Oracle® NoSQL Database
Integrations Guide

Release 20.3
F30919-04
December 2020

ORACLE"

Oracle NoSQL Database Integrations Guide, Release 20.3
F30919-04
Copyright © 2020, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Introduction

Part | Integration with Apache Hadoop MapReduce

2 Introduction to Integration with Apache Hadoop MapReduce
Prerequisites 2-1
A Brief Primer on Apache Hadoop 2-2
3 The CountTableRows Example
Compile, Build, and Run the CountTableRows Example 3-2
Building CountTableRows When the Store is Non-Secure 3-3
Building CountTableRows When the Store is Secure 3-3
Running CountTableRows When the Store is Non-Secure 3-4
Running CountTableRows When the Store is Secure and a Password File is
Used 3-5
Running CountTableRows When the Store is Secure and an Oracle Wallet is
Used 3-6
CountTableRows MapReduce Job Results 3-7
4 Appendix
Deploying a Non-Secure Store 4-1
Generate Configuration Files For Each Storage Node (SN) 4-1
Launch a Storage Node Agent (SNA) On Each Host Making Up the Store 4-2
Configure and Deploy the Non-secure Store 4-3
Deploying a Secure Store 4-4
Generate Configuration Files For Each Storage Node (SN) 4-4
Launch a Storage Node Agent (SNA) On Each Host Making Up the Store 4-6
Configure and Deploy the Secure Store 4-6
Provision the Secure Store’s Administrative User (root) 4-7
Create Non-Administrative User 4-8

ORACLE

Provision the Secure Store's Non-Administrative User (example-user) 4-9
CountTableRows Support Programs 4-12
Schema for the vehicleTable Example 4-12

Create and Populate vehicleTable with Example Data 4-13

Run LoadVehicleTable when the Store is Non-Secure 4-13

Run LoadVehicleTable When the Store is Secure 4-14

Summary 4-15

Model For Building & Packaging Secure Clients 4-15
Programming Model For MapReduce with Oracle NoSQL Database Security 4-16
Communicating Security Credentials to the Server Side Splits 4-17
Communicating Security Credentials to the TablelnputFormat 4-18

Best Practices: MapReduce Application Packaging for Oracle NoSQL Security 4-18

Application Packaging for the Non-Secure Case 4-19

Application Packaging and Execution for the Secure Case 4-20

Secure Versus Non-Secure Command Lines 4-24

Summary 4-25

Part Il Integration with Apache Hive
5 Introduction to Integration with Apache Hive

Prerequisites 5-1

A Brief Primer on Apache Hive 5-2

6 Oracle NoSQL Database Hive Integration Classes

7 Mapping the Hive Data Model to the Oracle NoSQL Database Table

Model

YARN Versus MapReduce Version 1 7-2
8 Example: Hive Queries On Oracle NoSQL Database Tables

Primitive Data Types - The vehicleTable Example 8-3
Mapping a Hive External Table to vehicleTable: Non-Secure Store 8-3
Mapping a Hive External Table to vehicleTable: Secure Store 8-4
Mapping Hive to Secure vehicleTable: Password File 8-4
Mapping Hive to Secure vehicleTable: Oracle Wallet 8-4
Hive Queries on vehicleTable: Primitive Data Types 8-5
Non-Primitive Data Types - The rmvTable Example 8-8
Y

ORACLE

Mapping a Hive External Table to rmvTable: Non-Secure Store 8-8
Mapping a Hive External Table to rmvTable: Secure Store 8-9
Mapping Hive to Secure rmvTable: Password File 8-9
Mapping Hive to Secure rmvTable: Oracle Wallet 8-10
Hive Queries on rmvTable: Non-Primitive Data Types 8-10
NoSQL JSON Data Type - The exampleJsonTable Example 8-18
Mapping a Hive External Table to exampleJsonTable: Non-Secure Store 8-19
Mapping a Hive External Table to exampleJsonTable: Secure Store 8-19
Mapping Hive to Secure exampleJsonTable: Password File 8-20
Mapping Hive to Secure exampleJsonTable: Oracle Wallet 8-20
Hive Queries on exampleJsonTable: JSON Data Type 8-20
Appendix
Creating and Populating the rmvTable 9-1
Schema for the Example Table Named rmvTable 9-1
Create and Populate rmvTable with Example Data 9-3
How to Run LoadRmvTable When the Store is Non-Secure 9-3
How to Run LoadRmvTable When the Store is Secure 9-4
Summary 9-4
Creating and Populating the exampleJsonTable 9-4
Schema for the Example Table Named exampleJsonTable 9-4
Create and Populate exampleJsonTable with Example Data 9-5
How to Run LoadJsonExample When the Store is Non-Secure 9-5
How to Run LoadJsonExample When the Store is Secure 9-6
Summary 9-7
Configuring the Hive Client Environment 9-7
Copy Oracle NoSQL Database Libraries into Hive Auxiliary Directory 9-7
Set HIVE_AUX_JARS_PATH in the Hive Client’s hive-env.sh File 9-8
Set HIVE_AUX_JARS_PATH Directly on the Command Line 9-9
Hive and Oracle NoSQL Database Security 9-10
Generating the Login, Trust, and Password Artifacts 9-10
Generating the Server Side JAR File 9-10
Adding the Hive Client's Public Credentials to the Hive Environment 9-11
Summary 9-11
Predicate Pushdown 9-11
Predicate Pushdown Criteria 9-13

Part Il Integration with Oracle Big Data SQL

ORACLE

10 Introduction to Integration with Oracle Big Data SQL
Prerequisites 10-1
A Brief Primer on Oracle Big Data SQL 10-1
11 Mapping the Oracle RDBMS Data Model to the Oracle NoSQL
Database Table Model
12 Executing SQL Queries Against Oracle NoSQL Database
Mapping Hive External Tables to Oracle NoSQL Database Tables 12-1
Mapping Hive Tables to Oracle NoSQL Database Tables In a Non-Secure Store 12-1
Mapping Hive Tables to Oracle NoSQL Database Tables In a Secure Store 12-2
Mapping Oracle RDBMS External Tables to Hive External Tables 12-5
Mapping Oracle RDBMS Tables to Hive Tables for Non-Secure Store 12-5
Mapping Oracle RDBMS Tables to Hive Tables for Secure Store 12-7
13 Example: SQL Queries On Oracle NoSQL Database Tables
Example Queries on the vehicleTable 13-2
Example Queries on the rmvTable 13-2
More Example Queries on the rmvTable 13-3
Example Queries Using Oracle Regular Expression Functions 13-3
Example Queries Using Oracle JSON Operators 13-5
Example Queries on the exampleJsonTable 13-5
14 Appendix
Configuring Oracle Big Data SQL For Querying Oracle NoSQL Database 14-1
Configuring Oracle Big Data SQL For Querying Data in a Secure Store 14-2
Part IV Integration with Elastic Search for Full Text Search
15 About Full Text Search
About Full Text Search 15-1
Prerequisite to Full Text Search 15-2
ORACLE Vi

16 Intergrating Elasticsearch with Oracle NoSQL Database

Registering Elasticsearch with Oracle NoSQL Database 16-1
Deregistering Elasticsearch from an Oracle NoSQL Store 16-3

17 Managing Full Text Index

Creating a Full Text Index 17-1
Mapping a Full Text Index Field to an Elasticsearch Field 17-5
Handling TIMESTAMP Data Type 17-7
Mapping Oracle NoSQL TIMESTAMP to Elasticsearch date Type 17-7
Full Text Search of Indexed TIMESTAMP Scalar 17-11
Handling JSON Data Type 17-14
Review: Secondary Indexes on JSON Document Content 17-15
Creating Text Indexes on JSON Document Content 17-18
Full Text Search of Indexed JSON Documents 17-21
Deleting a Full Text Index 17-24

18 Security in Full Text Search

Elasticsearch and Secure Oracle NoSQL Database 18-1
19 Appendix
Sample: Array of JSON Documents 19-1
The LoadJsonExample Program Source 19-3
Secure Elasticsearch using Sheild 19-27
Deploying and Configuring a Secure Oracle NoSQL Store 19-34
Install the Full Text Search Public Certificate in Elasticsearch 19-42
Running the Examples in Secure Mode 19-43

ORACLE vii

Introduction

Oracle NoSQL Database can be integrated with Apache Hadoop and products in the
Oracle stack. The following parts describe more about integration.

Topics
e Part I: Integration with Apache Hadoop MapReduce
e Part Il: Integration with Apache Hive

e Part lll: Integration with Elastic Search for Full Text Search

ORACLE 1-1

Integration with Apache Hadoop
MapReduce

Topics

e Introduction to Integration with Apache Hadoop MapReduce
e The Count Tabl eRows Example

e Appendix

ORACLE

Introduction to Integration with Apache
Hadoop MapReduce

This section introduces the integration of Oracle NoSQL Database with Apache
Hadoop MapReduce. The information presented in this document describes how
MapReduce jobs can be written and run to process data in an Oracle NoSQL
Database table. Besides describing the core interfaces and classes involved in this
process, this document also walks through an example that demonstrates how to use
the Table API, Hadoop integration classes with MapReduce.

The language drivers provide the interfaces and classes that allow MapReduce jobs to
be written that retrieve and process table data written to an Oracle NoSQL Database
store via the Table API. See Developing for Oracle NoSQL Database in the Java
Direct Driver Developer's Guide.

Prerequisites

ORACLE

To minimize the number of non-literal text and tokens that need to be replaced

when running the examples that are presented, this document assumes that Apache
Hadoop and Oracle NoSQL Database are installed on a Big Data Appliance running
Big Data SQL 4.0. Specifically, this document assumes that Apache Hadoop is
installed under the directory / opt/ cl ouder a/ par cel s/ CDH, and that Oracle NoSQL
Database is installed under / opt/ or acl e/ kv- ee. Thus, if you happen to be using
commodity hardware rather than a Big Data Appliance, then you may need to
substitute various directory paths presented in this document with values specific

to the Apache Hadoop and Oracle NoSQL Database installations on your particular
system.

Whether you are using a Big Data Appliance or commodity hardware, in order to work
with the examples presented in this document, you will need to install the separate
distribution containing the Oracle NoSQL Database Examples. Although you are free
to install the example package in any location on your system, for simplicity, this
document assumes the example code is installed under the directory / opt / or acl e/
nosql / apps/ kv/ exanpl es .

" Note:

The host names and ports provided below are for demonstration purpose
only. You can provide the value as per the requirement.

Before attempting to execute the example that demonstrates the concepts presented
in this document, you should first satisfy the following prerequisites:

* Become familiar with Apache Hadoop and the MapReduce programming model.
Specifically, become familiar with how to write and deploy a MapReduce job.

2-1

Chapter 2
A Brief Primer on Apache Hadoop

* Deploy a Hadoop cluster with 3 DataNodes running on machines with sample host
names, dn- host - 1, dn- host - 2, and dn- host - 3.

e Become familiar with Oracle NoSQL Database and then install, start, and
configure an Oracle NoSQL Database that is network reachable from the nodes of
the Hadoop cluster. The KVHOME of the store that you start should be configured as
the directory / opt/ or acl e/ kv- ee.

* Deploy a store to 3 machines (real or virtual) with sample host hames,
kv-host - 1, kv- host - 2, and kv- host - 3. The store's name should be set to
the value exanpl e- st or e, and the store's KVROOT should be set to the
directories / u01/ nosql / sn1/ kvr oot on kv-host -1, /u02/ nosql / sn2/ kvr oot on
kv-host -2, and / u03/ nosql / sn3/ kvr oot on kv- host - 3. Finally, an Oracle NoSQL
Database admin service, listening on port 5000, should be deployed to each host
making up the store.

* Become familiar with the Oracle NoSQL Database Security model and be able to
configure the deployed store for secure access (optional). See Introducing Oracle
NoSQL Database Security in the Security Guide.

» If the deployed store is configured for secure access, start the Oracle NoSQL
Database Administrative CLI and securely connect to the store's admin service.
See Start the Administration CLI in the Administrator's Guide. Using the CLI,
create a user in the store named exanpl e- user along with the appropriate security
artifacts (login file, trust file, and either password file or Oracle Wallet [Enterprise
Edition only]).

e Obtain and install the separate distribution containing the Oracle NoSQL Database
Examples. Although you are free to install that package in any location on your
system, for simplicity this document assumes the example code is installed under
the directory / opt/ or acl e/ nosql / apps/ kv/ exanpl es.

* Be able to compile and execute a Java program and package it and any
associated resources in a JAR file.

» Install the Hadoop JAR files required to compile the example program so that they
are available for inclusion in the example program's classpath (see below).

Using specific values for items such as the KVHOMVE and KVROOT environment variables,
as well as the store name, host names, admin port, and example code location
described above should allow you to more easily understand and use the example
commands presented in this document. Combined with the information contained in
the Concepts Guide, along with the Administrator's Guide and Security Guide, you
should then be able to generalize and extend these examples to your particular
development scenario; substituting the values specific to the given environment where
necessary.

Detailed instructions for deploying a non-secure store are provided in the Deploying a
Non-Secure Store appendix of this document. Similarly, the Deploying a Secure Store
appendix provides instructions for deploying a store configured for security.

A Brief Primer on Apache Hadoop

Apache Hadoop can be thought of as consisting of two primary components:

e The Hadoop Distributed File System (referred to as, HDFS).

e The MapReduce programming model; which includes a Map Phase consisting
of a mapping step and a shuffle-and-sort step that together perform filtering and

ORACLE 2-2

Chapter 2
A Brief Primer on Apache Hadoop

sorting, followed by a Reduce Phase that performs a summary operation on the
mapped and sorted results from the Map Phase.

The various Hadoop distributions that are available (for example, Cloudera) provide
an infrastructure for orchestrating the processing performed in a MapReduce job.
This includes marshaling the distributed servers that execute job tasks in parallel,
the management of all communication and data transfers between each part of the
system, and mechanisms for providing redundancy and fault tolerance.

The Hadoop infrastructure also provides several interactive tools such as a command
line interface (the Hadoop CLI) that provide access to the data stored in HDFS.

But the typical way application developers read, write, and process data stored

in HDFS is via MapReduce jobs; which are programs that adhere to the Hadoop
MapReduce programming model. For more detailed information on Hadoop HDFS and
MapReduce, see the Hadoop MapReduce tutorial.

As indicated earlier, with the introduction of the Oracle NoSQL Table API, Oracle
NoSQL Database provides a set of interfaces and classes that satisfy the Hadoop
MapReduce programming model to allow one to write MapReduce jobs that can be
run to process data written to a table created in an Oracle NoSQL Database store.
These classes are located in the or acl e. kv. hadoop. t abl e package, and consist of
the following types:

e A subclass of the Hadoop class, or g. apache. hadoop. mapr educe. | nput For mat ,
which specifies how the associated MapReduce job uses a Hadoop Recor dReader
to read its input data and splits the input data into logical sections, each referred to
asanlnputSplit.

» A subclass of the Hadoop class, or g. apache. hadoop. mapr educe. Qut put For mat ,
which specifies how the associated MapReduce job uses a Hadoop Recor dWi t er
to write its output data.

A subclass of the Hadoop class, or g. apache. hadoop. mapr educe. Recor dReader,
which specifies how the mapped keys and values are located and retrieved during
MapReduce processing.

* A subclass of the Hadoop class, or g. apache. hadoop. mapr educe. | nput Spli t,
which represents the data to be processed by an individual MapReduce Mapper;
where there is one Mapper per InputSplit.

For the complete list of classes, see Apache Hadoop API.

As described in the following sections, it is through the specific implementation of the
I nput For mat class provided by Oracle NoSQL Database that the Hadoop MapReduce
infrastructure obtains access to a given store and the data written to the store.

ORACLE 2-3

The Count Tabl eRows Example

ORACLE

Assuming you installed the separate example distribution under the directory / opt /
oracl e/ nosql / apps/ kv/ exanpl es, the hadoop. t abl e example package would contain
the following source files under the / opt / or acl e/ nosql / apps/ kv/ exanpl es/ hadoop/
tabl e/ directory:

e Count Tabl eRows. j ava
* LoadVehicl eTabl e.] ava
e KVSecurityCreation.java

° KvSecurityWil.java

To run the MapReduce job launched by the Count Tabl eRows example Java program,
an Oracle NoSQL Database store (secure or non-secure) must first be deployed,

and a table must be created and populated with data. Thus, before executing

Count Tabl eRows, either use the steps outlined in the Deploying a Non-Secure Store
appendix to deploy a non-secure store, or use the Deploying a Secure Store appendix
to deploy a store configured for security.

Once a store has been deployed, you should execute the standalone Java program
LoadVehi cl eTabl e provided in the example package to create and populate a table
with the name and schema expected by Count Tabl eRows. Once the table is created
and populated with example data, Count Tabl eRows can then be executed to run a
MapReduce job that counts the number of rows of data in the table.

In addition to the LoadVehi cl eTabl e program, the example package also contains
the classes KVSecurityCreation and KVSecurityltil, which are provided to support
running Count Tabl eRows against a secure store.

The standalone Java program KVSecurityCreati on is provided as a convenience, and
can be run to create (or delete) a password file or Oracle Wallet along with associated
client side and server side login files that Count Tabl eRows will need to interact with a
secure store.

The KVSecurityUtil class provides convenient utility methods that Count Tabl eRows
uses to create and process the various security artifacts needed when accessing the
store securely.

The Count Tabl eRows Support Programs appendix explains how to compile and
execute the LoadVehi cl eTabl e program to create and populate the required example
table in the store that you deploy. That appendix also explains how to compile and
execute the KVSecurit yCreat i on program to create or delete any security credentials
that may be needed by Count Tabl eRows.

The following sections explain how to compile, build (JAR), and execute the
Count Tabl eRows MapReduce job on the Hadoop cluster that was deployed for this
example.

3-1

Chapter 3
Compile, Build, and Run the CountTableRows Example

Compile, Build, and Run the count ran eros Example

After you have run the LoadVehi cl eTabl e program to create and populate the
example vehi cl eTabl e (see the Count Tabl eRows Support Programs appendix), but
before you execute the example MapReduce job, you must first compile the

Count Tabl eRows program and package the compiled artifacts for deployment to the
Hadoop infrastructure.

To compile the Count Tabl eRows program, several Hadoop JAR files must be installed
and available in your build environment for inclusion in the program classpath. Those
JAR files are:

e commons- | 0ggi ng- <version>. | ar

e hadoop- cormon- <ver si on>. j ar

* hadoop- mapreduce-client-core-<version>.jar
e hadoop-annot ati ons- <versi on>. j ar

* hadoop-yarn- api - <versi on>. j ar

The <ver si on> token used above represents the particular version number of the
corresponding JAR file contained in the Hadoop distribution installed in your build
environment.

For example, suppose that the 3. 0. 0 version of Hadoop, packaged by Cloudera
version 6.3.0 (cdh6. 3. 0), was installed on your system via parcels; where a parcel
is a binary distribution format that Cloudera provides as an alternative to r pni deb
packages. Additionally, suppose that the classes from that version of Hadoop use
the 1. 1. 3 version of commons- | oggi ng. Given these assumptions, to compile the
Count Tabl eRows program, you would then type the following at the command line:

cd /opt/oracl e/ nosql / apps/ kv
javac -classpath \
[opt/cl ouderal parcel s/ CDH j ar s/ commons- | oggi ng-1. 1. 3.jar: \
[opt/cl ouderal/ parcel s/ CDH j ar s/
hadoop- common- 3. 0. 0-cdh6. 3. 0.jar: \
[opt/cl ouderal parcel s/ CDH j ars/ \
hadoop- mapreduce-client-core-3.0.0-cdh6.3.0.jar: \
[opt/cl ouderal parcel s/ CDH jars/ \
hadoop- annot ati ons-3.0.0-cdh6.3.0.jar: \
[opt/cl ouderal parcel s/ CDH j ars/ \
hadoop-yarn-api -3.0.0-cdh6.3.0.jar: \
/opt/oracl e/ kv-ee/lib/kvclient.jar:exanples \
exanpl es/ hadoop/ t abl e/ Count Tabl eRows. j ava

This produces the following files:

[opt/ oracl e/ nosql / apps/ kv/ exanpl es/ hadoop/ t abl e/
Count Tabl eRows. cl ass
Count Tabl eRows$Map. cl ass
Count Tabl eRows$Reduce. cl ass

ORACLE 3-2

Chapter 3
Compile, Build, and Run the CountTableRows Example

If your specific environment has a different, compatible Hadoop distribution installed,
then simply replace the paths and version references in the example command line
above with the appropriate values for your particular Hadoop installation.

Building count Tabi erovs When the Store is Non-Secure

If you will be running Count Tabl eRows against a non-secure store, then the class files
shown in the compilation step presented in the previous section should be placed in
a JAR file so that the program can be deployed to the example Hadoop cluster. For
example, to create a JAR file containing the class files needed to run Count Tabl eRows
against data in a non-secure store like that deployed in the Deploying a Non-Secure
Store appendix, do the following:

cd /opt/oracl e/ nosql / apps/ kv/ exanpl es
jar cvf Count Tabl eRows. jar hadoop/tabl e/ Count Tabl eRows*. cl ass

This produces a JAR file named Count Tabl eRows. j ar, having the following content,
located in the directory / opt / or acl e/ nosql / apps/ kv/ exanpl es:

META- | NF/

META- | NF/ MANI FEST. MF

hadoop/ t abl e/ Count Tabl eRows. cl ass
hadoop/ t abl e/ Count Tabl eRows$Map. cl ass
hadoop/ t abl e/ Count Tabl eRows$Reduce. cl ass

Building count Tani erovs When the Store is Secure

This section explains how to compile all of the Java classes that should be included
in the build. If you will be running Count Tabl eRows against a secure store like that
deployed in the Deploying a Secure Store appendix, in addition to including the
Count Tabl eRows program, the build also needs to include security credential files as
well as the KVSecuri t yCreati on program and KVSecurityUti| class used to perform
various security related functions when executing Count Tabl eRows.

To compile the KVSecuri t yCreati on and KVSecurityUil classes needed to run the
secure version of Count Tabl eRows, type the following at the command line:

cd /opt/oracl e/ nosql /apps/ kv

javac -classpath \
/opt/oracl e/ kv-ee/lib/kvstore.jar:exanples \
exanpl es/ hadoop/ t abl e/ KVSecurityCreation.java

javac -classpath \

[opt/oracl e/ kv-eellib/kvstore.jar:exanples \
exanpl es/ hadoop/ t abl e/ KVSecuritylUtil.java

ORACLE 3-3

Chapter 3
Compile, Build, and Run the CountTableRows Example

Once KVSecurityCreation and KVSecurityUtil have been compiled,
Count Tabl eRows itself can be compiled in the same way as that shown in the previous
section; that is,

javac -classpath \
[opt/cl ouderal parcel s/ CDH j ar s/ cormons-1 oggi ng-1. 1. 3. jar: \
[opt/cl ouderal parcel s/ CDH j ars/
hadoop- conmon- 3. 0. 0-cdh6. 3. 0.jar: \
[opt/clouderal parcel s/ CDH jars/ \
hadoop- mapr educe-client-core-3.0.0-cdh6.3.0.jar: \
[opt/clouderal/ parcel s/ CDH jars/ \
hadoop- annot ations-3.0.0-cdh6.3.0.jar: \
[opt/clouderal parcel s/ CDH jars/ \
hadoop-yarn-api-3.0.0-cdh6.3.0.jar: \
[opt/oracl e/ kv-ee/lib/kvclient.jar:exanples \
exanpl es/ hadoop/ t abl e/ Count Tabl eRows. j ava

The command lines above will produce the following class files:

[opt/ oracl e/ nosql / apps/ kv/ exanpl es/ hadoop/ t abl e/
Count Tabl eRows. cl ass
Count Tabl eRows$Map. cl ass
Count Tabl eRows$Reduce. cl ass
KVSecurityUtil.class
KVSecurityCreation. cl ass

Unlike the non-secure case, the build artifacts needed to deploy Count Tabl eRows

in a secure environment include more than just a single JAR file containing the
generated class files. For the secure case, it is necessary to package some artifacts
for deployment to the client side of the application that communicates with the store,
whereas other artifacts will need to be packaged for deployment to the server side of
the application.

Although there are different ways to achieve this "separation of concerns" when
deploying a given application, the Model For Building & Packaging Secure Clients
appendix of this document presents one particular model you can use to package and
deploy the artifacts for applications that will interact with a secure store. With this in
mind, the sections in this document related to executing Count Tabl eRows against a
secure store each assume that the application has been built and packaged according
to the instructions presented in the Model For Building & Packaging Secure Clients
appendix.

RUNNINg count Tanl erows When the Store is Non-Secure

ORACLE

If you will be running Count Tabl eRows against a non-secure store such as that
deployed in the Deploying a Non-Secure Store appendix, and you have compiled and
built Count Tabl eRows in the manner presented in the previous section, the MapReduce
job initiated by the Count Tabl eRows example program can be deployed by typing the
following at the command line of the Hadoop cluster's access node:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH: \
[opt/oracl e/ kv-ee/lib/kvclient.jar

3-4

Chapter 3
Compile, Build, and Run the CountTableRows Example

cd /opt/oracl e/ nosql apps/ kv

hadoop jar exanpl es/ Count Tabl eRows. jar \
hadoop. t abl e. Count Tabl eRows \
-libjars \
/opt/oracl e/ kv-ee/lib/kvclient.jar,\
[opt/oracl e/ kv-eel/lib/ skl ogger.jar,\
[opt/oracl e/ kv-ee/l'ib/comonutil.jar,\
lopt/oracl e/ kv-eellib/failureaccess.jar,\
[opt/oracl e/ kv-ee/l'ib/antlr4-runtine-nosql-shaded.jar,\
[opt/oracl e/ kv-eellib/jackson-core.jar,\
/opt/oracl e/ kv-eel/lib/jackson-databind.jar,\
[opt/oracl e/ kv-eel/lib/jackson-annotations.jar,\
exanmpl e-store \
kv-host-1:5000 \
vehi cl eTabl e \
[user/ exanpl e- user/ Count Tabl eRows/ vehi cl eTabl e/ <O00ON>

The Hadoop command interpreter's - | i bj ar s argument is used to include the third
party libraries kvclient.jar, skl ogger.jar, conmonutil.jar,failureaccess.jar,
antlr4-runtime-nosql - shaded. j ar, j ackson-core.j ar, j ackson- dat abi nd. j ar, and
j ackson-annot ati ons. j ar in the classpath of each MapReduce task executing on the
cluster's DataNodes. This is hecessary so that those tasks can access classes such
as, Tabl el nput Spl it and Tabl eRecor dReader, as well as various support classes that
are not available on the Hadoop platform.

The value example-store specifies the name of the store you deployed and the value
kv-host - 1: 5000 specifies the hostname and port to use when connecting to that store.
The value vehicleTable specifies the name of the table whose rows will be counted

by the MapReduce job. And the last argument, containing the path string, specifies
where in the Hadoop HDFS filesystem the final value for the number of rows in the
vehi cl eTabl e should be written.

Note:

The example-user component of the path value input to the last argument
corresponds to a directory under the HDFS top-level directory with base
path / user, which typically corresponds to the user who has initiated the
MapReduce job. This directory is usually created in HDFS by the Hadoop
cluster administrator. Additionally, the <000N> token at the end of the path
represents a string such as 0000, 0001, 0002, etc. Although any string can
be used for this token, using a different number for "N" on each execution of
the job makes it easier to keep track of results when you run the job multiple
times.

Running count Tavi erows \WWhen the Store is Secure and a Password File is
Used

If you will be running Count Tabl eRows against a secure store such as that deployed in
the Deploying a Secure Store appendix, and you have compiled, built, and packaged
Count Tabl eRows and all the necessary artifacts in the manner described in the Model

ORACLE 3-5

Chapter 3
Compile, Build, and Run the CountTableRows Example

For Building & Packaging Secure Clients appendix, then Count Tabl eRows can be run
against the secure store by typing the following at the command line of the Hadoop
cluster's access node:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH: \
[opt/oracl e/ kv-ee/lib/kvclient.jar:\
[opt/ oracl e/ nosql / apps/ exanpl es/ Count Tabl eRows- pwdSer ver . j ar

cd /opt/oracl e/ nosql apps/ kv

hadoop jar exanpl es/ Count Tabl eRows- pwdCl ient.jar \
hadoop. t abl e. Count Tabl eRows \
-libjars /opt/oracle/kv-ee/libl/kvclient.jar,\
[opt/oracl e/ kv-eel/lib/ skl ogger.jar,\
[opt/oracl e/ kv-ee/l'ib/comonutil.jar,\
lopt/oracl e/ kv-ee/lib/failureaccess.jar,\
[opt/oracl e/ kv-ee/l'ib/antlr4-runtine-nosql-shaded.jar,\
[opt/oracl e/ kv-eellib/jackson-core.jar,\
/opt/oracl e/ kv-eel/lib/jackson-databind.jar,\
[opt/oracl e/ kv-ee/lib/jackson-annotations.jar,\
[opt/ oracl e/ nosql / apps/ exanpl es/ Count Tabl eRows- pwdSer ver. jar \
exampl e-store \
kv-host -1: 5000 \
vehi cl eTabl e \
/ user / exanpl e- user/ Count Tabl eRows/ vehi cl eTabl e/ <O00ON> \
exanpl e-user-client-pwdfile.login \
exanpl e-user-server.login

The following items in the command lines above are the client side artifacts of
Count Tabl eRows,

exanpl es/ Count Tabl eRows- pwdd i ent . j ar
exanpl e-user-client-pwdfile.login
whereas the following items are the server side artifacts.

[opt/ oracl e/ nosql / apps/ exanpl es/ Count Tabl eRows- pwdSer ver. j ar

exanpl e-user-server.login

Rather than using an Oracle Wallet, the mechanism used for storing the
user's password is a password file, which is contained in the Count Tabl eRows-
pwdServer. j ar artifact.

Running count Tabl erows VWhen the Store is Secure and an Oracle Wallet is
Used

If you will be running Count Tabl eRows against a secure store and you are using
an Oracle Wallet rather than a password file to store the user's password, then the

ORACLE 3-6

Count Tabl eRows

ORACLE

Chapter 3
CountTableRows MapReduce Job Results

Count Tabl eRows MapReduce job can be run by typing the following at the access
node's command line:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH: \
[opt/oracl e/ kv-ee/lib/kvclient.jar:\
/opt/ oracl e/ nosql / apps/ exanpl es/ Count Tabl eRows- wal | et Server.jar

cd /opt/oracl e/ nosql apps/ kv

hadoop jar exanpl es/ Count Tabl eRows-wal et ient.jar \
hadoop. t abl e. Count Tabl eRows \
-libjars \
[opt/oracl e/ kv-ee/lib/kvclient.jar,\
[opt/oracl e/ kv-eel/li b/ skl ogger.jar,\
[opt/oracl e/ kv-ee/l'ib/comonutil.jar \
lopt/oracl e/ kv-ee/lib/failureaccess.jar,\
/opt/oracl e/ kv-ee/lib/antlr4-runtine-nosql-shaded.jar,\
[opt/oracl e/ kv-ee/lib/jackson-core.jar,\
/opt/oracl e/ kv-eel/lib/jackson-databind.jar,\
[opt/oracl e/ kv-ee/lib/jackson-annotations.jar,\
/opt/ oracl e/ nosql / apps/ exanpl es/ Count Tabl eRows- wal | et Server.jar \
exanmpl e-store \
kv-host -1: 5000 \
vehi cl eTabl e \
/ user / exanpl e- user/ Count Tabl eRows/ vehi cl eTabl e/ <O00ON> \
exanpl e-user-client-wallet.login \
exanpl e-user-server.login

Whether storing the user's password in a password file or an Oracle Wallet

(available in only the Enterprise Edition of Oracle NoSQL Database), notice that

an additional JAR file artifact (Count Tabl eRows- pwdSer ver . j ar or Count Tabl eRows-
wal | et Server. | ar) is specified for both the HADOOP_CLASSPATH environment variable
and the Hadoop -1 i bj ar s parameter. For a detailed explanation of the use and
purpose of those server side JAR files, as well as a description of the client side

JAR file and the two additional arguments at the end of the command line, refer to the
Model For Building & Packaging Secure Clients appendix.

MapReduce Job Results

Whether running against a secure or non-secure store, as the job runs, assuming no
errors, the output from the job will look like the following:

INFO [main] mapreduce. Job (Job.java: nonitor AndPrint Job(1344))
- Running job: job_1409172332346_0024

INFO [main] mapreduce. Job (Job.java: nonitorAndPrint Job(1372))
- map 0%reduce 0% INFO [main] mapreduce. Job
(Job. java: moni t or AndPrint Job(1372))
- map 26%reduce 0%

INFO [main] mapreduce. Job (Job.java: nonitorAndPrint Job(1372))
- map 56%reduce 0%

INFO [main] mapreduce. Job (Job.java: nonitorAndPrint Job(1372))
- map 100%reduce 0% I NFO [main] mapreduce. Job

3-7

Chapter 3
CountTableRows MapReduce Job Results

(Job. java: moni t or AndPrint Job(1383))
- Job job_1409172332346_0024 conpl eted successfully
INFO [main] mapreduce.Job (Job.java: nonitor AndPrint Job(1390))
- Counters: 49
File System Counters
FI LE: Nunber of bytes read=2771
FILE: Nunber of bytes written=644463
FILE: Nunmber of read operations=0
FILE: Nunber of large read operations=0
FILE: Nunber of write operations=0
HDFS: Nunber of bytes read=2660
HDFS: Number of bytes written=32
HDFS: Nunber of read operations=15
HDFS: Nunber of large read operations=0
HDFS: Number of wite operations=2
Job Counters
Launched map tasks=6
Launched reduce tasks=1
Rack-1ocal nmap tasks=6
Total time spent by all maps in occupied slots (ns)=136868
Total time spent by all reduces in occupied slots (ns)=2103
Total time spent by all map tasks (ms)=136868
Total time spent by all reduce tasks (ms)=2103
Total vcore-seconds taken by all map tasks=136868
Total vcore-seconds taken by all reduce tasks=2103
Total megabyte-seconds taken by all map tasks=140152832
Total megabyte-seconds taken by all reduce tasks=2153472
Reduce Franework
Map i nput records=79
Map out put byt es=2607
Map output nmaterialized bytes=2801
Input split bytes=2660
Conbi ne input records=0
Conbi ne out put records=0
Reduce input groups=1
Reduce shuffle bytes=2801
Reduce input records=79
Reduce out put records=1
Spi |l ed Records=158
Shuffl ed Maps =6
Fail ed Shuffles=0
Merged Map out put s=6
GC time el apsed (ms)=549
CPU time spent (ns)=9460
Physi cal nenory (bytes) snapshot=1888358400
Virtual menory (bytes) snapshot=6424895488
Total conmitted heap usage (bytes)=1409286144
Shuffle Errors
BAD | D=0
CONNECTI ON=0
| O_ERROR=0
VRONG_LENGTH=0
VIRONG_MAP=0
VRONG_REDUCE=0
File Input Format Counters

Map

ORACLE 3-8

ORACLE

Chapter 3
CountTableRows MapReduce Job Results

Byt es Read=0
File Qutput Format Counters
Bytes Witten=32

To see the results of the job and to verify that the program counted the correct number
of rows in the table, use the Hadoop CLI to display the contents of the MapReduce
results file located in HDFS. To do this, type the following at the command line of the
Hadoop cluster's access node:

hadoop fs -cat \
/ user/ exanpl e- user/ Count Tabl eRows/ vehi cl eTabl e/ <O00ON>/ part - r- 00000

where the <000N> token should be replaced with the value you used when the job was
run. Assuming the table was populated with 79 rows, if the job was successful, then
the output should look like the following:

[typel make/ nodel / cl ass 79

where / t ype/ make/ model / cl ass are the names of the fields making up the
PrimaryKey of the vehi cl eTabl e, and 79 is the number of rows in the table.

3-9

Appendix

Topics

* Deploying a Non-Secure Store

» Deploying a Secure Store

e Count Tabl eRows Support Programs

* Model For Building & Packaging Secure Clients

Deploying a Non-Secure Store

The Concepts Guide, as well as the Administrator's Guide, each presents several
different ways to deploy and configure an Oracle NoSQL Database store that does

not require secure access. For convenience, this appendix describes one particular set
of steps you can take to deploy and configure such a store. Whether you prefer the
technique presented here or one of the techniques presented in the concepts manual
and administrator's guide, a non-secure store must be deployed and configured to run
the example presented in this document in a non-secure environment. For each of the
steps presented below, assume the following:

e The Oracle NoSQL Database distribution is installed under the directory / opt /
oracl e/ kv- ee.

e A store named exanpl e- st or e is deployed to three hosts.
e The hosts are named, kv- host - 1, kv- host - 2, and kv- host - 3, respectively.
e An admin service, listening on port 5000, is deployed on each of the three hosts.

* The contents of the shards managed by the store will be located under the storage
directory / u01/ nosql / snl/ dat a for host kv- host - 1, / u02/ nosql / sn2/ dat a for host
kv-host - 2, and / u03/ nosql / sn3/ dat a for host kv- host - 3.

Given the above assumptions, you can follow the steps below to deploy a non-secure
store, where each item from the given assumptions should be replaced with its
comparable value specific to your particular environment.

Generate Configuration Files For Each Storage Node (SN)

Login to each host kv- host - 1, kv- host - 2, kv- host - 3, and, from each respective
command line, type commands like those shown.

On kv-host-1:
java -jar /opt/oraclelkv-eel/lib/kvstore.jar \
makeboot config \
-root /u01/nosql/snl/kvroot \
-config config.xm \
-port 5000 \
-host kv-host-1\

ORACLE 4-1

Chapter 4
Deploying a Non-Secure Store

- harange 5002, 5007 \

-numcpus 0\

-mermory_nb 200 \

-capacity 1\

-storagedir /u0l/nosql/snl/data \
-storagedirsize 10000000 \

-store-securi ty none

On kv-host-2:
java -jar /opt/oraclelkv-ee/lib/kvstore.jar \

makeboot config \

-root /u02/ nosql/sn2/kvroot \
-config config.xm \

-port 5000 \

-host kv-host-2 \

- harange 5002, 5007 \
-numcpus 0\

-mermory_nmb 200 \

-capacity 1\

-storagedir /u02/nosql/sn2/data \
-storagedirsize 10000000 \
-store-security none

On kv-host-3:
java -jar /opt/oraclelkv-ee/lib/kvstore.jar \

makeboot config \

-root /u03/nosql/sn3/kvroot \
-config config.xm \

-port 5000 \

-host kv-host-3 \

- harange 5002, 5007 \
-numcpus 0\

-mermory_nmb 200 \

-capacity 1\

-storagedir /u03/nosql/sn3/data \
-storagedirsize 10000000 \
-store-security none

Launch a Storage Node Agent (SNA) On Each Host Making Up the

Store

ORACLE

From each host’'s command line, type a command like the following:

nohup java -jar /opt/oraclel/kv-ee/libl/kvstore.jar start \

-root /u0<n>/ nosql/sn<n>/ kvroot -config config.xn &

where the token <n> corresponds to the integer associated with the given host from
which the above command is executed.

4-2

Chapter 4
Deploying a Non-Secure Store

Configure and Deploy the Non-secure Store

ORACLE

From the command line of any host that has network connectivity to the nodes making
up the store type the following command to enter the store’s administrative command
line interface (Admin CLI), connected to the boot storage node agent (the boot SNA).

Note:

The node from which you execute the command only requires network
connectivity and an Oracle NoSQL Database installation. Thus, although
you can execute the command from a separate node that satisfies that
requirement, you can also execute that command from any of the nodes
making up the store (kv- host - 1, kv- host - 2, or kv- host - 3); as those hosts,
by default, satisfy the requirements for launching the Admin CLI.

java -jar /opt/oraclelkv-ee/lib/kvstore.jar runadnmin \
- hel per-hosts kv-host-1:5000, kv- host - 2: 5000, kv- host - 3: 5000

Once the Admin CLI has been launched, you can deploy the store in one of two
ways. First, you can enter the following commands, in succession, at the Admin CLI's
command prompt.

configure -name exanpl e-store
pl an depl oy-zone -name znl -rf 3 -wait

pl an depl oy-sn -znname znl -host kv-host-1 -port 5000 -wait
pl an depl oy-adnmin -sn 1 -wait

pool create -name snpool

pool join -name snpool -sn snl

pl an depl oy-sn -znname znl -host kv-host-2 -port 5000 -wait
pl an depl oy-adnin -sn 2 -wait
pool join -name snpool -sn sn2

pl an depl oy-sn -znname znl -host kv-host-3 -port 5000 -wait

pl an depl oy-adnmin -sn 3 -wait

pool join -name snpool -sn sn3

change-policy -parans "l oggi ngConfi gProps=oracle. kv.|evel =I NFGQ "
topol ogy create -name store-layout -pool snpool -partitions 120

t opol ogy preview -nane store-|ayout
pl an depl oy-topol ogy -nane store-layout -plan-nane depl oy-plan -wait

Rather than submitting each of the above commands as separate entries to the Admin
CLI's command prompt, you may find it more convenient to instead copy each of

4-3

Chapter 4
Deploying a Secure Store

those commands to a text file and then specify the single | oad command on the CLI's
command prompt; for example,

load -file <path-to-command-file>

Deploying a Secure Store

The Security Guide presents several different ways to deploy and configure an Oracle
NoSQL Database store for secure access. For convenience, this section describes
one particular set of steps you can take to deploy and configure such a store. Whether
you prefer the technique presented here or one of the other techniques presented in
the Security Guide, a secure store must be deployed and configured in order to run
the secure form of the example presented in this document. For each of the steps
presented below, in addition to the assumptions made in the non-secure case, also
assume the following:

e For convenience, the password manager the store uses to store and retrieve
passwords needed for access to keystores and truststores is a password file
rather than an Oracle Wallet, which is available in only the Enterprise Edition of
Oracle NoSQL Database.

e For simplicity, all passwords are set to the value No_Sql _00.
* The name of the user that accesses the store is exanpl e- user.

Given the above assumptions, you can follow the steps below to deploy a secure
store, where each item from the given assumptions should be replaced with its
comparable value specific to your particular environment.

Generate Configuration Files For Each Storage Node (SN)

ORACLE

On kv- host - 1, execute the following command and enter the appropriate responses
when prompted:

java -jar /opt/oraclelkv-eel/lib/kvstore.jar \
makeboot config \
-root /u01/nosql/snl/kvroot \
-config config.xm \
-port 5000 \
-host kv-host-1\
- harange 5002, 5007 \
-numcpus 0\
-merory_nb 200 \
-capacity 1\
-storagedir /u0l/nosql/snl/data \
-storagedirsize 10000000 \
-store-security configure \
-pwdngr pwdfile \
-kspwd No_Sgl _00

Enter a password for the Java KeyStore: No_Sgl _00<RETURN>
Re-enter the KeyStore password for verification: No_Sql 00<RETURN>

Created files
/u01/ nosql / snl/ kvroot/security/store.trust

4-4

Chapter 4
Deploying a Secure Store

/u01/ nosql / snl/ kvroot/security/store. keys
/u01/ nosql / snl/ kvroot/security/store. passwd
/u01/ nosql / snl/ kvroot/security/client.trust
/u01/ nosql / snl/ kvroot/security/security.xm
/u01/ nosql / snl/ kvroot/security/client.security

Specifying the value conf i gur e for the - st or e- securi ty parameter in the above
command generates the security artifacts (files) needed for the store’s nodes, as well
as clients of the store, to communicate securely. Each of the artifacts must be installed
on the store’s remaining nodes, whereas only the cl i ent. trust artifact should be
installed on any client nodes that will be accessing the store.

To install all of the artifacts listed above on each of the store’s remaining nodes, login
to each node, create the appropriate KVROOT directory, and use a utility such as scp to
copy the security directory from kv- host - 1 to the given node’s KVROOT directory. That
is,

On kv-host-2:

nkdir -p /u02/ nosql / sn2/ kvr oot

cd /u02/ nosql / sn2/ kvr oot

scp -r <username>@v-host-1:/u01/nosql/snl/kvroot/security

On kv-host-3:

nkdir -p /u03/nosql /sn3/kvr oot

cd /u03/nosql / sn3/ kvr oot

scp -r <username>@v-host-1:/u01/ nosql/snl/kvroot/security

To install the cl i ent. trust file on the client node, login to the client node and simply
copy the desired file from kv- host - 1 node. That is,

On client-host:
scp <username>@v- host-1:\
/u01/ nosql / snl/ kvroot/security/client.trust /tnp

Once the security artifacts generated on kv- host - 1 have been installed on each of
the store's remaining nodes, the configuration files for the Storage Nodes that will
be deployed to those remaining nodes can be generated. This is accomplished by
executing the following commands on the respective node:

On kv-host-2:

java -jar /opt/oraclelkv-eel/lib/kvstore.jar \
makeboot config \
-root /u02/ nosql/sn2/kvroot \
-config config.xm \
-port 5000 \
-host kv-host-1\
-harange 5002, 5007 \
-numcpus 0\
-mermory_nmb 200 \
-capacity 1\
-storagedir /u02/nosql/sn2/data \
-storagedirsize 10000000 \
-store-security enable \

ORACLE 4.5

Chapter 4
Deploying a Secure Store

-pwdngr pwdfile \
-kspwd No_Sgl _00

On kv-host-3:

java -jar /opt/oraclelkv-eel/lib/kvstore.jar mkebootconfig \
-root /u03/nosql/sn3/kvroot \
-config config.xm \
-port 5000 \
-host kv-host-1 \
- harange 5002, 5007 \
-numcpus 0\
-mermory_nmb 200 \
-capacity 1\
-storagedir /u03/nosql/sn3/data \
-storagedirsize 10000000 \
-store-security enable \
-pwdngr pwdfile \
-kspwd No_Sgl _00

For both commands above, notice that the value specified for the - st ore-security
parameter is enabl e rather than conf i gur e, which was specified when generating the
configuration on kv- host - 1.

Launch a Storage Node Agent (SNA) On Each Host Making Up the
Store

From each host's command line, type a command like the following:

nohup java -jar /opt/oracle/kv-ee/lib/kvstore.jar start \
-root /u0<n>/nosql/sn<n>/kvroot -config config.xm &

where the token <n> corresponds to the integer associated with the given host from
which the above command is executed.

Configure and Deploy the Secure Store

From the command line of the host kv- host - 1 launch the Admin CLI, connected to the
boot SNA.

java -jar /opt/oraclelkv-eel/lib/kvstore.jar runadmin \
- hel per - hosts kv-host-1:5000, kv- host - 2: 5000, kv- host - 3: 5000 \
-security /u0l1/nosql/snl/ kvroot/security/client.security

Next, from the Admin CLI's command prompt, deploy the store by either entering each
command shown below in succession or by using the | oad -file <fil e>command to
load those same commands from a file.

configure -name exanpl e-store
pl an depl oy-zone -name znl -rf 3 -wait

pl an depl oy-sn -znname znl -host kv-host-1 -port 5000 -wait

ORACLE 4-6

Chapter 4
Deploying a Secure Store

pl an depl oy-adnmin -sn 1 -wait
pool create -name snpool
pool join -name snpool -sn snl

pl an depl oy-sn -znname znl -host kv-host-2 -port 5000 -wait
pl an depl oy-adnin -sn 2 -wait
pool join -name snpool -sn sn2

pl an depl oy-sn -znname znl -host kv-host-3 -port 5000 -wait
pl an depl oy-adnmin -sn 3 -wait
pool join -name snpool -sn sn3

change-policy -parans "l oggi ngConfi gProps=oracle. kv.|evel =I NFG "

topol ogy create -name store-layout -pool snpool -partitions 120
t opol ogy preview -nane store-|ayout
pl an depl oy-topol ogy -nane store-layout -plan-nane depl oy-plan -wait

execute "CREATE USER root | DENTIFI ED BY ' No_Sql _00' ADM N';

Note:

The only difference between the set of store deployment commands
presented in the Configure and Deploy the Non-secure Store appendix for

a non-secure store and the commands above is the last command. Once the
store is deployed, that last command will create a store user named r oot
with administrative privileges and password equal to the value No_Sql _00.

