
Oracle® NoSQL Database
Security Guide

Release 20.3
E85375-14
February 2021

Oracle NoSQL Database Security Guide, Release 20.3

E85375-14

Copyright © 2011, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Conventions Used in This Book vii

1 Introducing Oracle NoSQL Database Security

2 Security Configuration

Security Configuration Overview 2-1

Configuring Security with Makebootconfig 2-3

Configuring Security with Securityconfig 2-4

Creating the security configuration 2-4

Adding the security configuration 2-7

Verifying the security configuration 2-8

Updating the security configuration 2-8

Showing the security configuration 2-8

Removing the security configuration 2-10

Merging truststore configuration 2-10

3 Performing a Secure Oracle NoSQL Database Installation

Single Node Secure Deployment 3-1

Adding Security to a New Installation 3-1

Adding Security to an Existing Installation 3-5

Multiple Node Secure Deployment 3-8

Adding Security to a New Installation 3-8

Adding Security to an Existing Installation 3-12

4 Kerberos Authentication Service

Installation Prerequisites 4-1

Kerberos Principal 4-1

Keytabs 4-2

iii

Kadmin and kadmin.local 4-2

Kerberos Security Properties 4-2

Setting Security Properties in a security login file 4-3

Setting Security Properties through KVStoreConfig 4-4

Using Security Properties to Log In 4-4

Using credential cache 4-5

Using a keytab 4-6

JAAS programming framework integration 4-7

Performing a Secure Oracle NoSQL Database Installation with Kerberos 4-8

Adding Kerberos to a New Installation 4-9

Adding Kerberos to an Existing Secure Installation 4-13

Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD) 4-16

5 External Password Storage

Oracle Wallet 5-1

Password store file 5-2

6 Security.xml Parameters

Top-level parameters 6-1

Transport parameters 6-2

7 Encryption

SSL model 7-1

SSL communication properties 7-2

Disk Encryption in a Linux Environment 7-3

8 Configuring Authentication

User Management 8-1

User Creation 8-1

User Modification 8-3

User Removal 8-4

User Status 8-4

User Login 8-5

Password Management 8-6

Sessions 8-7

iv

9 Configuring Authorization

Privileges 9-1

System Privileges 9-1

Object Privileges 9-2

Table Ownership 9-3

Privilege Hierarchy 9-4

Roles 9-4

System Built-in Roles 9-4

User-Defined Roles 9-5

Managing Roles, Privileges and Users 9-7

Role Creation 9-7

Role Removal 9-8

Role Status 9-8

Grant Roles or Privileges 9-9

Revoke Roles or Privileges 9-10

10

Security Policies

Security Policy Modifications 10-1

11

Audit Logging

Security Log Messages 11-1

12

Keeping Oracle NoSQL Database Secure

Guidelines for Securing the Configuration 12-1

Guidelines for Deploying Secure Applications 12-1

Guidelines for Securing the SSL protocol 12-2

Guidelines for using JMX securely 12-2

Guidelines for Updating Keystore Passwords 12-2

Guidelines for Updating Kerberos Passwords 12-4

Guidelines for Updating SSL Keys and Certificates 12-6

Guidelines for Configuring External Certificates for a new Installation 12-15

Guidelines for Configuring External Certificates for an Existing Default Secure
Installation 12-17

Guidelines for Updating the External Certificates 12-21

Guidelines for Operating System Security 12-22

v

A Password Complexity Policies

B SSL keystore generation

C Java KeyStore Preparation

Import Key Pair to Java Keystore C-2

D KVStore Required Privileges

Privileges for Accessing CLI Commands D-1

Privileges for DDL Commands D-4

Privileges for Accessing KVStore APIs D-5

Privileges for Accessing KVStore TableAPIs D-6

Privileges for Accessing KvLargeObject APIs D-6

Privileges for Running XRegion Service D-7

E Configuring the Kerberos Administrative Utility

F Manually Registering Oracle NoSQL Database Service Principal

G Generating Certificate and Private Key for the Oracle NoSQL
Database Proxy

Guidelines for Generating Self-Signed Certificate and Private Key using OpenSSL G-1

Guidelines for Generating Certificate Chain and Private Key using OpenSSL G-2

vi

Preface

This document describes how you can configure security for Oracle NoSQL Database
using the default database features.

This book is aimed at the systems administrator responsible for the security of an
Oracle NoSQL Database installation.

Conventions Used in This Book
The following typographical conventions are used within this manual:

Information that you are to type literally is presented in monospaced font.

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME
directory."

Note:

Finally, notes of special interest are represented using a note block such as
this.

vii

1
Introducing Oracle NoSQL Database
Security

Oracle NoSQL Database can be configured securely. In a secure configuration,
network communications between NoSQL clients, utilities, and NoSQL server
components are encrypted using SSL/TLS, and all processes must authenticate
themselves to the components to which they connect.

There are two levels of security to be aware of. These are network security, which
provides an outer layer of protection at the network level, and user authentication/
authorization. Network security is configured at the file system level typically during
the installation process, while user authentication/authorization is managed through
NoSQL utilities.

You can use the following Oracle NoSQL Database features to configure security for
your Oracle NoSQL Database installation:

• Security Configuration Utility. Allows you to configure and add security to a
new or to an existing Oracle NoSQL Database installation.

• Authentication methods. Oracle NoSQL Database provides password
authentication for users and systems. The EE version of Oracle NoSQL Database
also supports Kerberos authentication.

• Encryption. Data is encrypted on the network to prevent unauthorized access to
that data.

• External Password Storage. Oracle NoSQL Database provides two types of
external password storage methods that you can manipulate (one type for CE
deployments).

• Security Policies. Oracle NoSQL Database allows you to set up behaviors in
order to ensure a secure environment.

• Role-based authorization. Oracle NoSQL Database provides predefined system
roles, privileges, and user-defined roles to users. You can set desired privileges to
users by role-granting.

In addition, Keeping Oracle NoSQL Database Secure provides guidelines that you
should follow when securing your Oracle NoSQL Database installation.

Note:

Full Text Search and a secure Oracle NoSQL Database store are disjoint,
that is, if Oracle NoSQL Database is configured as a secure store, Full Text
Search should be disabled. On the other hand, if Full Text Search is enabled
(that is, an external Elasticsearch cluster is registered) in a nonsecure store,
users cannot reconfigure the nonsecure store to a secure store, unless Full
Text Search is disabled before reconfiguration. See Security in Full Text
Search in the Integrations Guide.

1-1

2
Security Configuration

This chapter describes how to use either the makebootconfig or securityconfig tool
to perform the security configuration of your store. If you are installing a store with
security for the first time, you can skip ahead to the next chapter Performing a Secure
Oracle NoSQL Database Installation.

Note:

For simpler use cases (lab environments) it is possible to perform a basic
installation of your store by explicitly opting out of security on the command
line. If you do this, your store loses all the security features described in this
book. For more information see Configuring Security with Makebootconfig.

Security Configuration Overview
To set up security, you need to create an initial security configuration. To do this,
run securityconfig before, after, or as part of the makebootconfig process before
starting the SNA on an initial node. You should not create a security configuration
at each node. Instead, you should distribute the initial security configuration across
all the Storage Nodes in your store. If the stores do not share a common security
configuration they will be unable to communicate with one another.

Note:

The makebootconfig utility embeds the functionality of securityconfig tool.

Th securityconfig tool creates a set of security files based on the standard
configuration. It is possible to perform the same tasks manually, and advanced
security configuration might require manual setup, but using this tool helps to ensure
a consistent setup. For more information on the manual setup, see SSL keystore
generation.

Note:

It is possible to modify the security configuration after it is created in order to
use a non-standard configuration. It is recommended that you use a standard
configuration.

Those security files are generated, by default, within a directory named "security". In
a secure configuration, the bootstrap configuration file for a Storage Node includes a

2-1

reference to that directory, which must be within the KVROOT directory for the Storage
Node. The security directory contains:

security/security.xml
security/store.keys
security/store.trust
security/store.passwd (CE or EE installations)
security/store.wallet (EE installations only)
security/store.wallet/cwallet.sso (EE installations only)
security/client.security
security/client.trust

where:

• security.xml

A configuration file that tells the Oracle NoSQL Database server how to apply
security.

• store.keys

A Java keystore file containing one or more SSL/TLS key pairs. This keystore
is protected by a keystore password, which is recorded in an accompanying
password store. The password store may be either an Oracle Wallet or a
FileStore. The password is stored under the alias "keystore" in the password
store. This file should be accessible only by the Oracle NoSQL Database server
processes, and not to Oracle NoSQL Database clients.

• store.trust

A Java truststore file, which is a keystore file that contains only public certificates,
and no private keys.

• store.passwd (CE or EE installations)

A password file that acts as the password store for a Community Edition (CE)
installation. It contains secret information that should be known only to the server
processes. Make sure the password file is readable and writable only by the
Oracle NoSQL Database server. The file should not be copied to client machines.

For Enterprise Edition (EE) installations, Oracle Wallet usage is preferred over the
password file option.

• store.wallet (EE installations only)

An Oracle Wallet directory that acts as the password store for an Enterprise
Edition (EE) installation. It contains secret information that should be known only
to the server processes. Make sure the directory and its contents are readable and
writable only by Oracle NoSQL Database. The file should not be copied to client
machines.

• cwallet.sso (EE installations only)

The wallet password storage file.

• client.security

A security configuration file that captures the communication transport properties
for connecting clients to KVStore.

The generated client.security file should be copied to and used by Oracle NoSQL
Database clients when connecting to the KVStore.

Chapter 2
Security Configuration Overview

2-2

• client.trust

A truststore file used by clients is generated.

The generated client.trust file should be copied to and used by Oracle NoSQL
Database clients when connecting to the KVStore.

Note:

In a multi-host store environment, the security directory and all files
contained in it should be copied to each server that will host a Storage Node.

Configuring Security with Makebootconfig
Use the makebootconfig command with the -store-security option to set up the
basic store configuration with security:

java -Xmx64m -Xms64m
-jar KVHOME/lib/kvstore.jar makebootconfig
-root <kvroot> -port <port>
-host <hostname> -harange <harange>
-store-security configure -capacity <capacity>
[-secdir <security dir>]
[-pwdmgr {pwdfile | wallet | <class-name>}]
[-kspwd <password>]
[-external-auth {kerberos}]
[-krb-conf <kerberos configuration>]
[-kadmin-path <kadmin utility path>]
[-instance-name <database instance name>]
[-admin-principal <kerberos admin principal name>]
[-kadmin-keytab <keytab file>]
[-kadmin-ccache <credential cache file>]
[-princ-conf-param <param=value>]*
[-security-param <param=value>]*
[-noadmin]

where -store-security has the following options:

• -store-security none

No security will be used. If a directory named "security" exists, a warning message
will be displayed. When you opt out of security, you lose all the security features in
your store; you are not able to set password authentication for users and systems,
encrypt your data to prevent unauthorized access, etc.

• -store-security configure

Security will be used and the security configuration utility will be invoked as
part of the makebootconfig process. If the security directory already exists, an
error message is displayed, otherwise the directory will be created.

For script-based configuration you can use the -kspwd<password> option to allow
tools to specify the keystore password on the command line. If it is not specified,
the user is prompted to enter the password.

Chapter 2
Configuring Security with Makebootconfig

2-3

Use the -pwdmgr option to select a password manager implementation. Its usage
is introduced later in this section.

Use the -external-auth option to specify Kerberos as an external authentication
service. This option is only available in the Oracle NoSQL Database EE version.
If information for the Kerberos admin interface (e.g. password) is needed and no
keytab or credential cache has been specified on the command line, an interactive
version of securityconfig config create utility will run.

Using the -external-auth flag allows Oracle NoSQL Database to generate
the security files needed for Kerberos authentication, based on a standard
configuration. Although not recommended, it is possible to use a non-standard
configuration. To do this, see Manually Registering Oracle NoSQL Database
Service Principal

• -store-security enable

Security will be used. You will need to configure security either by utilizing the
security configuration utility or by copying a previously created configuration
from another system.

Note:

The -store-security command is optional. Even if the user does not
specify -store-security, it would be enabled by default.

For more information on configuring security with makebootconfig, see Adding
Security to a New Installation.

Configuring Security with Securityconfig
You can also run the securityconfig tool before or after the makebootconfig process
by using the following command:

java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar securityconfig

For more information on creating, adding, removing or merging the security
configuration using securityconfig, see the following sections.

Creating the security configuration
You can use the config create command to create the security configuration:

config create
-root <secroot> [-secdir <security dir>]
[-pwdmgr { pwdfile | wallet <class-name>}]
[-kspwd <password>]
[-external-auth {kerberos}]
 [-krb-conf <kerberos configuration>]
 [-kadmin-path <kadmin utility path>]
 [-instance-name <database instance name>]
 [-admin-principal <kerberos admin principal name>]
 [-kadmin-keytab <keytab file>]

Chapter 2
Configuring Security with Securityconfig

2-4

 [-kadmin-ccache <credential cache file>]
 [-princ-conf-param <param=value>]*
 [-param [client:|ha:|internal:|]<param>=<value>]*

where:

• -root <secroot>

Specifies the directory in which the security configuration will be created. It is not
required that this directory be a full KVROOT, but the directory must exist.

• -external-auth {kerberos} Specifies Kerberos as an external authentication
service. This option is only available in the Oracle NoSQL Database EE version.
If no keytab or credential cache has been specified on the command line, an
interactive version of the securityconfig utility will run.

Using this flag allows Oracle NoSQL Database to generate the security files
needed for Kerberos authentication, based on a standard configuration. Although
not recommended, it is possible to use a non-standard configuration. To do this,
see Manually Registering Oracle NoSQL Database Service Principal

This flag is only permitted when the value of the -store-security flag is specified
as configure or enable.

To remove Kerberos authentication from a running store, set the value of the
userExternalAuth security.xml parameter to NONE.

where -external-auth can have the following flags:

– -admin-principal <kerberos admin principal name>

Specifies the principal used to login to the Kerberos admin interface. This
is required while using kadmin keytab or password to connect to the admin
interface.

– -kadmin-ccache <credential cache file>

Specifies the complete path name to the Kerberos credentials cache file that
should contain a service ticket for the kadmin/ADMINHOST. ADMINHOST is the
fully-qualified hostname of the admin server or kadmin/admin service.

If not specified, the user is prompted to enter the password for principal
while logging to the Kerberos admin interface. This flag cannot be specified
in conjunction with the -kadmin-keytab flag.

– -kadmin-keytab <keytab file>

Specifies the location of a Kerberos keytab file that stores Kerberos admin
user principals and encrypted keys. The security configuration tool will use the
specified keytab file to login to the Kerberos admin interface.

The default location of the keytab file is specified by the Kerberos
configuration file. If the keytab is not specified there, then the system looks
for the file user.home/krb5.keytab.

You need to specify the -admin-principal flag when using keytab to login
to the Kerberos admin, otherwise the correct admin principal will not be
recognized. This flag cannot be specified in conjunction with the -kadmin-
ccache flag.

– -kadmin-path <kadmin utility path>

Chapter 2
Configuring Security with Securityconfig

2-5

Indicates the absolute path of the Kerberos kadmin utility. The default value
is /usr/kerberos/sbin/kadmin.

– -krb-conf <kerberos configuration>

Specifies the location of the Kerberos configuration file that contains the
default realm and KDC information. If not specified, the default value is /etc/
krb5.conf.

– -princ-conf-param <param=value>*

A repeatable argument that allows configuration defaults to be overridden.

Use the krbPrincValidity parameter to specify the expiration date of the
Oracle NoSQL Database Kerberos service principal.

Use the krbPrincPwdExpire parameter to specify the password expiration
date of the Oracle NoSQL Database Kerberos service principal.

Use the krbKeysalt parameter to specify the keysalt list used to generate the
keytab file.

• -secdir <security dir>

Specifies the name of the directory within KVROOT that will hold the security
configuration. This must be specified as a name relative to the specified secroot. If
not specified, the default value is "security".

• -pwdmgr [pwdfile | wallet]

Indicates the password manager mechanism used to hold passwords that are
needed for accessing keystores, etc.

where -pwdmgr can have the following options:

– -pwdmgr pwdfile

Indicates that the password store is a read-protected clear-text password file.
This is the only available option for Oracle NoSQL Database CE deployments.
You can specify an alternate implementation. For more information on pwdfile
manipulation, see Password store file

– -pwdmgr wallet

Specifies Oracle Wallet as the password storage mechanism. This option
is only available in the Oracle NoSQL Database EE version. For more
information on Oracle wallet manipulation, see Oracle Wallet

• -param [client:|ha:|internal:|]<param>=<value>]

A repeatable argument that allows configuration defaults to be overridden. The
value may be either a simple parameter, such as "truststore", or a qualified
parameter such as "client:serverKeyAlias". If specified in qualified form, the
qualifier (for example, "client") names a transport within the security configuration,
and the assignment is specific to that transport. If in simple form, it applies to
either the securityParams structure or to all transports within the file, depending on
the type of parameter.

For more information on configuring security with securityconfig, see Performing a
Secure Oracle NoSQL Database Installation.

For more information on configuring Kerberos with securityconfig, see Kerberos
Authentication Service.

Chapter 2
Configuring Security with Securityconfig

2-6

Adding the security configuration
You can use the config add-security command to add the security configuration you
created earlier:

config add-security
-root <kvroot> [-secdir <security dir>]
[-config <config.xml>]

Note:

When running this command, the securityconfig tool will verify the
existence of the referenced files and will update the specified bootstrap
configuration file to refer to the security configuration. This process is
normally done with the KVStore instance stopped, and must be performed
on each Storage Node of the store.

where:

• -root <kvroot>

A KVStore root directory must be provided as an argument.

• -secdir <security dir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not
specified, the default value is "security".

• -config <config.xml>

Specifies the bootstrap configuration file that is to be updated. This must be
specified as a name relative to the KVROOT. If not specified, the default value is
"config.xml".

When using Kerberos as an external authentication service, you can use the config
add-kerberos command to add the security configuration you created earlier:

config add-kerberos -root <secroot> [-secdir <security dir>]
[-krb-conf <Kerberos configuration>]
[-kadmin-path <kadmin utility path>]
[-instance-name <database instance name>]
[-admin-principal <kerberos admin principal name>]
[-kadmin-keytab <keytab file>]
[-kadmin-ccache <credential cache file>]
[-princ-conf-param <param=value>]*
[-param <param=value>]*

Chapter 2
Configuring Security with Securityconfig

2-7

Verifying the security configuration
You can use the config verify command to verify the consistency and correctness of
a security configuration:

config verify -secdir <security dir>

where:

• -secdir <securitydir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not
specified, the default value is "security".

For example:

security-> config verify -secdir security
Security configuration verification passed.

Updating the security configuration
You can use the config update command to update the security parameters of a
security configuration:

config update -secdir <security dir> [-param <param=value>]*

where:

• -secdir <securitydir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not
specified, the default value is "security".

• -param <param=value*>

List of security parameters to update.

For example:

security-> config update -secdir security -param
clientAuthRequired=false
Security parameters updated.

Showing the security configuration
You can use the config show command to print out all security configuration
information.

config show -secdir <security dir>

where:

Chapter 2
Configuring Security with Securityconfig

2-8

For example:

security-> config show -secdir security
Security parameters:
certMode=shared
internalAuth=ssl
keystore=store.keys
keystorePasswordAlias=keystore
passwordClass=oracle.kv.impl.security.filestore.FileStoreManager
passwordFile=store.passwd
securityEnabled=true
truststore=store.trust

internal Transport parameters:
clientAllowProtocols=TLSv1.2,TLSv1.1,TLSv1
clientAuthRequired=true
clientIdentityAllowed=dnmatch(CN=NoSQL)
clientKeyAlias=shared
serverIdentityAllowed=dnmatch(CN=NoSQL)
serverKeyAlias=shared
transportType=ssl

client Transport parameters:
clientAllowProtocols=TLSv1.2,TLSv1.1,TLSv1
serverIdentityAllowed=dnmatch(CN=NoSQL)
serverKeyAlias=shared
transportType=ssl

ha Transport parameters:
allowProtocols=TLSv1.2,TLSv1.1,TLSv1
clientAuthRequired=true
clientIdentityAllowed=dnmatch(CN=NoSQL)
serverIdentityAllowed=dnmatch(CN=NoSQL)
serverKeyAlias=shared
transportType=ssl

Keystore:
security/store.keys

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

shared, Jun 1, 2016, PrivateKeyEntry,
Certificate fingerprint (SHA1): A6:54:9C:42:13:66:DC:E9:A8:62:DB:
A8:87:FD:DE:23:F7:AD:11:FB

Keystore:
security/store.trust

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

Chapter 2
Configuring Security with Securityconfig

2-9

mykey, Jun 1, 2016, trustedCertEntry,
Certificate fingerprint (SHA1):A6:54:9C:42:13:66:DC:E9:A8:62:DB:
A8:87:FD:DE:23:F7:AD:11:FB

• -secdir <securitydir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not
specified, the default value is "security".

Removing the security configuration
If you want to disable security for some reason in an existing installation, you can use
the config remove-security command:

config remove-security -root <kvroot> [-config >config.xml>]

Note:

When running this command, the securityconfig tool will update the
specified bootstrap configuration file to refer to the security configuration.
This process is normally done with the KVStore instance stopped, and must
be performed on each Storage Node of the store.

where:

• -root <kvroot>

A KVStore root directory must be provided as an argument.

• -config <config.xml>

Specifies the bootstrap configuration file that is to be updated. This must be
specified as a name relative to the KVROOT. If not specified, the default value is
"config.xml".

For example:

security-> config remove-security -secdir security
Configuration updated.

Merging truststore configuration
If you want to merge truststore entries from one security configuration into another
security configuration use the config merge-trust command. This command is
helpful when performing security maintenance, particularly when you need to update
the SSL key/certificate. See Guidelines for Updating SSL Keys and Certificates

config merge-trust
-root <secroot> [-secdir <security dir>]
-source-root <secroot> [-source-secdir <security dir>]

Chapter 2
Configuring Security with Securityconfig

2-10

Note:

When running this command, the securityconfig tool will verify the
existence of the referenced files and will combine trust entries from the
source security configuration into the primary security configuration.

where:

• -root <secroot>

Specifies the directory that contains the security configuration that will be updated.
It is not required that this directory be a full KVROOT, but the directory must exist
and contain an existing security configuration.

• -secdir <security dir>

Specifies the name of the directory within the secroot that holds the security
configuration. This must be specified as a name relative to the secroot. If not
specified, the default value is "security".

• -source-root <secroot>

Specifies the directory that contains the security configuration that will provide new
trust information. It is not required that this directory be a full KVROOT, but the
directory must exist and must contain an existing security configuration.

• -source-secdir <security dir>

Specifies the name of the security directory within the source secroot that will
provide new trust information. If not specified, the default value is "security".

Chapter 2
Configuring Security with Securityconfig

2-11

3
Performing a Secure Oracle NoSQL
Database Installation

It is possible to add security to a new or an existing Oracle NoSQL Database
installation.

To add security to a new or an existing Oracle NoSQL Database single host
deployment, see the next section. For multiple node deployments, see Multiple Node
Secure Deployment.

If you want to use Kerberos as an external authentication service, you should instead
complete the steps under Performing a Secure Oracle NoSQL Database Installation
with Kerberos.

Single Node Secure Deployment
The following examples describe how to add security to a new or an existing Oracle
NoSQL Database single host deployment.

