Oracle® NoSQL Database
Security Guide

Release 20.3
E85375-14
February 2021

ORACLE"

Oracle NoSQL Database Security Guide, Release 20.3
E85375-14
Copyright © 2011, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Conventions Used in This Book Vii

1 Introducing Oracle NoSQL Database Security

2 Security Configuration

Security Configuration Overview 2-1
Configuring Security with Makebootconfig 2-3
Configuring Security with Securityconfig 2-4
Creating the security configuration 2-4
Adding the security configuration 2-7
Verifying the security configuration 2-8
Updating the security configuration 2-8
Showing the security configuration 2-8
Removing the security configuration 2-10
Merging truststore configuration 2-10
3 Performing a Secure Oracle NoSQL Database Installation
Single Node Secure Deployment 3-1
Adding Security to a New Installation 3-1
Adding Security to an Existing Installation 3-5
Multiple Node Secure Deployment 3-8
Adding Security to a New Installation 3-8
Adding Security to an Existing Installation 3-12
4 Kerberos Authentication Service
Installation Prerequisites 4-1
Kerberos Principal 4-1
Keytabs 4-2

ORACLE iii

Kadmin and kadmin.local 4-2
Kerberos Security Properties 4-2
Setting Security Properties in a security login file 4-3
Setting Security Properties through KVStoreConfig 4-4
Using Security Properties to Log In 4-4
Using credential cache 4-5
Using a keytab 4-6
JAAS programming framework integration 4-7
Performing a Secure Oracle NoSQL Database Installation with Kerberos 4-8
Adding Kerberos to a New Installation 4-9
Adding Kerberos to an Existing Secure Installation 4-13
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD) 4-16
5 External Password Storage
Oracle Wallet 5-1
Password store file 5-2
6 Security.xml Parameters
Top-level parameters 6-1
Transport parameters 6-2
7 Encryption
SSL model 7-1
SSL communication properties 7-2
Disk Encryption in a Linux Environment 7-3
8 Configuring Authentication
User Management 8-1
User Creation 8-1
User Modification 8-3
User Removal 8-4
User Status 8-4
User Login 8-5
Password Management 8-6
Sessions 8-7
ORACLE iv

O Configuring Authorization

Privileges 9-1
System Privileges 9-1
Object Privileges 9-2
Table Ownership 9-3
Privilege Hierarchy 9-4

Roles 9-4
System Built-in Roles 9-4
User-Defined Roles 9-5

Managing Roles, Privileges and Users 9-7
Role Creation 9-7
Role Removal 9-8
Role Status 9-8
Grant Roles or Privileges 9-9
Revoke Roles or Privileges 9-10

10 Security Policies

Security Policy Modifications 10-1
11 Audit Logging

Security Log Messages 11-1
12 Keeping Oracle NoSQL Database Secure

Guidelines for Securing the Configuration 12-1

Guidelines for Deploying Secure Applications 12-1

Guidelines for Securing the SSL protocol 12-2

Guidelines for using JMX securely 12-2

Guidelines for Updating Keystore Passwords 12-2

Guidelines for Updating Kerberos Passwords 12-4

Guidelines for Updating SSL Keys and Certificates 12-6

Guidelines for Configuring External Certificates for a new Installation 12-15

Guidelines for Configuring External Certificates for an Existing Default Secure

Installation 12-17

Guidelines for Updating the External Certificates 12-21

Guidelines for Operating System Security 12-22

ORACLE

A Password Complexity Policies

B SSL keystore generation

C Java KeyStore Preparation

Import Key Pair to Java Keystore C-2
D KVStore Required Privileges
Privileges for Accessing CLI Commands D-1
Privileges for DDL Commands D-4
Privileges for Accessing KVStore APIs D-5
Privileges for Accessing KVStore TableAPIs D-6
Privileges for Accessing KvLargeObject APIs D-6
Privileges for Running XRegion Service D-7
E Configuring the Kerberos Administrative Utility
F Manually Registering Oracle NoSQL Database Service Principal
G Generating Certificate and Private Key for the Oracle NoSQL
Database Proxy
Guidelines for Generating Self-Signed Certificate and Private Key using OpenSSL G-1
Guidelines for Generating Certificate Chain and Private Key using OpenSSL G-2
Vi

ORACLE

Preface

This document describes how you can configure security for Oracle NoSQL Database
using the default database features.

This book is aimed at the systems administrator responsible for the security of an
Oracle NoSQL Database installation.

Conventions Used in This Book

The following typographical conventions are used within this manual:
Information that you are to type literally is presented in monospaced font.

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME
directory."

< Note:

Finally, notes of special interest are represented using a note block such as
this.

ORACLE vii

Introducing Oracle NoSQL Database
Security

ORACLE

Oracle NoSQL Database can be configured securely. In a secure configuration,
network communications between NoSQL clients, utilities, and NoSQL server
components are encrypted using SSL/TLS, and all processes must authenticate
themselves to the components to which they connect.

There are two levels of security to be aware of. These are network security, which
provides an outer layer of protection at the network level, and user authentication/
authorization. Network security is configured at the file system level typically during
the installation process, while user authentication/authorization is managed through
NoSQL utilities.

You can use the following Oracle NoSQL Database features to configure security for
your Oracle NoSQL Database installation:

° Security Configuration Utility. Allows you to configure and add security to a
new or to an existing Oracle NoSQL Database installation.

e Authentication nmethods. Oracle NoSQL Database provides password
authentication for users and systems. The EE version of Oracle NoSQL Database
also supports Kerberos authentication.

* Encryption. Data is encrypted on the network to prevent unauthorized access to
that data.

e External Password Storage. Oracle NoSQL Database provides two types of
external password storage methods that you can manipulate (one type for CE
deployments).

e Security Policies. Oracle NoSQL Database allows you to set up behaviors in
order to ensure a secure environment.

* Role-based authorization. Oracle NoSQL Database provides predefined system
roles, privileges, and user-defined roles to users. You can set desired privileges to
users by role-granting.

In addition, Keeping Oracle NoSQL Database Secure provides guidelines that you
should follow when securing your Oracle NoSQL Database installation.

Note:

Full Text Search and a secure Oracle NoSQL Database store are disjoint,
that is, if Oracle NoSQL Database is configured as a secure store, Full Text
Search should be disabled. On the other hand, if Full Text Search is enabled
(that is, an external Elasticsearch cluster is registered) in a nonsecure store,
users cannot reconfigure the nonsecure store to a secure store, unless Full
Text Search is disabled before reconfiguration. See Security in Full Text
Search in the Integrations Guide.

1-1

Security Configuration

This chapter describes how to use either the makeboot confi g or securi tyconfi g tool
to perform the security configuration of your store. If you are installing a store with
security for the first time, you can skip ahead to the next chapter Performing a Secure
Oracle NoSQL Database Installation.

< Note:

For simpler use cases (lab environments) it is possible to perform a basic
installation of your store by explicitly opting out of security on the command
line. If you do this, your store loses all the security features described in this
book. For more information see Configuring Security with Makebootconfig.

Security Configuration Overview

To set up security, you need to create an initial security configuration. To do this,
run securityconfi g before, after, or as part of the makeboot confi g process before
starting the SNA on an initial node. You should not create a security configuration
at each node. Instead, you should distribute the initial security configuration across
all the Storage Nodes in your store. If the stores do not share a common security
configuration they will be unable to communicate with one another.

< Note:

The makeboot confi g utility embeds the functionality of securityconfi g tool.

Th securityconfi g tool creates a set of security files based on the standard
configuration. It is possible to perform the same tasks manually, and advanced
security configuration might require manual setup, but using this tool helps to ensure
a consistent setup. For more information on the manual setup, see SSL keystore
generation.

¢ Note:

It is possible to modify the security configuration after it is created in order to
use a non-standard configuration. It is recommended that you use a standard
configuration.

Those security files are generated, by default, within a directory named "security". In
a secure configuration, the bootstrap configuration file for a Storage Node includes a

ORACLE 2-1

Chapter 2
Security Configuration Overview

reference to that directory, which must be within the KVROOT directory for the Storage
Node. The security directory contains:

security/security.xm

security/store. keys

security/store.trust

security/store.passwd (CE or EE installations)
security/store.wallet (EE installations only)
security/store.wallet/cwallet.sso (EE installations only)
security/client.security

security/client.trust

where:

e security.xn

A configuration file that tells the Oracle NoSQL Database server how to apply
security.

e store.keys

A Java keystore file containing one or more SSL/TLS key pairs. This keystore

is protected by a keystore password, which is recorded in an accompanying
password store. The password store may be either an Oracle Wallet or a
FileStore. The password is stored under the alias "keystore" in the password
store. This file should be accessible only by the Oracle NoSQL Database server
processes, and not to Oracle NoSQL Database clients.

e store.trust

A Java truststore file, which is a keystore file that contains only public certificates,
and no private keys.

e store. passwd (CE or EE installations)

A password file that acts as the password store for a Community Edition (CE)
installation. It contains secret information that should be known only to the server
processes. Make sure the password file is readable and writable only by the
Oracle NoSQL Database server. The file should not be copied to client machines.

For Enterprise Edition (EE) installations, Oracle Wallet usage is preferred over the
password file option.

» store.wall et (EE installations only)

An Oracle Wallet directory that acts as the password store for an Enterprise
Edition (EE) installation. It contains secret information that should be known only
to the server processes. Make sure the directory and its contents are readable and
writable only by Oracle NoSQL Database. The file should not be copied to client
machines.

e cwal |l et. sso (EE installations only)
The wallet password storage file.
e client.security

A security configuration file that captures the communication transport properties
for connecting clients to KVStore.

The generated client.security file should be copied to and used by Oracle NoSQL
Database clients when connecting to the KVStore.

ORACLE 2-2

Chapter 2
Configuring Security with Makebootconfig

e client.trust
A truststore file used by clients is generated.

The generated client.trust file should be copied to and used by Oracle NoSQL
Database clients when connecting to the KVStore.

Note:

In a multi-host store environment, the security directory and all files
contained in it should be copied to each server that will host a Storage Node.

Configuring Security with Makebootconfig

ORACLE

Use the nmakeboot confi g command with the - st or e- securi ty option to set up the
basic store configuration with security:

java - Xmk64m - Xms64m

-jar KVHOWE |'i b/ kvstore.jar nmakebootconfig
-root <kvroot> -port <port>

-host <host name> -harange <harange>
-store-security configure -capacity <capacity>
[-secdir <security dir>]

[-pwdngr {pwdfile | wallet | <class-nanme>}]
[-kspwd <password>]

[-external -auth {kerberos}]

[- krb-conf <kerberos configuration>]

[-kadm n-path <kadmin utility path>]
[-instance-nane <database instance nane>]
[-admi n-principal <kerberos adnmin principal name>]
[- kadm n-keytab <keytab file>]

[- kadm n-ccache <credential cache file>]

[- princ-conf-param <paramrval ue>] *
[-security-param <paramrval ue>] *

[- noadni n]

where - st ore-security has the following options:

e -store-security none

No security will be used. If a directory named "security" exists, a warning message
will be displayed. When you opt out of security, you lose all the security features in
your store; you are not able to set password authentication for users and systems,
encrypt your data to prevent unauthorized access, etc.

e -store-security configure

Security will be used and the security configuration utility will be invoked as
part of the makebootconfig process. If the security directory already exists, an
error message is displayed, otherwise the directory will be created.

For script-based configuration you can use the - kspwd<passwor d> option to allow
tools to specify the keystore password on the command line. If it is not specified,
the user is prompted to enter the password.

2-3

Chapter 2
Configuring Security with Securityconfig

Use the - pwdngr option to select a password manager implementation. Its usage
is introduced later in this section.

Use the - ext er nal - aut h option to specify Kerberos as an external authentication
service. This option is only available in the Oracle NoSQL Database EE version.

If information for the Kerberos admin interface (e.g. password) is needed and no
keytab or credential cache has been specified on the command line, an interactive
version of securityconfig confi g creat e utility will run.

Using the - ext er nal - aut h flag allows Oracle NoSQL Database to generate
the security files needed for Kerberos authentication, based on a standard
configuration. Although not recommended, it is possible to use a non-standard
configuration. To do this, see Manually Registering Oracle NoSQL Database
Service Principal

e -store-security enable

Security will be used. You will need to configure security either by utilizing the
security configuration utility or by copying a previously created configuration
from another system.

Note:

The - store-security command is optional. Even if the user does not
specify - st ore-securi ty, it would be enabled by default.

For more information on configuring security with makebootconfig, see Adding
Security to a New Installation.

Configuring Security with Securityconfig

You can also run the securityconfi g tool before or after the makebootconfig process
by using the following command:

java - Xmk64m - Xms64m -jar <KVHOVE>/ i b/ kvstore.jar securityconfig

For more information on creating, adding, removing or merging the security
configuration using securityconfig, see the following sections.

Creating the security configuration

ORACLE

You can use the confi g create command to create the security configuration:

config create

-root <secroot> [-secdir <security dir>]

[-pwdngr { pwdfile | wallet <class-nanme>}]

[-kspwd <password>]

[-external -auth {kerberos}]
[-krb-conf <kerberos configuration>]
[-kadm n-path <kadmin utility path>]
[-instance-name <database instance name>]
[-adm n-principal <kerberos admin principal name>]
[- kadmi n-keytab <keytab file>]

2-4

Chapter 2
Configuring Security with Securityconfig

[-kadm n-ccache <credential cache file>]
[-princ-conf-param <par anrval ue>] *
[-param [client:|ha:|internal:|]<paranp=<val ue>]*

where:

° -root <secroot>

Specifies the directory in which the security configuration will be created. It is not
required that this directory be a full KVROOT, but the directory must exist.