When a secure store is deployed, before the store can be used, an initial user must
be created and then provisioned with the necessary security credentials that grant
that user privileges that allow it to administer the store. Once that user is created
and provisioned, it can then be used to create other users of the store. In a typical
production scenario, tables are generally created and populated with data by users
with only user-level privileges rather than administrative privileges.

The last command above then simply creates that initial user that will be used to
create a second user for executing the secure version of the example program
presented in this document. But before that root user can create other users of the
store, it must first be provisioned, as explained in the next section.

Provision the Secure Store’s Administrative User (root)

ORACLE

As described in the previous section, the last step of the secure store deployment
process simply creates the store's administrative user but does not provision it. But in
order to administer the store, that new user must be provisioned with credentials that
grant administrative privileges for the store. To provision the root user created in the
previous section, login to the store's kv- host - 1 node, execute the commands shown,
and enter the appropriate responses when prompted:

java -jar /opt/oraclelkv-eel/lib/kvstore.jar \
securityconfig pwdfile create \

4-7

Chapter 4
Deploying a Secure Store

-file /u0l/nosql/snl/kvroot/security/root.passwd
Created

java -jar /opt/oraclelkv-ee/lib/kvstore.jar \
securityconfig pwdfile secret \
-file /u01l/nosql/snl/kvroot/security/root.passwd \
-set -alias root

Enter the secret value to store: No_Sgl _00<RETURN>
Re-enter the secret value for verification: No_Sql O00<RETURN>

Secret created
(074

cp /u01/nosql/snl/kvroot/security/client.security \
/u01/ nosql / snl/ kvroot/security/root.|ogin

echo oracl e. kv. aut h. user nane=root >> \
/u01/ nosql / snl/ kvroot/security/root.|ogin

echo oracle.kv.auth. pwdfile.file=\
/u01/ nosql / snl/ kvroot/security/root.passwd >> \
/u01/ nosql / snl/ kvroot/security/root.|ogin

The client.security properties file is one of the security artifacts that was generated
in the Generate Configuration Files For Each Storage Node (SN) appendix. The
contents of that file are copied to the file named root . | ogi n. The root . | ogi n file
created here is used when clients wishing to connect to the secure store must
authenticate as the user named r oot . For the purposes of this document, this
authentication process will be referred to as logging in to the secure store. As a result,
the properties file used in that authentication process is referred to as a login file, or
login properties file.

For convenience, the system properties or acl e. kv. aut h. user nane and

oracle. kv.auth. pwdfile.file areinserted into the r oot . | ogi n file. This will allow
the client to connect to the secure store as the root user without having to specify the
value of those properties on the command line.

Create Non-Administrative User

ORACLE

To create a user that will be provisioned with non-administrative privileges, from the
store’s kv- host - 1 node, login to the Admin CLI as the newly created root user.

java -jar /opt/oraclelkv-ee/lib/kvstore.jar runadmin \
-host kv-host-1 \
-port 5000 \
-security /u01/nosql/snl/kvroot/security/root.|ogin

Then create a custom role with the name r eadwr i t enodi f yt abl es (for example)
that consists of the privileges a user would need to create and populate a table in
the store. After creating the desired role, create a user named exanpl e- user and
grant the readwr i t enodi f yt abl es role to that user. To accomplish this, either enter
each command shown below in succession or copy each command to a text file

4-8

Chapter 4
Deploying a Secure Store

and execute the CLI's load command, specifying the file you created ('l oad -file
<file>".

execut e ' CREATE ROLE readwritenodi fyt abl es’

execut e ' GRANT SYSDBA TO readwr it enodi f yt abl es'

execut e ' GRANT READ ANY TO readw it enodifytabl es'

execute ' GRANT WRI TE_ANY TO readwr it enodi f yt abl es'

execut e ' CREATE USER exanpl e-user | DENTI FI ED BY "No_Sql _00"'
execut e ' GRANT readw itenodifytables TO USER exanpl e-user'

Note:

The name of the user created above is not required to be the same as the
OS user name under which the example is executed. The name above and
its associated credentials are registered with the secure store for the purpose
of authenticating to the store. Thus, the name of the user that is created here
can be any value you wish to use.

Provision the Secure Store's Non-Administrative User (example-user)

ORACLE

Once the user named exanpl e- user and its role have been created, use the

KVSecuri t yCreati on convenience program to generate the public and private
credentials needed by that user to connect to the secure store. To do this, first compile
KVSecuri t yCreati on by executing the following command from the store's kv- host - 1
node:

cd /opt/oracl e/ nosql / apps/ kv

javac -classpath \
lopt/oracl e/ kv-ee/lib/kvstore.jar:exanples \
exanpl es/ hadoop/ t abl e/ KVSecurityCreation.java

This will produce the following class files on the kv- host - 1 node:

[opt/ oracl e/ nosql / apps/ kv/ exanpl es/ hadoop/ t abl e/
KVSecurityUtil.class
KVSecurityCreation. cl ass

Once KVSecurityCreation has been compiled, it can then be executed to generate
the desired security artifacts for the non-administrative user. If you want to store the
password in a clear text password file, then type the following at the command line and
enter the appropriate response when prompted:

cd /opt/oracl e/ nosql / apps/ kv

java -classpath \
[opt/oracl e/ kv-eellib/kvstore.jar:\
/opt/oracl e/ kv-eellibl/sklogger.jar:\
[opt/oracl e/ kv-ee/lib/comonutil.jar:exanmles \
hadoop. t abl e. KVSecurityCreation \
-pwdfile exanpl e-user. passwd \
-set -alias exanple-user

4-9

ORACLE

Chapter 4
Deploying a Secure Store

INFO removed file [/tnp/exanpl e-user. passwd]

INFG renoved file [/tnp/exanpl e-user-client-pwdfile.login]

created login properties file [/tnp/exanpl e-user-client-pwdfile.login]
created login properties file [/tnp/exanpl e-user-server.|ogin]

created credentials store [/tnp/exanpl e-user. passwd]

Enter the secret value to store: No_Sgl _00<RETURN>
Re-enter the secret value for verification: No_Sql O00<RETURN>

Secret created
(074

Alternatively, if you are using an Oracle Wallet (available only in the Enterprise Edition)
to store the user's password, then type the following and again, enter the appropriate
response when prompted:

cd /opt/oracl e/ nosql / apps/ kv

java -classpath \
lopt/oracl e/ kv-ee/lib/kvstore.jar:\
lopt/oracl e/ kv-ee/lib/sklogger.jar:\
[opt/oracl e/ kv-ee/lib/comonutil.jar:exanples \
hadoop. t abl e. KVSecurityCreation \
-wal | et exanpl e-user-wal let.dir \
-set -alias exanple-user

INFG removed file [/tnp/exanpl e-user-wallet.dir/cwallet.sso]

INFO renmoved directory [/tnp/exanple-user-wallet.dir]

INFG removed file [/tnp/exanpl e-user-client-wallet.!|ogin]

created login properties file [/tnp/exanpl e-user-client-wallet.|ogin]
created login properties file [/tnp/exanpl e-user-server.|ogin]
created credentials store [/tnp/exanpl e-user-wallet.dir]

Enter the secret value to store: No_Sqgl _00<RETURN>
Re-enter the secret value for verification: No_Sgl _00<RETURN>

Secret created
(04

Compare the artifacts generated when a password file is specified with the artifacts
generated when a wallet is specified. When a password file is specified, you should
see the following files:

[tnp
exanpl e-user-client-pwdfile.login
exanpl e-user-server.login
exanpl e- user. passwd

Whereas when wallet storage is specified, you should see:

/tmp
exanmpl e-user-client-wallet.login
exanpl e-user-server.login

4-10

ORACLE

Chapter 4
Deploying a Secure Store

[exanpl e-user-wal let.dir
cwal | et. sso

Note:

As this is an example for demonstration purposes, the credential files
generated by KVSecurit yCreati on are placed in the system's / t np directory.
For your applications, you may want to place the credential files you
generate in a more permanent location that is password protected.

" Note:

For both the password or wallet cases two login properties files are
generated; one for client side connections, and one for server side
connections. The only difference between the client side login file and

the server side login file is that the client side login file specifies the
username (the alias) along with the location of the user's password.

For the login properties file associated with the use of a password file,

the property or acl e. kv. aut h. pwdfi | e is used to specify the location of
the file in which the user’s password is stored; whereas the property
oracle. kv.auth.wal | et. dir would be used if the password is stored in an
Oracle Wallet. Although optional, the reason for using two login files is to
avoid passing private security information to the server side, as explained
in more detail in the Model For Building & Packaging Secure Clients
appendix. Additionally, observe that the server side login file (exanpl e-
user-server. | ogi n) is identical for both cases. This is because whether a
password file or an Oracle Wallet is used to store the password, both use the
same publicly visible communication transport information.

At this point, the store has been deployed, configured for secure access, and
provisioned with the necessary users and credentials required for table creation and
population. To demonstrate running a MapReduce job against table data contained in
a secure store, the example presented in this document can now be executed by a
user whose password is stored either in a clear text password file or an Oracle Wallet
(Enterprise Edition only).

4-11

Chapter 4
CountTableRows Support Programs

< Note:

A final, important point is that the storage mechanism used for the example
application's user password (password file or Oracle Wallet) does not
depend on the password storage mechanism used by the store. That is,
although this appendix (for convenience) deployed a secure store using

a password file rather than a wallet, the fact that the store placed the
passwords it manages in a password file does not prevent the developer/
deployer of a client of that store from storing the client's user password in
an Oracle Wallet, or vice versa. You should therefore view the use of an
Oracle Wallet or a password file by any client application as simply a "safe"
place (for some value of "safe") where the user password can be stored and
accessed by only the user who owns the wallet or password file. This means
that the choice of password storage mechanism is at the discretion of the
application developer/deployer, no matter what mechanism is used by the
store itself.

count Tabl erovs SUPPOIt Programs

Oracle NoSQL Database provides a separate distribution in Oracle Technology
Network consisting of example programs and utility classes that you can use to
explore various aspects of interacting with an Oracle NoSQL Database system. With
respect to exploring the integration of Oracle NoSQL Database with MapReduce,

in addition to providing the Count Tabl eRows example program presented in this
document, the Oracle NoSQL Database examples also provide the LoadTabl eVehi cl e
program that you can use to create and populate an example table in the store you
deploy.

The sections below describe the LoadVehi cl eTabl e program; including the schema
employed when creating the table, as well as how to compile and execute the
program.

Schema for the veni ci etani e Example

ORACLE

To execute the Count Tabl eRows MapReduce job, a table named vehi cl eTabl e
having the schema shown in the table below must be created in the Oracle
NoSQL Database store deployed for this example. The data types specified in the
schema shown below are defined by the Oracle NoSQL Database Table API (see
oracle. kv.tabl e. Fi el dDef . Type) .

Table 4-1 Schema for vehicleTable

Field Name Field Type Primary Key Shard Key
type FieldDef. Type.STRING Y Y
make FieldDef. Type.STRING Y Y
model FieldDef. Type.STRING Y Y
class FieldDef. Type.STRING Y

color FieldDef. Type.STRING

price FieldDef.Type.DOUBLE

4-12

Chapter 4
CountTableRows Support Programs

Table 4-1 (Cont.) Schema for vehicleTable
|

Field Name Field Type Primary Key Shard Key
count FieldDef. Type.INTEGER

dealerid FieldDef. Type.NUMBER

delivered FieldDef. Type. TIMESTAMP

The example vehi cl eTabl e consists of rows representing a particular vehicle a
dealer might have in stock for purchase. Each such row contains fields specifying
the "type" of vehicle (for example, car, truck, SUV, etc.), the "make" of the vehicle
(Ford, GM, Chrysler, etc.), the "model" (Explorer, Camaro, Lebaron, etc.), the vehicle
"class" (4WheelDrive, FrontWheelDrive, etc.), the "color" and "price" of the vehicle,
the number of vehicles currently in stock (the "count") having those characteristics, a
number that uniquely identifies the dealership selling those vehicles (the "dealerid"),
and finally, the date and time those vehicles were "delivered” to the dealership.

Although you can enter individual commands in the store's admin CLI to create a
table with the above schema, the preferred approach is to employ the Table Data
Definition Language (DDL) to create the desired table. One way to accomplish this is
to follow the instructions presented in the next sections to compile and execute the
LoadVehi cl eTabl e program, which will populate the desired table after using the DDL
to create it.

Create and Populate veni ci etani e With Example Data

Assuming an Oracle NoSQL Database store (secure or non-secure) has been
deployed with KVHOVE equal to / opt / or acl e/ kv- ee, the LoadVehi cl eTabl e program
that is supplied as a convenience with the Count Tabl eRows example can be
executed to create and populate the table named vehi cl eTabl e. Before executing
LoadVehi cl eTabl e though, that program must first be compiled. To do this, assuming
you have installed the example distribution under the base directory / opt / or acl e/
nosql / apps/ kv/ exanpl es, type the following from your client node’s OS command
line:

cd /opt/oracl e/ nosql / apps/ kv

javac -classpath \
[opt/oracl e/ kv-ee/lib/kvclient.jar:exanmples \
exanpl es/ hadoop/ t abl e/ LoadVehi cl eTabl e. j ava

This should produce the file:

[opt/ oracl e/ nosql / apps/ kv/ exanpl es/ hadoop/ t abl e/ LoadVehi cl eTabl e. cl ass

RuN Loadveni cl eTabl e When the Store is Non-Secure

To execute LoadVehi cl eTabl e to create and populate the table named vehi cl eTabl e
with example data in a store configured for non-secure access, type the following at
the command line of the client node, which must have network connectivity with a

ORACLE 4-13

Chapter 4
CountTableRows Support Programs

node running the admin service of the non-secure store you deployed (for example,
kv-host - 1 itself):

cd /opt/oracl e/ nosql / apps/ kv

java -classpath \
lopt/oracl e/ kv-ee/lib/kvstore.jar:\
[opt/oracl e/ kv-eel/li b/ skl ogger.jar:\
[opt/oracl e/ kv-ee/lib/comonutil.jar:exanples \
hadoop. t abl e. LoadVehi cl eTabl e -store exanpl e-store \
-host kv-host-1 -port 5000 -nops 79 [-del ete]

The following parameters are required: - st or e, - host, - port, and - nops, whereas the
- del et e parameter is optional.

In the example command line above, the argument - nops 79 requests that 79 rows be
written to the vehi cl eTabl e. If more or less than that number of rows is desired, then
the value of the - nops parameter should be changed.

If LoadVehi cl eTabl e is executed a second time and the optional - del et e parameter
is specified, then all rows added by any previous executions of LoadVehi cl eTabl e

are deleted from the table prior to adding the requested new rows. Otherwise, all pre-
existing rows are left in place, and the number of rows in the table will be increased by
the requested - nops number of new rows.

" Note:

Because of the way LoadVehi cl eTabl e generates records, it is possible
that a given record has already been added to the table, either during a
previous call to LoadVehi cl eTabl e, or during the current call. As a result,

it is not uncommon for the number of unique rows added to be less than
the number requested. Because of this, when processing has completed,
LoadVehi cl eTabl e will display the number of unique rows that are actually
added to the table, along with the total number of rows currently in the table
(from previous runs).

RuN Loadveni cl eTabl e When the Store is Secure

ORACLE

To execute LoadVehi cl eTabl e against the secure store that you deployed and
provisioned with a non-administrative user according to the steps presented in the
Deploying a Secure Store appendix, an additional parameter must be added to the
command line above. In this case, type the following on the command line:

scp <username>@v- host - <n>:\
/u01/ nosql / snl/ kvroot/security/client.trust /tnp

cd /opt/oracl e/ nosql / apps/ kv

java -classpath \
lopt/oracl e/ kv-ee/lib/kvclient.jar:\
[opt/oracl e/ kv-ee/lib/sklogger.jar:\
lopt/oracl e/ kv-ee/lib/comonutil.jar:exanples \
hadoop. t abl e. LoadVehi cl eTabl e -store exanple-store \

4-14

Summary

Chapter 4
Model For Building & Packaging Secure Clients

-host kv-host-1 -port 5000 -nops 79 \
-security /tnp/exanpl e-user-client-pwdfile.login\
[-del ete]

The client.trust file generated when the secure store was deployed must be
installed in the / t np directory of the client node from which LoadVehi cl eTabl e is
executed. If the client node is different than any of the store nodes (kv- host - 1,

kv- host - 2, kv- host - 3), then the installation of cl i ent. trust is accomplished by
performing a remote copy; using the appropriate username and the number 1 in place
of the <n> token. On the other hand, if LoadVehi cl eTabl e is run from one of the nodes
making up the store itself, then a local copy operation can be used for the installation.

The additional - securi ty parameter in the command above specifies the location of
the login properties file (associated with a password file in this case rather than an
Oracle Wallet) for the given user or alias. All other parameters are the same as for the
non-secure case.

To understand the - securi ty parameter, recall from the Deploying a Secure Store
appendix that a non-administrative user named exanpl e- user was created, and a
number of credential files based on a password file (rather than an Oracle Wallet) were
generated for that user and placed under the / t np system directory. As a result, you
should see the following files under the / t np directory of the client node:

/tp
client.trust

exanpl e-user-client-pwdfile.login
exanpl e-user-server.login
exanpl e- user. passwd

For this example, the user credential files must be co-located, where it doesn't

matter which directory they are located in, as long as they all reside in the

same directory accessible by the user. It is for this reason that the shared

trust file (cl i ent. trust) is copied into / t np above. Co-locating cl i ent . t r ust

and exanpl e- user. passwd with the login file (exanpl e- user-client-pwdfile.login)
allows relative paths to be used for the values of the system properties
oracle.kv.ssl.trustStore and oracl e. kv. aut h. pwdfil e. fil e that are specified in
the login file (or oracl e. kv. aut h. wal | et . di r if an Oracle Wallet is used to store the
user password). If those files are not co-located with the login file, then absolute paths
must be used for those properties.

At this point, the vehi cl eTabl e created in the Oracle NoSQL Database store you
deployed whether non-secure or secure should be populated with the desired example
data. And the MapReduce job initiated by Count Tabl eRows can be run to count the
number of rows in that table.

Model For Building & Packaging Secure Clients

ORACLE

With respect to running a MapReduce job against data contained in a secure
store, a particularly important issue to address is related to the communication of
user credentials to the tasks run on each of the DataNodes on which the Hadoop
infrastructure executes the job. Recall from above that when using the MapReduce

4-15

Chapter 4
Model For Building & Packaging Secure Clients

programming model defined by Apache Hadoop the tasks executed by a MapReduce
job each act as a client of the store. Thus, if the store is configured for secure access,
in order to retrieve the desired data from the store, each task must have access

to the credentials of the user associated with that data. The typical mechanism for
providing the necessary credentials to a client of a secure store is to manually install
the credentials on the client's local file system; for example, by employing a utility such
as scp.

Although the manual mechanism is practical for most clients of a secure store, it

is extremely impractical for a MapReduce job. This is because a MapReduce job
consists of multiple tasks running in parallel, in separate address spaces, each with

a separate file system that is generally not under the control of the user. Assuming
then, that write access is granted by the Hadoop administrator (a problem in and of
itself), this means that manual installation of the client credentials for every possible
user known to the given secure store would need to occur on the file system of each of
the many nodes in the Hadoop cluster; something that may be very difficult to achieve.

To address this issue, a model will be presented that developers and deployers
can employ to facilitate the communication of each user's credentials to a given
MapReduce job from the client side of the job; that is, from the address space
controlled by the job's client process, owned by the user.

This model will consist of two primary components: a programming model for
executing MapReduce jobs that retrieve and process data contained in tables located
in a secure store; and a set of "best practices" for building, packaging, and deploying
those jobs. Although there is nothing preventing a user from manually installing

the necessary security credentials on all nodes in a given cluster, doing so is not
only impractical, but may result in various security vulnerabilities. Combining this
programming model with the deployment best practices that are presented here
should help developers and deployers not only avoid the need to manually pre-install
credentials on the DataNodes of the Hadoop cluster, but should also prevent the sort
of security vulnerabilities that can occur with manual installation.

Programming Model For MapReduce with Oracle NoSQL Database

Security

ORACLE

Recall that when executing a MapReduce job, the client application uses mechanisms
provided by the Hadoop infrastructure to initiate the job from a node (referred to as
the Hadoop cluster's access node) that has network access to the node running the
Hadoop cluster's ResourceManager. If the job will be run against a secure store, then
prior to initiating the job, the client must initialize the job's Tabl el nput For mat with the
following three pieces of information:

e The name of the file that specifies the transport properties the client will use when
connecting to the store; which, for the purposes of this document, will be referred
to as the login properties file (or login file).

* The PasswordCredentials containing the username and password the client will
present to the store during authentication.

* The name of the file containing the public keys and/or certificates needed for
authentication; which, for the purposes of this document, will be referred to as, the
client trust file (or trust file).

To perform this initialization of the MapReduce client application, Count Tabl eRows in
this case, invokes the set KVSecuri ty method defined in Tabl el nput For mat . Once

4-16

Chapter 4
Model For Building & Packaging Secure Clients

this initialization has been performed and the job has been initiated, the job uses

that Tabl el nput For mat to create and assign a Tabl el nput Split (a split) to each

of the Mapper tasks that will run on one of the DataNodes in the cluster. The

Tabl el nput For mat needs the information initialized by the set KVSecurity method for
two reasons:

» To connect to the secure store from the access node and retrieve the information
needed to create the splits.

e Toinitialize each split with that same security information, so that each such split
can connect to the secure store from its DataNode host and retrieve the particular
table data the split will process.

In addition to requiring that the MapReduce application use the mechanism just
described to initialize and configure the job's Tabl el nput For mat (and thus, its splits)
with the information listed above, the model also requires that the public and

private security credentials referenced by that information be communicated to the
Tabl el nput For mat , as well as the splits, securely. How this is achieved depends on
whether that information is being communicated to the Tabl el nput For mat on the client
side of the application, or to the splits on the server side.

Communicating Security Credentials to the Server Side Splits

ORACLE

To facilitate communication of the user's security credentials to the splits distributed
to each of the DataNodes of the cluster, the model presented here separates public
security information from the private information (the username and password), and
then stores the private information as part of each split's internal state, rather than

on the local file system of each associated DataNode; which may be vulnerable or
difficult/impossible to secure. For communication of the public contents of the login
and trust files to each such split, the model supports an (optional) mechanism that
allows the application to communicate that information as Java resources that each
split retrieves from the classpath of the split's Java VM. This avoids the need to
manually transfer the contents of those files to each DataNode's local file system, and
also avoids the potential security vulnerabilities that can result from manual installation
on those nodes. Note that when an application wishes to employ this mechanism, it
will typically include the necessary information in a JAR file that is specified to the
MapReduce job via the Hadoop command line directive -1 i bj ars.

The intent of the mechanism just described is to allow applications to exploit the
Hadoop infrastructure to automatically distribute the public login and trust information
to each split belonging to the job via a JAR file added to the classpath on each
remote DataNode. But it is important to note that although this mechanism is used

to distribute the application's public credentials, it must not be used to distribute any
of the private information related to authentication; specifically, the username and
password. This is important because a JAR file that is distributed to the DataNodes in
the manner described may be cached on the associated DataNode's local file system;
which might expose a vulnerability. As a result, private authentication information is
only communicated as part of each split's internal state.

The separation of public and private credentials supported by this model not only
prevents caching the private credentials on each DataNode, but also facilitates the
ability to guarantee the confidentiality of that information, via whatever external third
party secure communication mechanism the current Hadoop implementation happens
to employ. This capability is also important to support the execution of Hive queries
against a secure store.

4-17

Chapter 4
Model For Building & Packaging Secure Clients

Communicating Security Credentials to the tabi el nput For mat

With respect to the job's Tabl el nput For mat , the programming model supports different
options for communicating the user's security information. This is because the

Tabl el nput For mat operates only on the access node, on the client side of the job;
which means that there is only one file system that needs to be secured. Additionally,
unlike the splits, the Tabl el nput For mat is not sent on the wire. Thus, as long as only
the user is granted read privileges, both the public and private security information
can be installed on the access node's file system without fear of compromise. For
this case, the application would typically use system properties on the command line
to specify the fully-qualified paths to the login, trust, and password files (or Oracle
Wallet); which the Tabl el nput For rat would then read from the local file system,
retrieving the necessary public and private security information.

A second option for communicating the user's security credentials to the

Tabl el nput For mat is to include the public and private information as resources in the
client side classpath of the Java VM in which the Tabl el nput For mat runs. This is the
option employed by the example presented in this document, and is similar to what
was described above for the splits. This option demonstrates how an application's
build model can be exploited to simplify not only the applications's command line, but
also the deployment of secure MapReduce jobs in general. As was the case with the
splits, applications will typically communicate the necessary security information as
Java resources by including that information in a JAR file. But rather than using the
Hadoop command line directive - | i bj ar s to specify the JAR file to the server side of
the MapReduce job, in this case, because the Tabl el nput For mat operates on only the
client side access node, the JAR file would simply be added to the HADOOP_CLASSPATH
environment variable.

Best Practices: MapReduce Application Packaging for Oracle NoSQL

Security

ORACLE

To help users achieve the sort of separation of public and private security information
described in previous sections, a set of (optional) best practices related to packaging
the client application and its necessary artifacts is presented in this section, and

are employed by the example featured in this document. Although the use of these
packaging practices is optional, you are encouraged to employ them when working
with any MapReduce jobs of your own that will interact with a secure store.

Rather than manually installing the necessary security artifacts (login file, trust file,
password file or Oracle Wallet) on each DataNode in the cluster, user's should instead
install those artifacts only on the cluster's single access node; the node from which
the client application is executed. The client application can then retrieve each artifact
from the local environment, repackage the necessary information, and then employ
mechanisms provided by the Hadoop infrastructure to transfer that information to the
appropriate components of the MapReduce job that will be executed.

For example, as described in the previous section, your client application can be
designed to retrieve the username and location of the password from the command
line, a configuration file, or a resource in the client classpath; where the location of
the user's password is a locally installed password file or Oracle Wallet that can only
be read by the user. After retrieving the username from the command line and the
password from the specified location, the client uses that information to create the
user's PasswordCredentials, which are transferred to each MapReduce task via the

4-18

Chapter 4
Model For Building & Packaging Secure Clients

splits that are created by the job's Tabl el nput For mat . Using this model, the user's
PasswordCredentials, are never written to the file systems of the cluster's DataNodes.
They are only held in each task's memory. As a result, the integrity and confidentiality
of those credentials only need to be provided when on the wire, which can be
achieved by using whatever external third party secure communication mechanism
the current Hadoop implementation happens to employ.

With respect to the transfer of the public login and trust artifacts, the client

application can exploit the mechanisms provided by the Hadoop infrastructure to
automatically transfer classpath (JAR) artifacts to the job's tasks. As demonstrated

by the Count Tabl eRows example presented in the body of this document, the client
application's build process can be designed to separate the application's class files
from its public security artifacts. Specifically, the application's class files and optionally,
the public and private credentials, can be placed in a local JAR file on the access node
for inclusion in the classpath of the client itself; while only the public login properties
and client trust information are placed in a separate JAR file that can be added to the
hadoop command line specification of - I i bj ar s for inclusion in the classpath of each
MapReduce task.

Application Packaging for the Non-Secure Case

ORACLE

To understand how the packaging model discussed here can be employed when
executing an application against a secure store, it may be helpful to first review how
the Count Tabl eRows example is executed against a non-secure store. Recall from the
previous sections, for the non-secure case, the following command was executed to
produce a JAR file containing only the class files needed by Count Tabl eRows.

cd /opt/oracl e/ nosql / apps/ kv/ exanpl es
jar cvf Count Tabl eRows. jar hadoop/tabl e/ Count Tabl eRows*. cl ass

which produced the file Count Tabl eRows. j ar , whose contents look like:

MVETA- | NF/

META- | NF/ MANI FEST. MF

hadoop/ t abl e/ Count Tabl eRows. cl ass
hadoop/ t abl e/ Count Tabl eRows$Map. cl ass
hadoop/ t abl e/ Count Tabl eRows$Reduce. cl ass

and the following commands were then be used to execute the Count Tabl eRows
example MapReduce job against a non-secure store:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH: \
[opt/ondb/ kv/lib/kvclient.jar

cd /opt/ondb/ kv
hadoop jar exanpl es/ non_secure_Count Tabl eRows. jar \
hadoop. t abl e. Count Tabl eRows \
-libjars \
[opt/oracl e/ kv-ee/lib/kvclient.jar,\
[opt/oracl e/ kv-eel/lib/ skl ogger.jar,\
[opt/oracl e/ kv-eel/l'ib/comonutil.jar,\
/opt/oracl e/ kv-ee/lib/failureaccess.jar,\
[opt/oracl e/ kv-eell'ib/antlr4-runtine-nosql-shaded.jar,\

4-19

Chapter 4
Model For Building & Packaging Secure Clients

[opt/oracl e/ kv-eell'ib/jackson-core.jar,\

/opt/oracl e/ kv-eel/lib/jackson-databind.jar,\

[opt/oracl e/ kv-eellib/jackson-annotations.jar \
exampl e-store \

kv-host-1:5000 \

vehi cl eTabl e \

/ user / exanpl e- user/ Count Tabl eRows/ vehi cl eTabl e/ 0001

Observe that there are three classpaths that must be set when a MapReduce job

is executed. First, the jar specification to the Hadoop command interpreter makes

the class files of the main program (Count Tabl eRows in this case) accessible to the
hadoop launcher mechanism, so that the program can be loaded and executed. Next,
the HADOOP_CLASSPATH environment variable must be set to include any third party
libraries that the program or the Hadoop framework, running on the local access
node, may need to load. For the example above, only kvclient.jar is added to
HADOOP_CLASSPATH, so that the Hadoop framework's job initiation mechanism on the
access node can access Tabl el nput For mat and its related classes. Compare this
with the specification of the - | i bj ar s argument which is the third classpath that

must be specified. As described below, the -1 i bj ar s argument must include not only
kvclient.jar, but also a number of other third party libraries that may not be available
in the remote Hadoop environment.

The Hadoop command interpreter's - | i bj ar s argument is used to specify the
classpath needed by each MapReduce task executing on the Hadoop cluster's
DataNodes. The - | i bj ars argument must include all of the libraries needed to run
the desired application that are not already available via the Hadoop platform. For

the case above, kvclient.jar, skl ogger.jar, comonutil.jar,failureaccess.jar,
antlr4-runtime-nosql - shaded. j ar, j ackson-core.jar, jackson-databind.jar, and
j ackson-annot ati ons. j ar are each specified via the -1 i bj ars argument so

that each MapReduce task can access classes such as, Tabl el nput Spl it and

Tabl eRecor dReader , as well as the logging related classes and JSON utility classes
provided by Oracle NoSQL Database and other support classes that are not generally
provided by the Hadoop platform.

Application Packaging and Execution for the Secure Case

ORACLE

Compare the non-secure case described in the previous section with what would

be done to run the Count Tabl eRows MapReduce job against a secure store. For the
secure case, two JAR files are built; one for the classpath on the client side, and one
for the classpaths of the DataNodes on the server side. The first JAR file will be added
to the client side classpath and includes not only the class files for the application but
also the public and private credentials the client will need to interact with the secure
store. Including the public and private credentials in the client side JAR file avoids the
inconvenience of having to specify that information on the command line.

The second JAR file will be added to the DataNode classpaths on the server side via
the -1i bj ar s argument, and will include only the user's public credentials.

As described in the Deploying a Secure Store appendix, the user's password can be
stored in either a clear text password file or an Oracle Wallet. As a result, how the first
JAR is generated is dependent on whether a password file or an Oracle Wallet is used.

4-20

Chapter 4
Model For Building & Packaging Secure Clients

Application Packaging for the Secure Case Using a Password File

ORACLE

If you wish to execute Count Tabl eRows using a password file instead of an Oracle
Wallet, and if you have used KVSecuri t yCreati on to generate the user's security
artifacts in the manner presented in the Deploying a Secure Store appendix, then both
the client side and server side JAR files for the Count Tabl eRows example application
are generated by typing the following on the command line:

cd /opt/oracl e/ nosql / apps/ kv/ exanpl es

jar cvf Count Tabl eRows-pwdClient.jar \
hadoop/ t abl e/ Count Tabl eRows*. cl ass \
hadoop/ t abl e/ KVSecurityUtil *. cl ass

cd /tnp

jar uvf \
/opt/ oracl e/ nosql / apps/ kv/ exanpl es/ Count Tabl eRows- pwdC i ent.jar \
client.trust

jar uvf \
/opt/ oracl e/ nosql / apps/ kv/ exanpl es/ Count Tabl eRows- pwdC i ent.jar \
exanpl e-user-client-pwdfile.login

jar uvf \
/opt/ oracl e/ nosql / apps/ kv/ exanpl es/ Count Tabl eRows- pwdC i ent.jar \
exanpl e- user. passwd

jar cvf \
[opt/ oracl e/ nosql / apps/ kv/ exanpl es/ Count Tabl eRows- pwdSer ver.jar /
client.trust

jar uvf \
[opt/ oracl e/ nosql / apps/ kv/ exanpl es/ Count Tabl eRows- pwdSer ver.jar \
exanpl e-user-server.|ogin

The first four commands above produce the client side JAR file named
Count Tabl eRows- pwdCl i ent . j ar, where the contents of that JAR look like:

MVETA- | NF/

META- | NF/ MANI FEST. MF

hadoop/ t abl e/ Count Tabl eRows. cl ass
hadoop/ t abl e/ Count Tabl eRows$Map. cl ass
hadoop/ t abl e/ Count Tabl eRows$Reduce. cl ass
hadoop/ t abl e/ KVSecurityUtil.cl ass
client.trust

exanpl e-user-client-pwdfile.login

exanpl e- user . passwd

The following files in the above code correspond to security artifacts that should
remain private to the client.

exanpl e-user-client-pwdfile.login
exanpl e- user . passwd

4-21

Chapter 4
Model For Building & Packaging Secure Clients

The last two commands above produce the server side JAR file named
Count Tabl eRows- pwdSer ver . j ar, with contents that look like:

VETA- | NF/

MVETA- | NF/ MANI FEST. MF
client.trust

exanpl e-user-server.login

The last two files from the above list correspond to the client's security artifacts that
can be shared publicly.

Application Execution for the Secure Case Using a Password File

If you wish to execute the Count Tabl eRows MapReduce job against a secure store
where a password file rather than an Oracle Wallet is used to store the client
application's password, then after packaging the application for password file based
execution as described in the previous section, you would then type the following on
the command line:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH: \
lopt/oracl e/ kv-eel kv/lib/kvclient.jar:\
/opt/ oracl e/ nosql / apps/ kv/ exanpl es/ Count Tabl eRows- pwdSer ver. j ar

cd /opt/oracl e/ nosql / apps/ kv

hadoop jar exanpl es/ Count Tabl eRows- pwdCl i ent.jar \
hadoop. t abl e. Count Tabl eRows \
-libjars \
[opt/oracl e/ kv-eel kv/lib/kvclient.jar,\
/opt/oracl e/ kv-eel kv/ i b/ skl ogger.jar,\
lopt/oracl e/ kv-eel kv/lib/conmmonutil.jar,\
lopt/oracl e/ kv-eelkv/lib/failureaccess.jar,\
/opt/oracl e/ kv-eel kv/lib/antlr4-runtine-nosql-shaded.jar,\
lopt/oracl e/ kv-eel kv/lib/jackson-core.jar,\
[opt/oracl e/ kv-eel kv/libl/jackson-databind.jar,\
I opt/oracl e/ kv-eel kv/lib/jackson-annotations.jar,)\
[opt/ oracl e/ nosql / apps/ exanpl es/ Count Tabl eRows- pwdSer ver. jar \
exampl e-store \
kv-host-1:5000 \
vehi cl eTabl e \
/ user/ exanpl e- user/ Count Tabl eRows/ vehi cl eTabl e/ 0001 \
exanpl e-user-client-pwdfile.login \
exanpl e-user-server.login

Application Packaging for the Secure Case Using an Oracle Wallet

ORACLE

Rather than using a file in which to store the client’'s password, you may choose

to use an Oracle Wallet to store the password in obfuscated form. When an Oracle
Wallet will be used and the KVSecurityCreati on convenience program was used to
generate the wallet based artifacts for Count Tabl eRows in the manner presented in the
Deploying a Secure Store appendix, then both the client side and server side JAR files

4-22

Chapter 4
Model For Building & Packaging Secure Clients

for the wallet based Count Tabl eRows example application are generated by typing the
following on the command line:

cd /opt/oracl e/ nosql / apps/ kv/ exanpl es

jar cvf Count Tabl eRows-walletClient.jar \
hadoop/ t abl e/ Count Tabl eRows*. cl ass \
hadoop/t abl e/ KVSecurityUtil *.cl ass

cd /tnp

jar uvf \
[opt/ oracl e/ nosql / apps/ kv/ exanpl es/ Count Tabl eRows-wal l et Client.jar \
client.trust

jar uvf \
[opt/ oracl e/ nosql / apps/ kv/ exanpl es/ Count Tabl eRows-wal l et Client.jar \
exanmpl e-user-client-walletfile.login

jar uvf \
[opt/ oracl e/ nosql / apps/ kv/ exanpl es/ Count Tabl eRows-wal l etClient.jar \
exanpl e-user-wal let.dir

jar cvf \
[opt/ oracl e/ nosql / apps/ kv/ exanpl es/ Count Tabl eRows- wal | et Server.jar /
client.trust

jar uvf \
[opt/ oracl e/ nosql / apps/ kv/ exanpl es/ Count Tabl eRows-wal | et Server.jar \
exanpl e-user-server.login

The first four commands above produce the client side JAR file named
Count Tabl eRows-wal | et d i ent.j ar, where the contents of that JAR look like:

VETA- | NF/

MVETA- | NF/ MANI FEST. MF

hadoop/ t abl e/ Count Tabl eRows. cl ass
hadoop/ t abl e/ Count Tabl eRows$Map. cl ass
hadoop/ t abl e/ Count Tabl eRows$Reduce. cl ass
hadoop/ t abl e/ KVSecurityUtil . class
client.trust

exanmpl e-user-client-wallet.login

exanpl e-user-wal l et. dir/

exanmpl e-user-wal l et.dir/cwal |l et.sso

Similarly, the last two commands produce the server side JAR file named
Count Tabl eRows- wal | et Server . | ar, with contents:

META- | NF/

META- | NF/ MANI FEST. MF
client.trust

exanmpl e-user-server.login

Application Execution for the Secure Case Using an Oracle Wallet

If you wish to execute the Count Tabl eRows MapReduce job against a secure store
using an Oracle Wallet to store the client application's password, then after packaging

ORACLE 4-23

Chapter 4
Model For Building & Packaging Secure Clients

the application for wallet based execution as described in the previous section, you
would type the following on the command line:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH: \
lopt/oracl e/ kv-eel/kv/1ib/kvclient.jar:\
[opt/ oracl e/ nosql / apps/ kv/ exanpl es/ Count Tabl eRows- wal | et Server. jar

cd /opt/oracl e/ nosql / apps/ kv

hadoop jar exanpl es/ Count Tabl eRows-wal et ient.jar \
hadoop. t abl e. Count Tabl eRows \
-libjars \
lopt/oracl e/ kv-eel kv/1ib/kvclient.jar,\
I opt/oracl e/ kv-eel kv/1ib/ skl ogger.jar,\
[opt/oracl e/ kv-eel kv/lib/ commonutil.jar,\
lopt/oracl e/ kv-eel/ kv/1ib/failureaccess.jar,\
[opt/oracl e/ kv-eel/ kv/lib/antlr4-runtime-nosql -shaded.jar,\
[opt/oracl e/ kv-eel kv/lib/jackson-core.jar,\
[opt/oracl e/ kv-eel kv/|ib/jackson-dat abi nd. jar,\
/opt/oracl e/ kv-eel kv/lib/jackson-annotations.jar,\
[opt/ oracl e/ nosql / apps/ exanpl es/ Count Tabl eRows- wal | et Server.jar \
exampl e-store \
kv-host-1: 5000 \
vehi cl eTabl e \
[user/ exanpl e- user/ Count Tabl eRows/ vehi cl eTabl e/ 0001 \
exanpl e-user-client-walletfile.login\
exanpl e-user-server.|login

Secure Versus Non-Secure Command Lines

ORACLE

When examining how the application is executed using either a wallet based or

a password file based password storage mechanism, you should first notice that,
unlike the non-secure case, the HADOOP_CLASSPATH and - | i bj ar s argument have
both been augmented with the JAR file that contains only the public credentials

for login and trust; that is, either Count Tabl eRows- pwdSer ver . j ar or Count Tabl eRows-
wal | et Server. j ar. Because those JAR files contain only public information, they can
be safely transmitted to the server side remote address spaces.

Compare this with the value to which the application's local classpath is set, via

the jar directive. Rather than including the application's server based JAR file, the
local classpath instead is set to include the application's client based JAR file;
either Count Tabl eRows- pwdC i ent. jar or Count Tabl eRows-wal | et ient.jar. The
application's client based JAR file includes both the application's public and private
credentials. Those JAR files contain security artifacts which should remain private
to the application's address space; that is, the client side of the application. As a
result, those JAR files must never be included in the HADOOP_CLASSPATH or - | i bj ar s
specifications. They should be included only in the client's local classpath.

Finally, the only other difference between the command lines for secure execution and
non-secure execution, is the two additional arguments at the end of the argument

list for the secure case; specifically, exanpl e- user - server. | ogi n and either exanpl e-
user-client-pwdfile.loginorexanple-user-client-wallet.|ogin.

4-24

Summary

ORACLE

Chapter 4
Model For Building & Packaging Secure Clients

The values of those arguments specify, respectively, the names of the client side
and server side login files, whose contents will be retrieved as resources from the
corresponding JAR file.

Observe that when you package and execute your MapReduce application in a
manner like that shown here, there is no need to specify the username or password
file (or wallet) on the command line; as that information is included as part of the client
side JAR file. Additionally, the server side JAR file that is transferred from the Hadoop
cluster’s access node to the job's DataNodes does not include that private information.
This is important because that transferred JAR file will be cached in the file system of
each of those DataNodes.

As the sections above demonstrate, the programming model for MapReduce and
Oracle NoSQL Database Security supports (even encourages) the best practices
presented in this section for building, packaging, and deploying any given MapReduce
job that employs the Oracle NoSQL Database Table API to retrieve and process data
in a given Oracle NoSQL Database store, either secure or non-secure. As a result,
simply generating separate JAR files a set of JAR files for the secure case, and one
for the non-secure case allows deployers to conveniently run the job with or without
security.

" Note:

This model for separating public and private user credentials will also play
an important role when executing Hive queries against table data in a secure
store.

4-25

Integration with Apache Hive

ORACLE

Topics

Introduction to Integration with Apache Hive

Oracle NoSQL Database Hive Integration Classes

Mapping the Hive Data Model to the Oracle NoSQL Database Table Model

Example: Hive Queries On Oracle NoSQL Database Tables

Appendix

Creating and Populating the rmvTable

Creating and Populating the exampleJsonTable
Configuring the Hive Client Environment

Hive and Oracle NoSQL Database Security

Predicate Pushdown

Introduction to Integration with Apache

Hive

The Integration with Apache Hadoop MapReduce section describes the set of classes
provided by Oracle NoSQL Database that support running Hadoop MapReduce jobs
against data stored in an Oracle NoSQL Database table. Since a typical Hive query
generally results in the execution of a MapReduce job, it was natural for Oracle
NoSQL Database to also provide new interfaces and classes which support running
Hive queries against such table data.

In addition to describing the core interfaces and classes involved in running a Hive
guery against data from a table located in a given Oracle NoSQL Database store, the
information presented in this section will also present the steps to take to execute a
given set of basic Hive queries against example table data contained in such a store,
where the store can be either secure or non-secure.

Prerequisites

ORACLE

Before attempting to execute the example that demonstrates the concepts presented
in this section, you should first satisfy the following prerequisites:

* Become familiar with Apache Hive 2 and its programming model. Specifically,
become familiar with how to write and execute a Hive query.

* Become familiar with Apache Hadoop 3. Specifically, become familiar with how
Hive and Hadoop interact.

* Deploy a Hadoop cluster with 3 data nodes running on machines with host names,
dn-host -1, dn-host - 2, and dn- host - 3.

» Become familiar with the Hive Command Line Interface (the Hive CLI), and the
Hive Query Language.

e Become familiar with Oracle NoSQL Database (see Introduction to Oracle NoSQL
Database in the Concepts Guide) and then install, start, and configure an Oracle
NoSQL Database that is network reachable from the nodes of the Hadoop
cluster and any Hive clients. The KVHOME of the store that you start should be
configured as the directory / opt / or acl e/ kv- ee.

* Deploy a store to 3 machines (real or virtual) with host names, kv- host - 1, kv-
host - 2, and kv- host - 3. The store's name should be set to the value exanpl e-
store, and the store's KVROOT should be set to the directories / u01/ nosql / sn1/
kvroot on kv-host-1,/u02/ nosql /sn2/ kvroot on kv-host -2, and /u03/
nosql / sn3/ kvroot on kv- host - 3. Finally, an Oracle NoSQL Database admin
service, listening on port 5000, should be deployed to each host making up the
store.

* Become familiar with the Oracle NoSQL Database Security model and be able to
configure the deployed store for secure access (optional).

» If the deployed store is configured for secure access, start the Oracle NoSQL
Database Administrative CLI and then follow the steps presented in the Deploying

5-1

Chapter 5
A Brief Primer on Apache Hive

a Secure Store appendix to securely connect to the store and create a user named
exanpl e- user, along with the appropriate security artifacts (login file, trust file, and
either password file or Oracle Wallet).

e Obtain and install the separate distribution containing the Oracle NoSQL Database
example code (see Oracle Technology Network). Although you are free to install
that package in any location on your system, for simplicity this document assumes
the example code is installed under the directory / opt / or acl e/ nosql / apps/ kv/
exanpl es.

* Become familiar with the supporting Java classes presented in the Integration with
Apache Hadoop MapReduce section, and then follow the steps presented in that
document to create and populate the table named vehi cl eTabl e with example
data consisting of only primitive data types.

* Become familiar with the LoadRmvTabl e program provided in the Oracle NoSQL
Database example distribution, and then follow the steps presented in the Creating
and Populating the rmvTable appendix to create and populate a table named
r mvTabl e with example data consisting of both primitive and non-primitive data

types.

e Become familiar with the LoadJsonExanpl e program provided in the Oracle
NoSQL Database example distribution, and then follow the steps presented in the
Creating and Populating the exampleJsonTable appendix to create and populate
a table named exanpl eJsonTabl e with rows containing valid JSON formatted data
(documents).

Using specific values for items such as the KVYHOME and KVROOT environment
variables, as well as the store name, host names, admin port, and example code
location described above should allow you to more easily understand and use the
example commands. Combined with the information contained in the Concepts Guide,
along with the Administrator's Guide and Security Guide, you should then be able to
generalize and extend these examples to your own particular development scenario;
substituting the values specific to the given environment where necessary.

Detailed instructions for deploying a non-secure Oracle NoSQL Database store are
provided in the Deploying a Non-Secure Store appendix. Similarly, the Deploying

a Secure Store appendix provides instructions for deploying a store configured for
security.

A Brief Primer on Apache Hive

ORACLE

Paraphrasing wikipedia, Apache Hive is a data warehouse infrastructure built on top
of Apache Hadoop that facilitates querying datasets residing in distributed file systems
such as the Hadoop Distributed File System (referred to as HDFS) or in compatible
file systems. In addition to those built in features, Hive also provides a pluggable
programming model that allows you to specify custom interfaces and classes that
support querying data residing in data sources such as the Oracle NoSQL Database.

In addition to the Hive infrastructure and its pluggable programming model, Hive also
provides a convenient client-side command line interface (the Hive CLI), which allows
you to interact with the Hive infrastructure to create a Hive external table and then map
it to the data located in remote sources like those just described.