Adding Security to a New Installation
To install Oracle NoSQL Database securely:

1. Run the makebootconfig utility with the -store-security option to set up the
basic store configuration with security:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \
-host node01 -harange 5010,5020 \
-store-security configure -pwdmgr pwdfile -capacity 1

2. In this example, -store-security configure is used, so the security
configuration utility is run as part of the makebootconfig process and you are
prompted for a password to use for your keystore file:

Enter a password for the Java KeyStore:

3. Enter a password for your store and then reenter it for verification. In this case, the
password file is used, and the securityconfig tool will automatically generate the
following security related files:

Enter a password for the Java KeyStore: ***********
Re-enter the KeyStore password for verification: ***********
Created files:
security/client.trust
security/client.security
security/store.keys

3-1

security/store.trust
security/store.passwd
security/security.xml

Note:

In a multi-host store environment, the security directory and all files
contained in it should be copied to each server that will host a Storage
Node.

4. Start the Storage Node Agent (SNA):

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

When a newly created store with a secure configuration is first started, there are
no user definitions available against which to authenticate access. In order to
reduce risk of unauthorized access, an admin will only allow you to connect to
it from the host on which it is running. This security measure is not a complete
safeguard against unauthorized access. It is important that you do not provide
local access to machines running KVStore. In addition, you should perform steps
5, 6 and 7 soon after this step in order to minimize the time period in which the
admin might be accessible without full authentication. For more information on
maintaining a secure store see Guidelines for Securing the Configuration.

5. Start runadmin in security mode on the KVStore server host (node01). To do this,
use the following command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in admin as anonymous

6. Use the configure -name command to specify the name of the KVStore that you
want to configure:

kv-> configure -name mystore
Store configured: mystore

Chapter 3
Single Node Secure Deployment

3-2

After naming the KVStore, you can create at least one zone.

kv-> plan deploy-zone -name zone_name -rf 1 -type primary -wait

Every KVStore has an administration database. You must deploy the Storage
Node first and then deploy an Administration process on the same node to
continue configuring the database.

When you deploy the node, provide the zone ID, the node's network name, and its
registry port number.

kv-> plan deploy-sn -znname zone_name -host hostname -port 5000
-wait

Having deployed the node, create the Admin process on the node that you just
deployed, using the deploy-admin command. This command requires the Storage
Node ID and an optional plan name.

Note:

Note: You can obtain the Storage Node ID using the show topology
command. See show topology for more details.

kv-> plan deploy-admin -sn sn1 -wait

The final step in your configuration process is to create Replication Nodes on
every node in your store. You do this using the topology create and plan
deploy-topology commands.

kv-> topology create -name storeTopo -pool AllStorageNodes -
partitions 150
kv-> plan deploy-topology -name storeTopo -wait

Your store is fully installed and configured.

7. Create an admin user. The password should comply with the security policies
described in Password Complexity Policies. In this case, user root is defined:

kv-> plan create-user -name root -admin -wait
Enter the new password: ********
Re-enter the new password: ********
Executed plan 6, waiting for completion...
Plan 6 ended successfully

For more information on user creation and administration, see User Management.

8. Create a new password file to store the credentials needed to allow clients to login
as the admin user (root):

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig \

Chapter 3
Single Node Secure Deployment

3-3

pwdfile create -file KVROOT/security/login.passwd
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig pwdfile secret \
-file KVROOT/security/login.passwd -set -alias root
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created

Note:

The password must match the one set for the admin in the previous step.

For more information on user creation and administration, see User Management.

9. At this point, it is possible to connect to the store as the root user. To login,
you can use either the -username <user> runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, a security file (mylogin.txt) is used. To login, use the following
command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 \
-host localhost -security mylogin
Logged in admin as root

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.pwdfile.file=KVROOT/security/login.passwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

Note that the hostname verifier provides a way for Oracle NoSQL Database clients
to specify the name that they expect the Oracle NoSQL Database server hosts to
use during SSL handshake (when they attempt to connect server using SSL/TLS).

For a secure store using the standard configuration, server hosts will be required
to authenticate themselves, and clients will use their SSL truststore to confirm that
the server authenticates with a trusted identity. The hostname verifier provides the
additional assurance that the server host authenticates using the expected identity,
not just any trusted identity.

This additional check is desirable if either the truststore contains multiple
certificates or if the certificate it contains is a CA certificate rather than a self-
signed or leaf certificate. In both those cases, the truststore can vouch for multiple
identities. The host verifier allows the user to specify the specific identity that is
expected.

Chapter 3
Single Node Secure Deployment

3-4

The only hostname verifier currently supported is the dnmatch verifier, which
must be specified in the form of dnmatch(distinguished-name), where
distinguished name must be the NoSQL DB server certificate's distinguished
name. If you are using the default security configuration, then the hostname
verifier in the example specifies that the server should authenticate with a
certificate whose distinguished name is CN=NoSQL. This is the name used in the
server certificates that the system generates by default.

The verification is performed by checking if the distinguished name of server
certificate match the specified dnmatch expressions, which uses regular
expressions as specified by java.util.regex.Pattern. The distinguished
name specified in dnmatch must be in RFC 1779 format, using the exact order,
capitalization, and spaces of the attribute value. RFC 1779 defines well-known
attributes for distinguished names, including CN, L, ST O, OU, C and STREET. If
the distinguished name of the external certificate contains non-standard attributes,
for example, EMAILADDRESS, then the expression used for dnmatch must
replace these attribute names with an OID that is valid in RFC 1779 form, or
use special constructs of regular expression to skip checking these attributes. If
you are using a wild card to match a certificate with a non-standard distinguished
name attribute, the dnmatch expression needs to match the attribute name in its
OID format properly. See User Login.

Adding Security to an Existing Installation
To add security to an existing Oracle NoSQL Database installation:

1. Shut down the KVStore instance:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop \
-root KVROOT

2. Run the securityconfig utility to set up the basic store configuration with security:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig

3. Use the config create command with the -pwdmgr option to specify the
mechanism used to hold passwords that is needed for accessing the stores. In this
case, Oracle Wallet is used. Oracle Wallet is only available in the Oracle NoSQL
Database EE version. CE deployments should use the pwdfile option instead.

config create -pwdmgr wallet -root KVROOT
Enter a password for the Java KeyStore:

4. Enter a password for your store and then reenter it for verification. The
configuration tool will automatically generate some security related files:

Enter a password for the Java KeyStore: ***********
Re-enter the KeyStore password for verification: ***********
Created files:
security/security.xml
security/store.keys
security/store.trust

Chapter 3
Single Node Secure Deployment

3-5

security/store.wallet/cwallet.sso
security/client.security
security/client.trust

Note:

In a multi-host store environment, the security directory and all files
contained in it should be copied to each server that will host a Storage
Node.

5. Use the config add-security command to add the security configuration you just
created:

security-> config add-security -root KVROOT
-secdir security -config config.xml
Configuration updated.

Note:

When running this command, the securityconfig tool will verify the
existence of the referenced files and will update the specified bootstrap
configuration file to refer to the security configuration. This process
is normally done with the KVStore instance stopped, and must be
performed on each Storage Node of the store.

6. Start the Storage Node Agent (SNA):

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT &

7. Start runadmin in security mode on the KVStore server host (node01). To do this,
use the following command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in admin as anonymous.

Chapter 3
Single Node Secure Deployment

3-6

This command sets SSL as a connection method and names a copy of the
generated truststore file (client.security). For more information on SSL properties,
see SSL communication properties.

8. Create an admin user. The password should comply with the security policies
described in Password Complexity Policies. In this case, user root is defined:

kv-> plan create-user -name root -admin -wait
Enter the new password: ********
Re-enter the new password: ********
Executed plan 8, waiting for completion...
Plan 8 ended successfully

For more information on user creation and administration, see User Management.

9. Create a new wallet file to store the credentials needed to allow clients to login as
the admin user (root):

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig \
wallet create -dir KVROOT/security/login.wallet
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/login.wallet -set -alias root
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created

Note:

The password must match the one set for the admin in the previous step.

For more information on user creation and administration, see User Management.

10. At this point, it is possible to connect to the store as the root user. To login,
you can use either the -username <user> runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, the oracle.kv.security property is used. To login use the following
command:

java -Xmx64m -Xms64m \
-Doracle.kv.security=mylogin \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as root

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=KVROOT/security/login.wallet
oracle.kv.transport=ssl

Chapter 3
Single Node Secure Deployment

3-7

oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

For more information, see User Login.

Multiple Node Secure Deployment
The following examples describe how to add security to a new or to an existing Oracle
NoSQL Database multiple host deployment.

Adding Security to a New Installation
To install an Oracle NoSQL Database three node, capacity=3 (3x3) secure
deployment:

1. Run the makebootconfig utility with the -store-security option to set up the
basic store configuration with security:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \
-host node01 -harange 5010,5020 \
-store-security configure -pwdmgr wallet -capacity 3

2. In this example, -store-security configure is used, so the security
configuration utility is run as part of the makebootconfig process and you are
prompted for a password to use for your keystore file:

Enter a password for the Java KeyStore:

3. Enter a password for your store and then reenter it for verification. For example,
using wallet, the securityconfig tool will automatically generate the following
security related files:

Enter a password for the Java KeyStore: ***********
Re-enter the KeyStore password for verification: ***********
Created files:
security/security.xml
security/store.keys
security/store.trust
security/store.wallet/cwallet.sso
security/client.security
security/client.trust

4. In a multi-host store environment, the security directory and all files contained in it
should be copied from the first node to each server that will host a Storage Node,
to setup internal cluster authentication. For example, the following commands

Chapter 3
Multiple Node Secure Deployment

3-8

assume that the different nodes are visible and accessible on the current node
(node01):

cp -R node01/KVROOT/security node02/KVROOT/
cp -R node01/KVROOT/security node03/KVROOT/

Note:

You may need to use a remote copying command, like scp, to do the
copying if the files for the different nodes are not visible on the current
node.

5. Enable security on the other two nodes using the -store-security enable
command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT \
-host node02 \
-port 6000 \
-harange 6010,6020 \
-capacity 3 \
-store-security enable \
-pwdmgr wallet

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT \
-host node03 \
-port 7000 \
-harange 7010,7020 \
-capacity 3 \
-store-security enable \
-pwdmgr wallet

6. Start the Storage Node Agent (SNA) on each node:

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

Chapter 3
Multiple Node Secure Deployment

3-9

7. Start runadmin in security mode on the KVStore server host (node01). To do this,
use the following command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in admin as anonymous

8. Use the configure -name command to specify the name of the KVStore that you
want to configure:

kv-> configure -name mystore
Store configured: mystore

9. Create an admin user. The password should comply with the security policies
described in Password Complexity Policies. In this case, user root is defined:

kv-> plan create-user -name root -admin -wait
Enter the new password: ********
Re-enter the new password: ********
Executed plan 6, waiting for completion...
Plan 6 ended successfully

For more information on user creation and administration, see User Management.

10. Create the wallet to enable client credentials for the admin user (root):

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig \
wallet create -dir KVROOT/security/login.wallet
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/login.wallet -set -alias root
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created

Note:

The password must match the one set for the admin in the previous step.

11. At this point, it is possible to connect to the store as the root user. To login,
you can use either the -username <user> runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, a security file (adminlogin.txt) is used. To login, use the following
command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 \

Chapter 3
Multiple Node Secure Deployment

3-10

-host localhost -security adminlogin
Logged in admin as root

The file adminlogin.txt should be a copy of the client.security file with
additional properties settings for authentication. The file would then contain
content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=KVROOT/security/login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

For more information, see User Login.

12. Once logged in as admin, you can create some users:

kv-> plan create-user -name user1 -wait
Enter the new password: ********
Re-enter the new password: ********
Executed plan 7, waiting for completion...
Plan 7 ended successfully

kv-> plan create-user -name user2 -wait
Enter the new password: ********
Re-enter the new password: ********
Executed plan 8, waiting for completion...
Plan 8 ended successfully

13. Create the wallet to enable client credentials for each user. Typically you will reuse
this wallet for all your regular users:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig \
wallet create -dir KVROOT/security/users.wallet
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/users.wallet -set -alias user1
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/users.wallet -set -alias user2
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created

Chapter 3
Multiple Node Secure Deployment

3-11

Note:

Each password must match the one set for each user in the previous
step. This wallet is independent from the admin one. It is possible to
store admin/user passwords using the same wallet.

14. At this point, it is possible to connect to the store as a user. To login,
you can use either the -username <user> runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, a security file (userlogin.txt) is used. To login, use the following
command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 \
-host localhost -security userlogin
Logged in admin as user1

The file userlogin.txt should be a copy of the client.security file with
additional properties settings for authentication. The file would then contain
content like this:

oracle.kv.auth.username=user1
oracle.kv.auth.wallet.dir=KVROOT/security/users.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

For more information, see User Login.

Adding Security to an Existing Installation
To add security to an existing three node, capacity=3 (3x3) Oracle NoSQL Database
installation:

1. Shut down the KVStore instance on each node:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop \
-root KVROOT

2. Run the securityconfig utility to set up the basic store configuration with security:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig

Chapter 3
Multiple Node Secure Deployment

3-12

3. Use the config create command with the -pwdmgr option to specify the
mechanism used to hold passwords that is needed for accessing the stores. In
this case, Oracle Wallet is used:

config create -pwdmgr wallet -root KVROOT
Enter a password for the Java KeyStore:

4. Enter a password for your store and then reenter it for verification. The
configuration tool will automatically generate some security related files:

Enter a password for the Java KeyStore: ***********
Re-enter the KeyStore password for verification: ***********
Created files:
security/security.xml
security/store.keys
security/store.trust
security/store.wallet/cwallet.sso
security/client.security
security/client.trust

5. In a multi-host store environment, the security directory and all files contained in it
should be copied from the first node to each server that will host a Storage Node,
to setup internal cluster authentication. For example, the following commands
assume that the different nodes are visible and accessible on the current node
(node01):

cp -R node01/KVROOT/security node02/KVROOT/
cp -R node01/KVROOT/security node03/KVROOT/

Note:

You may need to use a remote copying command, like scp, to do the
copying if the files for the different nodes are not visible on the current
node.

6. Use the config add-security command on each node to add the security
configuration you just created:

security-> config add-security -root KVROOT -secdir security

Note:

When running this command, the securityconfig tool will verify the
existence of the referenced files and will update the specified bootstrap
configuration file to refer to the security configuration. This process
is normally done with the KVStore instance stopped, and must be
performed on each Storage Node of the store.

7. Start the Storage Node Agent (SNA) on each node:

Chapter 3
Multiple Node Secure Deployment

3-13

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

8. Start runadmin in security mode on the KVStore server host (node01). To do this,
use the following command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security

This command sets SSL as a connection method and names a copy of the
generated truststore file (client.security). For more information on SSL properties,
see SSL communication properties.

9. Create an admin user. The password should comply with the security policies
described in Password Complexity Policies. In this case, user root is defined:

kv-> plan create-user -name root -admin -wait
Enter the new password: ********
Re-enter the new password: ********
Executed plan 8, waiting for completion...
Plan 8 ended successfully

For more information on user creation and administration, see User Management.

10. Create the wallet to enable client credentials for the admin user (root):

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig \
wallet create -dir KVROOT/security/login.wallet
java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/login.wallet -set -alias root
Enter the secret value to store: ********
Re-enter the secret value for verification: ********
Secret created

Note:

The password must match the one set for the admin in the previous step.

Chapter 3
Multiple Node Secure Deployment

3-14

11. At this point, it is possible to connect to the store as the root user. To login,
you can use either the -username <user> runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, the oracle.kv.security property is used. To login use the following
command:

java -Xmx64m -Xms64m \
-Doracle.kv.security=adminlogin \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as root >

The file adminlogin.txt should be a copy of the client.security file with
additional properties settings for authentication. The file would then contain
content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=KVROOT/security/login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

For more information, see User Login.

Chapter 3
Multiple Node Secure Deployment

3-15

4
Kerberos Authentication Service

Existing or new installations of Oracle NoSQL Database can be configured to use
Kerberos as an external authentication service. Kerberos is an industry standard
authentication protocol for large client/server systems.

Setting up and configuring a Kerberos deployment is beyond the scope of this chapter.
This chapter assumes that you have a running Key Distribution Center (KDC) and
realm setup.

This chapter first describes some Kerberos concepts and then shows you how to
configure existing or new installations of Oracle NoSQL Database to use Kerberos as
an external authentication service.

Installation Prerequisites
Make sure that you have Kerberos V5 installed. Oracle NoSQL Database is
compatible and tested with MIT Kerberos V5.

If your Kerberos installation/keytab is configured to use a strong encryption type -
for example, AES with 256-bit keys - the JCE Unlimited Strength Jurisdiction Policy
Files must be obtained and installed in the JDK/JRE. Be aware that these files might
already exist in your installation. If so, they must be updated.

Kerberos Principal
A Kerberos Principal represents a unique identity in a Kerberos system to which
Kerberos can assign tickets to access Kerberos-aware services. A service principal
should be created for each Storage Node. Oracle NoSQL Database service principals
follow this naming format: <service_name>/instance@REALM.

where:

• service_name

Is a case-sensitive string that represents the Oracle NoSQL Database service.
The default value is oraclenosql.

All Oracle NoSQL Database service principals should use the same service name
across different Storage Nodes.

• instance

Represents the service principal instance name. It is recommended to use the
fully qualified domain name (FQDN) of the Storage Node where Oracle NoSQL
Database is running.

If instance is not specified, the default principal will be created as
oraclenosql@REALM.

• REALM

4-1

Represents the Kerberos realm name where the database service is registered. It
must be specified in UPPERCASE and is typically the DNS domain name.

If no realm is given, the service principal is assumed to belong to the default
realm, as configured in the Kerberos configuration file.

Keytabs
A keytab is a file containing pairs of Kerberos principals and an encrypted copy of that
principal's key.

Keytabs are used to authenticate a principal on a host to Kerberos.

Note:

Because having access to the keytab file for a principal allows one to act as
that principal, access to the keytab files should be tightly secured.

Kadmin and kadmin.local
Kadmin and kadmin.local are command-line interfaces to the Kerberos administration
system.

In general, both interfaces provide the same functionality. When creating Kerberos
principals and keytabs, you can use kadmin.local or kadmin depending on your
access and account.

For more information, see the MIT Kerberos documentation.

Kerberos Security Properties
To set up the Kerberos security properties, you can set them in a login file or through
the KVStoreConfig class.

The minimal configuration needed to set up Kerberos includes the following properties:

• oracle.kv.auth.username

Specifies the Kerberos user name in Oracle NoSQL Database. It must match the
principal name in KDC and match the Kerberos user account name created in the
database. The client will use the value of this option to create the credential which
is used in the client-server authentication. If the short name of principal is specified
in this field, you must also specify oracle.kv.auth.kerberos.realm.

If KerberosCredentials is not used, this field has to be specified in the login file or
security properties field of KVStoreConfig.

• oracle.kv.auth.kerberos.services

Specifies the Kerberos principals for services associated with each helper host.
Setting this property is required if, as recommended, each host uses a different
principal that includes its own principal name. All principals should specify the
same service and realm. If this property is not set, the client will use oraclenosql
as the principal name for services on all helper hosts.

Chapter 4
Keytabs

4-2

Each entry should specify the helper host name followed by the Kerberos
service name, and optionally an instance name and realm name. The entries are
separated by commas, ignoring spaces. If any entry does not specify a realm,
each entry will use the default realm specified in Kerberos configuration file. If any
entry specifies a realm name, then all entries must specify the same one. The
syntax is:

host:service[:instance[@realm]][, host:service[:instance[@realm]]]*

For example:

host37:nosql/host37@EXAMPLE.COM,
host53:nosql/host53@EXAMPLE.COM

• oracle.kv.auth.kerberos.keytab

The default location of the keytab file is specified by the Kerberos configuration
file. If the keytab is not specified there, then the system looks for the file
user.home/krb5.keytab.

• oracle.kv.auth.kerberos.realm

Specifies the Kerberos realm for the user principal if using a short name to specify
the client login principal.

• oracle.kv.auth.kerberos.ccache

Specifies the path of the Kerberos ticket cache. This field is optional. The default
ticket cache is "/tmp/krbcc_<uid>". If the credential cache is not found, the system
will look for the file user.home/krb5cc_user.name. If you want to use your own
ticket cache, set this field to the path of the ticket cache.

• oracle.kv.auth.kerberos.mutualAuth

Specifies whether the client should use mutual authentication. If this value is set to
true, the client will authenticate the server's identity in the login results.

The default value is false, so mutual authentication is disabled.

Setting Security Properties in a security login file
To set the properties in a security file, specify the location of the login file by setting the
oracle.kv.security Java system property. For example:

java -Doracle.kv.security=kerberoslogin.txt HelloWorld

where the file kerberoslogin.txt should be a copy of the client.security file with
additional properties settings for Kerberos authentication. The file would then contain
content like this:

oracle.kv.auth.username=krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.keytab=/kerberos/krb5.keytab
oracle.kv.auth.kerberos.services=
 node01:oraclenosql/node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

Chapter 4
Kerberos Security Properties

4-3

You can specify the location of the Kerberos configuration file by specifying the
java.security.krb5.conf Java system property. For example:

java -Djava.security.krb5.conf=/kerberos/krb5.conf \
-Doracle.kv.security=kerberoslogin.txt HelloWorld

You can also set the default realm using java.security.krb5.realm. To set the
default KDC, use java.security.krb5.kdc.

Note:

Set the Java system properties for both the realm and the KDC or neither of
them. These properties override the default realm and KDC values specified
in the krb5.conf file.

Setting Security Properties through KVStoreConfig
You can also set security properties using KVStoreConfig. For example:

Properties securityProps = new Properties();
securityProps.setProperty("oracle.kv.auth.username",
 "krbuser@EXAMPLE.COM");
securityProps.setProperty("oracle.kv.auth.external.mechanism",
 "kerberos");
securityProps.setProperty("oracle.kv.auth.kerberos.keytab",
 "/kerberos/krb5.keytab");
securityProps.setProperty("oracle.kv.auth.kerberos.services",
 "node01:oraclenosql/node01.example.com@EXAMPLE.COM");
securityProps.setProperty("oracle.kv.auth.kerberos.ccache",
 "/kerberos/krbcc_501");
securityProps.setProperty("oracle.kv.auth.kerberos.mutualAuth",
 "false");

KVStoreConfig kvConfig = new KVStoreConfig("mystore", "node01:5000");
kvConfig.setSecurityProperties(securityProps);

Using Security Properties to Log In
To log in to Oracle NoSQL Database using security properties, you can use credential
cache, a keytab file or the principal password.

Note:

When connecting through the Admin CLI, if credential cache or keytabs login
attempts fail, Oracle NoSQL Database prompts for the principal's password.

Chapter 4
Kerberos Security Properties

4-4

Using Credential Cache

To login to Oracle NoSQL Database using credential cache:

1. Run the kinit Kerberos tool to save the credential in the credential cache.

For example, to authenticate the client principal krbuser@EXAMPLE.COM to KDC:

kinit krbuser@EXAMPLE.COM
Password for krbuser@EXAMPLE.COM: ********

The granted ticket-granting ticket (TGT) will be saved in the default credential
cache for later authentication.