 -external -auth {kerberos} Specifies Kerberos as an external authentication
service. This option is only available in the Oracle NoSQL Database EE version.
If no keytab or credential cache has been specified on the command line, an
interactive version of the securit yconfi g utility will run.

Using this flag allows Oracle NoSQL Database to generate the security files
needed for Kerberos authentication, based on a standard configuration. Although
not recommended, it is possible to use a non-standard configuration. To do this,
see Manually Registering Oracle NoSQL Database Service Principal

This flag is only permitted when the value of the - st or e- securi ty flag is specified
as configure or enable.

To remove Kerberos authentication from a running store, set the value of the
user Ext er nal Aut h security.xml parameter to NONE.

where - ext er nal - aut h can have the following flags:
— -adm n-principal <kerberos adm n principal name>

Specifies the principal used to login to the Kerberos admin interface. This
is required while using kadmin keytab or password to connect to the admin
interface.

— -kadm n-ccache <credential cache file>

Specifies the complete path name to the Kerberos credentials cache file that
should contain a service ticket for the kadmin/ADMINHOST. ADM NHOST is the
fully-qualified hostname of the admin server or kadmin/admin service.

If not specified, the user is prompted to enter the password for principal
while logging to the Kerberos admin interface. This flag cannot be specified
in conjunction with the - kadni n- keyt ab flag.

— -kadmi n-keytab <keytab file>

Specifies the location of a Kerberos keytab file that stores Kerberos admin
user principals and encrypted keys. The security configuration tool will use the
specified keytab file to login to the Kerberos admin interface.

The default location of the keytab file is specified by the Kerberos
configuration file. If the keytab is not specified there, then the system looks
for the file user. hone/ kr b5. keyt ab.

You need to specify the - adni n- pri nci pal flag when using keytab to login
to the Kerberos admin, otherwise the correct admin principal will not be
recognized. This flag cannot be specified in conjunction with the - kadni n-
ccache flag.

— -kadmin-path <kadmin utility path>

ORACLE 2-5

ORACLE

Chapter 2
Configuring Security with Securityconfig

Indicates the absolute path of the Kerberos kadmin utility. The default value
is / usr/ ker ber os/ shi n/ kadni n.

— -krb-conf <kerberos configuration>

Specifies the location of the Kerberos configuration file that contains the
default realm and KDC information. If not specified, the default value is / et ¢/
krb5. conf.

— -princ-conf-param <paranrval ue>*
A repeatable argument that allows configuration defaults to be overridden.

Use the krbPrincVal i dity parameter to specify the expiration date of the
Oracle NoSQL Database Kerberos service principal.

Use the kr bPri ncPwdExpi r e parameter to specify the password expiration
date of the Oracle NoSQL Database Kerberos service principal.

Use the kr bKeysal t parameter to specify the keysalt list used to generate the
keytab file.

-secdir <security dir>

Specifies the name of the directory within KVROOT that will hold the security
configuration. This must be specified as a name relative to the specified secroot. If
not specified, the default value is "security".

-pwdngr [pwdfile | wallet]

Indicates the password manager mechanism used to hold passwords that are
needed for accessing keystores, etc.

where -pwdmgr can have the following options:
— -pwdnmgr pwdfile

Indicates that the password store is a read-protected clear-text password file.
This is the only available option for Oracle NoSQL Database CE deployments.
You can specify an alternate implementation. For more information on pwdfi | e
manipulation, see Password store file

— -pwdnmgr wal | et

Specifies Oracle Wallet as the password storage mechanism. This option
is only available in the Oracle NoSQL Database EE version. For more
information on Oracl e wal | et manipulation, see Oracle Wallet

-param [client:|ha:|internal:|]<paranmr=<val ue>]

A repeatable argument that allows configuration defaults to be overridden. The
value may be either a simple parameter, such as "truststore”, or a qualified
parameter such as "client:serverKeyAlias". If specified in qualified form, the
qualifier (for example, "client") names a transport within the security configuration,
and the assignment is specific to that transport. If in simple form, it applies to
either the securityParams structure or to all transports within the file, depending on
the type of parameter.

For more information on configuring security with securityconfig, see Performing a
Secure Oracle NoSQL Database Installation.

For more information on configuring Kerberos with securityconfig, see Kerberos
Authentication Service.

2-6

Chapter 2
Configuring Security with Securityconfig

Adding the security configuration

You can use the confi g add-security command to add the security configuration you
created earlier:

config add-security
-root <kvroot> [-secdir <security dir>]
[-config <config.xm >]

Note:

When running this command, the securi t yconfi g tool will verify the
existence of the referenced files and will update the specified bootstrap
configuration file to refer to the security configuration. This process is
normally done with the KVStore instance stopped, and must be performed
on each Storage Node of the store.

where:

e -root <kvroot>
A KVStore root directory must be provided as an argument.
e -secdir <security dir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not
specified, the default value is "security".

e -config <config.xn >

Specifies the bootstrap configuration file that is to be updated. This must be
specified as a name relative to the KVROOT. If not specified, the default value is
"config.xml".

When using Kerberos as an external authentication service, you can use the confi g
add- ker ber os command to add the security configuration you created earlier:

confi g add-kerberos -root <secroot> [-secdir <security dir>]
[-krb-conf <Kerberos configuration>]

[-kadnin-path <kadnmin utility path>]

[-instance-name <database instance nane>]

[-adm n-principal <kerberos admin principal nane>]

[- kadni n-keytab <keytab file>]

[- kadni n-ccache <credential cache file>]

[-princ-conf-param <paranrval ue>] *

[- param <par anrval ue>] *

ORACLE .

Chapter 2
Configuring Security with Securityconfig

Verifying the security configuration

You can use the confi g verify command to verify the consistency and correctness of
a security configuration:

config verify -secdir <security dir>

where:
e -secdir <securitydir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not
specified, the default value is "security".

For example:

security-> config verify -secdir security
Security configuration verification passed.

Updating the security configuration

You can use the confi g updat e command to update the security parameters of a
security configuration:

config update -secdir <security dir> [-param <paranrval ue>] *

where:
e -secdir <securitydir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not
specified, the default value is "security".

e -param <paranvval ue*>
List of security parameters to update.

For example:

security-> config update -secdir security -param
cl i ent Aut hRequi red=f al se
Security paraneters updated.

Showing the security configuration

You can use the confi g showcommand to print out all security configuration
information.

config show -secdir <security dir>

where:

ORACLE 2-8

ORACLE

Chapter 2
Configuring Security with Securityconfig

For example:

security-> config show -secdir security

Security paraneters

cert Mde=shar ed

i nt ernal Aut h=ss

keyst or e=st or e. keys

keyst or ePasswor dAl i as=keyst ore

passwor dCl ass=oracl e. kv.inmpl.security.filestore. FileStoreMnager
passwor dFi | e=st or e. passwd

securityEnabl ed=true

truststore=store.trust

internal Transport paraneters

client Al'l owProtocol s=TLSv1. 2, TLSv1. 1, TLSv1
cl i ent Aut hRequi red=true
clientldentityAllowed=dnmat ch(CN=NoSQL)

cli ent KeyAl i as=shar ed
serverldentityAl | owed=dnmat ch(CN=NoSQL)
server KeyAl i as=shar ed

transport Type=ssl

client Transport paraneters

client Al'l owProtocol s=TLSv1. 2, TLSv1. 1, TLSv1
serverldentityAl | owed=dnmat ch(CN=NoSQL)
server KeyAl i as=shar ed

transport Type=ssl

ha Transport paraneters:

al | owPr ot ocol s=TLSv1. 2, TLSv1. 1, TLSvl

cl i ent Aut hRequi red=true
clientldentityAllowed=dnmat ch(CN=NoSQL)
serverl|dentityAl | owed=dnmat ch(CN=NoSQL)
server KeyAl i as=shar ed

transport Type=ssl

Keyst or e:
security/store. keys

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

shared, Jun 1, 2016, PrivateKeyEntry,

Certificate fingerprint (SHA1): A6:54:9C: 42:13:66: DC. E9: A8: 62: DB
A8: 87: FD: DE: 23: F7: AD: 11: FB

Keyst or e:
security/store.trust

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

2-9

Chapter 2
Configuring Security with Securityconfig

nykey, Jun 1, 2016, trustedCertEntry,
Certificate fingerprint (SHAL):A6:54:9C 42:13: 66: DC. E9: A8: 62: DB:
A8: 87: FD: DE: 23: F7: AD: 11: FB

e -secdir <securitydir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not
specified, the default value is "security".

Removing the security configuration

If you want to disable security for some reason in an existing installation, you can use
the confi g renove-security command:

config remove-security -root <kvroot> [-config >config.xn >]

Note:

When running this command, the securi t yconfi g tool will update the
specified bootstrap configuration file to refer to the security configuration.
This process is normally done with the KVStore instance stopped, and must
be performed on each Storage Node of the store.

where:
e -root <kvroot>

A KVStore root directory must be provided as an argument.
e -config <config.xn >

Specifies the bootstrap configuration file that is to be updated. This must be
specified as a name relative to the KVROOT. If not specified, the default value is
"config.xml".

For example:

security-> config renove-security -secdir security
Configuration updated.

Merging truststore configuration

ORACLE

If you want to merge truststore entries from one security configuration into another
security configuration use the confi g nerge-trust command. This command is
helpful when performing security maintenance, particularly when you need to update
the SSL key/certificate. See Guidelines for Updating SSL Keys and Certificates

config merge-trust
-root <secroot> [-secdir <security dir>]
-source-root <secroot> [-source-secdir <security dir>]

2-10

ORACLE

Chapter 2
Configuring Security with Securityconfig

< Note:

When running this command, the securi t yconfi g tool will verify the
existence of the referenced files and will combine trust entries from the
source security configuration into the primary security configuration.

where:

-root <secroot>

Specifies the directory that contains the security configuration that will be updated.
It is not required that this directory be a full KVROOT, but the directory must exist
and contain an existing security configuration.

-secdir <security dir>

Specifies the name of the directory within the secroot that holds the security
configuration. This must be specified as a name relative to the secroot. If not
specified, the default value is "security".

- source-root <secroot>

Specifies the directory that contains the security configuration that will provide new
trust information. It is not required that this directory be a full KVROOT, but the
directory must exist and must contain an existing security configuration.

-source-secdir <security dir>

Specifies the name of the security directory within the source secroot that will
provide new trust information. If not specified, the default value is "security".

2-11

Performing a Secure Oracle NoSQL
Database Installation

It is possible to add security to a new or an existing Oracle NoSQL Database
installation.

To add security to a new or an existing Oracle NoSQL Database single host
deployment, see the next section. For multiple node deployments, see Multiple Node
Secure Deployment.

If you want to use Kerberos as an external authentication service, you should instead
complete the steps under Performing a Secure Oracle NoSQL Database Installation
with Kerberos.

Single Node Secure Deployment

The following examples describe how to add security to a new or an existing Oracle
NoSQL Database single host deployment.

Adding Security to a New Installation

To install Oracle NoSQL Database securely:

1. Run the makeboot confi g utility with the - st or e- security option to set up the
basic store configuration with security:

java - Xmx64m - Xms64m \

-jar KVHOWE/ li b/ kvstore.jar makebootconfig \

-root KVROOT -port 5000 \

-host nodeOl1 -harange 5010, 5020 \

-store-security configure -pwdngr pwdfile -capacity 1

2. Inthis example, - store-security configure is used, so the security
configurati on utility is run as part of the makebootconfig process and you are
prompted for a password to use for your keystore file:

Enter a password for the Java KeyStore:

3. Enter a password for your store and then reenter it for verification. In this case, the
password file is used, and the securityconfi g tool will automatically generate the
following security related files:

Enter a password for the Java KeyStore: ******x*xxx

Re-enter the KeyStore password for verification; **x*x*xx%xx
Created files:

security/client.trust

security/client.security

security/store. keys

ORACLE 3-1

ORACLE

4,

Chapter 3
Single Node Secure Deployment

security/store.trust
security/store. passwd
security/security.xm

Note:

In a multi-host store environment, the security directory and all files
contained in it should be copied to each server that will host a Storage
Node.

Start the Storage Node Agent (SNA):

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_NMAX
to 1. Setting MALLOC ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

nohup java - Xmk64m - Xms64m \
-jar KVHOWE | ib/kvstore.jar start -root KVROOT&

When a newly created store with a secure configuration is first started, there are
no user definitions available against which to authenticate access. In order to
reduce risk of unauthorized access, an admin will only allow you to connect to

it from the host on which it is running. This security measure is not a complete
safeguard against unauthorized access. It is important that you do not provide
local access to machines running KVStore. In addition, you should perform steps
5, 6 and 7 soon after this step in order to minimize the time period in which the
admin might be accessible without full authentication. For more information on
maintaining a secure store see Guidelines for Securing the Configuration.