Oracle NoSQL Database provides a set of interfaces and classes that satisfy the
Hive programming model so that the Hive Query Language can be used to query
data contained in an Oracle NoSQL Database store (either secure or non-secure).
The classes that are defined for that purpose are located in the Java package

5-2

ORACLE

Chapter 5
A Brief Primer on Apache Hive

oracl e. kv. hadoop. hi ve. t abl e (see Java API), and consist of the following Hive and
Hadoop types:

A subclass of the Hive class

or g. apache. hadoop. hi ve. gl . net adat a. Hi veSt or ageHandl er. The

Hi veSt or ageHand! er is the mechanism (the pluggable interface) Oracle NoSQL
Database uses to specify the location of the data that the Hive infrastructure
should process, as well as how that data should be processed. The

Hi veSt or ageHand! er consists of the following components:

— A subclass of the Hadoop MapReduce version 1 class
org. apache. hadoop. mapr ed. | nput For mat , where | nput For mat specifies how
the associated MapReduce job reads its input data, taken from the Oracle
NoSQL Database table.

— A subclass of the Hadoop MapReduce version 1 class
org. apache. hadoop. mapr ed. Qut put For mat , where Qut put For mat specifies
how the associated MapReduce job writes its output.

— A subclass of the Hive class
or g. apache. hadoop. hi ve. serde2. Abst ract Ser De. The Abst r act Ser De class
and its associated subclasses are used to deserialize the table data that is
retrieved and sent to the Hive infrastructure and/or the Hadoop MapReduce
job for further processing. Although not currently supported, this mechanism
can also be used to serialize data input to Hive for writing to an Oracle NoSQL
Database table.

— Metadata hooks for keeping an external catalog in sync with the Hive
Metastore component.

— Rules for setting up the configuration properties on MapReduce jobs run
against the data being processed.

— Animplementation of the interface
org. apache. hadoop. hi ve. gl . met adat a. Hi veSt or agePr edi cat eHandl er. As
described in the Predicate Pushdown appendix, the implementation
of Hi veSt or agePr edi cat eHandl er provided by Oracle NoSQL Database
supports the decomposition of a query's WHERE clause (the predicates of
the query) into information that can be passed to the database so that some
(or even all) of the search processing can be performed in the database itself
rather than on the client side of the query.

A subclass of the Hadoop MapReduce version 1 class

org. apache. hadoop. mapr ed. Recor dReader , where a Recor dReader is used to
specify how the mapped keys and values are located and retrieved during any
MapReduce processing performed while executing a Hive query.

A subclass of the Hadoop MapReduce version 1 class

or g. apache. hadoop. mapred. I nput Split, where an I nput Split is used to
represent the data to be processed by an individual Mapper that operates during
the MapReduce processing performed as part of executing a Hive query.

See Apache Hadoop API and Hive API for more details.

As described in the following sections, it is through the implementation of the

H veSt or ageHand! er provided by Oracle NoSQL Database that the Hive infrastructure

obtains access to a given Oracle NoSQL Database store and ultimately the table data
on which to run the desired Hive query.

5-3

Oracle NoSQL Database Hive Integration

Classes

ORACLE

To support running Hive queries against data stored in a table of an Oracle NoSQL
Database store, the following core classes are employed:

oracl e. kv. hadoop. hi ve
oracl e. kv. hadoop. hi ve
oracl e. kv. hadoop. hi ve
oracl e. kv. hadoop. hi ve

oracl e. kv. hadoop. hi ve

.tabl e. Tabl eSt or ageHandl er
.tabl e. Tabl eH vel nput For mat
.tabl e. Tabl eHi vel nput Split
.tabl e. Tabl eHi veRecor dReader

.tabl e. Tabl eSer De

Implementations specific to Oracle NoSQL Database of the Hive

or g. apache. hadoop. hi ve. serde2. obj ecti nspect or. Cbj ect | nspect or interface
that support deserialization of the primitive and non-primitive data types defined
by the Oracle NoSQL Database table API.

For more detail, see oracle.kv.hadoop.hive.table API.

6-1

Mapping the Hive Data Model to the Oracle
NoSQL Database Table Model

ORACLE

As the examples presented here demonstrate, in order to execute a Hive query
against data stored in an Oracle NoSQL Database table, a Hive external table must
be created with a schema mapped from the schema of the desired Oracle NoSQL
Database table. This is accomplished by applying the mapping described here.

The following implementations of the Hive bj ect | nspect or interface are used in the
deserialization process to convert the associated data type defined by the Oracle
NoSQL Database table model to its corresponding type in the Hive data model. See
oracle.kv.hadoop.hive.table.

e oracle.kv. hadoop. hi ve. tabl e. Tabl eBi nar yQhj ect | nspect or
e oracle.kv. hadoop. hi ve. t abl e. Tabl eBool ean(bj ect | nspect or
e oracle.kv. hadoop. hi ve.tabl e. Tabl eDoubl eCbj ect | nspect or
e oracle.kv. hadoop. hive.tabl e. Tabl eFl oat Obj ect or | nspect or
e oracle.kv. hadoop. hi ve. tabl e. Tabl el nt Obj ect | nspect or

e oracle.kv.hadoop. hive.tabl e. Tabl eLongbj ect | nspect or

e oracle.kv. hadoop. hi ve. tabl e. Tabl eJsonChj ect | nspect or

e oracle.kv.hadoop. hi ve.tabl e. Tabl eNunber Cbj ect | nspect or
e oracle.kv. hadoop. hi ve. t abl e. Tabl eTi nest anpQbj ect | nspect or
e oracle.kv. hadoop. hi ve. tabl e. Tabl eEnuntbj ect | nspect or

e oracle.kv. hadoop. hive.tabl e. Tabl eArrayQbj ect | nspect or

e oracle.kv. hadoop. hi ve. tabl e. Tabl eMapQhj ect | nspect or

e oracle.kv.hadoop. hi ve.tabl e. Tabl eRecor dObj ect | nspect or

The data model defined by the Oracle NoSQL Database (see
oracle.kv.table.FieldDef.Type) is mapped to a subset of the types defined by Hive,
as shown in the following table. Specifically, when creating a Hive external table so
that you can query the data in a given Oracle NoSQL Database table, the Hive table
must be created with a schema consistent with the mappings shown in the following
table:

Table 7-1 Hive Data Model
]

Oracle NoSQL Database Type Hive Type

FieldDef.Type.STRING STRING
CHAR
VARCHAR

FieldDef.Type.JSON STRING

7-1

Chapter 7
YARN Versus MapReduce Version 1

Table 7-1 (Cont.) Hive Data Model
|

Oracle NoSQL Database Type Hive Type
FieldDef. Type.BOOLEAN BOOLEAN
FieldDef. Type.BINARY BINARY
FieldDef. Type.FIXED_BINARY BINARY
TINYINT
SMALLINT
FieldDef.Type.INTEGER INT
FieldDef. Type.LONG BIGINT
FieldDef. Type.FLOAT FLOAT
FieldDef. Type.NUMBER DECIMAL
FieldDef. Type.DOUBLE DOUBLE
FieldDef. Type.ENUM STRING
FieldDef. Type. TIMESTAMP java.sgl. TIMESTAMP
DATE
FieldDef. Type. ARRAY ARRAY
FieldDef. Type.MAP MAP<STRING, data_type>
FieldDef. Type.RECORD STRUCT<col_name : data_type,...>

UNIONTYPE<data_type,data_type,...>

For more details, see FieldDef. Type.

It is important to understand that when using Hive to query data in an Oracle NoSQL
Database table, the schema of the Hive external table you create is dependent on the
schema of the corresponding Oracle NoSQL Database table you wish to query. Thus,
if you create a Hive external table with a schema that includes a Hive data type that is
not mapped from an Oracle NoSQL Database Fi el dDef . Type, then an error will occur
when any attempt is made to query the table.

YARN Versus MapReduce Version 1

ORACLE

Hadoop deployments can include two versions of MapReduce. The first version
(referred to as MRv1) is the original version of MapReduce; and consists of interfaces
and classes from the Java package or g. apache. hadoop. mapr ed. The newer version
of MapReduce is referred to as YARN (Yet Another Resource Negotiator) or, more
generally, MRv2. Mrv2 resides in the package or g. apache. hadoop. mapr educe. The
Oracle NoSQL Database API Hive integration classes addresses the existence of both
versions of MapReduce because:

e Hive currently employs MRv1
e Oracle NoSQL Database APl Hadoop integration classes employ MRv2

¢ MRv1 and MRV2 are source incompatible

To support both MRv1 and MRv2, the Oracle NoSQL Database API Hive integration
classes have subclassed the MRv1 classes to the appropriate MRv2 classes. In
essence, the | nput For mat from the or g. apache. hadoop. mapr ed is a subclass of the
Tabl eHi vel nput For mat from or acl e. kv. hadoop. hi ve. tabl e.

7-2

ORACLE

Chapter 7
YARN Versus MapReduce Version 1

< Note:

As the Oracle NoSQL Database Hadoop integration classes do not currently
support writing data from a MapReduce job into an Oracle NoSQL Database
store, the classes specified here for Hive integration do not support queries
that modify the contents of a table in a store.

For more details, see oracle.kv.hadoop.hive.table, Apache Hadoop API, and Hive API.

7-3

Example: Hive Queries On Oracle NoSQL
Database Tables

ORACLE

This section presents examples of how Hive can be configured to query data stored

in different tables located in an Oracle NoSQL Database store, either non-secure or
secure. The Primitive Data Types - The vehicleTable Example contains only primitive
Oracle NoSQL Database data types, and is a good place to start when investigating
basic Hive queries. The Non-Primitive Data Types - The rmvTable Example contains

a mix of primitive and non-primitive data types, and demonstrates how to query more
complex data. Finally, the NoSQL JSON Data Type - The exampleJsonTable Example
focuses on how to query JSON documents that have been written to an Oracle NoSQL
Database.

Before running any of the queries described here, you must take the following initial
steps to setup your system for Hive integration with Oracle NoSQL Database:

e Satisfy the necessary prerequisites, see Prerequisites.

* Follow the directions presented in the Deploying a Non-Secure Store appendix
or Deploying a Secure Store appendix to deploy either a non-secure or a secure
Oracle NoSQL Database store.

* Follow the instructions presented in the Count Tabl eRows Support Programs
appendix to create and populate a table named vehi cl eTabl e in the store that
you deployed.

e Follow the instructions presented in the Creating and Populating the rmvTable
appendix to create and populate a table named r mnvTabl e in the store that you
deployed.

* Follow the instructions presented in the Creating and Populating the
exampleJsonTable appendix to create and populate a table named
exanpl eJsonTabl e in the store that you deployed.

* Follow the instructions presented in the Configuring the Hive Client Environment
appendix to configure the Hive client environment so that it has access to the
Oracle NoSQL Database libraries needed to query data stored in the Oracle
NoSQL Database store you deployed.

» If the store you deployed is configured for secure access, then follow the steps
provided in the Hive and Oracle NoSQL Database Security appendix to configure
Hive with the environment and artifacts necessary to interact with a secure store.

Once these initial steps are performed, the sections that follow present Hive
commands for creating and mapping Hive external tables to the tables you created
in the Oracle NoSQL Database, and then demonstrate how to use Hive to query the
data stored in those tables.

Note the following general points about the Hive commands that are presented:

* The contents of the Hive commands presented below are displayed on separate
lines for readability. In practice, because the Hive command interpreter may

8-1

ORACLE

Chapter 8

have trouble handling multi-line commands, it is generally best to enter a single,
continuous command with no line breaks.

* When executing the command to create a Hive external table, the
oracl e. kv. t abl eName property is used to indicate to Hive the name of the table in
the Oracle NoSQL Database store that will be queried; where the name specified
for the Hive table is not required to be the same as name of the corresponding
Oracle NoSQL Database table. We used a combination of both in the examples. In
the cases where the names are different, we used a name that was descriptive of
the scenario.

e If the Oracle NoSQL Database store is configured with multiple administrative
hosts, then any subset of the names of those hosts can be included in the value of
the or acl e. kv. host s property specified in the command; as long as at least one
valid administrative host and port is included.

» With respect to the property named or acl e. kv. hadoop. host s:

— That property is currently optional for all systems except the Big Data SQL
system.

— The property will have no effect if specified on a system that does not require
it.

— When the property is specified on a Big Data SQL system or any other system
for which the property is required, the property's value must contain the names
of all of the data nodes making up the Hadoop cluster. See Big Data SQL
User's Guide.

It's important to understand the different scenarios in which each Hive command is
executed and how a given command differs in each scenario. This is because the
command used to create a Hive external table mapped to an Oracle NoSQL Database
table requires different parameters, where the parameters specified depend on which
of the following conditions are met:

e The Oracle NoSQL Database store is non-secure.
* The Oracle NoSQL Database store is secure and your Hive client's password is:
— Stored in a password file.

— Stored in an Oracle Wallet.

To understand the difference between the non-secure scenario and the secure
scenarios, it will help to compare the command used to map a Hive external table
to a table in a non-secure store with the commands used to map two separate Hive
tables to a single table in a secure store.

The respective commands in each scenario of a given example will apply the same
Hive data model mapping, specified in Table 7-1, to create three different Hive external
tables. Each table will have the same structure, schema, and attributes.

The only difference between the table created in the non-secure scenario, and the

two tables created in the secure scenario, is the value specified for the Hive table
name (for example, vehi cl eTabl e, vehi cl eTabl ePasswd, and vehi cl eTabl eVl | et),
and whether or not security artifacts needed for communication with a secure store are
required to create the desired Hive table.

Specifically, when creating and mapping a Hive external table to a table in a secure
Oracle NoSQL Database store, the TBLPROPERTI ES directive of the Hive CREATE

8-2

Chapter 8
Primitive Data Types - The vehicleTable Example

EXTERNAL TABLE command requires that you specify the following additional security-
related properties:

e oracle.kv.security
e oracle. kv. aut h. user name

e« oracle.kv.auth.pwdfile.fileororacle.kv.auth.wallet.dir

Each of the properties listed above corresponds to one of the artifacts Oracle NoSQL
Database requires for Hive to securely communicate with the store identified by the
remaining properties specified in the Hive TBLPROPERTI ES directive.

For details on the nature of each of the additional security related properties, refer to
the Model For Building & Packaging Secure Clients appendix.

Other than the differences just described, with respect to the Hive commands
presented in the following sections, the non-secure scenario and the secure scenario
are the same in all other aspects.

Primitive Data Types - The vehicleTable Example

This example demonstrates how to execute various Hive queries on a simple Oracle
NoSQL Database table containing only primitive data types.

The Hive queries executed in this example will be applied to the table named
vehi cl eTabl e you initially created and populated in the Oracle NoSQL Database
store. For more information on that table's schema and data types, see the
Count Tabl eRows Support Programs appendix.

Prior to executing Hive queries against the Oracle NoSQL Database vehi cl eTabl e,
you must first create an external table in Hive and map it to the table in Oracle NoSQL
Database.

Mapping a Hive External Table to vehicleTable: Non-Secure Store

ORACLE

Assuming you have executed the initial steps to deploy a non-secure store, created

and populated the table named vehi cl eTabl e in that store, and configured the Hive

client environment for interaction with Oracle NoSQL Database, you can then create
an external Hive table that maps to that Oracle NoSQL Database table by executing
the following Hive command:

CREATE EXTERNAL TABLE | F NOT EXI STS vehi cl eTabl e
(type STRING nake STRING nmodel STRING class STRING color STRING
price DOUBLE, count INT, dealerid DECIMAL, delivered TI MESTAMP)
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHandl er'
TBLPROPERTI ES ("oracle. kv. kvstore" = "exanpl e-store",
"oracl e. kv. hosts" = "kv-host-1:5000, kv- host - 2: 5000, kv-
host - 3: 5000"
"oracl e. kv.tabl eNane" = "vehicleTabl e",
"oracl e. kv. hadoop. hosts" = "dn-host - 1, dn- host - 2, dn- host - 3") ;

The command above applies the required data model mapping to create a Hive table
named vehi cl eTabl e with columns whose types are consistent with the corresponding
fields of the Oracle NoSQL Database table specified via the or acl e. kv. t abl eName

property.

8-3

Chapter 8
Primitive Data Types - The vehicleTable Example

< Note:

Although not necessary, the Hive table that is created is given the same
name as the table to which it is mapped in the store.

Mapping a Hive External Table to vehicleTable: Secure Store

Assuming you have executed the initial steps to deploy a secure store, created and
populated the table named vehi cl eTabl e in that store, and configured the Hive client
environment for secure interaction with Oracle NoSQL Database, you can then create
two external Hive tables that each map to that single Oracle NoSQL Database table by
executing the Hive commands presented in both of the following sections.

When mapping a Hive external table to a table located in a secure Oracle NoSQL
Database, because the password the Hive client uses to access and communicate
with the store can be stored in either a password file or an Oracle Wallet, the
following sections present commands that take different parameters, depending on
the mechanism used to store the user's password.

Mapping Hive to Secure vehicleTable: Password File

If a password file is used for password storage, then you can create an external Hive
table that maps to the vehi cl eTabl e by executing the following Hive command:

CREATE EXTERNAL TABLE | F NOT EXI STS vehi cl eTabl ePasswd
(type STRING nake STRING nmpdel STRING class STRING color STRING
price DOUBLE, count INT, dealerid DECI MAL, delivered TI MESTAMP)
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er'
TBLPROPERTI ES ("oracl e. kv. kvstore" = "exanpl e-store",
"oracl e. kv. hosts"= "kv-host -1: 5000, kv- host - 2: 5000, kv-

host - 3: 5000",
"oracl e. kv.tabl eNane" = "vehicleTable",
"oracl e. kv. hadoop. hosts" = "dn-host -1, dn- host - 2, dn- host - 3",
"oracle.kv.security" = "/tnp/hive-nosql.login",
"oracle.kv.ssl.truststore" = "/tnp/client.trust",
"oracl e. kv. aut h. username" = "exanpl e-user",

"oracle.kv.auth.pwdfile.file" = "/tnp/exanpl e-user. passwd");

Mapping Hive to Secure vehicleTable: Oracle Wallet

ORACLE

If an Oracle Wallet is used for password storage, then you can create an external Hive
table that maps to the vehi cl eTabl e by executing the following Hive command:

CREATE EXTERNAL TABLE | F NOT EXI STS vehi cl eTabl eVl | et
(type STRING neke STRING nodel STRING class STRING color
STRI NG,
pri ce DOUBLE, count INT, dealerid DECI MAL, delivered TI MESTAMP)
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHandl er'
TBLPROPERTI ES ("oracl e. kv. kvstore" = "exanpl e-store",
"oracl e. kv. hosts"= "kv-host - 1: 5000, kv- host - 2: 5000, kv-
host - 3: 5000",

8-4

Chapter 8
Primitive Data Types - The vehicleTable Example

"oracl e. kv.tabl eNane" = "vehicleTable",

"oracl e. kv. hadoop. hosts" = "dn-host -1, dn- host - 2, dn- host - 3",
"oracle. kv.security" = "/tnp/hive-nosql.login",
"oracle.kv.ssl.truststore" = "/tnp/client.trust",

"oracl e. kv. aut h. username" = "exanpl e-user",
"oracle.kv.auth.wallet.dir" = "/tnp/exanpl e-user-wallet.dir");

Hive Queries on vehicleTable: Primitive Data Types

ORACLE

After following the directions presented in the previous sections to create and map a
Hive external table to the vehi cl eTabl e in the Oracle NoSQL Database store (either
non-secure or secure), that table can be queried via the Hive Query Language.

In the previous sections, three scenarios were presented for mapping a Hive table to
a table in a given Oracle NoSQL Database store: a non-secure store, a secure store
in which the client store's its password in a password file, and a secure store in which
the client store's its password in an Oracle Wallet. As a result, each of the following
sections present three forms of a given query, one for each scenario; specifically,

e A query on the table named vehi cl eTabl e in the non-secure scenario
e A queryonvehi cl eTabl ePasswd in the secure (with password file) scenario
e Aqueryonvehicl eTabl eVl | et in the secure (with wallet) scenario

The only difference between a given query from scenario to scenario is in the name of
the table to query.

Because the Hive table created for each separate scenario is mapped to the same
underlying Oracle NoSQL Database table, the output of each form of a given query for
each scenario will be the same. Thus, although each section presents three instances
of a given query, the query result is shown only once, and is edited for clarity.

At the Hive CLI command prompt, type the query from each section below that
corresponds to how you have configured your particular environment; non-secure or
secure store and, if secure, whether you are using a password file or an Oracle Wallet
to store the client's password.

¢ Note:

In some cases Hive will execute a MapReduce job to satisfy the query,
whereas in other cases, the query is satisfied by simply consulting the Hive
data dictionary and so MapReduce is hot employed.

List Each Row in the Oracle NoSQL Database vehicleTable

SELECT * FROM vehi cl eTabl e;
SELECT * FROM vehi cl eTabl ePasswd;
SELECT * FROM vehi cl eTabl eVl | et ;

0.4

auto Ford Focus 4Wheel Drive white 20743.94 15 3 2020-10-09
auto GM Inpala 4Weel Drive black 29834.91 24 7 2019-12-11
auto GM Inpala 4Weel Drive yell ow 21753.53 27 8 2017-03-31

8-5

ORACLE

Chapter 8
Primitive Data Types - The vehicleTable Example

truck Ford F250 4Weel Drive blue 31115.76 14 9 2018-02-01

Count the Rows in vehicleTable

SELECT count (type) FROM vehi cl eTabl e;
SELECT count (type) FROM vehi cl eTabl ePasswd;
SELECT count (type) FROM vehicl eTabl eVl | et;

(04

Launching Job 1 out of 1

Hadoop job information for Stage-1: number of mappers: 6;
nunber of reducers: 1

Stage-1 map = 0% reduce = 0%

Stage-1 map = 7% reduce = 0% Cumulative CPU 2.26 sec
Stage-1 map = 21% reduce = 0% Cunulative CPU 6.7 sec
Stage-1 map = 30% reduce = 0% Cumul ative CPU 6.87 sec
Stage-1 map = 100% reduce = 0% Cunulative CPU 14.16 sec
Stage-1 map = 100% reduce = 100% Cunul ative CPU 15.24 sec

Job 0: Map: 6 Reduce: 1 Cunulative CPU. 15.24 sec
HDFS Read: 4532 HDFS Wite: 3 SUCCESS

Total MapReduce CPU Tine Spent: 15 seconds 240 nsec
(04

79

Time taken: 89.359 seconds, Fetched: 1 row(s)

Find the Lowest Price On Any Vehicle in vehicleTable

SELECT nin(price) FROM vehicl eTabl e;
SELECT nmi n(price) FROM vehicl eTabl ePasswd;
SELECT nmin(price) FROM vehicl eTabl eVl | et;

04

Launching Job 1 out of 1

Hadoop job information for Stage-1: nunmber of mappers: 6;
number of reducers: 1

Stage-1 map = 0% reduce = 0%

Stage-1 map = 21% reduce = 0% Cunulative CPU 6.7 sec
Stage-1 map = 21% reduce = 0% Cunulative CPU 6.7 sec
Stage-1 map = 30% reduce = 0% Cunmulative CPU 6.87 sec
Stage-1 map = 100% reduce = 0% Cunulative CPU 12.16 sec
Stage-1 map = 100% reduce = 0% Cunulative CPU 14.16 sec

Job 0: Map: 6 Reduce: 1 Cunulative CPU. 15.24 sec
HDFS Read: 4532 HDFS Wite: 3 SUCCESS

Total MapReduce CPU Tine Spent: 15 seconds 240 nsec
04

20743. 94

Time taken: 89.615 seconds, Fetched: 1 row(s)

8-6

ORACLE

Chapter 8
Primitive Data Types - The vehicleTable Example

List All GM Vehicles in vehicleTable

SELECT * FROM vehi cl eTabl e WHERE nake LI KE "%GM';
SELECT * FROM vehi cl eTabl ePasswd WHERE nmake LI KE "%G&M';
SELECT * FROM vehi cl eTabl eVl | et WHERE nake LI KE "%GEM';

0.4

Launching Job 1 out of 1

Hadoop job information for Stage-1: number of mappers: 6;
nunber of reducers: 0

Stage-1 map = 0% reduce = 0%

Stage-1 map = 9% reduce = 0% Cumul ative CPU 2.43 sec
Stage-1 map = 26% reduce = 0% Cumul ative CPU 4.81 sec
Stage-1 map = 79% reduce = 0% Cumul ative CPU 13.09 sec
Stage-1 map = 100% reduce = 100% Cunul ative CPU 16.06 sec

Job 0: Map: 6 Cunulative CPU 15.24 sec
HDFS Read: 4532 HDFS Wite: 3 SUCCESS
Total MapReduce CPU Time Spent: 15 seconds 240 nsec

0.4

suv GM Equinox 4WheelDrive white 20743.94 3 1 2019-03-01
truck GM Sierra 4VWeelDrive black 29834.91 8 3 2020-05-15
auto GM Corvette 4\Wheel Drive yellow 21753.53 7 5 2017-10- 23
auto GMImpala AllWeelDrive blue 31115.76 4 9 2018- 05- 04

Time taken: 89.615 seconds, Fetched: 1 row(s)

List All GM Vehicles in vehicleTable that are Red or Blue

SELECT * FROM vehi cl eTabl e WHERE color IN ('red','blue') AND make='GM ;
SELECT * FROM vehi cl eTabl ePasswd WHERE color IN ('red','blue') AND
make=' GV ;

SELECT * FROM vehi cl eTabl eVl | et WHERE color IN ("red','blue') AND
make=' GV ;

(04

auto GM Tahoe AllWeelDrive red 20743.67 28 3 2019-02-04
auto GM Sierra RearWheelDrive blue 20744.10 63 7 2018-08-04
suv GV Tahoe RearWeel Drive red 41486.74 27 5 2020-07-08
truck GM Equi nox 4Wheel Drive red 31115.17 31 9 2017-06-04
truck GV Blazer Al lWeelDrive red 31114.83 69 2 2019-04-06
truck GM Sierra 4Weel Drive blue 31115.32 85 7 2019-02-11

Query a Range of Delivery Times and Order the Results

SELECT del i vered FROM vehi cl eTabl e WHERE del i ver ed
BETWEEN ' 2020- 06- 06 06: 53: 41. 448643' AND ' 2019- 09- 05
15: 40: 22. 057282'
ORDER BY del i vered;
SELECT del i vered FROM vehi cl eTabl ePasswd WHERE del i ver ed

8-7

Chapter 8
Non-Primitive Data Types - The rmvTable Example

BETWEEN ' 2020- 06- 06 06: 53: 41. 448643' AND ' 2019- 09- 05
15: 40: 22. 057282'

ORDER BY del i vered;
SELECT del i vered FROM vehi cl eTabl eWal | et WHERE del i vered

BETWEEN ' 2020- 06- 06 06: 53: 41. 448643' AND ' 2019-09- 05
15: 40: 22. 057282'

ORDER BY del i vered;

K

2019-07-25 09:19: 24. 743
2019-10-24 00: 13:29. 702
2019-11-04 05: 31: 34. 358
2020- 05-25 06: 15: 16. 809
2020-07-05 12:16: 03. 658
2020-09- 05 15:40: 22. 057

Non-Primitive Data Types - The rmvTable Example

This example demonstrates how to execute various Hive queries on an Oracle
NoSQL Database table defined with a complex schema. In this example, a schema
is employed that consists of a variety of Oracle NoSQL Database data types; both
primitive and non-primitive.

The Hive queries executed in this example will be applied to the table named r nvTabl e
you initially created and populated in the Oracle NoSQL Database store. For more
information on that table's schema and data types, see the Creating and Populating
the rmvTable appendix.

Prior to executing Hive queries against r nvTabl e, you must first create an external
table in Hive and map it to the table in Oracle NoSQL Database, as shown in the
following sections.

Mapping a Hive External Table to rmvTable: Non-Secure Store

ORACLE

Assuming you have executed the initial steps to deploy a non-secure store, created
and populated the table named r nvTabl e in that store, and configured the Hive client
environment for interaction with Oracle NoSQL Database, you can then create an
external Hive table that maps to that Oracle NoSQL Database table by executing the
following Hive command:

CREATE EXTERNAL TABLE | F NOT EXI STS rnvTabl e
(zi pcode STRING Ilastname STRING firstname STRING ssn Bl G NT,
gender STRING |icense BI NARY, phoneinfo MAP<STRING STRI NG,
address STRUCT<nunber: | NT, street: STRING
unit:INT, city: STRING zip:INT>,
vehi cl ei nf o ARRAY<STRUCT<t ype: STRING make: STRI NG
model : STRING cl ass: STRING col or: STRI NG
val ue: FLOAT, tax: DOUBLE, pai d: BOOLEAN>>)
COWMENT ' H ve mapped to NoSQL table: rnmvTable'
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er'
TBLPROPERTI ES
("oracl e. kv. kvst ore"
"oracl e. kv. hosts"

"exanpl e-store",
"kv-host - 1: 5000, kv- host - 2: 5000, kv-

8-8

Chapter 8
Non-Primitive Data Types - The rmvTable Example

host - 3: 5000",
"oracl e. kv.tabl eName" = "rmvTabl e",
"oracl e. kv. hadoop. hosts" = "dn-host -1, dn-host - 2, dn- host - 3") ;

The command above applies the required data model mapping to create a Hive table
named r mvTabl e with columns whose types are consistent with the corresponding
fields of the Oracle NoSQL Database table specified via the or acl e. kv. t abl eNare

property.

Although not necessary, the Hive table that is created is given the same name as the
table to which it is mapped in the store.

Mapping a Hive External Table to rmvTable: Secure Store

Assuming you have executed the initial steps to deploy a secure store, created and
populated the table named r nvTabl e in that store, and configured the Hive client
environment for secure interaction with Oracle NoSQL Database, you can then create
two external Hive tables that each map to that Oracle NoSQL Database table by
executing the Hive commands presented in the following sections.

When mapping a Hive external table to a table located in a secure Oracle NoSQL
Database, because the password the Hive client uses to access and communicate
with the store can be stored in either a password file or an Oracle Wallet, the sections
below present commands that take different parameters, depending on the mechanism
used to store the user's password.

Mapping Hive to Secure rmvTable: Password File

ORACLE

If a password file is used for password storage, then you can create an external Hive
table that maps to the rnvTabl e by executing the following Hive command:

CREATE EXTERNAL TABLE | F NOT EXI STS r nvTabl ePasswd
(zi pcode STRING I|astname STRING firstname STRING ssn Bl G NT,
gender STRING |icense BI NARY, phoneinfo MAP<STRI NG STRI NG,
addr ess STRUCT<nunber: | NT street: STRI NG
unit:INT, city: STRING zip:|NT>,
vehi cl ei nf o ARRAY<STRUCT<t ype: STRING make: STRI NG
nmodel : STRING, cl ass: STRING col or: STRI NG
val ue: FLOAT, tax: DOUBLE, pai d: BOOLEAN>>)
COWENT ' H ve mapped to NoSQ. table: rmvTable'
STORED BY 'oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHandl er'
TBLPROPERTI ES
("oracle. kv. kvstore"
"oracl e. kv. hosts"
host - 3: 5000",
"oracl e. kv. tabl eName" = "rnmvTabl e",
“oracl e. kv. hadoop. hosts" = "dn- host -1, dn- host - 2, dn- host - 3",
“oracl e. kv. security" = "/tnp/hive-nosql.login",
"oracle.kv.ssl.truststore" = "/tnp/client.trust",
"oracl e. kv. aut h. usernane" = "exanpl e-user",
"oracle.kv.auth. pwdfile.file" = "/tnp/exanpl e-user. passwd");

"exanpl e-store",
"kv-host - 1: 5000, kv- host - 2: 5000, kv-

8-9

Chapter 8
Non-Primitive Data Types - The rmvTable Example

Mapping Hive to Secure rmvTable: Oracle Wallet

If an Oracle Wallet is used for password storage, then you can create an external Hive
table that maps to the r mvTabl e by executing the following Hive command:

CREATE EXTERNAL TABLE | F NOT EXI STS rnvTabl eVl | et
(zi pcode STRING lastname STRING firstname STRING ssn Bl G NT,
gender STRING |icense BI NARY, phoneinfo MAP<STRI NG STRI NG,
address STRUCT<number: | NT street: STRI NG
unit:INT, city: STRING zip:INT>,
vehi cl ei nf o ARRAY<STRUCT<t ype: STRING make: STRI NG
model : STRING cl ass: STRING col or: STRI NG
val ue: FLOAT, tax: DOUBLE, pai d: BOOLEAN>>)
COWMENT ' H ve mapped to NoSQL table: rnmvTable'
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er'
TBLPROPERTI ES
("oracl e. kv. kvst ore"
"oracl e. kv. hosts"

"exanpl e-store",
"kv-host - 1: 5000, kv- host - 2: 5000, kv-

host - 3: 5000",
"oracl e. kv. tabl eName" = "rnvTabl e",
"oracl e. kv. hadoop. hosts" = "dn-host -1, dn- host - 2, dn- host - 3",
"oracle. kv.security" = "/tnp/hive-nosql.login",
"oracle.kv.ssl.truststore" = "/tnp/client.trust",
"oracl e. kv. aut h. usernane" = "exanpl e-user",
"oracle.kv.auth.wallet.dir" = "/tnp/exanpl e-user-

wal let.dir");

Hive Queries on rmvTable: Non-Primitive Data Types

ORACLE

After following the directions presented in the previous sections to create and map a
Hive external table to a table in the Oracle NoSQL Database store (either non-secure
or secure), the data in the store's table can be queried via the Hive Query Language.

In a fashion similar to the vehi cl eTabl e queries presented previously, each sub-
section below presents three instances of a given query, one for each of the three
possible scenarios: non-secure, secure with password file, or secure with Oracle
Wallet. But the query results are shown only once, in edited form.

Type the query from each sub-section below that corresponds to how you have
configured your particular environment.

List Each Row in the rmvTable Located in Oracle NoSQL Database

SELECT * FROM rmvTabl e;
SELECT * FROM r mvTabl ePasswd;
SELECT * FROM rmvTabl eVl | et ;

(04
49027 GOMEZ CHRI STOPHER 509367447 nmale S57428836
{"cell":"616-351-0185", "hone": "213- 630-2419", "wor k" : " 617-227- 9840" }
{

"nunber": 88072,

"street":"Fifth Avenue",

8-10

Chapter 8
Non-Primitive Data Types - The rmvTable Example

"unit": 6,
"city":"Canbridge",
"state":" K",
"zip":49027

"type":"auto",

"make": "Ford",

“nodel ": " Taurus",
"class":"A | Weel Drive",
“col or":"bl ue",

"val ue":20743. 234,
"tax":566. 29,

"paid":fal se

"type":"auto",

"make": "Ford",

“nodel ": " Taurus",
"class":"Front Wheel Drive",
“col or":"bl ue",

"val ue":20743. 559,
"tax":566. 29,

"paid":true

]

40719 ROSARIO ANNE 448406765 female S04809975
{"cell":"303-804-1660", "home": " 408- 630- 2412", "wor k" : " 415- 804- 9515"}
{

"nurber": 96581,

"street":"Third Avenue",

"unit":7,

"city":"Springfield",

"state":"RI ",

"zip":40719

"type":"truck",
"make":"Chrysler",

"model ": " Ran8500",
"class": " RearWeel Drive",
“col or":"bl ue",

"val ue": 31115. 26,
"tax":849. 44,

"paid":true

"type":"truck",
"make":"Chrysler",
"model ": " Raml500",
"class":"A | Weel Drive",

"color":"bl ue",

ORACLE 8-11

ORACLE

Chapter 8

Non-Primitive Data Types - The rmvTable Example

"val ue":31114. 87,
"tax":849. 43,
"paid":fal se

b

{
"type":"auto",
"make": "Ford",
"model ": " Edge",
"class": " RearWeel Drive",
“color":"yel l ow',
"val ue":20743. 88,
"tax":566. 30,
"paid":true

}

List Name, Gender, and Address of Each Vehicle Owner in rmvTable

SELECT | ast nane, firstname, gender, address FROM rnvTabl e;
SELECT | ast nane, firstname, gender, address FROM rmvTabl ePasswd;
SELECT | ast name, firstnanme, gender, address FROM rmv/Tabl eVl | et ;

Launching Job 1 out of 1
Hadoop job information for Stage-1: nunmber of mappers: 6;
nunber of reducers: 1

Stage-1 map = 0% reduce = 0%

Stage-1 map = 7% reduce = 0% Cumulative CPU 2.26 sec
Stage-1 map = 80% reduce = 0% Cunulative CPU 6.87 sec
Stage-1 map = 100% reduce = 0% Cunulative CPU 14.16 sec

Job 0: Map: 6 Reduce: 1 Cunulative CPU. 14.16 sec
HDFS Read: 4760 HDFS Wite: 4702 SUCCESS

Total MapReduce CPU Tine Spent: 14 seconds 160 nsec
(04

SNI DER FRANK nal e

{
"nunber": 33512,
"street":"Summer Street",
"unit": 1,
“city":"Arlington",
"state":"TN',"zip":89150

}

M LLER ROCH nual e

{
"nunber": 25698,
"street":"Millberry Street",
"unit": 6,
"city":"Madison",
"state":" VA",
“zip":5740

}

8-12

ORACLE

Chapter 8
Non-Primitive Data Types - The rmvTable Example

TATE BENJAM N nal e

{
"nunber": 2894,
"street":"View Street",
"unit":-1,
"city":"Cinton",
"state":"KY",
"zip":57466

List Name and Phone Number of Each Vehicle Owner in rmvTable

SELECT firstnang, | ast name, phonei nfo[“horme"] FROM rnvTabl e;
SELECT firstnane, | ast name, phonei nfo["cel |"] FROM rnvTabl ePasswd;
SELECT firstnang, | ast name, phonei nf o["work"] FROM rnvTabl eVl | et ;

Launching Job 1 out of 1

Hadoop job information for Stage-1: nunmber of mappers: 6;
nunber of reducers: 1

Stage-1 map = 0% reduce = 0%

Stage-1 map = 100% reduce = 0% Cunulative CPU 18.11 sec
Job 0: Map: 6 Cumulative CPU. 18.11 sec

HDFS Read: 4724 HDFS Wite: 2141 SUCCESS

Total MapReduce CPU Tine Spent: 18 seconds 110 nsec

(04

CHRI STOPHER GOMEZ 213-630- 2419
ANNE ROSARI O 408-630- 2412
MEGAN PHELPS 978-541-5710

M CHAEL BRADLEY 313-351-4580

Count Total Number of Rows in rmvTable

SELECT count (vehicleinfo[0].type) FROMrnvTabl e;
SELECT count (vehicleinfo[0].type) FROM rmTabl ePasswd;
SELECT count (vehicleinfo[0].type) FROM rm/Tabl eVall et;

Launching Job 1 out of 1

Hadoop job information for Stage-1: nunber of mappers: 6;
number of reducers: 1

Stage-1 map = 50% reduce = 0% Cumulative CPU 12.12 sec
Stage-1 map = 100% reduce = 100% Cunul ative CPU 25.51 sec
Job 0: Map: 6 Reduce: 1 Cunulative CPU. 25.51 sec

HDFS Read: 4760 HDFS Wite: 3 SUCCESS

Total MapReduce CPU Tine Spent: 25 seconds 510 nsec

8-13

ORACLE

Chapter 8
Non-Primitive Data Types - The rmvTable Example

K
79

For Each Owner's Primary Vehicle, Find the Minimum Assessed Value

SELECT ni n(vehicleinfo[0].value) FROM rnvTabl e;
SELECT ni n(vehicl einfo[0].val ue) FROM rnvTabl ePasswd;
SELECT ni n(vehicleinfo[0].val ue) FROM rnvTabl eVl | et;

Launching Job 1 out of 1
Hadoop job information for Stage-1: nunmber of mappers: 6;
nunber of reducers: 1

Stage-1 map = 100% reduce
Stage-1 map = 100% reduce

0% Cunulative CPU 14.3 sec
100% Cumnul ative CPU 15. 38 sec

Job 0: Map: 6 Reduce: 1 Cunulative CPU. 15.38 sec
HDFS Read: 4532 HDFS Wite: 16 SUCCESS

Total MapReduce CPU Tine Spent: 15 seconds 380 nsec
04

20743. 24

List All Info For Each Owner's Vehicle (Primary, Secondary, Tertiary)

SELECT vehi cl ei nfo[0] FROM rmvTabl e;
SELECT vehi cl einfo[1] FROM r mvTabl ePasswd;
SELECT vehi cleinfo[2] FROM rmTabl eVl | et;

Launching Job 1 out of 1
Hadoop job information for Stage-1: nunmber of mappers: 6;
nunber of reducers: 1
Stage-1 map = 17% reduce = 0% Cumul ative CPU 4.59 sec
Stage-1 map = 95% reduce = 0% Cumul ative CPU 27. 33 sec
Stage-1 map = 100% reduce = 0% Cunulative CPU 27.89 sec

Job 0: Map: 6 Cumulative CPU. 27.89 sec
HDFS Read: 4760 HDFS Wite: 5681 SUCCESS
Total MapReduce CPU Tine Spent: 27 seconds 890 nsec

(04

{
"type":"suv",
"make": "GV,
"nmodel ": " Tahoe",
"class":"4Weel Drive",
"color":"bl ack",
"val ue": 41487. 24,
"tax":1132. 60,
"paid":true

}

{
"type":"auto",
"make":"Chrysler",
"model ": "I nperial",

8-14

Chapter 8
Non-Primitive Data Types - The rmvTable Example

"class":"Al |l Wheel Drive",

"color":"red",
"val ue": 20743. 92,

"tax":566. 30,
"paid":true

}

{
"type":"auto",
"make": " Ford",
"nodel ": " Taurus",
"cl ass": " RearWeel Drive",
"color":"bl ue",
"val ue": 20744. 07,
"tax":566. 31,
"paid":true

}

List Name, Address, Vehicle Info For Owner Surnames Starting With 'H’

SELECT firstnane, | ast nane, addr ess, vehi cl ei nfo[0] FROM rnvTabl e
WHERE RLIKE "~[H.*";

SELECT firstnane, | ast nane, addr ess, vehi cl ei nf o[0] FROM r mvTabl ePasswd
WHERE RLIKE "~[H.*";

SELECT firstnane, | ast nane, addr ess, vehi cl ei nfo[0] FROM rnvTabl eVl | et
WHERE RLIKE "~[H.*";

Launching Job 1 out of 1
Hadoop job information for Stage-1: number of mappers: 6;
nunber of reducers: 1

Stage-1 map = 33% reduce = 0% Cumulative CPU 9.46 sec
Stage-1 map = 83% reduce = 0% Cumul ative CPU 23.29 sec
Stage-1 map = 100% reduce = 0% Cunulative CPU 27.78 sec

Job 0: Map: 6 Cumulative CPU. 27.78 sec

HDFS Read: 4760 HDFS Wite: 1143 SUCCESS

Total MapReduce CPU Tine Spent: 27 seconds 780 nsec
(04

ClI NDY HODCGES

{
"nunber": 56758,

"street":"Vaughan Avenue",

"unit":-1,
"city":"Madison",
"state":"NH',
“zip":79623

}

{
"type":"truck",

"make":"Chrysler",

ORACLE 8-15

ORACLE

Chapter 8

Non-Primitive Data Types - The rmvTable Example

"nodel ": " Ranl 500",
"cl ass":"RearWeel Drive",
"color":"black",
"val ue":31115. 12,
"tax":849. 44,
"paid":true

}

JULI A HOLDEN

{
"nunber": 56209,
"street":"Main Street",
"unit":1,"city":"CGeorgetown",
"state":"CA",
"zip":62154

"type":"auto",

"make": " Ford",

"nodel ": " Taurus",
"class":"Front Weel Drive",
"color":"bl ue",

"val ue": 20743. 80,
"tax":566. 30,

"paid":true

List Name, Address, Vehicle Info When Owner's Second Vehicle Is GM

SELECT firstnane, | ast nane, addr ess, vehi cl einfo[1] FROM rnvTabl e

VHERE vehi cl ei nfo[1] . make LIKE "%GWA4 ;

SELECT firstnane, | ast nane, addr ess, vehi cl ei nfo[1] FROM r nvTabl ePasswd

VHERE vehi cl ei nfo[1] . make LIKE "%GWA4 ;

SELECT firstnane, | ast nane, addr ess, vehi cl ei nfo[1] FROM rnvTabl eVl | et

VHERE vehi cl ei nfo[1] . make LIKE "%WA4 ;

Launching Job 1 out of 1

Hadoop job information for Stage-1: number of mappers: 6;

nunber of reducers: 1

Stage-1 map = 50% reduce = 0% Cunul ative CPU 9.29 sec
Stage-1 map = 100% reduce = 0% Cunulative CPU 18.8 sec

Job 0: Map: 6 Cunulative CPU. 18.8 sec

HDFS Read: 4724 HDFS Wite: 2087 SUCCESS

Total MapReduce CPU Tine Spent: 18 seconds 800 msec
(014

NANCY STOUT

{
"nunber": 31126,
"street":"Cedar Street",

8-16

Chapter 8
Non-Primitive Data Types - The rmvTable Example

"unit":8,
"city":"Arlington",
"state":"MD',
"zip": 73131

1

{
"type":"suv",
"make": "GV,
“model ": " Equi nox",
"class":"A | Weel Drive",
"color":"red",
"val ue": 41486. 43,
"tax":1132.57,
"paid":true

}

RANDY MCDOWELL

{
"nunber": 18391,
"street":"Lane Avenue",
"unit":8,
"city":"Concord",
"state":"NH',
"zip": 42540

1

{
"type":"auto",
"make": "GV,
"nodel ": " Corvette",
"class":"Front Weel Drive",
"color":"bl ack",
"val ue": 20744. 03,
"tax":566. 31,
"paid":fal se

1

List Name, Address, Model, Assessed Value & Registration Fee Status (Paid or
Not) When Primary Vehicle Is Chrysler

SELECT firstnane, |astnane, address, vehiclelnfo[0].nodel,
vehi cl ei nfo[0] . val ue, vehicleinfo[0].tax, vehicleinfo[0].paid
FROM r mvTabl e WHERE vehi cl ei nf o[0] make LIKE "%Chrysler%;

SELECT firstnane, | ast nane, address, vehi cl el nfo[0]. nodel,
vehi cl ei nfo[0] . val ue, vehicleinfo[0].tax, vehicleinfo[0].paid
FROM r nvTabl ePasswd WHERE vehi cl ei nf o[0] make LI KE "%Chrysler%;

SELECT firstnane, | ast nane, address, vehi cl el nfo[0]. nodel,
vehi cl ei nfo[0] . val ue, vehicleinfo[0].tax, vehicleinfo[0].paid
FROM rnvTabl eVl | et WHERE vehi cl ei nf o[0] make LI KE "%Chrysler% ;

Launching Job 1 out of 1

Hadoop job information for Stage-1: number of mappers: 6;

ORACLE 8-17

Chapter 8
NoSQL JSON Data Type - The exampleJsonTable Example

nunber of reducers: 1
43% reduce = 0% Curnul ative CPU 9. 46 sec
100% reduce = 0% Cunul ative CPU 18.15 sec

Stage-1 map
Stage-1 map

Job 0: Map: 6 Cunulative CPU. 18.15 sec

HDFS Read: 4724 HDFS Wite: 2164 SUCCESS
Total MapReduce CPU Tine Spent: 18 seconds 150 msec
(014

ANNE RGCSARI O

{
"nunber": 96581,
"street":"Third Avenue",
"unit":7,
“city":"Springfield",
"state":"RI","zip":40719

}
RanB8500 31115.26 849.44 true

MEGAN PHELPS

{
"nunber": 12713,
"street":"MAC Avenue",
"unit":4,"city":"Sal enf,
"state": "M,
"zip": 76554

!

Raml500 31115.30 849.44 true

BRI AN ROALAND

{
"nunber": 37868,

"street":"First Street",

"unit": 3,
"city":"Sal ent,
"state":"GA",
"zip":98106

}
I nperial 20744.15 566.31 true

NoSQL JSON Data Type - The exampleJsonTable Example

ORACLE

The exanpl eJsonTabl e is used to demonstrate Hive queries on an Oracle NoSQL
Database table in which one of the table's fields (columns) contains text in valid JSON
format; that is, a JSON document. For this example table, a schema is employed

that consists of only two fields: a field of type Fi el dDef . Type. | NTEGER representing

a unigue identifier used for the primary key, and a field of type Fi el dDef . Type. JSON,
in which each row in the field contains a JSON document consisting of attributes
corresponding to information about current and former members of the United States
senate; for example, a given senator's name, address, birthday, etc.