2. You can also generate a separate cache. To do this run the following command:

kinit krbuser@EXAMPLE.COM -c krbcc_krbuser

3. Perform the login by specifying oracle.kv.auth.kerberos.ccache in a security
login file or through KVStoreConfig. In this case, a security login file is used:

java -Xmx64m -Xms64m \
-Doracle.kv.security=mylogin.txt \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as krbuser

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content
like this:

oracle.kv.auth.kerberos.ccache=/kerberos/krbcc_krbuser
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=
 node01:oraclenosql/node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

In this case, Oracle NoSQL Database reads the credential cache and logins to
Kerberos without needing a password.

Using credential cache
To login to Oracle NoSQL Database using credential cache:

1. Run the kinit Kerberos tool to save the credential in the credential cache.

For example, to authenticate the client principal krbuser@EXAMPLE.COM to
KDC:

kinit krbuser@EXAMPLE.COM
Password for krbuser@EXAMPLE.COM: ********

Chapter 4
Kerberos Security Properties

4-5

The granted ticket-granting ticket (TGT) will be saved in the default credential
cache for later authentication.

2. You can also generate a separate cache. To do this run the following command:

kinit krbuser@EXAMPLE.COM -c krbcc_krbuser

3. Perform the login by specifying oracle.kv.auth.kerberos.ccache in a security
login file or through KVStoreConfig. In this case, a security login file is used:

java -Xmx64m -Xms64m \
-Doracle.kv.security=mylogin.txt \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as krbuser

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content
like this:

oracle.kv.auth.kerberos.ccache=/kerberos/krbcc_krbuser
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=
 node01:oraclenosql/node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

In this case, Oracle NoSQL Database reads the credential cache and logins to
Kerberos without needing a password.

Using a keytab
To login to Oracle NoSQL Database using a keytab:

1. Run the kinit Kerberos tool to extract the keytab:

kadmin.local: ktadd -k /tmp/mykeytab krbuser@EXAMPLE.COM
Entry for principal krbuser@EXAMPLE.COM added to
keytab WRFILE:/tmp/mykeytab.

2. Copy the keytab file to any client machine that will use the
krbuser@EXAMPLE.COM principal to login automatically to Oracle NoSQL
Database.

3. Set the Kerberos security properties, including the keytab file location, on each
client by specifying them in a security file or through the KVStoreConfig class.

In this example, a security file (login) is used. To login, specify the keytab location
by using oracle.kv.auth.kerberos.keytab. You must also specify the username
using oracle.kv.auth.username. For example, the login file would then contain
content like this:

oracle.kv.auth.kerberos.keytab = /kerberos/mykeytab
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=

Chapter 4
Kerberos Security Properties

4-6

 node01:oraclenosql/node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

In this case, Oracle NoSQL Database reads the keytab and logins to Kerberos
without needing a password.

For more information on Kerberos security properties, see Kerberos Security
Properties.

JAAS programming framework integration
Oracle NoSQL Database allows client applications to integrate with programs using
the Java Authentication and Authorization Service (JAAS) programming framework.

Use the oracle.kv.jaas.login.conf.entryName security property to specify the JAAS
login configuration.

Note:

If a JAAS login configuration file is set, you cannot specify keytab or
credential cache in security properties.

A login configuration file would then contain content like this:

oraclenosql {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab=test.keytab
 storeKey=true
 principal=krbuser
 doNotPrompt=false;
};

where oraclenosql is the value for oracle.kv.jaas.login.conf.entryName. This
configuration file can be used for Kerberos login.

In the following example, assume the client application has already obtained the
Kerberos credentials for user krbuser before it tries to connect to Oracle NoSQL
Database. You do not have to specify security properties in the login file. You can
specify the credentials using the Subject.doAs method:

final LoginContext lc =
 new LoginContext("oraclenosql", new TextCallbackHandler());

// Attempt authentication
lc.login();

// Get the authenticated Subject
final Subject subj = lc.getSubject();

// Specify configuration

Chapter 4
JAAS programming framework integration

4-7

final KVStoreConfig kvConfig =
 new KVStoreConfig("mystore", "nosql1:5000");

// Set security properties SSL needed
final Properties securityProps = new Properties();
securityProps.setProperty(KVSecurityConstants.TRANSPORT_PROPERTY,
 KVSecurityConstants.SSL_TRANSPORT_NAME);
securityProps.setProperty(
 KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY,
 trustStore);
kvConfig.setSecurityProperties(securityProps);

// Set Kerberos properties
final Properties krbProperties = new Properties();

// Set service principal associated with helper host
krbProperties.setProperty(KVSecurityConstants.AUTH_KRB_SERVICES_PROPERTY
,
 hostName + ":" + servicePrincipal);

// Set default realm name, because the short name
// for user principal is used.
krbProperties.setProperty(KVSecurityConstants.AUTH_KRB_REALM_PROPERTY,
 "EXAMPLE.COM");

// Specify Kerberos principal
final KerberosCredentials krbCreds =
 new KerberosCredentials("krbuser", krbProperties);

// Get store using credentials in subject
KVStore kvstore = Subject.doAs(
 subj, new PrivilegedExceptionAction<KVStore>() {
 @Override
 public KVStore run() throws Exception {
 return KVStoreFactory.getStore(kvConfig, krbCreds, null);
 }
 });

In this case, a KerberosCredentials instance is used to set the security properties
needed to retrieve the credentials of the specified user principal from KDC.

Performing a Secure Oracle NoSQL Database Installation
with Kerberos

It is possible to add Kerberos to a new or an existing Oracle NoSQL Database secure
installation.

At a high-level, to configure a Oracle NoSQL Database installation to use Kerberos,
you first need to register Oracle NoSQL Database as a service principal in KDC and
extract corresponding keytab files on each database server node. Then, to allow client
login, a user principal must be added in KDC and a mapped user account with the
same name of principal needs to be created in the database. Finally, login can be
performed through the CLI or the kvclient driver.

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

4-8

Adding Kerberos to a New Installation
To install Oracle NoSQL Database with Kerberos authentication:

Note:

The following example assumes you have configured an admin/admin
principal on the KDC and that you distributed its keytab (kadm5.keytab)
to the Oracle NoSQL Database Storage Nodes. For more information, see
Configuring the Kerberos Administrative Utility.

1. Run the makebootconfig utility with the -store-security configure and -
external-auth kerberos flags to set up the basic store configuration with
Kerberos security:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \
-host node01 -harange 5010,5020 \
-capacity 3 \
-store-security configure \
-external-auth kerberos \
-instance-name node01.example.com \
-kadmin-keytab /kerberos/kadm5.keytab \
-admin-principal admin/admin

2. In this example, -store-security configure is used, so the security
configuration utility is run as part of the makebootconfig process and you are
prompted for a password to use for your keystore file:

Enter a password for the Java KeyStore:

3. Enter a password for your store and then reenter it for verification. In this case,
Oracle Wallet is used. Oracle Wallet and Kerberos support are only available in
the Oracle NoSQL Database EE version.

Enter a password for the Java KeyStore: ***********
Re-enter the KeyStore password for verification: ***********

4. In this case, -kadmin-keytab points to the admin/admin keytab file you distributed
earlier. Once authenticated, the configuration tool will automatically generate some
security related files:

Login Kerberos admin via
keytab /kerberos/kadm5.keytab
Adding principal oraclenosql/node01.example.com@EXAMPLE.COM
Authenticating as principal admin/admin with
keytab /kerberos/kadm5.keytab
Extracting keytab KVROOT/security/store.keytab
Created files:

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

4-9

security/security.xml
security/store.keys
security/store.trust
security/store.wallet/cwallet.sso
security/store.keytab
security/client.security
security/client.trust

5. In a multi-host store environment, the security directory and all files contained in it
should be copied from the first node to each server that will host a Storage Node,
to setup internal cluster authentication. For example, the following commands
assume that the different nodes are visible and accessible on the current node
(node01):

cp -R node01/KVROOT/security node02/KVROOT/
cp -R node01/KVROOT/security node03/KVROOT/

Note:

You may need to use a remote copying command, like Secure Copy
Protocol (SCP), to do the copying if the files for the different nodes are
not visible on the current node.

6. Run makebootconfig on the other two nodes:

• Add Kerberos and create their individual service principal and keytab:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 6000 \
-host node02 -harange 6010,6020 \
-capacity 3 \
-store-security configure \
-external-auth kerberos \
-instance-name node02.example.com \
-kadmin-keytab /kerberos/kadm5.keytab \
-admin-principal admin/admin

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 7000 \
-host node03 -harange 7010,7020 \
-capacity 3 \
-store-security configure \
-external-auth kerberos \
-instance-name node03.example.com \
-kadmin-keytab /kerberos/kadm5.keytab \
-admin-principal admin/admin

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

4-10

Note:

The service principal name of node2 and node3 are using
the same service name "oraclenosql", but different instance
names. Their keytab files are different, which contains the key
for principal "oraclenosql/node2.example.com" and "oraclenosql/
node3.example.com" respectively.

• To enable Kerberos authentication if the store is using the same service
principal on every node:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 6000 \
-host node02 -harange 6010,6020 \
-capacity 3 \
-store-security enable

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 6000 \
-host node03 -harange 6010,6020 \
-capacity 3 \
-store-security enable

Note:

The service principal created in step one is "oraclenosql/
node01.example.com". The instance name can be replaced with
any more general one like "nosql". In above example, node02 and
node03 are all using the same service principal and keytab file
without creating new one individually.

7. Start the Storage Node Agent (SNA) on each node:

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

When a newly created store with a secure configuration is first started, there are
no user definitions available against which to authenticate access. In order to

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

4-11

reduce risk of unauthorized access, an admin will only allow you to connect to
it from the host on which it is running. This security measure is not a complete
safeguard against unauthorized access. It is important that you do not provide
local access to machines running KVStore. In addition, you should perform the
following steps soon after this step in order to minimize the time period in which
the admin might be accessible without full authentication. For more information on
maintaining a secure store see Guidelines for Securing the Configuration.

8. Start runadmin in security mode on the KVStore server host (node01). To do this,
use the following command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in admin as anonymous

9. Use the configure -name command to specify the name of the KVStore that you
want to configure:

kv-> configure -name mystore
Store configured: mystore

10. Register the user principal on the KDC. To do this, use kadmin or kadmin.local:

kadmin.local: addprinc krbuser@EXAMPLE.COM
Enter password for principal: "krbuser@EXAMPLE.COM": ***********
Re-enter password for principal: "krbuser@EXAMPLE.COM": **********

11. After user principal is registered on KDC, create the user in Oracle NoSQL
Database. The username needs to match the full principal name in the KDC
(includes realm name). In this case, user krbuser is defined:

kv-> execute 'CREATE USER "krbuser@EXAMPLE.COM" IDENTIFIED
EXTERNALLY'

For more information on user creation and administration, see User Management.

12. At this point, it is possible to connect to the store as the krbuser. To login, you can
use credential cache, a keytab file or enter the principal password.

In this example, a keytab file is used. To do this, first extract the keytab of principal
krbuser@EXAMPLE.COM on the KDC host by using kadmin.local.

kadmin.local: ktadd -k /tmp/mykeytab krbuser@EXAMPLE.COM
Entry for principal krbuser@EXAMPLE.COM added to
keytab WRFILE:/tmp/mykeytab.

13. Copy the keytab file to client machines that will use the krbuser@EXAMPLE.COM
principal to login automatically to Oracle NoSQL Database.

14. Set the Kerberos security properties, including the keytab file location, on each
client by specifying them in a security file or through the KVStoreConfig class.

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

4-12

In this example, a security file (mylogin.txt) is used. To login, specify the file
location by using the oracle.kv.security property. For example:

java -Xmx64m -Xms64m \
-Doracle.kv.security=mylogin.txt \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as krbuser

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content
like this:

oracle.kv.auth.kerberos.keytab = kerberos/mykeytab
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=
 node01:oraclenosql/node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

In this case, Oracle NoSQL Database reads the keytab and logins to Kerberos
without needing a password.

For more information on Kerberos security properties, see Kerberos Security
Properties.

Adding Kerberos to an Existing Secure Installation
To add Kerberos to an existing Oracle NoSQL Database secure installation:

Note:

The following example assumes you have configured an admin/admin
principal on the KDC and that you distributed its keytab (kadm5.keytab)
to the Oracle NoSQL Database Storage Nodes. For more information, see
Configuring the Kerberos Administrative Utility.

Note:

If your Kerberos installation/keytab will be configured to use a strong
encryption type — for example, AES with 256-bit keys — the JCE Unlimited
Strength Jurisdiction Policy Files must be obtained and installed in the JDK/
JRE. Be aware that these files might already exist in your installation. If so,
they must be updated.

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

4-13

1. Shut down the KVStore instance:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop \
-root KVROOT

2. Use the config add-kerberos command to add Kerberos authentication:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig \
config add-kerberos -root KVROOT \
-secdir security \
-admin-principal admin/admin

Adding principal oraclenosql@EXAMPLE.COM
Password for admin/admin: *******
Created files:
 security/store.keytab
Updated Kerberos configuration

Note:

When running this command, the securityconfig tool will verify the
existence of the referenced files and will update the specified bootstrap
configuration file to refer to the security configuration. This process
is normally done with the KVStore instance stopped, and must be
performed on each Storage Node of the store.

3. Start the Storage Node Agent (SNA) on each node:

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

4. Start runadmin in security mode on the KVStore server host (node01). To do this,
use the following command:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in admin as anonymous.

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

4-14

This command sets SSL as a connection method and names a copy of the
generated truststore file (client.security). For more information on SSL properties,
see SSL communication properties.

5. Register the user principal on the KDC. To do this, use kadmin or kadmin.local:

kadmin.local: addprinc krbuser@EXAMPLE.COM
Enter password for principal: "krbuser@EXAMPLE.COM": ***********
Re-enter password for principal: "krbuser@EXAMPLE.COM": **********

6. After user principal is registered on KDC, create the user in Oracle NoSQL
Database. The username needs to match the full principal name in the KDC
(includes realm name). In this case, user krbuser is defined:

kv-> execute 'CREATE USER "krbuser@EXAMPLE.COM" IDENTIFIED
EXTERNALLY'

For more information on user creation and administration, see User Management.

7. At this point, it is possible to connect to the store as the krbuser. To login, you can
use credential cache, a keytab file or enter the principal password.

In this example, a keytab file is used. To do this, first extract the keytab of principal
krbuser@EXAMPLE.COM on the KDC host by using kadmin.local.

kadmin.local: ktadd -k /tmp/mykeytab krbuser@EXAMPLE.COM
Entry for principal krbuser@EXAMPLE.COM added to
keytab WRFILE:/tmp/mykeytab.

8. Copy the keytab file to any client machine that will use the
krbuser@EXAMPLE.COM principal to login automatically to Oracle NoSQL
Database.

9. Set the Kerberos security properties, including the keytab file location, on each
client by specifying them in a security file or through the KVStoreConfig class.

In this example, a security file (mylogin.txt) is used. To login, specify the file
location by using the oracle.kv.security property. For example:

java -Xmx64m -Xms64m \
-Doracle.kv.security=mylogin.txt \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as krbuser

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content
like this:

oracle.kv.auth.kerberos.keytab = kerberos/mykeytab
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=
 node01:oraclenosql/node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

4-15

In this case, Oracle NoSQL Database reads the keytab and logins to Kerberos
without needing a password.

For more information on Kerberos security properties, see Kerberos Security
Properties.

Using Oracle NoSQL Database with Kerberos and Microsoft
Active Directory (AD)

To use Oracle NoSQL Database with Kerberos and Microsoft Active Directory:

1. Update Kerberos Configuration krb5.conf with AD.

The Microsoft Guide (see here) details how to update the Kerberos configuration
file on a Unix host in step 3: Edit the file (/etc/krb5.conf) to refer to the
Windows 2000 domain controller as the Kerberos KDC. After changing the
Kerberos configuration file, run kinit using a user account in AD to verify that the
configuration is correct.

For example, suppose you have user account krbuser08 on domain TEST08 of AD,
and the KDC realm name is TEST08.LOCAL:

$ kinit krbuser08@TEST08.LOCAL
Password for krbuser08@TEST08.LOCAL

After you provide the password, the command should return without error. An
error indicates there are probably configuration issues. If the kinit command ran
successfully, then run klist to check that the ticket cache contains the TGT of
krbuser08.

$ klist
Ticket cache: FILE:/tmp/krb5cc_500
Default principal: krbuser08@TEST08.LOCAL

Valid starting Expires Service principal
08/12/16 11:45:03 08/12/16 21:45:11 krbtgt/
TEST08.LOCAL@TEST08.LOCAL
 renew until 08/19/16 11:45:03

The klist shows the tickets in your ticket cache. Perform this step to check if
the ticket-granting ticket has been properly obtained using the principal krbuser08
described by "Default Principal." The "Service Principal" describes each ticket, the
ticket-granting ticket has the primary krbtgt, and the instance name is the KDC
realm name. Also check if the lifetime indicated by "Valid Starting" and "Expires" is
correct.

2. Create service instance account and generate keytab on AD.

The Microsoft Guide (see https://technet.microsoft.com/en-us/library/
bb742433.aspx#EEAA) details how to support a service running on a Unix system
when using Active Directory. Follow the steps in this document to generate the
service principal and keytab file for Oracle NoSQL Database. Note that you do not
need to perform step 3 in the Microsoft Guide to merge keytab files if you plan to
use same keytab file on every host.

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

4-16

https://technet.microsoft.com/en-us/library/bb742433.aspx#EEAA
https://technet.microsoft.com/en-us/library/bb742433.aspx#EEAA

For example, you can set the instance name to nosql and use this keytab on
every node.

• Use the Active Directory Management tool to create a user account named
oraclenosql.

In the user creation interface, you can choose which Kerberos encryption
type this account can support. The user account may use Data Encryption
Standard (DES) encryption as default. To enable other encryption types for
this account, you need to manually configure in the "Properties" interface, or
by using ktpass utility. Note that you need to disable the "User must change
password at next logon" setting.

• Use ktpass tool on Windows Server to set up an identity mapping.

c:\ktpass -princ oraclenosql/nosql@TEST08.LOCAL
-mapuser oraclenosql -pass "*"-cypto DES-CBC-MD5 -ptype
KRB5_NT_PRINCIPAL -out c:\store.keytab

You may need to add allow_weak_crypto = true to the krb5.conf file on
the Unix host, as well as default_tkt_enctypes and default_tgs_enctypes,
if you use the DES decryption type. The default name of the keytab for Oracle
NoSQL Database is store.keytab and the default service name of the service
principal is oraclenosql.

• Copy the keytab file to your Unix hosts used by Oracle NoSQL Database.

Typically, you can use Secure Copy Protocol (scp) or PuTTY Secure Copy
(PSCP) to transfer this file securely, or upload this file to an FTP server shared
by Windows Server and Unix hosts. After creating the service principal and
keytab, run kinit tests on your Unix hosts (described next) to confirm that they
are configured properly.

3. Test if the user account can acquire service tickets for the service principal, and if
the service keytab is generated correctly by running kinit:

• Test if the user account can acquire service tickets for service principal
oraclenosql.

$ kinit -S oraclenosql/nosql@TEST08.LOCAL krbuser08@TEST08.LOCAL
Password for krbuser08@TEST08.LOCAL:
$ klist
Ticket cache: FILE:/tmp/krb5cc_500
Default principal: krbuser08@TEST08.LOCAL

Valid starting Expires Service principal
08/12/16 11:50:55 08/12/16 21:51:00 oraclenosql/
nosql@TEST08.LOCAL
 renew until 08/19/16 11:50:55

If the ticket cache does not contains a service ticket for oraclenosql/nosql, or
if any errors are reported in the first command, then check if the account was
created properly.

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

4-17

• Test if the service keytab was generated correctly by running kinit
oraclenosql.

$ kinit -k -t store.keytab oraclenosql/nosql@TEST08.LOCAL
$ klist
Ticket cache: FILE:/tmp/krb5cc_500
Default principal: oraclenosql/nosql@TEST08.LOCAL

Valid starting Expires Service principal
08/12/16 11:51:44 08/12/16 21:51:45 krbtgt/
TEST08.LOCAL@TEST08.LOCAL
 renew until 08/19/16 11:51:44

As with the previous tests, any errors need to be fixed before attempting to
configure Oracle NoSQL Database. Some versions of the kinit utility may need
to explicitly specify default_tkt_enctypes and default_tgs_enctypes with
the encryption type you configured for the service account oraclenosql in
Active Directory, otherwise kinit cannot successfully obtain tickets from AD.

4. Begin to configure Oracle NoSQL Database.

Oracle NoSQL Database utilizes the Unix kadmin tool to help users create service
principal and generate keytab file. However, AD does not have remote admin utility
support, so it is necessary to skip this step in AD Kerberos environment.

For Oracle NoSQL Database releases prior to 4.2, you must specify none as
the value for both the -kadmin-path and -admin-principal makebootconfig
command line options.

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar makebootconfig -root kvroot \
-port 5000 \
-host node01.example.com -harange 5010,5020 \
-store-security configure -kspwd password \
-external-auth kerberos \
-kadmin-path none \
-admin-principal none \
-instance-name nosql
Adding principal oraclenosql/nosql
IO error encountered: Cannot run program "none": error=13,
Permission denied
Created files
 KVROOT/security/client.security
 KVROOT/security/client.trust
 KVROOT/security/security.xml
 KVROOT/security/store.wallet/cwallet.sso
 KVROOT/security/store.keys
 KVROOT/security/store.trust

The IO error can be ignored in this example, because we did not specify a correct
kadmin path.

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

4-18

For Oracle NoSQL Database 4.2 and later releases, you only need to specify none
as the value for the -kadmin-path flag:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar makebootconfig -root kvroot \
-port 5000 \
-host node01.example.com -harange 5010,5020 \
-store-security configure -kspwd password \
-external-auth kerberos \
-kadmin-path none \
-instance-name nosql

The kadmin path was specified as NONE, so this example is not creating a keytab
for the database server. The keytab must be generated and copied to the security
configuration directory manually.

Created files
 KVROOT/security/client.security
 KVROOT/security/client.trust
 KVROOT/security/security.xml
 KVROOT/security/store.wallet/cwallet.sso
 KVROOT/security/store.keys
 KVROOT/security/store.trust

After the security directory is created, it is worth checking that the Kerberos
parameters are configured as expected.

Check security.xml in kvroot/security and look for the following parameters:

• krbInstanceName

• krbRealmName

For Oracle NoSQL Database 4.2 and later releases, you can use the
securityconfig tool to view the parameters:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig \
config show -secdir kvroot/security
...
krbInstanceName=nosql
krbRealmName=TEST08.LOCAL

5. Manage service principals in a multi-node environment.

• In a multi-node environment, if you want to use a single service principal
oraclenosql/nosql for all nodes, you can simply copy the contents of the first
security directory to the other nodes. For example, the following commands
assume that the different nodes are visible and accessible on the current node
(node01):

cp -R node01/KVROOT/security node02/KVROOT/
cp -R node01/KVROOT/security node03/KVROOT/

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

4-19

You may need to use a remote copying command, like scp, to do the copying
if the files for the different nodes are not visible on the current node.

Run makebootconfig on the other two nodes to enable Kerberos
authentication.

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \
-host node02 -harange 5010,5020 \
-store-security enable

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \
-host node03 -harange 5010,5020 \
-store-security enable

Note:

The service principal for node02 and node03 will be configured
as oraclenosql/nosql@TEST08.LOCAL. Also they will use the same
keytab file generated in step two.

