2 Configuring Column Groups

This example configures the following column groups for timestamp conflict resolution
on the hr. enpl oyees table:

e Thejob_identifier_cg column group includes the job_i d, department _id, and
manager _i d columns.

e The conpensati on_cg column group includes the sal ary and conmi ssi on_pct
columns.

BEG N
DBVS_GOLDENGATE_ADM ADD_AUTO_CDR_COLUMN_GROUP(

14-14

Chapter 14
Configuring Automatic Conflict Detection and Resolution

schenma_namne => "hr',
tabl e_nane => 'enpl oyees',
colum_li st => 'job_id, departnent _id, manager _id",
col um_group_nane => 'job_identifier_cg');
END;
/
BEG N
DBMS_GOLDENGATE_ADM ADD_AUTO_CDR_COLUMN_GROUP(
schenma_namne => "hr',
t abl e_nane => 'enpl oyees',
colum_li st => 'sal ary, conmi ssi on_pct ",
col um_group_nane => 'conpensation_cg');
END;

/

14.2.2 Configuring Delta Conflict Detection and Resolution

The ADD_AUTO CDR_DELTA RES procedure in the DBMS_GOLDENGATE_ADMpackage
configures delta conflict detection and resolution.

With delta conflict resolution, you specify one column for which conflicts are detected
and resolved. The conflict is detected if the value of the column in the row LCR does
not match the corresponding value in the table. The conflict is resolved by adding the
difference between the new and old values in the row LCR to the value in the table.

You can configure an Oracle GoldenGate administrator using the
GRANT_ADM N_PRI VI LEGE procedure in the DBMS_GOLDENGATE_ADMpackage.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the ADD_AUTO CDR procedure and specify the table to configure for latest
timestamp conflict detection and resolution.

3. Runthe ADD AUTO CDR _DELTA RES procedure and specify the column on which
delta conflict detection and resolution is performed.

4. Repeat the previous steps in each Oracle Database that replicates the table.

Example 14-3 Configuring Delta Conflict Detection and Resolution for a Table

This example configures delta conflict detection and resolution for the or der _t ot al
column in the oe. or der s table.

BEG N
DBVS_GOLDENGATE_ADM ADD_AUTO_CDR(
schema_name => 'oe',
table nane => 'orders');
END;
/

BEG N
DBVS_GOLDENGATE_ADM ADD_AUTO CDR_DELTA RES(
schema_name => 'oe',
table nane => 'orders',
colum_nane => 'order _total');

ORACLE 14-15

Chapter 14
Managing Automatic Conflict Detection and Resolution

END;

14.3 Managing Automatic Conflict Detection and Resolution

You can manage Oracle GoldenGate automatic conflict detection and resolution in
Oracle Database with the DBMS_GOLDENGATE_ADMpackage.

e Altering Conflict Detection and Resolution for a Table

e Altering a Column Group

e Purging Tombstone Rows

e Removing Conflict Detection and Resolution From a Table
e Removing a Column Group

e Removing Delta Conflict Detection and Resolution

14.3.1 Altering Conflict Detection and Resolution for a Table

The ALTER AUTO CDR procedure in the DBMS_GOLDENGATE_ADMpackage alters conflict
detection and resolution for a table.

Oracle GoldenGate automatic conflict detection and resolution must be configured for
the table:

1. Connect to the inbound server database as the Oracle GoldenGate administrator.

2. Runthe ALTER AUTO CDR procedure and specify the table to configure for latest
timestamp conflict detection and resolution.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 14-4 Altering Conflict Detection and Resolution for a Table

This example alters conflict detection and resolution for the hr. enpl oyees table to
specify that delete conflicts are tracked in a tombstone table.

BEG N
DBVS_GOLDENGATE_ADM ALTER AUTO CDR(
schema_nane = "hr',
tabl e_nane => 'enpl oyees',

t ombst one_del etes => TRUE);
END;
/

14.3.2 Altering a Column Group

ORACLE

The ALTER AUTO CDR_COLUMN_GROUP procedure alters a column group.
1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Runthe ALTER AUTO CDR_COLUWMN_GROUP procedure and specify one or more
column groups in the table.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

14-16

Chapter 14
Managing Automatic Conflict Detection and Resolution

Example 14-5 Altering a Column Group

This example removes the manager _i d column from the j ob_i dentifier_cg column
group for the hr. enpl oyees table.

BEG N
DBVS_GOLDENGATE_ADM ALTER_AUTO_CDR_COLUMN_GROUP(
schenma_namne => "hr',
tabl e_nane => 'enpl oyees',

colum_group_name => "job_identifier_cg',
remove_colum_list => 'nmanager _id');

END;

/

¢ Note:

If there is more than one column, then use a comma-separated list.

14.3.3 Purging Tombstone Rows

The PURGE_TOMBSTONES procedure removes tombstone rows that were recorded before
a specified date and time. This procedure removes the tombstone rows for all tables
configured for conflict resolution in the database.

It might be necessary to purge tombstone rows periodically to keep the tombstone log
from growing too large over time.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.
2. Run the PURGE_TOVBSTONES procedure and specify the date and time.

Example 14-6 Purging Tombstone Rows

This example purges all tombstone rows recorded before 3:00 p.m. on December,
1, 2015 Eastern Standard Time. The timestamp must be entered in TI MESTAMP W TH
TI ME ZONE format.

EXEC DBMS_GOLDENGATE_ADM PURGE_TOVBSTONES(' 2015- 12-01 15: 00: 00. 000000
EST');

14.3.4 Removing Conflict Detection and Resolution From a Table

ORACLE

The REMOVE_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADMpackage removes
automatic conflict detection and resolution from a table. This procedure also removes
any column groups and delta conflict detection and resolution configured for the table.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.
2. Run the REMOVE_AUTO _CDR procedure and specify the table.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

14-17

Chapter 14
Managing Automatic Conflict Detection and Resolution

Example 14-7 Removing Conflict Detection and Resolution for a Table

This example removes conflict detection and resolution for the hr. enpl oyees table.

BEG N
DBVS_GOLDENGATE_ADM REMOVE_AUTO CDR(
schema_name => "hr',
tabl e_nane => 'enployees');
END;
/

14.3.5 Removing a Column Group

The REMOVE_AUTO_CDR_COLUWN_GROUP procedure removes a column group.
1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO_CDR COLUWN GROUP procedure and specify the name of the
column group.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 14-8 Removing a Column Group

This example removes the conpensat i on_cg column group from the hr. enpl oyees
table.

BEG N
DBVS_GOLDENGATE_ADM REMOVE_AUTO CDR_COLUMN_GROUP(
schenma_namne => "hr',
tabl e_nane => 'enpl oyees',

col um_group_nane => 'conpensation_cg');
END;
/

14.3.6 Removing Delta Conflict Detection and Resolution

ORACLE

The REMOVE_AUTO _CDR DELTA RES procedure in the DBMS_GOLDENGATE_ADMpackage
removes delta conflict detection and resolution for a column.

Delta conflict detection and resolution must be configured for the specified column.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.
2. Run the REMOVE_AUTO CDR DELTA RES procedure and specify the column.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 14-9 Removing Delta Conflict Detection and Resolution for a Table

This example removes delta conflict detection and resolution for the or der _t ot al
column in the oe. or der s table.

BEG N
DBVS_GOLDENGATE_ADM REMOVE_AUTO CDR DELTA RES(
schema_name => 'oe',
table nane => 'orders',

14-18

Chapter 14
Monitoring Automatic Conflict Detection and Resolution

col um_nane => 'order_total');
END;
/

14.4 Monitoring Automatic Conflict Detection and Resolution

You can monitor Oracle GoldenGate automatic conflict detection and resolution in an
Oracle Database by querying data dictionary views.

» Displaying Information About the Tables Configured for Conflicts
» Displaying Information About Conflict Resolution Columns

* Displaying Information About Column Groups

14.4.1 Displaying Information About the Tables Configured for

Conflicts

ORACLE

The ALL_GG AUTO_CDR TABLES view displays information about the tables configured
for Oracle GoldenGate automatic conflict detection and resolution.

1. Connect to the database.
2. Query the ALL_GG AUTO CDR_TABLES view.

Example 14-10 Displaying Information About the Tables Configured for
Conflict Detection and Resolution

This query displays the following information about the tables that are configured for
conflict detection and resolution:

e The table owner for each table.
e The table name for each table.

* The tombstone table used to store rows deleted for update-delete conflicts, if a
tombstone table is configured for the table.

e The hidden timestamp column used for conflict resolution for each table.

COLUWN TABLE_OMER FORVAT Al5

COLUWN TABLE_NAME FORMAT A15

COLUWN TOVBSTONE_TABLE FORVAT Al15
COLUMN ROW RESOLUTI ON_COLUMN FCRMAT A25

SELECT TABLE_OAKER,
TABLE_NAME,
TOVBSTONE_TABLE,
ROW RESOLUTI ON_COLUWN
FROM ALL_GG AUTO CDR TABLES
ORDER BY TABLE OANER TABLE NAME;

Your output looks similar to the following:

TABLE_OWNER TABLE_NANE TOVBSTONE_TABLE ROW RESOLUTI ON_COLUWN

14-19

Chapter 14
Monitoring Automatic Conflict Detection and Resolution

HR EMPLOYEES DT$_EMPLOYEES CDRTS$ROW
CE CORDERS DT$_ORDERS CDRTS$ROW

14.4.2 Displaying Information About Conflict Resolution Columns

ORACLE

The ALL_GG_AUTO CDR_COLUMN\S view displays information about the columns
configured for Oracle GoldenGate automatic conflict detection and resolution.

The columns can be configured for row or column automatic conflict detection and
resolution. The columns can be configured for latest timestamp conflict resolution in a
column group. In addition, a column can be configured for delta conflict resolution.

1. Connect to the database as an Oracle GoldenGate administrator.
2. Querythe ALL_GG AUTO_CDR_COLUMWNS view.

Example 14-11 Displaying Information About Column Groups

This query displays the following information about the tables that are configured for
conflict detection and resolution:

* The table owner for each table.

* The table name for each table.

e If the column is in a column group, then the name of the column group.
e The column name.

» If the column is configured for latest timestamp conflict resolution, then the name
of the hidden timestamp column for the column.

COLUMN TABLE_OANER FORMAT A10
COLUWN TABLE_NAME FORMAT A10
COLUWN COLUWN_GROUP_NAME FORMAT Al17
COLUWN COLUWN_NAME FORMAT A15
COLUWN RESOLUTI ON_COLUMN FORMAT A23

SELECT TABLE OWKER,
TABLE_NAME,
COLUWN_GROUP_NAME,
COLUWN_NAME,
RESOLUTI ON_COLUWN
FROM ALL_GG AUTO CDR_COLUWNS
ORDER BY TABLE OMNER TABLE NAME;

Your output looks similar to the following:

TABLE_OAKNE TABLE_NAME COLUMN_GROUP_NAME COLUWN_NANE
RESOLUTI ON_COLUWN

HR EMPLOYEES COWPENSATI ON_CG ~ COWM SSI ON_PCT
CDRTS$COMPENSATI ON_CG

HR EMPLOYEES COWPENSATI ON_CG SALARY
CDRTS$COMPENSATI ON_CG

HR EMPLOYEES JOB_| DENTI FI ER_CG MANAGER | D

14-20

Monitoring Automatic Conflict Detection and Resolution

CDRTS$JOB_| DENTI FI ER_CG
EMPLOYEES JOB_| DENTI FI ER_CG JOB_I D
CDRTS$JOB_| DENTI FI ER_CG

HR

HR EMPLOYEES JOB_| DENTI FI ER_CG DEPARTMENT | D
CDRTS$JOB_| DENTI FI ER_CG

HR EMPLOYEES | MPLI CI T_COLUMNS$ PHONE_NUMBER CDRTS$ROW
HR EMPLOYEES | MPLI CI T_COLUMNS$ LAST NAME CDRTS$ROW
HR EMPLOYEES | MPLI CI T_COLUWNS$ HI RE_DATE CDRTS$ROW
HR EMPLOYEES | MPLI CI T_COLUMNSS$ FI RST_NAME CDRTS$ROW
HR EMPLOYEES | MPLI CI T_COLUMNS$ EMAI L CDRTS$ROW
HR EMPLOYEES | MPLI CI T_COLUWNS$ EMPLOYEE_| D CDRTS$ROW
CE ORDERS | MPLI CI T_COLUMNS$ ORDER MODE CDRTS$ROW
CE ORDERS | MPLI CI T_COLUMNS$ ORDER | D CDRTS$ROW
CE ORDERS | MPLI CI T_COLUMNS$ ORDER DATE CDRTS$ROW
CE ORDERS | MPLI CI T_COLUMNS$ CUSTOMER | D CDRTS$ROW
CE ORDERS DELTA$ ORDER_TOTAL

CE ORDERS | MPLI CI T_COLUMNS$ PROMOTION D CDRTS$ROW
CE ORDERS | MPLI CI T_COLUMNS$ ORDER STATUS CDRTS$ROW
CE ORDERS | MPLI CI T_COLUMNS$ SALES REP ID CDRTS$ROW

In this example, the columns with | MPLI CI T_COLUWNS$ for the column group name are
configured for row conflict detection and resolution, but they are not part of a column
group. The columns with DELTA$ for the column group name are configured for delta
conflict detection and resolution, and these columns do not have a resolution column.

14.4.3 Displaying Information About Column Groups

ORACLE

The ALL_GG AUTO_CDR_COLUWN_GRQUPS view displays information about the column
groups configured for Oracle GoldenGate automatic conflict detection and resolution.

You can configure Oracle GoldenGate automatic conflict detection and resolution
using the ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADMpackage. You can
configure column groups using the ADD_AUTO CDR_COLUMN_GROUP procedure in the
DBMS_GOLDENGATE_ADM package.

1. Connect to the database as an Oracle GoldenGate administrator.
2. Querythe ALL_GG AUTO_CDR_COLUWMN_GROUPS view.

Example 14-12 Displaying Information About Column Groups

This query displays the following information about the tables that are configured for
conflict detection and resolution:

* The table owner.

* The table name.

e The name of the column group.

* The hidden timestamp column used for conflict resolution for each column group.
COLUW TABLE_OWNER FORMAT Al15

COLUMN TABLE_NAME FORMAT Al15

COLUWN COLUWN_GROUP_NAME FORMAT A20
COLUWN RESOLUTI ON_COLUMN FORMAT A25

14-21

ORACLE

Chapter 14

Monitoring Automatic Conflict Detection and Resolution

SELECT TABLE_OAKER,
TABLE_NAME,
COLUWN_GROUP_NAME,
RESOLUTI ON_COLUWN
FROM ALL_GG AUTO CDR_COLUWN_GROUPS
ORDER BY TABLE_OANER TABLE_NAME;

The output looks similar to the following:

TABLE_OMNER TABLE_NAME COLUMN_GROUP_NAME
HR EMPLOYEES COMPENSATI ON_CG
CDRTS$COMPENSATI ON_CG

HR EMPLOYEES JOB_| DENTI FI ER_CG

CDRTS$JOB_| DENTI FI ER_CG

RESCLUTI ON_COLUWN

14-22

Using Parallel Replicat

You can create (or add) and configure parallel replication in your environment. New
Parallel Replicat processes then process the information in all the internal stages,
from the beginning to the end in parallel. Components, such as Mappers, Master, and
Appliers are also explained.

To know more about parallel Replicat and the parallel replication architecture, see
About Parallel Replicat.

Topics:

* Parallel Replication Architecture
Parallel replication processes leverage the apply processing functionality that is
available within the Oracle Database in integrated mode.

» Basic Parameters for Parallel Replicat
The following table lists the basic parallel Replicat parameters and their
description.

* Creating a Parallel Replicat
You can create a parallel replication using the graphical user interface or the
command line interfaces GGSCI and the Admin Client.

15.1 Parallel Replication Architecture

ORACLE

Parallel replication processes leverage the apply processing functionality that is
available within the Oracle Database in integrated mode.

Within a single Replicat configuration, multiple inbound server child processes, known
as apply servers, apply transactions in parallel while preserving the original transaction
atomicity.

The architecture diagram depicts the flow of change records through the various
processes of a parallel replication from the trail files to the target database.

Master B YAVAY
thread-based
ANA
il
v — ’\N\,—| . —
‘/‘_ m—l > —
— o
Trail Files Mapper Collater Scheduler Applier Database
Checkpoint
E h h
Parameter Report
File File

The Mappers read the trail file and map records, forward the mapped records to the
Master. The batches are sent to the Appliers where they are applied to the target
database.

15-1

Chapter 15
Basic Parameters for Parallel Replicat

The Master process consists of two separate threads, Collater and Scheduler. The
Collater is responsible for managing and communicating with the Mappers, along with
receiving the mapped transactions and reordering them into a single in-order stream.
The Scheduler is responsible for managing and communicating with the Appliers,
along with reading transactions from the Collater, batching them, and scheduling them
to Appliers.

The Scheduler controller communicates with the Scheduler to gather any necessary
information (such as, the current low watermark position). The Scheduler controller is
required for CDB mode for Oracle Database because it is responsible for aggregating
information pertaining to the different target PDBs and reporting a unified picture. The
Scheduler controller is created for simplicity and uniformity of implementation, even
when not in CDB mode. Every process reads the parameter file and shares a single
checkpoint file.

15.2 Basic Parameters for Parallel Replicat

The following table lists the basic parallel Replicat parameters and their description.

Parameter Description

MAP_PARALLELI SM Configures number of mappers. This controls
the number of threads used to read the trail
file. The minimum value is 1, maximum value
is 100 and the default value is 2.

APPLY PARALLELI SM Configures number of appliers. This controls
the number of connections in the target
database used to apply the changes. The
default value is four.

M N_APPLY_ PARALLELI SM The Apply parallelism is auto-tuned. You can

MAX_APPLY_PARALLELI SM set a minimum and maximum value to define
the ranges in which the Replicat automatically
adjusts its parallelism. There are no defaults.
Do not use with APPLY_ PARALLELI SMat same
time.

SPLI T_TRANS_REC Specifies that large transactions should be
broken into pieces of specified size and
applied in parallel. Dependencies between
pieces are still honored. Disabled by default.

COW T_SERI ALI ZATI ON Enables commit FULL serialization mode,
which forces transactions to be committed in
trail order.

Advanced Parameters

LOOK_AHEAD_TRANSACTI ONS Controls how far ahead the Scheduler looks
when batching transactions. The default value
is 10000.

CHUNK_SI ZE Controls how large a transaction must be for

parallel Replicat to consider it as large. When
parallel Replicat encounters a transaction
larger than this size, it will serialize it,
resulting in decreased performance. However,
increasing this value will also increase the
amount of memory consumed by parallel
Replicat.

ORACLE 15-2

Chapter 15
Creating a Parallel Replicat

Example Parameter File

replicat repA

userid ggadm n, password ***
MAP_PARALLELI SM 3

M N_APPLY_PARALLELI SM 2
MAX_APPLY_PARALLELI SM 10
SPLI T_TRANS_RECS 60000

map *.*, target *.*,

15.3 Creating a Parallel Replicat

ORACLE

You can create a parallel replication using the graphical user interface or the command
line interfaces GGSCI and the Admin Client.

A parallel Replicat requires a checkpoint table so both the Administration Server
Ul and Admin Client issue an error when the parallel Replicat does not include a
checkpoint table.

< Note:

Parallel replication does not support COW T_SERI ALI ZATI ONin Integrated
Mode. To use this apply process, use Integrated Replicat.

Creating a Non-Integrated Parallel Replication with the Administration Server

1. Open a browser and connect to the Service Manager that you created with the
Configuration Assistant:

https://server_nane: servi ce_manger _port/
For Example, https://localhost:9000/. In an non secured environment, use http
instead of https.
The Oracle GoldenGate Service Manager is displayed.
2. Enter the username and password you created and click Sign In.
In the Service Manager, you can see servers that are running.
3. Inthe Services section, click Administration Server, and then log in.

4. Click the Application Navigation icon to the left of the page title to expand the
navigation panel.

5. Create the checkpoint table by clicking Configuration in the right navigation
panel.

6. Ensure that you have a valid credential and log in to the database by clicking the
‘log in database’ icon under Action.

7. Click the + sign to add a checkpoint table.

8. Enter the schema. name of the checkpoint table that you would like to create, and
then click Submit.

15-3

10.
11.
12.
13.

14.

Chapter 15
Creating a Parallel Replicat

Validate that the table was created correctly by logging out of the Credential Alias
using the log out database icon, and then log back in.

Once the log in is complete, your new checkpoint table is listed.
Click Overview to return to the main Administration Server page.
Click the + sign next to Replicats.

Select Nonintegrated Replicat then click Next.

Enter the required information making sure that you complete the Credential
Domain and Credential Alias fields before completing the Checkpoint Table field,
and then select your newly created Checkpoint Table from the list.

Click Next, and then click Create and Run to complete the Replicat creation.

Creating a Non-Integrated Parallel Replicat with the Admin Client

1.

ORACLE

Go the bi n directory of your Oracle GoldenGate installation directory.
cd $0GG_HOVE/ bi n
Start the Admin Client.

./adm nclient

The Admin Client command prompt is displayed.
OGG (not connected) 12>
Connect to the Service Manager deployment source:

connect http://1ocal host:9500 depl oynent Targetl as oggadnin password
wel conel

You must use http or https in the connection string; this example is a non-SSL
connection.

Add the Parallel Replicat, which may take a few minutes to complete:

add replicat Rl, parallel, exttrail bb checkpointtable ggadm n. ggcheckpoi nt

You could use just the two character trail name as part of the ADD REPLI CAT or you
can use the full path, such as/ u01/ oggdepl oynment s/t arget 1/ var/1i b/ dat a/ bb.

Verify that the Replicat is running:

info replicat Rl

Messages similar to the following are displayed:

REPLI CAT R1 Initialized 2016-12-20 13:56 Status RUNNING
Paral | el

Checkpoi nt Lag 00: 00: 00 (updated 00:00: 22 ago)

Process ID 30007

Log Read

Checkpoint File ./ra000000000Fi rst Record RBA 0

15-4

Using Procedural Replication

Learn what procedural replication is and how you can configure it.

For procedural replication concepts, see About Procedural Replication.
Topics:

* About Procedural Replication

* Procedural Replication Process Overview
Procedural replication uses a trail record to ensure that sufficient information is
encapsulated with the record.

* Enabling Procedural Replication
Procedural replication is disabled by default. You can enable it by setting the
TRANLOGOPTI ONS option, ENABLE_PROCEDURAL _REPLI CATI ON, to yes.

e Determining Whether Procedural Replication Is On
Use the GG_PROCEDURE_REPLI CATI ON_ON function in the DBVMS_GOLDENGATE_ADM
package to determine whether Oracle GoldenGate procedural replication is on
or off.

* Enabling and Disabling Supplemental Logging
Oracle GoldenGate provides GGSCI commands to allow you to enable or disable
procedural supplemental logging.

» Filtering Features for Procedural Replication
You can specify which procedures and packages you want to include or exclude
for procedure replication.

* Handling Procedural Replication Errors
Procedural replication uses REPERROR parameter to configure the behavior of
Replicat when an procedural error occurs.

* Procedural Replication Pragma Options
There are four pragma options for procedures: AUTO, MANUAL, UNSUPPORTED, and
NONE.

e Listing the Procedures Supported for Oracle GoldenGate Procedural Replication
The DBA_GG_SUPPORTED_PROCEDURES view displays information about the supported
packages for Oracle GoldenGate procedural replication.

e Monitoring Oracle GoldenGate Procedural Replication
A set of data dictionary views enable you to monitor Oracle GoldenGate
procedural replication.

16.1 About Procedural Replication

Oracle GoldenGate procedural replication allows you to replicate Oracle Database
supplied PL/SQL procedures avoiding the shipping and applying or high volume
records usually generated by these operations. Procedural replication implements

ORACLE 16-1

Chapter 16
Procedural Replication Process Overview

dictionary changes that control user and session behavior and the swapping of objects
in dictionary.

Procedural replication is not related to the replication of the CREATE, ALTER, and DROP
statements (or DDL), rather it is the replication of the procedure call like:

CALL procedure_nanme(argl, arg2, ...);

As opposed to:

exec procedure_name(argl, arg2, ...)

After you enable procedural replication, calls to procedures in Oracle Database
supplied packages at one database are replicated to one or more other databases
and then executed at those databases. For example, a call to subprograms in the
DBVS_REDEFI NI TI ON package can perform an online redefinition of a table. If the
table is replicated at several databases, and if you want the same online redefinition
to be performed on the table at each database, then you can make the calls to

the subprograms in the DBMS_REDEFI NI TI ON package at one database, and Oracle
GoldenGate can replicate those calls to the other databases.

To support procedural replication, your Oracle Database should be configured to
identify procedures that are enabled for this optimization.

To use procedural replication, the following prerequisites must be met:

e Oracle GoldenGate with Extract and Replicat.

e System supplied packages are only working in combination with DML and DDL.

16.2 Procedural Replication Process Overview

ORACLE

Procedural replication uses a trail record to ensure that sufficient information is
encapsulated with the record.

To use Oracle GoldenGate procedural replication, you need to enable it. Your Oracle
Database must have a built in mechanism to identify the procedures that are enabled
for this optimization.

PL/SQL pragmas are used to indicate which procedures can be replicated. When

the pragma is specified, a callback is made to Logminer on entry and exit from the
routine. The callback provides the name of the procedure call and arguments and
indicates if the procedure exited successfully or with an error. Logminer augments the
redo stream with the information from the callbacks. For supported procedures, the
normal redo generated by the procedure is suppressed, and only the procedure call is
replicated.

A new trail record is generated to identify procedural replication. This trail record
leverages existing trail column data format for arguments passed to PL/SQL
procedures. For LOBs, data is passed in chunks similar to existing trail format for
LOBs. This trail record has sufficient information to replay the procedure as-is on the
target.

When you enable procedural replication, it prevents writing of individual records
impacted by the procedure to the trail file.

If an error is encountered when applying a PL/SQL procedure, the Replicat can replay
the entire PL/SQL procedure.

16-2

Chapter 16
Enabling Procedural Replication

16.3 Enabling Procedural Replication

Procedural replication is disabled by default. You can enable it by setting the
TRANLOGOPTI ONS option, ENABLE_PROCEDURAL _REPLI CATI ON, to yes.

Once you enable the procedural option for one Extract, it remains on and can not be
disabled.

If you want to use Oracle GoldenGate in an Oracle Database Vault environment
with procedural replication, then you must set the appropriate privileges. See Oracle
Database Vault Administrator’s Guide.

To enable procedural replication:
1. Ensure that you are in triggerless mode, see Prerequisites for Configuring DDL.

2. Connect to the source database as an Oracle GoldenGate administrator with
dbl ogi n.

3. Set the TRANLOGOPTI ONS parameter option to yes.
TRANLOGOPTI ONS | NTEGRATEDPARAMS (ENABLE_PROCEDURAL_REPLI CATI ON Y)

Procedural replication is enabled for Extract.

16.4 Determining Whether Procedural Replication Is On

ORACLE

Use the GG_PROCEDURE _REPLI CATI ON_ON function in the DBM5S_GOLDENGATE ADM package
to determine whether Oracle GoldenGate procedural replication is on or off.

If you want to use Oracle GoldenGate in an Oracle Database Vault environment
with procedural replication, then you must set the appropriate privileges. See Oracle
Database Vault Administrator’s Guide.