The Creating and Populating the exampleJsonTable appendix describes the
exanpl eJsonTabl e in more detail. That appendix also presents a program that

8-18

Chapter 8
NoSQL JSON Data Type - The exampleJsonTable Example

can be run to create and populate exanpl eJsonTabl e with the sort of data the
gueries presented in this section expect. Before proceeding, please follow the
directions provided in that appendix to create and populate exanpl eJsonTabl e with
the appropriate example data. Then, prior to executing any Hive queries against
exanpl eJsonTabl e, first create a Hive external table and map it to the table you
created in Oracle NoSQL Database, as shown in the following sections.

Mapping a Hive External Table to exampleJsonTable: Non-Secure

Store

Assuming you have executed the initial steps to deploy a non-secure store, followed
the directions presented in the Creating and Populating the exampleJsonTable
appendix to create and populate the Oracle NoSQL Database table named

exanpl eJsonTabl e, and configured the Hive client environment for interaction with
Oracle NoSQL Database, you can then create an external Hive table that maps to that
Oracle NoSQL Database table by executing the following Hive command:

CREATE EXTERNAL TABLE | F NOT EXI STS exanpl eJsonTabl e
(id INT, jsonfield STRING
COWENT ' H ve mapped to NoSQ table: exanpl eJsonTabl e’
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er'
TBLPROPERTI ES (
"oracle. kv. kvstore" = "exanpl e-store",
"oracl e. kv. host s"= "kv-host - 1: 5000, kv- host - 2: 5000, kv-
host - 3: 5000",
"oracle. kv. tabl eName" = "exanpl eJsonTabl e",
"oracl e. kv. hadoop. hosts” = "dn-host-1, dn-host - 2, dn- host - 3");

The command above applies the required data model mapping to create a Hive
table named exanpl eJsonTabl e with columns whose types are consistent with
the corresponding fields of the Oracle NoSQL Database table specified via the
oracl e. kv. t abl eName property.

Although not necessary, the Hive table that is created is given the same name as the
table to which it is mapped in the store.

Mapping a Hive External Table to exampleJsonTable: Secure Store

ORACLE

Assuming you have executed the initial steps to deploy a secure store, followed the
directions presented in the Creating and Populating the exampleJsonTable appendix
to create and populate the NoSQL table named exanpl eJsonTabl e, and configured the
Hive client environment for secure interaction with Oracle NoSQL Database, you can
then create two external Hive tables that each map to that Oracle NoSQL Database
table by executing the Hive commands presented in the following sections.

When mapping a Hive external table to a table located in a secure Oracle NoSQL
Database, because the password the Hive client uses to access and communicate
with the store can be stored in either a password file or an Oracle Wallet, the sections
below present commands that take different parameters, depending on the mechanism
used to store the user's password.

8-19

Chapter 8
NoSQL JSON Data Type - The exampleJsonTable Example

Mapping Hive to Secure exampleJsonTable: Password File

If a password file is used for password storage, then you can create an external Hive
table that maps to the exanpl eJsonTabl e by executing the following Hive command:

CREATE EXTERNAL TABLE | F NOT EXI STS exanpl eTabl ePasswd
(id INTEGER jsonfield STRI NG
COWMENT ' H ve mapped to NoSQL table: exanpl eJsonTabl e’
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er'

TBLPROPERTI ES (
"oracl e.
"oracl e.

host - 3: 5000",

"oracle.
"oracle.
"oracle.
"oracle.
"oracle.
"oracle.

kv.
kv.

kv.
kv.
kv.
kv.
kv.
kv.

kvstore" = "exanple-store",
host s"="kv- host - 1: 5000, kv- host - 2: 5000, kv-

t abl eName" = "exanpl eJsonTabl e",

hadoop. host s" = "dn-host -1, dn-host - 2, dn- host - 3",
security” = "/tnp/hive-nosql.login",
ssl.truststore" = "/tnp/client.trust",

aut h. username” = "exanpl e- user",
auth.pwdfile.file" = "/tnp/exanpl e-user. passwd");

Mapping Hive to Secure exampleJsonTable: Oracle Wallet

If an Oracle Wallet is used for password storage, then you can create an external Hive
table that maps to the exanpl eJsonTabl e by executing the following Hive command:

CREATE EXTERNAL TABLE | F NOT EXI STS exanpl eJsonTabl eVl | et
(int INTEGER, jsonfield STRING
COWENT ' H ve mapped to NoSQL table: exanpl eJsonTabl e’
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHandl er'

TBLPROPERTI ES (
"oracl e.
"oracl e.

host - 3: 5000",

"oracl e.
"oracl e.
"oracle.
"oracl e.
"oracle.
"oracl e.

kv.
kv.

kv.
kv.
kv.
kv.
kv.

kv

kvstore" = "exanple-store",
host s" ="kv- host - 1: 5000, kv- host - 2: 5000, kv-

t abl eName" = "exanpl eJsonTabl e",

hadoop. host s" = "dn-host -1, dn-host - 2, dn- host - 3",
security” = "/tnp/hive-nosql.login",
ssl.truststore" = "/tnp/client.trust",

aut h. username" = "exanpl e- user",

.auth.wallet.dir" = "/tnp/exanpl e-user-wallet.dir");

Hive Queries on exampleJsonTable: JSON Data Type

After following the directions presented in the previous sections to create and map
a Hive external table to the exanpl eJsonTabl e table in the Oracle NoSQL Database
store (either non-secure or secure), the data in the store's table can be queried via the

ORACLE

Hive Query Language.

Each sub-section below presents three instances of a given query, one for each of the
three possible scenarios: non-secure, secure with password file, or secure with Oracle
Wallet. But the query results are shown only once, in edited form.

8-20

Chapter 8
NoSQL JSON Data Type - The exampleJsonTable Example

Type the query from each sub-section below that corresponds to how you have
configured your particular environment.

List Each Senator, Ordered By Rank and State

SELECT
get _json_object(jsonfield, '$.description')
AS description,
get _json_object(jsonfield, '$.personal.firstname')
AS firstnane,
get _json_object (jsonfield,
AS | ast name
FROM exanpl eJsonTabl e CRDER BY descri pti on;

$. personal . | ast nane')

Hadoop job information for Stage-1: nunmber of nappers: 2;
nunber of reducers: 1

Stage-1 map = 50% reduce = 0% Cumul ative CPU 16.29 sec
Stage-1 map = 100% reduce = 0% Cunulative CPU 28.8 sec

Job 0: Map: 2 Cumul ative CPU. 34.22 sec
HDFS Read: 16799 HDFS Wite: 5490 SUCCESS
Total MapReduce CPU Time Spent: 34 seconds 220 nsec

0.4

Junior Senator for Al abama Doug Jones
Junior Senator for Al aska Dan Sul l'ivan
Junior Senator for Arizona Jef f Fl ake
Junior Senator for Arkansas Tom Cotton
Junior Senator for California Kamala Harris
Juni or Senator for Col orado Cory Gar dner
Senior Senator for Virginia Mar k V\ar ner
Seni or Senator for Washington Patty Mirray
Senior Senator for West Virginia Joe Manchi n
Senior Senator for Wsconsin Ron Johnson
Seni or Senator for Woning M chael Enzi

Time taken: 29.342 seconds, Fetched: 100 row(s)

" Note:

In the SELECT query, instead of the exanpl eJsonTabl e, you
could use any of exanpl eJsonTabl e, exanpl eJsonTabl ePasswd, or
exanpl eJsonTabl eVl | et .

List Each Senator Who Is An Independent

SELECT get json_object(jsonfield, '$. personal.firstnane'),
get _json object(jsonfield, '$. personal.lastnane'),

ORACLE 8-21

ORACLE

Chapter 8
NoSQL JSON Data Type - The exampleJsonTable Example

get _json_object(jsonfield, '$. party'),
get _json_object(jsonfield, '$. description')
FROMV exanpl eJsonTabl e ORDER BY descri pti on;

Hadoop job information for Stage-1: number of mappers: 2;

number of reducers: 1

Stage-1 map = 50% reduce = 0% Cumul ative CPU 11.29 sec
Stage-1 map = 100% reduce = 0% Cunulative CPU 19.67 sec

Job 0: Map: 2 Cumulative CPU. 19.67 sec
HDFS Read: 13716 HDFS Wite: 301 SUCCESS
Total MapReduce CPU Tine Spent: 19 seconds 670 nsec

Angus King I ndependent Juni or Senator for Mine
Bernard Sanders |ndependent Junior Senator for Vernont

Time taken: 15.614 seconds, Fetched: 2 row(s)

Note:

In the SELECT query, instead of the exanpl eJsonTabl e, you
could use any of exanpl eJsonTabl e, exanpl eJsonTabl ePasswd, or
exanpl eJsonTabl eVl | et .

8-22

Appendix

Topics

e Creating and Populating the rmvTable

e Creating and Populating the exampleJsonTable
e Configuring the Hive Client Environment

e Hive and Oracle NoSQL Database Security

e Predicate Pushdown

Creating and Populating the rmvTable

Oracle NoSQL Database provides a separate distribution consisting of example
programs and utility classes that you can use to explore various aspects of interacting
with an Oracle NoSQL Database system. With respect to exploring the integration

of Oracle NoSQL Database with Apache Hive, that separate example distribution
provides a number of Java programs that you can use to create and populate example
tables in the Oracle NoSQL Database store you deploy.

The first program is named LoadTabl eVehi cl e and is described in detail in

the Count Tabl eRows Support Programs appendix. A second program is named
LoadRnvTabl e, and is described in this section, along with the schema employed when
creating the table, as well as how to compile and execute the program.

Schema for the Example Table Named rmvTable

ORACLE

To demonstrate how a Hive query can be applied to an Oracle NoSQL Database
table consisting of a mix of primitive and non-primitive data types, a table named

r mvTabl e having the schema shown in the table below must be created in the Oracle
NoSQL Database store deployed for this example. The data types specified in the
schema shown below are defined by the Oracle NoSQL Database table API (see
FieldDef.Type) .

Table 9-1 Schema for rmvTable

Field Name Field Type

zipcode FieldDef. Type.STRING

lastname FieldDef. Type.STRING

first name FieldDef. Type.STRING

ssn FieldDef. Type.STRING

gender FieldDef. Type.ENUM

license FieldDef.Type.FIXED_BINARY(9)
phoneinfo FieldDef. Type.MAP(STRING)
address FieldDef. Type.RECORD

9-1

ORACLE

Chapter 9
Creating and Populating the rmvTable

Table 9-1 (Cont.) Schema for rmvTable
|

Field Name Field Type

address Record Schema number FieldDef. Type.INTEGER
street FieldDef.Type.STRING
unit FieldDef. Type.INTEGER
city FieldDef. Type.STRING
state FieldDef. Type.STRING
zip FieldDef. Type.INTEGER

vehicleinfo FieldDef. Type. ARRAY

(FieldDef. Type.RECORD)

vehicleinfo Element Record type FieldDef. Type.STRING

Schema make FieldDef. Type.STRING
model FieldDef. Type.STRING
class FieldDef. Type.STRING
color FieldDef. Type.STRING
value FieldDef. Type.STRING
tax FieldDef. Type.STRING
paid FieldDef. Type.STRING

Table 9-2 Primary Key Field Names

___|
Primary Key Field Names

zipcode lastname first name ssn

Table 9-3 Shard Key Field Names

|
Shard Key Field Names

zipcode

Upon examining this schema, one can see that the example r nvTabl e consists of rows
of data the Registry of Motor Vehicles might maintain about vehicle owners who have
registered a primary vehicle and (optionally) a second and maybe a third vehicle. In
addition to personal information about each owner - such as name, address, gender,
phone number(s), etc. - each row of data also contains an array in which each element
of the array is a record whose contents consists of information about each vehicle the
owner registers.

For example, in addition to vehicle attributes such as the make, model, color, etc.,
the record will also contain the vehicle's assessed value, registration fee (the tax),
and whether or not the owner has paid the fee. Although the table schema presented
above may seem a bit contrived, it is intended to demonstrate a broad spectrum of
data types from the Oracle NoSQL Database table API.

To create a table with the above schema, the preferred approach is to employ the
table Data Definition Language (DDL) (see Table Data Definition Language Overview),
rather than entering individual commands in the store's admin CLI. To accomplish
this, you can follow the instructions presented in the following sections to compile and

9-2

Chapter 9
Creating and Populating the rmvTable

execute the LoadRmvTabl e program, which will populate the desired table after using
the DDL to create it.

Create and Populate rmvTable with Example Data

Assuming an Oracle NoSQL Database store (either non-secure or secure) has been
deployed with KVHOME equal to / opt/ or acl e/ kv- ee, the LoadRnvTabl e program
supplied in the separate Oracle NoSQL Database example distribution can be
executed to create and populate the table named r nvTabl e. Before executing
LoadRnvTabl e though, that program must first be compiled. To do this, assuming
you have installed the example distribution under the directory / opt/ or acl e/ nosql /
apps/ kv/ exanpl es, type the following from your client node's command line:

cd /opt/oracl e/ nosql / apps/ kv

javac -classpath \
lopt/oracl e/ kv-ee/lib/kvclient.jar:exanples \
exanpl es/ hadoop/ hi ve/ t abl e/ LoadRnvTabl e. j ava

This should produce the file:

[opt/ oracl e/ nosql / apps/ kv/ exanpl es/ hadoop/ hi ve/ t abl e/ LoadRmv/Tabl e. cl ass

How to Run LoadRmvTable When the Store is Non-Secure

ORACLE

To execute LoadRnvTabl e to create and populate the table named r mvTabl e with
example data in a store configured for non-secure access, type the following at

the command line of the client node, which must have network connectivity with a
node running the admin service of the non-secure store you deployed (for example,
kv-host - 1 itself):

cd /opt/oracl e/ nosql / apps/ kv

java -classpath \
lopt/oracl e/ kv-ee/lib/kvclient.jar:\
I opt/oracl e/ kv-ee/lib/sklogger.jar:\
lopt/oracl e/ kv-ee/lib/comonutil.jar:exanples \
hadoop. hi ve. tabl e. LoadRmvTabl e \
-store exanpl e-store -host kv-host-1 -port 5000 \
-nops 79
[-del ete]

The following parameters are required: - stor e, - host, - port, and - nops, whereas the
- del et e parameter is optional.

In the example command line above, the argument - nops 79 requests that 79 rows be
written to r nvTabl e. If more or less than that number of rows is desired, then the value
of the - nops parameter should be changed.

If LoadRmvTabl e is executed a second time and the optional - del et e parameter is
specified, then all rows added by any previous executions of LoadRmw/Tabl e are deleted
from the table prior to adding the requested new rows. Otherwise, all pre-existing

rows are left in place, and the number of rows in the table will be increased by the
requested - nops number of new rows.

9-3

Chapter 9
Creating and Populating the exampleJsonTable

How to Run LoadRmvTable When the Store is Secure

To execute LoadRnvTabl e against the secure store that you deployed and provisioned
with a non-administrative user according to the steps presented in the Deploying a
Secure Store appendix, an additional parameter must be added to the command line
above. In this case, type the following on the command line:

java -classpath \
[opt/oracl e/ kv-ee/lib/kvclient.jar:\
[opt/oracl e/ kv-eel/lib/ skl ogger.jar:\
[opt/oracl e/ kv-eellib/comonutil.jar:exanples \
hadoop. hi ve. tabl e. LoadRmv/Tabl e \
-store exanpl e-store -host kv-host-1 -port 5000 \
-nops 79 \
-security /tnp/exanmpl e-user-client-pwdfile.login\
[-del ete]

As explained in the Count Tabl eRows Support Programs appendix, the additional
-security parameter in the command above specifies the location of the login
properties file for the given user or alias. All other parameters are the same as for
the non-secure case.

Summary

At this point, a table named r mvTabl e, populated with the desired example data ,
should exist in the Oracle NoSQL Database store you deployed. The data in that table
can then be queried using the Hive Query Language (HQL).

Creating and Populating the exampleJsonTable

Similar to the programs that create and populate the example vehi cl eTabl e

and r nvTabl e, the Oracle NoSQL Database example distribution provides another
program, named LoadJsonExanpl e, that you can use to create and populate a table
consisting of rows with a field containing a JSON document. You can use the table
created by the LoadJsonExanpl e program to explore employing Hive to query JSON
documents stored in an Oracle NoSQL Database.

This section describes the LoadJsonExanpl e program, along with the schema
employed when creating the desired example table, as well as how to compile and
execute that program.

Schema for the Example Table Named exampleJsonTable

To demonstrate how a Hive query can be applied to an Oracle NoSQL Database table
consisting of rows containing JSON documents, a table named exanpl eJsonTabl e
having the schema shown in the table below is created in the Oracle NoSQL Database
store deployed for this example. The data types specified in the schema shown below
are defined by the Oracle NoSQL Database table API (see FieldDef.Type)

ORACLE 9-4

Chapter 9
Creating and Populating the exampleJsonTable

Table 9-4 Schema for exampleJsonTable
|

Field Name Field Type
id FieldDef. Type.INTEGER
jsonField FieldDef.Type.JSON

Table 9-5 Primary Key Field Names

___|
Primary Key Field Names

id

The exanpl eJsonTabl e will consist of rows with only two fields (columns). The first
field contains a unique identification number that will be used as the primary key

for the table. The rows of the second field will contain strings in valid JSON format;
that is, a JSON document. The attributes of each JSON document in a given row
specify information about current and former members of the United States senate; for
example, the given senator's name, party affiliation, contact information, etc.

To create a table with the above schema, and populate that table with the desired
JSON documents, follow the instructions presented in the next sections to compile and
execute the LoadExanpl eJson program.

Create and Populate exampleJsonTable with Example Data

Assuming an Oracle NoSQL Database store (either non-secure or secure) has

been deployed with KVHOME equal to / opt / or acl e/ kv- ee, the LoadExanpl eJson
program supplied in the Oracle NoSQL Database example distribution can be
executed to create and populate the table named exanpl eJsonTabl e. Before executing
LoadJsonExanpl e though, that program must first be compiled. To do this, assuming
you have installed the example distribution under the directory / opt / or acl e/ nosql /
apps/ kv/ exanpl es, type the following from your client node's command line:

cd /opt/oracl e/ nosql / apps/ kv
javac -classpath \
[opt/oracl e/ kv-ee/lib/kvstore.jar:exanples \
exanpl es/ hadoop/ hi ve/ es/ t abl e/ LoadExanpl eJson. j ava

This should produce the file:

[opt/ oracl e/ nosql / apps/ kv/ exanpl es/ \
hadoop/ hi ve/ es/ t abl e/ LoadExanpl eJson. ¢l ass

How to Run LoadJsonExample When the Store is Non-Secure

To execute LoadExanpl eJson when the store to contact is configured for non-secure
access, type the following at the command line of the client node, which must have

ORACLE 9-5

Chapter 9
Creating and Populating the exampleJsonTable

network connectivity with a node running the admin service of the non-secure store
you deployed (for example, kv- host - 1 itself):

cd /opt/oracl e/ nosql / apps/ kv
java -classpath \
lopt/oracl e/ kv-ee/lib/kvstore.jar:\
[opt/oracl e/ kv-eel/li b/ skl ogger.jar:\
[opt/oracl e/ kv-ee/lib/comonutil.jar:exanples \
[-Dava.util.logging.config.file=/opt/oracle/nosql/\
apps/ kv/ exanpl es/ hadoop/ hi ve/ es/\
exanpl e-1 oggi ng. properties] \
hadoop. hi ve. ex. t abl e. LoadExanpl eJson \
-store exanpl e-store -host kv-host-1 -port 5000 \
-file /opt/oracl el nosql/apps/kv/exanpl es/\
hadoop/ hi ve/ ex/ govt r ack- senat or s- exanpl e. j son \
-t abl e exanpl eJsonTabl e
[-del ete]

The following parameters are required: - st ore, - host, -port,-file,and -tabl e,
whereas the - del et e parameter is optional.

In the example command line above, the argument -fil e <fil enane> requests that
the contents of the specified file be retrieved and then written as JSON data to the
exanpl eJsonTabl e that is created in the store. For convenience, the file specified
above is provided with the example distribution. You can examine the contents of that
file to see all of the possible document attributes that you can query.

If LoadExanpl eJson is executed a second time and the optional - del et e parameter
is specified, then all rows added by any previous executions of LoadExanpl eJson
are deleted from the table prior to adding the requested new rows. Otherwise, all
pre-existing rows are left in place, and duplicate rows (with new id values) will be
added to the table.

How to Run LoadJsonExample When the Store is Secure

ORACLE

To execute LoadExanpl eJson against the secure store that you deployed and
provisioned with a non-administrative user according to the steps presented in the
Deploying a Secure Store appendix, an additional parameter must be added to the
command line above. In this case, type the following on the command line:

java -classpath \
lopt/oracl e/ kv-ee/lib/kvstore.jar:\
[opt/oracl e/ kv-eel/lib/ skl ogger.jar:\
[opt/oracl e/ kv-eellib/comonutil.jar:exanples \
[-Dava.util.logging.config.file=/opt/oracle/nosql/\
apps/ kv/ exanpl es/ hadoop/ hi ve/ es/\
exanpl e-1 oggi ng. properties] \
hadoop. hi ve. t abl e. es. LoadExanpl eJson \
-store exanpl e-store -host kv-host-1 -port 5000 \
-file /opt/oracl el nosql/apps/kv/exanpl es/\
hadoop/ hi ve/ ex/ govt r ack- senat or s- exanpl e.j son \
-t abl e exanpl eJsonTabl e \
-security /tnp/exanpl e-user-client-pwdfile.login\
[-del ete]

9-6

Summary

Chapter 9
Configuring the Hive Client Environment

As explained in the Count Tabl eRows Support Programs appendix, the additional
-security parameter in the command above specifies the location of the login
properties file for the given user or alias. All other parameters are the same as for
the non-secure case.

At this point, a table named exanpl eJsonTabl e, populated with the desired example
data , should exist in the Oracle NoSQL Database store you deployed. The data in that
table can then be queried using the Hive Query Language (HQL).

Configuring the Hive Client Environment

In order to use Apache Hive to query data in an Oracle NoSQL Database table, the
Hive integration classes and other third party supporting classes provided by Oracle
NoSQL Database must be made available to the Java VM of the Hive client, as well as
the Java VMs of the data nodes making up the Hadoop cluster. This is accomplished
by setting the value of the Hive client's H VE_AUX_JARS_PATH environment variable to
include each of the following JAR files provided with the Oracle NoSQL Database
installation:

e kvclient.jar

e conmonutil.jar

» skl ogger.jar

o failureaccess.jar

e oraclepki.jar

e osdt cert.jar

e osdt_core.jar

e antlr4-runtinme-nosql -shaded. | ar
e jackson-core.jar

* jackson-databind.jar

e jackson-annotations.jar

All JAR files specified by the H VE_AUX_JARS_PATH environment variable will ultimately
be added to the classpaths of the necessary VMs. Depending on the type of

system, there are different options for adding the desired JAR files to your system's

H VE_AUX_JARS_PATH.

Copy Oracle NoSQL Database Libraries into Hive Auxiliary Directory

ORACLE

Some installations of Apache Hive provide a special directory to which third party
libraries can be added so that direct modification of the Hl VE_AUX_JARS PATH
envrionment variable is not necessary. Such installations employ facilities that
automatically update the value of the H VE_AUX _JARS_PATH with the JAR files located in
that special directory.

For example, if your system is an Oracle Big Data Appliance (BDA) or an Oracle Big
Data SQL system, then Hive, released by Cloudera, is installed as either packages
or parcels (a binary distribution format that Cloudera provides as an alternative to

9-7

Chapter 9
Configuring the Hive Client Environment

rpm deb packages). Assuming your system's Hive installation is parcel based, then
you would see a directory like the following:

[opt/cl oudera/ parcel s/ CDH | i b/ hi ve/ auxlib

For installations such as this, all JAR files located in the above directory will be
automatcally added to the value of the H VE_AUX_JARS_PATH environment variable
whenever the Hive CLI is launched.

Thus, one way to make the necessary Oracle NoSQL Database JAR files available to
the Hive classpath is to copy the necessary libraries into the auxiliary library provided

by your Hive installation. For example, if your Hive installation provides a hi ve/ auxl i b
directory like that shown above, you can do something like the following:

cd /opt/clouderal/parcel s/ COH |'i b/ hivelauxlib

cp /opt/oraclelkv-ee/lib/kvclient.jar kvclient.jar

cp /opt/oraclelkv-ee/lib/commonutil.jar comonutil.jar

cp /opt/oracl el kv-ee/lib/sklogger.jar sklogger.jar

cp /opt/oraclelkv-ee/lib/failureaccess.jar \
failureaccess.jar

cp /opt/oraclelkv-ee/lib/oraclepki.jar oraclepki.jar

cp /opt/oraclelkv-ee/lib/osdt cert.jar osdt cert.jar

cp /opt/oraclelkv-ee/lib/osdt core.jar osdt core.jar

cp /opt/oracl el kv-ee/liblantlr4-runtime-nosql-shaded.jar \
antlr4-runtine-nosql - shaded. j ar

cp /opt/oraclelkv-ee/libl/jackson-core.jar jackson-core.jar

cp /opt/oraclelkv-ee/lib/jackson-databind.jar \
j ackson-dat abi nd. j ar

cp /opt/oraclelkv-ee/libl/jackson-annotations.jar \
j ackson-annot ati ons. jar

To integrate Oracle NoSQL Database with Hive, it is important to copy the libraries
shipped with Oracle NoSQL Database rather than linking to those libraries in the
system's hi ve/ aux! i b directory. Copying the libraries shown above will prevent
possible C assLoader conflict errors that can be caused by older versions of third
party libraries included in the system's Hadoop and Hive distributions.

Set HIVE_AUX JARS_PATH in the Hive Client’s hive-env.sh File

When you execute the hive command to enter the Hive CLI, the initialization script
named hi ve- env. sh is executed; which sets the value of the H VE_AUX JARS PATH
environment variable for the Hive CLI. Rather than copying the Oracle NoSQL
Database libraries in the manner described in the previous section, an alternative
way to make the necessary Oracle NoSQL Database JAR files available to the
Hive classpath would be to simply edit hi ve- env. sh and add those JAR files to the
specification of the H VE_AUX_JARS_PATH environment variable. For example,

edit <H VE_CONF_DI R>/ hi ve-env. sh
if [-z "$H VE_AUX_JARS_PATH'];

t hen
export H VE_AUX _JARS PATH=\

ORACLE 9-8

Chapter 9
Configuring the Hive Client Environment

[opt/oracl e/ kv-ee/lib/kvclient.jar,\
[opt/oracl e/ kv-ee/l'ib/comonutil.jar,\
[opt/oracl e/ kv-eel/li b/ skl ogger.jar,\
lopt/oracl e/ kv-eellib/failureaccess.jar,\
/opt/oracl e/ kv-ee/lib/oracl epki.jar,\
[opt/oracl e/ kv-ee/lib/osdt_cert.jar,\
[opt/oracl e/ kv-ee/lib/osdt_core.jar,\
[opt/oracl e/ kv-ee/l'ib/antlr4-runtine-nosql-shaded.jar,\
[opt/oracl e/ kv-eellib/jackson-core.jar,\
[opt/oracl e/ kv-eellib/\
j ackson-dat abind.jar,\
[opt/oracl e/ kv-eellib/\
j ackson-annot ati ons.j ar
el se
export H VE_AUX_JARS_PATH=$H VE_AUX_JARS_PATH,\
[opt/oracl e/ kv-ee/lib/kvclient.jar,\
[opt/oracl e/ kv-ee/l'ib/comonutil.jar,\
[opt/oracl e/ kv-eel/li b/ skl ogger.jar,\
lopt/oracl e/ kv-eellib/failureaccess.jar,\
[opt/oracl e/ kv-ee/lib/oracl epki.jar,\
[opt/oracl e/ kv-ee/lib/osdt_cert.jar,\
[opt/oracl e/ kv-ee/lib/osdt_core.jar,\
/opt/oracl e/ kv-eell'ib/antlr4-runtine-nosql-shaded.jar,\
[opt/oracl e/ kv-eellib/jackson-core.jar,\
/opt/oracl e/ kv-eellib/\
j ackson-dat abind.jar,\
[opt/oracl e/ kv-eellib/\
j ackson-annot ati ons.j ar

¢ Note:

Unlike setting a CLASSPATH environment variable, when setting the
H VE_AUX_JARS PATH variable, the separator that is used is a comma, not
a colon.

Set HIVE_AUX JARS_PATH Directly on the Command Line

ORACLE

Instead of copying libraries, or editing the hi ve- env. sh script to make the necessary
Oracle NoSQL Database JAR files available to the Hive classpath, you can always
directly set the value of the H VE_AUX_JARS_PATH environment variable on the
command line before executing the Hive CLI. For example,

export H VE_AUX_JARS PATH=$H VE_AUX JARS_PATH \
[opt/oracl e/ kv-ee/lib/kvclient.jar,\
[opt/oracl e/ kv-ee/l'ib/comonutil.jar,\
[opt/oracl e/ kv-eel/li b/ skl ogger.jar,\
/opt/oracl e/ kv-eellib/failureaccess.jar,\
/opt/oracl e/ kv-ee/lib/oracl epki.jar,\
[opt/oracl e/ kv-ee/lib/osdt_cert.jar,\
[opt/oracl e/ kv-ee/lib/osdt_core.jar,\
/opt/oracl e/ kv-ee/l'ib/antlr4-runtine-nosql-shaded.jar,\

9-9

Chapter 9
Hive and Oracle NoSQL Database Security

[opt/oracl e/ kv-eell'ib/jackson-core.jar,\
/opt/oracl e/ kv-eel/lib/jackson-databind.jar,\
[opt/oracl e/ kv-eellib/\

j ackson-annot ati ons.j ar

Hive and Oracle NoSQL Database Security

With respect to running Hive queries against table data contained in a secure

Oracle NoSQL Database store, a particularly important issue to address involves the
creation and installation of an additional set of artifacts needed to communicate user
credentials to the various components that participate in the execution of the Hive
qguery. The additional artifacts that must be generated for Hive to work with a secure
store are described in detail in the Model For Building & Packaging Secure Clients
appendix, which describes the purpose of the artifacts, as well as how to generate

and install them. Before proceeding, make sure you are familiar with the material
presented in that section. Then employ the steps presented in the following sections to
complete the configuration for running Hive queries against a secure store.

Generating the Login, Trust, and Password Artifacts

To execute a Hive query against a secure Oracle NoSQL Database store, the
necessary public and private credentials must be incorporated in the definition of the
Hive table that will be queried. To do this, in a fashion similar to that described in the
Model For Building & Packaging Secure Clients appendix, you must create artifacts
like those shown below, and store them on the Hive client's local system. For example,
if you are using a password file to store the user's password, then you would generate
files such as:

[tp/kv-client-security
client.trust
hi ve-nosql . 1 ogi n
exanpl e- user. passwd

Alternatively, if you are storing the user's password in an Oracle Wallet, then you
would generate artifacts like the following:

[trp/kv-client-security
client.trust
hi ve-nosql . 1 ogi n
[exanpl e-user-wal let.dir
cwal | et. sso

Note that in both instances above, the file hi ve- nosql . | ogi n is identical to the
file exanpl e- user-server. | ogi n that was generated in the Model For Building &
Packaging Secure Clients appendix.

Generating the Server Side JAR File

ORACLE

After creating the login, trust, and password artifacts, you must generate a server
side JAR file that can be added to Hive's H VE_AUX_JARS_PATH environment variable.

9-10

Chapter 9
Predicate Pushdown

Assuming you created artifacts like those described in the previous section, you would
do the following:

cd /tnp/kv-client-security
jar cvf hive-nosql-server.jar client.trust
jar uvf hive-nosql-server.jar hive-nosql.login

The command above creates a JAR file named hi ve- nosql - server. j ar with contents
that include only public credentials which should look something like:

0 META- I NF/
68 META-| NF/ MANI FEST. MF
508 client.trust
255 hive-nosql .l ogin

Adding the Hive Client's Public Credentials to the Hive Environment

Summary

Afer creating the hi ve- nosql - server. j ar file containing the Hive client's public
credentials, the contents of that file must be made available to Hive via the

H VE_AUX_JARS_PATH environment variable. This is accomplished by following one of
the options presented in the Configuring the Hive Client Environment appendix.

Once Hive has been configured for Oracle NoSQL Database security in the manner
presented in this appendix, you can then incorporate the necessary artifacts in your
Hive external table definition in the fashion presented previously in this document;
for the vehi cl eTabl e from Primitive Data Types - The vehicleTable Example, and for
the rmvTabl e from Non-Primitive Data Types - The rmvTable Example, and for the
exanpl eJsonTabl e from NoSQL JSON Data Type - The exampleJsonTable Example.

Predicate Pushdown

ORACLE

To improve query performance, Apache Hive supports a mechanism referred to as
predicate pushdown; in which the client side frontend processing of a given query
decomposes the WHERE clause (the predicate) of the query into column information
and corresponding comparison operators, passing (pushing) the resulting components
to the database where search processing (filtering) can be performed on the
database's server side backend. To achieve analogous performance improvements,
the Oracle NoSQL Database table API Hive integration classes support similar
predicate pushdown functionality when executing Hive or Big Data SQL queries
against data in an Oracle NoSQL Database table. For example, consider the following
qguery executed against the example vehi cl eTabl e whose schema was described
previously in this document:

SELECT * FROM vehi cl eTabl e WHERE \

type = "auto' AND make = 'Chrysler' AND\
model >= 'Inperial' AND nodel < 'Sebring';

This query will return all rows corresponding to automobiles (rather than trucks or
SUVs) made by Chrysler; whose model is 'Imperial’, ‘Lebaron’, or 'PTCruiser’, but

9-11

ORACLE

Chapter 9
Predicate Pushdown

not 'Sebring'. If predicate pushdown is not employed when executing this query, then
all rows from the vehi cl eTabl e will be retrieved from the store's backend database
and returned to the frontend client, where the predicate information will be applied

to search the returned rows for the desired matches. On the other hand, if predicate
pushdown is employed, then the information in the WHERE clause is sent to the store
and all filtering is performed in the database itself, so that only the rows of the table
that match the predicate are returned to the client. The predicate pushdown, when it
can be employed, can result in significant performance improvements.

As the examples presented in this document demonstrate, the variety of predicates
that can be employed when querying a table can be virtually unlimited. So it is
important to understand that the predicates that can actually be pushed to the
backend Oracle NoSQL Database store are restricted to a finite subset of all possible
predicates. This is because the predicates that can be supported by Oracle NoSQL
Database are not only dependent on what the Hive predicate pushdown mechanism
supports, but the semantics of the Oracle NoSQL Database table API as well. As a
result, the operators that are supported by the predicate pushdown mechanism of the
table API Hive integration classes are currently limited to:

In addition to the above set of operators, the semantics of the table API can also

affect how the table's fields (columns) will be handled during predicate pushdown.
Specifically, for a given query's predicate, if a valid primary key, index key, and/or field
range (as defined by the table API) cannot be formed from all or a subset of that
predicate's fields, and no part of the predicate can be pushed to the server using the
filter mechanism provided by SQL for Oracle NoSQL Database (see Filtering Results
in the SQL Beginner's Guide), then the query's predicate will not be decomposed

and sent to the database for backend filtering. Instead, the system will fallback to the
default mechanism, and perform all filtering on the client side, applying the predicate to
all the rows in the given table.

For example, consider the query presented above. For that query, each component of
the predicate satisfies the necessary criteria for pushdown, and so the whole predicate
will be pushed to the database for search processing. To understand this, first observe
that the operators referenced in the query's predicate belong to the set described
above; that is, '=', 'AND', '>=', '<'.

Next, based on the schema of the vehi cl eTabl e, the fields named t ype and make
form a valid primary key for performing a table scan; and the predicate components
referencing the field named nodel form a valid field range. Compare this with a query
such as,

SELECT * FROM vehi cl eTabl e WHERE nmake = ' Chrysler' AND \
model >= 'Inperial' AND nodel < 'Sebring';

Assuming there is no index of the form (make, model), for this query, although the
absence of the key's first field prevents the construction of a valid primary key as
required by the semantics of the table API, the predicate can still be pushed to

the backend store because it is considered valid for filtering by the SQL For Oracle
NoSQL Database filtering mechanism. Finally, consider a query such as,

SELECT * FROM vehi cl eTabl e WHERE nodel LIKE "%85i | ver ado% ;

9-12

Chapter 9
Predicate Pushdown

For this query, predicate pushdown will be bypassed and all filtering will be performed
on the client side. This is because the predicate employs the LI KE operator, which is
not currently eligible for predicate pushdown.

Note that the initial two example queries that were presented both result in the whole
predicate being pushed and all filtering being performed on the backend. Whereas the
third example query results in no predicate pushdown and all filtering being performed
on the client side.

This does not mean that predicate pushdown will always be handled in such an
all-or-nothing manner. On the contrary, for many queries, only part of the predicate
will be pushed to the database to produce initial filtered results, which are then further
filtered on the client side using the remaining - residual - part of the predicate.

For example, consider a query that wishes to find each '4WheelDrive' vehicle in the
database that is 'blue’, 'red', or 'yellow', and has a model name that begins with the
letter 'E' (that is, Equinox, Expedition, Explorer, etc.). Such a query would look like the
following:

SELECT * FROM vehi cl eTabl e WHERE \
class = "4Wheel Drive' AND \
color IN ("blue',"red , yellow) AND\
model LIKE ' %% ;

Based on the criteria presented in the next section, the only component of the query's
predicate that cannot be pushed to the backend is the component that employs the

LI KE operator (model LI KE ' %E%), whereas all other components in the query are
eligible to be pushed. Thus, when executing the given query, the part of the predicate
consisting of the components "cl ass = ' 4Weel Drive' AND color IN ('blue',
‘red', 'yellow)" will be pushed to the backend, producing rows referencing all four
wheel drive vehicles that are blue, red, or yellow; after which the client will apply the
residual predicate (nodel LI KE ' %%) to the results from the backend, to select and
return only those rows with model name including an uppercase 'E'.

Predicate Pushdown Criteria

ORACLE

When processing a given query that includes a predicate, the mechanism provided by

the table API Hive integration classes will analyze the query's predicate and apply the

following criteria to determine whether all, part, or none of the predicate can be pushed
to the database for filtering on the backend.

e If the query's predicate includes components (column, operator, value) with
comparison operators from the set {=, >, >=, <, <=}, as well as zero or more
combinations of the AND conjunction, the OR conjunction, and/or one or more IN
lists, then the predicate is eligible for predicate pushdown.

» Each combination of predicate components that form a valid (as defined by the
table API) primary key, index key, or field range is eligible for predicate pushdown;
using mechanisms that optimize for scale.

» If the query's predicate is found to contain multiple combinations that are eligible
for predicate pushdown, then the combination resulting in optimal performance
and scale will be pushed to the server. If more than one of those combinations is
found to be optimal, then the first such combination will be pushed.

e Each component of the query's original predicate that is not included in the
predicate to push will be added to the residual predicate for client side filtering.

9-13

Chapter 9
Predicate Pushdown

« If all of the predicate components are found to be ineligible for predicate
pushdown, then predicate pushdown will not be performed, and the system will
fallback to the default mechanism, using the original predicate to perform only
client side filtering.

It is important to understand the criteria listed above in conjunction with the data model
and search patterns you expect to employ when you define the primary key, (along
with any indexes), for a given Oracle NoSQL Database table that will be queried.
Although the predicate pushdown mechanism will be employed automatically - without
user intervention or special configuration - how you define your table and indexes can
affect how well the more common queries you execute will perform and scale.

Predicate pushdown is employed automatically with no obvious indication (other than
improved performance) that it is "on and working". As a result, if you wish to verify that
the mechanism is indeed operating as described above, you can set the level of the
following Oracle NoSQL Database loggers to the DEBUG level:

e oracle. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er Base

e oracle.kv. hadoop. hive. tabl e. Tabl eHi vel nput For mat

After setting the level of the above loggers to DEBUG, you can run a query and then
observe how the predicate pushdown mechanism processes the query's predicate by
analyzing the contents of the logger output.

ORACLE 9-14

Integration with Oracle Big Data SQL

ORACLE

Topics

Introduction to Integration with Oracle Big Data SQL

Mapping the Oracle RDBMS Data Model to the Oracle NoSQL Database Table
Model

Executing SQL Queries Against Oracle NoSQL Database

Example: SQL Queries On Oracle NoSQL Database Tables

Appendix

— Configuring Oracle Big Data SQL For Querying Oracle NoSQL Database

Introduction to Integration with Oracle Big
Data SQL

This section describes the integration of Oracle NoSQL Database with Oracle Big Data
SQL version 4.x. The goal of the Oracle Big Data SQL product is to allow users to
employ the power of the Oracle SQL SELECT statement to manage and manipulate
data stored in a number of different locations. Specifically, Oracle Big Data SQL

is designed to provide SQL access to data stored in Apache Hadoop Distributed

File System (HDFS), Apache Hive, various NoSQL databases - including Oracle
NoSQL Database - as well as various relational databases. Oracle Big Data SQL
achieves this by presenting Hadoop HDFS, Apache Hive, Oracle NoSQL Database,
and the various other data sources as enhanced Oracle external tables of the Oracle
Relational Database Management System (RDBMS) (See Managing External Tables
in the Oracle Database Administrator's Guide). Oracle Big Data SQL maps the
external semantics of accessing data from those sources - horizontal parallelism,
location, and schema - to the Oracle Relational Database Management System's
internal semantics. For more information on creating external table for Oracle NoSQL
Database in Oracle Big Data SQL, see Create an External Table for Oracle NoSQL
Database section in the Oracle Big Data SQL User's Guide.

To use Oracle Big Data SQL SELECT statements to query data stored in an Oracle
NoSQL Database table, an Oracle Big Data SQL enabled external table must be
created over the Oracle NoSQL Database table via an Apache Hive external table. In
addition to presenting the steps to take to create such external tables, this document
also presents a number of Oracle Big Data SQL queries that can be run against
example table data contained in an Oracle NoSQL Database store, where the store
can be either secure or non-secure.

Prerequisites

Before attempting to execute the examples that demonstrate the concepts presented
in this section, you should first satisfy all prerequisites listed in both the Integration with
Apache Hadoop MapReduce and the Integration with Apache Hive sections.

A Brief Primer on Oracle Big Data SQL

ORACLE

As stated in the Introduction to Integration with Oracle Big Data SQL, Oracle Big Data
SQL allows SQL access to various external data sources such as an Oracle NoSQL
Database table by presenting the data source as an Oracle external table. To achieve
this, a mechanism referred to as an access driver is employed to access data as if

it were a table in the Oracle relational database running in the Oracle Big Data SQL
system. Oracle Big Data SQL extends the access driver mechanism of external tables
by specifying a new access driver type for each data source that will be accessed.
Prior to the introduction of Oracle Big Data SQL, the Oracle Database external tables
mechanism defined only two access driver types:

e The ORACLE_LOADER access driver, for reading from flat files.

10-1

Chapter 10
A Brief Primer on Oracle Big Data SQL

* The ORACLE_DATAPUMP access driver, for migrating data between Oracle databases
in a proprietary format.

With the introduction of Big Data SQL, the following new access driver types are
defined:

* The ORACLE_HDFS access driver, for accessing data stored in the Apache Hadoop
Distributed File System.

e The ORACLE_H VE access driver, for accessing data stored in Apache Hive tables
or Oracle NoSQL Database tables.

* The ORACLE_BI GDATA access driver, for accessing files stored in an object store.

Both the ORACLE_HDFS and ORACLE_HI VE access drivers require the specification of a
number of classes that satisfy the Apache Hadoop MapReduce programming model.
Some of those classes are required by both access driver types, whereas some are
required by only the ORACLE_HI VE access driver. The class types required by both
ORACLE_HDFS and ORACLE_HI VE are:

e Aninstance of or g. apache. hadoop. napr educe. | nput For nat
* Aninstance of or g. apache. hadoop. mapr educe. Qut put For mat
* Aninstance of or g. apache. hadoop. mapr educe. Recor dReader
e Aninstance of or g. apache. hadoop. napreduce. | nput Spl i t
See package org.apache.hadoop.mapreduce.

The class types required by ORACLE_H VE but not ORACLE_HDFS are:

* Aninstance of or g. apache. hadoop. hi ve. gl . net adat a. H veSt oar ageHandl er ; for
example, the Oracle NoSQL Database Tabl eSt or ageHand| er .

* Aninstance of or g. apache. hadoop. hi ve. serde2. Abst r act Ser De ; for example,
the Oracle NoSQL Database Tabl eSer De.

* Aninstance of
org. apache. hadoop. hi ve. serde2. obj ecti nspect or. Gbj ect | nspect or ; for
example, the various bj ect | nspect or implementations defined by Oracle NoSQL
Database and described in the Integration with Apache Hive section.

* Aninstance of
or g. apache. hadoop. hadoop. hi ve. gl . met adat a. Hi veSt or agePr edi cat eHandl er .

See Hive API and package oracle.kv.hadoop.hive.table.

The ORACLE_HDFS access driver can only read data stored in HDFS files, whereas

the ORACLE_HI VE access driver can read data stored not only in HDFS files, but data
stored in other locations as well; for example an Oracle NoSQL Database table. As
explained in the following sections, the integration of Oracle NoSQL Database with
Apache Hive plays a prominent role in the integration of Oracle NoSQL Database with
Oracle Big Data SQL.

ORACLE 10-2

Mapping the Oracle RDBMS Data Model to
the Oracle NoSQL Database Table Model

As the examples in this section demonstrate, in order to execute an Oracle Big
Data SQL query against data stored in an Oracle NoSQL Database table, a Hive
external table must first be created with a schema mapped from the schema of the
desired Oracle NoSQL Database table. Once that Hive external table is created, a
corresponding Oracle RDBMS external table must then be created with a schema
mapped from the schema of the Hive table. This is accomplished by applying the
mappings shown in the following table:

Table 11-1 Data Type Mappings: Oracle NoSQL Database - Hive - RDBMS
|

Oracle NoSQL Database Type Hive Type RDBMS Type
FieldDef. Type.STRING STRING VARCHAR2(N)
CHAR
VARCHAR
FieldDef. Type.JSON STRING VARCHAR2(N)
FieldDef.Type.BOOLEAN BOOLEAN VARCHAR2(5)
FieldDef. Type.BINARY BINARY VARCHAR2(N)
FieldDef. Type.FIXED_BINARY BINARY VARCHAR2(N)
TINYINT
SMALLINT
FieldDef. Type.INTEGER INT NUMBER
FieldDef. Type.LONG BIGINT NUMBER
FieldDef.Type.FLOAT FLOAT NUMBER
FieldDef. Type.NUMBER DECIMAL NUMBER
FieldDef. Type.DOUBLE DOUBLE NUMBER
FieldDef. Type.ENUM STRING VARCHAR2(N)
FieldDef. Type. TIMESTAMP java.sgl. TIMESTAMP TIMESTAMP
DATE
FieldDef. Type. ARRAY ARRAY VARCHAR2(N)
FieldDef.Type.MAP MAP<STRING, data_type> VARCHAR2(N)
FieldDef. Type.RECORD STRUCT <col_name : data_type,...> VARCHAR2(N)

UNIONTYPE <data_type, data_type,
o>

It is important to understand that when using Oracle Big Data SQL to query data in
an Oracle NoSQL Database table, the schema of the Oracle external table you create
is dependent on the schema of the corresponding Hive external table; which, in turn,
is dependent on the schema of the Oracle NoSQL Database table you wish to query.
Thus, if either type of external table is created using a schema that includes a data
type that does not belong to one of the mappings presented in the table above, then
an error will occur when any attempt is made to query the table.

ORACLE 11-1

Chapter 11

Note that for fields in the Oracle external table specified as VARCHAR2(N), the

value of N is the maximum number of characters of the variable length STRING

that represents the specified field in the corresponding Hive and Oracle NoSQL
Database tables. Therefore, you should use the type, structure, and expected length
or size of the corresponding Hive and Oracle NoSQL Database fields to determine the
appropriate value to specify for Nwhen creating the Oracle external table.