• To set up individual service principals for each node, run step two to create
a service account on AD and generate a new keytab for each node. For
example, each node uses host name as instance name of service principal
and their corresponding keytab files.

oracelnosql/node01@TEST08.LOCAL
oracelnosql/node02@TEST08.LOCAL
oracelnosql/node03@TEST08.LOCAL

Copy the security directory created on node01 to other nodes. For example,
the following commands assume that the different nodes are accessible using
ssh from the current node (host01):

cp -R node01/KVROOT/security node02/KVROOT/
cp -R node01/KVROOT/security node03/KVROOT/

Note:

You may need to use a remote copying command, like scp, to copy
the files for the different nodes if they are not visible on the current
node.

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

4-20

Replace keytab files of node2 and node3 generated in step two with the one in
their security configuration directory. For example:

cp store.keytab node02/KVROOT/security
cp store.keytab node03/KVROOT/security

Note:

The name of all of the keytab files generated in step two is
store.keytab by default. Make sure that you have given each node
the proper keytab file. Use the klist tool to check keytab file on
each node to make sure they contain the correct key of service
principal for the node.

Run the securityconfig tool on node02 and node03 to modify instance name
of security configuration:

security -> config update -secdir KVROOT/security \
-param krbInstanceName=node02

security -> config update -secdir KVROOT/security \
-param krbInstanceName=node03

Run makebootconfig on the other two nodes to enable Kerberos
authentication.

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \
-host node02 -harange 5010,5020 \
-store-security enable

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \
-host node03 -harange 5010,5020 \
-store-security enable

6. Start the Storage Node Agent (SNA) on each node:

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

4-21

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

When a newly created store with a secure configuration is first started, there are
no user definitions available against which to authenticate access. To reduce risk
of unauthorized access, an admin will only allow you to connect to it from the
host on which it is running. This security measure is not a complete safeguard
against unauthorized access. It is important that you do not provide local access
to machines running KVStore. In addition, perform the following steps to minimize
the time period in which the admin might be accessible without full authentication.
For more information on maintaining a secure store see Guidelines for Securing
the Configuration.

7. Start runadmin in security mode on the KVStore server host (node01). To do this:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar \
runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in admin as anonymous

8. Use the configure -name command to specify the name of the KVStore that you
want to configure, and then complete store deployment. For more information, see
the Oracle NoSQL Database Administrator's Guide:

kv-> configure -name mystore
Store configured: mystore
...

9. Create a user account on Microsoft Active Directory. In this example, krbuser is
created on Active Directory.

10. Create mapping user in Oracle NoSQL Database. The username needs to match
the full principal name in the KDC (includes realm name). In this case, user
krbuser is defined:

kv-> execute 'CREATE USER "krbuser@TEST08.LOCAL"
IDENTIFIED EXTERNALLY'

For more information on user creation and administration, see User Management.

11. At this point, it is possible to connect to the store as the krbuser. To login, you can
use credential cache, a keytab file or enter the principal password.

12. Set the Kerberos security properties, including the keytab file location, on each
client by specifying them in a security file or through the KVStoreConfig class.

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

4-22

In this example, a security file (mylogin.txt) is used. To login, specify the file
location by using the oracle.kv.security property. For example:

java -Xmx64m -Xms64m \
-Doracle.kv.security=mylogin.txt \
-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
krbuser@TEST08.LOCAL's kerberos password:
Logged in admin as krbuser@TEST08.LOCAL
kv->

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content
like this:

oracle.kv.auth.username = krbuser@TEST08.LOCAL
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=node01:oraclenosql/
nosql@TEST08.LOCAL
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

In this example, the store nodes are using the single service principal
oraclenosql/nosql. Without specifying keytab or credential cache, Admin CLI
prompts for principal password.

For more information on Kerberos security properties, see Kerberos Security
Properties.

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

4-23

5
External Password Storage

Depending on the type of store deployment, there are two ways passwords can be
externally stored. For Enterprise Edition (EE) deployments, Oracle Wallet is used. For
Community Edition (CE) deployments, a simple read protected clear-text password file
is used.

In the most basic mode of operation, external passwords are used only by the server
to track the keystore password. User passwords, which are stored securely within the
database, can also be supplied during client authentication.

When a password store is used as a component of a login file, the alias that is used for
the password store type should be the username to which the password applies. For
example, for a user named root, the password should be stored under the alias root.

When a password store is used as part of the server, the alias keystore is used. The
user password store should be a completely different file than the one in the security
directory located under KVROOT.

Oracle Wallet
The following commands provide functionality to manipulate Oracle wallet stores
within the securityconfig tool. These commands are available in EE only. For more
information on the securityconfig tool, see Configuring Security with Securityconfig.

To create a new auto-login wallet, run the wallet create command:

wallet create
-dir <wallet directory>

Auto-login wallets store passwords in an obfuscated state. Access to the wallet is
secured against reading by unauthorized users using the OS-level login.

To manipulate secrets (passwords), which are associated with a name (alias), run the
wallet secret command:

wallet secret
-dir <wallet directory>
{-set | -delete} -alias <alias>

If the -set option is specified, the user is prompted for a new password for the specified
alias and required to verify the new secret.

If the -delete option is specified, the secret is deleted from the store.

Special considerations should be taken if Oracle wallet is used and you are deploying
your Oracle NoSQL Database. For more information, see Guidelines for Deploying
Secure Applications.

Use the wallet subcommand while configuring the security of the kvstore:

5-1

Run the securityconfig utility to set up the basic store configuration with security:

java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar securityconfig

The securityconfig tool is invoked. Use the config create command with the
-pwdmgr option to specify the mechanism used to hold password that is needed for
accessing the store. In this case, Oracle Wallet is used. Oracle Wallet is only available
in the Oracle NoSQL Database Enterprise Edition version.

security-> config create -pwdmgr wallet -root kvroot
Enter a password for the Java KeyStore:

Enter a password for your store and then re-enter it for verification. The configuration
tool will automatically generate the security related files.

Password store file
The following commands are used to create and manipulate CE password store
files within the securityconfig tool. CE password store files managed though this
interface are never password protected. For more information on the securityconfig
tool, see Configuring Security with Securityconfig.

To create a new password store file, run the pwdfile create command:

pwdfile create
-file <password store file>

To manipulate secrets (passwords), which are associated with a name (alias), run the
pwdfile secret command:

pwdfile secret
-file <password store file>
{-set | -delete} -alias <alias>

If the user specifies the -set option, the user is prompted for a new password for the
specified alias and required to verify the new password.

If the -delete option is specified, the alias is deleted from the store.

Use the pwdfile subcommand while configuring the store security:

Run the securityconfig utility to set up the basic store configuration with security:

java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar securityconfig

The securityconfig tool is invoked. Use the config create command with the
-pwdmgr option to specify the mechanism used to hold password that is needed
for accessing the store. Here the password is specified in a read-protected, clear-

Chapter 5
Password store file

5-2

text password file. This is the only available option for Oracle NoSQL Database
Community Edition version.

security-> config create -pwdmgr pwdfile -root kvroot
Enter a password for the Java KeyStore:
Re-enter the KeyStore password for verification:

Enter a password for your store and then re-enter it for verification. The configuration
tool will automatically generate some security related files.

Chapter 5
Password store file

5-3

6
Security.xml Parameters

This chapter describes the parameters that can be set in the security.xml
configuration file. This file is generated by makebootconfig or securityconfig and
tells the Oracle NoSQL Database server how to apply security.

The security.xml file specifies parameters that primarily control network
communications. It contains top-level parameters, plus nested transport parameters.
A transport is a grouping of parameter settings that are specific to a particular type of
network connection.

Note:

A subset of all the configuration options listed below related to SSL can be
specified through Java system properties, security file properties, or through
the KVStoreConfig API. For more information, see SSL communication
properties.

Top-level parameters
The following top-level parameters can be set to the security.xml file:

• internalAuth

Specifies how internal systems authenticate. This parameter must be set to SSL.

• keystore

Identifies the keystore file within the security directory. This parameter is normally
set to store.keys.

• keystoreType

Identifies the type of keystore that the keystore property references. If not set, the
JKS keystore type is used by default.

• keystoreSigPrivateKeyAlias

Specifies the keystore alias that identifies the keypair used by replication nodes to
create signatures. If not specified, the alias "shared" is used.

• truststoreSigPublicKeyAlias

Specifies the truststore alias that identifies the certificate used by replication nodes
to verify signatures. If not specified, the alias "mykey" is used.

• securityEnabled

To enable security this parameter must be set to true.

• certMode

6-1

Specifies the key/certificate management model in use. This must be set to
"shared".

• truststore

Identifies the truststore file within the security directory. This is normally set to
store.trust.

• truststoreType

Identifies the type of keystore that the truststore property references. If not set, the
JKS keystore type is used by default.

• walletDir

Identifies a directory within the security directory that contains a wallet password
store, which in turn holds the password for the keystore.

• passwordFile

Identifies a file within the security directory that contains a file password store,
which in turn holds the password for the keystore.

• krbServiceName

Specifies the service name of the Oracle NoSQL Database Kerberos service
principal.

• krbInstanceName

Specifies the service principal instance name.

• krbServiceKeytab

Specifies the keytab file name in the security directory that contains the KVStore
server service principal and encrypted copy of principal’s key.

• krbConf

Specifies the location of the Kerberos configuration file that contains the default
realm and KDC information. If not specified, the default value is /etc/krb5.conf.

• krbRealmName

Specifies the realm name of service principal. If not specified, this value is
acquired from the Kerberos configuration file.

• userExternalAuth

Specifies and enables the external mechanism used for authentication. Kerberos
is supported. Set the value to KERBEROS to enable Kerberos authentication. To
remove Kerberos authentication from a running store, set the value to NONE.

Transport parameters
There are three standard transport types:

• ha

Controls the communications between the data replication layer.

• client

Controls most RMI communication.

• internal

Chapter 6
Transport parameters

6-2

Controls the SSL internal authentication mechanism.

The following parameters can be set and associated to a transport type:

• transportType

This parameter should be set to SSL.

• serverKeyAlias

The keystore alias that identifies the keypair used by the store services, including
Storage Nodes, Replication Nodes, Admins, and Arbiter Nodes. If not specified,
the alias "shared" is used.

• clientKeyAlias

The keystore alias that identifies the keypair used by either a direct connect Java
client or a proxy. See Configuring the Proxy for more details. If not specified, the
alias "shared" is used.

• clientAuthRequired

Should always be true for ha and internal transports and should be false for client
transports.

• clientIdentityAllowed

When clientAuthRequired is true, this specifies what client identification check
should be applied. This should be set to dnmatch(XXX) where XXX is the
Distinguished name from the client certificate.

• serverIdentityAllowed

This specifies what server verification should be performed. This should normally
be set to dnmatch(XXX) where XXX is the Distinguished name from the server
certificate.

• allowCipherSuites

This is a comma-delimited list of SSL/TLS cipher suites that should be considered
for use. For valid options, see the Java JSSE documentation corresponding to
your JDK version. If not specified, the JDK default set of cipher suites is allowed.

• allowProtocols

This is a comma-delimited list of SSL/TLS protocols that should be considered for
use. For valid options, see the Java JSSE documentation corresponding to your
JDK version. If not specified, the JDK default set of protocols is used.

• clientAllowCipherSuites

See allowCipherSuites for a description of the format. This parameter sets the
cipher suite requirements only for the initiating side of a connection. If set, it
overrides any setting of allowCipherSuites for the connection initiator.

• clientAllowProtocols

See allowProtocols for a description of the format. This parameter sets the
protocol requirements only for the initiating side of a connection. If set, it overrides
any setting of allowProtocols for the connection initiator.

Chapter 6
Transport parameters

6-3

7
Encryption

Network data encryption provides data privacy so that unauthorized parties are unable
to view plain text data during transmission across the network.

Oracle NoSQL Database uses SSL-based encryption to encrypt network traffic
between applications and the server, command line-utilities and the server, as well
as between server components.

Note:

JMX access requires the use of SSL.

SSL model
Oracle NoSQL Database uses a simple SSL key management strategy. A single,
shared, RSA key is used to protect communication. In this shared key model, you
must be sure that there is a master copy of the security directory and that it gets
copied to each server. You should not run makebootconfig with the -store-security
configure option on all servers. Most servers should have the -store-security
enable option specified in their makebootconfig command.

The shared key has an associated self-signed certificate with a Subject Distinguished
Name that is not server-specific. The automatically-created certificates are generated
with the Distinguished Name: CN=NoSQL.

Each server component listens on SSL interfaces and presents the shared certificate
to clients and other servers that connect to it, as proof of its authenticity. Each
client and server component uses a Java truststore containing a copy of the shared
certificate to validate the certificate presented by servers.

When accessing a NoSQL instance that is secured using SSL/TLS, you must specify
at least the following information:

1. You must specify that the client will connect using SSL. This is done by setting the
security property oracle.kv.transport to "ssl".

2. You must specify the Java truststore file that is used to validate the server
certificate. This is done by setting the security property oracle.kv.ssl.trustStore.

For example, to start runadmin in security mode use the following command:

java -Xmx64m -Xms64m \
-Doracle.kv.security=mylogin.txt \
-jar KVHOME/lib/kvstore.jar runadmin

7-1

where the file mylogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=client.trust
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

Note:

If you fail to correctly specify the oracle.kv.transport property or the
truststore, the client will fail to connect to the server.

SSL communication properties
Assuming that the NoSQL server is secured by SSL, client connections from Oracle
NoSQL Database administrative clients will need to connect over SSL as well. This
can be achieved by providing security properties for the connection.

For Oracle-provided command line tools, a security file must be specified. The security
configuration process automatically generates a basic security file (client.security)
that can be used to connect to the store. You may wish to make a copy of this and
modify it to include additional configuration properties.

The minimal configuration needed to connect to a secure store includes setting the
following properties:

• oracle.kv.transport=ssl

Directs KVStore clients and utilities to connect to the KVStore RMI registry via
SSL.

• oracle.kv.ssl.trustStore=<path-to-ssl-truststore>

Names a copy of the truststore file generated by makebootconfig or
securityconfig to enable validation of the KVStore server SSL certificate.

Note:

You can use SSL to communicate an application with other SSL servers
without using truststore-based certification validation.

In addition to the two properties listed above, the following properties are also
supported for control of SSL communications:

• oracle.kv.ssl.ciphersuites

Specifies a comma-separated list of SSL cipher suites that should be allowed in
communication with the server.

• oracle.kv.ssl.protocols

Chapter 7
SSL communication properties

7-2

Specifies a comma-separated list of SSL protocols that should be allowed in
communication with the server.

• oracle.kv.ssl.trustStoreType

Specifies the type of truststore being used. If not specified, the default type for the
Java runtime is used.

Note:

Applications may also set these security properties through API methods
on KVStoreConfig.

Disk Encryption in a Linux Environment
If you are using the Linux operating system, you can secure your data by configuring
disk encryption to encrypt whole disks (including removable media), partitions,
software RAID volumes, logical volumes, as well as your NoSQL files.

dm-crypt is the Linux kernel's device mapper crypto target which provides transparent
disk encryption subsystem in the Linux kernel using the kernel crypto API.

Cryptsetup is the command line tool to interface with dm-crypt for creating, accessing
and managing encrypted devices. The most commonly used encryption is Cryptsetup
for the Linux Unified Key Setup (LUKS) extension, which stores all of the needed
setup information for dm-crypt on the disk itself and abstracts partition and key
management in an attempt to improve ease of use.

This topic demonstrates how to convert a normal disk to a dm-crypt enabled disk and
vice versa using the command-line interface.

Assume that you have the following disks in your Linux system. The df -h command
displays the amount of available disk space for each disk.

$df -h
/dev/nvme0n1 2.9T 76G 2.7T 3% /ons/nvme0n1
/dev/nvme1n1 2.9T 76G 2.7T 3% /ons/nvme1n1
...

If you nominate disk /dev/nvme0n1 to store databases, then you should encrypt this
disk to secure the data within it.

Normal disk to a dm-crypt enabled disk:

Execute the following commands to convert a normal disk to a dm-crypt enabled disk:

1. Unmount the file system on the disk.

sudo umount -l /dev/nvme0n1

2. Generate the key to be used by luksFormat.

sudo dd if=/dev/urandom of=/home/opc/key0.key bs=1 count=4096

Chapter 7
Disk Encryption in a Linux Environment

7-3

3. Initialize a LUKS partition and set the initial key.

sudo /usr/sbin/cryptsetup -q -s 512 \
luksFormat /dev/nvme0n1 /home/opc/key0.key

4. Open the LUKS partition on disk/device and set up a mapping name.

sudo /usr/sbin/cryptsetup --allow-discards \
luksOpen -d /home/opc/key0.key /dev/nvme0n1 dm-nvme0n1

5. Create an ext4 file system on the disk.

sudo /sbin/mkfs.ext4 /dev/mapper/dm-nvme0n1

6. Set parameters for the ext4 file system.

sudo /usr/sbin/tune2fs -e remount-ro /dev/mapper/dm-nvme0n1

7. Mount the file system to a specified directory.

sudo mount /dev/mapper/dm-nvme0n1 /ons/nvme0n1

dm-crypt enabled disk to normal disk:

If you want to convert the encrypted disk back to its normal state, execute the following
steps:

1. Unmount the file system on the disk.

sudo umount -l /ons/nvme0n1

2. Remove luks mapping.

sudo /usr/sbin/cryptsetup luksClose /dev/mapper/dm-nvme0n1

3. Create an ext4 file system on the disk.

sudo /sbin/mkfs.ext4 /dev/nvme0n1

4. Mount the file system on a specified directory.

sudo mount /dev/nvme0n1 /ons/nvme0n1

Note:

If you convert a normal disk to a dm-crypt enabled disk or convert a dm-
crypt enabled disk to a normal disk, you cannot bring the disk back to
its previous state without losing its data. This is because the mkfs.ext4
command will format the disk. Therefore, all the data stored in the disk will be
lost.

Chapter 7
Disk Encryption in a Linux Environment

7-4

8
Configuring Authentication

Authentication means verifying the identity of someone (a user, server, or other entity)
who wants to use data, resources, or applications. Validating that identity establishes a
trust relationship for further interactions. Authentication also enables accountability by
making it possible to link access and actions to specific identities.

Within a secure Oracle NoSQL Database, access to the database and internal APIs
is generally limited to authenticated users. When a secure Oracle NoSQL Database
is first started, there are no users defined, and login to the administrative interface is
allowed without authentication. However, no data access operations can be performed
without user authentication.

User Management
You can create, modify, or remove users in the Oracle NoSQL Database through the
Admin CLI, where the commands for manipulating users are exposed in SQL format
through DDL API. You can also display information about a specific user account, as
well as get a summary list of registered users. For more information, see the next
sections describing each user management operation.

All user passwords should follow the password security policies. For more information
see Password Complexity Policies.

User Creation
To create a user, use the following command:

CREATE USER user_name
 (IDENTIFIED EXTERNALLY | IDENTIFIED BY password
 [PASSWORD EXPIRE | PASSWORD LIFETIME duration_time_unit])
 [ACCOUNT LOCK|UNLOCK]
 [ADMIN]

where:

• user_name

Assigns a name to identify a user. If you are creating a Kerberos user, the
user_name must match the fully qualified principal name created in the Key
Distribution Center (KDC) at your site. A username is an ID, just as a table name.
The formal definition for each ID is as follows:

ALPHA (ALPHA | DIGIT | UNDER)* ;

Each ID must start with a letter (a-z, A-Z), followed by other letters, numerical
values (0 - 9), and underscore (_) characters. There is no ID size limit for the
number of characters it contains. An an ID can consist of as many characters

8-1

as the memory required to accommodate its length. In practice, most sites have
name length recommendations, but they are not checked or enforced by Oracle
NoSQL Database.

Kerberos users must have different names from existing users, since you cannot
change the authentication type of an existing user.

• IDENTIFIED EXTERNALLY

Indicates that Oracle NoSQL Database will use an external mechanism to
authenticate the user. Currently, Oracle NoSQL Database supports only Kerberos
as an external authentication service.

• IDENTIFIED BY "password"

Indicates that Oracle NoSQL Database authenticates the new user by the
password you assign. The new user must log on using that password.

Note:

You must specify a user password with quotation marks, for example,
"password".

• PASSWORD EXPIRE

Specifies that the assigned password has already expired. With this setting the
user is forced to change the given password as soon as they initially login. They
must enter a password of their choice (which meets any site requirements) before
accessing Oracle NoSQL Database.

• PASSWORD LIFETIME {INT duration_time_unit}

Indicates the password duration unit, which is required for using the assigned
password. Enter the integer time_unit as follows:

time_unit : (SECONDS | MINUTES | HOURS | DAYS)

Using zero (0) with any time unit specifies that the password never expires.
Entering a negative value causes an error. If you do not specify a PASSWORD
LIFETIME time_unit, the lifetime from the global configuration is used. The default
for this parameter is 180 days.

Following is a basic example of creating new user Kate, IDENTIFIED BY a
password you assign to her, represented here as "password", with a PASSWORD
LIFETIME duration specifying the integer unit of time as 30 DAYS. We do not
recommend using this practice.

kv-> execute 'CREATE USER Kate IDENTIFIED BY \”password\”
 PASSWORD LIFETIME: 30 DAYS'

• ACCOUNT {LOCK | UNLOCK}

Specify ACCOUNT LOCK to lock a user's account to disable access. An Admin can
use this option to remove access from a user, but retain the account. Then, as
required, reinstate the user account specifying ACCOUNT UNLOCK.

Chapter 8
User Management

8-2

• ADMIN Clause

Specify ADMIN to grant the user sysadmin role automatically.

Note:

To create the first user in an Oracle NoSQL Database instance, you must
start the Admin CLI as an anonymous user and use the plan create-user
command. However, creating an initial user is only one of several steps for
setting up a secure site, and is not described here. For further explanation,
see, Performing a Secure Oracle NoSQL Database Installation.

User Modification
To alter a user, use the following command:

ALTER USER user_name [IDENTIFIED BY password
[RETAIN CURRENT PASSWORD]] [CLEAR RETAINED PASSWORD] [PASSWORD EXPIRE]
[PASSWORD LIFETIME duration] [ACCOUNT UNLOCK|LOCK]

where:

• user_name

Name of user to alter. If specifying a Kerberos user, you can only alter the
ACCOUNT clause options.

• IDENTIFIED Clause

Specify BY password to specify a new password for the user.

• RETAIN CURRENT PASSWORD

Used with BY password clause. If specified, causes the current password defined
for the user to be remembered as a valid alternate password for a limited duration
(24 hours by default), or until the password is explicitly cleared. Only one alternate
password may be retained at a time. This option allows a password to be changed
while an application is still running without affecting its operation.

• CLEAR RETAINED PASSWORD Clause

Erases the current alternate retained password.

• PASSWORD EXPIRE

Causes the user's password to expire immediately, then the user or the user
having sysadmin role must change the password before attempting to log in to the
database following the expiration.

• PASSWORD LIFETIME duration

Specify the duration that current password can be used for authentication.

duration: [0-9]+ unit
unit: S | M | H | SECONDS | MINUTES | HOURS | DAYS

Chapter 8
User Management

8-3

Note that specifying 0 time unit for PASSWORD LIFETIME will make the password
as "never expired".

• ACCOUNT Clause

Specify ACCOUNT LOCK to lock the user's account and disable access. Specify
ACCOUNT UNLOCK to enable the user.

If you are updating the password of an existing user, the new password should comply
with the password security policies. For more information see Password Complexity
Policies.