To enable procedural replication:

1. Connect to the database as sys (sql pl us, sqgl cl, sql devel oper) not as an Oracle
GoldenGate administrator.

2. Run the GG_PROCEDURE_REPLI CATI ON_ON function.
Example 16-1 Running the GG_PROCEDURE_REPL| CATI ON_ON Function

SET SERVEROQUTPUT ON
DECLARE
on_or off NUMBER,
BEG N
on_or _off := DBMS_GOLDENGATE_ADM GG _PROCEDURE REPLI CATI ON_ON;
I F on_or_off=1 THEN
DBMS_QUTPUT. PUT_LI NE(' Oracl e Col denGate procedural replication is
ON.");
ELSE
DBMS_QUTPUT. PUT_LI NE(' Oracl e Col denGate procedural replication is
OFF.");
END | F;
END;
/

16-3

Chapter 16
Enabling and Disabling Supplemental Logging

16.5 Enabling and Disabling Supplemental Logging
Oracle GoldenGate provides GGSCI commands to allow you to enable or disable
procedural supplemental logging.

To enable supplemental logging:

1. Connect to the source database as the Oracle GoldenGate administrator with
dblogin.

CONNECT https://Iocal host: 9000 DEPLOYMENT demp AS admi n PASSWORD
adni npw

DBLOG N USERI DALI AS admi n_dba DOVAIN Oracl eGol denGat e
2. Add supplemental logging for procedural replication.
ADD PROCEDURETRANDATA

I NFO OGG 13005 PROCEDURETRANDATA suppl ement al | oggi ng has been
enabl ed.

Supplemental logging is enabled for procedure replication.
To disable supplemental logging:

1. Connect to the source database as the Oracle GoldenGate administrator with
dblogin.

CONNECT https://local host: 9000 DEPLOYMENT dermo AS admi n PASSWORD
admi npw

DBLOG N USERI DALI AS admi n_dba DOVAIN Oracl eCGol denGat e
2. Remove supplemental logging for procedure replication.
DELETE PROCEDURETRANDATA
Supplemental logging is disabled for procedure replication.
To view information about supplemental logging:

1. Connect to the source database as the Oracle GoldenGate administrator with
dblogin.

CONNECT https://Iocal host: 9000 DEPLOYMENT demb AS admi n PASSWORD
adni npw

DBLOG N USERI DALI AS admi n_dba DOVAIN Oracl eGol denGat e
2. Display supplemental logging information for procedure replication.
| NFO PROCEDURETRANDATA

Supplemental logging information for procedure replication is displayed.

16.6 Filtering Features for Procedural Replication

You can specify which procedures and packages you want to include or exclude for
procedure replication.

ORACLE 16-4

ORACLE

Chapter 16
Filtering Features for Procedural Replication

You group supported packages and procedures using feature groups. You use the
procedure parameter with the | NCLUDE or EXCLUDE keyword to filter features for
procedure replication.

In the procedure parameter, | NCLUDE or EXCLUDE specify the beginning of a filtering
clause. They specify the procedures to replicate (I NCLUDE) or filter out (EXCLUDE). The
filtering clause must consist of the | NCLUDE ALL_SUPPORTED or EXCLUDE ALL_SUPPORTED
keyword followed by any valid combination of the other filtering options of the
procedure parameter. The EXCLUDE filter takes precedence over any | NCLUDE filters
that contain the same criteria.

" Note:

When replicating Oracle Streams Advanced Queuing (AQ) procedures, you
must use the RULE option in your parameter file as follows:

PROCEDURE | NCLUDE FEATURE ALL_SUPPORTED
or
PROCEDURE | NCLUDE FEATURE AQ RULE

Do not use PROCEDURE | NCLUDE FEATURE AQwithout the RULE option. See
Advanced Queue Concepts.

Including all system supplied packages at Extract:
1. Connect to Extract in the source database.
EXTRACT edba
USERI DALI AS adm n_dbA DOVAI N ORADEV
2. Create a new trail file.
EXTTRAIL ea
3. Enable procedure replication, if not already done.
TRANLOGOPTI ONS | NTEGRATEDPARANMS (ENABLE PROCEDURAL _REPLI CATI ON Y)
4. Include filter for procedure replication.
PROCEDURE | NCLUDE FEATURE ALL_SUPPORTED

You have successfully included all system supplied packages for procedure
replication.

Excluding specific packages at Replicat:

1. Connect to Replicat in the target database.
REPLI CAT rdba
USERI DALI AS admi n_dbBDOMAI N ORADEV

2. Include filter for procedure replication.
PROCEDURE EXCLUDE FEATURE RLS

You have successfully excluded specific packages for procedure replication.

16-5

Chapter 16
Handling Procedural Replication Errors

16.7 Handling Procedural Replication Errors

Procedural replication uses REPERROR parameter to configure the behavior of Replicat
when an procedural error occurs.

By default, Replicat will abend when a procedural replication occurs so using the
following steps sets up error handling:

1. Connectto Replicat in the target database.
REPLI CAT rdba
USERI DALI AS admi n_dbBDOVAI N ORADEV

2. Include filter for procedure replication.
PROCEDURE EXCLUDE FEATURE RLS

3. Specify error handling parameter, see REPERROR in Reference for Oracle
GoldenGate for other options.

REPERROR (PROCEDURE, DI SCARD)

You have successfully handled errors for procedural replication.

16.8 Procedural Replication Pragma Options

ORACLE

There are four pragma options for procedures: AUTO, MANUAL, UNSUPPORTED, and NONE.

PL/SQL enter and exit markers are logged for procedures with pragmas AUTO, MANUAL,
and UNSUPPORTED. The redo logs generated between the enter and exit markers are
grouped and discarded.

Following is a list of the packages and procedures that are pragma constructs for
replication. Any package or procedure not in this list is not considered a pragma
construct for PL/SQL replication and is equivalent to pragma NONE.

PL/SQL Procedures with Pragma are UNSUPPORTED

Procedures and packages with the pragma UNSUPPORTED stop apply at the point
of procedure invocation so that manual intervention can be taken. The following
procedures are pragma and UNSUPPORTED.

Sche Package Procedure Pragma
ma
SYS DBMS_REDEFI NI TI ABORT_UPDATE PRAGVA UNSUPPORTED
ON
SYS DBVMS_REDEFI NI TI EXECUTE_UPDATE PRAGVA UNSUPPORTED
ON
XDB DBMS_XDBZ ADD APPLI| CATI ON_P PRAGVA UNSUPPORTED with COWM T
RI NCI PAL
XDB DBMs_XDBZ CHANGE_APPLI CATI O PRAGVA UNSUPPORTED with COWM T
N_MEMBERSHI P
XDB DBMS_XDBZ DELETE_APPLI CATI O PRAGMA UNSUPPORTED with COW T
N_PRI NCI PAL

16-6

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package
ma

Procedure

Pragma

XDB DBMS_XDBZ

SET_APPLI CATI ON_P
RI NCI PAL

PRAGVA UNSUPPORTED wi t h

cOWM T

XDB DBMS_XDB_ADM N

CREATENONCEKEY

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XDB_ADM N

| NSTALLDEFAULTWAL
LET

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XDB_ADM N

MOVEXDB_TABLESPAC
E

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XDB_ADM N

REBUI LDHI ERARCHI C
ALI NDEX

PRAGVA UNSUPPORTED wi t h

cCOWM T

XDB DBMS_XDB_CONFI G

ADDAUTHENTI CATI ON
MAPPI NG

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XDB_CONFI G

ADDAUTHENTI CATI ON
METHCD

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XDB_CONFI G

ADDTRUSTMAPPI NG

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XDB_CONFI G

ADDTRUSTSCHEME

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XDB_CONFI G

CLEARHTTPDI GESTS

PRAGVA UNSUPPORTED wi t h

cCOWM T

XDB DBMS_XDB_CONFI G

DELETEAUTHENTI CAT
| ONVAPPI NG

PRAGVA UNSUPPORTED wi t h

cCOWM T

XDB DBMS_XDB_CONFI G

DELETEAUTHENTI CAT
[ONMETHCD

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XDB_CONFI G

DELETETRUSTNMAPPI N
G

PRAGVA UNSUPPORTED wi t h

cCOWM T

XDB DBMS_XDB_CONFI G

DELETETRUSTSCHEME

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XDB_CONFI G

ENABLECUSTOVAUTHE
NTI CATI ON

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XDB_CONFI G

ENABLECUSTOMTRUST

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XDB_CONFI G

ENABLEDI GESTAUTHE
NTI CATI ON

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XDB_CONFI G

| SGLOBALPORTENABL
ED

PRAGVA UNSUPPORTED wi t h

cCOWM T

XDB DBMS_XDB_CONFI G

SETDYNAM CGROUPST
CRE

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XDB_CONFI G

SETGLOBALPORTENAB
LED

PRAGVA UNSUPPORTED wi t h

COW T

XDB DBMS_XDB_CONFI G

SETHTTPCONFI GREAL
M

PRAGVA UNSUPPORTED Wi t h

COWM T

XDB DBMS_XMLI NDEX

DROPPARAMETER

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XMLI NDEX

MODI FYPARAMVETER

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XMLI NDEX

REG STERPARAMETER

PRAGVA UNSUPPORTED wi t h

COWM T

XDB DBMS_XMLSCHEMA

COPYEVOLVE

PRAGVA UNSUPPORTED wi t h

COWM T

PL/SQL Procedures with Pragma AUTO

For the procedures and packages with the pragma AUTO, the top-level PL/SQL APl is

called during apply.

16-7

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

DVSYS DBMS_NMACADM ADD AUTH TO REALM PRAGVA AUTO with COW T

DVSYS DBMS_NMACADM ADD CMD RULE TO P PRAGVA AUTO with COWM T
all cy

DVSYS DBMS_NMACADM ADD FACTOR LINK PRAGMA AUTOwWith COWM T

DVSYS DBMS_NMACADM ADD | NDEX_FUNCTI O PRAGVA AUTO with COWM T
N

DVSYS DBMS_MACADM ADD_NLS_DATA PRAGVA AUTO with COWM T

DVSYS DBMS_MACADM ADD_OBJECT_TO REA PRAGVA AUTO with COW T
LM

DVSYS DBMS_NMACADM ADD OMNER TO POLI PRAGVA AUTO with COWM T
CcY

DVSYS DBMS_NMACADM ADD_PCLI CY_FACTOR PRAGVA AUTO with COW T

DVSYS DBMS_NMACADM ADD REALM TO POLI PRAGMA AUTOwith COWM T
Ccy

DVSYS DBMS_MACADM ADD_RULE TO RULE_ PRAGVA AUTO with COW T
SET

DVSYS DBMS_NMACADM AUTHORI ZE_DATAPUM PRAGVA AUTO with COW T
P_USER

DVSYS DBMS_NMACADM AUTHORI ZE_DDL PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM AUTHORI ZE_DI AGNCS PRAGVA AUTO with COW T
TIC_ADM N

DVSYS DBMS_NMACADM AUTHORI ZE_MAI NTEN PRAGVA AUTO with COWM T
ANCE_USER

DVSYS DBMS_NMACADM AUTHORI ZE_PREPROC PRAGVA AUTO with COW T
ESSOR

DVSYS DBMS_NMACADM AUTHORI ZE_PROXY_U PRAGVA AUTO with COW T
SER

DVSYS DBMS_NMACADM AUTHORI ZE_SCHEDUL PRAGVA AUTO with COWM T
ER_USER

DVSYS DBMS_NMACADM AUTHORI ZE_TTS USE PRAGVA AUTO with COWM T
R

DVSYS DBMS_MACADM CHANGE_| DENTI TY_F PRAGVA AUTO with COWM T
ACTOR

DVSYS DBMS_NMACADM CHANGE | DENTITY_V PRAGMA AUTO with COWM T
ALUE

DVSYS DBMS_NMACADM CREATE_COVMAND RU PRAGMA AUTO with COWM T
LE

DVSYS DBMS_MACADM CREATE_CONNECT_CO PRAGWVA AUTO with COWM T
MVAND RULE

DVSYS DBMS_NMACADM CREATE_DOVAI N_| DE PRAGMA AUTO with COWM T
NTI TY

DVSYS DBMS_NMACADM CREATE_FACTOR PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM CREATE_FACTOR_TYP PRAGMA AUTO with COWM T
E

DVSYS DBMS_MACADM CREATE_ I DENTITY PRAGVA AUTO with COWM T

16-8

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

DVSYS DBMS_NMACADM CREATE_| DENTI TY_M PRAGMA AUTO with COWM T
AP

DVSYS DBMS_MACADM CREATE_MAC POLI CY PRAGWVA AUTO with COWM T

DVSYS DBMS_NMACADM CREATE_PCLI CY PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM CREATE_POLI CY_LAB PRAGMA AUTOwith COWM T
EL

DVSYS DBMS_MACADM CREATE_REALM PRAGVA AUTO with COWM T

DVSYS DBMS_MACADM CREATE_ROLE PRAGVA AUTO with COWM T

DVSYS DBMS_MACADM CREATE_RULE PRAGVA AUTO with COWM T

DVSYS DBMS_MACADM CREATE_RULE_SET PRAGVA AUTO with COWM T

DVSYS DBMS_MACADM CREATE_SESSI ON_EV PRAGVA AUTO with COWM T
ENT_CMD_RULE

DVSYS DBMS_NMACADM CREATE_SESSI ON_EV PRAGMA AUTO with COWM T
ENT_CMD_RULE

DVSYS DBMS_NMACADM DELETE_AUTH FROM PRAGVA AUTO with COWM T
REALM

DVSYS DBMS_MACADM DELETE_CVMD_RULE_F PRAGMA AUTO with COWM T
ROM_PCLI CY

DVSYS DBMS_NMACADM DELETE_COWWAND RU PRAGVA AUTO with COWM T
LE

DVSYS DBMS_NMACADM DELETE_CONNECT_CO PRAGMA AUTO with COWM T
MVAND_RULE

DVSYS DBMS_NMACADM DELETE_FACTOR PRAGVA AUTO with COWM T

DVSYS DBMS_MACADM DELETE_FACTOR_LIN PRAGVA AUTO with COWM T
K

DVSYS DBMS_NMACADM DELETE_FACTOR TYP PRAGVA AUTO with COWM T
E

DVSYS DBMS_NMACADM DELETE | DENTITY PRAGVA AUTOwith COWM T

DVSYS DBMS_NMACADM DELETE | DENTITY_ M PRAGVA AUTO with COWM T
AP

DVSYS DBMS_MACADM DELETE | NDEX_FUNC PRAGMA AUTO with COWM T
TION

DVSYS DBMS_NMACADM DELETE_MAC POLICY PRAGVA AUTO with COWM T
_CASCADE

DVSYS DBMS_NMACADM DELETE_OBJECT_FRO PRAGMA AUTO with COWM T
M REALM

DVSYS DBMS_NMACADM DELETE_OANER_FROM PRAGVA AUTO wi th COWM T
_PALICY

DVSYS DBMS_NMACADM DELETE _POLI CY_FAC PRAGVA AUTO with COWM T
TR

DVSYS DBMS_MACADM DELETE_POLI CY_LAB PRAGVA AUTO with COWM T
EL

DVSYS DBMS_NMACADM DELETE_REALM PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM DELETE_REALM CASC PRAGVA AUTO with COWM T

ADE

16-9

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

DVSYS DBMS_NMACADM DELETE_REALM FROM PRAGVA AUTO with COWM T
_PQLICY

DVSYS DBMS_NMACADM DELETE_ROLE PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM DELETE _RULE PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM DELETE RULE FROM PRAGVA AUTO with COWM T
RULE_SET

DVSYS DBMS_MACADM DELETE_RULE_SET PRAGVA AUTO with COWM T

DVSYS DBMS_MACADM DELETE_SESSI ON_EV PRAGMA AUTO with COWM T
ENT_CMD_RULE

DVSYS DBMS_NMACADM DELETE_SYSTEM EVE PRAGVA AUTO with COWM T
NT_CMD_RULE

DVSYS DBMS_NMACADM DI SABLE DV PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM Dl SABLE DV _DI CTI O PRAGVA AUTO with COWM T
NARY_ACCTS

DVSYS DBMS_NMACADM Dl SABLE_DV_PATCH_ PRAGMA AUTO with COWM T
ADM N_AUDI T

DVSYS DBMS_NMACADM Dl SABLE_ORADEBUG PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM DROP_DOVAI N_| DENT PRAGVA AUTO with COWM T
I TY

DVSYS DBMS_MACADM DROP_PQLI CY PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM ENABLE_DV PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM ENABLE DV DI CTI ON PRAGVA AUTO with COWM T
ARY_ACCTS

DVSYS DBMS_MACADM ENABLE_DV_PATCH A PRAGMA AUTO with COWM T
DM N_AUDI T

DVSYS DBMS_NMACADM ENABLE ORADEBUG ~ PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM RENAME_FACTOR PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM RENAVE_FACTOR _TYP PRAGVA AUTO with COWM T
E

DVSYS DBMS_NMACADM RENAME_PQLI CY PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM RENAME_REALM PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM RENAME_ROLE PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM RENAME_RULE PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM RENAME_RULE_SET PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM UNAUTHORI ZE_DATAP PRAGVA AUTO with COWM T
UWP_USER

DVSYS DBMS_MACADM UNAUTHORI ZE_DDL PRAGVA AUTO with COWM T

DVSYS DBMS_MACADM UNAUTHORI ZE_DI AGN PRAGVA AUTO with COWM T
OSTIC_ADM N

DVSYS DBMS_NMACADM UNAUTHORI ZE_MAI NT PRAGVA AUTO wi th COWM T
ENANCE_USER

DVSYS DBMS_NMACADM UNAUTHORI ZE_PREPR PRAGVA AUTO with COWM T
OCESSOR

DVSYS DBMS_MACADM UNAUTHORI ZE_PROXY PRAGMA AUTO with COWM T

_USER

16-10

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

DVSYS DBMS_NMACADM UNAUTHORI ZE_SCHED PRAGVA AUTO with COWM T
ULER USER

DVSYS DBMS_MACADM UNAUTHORI ZE_TTS_U PRAGMA AUTO with COWM T
SER

DVSYS DBMS_MACADM UPDATE_COMMAND RU PRAGMA AUTO with COWM T
LE

DVSYS DBMS_NMACADM UPDATE_CONNECT_CO PRAGVA AUTO with COWM T
MVAND_RULE

DVSYS DBMS_NMACADM UPDATE_FACTOR PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM UPDATE_FACTOR_TYP PRAGVA AUTO with COWM T
E

DVSYS DBMS_NMACADM UPDATE | DENTITY PRAGMA AUTOwith COWM T

DVSYS DBMS_NMACADM UPDATE_MAC PCLI CY PRAGMA AUTO with COWM T

DVSYS DBM5_NMACADM UPDATE_POLI CY_DES PRAGMA AUTO with COWM T
CRI PTI ON

DVSYS DBMS_NMACADM UPDATE_POLI CY_STA PRAGVA AUTO with COWM T
TE

DVSYS DBMS_NMACADM UPDATE_REALM PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM UPDATE_REALM AUTH PRAGMA AUTO with COWM T

DVSYS DBMS_NMACADM UPDATE_ROLE PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM UPDATE_RULE PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM UPDATE_RULE_SET PRAGVA AUTO with COWM T

DVSYS DBMS_NMACADM UPDATE_SESSI ON_EV PRAGVA AUTO with COWM T
ENT_CMD_RULE

DVSYS DBMS_MACADM UPDATE_SYSTEM EVE PRAGMA AUTO with COWM T
NT_CMD_RULE

DVSYS DBMS_NMACADM CREATE_ADM N_AUDI PRAGVA AUTO
T

DVSYS DBMS_MACADM CREATE_MACOLS_CON PRAGWVA AUTO with COWM T
TEXTS

DVSYS DBMS_MACADM DROP_MACOLS CONTE PRAGMA AUTO with COWM T
XTS

LBACS LBAC EVENTS AFTER_CREATE PRAGVA AUTO with COWM T

YS

LBACS LBAC EVENTS AFTER_DROP PRAGVA AUTO with COWM T

YS

LBACS LBAC EVENTS BEFORE_ALTER PRAGVA AUTO with COWM T

YS

LBACS LBAC LGSTNDBY U ADD COVPARTMENTS PRAGVA AUTO

YS TIL

LBACS LBAC_LGSTNDBY_U ADD GROUPS PRAGVA AUTO

YS TIL

LBACS LBAC LGSTNDBY_U ALTER COMPARTMENT PRAGVA AUTO

YS TIL S

LBACS LBAC LGSTNDBY U ALTER GROUPS PRAGVA AUTO

YS TIL

16-11

ORACLE

Chapter 16
Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

LBACS LBAC LGSTNDBY U CONFI GURE_CLS PRAGVA AUTO with COWM T
YS TIL

LBACS LBAC LGSTNDBY U CREATE_PQLI CY PRAGVA AUTO with COWM T
YS TIL

LBACS LBAC LGSTNDBY_U DI SABLE OLS PRAGVA AUTO with COWM T
YS TIL

LBACS LBAC LGSTNDBY U DROP_ALL_COVPARTM PRAGVA AUTO

YS TIL ENTS

LBACS LBAC LGSTNDBY U DROP_ALL_GROUPS PRAGVA AUTO

YS TIL

LBACS LBAC LGSTNDBY_U DROP_COVPARTMENTS PRAGVA AUTO

YS TIL

LBACS LBAC LGSTNDBY U DROP_GROUPS PRAGVA AUTO

YS TIL

LBACS LBAC_LGSTNDBY_U ENABLE QLS PRAGVA AUTO with COWM T
YS TIL

LBACS LBAC LGSTNDBY_ U | NSERT_LABEL PRAGVA AUTO

YS TIL

LBACS LBAC LGSTNDBY U SAVE DEFAULT LABE PRAGVA AUTO with COWM T
YS TIL LS

LBACS LBAC_LGSTNDBY_U SET_COWPARTMENTS PRAGVA AUTO

YS TIL

LBACS LBAC LGSTNDBY U SET_DEFAULT_LABEL PRAGVA AUTO

YS TIL

LBACS LBAC LGSTNDBY U SET_GROUPS PRAGVA AUTO

YS TIL

LBACS LBAC_LGSTNDBY_U SET_LEVELS PRAGVA AUTO

YS TIL

LBACS LBAC LGSTNDBY U SET_ROW LABEL PRAGVA AUTO

YS TIL

LBACS LBAC LGSTNDBY U SET USER LABELS PRAGMA AUTOwith COWM T
YS TIL

LBACS LBAC LGSTNDBY_U STORE LABEL_LIST PRAGVA AUTO

YS TIL

LBACS LBAC POLICY_ADM ALTER SCHEMA POLI PRAGVA AUTO with COWM T
YS I'N cY

LBACS LBAC POLICY_ADM APPLY SCHEMA POLI PRAGVA AUTOwith COWM T
YS I'N Ccy

LBACS LBAC _POLICY_ADM APPLY_TABLE POLIC PRAGVA AUTO with COWM T
YS I'N Y

LBACS LBAC POLICY_ADM DI SABLE SCHEMA PO PRAGVA AUTO with COWM T
YS I'N LI CY

LBACS LBAC POLI CY_ADM DI SABLE TABLE_POL PRAGVA AUTO with COWM T
YS I'N I CY

LBACS LBAC POLICY_ADM ENABLE SCHEMA POL PRAGVA AUTO with COWM T
YS I'N I CY

16-12

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

LBACS LBAC POLICY_ADM ENABLE TABLE POLI PRAGVA AUTOwith COWM T
YS I'N CcY

LBACS LBAC POLICY_ADM POLICY_SUBSCRIBE PRAGVA AUTOwith COWM T
YS I'N

LBACS LBAC POLI CY_ADM POLI CY_UNSUBSCRI B PRAGMA AUTO with COWM T
YS I'N E

LBACS LBAC POLICY_ADM REMOVE SCHEMA POL PRAGVA AUTO with COWM T
YS I'N I CY

LBACS LBAC POLICY_ ADM REMOVE TABLE POLI PRAGMA AUTOwith COWM T
YS I'N Ccy

LBACS SA AUDIT_ADMN AUDI T PRAGVA AUTO with COWM T
YS

LBACS SA AUDIT_ ADMN AUDI T_LABEL PRAGVA AUTO with COWM T
YS

LBACS SA AUDIT_ADM N AUDI T_LABEL_ENABL PRAGVA AUTO with COWM T
YS ED

LBACS SA AUDIT_ADM N AUDI T_LABEL_ENABL PRAGVA AUTO with COWM T
YS ED SQL

LBACS SA AUDIT ADM N CREATE_VI EW PRAGVA AUTO with COWM T
YS

LBACS SA AUDIT_ADM N DROP_VI EW PRAGVA AUTO with COWM T
YS

LBACS SA AUDIT_ADMN NOAUDI T PRAGVA AUTO with COWM T
YS

LBACS SA AUDIT _ADM N NOAUDI T_LABEL PRAGVA AUTO with COWM T
YS

LBACS SA COVPONENTS ALTER_COVPARTMENT PRAGVA AUTO with COWM T
YS

LBACS SA COVPONENTS ALTER COVPARTMENT PRAGVA AUTO with COW T
YS

LBACS SA COVPONENTS ALTER_GROUP PRAGVA AUTO with COWM T
YS

LBACS SA COVPONENTS ALTER_GROUP PRAGVA AUTO with COWM T
YS

LBACS SA COVPONENTS ALTER_GROUP_PAREN PRAGVA AUTO

YS T

LBACS SA COVPONENTS ALTER_GROUP_PAREN PRAGMVA AUTO

YS T

LBACS SA COVPONENTS ALTER _GROUP_PAREN PRAGMA AUTO

YS T

LBACS SA COVPONENTS ALTER LEVEL PRAGVA AUTO with COWM T
YS

LBACS SA COVPONENTS ALTER_LEVEL PRAGVA AUTO with COWM T
YS

LBACS SA COVPONENTS CREATE_COVPARTMEN PRAGMA AUTO with COW T
YS T

16-13

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma
ma
LgACS SA_COVPONENTS CREATE_GROUP PRAGVA AUTO
Y.
LBACS SA COVPONENTS CREATE_LEVEL PRAGVA AUTO with COWM T
YS
I_(EACS SA_COVPONENTS DROP_COVPARTMENT ~ PRAGVA AUTO with COW T
LEACS SA_COVPONENTS DROP_COVPARTMENT PRAGMA AUTO with COWM T
Y
I_(EACS SA_COVPONENTS DROP_GROUP PRAGVA AUTO with COWM T
I_(gACS SA_COVPONENTS DROP_GROUP PRAGVA AUTO with COWM T
LEACS SA_COVPONENTS DROP_LEVEL PRAGVA AUTO with COWM T
Y
I_(EACS SA_COVPONENTS DROP_LEVEL PRAGVA AUTO with COW T
LgACS SA_COVPONENTS ALTER_LABEL PRAGVA AUTO with COWM T
Y.
LEACS SA_COVPONENTS ALTER LABEL PRAGVA AUTO with COWM T
Y
I_(EACS SA_COVPONENTS CREATE_LABEL PRAGVA AUTO with COW T
LgACS SA_COVPONENTS DROP_LABEL PRAGVA AUTO with COWM T
Y.
LBACS SA COVPONENTS DROP_LABEL PRAGVA AUTO with COWM T
YS
I_(EACS SA_SYSDBA ALTER_PQLI CY PRAGVA AUTO with COW T
LEACS SA_SYSDBA DI SABLE_PQLI CY PRAGVA AUTO with COWM T
Y.
LBACS SA SYSDBA DROP_PQLI CY PRAGVA AUTO with COW T
YS
I_(EACS SA_SYSDBA ENABLE_PQOLI CY PRAGVA AUTO with COW T
LEACS SA_USER_ADM N DROP_USER_ACCESS PRAGMA AUTO with COWM T
Y
LBACS SA USER ADM N SET_PROG PRI VS PRAGVA AUTO with COWM T
YS
I_(gACS SA_USER_ADM N SET_USER PRI'VS PRAGVA AUTO with COWM T
SYS DBMS_AQ AQS_BACKGROUND OP PRAGVA AUTO