ORACLE 11-2

Executing SQL Queries Against Oracle
NoSQL Database

The examples presented in this document were run using Oracle Big Data SQL 4.x
and Oracle NoSQL Database 20.x, both installed on an Oracle Big Data Appliance
(BDA). The system's Hive client environment was configured according to the
directions presented in the Configuring the Hive Client Environment appendix.

Prior to attempting the examples presented here, first make sure you have satisfied all
prerequisites described at the beginning of this document; which includes deploying an
Oracle NoSQL Database store, either secure or non-secure.

Once the necessary prerequisites have been satisfied, follow the directions presented
in the Count Tabl eRows Support Programs appendix to create and populate the table
named vehi cl eTabl e in the Oracle NoSQL Database. Then follow the directions
presented in the Creating and Populating the rmvTable appendix and the Creating and
Populating the exampleJsonTable appendix to create and populate the tables named
rmvTabl e and exanpl eJsonTabl e respectively.

Finally, after satisfying all prerequisites and creating and populating each example
table in the Oracle NoSQL Database store, follow the directions presented in the
Configuring Oracle Big Data SQL For Querying Oracle NoSQL Database appendix to
configure the Oracle Big Data SQL system for executing SQL queries against data
stored in the Oracle NoSQL Database you deployed.

Mapping Hive External Tables to Oracle NoSQL Database

Tables

In order to use Oracle Big Data SQL to query table data in an Oracle NoSQL
Database store, you must first create and map a Hive external table to the desired
table defined in the store. As described below, when the store is configured for
security, the command to do this requires a few additional parameters.

Mapping Hive Tables to Oracle NoSQL Database Tables In a Non-
Secure Store

ORACLE

Assuming you have deployed a non-secure Oracle NoSQL Database store in the
manner described in the Deploying a Non-Secure Store appendix, login to one of
the nodes of the Big Data SQL system that can be used as a Hive client. Then,
from the Hive command line interface, execute the following command to map a
Hive external table to the vehi cl eTabl e described in the Count Tabl eRows Support
Programs appendix, where line breaks are inserted for readability:

CREATE EXTERNAL TABLE | F NOT EXI STS vehicl eTabl e

(type STRING nake STRING nmodel STRING class STRING color
STRI NG,

12-1

Chapter 12
Mapping Hive External Tables to Oracle NoSQL Database Tables

price DOUBLE, count INT, dealerid DECI MAL, delivered TI MESTAMP)
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er'
TBLPROPERTI ES (

"oracl e. kv. kvstore" = "exanpl e-store",

"oracl e. kv. hosts"= "kv-host - 1: 5000, kv- host - 2: 5000, kv-

host - 3: 5000",
"oracl e. kv.tabl eNane" = "vehicleTable",
"oracl e. kv. hadoop. hosts" = "dn-host -1, dn- host - 2, dn- host -3") ;

Similarly, to map a Hive external table to the r nvTabl e described in the Creating and
Populating the rmvTable appendix:

CREATE EXTERNAL TABLE | F NOT EXI STS rnvTabl e
(zi pcode STRING Ilastname STRING firstname STRING ssn Bl G NT,
gender STRING |icense BINARY, phoneinfo MAP<STRI NG STRI NG,
address STRUCT<number: | NT street: STRI NG
uni t:INT, city: STRING zip:INT>,
VEHI CLEI NFO ARRAY<STRUCT<t ype: STRI NG, make: STRI NG
model : STRING cl ass: STRING col or: STRI NG
val ue: FLOAT, tax: DOUBLE, pai d: BOOLEAN>>)
COWMENT ' Hi ve mapped to NoSQL table: rnmvTabl e’
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er'
TBLPROPERTI ES (
"oracle. kv. kvstore" = "exanpl e-store",
"oracl e. kv. hosts"= "kv-host - 1: 5000, kv- host - 2: 5000, kv-
host - 3: 5000",
"oracl e. kv.tabl eNane" = "rnvTabl e",
"oracl e. kv. hadoop. hosts" = "dn-host -1, dn- host - 2, dn- host -3") ;

Finally, to map a Hive external table to the exanpl eJsonTabl e described in Creating
and Populating the exampleJsonTable appendix:

CREATE EXTERNAL TABLE | F NOT EXI STS exanpl eJsonTabl e
(id INT, jsonfield STRING
COWMENT ' Hive mapped to NoSQL tabl e: exanpl eJsonTabl e’
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er'
TBLPROPERTI ES (
"oracle. kv. kvstore" = "exanpl e-store",
"oracl e. kv. hosts"= "kv-host - 1: 5000, kv- host - 2: 5000, kv-
host - 3: 5000",
"oracl e. kv. tabl eName" = "exanpl eJsonTabl e",
"oracl e. kv. hadoop. hosts” = "dn-host -1, dn- host - 2, dn- host - 3") ;

Mapping Hive Tables to Oracle NoSQL Database Tables In a Secure
Store

Assuming you have deployed a secure Oracle NoSQL Database store in the manner
described in the Deploying a Secure Store appendix, login to one of the nodes of the
Big Data SQL system that can be used as a Hive client. Then, from the Hive command

ORACLE 12-2

ORACLE

Chapter 12
Mapping Hive External Tables to Oracle NoSQL Database Tables

line interface, execute the following command to use a password file to map a Hive
external table to the vehi cl eTabl e in the secure Oracle NoSQL Database:

CREATE EXTERNAL TABLE | F NOT EXI STS vehi cl eTabl ePasswd
(type STRING make STRING nmodel STRING class STRING color
STRI NG,
price DOUBLE, count INT, dealerid DECI MAL, delivered TI MESTAMP)
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er'
TBLPROPERTI ES (

"oracle. kv. kvstore" = "exanpl e-store",

"oracl e. kv. hosts"= "kv-host - 1: 5000, kv- host - 2: 5000, kv-
host - 3: 5000"

"oracl e. kv.tabl eNane" = "vehicleTable",

"oracl e. kv. hadoop. hosts" = "dn-host -1, dn- host - 2, dn- host - 3",

"oracle.kv.security" = "/tnp/hive-nosql.login",

"oracle.kv.ssl.truststore" = "/tnp/client.trust",

"oracl e. kv. aut h. username" = "exanpl e-user"

"oracle.kv.auth.pwdfile.file" = "/tnp/exanpl e-user. passwd");

And to use an Oracle Wallet to map a Hive external table to that same vehi cl eTabl e
in the secure Oracle NoSQL Database, execute the Hive command:

CREATE EXTERNAL TABLE | F NOT EXI STS vehi cl eTabl eVl | et
(type STRING make STRING nmodel STRING class STRING color
STRI NG,
price DOUBLE, count INT, dealerid DECI MAL, delivered TI MESTAMP)
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er'
TBLPROPERTI ES (

"oracle. kv. kvstore" = "exanpl e-store",

"oracl e. kv. hosts"= "kv-host - 1: 5000, kv- host - 2: 5000, kv-
host - 3: 5000"

"oracle. kv.tabl eNane" = "vehicleTable",

"oracl e. kv. hadoop. hosts" = "dn-host -1, dn- host - 2, dn- host - 3",

"oracle.kv.security" = "/tnp/hive-nosql.login",

"oracle.kv.ssl.truststore" = "/tnp/client.trust",

"oracl e. kv. aut h. username" = "exanpl e-user”

"oracle.kv.auth.wallet.dir" = "/tnp/exanpl e-user-wallet.dir");

Similarly, to use a password file to map a Hive external table to the rmvTabl e
described in Creating and Populating the rmvTable appendix, execute the command:

CREATE EXTERNAL TABLE | F NOT EXI STS rnvTabl ePasswd
(zi pcode STRING lastname STRING firstname STRING ssn Bl G NT,
gender STRING |icense BI NARY, phoneinfo MAP<STRI NG STRI NG,
address STRUCT<nunber: | NT street: STRI NG
unit:INT, city: STRING zip:|NT>,
vehi cl ei nf o ARRAY<STRUCT<t ype: STRING make: STRI NG
model : STRING cl ass: STRING col or: STRI NG
val ue: FLOAT, tax: DOUBLE, pai d: BOOLEAN>>)
COWENT ' H ve mapped to NoSQ table: rmvTabl e’
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er'
TBLPROPERTI ES (
"oracle. kv. kvstore" = "exanpl e-store",

12-3

ORACLE

Chapter 12
Mapping Hive External Tables to Oracle NoSQL Database Tables

"oracl e. kv. hosts"= "kv-host-1: 5000, kv- host - 2: 5000, kv-

host - 3: 5000",
"oracl e. kv. tabl eNane" = "rnvTabl e",
"oracl e. kv. hadoop. hosts" = "dn-host -1, dn- host - 2, dn- host - 3",
"oracle.kv.security" = "/tnp/hive-nosql.login",
"oracle.kv.ssl.truststore" = "/tnp/client.trust",
"oracl e. kv. aut h. username" = "exanpl e-user",

"oracle. kv.auth.pwdfile.file" = "/tnp/exanpl e-user. passwd");

And to use an Oracle Wallet to map a Hive external table to that same r nvTabl e in the
secure Oracle NoSQL Database, execute the command:

CREATE EXTERNAL TABLE | F NOT EXI STS rnvTabl eVl | et
(zi pcode STRING Ilastname STRING firstname STRING ssn Bl G NT,
gender STRING |icense BI NARY, phoneinfo MAP<STRI NG STRI NG,
address STRUCT<number: | NT street: STRI NG
unit:INT, city: STRING zip:INT>,
vehi cl ei nf o ARRAY<STRUCT<t ype: STRING make: STRI NG
model : STRING cl ass: STRING col or: STRI NG
val ue: FLOAT, tax: DOUBLE, pai d: BOOLEAN>>)
COWMENT ' Hi ve mapped to NoSQL table: rnmvTabl e’
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er'
TBLPROPERTI ES (

"oracle. kv. kvstore" = "exanpl e-store",

"oracl e. kv. hosts"= "kv-host - 1: 5000, kv- host - 2: 5000, kv-
host - 3: 5000"

"oracl e. kv.tabl eNane" = "rnvTabl e"

"oracl e. kv. hadoop. hosts" = "dn-host -1, dn- host - 2, dn- host - 3",

"oracle.kv.security" = "/tnp/hive-nosql.login",

"oracle.kv.ssl.truststore" = "/tnp/client.trust",

"oracl e. kv. aut h. username" = "exanpl e-user"

"oracle.kv.auth.wallet.dir" = "/tnp/exanpl e-user-wallet.dir");

Finally, to use a password file to map a Hive external table to the exanpl eJsonTabl e
described in the Creating and Populating the exampleJsonTable appendix, execute the
command:

CREATE EXTERNAL TABLE | F NOT EXI STS exanpl eTabl ePasswd
(id INTEGER, jsonfield STRING
COWMENT ' H ve mapped to NoSQ table: exanpl eJsonTabl e
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er'
TBLPROPERTI ES (
"oracle. kv. kvstore" = "exanpl e-store",
"oracl e. kv. hosts"= "kv-host -1: 5000, kv- host - 2: 5000, kv-
host - 3: 5000"
"oracl e. kv. tabl eName" = "exanpl eJsonTabl e"
"oracl e. kv. hadoop. hosts" = "dn-host -1, dn- host - 2, dn- host - 3",
"oracle.kv.security" = "/tnp/hive-nosql.login",
"oracle.kv.ssl.truststore" = "/tnp/client.trust",
"oracl e. kv. aut h. username” = "exanpl e-user”
"oracle.kv.auth.pwdfile.file" = "/tnp/exanpl e-user. passwd");

12-4

Chapter 12
Mapping Oracle RDBMS External Tables to Hive External Tables

And to use an Oracle Wallet to map a Hive external table to that same
exanpl eJsonTabl e in the secure Oracle NoSQL Database, execute the command:

CREATE EXTERNAL TABLE | F NOT EXI STS exanpl eJsonTabl eVl | et
(int INTEGER, jsonfield STRING
COWMENT ' H ve mapped to NoSQL table: exanpl eJsonTabl e’
STORED BY ' oracl e. kv. hadoop. hi ve. t abl e. Tabl eSt or ageHand! er'
TBLPROPERTI ES (
"oracle. kv. kvstore" = "exanpl e-store",
"oracl e. kv. hosts"= "kv-host - 1: 5000, kv- host - 2: 5000, kv-
host - 3: 5000",

"oracl e. kv. tabl eName" = "exanpl eJsonTabl e"

"oracl e. kv. hadoop. hosts" = "dn-host -1, dn- host - 2, dn- host - 3",
"oracle.kv.security" = "/tnp/hive-nosql.login",
"oracle.kv.ssl.truststore" = "/tnp/client.trust",

"oracl e. kv. aut h. username" = "exanpl e-user"
"oracle.kv.auth.wallet.dir" = "/tnp/exanpl e-user-wallet.dir");

Note that although the tables in the secure Oracle NoSQL Database store are named
vehi cl eTabl e, rnmvTabl e, and exanpl eJsonTabl e, the names of the tables created

in Hive are not required to match the names of the corresponding Oracle NoSQL
Database tables. This allows you to create different Hive tables mapped to the

same Oracle NoSQL Database table; which allows you to query the Oracle NoSQL
Database table using different security mechanisms.

Mapping Oracle RDBMS External Tables to Hive External

Tables

At this point, although Hive queries can be executed against the table data in the
Oracle NoSQL Database you deployed, you cannot yet execute SQL queries against
that data. In order to use Oracle Big Data SQL to query that data, you must apply the
data model mapping presented in the Table 11-1 table, along with the schemas defined
for the Oracle NoSQL Database vehi cl eTabl e, rnwTabl e, and exanpl eJsonTabl e to
create and map the corresponding Oracle Database external tables to each of the
Hive tables that you created.

Assuming the Oracle Database has a pluggable database hamed ORCLPDB1 and a
user named NOSQL_EXAMPLE_USER with password wel conel, connect to the database
via Oracle sqlplus and execute the SQL commands presented in the following sections
to create the necessary Oracle external tables; for example,

sql pl us NOSQ._EXAMPLE_USER/ wel conel@r acl edb- host : 1521/ ORCLPDB1

Mapping Oracle RDBMS Tables to Hive Tables for Non-Secure Store

ORACLE

To create and map an Oracle Database external table to the Hive external table initially
mapped to the Oracle NoSQL Database vehi cl eTabl e, execute commands like the
following from the sqlplus prompt:

CREATE TABLE | F NOT EXI STS vehi cl eTabl e
(type VARCHAR2(10), make VARCHAR2(12), nodel VARCHARZ(20),

12-5

ORACLE

Chapter 12
Mapping Oracle RDBMS External Tables to Hive External Tables

cl ass VARCHAR2(40), col or VARCHAR2(20), price NUMBER(S, 2),
count NUMBER, deal erid NUVBER, delivered TI MESTAMP)
ORGANI ZATI ON EXTERNAL (TYPE ORACLE_HI VE
DEFAULT DI RECTORY DEFAULT_DI R
ACCESS PARAMETERS (com oracl e. bi gdat a. | 0og. gc=query. | 0g))
REJECT LIM T UNLI M TED;

Similarly, to map an Oracle Database external table to the Hive external table initially
mapped to the Oracle NoSQL Database r mvTabl e, execute the command,

CREATE TABLE | F NOT EXI STS rnvTabl e
(zi pcode VARCHAR2(7), |astnanme VARCHAR2(20), firstnane
VARCHAR2(20) ,
ssn NUMBER, gender VARCHAR2(6), |icense VARCHAR2(9),
phonei nfo VARCHAR2(67), address VARCHAR2(100),
vehi cl ei nfo VARCHAR2(1000))
ORGANI ZATI ON EXTERNAL (TYPE ORACLE_HI VE
DEFAULT DI RECTORY DEFAULT_DI R
ACCESS PARAMETERS (com or acl e. bi gdat a. | 0og. gc=query. | 0g))
REJECT LIM T UNLI M TED;

Finally, to map an Oracle Database external table to the Hive external table initially
mapped to the Oracle NoSQL Database exanpl eJsonTabl e, execute the command,

CREATE TABLE | F NOT EXI STS exanpl eJsonTabl e
(id INT, jsonfield VARCHAR2(2000))
ORGANI ZATI ON EXTERNAL (TYPE ORACLE_HI VE
DEFAULT DI RECTORY DEFAULT_DIR
ACCESS PARAMETERS (com or acl e. bi gdat a. | 0og. gc=query. | 0g))
REJECT LIM T UNLI M TED;

Note that if you want the name that you specify for the Oracle Database external table
to be different than the name of the Hive external table to which it is mapped, then
you must use the com or acl e. bi gdat a. t abl enane property to specify the name of the
Hive external table in the command's ACCESS PARAMETERS; otherwise the name of the
Oracle external table will default to the name of the Hive table. For example,

CREATE TABLE | F NOT EXI STS oracl eVehi cl eTabl e

(type VARCHAR2(10), make VARCHAR2(12), mpodel VARCHAR2(20),
cl ass VARCHAR2(40), col or VARCHAR2(20), price NUMBER(S8, 2),
count NUMBER, deal erid NUMBER, delivered TI MESTAWP)

ORGANI ZATI ON EXTERNAL (TYPE ORACLE_HI VE
DEFAULT DI RECTORY DEFAULT DI R
ACCESS PARANMETERS (com oracl e. bi gdat a. | og. gc=query. | og
com oracl e. bi gdat a. t abl enanme=vehi cl eTabl e))

REJECT LIMT UNLI M TED;

The Oracle Big Data SQL 4 User's Guide provides information on the various ACCESS
PARANMETERS that can be specified for the ORACLE_Hl VE access driver.

12-6

Chapter 12
Mapping Oracle RDBMS External Tables to Hive External Tables

Mapping Oracle RDBMS Tables to Hive Tables for Secure Store

To create an Oracle Database external table for querying the Oracle NoSQL Database
vehi cl eTabl e when a secure store is accessed via a password file, execute a
command like the following from the sqlplus prompt,

CREATE TABLE | F NOT EXI STS vehi cl eTabl ePasswd
(type VARCHAR2(10), make VARCHAR2(12), nodel VARCHAR2(20),
cl ass VARCHAR2(40), col or VARCHAR2(20), price NUMBER(8,2),
count NUMBER, deal erid NUMBER, delivered TI MESTAMP)
ORGANI ZATI ON EXTERNAL (TYPE ORACLE_HI VE
DEFAULT DI RECTORY DEFAULT_DI R
ACCESS PARAMETERS (com or acl e. bi gdat a. | 0og. gc=query. | 0g))
REJECT LIM T UNLI M TED;

And when the store is accessed using an Oracle wallet execute,

CREATE TABLE | F NOT EXI STS vehi cl eTabl eVl | et
(type VARCHAR2(10), make VARCHAR2(12), model VARCHAR2(20),
cl ass VARCHAR2(40), col or VARCHAR2(20), price NUMBER(S, 2),
count NUMBER deal erid NUMBER, delivered TI MESTAVP)
ORGANI ZATI ON EXTERNAL (TYPE ORACLE_HI VE
DEFAULT DI RECTORY DEFAULT_DI R
ACCESS PARAMETERS (com oracl e. bi gdat a. | 0og. qc=query. | og))
REJECT LIMT UNLI M TED,

To create an Oracle Database external table for querying the Oracle NoSQL Database
rmvTabl e, when a secure store is accessed via a password file, execute the command,

CREATE TABLE | F NOT EXI STS rnvTabl ePasswd
(zi pcode VARCHAR2(7), |astname VARCHAR2(20), firstnane
VARCHAR2(20) ,
ssn NUMBER, gender VARCHAR2(6), |icense VARCHAR2(9),
phonei nf o VARCHAR2(67), address VARCHAR2(100),
vehi cl ei nfo VARCHAR2(1000))
ORGANI ZATI ON EXTERNAL (TYPE ORACLE_HI VE
DEFAULT DI RECTORY DEFAULT_DI R
ACCESS PARAMETERS (com oracl e. bi gdat a. | 0og. gc=query. | og))
REJECT LIM T UNLI M TED;

And when the store is accessed using an Oracle wallet execute,

CREATE TABLE | F NOT EXI STS rmvTabl eVl | et
(zi pcode VARCHAR2(7), |astnane VARCHAR2(20), firstnane
VARCHAR2(20) ,
ssn NUMBER, gender VARCHAR2(6), |icense VARCHAR2(9),
phonei nfo VARCHAR2(67), address VARCHAR2(100),
vehi cl ei nfo VARCHAR2(1000))
ORGANI ZATI ON EXTERNAL (TYPE ORACLE_HI VE
DEFAULT DI RECTORY DEFAULT_DIR

ORACLE 12-7

ORACLE

Chapter 12
Mapping Oracle RDBMS External Tables to Hive External Tables

ACCESS PARAMETERS (com oracl e. bi gdat a. | 0og. gc=query. | 0g))
REJECT LIM T UNLI M TED;

To create an Oracle Database external table for querying the Oracle NoSQL Database
exanpl eJsonTabl e, when a secure store is accessed via a password file, execute the
command,

CREATE TABLE I F NOT EXI STS exanpl eJsonTabl ePasswd
(id INT, jsonfield VARCHAR2(2000))
ORGANI ZATI ON EXTERNAL (TYPE ORACLE_HI VE
DEFAULT DI RECTORY DEFAULT_DIR
ACCESS PARAMETERS (com or acl e. bi gdat a. | 0og. gc=query. | og))
REJECT LIM T UNLI M TED;

And when the store is accessed using an Oracle wallet execute,

CREATE TABLE | F NOT EXI STS exanpl eJsonTabl eVl | et
(id INT, jsonfield VARCHAR2(2000))
ORGANI ZATI ON EXTERNAL (TYPE ORACLE_HI VE
DEFAULT DI RECTORY DEFAULT DI R
ACCESS PARAMETERS (com oracl e. bi gdat a. | 0og. gc=query. | og))
REJECT LIMT UNLI M TED,

12-8

Example: SQL Queries On Oracle NoSQL
Database Tables

ORACLE

After creating the Oracle Database external tables described in the previous sections,
you can then execute SQL SELECT queries to retrieve the data stored in the Oracle
NoSQL Database store. To execute the example queries presented in the following
sections, connect to the database via Oracle sqlplus and set the linesize to aid
readability; for example,

sql pl us NOSQL_EXAMPLE_USER/ wel comel@or acl edbhost >: 1521/ ORCLPDB1

set |inesize 250;

Before executing the examples presented in the following sections, you can verify that
each Hive table you created is how accessible from the system's Oracle Database. To
display information about those tables, execute the following commands from the SQL
prompt:

col cluster_id format A20;
col database name format Al5;
col owner format AlO;

col table nane format A20;
col partitioned format Al5;

SELECT cluster_id, database_name, owner, table_name,
partitioned FROM al | _hive_tabl es;

After verifying that the Hive tables you created are accessible, you can then query the
al | _hi ve_col umms view to verify the data mappings you specified.

col table nane format A20;

col colum_name fornmat A20;

col hive _colum_type format A20;
col oracle_colum_type format A20;

SELECT tabl e_name, colum_nane, hive_col um_type,
oracle_colum_type FROM al | _hive_col umms;

13-1

Chapter 13
Example Queries on the vehicleTable

Example Queries on the vehicleTable

When using Oracle Big Data SQL to query data in the Oracle NoSQL Database
vehi cl eTabl e, simply query the Oracle external table you mapped to that table using
the SQL SELECT command. For example,

col type format A5;

col neke format A8,

col nodel format Al5;

col class format A25;

col color format Al6;

col price format $99, 999.90;

col count format 99999;

col dealerid format 0.999999999999999999999999999999999999990;
col delivered format A30;

set |inesize 500;

SELECT * FROM vehi cl eTabl e;

SELECT count (*) FROM vehi cl eTabl e;
SELECT nmin(price) FROM vehicl eTabl e;
SELECT ni n(deal eri d) FROM vehi cl eTabl e;

SELECT * FROM vehi cl eTabl e WHERE neke=' GM ;
SELECT * FROM vehi cl eTabl e WHERE nbdel =" Camar o' ;
SELECT * FROM vehicl eTabl e WHERE nodel LIKE ' %Si | verado% ;
SELECT * FROM vehi cl eTabl e WHERE col or =' yel | ow

AND type > "auto' AND type < 'truck';
SELECT * FROM vehi cl eTabl e WHERE

type > "auto' AND type <= 'truck' AND make LIKE 'Ford';
SELECT * FROM vehicl eTabl e WHERE deal erid > 0.7 AND dealerid < 0.75;
SELECT * FROM vehi cl eTabl e WHERE del i ver ed

BETWEEN ' 06- JUN- 12 06: 53: 41. 448643 AM AND ' 05- SEP- 15
03: 40: 22. 057282 PM

ORDER BY del i vered,

Note that if you created the Oracle Database external tables vehi cl eTabl ePasswd
and/or vehi cl eTabl eVl | et for the case where the Oracle NoSQL Database store is
secure, then you would simply replace the name vehi cl eTabl e in the queries above
with vehi cl et abl ePasswd and/or vehi cl eTabl eVl | et .

Example Queries on the rmvTable

To use Oracle Big Data SQL to query data in the Oracle NoSQL Database r mvTabl e,
you can similarly execute basic queries like the following on the Oracle Database

ORACLE 13-2

Chapter 13
Example Queries on the rmvTable

external table you mapped to that table in the Oracle NoSQL Database store. For
example,

SELECT * FROM rmvTabl e;

SELECT | ast nane, firstname, gender, address FROM rnvTabl e;

SELECT min(ssn) FROM rnvTabl e;

SELECT count (*) FROM rnvTabl e;

SELECT firstnane, | ast nane, phonei nfo FROM rmvTabl e;

SELECT vehi cl ei nfo FROM rnvTabl e;

More Example Queries on the rmvTable

To achieve more complicated query functionality, you can employ either Oracle regular
expression functions such as REGEXP_LI KE and REGEXP_SUBSTR, or Oracle JSON
operators such as JSON_QUERY and JSON_EXI STS (or a combination).

Example Queries Using Oracle Regular Expression Functions

ORACLE

The example queries presented here demonstrate the use of Oracle regular
expression functions to query the Oracle NoSQL Database r nvTabl e.

To display the firstname, lastname, address, and vehicleinfo array from each row of
the Oracle NoSQL Database r nvTabl e in which the value of the lastname column
begins with the letter 'H', execute the query,

SELECT firstnane, | ast nane, addr ess, vehi cl ei nfo FROM r mvTabl e WHERE
REGEXP_LIKE (lastname, '*[H.*");

Recall that the vehi cl ei nf o field of the Oracle NoSQL Database rnvTabl e is an
array of Oracle NoSQL Database RECORD types that are mapped to the Oracle
Database STRING type in which each element of a given RECORD is represented
as name-value pairs when mapped to the Oracle Database data model; for example,

make":"Chrysler™, "color":"red", "'paid":true’, etc.

Suppose then, that you wish to list the name and address of each person in

the database whose first or "primary" vehicle matches certain criteria. Additionally,
suppose that rather than listing each element in the vehicleinfo array, you instead
whish to list only the vehicle information related to the vehicle that matched the desired
criteria. That is, you do not wish to list information about any other vehicles associated
with a given owner.

For example, you might want to list all owners whose primary vehicle is made by GM,
or all owners who own a Camaro. Or maybe you want to list all owners who have not
yet registered their primary vehicle. If we assume that information about each owner's

13-3

ORACLE

Chapter 13
Example Queries on the rmvTable

primary vehicle is stored in the first element of the vehicleinfo array, then the queries
below use Oracle regular expression functions to match on the sort of criteria just

described. Specifically,

To find all owners with a primary vehicle made by GM:

SELECT firstnane, | ast nane, addr ess,
REGEXP_SUBSTR(
VEH CLEINFO, "\{([[:alnum]":,\.]+){1,3}\}',1,1)
"Primary make: GV
FROM rnvTabl e WHERE
REGEXP_LI KE (
REGEXP_SUBSTR(
VEHI CLEINFO, "\ {([[:alnum]":,\.]+){1,3}\}',1,1),
""make":"GM'");

To find all owners whose primary vehicle is a Camaro:

SELECT firstnane, | ast nane, addr ess,
REGEXP_SUBSTR(
VEH CLEINFO, "\{([[:alnum]":,\.]+){1,3}\}',1,1)
"Primry nodel : Camaro"
FROM rnvTabl e WHERE
REGEXP_LI KE (
REGEXP_SUBSTR(
VEH CLEINFO, "\{([[:alnum]":,\.]+){1,3}\}",1,1),
""model ": " Camaro"');

To find all owners whose primary vehicle has not been registered:

SELECT firstnane, | ast nane, addr ess,

REGEXP_SUBSTR(

VEH CLEINFO, "\{([[:alnum]": , \.]+){1,3}\}',1,1)
"Primary fee NOT paid"
FROM r nvTabl e WHERE
REGEXP_LI KE (

REGEXP_SUBSTR(

VEHI CLEINFO, "\{([[:alnum]":,\.14){1,3}\}',1,1),
""paid':false');

To find all owners whose second vehicle is a truck:

SELECT firstnane, | ast nane, addr ess,
REGEXP_SUBSTR(
VEH CLEINFO, "\{([[:alnum]":,\.]+){1,3}\}',1,2)
"Second vehicle type: truck"
FROM rnvTabl e WHERE
REGEXP_LI KE (
REGEXP_SUBSTR(
VEH CLEINFO, "\{([[:alnum]":,\.1+H){1,3}\}',1,2),
""type":"truck"');

13-4

Chapter 13
Example Queries on the exampleJsonTable

Example Queries Using Oracle JSON Operators

The example queries presented in this section demonstrate the use of Oracle JSON
operators to execute queries similar to those presented in the previous section using
Oracle regular expression functions.

SELECT firstname, |astname, |j.address.street, |j.address.city,
j.address.state, j.vehicleinfo.nmodel FROM rnvTable j;

SELECT JSON QUERY(vehicleinfo, '$[0]' WTH CONDI TI ONAL \RAPPER)
FROM r nvTabl e;

SELECT firstnane, |astnane, address,
JSON_QUERY(vehicleinfo, '$[0]" WTH CONDI TI ONAL \RAPPER)
AS "Primary Vehicle is made by G\
FROM r nvTabl e WHERE
JSON_QUERY(vehicleinfo, '$[0].make' WTH CONDI TI ONAL WRAPPER)
LI KE ' %GW6 ;

SELECT firstname, |astname, address,
JSON_QUERY(vehicleinfo, '$[0]' WTH CONDI TI ONAL \\RAPPER)
AS "Primary Vehicle is a Canmaro"
FROM r nvTabl e WHERE
JSON_QUERY(vehicleinfo, '$[0].model' WTH CONDI TI ONAL WRAPPER)
LI KE ' %Camar 0% ;

SELECT firstname, |astname, address,
JSON_QUERY(vehicleinfo, '$[0].model' WTH CONDI TI ONAL WRAPPER)
AS "Primary Vehicle Mdel",
JSON_QUERY(vehicleinfo, '$[0].value’ WTH CONDI TI ONAL V\RAPPER)
AS "Primary Vehicle Val ue",
JSON_QUERY(vehicleinfo, '$[0].tax" WTH CONDI TI ONAL \\RAPPER)
AS "Tax Owed",
JSON_QUERY(vehicleinfo, '$[0].paid WTH CONDI TI ONAL WRAPPER)
AS "Tax Paid"
FROM r nvTabl e WHERE
JSON_QUERY(vehicleinfo, '$[0].make' WTH CONDI TI ONAL WRAPPER)
LI KE ' %GW6 ;

Example Queries on the exampleJsonTable

To use Oracle Big Data SQL to query data in the Oracle NoSQL Database
exanpl eJsonTabl e, you can execute queries like the following on the Oracle Database

ORACLE 13-5

ORACLE

Chapter 13
Example Queries on the exampleJsonTable

external table you mapped to that table in the Oracle NoSQL Database store. For
example,

set |inesize 500;

col id format 9999;
col jsonfield format A1000;

SELECT * FROM exanpl eJsonTabl e WHERE ROMNUM <= 5;

The following queries use various combinations of JSON dot notation, the JSON_VALUE
operator, and the JSON_QUERY operator to query and display only specific attributes of
the JSON document in each row of the Oracle NoSQL Database table.

Query Using Only JSON Dot Notation

col personal format Al5;
col party format Al5;

SELECT id, j.jsonfield. personal.firstnane,
j.jsonfield. personal.lastname, j.jsonfield. party
FROM exanpl eJsonTabl e |
WHERE | .jsonfield.party = 'Independent’

ORDER BY j.jsonfield. person.|astnang;

Query Using JSON Dot Notation and the JISON_VALUE Operator

col firstname format Al5;
col lastname format Al5;
col homephone format Al2;
col workphone format Al2;

SELECT id,
JSON_VALUE(j .jsonfield, '$.personal.firstname') firstnane,
JSON_VALUE(j .jsonfield, '$.personal.lastnane') |astnane,
JSON_VALUE(j.jsonfield, '$.personal.party') party,
JSON_VALUE(j .jsonfield, '$.personal.address. home. phone') honephone,
JSON_VALUE(j .jsonfield, '$.personal.address.work.phone') workphone
FROM exanpl eJsonTabl e |
ORDER BY j.jsonfield.party;

Query Using JSON Dot Notation and the JISON_QUERY Operator

col conmittee format A25;
col caucus format A25;

SELECT id, j.jsonfield. personal.firstnane,

j.jsonfield. personal .l astnane,

JSON_QUERY(j .jsonfield, '$.duties.comnttee’ PRETTY WTH WRAPPER)
conmmi ttee,

JSON QUERY(j.jsonfield, '$.duties.caucus' PRETTY W TH WRAPPER)

13-6

ORACLE

Chapter 13
Example Queries on the exampleJsonTable

caucus
FROM exanpl eJsonTabl e |
WHERE | .jsonfield.party = 'Denpcrat’ AND ROMUM <= 5;

Query Using JSON Dot Notation With Both JSON_VALUE and JSON_QUERY

col contrib format Al2;
col conmittee format A50;
col contrib format AS50;

SELECT

JSON_VALUE(j .jsonfield, '$.personal.firstname') firstnane,

JSON VALUE(j.jsonfield, '$.personal.lastnane') |astnang,

j.jsonfield. contrib,

j.jsonfield. party,

JSON_QUERY(j.jsonfield, '$.duties.conmttee' PRETTY W TH WRAPPER)
conmi ttee,

JSON_QUERY(j .jsonfield, '$.duties.caucus' PRETTY W TH WRAPPER)
caucus

FROM exanpl eJsonTabl e |

VWHERE j.jsonfield.party = 'Republican' AND ROMUM <= 5;

13-7

Appendix

Topics

Configuring Oracle Big Data SQL For Querying Oracle NoSQL Database

Configuring Oracle Big Data SQL For Querying Oracle
NoSQL Database

In order to use Oracle Big Data SQL to query data in an Oracle NoSQL Database
table, the Hive integration classes and other third party supporting classes provided
by Oracle NoSQL Database must be made available to the Java VMs launched

by Oracle Big Data SQL. This is accomplished by setting the value of the

j ava. cl asspat h. or acl e system property to include each of the following JAR files
provided with the Enterprise Edition of Oracle NoSQL Database:

ORACLE

kvclient.jar

commonutil.jar

skl ogger.jar

failureaccess.jar

oracl epki . jar

osdt _cert.jar

osdt _core.jar
ant|r4-runtine-nosql - shaded. j ar
j ackson-core.jar

j ackson- dat abi nd. j ar

j ackson-annotations.jar

In an Oracle Big Data SQL system, the value of the j ava. cl asspat h. or acl e system
property is set in the configuration file named, bi gdat a. properti es; which is located
in a directory of the form,

[opt/oracl e/ product/ 18c/ dbhone_1/ bi gdat asql / dat abases/ ORCLCDB/
bi gdata_config

The subdirectory ORCLCDB is the instance name of the Oracle 18c Database deployed
to the Oracle Big Data SQL system on which the examples presented here were
developed. You may need to adjust some of the path components for your particular
environment.

14-1

Chapter 14
Configuring Oracle Big Data SQL For Querying Oracle NoSQL Database

Upon examining the contents of the bi gdat a. properti es file, you should see an entry
that looks like,

j ava. cl asspat h. oracl e=\
[opt/ oracl e/ product/ 18c/ dbhome_1/ bi gdatasql /jlib/*:\
I opt/oracl e/ product/ 18c/ dbhome_1/j i b/ orai 18n.j ar

Although you can explicitly add the necessary Oracle NoSQL Database libraries

to the j ava. cl asspat h. or acl e system property by modifying the above entry in

the bi gdat a. properti es configuration file, the recommended way is to copy those
libraries in the directory, / opt/ or acl e/ product / 18c/ dbhome_1/ bi gdatasql /j|ib ; that
is,

cd /opt/oracl e/ product/18c/ dbhone_1/bi gdatasql /jlib

cp /opt/oraclelkv-ee/lib/kvclient.jar kvclient.jar

cp /opt/oraclelkv-ee/lib/commonutil.jar comonutil.jar

cp /opt/oracl el kv-ee/lib/ skl ogger.jar sklogger.jar

cp /opt/oraclelkv-ee/lib/failureaccess.jar failureaccess.jar

cp /opt/oraclelkv-ee/lib/oracl epki.jar oraclepki.jar

cp /opt/oraclelkv-ee/lib/osdt_cert.jar osdt_cert.jar

cp /opt/oraclel/kv-ee/lib/osdt_core.jar osdt_core.jar

cp /opt/oraclelkv-eel/liblantlr4-runtime-nosql-shaded.jar \
antlr4-runtinme-nosql - shaded. j ar

cp /opt/oracl el kv-ee/libl/jackson-core.jar jackson-core.jar

cp /opt/oracl e/ kv-ee/lib/jackson-databind.jar jackson-databind.jar

cp /opt/oracl el kv-ee/libl/jackson-annotations.jar jackson-annotations.jar

To integrate Oracle NoSQL Database with the Big Data SQL query mechanism, it
is important to copy the libraries shipped with Oracle NoSQL Database rather than
linking to those libraries in the system's bi gdat asql /j | i b directory. Copying the
libraries shown above will prevent possible Cl assLoader conflict errors that can be
caused by older versions of third party libraries included in the system's classpath.

Note that copying the libraries in the manner shown above is required for executing
Big Data SQL queries against data in an Oracle NoSQL Database. But if you will also
be executing Hive queries from one of the Big Data SQL system's database nodes,
then in addition to copying the Oracle NoSQL Database libraries into / opt / or acl e/
product/ 18c/ dbhome_1/ bi gdat asql /j I i b, you must also copy those same libraries
into the following directories on the database node from which the Hive queries will be
executed:

[opt/ oracl e/ bi gdat asql / bdcel | -12. 1/j i b- bds
and
[opt/ oracl e/ bi gdat asql / bdcel | -12. 2/ i b- bds

Configuring Oracle Big Data SQL For Querying Data in a Secure Store

ORACLE

The Hive and Oracle NoSQL Database Security appendix describes the additional
security artifacts that must be generated and installed to support executing queries
(both Hive and Big Data SQL) against table data stored in a secure Oracle NoSQL
Database. Those artifacts include the login, trust, and password artifacts, as well
as the server side JAR file that contains the necessary public credentials for

14-2

ORACLE

Chapter 14
Configuring Oracle Big Data SQL For Querying Oracle NoSQL Database

communication with the secure store. After generating and installing the necessary
security artifacts in the manner described in that section, add the server side JAR file
to the Big Data SQL system's j ava. cl asspat h. or acl e system property.

For example, if the server side JAR file is named hi ve- nosql - server.jar andis
installed in a directory such as / t np/ kv-cl i ent-security, then do the following:

cd /opt/oracl el product/18c/ dbhome_1/bi gdatasql/jlib
In —s /tnp/kv-client-security/hive-nosql-server.jar \
hi ve- nosql - server. jar

Additionally, if you will also be executing Hive queries from any of the Big Data SQL
system's database nodes, then you must create the same link as that shown in the
following directories on each such node,

[opt/ oracl e/ bi gdat asql / bdcel | -12. 1/ |i b- bds

and
[opt/ oracl e/ bi gdat asql / bdcel | -12. 2/ i b- bds

14-3

Integration with Elastic Search for Full Text
Search

Topics

* About Full Text Search

* Intergrating Elasticsearch with Oracle NoSQL Database
* Managing Full Text Index

e Security in Full Text Search

ORACLE

About Full Text Search

Topics

* About Full Text Search

* Prerequisite to Full Text Search

About Full Text Search

ORACLE

Full Text Search provides the capability to identify natural-language documents that
satisfy a query, and optionally to sort them by relevance to the query.

Full Text Search will find all documents containing given query terms and return them
in order of their similarity to the query. Notions of query and similarity are very flexible
and depend on the specific application. The simplest search considers query as a set
of words and similarity as the frequency of query words in the document.

In concert with the table interface, Oracle NoSQL Database integrates with the
Elasticsearch third-party open-source search engine to enable Full Text Search
capability against data stored in an Oracle NoSQL Database table. See Elasticsearch.

Full Text Search is an important aspect of any big data or database system. Users
expect that when they input text into a box and click search, they will get the relevant
search results they are looking for. Thus, besides providing high performance Full
Text Search of data stored in Oracle NoSQL tables, the mechanism described in this
document also allows users to explore a collection of information by applying multiple
Elastisearch filters.

The feature described here provides a mechanism for marking fields from an Oracle
NoSQL Database table schema as being text searchable. This so-called Oracle
NoSQL Text Indexing mechanism allows one to create Elastisearch indexes on the
data stored in Oracle NoSQL Database tables. It does this by causing the data in

the indexed fields to automatically be stored in a corresponding index created in a
given Elastisearch cluster. Once the data is stored (indexed) in Elastisearch, one can
then use any native Elastisearch API to search and retrieve the data that matches
the specified search criteria. References contained in the documents returned by
Elasticsearch can then be used to retrieve the original Oracle NoSQL Database
records that correspond to the indexed data.

Note:

So that the maintenance of indexes does not affect the performance

of an Oracle NoSQL Database store, the text indexes that are used

for Full Text Search will not be maintained locally by Oracle NoSQL
Database components. Rather, they will instead be maintained by a remote
Elasticsearch service hosted on other nodes.

15-1

Chapter 15
Prerequisite to Full Text Search

Prerequisite to Full Text Search

ORACLE

In order to employ the Full Text Search feature, you need a running Oracle NoSQL
Database store, and an Elasticsearch cluster. The Elasticsearch cluster must be
reachable over a network from the Oracle NoSQL Database store. For performance
reasons, when running in a production environment, the nodes making up the Oracle
NoSQL Database, as well as the nodes of the Elasticsearch cluster should be
separate hosts in a distributed environment, communicating over a network.

Currently, the Full Text Search feature of Oracle NoSQL Database will work with
Elasticsearch version 2 (example: 2.4.6), but not versions greater than or equal to
version 5. The following references can help you download, install, and start a version
of Elasticsearch compatible with Oracle NoSQL Database:

* https://www.elastic.co/downloads/past-releases/elasticsearch-2-4-6

» https://www.elastic.co/guide/en/elasticsearch/reference/2.4/index.html

Once your Elasticsearch cluster is running, it should consist of one or more nodes.
Some or all of the nodes will have services listening on two ports:

e The HTTP port, which is used for REST requests (default 9200).

* The Elasticsearch transport port, used for communication between Elasticsearch
nodes (default 9300).

¢ Note:

As explained in the sections below, you must know the HTTP port and the
host name of at least one node in the Elasticsearch cluster. You also must
know the name of the cluster itself, which by default is el asti csear ch.
This information must be provided to the Oracle NoSQL Database store so
that it can find and connect to the Elasticsearch cluster.

15-2

https://www.elastic.co/downloads/past-releases/elasticsearch-2-4-6
https://www.elastic.co/guide/en/elasticsearch/reference/2.4/index.html

Intergrating Elasticsearch with Oracle
NoSQL Database

Topics
* Registering Elasticsearch with Oracle NoSQL Database

* Deregistering Elasticsearch from an Oracle NoSQL Store

Registering Elasticsearch with Oracle NoSQL Database

Before you can use Oracle NoSQL Database to create a Text Index in an
Elasticsearch cluster, you must register the desired cluster with the Oracle NoSQL
Database store, using the pl an command named r egi st er - es. It is via the

regi st er - es plan that you provide the name of the Elasticsearch cluster, the name
of one of the hosts in that cluster, and the HTTP port on which that host is listening
for connection requests. Specifically, the r egi st er - es plan command takes the
following form:

pl an register-es
—cl ust ernane <name>
-host <host|ip>
-port <http port>
-secure <true|fal se>
[-wait]
[-force]

For example, if your Elasticsearch cluster is named el ast i csear ch (the default) and
includes a node running on your local host, listening on the default HTTP port (9200),
then you would execute the following command from the Oracle NoSQL Database
administrative command line interface (Admin CLI):

kv-> plan register-es
—cl usternane el asticsearch
—host 127.0.0.1
—port 9200
—secure false
-wai t

Executed plan 22, waiting for conpletion...
Pl an 22 ended successfully

ORACLE 16-1

Chapter 16
Registering Elasticsearch with Oracle NoSQL Database

< Note:

When the r egi st er - es plan is executed, if the Elasticsearch cluster
specified in the command already contains indexes created under a
registration between a previous NoSQL store instance and the current
Elasticsearch cluster, then the plan will fail and display an error message.
Such indexes are referred to as stale indexes, and the plan fails in the

face of such stale indexes because the indexes currently maintained in the
Elasticsearch cluster's state are associated with the store that previously
created them under the original registration. Although those existing indexes
are part of the Elasticsearch cluster's state, they are not part of the state

of the new store instance. Allowing the new store instance to create a new
registration through which new indexes can be created in the cluster can
produce inconsistencies and possible conflicts between the state maintained
by the store and the state maintained by Elasticsearch; resulting in potential
error conditions.

To avoid such error conditions, when the new store instance receives a
request for a new registration with the Elasticsearch cluster, and that cluster
contains indexes associated with a registration created by a previous store
instance, the request is rejected; unless the f or ce flag is specified. If the

f or ce flag is specified in the r egi st er - es command, then the store will
request that Elasticsearch first remove all of its stale indexes; and only
after those indexes have been successfully removed, will the registration be
created between the new store instance and the Elasticsearch cluster.

During the registration process the store's Admin Service (or simply, the
Admin) verifies the existence of (as well as a network path to) the
Elasticsearch node specified in the r egi st er - es command arguments,
and then acquires from that node a complete list of connection information
for all the nodes making up that Elasticsearch cluster. This information is
stored in the Admin's state, as well as distributed to all the nodes

of the Oracle NoSQL Database store. If the Elasticsearch cluster's
population of nodes changes significantly (due to node or network failure,
cluster reconfiguration, and so on), the r egi st er - es command can be
repeated to update the Oracle NoSQL Database's list of Elasticsearch node
connections.

After successfully executing the r egi st er - es plan, you can verify that the Oracle
NoSQL Database store is indeed registered with the desired Elasticsearch cluster by
executing the show par anet er s command from the Admin CLI in the following way:

show parameters —service <storage node id>

The show par anet er s command displays a list of properties for the specified
storage node that, if the registration was successful, will include the name of the
Elasticsearch cluster, along with the host names and/or IP addresses of the nodes
making up that cluster. When you execute the show par anet er s command, the

ORACLE 16-2

Chapter 16
Deregistering Elasticsearch from an Oracle NoSQL Store

value of the properties named sear chCl ust er name and sear chCl ust er Menber s
will provide that information for you. For example,

kv-> show paraneters -service snl

capacity=1

haHost name=| ocal host

haPor t Range=5005, 5007

host name=I ocal host

menor yMB=0

mgnt G ass=or acl e. kv. i npl . mgnt . NoQpAgent
nmgnt Pol | Por t =0

mgnt Tr apPort =0

nunmCPUs =8

regi stryPort=5000

r nHeapMaxVB=0

r nHeapPer cent =85

root Di r Pat h=. / kvr oot
searchClusterMembers=127.0.0.1:9200
searchClusterName=elasticsearch
servi ceLogFi | eCount =20

servi ceLogFi | eLi m t =2000000

st or ageNodel d=1

syst enPer cent =10

Deregistering Elasticsearch from an Oracle NoSQL Store

Oracle NoSQL Database implements ‘one store, one Elasticsearch cluster' policy. That
is, a given store cannot be simultaneously registered with more than one Elasticsearch
cluster. This policy is expressed through the registration model. See Registering
Elasticsearch with Oracle NoSQL Database. Thus, if your store is currently registered
with one Elasticsearch cluster, but you wish to register with a second cluster, then you
must first deactivate — or deregister — the current registration. This is accomplished by
executing the following der egi st er - es plan.

pl an deregister-es [-wait]

" Note:

Because of the one store, one cluster policy, the der egi st er - es command
takes no arguments.