User Removal

DROP USER user_name [CASCADE]

Use the DROP USER user_name command to remove the specified user account (users
cannot remove themselves), where user_name is the name of the user to drop.

If the user has existing tables, drop each of the tables first, and then drop the user.
Alternatively, use the optional CASCADE option, which drops the user tables along with
the user.

For example:

kv-> execute 'DROP USER Kate CASCADE'

Dropping a user occurs immediately. If another user was accessing tables that the
user owned, the tables are no longer available for DML or DDL operations.

User Status

SHOW USER[S] [-name user_name] [-json | -json-v1]

Notice that the S on the SHOW USERS command is optional for the Admin CLI, except
for DDL statements you call with execute. For DDL "SHOW USER -name user_name"
shows information about a single user, and SHOW USERS displays information about all
users.

Note:

The SHOW USERS command differs between the Admin CLI and the SQL CLI.
This section describes the differences wherever possible. For example, the
JSON options are not available for all the Admin CLI commands.

From the SQL CLI, add one of the -json flags to output the information in JSON.

Chapter 8
User Management

8-4

From the Admin CLI, use the SHOW USERS without further qualification to list all existing
users in the system. For example, here are three users in the system:

kv-> execute 'SHOW USERS'
user: id=u1 name=Ken
user: id=u2 name=Kate
user: id=u3 name=Alice

Note:

The User ID values are incremented sequentially as you add each user.
They are an internal mechanism for ensuring each user is unique.

From the Admin CLI, specify SHOW USERS -name user_name to view detailed
information about a specific user:

kv-> execute 'SHOW USERS -name Kate'
id=u2 name=kate enabled=true auth-type=LOCAL retain-passwd=inactive
granted-role=[public]

From the SQL CLI, you can omit the -name flag:

sql-> show user Kate

From this CLI, entering SHOW USER name automatically interprets name as a user_name.

To specify a Kerberos user from the Admin CLI, the returned auth-type value is
EXTERNAL:

kv-> execute 'SHOW USERS krbuser@EXAMPLE.COM'
user: id=u4 name=krbuser@EXAMPLE.COM enabled=true auth-type=EXTERNAL
retain-passwd=inactive granted-roles=[readwrite, public, sysadmin]

User Login
You can use either the -username <user> or the -security <path to security
file> runadmin argument to login to the admin CLI:

• -username <user>

Specifies the username to log in as. This option is used in conjunction with
security properties like oracle.kv.transport.

• -security <path-to-security-file>

Specifies the security file that contains property settings for the login. Relative
filename references within the security file are interpreted relative to the location
of the security properties file. For example, if a security properties file contains the
setting oracle.kv.ssl.truststore=client.trust then, the client.trust file should

Chapter 8
User Management

8-5

be in the same directory as the security properties file. If the file is named with an
absolute path then it can be anywhere in the file system.

The following properties can be set in the file in addition to any of the SSL
communication properties documented in the previous chapter:

oracle.kv.auth.username
oracle.kv.auth.wallet.dir
oracle.kv.auth.pwdfile.file

where the oracle.kv.auth.wallet.dir and oracle.kv.auth.pwdfile.file properties in this
file indicate the location of an EE wallet directory or CE password store file,
respectively.

Note:

The oracle.kv.security Java system property can be used as an
alternative mechanism for providing a security file path. Setting this
system property is equivalent to adding the -security option to the
command line for the Admin CLI . This property is supported by all tools
as well as by the KVStore client library.

Password Management
The Admin can configure the lifetime of users’ passwords for various units of time, or
make them expire immediately. When a password expires, the user needs to renew it
to log in Oracle NoSQL Database successfully. All user passwords should follow the
password security policies. For more information see Password Complexity Policies.

The two ways to manage passwords from expiring are as follows:

• Explicit Expiration

It makes the current password expire immediately as well as the retained
password, if it exists. For this user, the user must change the password before
attempting to log in the database.

For example:

kv-> execute 'CREATE USER John IDENTIFIED BY \”password\” PASSWORD
EXPIRE'

• Password Lifetime Configuration

If a user logs into the database with John’s account, the user must input the new
password for John.

Logged in admin as John
The password of John has expired, it is required to change the
password.
Enter the new password:
Re-enter the new password:

Chapter 8
User Management

8-6

Password lifetime limits the duration that current password can be used for
authentication.

Note:

This configuration only works for the current password but not the
retained one.

For example:

kv-> execute 'ALTER USER John PASSWORD LIFETIME 15 days'

In the example above, the current password for user John will expire after 15 days.
After expiration, if the user John attempts to log into the database, the system
displays a notification to change the password.

A retained password is used to allow a password to be changed while an
application is still running without affecting its operation. It is only saved by the
system for a limited duration (24 hours) and there is no way to specify individual
duration for each user. For retained password, only explicit expiration is supported
using the following command:

kv->execute 'ALTER USER John CLEAR RETAINED PASSWORD'

Sessions
When a user successfully logs in, it receives an identifier for a login session that allows
a single login operation to be shared across Storage Nodes. That session has an initial
lifetime associated with it, after which the session is no longer valid.

The server notifies the user with an error once the session is no longer valid. The
application then needs to re-authenticate.

Note:

The KVStoreFactory API provides a reauthentication handler, which allows
the reauthentication to be completed transparently, except for the delay in
reauthentication processing.

If allowed, the Oracle NoSQL Database client will transparently attempt to extend
session lifetime. For best results, your application should include logic to deal with
reauthentication, as operational issues could prevent it from succeeding initially. In this
way, you can avoid the use of extended logic in your application to reacquire a valid
session state.

You can configure the behavior regarding session management to meet the
needs of the application and environment. To do this, you can modify the
following parameters using the plan change-parameters command: sessionTimeout,

Chapter 8
Sessions

8-7

sessionExtendAllowed and loginCacheTimeout. For more information, see Security
Policy Modifications

Chapter 8
Sessions

8-8

9
Configuring Authorization

Oracle NoSQL Database provides role-based authorization which enables the user to
assign kvstore roles to user accounts to define accessible data and allow database
administrative operations for each user account.

Users can acquire desired privileges by role-granting. The user-defined role feature
allows the user to create new roles using kvstore built-in privileges, and add new
privilege groups to users by assigning newly-defined roles to users. You can grant
users multiple roles.

For more information, see:

• Privileges

• Roles

• Managing Roles, Privileges and Users

Privileges
A privilege is an approval to perform an operation on one or more Oracle NoSQL
Database objects. In Oracle NoSQL Database, all privileges fall into the two general
categories:

• System privileges

This gives a user the ability to perform a particular action, or to perform an action
on any data objects of a particular type.

• Object privileges

This gives a user the ability to perform a particular action on a specific object, such
as a table.

System Privileges
Oracle NoSQL Database provides the following system privileges, covering both data
access and administrative operations:

• SYSDBA

Can perform Oracle NoSQL Database management, including table create/drop/
evolve and index create/drop.

• SYSVIEW

Can view/show system information, configuration and metadata.

• DBVIEW

Can query data object information. The object is defined as a resource in Oracle
NoSQL Database, subject to access control. At present, you can have this
privilege to query the table and index information.

9-1

• USRVIEW

Can query users' own information, like their own user information, the status of
commands they issued.

• SYSOPER

Can perform Oracle NoSQL Database system configuration, topology
management, user privilege/role management, diagnostic and maintenance
operations. Allows a role to perform cancel, execute, interrupt, and wait on any
plan.

• WRITE_SYSTEM_TABLE

Can make modifications to system tables if the necessary read and write privileges
are granted for the table. The multi-region agent is the intended user of this
privilege. Typically, normal users should not modify system tables.

• READ_ANY

Can get/iterate keys and values in the entire store, including any tables.

• WRITE_ANY

Can put/delete values in the entire store, including any tables.

• CREATE_ANY_TABLE

Can create any table in the store.

• DROP_ANY_TABLE

Can drop any table from the store.

• EVOLVE_ANY_TABLE

Can evolve any table in the store.

• CREATE_ANY_INDEX

Can create any index on any table in the store.

• DROP_ANY_INDEX

Can drop any index from any table in the store.

• READ_ANY_TABLE

Can read from any table in the store.

• DELETE_ANY_TABLE

Can delete data from any table in the store.

• INSERT_ANY_TABLE

Can insert and update data in any table in the store.

Object Privileges
The object privileges defined in Oracle NoSQL Database are:

• READ_TABLE

Can read from a specific table.

• DELETE_TABLE

Chapter 9
Privileges

9-2

Can delete data from a specific table.

• INSERT_TABLE

Can insert and update data to a specific table.

• EVOLVE_TABLE

Can evolve a specific table.

• CREATE_INDEX

Can create indexes on a specific table.

• DROP_INDEX

Can drop indexes from a specific table.

For more information on the privileges required by the user to access specific KVStore
APIs as well as CLI commands, see KVStore Required Privileges.

Table Ownership
When you are using a secure store, tables are owned by the user that created them.
A table's owner has by default full privileges to the table. That is, the owner has all the
table object privileges.

Note:

For tables created in a non-secured store, or tables created prior to the 3.3
release, the table's owner is null.

Once a table is created, its owner cannot be changed. If a table is dropped and then
recreated, all previously granted table privileges must be granted again.

Parent and child tables are required to have the same owner. However, table
privileges are not automatically granted to the table's children. For example, if
READ_TABLE is granted to table myTable, then that privilege is not automatically granted
to any of that table's children. To grant READ_TABLE to the child tables, you must
individually grant the privilege to each child table in turn.

A table's owner can grant or revoke all table privileges to or from other roles. To do
this, use the GRANT DDL statement. (See Grant Roles or Privileges for details.) To
make a user other than the owner be able to read/insert/delete a specific table, two
conditions must be met:

1. The user has the read/insert/delete privilege for the table in question; and

2. The user has the same privilege, or read privilege, for all parent tables of that
table.

For example, for table myTable and its child myTable.child1, a non-owner user
can only insert data to myTable.child1 when she has insert privilege (or better) on
myTable.child1, and read and/or insert privilege on myTable.

Chapter 9
Privileges

9-3

Privilege Hierarchy
In Oracle NoSQL Database, there is a relationship between parts of existing privileges,
called 'implications'. Implication means that a privilege may be a superset of some
other privileges.

For example, Privilege A implies (=>) B means that privilege A has all the permissions
defined in privilege B.

The following illustration depicts all implication relationship among Oracle NoSQL
Database privileges:

Note:

All implications are transitive, that is, if A=>B and B=>C, then A=>C.

Roles
In Oracle NoSQL Database a role is a set of privileges that defines the authority and
responsibility of users assigned to the role. Oracle NoSQL Database provides a set of
system built-in roles. Users can create new roles to group together privileges or other
roles.

System Built-in Roles
The following system roles are predefined:

• readonly

Contains the READ_ANY privilege. Users with this role can read all data in the
KVStore.

• writeonly

Contains the WRITE_ANY privilege. Users with this role can write to the entire
KVStore.

• readwrite

Chapter 9
Roles

9-4

Contains both the READ_ANY and WRITE_ANY privileges. Users with this role
can both read and write the entire KVStore.

• dbadmin

Contains the SYSDBA privilege. Users with this role can execute data definition
operations, including table and index administration.

• sysadmin

Contains the SYSDBA, SYSVIEW and SYSOPER privileges. Users with this role
can execute the same operations as dbadmin, and have the ability of executing
all Oracle NoSQL Database management tasks. A user created with the -admin
option is granted with the sysadmin role besides the default public role.

• writesystable

Contains the WRITE_SYSTEM_TABLE privilege. Users with this role can modify
system tables if they have the necessary read and write privileges. The multi-
region table agent is the intended user of this role. Typically, normal users should
not modify system tables.

• public

Contains the USRVIEW and DBVIEW privileges. A default role for all Oracle
NoSQL Database users, which cannot be revoked. Users with this role can login
to database, view and change their own user information, as well as check and
operate the plans owned by them. Users with this role can also obtain a read-only
view of the data object information, for example, table names, indices, and others.

User-Defined Roles
Oracle NoSQL Database allows the user to create new roles using kvstore built-in
privileges, and add new privilege groups to users by assigning defined roles to the
users. To perform role and privilege granting and revocation operations, the user must
have a role having SYSOPER privilege, for example, the sysadmin role.

To manage user-defined roles, use the following commands from the Admin CLI:

kv-> execute 'CREATE ROLE role_name'

kv-> execute 'DROP ROLE role_name'

Note:

The names of user-defined roles are case-insensitive, and are not the same
as any existing privilege names or names of system built-in roles. Also, a
reserved keyword cannot be used as a role name. For a list of reserved
keywords, see Reserved Words in the SQL Reference Guide.

The following example shows how to create user-defined roles and grant them to, or
revoke them from users:

Chapter 9
Roles

9-5

Create two users with the following commands:

kv-> execute 'CREATE USER Ken IDENTIFIED BY \"password\" '

kv-> execute 'CREATE USER Kate IDENTIFIED BY \"password\" '

Note:

Use the following guidelines to define a password :

• Password must have at least 9 characters

• Password must have at least 2 upper case letters

• Password must have at least 2 special characters

Now, create two roles – manager with the write_any privilege and employee with the
read_any privilege:

kv-> execute 'CREATE ROLE manager'
kv-> execute 'GRANT WRITE_ANY TO manager'
kv-> execute 'CREATE ROLE employee'
kv-> execute 'GRANT READ_ANY TO employee'

The next example shows granting role employee to role manager (sub-role of
manager), and then grants role manager to user Kate. User Kate then has both
manager and employee role, with both of their privileges, to write_any data to the
store, and read_any data.

kv-> execute 'GRANT employee TO ROLE manager'
kv-> execute 'GRANT manager TO USER Kate'

Note:

Make sure the security feature is enabled for the store. Else you get the
following error.

Error: User error in query: GrantRoles failed for: Cannot
grant or revoke roles. Please make sure the security
 feature is enabled.

See Configuring Security with Securityconfig for more details.

Chapter 9
Roles

9-6

Use the following command to see the user’s role status:

kv-> execute 'SHOW USER Kate'
id=u2 name=Kate enabled=true type=LOCAL retain-passwd=inactive
granted-role=[public, manager]

Once the user drops a role, this role and its sub-roles will be revoked automatically
from any users and user-defined roles having this role. However, all of its sub-roles will
not be removed from the Oracle NoSQL Database.

For example:

kv-> execute 'DROP ROLE manager'
kv->execute 'SHOW USERS Kate'
id=u2 name=Kate enabled=true type=LOCAL retain-passwd=inactive
granted-role=[public]

Now, the show roles command will list the roles in the system without the 'manager'
role.

If the administrator decides to drop the manager role, the system revokes the manager
role from user Kate automatically, as well as the employee role. In the above example,
Kate cannot perform any read or write operations.

Note:

Granting circular roles is not allowed. For example, role manager cannot be
granted to role employee if role employee has previously been granted to role
manager.

Managing Roles, Privileges and Users
Oracle NoSQL Database provides a set of security operations, including commands
to create, drop, show, grant or revoke roles to or from users, and to grant or
revoke privileges to or from roles. All these statements can be executed through the
SQL CLI or the Admin CLI execute command, or the API of KVStore.execute() or
KVStore.executeSync().

Role Creation

CREATE ROLE role_name

Where, role_name is the case insensitive name of the role.

For example,

kv-> execute 'CREATE ROLE administrator'
Statement completed successfully

Chapter 9
Managing Roles, Privileges and Users

9-7

Role Removal

DROP ROLE role_name

Where, role_name is the name of the role, which is case insensitive.

For example,

kv-> execute 'DROP ROLE administrator'
Statement completed successfully

Role Status

SHOW [AS JSON] ROLES | ROLE role_name

Where, role_name is the name of the role.

List all available role names by running 'SHOW ROLES', or view the detailed
information of a role if the role name is specified.

For example,

kv->execute 'SHOW ROLES'
role:name=dbadmin
role:name=public
role:name=readonly
role:name=readwrite
role:name=sysadmin
role:name=writeonly

The detailed information of a role can be viewed by specifying the role name:

kv->execute 'SHOW ROLE dbadmin'
name=dbadmin assignable=true readonly=true
granted-privileges=[SYSDBA, DBVIEW]

Note:

Assignable indicates whether this role can be explicitly granted to or revoked
from a user.

Object privileges will appear in the form of PRIVILEGE(obj). For example, privilege of
READ_TABLE on table 'emp' will appear as:

kv->execute 'CREATE ROLE emptablereader'
kv->execute 'GRANT READ_TABLE ON emp TO emptablereader'
kv->execute 'SHOW ROLE emptablereader'

Chapter 9
Managing Roles, Privileges and Users

9-8

name=emptablereader assignable=true readonly=false
granted-privileges=[READ_TABLE(emp)]

Grant Roles or Privileges

GRANT { grant_roles | grant_system_privileges
| grant_object_privileges }
grant_roles ::= role [, role]... TO { USER user | ROLE role }
grant_system_privileges ::=
{system_privilege | ALL PRIVILEGES}
[,{system_privilege | ALL PRIVILEGES}]...
TO role
grant_object_privileges ::=
{object_privileges| ALL [PRIVILEGES]}
[,{object_privileges| ALL [PRIVILEGES]}]...
ON object TO role

where:

• role

The role that is granted.

• user

The user to which the privileges are granted.

• system_privileges

The system privileges that are granted.

• object_privileges

The object privileges that are granted.

• object

The object on which the privilege is granted. Currently only table privileges are
supported.

• ALL PRIVILEGES

Grants all of the system privileges. This is a shortcut for specifying all system
privileges.

• ALL [PRIVILEGES]

Grants all object privileges defined for the object. The keyword PRIVILEGES is
provided for semantic clarity and is optional.

For example, you can grant a role with fewer privileges to one with more privileges,
such as employee to role manager:

kv-> execute 'GRANT EMPLOYEE TO ROLE manager'
kv-> execute 'GRANT MANAGER TO USER Kate'
Statement completed successfully

Chapter 9
Managing Roles, Privileges and Users

9-9

If you try to grant the same role in the other direction, an error occurs:

kv-> execute 'GRANT employee to ROLE manager'

You will receive an error of "Could not recursively grant role employee to role
manager" because this would lead to a cyclic definition of role manager.

The user can now add new privileges to their defined role. For example:

kv-> execute 'GRANT READ_ANY TO Kate'

For example, to grant read permission on table T1 to Kate:

kv-> execute 'GRANT READ_TABLE on T1 TO Kate'

See also notes on granting table privileges in Table Ownership.

Revoke Roles or Privileges

REVOKE { revoke_roles | revoke_system_privileges
| revoke_object_privileges}
revoke_roles ::= role [, role]... FROM { USER user | ROLE role }
revoke_system_privileges ::=
{ system_privilege | ALL PRIVILEGES }
[, {system_privilege | ALL PRIVILEGES}]...
FROM role
revoke_object_privileges ::=
{ object_privileges| ALL [PRIVILEGES] }
[, { object_privileges | ALL [PRIVILEGES] }]...
ON object FROM role

where:

• role

The role to revoke.

• user

The user from which the privileges are revoked.

• system_privileges

The system privileges to revoke.

• object_privileges

The object privileges to revoke.

• object

The table from which the privileges are revoked. Currently, the only objects
supported are tables.

• ALL PRIVILEGES

Revokes all of the system privileges that have been granted to the revokee.

Chapter 9
Managing Roles, Privileges and Users

9-10

• ALL [PRIVILEGES]

Revokes all object privileges defined on the object from the revokee. The keyword
PRIVILEGES is provided for semantic clarity and is optional.

For example, to revoke role 'employee' from role 'manager':

kv-> execute 'REVOKE employee FROM ROLE manager'
Statement completed successfully

To revoke the role 'manager' from user 'Kate':

kv-> execute 'REVOKE manager FROM USER Kate'
Statement completed successfully

Chapter 9
Managing Roles, Privileges and Users

9-11

10
Security Policies

The following default policies in Oracle NoSQL Database may be used to tailor system
behavior to meet your security requirements:

• Login sessions have a limited duration of validity. After that duration has passed,
the session needs re-authentication.

• Session login errors are tracked at the component level. Access to an account for
a single client host is temporarily disabled if too many failed logins occur at that
component within a configurable time duration.

Note:

Both of these behaviors can be customized by modifying the values
of their respective security parameters. For more information, see the
following section.

Security Policy Modifications
You can use the plan change-parameters command in order to change a security
policy in the system:

plan change-parameters -security <id>...

Security parameters are applied implicitly and uniformly across all SNs, RNs and
Admins.

The following security parameters can be set:

• sessionTimeout=<Long TimeUnit>

Specifies the length of time for which a login session is valid, unless extended.
The default value is 24 hours.

• sessionExtendAllowed=<Boolean>

Indicates whether session extensions should be granted. Default value is true.

• accountErrorLockoutThresholdInterval=<Long TimeUnit>

Specifies the time period over which login error counts are tracked for account
lockout monitoring. The default value is 10 minutes.

• accountErrorLockoutThresholdCount=<Integer>

Number of invalid login attempts for a user account from a particular host address
over the tracking period needed to trigger an automatic account lockout for a host.
The default value is 10 attempts.

• accountErrorLockoutTimeout=<Long TimeUnit>

10-1

Time duration for which an account will be locked out once a lockout has been
triggered. The default value is 30 minutes.

• loginCacheTimeout=<Long TimeUnit>

Time duration for which KVStore components cache login information locally to
avoid the need to query other servers for login validation on every request. The
default value is 5 minutes.

Chapter 10
Security Policy Modifications

10-2

11
Audit Logging

Oracle NoSQL Database monitors and records security sensitive activities. These log
messages are available through the SN-local log files and the store-wide logging view.
High risky security activities are also visible by using the show events command.

Security Log Messages
For ease of grepping and analysis, the auditing log message uses KVAuditInfo as a
prefix. For example:

General audit logging:
<Timestamp>: KVAuditInfo[user: <user_name>,
clienthost: <client_host>, operation:
<operation_description>, status: <SUCCESS/FORBIDDEN>,
reason: <failure_reason>]

General audit logging:
Particular logging for successful execution of plan:
<Timestamp>: KVAuditInfo[<plan_name>, owned by <plan_owner>,
executed by <plan_executor> from <client_host>,
state=<end state of plan execution>]

To distinguish security related messages from standard log messages, the following
two security related logging levels are introduced:

• SEC_WARNING

Logs unauthenticated login, unauthorized read/write data access and unauthorized
execution of CLI commands. Unauthenticated login does not log the reasons of
failure.

• SEC_INFO

Logs the success of a user login and the successful execution of plans that require
dbadmin or sysadmin role related privileges.

11-1

12
Keeping Oracle NoSQL Database Secure

This chapter provides a set of guidelines to keep your Oracle NoSQL Database
secure. To maximize the security features offered by Oracle NoSQL Database, it is
imperative that the database itself be well protected.

Security guidelines provide advice about how to securely configure Oracle NoSQL
Database by recommending security practices for operational database deployments.

Guidelines for Securing the Configuration
Follow these guidelines to keep the security configuration secure:

• The initial security configuration should be generated on a host that is not intended
for KVStore operational use, using the securityconfig create config command.

• Storage Nodes should be deployed by running makebootconfig with the -store-
security enable argument. The configured security directory from the reference
host should be copied to the new Storage Node KVROOT using a secure copy
mechanism prior to starting the store.

• The security configuration should be kept in a protected location for future use.