ER
SYS DBMS_AQ ﬁé@_DELETE_DI OT_T PRAGVA AUTO
SYS DBMS_AQ AQS_DELETE HI ST_T PRAGVA AUTO

AB

16-14

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

SYS DBMS_AQ AQ_DELETE TIOT_T PRAGVA AUTO
AB

SYS DBMS_AQ AQS_I NSERT_DI OT_T PRAGVA AUTO
AB

SYS DBMS_AQ AQ_I NSERT_HI ST_T PRAGVA AUTO
AB

SYS DBMS_AQ AQ_I NSERT_TIOT_T PRAGVA AUTO
AB

SYS DBMVS_AQ AQ_UPDATE H ST T PRAGVA AUTO
AB

SYS DBMS_AQ AQ_UPDATE HI ST_T PRAGVA AUTO
AB _EX

SYS DBMS_AQ DEQUEUE | NTERNAL PRAGVA AUTO

SYS DBMS_AQ ENQUEUE_I NT_SHARD PRAGVA AUTO

SYS DBMS_AQ ENQUEUE_| NT_SHARD PRAGVA AUTO

SYS DBMS_AQ ENQUEUE_I NT_SHARD PRAGVA AUTO

SYS DBMS_AQ ENQUEUE_I NT_SHARD PRAGVA AUTO
_JIMB

SYS DBMVS_AQ ENQUEUE_I NT_UNSHA PRAGVA AUTO
RDED

SYS DBMS_AQ ENQUEUE_I NT_UNSHA PRAGVA AUTO
RDED

SYS DBMS_AQ ENQUEUE_I NT_UNSHA PRAGVA AUTO
RDED

SYS DBMS_AQ ENQUEUE_I NT_UNSHA PRAGVA AUTO
RDED

SYS DBMS_AQ REG STRATI ON_REPL PRAGVA AUTO
| CATI ON

SYS DBMS_AQADM ALTER_AQ AGENT PRAGVA AUTO

SYS DBMS_AQADM CREATE_AQ AGENT PRAGVA AUTO

SYS DBMS_AQADM DI SABLE DB _ACCESS PRAGVA AUTO

SYS DBMS_AQADM DROP_AQ_AGENT PRAGVA AUTO

SYS DBMS_AQADM ENABLE DB ACCESS PRAGVA AUTO

SYS DBMS_AQADM CGRANT_SYSTEM PRIV PRAGVA AUTO
| LEGE

SYS DBMVS_AQADM CGRANT_TYPE_ACCESS PRAGVA AUTO

SYS DBMVS_AQADM REVOKE_SYSTEM PRI PRAGVA AUTO
VI LEGE

SYS DBMS_AQADM SYS ALTER_QUEUE PRAGVA AUTO

SYS DBMS_AQADM SYS ALTER _QUEUE TABLE PRAGVA AUTO

SYS DBVS_AQADM SYS ALTER SHARDED QUE PRAGVA AUTO
UE

SYS DBMS_AQADM SYS ALTER SUBSCRI BER_ PRAGVA AUTO

11G

16-15

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

SYS DBMS_AQADM SYS CREATE EVICTION.T PRAGVA AUTO
ABLE

SYS DBVS_AQADM SYS CREATE_EXCEPTI ON_ PRAGVA AUTO
QUEUE

SYS DBMS_AQADM SYS CREATE_NP_QUEUE_| PRAGVA AUTO
NT

SYS DBMS_AQADM SYS CREATE_QUEUE PRAGVA AUTO

SYS DBMS_AQADM SYS CREATE QUEUE_TABL PRAGVA AUTO
E

SYS DBVS_AQADM SYS CREATE_SHARDED QU PRAGVA AUTO
EUE

SYS DBMS_AQADM SYS DROP_EVI CTI ON_TAB PRAGVA AUTO
LE

SYS DBMS_AQADM SYS DROP_QUEUE PRAGVA AUTO

SYS DBMS_AQADM SYS DROP_QUEUE_TABLE PRAGVA AUTO

SYS DBMS_AQADM SYS DROP_SHARDED QUEU PRAGVA AUTO
E INT

SYS DBMS_AQADM SYS ENABLE JMS_TYPES PRAGVA AUTO
I NT

SYS DBMS_AQADM SYS GRANT_QUEUE PRIVI PRAGVA AUTO
LECE

SYS DBMS_AQADM SYS M GRATE_QUEUE_TAB PRAGVA AUTO
LE

SYS DBVS_AQADM SYS PATCH QUEUE_TABLE PRAGVA AUTO

SYS DBVS_AQADM SYS PATCH QUEUE_TABLE PRAGVA AUTO

SYS DBMS_AQADM SYS PSTUPD_CREATE _EVI PRAGVA AUTO
CTI ON_TABLE

SYS DBMS_AQADM SYS PURGE_QUEUE TABLE PRAGVA AUTO
_INT

SYS DBMS_AQADM SYS REMOVE _ORPHWVBGS | PRAGVA AUTO
NT

SYS DBVS_AQADM SYS REMOVE_SUBSCRI BER PRAGVA AUTO
_11G INT

SYS DBMS_AQADM SYS REVOKE_QUEUE_PRI'V PRAGVA AUTO
| LEGE

SYS DBMS_AQADM SYS START_QUEUE PRAGVA AUTO

SYS DBMS_AQADM SYS STOP_QUEUE PRAGVA AUTO

SYS DBMS_AQELM SET_MAI LHOST PRAGVA AUTO

SYS DBMS_AQELM SET_MAI LPORT PRAGVA AUTO

SYS DBMS_AQELM SET_PROXY PRAGVA AUTO

SYS DBMS_AQELM SET_SENDFROM PRAGVA AUTO

SYS DBMS_AQ SYS | MP BUMP_TI D_SEQUENCE PRAGVA AUTO

_| NTERNAL
SYS DBVS_AQ SYS | MP CLEANUP_SCHEMA | M PRAGVA AUTO

_| NTERNAL

PORT

16-16

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

SYS DBMS_AQ SYS IMP | MPORT_CMI_TIME_T PRAGVA AUTOwith COWM T
_| NTERNAL ABLE

SYS DBMS_AQ SYS_| MP | MPORT_DEQUEUELOG PRAGMA AUTO with COWM T
_I NTERNAL _TABLE

SYS DBMS_AQ SYS_| MP | MPORT_EXP_ENTRY PRAGVA AUTO
_I NTERNAL

SYS DBMS_AQ SYS I MP | MPORT_HI STORY_TA PRAGVA AUTO with COWM T
_I NTERNAL BLE

SYS DBVMS_AQ SYS | MP | MPORT | NDEX_TABL PRAGVA AUTO with COWM T
_I NTERNAL E

SYS DBMS_AQ SYS_| MP | MPORT_QTAB_EXPDE PRAGVA AUTO
_I NTERNAL P

SYS DBMS_AQ SYS_ | MP | MPORT_QUEUE PRAGVA AUTO with COWM T
_I NTERNAL

SYS DBVS_AQ SYS | MP | MPORT_QUEUE_META PRAGVA AUTO
_I NTERNAL

SYS DBMS_AQ SYS | MP | MPORT_QUEUE_SEQ PRAGVA AUTO
_| NTERNAL

SYS DBMS_AQ SYS I MP | MPORT_QUEUE TABL PRAGVA AUTO with COWM T
_I NTERNAL E

SYS DBMS_AQ SYS_ | MP | MPORT_SI GNATURE_ PRAGVA AUTO with COWM T
_I NTERNAL TABLE

SYS DBM5_AQ SYS | MP | MPORT_SUBSCRI BER PRAGVA AUTO with COWM T
_| NTERNAL _TABLE

SYS DBMS_AQ SYS_ I MP | MPORT_TI MEMGR TA PRAGVMA AUTO with COWM T
_I NTERNAL BLE

SYS DBMS_AQ SYS_ | MP POST_TTS_REBUI LD PRAGVMA AUTO with COWM T
_I NTERNAL | DX

SYS DBMS_AQ SYS | MP POST_TTS_SHARDED PRAGVA AUTO
_| NTERNAL Q

SYS DBMS_AQ SYS | MP POST_TTS_WORK PRAGVA AUTO
_I NTERNAL

SYS DBMS_AQ SYS_ | P POST_TTS_WORK_REM PRAGVA AUTO
_I NTERNAL Al NI NG

SYS DBMS_DBFS CONTE EXI'M_MOUNT PRAGVA AUTO
NT_ADM N

SYS DBVS_DBFS _CONTE EXI M _MOUNTP PRAGVA AUTO
NT_ADM N

SYS DBMS_DBFS CONTE EXI M _STORE PRAGVA AUTO
NT_ADM N

SYS DBMS_DBFS CONTE MOUNTSTORE_LOG PRAGVA AUTO
NT_ADM N

SYS DBVS_DBFS_CONTE REGQ STERSTORE_LOG PRAGVA AUTO
NT_ADM N

SYS DBMS_DBFS CONTE UNMOUNTSTORE_LOG PRAGVA AUTO
NT_ADM N

16-17

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

SYS DBMS_DBFS CONTE UNREG STERSTORE_L PRAGVA AUTO
NT_ADM N oG

SYS DBMS_DBFS_SFS NORVALI ZEFS PRAGVA AUTO with COWM T

SYS DBMS_DBFS CONTE REORGANI ZEFS PRAGVA AUTO with COWM T
NT_ADM N

SYS DBMS_DBFS_CONTE SHRI NKFS PRAGVA AUTO with COWM T
NT_ADM N

SYS DBMS DBFS SFS A CREATEFI LESYSTEM PRAGVA AUTO
DM N LOG

SYS DBMS_DBFS_SFS_A DELETE_ORPHANS LO PRAGMA AUTO with COWM T
DM N G

SYS DBMS_DBFS SFS A DROPFI LESYSTEM LO PRAGVA AUTO
DM N G

SYS DBMS DBFS SFS A EXI M ATTRV PRAGVA AUTO with COWM T
DM N

SYS DBMS_DBFS _SFS A EXIM FS PRAGVA AUTO
DM N

SYS DBMS_DBFS SFS A EXI M GRANTS PRAGVA AUTO with COWM T
DM N

SYS DBMS_DBFS SFS A EXI'M SEQ PRAGVA AUTO
DM N

SYS DBMS_DBFS_SFS A EXI M SNAP PRAGVA AUTO
DM N

SYS DBMS_DBFS SFS A EXI M TABP PRAGVA AUTO
DM N

SYS DBMS_DBFS SFS A EXIM TAB_LOG PRAGVA AUTO
DM N

SYS DBMS_DBFS _SFS A EXIM VOL PRAGVA AUTO
DM N

SYS DBMS DBFS SFS A | NI TFI LESYSTEM LO PRAGVA AUTO
DM N G

SYS DBVS_DBFS SFS A PARTI TI ON_SEQUENC PRAGVA AUTO with COWM T
DM N E LOG

SYS DBMS_DBFS_SFS A RECACHE SEQUENCE_ PRAGVMA AUTO with COWM T
DM N LOG

SYS DBMS_DBFS SFS A REG STERFI LESYSTE PRAGMA AUTO
DM N M LOG

SYS DBMS DBFS SFS A SETFSPROPERTI ES L PRAGMA AUTO
DM N oG

SYS DBMS_DBFS SFS A UNREG STERFI LESYS PRAGMA AUTO
DM N TEM LOG

SYS DBMVS_DDL SET_TRIGGER FIRIN PRAGMA AUTO with COWM T

G_PROPERTY
SYS DBVS_DDL SET_TRIGGER FIRIN PRAGVA AUTO with COWM T
G_PROPERTY
SYS DBMS_FGA ADD PQOLI CY PRAGVA AUTO with COWM T

16-18

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma
ma
SYS DBMS_FGA DI SABLE_PQOLI CY PRAGVA AUTO with COWM T
SYS DBMS_FGA DROP_PQLI CY PRAGVA AUTO with COWM T
SYS DBMS_FGA ENABLE_PQOLI CY PRAGVA AUTO with COWM T
SYS DBVS_GOLDENGATE ADD AUTO CDR_COLG PRAGVA AUTO with COWM T
_ADM I NT_I ROUP_I NT
SYS DBMVS_FGA ADD AUTO CDR DELT PRAGVA AUTO with COWM T
A RES I NT
SYS DBVS_FGA ADD_AUTO CDR_INT PRAGVA AUTO with COW T
SYS DBVS_FGA ALTER _AUTO CDR_CO PRAGVA AUTO with COW T
LGROUP_I NT
SYS DBMS_FGA ALTER AUTO CDR_IN PRAGVA AUTO with COWM T
T
SYS DBVS_FGA REMOVE_AUTO CDR_C PRAGMA AUTO with COWM T
CLGROUP_I NT
SYS DBVS_FGA REMOVE_AUTO CDR_D PRAGMA AUTO with COWM T
ELTA RES I NT
SYS DBMS_FGA REMOVE_AUTO CDR | PRAGVA AUTO with COWM T
NT
SYS DBVS_GOLDENGATE ACDR_COLUWN PRAGVA AUTO with COWM T
_IWP
SYS DBMS_GOLDENGATE ACDR_COLUMN_GROUP PRAGVA AUTO with COWM T
WP
SYS DBMS_GOLDENGATE ACDR _END PRAGVA AUTO with COWM T
_IWP
SYS DBMS_GOLDENGATE ACDR_START PRAGVA AUTO with COWM T
_IWP
SYS DBMS_GOLDENGATE ACDR _TABLE PRAGVA AUTO with COWM T
WP
SYS DBVS_| NTERNAL L EDS EVOLVE DI SABL PRAGVA AUTO with COWM T
OGSTDBY E
SYS DBMS_| NTERNAL_L EDS_EVOLVE _ENABLE PRAGVMA AUTO with COWM T
OGSTDBY
SYS DBMS_| NTERNAL_R DESTROY_META PRAGVA AUTO
OLLI NG
SYS DBMS_| NTERNAL_R | NSERT_DGLRDDI R PRAGVA AUTO
OLLI NG
SYS DBVS_| NTERNAL_R | NSERT_DGLRDEVT PRAGVA AUTO
COLLI NG
SYS DBMS_| NTERNAL_R SET_UPGRADE FLAGS PRAGVA AUTO
OLLI NG
SYS DBMS_| NTERNAL_R UPDATE _DGLRDI NS _P PRAGVA AUTO
CLLI NG ROGRESS
SYS DBMS_| NTERNAL_R UPSERT_DGLRDCON ~ PRAGVA AUTO
OLLI NG
SYS DBMS_| NTERNAL_R UPSERT_DGLRDDAT PRAGVA AUTO

OLLING

16-19

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma
ma
SYS DBMS | NTERNAL_R UPSERT_DGLRDINS PRAGVA AUTO
OLLI NG
SYS DBMS | NTERNAL_R UPSERT_DGLRDPAR PRAGVA AUTO
COLLI NG
SYS DBMS_| NTERNAL_R UPSERT_DGLRDSTA ~ PRAGVA AUTO
OLLI NG
SYS DBMS_| NTERNAL_R UPSERT_DGLRDSTS PRAGVA AUTO
OLLI NG
SYS DBMS_| SCHED CREATE_CREDENTI AL PRAGMA AUTO with COWM T
SYS DBMS_| SCHED EXEC_JOB_RUN_LSA PRAGVA AUTO
SYS DBMS_| SCHED SET_AGENT_REG STR PRAGVA AUTO with COWM T
ATI ON_PASS
SYS DBMS_PRVTAQ S SUBI D_REPLI CATE ~ PRAGVA AUTO with COWM T
SYS DBMS_PRVTAQ S ADD DURABLE SUB PRAGVA AUTO with COW T
SYS DBMS_PRVTAQ S ALTER_SUBSCRI BER_ PRAGVA AUTO
12G
SYS DBMS_PRVTAQ S REMOVE_SUBSCRI BER PRAGVA AUTO
_12G
SYS DBMS_REDACT ADD PQOLI CY PRAGVA AUTO with COWM T
SYS DBMS_REDACT ALTER PQLI CY PRAGVA AUTO with COWM T
SYS DBMS_REDACT APPLY POLI CY_EXPR PRAGMA AUTOwith COWM T
_TO AL
SYS DBMS_REDACT CREATE_POLI CY_EXP PRAGVA AUTO with COWM T
RESSI ON
SYS DBMS_REDACT DI SABLE_PQOLI CY PRAGVA AUTO with COWM T
SYS DBMS_REDACT DROP_PQLI CY PRAGVA AUTO with COWM T
SYS DBMS_REDACT DROP_POLI CY_EXPRE PRAGVA AUTO with COWM T
SSION
SYS DBMS_REDACT ENABLE_PQLI CY PRAGVA AUTO with COWM T
SYS DBMS_REDACT FPM_MASK PRAGVA AUTO with COWM T
SYS DBMS_REDACT FPM_UNMASK PRAGVA AUTO with COWM T
SYS DBMS_REDACT UPDATE_FULL_REDAC PRAGVA AUTO with COWM T
TI ON_VALUES
SYS DBVS_REDACT UPDATE_POLI CY_EXP PRAGMA AUTO with COWM T
RESSI ON
SYS DBVS_REDEFI NI TI - ABORT_REDEF TABLE PRAGVA AUTO with COWM T
ON
SYS DBMS_REDEFI NI TI ABORT_ROLLBACK PRAGVA AUTO with COWM T
ON
SYS DBMS_REDEFI NI TI - COPY_TABLE_DEPEND PRAGVA AUTO with COW T
ON ENTS
SYS DBVS_REDEFI NI TI - FI NI SH REDEF_TABL PRAGVA AUTO with COWM T
ON E
SYS DBVS_REDEFI NI TI REG STER DEPENDEN PRAGVA AUTO with COW T

N

T_OBJECT

16-20

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma
ma
SYS DBMS_REDEFI NI TI ROLLBACK PRAGVA AUTO with COWM T
ON
SYS DBMS_REDEFI NI TI SET_PARAM PRAGVA AUTO with COWM T
ON
SYS DBMS_REDEFI NI TI START_REDEF_TABLE PRAGVA AUTO with COWM T
ON
SYS DBVS_REDEFI NI TI - SYNC | NTERI M TABL PRAGVA AUTO with COWM T
ON E
SYS DBVS_REDEFI NI TI - UNREG STER _DEPEND PRAGVA AUTO with COW T
ON ENT_OBJECT
SYS DBMS_RLS | NT ADD _GROUPED POLIC PRAGVA AUTOwith COWM T
Y
SYS DBMS_RLS | NT ADD PQOLI CY PRAGVA AUTO with COWM T
SYS DBMS_RLS | NT ADD PCLI CY_CONTEX PRAGVA AUTO with COWM T
T
SYS DBMS_RLS_| NT ALTER GROUPED POL PRAGVA AUTO with COW T
I CY
SYS DBMS_RLS | NT ALTER PCLI CY PRAGVA AUTO with COWM T
SYS DBMS_RLS | NT CREATE_POLI CY_GRO PRAGMA AUTO with COWM T
uP
SYS DBMS_RLS | NT DELETE _POLI CY_GRO PRAGVA AUTO with COWM T
UP
SYS DBVS_RLS_| NT Dl SABLE_GROUPED_P PRAGMA AUTO with COWM T
aLl ¢y
SYS DBMS_RLS | NT DROP_GROUPED POLI PRAGVA AUTO with COWM T
CcY
SYS DBMS_RLS | NT DROP_PQLI CY PRAGVA AUTO with COWM T
SYS DBMS_RLS | NT DROP_POLI CY_CONTE PRAGMA AUTO with COWM T
XT
SYS DBMS_RLS_| NT ENABLE_GROUPED PO PRAGMA AUTO with COWM T
LI CY
SYS DBMS_RLS | NT ENABLE_PQOLI CY PRAGVA AUTO with COWM T
SYS DBMS_RLS | NT REFRESH GROUPED P PRAGVA AUTO with COWM T
all cy
SYS DBMS_RLS | NT REFRESH _PQOLI CY PRAGVA AUTO with COWM T
SYS DBMS_RULEADM N ADD RULE PRAGVA AUTO
TERNAL
SYS DBVS_RULEADM | N ALTER EVALUATI ON_ PRAGVA AUTO
TERNAL CONTEXT
SYS DBMS_RULEADM IN ALTER_RULE PRAGVA AUTO
TERNAL
SYS DBMS_RULEADM I N CREATE_EVALUATI ON PRAGVA AUTO
TERNAL _CONTEXT
SYS DBMS_RULEADM | N CREATE_RULE PRAGVA AUTO

TERNAL

16-21

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma
ma
SYS DBMS_RULEADM I N CREATE RULE SET PRAGVA AUTO
TERNAL
SYS DBMS_RULEADM I N DROP_EVALUATI ON_C PRAGVA AUTO
TERNAL ONTEXT
SYS DBMS_RULEADM IN DROP_RULE PRAGVA AUTO
TERNAL
SYS DBMS_RULEADM IN DROP_RULE_SET PRAGVA AUTO
TERNAL
SYS DBMS_RULEADM IN REMOVE_RULE PRAGVA AUTO
TERNAL
SYS DBMS_RULE_ADM GRANT_OBJECT_PRI'V PRAGVA AUTO
| LEGE
SYS DBMS_RULE_ADM CGRANT_SYSTEM PRIV PRAGVA AUTO
| LECE
SYS DBVS_RULE_ADM REVOKE_OBJECT_PRI PRAGVA AUTO
VI LEGE
SYS DBMS_RULE_ADM REVOKE_SYSTEM PRI PRAGVA AUTO
VI LEGE
SYS DBVMS_SCHEDULER ADD EVENT QUEUE S PRAGVA AUTO with COWM T
UBSCRI BER
SYS DBMS_SCHEDULER ~ ADD_GROUP_MEMBER PRAGMA AUTO with COW T
SYS DBMS_SCHEDULER ADD JOB_EMAI L_NOT PRAGMA AUTO with COWM T
| FI CATI ON
SYS DBMS_SCHEDULER ~ ADD TO | NCOWPATI B PRAGVA AUTO with COWM T
ILITY
SYS DBMS_SCHEDULER ~ ADD_W NDOW GROUP_ PRAGMA AUTO with COWM T
MEMBER
SYS DBMS_SCHEDULER ALTER CHAIN PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER ALTER CHAIN PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER ~ ALTER_RUNNI NG CHA PRAGVA AUTO with COWM T
I'N
SYS DBMS_SCHEDULER ~ ALTER RUNNI NG CHA PRAGVA AUTO with COWM T
I'N
SYS DBMS_SCHEDULER ANALYZE CHAI N PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER AUTO PURGE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER CHECK CREDENTI AL PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER COPY_JOB PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER CREATE_CHAIN PRAGVA AUTO with COWM T
SYS DBVMS_SCHEDULER CREATE DATABASE D PRAGVA AUTO with COWM T
ESTI NATI ON
SYS DBMS_SCHEDULER CREATE_EVENT_SCHE PRAGMA AUTO with COWM T
DULE
SYS DBMS_SCHEDULER CREATE_FI LE_ WATCH PRAGVA AUTO with COWM T
ER
SYS DBMS_SCHEDULER CREATE_GROUP PRAGVA AUTO with COWM T

16-22

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

SYS DBMS_SCHEDULER CREATE_| NCOWPATI B PRAGVA AUTO with COWM T
ILITY

SYS DBMS_SCHEDULER CREATE_JOB PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER CREATE_JOB PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER CREATE_JOB PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER CREATE_JOB PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER CREATE_JOB PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER CREATE_JOB PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER CREATE_JOBS PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER CREATE_JOBS PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER CREATE JOB CLASS PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER CREATE_PROGRAM PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER CREATE_RESOURCE PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER CREATE_SCHEDULE PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER CREATE_W NDOW PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER CREATE_W NDOW PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER CREATE_W NDOW GRO PRAGVA AUTO with COWM T
uP

SYS DBVMS_SCHEDULER DEFI NE_ANYDATA AR PRAGVA AUTO with COWM T
GUMVENT

SYS DBMS_SCHEDULER DEFI NE_CHAI N_EVEN PRAGVA AUTO with COWM T
T_STEP

SYS DBMS_SCHEDULER DEFI NE_CHAIN_EVEN PRAGVA AUTO with COWM T
T_STEP

SYS DBVMS_SCHEDULER DEFI NE_ CHAIN RULE PRAGVA AUTO with COWM T

SYS DBVMS_SCHEDULER DEFI NE_CHAIN STEP PRAGVA AUTO with COWM T

SYS DBVS_SCHEDULER DEFI NE_METADATA A PRAGVA AUTO with COWM T
RGUVENT

SYS DBMS_SCHEDULER DEFI NE_PROGRAM AR PRAGMA AUTO with COWM T
GUVENT

SYS DBMS_SCHEDULER DEFI NE_PROGRAM AR PRAGVA AUTO with COWM T
GUMENT

SYS DBMS_SCHEDULER DELETE FI LE PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER DI SABLE PRAGVA AUTO with COWM T

SYS DBVMS_SCHEDULER DI SABLE1 CALENDAR PRAGVA AUTO with COWM T
_CHECK

SYS DBMS_SCHEDULER DROP_AGENT_DESTIN PRAGVA AUTO with COWM T
ATI ON

SYS DBMS_SCHEDULER DROP_CHAIN PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER DROP_CHAIN RULE ~ PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER DROP_CHAIN STEP PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER DROP_CREDENTI AL PRAGVA AUTO with COWM T

SYS DBMS_SCHEDULER DROP_DATABASE _DES PRAGVA AUTO with COWM T

TI NATI ON

16-23

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma
ma
SYS DBMS_SCHEDULER DROP_FI LE_ WATCHER PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER DROP_GROUP PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER DROP_I NCOWPATI BI L PRAGVA AUTO with COWM T
I TY
SYS DBVMS_SCHEDULER DROP_JOB PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER DROP_JOB_CLASS PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER DROP_PROGRAM PRAGVA AUTO with COWM T
SYS DBVMS_SCHEDULER DROP_PROGRAM ARGU PRAGVA AUTO with COW T
MENT
SYS DBMS_SCHEDULER ~ DROP_PROGRAM ARGU PRAGMA AUTO with COWM T
MENT
SYS DBMS_SCHEDULER DROP_RESOURCE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER DROP_SCHEDULE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER DROP_W NDOW PRAGVA AUTO with COWM T
SYS DBVS_SCHEDULER DROP_W NDOW GROUP PRAGVA AUTO with COW T
SYS DBMS_SCHEDULER ENABLE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER END DETACHED JOB_ PRAGVA AUTO with COWM T
RUN
SYS DBVMS_SCHEDULER EVALUATE RUNNI NG PRAGVA AUTO with COWM T
CHAI'N
SYS DBMS_SCHEDULER GET_AGENT_I NFO PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER GET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER GET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER GET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER GET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER GET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER GET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER GET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER GET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER GET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER GET_FI LE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER GET_FI LE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER GET_FI LE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER GET_SCHEDULER ATT PRAGVA AUTO with COWM T
RI BUTE
SYS DBMS_SCHEDULER PURGE_LOG PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER PUT_FI LE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER PUT_FI LE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER PUT_FI LE PRAGVA AUTO with COWM T
SYS DBVMS_SCHEDULER REMOVE EVENT QUEU PRAGVA AUTO with COW T
E_SUBSCRI BER
SYS DBMS_SCHEDULER ~ REMOVE_FROM | NCOM PRAGVA AUTO with COW T