The store cannot deactivate a registration unless all indexes created under that
registration have first been deleted from the Elasticsearch cluster. This can be

ORACLE 16-3

ORACLE

Chapter 16
Deregistering Elasticsearch from an Oracle NoSQL Store

accomplished by executing the DROP | NDEX command on each of the Full Text
Indexes created by the store and located in the Elasticsearch cluster with which the
store is registered. That is, from the Admin CLI, a command with the following form
should be executed for each index:

execute 'DROP I NDEX [IF EXI STS] <index> ON <table>';

Since the Elasticsearch cluster is created, maintained, and administered separate from
the Oracle NoSQL Database store, that cluster may contain indexes that were created
outside of the store's control, using the Elasticsearch API. These sort of indexes are
not known to the store (are not in the store's state), and do not need to be deleted
from the cluster in order to deactivate the store's registration with the cluster. Only the
indexes that were created in the Elasticsearch cluster via the Oracle NoSQL CREATE
FULLTEXT | NDEX command must be deleted for the der egi st er - es command to
succeed.

If the der egi st er - es command fails because the cluster still contains Full Text
Indexes created by the store, the output for the command will display the names of the
indexes that must be dropped. For example,

kv-> plan deregister-es —wait
Cannot deregister ES because these text indexes exist:

nyt est | ndex
Jokel ndex

kv-> execute ' DROP | NDEX nytestlndex ON nyTable';
Plan 16 conpl eted successful l'y

kv-> execute ' DROP | NDEX Jokel ndex ON nyTable';
Plan 17 conpl eted successful l'y

kv-> plan deregister-es —wait
Plan 18 conpl eted successful l'y

The show parameters command can then be executed again, and its output examined,
to determine if the store is indeed no longer registered with the Elasticsearch cluster.

" Note:

There are two index types that can exist in Oracle NoSQL Database: a
regular or Secondary Index, and a Text Index (for Full Text Search). With
respect to index creation or deletion, although separate statements are
needed for index creation (to distinguish the type of index to create), the
same DROP | NDEX statement is used to remove either type of index. When
applied to a text index, a DROP | NDEX command like those shown above
not only stops the population of the index from the associated Oracle NoSQL
Database table, but also removes the mapping and all related documents
from Elasticsearch.

16-4

Managing Full Text Index

Topics
e Creating a Full Text Index
* Mapping a Full Text Index Field to an Elasticsearch Field
* Handling TI MESTAWP Data Type
— Mapping Oracle NoSQL TI MESTAMP to Elasticsearch dat e Type
— Full Text Search of Indexed TI MESTAMP Scalar
* Handling JSON Data Type
— Review: Secondary Indexes on JSON Document Content
— Creating Text Indexes on JSON Document Content
— Full Text Search of Indexed JSON Documents

* Deleting a Full Text Index

Creating a Full Text Index

ORACLE

Review the concepts of Oracle NoSQL Database tables and indexes for better
understanding of this section. See Indexes in the SQL Reference Guide. That chapter
describes the main type of index you can create on the fields of a given Oracle NoSQL
Database table.

This section introduces a second type of index that can be created on a given table.

This second index category — separate from the Secondary Indexes described in the
SQL Reference Guide — is referred to as a Full Text Index or, simply, a Text Index on
the associated table.

As with any index, a Text Index as defined here, allows one to search for rows of

an Oracle NoSQL Database table having fields that share some common value or
characteristic. The difference between the two types of indexes is that an Oracle
NoSQL Database Secondary Index is created, maintained and queried all within the
Oracle NoSQL Database store; using the Oracle NoSQL Database Table API. On the
other hand, the creation of a Text Index is only initiated via the Table API. Although the
store maintains information about the Text Indexes that are created, such indexes are
actually created, maintained, and queried in the Elasticsearch cluster with which the
store is registered (using the Elasticsearch API).

It is important to understand that when the first type of index is created, data from the
indexed fields of the associated table are written to the store itself; whereas when a
Text Index is created, that data is streamed to the Elasticsearch cluster with which the
store is registered, which stores (indexes) the data so that the Elasticsearch API can
be used to execute full text searches against that data. Whenever new data is written
to, or existing data is deleted from the table, the corresponding Text Index located in
the cluster is updated accordingly.

17-1

ORACLE

Chapter 17
Creating a Full Text Index

To index one or more fields of an Oracle NoSQL table for Full Text Search in
Elasticsearch, you can use the store's Admin CLI to execute a command with the
following format:

execute ' CREATE FULLTEXT | NDEX
[IF NOT EXI STS]
<i ndex> ON <t abl e>
(<field> {<mappi ng-spec>}, <fiel d> {<mappi ng-spec>}, ...)
[ES_SHARDS=<n>]
[ES_REPLI CAS=<n>]
[OVERRI DE]
[COWENT "<conment >"]";

Each argument, flag, and directive is described as follows, where any item
encapsulated by square brackets [. . .] is optional, and the items encapsulated by
curly braces{ . . .} are required only when the field's value is a JISON document, but
is optional otherwise:

* i ndex - The name of the Text Index to create.
* tabl e - The name of the table containing the fields to index.

- field-Acomma-separated list of each field to index, encapsulated by open
parentheses.

» Each field to index can optionally be associated with a mapping specification that
specifies how Elasticsearch should handle the corresponding field. For example,
whether Elasticsearch should treat the field's value as a text, number, date type,
and so on; as well as what analyzer should be employed when indexing a text
value. As explained in the sections below, the mapping specification for a given
field must be expressed in valid JSON format.

» If the command above is executed and a Text Index with the specified name
already exists, then unless the optional directive | F NOT EXI STSis specified,
or the optional directive OVERRI DE is specified, the command will fail, displaying
an error message. Specifying | F NOT EXI STS when the nhamed index already
exists will result in a no-op. If OVERRI DE is specified for an existing index, then the
existing index will be deleted from Elasticsearch and a new index will be created
with the same name.

e If the optional ES_SHARDS argument is specified, along with a corresponding
i nt eger value, then the setting for the number of primary shards Elasticsearch will
use for the new index will be changed to the given value. Note that the default
value for this setting is 5, and this setting cannot be changed after the index has
been created.

» Ifthe optional ES_REPLI CAS argument is specified, along with a corresponding
i nt eger value, then the setting for the number of copies of the indexed value
each primary shard should have will be changed to the given value. Note that the
default value for this setting is 1, and this setting can be changed on a live index at
any time.

For more information on how the value of the ES SHARDS and ES REPLI CAS
properties are used, refer to the Elasticsearch settings named nunber _of _shar ds
and nunber _of repl i cas described in the Elasticsearch documentation. See
Elasticsearch Index Settings.

17-2

Chapter 17
Creating a Full Text Index

When CREATE FULLTEXT | NDEX executes successfully, the Text Index name
provided in the command (along with metadata associated with that name) is

stored and maintained in the Oracle NoSQL store. Additionally, a corresponding

text searchable index — the index that is actually queried — is also created in the
Elasticsearch cluster with which the store is registered. Whereas the name associated
with the index in Oracle NoSQL is the simple index name specified in the CREATE
FULLTEXT | NDEX command, the name of the corresponding index in Elasticsearch
takes the following dot-separated form:

ondb. <st or e>. <t abl e>. <i ndex>

Each of the coordinates of the Elasticsearch index name will always be lowercase;
even if their counterpart in Oracle NoSQL was specified as mixed or upper case. The
first coordinate (or prefix) of the name will always be ondb; which distinguishes the
indexes in Elasticsearch that were created by the Oracle NoSQL CREATE FULLTEXT
I NDEX command from other indexes created externally, via the Elasticsearch API.
The st or e coordinate of the Elasticsearch index name is the name of the Oracle
NoSQL Database store that asked Elasticsearch to create the index. And the t abl e
and i ndex coordinates are the values specified for the corresponding arguments in
CREATE FULLTEXT | NDEX; that is, the name of the Oracle NoSQL table from which
the values to index are taken, and the name of the Oracle NoSQL Text Index the store
should maintain. Using the coordinates of any such index name in Elasticsearch, one
should always be able to determine the origin of the data stored in the index.

Once you have executed the CREATE FULLTEXT | NDEX command described above,
you can verify that the Text Index has been successfully created in Oracle NoSQL by
executing the show indexes command from the Admin CLI; for example,

kv-> show i ndexes —tabl e nytestTabl e

I ndexes on table nytestTable nytestindex (...), type: TEXT

You can also verify that the corresponding full text searchable index has been created
in Elasticsearch. To do this you can execute a cur | command from the command line
of a host with network connectivity to one of the nodes in the Elasticsearch cluster; for
example,

curl =X GET "http://esHost: 9200/ cat/indices'

yel | ow open ondb. kvst ore. _checkpoi nt
yel | ow open ondb. kvstore. nytesttabl e. nytestindex ...

Notice the entry that references the ondb. kvst or e. _checkpoi nt index. This index
will be automatically created upon the creation of the first Oracle NoSQL Text Index.
Unless it is manually deleted from the Elasticsearch cluster, it will always appear in the
output of the indices command. This so-called _checkpoi nt index contains internal
information written by Oracle NoSQL to support recovery operations when Oracle
NoSQL is restarted. In general, this index should never be removed or modified.

ORACLE 17-3

Chapter 17
Creating a Full Text Index

< Note:

Throughout this document, the cur | utility program is used to demonstrate
how to issue and display the results of HTTP requests to the Elasticsearch
cluster. The cur | program is supported on most operating systems (linux,
Mac OS X, Microsoft Windows, and so on). It is used here because it is
easy to install and can be run from the command line. Other options you can
explore for sending queries to Elasticsearch are:

e The elasticsearch-head tool; which is a web front end for
browsing, querying, and interacting with an Elasticsearch cluster. See
elasticsearch-head.

e The Elasticsearch Java API; which can be used to query Elasticsearch
from within program control. See Elasticsearch Java API.

In addition to executing show indexes from the Oracle NoSQL Admin CLI, you can
also execute the show table command; which, in addition to the table structure, will
also list all indexes (both secondary and text) created for that table. For example,

kv-> show tabl e -table nmytestTabl e

{

"json_version" : 1,

"type" : "table",

"name" : "nytestTable",

"shardKey" : ["id"],

"primryKey" @ ["id"],

"fields" : |

{
"name" : "id",
"type" : "INTEGER',
“nul lable" : fal se,
“default” : null

}1

{
"nanme" : "category",
"type" : "STRING',
“nul lable" : true,

"default" : null
}y
{

name" : "txt",

ORACLE 17-4

Chapter 17
Mapping a Full Text Index Field to an Elasticsearch Field

"type" : "STRING',
“nul lable" : true,
“default” : null
P
"indexes" : [
{
"name" : "mytestlndex",
“table" : "mytestTable",
“type" " "text",
“fields" : ["category", "txt"],
"annotations" : {
"category" : "{\"type\" : \"string"\",
\"anal yzer\" : \"standard\"}",
"txt" oo "{\"type\" : \"string\",
\"anal yzer\" : \"english\"}"
}
}]
}
Note:

You cannot evolve a Text Index created in Elasticsearch via the CREATE
FULLTEXT | NDEX mechanism. If you want to change the index definition,
for example, add more columns to the index, you must first delete the
existing index using the DROP | NDEX command and then use CREATE
FULLTEXT | NDEX to create a new Text Index satisfying the desired
definition.

Mapping a Full Text Index Field to an Elasticsearch Field

ORACLE

Unlike the command used to create a secondary index on data stored in an Oracle
NoSQL table, the CREATE FULLTEXT | NDEX command allows you to specify finer
control over how Elasticsearch treats the fields to be indexed. For each field that you
want Elasticsearch to handle in a non-default fashion, you can specify how you want
Elasticsearch to treat that field's values by including a mapping specification with each
such field when executing the CREATE FULLTEXT | NDEX command.

If no mapping specification is provided for a given field, and if that field contains any
indexable Oracle NoSQL data type — except JSON data — then Oracle NoSQL will use
that data type to determine the appropriate type with which to map the field's values
to the Elasticsearch type system. This means that for fields containing non-JSON
data, the mapping specification can be used to enforce and/or override the data type
Elasticsearch should use when indexing the field's contents.

For example, if a field of a given table contains values stored as the Oracle NoSQL
Database st ri ng type, then the default mapping supplied to Elasticsearch will declare

17-5

ORACLE

Chapter 17
Mapping a Full Text Index Field to an Elasticsearch Field

that values from that field should be indexed as the Elasticsearch st ri ng type. But if
you want Elasticsearch to treat the values of that field as the Elasticsearch i nt eger
type, then you would provide a mapping specification for the field including an explicit
type declaration; that is,

{"type":"integer"}

But care must be taken when mapping incompatible data types. For the example
just described, Elasticsearch will encounter errors if any of the st ri ng values being
indexed contain non-numeric characters. See Elasticsearch Mapping.

For the case where the field to be indexed has values that are JSON documents, a
mapping specification must always be provided in the CREATE FULLTEXT | NDEX
command; otherwise an error will occur. A mapping specification is necessary for such
fields because, as explained later, it is not the document itself that is indexed, but

a subset of the document's fields. When a JISON document is stored in an Oracle
NoSQL Database table, Oracle NoSQL knows only that a value of type JSON was
stored. It does not know the type intended for any of the fields (attributes) within

the document. Thus, for each of the document's fields that will be indexed, the

user must provide a corresponding mapping specification that specifies the type that
Elasticsearch should use when indexing the field's value.

In addition to specifying the data type of a given field's content, the mapping
specification can also be used to further refine how Elasticsearch processes the data
being indexed. This is accomplished by including an additional set of parameters in
the mapping specification. For example, suppose you want Elasticsearch to apply an
analyzer different than the default analyzer when indexing a field with content of type
string. In this case, you would specify a mapping specification of the form:

{"type":"string", "anal yzer":"<anal yzer-name>"}

To see the mapping generated by Oracle NoSQL Database for a given index created
in Elasticsearch, you can execute a command like the following from the command
line of a host with network connectivity to one of the nodes in the Elasticsearch cluster
(example: esHost):

curl =X GET 'http://esHost: 9200/ ondb. <st or e>. <t abl e>. <i ndex>/ _nmappi ng?
pretty'

For details on the sort of additional mapping parameters you can supply to
Elasticsearch via the mapping specification, see Elasticsearch Mapping Parameters.

As a concrete example, suppose you have a table named j okeThl in a store
named kvst or e, where the table consists of a field named cat egor y with values
representing the categories under which jokes can fall, along with a field named t xt
that contains a st ri ng consisting of a joke that falls under the associated category.
Suppose that when indexing the values stored under the cat egor y field, you want
to index each word that makes up the category; but when indexing each joke, you
want the word stems (or word roots) to be stored rather than the whole words. For
example, if a joke contains the word "solipsistic”, the stem of the word - "solipsist" —
would actually be indexed (stored) rather than the whole word.

Since the Elasticsearch "standard" analyzer breaks up text into whole words, and the
"english" analyzer stems words into their root form, you would use the "standard"

17-6

Chapter 17
Handling TIMESTAMP Data Type

analyzer for the category field and the "english" analyzer for the t xt field (assuming
the jokes are written in English rather than some other language). Specifically, to
create the Text Index, you would execute a command like the following from the Admin
CLI:

kv-> execute ' CREATE FULLTEXT | NDEX j okel ndx ON jokeThbl (

category{"type":"string","anal yzer":"standard"},

txt{"type":"string", "analyzer":"english"})";

Once the Text Index is created, you can then query the index by executing a cur |
command from the command line of a host with network connectivity to one of the
nodes in the Elasticsearch cluster. For example,

curl =X GET ' http://<esHost>: 9200/ ondb. kvst or e. j okeThl . j okel ndx/ _search?
pretty'

To see the mapping generated by Oracle NoSQL Database for the j okel ndx in the
example above, you can execute a cur| command like the following:

curl =X GET 'http://<esHost>: 9200/ ondb. kvst ore. j okeTbl . j okel ndx/
_mappi ng?pretty'

" Note:

Text indexed fields can include non-scalar types (such as map and array),
which are specified in the same way, and with the same limitations, as those
for Oracle NoSQL Secondary Indexes.

Handling nwestae Data Type

Topics
* Mapping Oracle NoSQL TI MESTAMP to Elasticsearch dat e Type
* Full Text Search of Indexed TI MESTAMP Scalar

Mapping Oracle NoSQL i vesraw to Elasticsearch date Type

ORACLE

When a value representing a date and time is written to a field of an Oracle NoSQL
table, the value is stored in the table as an instance of j ava. sqgl . Ti mest anp; which
corresponds to the Oracle NoSQL ti nest anp enumtype. See Atomic Data Types in the
SOQL Reference Guide.

When creating a table, the keyword t i nest anp is then used to specify such a field

in the table. Along with the ti mest anp keyword, an i nt eger parameter representing
the pr eci si on to apply when storing the value must also be specified, employing a
declaration with the following form:

TI MESTAMP(<pr eci si on>)

17-7

ORACLE

Chapter 17
Handling TIMESTAMP Data Type

The value input for pr eci si on must be one of ten possible i nt eger values, from 0
to 9. In general, the ti mest anp data type defined by Oracle NoSQL Database allows
finer-grained time precisions to be stored in a table; up to nanosecond granularity.

A value of 0 input for pr eci si on specifies the least precise representation of a

ti mest anp value; which corresponds to a format of, yyyy- MM dd' T' HH: mm ss, with
0 decimal places in the value's seconds component. A value of 9 specifies the finest
granularity - or most precise - representation, which includes an instant during the
given day that is accurate to the nanosecond. t i mest anp values with nanosecond
precision correspond to a format of yyyy- Mt dd' T' HH: mm ss. SSSSSSSSS, with 9
decimal places in the seconds component. All other precisions (1-8) represent a day
and time granularity falling somewhere between the least precise (0 decimal places)
and the most precise (9 decimal places).

As another concrete example, suppose you wish to create a table named t sTabl e
consisting of an i d field containing the table's Primary Key, and a field named

t s that will contain values representing a date and a time-of-day in which the
seconds component is represented with 6 decimal point accuracy (example: date =
1998- 10- 26, time-of-day = 08:33:59. 735978). To create such a table, one
can execute the following command from the Admin CLI:

kv-> execute ' CREATE TABLE tsTable (id INTECER, ts Tl MESTAMP(6),
PRI MARY KEY (id))";

Suppose then that you wish to store the following values in the t s field:

tsVal [0] = 1996-12-31T23:01: 43. 987654321
tsVal [1] = 2005-03-20T14: 10: 25. 258

tsVal [2] = 1998-10-26T08: 33: 59. 735978
tsVal [3] = 2001-09-15T23: 01: 43. 55566677
tsVal [4] = 2002-04-06T17: 07: 38. 7653459

To store those values, you could execute code like the following:

final KVStore store = KVStoreFactory. getStore
(new KVStoreConfig(<storeName>, <host> + ":" + <port>));
final Tabl eAPl tableAPl = store.getTabl eAPI();
final Tabletable = tabl eAPl. get Tabl e("tsTabl e");
for (int i =0; i <5; i+t {
final Row row = table.createRow);
row. put(id, i);
row. put (ts, TinmestanpUtils.parseString(tsval[i]));
tabl eAPl . put | f Absent (row, null, null);

Because the t s field of the table was created with precision 6, each value will be
stored with 6 decimal places in the seconds component of the value. Specifically,
if the value being stored contains more than 6 decimal places, then Oracle NoSQL
will store the value with the decimal part of the seconds component rounded to

6 decimal places. For example, t sVal [4] from the list above will be stored as,
2002- 04-06T17: 07: 38. 765346.

17-8

Chapter 17
Handling TIMESTAMP Data Type

Similarly, if the value being stored contains fewer than 6 decimal places, then Oracle
NoSQL will pad the decimal part of the seconds component with zeros. For example,
tsVal [1] from the list above will be stored as, 2005- 03- 20T14: 10: 25. 258000.

When creating a Text Index on a table's field containing ti nest anp values, it is
important to understand how the Oracle NoSQL Database Table API handles fields
such as those described above. It is important because Elasticsearch stores values
representing date and time using the Elasticsearch dat e type; which does not map
directly to the j ava. sql . Ti nest anp type stored by Oracle NoSQL Database.

When indexing a t i mest anp field for Full Text Search, the Elasticsearch dat e

type must be specified in the CREATE FULLTEXT | NDEX command; otherwise
Elasticsearch will handle the field's values as a st ri ng type. For example, the simplest
way to index (for full text search) the t s field from the t sTabl e in the example above,
would be to execute the following command:

kv-> execute ' CREATE FULLTEXT | NDEX tslndex ON tsTabl e
(ts{"type":"date"})";

In this case, a default mapping specification will be generated that will tell
Elasticsearch to handle the broadest range of dat e type formats when handling the
values being indexed.

When indexing values that represent date and time in Elasticsearch, whenever you
specify the dat e type for those values, you can also specify a f or mat to which each
indexed value must adhere; where an error will occur if a given value does not satisfy
the specified format. See Elasticsearch Date. In a fashion similar to how one specifies
an "analyzer" for a "string" value, the Elasticsearch API defines a f or mat parameter
that can be used to specify — via the mapping specification — the format Elasticsearch
should expect when indexing a given value of type dat e. Specifically,

<fiel dname>{"type":

date","format":"<formt>"}

where the value input for the f or mat token can be an explicit format such as, yyyy-
MW dd' T' HH: mm ss, or can be a combination one or more of the Elasticsearch
pre-defined values (macros). See Elasticsearch Built In Formats.

Using the Elasticsearch API (not Oracle NoSQL), a typical Elasticsearch mapping
specification for a dat e type might then specify an explicit format along with one or
more values from the set of Elasticsearch built in formats; for example,

{"type":"date","format":"yyyy- Mt dd T HH: nm ss. SSS| | yyyy- MM dd| |
epoch_mllis"}

A format like that shown tells Elasticsearch to expect values in a form such as,
1997-11-17T08: 33: 59. 735, 0or 1997- 11- 17, or even as a number of milliseconds
since the epoch. If a value has any other format, an error will occur and Elasticsearch
will not index (store) the value.

ORACLE 17-9

ORACLE

Chapter 17
Handling TIMESTAMP Data Type

Rather than employing an explicit format such as that shown in the example above,
you can also specify formats using some combination of only the macros from the
table; for example,

{"type":"date","format":"strict_date optional tine||epoch mllis"}

This tells Elasticsearch that although acceptable date values must include the

date (stri ct _dat e=yyyy- MM dd), Elasticsearch should accept any values with or
without a time component (opt i onal _t i ne). Additionally, if the value represents the
number of milliseconds since the epoch, then such values should also be accepted by
Elasticsearch.

With respect to using the CREATE FULLTEXT | NDEX command to index a ti mest anp
value for Full Text Search, although it is possible to specify the Elasticsearch f or mat
parameter for a dat e field in a way similar to the Elasticsearch APl examples shown
above, it may not be very practical. First, the number of valid combinations of macros
from the set of Elasticsearch built in formats is very large, and may pose a significant
burden for users.

Next, unlike other mapping parameters defined by Elasticsearch (for example the
"analyzer" parameter for "string” types), if the user specifies a valid format for an
Elasticsearch dat e field, but one or more of the values to be indexed do not satisfy that
format, then an error will occur (in Elasticsearch) and those values will not be indexed.
For example, if the user specifies a "french" analyzer for a st ri ng field but the value is
actually in English, although unexpected search output may result, no error will occur.
On the other hand, if the user specifies a format of yyyy- Mt dd' T' HH: nm ss. SSS
for a dat e field, but the value(s) being indexed contains more than 3 decimal places

in the seconds component, although the index will be created, format errors will occur
and the non-conformant values will not be indexed:;.

To provide a more convenient mechanism for specifying the format for dat e
values, as well as to minimize the opportunity for the sort of format errors

just described, a special " nane": "val ue" parameter is defined for the CREATE
FULLTEXT | NDEX command. When indexing Oracle NoSQL ti nest anp values as
dat e values in Elasticsearch, rather than using the Elasticsearch f or mat parameter
(and its valid values), the specially defined pr eci si on parameter should be used
instead. Although the pr eci si on parameter is optional, when it is included with
a"type":"date" specification in the CREATE FULLTEXT | NDEX command, the
value of that parameter can be either mi | | i s or nanos. Specifically, when the
CREATE FULLTEXT | NDEX command is used to index NoSQL ti nmest anp values
as dat e values in Elasticsearch, one of the following parameter mappings must be
specified in that command:

o {"type":"date"}
e {"type":"date","precision":"mllis"}
e {"type":"date", "precision":"nanos"}

Note that the default pr eci si on (that is, no preci si on), as well as the nanos

pr eci si on, both map - and index - the broadest range of t i mest anp formats as valid
dat e types in Elasticsearch without error; whereasthe m | | i s preci si on indexes
only ti mest anp values defined with precision 3 or less. As a result, the precision you
use should be based on the following criteria:

17-10

Chapter 17
Handling TIMESTAMP Data Type

* If you know for sure that all values from the table field to be indexed have only
precision 3 (milliseconds) or less, and you want to index the values using 3
decimal places in all cases, then specify ni | I i s preci si on.

e If the field you wish to index consists of t i mest anp values of varying precisions
and you want to index only those values with precision 3 or less, then specify
m 1 lis precision;sothatvalues with greater than milliseconds precision will
not be indexed.

* In all other cases, use either nanos preci si on or the default pr eci si on.

In summary, the special pr eci si on parameter not only minimizes the number of
possible values the user can specify for the dat e type, it also reduces the occurrence
of format errors by providing a way to map such values to the broadest range of
possible formats; as well as allow the user to enforce milliseconds precision in the
index.

Note:

As described above, a precision of nanos specified for a date type is
currently identical to specifying no precision, which translates to the default
dat e format. Although this may seem redundant, the nanos option is defined
for two reasons. First, it is intended to be symmetric with the mi | | i s option;
so that if a user knows the t i mest anp field being indexed consists of values
with greater than millisecond precision, the user can simply specify nanos
and the right thing will be done when constructing the mapping specification
that will be registered with Elasticsearch.

The second reason for defining the nanos option is related to the fact

that Elasticsearch currently supports formats with precisions no greater than
milliseconds. (Notice that the Elasticsearch built in formats include macros
associated with nothing finer than ni | | i s). If a version of Elasticsearch is
released in the future that supports formats including nanoseconds precision,
then a fairly straightforward change can be made in Oracle NoSQL Database
to map the current nanos option to the new format defined by Elasticsearch;
requiring no change in the public api, and no change to user applications.

Full Text Search of Indexed n vestave Scalar

ORACLE

Suppose you start a store named kvst or e and create the t sTabl e with the same
ti mest anp values as those presented previously, where each such value was stored
in the table with precision 6. After registering the store with your Elasticsearch cluster
(running on a host named eshost), a Text Index named t s| ndex on the table'st s
field is created by executing the following command from the Admin CLI:

kv-> execute ' CREATE FULLTEXT | NDEX tslndex ON tsTabl e
(ts{"type":"date"})";

Executing queries such as the following can then be used to perform a Full Text
Search on the data that was indexed:

17-11

Chapter 17
Handling TIMESTAMP Data Type

List all values, sorted in ascending order

curl =X GET 'http://eshost: 9200/ ondb. kvst ore. t stabl e. t si ndex/ _search?

pretty'
"-d {"sort":[{"ts":"asc"}]}'
{
"took" : 4,
"timed _out" : fal se,
" shards" : {
"total" : 3,
"successful" : 3,
"failed" : 0
H
"hits" : {
"total" : 5,
"max_score" : null,
"hits" : [{
"_index" : "ondb.kvstore.tstable.ts",
"_type" @ "text_index_mapping",
" id" : "/w 0000",
" score" : null,

"_source":{"_pkey":{" _ table":"tstable","id":"0"},
"ts":"1996-12-31T23: 01: 43. 987654"},

"sort" : [852073303123]

b A
"_index" : "ondb.kvstore.tstable.ts",
"_type" @ "text_index_mapping",
"_id" o "/w 0002",
" score" : null,
"_source":{"_pkey":{" _ table":"tstable","id":"2"},
"ts":"1998-10- 26T08: 33: 59. 735978"},
"sort" : [909435821111]
b A
"_index" : "ondb.kvstore.tstable.ts",
"_type" @ "text_index_mapping",
"_id" o "/w 0003",
" score" : null,
"_source":{"_pkey":{" _ table":"tstable","id":"3"},
"ts":"2001-09- 15T23: 01: 43. 555667"},
"sort" : [995911599555]
oA
"_index" : "ondb.kvstore.tstable.ts",
"_type" : "text_index_mapping",

ORACLE 17-12

ORACLE

Chapter 17
Handling TIMESTAMP Data Type

"id" o "/w 0004",
" score" : null,

"_source":{"_pkey":{" _ table":"tstable","id":"4"},
"ts":"2002- 04-06T17: 07: 38. 765346"},

"sort" : [1024765658765]

b o
" index" : "ondb.kvstore.tstable.ts",
"_type" : "text_index_mapping",
"_id" : "/w 0001",
" score" : null,
"_source":{"_pkey":{" _ table":"tstable","id":"1"},
"ts":"2005-03-20T14: 10: 25. 258000"},
"sort" : [1091264176173]
}]
}
}

Perform an exact match to find a specific date and time

curl =X GET '"http://eshost: 9200/ ondb. kvst ore. t stabl e. t si ndex/ _search?
pretty'

"-d {"query":{"tern:
{"ts":"2005-03-20T14: 10: 25. 258000"}} }'

{
"hits" : {
“total" : 1,
"max_score" : null,
"hits" : [{
" _index" : "ondb.kvstore.tstable.ts",
" type" : "text_index_mapping",
" id" ;. "/w0001",
" score" : null,
" source":{" _pkey":{" table":"tstable","id":"1"},
"ts":" 2005-03-20T14: 10: 25. 258000},
H]
1
}

Find dates that fall within a specific range of dates and times
curl =X GET 'http://eshost: 9200/ ondb. kvst ore. t st abl e. t si ndex/ _search?

pretty'
"-d {"query":{"range": {"ts":{"gte":"

17-13

Chapter 17
Handling JSON Data Type

1998- 10- 26T08: 33: 59. 735978","It":" 2002-04-06T17:07:38.9"}}}}'

{
"hits" : {
“total" : 3,
"max_score" : null,
"hits" : [{
" index" : "ondb.kvstore.tstable.ts",
"_type" : "text_index_mapping",
"id" o "/w 0004",
" score" : null,
"_source":{"_pkey":{" _ table":"tstable","id":"4"},
"ts":"2002- 04-06T17: 07: 38. 765346},
b A
" index" : "ondb.kvstore.tstable.ts",
" _type" : "text_index_mapping",
"id" o "/w 0002",
" score" : null,
"_source":{"_pkey":{" _ table":"tstable","id":"2"},
"ts":"1998-10-26T08: 33: 59. 735978"},
"sort" : [909435821111]
b A
" index" : "ondb.kvstore.tstable.ts",
"_type" : "text_index_mapping",
"id" ; "/w 0003",
" score" : null,
"_source":{"_pkey":{" _ table":"tstable","id":"3"},
"ts":"2001- 09-15T23: 01: 43. 555667"}
bl
}
}
Handling JSON Data Type
Topics

* Review: Secondary Indexes on JSON Document Content
* Creating Text Indexes on JSON Document Content
* Full Text Search of Indexed JSON Documents

ORACLE 17-14

Chapter 17
Handling JSON Data Type

Review: Secondary Indexes on JSON Document Content

How to index, for Full Text Search, content from JSON documents stored in an

Oracle NoSQL Database table is presented in the next section. But to help you better
understand the material in that section, you should first review the material in Indexing
JSON in the SQL Reference Guide. It describes how to store values in a field of a
NoSQL table when those values consist of strings in valid JSON format; that is, when
those values are JSON documents.

When reviewing those materials, it is important to not confuse creating a Secondary
Index on JSON content with creating a Text Index. Creating a Text Index on a field
containing JSON documents is presented in the next section of this document.

When JSON is stored in an Oracle NoSQL Database table, the data can be any valid
JSON, stored as a string; referred to as a JSON document. Each such document
stored in a field (or column) of a NoSQL table consists of elements that are referred

to as either the fields or the attributes of the document. Thus, when discussing the
elements of a given JSON document in the sections below, the term field and the term
attribute can be used interchangeably; where the context should distinguish the field
(or column) of an Oracle NoSQL table from the field (or attribute) of a JSON document
stored in the table.

Although you can create a Secondary Index on the attributes of a JSON document
stored in a given table, there are numerous restrictions on such indexes; restrictions
which may make a Text Index more attractive. First, when creating a Secondary Index,
you can only index the scalar attributes of the document. That is, the attributes cannot
be nested JSON objects. Additionally, only i nt eger, | ong, doubl e, nunber, string,
and bool ean are supported Oracle NoSQL data types for JSON Secondary Indexes.
Finally, you cannot perform Full Text Search on such an index.

For example, consider the following JSON document whose content specifies

information related to a given member of the United States senate. For each senator
(both current and former), a JSON document like that shown here is created and the
Oracle NoSQL Table API can be used to store each such document in a column of a
given table. Note that throughout this section and the following section, the example
JSON document shown here will be referenced numerous times to demonstrate how
such a JSON document can be indexed; in either a Secondary Index or a Text Index.

{

"description": "Senior Senator for Chio",

"party": "Denocrat",

"congress_nunbers": [223, 224, 225],

"state": "OH',

"startdate": "2010-01-93TO05: 04: 09. 456",

"enddat e": "2020-11-12T03: 01: 02. 567812359",

"seniority": 37,

“current": true,

"duties": {
"commttee": ["Ways and Means","Judiciary","Steering"],
"caucus": ["Autonotive","Human Ri ghts","Steel I ndustry"]

¥

"personal ": {

"firstname": " Sherrod",
"] ast nane": " Brown",
“birthday":"1952-11- 09",

ORACLE 17-15

ORACLE

Chapter 17
Handling JSON Data Type

"social _media": {

“website":"https://wwmv brown. senate. gov",

“rss_url":"http://ww. brown. senate. gov/rss/feeds",
"twittered":" SenSherrodBrown"

¥
"address": {

“home": {
"nunber":"9115-ext",
"street":"Vaughan",
"apt":null,

"city":"Col unbus",
"state":"OH",

"zi pcode": 43221,
"phone": "614-742-8331"

b

"work": {

"nunmber":"Hart Senate O fice Building",
"street":"Second Street NE',
"apt": 713,
"city":"Washi ngton",
"state":"DC',
"zi pcode": 20001
"phone": "202-553-5132"
}
}

"cspanid': 57884

}1
"contrib": 2571354.93

The example JSON document above consists of a variety of JSON attributes of
different types. Some attributes are scalar fields in " nanme" : " val ue" form, whereas
others are either nested objects, or arrays of scalar values. An attribute that is a
nested object is a structure, encapsulated by curly braces { . . . }, that contains

a set of valid JSON field types; scalars, arrays of scalars, and/or JSON objects
(named or unnamed). An array type is an ordered, comma-separated list of elements,
encapsulated by square brackets [. . .], where each element must be the same
scalar type; string, dat e, or numerical type (i nt eger, doubl e, nunber, and so on).

The value of a scalar field nested within an object is dereferenced using JSON path
notation. For example, the scalar field containing each senator's date of birth is nested
in the object named per sonal . Each senator's birthday can then be specified in a
search query using the JSON path, jsonFieldName.personal.birthday; where the value
of the jsonFieldName component is the name specified for the column of the table in
which each JSON document is written. Similarly, a search on each senator's home city
can be expressed using the path, jsonFieldName.personal.address.home.city.

Note that in Elasticsearch, array fields are handled in a way that may be unexpected.
When querying arrays in Elasticsearch, you cannot refer to the "first element", the
"last element", the "element at index 3", etc. Arrays are handled as a "bag of

values of the same type". For the example document above, if you wanted to

search the committees on which each senator serves, you would not construct

your query using a path like, jsonFieldName.duties.committee[0]. Such a path is

not allowed. Instead, you would specify the path to the array itself, along with the

17-16

ORACLE

Chapter 17
Handling JSON Data Type

values you wish to search for that may be elements of the array; for example,
"f[sonFieldName.duties.committee":"Judiciary Steering".

As discussed previously, each attribute in a JSON document has a type; where the
type is implied by the structure of the attribute, or the value associated with the
attribute. An attribute in a JSON document whose content is encapsulated by curly
braces implies that the attribute is a JSON object type. With respect to scalar fields,
the implied data type of the value associated with such a field is dependent on the
value of the field itself. This is true whether the index is a Secondary Index or a

Text Index. For example, the scalar attributes named descri pti on and seniority
from the JISON document shown above will be handled as string and i nt eger types
respectively.

Compare this with a value such as that specified for the JSON document's contri b
attribute (2571354. 93). Such a scalar value will be handled as a NoSQL doubl e data
type when creating a Secondary Index; and as either an Elasticsearch f | oat or doubl e
type when creating a Text Index for Full Text Search in an Elasticsearch cluster.
Similarly, for attributes that contain information representing date and time (example
the st art dat e, enddat e, and bi rt hday attributes), the value of such fields can
only be handled as an Oracle NoSQL st ri ng type when creating a Secondary Index,
but may be handled as either an Elasticsearch stri ng or dat e type when creating a
Text Index.

Finally, although an attribute containing a comma-separated list of scalars
encapsulated by square brackets implies a JSON array type, the data type of the
array's elements (that is, the array's type) is implied by the values of the elements in
the same way as was previously described for scalar attributes.

Suppose then that you wish to create a table named j sonTabl e consisting of an

i d field containing the table's Primary Key, and a field named j sonFi el d that will
contain values consisting of JSON documents like the example document presented
previously. To create such a table, and examine its resulting structure, one would
execute a command like the following from the Admin CLI:

kv-> execute ' CREATE TABLE | sonTabl e
(id INTEGER, jsonField JSON, PRI MARY KEY (id))"';

kv-> execute ' DESCRI BE AS JSON TABLE j sonTabl e';

{
"json_version" " 1,
"type" : "table",
"name" : "jsonTable",
"shardKey" : ["id"],
"primaryKey" : ["id"],
"fields" : [{
"name" : "id",
"type" : "INTEGER',
“nullable" : fal se,
"default" : null
oA
"name": "jsonField",
"type" : "JSON',
“nullable" : true,
"default" : null

17-17

Chapter 17
Handling JSON Data Type

]

To populate the table with JSON documents like the example document presented
above, you could execute code like the following:

final KVStore store = KVStoreFactory. getStore
(new KVStoreConfig(<storeName>, <host> + ":" + <port>));
final tableAPl = store.getTabl eAPI ();
final table = tabl eAPl.get Tabl e("tsTabl e");
final List<String> listCOfJsonDocs = {...};
for (int i =0; i < |listOfJsonDocs.size(); i++) {
final Row row = table.createRow);
row put(id, i);
row. put Json("jsonField", |istOJsonDocs. get(i));
tabl eAPl . put | f Absent (row, null, null);

After populating the table with the necessary JSON documents (using the method
r ow. put Json from the Table API), a Secondary Index on selected attributes of
each document stored in the table's j sonFi el d field can be created by executing
a command like:

kv-> execute ' CREATE | NDEX j sonSecl ndex ON jsonTabl e
(jsonField. party AS STRING
j sonFi el d.current AS BOOLEAN,
j sonField.contrib AS DOUBLE,
jsonField. seniority AS I NTEGER)';

In this case, queries can be performed based on various combinations of each
senator's party affiliation, seniority, total amount of money contributed to the senator's
campaign, and whether or not the senator is a currently sitting senator. For example,
to find all current democratic senators with contributions totaling between 1 million and
20 million dollars, a command like the following could be executed from the Admin
CLLI:

kv-> CGET TABLE —nane jsonTabl e
—i ndex j sonSecl ndex
-field jsonField.party —val ue "Denocrat"
-field jsonField.current —value true
-field jsonField.contrib —start 1000000.00 —end 20000000

Creating Text Indexes on JSON Document Content

ORACLE

Using the example presented previously, this section describes how to create a Text
Index on the contents of a JSON document stored in a NoSQL table, and then perform
various Full Text Search queries on the resulting index in Elasticsearch.

Unlike Oracle NoSQL Database Secondary Indexes, where the type of each value
stored in a field of a given table is inferred from the table schema, for Text Indexes,
the type of each attribute to be indexed cannot be inferred from the schema; and thus,
must be specified in the CREATE FULLTEXT | NDEX command. Although the table's

17-18

ORACLE

Chapter 17
Handling JSON Data Type

schema tells Oracle NoSQL that the values in a given field (column) of a table is

a JSON document, it tells Oracle NoSQL nothing about the internal structure of the
document itself, other than each element is JSON formatted content. Since Oracle
NoSQL knows neither the attributes within the JSON document to be indexed, nor the
data types that should be used when indexing those attributes, that information must
be explicitly given to Oracle NoSQL via the CREATE FULLTEXT | NDEX command.

Thus, to create a Text Index on a column containing JSON documents, in addition to
specifying the attributes to index, in JSON path notation, you must also always provide
a mapping specification. This tells Oracle NoSQL the attributes within the document to
index, as well as the data type to tell Elasticsearch to use when indexing each such
attribute.

For example, in the previous section a Secondary Index was created and queried to
find all current democratic senators with contributions totaling between 1 million and
20 million dollars. But suppose you want to refine that search, to find all current
democratic senators with contributions totaling between 1 million and 20 millions
dollars, who also serve on either the Judiciary or Appropriations committee (or both).
For such a search, a Text Index should be created instead of a Secondary Index; not
only because the committee information is contained in a nested array of strings, but
also so that a Full Text Search can be performed.

To do this, first create the desired Text Index by executing the following command from
the Admin CLI:

kv-> execute ' CREATE FULLTEXT I NDEX jsonTxt|ndex ON
j sonTabl e (
jsonField.current{"type":"
jsonField. party{"type":"string","anal yzer":"standard"},
jsonField. duties.commtte{"type":"string"},

jsonField. contrib{"type":"double"})";

bool ean"},

Rather than creating a Secondary Index on the ts column of the table named

j sonTabl e, like you did in the previous section's example, the command above
instead creates a Text Index consisting of specific attributes of the documents stored
in that column. Although the previous example index allowed you to find all current
democratic senators with contributions totaling between 1 million and 20 million
dollars, the Text Index created above allows the search to be refined. With the Text
Index, you can search for all current democratic senators with contributions totaling
between 1 million and 20 millions dollars, who also serve on either the Judiciary or
Appropriations committee, or both.

After creating the Text Index using the command above, you can then query
Elasticsearch for the documents that satisfy the desired search criteria by executing
acurl command from a node that has network access to the Elasticsearch cluster
with which the Oracle NoSQL store is registered. For example, from the node named
esHost,

curl =X GET

"http://esHost: 9200/ ondb. kvstore.jsontabl e.jsontxtindex/ _search?pretty

"-d {query":{"bool ":{

"must":{"match":{"jsonField. party": "Denocrat"}},

"must":{"match":"jsonField. current":"true"}},

"must":{"range": {"jsonField.contrib":{
"gte":"1000000. 00", "I te":20000000. 00"}}},

17-19

ORACLE

Chapter 17
Handling JSON Data Type

must": "match": {"jsonField.duties.comitte":
"Judiciary Apropriations"}}}}}

As previously explained, ondb. kvst or e. j sont abl e. j sont xt i ndex in the query
above is the name of the index that Oracle NoSQL creates in Elasticsearch; where
kvst or e is the name of the Oracle NoSQL store, j sont abl e corresponds to the
table (jsonTable) in that store that contains the JSON documents being indexed, and
j sont xt i ndex corresponds to the Text Index metadata maintained by the store.

The output produced by the Elasticsearch query above (with some re-formatting for
readability) should look something like:

{
"hits" : {

“total" : 31,

"max_score" : 1.4695805,

"hits" : [{
" _index" : "ondb. kvstore.jsontable.jsontindex"
"_type" : "text_index_napping"
"_id" o "/w 0001",
" _score" : 1.4695805,
" source":{" _pkey":{" table":"jsontable","id":"1"},

"jsonField":"{"description"

"Senior Senator for Chio"},
"jsonField"{"current":"true"},
"jsonField":{"congress_nunbers":[223, 224, 225] },
"jsonField":{"party":"Denocrat"},
"jsonField":{"seniority":37},

"jsonFel d": {"personal ":{"birthday": 1952-11-09"}},
"jsonField":{"personal ":{"lastname":"Brown"}},
"jsonField":{"contrib":257134. 93},
"jsonField":{"duties":{"committee":["Ways and
Means", "Judici ary", "Denocratic Steering"]}},
"jsonField":{"duties":{"caucus":["Congressiona
Autonotive", "Human Ri ghts","Steel Industry"]}},
"jsonField":{"personal ":{"address":{"home": {
"state":"OH'}}}},
"jsonField":{":"personal ":{"address": {"home": {
"city":"Colunbus"}}}}}
Hl
}
}

It is important to understand that unlike the query against the Secondary Index
presented in the previous section, this query is executed against the Elasticsearch
cluster rather than the Oracle NoSQL store. Additionally, the Text Index created
here allows one to perform a Full Text Search on the values in the nested array

j sonFi el d. duti es. conmi tt ee; something that cannot be done with Secondary
Indexes.

17-20

Chapter 17
Handling JSON Data Type

Full Text Search of Indexed JSON Documents

This section presents the steps to execute a simple but complete example, without
security. Although in a production setting, both the Oracle NoSQL Database and the
Elasticsearch cluster should generally be run on separate nodes, for simplicity, these
steps are executed on a single node. Additionally, if you already have an Elasticsearch
version 2 cluster running in your environment, then feel free to use that cluster in place
of the Elasticsearch single-node cluster used below. Note finally, that you may have to
change some of the t okens (directory locations, version numbers, etc.) to suit your
particular environment.

ORACLE

1.

Download, install, and run Elasticsearch, version 2.

Download the tar file https://download.elastic.co/elasticsearch/release/org/
elasticsearch/distribution/tar/elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz and
place it under the directory / opt / es.

cd /opt/es

tar xzvf elasticsearch-2.4.6.tar.gz

In —s elasticsearch-2.4.6 el asticsearch

export JAVA HOVE=/usr/lib/jvmjava8

/opt/es/ el asticsearch/bin/elasticsearch
- Dnet wor k. host =l ocal host
--cluster.nane kv-es-cluster
--node. nanme | ocal host

< Note:

Elasticsearch version 2 requires Java 8. Thus, you should install Java
8 and set the JAVA_HOVE environment to point to the Java 8's home
directory.

Use KVLite to deploy an Oracle NoSQL Database store named kvst or e.

Assuming that you have installed Oracle NoSQL Database under the
directory / opt / ondb, and that you have write permission for your system's / t nmp
directory, execute the following command from a command line:

java —jar /opt/ondb/kv/libl/kvstore.jar kvlite
—root /tnp/kvroot
—-host | ocal host
—port 5000
—-store kvstore
—-secure-config disable

Start the Oracle NoSQL Database Admin CLI.

From a separate command window, execute the command:

java —jar /opt/ondb/kv/lib/kvstore.jar runadmn
—host | ocal host

17-21

https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/tar/elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz
https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/tar/elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz

Chapter 17
Handling JSON Data Type

—port 5000
—store kvstore

4. |Install a file containing the JSON documents to load.

Under a directory such as ~/ exanpl es/ es/ docs, create a file named

senat or - i nf 0.] son and populate it with one or more JSON documents like
those shown in the example file presented in Sample: Array of JSON Documents.
Be sure to format the file you create with the same format shown in Sample: Array
of JSON Documents.