• Updates to the security configuration should be performed on the configuration
host and copied to the operational Storage Node hosts using a secure copy
mechanism.

• After the first user is configured but before allowing applications to use the store,
you may wish to restart all SNA processes on hosts running Admin processes
and then use the Admin CLI show users command to ensure that there is only
the single user definition that is expected. This step validates that no other user
creation occurred during the period when administrative login was not required.

Guidelines for Deploying Secure Applications
Follow these guidelines when deploying your Oracle NoSQL Database and if the
properties include oracle.kv.auth.wallet.dir in order to use Oracle wallet to hold a
user password:

• Include the kvstore-ee.jar file in the application classpath.

• The kvstore-ee.jar, oraclepki.jar, osdt_cert.jar, osdt_core.jar files
should all be made available on the application machine.

Note:

kvstore-ee references the other files, so they do not need to be included
in the classpath explicitly.

12-1

Guidelines for Securing the SSL protocol
Follow these guidelines to keep the SSL protocol secure:

• When configuring SSL communication for your store, you should consider both
performance and security.

• For a more secure store you should opt for higher security where possible.

• The Oracle JDK 7 supports TLSv1.2 as an SSL protocol level.

Guidelines for using JMX securely
Follow these guidelines to securely use your Java Management Extensions (JMX)
agent:

• If you enable JMX for a secure store, your JMX monitoring application must
access the store using SSL.

• You should consult the configuration details for the JMX product you wish to use.
In this case, you can use jconsole with a secure store by running the following
command:

jconsole -J-Djavax.net.ssl.trustStore=/home/nosql/client.trust \
node01:5000

where node01 is the registry host to be monitored and 5000 is the registry port
configured for the Storage Node.

Guidelines for Updating Keystore Passwords
Follow these steps to update the keystore passwords:

1. In the security directory on the configuration host run the keytool command. You
can provide the new passwords through the keytool interactive prompt or using
arguments. For example, to set the new key and store passwords for store.keys as
well as the new store password for store.trust using the keytool prompt:

Note:

The 3 new passwords must be equal, otherwise the store cannot be
successfully restarted.

keytool -keypasswd -keystore store.keys -alias shared
Enter keystore password:
New key password for <shared>:
Re-enter new key password for <shared>:

keytool -storepasswd -keystore store.keys
Enter keystore password:

Chapter 12
Guidelines for Securing the SSL protocol

12-2

New keystore password:
Re-enter new keystore password:

keytool -storepasswd -keystore store.trust
Enter keystore password:
New keystore password:
Re-enter new keystore password:

You could also run the keytool command and set the new passwords using
arguments instead. For example:

keytool -keypasswd -keystore store.keys \
-alias shared -keypass <old_pwd> -new <new_pwd> -storepass
<old_pwd>

keytool -storepasswd -keystore store.keys \
-storepass <old_pwd> -new <new_pwd>

keytool -storepasswd -keystore store.trust \
-storepass <old_pwd> -new <new_pwd>

2. If using a Password File store, skip ahead to the next step. To update the keystore
password for wallets, use the following command:

java -Xmx64m -Xms64m \
-jar <KVHOME>/lib/kvstore.jar securityconfig \
wallet secret -directory store.wallet -set -alias keystore

Securityconfig will prompt for the new password. The new password should match
the new one provided earlier to the keytool command.

3. If using Password File stores instead of wallets, use the following command to
update the keystore password:

java -Xmx64m -Xms64m \
-jar <KVHOME>/lib/kvstore.jar securityconfig \
pwdfile secret -file store.pwd -set -alias keystore

Securityconfig will prompt for the new password. The new password should match
the new one provided earlier to the keytool command.

4. Copy the updated store.keys, store.trust file, and either store.pwd or the contents
of store.wallet to the security directory on each host and restart the Storage Node
using the following commands:

java -Xmx64m -Xms64m \
-jar <KVHOME>/lib/kvstore.jar stop -root KVROOT

Chapter 12
Guidelines for Updating Keystore Passwords

12-3

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

java -Xmx64m -Xms64m \
-jar <KVHOME>/lib/kvstore.jar start -root KVROOT&

Guidelines for Updating Kerberos Passwords
The password of Kerberos principal should be periodically changed. To do this, you
can either manually specify it by using kadmin.local or automatically randomize
principal keys by using the config renew-keytab command of the securityconfig
tool.

The syntax for this command is:

config renew-keytab -root <secroot> [-secdir <security dir>]
[-keysalt <enc:salt[,enc:salt,..]>]
[-kadmin-path <kadmin utility path>]
[-instance-name <database instance name>]
[-admin-principal <kerberos admin principal name>]
[-kadmin-keytab <keytab file>]
[-kadmin-ccache <credential cache file>]

where:

• -keysalt

Sets the list of encryption types and salt types to be used for any new
keys created. The default value is des3-cbc-sha1:normal,aes128-cts-hmac-
sha1-96:normal,arcfour-hmac:normal.

• -kadmin-path

Indicates the absolute path of Kerberos kadmin utility. The default value is /usr/
kerberos/sbin/kadmin.

• -instance-name

Specifies the service principal name. The default value is the fully qualified domain
name (FQDN) of the Storage Node where Oracle NoSQL Database is running.

• -admin-principal

Specifies the principal used to login to the Kerberos admin interface. This is
required while using kadmin keytab or password to connect to the admin interface.

• -kadmin-keytab

Specifies the location of a Kerberos keytab file that stores Kerberos admin user
principals and encrypted keys. The security configuration tool will use the specified
keytab file to login to the Kerberos admin interface.

Chapter 12
Guidelines for Updating Kerberos Passwords

12-4

You need to specify the -admin-principal flag when using keytab to login to the
Kerberos admin, otherwise the correct admin principal will not be recognized. This
flag cannot be specified in conjunction with the -kadmin-ccache flag.

• -kadmin-ccache

Specifies the complete path name to the Kerberos credentials cache file that
should contain a service ticket for the kadmin/ADMINHOST. ADMINHOST is the
fully-qualified hostname of the admin server or kadmin/admin service.

If not specified, the user is prompted to enter the password for principal
while logging to the Kerberos admin interface. This flag cannot be specified in
conjunction with the -kadmin-keytab flag.

To manually update the Kerberos principal password instead, you should follow these
steps:

1. Use kadmin.local utility to change the service principal password:

kadmin.local: cpw nosql/myhost
Enter password for principal nosql/myhost@EXAMPLE.COM
Re-enter password for principal nosql/myhost@EXAMPLE.COM

2. Regenerate the keytab file for Oracle NoSQL Database service principal.

kadmin.local: ktadd –norandkey –k new.keytab

3. Copy the new keytab file for Oracle NoSQL Database service principal to each
Storage Node. For example:

scp new.keytab kvuser@mystore:KVROOT/security/store.keytab
...

4. Validate the keytab file by comparing the key version number (kvno):

kadmin.local:getprinc nosql/myhost@EXAMPLE.COM
Principal: nosql/myhost@EXAMPLE.COM
Expiration date: [never]
Last password change: Thu Jun 04 03:16:38 UTC 2015
Password expiration date: [none]
Maximum ticket life: 1 day 00:00:00
Maximum renewable life: 0 days 00:00:00
Last modified: Thu Jun 04 03:16:38 UTC 2015
(root/admin@ORACLE.EXAMPLE.COM)
Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 4
Key: vno 12, aes256-cts-hmac-sha1-96
Key: vno 12, aes128-cts-hmac-sha1-96
Key: vno 12, des3-cbc-sha1
Key: vno 12, arcfour-hmac
MKey: vno 1
Attributes:
Policy: [none]
Kadmin.local: quit
klist –k new.keytab

Chapter 12
Guidelines for Updating Kerberos Passwords

12-5

KVNO Principal
---- ------------------------
12 nosql/myhost@EXAMPLE.COM
12 nosql/myhost@EXAMPLE.COM
12 nosql/myhost@EXAMPLE.COM
12 nosql/myhost@EXAMPLE.COM

Client side user principals require similar password rotation. Keytab or credential
cache used to login to the database should be renewed. If kinit tool is used to create
a credential cache, you should run kdestroy to clear cached tickets and re-run kinit to
generate a new credential cache.

For example:

kdestroy –c /tmp/krb5ccache
kinit –c /tmp/krb5ccache

Guidelines for Updating SSL Keys and Certificates
If the certificate that the server uses is going to expire, or is no longer valid, you may
need to replace the SSL key and certificate. This section describes the procedure to
complete this task.

These directions describe creating a self-signed certificate, and an associated key,
which is the default for Oracle NoSQL Database. Alternatively, you can use an external
certificate, as described in Guidelines for Configuring External Certificates for an
Existing Default Secure Installation.

Updating the SSL key/certificate involves several steps:

1. Create a new key/certificate pair on a storage node.

2. Copy the new key/certificate pair to every storage node and merge the new
certificate into the existing trust store files: client.trust and store.trust.

3. Restart each storage node sequentially.

4. Copy the client.trust with the merged entries to each of the clients.

5. Copy the store.keys that has the merged entries to each of the storage nodes,
and restart each storage node sequentially, a second time.

6. Remove the old certificate in store.trust in all the storage nodes.

7. Verify that only the new certificate is in use.

Complete these steps to update the SSL keys and certificates on a running store.
Oracle NoSQL Database can remain operational throughout the entire process.

Note:

The Oracle NoSQL Database development environment used for this set of
tasks has one (1) shard, with a replication factor of three (RF=3).

Chapter 12
Guidelines for Updating SSL Keys and Certificates

12-6

Before starting this procedure, create a temporary directory in which to store the key.
In the sample output for Step 1, you'll see the temporary directory created as newKey,
created under /Users/my_name/tmp/kvroot/:

cd /Users/my_name/tmp/kvroot/
mkdir newKey

For more information on security configuration files, see Security Configuration.

Create a New SSL Key Certificate

1. From your NoSQL development environment on one of the SN nodes, SN1, run
the securityconfig utility to create a new key in the new directory, newKey. The
new configuration needs to specify the same keystore password as your current
configuration. If you do not specify a password with the -kspwd option, the utility
prompts you to set a password.

cd /Users/my_name/tmp/kvroot/
mkdir newKey
java -jar $KVHOME/lib/kvstore.jar securityconfig config create -
root /Users/my_name/tmp/kvroot/newKey
-kspwd 123456
cd newKey
~/tmp/kvroot/newKey)=> ls -R
security
./security:
client.security security.xml store.trust temp.cert client.trust
store.keys store.wallet
./security/store.wallet:
cwallet.sso
(~/tmp/kvroot/newKey)=>

2. On the SN node on which you created the new key, merge the truststore entries
using the config merge-trust command, as follows. Then, continue from your
NoSQL development environment:

java -jar <KVHOME>/lib/kvstore.jar securityconfig \
config merge-trust -root <standard config dir> \
-source-root <new config dir>

java -jar $KVHOME/lib/kvstore.jar securityconfig config merge-trust
-root $KVROOT1 -source-root /Users/my_name/tmp/kvroot/newKey
cd $KVROOT1/security (~/tmp/kvroot/kvroot1/security)=> keytool -
list -keystore store.trust
Enter keystore password: <No password was needed for this Test, so
we just pressed Enter>
 ***************** WARNING WARNING WARNING ******************
 * The integrity of the information stored in your keystore *
 * has NOT been verified! In order to verify its integrity, *
 * you must provide your keystore password. *
 ***************** WARNING WARNING WARNING ******************
Keystore type: JKS

Chapter 12
Guidelines for Updating SSL Keys and Certificates

12-7

Keystore provider: SUN
Your keystore contains 2 entries
mykey_2, Feb 6, 2018, trustedCertEntry,
Certificate fingerprint (SHA1):
A3:75:F2:97:25:20:F9:AD:52:61:71:8F:6B:7E:B1:BB:E8:54:D1:7A
mykey, Feb 6, 2018, trustedCertEntry,
Certificate fingerprint (SHA1):
89:71:8C:F1:6D:7E:25:D7:AD:C4:7E:23:8C:09:0D:AC:CE:AE:3F:67

Note:

In a multiple Storage Node deployment, you must copy the new
configuration (the security directory and its contents) to each Storage
Node host's new configuration directory and run merge-trust as
described on each host.

3. To update the SSL key, merge the new key (on SN1) into all SNs as follows:

(~/tmp/kvroot/kvroot1/security)=> java -jar $KVHOME/lib/kvstore.jar
securityconfig
config merge-trust -root $KVROOT2 -source-root /Users/my_name/tmp/
kvroot/newKey
Configuration updated.

(~/tmp/kvroot/kvroot1/security)=> java -jar $KVHOME/lib/kvstore.jar
securityconfig config
merge-trust -root $KVROOT3 -source-root /Users/my_name/tmp/kvroot/
newKey
Configuration updated.

(~/tmp/kvroot/kvroot2/security)=> keytool -list -keystore
store.trust
Enter keystore password:

 ***************** WARNING WARNING WARNING ******************
 * The integrity of the information stored in your keystore *
 * has NOT been verified! In order to verify its integrity, *
 * you must provide your keystore password. *
 ***************** WARNING WARNING WARNING ******************
Keystore type: JKS
Keystore provider: SUN
Your keystore contains 2 entries
mykey_2, Feb 6, 2018, trustedCertEntry,
Certificate fingerprint (SHA1):
A3:75:F2:97:25:20:F9:AD:52:61:71:8F:6B:7E:B1:BB:E8:54:D1:7A
mykey, Feb 6, 2018, trustedCertEntry,
Certificate fingerprint (SHA1):
89:71:8C:F1:6D:7E:25:D7:AD:C4:7E:23:8C:09:0D:AC:CE:AE:3F:67

(~/tmp/kvroot)=> cd kvroot3/security
(~/tmp/kvroot/kvroot3/security)=> keytool -list -keystore
store.trust

Chapter 12
Guidelines for Updating SSL Keys and Certificates

12-8

Enter keystore password:
 ***************** WARNING WARNING WARNING ******************
 * The integrity of the information stored in your keystore *
 * has NOT been verified! In order to verify its integrity, *
 * you must provide your keystore password. *
 ***************** WARNING WARNING WARNING ******************

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 2 entries

mykey_2, Feb 6, 2018, trustedCertEntry,
Certificate fingerprint (SHA1):
A3:75:F2:97:25:20:F9:AD:52:61:71:8F:6B:7E:B1:BB:E8:54:D1:7A
mykey, Feb 6, 2018, trustedCertEntry,
Certificate fingerprint (SHA1):
89:71:8C:F1:6D:7E:25:D7:AD:C4:7E:23:8C:09:0D:AC:CE:AE:3F:67

4. Copy the updated client.trust file (the one with the merged keys) to the security
directory on each host so that clients can use it to access the store.

Note:

The store.trust and the client.trust files have the same content,
but different uses. The client.trust is used to authenticate client-
server communication, and store.trust to authenticate server-server
communication.

5. From your NoSQL development environment, get the client.trust file from SN 3,
as follows:

(~/tmp/kvroot/kvroot3/security)=> cat client.security
#Security property settings for communication with KVStore servers
#Tue Feb 06 15:03:40 CST 2018
oracle.kv.ssl.trustStore=client.trust
oracle.kv.transport=ssl
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

6. Check that all Replication Nodes are online (using either the Admin CLI ping or
verify configuration command).

7. Restart each Storage Node sequentially, making sure that each SN is completely
up before restarting the next SN. Use the following commands:

java -jar <KVHOME>/lib/kvstore.jar stop -root KVROOT
 java -jar <KVHOME>/lib/kvstore.jar start -root KVROOT&

Chapter 12
Guidelines for Updating SSL Keys and Certificates

12-9

8. Continuing from your NoSQL development environment, start the Admin CLI, and
check that all RNs are up using the ping command:

(~/tmp/kvroot/newKey)=> java -jar $KVHOME/lib/kvstore.jar
runadmin -host localhost -port 5000 -security
$KVROOT1/security/client.security
Logged in admin as anonymous
kv-> ping
Pinging components of store HSRStore based upon topology sequence
#18
10 partitions and 3 storage nodes
Time: 2018-02-07 00:34:37 UTC Version: 12.2.4.5.12
Shard Status: healthy:1 writable-degraded:0 read-only:0 offline:0
Admin Status: healthy
Zone [name=Austin id=zn1 type=PRIMARY allowArbiters=false]
RN Status: online:3 offline:0 max
DelayMillis:1 max CatchupTimeSecs:0
Storage Node [sn1] on localhost:5000 Zone: [name=Austin
id=zn1 type=PRIMARY allowArbiters=false] Status: RUNNING
Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id: 0d00330822fc
 Admin [admin1] Status: RUNNING,MASTER
 Rep Node [rg1-rn1] Status: RUNNING,MASTER
sequenceNumber:63 haPort:5011
Storage Node [sn2] on localhost:6000 Zone: [name=Austin
id=zn1 type=PRIMARY allowArbiters=false] Status: RUNNING
Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id: 0d00330822fc
 Rep Node [rg1-rn2] Status: RUNNING,REPLICA
sequenceNumber:63 haPort:6010 delayMillis:1 catchupTimeSecs:0
Storage Node [sn3] on localhost:7000 Zone: [name=Austin
id=zn1 type=PRIMARY allowArbiters=false] Status: RUNNING
Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id: 0d00330822fc
 Rep Node [rg1-rn3] Status: RUNNING,REPLICA
sequenceNumber:63 haPort:7010 delayMillis:? catchupTimeSecs:?

9. Restart each SN sequentially. Make sure that the last one you restarted is
completely up before continuing to the next SN:

java -jar $KVHOME/lib/kvstore.jar stop -root
/Users/my_name/tmp/kvroot/kvroot1
(~/hg/kv/kvstore)=> java -jar $KVHOME/lib/kvstore.jar start -root
$KVROOT1 &
kv-> ping
Pinging components of store HSRStore based upon topology sequence
#18
10 partitions and 3 storage nodes
Time: 2018-02-06 21:23:56 UTC Version: 12.2.4.5.12
Shard Status: healthy:1 writable-degraded:0 read-only:0 offline:0
Admin Status: healthy
Zone [name=Austin id=zn1 type=PRIMARY allowArbiters=false]
RN Status: online:3 offline:0 maxDelayMillis:0 maxCatchupTimeSecs:0
Storage Node [sn1] on localhost:5000 Zone: [name=Austin
id=zn1 type=PRIMARY allowArbiters=false]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build
id: 0d00330822fc

Chapter 12
Guidelines for Updating SSL Keys and Certificates

12-10

 Admin [admin1] Status: RUNNING,MASTER
 Rep Node [rg1-rn1] Status: RUNNING,REPLICA
sequenceNumber:62 haPort:5011 delayMillis:0 catchupTimeSecs:0
Storage Node [sn2] on localhost:6000 Zone: [name=Austin
id=zn1 type=PRIMARY allowArbiters=false]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822fc
 Rep Node [rg1-rn2] Status: RUNNING,MASTER
sequenceNumber:62 haPort:6010
Storage Node [sn3] on localhost:7000 Zone: [name=Austin
id=zn1 type=PRIMARY allowArbiters=false]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822fc
 Rep Node [rg1-rn3] Status: RUNNING,REPLICA
sequenceNumber:62 haPort:7010 delayMillis:0 catchupTimeSecs:0
Rep Node [rg1-rn1] Status: RUNNING,REPLICA is up, now restart the
next SN

 (~/hg/kv/kvstore)=> java -jar $KVHOME/lib/kvstore.jar stop -root /
Users/my_name/tmp/kvroot/kvroot2
kv->ping
Pinging components of store HSRStore based upon topology sequence
#18
10 partitions and 3 storage nodes
Time: 2018-02-06 21:25:39 UTC Version: 12.2.4.5.12
Shard Status: healthy:0 writable-degraded:1 read-only:0 offline:0
Admin Status: healthy
Zone [name=Austin id=zn1 type=PRIMARY allowArbiters=false]
RN Status: online:2 offline:1 maxDelayMillis:? maxCatchupTimeSecs:?
Storage Node [sn1] on localhost:5000 Zone: [name=Austin id=zn1
type=PRIMARY allowArbiters=false]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822fc
 Admin [admin1] Status: RUNNING,MASTER
 Rep Node [rg1-rn1] Status: RUNNING,REPLICA
sequenceNumber:62 haPort:5011
Storage Node [sn2] on localhost:6000
Zone: [name=Austin id=zn1 type=PRIMARY allowArbiters=false]
UNREACHABLE
 Rep Node [rg1-rn2] Status: UNREACHABLE
Storage Node [sn3] on localhost:7000
Zone: [name=Austin id=zn1 type=PRIMARY allowArbiters=false]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822fc
 Rep Node [rg1-rn3] Status: RUNNING,REPLICA
sequenceNumber:62 haPort:7010 delayMillis:? catchupTimeSecs:?

(~/hg/kv/kvstore)=> java -jar $KVHOME/lib/kvstore.jar start -root
$KVROOT2 & kv->ping
Pinging components of store HSRStore based upon topology sequence
#18
10 partitions and 3 storage nodes
Time: 2018-02-06 21:26:09 UTC Version: 12.2.4.5.12
Shard Status: healthy:1 writable-degraded:0 read-only:0 offline:0
Admin Status: healthy

Chapter 12
Guidelines for Updating SSL Keys and Certificates

12-11

Zone [name=Austin id=zn1 type=PRIMARY allowArbiters=false]
RN Status: online:3 offline:0 maxDelayMillis:1 maxCatchupTimeSecs:0
Storage Node [sn1] on localhost:5000 Zone: [name=Austin id=zn1
type=PRIMARY allowArbiters=false]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822fc
 Admin [admin1] Status: RUNNING,MASTER
 Rep Node [rg1-rn1] Status: RUNNING,REPLICA
sequenceNumber:63 haPort:5011

Storage Node [sn2] on localhost:6000
Zone: [name=Austin id=zn1 type=PRIMARY allowArbiters=false]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822fc
 Rep Node [rg1-rn2] Status: RUNNING,REPLICA
sequenceNumber:63 haPort:6010 delayMillis:1 catchupTimeSecs:0
Storage Node [sn3] on localhost:7000
Zone: [name=Austin id=zn1 type=PRIMARY allowArbiters=false]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822fc
 Rep Node [rg1-rn3] Status: RUNNING,REPLICA
sequenceNumber:63 haPort:7010 delayMillis:1 catchupTimeSecs:0

10. Now that SN2 is up and running, restart SN3 as follows:

(~/hg/kv/kvstore)=> java -jar $KVHOME/lib/kvstore.jar stop -root
/Users/my_name/tmp/kvroot/kvroot3
kv-> ping
Pinging components of store HSRStore based upon topology sequence
#18
10 partitions and 3 storage nodes
Time: 2018-02-06 21:26:43 UTC Version: 12.2.4.5.12
Shard Status: healthy:0 writable-degraded:1 read-only:0 offline:0
Admin Status: healthy
Zone [name=Austin id=zn1 type=PRIMARY allowArbiters=false]
RN Status: online:2 offline:1 maxDelayMillis:1 maxCatchupTimeSecs:0
Storage Node [sn1] on localhost:5000 Zone: [name=Austin id=zn1
type=PRIMARY allowArbiters=false]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822fc
 Admin [admin1] Status: RUNNING,MASTER
 Rep Node [rg1-rn1] Status: RUNNING,MASTER
sequenceNumber:63 haPort:5011
Storage Node [sn2] on localhost:7000
Zone: [name=Austin id=zn1 type=PRIMARY allowArbiters=false]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822fc
Rep Node [rg1-rn2] Status: RUNNING,REPLICA
sequenceNumber:63 haPort:6010 delayMillis:1 catchupTimeSecs:0
Storage Node [sn3] on localhost:7000
Zone: [name=Austin id=zn1 type=PRIMARY allowArbiters=false]
UNREACHABLE
 Rep Node [rg1-rn3] Status: UNREACHABLE

Chapter 12
Guidelines for Updating SSL Keys and Certificates

12-12

 (~/hg/kv/kvstore)=> java -jar $KVHOME/lib/kvstore.jar start -root
$KVROOT3 &
kv-> ping
Pinging components of store HSRStore based upon topology sequence
#18
10 partitions and 3 storage nodes
Time: 2018-02-06 21:27:15 UTC Version: 12.2.4.5.12
Shard Status: healthy:1 writable-degraded:0 read-only:0 offline:0
Admin Status: healthy
Zone [name=Austin id=zn1 type=PRIMARY allowArbiters=false]
RN Status: online:3 offline:0 maxDelayMillis:1 maxCatchupTimeSecs:0
Storage Node [sn1] on localhost:5000
Zone: [name=Austin id=zn1 type=PRIMARY allowArbiters=false]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822fc
 Admin [admin1] Status: RUNNING,MASTER
 Rep Node [rg1-rn1] Status: RUNNING,MASTER
sequenceNumber:63 haPort:5011
Storage Node [sn2] on localhost:6000
Zone: [name=Austin id=zn1 type=PRIMARY allowArbiters=false]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822fc
 Rep Node [rg1-rn2] Status: RUNNING,REPLICA
sequenceNumber:63 haPort:6010 delayMillis:1 catchupTimeSecs:0
Storage Node [sn3] on localhost:7000
Zone: [name=Austin id=zn1 type=PRIMARY allowArbiters=false]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822fc
 Rep Node [rg1-rn3] Status: RUNNING,REPLICA
sequenceNumber:63 haPort:7010 delayMillis:? catchupTimeSecs:?