Start runadmi n in security mode on the KVStore server host (node01). To do this,
use the following command:

java - Xmx64m - Xms64m \

-jar KVHOWE/ | ib/kvstore.jar \

runadnin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in adnin as anonynous

Use the confi gure -name command to specify the name of the KVStore that you
want to configure:

kv-> configure -nane nystore
Store configured: nystore

3-2

ORACLE

Chapter 3
Single Node Secure Deployment

After naming the KVStore, you can create at least one zone.

kv-> plan depl oy-zone -name zone_nane -rf 1 -type primary -wait

Every KVStore has an administration database. You must deploy the Storage
Node first and then deploy an Administration process on the same node to
continue configuring the database.

When you deploy the node, provide the zone ID, the node's network name, and its
registry port number.

kv-> pl an depl oy-sn -znname zone_nanme -host hostnane -port 5000
-wai t

Having deployed the node, create the Admin process on the node that you just
deployed, using the deploy-admin command. This command requires the Storage
Node ID and an optional plan name.

< Note:

Note: You can obtain the Storage Node ID using the show t opol ogy
command. See show topology for more details.

kv-> pl an depl oy-adnmin -sn snl -wait

The final step in your configuration process is to create Replication Nodes on
every node in your store. You do this using the t opol ogy create and pl an
depl oy-t opol ogy commands.

kv-> topol ogy create -nane storeTopo -pool AllStorageNodes -
partitions 150
kv-> pl an depl oy-topol ogy -nane storeTopo -wait

Your store is fully installed and configured.

Create an admin user. The password should comply with the security policies
described in Password Complexity Policies. In this case, user r oot is defined:

kv-> plan create-user -name root -adnmin -wait
Enter the new password; *****x*x

Re-enter the new password; **x**x*x

Executed plan 6, waiting for conpletion...
Plan 6 ended successfully

For more information on user creation and administration, see User Management.

Create a new password file to store the credentials needed to allow clients to login
as the admin user (root):

java - Xmk64m - Xnms64m \
-jar KVHOWE/ |i b/ kvstore.jar securityconfig \

3-3

ORACLE

Chapter 3
Single Node Secure Deployment

pwdfile create -file KVROOT/ security/| ogin. passwd

java - Xmk64m - Xms64m \

-jar KVHOWE/ l'i b/ kvstore.jar securityconfig pwdfile secret \
-file KVROOI/ security/login. passwd -set -alias root

Enter the secret value to store: *******xx

Re-enter the secret value for verification: ****xx*x
Secret created

Note:

The password must match the one set for the admin in the previous step.

For more information on user creation and administration, see User Management.

At this point, it is possible to connect to the store as the root user. To login,
you can use either the - user name <user > runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, a security file (mylogin.txt) is used. To login, use the following
command:

java - Xmk64m - Xnms64m \

-jar KVHOWE |'ib/kvstore.jar runadmn -port 5000 \
-host | ocal host -security nylogin

Logged in admn as root

The file nyl ogi n. t xt should be a copy of the cli ent. security file with additional
properties settings for authentication. The file would then contain content like this:

oracl e. kv. aut h. user nane=r oot

oracl e. kv. auth. pwdfile.fil e=KVROOT/ security/| ogin. passwd
oracl e. kv. transport=ssl|

oracl e. kv. ssl . trust St ore=KVRQOOT/ security/client.trust
oracl e. kv. ssl. protocol s=TLSv1. 2, TLSv1. 1, TLSv1

oracl e. kv. ssl . host naneVeri fi er=dnmat ch(C\\ =NoSQL)

Note that the hostname verifier provides a way for Oracle NoSQL Database clients
to specify the name that they expect the Oracle NoSQL Database server hosts to
use during SSL handshake (when they attempt to connect server using SSL/TLS).

For a secure store using the standard configuration, server hosts will be required
to authenticate themselves, and clients will use their SSL truststore to confirm that
the server authenticates with a trusted identity. The hostname verifier provides the
additional assurance that the server host authenticates using the expected identity,
not just any trusted identity.

This additional check is desirable if either the truststore contains multiple
certificates or if the certificate it contains is a CA certificate rather than a self-
signed or leaf certificate. In both those cases, the truststore can vouch for multiple
identities. The host verifier allows the user to specify the specific identity that is
expected.

3-4

Chapter 3
Single Node Secure Deployment

The only hostname verifier currently supported is the dnmat ch verifier, which
must be specified in the form of dnmat ch(di st i ngui shed- nane) , where
distinguished name must be the NoSQL DB server certificate's distinguished
name. If you are using the default security configuration, then the hostname
verifier in the example specifies that the server should authenticate with a
certificate whose distinguished name is CN=NoSQL. This is the name used in the
server certificates that the system generates by default.

The verification is performed by checking if the distinguished name of server
certificate match the specified dnmat ch expressions, which uses regular
expressions as specified by j ava. uti | . regex. Pat t er n. The distinguished
name specified in dnmat ch must be in RFC 1779 format, using the exact order,
capitalization, and spaces of the attribute value. RFC 1779 defines well-known
attributes for distinguished names, including CN, L, ST O, OU, C and STREET. If
the distinguished name of the external certificate contains non-standard attributes,
for example, EMAILADDRESS, then the expression used for dnnmat ch must
replace these attribute names with an OID that is valid in RFC 1779 form, or

use special constructs of regular expression to skip checking these attributes. If
you are using a wild card to match a certificate with a non-standard distinguished
name attribute, the dnmat ch expression needs to match the attribute name in its
OID format properly. See User Login.

Adding Security to an Existing Installation

ORACLE

To add security to an existing Oracle NoSQL Database installation:

1. Shut down the KVStore instance:

java - Xmx64m - Xms64m \
-jar KVHOWE/ |'i b/ kvstore.jar stop \
-root KVROOT

2. Runthe securityconfi g utility to set up the basic store configuration with security:

java - Xmx64m - Xms64m \
-jar KVHOWE | ib/kvstore.jar securityconfig

3. Usetheconfig create command with the - pwdngr option to specify the
mechanism used to hold passwords that is needed for accessing the stores. In this
case, Oracle Wallet is used. Oracle Wallet is only available in the Oracle NoSQL
Database EE version. CE deployments should use the pwdf i | e option instead.

config create -pwdnmgr wal l et -root KVROOT
Enter a password for the Java KeyStore:

4. Enter a password for your store and then reenter it for verification. The
configuration tool will automatically generate some security related files:

Enter a password for the Java KeyStore: ***x*xkxkxx

Re-enter the KeyStore password for verification: **x*x*xx*xx
Created files:

security/security.xn

security/store. keys

security/store.trust

3-5

ORACLE

6.

Chapter 3
Single Node Secure Deployment

security/store.wallet/cwallet.sso
security/client.security
security/client.trust

Note:

In a multi-host store environment, the security directory and all files
contained in it should be copied to each server that will host a Storage
Node.

Use the confi g add-security command to add the security configuration you just
created:

security-> config add-security -root KVROOT
-secdir security -config config.xn
Configuration updated.

" Note:

When running this command, the securi tyconfi g tool will verify the
existence of the referenced files and will update the specified bootstrap
configuration file to refer to the security configuration. This process

is normally done with the KVStore instance stopped, and must be
performed on each Storage Node of the store.

Start the Storage Node Agent (SNA):

" Note:

Before starting the SNA, set the environment variable MALLOC ARENA MAX
to 1. Setting MALLOC _ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

nohup java - Xmk64m - Xms64m \
-jar KVHOWE |ib/kvstore.jar start -root KVROOT &

Start runadmi n in security mode on the KVStore server host (node01). To do this,
use the following command:

java - Xmx64m - Xms64m \

-jar KVHOWE/ | i b/ kvstore.jar \

runadnin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in adnin as anonynous.

3-6

ORACLE

10.

Chapter 3
Single Node Secure Deployment

This command sets SSL as a connection method and names a copy of the
generated truststore file (client.security). For more information on SSL properties,
see SSL communication properties.

Create an admin user. The password should comply with the security policies
described in Password Complexity Policies. In this case, user r oot is defined:

kv-> plan create-user -name root -adnmin -wait
Enter the new password: *****x*x

Re-enter the new password: *****x*x

Executed plan 8, waiting for conpletion...
Plan 8 ended successful ly

For more information on user creation and administration, see User Management.

Create a new wallet file to store the credentials needed to allow clients to login as
the admin user (root):

java - Xmx64m - Xms64m \

-jar KVHOWE |ib/kvstore.jar securityconfig \

wal [et create -dir KVROOT/security/login. wallet

java - Xmx64m - Xms64m \

-jar KVHOWE/ | i b/ kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/login.wallet -set -alias root

Enter the secret value to store: *x*x*x*x

Re-enter the secret value for verification: ***x*x*x
Secret created

" Note:

The password must match the one set for the admin in the previous step.

For more information on user creation and administration, see User Management.

At this point, it is possible to connect to the store as the root user. To login,
you can use either the - user name <user > runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, the oracle.kv.security property is used. To login use the following
command:

java - Xmk64m - Xms64m \

- Doracl e. kv. securi ty=nyl ogin \

-jar KVHOWE/ l'ib/kvstore.jar runadmn -port 5000 -host |ocal host
Logged in admin as root

The file nyl ogi n. t xt should be a copy of the cli ent. security file with additional
properties settings for authentication. The file would then contain content like this:

oracl e. kv. aut h. user nanme=r oot
oracl e. kv. auth. wal | et. di r =KVROOT/ security/l ogi n. wal | et
oracl e. kv.transport=ssl|

3-7

Chapter 3
Multiple Node Secure Deployment

oracl e. kv. ssl . trust St ore=KVROOT/ security/client.trust
oracl e. kv. ssl . protocol s=TLSv1. 2, TLSv1. 1, TLSv1
oracl e. kv. ssl . host nameVeri fi er=dnmat ch(C\\ =NoSQL)

For more information, see User Login.

Multiple Node Secure Deployment

The following examples describe how to add security to a new or to an existing Oracle
NoSQL Database multiple host deployment.

Adding Security to a New Installation

To install an Oracle NoSQL Database three node, capacity=3 (3x3) secure
deployment:

1. Run the nakeboot confi g utility with the - st or e- securi ty option to set up the
basic store configuration with security:

java - Xmx64m - Xms64m \

-jar KVHOWE/ li b/ kvstore.jar makebootconfig \

-root KVROOT -port 5000 \

-host nodeOl1 -harange 5010, 5020 \

-store-security configure -pwdngr wallet -capacity 3

2. Inthis example, - store-security configure is used, so the security
confi gurati on utility is run as part of the makebootconfig process and you are
prompted for a password to use for your keystore file:

Enter a password for the Java KeyStore:

3. Enter a password for your store and then reenter it for verification. For example,
using wallet, the securityconfi g tool will automatically generate the following
security related files:

Enter a password for the Java KeyStore:; *x*x**xkxxx

Re-enter the KeyStore password for verification; **x*x*xxkxx
Created files:

security/security.xnl

security/store. keys

security/store.trust

security/store.wallet/cwallet.sso

security/client.security

security/client.trust

4. In a multi-host store environment, the security directory and all files contained in it

should be copied from the first node to each server that will host a Storage Node,
to setup internal cluster authentication. For example, the following commands

ORACLE 3-8

ORACLE

Chapter 3
Multiple Node Secure Deployment

assume that the different nodes are visible and accessible on the current node
(node01):

cp -R node01/ KVROOT/ security node02/ KVROOT/
cp -R node0l/ KVROOT/ security node03/ KVROOT/

" Note:

You may need to use a remote copying command, like scp, to do the
copying if the files for the different nodes are not visible on the current
node.

Enable security on the other two nodes using the - st ore-security enabl e
command:

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar makebootconfig \
-root KVROOT \

-host node02 \

-port 6000 \

-harange 6010, 6020 \

-capacity 3\

-store-security enable \

-pwdngr wal | et

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar makebootconfig \
-root KVROOT \

-host node03 \

-port 7000 \

-harange 7010, 7020 \

-capacity 3\

-store-security enable \

-pwdngr wal | et

Start the Storage Node Agent (SNA) on each node:

< Note:

Before starting the SNA, set the environment variable MALLOC ARENA MAX
to 1. Setting MALLOC ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

nohup java - Xmx64m - Xns64m \
-jar KVHOWE |ib/kvstore.jar start -root KVROOT&

3-9

ORACLE

10.

11.

Chapter 3
Multiple Node Secure Deployment

Start r unadmi n in security mode on the KVStore server host (node01). To do this,
use the following command:

java - Xmk64m - Xms64m \

-jar KVHOWE/ l'i b/ kvstore.jar \

runadmin -port 5000 -host nodeOl \
-security KVROOT/security/client.security
Logged in admin as anonynous

Use the confi gure -name command to specify the name of the KVStore that you
want to configure:

kv-> configure -name nystore
Store configured: nystore

Create an admin user. The password should comply with the security policies
described in Password Complexity Policies. In this case, user r oot is defined:

kv-> plan create-user -name root -adnmin -wait
Enter the new password; *****x*x

Re-enter the new password; **x*xx*x

Executed plan 6, waiting for completion...
Plan 6 ended successfully

For more information on user creation and administration, see User Management.

Create the wallet to enable client credentials for the admin user (root):

java - Xmx64m - Xms64m \

-jar KVHOWE/ | i b/ kvstore.jar securityconfig \

wal [et create -dir KVROOT/security/login. wallet

java - Xmx64m - Xms64m \

-jar KVHOWE/ | i b/ kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/login.wallet -set -alias root

Enter the secret value to store: *x*x*x*x*

Re-enter the secret value for verification: ***x*x*x
Secret created

" Note:

The password must match the one set for the admin in the previous step.