PATI BI LI TY

16-24

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma
ma
SYS DBMS_SCHEDULER REMOVE_GROUP_MEMB PRAGVA AUTO with COW T
ER
SYS DBMS_SCHEDULER REMOVE_JOB EMAIL_ PRAGVA AUTO with COWM T
NOTI FI CATI ON
SYS DBMS_SCHEDULER ~ REMOVE_W NDOW GRO PRAGVA AUTO with COW T
UP_MEMBER
SYS DBMS_SCHEDULER RESET _JOB_ARGUMEN PRAGVA AUTO with COWM T
T_VALUE
SYS DBMS_SCHEDULER RESET_JOB_ARGUMEN PRAGVA AUTO with COWM T
T_VALUE
SYS DBMS_SCHEDULER RUN_CHAI'N PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER RUN_CHAI'N PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER SET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER SET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER SET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER SET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER SET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER ~ SET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER SET_ATTRI BUTE PRAGVA AUTO with COWM T
SYS DBMS_SCHEDULER SET_ATTRI BUTE_NUL PRAGVMA AUTO with COWM T
L
SYS DBMS_SCHEDULER SET_JOB_ANYDATA V PRAGVA AUTO with COWM T
ALUE
SYS DBMS_SCHEDULER SET JOB_ANYDATA V PRAGVA AUTO with COWM T
ALUE
SYS DBMS_SCHEDULER SET_JOB_ARGUMENT_ PRAGMA AUTO with COWM T
VALUE
SYS DBMS_SCHEDULER SET _JOB_ARGUMENT _ PRAGVA AUTO with COWM T
VALUE
SYS DBVMS_SCHEDULER SET JOB _ATTRI BUTE PRAGVA AUTO with COWM T
S
SYS DBMS_SCHEDULER SET_RESOURCE_CONS PRAGMA AUTO with COW T
TRAI NT
SYS DBMS_SCHEDULER ~ SET_SCHEDULER ATT PRAGVA AUTO with COWM T
RI BUTE
SYS DBMS_SCHEDULER ~ SHOW ERRORS PRAGVA AUTO with COWM T
SYS DBMS_SQ._TRANSL CLEAR SQL_TRANSLA PRAGVA AUTO with COWM T
ATOR TI ON_ERROR
SYS DBMS_SQL_TRANSL CREATE_PRCFI LE PRAGVA AUTO with COWM T
ATOR
SYS DBMS_SQ._TRANSL DEREG STER ERROR_ PRAGVA AUTO with COWM T
ATOR TRANSLATI ON
SYS DBMS_SQ._TRANSL DEREG STER SQ._TR PRAGVMA AUTO with COWM T
ATOR ANSLATI ON

16-25

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma
ma
SYS DBMS_SQL_TRANSL DROP_PRCFI LE PRAGVA AUTO with COWM T
ATOR
SYS DBMS_SQ._TRANSL ENABLE_ERROR TRAN PRAGMA AUTO with COWM T
ATOR SLATI ON
SYS DBMS_SQ._TRANSL ENABLE SQ._TRANSL PRAGVA AUTO with COWM T
ATOR ATI ON
SYS DBMS_SQ._TRANSL REG STER_ERROR_ TR PRAGVA AUTO with COWM T
ATOR ANSLATI ON
SYS DBMS_SQ._TRANSL REGQ STER_SQL_TRAN PRAGVA AUTO with COWM T
ATOR SLATI ON
SYS DBMS_SQL_TRANSL SET_ATTRI BUTE PRAGVA AUTO with COWM T
ATOR
SYS DBMS_SQ._TRANSL SET ERROR TRANSLA PRAGVA AUTO with COWM T
ATOR TI ON_COMMENT
SYS DBMS_SQ._TRANSL SET_SQL_TRANSLATI PRAGVA AUTO with COWM T
ATOR ON_COMVENT
SYS DBM5S_SQL_TRANSL SET _SQ._TRANSLATI PRAGVA AUTO with COWM T
ATOR ON_MCDULE
SYS DBMS_XDS ALTER _STATI C_ACL_ PRAGVA AUTO
REFRESH
SYS DBVS_XDS DI SABLE_OLAP_POLI PRAGVA AUTO
Cy
SYS DBMS_XDS DI SABLE_XDS PRAGVA AUTO
SYS DBMS_XDS DROP_CLAP_PQOLICY PRAGVA AUTO
SYS DBMS_XDS DROP_XDS PRAGVA AUTO
SYS DBMS_XDS ENABLE_COLAP_PQOLI C PRAGVA AUTO
Y
SYS DBMS_XDS ENABLE_XDS PRAGVA AUTO
SYS DBVS_XDS PURGE_ACL_REFRESH PRAGVA AUTO
_HI STORY
SYS DBVS_XDS SCHEDULE_STATI C_A PRAGVA AUTO
CL_REFRESH
SYS DBMS_XDS SET_TRACE_LEVEL PRAGVA AUTO
SYS DBMS_XDS XDSSREFRESH_STATI PRAGVA AUTO
C_ACL
SYS LOGSTDBY_| NTERN EDS EVOLVE TABLE PRAGVA AUTO with COWM T
AL |
SYS LOGSTDBY_| NTERN EDS_REMOVE _TABLE_ PRAGVA AUTO with COWM T
AL |
SYS XS_ACL ADD_ACL_PARAMETER PRAGVA AUTO
SYS XS_ACL ADD_ACL_PARAMETER PRAGVA AUTO
SYS XS_ACL APPEND_ACES PRAGVA AUTO
SYS XS_ACL APPEND_ACES PRAGVA AUTO
SYS XS_ACL CREATE_ACL PRAGVA AUTO
SYS XS_ACL DELETE_ACL PRAGVA AUTO

16-26

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma
ma
SYS XS_ACL REMOVE_ACES PRAGVA AUTO
SYS XS_ACL REMOVE_ACL_PARAME PRAGVA AUTO
TERS
SYS XS_ACL REMOVE_ACL_PARAME PRAGVA AUTO
TERS
SYS XS_ACL REMOVE_ACL_PARAME PRAGVA AUTO
TERS
SYS XS_ACL SET_DESCRIPTION PRAGVA AUTO
SYS XS_ACL SET_PARENT_ACL PRAGVA AUTO
SYS XS_ACL SET_SECURI TY_CLAS PRAGVA AUTO
S
SYS XS_ADM N_UTI L CGRANT_SYSTEM PRIV PRAGVA AUTO
| LEGE
SYS XS_ADM N_UTI L REVOKE_SYSTEM PRI PRAGVA AUTO
VI LEGE
SYS XS_DATA SECURIT ADD COLUMN_CONSTR PRAGVA AUTO
Y Al NTS
SYS XS_DATA SECURIT ADD COLUMN_CONSTR PRAGVA AUTO
Y Al NTS
SYS XS_DATA_SECURI T APPEND_REALM CONS PRAGVA AUTO
Y TRAI NTS
SYS XS_DATA SECURI T APPEND REALM CONS PRAGVA AUTO
Y TRAI NTS
SYS XS_DATA SECURIT APPLY_OBJECT_POLI PRAGVA AUTO
Y Cy
SYS XS_DATA SECURI T CREATE_ACL_PARAME PRAGVA AUTO
Y TER
SYS XS_DATA SECURI T CREATE_PQLI CY PRAGVA AUTO
Y
SYS XS_DATA_SECURI T DELETE_ACL_PARAME PRAGVA AUTO
Y TER
SYS XS_DATA SECURI T DELETE_PQLI CY PRAGVA AUTO
Y
SYS XS_DATA SECURI T DI SABLE OBJECT_PO PRAGVA AUTO
Y LI CY
SYS XS_DATA_SECURI T ENABLE_OBJECT_PCOL PRAGVA AUTO
Y I CY
SYS XS_DATA SECURI T REMOVE_COLUMN_CON PRAGVA AUTO
Y STRAINTS
SYS XS_DATA_SECURIT REMOVE_OBJECT_PCL PRAGVA AUTO
Y I CY
SYS XS_DATA SECURI T REMOVE_REALM CONS PRAGVA AUTO
Y TRAI NTS
SYS XS_DATA SECURI T SET_DESCRI PTION PRAGVA AUTO
Y
SYS XS_NAMESPACE ADD_ATTRI BUTES PRAGVA AUTO

16-27

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma
ma
SYS XS_DATA SECURIT ADD ATTRI BUTES PRAGVA AUTO
Y
SYS XS_DATA SECURI T CREATE TEMPLATE PRAGVA AUTO
Y
SYS XS_DATA SECURI T DELETE _TEMPLATE PRAGVA AUTO
Y
SYS XS_DATA SECURI T REMOVE_ATTRI BUTES PRAGVA AUTO
Y
SYS XS_DATA SECURI T REMOVE_ATTRI BUTES PRAGVA AUTO
Y
SYS XS_DATA SECURI T REMOVE_ATTRI BUTES PRAGVA AUTO
Y
SYS XS_DATA SECURI T SET_DESCRI PTION PRAGVA AUTO
Y
SYS XS_DATA_SECURI T SET_HANDLER PRAGVA AUTO
Y
SYS XS_PRI NCI PAL ADD_PROXY_TO DBUS PRAGVA AUTO
ER
SYS XS_PRI NCI PAL ADD_PROXY_USER PRAGVA AUTO
SYS XS_PRI NCI PAL ADD_PROXY_USER PRAGVA AUTO
SYS XS_PRI NCI PAL CREATE_DYNAM C_RO PRAGVA AUTO
LE
SYS XS_PRI NCI PAL CREATE_ROLE PRAGVA AUTO
SYS XS_PRI NCI PAL CREATE_USER PRAGVA AUTO
SYS XS_PRI NCI PAL DELETE_PRI NCI PAL PRAGVA AUTO
SYS XS_PRI NCI PAL ENABLE_BY DEFAULT PRAGVA AUTO
SYS XS_PRI NCI PAL ENABLE ROLES BY D PRAGVA AUTO
EFAULT
SYS XS_PRI NCI PAL CGRANT_ROLES PRAGVA AUTO
SYS XS_PRI NCI PAL CGRANT_ROLES PRAGVA AUTO
SYS XS_PRI NCI PAL REMOVE_PROXY_FROM PRAGVA AUTO
_DBUSER
SYS XS_PRI NCI PAL REMOVE_PROXY_USER PRAGVA AUTO
S
SYS XS_PRI NCI PAL REMOVE_PROXY_USER PRAGVA AUTO
S
SYS XS_PRI NCI PAL REVOKE_ROLES PRAGVA AUTO
SYS XS_PRI NCI PAL REVOKE_ROLES PRAGVA AUTO
SYS XS_PRI NCI PAL REVOKE_ROLES PRAGVA AUTO
SYS XS_PRI NCI PAL SET_ACL PRAGVA AUTO
SYS XS_PRI NCI PAL SET_DESCRI PTION ~ PRAGVA AUTO
SYS XS_PRI NCI PAL SET_DYNAM C_ROLE_ PRAGVA AUTO
DURATI ON
SYS XS_PRI NCI PAL SET_DYNAM C RCOLE_ PRAGVA AUTO

SCOPE

16-28

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

SYS XS_PRI NCI PAL SET_EFFECTI VE_DAT PRAGVA AUTO

ES

SYS XS_PRI NCI PAL SET_GQUID PRAGVA AUTO

SYS XS_PRI NCI PAL SET_PROFI LE PRAGVA AUTO

SYS XS_PRI NCI PAL SET_USER SCHEMA PRAGVA AUTO

SYS XS_PRI NCI PAL SET_USER STATUS PRAGVA AUTO

SYS XS_PRINCI PAL_IN SET_VER FI ER HELP PRAGVA AUTO
T ER

SYS XS_ROLESET ADD_ROLES PRAGVA AUTO

SYS XS_ROLESET ADD_ROLES PRAGVA AUTO

SYS XS_ROLESET CREATE_ROLESET PRAGVA AUTO

SYS XS_ROLESET DELETE_ROLESET PRAGVA AUTO

SYS XS_ROLESET REMOVE_ROLES PRAGVA AUTO

SYS XS_ROLESET REMOVE_ROLES PRAGVA AUTO

SYS XS_ROLESET REMOVE_ROLES PRAGVA AUTO

SYS XS_ROLESET SET_DESCRI PTION ~ PRAGVA AUTO

SYS XS_SECURITY_CLA ADD | MPLI ED PRIVI PRAGVA AUTO
SS LECGES

SYS XS_SECURI TY_CLA ADD | MPLI ED PRIVI PRAGVA AUTO
SS LEGES

SYS XS_SECURI TY_CLA ADD PARENTS PRAGVA AUTO
SS

SYS XS_SECURI TY_CLA ADD _PARENTS PRAGVA AUTO
SS

SYS XS_SECURI TY_CLA ADD PRI VI LEGES PRAGVA AUTO
SS

SYS XS_SECURI TY_CLA ADD PRI VI LEGES PRAGVA AUTO
SS

SYS XS_SECURI TY_CLA CREATE_SECURI TY_C PRAGVA AUTO
SS LASS

SYS XS_SECURITY_CLA DELETE_SECURI TY_C PRAGVA AUTO
SS LASS

SYS XS_SECURI TY_CLA REMOVE_| MPLI ED_PR PRAGVA AUTO
SS | VI LEGES

SYS XS_SECURI TY_CLA REMOVE_| MPLI ED_PR PRAGVA AUTO
SS | VI LEGES

SYS XS_SECURITY_CLA REMOVE_| MPLI ED_PR PRAGVA AUTO
SS | VI LEGES

SYS XS_SECURI TY_CLA REMOVE_PARENTS PRAGVA AUTO
SS

SYS XS_SECURI TY_CLA REMOVE_PARENTS PRAGVA AUTO
SS

SYS XS_SECURI TY_CLA REMOVE_PARENTS PRAGVA AUTO

SS

16-29

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma
ma
SYS XS_SECURI TY_CLA REMOVE_PRI VI LEGES PRAGVA AUTO
SS
SYS XS_SECURI TY_CLA REMOVE_PRI VI LEGES PRAGVA AUTO
SS
SYS XS_SECURI TY_CLA REMOVE_PRI VI LEGES PRAGVA AUTO
SS
SYS XS_SECURI TY_CLA SET_DESCRI PTION PRAGVA AUTO
SS
SYS DBMS_RESCONFI G ADDREPOSI TORYRESC PRAGVA AUTO with COWM T
ONFI G
SYS DBMS_RESCONFI G ADDRESCONFI G PRAGVA AUTO
SYS DBMS_RESCONFI G APPENDRESCONFI G PRAGVA AUTO
SYS DBMS_RESCONFI G DELETEREPCSI TORYR PRAGVA AUTO with COWM T
ESCONFI G
SYS DBMS_RESCONFI G DELETERESCONFI G~ PRAGVA AUTO
SYS DBMS_RESCONFI G DELETERESCONFI G~ PRAGVA AUTO
SYS DBMS_XDBZ Dl SABLE_H ERARCHY PRAGVA AUTO with COWM T
SYS DBMS_XDBZ ENABLE_HI ERARCHY PRAGVA AUTO with COWM T
SYS DBMS_XDB VERSI O CHECKI N_I NT PRAGVA AUTO
N
SYS DBVS_XDB_VERSI O CHECKOUT PRAGVA AUTO
N
SYS DBMS_XDB_VERSI O MAKEVERSI ONED_| NT PRAGVA AUTO
N
SYS DBMS_XDB_VERSI O UNCHECKOUT _I NT PRAGVA AUTO
N
SYS DBMS_XLSB DELETERESOURCE PRAGVA AUTO
SYS DBMS_XLSB DELNAMELQOCKS PRAGVA AUTO
SYS DBMS_XLSB | NSERTRESOURCE PRAGVA AUTO
SYS DBMS_XLSB | NSERTRESOURCENXO PRAGVA AUTO
B
SYS DBMS_XLSB | NSERTRESOURCENXO PRAGVA AUTO
BCLOB
SYS DBMS_XLSB | NSERTRESOURCEREF PRAGVA AUTO
SYS DBMS_XLSB | NSERTTCHTABLE PRAGVA AUTO
SYS DBMS_XLSB | NSERTTOUSERHTAB PRAGVA AUTO
SYS DBMS_XLSB LI NKRESOURCE PRAGVA AUTO
SYS DBMS_XLSB SAVEACL PRAGVA AUTO
SYS DBMS_XLSB SETREFCOUNT PRAGVA AUTO
SYS DBMS_XLSB TCUCHO D PRAGVA AUTO

PL/SQL Procedures with Pragma MANUAL

For the procedures and packages pragma-ed MANUAL, the top-level PL/SQL API is not

called.

16-30

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

SYS DBMS_AQ AQS_BACKGROUND OP PRAGVA MANUAL
ER_PAS

SYS DBMS_AQ DEQUEUE_| NTERNAL _ PRAGVA MANUAL
PAS

SYS DBMS_AQ ENQUEUE_I NT_UNSHA PRAGVA MANUAL
RDED_PAS

SYS DBMS_AQADM SYS ALTER _PROPAGATI ON PRAGVA MANUAL
_SCHEDULE_I NT

SYS DBMS_AQADM SYS ALTER _QUEUE_I NT PRAGVA MANUAL

SYS DBMS_AQADM SYS ALTER QUEUE TABLE PRAGVA MANUAL
_INT

SYS DBMS_AQADM SYS ALTER SUBSCRI BER_ PRAGVA MANUAL
11G INT

SYS DBMS_AQADM SYS CREATE_QUEUE | NT PRAGVA MANUAL

SYS DBMS_AQADM SYS CREATE_QUEUE TABL PRAGVA MANUAL
E INT

SYS DBMS_AQADM SYS DI SABLE PROP_SCHE PRAGVA MANUAL
DULE | NT

SYS DBMS_AQADM SYS DROP_QUEUE_I NT PRAGVA MANUAL

SYS DBMS_AQADM SYS DROP_QUEUE_TABLE_ PRAGVA MANUAL
I NT

SYS DBMS_AQADM SYS ENABLE_PROP_SCHED PRAGVA MANUAL
ULE_I NT

SYS DBVS_AQADM SYS GRANT_QUEUE_PRI VI PRAGVA MANUAL
LEGE | NT

SYS DBMS_AQADM SYS M GRATE_QUEUE_TAB PRAGVA MANUAL
LE INT

SYS DBMS_AQADM SYS PURGE_QUEUE_TABLE PRAGVA MANUAL

SYS DBMS_AQADM SYS RECOVER PROPAGATI PRAGVA MANUAL
ON_INT

SYS DBVS_AQADM SYS REMOVE_ORPHVBGS N PRAGVA MANUAL
R

SYS DBMS_AQADM SYS REMOVE_SUBSCRI BER PRAGVA MANUAL
_11G

SYS DBMS_AQADM SYS REVOKE_QUEUE PRIV PRAGVA MANUAL
| LEGE_INT

SYS DBMS_AQADM SYS SCHEDULE_PROPAGAT PRAGVA MANUAL
[ON_I NT

SYS DBMS_AQADM SYS START_QUEUE_I NT PRAGVA MANUAL

SYS DBMS_AQADM SYS STOP_QUEUE_I NT PRAGVA MANUAL

SYS DBMS_AQADM SYS UNSCHEDULE_PROPAG PRAGVA MANUAL
ATI ON_I NT

SYS DBVS_GOLDENGATE GRANT_ADM N PRIVI PRAGVA MANUAL with COW T

_AUTH LEGE
SYS DBVS_GOLDENGATE REVOKE_ADM N_PRI'V PRAGVA MANUAL with COW T

_AUTH

| LEGE

16-31

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma
ma
SYS DBVS_| NTERNAL_L EDS EVOLVE TABLE PRAGVA MANUAL with COW T
OGSTDBY START
SYS DBMS_PRVTAQ S SUBI D_REPLI CATE | PRAGVA MANUAL
NT
SYS LOGSTDBY_I NTERN EDS_ADD TABLE | PRAGVA MANUAL with COWM T
AL
SYS XS_ADM N_UTI L DROP_SCHEMA_CBJEC PRAGVA MANUAL
TS
XDB DBMS_XDBZ0 DI SABLE_HI ERARCHY PRAGVA MANUAL
_ | NTERNAL
XDB DBMS_XDBZ0 ENABLE_HI ERARCHY_ PRAGVA MANUAL

| NTERNAL

PL/SQL Procedures with Pragma NONE

For the procedures and packages pragma-ed NONE, PL/SQL markers are not

generated and no grouping is performed. Redo logs generated by these procedures

are applied or skipped based on table level replication semantics.

Sche Package Procedure Pragma

ma

DVSYS DBMS_MACADM DI SABLE_EVENT PRAGVA NONE

DVSYS DBMS_MACADM DV_SANI TY_CHECK PRAGVA NONE

DVSYS DBMS_MACADM ENABLE_EVENT PRAGVA NONE

DVSYS DBMS_MACADM SET_PRESERVE_CASE PRAGVA NONE

DVSYS DBMS_MACADM I NI T_SESSI ON PRAGVA NONE

DVSYS DBMS_MACADM UPDATE_PQLI CY_LAB PRAGVA NONE

EL_CONTEXT

DVSYS DBMS_MACOLS SES LABEL_AUDI T_RAI SE PRAGVA NONE
SION

DVSYS DBM5S_MACOLS SES RESTORE_DEFAULT_L PRAGVA NONE
SION ABELS

DVSYS DBM5S_MACOLS SES SET_POLI CY_LABEL PRAGVA NONE
SION CONTEXT

DVSYS DBMS_MACOUT Dl SABLE PRAGVA NONE

DVSYS DBMS_MACOUT ENABLE PRAGVA NONE

DVSYS DBMS_MACOUT PL PRAGVA NONE

DVSYS DBMS_MACOUT PUT_LI NE PRAGVA NONE

DVSYS DBMS_MACOUT SET_FACTOR PRAGVA NONE

DVSYS DBM5S_MACSEC ROL SET_ROLE PRAGVA NONE
ES

DVSYS DBM5S_MACSEC ROL EVALUATE PRAGVA NONE
ES

DVSYS DBM5S_MACSEC ROL EVALUATE_TR PRAGVA NONE

ES

16-32

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma
ma
DVSYS DBM5S_MACSEC ROL EVALUATE _WR PRAGVA NONE
ES
DVSYS DBMS_MACUTL CHECK_DVSYS_DM._A PRAGVA NONE
LLOAED
DVSYS DBMS_MACUTL RAI SE_ERROR PRAGVA NONE
DVSYS DBMS_MACUTL RAI SE_UNAUTHCORI ZE PRAGVA NONE
D_OPERATI ON
DVSYS EVENT SET PRAGVA NONE
DVSYS EVENT SETDEFAULT PRAGVA NONE
DVSYS EVENT SET C PRAGVA NONE
SYS DBMS_AQ AQ_DEQUEUE PRAGVA NONE
SYS DBMS_AQ AQ_DEQUEUE PRAGVA NONE
SYS DBMS_AQ AQ_DEQUEUE PRAGVA NONE
SYS DBMS_AQ AQ_DEQUEUE PRAGVA NONE
SYS DBMS_AQ Bl ND_AGENT PRAGVA NONE
SYS DBMS_AQ DEQUEUE PRAGVA NONE
SYS DBMS_AQ DEQUEUE PRAGVA NONE
SYS DBMS_AQ DEQUEUE PRAGVA NONE
SYS DBMS_AQ ENQUEUE PRAGVA NONE
SYS DBMS_AQ ENQUEUE PRAGVA NONE
SYS DBVS_AQ ENQUEUE PRAGVA NONE
SYS DBVS_AQ LI STEN PRAGVA NONE
SYS DBVS_AQ LI STEN PRAGVA NONE
SYS DBVS_AQ POST PRAGVA NONE
SYS DBVS_AQ REG STER PRAGVA NONE
SYS DBVS_AQ UNBI ND_AGENT PRAGVA NONE
SYS DBVS_AQ UNREG STER PRAGVA NONE
SYS DBVS_AQADM ADD_ALI AS TO LDAP PRAGVA NONE
SYS DBMS_AQADM ADD_CONNECTI ON_TO PRAGVA NONE
_LDAP
SYS DBMS_AQADM ADD_CONNECTI ON_TO PRAGVA NONE
_LDAP
SYS DBMS_AQADM ADD_SUBSCRI BER PRAGVA NONE
SYS DBMS_AQADM ALTER_PROPAGATI ON PRAGVA NONE
_SCHEDULE
SYS DBVS_AQADM ALTER QUEUE PRAGVA NONE
SYS DBMS_AQADM ALTER_QUEUE TABLE PRAGVA NONE
SYS DBMVS_AQADM ALTER_SHARDED QUE PRAGVA NONE
UE
SYS DBMS_AQADM ALTER_SUBSCRI BER PRAGVA NONE
SYS DBMS_AQADM ALTER_SUBSCRI BER PRAGVA NONE
SYS DBMS_AQADM CREATE_EXCEPTI ON_ PRAGVA NONE