11. Copy the store.keys file from the security directory of the newly generated key to
the security directory on each storage node. This copies the new generated key
to replace the old ones on the server node (SNs). Then, check that all Replication
Nodes are online and restart each Storage Node, one by one, using the following
commands:

java -jar <KVHOME>/lib/kvstore.jar stop -root KVROOT
java -jar <KVHOME>/lib/kvstore.jar start -root KVROOT&

These commands copy the new generated key to replace the old keys on the
server node (SNs). Then restart each of the SNs:

(~/tmp/kvroot/kvroot3/security)=> cp /Users/my_name/tmp/kvroot/
newKey/security/store.keys
/Users/my_name/tmp/kvroot/kvroot1/security/.
 (~/tmp/kvroot/kvroot3/security)=> cp /Users/my_name/tmp/kvroot/
newKey/security/store.keys
/Users/my_name/tmp/kvroot/kvroot2/security/.
 (~/tmp/kvroot/kvroot3/security)=> cp /Users/my_name/tmp/kvroot/
newKey/security/store.keys
/Users/my_name/tmp/kvroot/kvroot3/security/.

Chapter 12
Guidelines for Updating SSL Keys and Certificates

12-13

java -jar <KVHOME>/lib/kvstore.jar stop -root KVROOT
java -jar <KVHOME>/lib/kvstore.jar start -root KVROOT&

12. On each Storage Node, remove the obsolete certificate mykey in store.trust.
Then, rename the new certificate mykey_2 to mykey using the following command:

keytool -delete -keystore KVROOT/security/store.trust \
 -alias mykey keytool -changealias -keystore \
KVROOT/security/store.trust -alias mykey_2 -destalias mykey

This step removes the old certificate (mykey) and renames the newly created
certificate, myKey_2, to the previous key's name, mykey. One key then exists, the
newly generated one, called myKey.

(~/tmp/kvroot/kvroot3/security)=> keytool -delete -keystore
$KVROOT1/security/store.trust -alias mykey
Enter keystore password:

(~/tmp/kvroot/kvroot3/security)=> keytool -delete -keystore
$KVROOT2/security/store.trust -alias mykey
Enter keystore password:

(~/tmp/kvroot/kvroot3/security)=> keytool -delete -keystore
$KVROOT3/security/store.trust -alias mykey
Enter keystore password:

(~/tmp/kvroot/kvroot3/security)=> keytool -changealias -keystore
$KVROOT3/security/store.trust -alias mykey_2 -destalias mykey

(~/tmp/kvroot/kvroot3/security)=> keytool -changealias -keystore
$KVROOT2/security/store.trust -alias mykey_2 -destalias mykey

(~/tmp/kvroot/kvroot3/security)=> keytool -changealias -keystore
$KVROOT1/security/store.trust -alias mykey_2 -destalias mykey

Verify that the new certificate is the only one used using the following command:

keytool -list -keystore KVROOT/security/store.trust
(~/tmp/kvroot/newKey/security)=> keytool -list -keystore store.keys
Enter keystore password:

Keystore type: JKS
Keystore provider: SUN

Your keystore contains one entry, which is correct:

shared, Feb 6, 2018, PrivateKeyEntry,
Certificate fingerprint (SHA1):
A3:75:F2:97:25:20:F9:AD:52:61:71:8F:6B:7E:B1:BB:E8:54:D1:7A

Chapter 12
Guidelines for Updating SSL Keys and Certificates

12-14

Guidelines for Configuring External Certificates for a new
Installation

Follow these steps to configure a new store to use external certificates:

Note:

This procedure assumes you already have a Java keystore and truststore
setup. For more information see Java KeyStore Preparation.

1. Collect the distinguished name from the verbose information of the external
certificate. In this example, it is the value of the owner field.

keytool -list -v -keystore store.keys alias shared
Certificate chain length: 3
Certificate[1]:
Owner: CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California,
C=US
Issuer: CN=intermediate CA, OU=CA, O=MyCompany, ST=California,
C=US

2. Prepare dnmatch expression using a distinguished name. Oracle NoSQL Database
verifies identities of server and client while establishing SSL connection between
the server components. The verification is performed by checking if principal
names on each side match the specified dnmatch expressions, which uses regular
expressions as specified by java.util.regex.Pattern. The principal names
represent the identities, which are specified by the subject name attribute of the
certificate, represented as a distinguished name in RFC 1779 format, using the
exact order, capitalization, and spaces of the attribute value. RFC 1779 defines
well-known attributes for distinguished names, including CN, L, ST O, OU, C
and STREET. If the distinguished name of the external certificate contains non-
standard attributes, for example, EMAILADDRESS, then the expression used for
dnmatch must replace these attribute names with an OID that is valid in RFC
1779 form, or use special constructs of regular expression to skip checking these
attributes. The format for a dnmatch expression is:

dnmatch(regular expression)

In above example, the dnmatch expression is:

dnmatch(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)

If you are using a wild card to match a certificate with a non-standard distinguished
name attribute, the dnmatch expression needs to match the attribute name in its
OID format properly. For example, if the distinguished name is:

EMAILADDRESS=person@example.com, CN=myhost, OU=TeamA, O=MyCompany,
L=Unknown, ST=California, C=US

Chapter 12
Guidelines for Configuring External Certificates for a new Installation

12-15

Then wild card should represent the entire EMAILADDRESS attribute name:

dnmatch(.*=person@example.com, CN=myhost, OU=TeamA, O=MyCompany,
L=Unknown, ST=California, C=US)

3. Run makebootconfig to setup the secure store. Also specify the keystore
password and dnmatch expressions in the security parameters. The keystore
password "password" must use the same password as the Java Keystore of the
external certificates. See:

java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar makebootconfig \
-root KVROOT -host node01 -port 5000 -harange 5010,5020 -admin 5001
\
-store-security configure \
-pwdmgr wallet -kspwd password \
-security-param client:serverIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)"
\
-security-param internal:serverIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)"
\
-security-param internal:clientIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)"
\
-security-param ha:serverIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)"
\
-security-param ha:clientIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)"

By default the keystore entry is stored under an alias "shared" and the truststore
entry is stored under an alias "mykey". If you are using customized aliases
for keystore and truststore, then additional flags need to be specified in the
makebootconfig command.

For example if your customized keystore alias is "currentKey" and the certificate
is stored in the truststore under the "currentCert" alias, the following additional
parameters have to be included in the makebootconfig command.

-security-param "client:serverKeyAlias=currentKey"
-security-param "ha:serverKeyAlias=currentKey"
-security-param "internal:clientKeyAlias=currentKey"
-security-param "internal:serverKeyAlias=currentKey"
-security-param "keystoreSigPrivateKeyAlias=currentKey"
-security-param "truststoreSigPublicKeyAlias=currentCert"

The modified makebootconfig command with these additional flags is given below.

java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar makebootconfig \
-root KVROOT -host node01 -port 5000 -harange 5010,5020 -admin 5001
\
-store-security configure \
-pwdmgr wallet -kspwd password \
-security-param client:serverIdentityAllowed="dnmatch

Chapter 12
Guidelines for Configuring External Certificates for a new Installation

12-16

(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)"
\
-security-param internal:serverIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)"
\
-security-param internal:clientIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)"
\
-security-param ha:serverIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)"
\
-security-param ha:clientIdentityAllowed="dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown, ST=California, C=US)"
-security-param "client:serverKeyAlias=currentKey" \
-security-param "ha:serverKeyAlias=currentKey" \
-security-param "internal:clientKeyAlias=currentKey" \
-security-param "internal:serverKeyAlias=currentKey" \
-security-param "keystoreSigPrivateKeyAlias=currentKey" \
-security-param "truststoreSigPublicKeyAlias=currentCert"

4. The makebootconfig command automatically generates keystore, server, and
client truststore files using self-signed certificates. To use external certificates
instead, you need to replace the keystore and truststore files with your own on
each server that will host a Storage Node. For example:

copy store.keys store.trust client.trust KVROOT/security/

5. Use the securityconfig tool to verify installation. For example:

security-> config verify -secdir KVROOT/security
Security configuration verification passed.

Note:

For older releases (prior 4.1), you needed to verify the configuration
manually. In that case, the distinguished name of the certificate must
match the content inside of dnmatch in security.xml. Also, the user-
generated keystore password must be the same as the one stored in
the wallet (store.wallet) or the password file (store.pwd). Finally, the
truststore (store.trust) must contain the CA certificates and the one
used for Oracle NoSQL Database.

6. Finally, deliver the client.trust or import the CA certificates into the client truststore.

Guidelines for Configuring External Certificates for an
Existing Default Secure Installation

Follow these steps to install external certificates in an existing secure NoSQL
database installation that uses a default security configuration and a self-signed
certificate:

Chapter 12
Guidelines for Configuring External Certificates for an Existing Default Secure Installation

12-17

Note:

This procedure assumes you already have a Java keystore and truststore
setup. For more information see Java KeyStore Preparation.

1. Create a new security configuration that uses external certificates:

security-> config create -root NEW_KVROOT \
-pwdmgr wallet -kspwd password \
-param "client:serverIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "internal:serverIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "internal:clientIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "ha:serverIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "ha:clientIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)"

Note:

NEW_KVROOT should be a temporary directory that only holds the
generated security files.

2. Replace the keystore and truststore files with your own on each server that will
host a Storage Node. For example:

copy store.keys store.trust client.trust NEW_KVROOT/security/

3. It is easier to install an external certificate if the existing store does not needs to
be kept accessible during the certificate installation. To do this, you only need to
copy the entire new security security configuration to each Storage Node and then
restart all of the Storage Nodes.

Chapter 12
Guidelines for Configuring External Certificates for an Existing Default Secure Installation

12-18

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

copy -r NEW_KVROOT/security KVROOT
java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar stop -root KVROOT
java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar start -root
KVROOT&

4. If the existing store need to be kept accessible during the credential changes
instead, then you should create an interim truststore and modify the security
parameters having dnmatch field. On the configuration host, merge the truststore
entries by using the config merge-trust command, and also import the root and
intermediate certificate:

java -Xmx64m -Xms64m \
-jar <KVHOME>/lib/kvstore.jar securityconfig \
config merge-trust -root KVROOT -source-root NEW_KVROOT
keytool -import -keystore KVROOT/security/store.trust -file
ca.cert.pem -alias root
keytool -import -keystore KVROOT/security/store.trust -file
intermediate.cert.pem -alias intermediate
copy KVROOT/security/store.trust KVROOT/security/client.trust

Note:

In a multiple Storage Node deployment, you need to copy the new
configuration to each host's new configuration directory and run merge-
trust on each host like in the example above.

5. Copy the updated client.trust file to the security directory on each host so that
clients can use it to access the store.

6. To keep the store accessible during the process, change the dnmatch value
in the security configuration to be a compatible one. The values specified in
the various dnmatch(xxx) expressions are a regular expression, as specified by
java.util.regex.Pattern. The compatible "dnmatch" value should be in the form
of old certificate DN | new certificate DN. In this case, the CN=NoSQL|
represents the DN of the original self-signed certificate.

security-> config update \
-secdir KVROOT/security \
-param "client:serverIdentityAllowed=dnmatch
(CN=NoSQL|CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "internal:serverIdentityAllowed=dnmatch
(CN=NoSQL|CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \

Chapter 12
Guidelines for Configuring External Certificates for an Existing Default Secure Installation

12-19

-param "internal:clientIdentityAllowed=dnmatch
(CN=NoSQL|CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "ha:serverIdentityAllowed=dnmatch
(CN=NoSQL|CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "ha:clientIdentityAllowed=dnmatch
(CN=NoSQL|CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)"

If clients set the login property oracle.kv.ssl.hostnameVerifier, change the
value of the dnmatch field. For example:

oracle.kv.ssl.trustStore=client.trust
oracle.kv.transport=ssl
oracle.kv.ssl.protocols=TLSv1.2,TLSv1.1,TLSv1
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL|CN\=myhost,
OU\=TeamA, O\=MyCompany, L\=Unknown, ST\=California, C\=US)

7. Check that all Replication Nodes are online and then restart each Storage Node
one by one using the following commands:

java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar stop -root
KVROOT

java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar start -root
KVROOT&

8. Copy the updated store.keys file to the security directory on each host. Then,
check that all Replication Nodes are online and restart each Storage Node one by
one using the following commands:

java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar stop -root
KVROOT

java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar start -root
KVROOT&

9. For all Storage Nodes, remove the obsolete certificate mykey in store.trust. Also,
rename the new certificate mykey_2 to mykey using the following command:

keytool -delete -keystore KVROOT/security/store.trust \
-alias mykey

keytool -changealias -keystore \
KVROOT/security/store.trust -alias mykey_2 -destalias mykey

Chapter 12
Guidelines for Configuring External Certificates for an Existing Default Secure Installation

12-20

Guidelines for Updating the External Certificates
Follow these steps to update the external certificates for a secure installation that is
already using external certificates.

Note:

This procedure assumes you already have a Java keystore and truststore
setup having the updated external certificates. For more information see
Java KeyStore Preparation.

1. Create a new security configuration that uses external certificates.

security-> config create -root NEW_KVROOT \
-pwdmgr wallet -kspwd password \
-param "client:serverIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "internal:serverIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "internal:clientIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "ha:serverIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)" \
-param "ha:clientIdentityAllowed=dnmatch
(CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US)"

2. Replace the keystore and server truststores with your own:

copy store.keys store.trust NEW_KVROOT/security/

3. On the configuration host, merge the truststore entries with the NEW_KVROOT
directory. Check that all Replication Nodes are online and then restart each
Storage Node one by one using the following commands. If the updated external
certificate uses a different distinguished name, update the dnmatch value in
the security configuration to a compatible one using the procedures found in
Guidelines for Configuring External Certificates for an Existing Default Secure
Installation.

Chapter 12
Guidelines for Updating the External Certificates

12-21

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX
to 1. Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

java -Xmx64m -Xms64m \
-jar <KVHOME>/lib/kvstore.jar securityconfig \
config merge-trust -root KVROOT \
-source-root <NEW_KVROOT>

java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar stop -root KVROOT
java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar start -root
KVROOT&

Note:

You do not need to update the client truststore if the new certificates are
signed by the same Certificate Authority (CA).

4. Copy the updated store.keys file to the security directory on each host. Then,
check that all Replication Nodes are online and restart each Storage Node one by
one using the following commands:

java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar stop -root KVROOT
java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar start -root
KVROOT&

5. For all Storage Nodes, remove the obsolete certificate mykey in store.trust. Also,
rename the new certificate mykey_2 to mykey using the following command:

keytool -delete -keystore KVROOT/security/store.trust \
-alias mykey

keytool -changealias -keystore \
KVROOT/security/store.trust -alias mykey_2 -destalias mykey

Guidelines for Operating System Security
Follow these guidelines regarding operating system security:

• There should be a single user identity that runs the KVStore software.

• The KVStore user should be in its own group, independent of other users.

• JE log files, audit log files, and password stores should have mode 0600 on Linux/
UNIX platforms with equivalent settings for Windows systems. The simplest way to
achieve this on Linux/UNIX is to set an umask of 0077.

Chapter 12
Guidelines for Operating System Security

12-22

• Security configuration files must be write-protected.

• The KVROOT directory and the security directory must be protected from
modification by other users. On UNIX/Linux this should include having the sticky
bit (01000) set in order to prevent renaming and deletion of files/directories.

• Access to the systems that are running KVStore should be limited in order to avoid
the risk of tampering.

Note:

Access protections do not guard against users who have sufficiently
elevated access rights (for example, the UNIX root user).

Chapter 12
Guidelines for Operating System Security

12-23

A
Password Complexity Policies

A set of default rules should be followed when creating or updating a user password
in order to enhance security. Password complexity policies do not apply to the SSL
keystore password.

Any user that has the SYSOPER privilege can customize the global password policies
and control the password complexity when creating or updating the passwords for
users. Oracle NoSQL Database checks if the new passwords are sufficiently complex
to prevent attackers to break into the system.

When using the CREATE USER and ALTER USER commands, Oracle NoSQL Database
will check if the passwords set comply with the password complexity policies.
Otherwise, a message will be shown with all the violating policies. For example:

kv-> exec "create user test identified by \"password\""
Error handling command
exec "create user test identified by \"password\"":
Error: User error in query: CreateUser failed for:
Password must have at least 9 characters

You can enable or disable the password complexity policy like this:

kv-> change-policy -params passwordComplexityCheck=true

Then, you can change the password complexity policies by using the change-policy
command. For example:

kv-> change-policy -params
passwordMinLength=20 passwordMaxLength=50 passwordMinUpper=3
passwordMinLower=3 passwordMinDigit=3 passwordMinSpecial=3

The following password security parameters can be set:

Parameter Name Value Range and Type Description

passwordAllowedSpecial Sub set or full set of
#$%&'()*+,-./:; <=>?@[]^_`{|}
(string)~

Lists the allowed special
characters.

passwordComplexityCheck [true|false] (boolean) Whether to enable
the password complexity
checking. The default value is
true.

passwordMaxLength 1 - 2048 (integer) The maximum length of a
password. The default value is
256.

A-1

Parameter Name Value Range and Type Description

passwordMinDigit 0 - 2048 (integer) The minimum required number
of numeric digits. The default
value is 2.

passwordMinLength 1 - 2048 (integer) The Minimum length of a
password. The default value is
9.

passwordMinLower 0 - 2048 (integer) The minimum required number
of lower case letters. The
default value is 2.

passwordMinSpecial 0 - 2048 (integer) The minimum required number
of special characters. The
default value is 2.

passwordMinUpper 0 - 2048 (integer) The minimum required number
of upper case letters. The
default value is 2.

passwordNotStoreName [true|false] (boolean) If true, password should not
be the same as current store
name, nor is it the store name
spelled backwards or with
the numbers 1–100 appended.
The default value is true.

passwordNotUserName [true|false] (boolean) If true, password should not
be the same as current user
name, nor is it the user name
spelled backwards or with
the numbers 1-100 appended.
The default value is true.

passwordProhibited list of strings separated by
comma (string)

Simple list of words that
are not allowed to be
used as a password. The
default reserved words are:
oracle,password,user,nosql.

passwordRemember 0 - 256 (integer) The maximum number of
passwords to be remembered
that are not allowed to be
reused when setting a new
password. The default value is
3.

Most of the special characters in the standard US keyboard are allowed to be used in
a password with exception of " (double quote) and \ (back slash).

If you want to allow certain special characters use the passwordAllowedSpecial
parameter. For example:

kv-> change-policy -params passwordAllowedSpecial="@# $"

If you want to enforce the password complexity for existing users, then you need to set
the existing user's password to expired, like this:

Appendix A

A-2

1. Review the existing users in the system:

kv-> exec "show users"
user:id=u1 name=root
user:id=u3 name=user1
user:id=u4 name=user2
user:id=u5 name=user3

2. Set the new password complexity policies:

kv-> change-policy -params
passwordComplexityCheck=true passwordMinLength=9
passwordMinUpper=2 passwordMinLower=2
passwordMinSpecial=2 passwordMinDigit=2

3. Finally, change the existing user's password life time to be expired:

kv-> exec "alter user user1 password expire"
Statement completed successfully
kv-> exec "alter user user2 password expire"
Statement completed successfully
kv-> exec "alter user user3 password expire"
Statement completed successfully

In this case, user 1, 2, and 3 will need to re-new their password according to the new
policy. For example, when trying to login with user 1, the system will prompt to change
the password:

java -Xmx64m -Xms64m \
-jar kvstore.jar runadmin -host localhost \
-port 5000 -security login_file
user1's password:
The password of user1 has expired, it is required to
change the password.
Enter the new password:
Re-enter the new password:

If the new password violates any password complexity policies, an exception with a
violation message will be thrown. For example:

user1's password:
The password of user1 has expired, it is required to
change the password.
Enter the new password: password
Re-enter the new password: password
Exception in thread "main" oracle.kv.AuthenticationFailureException:
Renew password failed:
Password must have at least 9 characters
Password must contain at least 2 upper case letters
Password must contain at least 2 lower case letters
...

Appendix A

A-3

Note:

After the password is reset, if you’re using Oracle Wallet for external
password storage, you must recreate the wallet files for all your Oracle
NoSQL Database user accounts. See Oracle Wallet.

Appendix A

A-4

B
SSL keystore generation

The keystores (store.keys and store.trust) that are automatically generated by
makebootconfig or securityconfig can also be manually created using the following
keytool (Java built-in key and certificate management tool) commands:

To generate the keypair, use the keytool -genkeypair command:

keytool -genkeypair \
-keystore store.keys \
-storepass <passwd> \
-keypass <passwd> \
-alias shared \
-dname "CN=NoSQL" \
-keyAlg RSA \
-keysize 1024 \
-validity 365

To export the keypair, use the keytool -export command:

keytool -export \
-file <temp file> \
-keystore store.keys \
-storepass <passwd> \
-alias shared

To import the keypair, use the keytool -import command:

keytool -import \
-file <temp file> \
-keystore store.keys \
-storepass <passwd>
-noprompt

You can also use the keytool commands described above to manually generate other
keystore and truststore keys and substitute them for the ones that Oracle NoSQL
Database generates, provided you adhere to the following rules:

• The store.keys file should have a key pair with the alias "shared".