At this point, it is possible to connect to the store as the root user. To login,
you can use either the - user name <user > runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, a security file (adminlogin.txt) is used. To login, use the following
command:

java - Xmx64m - Xms64m \
-jar KVHOWE |ib/kvstore.jar runadmn -port 5000 \

3-10

Chapter 3
Multiple Node Secure Deployment

-host | ocal host -security adm nlogin
Logged in admin as root

The file adni nl ogi n. t xt should be a copy of the cl i ent. security file with
additional properties settings for authentication. The file would then contain
content like this:

oracl e. kv. aut h. user name=r oot

oracl e. kv. auth. wal | et. di r=KVROOT/ security/l ogi n. wal | et
oracl e. kv. transport =ssl|

oracl e. kv. ssl . trust St ore=KVROOT/ security/client.trust
oracl e. kv. ssl . protocol s=TLSv1. 2, TLSv1. 1, TLSv1

oracl e. kv. ssl. hostnameVeri fi er=dnmat ch(C\\ =NoSQL)

For more information, see User Login.

12. Once logged in as admin, you can create some users:

kv-> plan create-user -name userl -wait
Enter the new password: *****x*x

Re-enter the new password: *****x*x
Executed plan 7, waiting for conpletion...
Plan 7 ended successfully

kv-> plan create-user -name user2 -wait
Enter the new password: *****x*x

Re-enter the new password: *****x*x
Executed plan 8, waiting for conpletion...
Plan 8 ended successfully

13. Create the wallet to enable client credentials for each user. Typically you will reuse
this wallet for all your regular users:

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar securityconfig \

wal l et create -dir KVROOI/security/users.wall et

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/users.wallet -set -alias userl

Enter the secret value to store; ***x*xxx

Re-enter the secret value for verification: **x*xx*x
Secret created

java - Xmx64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/users.wallet -set -alias user2

Enter the secret value to store; ***x*xxx

Re-enter the secret value for verification: **x*xx*x
Secret created

ORACLE 3-11

Chapter 3
Multiple Node Secure Deployment

< Note:

Each password must match the one set for each user in the previous
step. This wallet is independent from the admin one. It is possible to
store admin/user passwords using the same wallet.

14. At this point, it is possible to connect to the store as a user. To login,

you can use either the - user nane <user > runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, a security file (userlogin.txt) is used. To login, use the following
command:

java - Xmk64m - Xms64m \

-jar KVHOWE |'ib/kvstore.jar runadmn -port 5000 \
-host | ocal host -security userlogin

Logged in admin as userl

The file user| ogi n. t xt should be a copy of the cli ent. security file with
additional properties settings for authentication. The file would then contain
content like this:

oracl e. kv. aut h. user nane=user 1

oracl e. kv. auth. wal | et. di r=KVROOT/ security/users. wal | et
oracl e. kv. transport=ssl|

oracl e. kv. ssl . trust St ore=KVROOT/ security/client.trust
oracl e. kv. ssl . protocol s=TLSv1. 2, TLSv1. 1, TLSv1

oracl e. kv. ssl . host nameVeri fi er=dnmat ch(C\\ =NoSQL)

For more information, see User Login.

Adding Security to an Existing Installation

To add security to an existing three node, capacity=3 (3x3) Oracle NoSQL Database
installation:

ORACLE

1.

Shut down the KVStore instance on each node:

java - Xmk64m - Xnms64m \
-jar KVHOWE/ |i b/ kvstore.jar stop \
-root KVROOT

Run the securityconfi g utility to set up the basic store configuration with security:

java - Xmk64m - Xnms64m \
-jar KVHOWVE/ |'i b/ kvstore.jar securityconfig

3-12

Chapter 3
Multiple Node Secure Deployment

3. Usetheconfig create command with the - pwdngr option to specify the
mechanism used to hold passwords that is needed for accessing the stores. In
this case, Oracle Wallet is used:

config create -pwdnmgr wal |l et -root KVROOT
Enter a password for the Java KeyStore:

4. Enter a password for your store and then reenter it for verification. The
configuration tool will automatically generate some security related files:

Enter a password for the Java KeyStore: ******xkxxx

Re-enter the KeyStore password for verification: **x*x*xx*xx
Created files:

security/security.xm

security/store. keys

security/store.trust

security/store.wallet/cwallet.sso

security/client.security

security/client.trust

5. In a multi-host store environment, the security directory and all files contained in it
should be copied from the first node to each server that will host a Storage Node,
to setup internal cluster authentication. For example, the following commands
assume that the different nodes are visible and accessible on the current node
(node01):

cp -R node01/ KVROOT/ security node02/ KVROOT/
cp -R node01/ KVROOT/ security node03/ KVROOT/

Note:

You may need to use a remote copying command, like scp, to do the
copying if the files for the different nodes are not visible on the current
node.

6. Usethe config add-security command on each node to add the security
configuration you just created:

security-> config add-security -root KVROOT -secdir security

¢ Note:

When running this command, the securi t yconfi g tool will verify the
existence of the referenced files and will update the specified bootstrap
configuration file to refer to the security configuration. This process

is normally done with the KVStore instance stopped, and must be
performed on each Storage Node of the store.

7. Start the Storage Node Agent (SNA) on each node:

ORACLE 3-13

ORACLE

10.

Chapter 3
Multiple Node Secure Deployment

< Note:

Before starting the SNA, set the environment variable MALLOC ARENA NMAX
to 1. Setting MALLOC ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

java - Xmk64m - Xnms64m \
-jar KVHOWE |ib/kvstore.jar start -root KVROOT&

Start runadm n in security mode on the KVStore server host (node01). To do this,
use the following command:

java - Xmx64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar \

runadm n -port 5000 -host nodeOl \
-security KVROOT/security/client.security

This command sets SSL as a connection method and names a copy of the
generated truststore file (client.security). For more information on SSL properties,
see SSL communication properties.

Create an admin user. The password should comply with the security policies
described in Password Complexity Policies. In this case, user r oot is defined:

kv-> plan create-user -name root -adnmin -wait
Enter the new password; *****x*x

Re-enter the new password; **x**x*x

Executed plan 8, waiting for conpletion...
Plan 8 ended successfully

For more information on user creation and administration, see User Management.

Create the wallet to enable client credentials for the admin user (root):

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar securityconfig \

wal l et create -dir KVROOI/security/login.wallet

java - Xmk64m - Xnms64m \

-jar KVHOWE/ li b/ kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/login.wallet -set -alias root

Enter the secret value to store; *x*x*x*x

Re-enter the secret value for verification: ***x*x*x
Secret created

< Note:

The password must match the one set for the admin in the previous step.

3-14

ORACLE

Chapter 3
Multiple Node Secure Deployment

11. At this point, it is possible to connect to the store as the root user. To login,

you can use either the - user name <user > runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, the oracle.kv.security property is used. To login use the following
command:

java - Xmk64m - Xms64m \

- Doracl e. kv. securi ty=adm nl ogi n \

-jar KVHOWE |'i b/ kvstore.jar runadmn -port 5000 -host |ocal host
Logged in admn as root >

The file adni nl ogi n. t xt should be a copy of the cl i ent. security file with
additional properties settings for authentication. The file would then contain
content like this:

oracl e. kv. aut h. user name=r oot

oracl e. kv. auth. wal | et. di r=KVROOT/ security/l ogi n. wal | et
oracl e. kv.transport=ssl

oracl e. kv. ssl . trust St ore=KVROOT/ security/client.trust
oracl e. kv. ssl . protocol s=TLSv1. 2, TLSv1. 1, TLSv1

oracl e. kv. ssl . hostnanmeVeri fi er=dnmat ch(C\\ =NoSQL)

For more information, see User Login.

3-15

Kerberos Authentication Service

Existing or new installations of Oracle NoSQL Database can be configured to use
Kerberos as an external authentication service. Kerberos is an industry standard
authentication protocol for large client/server systems.

Setting up and configuring a Kerberos deployment is beyond the scope of this chapter.
This chapter assumes that you have a running Key Distribution Center (KDC) and
realm setup.

This chapter first describes some Kerberos concepts and then shows you how to
configure existing or new installations of Oracle NoSQL Database to use Kerberos as
an external authentication service.

Installation Prerequisites

Make sure that you have Kerberos V5 installed. Oracle NoSQL Database is
compatible and tested with MIT Kerberos V5.

If your Kerberos installation/keytab is configured to use a strong encryption type -
for example, AES with 256-bit keys - the JCE Unlimited Strength Jurisdiction Policy
Files must be obtained and installed in the JDK/JRE. Be aware that these files might
already exist in your installation. If so, they must be updated.

Kerberos Principal

ORACLE

A Kerberos Principal represents a unique identity in a Kerberos system to which
Kerberos can assign tickets to access Kerberos-aware services. A service principal
should be created for each Storage Node. Oracle NoSQL Database service principals
follow this naming format: <service_name>/instance @REALM.

where:
e service_name

Is a case-sensitive string that represents the Oracle NoSQL Database service.
The default value is or acl enosql .

All Oracle NoSQL Database service principals should use the same service name
across different Storage Nodes.

e jnstance

Represents the service principal instance name. It is recommended to use the
fully qualified domain name (FQDN) of the Storage Node where Oracle NoSQL
Database is running.

If i nst ance is not specified, the default principal will be created as
oraclenosgl@REALM.

* REALM

4-1

Keytabs

Chapter 4
Keytabs

Represents the Kerberos realm name where the database service is registered. It
must be specified in UPPERCASE and is typically the DNS domain name.

If no realm is given, the service principal is assumed to belong to the default
realm, as configured in the Kerberos configuration file.

A keytab is a file containing pairs of Kerberos principals and an encrypted copy of that
principal's key.

Keytabs are used to authenticate a principal on a host to Kerberos.

" Note:

Because having access to the keytab file for a principal allows one to act as
that principal, access to the keytab files should be tightly secured.

Kadmin and kadmin.local

Kadm n and kadni n. | ocal are command-line interfaces to the Kerberos administration
system.

In general, both interfaces provide the same functionality. When creating Kerberos
principals and keytabs, you can use kadni n. | ocal or kadni n depending on your
access and account.

For more information, see the MIT Kerberos documentation.

Kerberos Security Properties

ORACLE

To set up the Kerberos security properties, you can set them in a login file or through
the KVSt or eConfi g class.

The minimal configuration needed to set up Kerberos includes the following properties:

e oracle. kv. aut h. user nanme

Specifies the Kerberos user name in Oracle NoSQL Database. It must match the
principal name in KDC and match the Kerberos user account name created in the
database. The client will use the value of this option to create the credential which
is used in the client-server authentication. If the short name of principal is specified
in this field, you must also specify or acl e. kv. aut h. ker beros. real m

If KerberosCredentials is not used, this field has to be specified in the login file or
security properties field of KVStoreConfig.

e oracl e. kv. aut h. ker beros. servi ces

Specifies the Kerberos principals for services associated with each helper host.
Setting this property is required if, as recommended, each host uses a different
principal that includes its own principal name. All principals should specify the
same service and realm. If this property is not set, the client will use or acl enosq|l
as the principal name for services on all helper hosts.

4-2

Chapter 4
Kerberos Security Properties

Each entry should specify the helper host name followed by the Kerberos

service name, and optionally an instance name and realm name. The entries are
separated by commas, ignoring spaces. If any entry does not specify a realm,
each entry will use the default realm specified in Kerberos configuration file. If any
entry specifies a realm name, then all entries must specify the same one. The
syntax is:

host:service[:instance[@eal nj][, host:service[:instance[@ealn]]*

For example:

host 37: nosql / host 37 @GXAMPLE. COV|
host 53: nosql / host 53@EXAMPLE. COM
e oracle.kv.auth. kerberos. keytab

The default location of the keytab file is specified by the Kerberos configuration
file. If the keytab is not specified there, then the system looks for the file
user. home/ kr b5. keyt ab.

e oracle. kv. aut h. kerberos. real m

Specifies the Kerberos realm for the user principal if using a short name to specify
the client login principal.

e oracl e. kv. aut h. ker ber os. ccache

Specifies the path of the Kerberos ticket cache. This field is optional. The default
ticket cache is "tmp/krbcc_<uid>". If the credential cache is not found, the system
will look for the file user.home/krb5cc_user.name. If you want to use your own
ticket cache, set this field to the path of the ticket cache.

e oracl e. kv. aut h. ker ber os. nut ual Aut h

Specifies whether the client should use mutual authentication. If this value is set to
true, the client will authenticate the server's identity in the login results.

The default value is f al se, so mutual authentication is disabled.