QUEUE

16-33

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

SYS DBMS_AQADM CREATE_NP_QUEUE PRAGVA NONE

SYS DBMS_AQADM CREATE_QUEUE PRAGVA NONE

SYS DBMS_AQADM CREATE_QUEUE_TABL PRAGVA NONE
E

SYS DBVS_AQADM CREATE_SHARDED QU PRAGVA NONE
EUE

SYS DBVS_AQADM DEL_ALI AS_ FROM LD PRAGVA NONE
AP

SYS DBMS_AQADM DEL_CONNECTI ON_FR PRAGVA NONE
OM _LDAP

SYS DBMS_AQADM DI SABLE_PROPAGATI PRAGVA NONE
ON_SCHEDULE

SYS DBMS_AQADM DRCP_QUEUE PRAGVA NONE

SYS DBMS_AQADM DRCP_QUEUE_TABLE PRAGVA NONE

SYS DBVS_AQADM DROP_SHARDED QUEU PRAGVA NONE
E

SYS DBMS_AQADM ENABLE JM5_TYPES PRAGVA NONE

SYS DBMS_AQADM ENABLE PROPAGATI O PRAGVA NONE
N_SCHEDULE

SYS DBVS_AQADM CET_PROP_SEQNO PRAGVA NONE

SYS DBMS_AQADM CGET_REPLAY_INFO PRAGVA NONE

SYS DBMS_AQADM CGET_TYPE_I NFO PRAGVA NONE

SYS DBMS_AQADM CGET_TYPE_I NFO PRAGVA NONE

SYS DBMS_AQADM CGET_WATERMVARK PRAGVA NONE

SYS DBMS_AQADM GRANT_QUEUE_PRI'VI PRAGVA NONE
LEGE

SYS DBVS_AQADM M GRATE_QUEUE_TAB PRAGVA NONE
LE

SYS DBMS_AQADM NONREPUDI ATE_RECE PRAGVA NONE
| VER

SYS DBMS_AQADM NONREPUDI ATE_RECE PRAGVA NONE
| VER

SYS DBVS_AQADM NONREPUDI ATE_SEND PRAGVA NONE
ER

SYS DBMS_AQADM NONREPUDI ATE_SEND PRAGVA NONE
ER

SYS DBMS_AQADM PURGE_QUEUE_TABLE PRAGVA NONE

SYS DBMS_AQADM RECOVER _PROPAGATI PRAGVA NONE
ON

SYS DBMS_AQADM REMOVE_SUBSCRI BER PRAGVA NONE

SYS DBVS_AQADM RESET_REPLAY_|I NFO PRAGVA NONE

SYS DBVS_AQADM REVOKE_QUEUE_PRI'V PRAGVA NONE
| LEGE

SYS DBMS_AQADM SCHEDULE_PROPAGAT PRAGVA NONE

ION

16-34

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

SYS DBMS_AQADM SET_WATERMARK PRAGVA NONE

SYS DBMS_AQADM START_QUEUE PRAGVA NONE

SYS DBMS_AQADM START_TI ME_MANAGE PRAGVA NONE
R

SYS DBMVS_AQADM STOP_QUEUE PRAGVA NONE

SYS DBMS_AQADM STOP_TI ME_MANAGER PRAGVA NONE

SYS DBVS_AQADM UNSCHEDULE_PROPAG PRAGVA NONE
ATI ON

SYS DBVS_AQADM VERI FY_QUEUE_TYPE PRAGVA NONE
S

SYS DBMS_AQADM VERI FY_QUEUE_TYPE PRAGVA NONE
S_GET_NRP

SYS DBMS_AQADM VERI FY_QUEUE_TYPE PRAGVA NONE
S _NO QUEUE

SYS DBVS_AQELM CGET_MAI LHOST PRAGVA NONE

SYS DBVS_AQELM CGET_MAI LPORT PRAGVA NONE

SYS DBVS_AQELM CGET_PROXY PRAGVA NONE

SYS DBVS_AQELM CGET_SENDFROM PRAGVA NONE

SYS DBVS_AQELM CET_TXTI MEQUT PRAGVA NONE

SYS DBVS_AQELM HTTP_SEND PRAGVA NONE

SYS DBVS_AQELM SEND_EMAI L PRAGVA NONE

SYS DBVS_AQ N AQ_DEQUEUE_I N PRAGVA NONE

SYS DBMS_AQ N A DEQUEUE | N PRAGVA NONE

SYS DBMS_AQ N AQ_DEQUEUE IN PRAGVA NONE

SYS DBMS_AQ N AQ_DEQUEUE IN PRAGVA NONE

SYS DBMS_AQ N AQ_DEQUEUE IN PRAGVA NONE

SYS DBMS_AQ N AQ_DEQUEUE RAW PRAGVA NONE

SYS DBMS_AQ N AQ_DEQUEUE RAW PRAGVA NONE

SYS DBMS_AQ N AQS_ENQUEUE_0BJ PRAGVA NONE

SYS DBMS_AQ N AQS_ENQUEUE_0BJ PRAGVA NONE

SYS DBMS_AQ N AQ_ENQUEUE 0BJ_N PRAGVA NONE
O RECPL

SYS DBVS_AQ N AQS_ENQUEUE_OBJ_N PRAGVA NONE
O RECPL

SYS DBMS_AQ N AQ_ENQUEUE_RAW PRAGVA NONE

SYS DBMS_AQ N AQG_JMS_ENQUEUE B PRAGVA NONE
YTES_MESSACE

SYS DBMS_AQ N AQG_JMS ENQUEUE M PRAGVA NONE
AP_MESSAGE

SYS DBVS_AQ N AQB_JMS_ENQUEUE_O PRAGVA NONE
BJECT_MESSAGE

SYS DBMS_AQ N AQG_JMS_ENQUEUE S PRAGVA NONE
TREAM _MESSAGE

16-35

ORACLE

Chapter 16

Procedural Replication Pragma Options

Sche Package Procedure Pragma

ma

SYS DBMS_AQ N AQ_JMS_ENQUEUE T PRAGVA NONE
EXT_MESSAGE

SYS DBMS_AQ N AQ_LI STEN PRAGVA NONE

SYS DBMS_AQ N AQ_QUEUE_SUBSCRI PRAGVA NONE
BERS

SYS DBMS_AQ N SET_DEQ SORT PRAGVA NONE

SYS DBVS_AQ N SET_MULTI _RETRY PRAGVA NONE

SYS DBVS_AQINS AQB_GET_PROP_STAT PRAGVA NONE

SYS DBVS_AQINS AQ_GET_TRANS_TYP PRAGVA NONE
E

SYS DBMS_AQIMS AQ_REGQ STER PRAGVA NONE

SYS DBMS_AQIMS AQ_UNREGQ STER PRAGVA NONE

SYS DBMS_AQIMS AQ_UPDATE _PROP_S PRAGVA NONE
TAT_QNAME

SYS DBVS_AQINB CLEAR DBSESSI ON_G PRAGVA NONE
u D

SYS DBVS_AQINS CLEAR _GLOBAL_AQCL PRAGVA NONE
NTDB_CTX_CLNT

SYS DBMS_AQIMS CLEAR GLOBAL_AQCL PRAGVA NONE
NTDB_CTX DB

SYS DBVS_AQINB CET_DB_USERNAME_F PRAGVA NONE
OR_AGENT

SYS DBMS_AQIMS SET_DBSESSI ON_GUI PRAGVA NONE
D

SYS DBMS_AQIMS SET_GLOBAL_AQCLNT PRAGVA NONE
DB _CTX

SYS DBVS_AQING SUBSCRI BER_EXI STS PRAGVA NONE

SYS DBVS_AQINB SUBSCRI BER_EXI STS PRAGVA NONE

SYS DBMS_| SCHED CET_AGENT_PASS VE PRAGVA NONE
R FI ER

SYS DBMS_| SCHED OBFUSCATE_CREDENT PRAGVA NONE
I AL_PASSWORD

SYS DBMS_REDEFI NI TI - CAN_REDEF _TABLE PRAGVA NONE

ON
SYS DBMS_REDEFI NI T REDEF_TABLE PRAGVA NONE
ON

SYS DBMS_SCHEDULER CHECK_SYS PRI VS PRAGVA NONE

SYS DBMS_SCHEDULER CLOSE_W NDOW PRAGVA NONE

SYS DBMS_SCHEDULER CREATE_CALENDAR S PRAGVA NONE
TRI NG

SYS DBMS_SCHEDULER CREATE_CREDENTI AL PRAGVA NONE

SYS DBMS_SCHEDULER EVALUATE_CALENDAR PRAGVA NONE
_STRING

SYS DBMS_SCHEDULER FI LE WATCH FI LTER PRAGVA NONE

16-36

16.9 Listing the Procedures Supported for Oracle

Chapter 16

Listing the Procedures Supported for Oracle GoldenGate Procedural Replication

Sche Package Procedure Pragma

ma

SYS DBMS_SCHEDULER GENERATE_EVENT LI PRAGVA NONE
ST

SYS DBVS_SCHEDULER ~ GENERATE_JOB_NAME PRAGVA NONE

SYS DBVS_SCHEDULER ~ GET_AGENT_VERSI ON PRAGVA NONE

SYS DBVS_SCHEDULER GET_CHAIN_RULE_AC PRAGVA NONE
TION

SYS DBMS_SCHEDULER GET_CHAI N _RULE_CO PRAGVA NONE
NDI TI ON

SYS DBMS_SCHEDULER GET_DEFAULT_VALUE PRAGVA NONE

SYS DBMS_SCHEDULER GET_JOB_STEP_CF PRAGVA NONE

SYS DBMS_SCHEDULER GET_SYS TI ME_ZONE PRAGVA NONE
_NAME

SYS DBMS_SCHEDULER GET_VARCHAR2_VALU PRAGVA NONE
E

SYS DBVS_SCHEDULER GET_VARCHAR2_VALU PRAGVA NONE
E

SYS DBMS_SCHEDULER IS _SCHEDULER CREA PRAGVA NONE
TED_AGENT

SYS DBVS_SCHEDULER ~ OPEN_W NDOW PRAGVA NONE

SYS DBMS_SCHEDULER RESOLVE_CALENDAR_ PRAGVA NONE
STRI NG

SYS DBMS_SCHEDULER RESOLVE_CALENDAR_ PRAGVA NONE
STRING

SYS DBMS_SCHEDULER RESOLVE_NAME PRAGVA NONE

SYS DBMS_SCHEDULER RUN_JOB PRAGVA NONE

SYS DBMS_SCHEDULER SET_AGENT_REGQ STR PRAGVA NONE
ATI ON_PASS

SYS DBMS_SCHEDULER STI ME PRAGVA NONE

SYS DBVMS_SCHEDULER STOP_JOB PRAGVA NONE

SYS DBVS_SCHEDULER SUBM T_REMOTE_EXT PRAGVA NONE
ERNAL_JOB

SYS XS_PRI NCI PAL SET_PASSWORD PRAGVA NONE

SYS XS_PRI NCI PAL SET_VERI FI ER PRAGVA NONE

GoldenGate Procedural Replication

The DBA GG SUPPORTED_PROCEDURES view displays information about the supported
packages for Oracle GoldenGate procedural replication.

ORACLE

When a procedure is supported and Oracle GoldenGate procedural replication is on,
calls to the procedure are replicated, unless the procedure is excluded specifically.

1. Connect to the database as sys (sql pl us, sql cl, sql devel oper) not as an Oracle
GoldenGate administrator.

16-37

2.

Chapter 16
Monitoring Oracle GoldenGate Procedural Replication

Query the DBA_GG_SUPPCORTED_PRCOCEDURES view.

Example 16-2 Displaying Information About the Packages Supported for
Oracle GoldenGate Procedural Replication

This query displays the following information about the packages:

The owner of each package

The name of each package

The name of each procedure

The minimum database release from which the procedure is supported

Whether there is an exclusion rule that prevents the procedure from being
replicated for some database objects

COLUWN OMNER FORMAT A10

COLUMN PACKAGE_NAME FORMAT Al5

COLUWN PROCEDURE_NAME FORVAT Al5
COLUWN M N_DB_VERSI ON FORVAT Al4
COLUMN EXCLUSI ON_RULE_EXI STS FORMAT Al4

SELECT OMNER,

PACKAGE_NAME,
PROCEDURE_NAME,

M N_DB_VERSI O\,
EXCLUSI ON_RULE_EXI STS

FROM DBA_GG_SUPPORTED PROCEDURES;

Your output looks similar to the following:

OMNER PACKAGE_NAVE PROCEDURE_NAVE M N_DB_VERSI ON EXCLUSI ON_RULE
XDB DBVMS_XDB_CONFI G ADDTRUSTMAPPI NG 12. 2 NO
CTXSYS CTX_DDL ALTER | NDEX 12.2 NO
SYS DBVS_FGA DROP_PQLI CY 12.2 NO
SYS XS_ACL DELETE_ACL 12.2 NO

16.10 Monitoring Oracle GoldenGate Procedural Replication

A set of data dictionary views enable you to monitor Oracle GoldenGate procedural
replication.

You can use the following views to monitor Oracle GoldenGate procedural replication:

ORACLE

16-38

ORACLE

Chapter 16
Monitoring Oracle GoldenGate Procedural Replication

View

Description

DBA_GG_SUPPORTED_PACKAGES

DBA_GG_SUPPORTED_PROCEDURES

DBA_GG_PROC_OBJECT_EXCLUSI ON

Provides details about supported packages for
Oracle GoldenGate procedural replication.

When a package is supported and Oracle
GoldenGate procedural replication is on, calls
to subprograms in the package are replicated.

Provides details about the procedures that are
supported for Oracle GoldenGate procedural
replication.

Provides details about all database objects
that are on the exclusion list for Oracle
GoldenGate procedural replication.

A database object is added to the exclusion list
using the | NSERT_PROCREP_EXCLUSI ON_0OBJ
procedure in the DBVS_GOLDENGATE_ADM
package. When a database object is on the
exclusion list, execution of a subprogram n the
package is not replicated if the subprogram
operates on the excluded object.

1.

2.

Connect to the database as sys (sql pl us, sql cl, or sgl devel oper) not as an
Oracle GoldenGate administrator.

Query the views related to Oracle GoldenGate procedural replication.

16-39

Using Oracle GoldenGate with
Autonomous Database

You can replicate data to Oracle Autonomous Data Warehouse (ADW) and
Autonomous Transaction Processing (ATP) using Oracle GoldenGate.

Topics:

About Capturing and Replicating Data Using Autonomous Databases

You can capture changes from the Autonomous Databases on Shared
Infrastructure (ADB) and Autonomous Database Direct (ADB-D) and replicate to
any target database or platform that Oracle GoldenGate supports, including other
Oracle Autonomous Databases.

Understanding What is Supported When Using Oracle GoldenGate with
Autonomous Databases

Review the supported data types and limitations before replicating data to the
Autonomous Database.

Configuring Extract to Capture from an Autonomous Database

The Autonomous Databases have tighter integration with Oracle GoldenGate
and there are a number of differences when setting up Extract for Autonomous
Databases compared to a traditional Oracle Database.

Configuring Replicat to Apply to an Autonomous Databases

You can replicate into the Autonomous Database (ADB) from any source database
or platform that Oracle GoldenGate supports, including Oracle Autonomous
Databases.

17.1 About Capturing and Replicating Data Using
Autonomous Databases

You can capture changes from the Autonomous Databases on Shared Infrastructure
(ADB) and Autonomous Database Direct (ADB-D) and replicate to any target
database or platform that Oracle GoldenGate supports, including other Oracle
Autonomous Databases.

ORACLE

Use Case: When Using Oracle GoldenGate with Autonomous Databases

Using Oracle GoldenGate in the Autonomous Database can be configured to support
the following scenarios with the Autonomous Database environments:

Scalable Active-Active architecture: Synchronize changes made across two or
more databases to scale out workloads, provide increase resilience and near
instantaneous failover across multiple data centers or regions.

Real-Time Data Warehouse: Provide continuous, real-time capture and delivery
of changed data between Autonomous Transaction Processing and Autonomous
Data Warehouse systems.

17-1

Chapter 17
Understanding What is Supported When Using Oracle GoldenGate with Autonomous Databases

» Big Data Integration: With Oracle GoldenGate for Big Data you can replicate
data from the Oracle Autonomous Databases to provides real-time streaming
integration to all platforms support by Big Data targets.

* Real-Time Streaming Analytics: Oracle GoldenGate integrates seamlessly with
Oracle Stream Analytics to enable users to identify events of interest by executing
gueries against event streams in real time. It allows creating custom operational
dashboards that provide real-time monitoring, transform streaming data, or raise
alerts based on stream analysis.

* Hybrid Replication: Oracle GoldenGate replicates data from the ADB instance
back to on-premise or to another cloud database or platform.

17.2 Understanding What is Supported When Using Oracle
GoldenGate with Autonomous Databases

ORACLE

Review the supported data types and limitations before replicating data to the
Autonomous Database.

Oracle GoldenGate is supported for any type of Oracle Autonomous database,
including Autonomous Transaction Processing (ATP) and Autonomous Data
Warehouse (ADW).

Understanding Limitations

Oracle Autonomous Data Warehouse is a fully-managed data warehouse designed

to support all standard SQL and business intelligence (BI) tools and deliver scalable
analytic query performance. Oracle Autonomous Data Warehouse provides all of the
performance of the market-leading Oracle Database in a fully-managed environment
that is tuned and optimized for data warehouse workloads. However, some data types,
SQL commands, and database features are not available in Oracle Autonomous Data
Warehouse.

For a complete list of database initialization parameter restrictions, database features
restrictions, SQL commands restrictions, and data types restrictions, see Autonomous
Data Warehouse Cloud for Experienced Oracle Database Users.

Oracle Autonomous Transaction Processing is a cloud database service that
eliminates the complexity of operating and securing high-performance databases. The
service automates provisioning, configuring, tuning, scaling, patching, encrypting, and
repairing of databases. Additionally, the service includes all of Oracle’s advanced
database options, such as real application clusters (RAC), multitenant, partitioning,
in-memory, advanced security, and advanced compression. The service is built to
support everything from simple web apps to large and sophisticated applications

that are critical for business operation. Autonomous Transaction Processing service

is available in both the Oracle public cloud and your own data center on Exadata
Cloud@Customer.

For more information on Autonomous Transaction Processing, see Getting Started
wtih Autonomous Transaction Processing

The Oracle Database data types that are supported by Oracle GoldenGate can be
replicated to Autonomous Databases. For a complete list of supported data types,
see Details of Support for Oracle Data Types and Objects. The support limitations
mentioned for replicating data to Oracle Database using Oracle GoldenGate apply to
replicating data to Autonomous Database too.

17-2

Chapter 17
Configuring Extract to Capture from an Autonomous Database

There are additional limitations when replicating data into Autonomous Database as
listed in the following section.

Oracle GoldenGate Replicat Limitations for Autonomous Databases

These are the limitations of Oracle GoldenGate when replicating to or from the
Autonomous Databases.

Data Type Limitations for DDL and DML Replication

The following data types are not supported while capturing and replicating data to
Autonomous Databases:

* LONG

* LONG RAW

XM.TYPE STORE AS OBJECT RELATI ONAL
« XM.TYPE STORE AS BI NARY

e BFILE
e MDA
* SPATIAL

Integrated Replicat and parallel Replicat in integrated mode are not supported.

DDL replication is supported depending on the restrictions in the Autonomous
Databases.

17.3 Configuring Extract to Capture from an Autonomous
Database

The Autonomous Databases have tighter integration with Oracle GoldenGate and
there are a number of differences when setting up Extract for Autonomous Databases
compared to a traditional Oracle Database.

The Autonomous Databases are multitenant databases and like all multitenant
databases, there is only one set of redo logs which contain the transactions for
all pluggable databases. The Autonomous Database security has been enhanced
to ensure that Extract is only able to capture changes from the specific tenant it
connected to. Downstream Extract is not supported.

Note:

The Autonomous Database capture support is available for Autonomous
Database Shared environments only. Also, this functionality is limited to
Oracle Public Cloud (OPC) support only and is not available on Autonomous
Databases running on Exadata Cloud @ Customer or onPrem environments.

Before You Begin

Before you start the process of capturing data from the Autonomous Database using
Oracle GoldenGate you must first:

ORACLE 17-3

Chapter 17
Configuring Extract to Capture from an Autonomous Database

1. Unlock the pre-created Oracle GoldenGate database user ggadmin in the
Autonomous Database.

2. Obtain the Autonomous Database client credentials to connect to PDB.
Topics:
e Establishing Oracle GoldenGate Credentials

e Prerequisites for Configuring Oracle GoldenGate Extract to Capture from
Autonomous Databases

e Configure Oracle GoldenGate Extract to Capture from an Autonomous Database

17.3.1 Establishing Oracle GoldenGate Credentials

To capture from an Autonomous Database only the GGADM N account is used. This
GGADM N account is created inside the database when the Autonomous Database is
provisioned and is locked. It must be unlocked before it can be used with Oracle
GoldenGate. This account is the same account used for both Extracts and Replicats in
the Autonomous Database.

Run the al t er user command to unlock the ggadni n user and set the password for it.
See Creating Users with Autonomous Database with Client-Side Tools.

This ALTER USER command must be run by the adni n account user for Autonomous
Databases.

alter user ggadnin identified by password account unl ock;

17.3.2 Prerequisites for Configuring Oracle GoldenGate Extract to
Capture from Autonomous Databases

ORACLE

Prior to configuring and starting the Integrated Extract process to capture from the
Autonomous Database, make sure that the following requirements are met:

e Oracle Autonomous Data Warehouse (ADW) or Autonomous Transaction
Processing (ATP) environment provisioned and running.

* Autonomous Database-level supplemental logging should be enabled by the ADM N
or GGADM N.

Configuring Autonomous Database Supplemental Logging for Extract

To add minimal supplemental logging to your Autonomous Database instance, log into
the instance as GGADM N or ADM N account and execute the following commands:

ALTER PLUGGABLE DATABASE ADD SUPPLEMENTAL LOG DATA;

To DROP Autonomous Database-level supplemental logging incase you decide to stop
capturing from that PDB:

ALTER PLUGGABLE DATABASE DROP SUPPLEMENTAL
LOG DATA

17-4

Chapter 17
Configuring Extract to Capture from an Autonomous Database

You can verify that the Autonomous Database-level supplemental logging is configured
properly by issuing this SQL statement:

SQ.> sel ect ninimal from dba_suppl emental | ogging;

The output for this statement is:

The M NI MAL column will be YES if supplemental logging has been correctly set for this
Autonomous Database instance.

17.3.3 Configure Oracle GoldenGate Extract to Capture from an
Autonomous Database

ORACLE

The steps to set up and run an Autonomous Database capture are similar to a
non-multitenant database. Learn the essential steps to capture from an Autonomous
Database:

Here are the steps to configure an integrated Extract to capture from an Autonomous
Database:

1. Install Oracle GoldenGate 21c for your Autonomous Database platform.

2. (Microservices only)Create a deployment for your Oracle GoldenGate
environment. This is the deployment where the Extract that captures data from the
Autonomous Database (ADB) will be created. See How to Create Deployments for
steps to add a deployment.

3. Obtain Autonomous Database Client Credentials.

To establish connection to your Autonomous Database, download client
credentials files from the Autonomous Database service console. See
Downloading Client Credentials (Wallets).

Note:

If you do not have administrator access to the Autonomous Database
you should ask your service administrator to download and provide the
credentials files to you.

a. Log into your Autonomous Database account.

b. From the Instance page, click the menu option for the Autonomous Database
instance and select Service Console.

c. Log into the service console using the adni n username and its associated
password.

d. In the service console, click the Administration tab.

e. Click Download Client Credentials.

17-5

ORACLE

f.

g.

Chapter 17
Configuring Extract to Capture from an Autonomous Database

Enter a password to secure your credentials zi p file and click Download.

Save the credentials zi p file to your local system.

The credentials zi p file contains the following files:

cwal | et. sso

ewal | et. pl2
keystore.jks

oj dbc. properties
sglnet.ora

t nsnames. ora

truststore.jks

Refer to the sqgl net. ora and t nsnanes. or a files while configuring Oracle
GoldenGate On Premises to work with the Autonomous Database.

Configure the server where Oracle GoldenGate is running to connect into the
Autonomous Database.

a.

b.

Log into the server where Oracle GoldenGate was installed.

Transfer the credentials zi p file that you downloaded from Oracle Autonomous
Data Warehouse or Oracle Autonomous Transaction Processing database to
the Oracle GoldenGate server.

In the Oracle GoldenGate server, unzip the credentials file into a new
directory, for example: / u02/ dat a/ adwc_cr edenti al s. This is your key
directory.

To configure the connection details, open your t nsnanes. or a file from the
Oracle client location in the Oracle GoldenGate instance..

Use the graphdbl_| ow connection string example and move it to your local
tnsnames. or a file. See Local Naming Parameters in the thsnames.ora File in
the Oracle Database Net Services Reference guide.

Edit the t nsnanes. or a file in the Oracle GoldenGate instance to include the
connection details available in the t nsnanes. or a file in your key directory (the
directory where you unzipped the credentials zi p file downloaded from the
Autonomous Database.

Sanpl e Connection String
graphdbl | ow = (description=

(retry_count=20)(retry_del ay=3)
(address=(protocol =t cps) (port=1522) (host =adb- pr epr od. us-
phoeni x- 1. or acl ecl oud. com))

(connect _dat a=(servi ce_name=okd2ybgcz4nj x94_graphdbl_| ow. adb. orac
| ecl oud. com)

(security=(ssl_server_cert_dn="CN=adwc-
preprod. uscom east - 1. or acl ecl oud. com QU=Cracl e BMCS US, O=Cracl e
Cor poration, L=Redwood City, ST=Cal i fornia, CCUS")))

17-6

ORACLE

5.

Chapter 17
Configuring Extract to Capture from an Autonomous Database

If Extract becomes unresponsive due to a network timeout or connection lost,
then you can add the following into the connection profile in the t nsnanes. ora
file:

(DESCRI PTION = (RECV_TI MEQUT=30) (ADDRESS LI ST =
(LOAD_BALANCE=o0f f) (FAI LOVER=0n) (CONNECT_TI MEQUT=3)

(RETRY_COUNT=3) (ADDRESS = (PROTOCOL = TCP) (HOST = adb-

preprod. us- phoeni x- 1. or acl ecl oud. conj (PORT = 1522))

< Note:

The t nsnanes. or a file provided with the credentials file contains
three database service names identifiable as:

ADWC Dat abase_Narme_| ow
ADWC Dat abase Nare_medi um
ADWC Dat abase_Narme_hi gh

Oracle recommends that you use ADWC Dat abase_Nane_| ow with
Oracle GoldenGate. See Predefined Database Service Names for
Autonomous Data Warehouse Cloud.

To configure the wallet, create a sqgl net . or a file in the Oracle client location in
the Oracle GoldenGate instance.

cd /u02/ dat a/ oci/ net wor k/ admi n
I's
sgl net.ora tnsnames.ora

Edit this sql net . or a file to include your key directory.

WALLET_LOCATI ON = (SOURCE = (METHOD = file) (METHOD DATA =
(DI RECTORY="/u02/ dat a/ adwc_credential s")))
SSL_SERVER_DN_MATCH=yes

Use Admin Client or GGSCI to log into the Oracle GoldenGate deployment,
depending on whether you are using Microservices or Classic Architecture.

Create a credential to store the GGADM N user and password. This user will

be used to connect to the Autonomous Database from the command line, to
perform commands that require a database connection. It will also be used in the
USERI DALI AS parameter for the Extract database connection.

ADD CREDENTI ALSTORE ALTER CREDENTI ALSTORE ADD USER
ggadmi n@lat abasenare_| ow PASSWORD conpl ex_password alias adb_alias

Connect to the database using DBLOG N. The DBLOG N user should be the
adb_al i as account user.

DBLOG N USERI DALI AS adb_al i as

17-7

ORACLE

10.

11.

Chapter 17
Configuring Extract to Capture from an Autonomous Database

Register Extract with the Autonomous Database. For example, to register an
integrated Extract named ext p1, use the following command:

REG STER EXTRACT ext _A DATABASE

Add and configure an integrated Extract to capture from the Oracle Autonomous
Database. See How to Add Extracts for steps to create an Extract.

Although the Autonomous Database is a multitenant database, Extract is designed
to work with Autonomous Databases to ensure that it is only able to capture

from the specific pluggable database (PDB) assigned to you. This also means

that the PDB name is not needed for any TABLE or MAP statements. The following
example creates an integrated Extract (required for ADB capture) called ext p1,
and instructs it to begin now.

ADD EXTRACT extpl, |NTEGRATED TRANLOG, BEG N NOW

Do not use the traditional 3 part naming convention for multitenant databases. For
example, to capture from the table SCOTT. EMP, in your Autonomous Database, use
this entry in the Extract parameter file.

TABLE SCOTT. ENP;

If you want to replicate SCOTT. EMP into TEST. EMPLOYEE, then your map statement
would look like this:

MAP SCOTT. EMP, TARGET TEST. EMPLOYEE;

Configure supplemental logging on the tables, which you want to capture using
ADD TRANDATA or ADD SCHEMATRANDATA. Remember that you are connected directly
to the PDB, so there is no need to include the PDB name in these commands.
Here's an exmaple:

ADD TRANDATA SCOTT. EMP

or

ADD SCHEMATRANDATA SCOTT

See Prerequisites for Configuring Oracle GoldenGate Extract to Capture from
Autonomous Databases.

You can now start your Extract and perform data replication to the Autonomous
Database. Here's an example:

START EXTRACT ext pl

This completes the process of configuring an Extract for Autonomous Databases
and you can use it like any other Extract process.

17-8

Chapter 17
Configuring Replicat to Apply to an Autonomous Databases

17.4 Configuring Replicat to Apply to an Autonomous
Databases

You can replicate into the Autonomous Database (ADB) from any source database or
platform that Oracle GoldenGate supports, including Oracle Autonomous Databases.