• The store.keys store password (-storepass) must match the key password (-
keypass)

• If a subject distinguished name other than CN=NoSQL is chosen for the self-signed
certificate, then you must specify the following options to the makebootconfig or
securityconfig command:

-param "ha:serverIdentityAllowed=dnmatch(SOMEDN)"
-param "ha:clientIdentityAllowed=dnmatch(SOMEDN)"

B-1

-param "internal:serverIdentityAllowed=dnmatch(SOMEDN)"
-param "internal:clientIdentityAllowed=dnmatch(SOMEDN)"
-param "client:serverIdentityAllowed=dnmatch(SOMEDN)"

where SOMEDN is the distinguished name (-dname) chosen.

• The store password for store.trust should match the store password for store.keys.

Appendix B

B-2

C
Java KeyStore Preparation

The following example demonstrates how to use keytool to prepare keystore and
truststore with external certificate. If you want to import an existing private/public key
pair generated by an external tool instead, see Import Key Pair to Java Keystore.

1. Generate a keypair and store it into store.keys

keytool -genkeypair -keystore store.keys \
-alias shared -keyAlg RSA -keySize 2048 \
-validity 365 -dname <xxx> \
-storepass <sslPwd>
...
Enter key password for <shared>
(RETURN if same as keystore password):

Note:

Store.keys is the default name of Oracle NoSQL Database keystore
and shared is the default alias of the Oracle NoSQL Database certificate
You can customize the name by specifying a security parameter in the
makebootconfig command or the securityconfig utility. Additionally, you
can specify the algorithm, size and validity of key.

2. Generate a certificate request and send to CA.

keytool -certreq -keystore store.keys -alias
shared -file myhost.csr
Enter keystore password:

3. A public trusted CA usually signs the certificate after receiving your csr file. A pem
file is generated (myhost.cert.pem).

4. Import certificates that are part of a certificate chain in order. If there are multiple
intermediate certificates, they also need to be imported in order.

keytool -import -file ca.cert.pem
-keystore store.keys -alias root
keytool -import -file intermediate.cert.pem -keystore store.keys
-alias intermediate
After importing the root and intermediate certificates,
install the signed certificate for this server. The alias name
must be specified.
keytool -import -file myhost.cert.pem -keystore store.keys
-alias shared
Certificate reply was installed in keystore

C-1

5. Verify the installation by checking the certificate content in store.keys:

keytool -list -v -keystore store.keys -alias shared
Certificate chain length: 3
Certificate[1]:
Owner: CN=myhost, OU=TeamA, O=MyCompany, L=Unknown,
ST=California, C=US
Issuer: CN=intermediate CA, OU=CA, O=MyCompany,
ST=California, C=US

The certificate chain length should match the number of certificates in the chain
that were imported, in this case, three.

6. Build server truststore (store.trust). The server truststore must contain the signed
certificate as well as the root and intermediate certificate. Note that the server and
client truststores need to use the same password as that of the keystore.

keytool -export -file store.tmp
-keystore store.keys -alias shared
keytool -import -keystore store.trust -file store.tmp
keytool -import -keystore store.trust -file ca.cert.pem
-alias root
keytool -import -keystore store.trust -file intermediate.cert.pem
-alias intermediate

7. Create client truststore (client.trust). In this case, import the root and intermediate
certificates into the client truststore.

keytool -import -keystore client.trust
-file ca.cert.pem -alias root
keytool -import -keystore client.trust -file intermediate.cert.pem
-alias intermediate

Import Key Pair to Java Keystore
This section describes how to import an existing private/public key pair into Java
keystore. This is useful if you have your own tools for generating a CA signed key
pair. The procedure assumes you already have the root and intermediate certificates
as well as the private key and its signed certificate.

To import an existing key pair:

1. Build the certificate chain and convert the private key and certificate files into a
PKCS12 file.

cat myhost.pem intermediate.pem root.pem > import.pem
openssl pkcs12 -export -in import.pem -inkey myhost.key.pem
-name shared > server.p12

2. Import the PKCS12 file into Java keystore:

keytool -importkeystore -srckeystore server.p12
-destkeystore store.keys -srcstoretype pkcs12 -alias shared

Appendix C
Import Key Pair to Java Keystore

C-2

3. Finally, to complete the preparation of the Java keystore, perform the procedures
for creating the server and client truststore described in the previous section.

Appendix C
Import Key Pair to Java Keystore

C-3

D
KVStore Required Privileges

This section lists the user required privileges to access specific KVStore APIs as well
as CLI commands.

Privileges for Accessing CLI Commands
READ_ANY:

• get kv

READ_ANY_TABLE or READ_TABLE (on $table_name):

• get table –name table_name

WRITE_ANY:

• delete kv

• put kv

INSERT_ANY_TABLE or INSERT_TABLE (on $table_name):

• put table –name table_name

DELETE_ANY_TABLE or DELETE_TABLE (on $table_name):

• delete table –name table_name

SYSDBA:

• ddl

• plan add-index

• plan add-table

• plan evolve-table

• plan remove-index

• plan remove-table

CREATE_ANY_TABLE:

• plan add-table

DROP_ANY_TABLE:

• plan remove-table

EVOLVE_ANY_TABLE or EVOLVE_TABLE (on $table_name):

• plan evolve-table –name table_name

CREATE_ANY_INDEX or CREATE_INDEX (on $table_name):

• plan add-index –table table_name

DROP_ANY_INDEX or DROP_INDEX (on $table_name):

D-1

• plan remove-index –table table_name

SYSVIEW:

• await-consistency

• logtail

• ping

• show admins

• show events

• show topology

• show upgrade-order

• show users (all users)

• show zones

• verify

• show parameters

• show perf

• show plans (plans created by all users)

• show pools

• show snapshots

DBVIEW:

• show indexes

• show tables

USRVIEW:

• show users (for self)

• show plans (plans created by self)

• plan change-user (for self)

DBVIEW and READ_ANY:

• aggregate

SYSOPER:

• change-policy

• configure

• plan change-parameters

• plan change-storagedir

• plan change-user (for all users)

• plan deploy-admin

• plan deploy-datacenter

• plan deploy-sn

• plan deploy-topology

Appendix D
Privileges for Accessing CLI Commands

D-2

• plan deploy-zone

• plan drop-user

• plan failover

• plan grant

• plan migrate-sn

• plan remove-admin

• plan remove-sn

• plan remove-zone

• plan repair-topology

• plan revoke

• plan start-service

• plan stop-service

• pool (all sub-commands)

• repair-admin-quorum

• snapshot (all sub-commands)

• topology (all sub-commands)

No privilege is required for the following commands:

• connect

• exit

• help

• hidden

• history

• verbose

• show faults

• table (all sub-commands)

Privilege required depends on the command being timed:

• time

Privilege required depends on the commands contained in the script file:

• load

Privilege required depends on the privilege needed for the plan being referred to:

• plan cancel

• plan execute

• plan interrupt

• plan wait

Appendix D
Privileges for Accessing CLI Commands

D-3

Privileges for DDL Commands
SYSDBA:

• CREATE TABLE

• CREATE INDEX

• DROP INDEX

• DROP TABLE

• ALTER TABLE

CREATE_ANY_TABLE:

• CREATE TABLE

DROP_ANY_TABLE:

• DROP TABLE

EVOLVE_ANY_TABLE or EVOLVE_TABLE (on $table_name):

• ALTER TABLE table_name

CREATE_ANY_INDEX or CREATE_INDEX (on $table_name):

• CREATE INDEX ON table_name

DROP_ANY_INDEX or DROP_INDEX (on $table_name):

• DROP INDEX ON table_name

SYSOPER:

• CREATE USER

• CREATE ROLE

• DROP USER

• DROP ROLE

• ALTER USER

• GRANT

• REVOKE

DBVIEW:

• SHOW TABLE

• SHOW INDEX

• DESCRIBE TABLE

• DESCRIBE INDEX

SYSVIEW:

• SHOW USERS

• SHOW ROLES

USRVIEW:

Appendix D
Privileges for DDL Commands

D-4

• SHOW USERS (for self only)

Privileges for Accessing KVStore APIs
Privilege(s) required: READ_ANY, or READ_TABLE/READ_ANY_TABLE if accessing
key-values are in tables.

• get

• multiGet

• multiGetIterator

• multiGetKeys

• multiGetKeysIterator

Note:

For multi-XYZ and storeXYZiterator APIs, the parentKey may be null
for scanning the whole store. In this case, if the user has no required
roles, an empty result set will be returned rather than throwing the
UnauthorizedException.

• storeIterator

• storeKeysIterator

Privilege(s) required: WRITE_ANY, or DELETE_TABLE/DELETE_ANY_TABLE if
accessing key-values are in tables:

• delete

• deleteIfVersion

• multiDelete

Privilege(s) required: WRITE_ANY, or INSERT_TABLE/INSERT_ANY_TABLE if
accessing key-values are in tables:

• put

• putIfAbsent

• putIfPresent

• putIfVersion

Privilege(s) required: DBVIEW

• getAvroCatalog

Privilege(s) required: None:

• getOperationFactory

• getStats

Privilege(s) required: Union of all required roles of each single operation in the
operation list:

• execute

Appendix D
Privileges for Accessing KVStore APIs

D-5

Privilege required depends on the privilege needed for the statement being executed:

• execute(String statement)

• executeSync(String statement)

Privileges for Accessing KVStore TableAPIs
Privileges(s) required: READ_TABLE/READ_ANY_TABLE:

• get

• multiGet

• multiGetKeys

• tableIterator

• tableIKeysIterator

Privilege(s) required: DELETE_TABLE/DELETE_ANY_TABLE:

• delete

• deleteIfVersion

• multiDelete

Privilege(s) required: INSERT_TABLE/INSERT_ANY_TABLE:

• put

• putIfAbsent

• putIfPresent

• putIfVersion

Privilege(s) required: USRVIEW:

• getTable

• getTables

Privilege(s) required: None:

• getTableOperationFactory

Privilege(s) required: Union of all required roles of each single operation in the
operation list:

• execute

Privileges for Accessing KvLargeObject APIs
Privilege(s) required: READ_ANY:

• getLOB

Privilege(s) required: READ_ANY and WRITE_ANY:

• appendLOB

• deleteLOB

• putLOB

Appendix D
Privileges for Accessing KVStore TableAPIs

D-6

• putLOBIfAbsent

• putLOBIfPresent

Privileges for Running XRegion Service
Privilege(s) required:

• WRITE_SYSTEM_TABLE

• READ_ANY_TABLE

• INSERT_ANY_TABLE

Appendix D
Privileges for Running XRegion Service

D-7

E
Configuring the Kerberos Administrative
Utility

Before using kadmin, you first need to configure permissions on the KDC. Kerberos
uses an Access Control List (ACL) file to determine which principals have
administrative access to the Kerberos database and their level of access.

The default location of the Kerberos ACL file is <LOCALSTATEDIR>/krb5kdc/
kadm5.acl, where LOCALSTATEDIR is the directory prefix where the KDC databases
are located. This location can be modified by the acl_file variable in kdc.conf.

Lines containing ACL entries have this format:

principal permissions [target_principal [restrictions]]

Note:

Line order in the ACL file is important. The first matching entry will control
access for an actor principal on a target principal.

To configure kadmin, perform the following steps:

1. Create an access control list file and put the Kerberos principal of at least one of
the administrators into it. For example:

*/admin@EXAMPLE.COM *

In this case, any principal in the EXAMPLE.COM realm with an admin instance has all
administrative privileges on the KDC.

For example, joe/admin@EXAMPLE.com has all privileges over the realm's Kerberos
database.

2. Create the first principal before accessing the KDC remotely:

kadmin.local: addprinc -randkey admin/admin
kadmin.local: ktadd –k kadm5.keytab admin/admin

Note:

To enable passwordless autentication, copy kadm5.keytab to any client
machine.

E-1

Kadmin can also be used to perform security maintenance. For more information, see
Guidelines for Updating Kerberos Passwords.

Appendix E

E-2

F
Manually Registering Oracle NoSQL
Database Service Principal

The securityconfig tool allows you to create service principals and generate keytabs
assuming that each Storage Node is able to access the Kerberos admin interface
remotely. Although this is the typical configuration most Kerberos deployments have,
you may want to use a non-standard configuration. You can manage service principals
by using only kadmin.local or ktutil utility on the KDC host.

To register Oracle NoSQL Database service principal by using kadmin.local:

1. Register the service principal:

kadmin.local: addprinc -randkey nosql/abc.example.com

2. Extract the keytab file using the ktadd command:

kadmin.local: ktadd –norandkey –k keytab nosql/abc.example.com

3. Verify the entries of the generated keytab using the klist tool:

klist –k –e /tmp/keytab
Keytab name: FILE:keytab
KVNO Principal
---- --
12 nosql/abc.example.com@EXAMPLE.COM
 (AES-128 CTS mode with 96-bit SHA-1 HMAC)
12 nosql/abc.example.com@EXAMPLE.COM
 (AES-256 CTS mode with 96-bit SHA-1
HMAC)

4. Copy the keytab of Oracle NoSQL Database server principal to each Storage
Node. The default location is under kvroot/security. You need to create the security
directory.

5. Run makebootconfig or securityconfig utility to complete the rest of the Kerberos
security configuration.

To register Oracle NoSQL Database service principal by using ktutil utility:

1. Add principal entries:

ktutil: add_entry –password –p \
nosql/abc.example.com –k 1 –e aes128-cts-hmac-sha1-96
Password for nosql/abc.example.com@EXAMPLE.COM:
ktutil:add_entry –password –p nosql/abc.example.com \
–k 1 –e aes256-cts-hmac-sha1-96
Password for nosql/abc.example.com@EXAMPLE.COM

F-1

2. Write the current keylist into the keytab file:

Ktutil: write_kt keytab

3. Verify the entries of the generated keytab using the klist tool:

klist –k –e /tmp/keytab
Keytab name: FILE:keytab
KVNO Principal
---- --
12 nosql/abc.example.com@EXAMPLE.COM
 (AES-128 CTS mode with 96-bit SHA-1 HMAC)
12 nosql/abc.example.com@EXAMPLE.COM
 (AES-256 CTS mode with 96-bit SHA-1
HMAC)

4. Copy the keytab of Oracle NoSQL Database server principal to each Storage
Node. The default location is under kvroot/security. You need to create the security
directory.

5. Run makebootconfig or securityconfig utility to complete the rest of the Kerberos
security configuration.

Appendix F

F-2

G
Generating Certificate and Private Key for
the Oracle NoSQL Database Proxy

Topics

• Guidelines for Generating Self-Signed Certificate and Private Key using OpenSSL

• Guidelines for Generating Certificate Chain and Private Key using OpenSSL

Guidelines for Generating Self-Signed Certificate and
Private Key using OpenSSL

Self-signed certificates can be used to securely connect to the Oracle NoSQL
Database Proxy. This section provides the steps to generate the self-signed certificate
and other required files for a secure connection using OpenSSL.

As a pre-requisite, download and install OpenSSL on the host machine. See
OpenSSL.

To generate a self-signed certificate and private key using the OpenSSL, complete the
following steps:

1. On the configuration host, navigate to the directory where the certificate file is
required to be placed.

2. Use the following OpenSSL command to generate the self-signed certificate and
private key. When prompted, provide a secure password of your choice for the
certificate file.

Note:

All prompt password will use 123456 in this example.

openssl req -x509 -days 365 -newkey rsa:4096 \
-keyout key.pem -out certificate.pem \
-subj "/C=US/ST=CA/L=San/CN=localhost/
emailAddress=localhost@oracle.com"

where, CN in the subj should map the proxy domain name.

3. Convert the private key to PKCS#8 format. When prompted, provide a secure
password of your choice for the encryption.

openssl pkcs8 -topk8 \
-inform PEM -outform PEM \
-in key.pem -out key-pkcs8.pem

G-1

The following files are generated in the directory:

• key.pem is the private key.

• key-pkcs8.pem is the private key in PKCS#8 format.

• certificate.pem is the SSL certificate file in pem format.

Note:

The below conversion should be done if your key is encrypted
with the PKCS#5 v2.0 algorithm. Otherwise, you might encounter
IllegalArgumentException exception that indicates the file does not contain
a valid private key due to the unsupported algorithm. The encryption
algorithm can be converted via OpenSSL pkcs8 utility by specifying PKCS#5
v1.5 or PKCS#12 algorithms with -v1 flag. The following command converts
the encryption algorithm of a key to PBE-SHA1-3DES.

openssl pkcs8 -topk8 -in <PKCS#5v2.0_key_file> -out
<new_key_file> -v1 PBE-SHA1-3DES

Additionally, a driver.trust file is also required if you are using the Java driver.
This driver.trust file is not required for other language drivers. To generate the
driver.trust file, import the certificate to the Java keystore. When prompted, provide
the keystore password.

keytool -import -alias example -keystore driver.trust -file
certificate.pem

Guidelines for Generating Certificate Chain and Private Key
using OpenSSL

Certificate chains can be used to securely connect to the Oracle NoSQL Database
Proxy. This section provides the steps to generate certificate chains and other required
files for a secure connection using OpenSSL.

A certificate chain is provided by a Certificate Authority (CA). There are many CAs.
Each CA has a different registration process to generate a certificate chain. Follow the
steps provided by your CA for the process to obtain a certificate chain from them.

As a pre-requisite, download and install OpenSSL on the host machine. See
OpenSSL.

To generate a certificate chain and private key using the OpenSSL, complete the
following steps:

1. On the configuration host, navigate to the directory where the certificate file is
required to be placed.

Appendix G
Guidelines for Generating Certificate Chain and Private Key using OpenSSL

G-2

2. Create a 2048 bit server private key.

openssl genrsa -out key.pem 2048

The following output is displayed.

Generating RSA private key, 2048 bit long modulus
..................+++
...................+++
e is 65537 (0x10001)

3. This step is required only when your server private key is not in PKCS#8 format.
Convert the private key to PKCS#8 format. When prompted, provide a secure
password of your choice for the encryption.

openssl pkcs8 -topk8 \
-inform PEM -outform PEM \
-in key.pem -out key-pkcs8.pem

The following output is displayed.

Enter Encryption Password:
Verifying - Enter Encryption Password:

Note:

The below conversion should be done if your key is encrypted
with the PKCS#5 v2.0 algorithm. Otherwise, you might encounter
IllegalArgumentException exception that indicates the file does not
contain a valid private key due to the unsupported algorithm. The
encryption algorithm can be converted via OpenSSL pkcs8 utility by
specifying PKCS#5 v1.5 or PKCS#12 algorithms with -v1 flag. The
following command converts the encryption algorithm of a key to PBE-
SHA1-3DES.

openssl pkcs8 -topk8 -in <PKCS#5v2.0_key_file> -out
<new_key_file> -v1 PBE-SHA1-3DES

4. Create a Certificate Signing Request (CSR).

openssl req -new -key key.pem -out request.csr \
-subj "/C=US/ST=CA/L=San/CN=localhost/
emailAddress=localhost@oracle.com"

where, CN in the subj should map the proxy domain name.

5. Send Certificate Signing Request (CSR) data file to CA. CA will use CSR data to
issue a SSL certificate.

Appendix G
Guidelines for Generating Certificate Chain and Private Key using OpenSSL

G-3

6. CA returns a signed certificate certificate.pem. If it is not yet chained up with
CA's certificate (rootCA.crt), you need to manually chain up.

cat rootCA.crt >> certificate.pem

The following files are generated in the directory:

• key.pem is the server private key.

• key-pkcs8.pem is the server private key in PKCS#8 format.

• certificate.pem is the certificate chain file in pem format. It includes the server
certificate issued by CA and CA intermediate or root certificate.

• request.csr is the server certificate request file.

• rootCA.crt is the root certificate provided by the CA.

Additionally, a driver.trust file is also required if you are using the Java driver, and if
the rootCA.crt is not listed in Java default trust store JAVA_HOME/jre/lib/security/
cacerts. This driver.trust file is not required for other language drivers. To generate
the driver.trust file, import the rootCA.crt certificate to the Java keystore. When
prompted, provide the keystore password.

keytool -import -alias example -keystore driver.trust -file rootCA.crt

For the Python driver, if your selected CA is not trusted by default, you need to get the
rootCA.crt from CA and set the system environment variable:

REQUESTS_CA_BUNDLE=PATH_OF_CA_FILE/rootCA.crt

Appendix G
Guidelines for Generating Certificate Chain and Private Key using OpenSSL

G-4

	Contents
	Preface
	Conventions Used in This Book

	1 Introducing Oracle NoSQL Database Security
	2 Security Configuration
	Security Configuration Overview
	Configuring Security with Makebootconfig
	Configuring Security with Securityconfig
	Creating the security configuration
	Adding the security configuration
	Verifying the security configuration
	Updating the security configuration
	Showing the security configuration
	Removing the security configuration
	Merging truststore configuration

	3 Performing a Secure Oracle NoSQL Database Installation
	Single Node Secure Deployment
	Adding Security to a New Installation
	Adding Security to an Existing Installation

	Multiple Node Secure Deployment
	Adding Security to a New Installation
	Adding Security to an Existing Installation

	4 Kerberos Authentication Service
	Installation Prerequisites
	Kerberos Principal
	Keytabs
	Kadmin and kadmin.local
	Kerberos Security Properties
	Setting Security Properties in a security login file
	Setting Security Properties through KVStoreConfig
	Using Security Properties to Log In
	Using credential cache
	Using a keytab

	JAAS programming framework integration
	Performing a Secure Oracle NoSQL Database Installation with Kerberos
	Adding Kerberos to a New Installation
	Adding Kerberos to an Existing Secure Installation

	Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

	5 External Password Storage
	Oracle Wallet
	Password store file

	6 Security.xml Parameters
	Top-level parameters
	Transport parameters

	7 Encryption
	SSL model
	SSL communication properties
	Disk Encryption in a Linux Environment

	8 Configuring Authentication
	User Management
	User Creation
	User Modification
	User Removal
	User Status
	User Login
	Password Management

	Sessions

	9 Configuring Authorization
	Privileges
	System Privileges
	Object Privileges
	Table Ownership
	Privilege Hierarchy

	Roles
	System Built-in Roles
	User-Defined Roles

	Managing Roles, Privileges and Users
	Role Creation
	Role Removal
	Role Status
	Grant Roles or Privileges
	Revoke Roles or Privileges

	10 Security Policies
	Security Policy Modifications

	11 Audit Logging
	Security Log Messages

	12 Keeping Oracle NoSQL Database Secure
	Guidelines for Securing the Configuration
	Guidelines for Deploying Secure Applications
	Guidelines for Securing the SSL protocol
	Guidelines for using JMX securely
	Guidelines for Updating Keystore Passwords
	Guidelines for Updating Kerberos Passwords
	Guidelines for Updating SSL Keys and Certificates
	Guidelines for Configuring External Certificates for a new Installation
	Guidelines for Configuring External Certificates for an Existing Default Secure Installation
	Guidelines for Updating the External Certificates
	Guidelines for Operating System Security

	A Password Complexity Policies
	B SSL keystore generation
	C Java KeyStore Preparation
	Import Key Pair to Java Keystore

	D KVStore Required Privileges
	Privileges for Accessing CLI Commands
	Privileges for DDL Commands
	Privileges for Accessing KVStore APIs
	Privileges for Accessing KVStore TableAPIs
	Privileges for Accessing KvLargeObject APIs
	Privileges for Running XRegion Service

	E Configuring the Kerberos Administrative Utility
	F Manually Registering Oracle NoSQL Database Service Principal
	G Generating Certificate and Private Key for the Oracle NoSQL Database Proxy
	Guidelines for Generating Self-Signed Certificate and Private Key using OpenSSL
	Guidelines for Generating Certificate Chain and Private Key using OpenSSL