5. Compile and execute the LoadJsonExanpl e program (or similar).

Under a directory such as ~/ exanpl es/ es/ sr ¢, create the sub-directory
es/ t abl e, and then create a file named LoadJsonExanpl e. j ava under
the directory ~/ exanpl es/ es/ src/ es/ t abl e. After creating the file ~/
exanpl es/ es/ src/ es/tabl e/ LoadJsonExanpl e. j ava, add the source
code presented in The LoadJsonExanpl e Program Source (or source with
similar functionality).

Once the LoadJsonExanpl e. j ava program is created, execute the following
from a separate command window:

cd ~/exanpl es/es/src

javac —cl asspath /opt/ondb/kv/lib/kvstore.jar:src
exanpl es/ es/ t abl e/ LoadJsonExanpl e. j ava

java —classpath /opt/ondb/kv/|ib/kvstore.jar:src
es. tabl e. LoadJsonExanmpl e
-store kvstore
—host | ocal host
—port 5000
—file ~/exanpl es/ es/ docs/senator-info.json
-tabl e exanpl eJsonTabl e

Note:

The source code for the LoadJsonExanpl e program that is presented
in The LoadJsonExanpl e Program Source is only intended to provide
a convenient mechanism for loading non-trivial JSON content into an
Oracle NoSQL table. You should feel free to write your own program to
provide similar functionality.

6. Create a Text Index on the JSON data loaded into the NoSQL table.

After verifying that the table has been successfully created and populated with the
desired table data, execute the following from the Admin CLI:

kv-> plan register-es
—cl ust ername kv-es-cluster
—-host | ocal host
—port 9200
—secure fal se
-wai t

ORACLE 17-22

Chapter 17
Handling JSON Data Type

kv-> execute ' CREATE FULLTEXT | NDEX jsonTxt|ndex ON
exanmpl eJsonTabl e (
jsonField. current{"type":"
jsonField. party{"type":"string", "anal yzer":"standard"},
jsonField. duties.commtte{"type":"string"},

jsonField contrib{"type":"double"})";

bool ean"},

7. Execute Full Text Search queries against data indexed in Elasticsearch.

To first verify that the desired index has been created in Elasticsearch as
expected, execute the following from a command line:

curl =X GET 'http://1ocal host: 9200/ cat/indices'

yel I ow open ondb. kvst ore. _checkpoint ...
yel | ow open ondb. kvst or e. exanpl ej sont abl e. j sontxtindex ...

Note that Elasticsearch reports the status of each index is yellow. This occurs here
because the Elasticsearch cluster was deployed as a single-node cluster.

To examine the mapping that Oracle NoSQL constructs for Elasticsearch, execute:

curl =X GET 'http://1ocal host: 9200/
ondb. kvst or e. exanpl ej sont abl e. j sont xti ndex/ _mappi ng?pretty’

To display all documents from the exanpl eJsonTabl e that were indexed in
Elasticsearch, execute:

curl =X GET 'http://1ocal host: 9200/
ondb. kvst or e. exanpl ej sont abl e. j sont xti ndex/ _search?pretty’

Finally, to find all current democratic senators with contributions totaling between 5
million and 15 million dollars, who are members of either the "Progressive" caucus
or the "Human Rights" caucus, execute the following command:

curl =X GET
"http://1ocal host: 9200/ ondb. kvst or e. exanpl ej sont abl e. j sont xt i ndex/
_search?pretty'

"-d {query":{"bool ":{
"must":{"match":{"jsonField.party":"Denocrat"}},
"must":{"match":"jsonField. current":"true"}},

"must":{"range":{"j sonField.contrib":
{"gte":"5000000. 00", "Ite":15000000.00"}}},

"must":"match":{"jsonField. duties.caucus":"Progressive Human

Rights"}}}}}

ORACLE 17-23

Chapter 17
Deleting a Full Text Index

Deleting a Full Text Index

ORACLE

To delete a Full Text Index created on an Oracle NoSQL table, you can use the
NoSQL store's Admin CLI to execute a command with the following format:

execute 'DROP INDEX [IF EXI STS] <index> ON <tabl e>';

Each argument, flag, and directive is described as follows, where any item
encapsulated by square brackets [. . .] is optional:

* i ndex - The name of the Text Index to delete.

e tabl e - The name of the table containing the indexed fields.

If the command above is executed and a Text Index with the specified name does not
exist, then the command will fail, displaying an error message. Specifying | F EXI STS
when the named index does not exist will result in a no-op.

" Note:

The command above, when applied to a Full Text Index, will not only remove
all metadata related to the index from the associated Oracle NoSQL store's
state, but will also remove the corresponding data indexed in Elasticsearch.

17-24

Security in Full Text Search

Topics

» Elasticsearch and Secure Oracle NoSQL Database

Elasticsearch and Secure Oracle NoSQL Database

ORACLE

Up to this point, all information and examples presented in the previous sections
discussed how data stored in an Oracle NoSQL Database table is indexed in
Elasticsearch when the communication between Oracle NoSQL Database and
Elasticsearch is not secure. This section discusses how that data can be sent to the
Elasticsearch cluster over a secure communication channel.

As described previously, data sent to Elasticsearch for indexing is sent by a process
running on the master replication node of the Oracle NoSQL store's replication group
(or shard). When the system is not configured for security, the replication node
communicates with Elasticsearch over HTTP. For the replication node to send the
data to Elasticsearch over a secure communication channel, the NoSQL store must
be configured to run securely. See Introducing Oracle NoSQL Database Security

in the Security Guide. When configured for secure communication, the replication
node will send the data to Elasticsearch, in encrypted form, over HTTPS. This means
that Elastisticsearch must be configured to perform the necessary authentication and
decryption before indexing the data received from a secure Oracle NoSQL store.

Elasticsearch version 2 does not provide a fully integrated, out-of-the-box option for
communicating with clients over a secure channel in the manner just described.

For secure communication with Elasticsearch, some users choose to run their
Elasticsearch deployment "behind" (or "wrapped" within) a secure web server. Others
choose to employ one of the commercially available plugins that support TLS (SSL) for
this purpose. Oracle NoSQL Database has chosen to support the latter model.

In order to communicate securely with the Elasticsearch cluster, Oracle NoSQL
Database recommends that the Shield proprietary plugin be used to provide a port
to which clients of the Elasticsearch cluster can connect and communicate securely
over HTTPS.

" Note:

Although the Shield plugin has been used when testing secure
communication between the current Oracle NoSQL Database
implementation and Elasticsearch version 2, there is nothing in the NoSQL
implementation that should prevent the use of other such Elasticsearch
security plugins; as long as the plugin supports HTTPS, and can be
configured to support the Oracle NoSQL Database authentication scheme.

18-1

ORACLE

Chapter 18
Elasticsearch and Secure Oracle NoSQL Database

Compared to the non-secure case presented previously, there are additional steps
you must take when working with the secure case. For the secure case, the Oracle
NoSQL store will be populated using the secure mode of the same example program,
and the indexed data will be queried using similar queries, as that presented for

the non-secure case. The only difference is that the Oracle NoSQL store and the
Elasticsearch cluster will each be deployed to communicate securely, and the queries
will specify the necessary keys and certificates required by the Elasticsearch cluster.

Deploying a secure Oracle NoSQL store and Elasticsearch cluster and configuring
them to communicate securely with each other requires many more steps than

the non-secure case. Appendices Secure Elasticsearch using Sheild, Deploying and
Configuring a Secure Oracle NoSQL Store, and Install the Full Text Search Public
Certificate in Elasticsearch provide detailed descriptions of all the steps necessary to
deploy such a system. And once you have successfully deployed a secure Oracle
NoSQL store and a secure Elasticsearch cluster, and you have installed the necessary
artifacts (certificates) for the store and cluster to communicate, there are only minor
differences between the commands and queries presented previously for the non-
secure case and their counterparts in the secure case.

One of the first differences to note is that when executing the LoadJsonExanpl e
program to populate the NoSQL store with data to index in Elasticsearch, you must
specify the securi t y parameter with the absolute path to the file containing the
login properties required by Oracle NoSQL Database Security (see Deploying and
Configuring a Secure Oracle NoSQL Store for details). For example,

java —classpath /opt/ondb/kv/|ib/kvstore.jar:src
es. tabl e. LoadJsonExanpl e

—store kvstore

—-host | ocal host

—port 5000

—file ~/exanpl es/ es/docs/senator-info.json

-tabl e exanpl eJsonTabl e

-security /tmp/FTS-client.login

Next, when executing the r egi st er - es command to register the NoSQL store with
the secure Elasticsearch cluster, you must specify true for that command's secur e
parameter. For example,

kv-> plan register-es
—cl ust ername escl uster
—host eshost 1
—port 29100
—secure true
-vai t

Finally, when querying the data indexed by the secure Elasticsearch cluster, the cur |
command must include the OpenSSL public certificate and private key required by the
cluster for authentication of the request. See Secure Elasticsearch using Sheild. For
example,

curl -k -E /tnp/elasticsearch-eshost1. pem
--key /tnp/elasticsearch-eshost 1. pkey
—X GET 'http://eshost1: 29100/
ondb. kvst ore. j sontabl e. j sont xti ndex/ _search?pretty’

18-2

Chapter 18
Elasticsearch and Secure Oracle NoSQL Database

"-d {query":{"bool ":{
"must":{"match":{"jsonField. party": "Denocrat"}},
"must":{"match":"jsonField. current":"true"}},
"must":{"range": {"jsonField.contrib":
{"gte":"1000000. 00", "I te":20000000.00"}}},

"must":"match":{"jsonField. duties.conmtte":"Judiciary

Apropriations"}}}}}!

With respect to secure Full Text Search and the example commands presented in

this document, it is assumed you have followed the directions presented in Secure
Elasticsearch using Sheild, Deploying and Configuring a Secure Oracle NoSQL Store,
and Install the Full Text Search Public Certificate in Elasticsearch appendices; which,
for clarity and convenience, organize the steps to configure and deploy a secure
Elasticsearch and Oracle NoSQL system into separate, self-contained sections.

Secure Elasticsearch using Sheild presents the steps required to configure
Elasticsearch for security. These steps must be taken whether the Elasticsearch
cluster will be communicating with a secure Oracle NoSQL store or some other service
or client unrelated to Oracle NoSQL.

Deploying and Configuring a Secure Oracle NoSQL Store describes how to deploy a
secure Oracle NoSQL store and then configure it to communicate securely with the
Elasticsearch cluster described in Secure Elasticsearch using Sheild.

The final steps required to complete the deployment of the secure Oracle NoSQL and
Elasticsearch system are presented in Install the Full Text Search Public Certificate in
Elasticsearch. Those steps will complete the security configuration of the Elasticsearch
cluster from Secure Elasticsearch using Sheild, and are required for the nodes of

the cluster to communicate with the secure Oracle NoSQL store from Deploying and
Configuring a Secure Oracle NoSQL Store. The steps presented in Install the Full Text
Search Public Certificate in Elasticsearch should be executed only after executing the
steps in Secure Elasticsearch using Sheild and Deploying and Configuring a Secure
Oracle NoSQL Store.

After completing the steps presented in Secure Elasticsearch using Sheild, Deploying
and Configuring a Secure Oracle NoSQL Store and Install the Full Text Search Public
Certificate in Elasticsearch appendices, you should then be able to run the example
program LoadJsonExanpl e to populate a table in the secure Oracle NoSQL store
deployed in Deploying and Configuring a Secure Oracle NoSQL Store, index data
from that table in the secure Elasticsearch cluster from Secure Elasticsearch using
Sheild and Install the Full Text Search Public Certificate in Elasticsearch, and finally
run secure queries against the indexed data. For convenience, the secure versions
of example commands you can execute are presented in Running the Examples in
Secure Mode.

ORACLE 18-3

Chapter 18
Elasticsearch and Secure Oracle NoSQL Database

< Note:

Unlike the non-secure example presented previously, instead of using KVLite
to deploy an Oracle NoSQL store on a single node, Secure Elasticsearch
using Sheild, Deploying and Configuring a Secure Oracle NoSQL Store,
Install the Full Text Search Public Certificate in Elasticsearch, and Running
the Examples in Secure Mode appendices show how to work with a secure
Oracle NoSQL store and Elasticsearch cluster where both consist of three
nodes rather than a single node. This is done to present a more realistic
example, to demonstrate what one might typically encounter in production.

ORACLE 18-4

Appendix

Topics

e Sample: Array of JSON Documents

e The LoadJsonExanpl e Program Source

* Secure Elasticsearch using Sheild

* Deploying and Configuring a Secure Oracle NoSQL Store

» Install the Full Text Search Public Certificate in Elasticsearch

* Running the Examples in Secure Mode

Sample: Array of JSON Documents

The following sample file is in the format and content that is required by the

LoadJsonExanpl e program.

{
"meta": {
"limt": 2,
"total count": 2
¥
"objects": |
{

"description": "Senior Senator for OChio",
"party": "Democrat",
"congress_nunbers": [223, 224, 225],
"state": "OH',
"startdate": "2010-01-83T05: 04: 09. 456",
"enddat e": "2020-11-12T03: 01: 02. 567812359",
"seniority": 37,
“current": true,
"duties": {

"comm ttee": ["Ways and

Means", "Judi ci ary", "Steering"],
"caucus": ["Autonotive",
"Human Ri ghts","Steel I ndustry"]

b,
"personal ": {

“firstname":" Sherrod",

"l astnane": " Brown",

"birthday":"1952-11-09",

"social _media": {

"website":"https://wwmv brown. senate. gov",

"rss_url":"http://ww. brown. senate. gov/rss/feeds",
"twittered":" SenSherrodBrown"

b

ORACLE

19-1

ORACLE

Chapter 19
Sample: Array of JSON Documents

"address": {

"home": {
"nunber":"9115-ext",
"street":"Vaughan",

"apt":null,
"city":"Col unbus",
"state":"OH',

"zipcode": 43221,
"phone": "614-742-8331"
3,
"work": {
"nunber":"Hart Senate Office Building",
"street":"Second Street NE',
"apt": 713,
"city":"Washington",
"state":"DC',
"zipcode": 20001
"phone": "202-553-5132"
}
3,
"cspanid': 57884
1,
“contrib": 2571354.93

"description": "Junior Senator for Wsconsin",
"party": "lndpendent",
"congress_nunbers": [113, 114, 115],
"state": "W",
"startdate": "2013-01-83T03:02:01. 123",
"enddate”: "2017-01-03T01: 02: 03. 123456789",
"seniority": 29,
“current": true,
"duties": {

"“commttee": ["Intelligence","Judiciary",

" Appropriations"],

"caucus": ["Congressional Progressive","Afterschool "]
1,
"personal ": {

“firstname":" Tammy",

"l astnane": " Bal dwi n",

"birthday":"1962-02-11",

"social _media": {

nw.on

"website":"https://wwmv bal dwi n. senat e. gov",

"rss_url":"http://ww. bal dwi n. senat e. gov/rss/feeds",
"twittered":"SenBal dwi n"
3,
"address": {
"home": {

"nunber":"23315",
"street":"Wallbury Court",

"apt":"17",
"city":"Mdison",
"state":"W",

"zipcode": 53779,

19-2

Chapter 19
The LoadJsonExample Program Source

"phone": "608-742-8331"

b
"work": {
"nunber": "Hart Senate O fice Building",
"street":"Second Street NE',
"apt": 355,
"city":"Washington",
"state":"DC',
"zipcode": 20001
"phone": "202-224-2315"
}
b
"cspanid': 57884
¥
“contrib": 2571354.93
b
}
Note:

The net a object at the beginning of the file is required. The et a object
hasthelimt andtotal count equal tothe number of JISON object
elements in the objects array. Programs that read and load each JSON
document will use the contents of that object to determine the total number
of JSON documents contained in the file; specifically, the | i mi t and the

tot al _count attributes of the net a object. If you add additional documents
to this example file, then update the values of the net a object accordingly.

The Loadssonexam e Program Source

ORACLE

The following LoadJsonExanpl e java program creates and populates an Oracle
NoSQL Database table with rows whose elements are JSON documents read from a
text file.

package es.table;

import java.nio.file.Path;
import java.nio.file.Files;
import java.nio.file.FileSystens;

i mport java.io.FileNotFoundExcepti on;
i mport java.io. | CException;

i mport java.util.List;
import java.util.Arraylist;

i mport oracle. kv. Faul t Excepti on;
i mport oracl e. kv. KVSt or e;

i mport oracl e. kv. KVSt oreConfi g;

i mport oracl e. kv. KVSt or eFact ory;
i mport oracle. kv. St at ement Resul t;

19-3

ORACLE

Chapter 19
The LoadJsonExample Program Source

i mport oracle. kv.tabl e. PrinaryKey;

i mport oracle. kv.tabl e. Row,

i mport oracle. kv.tabl e. Tabl e;

i mport oracle. kv.tabl e. Tabl eAPI;

i mport oracle.kv.table. Tablelterator;

i mport com fasterxm .jackson. core. JsonParser;
i mport com fasterxm .jackson. core.JsonToken;

import oracle.kv.inpl.tif.esclient.jsonContent.ESJsonUtil;

/**

* Cass that creates an exanple table in a given Oacle NoSQ. Dat abase
store and

* then uses the Oracle NoSQL Database Table APl to popul ate the table
with

* sanpl e records consisting of JSON documents retrieved froma file.
The

* table that is created consists of only two Oracle NoSQL Dat abase
data types: an

* | NTEGER type and a JSON type.

*

* The file fromwhich the desired JSON docunents are retrieved nust be

of
* form
* <pre>
{
"meta": {
“limt": n,
"of fset": O,
“total _count": n
}1
"objects": |
{
JSON DOCUMENT 1
}1
{
JSON DOCUMENT 2
}1
{
JSON DOCUMENT n
}1
]
}
* <[pre>
*/

public final class LoadJsonExanple {

final bool ean debugWthNoStore = fal se;

final bool ean debugAll = false;

final bool ean debugTopLevel JsonArrayQbject = fal se;
final bool ean debugAddDoc = fal se;

final bool ean debugJsonToStringTop = fal se;

19-4

ORACLE

Chapter 19

The LoadJsonExample Program Source

final bool ean debugJsonToStringArray = fal se;
final bool ean debugDocByDoc = fal se;

private final KVStore store;

private final Tabl eAPl tableAPl;

private final Table table;

private Path jsonPath;

private bool ean del eteExisting = fal se;

private static final String TABLE NAME DEFAULT = "jsonTabl e";
private static final String ID FIELD NAVE = "id";

private static final String JSON FIELD NAME = "jsonFiel d";

public static void main(final String[] args) {
try {

final LoadJsonExanpl e | oadData = new LoadJsonExanpl e(args);

| oadDat a. run();
} catch (Faul t Exception e) {
e.printStackTrace();

Systemout. println("Please make sure a store is running.");

} catch (Exception e) {
e.printStackTrace();

}
}

/**
* Parses command |ine args and opens the KVStore.
*/
private LoadJsonExanple(final String[] argv) {
String storeNane = "";
String hostName = "";

nn

String host Port ;

final int nArgs = argv.length;
int argc = 0;
String tabl eNane = null;

if (nArgs == 0) {
usage(nul 1);

}

while (argc < nArgs) {
final String thisArg = argv[argc++];

if ("-store".equal s(thisArg)) {
if (argc < nArgs) {
storeNane = argv[argc++];
} else {
usage("-store requires an argument”);
}
} elseif ("-host".equal s(thisArg)) {
if (argc < nArgs) {

19-5

ORACLE

Chapter 19
The LoadJsonExample Program Source

host Nane = argv[argc++];
} else {
usage("-host requires an argument");
}
} elseif ("-port".equals(thisArg)) {
if (argc < nArgs) {
host Port = argv[argc++];
} else {
usage("-port requires an argument");
}
} elseif ("-file".equal s(thisArg)) {
if (argc < nArgs) {

jsonPath =
Fil eSystens. get Defaul t (). get Path(argv[argc++]);
} else {

usage("-file requires an argument");
}
} elseif ("-table".equals(thisArg)) {
if (argc < nArgs) {
tabl eName = argv[argc++];

}
} elseif ("-security".equals(thisArg)) {
if (argc < nArgs) {
Syst em set Property(
KVSecurityConst ants. SECURI TY_FI LE_PROPERTY,
argv[argc+t]);
} else {
usage(“-security requires an argunent”);

}

} elseif ("-delete".equals(thisArg)) {
del et eExi sting = true;

} else {
usage("Unknown argunent: " + thisArg);
}
}
if (storeName == null) {
usage("M ssing argunent: -store <store-nanme>");
}

if (hostName == null) {
usage("M ssing argunment: -host <host>");

}

if (hostPort == null) {
usage("M ssing argunment: -port <port>");

}

if (jsonPath == null) {
usage("Mssing argument: -file <path-to-file>");

}

/* \hen the table nane is not specified, construct the name of
* the table fromthe file name, nminus the suffix. That is strip

19-6

Chapter 19
The LoadJsonExample Program Source

* off the path and the suffix and use file name's 'base' as
* the name of the table.
*/
if (tableName == null) {
final Path flnnEl ement = jsonPath. getFileName();
if (flnnEl ement == null) {
tabl eName = TABLE_NAME DEFAULT;
} else {
final String tnpTbl Name = flnnEl ement.toString();
final String suffixDelim=".";
i f (tnpTbl Nane. contai ns(suffixDelim) {
final int suffixindx =
t npThl Nane. i ndexOf (suf fi xDelim;
if (suffixlndx > 0) {
tabl eName = tnpTbl Nane. substring(0, suffixlndx);
} else {
tabl eName = tnpTbl Nane;

}
} else {
t abl eName = tnpThl Nane;
}
}
}
Systemout.printIn("\n------mmmmmm ");
Systemout.printIn("Table to create and load = " + tabl eNane);
Systemout . printlIn(™-------mmmmm e
\n");
if (debugWthNoStore) {
store = null;
tabl eAPl = nul I ;
table = null;
} else {
store = KVStoreFactory.getStore
(new KVStoreConfig(storeNane, hostNane + ":" +

host Port));

tabl eAPl = store. get Tabl eAPI ();
creat eTabl e(t abl eNane) ;
tabl e = tabl eAPl. get Tabl e(t abl eName) ;
if (table == null) {
final String nsg =
"Store does not contain table [name=" + tabl eName +
"1

throw new Runti neExcepti on(nsg);

}

private void usage(final String message) {
if (message !'= null) {
Systemout.printin("\n" + nmessage + "\n");

}

ORACLE 19-7

ORACLE

Chapter 19
The LoadJsonExample Program Source

Systemout . println("usage: " + getd ass().getName());
Systemout. println

("\t-store <instance name>\n" +

"\t-host <host nane>\n" +

“\t-port <port nunber>\n" +

“\t[-file <path to file with json objects to add to table>

[\n" +
“\t[-table <nane of table to create and |load>]\n" +
“\t-delete (default: false) [delete all existing data
first]\n");
Systemexit(1);
}

private void run() throws FileNotFoundException, |CException {
if (deleteExisting) {
del et eExi stingData();

}
doLoad(j sonPat h) ;

}

private void createTabl e(final String tableNane) {

final String statenent =
"CREATE TABLE IF NOT EXISTS " + tabl eName +
n (II +
ID FIELD NAME + " INTEGER " +
JSON _FIELD NAME + " JSON, " +
"PRI MARY KEY (" + ID_FIELD NAME + "))";

try {
final StatementResult result = store.executeSync(statenent);

if (result.isSuccessful()) {
Systemout.printin("table created [" + tableName + "]");
} else if (result.isCancelled()) {
Systemout.printIn("table creation CANCELLED [" +
tabl eName + "]");
} else {
if (result.isDone()) {
Systemout.printin("table creation FAILED:\n\t" +
statenent);
Systemout.printIn("ERROR \n\t" +
resul t.get Error Message());
} else {
Systemout.printin("table creation IN
PROGRESS: \n\t" +
statenent);
Systemout . println("STATUS: \n\t" +
result.getinfo());

}

} catch (I1legal Argunent Exception e) {
Systemout.printin("Invalid statement:");
e.printStackTrace();

} catch (Faul t Exception e) {

19-8

Chapter 19
The LoadJsonExample Program Source

Systemout.printin("Failure on statenent execution:");
e.printStackTrace();

}

private void doLoad(final Path filePath)
throws Fil eNot FoundException, | OException {

try {
| oadJsonDocs(fil ePath);

} finally {
if (store !=null) {
store.close();

}
}

private void | oadJsonDocs(final Path filePath)
throws Fil eNot FoundException, | OException {

try {
final byte[] jsonBytes = Files.readAl |Bytes(filePath);

final int nDocsToAdd = getlntFiel dval ue(
"“meta", "total count",
ESJsonUti |l . creat eParser(j sonBytes));

if (debugAl'l || debugTopLevel JsonArrayQhject) {
Systemout. printIn("BEG N Top Level Array Qbject:
‘objects'");
final String objectsJsonStr =
get TopLevel JsonArray(bj ect (
"obj ects", ESJsonUtil.createParser(jsonBytes));
System out . println(objectsJsonStr);
Systemout. printIn("END Top Level Array Object:
‘objects'");
Systemout. printIn("\nBEGA N Top Level Array bject:
‘nmeta'");
final String netalsonStr =
get TopLevel JsonAr ray(bj ect (
"meta", ESJsonUtil.createParser(jsonBytes));
Systemout . println(nmetalsonStr);
Systemout. printIn("END Top Level Array Object:
‘neta'");
} /* endif (debugAll || debugTopLevel JsonArrayChject) */
final String[] jsonArray =
get JsonArrayEl ement s(
"obj ects", ESJsonUtil.createParser(jsonBytes),
nDocsToAdd) ;

ORACLE 19-9

ORACLE

Chapter 19
The LoadJsonExample Program Source

for (int i =0; i < nDocsToAdd; i++) {

if (debugAl'l || debugAddDoc) {
Systemout. println("Adding JSON Row[" + i +

"] to table:\n" + jsonArray[i]);

}
addDoc(i, jsonArray[i]);

}
} catch (FileNot FoundException e) {
Systemout.printin("File not found [" +
filePath.getFileName() + "]: " + e);
throw e;
} catch (ICException e) {
Systemout. println("l OException [file=" +
filePath.getFileName() + "]: " + e);
throw e;

}
private void addDoc(final Integer id, final String jsonDoc) {
final Row row = table.createRow();

row. put (I D_FI ELD_NAME, id);
row. put Json(JSON_FI ELD NANME, jsonDoc);

tabl eAPI . put | f Absent (row, null, null);
}

private void del et eExistingData() {

/* CGet an iterator over all the primary keys in the table. */
final Tablelterator<PrinmaryKey> itr =
tabl eAPI . t abl eKeyslterator(table.createPrimaryKey(), null,

null);
/* Delete each row fromthe table. */
long cnt = 0;
while (itr.hasNext()) {
tabl eAPl . delete(itr.next(), null, null);
cnt +4;
}
itr.close();
Systemout.println(cnt + " records deleted");
}
/*
* Conveni ence method for displaying output when debuggi ng.
*/

private void di spl ayRow Table thl) {
final Tablelterator<Row> itr =

tabl eAPl.tablelterator(tbl.createPrimryKey(), null, null);
while (itr.hasNext()) {
Systemout.printin(itr.next());

19-10

Chapter 19
The LoadJsonExample Program Source

}
itr.close();
}
/*
* Supporting methods for parsing the various attributes in the
given file.
*/

private String[] getJsonArrayEl ements(final String arrayName,
final JsonParser parser,
final int nEl ements)
throws | CException {

final List<String> arrayList = new ArrayList<String>();
JsonToken token = parser. next Token();
while (token !'=null) {

final String curFiel dName = parser. get Current Nane();

i f (larrayNane. equal s(curFiel dName)) {
token = parser.next Token();

conti nue;
}
br eak;
}
if (debugAl'l || debugDocByDoc) {
System out . println(
"getJsonArrayEl enents | oop: curToken =" + token +
", curFieldName = " + parser.getCurrentNane());
}
token = parser.next Token();
if (debugAl'l || debugDocByDoc) {
System out . println(
"getJsonArrayEl enents | oop: next Token = " + token +
", nextFieldNane = " + parser.getCurrentName());

}
if (token == null) {
Systemout. println("getJsonArrayEl ements |oop: " +

"*xx WARNING - null first token from
parser");

return arraylist.toArray(new String[nEl enents]);

}

if (token != JsonToken. START_ARRAY) {
Systemout. println("getJsonArrayEl ements |oop: *** WARNI NG

"first token fromparser =" + "START_ARRAY [" + token

ORACLE 19-11

Chapter 19
The LoadJsonExample Program Source

return arraylist.toArray(new String[nEl enents]);

}
for (int i =0; i <nElenents; i++) {
final StringBuilder strBldr = new StringBuilder();
if (i >0 {
strBl dr.append("{\n");
}
final String arrayEl ement =

jsonToString(arrayName, null, parser, strBldr, false);
arrayli st. add(arrayEl enent);

if (debugAll || debugDocByDoc) {
System out . println(
"get JsonArrayEl ements | oop: arrayEl enent[" + i + "]

=\n" +
arrayEl ement) ;
}
}* end [oop */
return arraylist.toArray(new String[nEl enents]);
}

private String get TopLevel JsonArrayQbj ect (
final String fiel dNane,
final JsonParser parser) throws |COException {

final StringBuilder strBldr = new StringBuilder();
JsonToken token = parser. next Token();
while (token !'= null) {

final String curFiel dName = parser. get Current Nane();

if (!fieldName. equal s(curFiel dName)) {
token = parser.next Token();

conti nue;
}
br eak;
}
final String jsonStr =
jsonToString(fieldName, null, parser, strBldr, false);

return strBldr.toString();
}

private String jsonToString(final String stopField,
final JsonToken prevToken,
final JsonParser parser,
final StringBuilder strBldr,
final bool ean fronthjectArray)
throws | CException {

JsonToken token = parser. next Token();

if (token == null) {

ORACLE 19-12

Chapter 19
The LoadJsonExample Program Source

if (debugAl'l || debugJsonToStringTop) {
Systemout. printIn("TOP of jsonToString: prevToken =" +
prevToken + ", curToken =" + token +
", RETURNI NG because input token ==
null");
}
return strBldr.toString();
}

final String curFiel dName = parser. get Current Name();
if (debugAl'l || debugJsonToStringTop) {

Systemout. println("\nTOP of jsonToString");
Systemout. println("prevToken = " + prevToken +

", curToken =" + token +
", curFieldName = " + curFi el dNane +
", stopField =" + stopField + ",

isScalar = " +

t oken. i sScal arVal ue() + ",
fromojectArray =" +

fronObj ect Array);

}

if (prevToken !'= null) {

if (prevToken == JsonToken. END_ARRAY | |
prevToken == JsonToken. END_OBJECT) {

if (debugAl'l || debugJsonToStringTop) {
System out . println(
"**x TOP of jsonToString: prevToken != null [" +

prevToken + "] && " + "[END_ARRAY | |
END_OBJECT]");

}

if (stopField !'=null &&
st opFi el d. equal s(cur Fi el dNane)) {

if (token == JsonToken. END ARRAY) ({
if (debugAl'l || debugJsonToStringTop) {

System out . println(
"*** STOP- BY- FI ELD_NAME [END ARRAY]: " +

"prevToken = " + prevToken + "
cur Token = " +

token + ", curFieldName =" +
cur Fi el dName +

", stopField =" + stopField +

" ... RETURN string, do not recurse, " +
"do not termnate outer array with

" RETURN STR =\n" + strBldr.toString());

ORACLE 19-13

ORACLE

+

cur Token = " +

cur Fi el dNane +

I

cur Token = " +

cur Fi el dNane +

Chapter 19
The LoadJsonExample Program Source

return strBldr.toString();
}

if (token == JsonToken. END _OBJECT) {

if (debugAl'l || debugJsonToStringTop) {
System out . println(
"*** STOP- BY- FI ELD_NAME [END OBJECT]: "

"prevToken = " + prevToken + "
token + ", curFieldNane =" +
", stopField =" + stopField +

RETURN string, do not recurse, " +
"but DO term nate outer array with

" RETURN STR =\n" + strBldr.toString());
}
strBl dr.append("\n}");
return strBldr.toString();

}
} /* endif (STOP-BY-FIELD) */

if (prevToken == JsonToken. END_OBJECT &&
token == JsonToken. START _OBJECT &&
curFi el dName == null) {

if (fronmObjectArray) {
if (debugAl'l || debugJsonToStringTop) {
System out . println(
"*xx END OBJECT && START_OBJECT && " +
“cur Fi el dName=nul | && is OBJECT ARRAY:

"prevToken = " + prevToken + ",
token + ", curFieldNane =" +
", stopField =" + stopField +

", frombjectArray =" +

fromoj ectArray +

" ... add ', {' and RECURSE");
}
strBl dr.append(",\n{\n");
return jsonToString(
stopFi el d, token, parser, strBldr,

fronoj ect Array);

}

if (debugAll || debugJsonToStringTop) {
System out . println(
“*x% END OBJECT && START_OBJECT && " +
"cur Fi el dNanme=nul | && not OBJECT ARRAY: " +
"prevToken ="

n

+ prevToken + ", curToken =

19-14

ORACLE

recurse");

OBJECT_ARRAY:
cur Token

cur Fi el dNane

=\n

OBJECT_ARRAY:

cur Token

+

+

cur Fi el dNane +

=\n

Chapter 19
The LoadJsonExample Program Source

token + ", curFieldName = " + curFiel dNane +
", stopField =" + stopField +

", frombjectArray = " + frombjectArray +

" sinply return string, do not

}
return strBldr.toString();

} else if (prevToken == JsonToken. END OBJECT &&

+

token == JsonToken. END ARRAY &&
curFieldName !'= null) {

if (fronmObjectArray) {
strBl dr.append("\nj\n");
if (debugAl'l || debugJsonToStringTop) {
System out . println(

"**x END OBJECT && END ARRAY && " +
"curFieldName !'= null && is

"prevToken = " + prevToken + ",
token + ", curFieldNane = " +
", stopField =" + stopField +

" termnate OBJECT_ARRAY with "]" ... "
"do NOT RECURSE ... RETURN subString

strBldr.toString());
}

} else { /* NOT frombjectArray */

if (debugAl'l || debugJsonToStringTop) {
System out . println(
"*xx END OBJECT &&% END ARRAY && " +
"curFieldName !'= null && NOT

"prevToken = " + prevToken + "

token + ", curFieldNane = " +

, StopField =" + stopField +
" do NOT termnate OBJECT ARRAY ... " +
"do NOT RECURSE ... RETURN subString

strBldr.toString());
}

} /* endif (fronmObjectArray) */

return strBldr.toString();

19-15

ORACLE

Chapter 19
The LoadJsonExample Program Source

} else if (prevToken == JsonToken. END OBJECT &&
token == JsonToken. END OBJECT &&
(curFieldName != null || fronmlbjectArray)) {

strBl dr.append("}\n");

if (debugAl'l || debugJsonToStringTop) {
System out . println(
“*x% END OBJECT && END ARRAY && " +
"curFieldName !'= null OR is OBJECT ARRAY: "

+
"prevToken = " + prevToken + ", curToken =
"+
token + ", curFieldName = " + curFiel dNane +
", stopField =" + stopField +
", fromojectArray =" + fronbjectArray +
" terminate object in OBJECT_ARRAY with '}’
and " +

"RECURSE ...");
}
return jsonToString(
stopField, token, parser, strBldr,
frombj ect Array);

} else if (prevToken == JsonToken. END ARRAY &&
token == JsonToken. END OBJECT &&
curFieldName !'= null) {

strBl dr.append("}\n");

if (debugAll || debugJsonToStringTop) {
System out . println(
“**%* END ARRAY then END OBJECT && " +
“curFieldNane = null: " +

"prevToken = " + prevToken + ", curToken =
"+
token + ", curFieldName = " + curFiel dNane +
", stopField =" + stopField +
", fromojectArray =" + fronbjectArray +
" ternminate object with '}' and
RECURSE ...");

}

return jsonToString(
stopFi el d, token, parser, strBldr,
fronoj ect Array);

} else { /* DEFAULT: all other cases */
strBl dr.append(",\n");

if (debugAll || debugJsonToStringTop) {
System out . println(
“*x% F|SE BLOCK *** prevToken =" +
prevToken +

n n

, curToken =" + token + ", curFiel dNane =

19-16

Chapter 19
The LoadJsonExample Program Source

n

curFieldName + ", stopField =" + stopField

", fromojectArray =" + fronbjectArray +
" add COWA and RECURSE ...\n" +
strBldr.toString());

}

return jsonToString(
stopField, token, parser, strBldr,
fronmoj ect Array);

} /* endif (prevToken, inputToken, curFiel dName */
} /* endif (prevToken == END ARRAY || END_OBJECT) */
if (prevToken.isScal arValue()) {

if (token != JsonToken. END ARRAY &&
token !'= JsonToken. END_OBJECT) {

strBl dr.append(",\n");
return jsonToString(
stopField, token, parser, strBldr,
fromoj ect Array);

}

if (stopField !'=null &&
st opFi el d. equal s(cur Fi el dNane)) {

if (token == JsonToken. END ARRAY) ({
strBl dr.append("\n]");
if (debugAl'l || debugJsonToStringTop) {

Systemout. println(
"*** prev SCALAR && STOP-BY- FI ELD_NAME

"+

"[END_ARRAY]: prevToken =" + prevToken
+

", curToken =" + token + "
curFi el dName = " +

curFieldName + ", stopField =" +
stopField +

" terminate with ']' and RETURN
string");

}
return strBldr.toString();

}

if (token == JsonToken. END _OBJECT) {
strBl dr.append("\n}");

if (debugAl'l || debugJsonToStringTop) {
System out . printl n(

ORACLE 19-17

ORACLE

Chapter 19
The LoadJsonExample Program Source

"*** prev SCALAR && STOP- BY- FI ELD_NAME

"+

"[END_ARRAY]: prevToken =" + prevToken
+

", curToken = " + token + ",
curFiel dName = " +

curFieldName + ", stopField =" +
stopField +

" ... termnate with '} and RETURN
string");

}
return strBldr.toString();

}
} /* endif (prevToken isScalar && STOP-BY-Fl ELD) */
} /* endif (prevToken isScalar) */
} /* endif (prevToken != null) */
/* Done with prevToken, process current input token next */
if (token.isScalarValue()) { /* current token is SCALAR */

strBl dr.append("\"" + curFiel dName + "\": " +
obj ect Val ue(parser));
return jsonToString(

stopFi el d, token, parser, strBldr,
fromoj ect Array);

}

if (JsonToken. START_OBJECT == token) { /* input token is OBJECT
*/

if (curFieldName !'= null) {
strBl dr.append("\"" + curFieldName + "\": {\n");
} else {
strBl dr.append("{\n");
}
return jsonToString(

stopFi el d, token, parser, strBldr,
frombj ect Array);

} else if (JsonToken. START_ARRAY == token) { /* input Token is
ARRAY */

if (debugAll || debugJsonToStringArray) {
System out . println(
"--- START_ARRAY --- prevToken = " + prevToken +

", curToken =" + token + ", curFieldNane =" +
curFieldNane + ", stopField =" + stopField +
", isScalar =" + token.isScal arValue() +

", frombjectArray = " + frombjectArray +
" ... get NEXT TOKEN');

19-18

ORACLE

Chapter 19
The LoadJsonExample Program Source

t oken = parser. next Token();

if (debugAll || debugJsonToStringArray) {
System out . println(
"--- START _ARRAY --- nextToken = " + token +
", curFieldName = " + curFieldName + ", stopField =

stopField + ", isScalar = " + token.isScal arVal ue()

", fromlbjectArray = " + fronmbjectArray);
}

if (token == null) {
System out . println(
"*xx \WARNI NG null next token after START _ARRAY. " +
“I'nvalid json document?");
return strBldr.toString();

}
[* START_ARRAY then START_OBJECT: Handl e ARRAY OF OBJECTS */
if (JsonToken. START_OBJECT == token) {

if (debugAl'l || debugJsonToStringArray) {
Systemout. println("--- START_ARRAY then

START_OBJECT: " +

handl i ng an
t hat

with']")

net :

"Handl e ARRAY_OF_OBJECTS ---");
}

final StringBuilder tnpBldr = new StringBuilder();
final String curArrayNane = curFi el dNare;

if (curArrayNane != null) {
if (!'curArrayName. equal s(stopField)) {
tnpBl dr. append("\"" + curFieldNane + "\": [\n");
}

}
tnpBl dr. append("{\n");
while (token !'= null && JsonToken. END ARRAY != token) {

/*
* \Wen at the top of this |oop, we know we're

* array of objects. W know that we're done with
* array of objects (has already been term nated

* and so should term nate the object containing the
* array (with '}") if the followi ng conditions are

*

1. The previous token is a FlELD NAME.

19-19

ORACLE

Chapter 19
The LoadJsonExample Program Source

* 2. The current field name corresponding to the

current

* token is the sane as the nane of the current
array.

* 3. The current token is END OBJECT (meaning
we're at

* the end of the object containing the array).

*/

if (JsonToken. FI ELD NAME == prevToken &&
JsonToken. END_OBJECT == token &&
curFiel dName != null &&
cur Fi el dName. equal s(cur ArrayName)) {

tnpBl dr. append("}\n");

if (debugAl'l || debugJsonToStringArray) {
System out . println(
"--- TOP ARRAY_OF OBJECTS LOOP: " +
"array el ement END OBJECT - " +

“termnate with '}' - prevToken =" +
prevToken + ", curToken =" + token +
", curFieldName = " + curFiel dName +
", stopField =" + stopField +

", fromDbjectArray =" +
fromoj ectArray +

| oop to continue or end of DCC');

}

String nextFi el dName = curFi el dNane;
whil e(token '= null) {

t oken = parser. next Token();
next Fi el dNane = parser. get Current Nane();

if (debugAll || debugJsonToStringArray) {
System out . println(
"--- TOP ARRAY_OF OBJECTS LOOP: " +

"array termination inner loop - " +
"next Token = " + token +
", nextFieldNane = " +

next Fi el dNane) ;
}

if (token.isScalarValue()) {

tnpBl dr. append(",\n");
tnpBl dr. append("\"" + nextFi el dName +
"\t o+
obj ect Val ue(parser));
br eak;

}

if (JsonToken. START_OBJECT == token) {

tnpBl dr. append(",\n");

19-20

Chapter 19
The LoadJsonExample Program Source

if (nextFieldName !'= null) {
tnpBl dr. append("\"" + nextFi el dName

+
"“\": { kkkk\n");
} else {
tnpBl dr. append("{ kkkk\n");
}
br eak;
}
if (JsonToken. START_ARRAY == token) ({
tnpBl dr. append(",\n");
if (nextFieldName !'= null) {
tnpBl dr. append("\"" + nextFi el dName
+
"“\": [kkkk\n");
} else {
tnpBl dr. append("[kkkk\n");
}
br eak;

}

if ((nextFieldNane != null &&
next Fi el dNane. equal s(stopField)) ||

(next Fi el dNanme == null &&
JsonToken. END_OBJECT == token)) ({

final String final RetStr =

strBl dr.append(tmpBldr.toString()).toString();

if (debugAl'l || debugJsonToStringArray)

System out . println(
"--- TOP ARRAY_OF_OBJECTS LOCP:

"DONE - RETURN FI NAL STRI NG
final Ret Str);
}

return final RetStr;

} /* end loop */
/* More tokens to process. Recurse. */
if (debugAl'l || debugJsonToStringArray) {
System out . printl n(
"--- TOP ARRAY_OF OBJECTS LOOP: " +

"curToken = " + token + ", curFiel dNane

next Fi el dName + ", stopField =" +

ORACLE 19-21

ORACLE

Chapter 19
The LoadJsonExample Program Source

stopField +
", fromDbjectArray =" +
fromoj ectArray +

- nore tokens to process ...

RECURSE") ;
}
jsonToString(stopField, token, parser, tnpBldr,
fal se);
} else { /* Not end of outer object containing
obj Array */
if (debugAl'l || debugJsonToStringArray) {
System out . println(
"--- TOP ARRAY_OF OBJECTS LOOP: " +
"prevToken = " + prevToken + "
cur Token = " +
token + ", curFieldNane =" +
curFieldName + ", stopField =" +
stopField +

", fromDbjectArray =" +
fromoj ectArray +
"- NOT END OF ARRAY ... RECURSE");
}
j sonToString(stopField, token, parser, tnpBldr,
true);

} /* endif (FIELD NAME then END _OBJECT && array
nane) */

if (debugAll || debugJsonToStringArray) {
System out . println(

"--- TOP ARRAY_OF OBJECTS LOOP: " +
"EXIT jsonToString() - prevToken =" +
prevToken + ", curToken =" + token +
", curFieldName = " + curFieldNane +

, StopField =" + stopField +

", fromojectArray =" + fronbjectArray +

" | oop to continue or end of DOC');

if (JsonToken. FI ELD NAME == prevToken &&
JsonToken. FI ELD NAME == token &&
curFieldName !'= null) {

if (debugAl'l || debugJsonToStringArray) {
System out . println(
"--- IN ARRAY_OF_OBJECTS LOOP: " +
"FI ELD_ NAME then FIELD NAME - " +
“curToken = " + token +
", curFieldName = " + curFiel dName +
" ... get NEXT TOKEN');

19-22

ORACLE

Chapter 19
The LoadJsonExample Program Source

token = parser.next Token();

if (debugAl'l || debugJsonToStringArray) {
System out . printl n(
"--- IN ARRAY_OF_OBJECTS LOOP: " +
"FI ELD_NAME then FIELD NAME - " +
"next Token = " + token + ",
next Fi el dName = " +
parser. get Current Nane());

}

if (JsonToken. END OBJECT == token) {

if (debugAll || debugJsonToStringArray) {
System out . println(

"--- |IN ARRAY_OF_OBJECTS LOOP: " +
"FI ELD_NAME then FIELD _NAME - " +
"next Token = END OBJECT ... BREAK " +
"out of loop ... subString =\n" +
tnpBldr.toString());

}

br eak;
} else { /* nextToken NOT END OBJECT */

final String final RetStr = strBldr.append(
tnpBldr.toString()).toString();

if (debugAll || debugJsonToStringArray) {
System out . println(
"--- IN ARRAY_OF_OBJECTS LOOP: " +
"FI ELD_NAME then FIELD NAME - " +
"next Token = " + token +
"(NOT END OBJECT) ... DONE - " +
"RETURN FINAL STRING = \n" +
final Ret Str);
}

return final RetStr;
} /* endif (nextToken END OBJECT or NOT) */

} else if (JsonToken. Fl ELD NAME == prevToken &&
JsonToken. START _OBJECT == token &&
curFieldName !'= null) {

if (debugAl'l || debugJsonToStringArray) {
System out . printl n(
"--- IN ARRAY_OF_OBJECTS LOOP: " +
"FI ELD_NAME then START_OBJECT - " +
"curToken = " + token + ", curFiel dNane

parser. get Current Nane());

19-23

ORACLE

Chapter 19
The LoadJsonExample Program Source

token = parser.next Token();
final String nextFiel dName =
parser. get Current Nane() ;

if (JsonToken. FI ELD NAME == token &&
next Fi el dNane != null) {
tnpBl dr. append(",\n");

} else if (JsonToken. END OBJECT == token &&
next Fi el dNane != null) {
tnpBl dr. append("}\n");
}

if (debugAl'l || debugJsonToStringArray) {
System out . println(
"--- IN ARRAY_OF_OBJECTS LOOP: " +
"FI ELD_NAME then START_OBJECT - " +
"next Token ="

+ token + ",
next Fi el dName = " +
next Fi el dNane + " ... current subString
=\n" +
tmpBldr.toString());
}

} else {
token = parser.next Token();

if (debugAl'l || debugJsonToStringArray) {
System out . println(

"--- IN ARRAY_OF_OBJECTS LOOP: " +
"*xx E|SE *** next Token = " + token +
", nextFiel dName =" +
parser.get Current Nane() +
" current subString =\n" +
tmpBldr.toString());

}

}* endif FIELD NAVE && FIELD NAME && fiel dNane ! =
nul | */

if (debugAll || debugJsonToStringArray) {
System out . println(
"--- IN ARRAY_OF_OBJECTS LOOP: " +
"END OF LOOP - CONTINUE TO TOP OF LOOP");

}

} /* end ARRAY_OF OBJECTS |l oop */

if (debugAl'l || debugJsonToStringArray) {
System out . printl n(
"--- OUT ARRAY_OF OBJECTS LOOP: " +
“current subString = \n" + tnmpBldr.toString());

19-24

Chapter 19
The LoadJsonExample Program Source

final String tmpStr
final String retStr

tnpBl dr.toString();
strBl dr.append(tnmpStr).toString();

if (debugAl'l || debugJsonToStringArray) {
System out . printl n(
"--- OUT ARRAY_OF OBJECTS LOOP: " +
"ENTER j sonToString() - BEG N FINAL RETURN

string ...");
}
final String final RetStr =
jsonToString(stopField, token, parser, strBldr,
fal se);
if (debugAl'l || debugJsonToStringArray) {
System out . println(
"--- OUT ARRAY_OF OBJECTS LOOP: EXIT " +
"jsonToString() - RETURN FI NAL RETURN string =
\n" +

final RetStr);
}

return final RetStr;

} I* endif START_OBJECT after START_ARRAY & ARRAY OF

OBJECTS */
[* -- START_ARRAY then NOT START_CBJECT: ARRAY OF SCALARS
- %
if (debugAll || debugJsonToStringArray) {
Systemout. println("--- START_ARRAY then SCALAR " +
"Enter ARRAY_OF SCALARS loop ---");
}
strBldr.append("\"" + curFieldName + "\": [\n");
while (token !'= null && JsonToken. END ARRAY != token) {
strBl dr. append(obj ect Val ue(parser));
token = parser.next Token();
if (JsonToken. END ARRAY == token) {
strBl dr.append("\n]");
} else {
strBl dr.append(",\n");
}
}* end | oop: ARRAY_OF SCALARS */
return jsonToString(stopField, token, parser, strBldr,
fal se);

} else if(JsonToken. END OBJECT == token) {

strBl dr.append("\n}");
return jsonToString(
stopFi el d, token, parser, strBldr,
fronoj ect Array);

ORACLE 19-25

ORACLE

Chapter 19
The LoadJsonExample Program Source

} else { /* DEFAULT: all other values of current input token */

return jsonToString(
stopFi el d, token, parser, strBldr,
fromoj ect Array);

} I* endif (START_OBJECT el se START_ARRAY el se END OBJECT) */
}

private Object objectValue(JsonParser parser) throws | COException {

final JsonToken current Token = parser. get Current Token();

if (current Token == JsonToken. VALUE_STRING ({
return "\"" + parser.getText() + "\"";

} else if (currentToken == JsonToken. VALUE_NUVBER I NT ||

current Token == JsonToken. VALUE_NUMBER FLQAT) ({

return parser.get Number Val ue();

} else if (currentToken == JsonToken. VALUE_TRUE) {
return Bool ean. TRUE;

} else if (currentToken == JsonToken. VALUE_FALSE) {
return Bool ean. FALSE;

} else if (currentToken == JsonToken. VALUE_NULL) ({
return null;

} else {
return "\"" + parser.getText() + "\"";

}

private int getlntFieldValue(final String objectNaneg,
final String fiel dNane,
final JsonParser parser) throws
| OException {
int nCbjects = 0;
JsonToken token = parser. next Token();
while (token !'=null) {
String curFiel dNane = parser. get Current Nane();
i f (objectNanme. equal s(curFiel dNarme)) {
t oken = parser. next Token();
while (token !'=null) {
cur Fi el dName = parser. get Current Nanme() ;
if (fieldNane.equal s(curFieldNane)) {
t oken = parser. next Token();
if (token !'= JsonToken. VALUE NUMBER I NT) {
Systemout. println("getlntFieldval ue:
WARNING - " +

"for object + objectNane + ", val ue
of " +
"field " + fieldName + " is NOT an
integer [" +
parser.getText() + "]");
return nQbjects;
}
nObj ects = parser. get Nunber Val ue() . i nt Val ue();

return nQbjects;

19-26

Chapter 19
Secure Elasticsearch using Sheild

t oken = parser. next Token();

}
}

t oken = parser. next Token();

}
Systemout . println("getlntFieldValue: WARNING - could not find

"field in given object [object=" +
obj ect Nane +
", field=" + fieldName + "]");
return nQbjects;

Secure Elasticsearch using Sheild

ORACLE

The following are the steps to take to configure an Elasticsearch cluster to run
securely. The descriptions provided in each sub-section below are based on the
following list of assumptions and requirements:

Assumptions about the Secure Elasticsearch Cluster

* The 2.4.6 version of the Elasticsearch distribution is installed under the
directory / opt / es/ el asti csear ch.