Topics:

Prerequisites for Configuring Oracle GoldenGate Replicat to an Autonomous
Database

Learn about the prerequisites for configuring Oracle GoldenGate data replication
to Autonmous Databases.

Configure Oracle GoldenGate Replicat for an Autonomous Database
Learn the steps to configure Oracle GoldenGate Replicat for an Autonomous
Databases.

Obtain the Autonomous Database Client Credentials
Learn how to establish connection to your Autonomous Databases.

Configure Oracle GoldenGate Replicat to Apply to an Autonomous Database
This feature supports both Autonomous Data Warehouse (ADW) and Autonomous
Transaction Processing Database (ATP).

17.4.1 Prerequisites for Configuring Oracle GoldenGate Replicat to an
Autonomous Database

Learn about the prerequisites for configuring Oracle GoldenGate data replication to
Autonmous Databases.

ORACLE

You should have the following details available with you:

Your source database with Oracle GoldenGate Extract processes configured and
writing trails to where the Replicat is running to apply data to the Autonomous
Database (ADB) target.

Oracle Autonomous Data Warehouse or Autonomous Transaction Processing
environment provisioned and running.

To deliver data to the Autonomous Database using Oracle GoldenGate, perform the
following tasks:

Configure the Autonomous Database for replication by unlocking the pre-created
Oracle GoldenGate database user ggadmi n in the Autonomous Database. This
user is where any objects used for Oracle GoldenGate processing will be stored,
like the checkpoint table and heartbeat objects.

Obtain the Autonomous Database client credentials.
Configure Oracle GoldenGate for replication.

— Transfer client credentials ZIP file that you downloaded from the Autonomous
Database.

— Configure sql net . or a file.

— Configure t nsnanes. or a file.

17-9

Chapter 17
Configuring Replicat to Apply to an Autonomous Databases

— Create useri dal i as for the ggadmi n user.

Configure Oracle GoldenGate Replicat to deliver to the Autonomous Database.

17.4.2 Configure Oracle GoldenGate Replicat for an Autonomous

Database

Learn the steps to configure Oracle GoldenGate Replicat for an Autonomous
Databases.

Here are the steps to complete the configuration tasks:

Note:

Instructions are based on the assumption that the source environment is
already configured. Learn the steps required to establish replication into the
Autonomous Database (ADB) environment.

Install Oracle GoldenGate or use Oracle GoldenGate on OCI Marketplace for your
Autonomous Database Platform. Oracle GoldenGate 21c supports Autonomous
Database capture for both Classic Architecture and Microservices Architecture on
Marketplace for 21c ADB Service Console (ADB-S).

(Microservices only) Create a deployment for your Oracle GoldenGate
environment. This is the deployment where the Replicat that applies data into the
Autonomous Database (ADB) will be created. SeeHow to Create Deployments for
steps to add a deployment.

The Autonomous Database has a pre-existing user created for Oracle GoldenGate
On Premises called ggadni n. The ggadmi n user has been granted the right set

of privileges for Replicat to work. By default, this user is locked. To unlock the
ggadni n user, connect to your Oracle Autonomous Data Warehouse database as
the ADM N user using any SQL client tool. See About Connecting to Autonomous
Data Warehouse Cloud.

Run the al t er user command to unlock the ggadmi n user and set the password
for it. This will be used in GGSCI or Admin Client for any DBLOG N operations on
the Autonomous Database. It will be used in Replicat to allow Oracle GoldenGate
to connect to the Autonomous Database and apply data. See Creating Users with
Autonomous Data Warehouse Cloud.

alter user ggadmin identified by password account unl ock;

17.4.3 Obtain the Autonomous Database Client Credentials

ORACLE

Learn how to establish connection to your Autonomous Databases.

To establish connection to your Autonomous Database, download client credentials
files from the Autonomous Database service console. See Downloading Client
Credentials (Wallets).

17-10

4
5.
6
7

Chapter 17
Configuring Replicat to Apply to an Autonomous Databases

< Note:

If you do not have administrator access to the Autonomous Database
you should ask your service administrator to download and provide the
credentials files to you.

Log into your Oracle ADW or ATP account.

From the Instance page, click the menu option for the Autonomous Database
instance and select Service Console.

Log into the service console using the adni n username and its associated
password.

In the service console, click the Administration tab.
Click Download Client Credentials.
Enter a password to secure your credentials zip file and click Download.

Save the credentials ZIP file to your local system.

The credentials ZIP file contains the following files:

cwal | et. sso

ewal | et. pl2
keystore.jks

oj dbc. properties
sglnet.ora
tnsnanes. ora

truststore.jks

Refer to the sqgl net. ora, cwal | et. sso, ewal | et. p12, and t nsnanes. or a files, while
configuring Oracle GoldenGate to work with the Autonomous Database.

17.4.4 Configure Oracle GoldenGate Replicat to Apply to an
Autonomous Database

This feature supports both Autonomous Data Warehouse (ADW) and Autonomous
Transaction Processing Database (ATP).

ORACLE

This section assumes that the source environment is already configured and provides
the steps required to establish replication into the Autonomous Database environment.

In the Oracle GoldenGate instance, you need to complete the following:

1.

Follow the steps given in Prerequisites for Configuring Oracle GoldenGate
Replicat to an Autonomous Database.

Follow the steps given in Configure Oracle GoldenGate Replicat for an
Autonomous Database.

Follow the steps given in Obtain the Autonomous Database Client Credentials.

Log into the server where Oracle GoldenGate was installed.

17-11

ORACLE

Chapter 17
Configuring Replicat to Apply to an Autonomous Databases

Transfer the credentials zi p file that you downloaded from Oracle Autonomous
Data Warehouse to your Oracle GoldenGate instance.

In the Oracle GoldenGate instance, unzip the credentials file into a new
directory / u02/ dat a/ adwc_cr edenti al s. This is your key directory.

To configure the connection details, open your t nsnanes. or a file from the Oracle
client location in the Oracle GoldenGate instance.

cd /u02/ dat a/ adwc_credential s
I's
tnsnames. ora

Edit the t nsnanes. or a file in the Oracle GoldenGate instance to include the
connection details available in the t nsnames. or a file in your key directory (the
directory where you unzipped the credentials zi p file downloaded from Oracle
Autonomous Data Warehouse).

Sampl e Connection String
graphdbl_| ow = (description=

(retry_count=20)(retry_del ay=3)
(address=(protocol =t cps) (port=1522) (host =adb- pr epr od. us-
phoeni x- 1. or acl ecl oud. con)

(connect _dat a=(servi ce_name=okd2ybgcz4nj x94_graphdbl_| ow. adb. or acl ec
| oud. com))
(security=(ssl_server_cert_dn="CN=adwc-
preprod. uscom east - 1. oracl ecl oud. com OU=Oracl e BMCS US, O=Or acl e
Cor porati on, L=Redwood City, ST=Cal i fornia, C=US")))

If Replicat becomes unresponsive due to a network timeout or connection lost,
then you can add the following into the connection profile in the t nsnanes. or a file:

(DESCRI PTION = (RECV_TI MEQUT=120) (ADDRESS LI ST =

(LOAD_BALANCE=o0f f) (FAI LOVER=0n) (CONNECT _TI MEQUT=3)
(RETRY_COUNT=3) (ADDRESS = (PROTOCOL = TCP) (HOST = adb- preprod. us-
phoeni x- 1. or acl ecl oud. com) (PORT = 1522))

" Note:

The t nsnanes. or a file provided with the credentials file contains three
database service names identifiable as:

ADWC Dat abase Nare_| ow
ADWC Dat abase Nare_medi um
ADWC Dat abase_Name_hi gh

For Oracle GoldenGate replication, use ADWC Dat abase_Nanme_| ow. See
Predefined Database Service Names for Autonomous Data Warehouse
Cloud.

17-12

10.

11.
12.

13.

Chapter 17
Configuring Replicat to Apply to an Autonomous Databases

To configure the wallet, create a sgl net . or a file in the Oracle client location in the
Oracle GoldenGate instance.

cd /u02/ dat a/ oci / net wor k/ adm n
l's
sgl net.ora tnsnames.ora

Edit this sql net . or a file to include your key directory.

WALLET_LOCATI ON = (SOURCE = (METHOD = file) (METHOD _DATA =
(DI RECTORY="/u02/ dat a/ adwc_credential s")))
SSL_SERVER_DN_MATCH=yes

Use the Admin Client to log into the Oracle GoldenGate deployment.

Create a credential to store the GGADM N user and password for the Replicat to
use. For example:

ADD CREDENTI ALSTORE ALTER CREDENTI ALSTORE ADD USER
ggadmi n@lat abasename_| ow PASSWORD conpl ex_password alias adb_alias

Add and configure a Replicat to deliver to Oracle Autonomous Data Warehouse.
For setting up your Replicat and other processes, see How to Add Replicats.

Note:

The Replicats used to apply data into an Autonomous Database must
not be integrated Replicats. That means you can use classic Replicat,
coordinated Replicat, or parallel Replicat in non-integrated mode. When
creating the Replicat, use the alias created in the previous step.

14. You can now start your Replicat and perform data replication to the Autonomous

ORACLE

Database.

" Note:

Oracle Autonomous Data Warehouse times out and disconnects the
Replicat when it is idle for more than 60 minutes. When Replicat tries to
apply changes (when it gets new changes) after being idle, it encounters
a database error and abends. Oracle recommends that you configure
Oracle GoldenGate with AUTORESTART parameter (Classic Architecture)
or configure the AUTORESTART profile (Microservices Architecture) to
avoid having to manually restart a Replicat when it times out.

17-13

Optional Parameters for Integrated Modes

This appendix contains optional parameters that may be required when operating
Extract or Replicat in integrated Replicat mode.
Topics:

e Additional Parameter Options for Extract
This section contains additional parameters that may be required for your Extract
configuration.

» Additional Parameter Options for Integrated Replicat
You can set these parameters by using the DBOPTI ONS parameter with the
| NTEGRATEDPARAMS option or dynamically by issuing the SEND REPLI CAT command
with the | NTEGRATEDPARAMS option in GGSCI.

A.1 Additional Parameter Options for Extract

ORACLE

This section contains additional parameters that may be required for your Extract
configuration.

Extract uses a database logmining server in the mining database to mine the redo
stream of the source database. You can set parameters that are specific to the
logmining server by using the TRANLOGOPTI ONS parameter with the | NTEGRATEDPARANS
option in the Extract parameter file.

" Note:

For detailed information and usage guidance for these parameters, see
the "DBMS_CAPTURE_ADM' section in Oracle Database PL/SQL Packages and
Types Reference.

The following parameters can be set with | NTEGRATEDPARANS:

e CAPTURE_| DKEY_OBJECTS: Controls the capture of objects that can be supported
by FETCH. The default for Oracle GoldenGate is Y (capture ID key logical change
records).

» DOWNSTREAM REAL_TI ME_M NE: Controls whether the logmining server operates
as a real-time downstream capture process or as an archived-log downstream
capture process. The default is N (archived-log mode). Specify this parameter to
use real-time capture in a downstream logmining server configuration. For more
information on establishing a downstream mining configuration, see Configuring a
Downstream Mining Database .

* | NLINE_LOB_OPTI M ZATI ON: Controls whether LOBs that can be processed inline
(such as small LOBs) are included in the LCR directly, rather than sending LOB
chunk LCRs. The default for Oracle GoldenGate is Y (Yes).

A-1

Appendix A
Additional Parameter Options for Integrated Replicat

e MAX_SGA SI ZE: Controls the amount of shared memory used by the logmining
server. The shared memory is obtained from the streams pool of the SGA. The
default is 1 GB.

e PARALLELI SM Controls the number of processes used by the logmining server. The
default is 2. For Oracle Standard Edition, this must be set to 1.

» TRACE_LEVEL: Controls the level of tracing for the Extract logmining server. For use
only with guidance from Oracle Support. The default for Oracle GoldenGate is 0
(no tracing).

* WRI TE_ALERT_LOG Controls whether the Extract logmining server writes messages
to the Oracle alert log. The default for Oracle GoldenGate is Y (Yes).

See Managing Server Resources.

A.2 Additional Parameter Options for Integrated Replicat

ORACLE

You can set these parameters by using the DBOPTI ONS parameter with the
| NTEGRATEDPARANS option or dynamically by issuing the SEND REPLI CAT command with
the | NTEGRATEDPARAMS option in GGSCI.

The default Replicat configuration as directed in Configuring Oracle GoldenGate Apply
should be sufficient. However, if needed, you can set the following inbound server
parameters to support specific requirements.

" Note:

For detailed information and usage guidance for these parameters, see the
"DBMS_APPLY_ADM' section in Oracle Database PL/SQL Packages and Types
Reference.

See Reference for Oracle GoldenGate for more information about the
DBOPTI ONS parameter.

e COW T_SERI ALI ZATI ON: Controls the order in which applied transactions are
committed and has 2 modes, DEPENDENT _TRANSACTI ONS and FULL. The default
mode for Oracle GoldenGate is DEPENDENT_TRANSACTI ONS where dependent
transactions are applied in the correct order though may not necessarily be
applied in source commit order. In FULL mode, the source commit order is
enforced when applying transactions.

* BATCHSQ._MOXDE: Controls the batch execution scheduling mode including pending
dependencies. A pending dependency is a dependency on another transaction
that has already been scheduled, but not completely executed. The default is
DEPENDENT. You can use following three modes:

DEPENDENT

Dependency aware scheduling without an early start. Batched transactions are
scheduled when there are no pending dependencies.

A-2

ORACLE

Appendix A
Additional Parameter Options for Integrated Replicat

DEPENDENT EAGER

Dependency aware batching with early start. Batched transactions are scheduled
irrespective of pending dependencies.

SEQUENTI AL

Sequential batching. Transactions are batched by grouping the transactions
sequentially based on the original commit order.

DI SABLE_ON_ERROR: Determines whether the apply server is disabled or continues
on an unresolved error. The default for Oracle GoldenGate is N (continue on
errors), however, you can set the option to Y if you need to disable the apply
server when an error occurs.

EAGER_SI ZE: Sets a threshold for the size of a transaction (in number of LCRS)
after which Oracle GoldenGate starts applying data before the commit record is
received. The default for Oracle GoldenGate is 15100.

ENABLE XSTREAM TABLE_STATS: Controls whether statistics on applied transactions
are recorded in the VBGOLDENGATE_TABLE_STATS view or not collected at all. The
default for Oracle GoldenGate is Y (collect statistics).

MAX_PARALLELI SM Limits the number of apply servers that can be used when the
load is heavy. This number is reduced again when the workload subsides. The
automatic tuning of the number of apply servers is effective only if PARALLELI SMis
greater than 1 and MAX_PARALLELI SMis greater than PARALLELI SM If PARALLELI SM
is equal to MAX_PARALLELI SM the number of apply servers remains constant during
the workload. The default for Oracle GoldenGate is 50.

MAX_SGA S| ZE: Controls the amount of shared memory used by the inbound
server. The shared memory is obtained from the streams pool of the SGA. The
default for Oracle GoldenGate is | NFI NI TE.

MESSAGE_TRACKI NG_FREQUENCY: Controls how often LCRs are marked for high-level
LCR tracing through the apply processing. The default value is 2000000, meaning
that every 2 millionth LCR is traced. A value of zero (0) disables LCR tracing.

PARALLELI SM Sets a minimum number of apply servers that can be used under
normal conditions. Setting PARALLELI SMto 1 disables apply parallelism, and
transactions are applied with a single apply server process. The default for Oracle
GoldenGate is 4. For Oracle Standard Edition, this must be set to 1.

PARALLELI SM | NTERVAL: Sets the interval in seconds at which the current
workload activity is computed. Replicat calculates the mean throughput every 5 X
PARALLELI SM | NTERVAL seconds. After each calculation, the apply component can
increase or decrease the number of apply servers to try to improve throughput.

If throughput is improved, the apply component keeps the new number of apply
servers. The parallelism interval is used only if PARALLELI SMis set to a value
greater than one and the MAX_PARALLELI SMvalue is greater than the PARALLEL| SM
value. The default is 5 seconds.

PRESERVE_ENCRYPTI ON: Controls whether to preserve encryption for columns
encrypted using Transparent Data Encryption. The default for Oracle GoldenGate
is N (do not apply the data in encrypted form).

TRACE_LEVEL: Controls the level of tracing for the Replicat inbound server. For use
only with guidance from Oracle Support. The default for Oracle GoldenGate is 0
(no tracing).

A-3

Appendix A
Additional Parameter Options for Integrated Replicat

* WRI TE_ALERT_LOG Controls whether the Replicat inbound server writes messages
to the Oracle alert log. The default for Oracle GoldenGate is Y (yes).

ORACLE A-4

Configuring a Downstream Mining
Database

This appendix contains instructions for preparing a downstream Oracle mining
database to support Extract.

For examples of the downstream mining configuration, see Example Downstream
Mining Configuration.

Topics:

» Evaluating Capture Options for a Downstream Deployment
Downstream deployment allows you to offload the source database.

* Preparing the Source Database for Downstream Deployment
The source database ships its redo logs to a downstream database, and Extract
uses the logmining server at the downstream database to mine the redo logs.

* Preparing the Downstream Mining Database
A downstream mining database can accept both archived logs and online redo
logs from a source database.

* Enabling Sourceless Extract Registration Using ADG Redirection in Downstream
Configuration
Oracle GoldenGate supports sourceless Extract registration using ADG redirection
in a downstream database configuration.

B.1 Evaluating Capture Options for a Downstream
Deployment

Downstream deployment allows you to offload the source database.

A downstream mining database can accept both archived logs and online redo logs
from a source database.

Multiple source databases can send their redo data to a single downstream database;
however the downstream mining database can accept online redo logs from only one
of those source databases. The rest of the source databases must ship archived logs.

When online logs are shipped to the downstream database, real-time capture by
Extract is possible. Changes are captured as though Extract is reading from the
source logs. In order to accept online redo logs from a source database, the
downstream mining database must have standby redo logs configured.

When using a downstream mining configuration, the source database and mining
database must be the same endian and same bitsize, which is 64 bits. For example,
if the source database was on Linux 64-bit, you can have the mining database run on
Windows 64-bit, because they have the same endian and bitsize.

ORACLE B-1

Appendix B
Preparing the Source Database for Downstream Deployment

B.2 Preparing the Source Database for Downstream
Deployment

The source database ships its redo logs to a downstream database, and Extract uses
the logmining server at the downstream database to mine the redo logs.

This section guides you in the process of:

e Creating the Source User Account
There must be an Extract user on the source database. Extract uses the
credentials of this user to do metadata queries and to fetch column values as
needed from the source database.

e Configuring Redo Transport from Source to Downstream Mining Database
To set up the transfer of redo log files from a source database to the downstream
mining database, and to prepare the downstream mining database to accept these
redo log files, perform the steps given in this topic.

B.2.1 Creating the Source User Account

There must be an Extract user on the source database. Extract uses the credentials
of this user to do metadata queries and to fetch column values as needed from the
source database.

The source user is specified by the USERI DALI AS parameter.

To assign the required privileges, follow the procedure in Establishing Oracle
GoldenGate Credentials

B.2.2 Configuring Redo Transport from Source to Downstream Mining

Database

ORACLE

To set up the transfer of redo log files from a source database to the downstream
mining database, and to prepare the downstream mining database to accept these
redo log files, perform the steps given in this topic.

The following summarizes the rules for supporting multiple sources sending redo to a
single downstream mining database:

e Only one source database can be configured to send online redo to the standby
redo logs at the downstream mining database. The | og_ar chi ve_dest _n setting
for this source database should not have a TEMPLATE clause.

e Source databases that are not sending online redo to the standby redo logs of
the downstream mining database must have a TEMPLATE clause specified in the
| og_archive_dest n parameter.

» Each of the source databases that sends redo to the downstream mining database
must have a unique DBI D. You can select the DBI D column from the v$dat abase
view of these source databases to ensure that the DBIDs are unique.

e The FAL_SERVER value must be set to the downstream mining database.
FAL_SERVER specifies the FAL (fetch archive log) server for a standby database.
The value is a list of Oracle Net service names, which are assumed to be

B-2

ORACLE

Appendix B
Preparing the Source Database for Downstream Deployment

configured properly on the standby database system to point to the desired
FAL servers. The list contains the net service name of any database that can
potentially ship redo to the downstream database.

When using redo transport, there could be a delay in processing redo due to
network latency. For Extract, this latency is monitored by measuring the delay
between LCRs received from source database and reporting it. If the latency
exceeds a threshold, a warning message appears in the report file and a
subsequent information message appears when the lag drops to normal values.
The default value for the threshold is 10 seconds.

Note:

The archived logs shipped from the source databases are called foreign
archived logs. You must not use the recovery area at the downstream
mining database to store foreign archived logs. Such a configuration is not
supported by Extract. Foreign archived logs stored in the Flash Recovery
Area (FRA) are not automatically deleted by RMAN jobs. These archived
logs must be manually purged.

These instructions take into account the requirements to ship redo from multiple
sources, if required. You must configure an Extract process for each of those sources.

To Configure Redo Transport

1.

Configure Oracle Net so that each source database can communicate with
the mining database. For instructions, see Oracle Database Net Services
Administrator's Guide.

Configure authentication at each source database and at the downstream mining
database to support the transfer of redo data. Redo transport sessions are
authenticated using either the Secure Sockets Layer (SSL) protocol or a remote
login password file. If a source database has a remote login password file, copy
it to the appropriate directory of the mining database system. The password file
must be the same at all source databases, and at the mining database. For more
information about authentication requirements for redo transport, see Preparing
the Primary Database for Standby Database Creation in Oracle Data Guard
Concepts and Administration.

At each source database, configure one LOG_ARCH VE_DEST _n initialization
parameter to transmit redo data to the downstream mining database. Set the
attributes of this parameter as shown in one of the following examples, depending
on whether real-time or archived-log-only capture mode is to be used.

e Example for real-time capture at the downstream logmining server, where the
source database sends its online redo logs to the downstream database:

ALTER SYSTEM
SET LOG_ARCH VE _DEST 2=' SERVI CE=DBMSCAP. EXAMPLE. COM ASYNC NOREG STER
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=dbnscap'

e Example for archived-log-only capture at the downstream logmining server:

ALTER SYSTEM SET
LOG_ARCHI VE_DEST 2=' SERVI CE=DVBSCAP. EXAMPLE. COM ASYNC NOREG STER
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE)

B-3

Appendix B
Preparing the Downstream Mining Database

TEMPLATE=/ usr/oracl e/l og_for_dbnsl/ dbnsl_arch % % % .| og
DB_UNI QUE_NAME=dbnscap'

¢ Note:

When using an archived-log-only downstream mining database, you
must specify a value for the TEMPLATE attribute. Oracle also recommends
that you use the TEMPLATE clause in the source databases so that the log
files from all remote source databases are kept separated from the local
database log files, and from each other.

4. Atthe source database, set a value of ENABLE for the LOG ARCHI VE_DEST_STATE n
initialization parameter that corresponds with the LOG ARCH VE_DEST_n parameter
that corresponds to the destination for the downstream mining database, as shown
in the following example.

ALTER SYSTEM SET LOG_ARCHI VE_DEST_STATE 2=ENABLE

5. At the source database, and at the downstream mining database, set the
DG_CONFI G attribute of the LOG_ARCHI VE_CONFI Ginitialization parameter to include
the DB_UNI QUE_NAME of the source database and the downstream database, as
shown in the following example.

ALTER SYSTEM SET LOG_ARCHI VE_CONFI G=' DG_CONFI G=(dbrrs1, dbnscap)

B.3 Preparing the Downstream Mining Database

A downstream mining database can accept both archived logs and online redo logs
from a source database.

The following sections explain how to prepare the downstream mining database:
e Creating the Downstream Mining User Account
e Configuring the Mining Database to Archive Local Redo Log Files

e Preparing a Downstream Mining Database for Real-time Capture

B.3.1 Creating the Downstream Mining User Account

When using a downstream mining configuration, there must be an Extract mining user
on the downstream database. The mining Extract process uses the credentials of this
user to interact with the downstream logmining server. The downstream mining user
is specified by the TRANLOGOPTI ONS parameter with the M NI NGUSERALI AS option. See
Establishing Oracle GoldenGate Credentials to assign the correct credentials for the
version of your database.

B.3.2 Configuring the Mining Database to Archive Local Redo Log
Files

This procedure configures the downstream mining database to archive redo data in its
online redo logs. These are redo logs that are generated at the downstream mining
database.

ORACLE B-4

Appendix B
Preparing the Downstream Mining Database

Archiving must be enabled at the downstream mining database if you want to

run Extract in real-time integrated capture mode, but it is also recommended for
archive-log-only capture. Extract in integrated capture mode writes state information
in the database. Archiving and regular backups will enable you to recover this state
information in case there are disk failures or corruption at the downstream mining
database.

To Archive Local Redo Log Files

1. Alter the downstream mining database to be in archive log mode. You can do this
by issuing the following DDL.

STARTUP MOUNT;
ALTER DATABASE ARCHI VELOG
ALTER DATABASE OPEN,

2. At the downstream mining database, set the first archive log destination in the
LOG_ARCHI VE_DEST _n initialization parameter as shown in the following example:

ALTER SYSTEM SET
LOG_ARCHI VE_DEST_1=' LOCATI ON=/ hore/ ar c_dest /| ocal
VALI D_FOR=(ONLI NE_LOGFI LE, PRI MARY_ROLE)'

Alternatively, you can use a command like this example:

ALTER SYSTEM SET
LOG_ARCH VE_DEST 1=' LOCATI ON=' USE_DB_RECOVERY_FI LE_DEST'
val i d_f or =(ONLI NE_LOGFI LE, PRI MARY_ROLE)"

Note:

The online redo logs generated by the downstream mining database can
be archived to a recovery area. However, you must not use the recovery
area of the downstream mining database to stage foreign archived logs
or to archive standby redo logs. For information about configuring a

fast recovery area, see Oracle Database Backup and Recovery User’s
Guide.

3. Enable the local archive destination.

ALTER SYSTEM SET LOG _ARCHI VE_DEST_STATE_1=ENABLE

For more information about these initialization parameters, see Oracle Data Guard
Concepts and Administration.

B.3.3 Preparing a Downstream Mining Database for Real-time Capture

ORACLE

This procedure is only required if you want to use real-time capture at a downstream
mining database. It is not required to use archived-log-only capture mode. To use
real-time capture, it is assumed that the downstream database has already been
configured to archive its local redo data as shown in Configuring the Mining Database
to Archive Local Redo Log Files .

* Create the Standby Redo Log Files
* Configure the Database to Archive Standby Redo Log Files Locally

B-5

Appendix B
Preparing the Downstream Mining Database

B.3.3.1 Create the Standby Redo Log Files

The following steps outline the procedure for adding standby redo log files to the
downstream mining database. The following summarizes the rules for creating the
standby redo logs:

ORACLE

Each standby redo log file must be at least as large as the largest redo log file

of the redo source database. For administrative ease, Oracle recommends that all
redo log files at source database and the standby redo log files at the downstream
mining database be of the same size.

The standby redo log must have at least one more redo log group than the redo
log at the source database, for each redo thread at the source database.

The specific steps and SQL statements that are required to add standby redo log files
depend on your environment. See Oracle Data Guard Concepts and Administration
11g Release 2 (11.2) for detailed instructions about adding standby redo log files to a
database.