Setting Security Properties in a security login file

ORACLE

To set the properties in a security file, specify the location of the login file by setting the
oracl e. kv. security Java system property. For example:

java -Doracle. kv.security=kerberoslogin.txt HelloWrld

where the file kerberoslogin.txt should be a copy of the client.security file with
additional properties settings for Kerberos authentication. The file would then contain
content like this:

oracl e. kv. aut h. user nane=kr buser @GEXAVPLE. COM
oracl e. kv. aut h. ext ernal . nechani sn¥ker ber os
oracl e. kv. aut h. ker ber os. keyt ab=/ ker ber os/ kr b5. keyt ab
oracl e. kv. aut h. ker ber os. servi ces=
node01: or acl enosql / node01. exanpl e. com@XAMPLE. COM
oracl e. kv. aut h. ker ber os. nut ual Aut h=f al se

4-3

Chapter 4
Kerberos Security Properties

You can specify the location of the Kerberos configuration file by specifying the
java. security. krb5. conf Java system property. For example:

java -Djava.security.krb5. conf =/ ker beros/krb5. conf \
- Doracl e. kv. securi ty=ker berosl ogi n. txt Hel | oWrld

You can also set the default realm using j ava. security. krb5. real m To set the
default KDC, use j ava. security. krb5. kdc.

Note:

Set the Java system properties for both the realm and the KDC or neither of
them. These properties override the default realm and KDC values specified
in the kr b5. conf file.

Setting Security Properties through KVStoreConfig

You can also set security properties using KVSt or eConf i g. For example:

Properties securityProps = new Properties();
securityProps. set Property("oracl e. kv. aut h. user name",
"“krbuser @XAMPLE. COM') ;
securityProps. set Property("oracl e. kv. aut h. ext ernal . nechani snf',
"kerberos");
securityProps. set Property("oracle.kv. aut h. ker ber os. keyt ab",
"/ ker ber os/ krb5. keyt ab");
securityProps. set Property("oracle. kv. aut h. ker ber os. servi ces"
"node01: oracl enosql / node01. exanpl e. com@XAVPLE. COM') ;
securityProps. set Property("oracle. kv. aut h. ker ber os. ccache”
"/ kerberos/krbcc_501");
securityProps. set Property("oracle.kv. aut h. ker ber os. nut ual Aut h",
“fal se");

KVSt oreConfig kvConfig = new KVStoreConfig("nmystore", "node0l:5000");
kvConfi g. set SecurityProperties(securityProps);

Using Security Properties to Log In

To log in to Oracle NoSQL Database using security properties, you can use credential
cache, a keytab file or the principal password.

" Note:

When connecting through the Admin CLI, if credential cache or keytabs login
attempts fail, Oracle NoSQL Database prompts for the principal's password.

ORACLE 4-4

Chapter 4
Kerberos Security Properties

Using Credential Cache

To login to Oracle NoSQL Database using credential cache:

1.

Run the ki nit Kerberos tool to save the credential in the credential cache.

For example, to authenticate the client principal kr buser @XAMPLE. COMto KDC:

kinit krbuser @XAMPLE. COM
Password for krbuser @XAMPLE. COM *****x*x

The granted ticket-granting ticket (TGT) will be saved in the default credential
cache for later authentication.

You can also generate a separate cache. To do this run the following command:

kinit krbuser @XAMPLE. COM - ¢ krbcc_krbuser

Perform the login by specifying or acl e. kv. aut h. ker ber os. ccache in a security
login file or through KVSt or eConf i g. In this case, a security login file is used:

java - Xmk64m - Xnms64m \

-Doracl e. kv. security=nylogi n.txt \

-jar KVHOWE/ |i b/ kvstore.jar runadmn -port 5000 -host |ocal host
Logged in adm n as krbuser

The file nyl ogi n. t xt should be a copy of the cl i ent. security file with additional
properties settings for Kerberos authentication. The file would then contain content
like this:

oracl e. kv. aut h. ker ber os. ccache=/ ker ber os/ krbcc_kr buser
oracl e. kv. aut h. usernane = krbuser @XAVPLE. COM
oracl e. kv. aut h. ext ernal . nechani sneker ber os
oracl e. kv. aut h. ker ber os. servi ces=
node01: or acl enosql / node01. exanpl e. com@XAMPLE. COM
oracl e. kv. aut h. ker ber os. nut ual Aut h=f al se

In this case, Oracle NoSQL Database reads the credential cache and logins to
Kerberos without needing a password.

Using credential cache

ORACLE

To login to Oracle NoSQL Database using credential cache:

1.

Run the ki nit Kerberos tool to save the credential in the credential cache.

For example, to authenticate the client principal krbuser@ EXAMPLE.COM to
KDC:

kinit krbuser @XAMPLE. COM
Password for krbuser @XAMPLE. COM *****x*x

4-5

Using a keytab

ORACLE

Chapter 4
Kerberos Security Properties

The granted ticket-granting ticket (TGT) will be saved in the default credential
cache for later authentication.

You can also generate a separate cache. To do this run the following command:

kinit krbuser @XAMPLE. COM - ¢ krbcc_krbuser

Perform the login by specifying or acl e. kv. aut h. ker ber os. ccache in a security
login file or through KVSt or eConfi g. In this case, a security login file is used:

java - Xmk64m - Xms64m \

- Doracl e. kv. security=nyl ogi n. txt \

-jar KVHOWE |'i b/ kvstore.jar runadmn -port 5000 -host |ocal host
Logged in adm n as krbuser

The file nyl ogi n. t xt should be a copy of the cli ent. security file with additional
properties settings for Kerberos authentication. The file would then contain content
like this:

oracl e. kv. aut h. ker ber os. ccache=/ ker ber os/ kr bcc_kr buser
oracl e. kv. aut h. username = kr buser @GXAMPLE. COM
oracl e. kv. aut h. ext ernal . nechani sneker ber os
oracl e. kv. aut h. ker ber os. servi ces=
node01: or acl enosql / node01. exanpl e. com@XAMPLE. COM
oracl e. kv. aut h. ker ber os. nut ual Aut h=f al se

In this case, Oracle NoSQL Database reads the credential cache and logins to
Kerberos without needing a password.

To login to Oracle NoSQL Database using a keytab:

1.

Run the ki nit Kerberos tool to extract the keytab:

kadm n.local : ktadd -k /tnp/nykeytab krbuser @XAMPLE. COM
Entry for principal krbuser @XAVMPLE. COM added to
keytab WRFI LE: /t np/ nykeyt ab.

Copy the keytab file to any client machine that will use the
krbuser@EXAMPLE.COM principal to login automatically to Oracle NoSQL
Database.

Set the Kerberos security properties, including the keytab file location, on each
client by specifying them in a security file or through the KVSt or eConfi g class.

In this example, a security file (login) is used. To login, specify the keytab location
by using or acl e. kv. aut h. ker ber o0s. keyt ab. You must also specify the username
using or acl e. kv. aut h. user nane. For example, the login file would then contain
content like this:

oracl e. kv. aut h. kerber os. keytab = /kerberos/ nykeyt ab
oracl e. kv. aut h. username = krbuser GEXAVPLE. COM

oracl e. kv. aut h. ext ernal . nechani smeker ber os

oracl e. kv. aut h. ker ber 0s. servi ces=

4-6

Chapter 4
JAAS programming framework integration

node01: or acl enosql / node01. exanpl e. com@XAMPLE. COM
oracl e. kv. aut h. ker ber os. nmut ual Aut h=f al se

In this case, Oracle NoSQL Database reads the keytab and logins to Kerberos
without needing a password.

For more information on Kerberos security properties, see Kerberos Security
Properties.

JAAS programming framework integration

ORACLE

Oracle NoSQL Database allows client applications to integrate with programs using
the Java Authentication and Authorization Service (JAAS) programming framework.

Use the oracl e. kv. j aas. | ogi n. conf. ent ryName security property to specify the JAAS
login configuration.

Note:

If a JAAS login configuration file is set, you cannot specify keytab or
credential cache in security properties.

A login configuration file would then contain content like this:

oracl enosqgl {
com sun. security. aut h. modul e. Kr b5Logi nModul e requi red
useKeyTab=t rue
keyTab=t est. keyt ab
st oreKey=true
princi pal =kr buser
doNot Pr onpt =f al se

b
where or acl enosql is the value for or acl e. kv. j aas. | ogi n. conf. ent ryNane. This
configuration file can be used for Kerberos login.

In the following example, assume the client application has already obtained the

Kerberos credentials for user kr buser before it tries to connect to Oracle NoSQL
Database. You do not have to specify security properties in the login file. You can
specify the credentials using the Subj ect . doAs method:

final LoginContext Ic =
new Logi nCont ext ("oracl enosql ", new Text Cal | backHandl er());

/1 Attenpt authentication
lc.login();

/1 Get the authenticated Subject
final Subject subj = Ic.getSubject();

/1 Specify configuration

4-7

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

final KVStoreConfig kvConfig =
new KVSt oreConfi g("nystore", "nosqgl 1:5000");

/] Set security properties SSL needed
final Properties securityProps = new Properties();
securityProps. set Property(KVSecurityConstants. TRANSPORT PROPERTY,
KVSecurityConst ant s. SSL_TRANSPORT NAME) ;
securityProps. set Property(
KVSecurityConst ants. SSL_TRUSTSTORE_FI LE_PROPERTY,
trustStore);
kvConfi g. set SecurityProperties(securityProps);

/1 Set Kerberos properties
final Properties krbProperties = new Properties();

/1 Set service principal associated with hel per host
krbProperties. set Property(KVSecurityConstants. AUTH KRB_SERVI CES_PROPERTY

host Name + ":" + servicePrincipal);

/1 Set default real mnane, because the short name

/1 for user principal is used.

krbProperties. set Property(KVSecurityConstants. AUTH KRB_REALM PROPERTY,
" EXAMPLE. COM') ;

/1 Specify Kerberos principal
final KerberosCredentials krbCreds =
new Ker berosCredential s("krbuser”, krbProperties);

/] CGet store using credentials in subject
KVStore kvstore = Subject. doAs(
subj, new Privil egedExceptionActi on<KVStore>() {
@verride
public KVStore run() throws Exception {
return KVStoreFactory. get Store(kvConfig, krbCreds, null);

}
1)

In this case, a KerberosCredentials instance is used to set the security properties
needed to retrieve the credentials of the specified user principal from KDC.

Performing a Secure Oracle NoSQL Database Installation
with Kerberos

ORACLE

It is possible to add Kerberos to a new or an existing Oracle NoSQL Database secure
installation.

At a high-level, to configure a Oracle NoSQL Database installation to use Kerberos,
you first need to register Oracle NoSQL Database as a service principal in KDC and
extract corresponding keytab files on each database server node. Then, to allow client
login, a user principal must be added in KDC and a mapped user account with the
same name of principal needs to be created in the database. Finally, login can be
performed through the CLI or the kvclient driver.

4-8

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

Adding Kerberos to a New Installation

ORACLE

To install Oracle NoSQL Database with Kerberos authentication:

" Note:

The following example assumes you have configured an admin/admin
principal on the KDC and that you distributed its keytab (kadm5.keytab)

to the Oracle NoSQL Database Storage Nodes. For more information, see
Configuring the Kerberos Administrative Utility.

Run the makeboot conf i g utility with the - st ore- security configure and -
external -auth kerberos flags to set up the basic store configuration with
Kerberos security:

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar makebootconfig \
-root KVROOT -port 5000 \

-host nodeOl1 -harange 5010, 5020 \

-capacity 3\

-store-security configure \

-external -auth kerberos \

-instance-nane node0l. exanpl e. com\

-kadm n-keyt ab /ker ber os/ kadnb. keytab \
-adm n-principal adnmin/admin

In this example, - st ore-security configure is used, so the security
confi gurati on utility is run as part of the makebootconfig process and you are
prompted for a password to use for your keystore file:

Enter a password for the Java KeyStore:

Enter a password for your store and then reenter it for verification. In this case,
Oracle Wallet is used. Oracle Wallet and Kerberos support are only available in
the Oracle NoSQL Database EE version.

Enter a password for the Java KeyStore: ****x*x*xxx
Re-enter the KeyStore password for verification: **x*x**x*xx

In this case, - kadni n- keyt ab points to the admin/admin keytab file you distributed
earlier. Once authenticated, the configuration tool will automatically generate some
security related files:

Logi n Kerberos admin via

keyt ab /kerberos/ kadnb. keyt ab

Addi ng principal oraclenosqgl/node0l. exanpl e. com@XAMPLE. COM
Aut henticating as principal adnmin/admin with

keyt ab /kerberos/ kadnb. keyt ab

Extracting keytab KVROOT/security/store. keytab

Created files:

4-9

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

security/security.xm
security/store. keys
security/store.trust
security/store.wallet/cwallet.sso
security/store. keytab
security/client.security
security/client.trust

5. In a multi-host store environment, the security directory and all files contained in it
should be copied from the first node to each server that will host a Storage Node,
to setup internal cluster authentication. For example, the following commands
assume that the different nodes are visible and accessible on the current node
(node01):

cp -R node0l/ KVROOT/ security node02/ KVROOT/
cp -R node0l/ KVROOT/ security node03/ KVROOT/

" Note:

You may need to use a remote copying command, like Secure Copy
Protocol (SCP), to do the copying if the files for the different nodes are
not visible on the current node.

6. Run makebootconfig on the other two nodes:

e Add Kerberos and create their individual service principal and keytab:

java - Xmx64m - Xms64m \

-jar KVHOWE/ li b/ kvstore.jar makebootconfig \
-root KVROOT -port 6000 \

-host node02 -harange 6010, 6020 \

-capacity 3\

-store-security configure \

-external -auth kerberos \

-instance- nane node02. exanpl e. com \

-kadmi n-keytab /kerberos/ kadnb. keytab \
-adni n-princi pal adm n/admin

java - Xmx64m - Xms64m \

-jar KVHOWE/ li b/ kvstore.jar makebootconfig \
-root KVROOT -port 7000 \

-host nodeO3 -harange 7010, 7020 \

-capacity 3\

-store-security configure \

-external -auth kerberos \

-instance- nane node03. exanpl e. com \

-kadmi n-keytab /kerberos/ kadnb. keytab \
-adni n-princi pal adm n/admin

ORACLE 4-10

ORACLE

7.