* The 2.4.6 version of the Shield adapter (and license) is installed in the
Elasticsearch configuration (see below).

* There are three nodes hosting the Elasticsearch cluster, named eshost 1,
eshost 2, and eshost 3 respectively, each having network connectivity with the
other nodes of the Elasticsearch cluster, as well as the nodes of the Oracle
NoSQL store.

e The value used when specifying the node. namne property for each node of the
Elasticsearch cluster is the host nane of the corresponding Elasticsearch node.

* The cluster that is deployed is named escl ust er (cl ust er. nane).

* The port used for node-to-node communication within the cluster itself is 29000
(transport.tcp. port).

* The port used by clients of the cluster when communicating over HTTPS with
any node in the cluster (for example, to send Full Text Search queries), is 29100
(http. port).

* For simplicity, all passwords are set to No_Sql _00.

* The nodes of the Elasticsearch cluster each generate a public/private keypair with
an alias that is unique relative to the aliases of the keypairs generated by the
other nodes in the cluster. This is a requirement because the public certificate
from each Elasticsearch node will be installed in the truststore of the other nodes
of the cluster, as well as the truststore of each node in the Oracle NoSQL store.
This is necessary not only for secure communication between the Oracle NoSQL
store and the Elasticsearch cluster, but also for secure communication between
the nodes of the cluster itself. To achieve the required alias uniqueness, each alias
will include the hostname of the Elasticsearch node that generates the keypair.

19-27

Chapter 19
Secure Elasticsearch using Sheild

» Although the alias of the keypair generated by each node must be unique, all of
those keypairs share the same Distinguished Name (DN); with Common Name
(CN) equal to esuser .

Note:

The Shield security plugin used by Elasticsearch employs Public Key
Infrastructure (PKI) for user authentication. As a result, when a node in

the NoSQL store attempts to communicate with an Elasticserch node, the
Elasticsearch node presents a certificate to the store node, which the store
node must trust in order for the communication to succeed. There are two
options for establishing PKI certificate trust:

e Self-signed public certificates

« Public certificates signed by a Certificate Authority (CA)

The secure Elasticsearch cluster presented here uses self-signed
certificates. As described above, using this option, each node in the
Elasticsearch cluster must provide its own certificate with unique alias;

and each such certificate must be installed in the truststore of any service
(example: the Oracle NoSQL store) or client that wishes to communicate with
the Elasticsearch cluster.

Although obtaining and installing a single CA-signed certificate is less
cumbersome than installing a self-signed certificate from each of the
Elasticsearch nodes, the use of self-signed certificates can be more
instructive with respect to PKI concepts. Once you understand how to work
with self-signed certificates, changing your deployment to employ the CA-
signed option should be straightforward.

Install Elasticsearch and the Shield Plugin

You can find the 2.4.6 version of Elasticsearch, Shield, and the Shield license at the
following URLSs:

» https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/tar/
elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz

* https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/shield/
2.4.6/shield-2.4.6.zip

* https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/license/
2.4.6/license-2.4.6.zip

On each Elasticsearch node (eshost 1, eshost 2, and eshost 3), create the
directory / opt / es, download el asti csearch-2. 4. 6.t ar. gz to that directory, and
install the Elasticsearch software. For example, on each host do the following:

mkdir —p /opt/es/install-xfer/certs

ORACLE 19-28

https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/tar/elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz
https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/tar/elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz
https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/shield/2.4.6/shield-2.4.6.zip
https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/shield/2.4.6/shield-2.4.6.zip
https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/license/2.4.6/license-2.4.6.zip
https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/license/2.4.6/license-2.4.6.zip

ORACLE

Chapter 19
Secure Elasticsearch using Sheild

Use curl , wget or your browser to download el asti csearch-2.4.6.tar. gz
to/ opt/ es, then

cd /opt/es
tar xzvf elasticsearch-2.4.6.tar.gz
In —s elasticsearch-2.4.6 el asticsearch

Download the Shield distribution and its corresponding license to a temporary directory
on each node (example: / t np). Do not place those zip files under the / opt / es/

el asti csear ch home directory; otherwise installation errors can occur. Once you
have downloaded the Shield distributions and its corresponding license, install Shield
by doing the following:

export JAVA HOME=/opt/javal/java8 [if necessary]

cd /opt/es
bin/plugin install —v file:///tnp/elasticsearch-shield-license-2.4.6.zip
bin/plugin install —v file:///tnp/elasticsearch-shield-2.4.6.zip

Note:

Java 8 or greater is required to install the Shield plugin, as well as to deploy
the Elasticsearch cluster itself. Thus, if the default version of Java on your
Elasticsearch nodes is less than Java 8, then you should install Java 8 or
greater on each node, and set the JAVA HOVE environment variable to point
to that installation before installing the Shield plugin or deploying the cluster.

Also, when you initially install Shield, a 30 day trial license is installed that
allows access to all Shield features. Although the 30 day trial license should
suffice to run this example, you can purchase a subscription at the end

of the trial period if you want to keep using the full functionality of Shield;
otherwise, you can use Shield in a degraded mode after expiration, where
the monitoring feature is disabled.

Create and Install a Public/Private Keypair in the Elasticsearch Keystore

On each Elasticsearch node, generate a public/private keypair that clients of
Elasticsearch can use to execute secure queries on the data indexed in the cluster.
For example, on eshost 1 execute:

keyt ool —genkeypair
—alias elasticsearch-eshostl
—keystore /opt/es/elasticsearch/config/shield/ elasticsearch. keys
-keyal g RSA
—keysi ze 2048
—validity 1712
—st orepass No_Sqgl _00
—keypass No_Sql _00
-dname CN=esuser, OU=es. org, L=es.city, S=es. state, C=US
-ext san=dns: | ocal host, dns: eshost 1, dns: eshost 2, dns: eshost 3
dns: kvhost 1, dns: kvhost 2, dns: kvhost 3

19-29

ORACLE

Chapter 19
Secure Elasticsearch using Sheild

This command will generate a keypair with alias el asti csear ch- eshost 1. It will
place the keypair in that node's keystore (el asti csear ch. keys) if the keystore
already exists; otherwise it will create the keystore before generating the keypair.

Export the Public Certificate and Install it in the Truststore

On each Elasticsearch node, export the public certificate from the keypair generated
above. Store the resulting certificate file in a directory outside of the Shield

config directory; for example, / opt / es/ i nstal | - xf er/ certs. This will facilitate
distribution of the certificate to the other nodes in the cluster as well as clients of
Elasticsearch (example: the Oracle NoSql store). For example, on eshost 1 execute:

keyt ool -export
—alias elasticsearch-eshostl
—keystore /opt/es/elasticsearch/config/shield/ elasticsearch. keys
-storepass No_Sgl 00
-file /opt/es/install-xfer/certs/elasticsearch-eshostl.crt

This command will retrieve the public certificate with the given alias from the keystore
and place it in the certificate file (el asti csear ch- eshost 1. crt) located in the
separate transfer directory (i nstal | - xfer/certs).

Once the certificate file is available, import (install) the public certificate into the node's
truststore. For example, on eshost 1 execute:

keyt ool —inportcert
—alias elasticsearch-eshostl
-file /opt/es/install-xfer/certs/elasticsearch-eshostl.crt
—keystore /opt/es/elasticsearch/config/shield/ elasticsearch.trust
-storepass No_Sqgl _00
-keypass No_Sqgl _00
—nopr onpt

If the node's truststore already exists, this command will install the public certificate
from the specified file into that truststore (el asti csear ch. t r ust); otherwise the
truststore is created prior to importing the certificate.

Convert the Public/Private Keys to OpenSSL Format (pem/key)

On each Elasticsearch node, retrieve the previously generated public/private keypair
from the node's keystore as a PKCS12 file. For example, on eshost 1:

keyt ool —inportkeystore
-srckeystore /opt/es/install-xfer/certs/elasticsearch. keys
—srcalias el asticsearch-eshostl
-srcstorepass No_Sgl _00
—dstkeystore /opt/es/install-xfer/certs/elasticsearch-eshostl.pl2
- dest st oret ype PKCS12
- dest storepass No_Sgl _00
- dest keypass No_Sgl 00

19-30

ORACLE

Chapter 19
Secure Elasticsearch using Sheild

Next, retrieve the public certificate — in PEM format — from the PKCS12 file that was
just retrieved. For example:

openssl pkcs12
-in /opt/es/install-xfer/certs/elasticsearch-eshostl.pl2
-passin pass: No_Sgl _00
—out /opt/es/install-xfer/certs/elasticsearch-eshostl. pem
- nokeys

Finally, retrieve the private key file from that PKCS12 file. For example:

openssl| pkcs12
-in /opt/es/install-xfer/certs/elasticsearch-eshostl.pl2
-passin pass: No_Sgl _00
—out /opt/es/install-xfer/certs/elasticsearch-eshostl.pkey
-nocerts

The commands above produce two files, el ast i csear ch- eshost 1. pemand

el asti csear ch- eshost 1. pkey that can be installed on clients of Elasticsearch
and used to execute secure queries against data indexed by the cluster. In the initial
stages of cluster configuration, these files can be used to verify that Elasticsearch
security has been configured correctly.

Modify the Elasticsearch and Shield Configuration Files

To complete the configuration of Elasticsearch to run securely using the Shield plugin,
the following YAML configuration files must be modified on each Elasticsearch node:

e /opt/es/elasticsearch/config/elasticsearch.ym

e /opt/es/elasticsearch/config/shield/role_mpping.ym

On each Elasticsearch node, edit the files listed above and make the following
modifications.

1. Add the following lines to el asti csearch. ym

shi el d:
enabl ed: true
aut he:
real ms:
pki 1:
type: pki
enabl ed: true
order: 0
transport:
ssl: true
ssl.client.auth: required
http:
ssl: true

ssl.client.auth: required
ssl:
keystore:"current": true,
path: /opt/es/elasticsearch/config/shield
el asti csearch. keys

19-31

ORACLE

Chapter 19
Secure Elasticsearch using Sheild

password: No Sgl _00
key password: No_Sqgl _00
truststore:
path: /opt/es/elasticsearch/config/shield
el asticsearch. trust
password: No Sgl _00

2. Add the following three lines to r ol e_mappi ng. yni

adni n:
- "CN=esuser, OU=es. org.unit, C=es. org, L=es. city, ST=es. st at e, C=US"

" CN=FTS, OU=nosql . org. unit, O=nosql . org, L=nosql . ci ty, ST=nosql . state, C=
US"

Without these additions to the Elasticsearch and Shield configurations, any attempt by
you or the Oracle NoSQL store to communicate with the secure Elasticsearch cluster
will encounter errors related to either authentication or TLS/SSL failures.

At this point, there is still more to do to configure the Elasticsearch cluster for secure
communication with an Oracle NoSQL store. But before that can be done, you must
first configure and deploy the store itself. If you are confident that your current
Elasticsearch security configuration is correct, then you can go directly to Deploying
and Configuring a Secure Oracle NoSQL Store to deploy the secure Oracle NoSQL
store and configure it for secure communication with the Elasticsearch cluster. But if
you prefer to verify that what you have done so far is correct, then execute the steps
presented in the next sub-section.

[Optional] Verify Elasticsearch Security is Configured Correctly

Before moving on to deploying and configuring a secure Oracle NoSQL store, you may
wish to verify that queries can indeed be successfully (and securely) executed against
the Elasticsearch cluster with its current configuration. To do this, you must first install
each Elasticsearch node's PEM formatted public certificate and private key on any
client from which a query will be sent to Elasticsearch.

For example, suppose your client node is named cl host 1. And suppose you copy
the public/private PEM files from each Elasticsearch node to the / t np directory of
cl host 1. Thatis, on cl host 1,

scp <username>@shost 1:/opt/es/install-xfer/certs/elasticsearch-
eshost1.pem /tnp
scp <username>@shost 1:/opt/es/install-xfer/certs/elasticsearch-
eshost 1. pkey /tnp

scp <username>@shost 2:/opt/es/install-xfer/certs/elasticsearch-
eshost2.pem /tnp
scp <username>@shost 2:/opt/es/install-xfer/certs/elasticsearch-
eshost 2. pkey /tnp

scp <username>@shost 3:/opt/es/install-xfer/certs/elasticsearch-
eshost 3. pem /tnp

scp <username>@shost 3:/opt/es/install-xfer/certs/elasticsearch-
eshost 3. pkey /tnp

I's /tnp

19-32

ORACLE

Chapter 19
Secure Elasticsearch using Sheild

el asti csearch-eshost 1. pem
el asti csearch-eshost 1. pkey

el asti csearch-eshost 2. pem
el asti csearch-eshost 2. pkey

el asti csear ch- eshost 3. pem
el asti csearch- eshost 3. pkey

Next, deploy the secure Elasticsearch cluster by logging in to each Elasticsearch node
and executing the following commands:

On eshost 1

cd /scratch/es
export JAVA HOME=/opt/javal/java8 [if necessary]

.l elasticsearch/bin/elasticsearch
--cluster.name escluster
--node. name eshost 1
--transport.tcp. port 29000
--http.port 29100
--di scovery. zen. pi ng. uni cast . host s
eshost 1: 29000, eshost 2: 29000, eshost 3: 29000

On eshost 2

cd /scratch/es
export JAVA HOME=/opt/javal/java8 [if necessary]

.l elasticsearch/bin/elasticsearch
--cluster.name escluster
--node. name eshost 2
--transport.tcp. port 29000
--http.port 29100
--di scovery. zen. pi ng. uni cast. hosts
eshost 1: 29000, eshost 2: 29000, eshost 3: 29000

On eshost 3

cd /scratch/es
export JAVA HOVE=/opt/javaljava8 [if necessary]

.lelasticsearch/bin/elasticsearch
--cluster.name escluster
--node. name eshost 3
--transport.tcp. port 29000
--http.port 29100
--di scovery. zen. pi ng. uni cast. hosts
eshost 1: 29000, eshost 2: 29000, eshost 3: 29000

19-33

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

Once the Elasticsearch cluster has been deployed, you can send queries from the
client node to any of the nodes making up the Elasticsearch cluster. For example,

curl -k —E /tnp/elasticsearch-eshost1. pem
—key /tnp/elasticsearch-eshost 1. pkey
-X GET 'https://eshost1:29100/ _cat/nodes'

curl -k —E /tnp/elasticsearch-eshost2. pem
—key /tnp/elasticsearch-eshost2. pkey
-X PUT '"https://eshost?2:29100/i ndi ces'

curl -k —E /tnp/elasticsearch-eshost3. pem
—key /tnp/elasticsearch-eshost 3. pkey
-X GET 'https://eshost3:29100/ _cat/indices'

Be sure to use the public certificate and private key corresponding to the node to
which you send the query.

After verifying that the Elasticsearch cluster is configured correctly and can execute
secure queries, shut down/ ki I | [crtl-c] the Elasticsearch process on each
node.

At this point, we are ready to deploy a secure Oracle NoSQL store and configure it for
communication with the secure Elasticsearch cluster from this section. See Deploying
and Configuring a Secure Oracle NoSQL Store.

Deploying and Configuring a Secure Oracle NoSQL Store

ORACLE

There are a number of different methods to deploy and configure an Oracle NoSQL
store for secure access. This section presents one particular set of steps you can take
to deploy and configure such a store. For other methods, see Security Configuration in
the Security Guide.

Additionally, since the store that is deployed must communicate with the secure
Elasticsearch cluster from Secure Elasticsearch using Sheild, this section also shows
how to generate and install the private keys and public certificates needed by the store
and cluster for secure communication.

Whether you prefer the method presented here or one of the other methods presented
in the Security Guide, the following assumptions and requirements apply when
configuring an Oracle NoSQL store for secure deployment and communication with

a secure Elasticsearch cluster:

Assumptions about the Secure Oracle NoSQL Store

* The Oracle NoSQL Database distribution is installed under the directory / opt /
ondb/ kv.

e There are three nodes hosting the store, named kvhost 1, kvhost 2, and
kvhost 3 respectively.

e The store is deployed with a replication factor (rf) of 3, and is named nyst or e.

* An admin service, listening on port 5000, is deployed on each of the store's
nodes.

19-34

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

» The range of ports used to support high availability (harange) consists of port
5002 through 5007.

e One storage node (SN) per store host will be deployed (capacity 1), with default
values for the number of cpu's and memory (num_cpus 0 and memory_mb 0).

e The contents of the shards (replication groups) managed by the store are located
under the storage directory / di sk1/ shar d on each node of the store; where the
size specified for each storage directory is 1GB (1,000,000,000 bytes).

* For convenience, the password manager the store uses to store and retrieve
passwords for access to the store's keystore and truststore is a password file
(available in all editions of Oracle NoSQL Database), rather than the Oracle Wallet
(available in only the Enterprise Edition).

* For simplicity, all passwords are set to No_Sql _00.

* The name of the alias used in the public/private keypair generated by the store
and provided to Elasticsearch for secure communication with the store, is FTS.
Note that this is a requirement, as communication with a secure store will fail if
Elasticsearch responds to a request from the store by presenting a certificate with
an alias different than FTS.

e A user with administrative privileges is provisioned in the store's access control
list. The name given to this user is FTS; the same as the alias of the keypair the
store generates for Elasticsearch. Although the user name is not required to be the
same as the alias, it is given that value for consistency, and to avoid confusion.

Provision the Store Boot Node for Secure Deployment and Elasticsearch
Communication

All of the commands presented in this sub-section are executed on only the first (boot)
node of the store (example: kvhost 1). Using the assumptions previously listed, when
provisioning the boot node of a store that will be deployed with security, the first
command to execute is:

On kvhost 1

export JAVA HOME=/opt/javal/java8 [if necessary]

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig
-root /opt/ondb/kvroot
-config config.xmn
-port 5000
-host kvhost 1
-harange 5002, 5007
-capacity 1
-numcpus 0
-menory_nb 0
-storagedir /diskl/shard
-storagedi rsize 1000000000
-store-security configure
-pwdnmgr pwdfile
-kspwd No_Sqgl _00

The command above creates the security directory / opt / ondb/ kvr oot / security
on the store's boot node kvhost 1, and populates it with security artifacts such as
the store's keystore (st or e. keys) and trustore (st or e. t r ust). For convenience, it

ORACLE 19-35

ORACLE

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

also creates artifacts that can be distributed to clients for secure access to the store
(client.trust andclient. security). After executing the command above, you
should see the following files in the security directory:

I's /opt/ondb/ kvroot/security
store. trust
client.trust
client.security
security. xn
store. keys
store. passwd

Athough the command above is necessary to deploy a secure store, it is not sufficient
for secure communication with the Elasticsearch cluster from Secure Elasticsearch
using Sheild. To facilitate secure communication with Elasticsearch, a public/private
keypair with the alias FTS must be generated and installed in the store's keystore. For
example,

On kvhost 1

keyt ool -genkeypair
-alias FTS
-keystore /opt/ondb/ kvroot/security/store. keys
-keyal g RSA
-keysi ze 2048
-validity 1712
-storepass No_Sql 00
-keypass No_Sgl 00
-dname CN=FTS, OU=nosql . org, L=nosql . ci ty, S=nosql . st at e, C=US
-ext san=dns: | ocal host, dns: eshost 1, dns: eshost 2, dns: eshost 3,
dns: kvhost 1, dns: kvhost 2, dns: kvhost 3

After generating the keypair above, the public certificate from that keypair must be
exported from the keystore. In order for any node of the Elasticsearch cluster to
securely communicate with the NoSQL store, the Elasticsearch node must send this
certificate to the store. Thus, the certificate produced by the following export command
will ultimately be installed on each node of the Elasticsearch cluster. See Install the
Full Text Search Public Certificate in Elasticsearch. On kvhost 1,

keyt ool -export
-alias FTS
-keystore /opt/ondb/ kvroot/security/store. keys
-storepass No_Sql 00
-file /opt/ondb/kvroot/security/FTS. crt

Whereas the FTS public certificate created by this command must be presented to
the Oracle NoSQL store by each Elasticsearch node when the node attempts to
communicate with the store, the store must also present the Elasticsearch node's
public certificate. This is because the model for secure communication between
Elasticsearch and Oracle NoSQL requires mutual authentication. As a result, the

19-36

ORACLE

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

public certificates created on each of the Elasticsearch nodes in Secure Elasticsearch
using Sheild must be retrieved and installed in the store's truststore. For example,

scp <username>@shost 1:/opt/es/install-xfer/certs/elasticsearch-
eshost 1. crt /opt/ondb/kvroot/security
scp <username>@shost 2:/opt/es/install-xfer/certs/elasticsearch-
eshost 2. crt /opt/ondb/ kvroot/security
scp <username>@shost 3:/opt/es/install-xfer/certs/elasticsearch-
eshost 3. crt /opt/ondb/ kvroot/security

keyt ool -inportcert
-alias elasticsearch-eshostl
-file /opt/ondb/kvroot/security/elasticsearch-eshostl.crt
-keystore /opt/ondb/ kvroot/security/store.trust
-storepass No_Sql 00
-keypass No_Sgl _00
- nopr onpt

keyt ool -inportcert
-alias elasticsearch-eshost?2
-file /opt/ondb/kvroot/security/elasticsearch-eshost2.crt
-keystore /opt/ondb/kvroot/security/store.trust
-storepass No_Sql 00
-keypass No_Sgl _00
- nopr onpt

keyt ool -inportcert
-alias elasticsearch-eshost3
-file /opt/ondb/kvroot/security/elasticsearch-eshost3.crt
-keystore /opt/ondb/kvroot/security/store.trust
-storepass No_Sql 00
-keypass No_Sgl _00
- nopr onpt

At this point, the store's boot node is configured for secure deployment, and its
security directory has been provisioned with the necessary security artifacts for
communication with the Elasticsearch cluster from Secure Elasticsearch using Sheild.

The final step in the provisioning process is to install the same security artifacts
created on the boot node in each of the remaining nodes of the store. This is
accomplished by simply copying the boot node's security directory to each of those
other nodes. For example, if the boot node is kvhost 1, then you would do something
like the following from that node:

scp -r /opt/ondb/kvroot/security <username>@vhost2:/opt/ondb/ kvr oot
scp -r /opt/ondb/kvroot/security <username>@vhost 3:/opt/ondb/ kvr oot

Configure the Store's Remaining non-Boot Nodes for Security

Once the store's boot node is configured for security and the security directory of all
of the nodes in the store have been fully provisioned as described in the previous
sub-section, the remaining (non-boot) nodes of the store must also be configured for
security. This is accomplished by using Java 8 or greater to execute, respectively, the
following commands on each of the remaining nodes.

19-37

ORACLE

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

On kvhost 2

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig
-root /opt/ondb/kvroot
-config config.xmn
-port 5000
-host kvhost 2
- harange 5002, 5007
-capacity 1
-numcpus 0
-menory_nb 0
-storagedir /diskl/shard
-storagedirsize 1000000000
-store-security enable
-pwdmgr pwdfile

On kvhost 3

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig
-root /opt/ondb/kvroot
-config config.xm
-port 5000
-host kvhost 3
- harange 5002, 5007
-capacity 1
-numcpus 0
-menory_nb 0
-storagedir /diskl/shard
-storagedi rsize 1000000000
-store-security enable
-pwdnmgr pwdfile

At this point, the store is configured and fully provisioned for secure deployment. The
following sub-sections describe how this is accomplished.

Start Each Node of the NoSQL Store
Using Java 8 or greater, execute the following command on each node of the store.

On kvhost 1, kvhost 2, and kvhost 3

java -jar /opt/ondb/kv/lib/kvstore.jar start
-root /opt/ondb/kvroot
-config config.xm

Deploy the Secure NoSQL Store

To deploy an Oracle NoSQL store based on the assumptions listed previously, first
create a text file containing the following Oracle NoSQL administrative commands that
can be executed as a script from the Oracle NoSQL Admin CLI.

configure -name nystore
pl an depl oy-zone -name znl -rf 3 -wait

19-38

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

pl an depl oy-sn -znname znl -host kvhostl -port 5000 -wait
pl an depl oy-adnmin -sn 1 -wait

pool create -name snpool

pool join -name snpool -sn snl

pl an depl oy-sn -znname znl -host kvhost2 -port 5000 -wait
pl an depl oy-adnin -sn 2 -wait
pool join -name snpool -sn sn2

pl an depl oy-sn -znname znl -host kvhost3 -port 5000 -wait
pl an depl oy-adnmin -sn 3 -wait
pool join -name snpool -sn sn3

change-policy -parans "l oggi ngConfi gProps=oracle. kv.|evel =I NFG "

topol ogy create -name snlayout -pool snpool -partitions 300
pl an depl oy-topol ogy -nane snlayout -plan sndepl oy -wait

execute "CREATE USER root | DENTIFI ED BY ' No_Sql _00' ADM N';

Note that a user named root with ADM N privileges will be created when the store is
deployed. That user will be used to add other users to the store's access control list
(ACL); for example, the user named FTS described previously.

Once you have created the command file above, start the Admin CLI and deploy

the store by loading that file. For example, suppose the commands are stored in the
file, / t np/ depl oy- secur e- st or e. cnds. You would then deploy the store by doing
the following:

On kvhost 1
java -jar /opt/ondb/kv/lib/kvstore.jar runadmn
-host kvhost 1

-port 5000
-security /opt/ondb/kvroot/security/client.security

Logged in adnin as anonymous
Connected to Admin in read-only node

kv-> load -file /tnp/depl oy-secure-store.cnds

Connected to Admin in read-only node
Store configured: nystore

Created: snlayout

Executed plan 13, waiting for conpletion...
Plan 13 ended successful ly

Statenent conpl eted successful ly

kv-> exit

ORACLE 19-39

ORACLE

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

< Note:

The clocks on kvhost 1, kvhost 2, and kvhost 3 must by synchronized
(by default, within a 2 second delta), otherwise store deployment will fail.
To determine whether a failed deployment was caused by unsynchronized
clocks, check the admin logs on the affected node / opt / ondb/ kvr oot /
nyst ore/l og/ admi nN_0O. | og.

Provision the root User

To provison the user named root that was created during store deployment, do the
following:

On kvhost 1

java -jar /opt/ondb/kv/lib/kvstore.jar securityconfig pwdfile create
-file /opt/ondb/kvroot/security/root.passwd

java -jar /opt/ondb/kv/libl/kvstore.jar securityconfig pwdfile secret
-file /opt/ondb/kvroot/security/root.passwd -set -alias root

Enter the secret value to store: No_Sgl _00
Re-enter the secret value for verification: No_Sgl 00

Create a properties file that you can use to access (login to) the Admin CLI as

the root user just created. This file should contain the same entries as the default
client.security file generated when the store was initially provisioned for security, along
with entries that specify the username and password file specific to the root user. For
example,

cp /opt/ondb/ kvroot/security/client.security /opt/ondb/kvroot/security/
root.login

echo oracl e. kv. aut h. user name=root >> /opt/ondb/ kvroot/security/
root.login

echo oracle.kv.auth.pwdfile.file=

[opt/ ondb/ kvroot/security/root.passwd >> [opt/ondb/kvroot/security/
root.login

Create and Provision the FTS User For Indexing Data in Secure Elasticsearch

In a production system, you would not typically use the root user to create and
populate tables and Secondary Indexes in the Oracle NoSQL store or Text Indexes

in the Elasticsearch cluster. Instead, you would generally use the root user to create
other client users of the store whose roles are specific to a particular task; for example,
indexing data in Elasticsearch.

For this example, a user named FTS is created and granted the privileges needed to
create and populate a table, as well as index the table's data in Elasticsearch. To do
this, you need to first create an Admin CLI command file that contains entries such as:

execut e ' CREATE ROLE ftsadm n'
execute ' GRANT SYSDBA TO ftsadm n'

19-40

ORACLE

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

execute ' GRANT READ ANY TO ftsadm n'
execute ' GRANT WRI TE_ANY TO ftsadm n'
execute ' CREATE USER FTS | DENTI FI ED BY "No_Sqgl _00"'
execute ' GRANT ftsadmin TO USER FTS
execute ' GRANT SYSADM N TO USER FTS

Then, assuming / t np/ cr eat e- user - FTS. cnds is the path to that command file,
you create the user by logging into the Admin CLI as the r oot user and then loading
the command file. For example,

On kvhost 1

java -jar /opt/ondb/kv/lib/kvcli.jar runadmn
-host kvhost 1
-port 5000
-store nystore
-security /opt/ondb/kvroot/security/root.login

Logged in admn as root
kv-> load -file /tnp/create-user-FTS. cnds

Statenent conpl eted successful ly
Statenent conpl eted successful ly

kv-> exit

To complete the provisioning of the FTS user just created, you should create a
password file for that user and install it in a directory (for example, / t mp) on the client
node you will be using to load and index data. For completeness (and convenience),
in a fashion similar to what was done for the r oot user, you should also create

a properties file that can be used to login to the Admin CLI as the user FTS. For
example,

On kvhost 1

java -jar /opt/ondb/kv/lib/kvstore.jar
securityconfig pwdfile create
-file /tnp/ FTS. passwd

java -jar /opt/ondb/kv/lib/kvstore.jar
securityconfig pwdfile secret
-file /tnp/ FTS. passwd
-set
-alias FTS

Enter the secret value to store: No_Sgl _00
Re-enter the secret value for verification: No_Sgl 00

cp /opt/ondb/ kvroot/security/client.security /tnmp/FTS-client.login

echo oracl e. kv. aut h. user nane=FTS >> /opt/ondb/ kvroot/security/FTS-
client.login

19-41

Chapter 19
Install the Full Text Search Public Certificate in Elasticsearch

echo oracle.kv.auth.pwdfile.file=/tnp/FTS. passwd >> /tnp/ FTS
client.login

cp /opt/ondb/ kvroot/security/client.trust /tnp

Once the three artifacts above (FTS-cl i ent . | ogi n, FTS. passwd, and
client.trust) have been created and installed in the / t np directory on kvhost 1,
you can install them on any client. For example,

scp /tmp/ FTS-client.login <username>@l host1:/tnp
scp /tnp/ FTS. passwd <user nane>@l host 1:/t np
scp /tnp/client.trust <usernane>@l host1:/tnp

At this point the store is fully deployed and ready to interact with the Elasticsearch
cluster.

The only thing left to do before running the example is to install the Oracle NoSQL
store's public certificate (al i as=FTS) in the truststore on each Elasticsearch node.
See Install the Full Text Search Public Certificate in Elasticsearch.

Install the Full Text Search Public Certificate in Elasticsearch

The final set of steps that must be executed to complete the deployment of the system
consisting of a secure Oracle NoSQL store and a secure Elasticsearch cluster is to
retrieve the Oracle NoSQL store’s public certificate with alias FTS, and install that
certificate in the truststore of each Elasticsearch node. For example,

On eshost 1, eshost 2, and eshost 3,

scp <username>@vhost 1:/ opt/ondb/ kvroot/security/ FTS.crt /opt/es/
install-xfer/certs
keyt ool —inportcert
-alias FTS
-file /opt/eslinstall-xfer/certs/FTS. crt
—-keystore /opt/es/elasticsearch/config/shield/ elasticsearch.trust
-storepass No_Sql _00
—keypass No_Sqgl _00
—nopr onpt

Once the store’s FTS public certificate is installed on each Elasticsearch node, you can
deploy the Elasticsearch cluster; which should now be able to communicate with the
secure Oracle NoSQL store deployed in Deploying and Configuring a Secure Oracle
NoSQL Store. For example, using Java 8 or greater,

On eshost 1

cd /scratch/es

./elasticsearch/bin/elasticsearch
--cluster.name escluster
--node. name eshost 1
--transport.tcp.port 29000
--http.port 29100

ORACLE 19-42

Chapter 19
Running the Examples in Secure Mode

--di scovery. zen. pi ng. uni cast . host s
eshost 1: 29000, eshost 2: 29000, eshost 3: 29000

On eshost 2

cd /scratch/es

./l elasticsearch/bin/elasticsearch
--cluster.name escluster
--node. name eshost 2
--transport.tcp.port 29000
--http.port 29100
--di scovery. zen. pi ng. uni cast . host s
eshost 1: 29000, eshost 2: 29000, eshost 3: 29000

On eshost 3

cd /scratch/es

.lelasticsearch/bin/elasticsearch
--cluster.name escluster
--node. name eshost 3
--transport.tcp.port 29000
--http.port 29100
--di scovery. zen. pi ng. uni cast. host s
eshost 1: 29000, eshost 2: 29000, eshost 3: 29000

At this point you should now be able to do the following:

1. Execute the example program in secure mode to populate the store with JSON
data.

2. Run the Admin CLI as the user named FTS to both register the store with the
Elasticsearch cluster and create a Text Index on the data in the store.

3. Use curl to send secure queries to Elasticsearch to perform Full Text Search on
the indexed data. See Running the Examples in Secure Mode.

Running the Examples in Secure Mode

ORACLE

Assuming you have deployed a secure Oracle NoSQL store and Elasticsearch cluster
by executing the steps presented in Secure Elasticsearch using Sheild, Deploying
and Configuring a Secure Oracle NoSQL Store, and Install the Full Text Search
Public Certificate in Elasticsearch appendices, you can now execute the commands
presented in this section to:

* Create and Populate a Table in the Secure Oracle NoSQL Store

* Register the Store with the Secure Elasticsearch Cluster and Create a Full Text
Index

» Execute Secure Full Text Search Queries On Elasticsearch Indexed Data

19-43

Chapter 19
Running the Examples in Secure Mode

Create and Populate a Table in the Secure Oracle NoSQL Store

Execute the program LoadJsonExanpl e in secure mode. For example,

java —classpath /opt/ondb/kv/|ib/kvstore.jar:src
es.tabl e. LoadJsonExanpl e

-store nystore

—host kvhost 1

—port 5000

—file ~/exanpl es/ es/docs/senator-info.json

-tabl e exanpl eJsonTabl e

-security /tnp/ FTS-client.login

Register the Store with the Secure Elasticsearch Cluster and Create a Full Text
Index

From a client node configured for secure access to the Oracle NoSQL store, start
an Admin CLI for the store. For example, from the host named cl host 1, start the
CLI as the user named FTS created and provisioned as described in Deploying and
Configuring a Secure Oracle NoSQL Store,

Oncl host 1

java -jar /opt/ondb/kv/lib/kvcli.jar runadmn
—host kvhost 1
-port 5000
-store nystore
—security /tmp/ FTS-client.login

Logged in admn as FTS

kv-> plan register-es
—cl ust ername escl uster
—host eshost 1
—port 29100
—-secure true
-vai t

Executed plan 25, waiting for conpletion...
Plan 25 ended successfully

kv-> execute ' CREATE FULLTEXT | NDEX jsonTxt|ndex ON
exanmpl eJsonTabl e (
jsonField.current{"type":"
jsonField. party{"type":"string","anal yzer":"standard"},
jsonField. duties.commtte{"type":"string"},

jsonField.contrib{"type":"double"})";

bool ean"},

Statement conpl eted successfully

kv-> exit

ORACLE 19-44

Chapter 19
Running the Examples in Secure Mode

Execute Secure Full Text Search Queries On Elasticsearch Indexed Data

From a client node configured for secure access to the Elasticsearch cluster such as
the cl host 1 node presented in Secure Elasticsearch using Sheild, execute queries
like the following:

Oncl host 1

curl -k -E /tnp/elasticsearch-eshostl1. pem
--key /tnp/elasticsearch-eshost 1. pkey
—X GET 'http://eshost1:29100/ _cat/indices'

curl -k -E /tnp/elasticsearch-eshost2. pem
--key /tnp/elasticsearch-eshost2. pkey
—X GET "http://eshost2: 29100/
ondb. kvst or e. exanpl ej sont abl e. j sont xt i ndex/ _mappi ng?pretty’

curl -k -E /tnp/elasticsearch-eshost3. pem
--key /tnp/elasticsearch-eshost 3. pkey
—X GET "http://eshost 3: 29100/
ondb. kvst or e. exanpl ej sont abl e. j sont xti ndex/ _search?pretty’

curl —k -E /tnp/elasticsearch-eshost1. pem
--key /tnp/elasticsearch-eshost 1. pkey
—X GET 'http://eshost1: 29100/
ondb. nyst ore. exanpl ej sont abl e. j sont xti ndex/ _search?pretty
"-d {query":{"bool ":{
"must":{"match":{"jsonCol . party": "Denocrat"}},
"must":{"match":"jsonCol .current":"true"}},
"must":{"range": {"jsonField.contrib"
{"gte":"1000000. 00", "I te":20000000.00"}}},
"must":"match":{"jsonField. duties.conmtte":"Judiciary

Apropriations"}}}}}

< Note:

The queries above can be sent to any of the nodes in the Elasticsearch
cluster (eshost 1, eshost 2, or eshost 3). Just be sure to specify the public
certificate and private key corresponding to the particular node to which you
send the query.

ORACLE 19-45

	Contents
	1 Introduction
	Part I Integration with Apache Hadoop MapReduce
	2 Introduction to Integration with Apache Hadoop MapReduce
	Prerequisites
	A Brief Primer on Apache Hadoop

	3 The CountTableRows Example
	Compile, Build, and Run the CountTableRows Example
	Building CountTableRows When the Store is Non-Secure
	Building CountTableRows When the Store is Secure
	Running CountTableRows When the Store is Non-Secure
	Running CountTableRows When the Store is Secure and a Password File is Used
	Running CountTableRows When the Store is Secure and an Oracle Wallet is Used

	CountTableRows MapReduce Job Results

	4 Appendix
	Deploying a Non-Secure Store
	Generate Configuration Files For Each Storage Node (SN)
	Launch a Storage Node Agent (SNA) On Each Host Making Up the Store
	Configure and Deploy the Non-secure Store

	Deploying a Secure Store
	Generate Configuration Files For Each Storage Node (SN)
	Launch a Storage Node Agent (SNA) On Each Host Making Up the Store
	Configure and Deploy the Secure Store
	Provision the Secure Store’s Administrative User (root)
	Create Non-Administrative User
	Provision the Secure Store's Non-Administrative User (example-user)

	CountTableRows Support Programs
	Schema for the vehicleTable Example
	Create and Populate vehicleTable with Example Data
	Run LoadVehicleTable when the Store is Non-Secure
	Run LoadVehicleTable When the Store is Secure
	Summary

	Model For Building & Packaging Secure Clients
	Programming Model For MapReduce with Oracle NoSQL Database Security
	Communicating Security Credentials to the Server Side Splits
	Communicating Security Credentials to the TableInputFormat
	Best Practices: MapReduce Application Packaging for Oracle NoSQL Security
	Application Packaging for the Non-Secure Case
	Application Packaging and Execution for the Secure Case
	Application Packaging for the Secure Case Using a Password File
	Application Execution for the Secure Case Using a Password File
	Application Packaging for the Secure Case Using an Oracle Wallet
	Application Execution for the Secure Case Using an Oracle Wallet

	Secure Versus Non-Secure Command Lines

	Summary

	Part II Integration with Apache Hive
	5 Introduction to Integration with Apache Hive
	Prerequisites
	A Brief Primer on Apache Hive

	6 Oracle NoSQL Database Hive Integration Classes
	7 Mapping the Hive Data Model to the Oracle NoSQL Database Table Model
	YARN Versus MapReduce Version 1

	8 Example: Hive Queries On Oracle NoSQL Database Tables
	Primitive Data Types - The vehicleTable Example
	Mapping a Hive External Table to vehicleTable: Non-Secure Store
	Mapping a Hive External Table to vehicleTable: Secure Store
	Mapping Hive to Secure vehicleTable: Password File
	Mapping Hive to Secure vehicleTable: Oracle Wallet

	Hive Queries on vehicleTable: Primitive Data Types

	Non-Primitive Data Types - The rmvTable Example
	Mapping a Hive External Table to rmvTable: Non-Secure Store
	Mapping a Hive External Table to rmvTable: Secure Store
	Mapping Hive to Secure rmvTable: Password File
	Mapping Hive to Secure rmvTable: Oracle Wallet

	Hive Queries on rmvTable: Non-Primitive Data Types

	NoSQL JSON Data Type - The exampleJsonTable Example
	Mapping a Hive External Table to exampleJsonTable: Non-Secure Store
	Mapping a Hive External Table to exampleJsonTable: Secure Store
	Mapping Hive to Secure exampleJsonTable: Password File
	Mapping Hive to Secure exampleJsonTable: Oracle Wallet

	Hive Queries on exampleJsonTable: JSON Data Type

	9 Appendix
	Creating and Populating the rmvTable
	Schema for the Example Table Named rmvTable
	Create and Populate rmvTable with Example Data
	How to Run LoadRmvTable When the Store is Non-Secure
	How to Run LoadRmvTable When the Store is Secure
	Summary

	Creating and Populating the exampleJsonTable
	Schema for the Example Table Named exampleJsonTable
	Create and Populate exampleJsonTable with Example Data
	How to Run LoadJsonExample When the Store is Non-Secure
	How to Run LoadJsonExample When the Store is Secure
	Summary

	Configuring the Hive Client Environment
	Copy Oracle NoSQL Database Libraries into Hive Auxiliary Directory
	Set HIVE_AUX_JARS_PATH in the Hive Client’s hive-env.sh File
	Set HIVE_AUX_JARS_PATH Directly on the Command Line

	Hive and Oracle NoSQL Database Security
	Generating the Login, Trust, and Password Artifacts
	Generating the Server Side JAR File
	Adding the Hive Client's Public Credentials to the Hive Environment
	Summary

	Predicate Pushdown
	Predicate Pushdown Criteria

	Part III Integration with Oracle Big Data SQL
	10 Introduction to Integration with Oracle Big Data SQL
	Prerequisites
	A Brief Primer on Oracle Big Data SQL

	11 Mapping the Oracle RDBMS Data Model to the Oracle NoSQL Database Table Model
	12 Executing SQL Queries Against Oracle NoSQL Database
	Mapping Hive External Tables to Oracle NoSQL Database Tables
	Mapping Hive Tables to Oracle NoSQL Database Tables In a Non-Secure Store
	Mapping Hive Tables to Oracle NoSQL Database Tables In a Secure Store

	Mapping Oracle RDBMS External Tables to Hive External Tables
	Mapping Oracle RDBMS Tables to Hive Tables for Non-Secure Store
	Mapping Oracle RDBMS Tables to Hive Tables for Secure Store

	13 Example: SQL Queries On Oracle NoSQL Database Tables
	Example Queries on the vehicleTable
	Example Queries on the rmvTable
	More Example Queries on the rmvTable
	Example Queries Using Oracle Regular Expression Functions
	Example Queries Using Oracle JSON Operators

	Example Queries on the exampleJsonTable

	14 Appendix
	Configuring Oracle Big Data SQL For Querying Oracle NoSQL Database
	Configuring Oracle Big Data SQL For Querying Data in a Secure Store

	Part IV Integration with Elastic Search for Full Text Search
	15 About Full Text Search
	About Full Text Search
	Prerequisite to Full Text Search

	16 Intergrating Elasticsearch with Oracle NoSQL Database
	Registering Elasticsearch with Oracle NoSQL Database
	Deregistering Elasticsearch from an Oracle NoSQL Store

	17 Managing Full Text Index
	Creating a Full Text Index
	Mapping a Full Text Index Field to an Elasticsearch Field
	Handling TIMESTAMP Data Type
	Mapping Oracle NoSQL TIMESTAMP to Elasticsearch date Type
	Full Text Search of Indexed TIMESTAMP Scalar

	Handling JSON Data Type
	Review: Secondary Indexes on JSON Document Content
	Creating Text Indexes on JSON Document Content
	Full Text Search of Indexed JSON Documents

	Deleting a Full Text Index

	18 Security in Full Text Search
	Elasticsearch and Secure Oracle NoSQL Database

	19 Appendix
	Sample: Array of JSON Documents
	The LoadJsonExample Program Source
	Secure Elasticsearch using Sheild
	Deploying and Configuring a Secure Oracle NoSQL Store
	Install the Full Text Search Public Certificate in Elasticsearch
	Running the Examples in Secure Mode