" Note:

If there will be multiple source databases sending redo to a single
downstream mining database, only one of those sources can send redo to
the standby redo logs of the mining database. An Extract process that mines
the redo from this source database can run in real-time mode. All other
source databases must send only their archived logs to the downstream
mining database, and the Extracts that read this data must be configured to
run in archived-log-only mode.

To Create the Standby Redo Log Files

In SQL*Plus, connect to the source database as an administrative user.
Determine the size of the source log file. Make note of the results.
SELECT BYTES FROM V$LOG

Determine the number of online log file groups that are configured on the source
database. Make note of the results.

SELECT COUNT(GROUP#) FROM V3LOG,
Connect to the downstream mining database as an administrative user.

Add the standby log file groups to the mining database. The standby log file size
must be at least the size of the source log file size. The number of standby log

file groups must be at least one more than the number of source online log file
groups. This applies to each instance (thread) in a RAC installation. So if you have
"n" threads at the source database, each having "m" redo log groups, you should
configure n*(m+1) redo log groups at the downstream mining database.

The following example shows three standby log groups.

ALTER DATABASE ADD STANDBY LOGFI LE GROUP 3

(' /oracl e/ dbs/ sl og3a.rdo', '/oracle/dbs/slog3b.rdo') SIZE 500M
ALTER DATABASE ADD STANDBY LOGFI LE GROUP 4

("/oracl e/ dbs/slog4.rdo', '/oraclel/dbs/slog4b.rdo') SIZE 500M

B-6

Appendix B
Enabling Sourceless Extract Registration Using ADG Redirection in Downstream Configuration

ALTER DATABASE ADD STANDBY LOGFI LE GROUP 5
("/oracl e/ dbs/slog5.rdo', '/oraclel/dbs/slog5b.rdo') SIZE 500M

Confirm that the standby log file groups were added successfully.

SELECT GROUP#, THREAD#, SEQUENCE#, ARCHI VED, STATUS
FROM V$STANDBY_LOG,

The output should be similar to the following:

GROUPH# THREAD# SEQUENCE# ARC STATUS

3 0 0 YES UNASSI GNED
4 0 0 YES UNASSI GNED
5 0 0 YES UNASSI GNED

Ensure that log files from the source database are appearing in the location that

is specified in the LOCATI ON attribute of the local LOG_ARCHI VE_DEST_n that you set.
You might need to switch the log file at the source database to see files in the
directory.

B.3.3.2 Configure the Database to Archive Standby Redo Log Files Locally

This procedure configures the downstream mining database to archive the standby
redo logs that receive redo data from the online redo logs of the source database.
Keep in mind that foreign archived logs should not be archived in the recovery area of
the downstream mining database.

To Archive Standby Redo Logs Locally

1.

At the downstream mining database, set the second archive log destination in the
LOG_ARCHI VE_DEST n initialization parameter as shown in the following example.

ALTER SYSTEM SET
LOG _ARCHI VE_DEST_2=' LOCATI ON=/ home/ ar c_dest/srl _dbns1l
VALI D_FOR=(STANDBY_LOGFI LE, PRI MARY ROLE)'

Oracle recommends that foreign archived logs (logs from remote source
databases) be kept separate from local mining database log files, and from each
other. You must not use the recovery area of the downstream mining database to
stage foreign archived logs..

Enable the LOG_ARCHI VE_DEST 2 parameter you set in the previous step as shown
in the following example.

ALTER SYSTEM SET LOG ARCHI VE_DEST_STATE 2=ENABLE

B.4 Enabling Sourceless Extract Registration Using ADG
Redirection in Downstream Configuration

ORACLE

Oracle GoldenGate supports sourceless Extract registration using ADG redirection in a
downstream database configuration.

This approach uses an Active Dataguard (ADG) configured in a cascaded mode to
transport redo logs to a downstream database.

B-7

ORACLE

Appendix B
Enabling Sourceless Extract Registration Using ADG Redirection in Downstream Configuration

Extract must be started using sourceless option so that it does not connect to source
database instead connects to ADG using FETCHUSERI D or FETCHUSERI DALI AS when it
needs to fetch any non-native datatypes.

During register, Oracle GoldenGate connects to ADG as source database instead of
the database where redo originates. ADG redirection is supported for the following
parameters in Admin Client and GGSCI:

e SCHEMATRANDATA

« TRANDATA
« FLUSH SEQUENCE
« TRACETABLE

The REG STER HEARTBEATTABLE command is also supported.
ADG redirection is not supported for the following commands:

* REG STER REPLI CAT
* UNREG STER REPLI CAT

The CHECKPQO NTTABLE parameter commands are not supported.

This feature is supported for both CDB and non-CDB. This feature supports wildcard
registration and is only supported when using Oracle Database 20c and higher.

B-8

Example Downstream Mining Configuration

This appendix contains examples for preparing a downstream Oracle mining database
to support Extract.

Configuring a downstream mining database, see Configuring a Downstream Mining
Database .

Topics:

Example 1: Capturing from One Source Database in Real-time Mode
This example captures changes from source database DBMS1 by deploying an
Extract at a downstream mining database DBMSCAP.

Example 2: Capturing from Multiple Sources in Archive-log-only Mode
The following example captures changes from database DBMS1 and DBMS2 by
deploying an Extract at a downstream mining database DBMSCAP.

Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-
log-only Mode

The following example captures changes from database DBMS1, DBMS2 and
DBMS3 by deploying an Extract at a downstream mining database DBMSCAP.

C.1 Example 1. Capturing from One Source Database Iin
Real-time Mode

This example captures changes from source database DBMS1 by deploying an
Extract at a downstream mining database DBMSCAP.

ORACLE

< Note:

The example assumes that you created the necessary standby redo log files
as shown in Configuring a Downstream Mining Database .

This assumes that the following users exist:

User GGADML1 in DBMS1 whose credentials Extract will use to fetch data

and metadata from DBMS1. This user has the alias of ggadnt in the Oracle
GoldenGate credential store and logs in as ggadnmi@bns 1. It is assumed that the
DBMS_GOLDENGATE_AUTH. GRANT_ADM N_PRI VI LEGE() procedure was called to grant
appropriate privileges to this user at the source database.

User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve
logical change records from the logmining server at the downstream mining
database DBMSCAP. This user has the alias of ggadntap in the Oracle
GoldenGate credential store and logs in as ggadntap@bnscap. It is assumed that
the DBMS_GOLDENGATE_AUTH. GRANT_ADM N_PRI VI LEGE() procedure was called to
grant appropriate privileges to this user at the mining database.

C-1

Appendix C
Example 1: Capturing from One Source Database in Real-time Mode

* Prepare the Mining Database to Archive its Local Redo

* Prepare the Mining Database to Archive Redo Received in Standby Redo Logs
from the Source Database

* Prepare the Source Database to Send Redo to the Mining Database

e Set up Extract (extl) on DBMSCAP

C.1.1 Prepare the Mining Database to Archive its Local Redo

To prepare the mining database to archive its local redo:

1. The downstream mining database must be in archive log mode. You can do this by
issuing the following DDL.

STARTUP MOUNT;
ALTER DATABASE ARCHI VELCG
ALTER DATABASE CPEN,

2. At the downstream mining database, set | og_ar chi ve_dest 1 to archive local
redo.

ALTER SYSTEM SET
LOG_ARCHI VE_DEST_1=" LOCATI ON=/ hone/ ar c_dest /| ocal
VALI D_FOR=(ONLI NE_LOGFI LE, PRI MARY_ROLE)'

3. Enable | og_archive_dest 1.

ALTER SYSTEM SET LOG _ARCHI VE_DEST_STATE_1=ENABLE

C.1.2 Prepare the Mining Database to Archive Redo Received in
Standby Redo Logs from the Source Database

To prepare the mining database to archive the redo received in standby redo logs from
the source database:

1. At the downstream mining database, set | og_ar chi ve_dest _2 as shown in the
following example.

ALTER SYSTEM SET
LOG ARCHI VE_DEST 2=' LOCATI ON=/ horre/ arc_dest/srl _dbnsl
VALI D_FOR=(STANDBY_LOGFI LE, PRI MARY_ROLE)"

2. Enable | og_archive_dest 2 as shown in the following example.
ALTER SYSTEM SET LOG_ARCH VE_DEST_STATE_2=ENABLE

3. Set DG_CONFI Gat the downstream mining database.
ALTER SYSTEM SET LOG ARCH VE_CONFI G=' DG_CONFI G=(dbns1, dbnscap)

C.1.3 Prepare the Source Database to Send Redo to the Mining
Database

To prepare the source database to send redo to the mining database:

1. Make sure that the source database is running with the required compatibility.

sel ect nane, value fromvS$paraneter where nane = 'conpatible';

ORACLE C-2

Appendix C
Example 1: Capturing from One Source Database in Real-time Mode

conpatible 11.1.0.7.0

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.
Set DG_CONFI G at the source database.

ALTER SYSTEM SET LOG _ARCH VE_CONFI G=' DG_CONFI G=(dbns1, dbnscap) ' ;

Set up redo transport at the source database.

ALTER SYSTEM
SET LOG ARCHI VE_DEST_2=' SERVI CE=DBMSCAP. EXAVPLE. COM ASYNC OPTI ONAL
NOREG STER

VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAMVE=dbnscap' ;

Enable the downstream destination.

ALTER SYSTEM SET LOG _ARCHI VE_DEST_STATE_2=ENABLE;

C.1.4 Set up Extract (ext1) on DBMSCAP

To set up Extract (extl) on DBMSCAP:

1.

ORACLE

Register Extract with the downstream mining database. In the credential store, the
alias name of ggadnl is linked to a user connect string of ggadnmi@bns1. The alias
name of ggadntap is linked to a user connect string of ggadncap@bnscap.

GGSCl > DBLOG N USERI DALI AS ggadml
GGSCl > M NI NGDBLOG N USERI DALI AS ggadntap
GGSCl > REQ STER EXTRACT ext1 DATABASE

Create Extract at the downstream mining database.
GGSCl > ADD EXTRACT ext1 | NTEGRATED TRANLOG BEG N NOW

Edit Extract parameter file ext 1. pr m The following lines must be present to take

advantage of real-time capture. In the credential store, the alias name of ggadni

is linked to a user connect string of ggadnl@bns1. The alias name of ggadntap is
linked to a user connect string of ggadncap@bnscap.

USERI DALI AS ggadni
TRANLOGOPTI ONS M NI NGUSERALI AS ggadntap
TRANLOGOPTI ONS | NTEGRATEDPARANS (downstream real _tinme_mi ne Y)

Start Extract.
GGSCl > START EXTRACT ext1l

Note:

You can create multiple Extracts running in real-time Extract mode in the
downstream mining database, as long as they all are capturing data from the
same source database, such as capturing changes for database DBMS1 in
the preceding example.

C-3

Appendix C
Example 2: Capturing from Multiple Sources in Archive-log-only Mode

C.2 Example 2: Capturing from Multiple Sources in Archive-
log-only Mode

The following example captures changes from database DBMS1 and DBMS2 by
deploying an Extract at a downstream mining database DBMSCAP.

It assumes the following users:

e User GGADMLI1 in DBMS1 whose credentials Extract will use to
fetch data and metadata from DBMSL. It is assumed that the
DBVS_GOLDENGATE_AUTH. GRANT_ADM N PRI VI LEGE() procedure was called to grant
appropriate privileges to this user at DBMS1.

 User GGADM2 in DBMS2 whose credentials Extract will use to
fetch data and metadata from DBMS2. It is assumed that the
DBMS_GOLDENGATE_AUTH. GRANT_ADM N_PRI VI LEGE() procedure was called to grant
appropriate privileges to this user at DBMS2.

* User GGADMCAP in DBMSCAP whose credentials Extract will
use to retrieve logical change records from the logmining server
at the downstream mining database. It is assumed that the
DBVS_GOLDENGATE_AUTH. GRANT_ADM N_PRI VI LEGE() procedure was called to grant
appropriate privileges to this user at the downstream mining database DBMSCAP.

This procedure also assumes that the downstream mining database is configured in
archive log mode.

e Prepare the Mining Database to Archive its Local Redo

e Prepare the Mining Database to Archive Redo from the Source Database

e Prepare the First Source Database to Send Redo to the Mining Database

e Prepare the Second Source Database to Send Redo to the Mining Database

e Set up Extracts at Downstream Mining Database

C.2.1 Prepare the Mining Database to Archive its Local Redo

ORACLE

To prepare the mining database to archive its local redo:

1. The downstream mining database must be in archive log mode. You can do this by
issuing the following DDL.

STARTUP MOUNT;
ALTER DATABASE ARCHI VELOG
ALTER DATABASE OPEN;

2. At the downstream mining database, set | og_ar chi ve_dest 1 to archive local
redo.

ALTER SYSTEM SET
LOG_ARCHI VE_DEST_1=' LOCATI ON=/ hore/ ar c_dest /| ocal
VALI D_FOR=(ONLI NE_LOGFI LE, PRI MARY_RCLE)'

3. Enable | og_archive dest 1.

ALTER SYSTEM SET LOG ARCHI VE_DEST_STATE 1=ENABLE

C-4

Appendix C
Example 2: Capturing from Multiple Sources in Archive-log-only Mode

C.2.2 Prepare the Mining Database to Archive Redo from the Source
Database

Set DG_CONFI G at the downstream mining database.
ALTER SYSTEM SET LOG ARCHI VE_CONFI G=' DG_CONFI G=(dbns1, dbns2, dbnscap)’

C.2.3 Prepare the First Source Database to Send Redo to the Mining
Database

To prepare the first source database to send redo to the mining database:

1. Make certain that DBMS1 source database is running with the required
compatibility.

sel ect nanme, val ue from vS$paraneter where nane = 'conpatible';

conpatibl e 11.1.0.0.0

The minimum compatibility setting required from capture is 11.1.0.0.0.
2. Set DG _CONFI Gat DBMS1 source database.
ALTER SYSTEM SET LOG_ARCHI VE_CONFI G=' DG_CONFI G=(dbms1, dbnscap)';

3. Setup redo transport at DBMS1 source database. The TEMPLATE clause is
mandatory if you want to send redo data directly to foreign archived logs at the
downstream mining database.

ALTER SYSTEM

SET LOG_ARCHI VE_DEST_2=" SERVI CE=DBMSCAP. EXAMPLE. COM ASYNC OPTI ONAL NOREGQ STER
TEMPLATE="/usr/orcl/arc_dest/dbnsl/ dbnsl_arch_% _ % _ % .1 og

VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=dbnscap' ;

4. Enable the downstream destination.

ALTER SYSTEM SET LOG _ARCHI VE_DEST_STATE_2=ENABLE;

C.2.4 Prepare the Second Source Database to Send Redo to the
Mining Database

To prepare the second source database to send redo to the mining database:

1. Make sure that DBMS2 source database is running with the required compatibility.

sel ect nane, value fromv$paraneter where name = 'conpatible';

conpatible 11.1.0.0.0

The minimum compatibility setting required from capture is 11.1.0.0.0.
2. Set DG_CONFI Gat DBMS2 source database.
ALTER SYSTEM SET LOG ARCHI VE_CONFI G=' DG_CONFI G=(dbns2, dbmscap)';

ORACLE C-5

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

Set up redo transport at DBMS2 source database. The TEMPLATE clause is
mandatory if you want to send redo data directly to foreign archived logs at the
downstream mining database.

ALTER SYSTEM

SET LOG_ARCHI VE_DEST_2=" SERVI CE=DBMSCAP. EXAMPLE. COM ASYNC OPTI ONAL NOREGQ STER
TEMPLATE="/ usr/orcl/arc_dest/dbns2/ dbns2_arch_% % _% .1 og

VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=dbnscap' ;

Enable the downstream destination.

ALTER SYSTEM SET LOG _ARCHI VE_DEST_STATE_2=ENABLE;

C.2.5 Set up Extracts at Downstream Mining Database

These steps set up Extract at the downstream database to capture from the archived
logs sent by DBMS1 and DBMS2.

C.3 Example 3: Capturing from Multiple Sources with Mixed
Real-time and Archive-log-only Mode

The following example captures changes from database DBMS1, DBMS2 and DBMS3
by deploying an Extract at a downstream mining database DBMSCAP.

ORACLE

< Note:

This example assumes that you created the necessary standby redo log files
as shown in Configuring a Downstream Mining Database .

It assumes the following users:

User GGADML1 in DBMS1 whose credentials Extract will use to

fetch data and metadata from DBMSL. It is assumed that the
DBMS_GOLDENGATE_AUTH. GRANT_ADM N_PRI VI LEGE() procedure was called to grant
appropriate privileges to this user at DBMS1.

User GGADM2 in DBMS2 whose credentials Extract will use to

fetch data and metadata from DBMS2. It is assumed that the
DBVMS_GOLDENGATE _AUTH. GRANT_ADM N PRI VI LEGE() procedure was called to grant
appropriate privileges to this user at DBMS?2.

User GGADM3 in DBMS3 whose credentials Extract will use to

fetch data and metadata from DBMS3. It is assumed that the
DBMS_GOLDENGATE_AUTH. GRANT_ADM N_PRI VI LEGE() procedure was called to grant
appropriate privileges to this user at DBMS3.

User GGADMCAP in DBMSCAP whose credentials Extract will

use to retrieve logical change records from the logmining server

at the downstream mining database. It is assumed that the
DBVS_GOLDENGATE_AUTH. GRANT_ADM N_PRI VI LEGE() procedure was called to grant
appropriate privileges to this user at the downstream mining database DBMSCAP.

This procedure also assumes that the downstream mining database is configured in
archive log mode.

C-6

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

In this example, the redo sent by DBMS3 will be mined in real time mode, whereas the
redo data sent from DBMS1 and DBMS2 will be mined in archive-log-only mode.

Prepare the Mining Database to Archive its Local Redo

Prepare the Mining Database to Accept Redo from the Source Databases
Prepare the First Source Database to Send Redo to the Mining Database
Prepare the Second Source Database to Send Redo to the Mining Database
Prepare the Third Source Database to Send Redo to the Mining Database

Set up Extracts at Downstream Mining Database

C.3.1 Prepare the Mining Database to Archive its Local Redo

To prepare the mining database to archive its local redo:

1.

The downstream mining database must be in archive log mode. You can do this by
issuing the following DDL.

STARTUP MOUNT;
ALTER DATABASE ARCHI VELCG,
ALTER DATABASE OPEN,

At the downstream mining database, set | og_ar chi ve_dest 1 to archive local
redo.

ALTER SYSTEM SETLOG ARCHI VE_DEST 1=' LOCATI ON=/ home/ ar c_dest /
| ocal VALI D_FOR=(ONLI NE_LOGFI LE, PRI MARY_ROLE)"

Enable | og_ar chi ve_dest _1.

ALTER SYSTEM SET LOG_ARCHI VE_DEST_STATE_1=ENABLE

C.3.2 Prepare the Mining Database to Accept Redo from the Source

Databases

ORACLE

Because redo data is being accepted in the standby redo logs of the downstream
mining database, the appropriate number of correctly sized standby redo logs must
exist. If you did not configure the standby logs, see Configuring a Downstream Mining
Database .

1.

At the downstream mining database, set the second archive log destination in the
LOG_ARCHI VE_DEST _n initialization parameter as shown in the following example.
This is needed to handle archive standby redo logs.

ALTER SYSTEM SET
LOG_ARCHI VE_DEST_2=" LOCATI ON=/ hone/ ar c_dest/ sr| _dbns3
VALI D_FOR=(STANDBY_LOGFI LE, PRI MARY_ROLE)'

Enable the LOG_ARCH VE_DEST_STATE 2 initialization parameter that corresponds
with the LOG_ARCH VE_DEST_2 parameter as shown in the following example.

ALTER SYSTEM SET LOG_ARCHI VE_DEST_STATE 2=ENABLE

Set DG_CONFI G at the downstream mining database to accept redo data from all of
the source databases.

ALTER SYSTEM SET LOG ARCHI VE_CONFI G=' DG_CONFI G=(dbns1, dbns2, dbns3,
dbnscap)’

C-7

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

C.3.3 Prepare the First Source Database to Send Redo to the Mining

Database

To prepare the first source database to send redo to the mining database:

1.

Make certain that DBMS1 source database is running with the required
compatibility.

sel ect name, value fromvS$paraneter where nane = 'conpatible';

conpatible 11.1.0.0.0

The minimum compatibility setting required from capture is 11.1.0.0.0.
Set DG_CONFI Gat DBMS1 source database.
ALTER SYSTEM SET LOG_ARCHI VE_CONFI G=' DG_CONFI G=(dbms1, dbnscap)';

Set up redo transport at DBMS1 source database. The TEMPLATE clause is
mandatory if you want to send redo data directly to foreign archived logs at the
downstream mining database.

ALTER SYSTEM

SET LOG_ARCHI VE_DEST_2=" SERVI CE=DBMSCAP. EXAMPLE. COM ASYNC OPTI ONAL NOREGQ STER
TEMPLATE="/usr/orcl/arc_dest/dbnsl/ dbnsl_arch_% _ % _ % .1 og

VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=dbnscap' ;

Enable the downstream destination.

ALTER SYSTEM SET LOG _ARCHI VE_DEST_STATE_2=ENABLE;

C.3.4 Prepare the Second Source Database to Send Redo to the
Mining Database

To prepare the second source database to send redo to the mining database:

ORACLE

1.

Make sure that DBMS2 source database is running with the required compatibility.

sel ect nane, value fromv$paraneter where name = 'conpatible';

conpatible 11.1.0.0.0

The minimum compatibility setting required from capture is 11.1.0.0.0.
Set DG_CONFI Gat DBMS2 source database.
ALTER SYSTEM SET LOG ARCHI VE_CONFI G=' DG_CONFI G=(dbns2, dbmscap)';

Set up redo transport at DBMS2 source database. The TEMPLATE clause is
mandatory if you want to send redo data directly to foreign archived logs at the
downstream mining database.

ALTER SYSTEM

SET LOG_ARCHI VE_DEST_2=" SERVI CE=DBMSCAP. EXAMPLE. COM ASYNC OPTI ONAL NOREGQ STER
TEMPLATE="/ usr/orcl/arc_dest/dbns2/ dbns2_arch_% % % .| og

VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=dbrscap' ;

C-8

4.

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

Enable the downstream destination.

ALTER SYSTEM SET LOG ARCHI VE_DEST_STATE_2=ENABLE;

C.3.5 Prepare the Third Source Database to Send Redo to the Mining

Database

To prepare the third source database to send redo to the mining database:

1.

Make sure that DBMS3 source database is running with the required compatibility.

sel ect name, val ue from vS$paraneter where nane = 'conpatible';

conpatible 11.1.0.0.0

The minimum compatibility setting required from capture is 11.1.0.0.0.
Set DG_CONFI Gat DBMS3 source database.
ALTER SYSTEM SET LOG_ARCHI VE_CONFI G=' DG_CONFI G=(dbms3, dbnscap)';

Set up redo transport at DBMS3 source database. Because DBMS3 is the source
that will send its online redo logs to the standby redo logs at the downstream
mining database, do not specify a TEMPLATE clause.

ALTER SYSTEM
SET LOG_ARCHI VE_DEST_2=" SERVI CE=DBMSCAP. EXAMPLE. COM ASYNC OPTI ONAL NOREG STER
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=dbnscap’ ;

Enable the downstream destination.

ALTER SYSTEM SET LOG _ARCHI VE_DEST_STATE_2=ENABLE;

C.3.6 Set up Extracts at Downstream Mining Database

These steps set up Extract at the downstream database to capture from the archived
logs sent by DBMS1 and DBMS2.

Set up Extract (extl) to Capture Changes from Archived Logs Sent by DBMS1
Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2

Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs
Sent by DBMS3

C.3.6.1 Set up Extract (extl) to Capture Changes from Archived Logs Sent by

DBMS1

ORACLE

Perform the following steps on the DBMSCAP downstream mining database.

1.

Register Extract with DBMSCAP for the DBMS1 source database. In the
credential store, the alias name of ggadnt is linked to a user connect string of
ggadml@bns1.The alias name of ggadntap is linked to a user connect string of
ggadntap@bnscap.

GGSCl > DBLOG N USERI DALI AS ggadnil
GGSCl > M NI NGDBLOG N USERI DALI AS ggadntap
GGSCl > REQ STER EXTRACT ext 1 DATABASE

C-9

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

Add Extract at the mining database DBMSCAP.
GGSCl > ADD EXTRACT ext1 | NTEGRATED TRANLOG BEG N NOW

Edit the Extract parameter file ext 1. pr m In the credential store, the alias name
of ggadnt is linked to a user connect string of ggadnl@bns1. The alias name of
ggadntap is linked to a user connect string of ggadncap@bnscap.

USERI DALI AS ggadml
TRANLOGOPTI ONS M NI NGUSERALI AS ggadntap
TRANLOGOPTI ONS | NTEGRATEDPARANS (downstream real _time_mne N)

Start Extract.
GGSCl > START EXTRACT ext1l

C.3.6.2 Set up Extract (ext2) to Capture Changes from Archived Logs Sent by

DBMS2

Perform the following steps on the DBMSCAP downstream mining database.

1.

Register Extract with the mining database for source database DBMS2. In the
credential store, the alias name of ggadn® is linked to a user connect string of

ggadn2@bns2.The alias name of ggadnctap is linked to a user connect string of
ggadntap@bnscap.

GGSCl > DBLOG N USERI DALI AS ggadn?
GGSCl > M NI NGDBLOG N USERI DALI AS ggadntap
GGSCl > REG STER EXTRACT ext 2 DATABASE

Create Extract at the mining database.
GGSCl > ADD EXTRACT ext 2 | NTEGRATED TRANLOG BEG N NOW

Edit the Extract parameter file ext 2. pr m In the credential store, the alias name
of ggadn® is linked to a user connect string of ggadn2@bns2.The alias name of
ggadntap is linked to a user connect string of ggadncap@lbnscap.

USERI DALI AS ggadn?
TRANLOGOPTI ONS M NI NGUSERALI AS ggadntap
TRANLOGOPTI ONS | NTEGRATEDPARANS (downstream real _time_m ne N)

Start Extract.
GGSCl > START EXTRACT ext?2

C.3.6.3 Set up Extract (ext3) to Capture Changes in Real-time Mode from
Online Logs Sent by DBMS3

Perform the following steps on the DBMSCAP downstream mining database.

ORACLE

1.

Register Extract with the mining database for source database DBMS3. In the
credential store, the alias name of ggadn8 is linked to a user connect string of

ggadnB@bns3.The alias name of ggadntap is linked to a user connect string of
ggadntap@bnscap.

GGSCl > DBLOG N USERI D ggadnB
GGSCl > M NI NGDBLOG N USERI D ggadncap
GGSCl > REG STER EXTRACT ext3 DATABASE

Create Extract at the mining database.

C-10

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

GGSCl > ADD EXTRACT ext 3 | NTEGRATED TRANLOG, BEG N NOW

3. Edit the Extract parameter file ext 3. pr m To enable real-time mining, you must
specify downst ream real _ti ne_mi ne. In the credential store, the alias name of
ggadnB is linked to a user connect string of ggadn8@bns3.The alias name of
ggadncap is linked to a user connect string of ggadntap@bnscap.

USERI DALI AS ggadnB
TRANLOGOPTI ONS M NI NGUSERALI AS ggadntap
TRANLOGOPTI ONS | NTEGRATEDPARANS (downstream real _tinme_mi ne Y)

4. Start Extract.
GGSCl > START EXTRACT ext3

" Note:

You can create multiple Extracts running in real-time integrated capture
mode in the downstream mining database, as long as they all are capturing
data from the same source database, such as all capturing for database
DBMS3 in the preceding example.