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

< Note:

The service principal name of node2 and node3 are using

the same service name "oraclenosql", but different instance
names. Their keytab files are different, which contains the key
for principal "oraclenosgl/node2.example.com" and "oraclenosql/
node3.example.com” respectively.

To enable Kerberos authentication if the store is using the same service
principal on every node:

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar makebootconfig \
-root KVROOT -port 6000 \

-host node02 -harange 6010, 6020 \

-capacity 3\

-store-security enable

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar makebootconfig \
-root KVROOT -port 6000 \

-host node03 -harange 6010, 6020 \

-capacity 3\

-store-security enable

Note:

The service principal created in step one is "oraclenosqgl/
nodeOl.example.com”. The instance name can be replaced with
any more general one like "nosql". In above example, node02 and
node03 are all using the same service principal and keytab file
without creating new one individually.

Start the Storage Node Agent (SNA) on each node:

¢ Note:

Before starting the SNA, set the environment variable MALLOC ARENA MAX
to 1. Setting MALLOC_ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

nohup java - Xmx64m - Xns64m \
-jar KVHOWE |ib/kvstore.jar start -root KVROOT&

When a newly created store with a secure configuration is first started, there are
no user definitions available against which to authenticate access. In order to

4-11

ORACLE

10.

11.

12.

13.

14.

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

reduce risk of unauthorized access, an admin will only allow you to connect to

it from the host on which it is running. This security measure is not a complete
safeguard against unauthorized access. It is important that you do not provide
local access to machines running KVStore. In addition, you should perform the
following steps soon after this step in order to minimize the time period in which
the admin might be accessible without full authentication. For more information on
maintaining a secure store see Guidelines for Securing the Configuration.

Start r unadmi n in security mode on the KVStore server host (node01). To do this,
use the following command:

java - Xmk64m - Xms64m \

-jar KVHOWE/ li b/ kvstore.jar \

runadmin -port 5000 -host nodeOl \
-security KVROOT/security/client.security
Logged in admin as anonynous

Use the configure -name command to specify the name of the KVStore that you
want to configure:

kv-> configure -name nystore
Store configured: nystore

Register the user principal on the KDC. To do this, use kadni n or kadmi n. | ocal :

kadm n.local : addprinc krbuser GXAMPLE. COM
Enter password for principal: "krbuser GEXAMPLE. COM'; *****x%xkxx
Re-enter password for principal: "krbuser @XAVPLE. COM'; **x*x¥%x%x

After user principal is registered on KDC, create the user in Oracle NoSQL
Database. The username needs to match the full principal name in the KDC
(includes realm name). In this case, user kr buser is defined:

kv-> execute ' CREATE USER "krbuser @XAMPLE. COM' | DENTI FI ED
EXTERNALLY'

For more information on user creation and administration, see User Management.

At this point, it is possible to connect to the store as the krbuser. To login, you can
use credential cache, a keytab file or enter the principal password.

In this example, a keytab file is used. To do this, first extract the keytab of principal
krbuser@ EXAMPLE.COM on the KDC host by using kadni n. | ocal .

kadm n.local: ktadd -k /tnp/nykeytab krbuser @XAMPLE. COM
Entry for principal krbuser @XAMPLE. COM added to
keytab WRFI LE: / t np/ nykeyt ab.

Copy the keytab file to client machines that will use the krbuser@ EXAMPLE.COM
principal to login automatically to Oracle NoSQL Database.

Set the Kerberos security properties, including the keytab file location, on each
client by specifying them in a security file or through the KVSt or eConfi g class.

4-12

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

In this example, a security file (mylogin.txt) is used. To login, specify the file
location by using the oracl e. kv. security property. For example:

java - Xmk64m - Xms64m \

- Doracl e. kv. security=nyl ogi n. txt \

-jar KVHOWE/ l'i b/ kvstore.jar runadmn -port 5000 -host |ocal host
Logged in adm n as krbuser

The file nyl ogi n. t xt should be a copy of the cli ent. security file with additional
properties settings for Kerberos authentication. The file would then contain content
like this:

oracl e. kv. aut h. ker ber os. keyt ab = ker ber os/ nykeyt ab
oracl e. kv. aut h. user nanme = kr buser @XAVPLE. COM
oracl e. kv. aut h. ext ernal . mechani sneker ber os
oracl e. kv. aut h. ker beros. servi ces=
node01: or acl enosql / node01. exanpl e. com@XAMPLE. COM
oracl e. kv. aut h. ker ber os. mut ual Aut h=f al se

In this case, Oracle NoSQL Database reads the keytab and logins to Kerberos
without needing a password.

For more information on Kerberos security properties, see Kerberos Security
Properties.

Adding Kerberos to an Existing Secure Installation

To add Kerberos to an existing Oracle NoSQL Database secure installation:

¢ Note:

The following example assumes you have configured an admin/admin
principal on the KDC and that you distributed its keytab (kadm5.keytab)

to the Oracle NoSQL Database Storage Nodes. For more information, see
Configuring the Kerberos Administrative Utility.

Note:

If your Kerberos installation/keytab will be configured to use a strong
encryption type — for example, AES with 256-bit keys — the JCE Unlimited
Strength Jurisdiction Policy Files must be obtained and installed in the JDK/
JRE. Be aware that these files might already exist in your installation. If so,
they must be updated.

ORACLE 4-13

ORACLE

1.

3.

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

Shut down the KVStore instance:

java - Xmx64m - Xms64m \
-jar KVHOWE/l'i b/ kvstore.jar stop \
-root KVROOT

Use the confi g add- ker ber os command to add Kerberos authentication:

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |ib/kvstore.jar securityconfig \
confi g add-kerberos -root KVROOT \

-secdir security \

-adnmi n- princi pal adm n/admin

Addi ng principal oracl enosql @EXAMPLE. COM
Password for admin/admin; ****x*x
Created files:

security/store. keytab
Updat ed Kerberos configuration

" Note:

When running this command, the securi t yconfi g tool will verify the
existence of the referenced files and will update the specified bootstrap
configuration file to refer to the security configuration. This process

is normally done with the KVStore instance stopped, and must be
performed on each Storage Node of the store.

Start the Storage Node Agent (SNA) on each node:

" Note:

Before starting the SNA, set the environment variable MALLOC ARENA NMAX
to 1. Setting MALLOC_ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

nohup java - Xmk64m - Xms64m \
-jar KVHOWE/ | ib/kvstore.jar start -root KVROOT&

Start runadmi n in security mode on the KVStore server host (node01). To do this,
use the following command:

java - Xmk64m - Xms64m \

-jar KVHOWE/ | ib/kvstore.jar \

runadnin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in admi n as anonynous.

4-14

ORACLE

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

This command sets SSL as a connection method and names a copy of the
generated truststore file (client.security). For more information on SSL properties,
see SSL communication properties.

Register the user principal on the KDC. To do this, use kadni n or kadmi n. | ocal :

kadm n.local : addprinc krbuser @GXAVPLE. COM
Enter password for principal: "krbuser @GEXAMPLE. COM': *****x*xkxx
Re-enter password for principal: "krbuser @XAVPLE. COM': *******x*x

After user principal is registered on KDC, create the user in Oracle NoSQL
Database. The username needs to match the full principal name in the KDC
(includes realm name). In this case, user kr buser is defined:

kv-> execute ' CREATE USER "krbuser @XAMPLE. COM' | DENTI FI ED
EXTERNALLY'

For more information on user creation and administration, see User Management.

At this point, it is possible to connect to the store as the krbuser. To login, you can
use credential cache, a keytab file or enter the principal password.

In this example, a keytab file is used. To do this, first extract the keytab of principal
krbuser@EXAMPLE.COM on the KDC host by using kadni n. | ocal .

kadm n.local: ktadd -k /tnp/nykeytab krbuser @XAMPLE. COM
Entry for principal krbuser @XAVMPLE. COM added to
keytab WRFI LE: / t np/ nykeyt ab.

Copy the keytab file to any client machine that will use the
krbuser@ EXAMPLE.COM principal to login automatically to Oracle NoSQL
Database.

Set the Kerberos security properties, including the keytab file location, on each
client by specifying them in a security file or through the KVSt or eConf i g class.

In this example, a security file (mylogin.txt) is used. To login, specify the file
location by using the oracl e. kv. security property. For example:

java - Xmx64m - Xms64m \

- Doracl e. kv. security=nyl ogi n. txt \

-jar KVHOWE/ | i b/ kvstore.jar runadmn -port 5000 -host |ocal host
Logged in adnin as krbuser

The file nyl ogi n. t xt should be a copy of the cl i ent. security file with additional
properties settings for Kerberos authentication. The file would then contain content
like this:

oracl e. kv. aut h. ker ber os. keytab = kerberos/ mykeyt ab
oracl e. kv. aut h. username = krbuser GEXAVMPLE. COM
oracl e. kv. aut h. ext ernal . nechani smeker ber os
oracl e. kv. aut h. ker ber 0s. servi ces=
nodeO1: or acl enosql / node01. exanpl e. com@XAMPLE. COM
oracl e. kv. aut h. ker ber os. nut ual Aut h=f al se

4-15

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

In this case, Oracle NoSQL Database reads the keytab and logins to Kerberos
without needing a password.

For more information on Kerberos security properties, see Kerberos Security
Properties.

Using Oracle NoSQL Database with Kerberos and Microsoft
Active Directory (AD)

To use Oracle NoSQL Database with Kerberos and Microsoft Active Directory:

ORACLE

1.

Update Kerberos Configuration krb5.conf with AD.

The Microsoft Guide (see here) details how to update the Kerberos configuration
file on a Unix host in step 3: Edit the file (/etc/krb5.conf) to refer to the

Windows 2000 domain controller as the Kerberos KDC. After changing the
Kerberos configuration file, run kinit using a user account in AD to verify that the
configuration is correct.

For example, suppose you have user account kr buser 08 on domain TEST08 of AD,
and the KDC realm name is TEST08. LOCAL:

$ kinit krbuser 08@EST08. LOCAL
Password for krbuser 08@EST08. LOCAL

After you provide the password, the command should return without error. An
error indicates there are probably configuration issues. If the ki nit command ran
successfully, then run kl i st to check that the ticket cache contains the TGT of
krbuser 08.

$ klist
Ti cket cache: FILE:/tnp/krb5cc_500
Defaul t principal: krbuser08@EST08. LOCAL

Valid starting Expires Service principal
08/12/16 11:45:03 08/12/16 21:45:11 krbtgt/
TEST08. LOCAL@EST08. LOCAL

renew until 08/19/16 11:45:03

The kl i st shows the tickets in your ticket cache. Perform this step to check if

the ticket-granting ticket has been properly obtained using the principal kr buser 08
described by "Default Principal." The "Service Principal" describes each ticket, the
ticket-granting ticket has the primary kr bt gt , and the instance name is the KDC
realm name. Also check if the lifetime indicated by "Valid Starting" and "Expires" is
correct.

Create service instance account and generate keytab on AD.

The Microsoft Guide (see https://technet.microsoft.com/en-us/library/
bb742433.aspx#EEAA) details how to support a service running on a Unix system
when using Active Directory. Follow the steps in this document to generate the
service principal and keytab file for Oracle NoSQL Database. Note that you do not
need to perform step 3 in the Microsoft Guide to merge keytab files if you plan to
use same keytab file on every host.

4-16

https://technet.microsoft.com/en-us/library/bb742433.aspx#EEAA
https://technet.microsoft.com/en-us/library/bb742433.aspx#EEAA

ORACLE

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

For example, you can set the instance hame to nosql and use this keytab on
every node.

Use the Active Directory Management tool to create a user account named
oracl enosql .

In the user creation interface, you can choose which Kerberos encryption
type this account can support. The user account may use Data Encryption
Standard (DES) encryption as default. To enable other encryption types for
this account, you need to manually configure in the "Properties" interface, or
by using kt pass utility. Note that you need to disable the "User must change
password at next logon" setting.

Use ktpass tool on Windows Server to set up an identity mapping.

c:\ktpass -princ oracl enosql/nosql @EST08. LOCAL
-mapuser oracl enosgl -pass "*"-cypto DES-CBC M5 -ptype
KRB5_NT_PRI NCI PAL -out c:\store. keytab

You may need to add al | ow weak_crypto = true to the krb5. conf file on

the Unix host, as well as defaul t _tkt _enctypes and defaul t _tgs_enct ypes,

if you use the DES decryption type. The default name of the keytab for Oracle
NoSQL Database is st or e. keyt ab and the default service name of the service
principal is or acl enosq|l .

Copy the keytab file to your Unix hosts used by Oracle NoSQL Database.

Typically, you can use Secure Copy Protocol (scp) or PUTTY Secure Copy
(PSCP) to transfer this file securely, or upload this file to an FTP server shared
by Windows Server and Unix hosts. After creating the service principal and
keytab, run kinit tests on your Unix hosts (described next) to confirm that they
are configured properly.