ORACLE C-11

Supporting Changes to XML Schemas

This appendix contains instructions for supporting changes to an XML schema. Extract
does not support the capture of changes made to an XML schema.
Topics:

Supporting RegisterSchema

Regi st er Schema can be handled by registering the schema definition on both
source and target databases before any table is created that references the XML
schema.

Supporting DeleteSchema
Issue Del et eSchema on the source database first.

Supporting CopyEvolve
The CopyEvolve procedure evolves, or changes, a schema and can modify tables
by adding or removing columns.

D.1 Supporting RegisterSchema

Regi st er Schema can be handled by registering the schema definition on both source
and target databases before any table is created that references the XML schema.

D.2 Supporting DeleteSchema

Issue Del et eSchema on the source database first.

Once Replicat is caught up with the changes made to the source database, issue the
Del et eSchena call on the target database.

D.3 Supporting CopyEvolve

The CopyEvolve procedure evolves, or changes, a schema and can modify tables by
adding or removing columns.

ORACLE

The CopyEvolve procedure can also be used to change whether or not XML
documents are valid. Handling CopyEvol ve requires more coordination. Use the
following procedure if you are issuing CopyEvol ve on the source database.

1.
2.
3.

Quiesce changes to dependent tables on the source database.
Execute the CopyEvol ve on the primary or source database.

Wait for Replicat to finish applying all of the data from those tables to the target
database.

Stop Replicat.
Apply the CopyEvol ve on the target database.
Restart Replicat.

D-1

Preparing DBFS for an Active-Active
Configuration

This appendix contains steps to configure Oracle GoldenGate to function within an
active-active bidirectional or multi-directional environment where Oracle Database File
System (DBFS) is in use on both (or all) systems.

Topics:

e Supported Operations and Prerequisites
This topic lists what is supported by Oracle GoldenGate for DBFS.

e Applying the Required Patch
Apply the Oracle DBFS patch for bug-9651229 on both databases.

* Examples Used in these Procedures
The following procedures assume two systems and configure the environment
so that DBFS users on both systems see the same DBFS files, directories, and
contents that are kept in synchronization with Oracle GoldenGate.

e Partitioning the DBFS Sequence Numbers
DBFS uses an internal sequence-number generator to construct unique names
and unique IDs.

* Configuring the DBFS file system
To replicate DBFS file system operations, use a configuration that is similar to the
standard bi-directional configuration for DML.

e Mapping Local and Remote Peers Correctly
The names of the tables that underlie the DBFS file systems are generated
internally and dynamically.

E.1 Supported Operations and Prerequisites

This topic lists what is supported by Oracle GoldenGate for DBFS.
Oracle GoldenGate for DBFS supports the following:

* Supported DDL (like TRUNCATE or ALTER) on DBFS objects except for CREATE
statements on the DBFS objects. CREATE on DBFS must be excluded from the
configuration, as must any schemas that will hold the created DBFS objects.
The reason to exclude CREATES is that the metadata for DBFS must be properly
populated in the SYS dictionary tables (which itself is excluded from Oracle
GoldenGate capture by default).

e Capture and replication of DML on the tables that underlie the DBFS file system.

The procedures that follow assume that Oracle GoldenGate is configured properly to
support active-active configuration. This means that it must be:

* Installed according to the instructions in this guide.

» Configured according to the instructions in the Oracle GoldenGate Windows and
UNIX Administrator's Guide.

ORACLE E-1

Appendix E
Applying the Required Patch

E.2 Applying the Required Patch

Apply the Oracle DBFS patch for bug-9651229 on both databases.
To determine if the patch is installed, run the following query:

connect / as sysdba

sel ect procedure_nane

from dba_procedur es

where object_name = ' DBMS_DBFS_SFS_ADM N
and procedure_nane = ' PARTI TI ON_SEQUENCE ;

The query should return a single row. Anything else indicates that the proper patched
version of DBFS is not available on your database.

E.3 Examples Used in these Procedures

The following procedures assume two systems and configure the environment so that
DBFS users on both systems see the same DBFS files, directories, and contents that
are kept in synchronization with Oracle GoldenGate.

It is possible to extend these concepts to support three or more peer systems.

E.4 Partitioning the DBFS Sequence Numbers

ORACLE

DBFS uses an internal sequence-number generator to construct unique names and
unique IDs.

These steps partition the sequences into distinct ranges to ensure that there are

no conflicts across the databases. After this is done, further DBFS operations (both
creation of new file systems and subsequent file system operations) can be performed
without conflicts of names, primary keys, or IDs during DML propagation.

1. Connect to each database as sysdba.
Issue the following query on each database.

sel ect last_nunber

from dba_sequences

wher e sequence_owner = 'SYS

and sequence_nanme = ' DBFS_SFS $FSSEQ

2. From this query, choose the maximum value of LAST_NUMBER across both systems,
or pick a high value that is significantly larger than the current value of the
sequence on either system.

3. Substitute this value ("maxval " is used here as a placeholder) in both of the
following procedures. These procedures logically index each system as nyi d=0
and nyi d=1.

Nodel

decl are

begi n

dbms_dbf s_sfs_adni n. partition_sequence(nodes => 2, nyid => 0, newstart
=> :maxval);

commit;

E-2

Appendix E
Configuring the DBFS file system

end;
/

Node 2

decl are

begin

dbns_dbfs_sfs_adnmin. partition_sequence(nodes => 2, nyid => 1, newstart
=> :maxval);

comit;

end;

/

Note:

Notice the difference in the value specified for the nyi d parameter. These
are the different index values.

For a multi-way configuration among three or more databases, you could make the
following alterations:

* Adjust the maximum value that is set for maxval upward appropriately, and use
that value on all nodes.

* Vary the value of nyi d in the procedure from O for the first node, 1 for the
second node, 2 for the third one, and so on.

(Recommended) After (and only after) the DBFS sequence generator is
partitioned, create a new DBFS file system on each system, and use only these
file systems for DML propagation with Oracle GoldenGate. See Configuring the
DBFS file system.

Note:

DBFS file systems that were created before the patch for bug-9651229
was applied or before the DBFS sequence number was adjusted can be
configured for propagation, but that requires additional steps not described
in this document. If you must retain old file systems, open a service request
with Oracle Support.

E.5 Configuring the DBFS file system

To replicate DBFS file system operations, use a configuration that is similar to the
standard bi-directional configuration for DML.

ORACLE

Some guidelines to follow while configuring Oracle GoldenGate for DBFS are:

Use matched pairs of identically structured tables.

Allow each database to have write privileges to opposite tables in a set, and set
the other one in the set to read-only. For example:

— Nodel writes to local table t 1 and these changes are replicated to t 1 on
Node2.

E-3

ORACLE

Appendix E
Configuring the DBFS file system

— Node2 writes to local table t 2 and these changes are replicated to t 2 on
Nodel.

— On Nodel, t 2 is read-only. On Node2, t 1 is read-only.

DBFS file systems make this kind of table pairing simple because:

e The tables that underlie the DBFS file systems have the same structure.

e These tables are modified by simple, conventional DML during higher-level file
system operations.

e The DBFS ContentAPI provides a way of unifying the namespace of the individual
DBFS stores by means of mount points that can be qualified as read-write or
read-only.

The following steps create two DBFS file systems (in this case named FS1 and FS2)
and set them to be read-write or read, as appropriate.

1. Run the following procedure to create the two file systems. (Substitute your store
names for FS1 and FS2.)

2. Run the following procedure to give each file system the appropriate access rights.
(Substitute your store names for FS1 and FS2.)

In this example, note that on Node 1, store FS1 is read-write and store FS2 is
read-only, while on Node 2 the converse is true: store FS1 is read-only and store
FS2 is read-write.

Note also that the read-write store is mounted as local and the read-only store
is mounted as remote. This provides users on each system with an identical
namespace and identical semantics for read and write operations. Local path
names can be modified, but remote path names cannot.

Example E-1

decl are
dbns_dbfs_sfs.createfile systen('FS1');
dbns_dbfs_sfs.createfile systen(' FS2');

dbns_dbfs_content.registerStore(' FS1',
'posi x', 'DBMS_DBFS_SFS');
dbns_dbfs_content.registerStore(' FS2',
'posix', 'DBMS_DBFS_SFS');

commit;

end;

/

Example E-2 Node 1

decl are

dbms_dbfs_content. mount Store(' FS1', 'local');
dbns_dbfs_content. nount Store(' FS2', 'remote',
read_only => true);

comit;

end;

/

Example E-3 Node 2

decl are
dbns_dbfs_content. nountStore(' FS1', 'renmote',
read_only => true);

E-4

Appendix E
Mapping Local and Remote Peers Correctly

dbms_dbfs_content. mount Store(' FS2', 'local');
commi t;

end;

/

E.6 Mapping Local and Remote Peers Correctly

ORACLE

The names of the tables that underlie the DBFS file systems are generated internally
and dynamically.

Continuing with the preceding example, there are:

e Two nodes (Node 1 and Node 2 in the example).
e Four stores: two on each node (FS1 and FS2 in the example).

* Eight underlying tables: two for each store (a table and a ptable). These tables
must be identified, specified in Extract TABLE statements, and mapped in Replicat
MAP statements.

1. To identify the table names that back each file system, issue the following query.
(Substitute your store names for FS1 and FS2.)

The output looks like the following examples.

2. Identify the tables that are locally read-write to Extract by creating the following
TABLE statements in the Extract parameter files. (Substitute your pluggable
database names, schema names, and table names as applicable.)

3. Link changes on each remote file system to the corresponding local file system by
creating the following MAP statements in the Replicat parameter files. (Substitute
your pluggable database, schema and table names.)

This mapping captures and replicates local read-write source tables to remote
read-only peer tables:

» file system changes made to FS1 on Node 1 propagate to FS1 on Node 2.
» file system changes made to FS2 on Node 2 propagate to FS2 on Nodel.

Changes to the file systems can be made through the DBFS ContentAPI
(package DBMS_DBFS CONTENT) of the database or through dbfs_cl i ent mounts
and conventional file systems tools.

All changes are propagated in both directions.

e Auser at the virtual root of the DBFS namespace on each system sees
identical content.

* For mutable operations, users use the /| ocal sub-directory on each system.

e For read operations, users can use either of the / | ocal or/renot e sub-
directories, depending on whether they want to see local or remote content.

Example E-4

select fs.store_nane, th.table_name, th.ptable_name
fromtabl e(dbns_dbfs_sfs.listTables) th,

tabl e(dbns_dbfs_sfs.listfile systens) fs

where fs.schema_nane = tbh.schema_nanme

and fs.table name = tb.tabl e _name

and fs.store_name in ('FS1', 'FS2')

E-5

ORACLE

Appendix E
Mapping Local and Remote Peers Correctly

Example E-5 Example output: Node 1 (Your Table Names Will Be Different.)
STORE NAME TABLE_NAVME PTABLE_NAVE

FS1 SFS$_FST 100 SFS$_FSTP_100
FS2 SFS$_FST 118 SFS$_FSTP_118

Example E-6 Example output: Node 2 (Your Table Names Will Be Different.)

STORE NAME TABLE_NAMVE PTABLE_NAME

FS1 SFS$_FST 101 SFS$_FSTP_101
FS2 SFS$_FST 119 SFS$_FSTP 119

Example E-7 Nodel

TABLE [cont ai ner.]schema. SFS$_FST 100
TABLE [cont ai ner.]schema. SFS$_FSTP_100;

Example E-8 Node2

TABLE [cont ai ner.]schema. SFS$_FST 119
TABLE [cont ai ner.]schema. SFS$_FSTP_119;

Example E-9 Nodel

MAP [cont ai ner.]schema. SFS$_FST 119, TARGET [cont ai ner.]schena. SFS$_FST_118;
MAP [cont ai ner.]schena. SFS$_FSTP_119, TARGET [cont ai ner.]schena. SFS$_FSTP_118

Example E-10 Node2

MAP [cont ai ner.]schema. SFS$_FST 100, TARGET
[contai ner.]schema. SFS$_FST_101; MAP [cont ai ner.]schema. SFS$_FSTP_100, TARGET
[contai ner.]schena. SFS$_FSTP_101;

E-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Information
	Conventions

	1 Understanding What’s Supported
	1.1 Details of Support for Oracle Data Types and Objects
	1.1.1 Non-Supported Oracle Data Types

	1.2 Details of Support for Different Oracle Editions
	1.3 Details of Support for Objects and Operations in Oracle DML
	1.3.1 Multitenant Container Database
	1.3.2 Tables, Views, and Materialized Views
	1.3.2.1 Limitations of Support for Regular Tables
	1.3.2.2 Limitations of Support for Views
	1.3.2.3 Limitations of Support for Materialized Views
	1.3.2.4 Limitations of Support for Clustered Tables

	1.3.3 System Partitioning
	1.3.4 Sequences and Identity Columns
	1.3.4.1 Limitations of Support for Sequences

	1.3.5 Non-supported Objects and Operations in Oracle DML

	1.4 Details of Support for Objects and Operations in Oracle DDL
	1.4.1 Supported Objects and Operations in Oracle DDL
	1.4.2 Non-supported Objects and Operations in Oracle DDL
	1.4.2.1 Excluded Objects
	1.4.2.2 Other Non-supported DDL

	2 Preparing the Database for Oracle GoldenGate
	2.1 Configuring Connections for Extract and Replicat Processes
	2.2 Configuring Logging Properties
	2.2.1 Enabling Subset Database Replication Logging
	2.2.2 Enabling Schema-level Supplemental Logging
	2.2.3 Enabling Table-level Supplemental Logging

	2.3 Enabling Oracle GoldenGate in the Database
	2.4 Setting Flashback Query
	2.5 Managing Server Resources
	2.6 Ensuring Row Uniqueness in Source and Target Tables

	3 Establishing Oracle GoldenGate Credentials
	3.1 Assigning Credentials to Oracle GoldenGate
	3.1.1 Oracle GoldenGate Users (Database)
	3.1.1.1 Granting the Appropriate User Privileges
	3.1.1.1.1 Oracle Database Privileges
	3.1.1.1.2 About the dbms_goldengate_auth.grant_admin_privilege Package
	3.1.1.1.3 Optional Grants for dbms_goldengate_auth.grant_admin_privilege

	3.2 Securing the Oracle GoldenGate Credentials

	4 Choosing Different Replicat Modes with Extract
	4.1 Deciding Which Apply Method to Use
	4.1.1 About Parallel Replicat
	4.1.1.1 Benefits of Parallel Replicat

	4.1.2 About Non-integrated Replicat
	4.1.3 About Integrated Replicat
	4.1.3.1 Benefits of Integrated Replicat
	4.1.3.2 Integrated Replicat Requirements

	4.2 About Extract
	4.2.1 Integrated Capture Deployment Options

	4.3 Using Different Replicat Modes with Extract

	5 Configuring Oracle GoldenGate in a Multitenant Container Database
	5.1 Using CDB Root Capture from PDB
	5.1.1 Applying to Pluggable Databases
	5.1.2 Excluding Objects from the Configuration

	5.2 Mining Mode Toggling
	5.3 Other Requirements for Multitenant Container Databases

	6 Configuring Extract
	6.1 Prerequisites for Configuring Extract
	6.2 What to Expect from these Instructions
	6.3 Configuring Primary Extract
	6.4 Setting up the Automatic Extract Mode
	6.5 Configuring the Data Pump Extract
	6.6 Next Steps

	7 Configuring Oracle GoldenGate Apply
	7.1 Prerequisites for Configuring Replicat
	7.2 What to Expect from these Instructions
	7.3 Creating a Checkpoint Table
	7.3.1 Adding the Checkpoint Table to the Target Database
	7.3.2 Specifying the Checkpoint Table in the Oracle GoldenGate Configuration
	7.3.3 Disabling Default Asynchronous COMMIT to Checkpoint Table

	7.4 Configuring Replicat
	7.5 Next Steps

	8 Additional Oracle GoldenGate Configuration Considerations
	8.1 Installing Support for Oracle Sequences
	8.2 Handling Special Data Types
	8.2.1 Multibyte Character Types
	8.2.2 Oracle Spatial Objects
	8.2.3 TIMESTAMP
	8.2.4 Large Objects (LOB)
	8.2.5 XML
	8.2.6 User Defined Types

	8.3 Handling Other Database Properties
	8.4 Controlling the Checkpoint Frequency
	8.5 Excluding Replicat Transactions
	8.6 Advanced Configuration Options for Oracle GoldenGate

	9 Additional Configuration Steps For Using Nonintegrated Replicat
	9.1 Disabling Triggers and Referential Cascade Constraints on Target Tables
	9.2 Deferring Constraint Checking on Target Tables
	9.2.1 Handling Transient Primary-key Duplicates in Versions Earlier than 11.2.0.2
	9.2.2 Handling Transient Primary-key Duplicates in Version 11.2.0.2 or Later

	10 Configuring DDL Support
	10.1 Prerequisites for Configuring DDL
	10.1.1 Support for DDL Capture in Integrated Capture Mode

	10.2 Overview of DDL Synchronization
	10.3 Limitations of Oracle GoldenGate DDL Support
	10.3.1 DDL Statement Length
	10.3.2 Supported Topologies
	10.3.3 Filtering, Mapping, and Transformation
	10.3.4 Renames
	10.3.5 Interactions Between Fetches from a Table and DDL
	10.3.6 Comments in SQL
	10.3.7 Compilation Errors
	10.3.8 Interval Partitioning
	10.3.9 DML or DDL Performed Inside a DDL Trigger
	10.3.10 LogMiner Data Dictionary Maintenance

	10.4 Configuration Guidelines for DDL Support
	10.4.1 Database Privileges
	10.4.2 Parallel Processing
	10.4.3 Object Names
	10.4.4 Data Definitions
	10.4.5 Truncates
	10.4.6 Initial Synchronization
	10.4.7 Data Continuity After CREATE or RENAME

	10.5 Understanding DDL Scopes
	10.5.1 Mapped Scope
	10.5.2 Unmapped Scope
	10.5.3 Other Scope

	10.6 Correctly Identifying Unqualified Object Names in DDL
	10.7 Enabling DDL Support
	10.8 Filtering DDL Replication
	10.8.1 Filtering with the DDL Parameter

	10.9 Special Filter Cases
	10.9.1 DDL EXCLUDE ALL
	10.9.2 Implicit DDL

	10.10 How Oracle GoldenGate Handles Derived Object Names
	10.10.1 MAP Exists for Base Object, But Not Derived Object
	10.10.2 MAP Exists for Base and Derived Objects
	10.10.3 MAP Exists for Derived Object, But Not Base Object
	10.10.4 New Tables as Derived Objects
	10.10.4.1 CREATE TABLE AS SELECT
	10.10.4.2 RENAME and ALTER TABLE RENAME

	10.10.5 Disabling the Mapping of Derived Objects

	10.11 Using DDL String Substitution
	10.12 Controlling the Propagation of DDL to Support Different Topologies
	10.12.1 Propagating DDL in Active-Active (Bidirectional) Configurations
	10.12.2 Propagating DDL in a Cascading Configuration

	10.13 Adding Supplemental Log Groups Automatically
	10.14 Removing Comments from Replicated DDL
	10.15 Replicating an IDENTIFIED BY Password
	10.16 How DDL is Evaluated for Processing
	10.17 Viewing DDL Report Information
	10.17.1 Viewing DDL Reporting in Replicat
	10.17.2 Viewing DDL Reporting in Extract
	10.17.3 Statistics in the Process Reports

	10.18 Tracing DDL Processing
	10.19 Using Edition-Based Redefinition

	11 Creating Process Groups
	11.1 Prerequisites
	11.2 Registering Extract with the Mining Database
	11.3 Add the Primary Extract
	11.4 Add the Local Trail
	11.5 Add the Data Pump Extract Group
	11.6 Add the Remote Trail
	11.7 Add the Replicat Group

	12 Instantiating Oracle GoldenGate Replication
	12.1 Overview of the Instantiation Process
	12.2 Prerequisites for Instantiation
	12.2.1 Configuring and Adding Change Synchronization Groups
	12.2.2 Disabling DDL Processing
	12.2.3 Adding Collision Handling
	12.2.4 Preparing the Target Tables

	12.3 Configuring the Initial Load
	12.3.1 Configuring a Load with an Oracle Data Pump
	12.3.2 Configuring a Direct Bulk Load to SQL*Loader
	12.3.3 Configuring a Load from an Input File to SQL*Loader

	12.4 Performing the Target Instantiation
	12.4.1 Performing Instantiation with Oracle Data Pump
	12.4.2 Performing Instantiation with Direct Bulk Load to SQL*Loader
	12.4.3 Performing Instantiation From an Input File to SQL*Loader

	12.5 Monitoring and Controlling Processing After the Instantiation
	12.6 Verifying Synchronization
	12.7 Backing up the Oracle GoldenGate Environment

	13 Managing the DDL Replication Environment
	13.1 Disabling DDL Processing Temporarily
	13.2 Enabling and Disabling the DDL Trigger
	13.3 Maintaining the DDL Marker Table
	13.4 Deleting the DDL Marker Table
	13.5 Maintaining the DDL History Table
	13.6 Deleting the DDL History Table
	13.7 Purging the DDL Trace File
	13.8 Applying Database Patches and Upgrades when DDL Support is Enabled
	13.9 Apply Oracle GoldenGate Patches and Upgrades when DDL support is Enabled
	13.10 Restoring an Existing DDL Environment to a Clean State
	13.11 Removing the DDL Objects from the System

	14 Automatic Conflict Detection and Resolution
	14.1 About Automatic Conflict Detection and Resolution
	14.1.1 Automatic Conflict Detection and Resolution
	14.1.2 Requirements for Automatic Conflict Detection and Resolution
	14.1.2.1 Compatibility and Migration

	14.1.3 Column Groups
	14.1.4 DELETE TOMBSTONE Table
	14.1.5 Earliest Timestamp Conflict Detection and Resolution
	14.1.6 Latest Timestamp Conflict Detection and Resolution
	14.1.7 Delete Always Wins Timestamp CDR
	14.1.8 Delta Conflict Detection and Resolution
	14.1.9 Site Priority CDR
	14.1.10 Track PK Updates in Delete Tombstone

	14.2 Configuring Automatic Conflict Detection and Resolution
	14.2.1 Configuring Latest Timestamp Conflict Detection and Resolution
	14.2.2 Configuring Delta Conflict Detection and Resolution

	14.3 Managing Automatic Conflict Detection and Resolution
	14.3.1 Altering Conflict Detection and Resolution for a Table
	14.3.2 Altering a Column Group
	14.3.3 Purging Tombstone Rows
	14.3.4 Removing Conflict Detection and Resolution From a Table
	14.3.5 Removing a Column Group
	14.3.6 Removing Delta Conflict Detection and Resolution

	14.4 Monitoring Automatic Conflict Detection and Resolution
	14.4.1 Displaying Information About the Tables Configured for Conflicts
	14.4.2 Displaying Information About Conflict Resolution Columns
	14.4.3 Displaying Information About Column Groups

	15 Using Parallel Replicat
	15.1 Parallel Replication Architecture
	15.2 Basic Parameters for Parallel Replicat
	15.3 Creating a Parallel Replicat

	16 Using Procedural Replication
	16.1 About Procedural Replication
	16.2 Procedural Replication Process Overview
	16.3 Enabling Procedural Replication
	16.4 Determining Whether Procedural Replication Is On
	16.5 Enabling and Disabling Supplemental Logging
	16.6 Filtering Features for Procedural Replication
	16.7 Handling Procedural Replication Errors
	16.8 Procedural Replication Pragma Options
	16.9 Listing the Procedures Supported for Oracle GoldenGate Procedural Replication
	16.10 Monitoring Oracle GoldenGate Procedural Replication

	17 Using Oracle GoldenGate with Autonomous Database
	17.1 About Capturing and Replicating Data Using Autonomous Databases
	17.2 Understanding What is Supported When Using Oracle GoldenGate with Autonomous Databases
	17.3 Configuring Extract to Capture from an Autonomous Database
	17.3.1 Establishing Oracle GoldenGate Credentials
	17.3.2 Prerequisites for Configuring Oracle GoldenGate Extract to Capture from Autonomous Databases
	17.3.3 Configure Oracle GoldenGate Extract to Capture from an Autonomous Database

	17.4 Configuring Replicat to Apply to an Autonomous Databases
	17.4.1 Prerequisites for Configuring Oracle GoldenGate Replicat to an Autonomous Database
	17.4.2 Configure Oracle GoldenGate Replicat for an Autonomous Database
	17.4.3 Obtain the Autonomous Database Client Credentials
	17.4.4 Configure Oracle GoldenGate Replicat to Apply to an Autonomous Database

	A Optional Parameters for Integrated Modes
	A.1 Additional Parameter Options for Extract
	A.2 Additional Parameter Options for Integrated Replicat

	B Configuring a Downstream Mining Database
	B.1 Evaluating Capture Options for a Downstream Deployment
	B.2 Preparing the Source Database for Downstream Deployment
	B.2.1 Creating the Source User Account
	B.2.2 Configuring Redo Transport from Source to Downstream Mining Database

	B.3 Preparing the Downstream Mining Database
	B.3.1 Creating the Downstream Mining User Account
	B.3.2 Configuring the Mining Database to Archive Local Redo Log Files
	B.3.3 Preparing a Downstream Mining Database for Real-time Capture
	B.3.3.1 Create the Standby Redo Log Files
	B.3.3.2 Configure the Database to Archive Standby Redo Log Files Locally

	B.4 Enabling Sourceless Extract Registration Using ADG Redirection in Downstream Configuration

	C Example Downstream Mining Configuration
	C.1 Example 1: Capturing from One Source Database in Real-time Mode
	C.1.1 Prepare the Mining Database to Archive its Local Redo
	C.1.2 Prepare the Mining Database to Archive Redo Received in Standby Redo Logs from the Source Database
	C.1.3 Prepare the Source Database to Send Redo to the Mining Database
	C.1.4 Set up Extract (ext1) on DBMSCAP

	C.2 Example 2: Capturing from Multiple Sources in Archive-log-only Mode
	C.2.1 Prepare the Mining Database to Archive its Local Redo
	C.2.2 Prepare the Mining Database to Archive Redo from the Source Database
	C.2.3 Prepare the First Source Database to Send Redo to the Mining Database
	C.2.4 Prepare the Second Source Database to Send Redo to the Mining Database
	C.2.5 Set up Extracts at Downstream Mining Database

	C.3 Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode
	C.3.1 Prepare the Mining Database to Archive its Local Redo
	C.3.2 Prepare the Mining Database to Accept Redo from the Source Databases
	C.3.3 Prepare the First Source Database to Send Redo to the Mining Database
	C.3.4 Prepare the Second Source Database to Send Redo to the Mining Database
	C.3.5 Prepare the Third Source Database to Send Redo to the Mining Database
	C.3.6 Set up Extracts at Downstream Mining Database
	C.3.6.1 Set up Extract (ext1) to Capture Changes from Archived Logs Sent by DBMS1
	C.3.6.2 Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2
	C.3.6.3 Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs Sent by DBMS3

	D Supporting Changes to XML Schemas
	D.1 Supporting RegisterSchema
	D.2 Supporting DeleteSchema
	D.3 Supporting CopyEvolve

	E Preparing DBFS for an Active-Active Configuration
	E.1 Supported Operations and Prerequisites
	E.2 Applying the Required Patch
	E.3 Examples Used in these Procedures
	E.4 Partitioning the DBFS Sequence Numbers
	E.5 Configuring the DBFS file system
	E.6 Mapping Local and Remote Peers Correctly