3. Test if the user account can acquire service tickets for the service principal, and if
the service keytab is generated correctly by running kinit:

Test if the user account can acquire service tickets for service principal
oracl enosql .

$ kinit -S oracl enosql / nosql @EST08. LOCAL krbuser 08@EST08. LOCAL
Password for krbuser08@EST08. LOCAL:

$ klist

Ti cket cache: FILE: /tnp/krb5cc_500

Default principal: krbuser08@EST08. LOCAL

Valid starting Expires Service principal
08/12/16 11:50:55 08/12/16 21:51:00 oraclenosql/
nosql @EST08. LOCAL

renew until 08/19/16 11:50:55

If the ticket cache does not contains a service ticket for or acl enosql / nosql , or
if any errors are reported in the first command, then check if the account was
created properly.

4-17

ORACLE

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

» Test if the service keytab was generated correctly by running kinit
oracl enosql .

$ kinit -k -t store.keytab oracl enosql / nosql @EST08. LOCAL
$ klist

Ti cket cache: FILE:/tnp/krb5cc_500

Default principal: oraclenosql/nosql @EST08. LOCAL

Valid starting Expires Service principal
08/12/16 11:51:44 08/12/16 21:51:45 krbtgt/
TEST08. LOCAL@EST08. LOCAL

renew until 08/19/16 11:51:44

As with the previous tests, any errors need to be fixed before attempting to
configure Oracle NoSQL Database. Some versions of the kinit utility may need
to explicitly specify def aul t _t kt _enctypes and def aul t _t gs_enct ypes with
the encryption type you configured for the service account or acl enosql in
Active Directory, otherwise kinit cannot successfully obtain tickets from AD.

Begin to configure Oracle NoSQL Database.

Oracle NoSQL Database utilizes the Unix kadm n tool to help users create service
principal and generate keytab file. However, AD does not have remote admin utility
support, so it is necessary to skip this step in AD Kerberos environment.

For Oracle NoSQL Database releases prior to 4.2, you must specify none as
the value for both the - kadni n- pat h and - admi n- pri nci pal makeboot confi g
command line options.

java - Xmx64m - Xms64m \
-jar $KVHOWE |i b/ kvstore.jar makebootconfig -root kvroot \
-port 5000 \
-host node0O1. exanpl e. com - harange 5010, 5020 \
-store-security configure -kspwd password \
-external -auth kerberos \
-kadm n-path none \
-adnmi n- princi pal none \
-instance- nane nosql
Addi ng principal oraclenosgl/nosql
IO error encountered: Cannot run program "none": error=13,
Permi ssi on deni ed
Created files
KVROOT/ security/client.security
KVROOT/ security/client.trust
KVROOT/ security/security. xm
KVROOT/ security/store.wallet/cwal |l et.sso
KVROOT/ security/ store. keys
KVROOT/ security/store. trust

The 10 error can be ignored in this example, because we did not specify a correct
kadni n path.

4-18

ORACLE

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

For Oracle NoSQL Database 4.2 and later releases, you only need to specify none
as the value for the - kadni n- pat h flag:

java - Xmx64m - Xnms64m \

-jar $KVHOWE |i b/ kvstore.jar makebootconfig -root kvroot \
-port 5000 \

-host node01. exanpl e. com - harange 5010, 5020 \
-store-security configure -kspwd password \

-external -auth kerberos \

-kadmi n-path none \

-instance- nane nosql

The kadmin path was specified as NONE, so this example is not creating a keytab
for the database server. The keytab must be generated and copied to the security
configuration directory manually.

Created files
KVROOT/ security/client.security
KVROOT/ security/client.trust
KVROOT/ security/security. xm
KVROOT/ security/store.wallet/cwal |l et.sso
KVROOT/ security/ store. keys
KVROOT/ security/store. trust

After the security directory is created, it is worth checking that the Kerberos
parameters are configured as expected.

Check security.xml in kvr oot / securi ty and look for the following parameters:
* krbinstanceName
* krbRealmName

For Oracle NoSQL Database 4.2 and later releases, you can use the
securityconfi g tool to view the parameters:

java - Xmk64m - Xms64m \
-jar KVHOWE/ li b/ kvstore.jar securityconfig \
config show -secdir kvroot/security

kr bl nst anceName=nosq|
kr bReal mNanme=TESTO08. LOCAL

Manage service principals in a multi-node environment.

e In a multi-node environment, if you want to use a single service principal
oracl enosql / nosqgl for all nodes, you can simply copy the contents of the first
security directory to the other nodes. For example, the following commands
assume that the different nodes are visible and accessible on the current node
(node01):

cp -R node01/ KVROOT/ security node02/ KVROOT/
cp -R node01/ KVROOT/ security node03/ KVROOT/

4-19

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

You may need to use a remote copying command, like scp, to do the copying
if the files for the different nodes are not visible on the current node.

Run makebootconfig on the other two nodes to enable Kerberos
authentication.

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar makebootconfig \
-root KVROOT -port 5000 \

-host node02 -harange 5010, 5020 \
-store-security enable

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar makebootconfig \
-root KVROOT -port 5000 \

-host node03 - harange 5010, 5020 \
-store-security enable

" Note:

The service principal for node02 and node03 will be configured
as oracl enosql / nosql @EST08. LOCAL. Also they will use the same
keytab file generated in step two.

» To set up individual service principals for each node, run step two to create
a service account on AD and generate a new keytab for each node. For
example, each node uses host name as instance name of service principal
and their corresponding keytab files.

oracel nosql / node01@EST08. LOCAL
oracel nosql / node02@ESTO08. LOCAL
oracel nosql / node03@EST08. LOCAL

Copy the security directory created on node01 to other nodes. For example,
the following commands assume that the different nodes are accessible using
ssh from the current node (host01):

cp - R node01/ KVROOT/ security node02/ KVROOT/
cp -R node01/ KVROOT/ security node03/ KVROOT/

Note:

You may need to use a remote copying command, like scp, to copy
the files for the different nodes if they are not visible on the current
node.

ORACLE 4-20

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

Replace keytab files of node2 and node3 generated in step two with the one in
their security configuration directory. For example:

cp store. keytab node02/ KVROOT/ security
cp store. keytab node03/ KVROOT/ security

" Note:

The name of all of the keytab files generated in step two is

store. keyt ab by default. Make sure that you have given each node
the proper keytab file. Use the kl i st tool to check keytab file on
each node to make sure they contain the correct key of service
principal for the node.

Run the securityconfi g tool on node02 and node03 to modify instance name
of security configuration:

security -> config update -secdir KVROOT/security \
- par am kr bl nst anceNarme=node02

security -> config update -secdir KVROOT/security \
- par am kr bl nst anceNarme=node03

Run makebootconfig on the other two nodes to enable Kerberos
authentication.

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar makebootconfig \
-root KVROOT -port 5000 \

-host node02 -harange 5010, 5020 \
-store-security enable

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar makebootconfig \
-root KVROOT -port 5000 \

-host node03 -harange 5010, 5020 \
-store-security enable

6. Start the Storage Node Agent (SNA) on each node:

ORACLE 4-21

ORACLE

10.

11.

12.

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

< Note:

Before starting the SNA, set the environment variable MALLOC ARENA NMAX
to 1. Setting MALLOC ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

nohup java - Xmx64m - Xns64m \
-jar KVHOWE |ib/kvstore.jar start -root KVROOT&

When a newly created store with a secure configuration is first started, there are
no user definitions available against which to authenticate access. To reduce risk
of unauthorized access, an admin will only allow you to connect to it from the
host on which it is running. This security measure is not a complete safeguard
against unauthorized access. It is important that you do not provide local access
to machines running KVStore. In addition, perform the following steps to minimize
the time period in which the admin might be accessible without full authentication.
For more information on maintaining a secure store see Guidelines for Securing
the Configuration.

Start runadm n in security mode on the KVStore server host (node01). To do this:

java - Xmx64m - Xnms64m \

-jar KVHOWE |i b/ kvstore.jar \

runadm n -port 5000 -host nodeOl \
-security KVROOT/security/client.security
Logged in admi n as anonynous

Use the confi gure -name command to specify the name of the KVStore that you
want to configure, and then complete store deployment. For more information, see
the Oracle NoSQL Database Administrator's Guide:

kv-> configure -nane nystore
Store configured: mystore

Create a user account on Microsoft Active Directory. In this example, kr buser is
created on Active Directory.

Create mapping user in Oracle NoSQL Database. The username needs to match
the full principal name in the KDC (includes realm name). In this case, user
krbuser is defined:

kv-> execute ' CREATE USER "krbuser @ESTO08. LOCAL"
| DENTI FI ED EXTERNALLY'

For more information on user creation and administration, see User Management.

At this point, it is possible to connect to the store as the krbuser. To login, you can
use credential cache, a keytab file or enter the principal password.

Set the Kerberos security properties, including the keytab file location, on each
client by specifying them in a security file or through the KVSt or eConfi g class.

4-22

ORACLE

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

In this example, a security file (mylogin.txt) is used. To login, specify the file
location by using the or acl e. kv. securi ty property. For example:

java - Xmk64m - Xms64m \

- Doracl e. kv. security=nyl ogi n. txt \

-jar KVHOWE/ l'i b/ kvstore.jar runadmn -port 5000 -host |ocal host
krbuser @EST08. LOCAL' s ker beros passwor d:

Logged in admin as krbuser @EST08. LOCAL

kv->

The file nyl ogi n. t xt should be a copy of the cl i ent. security file with additional
properties settings for Kerberos authentication. The file would then contain content
like this:

oracl e. kv. aut h. username = krbuser @EST08. LOCAL

oracl e. kv. aut h. ext ernal . mechani snr¥ker ber os

oracl e. kv. aut h. ker ber os. servi ces=node01: or acl enosql /
nosql @EST08. LOCAL

oracl e. kv. transport=ssl

oracl e. kv. ssl . trust St ore=KVROOT/ security/client.trust
oracl e. kv. ssl . protocol s=TLSv1. 2, TLSv1. 1, TLSv1

oracl e. kv. ssl. host nanmeVeri fi er=dnmat ch(C\\ =NoSQL)

In this example, the store nodes are using the single service principal
oracl enosql / nosgl . Without specifying keytab or credential cache, Admin CLI
prompts for principal password.

For more information on Kerberos security properties, see Kerberos Security
Properties.

4-23

External Password Storage

Depending on the type of store deployment, there are two ways passwords can be
externally stored. For Enterprise Edition (EE) deployments, Oracle Wallet is used. For
Community Edition (CE) deployments, a simple read protected clear-text password file
is used.

In the most basic mode of operation, external passwords are used only by the server
to track the keystore password. User passwords, which are stored securely within the
database, can also be supplied during client authentication.

When a password store is used as a component of a login file, the alias that is used for
the password store type should be the username to which the password applies. For
example, for a user named r oot , the password should be stored under the alias r oot .

When a password store is used as part of the server, the alias keyst or e is used. The
user password store should be a completely different file than the one in the security
directory located under KVROOT.

Oracle Wallet

ORACLE

The following commands provide functionality to manipulate Oracle wallet stores
within the securi tyconfi g tool. These commands are available in EE only. For more
information on the securityconfi g tool, see Configuring Security with Securityconfig.

To create a new auto-login wallet, run the wal | et creat e command:

wal | et create
-dir <wallet directory>

Auto-login wallets store passwords in an obfuscated state. Access to the wallet is
secured against reading by unauthorized users using the OS-level login.

To manipulate secrets (passwords), which are associated with a name (alias), run the
wal | et secret command:

wal | et secret
-dir <wallet directory>
{-set | -delete} -alias <alias>

If the -set option is specified, the user is prompted for a new password for the specified
alias and required to verify the new secret.
If the -delete option is specified, the secret is deleted from the store.

Special considerations should be taken if Oracle wallet is used and you are deploying
your Oracle NoSQL Database. For more information, see Guidelines for Deploying
Secure Applications.

Use the wal | et subcommand while configuring the security of the kvstore:

5-1

Chapter 5
Password store file

Run the securityconfi g utility to set up the basic store configuration with security:

java - Xmk64m - Xms64m -j ar KVHOWVE/ |i b/ kvstore.jar securityconfig

The securi tyconfi g tool is invoked. Use the confi g create command with the

- pwdngr option to specify the mechanism used to hold password that is needed for
accessing the store. In this case, Oracle Wallet is used. Oracle Wallet is only available
in the Oracle NoSQL Database Enterprise Edition version.

security-> config create -pwdngr wallet -root kvroot
Enter a password for the Java KeyStore:

Enter a password for your store and then re-enter it for verification. The configuration
tool will automatically generate the security related files.

Password store file

ORACLE

The following commands are used to create and manipulate CE password store

files within the securityconfi g tool. CE password store files managed though this
interface are never password protected. For more information on the securityconfig
tool, see Configuring Security with Securityconfig.

To create a new password store file, run the pwdfil e creat e command:

pwdfile create
-file <password store file>

To manipulate secrets (passwords), which are associated with a name (alias), run the
pwdfile secret command:

pwdfile secret
-file <password store file>
{-set | -delete} -alias <alias>

If the user specifies the -set option, the user is prompted for a new password for the
specified alias and required to verify the new password.

If the -delete option is specified, the alias is deleted from the store.

Use the pwdf i | e subcommand while configuring the store security:

Run the securityconfi g utility to set up the basic store configuration with security:

java - Xmk64m - Xms64m -j ar KVHOVE/ i b/ kvstore.jar securityconfig

The securi tyconfi g tool is invoked. Use the confi g create command with the
- pwdngr option to specify the mechanism used to hold password that is needed
for accessing the store. Here the password is specified in a read-protected, clear-

5-2

ORACLE

Chapter 5
Password store file

text password file. This is the only available option for Oracle NoSQL Database
Community Edition version.

security-> config create -pwdngr pwdfile -root kvroot
Enter a password for the Java KeyStore:
Re-enter the KeyStore password for verification:

Enter a password for your store and then re-enter it for verification. The configuration
tool will automatically generate some security related files.

5-3

Security.xml Parameters

This chapter describes the parameters that can be set in the security. xm
configuration file. This file is generated by makeboot confi g or securityconfigand
tells the Oracle NoSQL Database server how to apply security.

The security.xml file specifies parameters that primarily control network
communications. It contains top-level parameters, plus nested transport parameters.
A transport is a grouping of parameter settings that are specific to a particular type of
network connection.

Note:

A subset of all the configuration options listed below related to SSL can be
specified through Java system properties, security file properties, or through
the KVStoreConfig API. For more information, see SSL communication
properties.

Top-level parameters

ORACLE

The following top-level parameters can be set to the security. xn file:

* internalAuth
Specifies how internal systems authenticate. This parameter must be set to SSL.
e keystore

Identifies the keystore file within the security directory. This parameter is normally
set to store.keys.

e keystoreType

Identifies the type of keystore that the keystore property references. If not set, the
JKS keystore type is used by default.

e keystoreSigPrivateKeyAlias

Specifies the keystore alias that identifies the keypair used by replication nodes to
create signatures. If not specified, the alias "shar ed" is used.

» truststoreSigPublicKeyAlias

Specifies the truststore alias that identifies the certificate used by replication nodes
to verify signatures. If not specified, the alias "nykey" is used.

e securityEnabled
To enable security this parameter must be set to true.

* certMode

6-1

Chapter 6
Transport parameters

Specifies the key/certificate management model in use. This must be set to
"shared".

truststore

Identifies the truststore file within the security directory. This is normally set to
store.trust.

truststoreType

Identifies the type of keystore that the truststore property references. If not set, the
JKS keystore type is used by default.

walletDir

Identifies a directory within the security directory that contains a wallet password
store, which in turn holds the password for the keystore.

passwordFile

Identifies a file within the security directory that contains a file password store,
which in turn holds the password for the keystore.

krbServiceName

Specifies the service hame of the Oracle NoSQL Database Kerberos service
principal.

krbInstanceName
Specifies the service principal instance name.
krbServiceKeytab

Specifies the keytab file name in the security directory that contains the KVStore
server service principal and encrypted copy of principal’s key.

krbConf

Specifies the location of the Kerberos configuration file that contains the default
realm and KDC information. If not specified, the default value is / et ¢/ kr b5. conf .

krbRealmName

Specifies the realm name of service principal. If not specified, this value is
acquired from the Kerberos configuration file.

userExternalAuth

Specifies and enables the external mechanism used for authentication. Kerberos
is supported. Set the value to KERBERCS to enable Kerberos authentication. To
remove Kerberos authentication from a running store, set the value to NONE.

Transport parameters

There are three standard transport types:

ORACLE

ha

Controls the communications between the data replication layer.
client

Controls most RMI communication.

internal

6-2

Chapter 6
Transport parameters

Controls the SSL internal authentication mechanism.

The following parameters can be set and associated to a transport type:

ORACLE

transportType
This parameter should be set to SSL.
serverKeyAlias

The keystore alias that identifies the keypair used by the store services, including
Storage Nodes, Replication Nodes, Admins, and Arbiter Nodes. If not specified,
the alias "shar ed" is used.

clientkeyAlias

The keystore alias that identifies the keypair used by either a direct connect Java
client or a proxy. See Configuring the Proxy for more details. If not specified, the
alias "shar ed" is used.

clientAuthRequired

Should always be true for ha and internal transports and should be false for client
transports.

clientldentityAllowed

When clientAuthRequired is true, this specifies what client identification check
should be applied. This should be set to dnmatch(XXX) where XXX is the
Distinguished name from the client certificate.

serverldentityAllowed

This specifies what server verification should be performed. This should normally
be set to dnmatch(XXX) where XXX is the Distinguished name from the server
certificate.

allowCipherSuites

This is a comma-delimited list of SSL/TLS cipher suites that should be considered
for use. For valid options, see the Java JSSE documentation corresponding to
your JDK version. If not specified, the JDK default set of cipher suites is allowed.

allowProtocols

This is a comma-delimited list of SSL/TLS protocols that should be considered for
use. For valid options, see the Java JSSE documentation corresponding to your
JDK version. If not specified, the JDK default set of protocols is used.

clientAllowCipherSuites

See allowCipherSuites for a description of the format. This parameter sets the
cipher suite requirements only for the initiating side of a connection. If set, it
overrides any setting of allowCipherSuites for the connection initiator.

clientAllowProtocols

See allowProtocols for a description of the format. This parameter sets the
protocol requirements only for the initiating side of a connection. If set, it overrides
any setting of allowProtocols for the connection initiator.

6-3

Encryption

Network data encryption provides data privacy so that unauthorized parties are unable
to view plain text data during transmission across the network.

Oracle NoSQL Database uses SSL-based encryption to encrypt network traffic
between applications and the server, command line-utilities and the server, as well
as between server components.

Note:

JMX access requires the use of SSL.

SSL model

ORACLE

Oracle NoSQL Database uses a simple SSL key management strategy. A single,
shared, RSA key is used to protect communication. In this shared key model, you
must be sure that there is a master copy of the security directory and that it gets
copied to each server. You should not run makebootconfig with the - st or e- security
confi gure option on all servers. Most servers should have the - st ore-security
enabl e option specified in their makebootconfig command.

The shared key has an associated self-signed certificate with a Subject Distinguished
Name that is not server-specific. The automatically-created certificates are generated
with the Distinguished Name: CN=NoSQL.

Each server component listens on SSL interfaces and presents the shared certificate
to clients and other servers that connect to it, as proof of its authenticity. Each

client and server component uses a Java truststore containing a copy of the shared
certificate to validate the certificate presented by servers.

When accessing a NoSQL instance that is secured using SSL/TLS, you must specify
at least the following information:

1. You must specify that the client will connect using SSL. This is done by setting the
security property oracle.kv.transport to "ssl".

2. You must specify the Java truststore file that is used to validate the server
certificate. This is done by setting the security property oracle.kv.ssl.trustStore.

For example, to start r unadmni n in security mode use the following command:

java - Xmx64m - Xms64m \
- Doracl e. kv. security=nyl ogi n. txt \
-jar KVHOWE |ib/kvstore.jar runadmn

7-1

Chapter 7
SSL communication properties

where the file mylogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracl e. kv. aut h. user nane=r oot

oracle. kv.auth. wallet.dir=login.wallet

oracl e. kv.transport=ssl
oracle.kv.ssl.trustStore=client.trust

oracl e. kv. ssl . protocol s=TLSv1. 2, TLSv1. 1, TLSv1
oracl e. kv. ssl . host nanmeVeri fi er=dnmat ch(C\\ =NoSQL)

" Note:

If you fail to correctly specify the oracle.kv.transport property or the
truststore, the client will fail to connect to the server.

SSL communication properties

ORACLE

Assuming that the NoSQL server is secured by SSL, client connections from Oracle
NoSQL Database administrative clients will need to connect over SSL as well. This
can be achieved by providing security properties for the connection.

For Oracle-provided command line tools, a security file must be specified. The security
configuration process automatically generates a basic security file (cl i ent. security)
that can be used to connect to the store. You may wish to make a copy of this and
modify it to include additional configuration properties.

The minimal configuration needed to connect to a secure store includes setting the
following properties:

e oracle.kv.transport=ssl

Directs KVStore clients and utilities to connect to the KVStore RMI registry via
SSL.

e oracle.kv.ssl.trustStore=<path-to-ssl-truststore>

Names a copy of the truststore file generated by nakeboot confi g or
securityconfi g to enable validation of the KVStore server SSL certificate.

Note:

You can use SSL to communicate an application with other SSL servers
without using truststore-based certification validation.

In addition to the two properties listed above, the following properties are also
supported for control of SSL communications:

e oracle.kv.ssl.ciphersuites

Specifies a comma-separated list of SSL cipher suites that should be allowed in
communication with the server.

e oracle.kv.ssl.protocols

7-2

Chapter 7
Disk Encryption in a Linux Environment

Specifies a comma-separated list of SSL protocols that should be allowed in
communication with the server.

e oracle.kv.ssl.trustStoreType

Specifies the type of truststore being used. If not specified, the default type for the
Java runtime is used.

Note:

Applications may also set these security properties through API methods
on KVStoreConfig.

Disk Encryption in a Linux Environment

ORACLE

If you are using the Linux operating system, you can secure your data by configuring
disk encryption to encrypt whole disks (including removable media), partitions,
software RAID volumes, logical volumes, as well as your NoSQL files.

dm crypt is the Linux kernel's device mapper crypto target which provides transparent
disk encryption subsystem in the Linux kernel using the kernel crypto API.

Crypt set up is the command line tool to interface with dm crypt for creating, accessing
and managing encrypted devices. The most commonly used encryption is Crypt set up
for the Linux Unified Key Setup (LUKS) extension, which stores all of the needed
setup information for dm crypt on the disk itself and abstracts partition and key
management in an attempt to improve ease of use.

This topic demonstrates how to convert a normal disk to a dm crypt enabled disk and
vice versa using the command-line interface.

Assume that you have the following disks in your Linux system. The df -h command
displays the amount of available disk space for each disk.

$df -h
/ dev/ nvmeOnl 2.9T 76G 2. 7T 3%/ ons/ nvme0Onl
[dev/ nvmelnl 2.9T 76G 2. 7T 3%/ ons/ nvnelnl

If you nominate disk / dev/ nvme0On1 to store databases, then you should encrypt this
disk to secure the data within it.

Normal disk to a dm-crypt enabled disk:
Execute the following commands to convert a normal disk to a dm crypt enabled disk:

1. Unmount the file system on the disk.

sudo umount -1 /dev/nvrmeOnl

2. Generate the key to be used by | uksFor nat .

sudo dd if=/dev/urandom of =/ horre/ opc/ key0. key bs=1 count =4096

7-3

ORACLE

Chapter 7
Disk Encryption in a Linux Environment
Initialize a LUKS partition and set the initial key.

sudo /usr/shin/cryptsetup -q -s 512 \
| uksFormat /dev/ nvmeOnl /home/ opc/ keyO. key

Open the LUKS partition on disk/device and set up a mapping name.

sudo /usr/shin/cryptsetup --allowdiscards \
| uksOpen -d /home/ opc/ key0. key /dev/ nvneOnl dm nvrmeOnl

Create an ext 4 file system on the disk.

sudo /shin/nkfs.ext4 /dev/ mapper/dm nvmelnl

Set parameters for the ext 4 file system.

sudo /usr/shin/tune2fs -e remunt-ro /dev/ mapper/dm nvreOnl

Mount the file system to a specified directory.

sudo nount /dev/ mapper/dm nvreOnl /ons/ nvnelnl

dm-crypt enabled disk to normal disk:

If you want to convert the encrypted disk back to its normal state, execute the following
steps:

1.

Unmount the file system on the disk.

sudo unount -1 /ons/nvmeOnl

Remove luks mapping.

sudo /usr/sbin/cryptsetup |uksC ose /dev/ mapper/dm nvneOnl
Create an ext 4 file system on the disk.

sudo /sbin/nkfs.ext4 /dev/nvmeOnl

Mount the file system on a specified directory.

sudo mount /dev/nvnmeOnl /ons/nvnmeOnl

Note:

If you convert a normal disk to a dm crypt enabled disk or convert a dm
crypt enabled disk to a normal disk, you cannot bring the disk back to

its previous state without losing its data. This is because the nkfs. ext 4
command will format the disk. Therefore, all the data stored in the disk will be
lost.

7-4

Configuring Authentication

Authentication means verifying the identity of someone (a user, server, or other entity)
who wants to use data, resources, or applications. Validating that identity establishes a
trust relationship for further interactions. Authentication also enables accountability by
making it possible to link access and actions to specific identities.

Within a secure Oracle NoSQL Database, access to the database and internal APIs

is generally limited to authenticated users. When a secure Oracle NoSQL Database

is first started, there are no users defined, and login to the administrative interface is
allowed without authentication. However, no data access operations can be performed
without user authentication.

User Management

You can create, modify, or remove users in the Oracle NoSQL Database through the
Admin CLI, where the commands for manipulating users are exposed in SQL format
through DDL API. You can also display information about a specific user account, as
well as get a summary list of registered users. For more information, see the next
sections describing each user management operation.

All user passwords should follow the password security policies. For more information
see Password Complexity Policies.

User Creation

ORACLE

To create a user, use the following command:

CREATE USER user _nane
(I DENTI FI ED EXTERNALLY | | DENTI FI ED BY password
[PASSWORD EXPI RE | PASSWORD LI FETI ME duration_tine_unit])
[ACCOUNT LOCK| UNLOCK]
[ADM N

where:
e user_name

Assigns a name to identify a user. If you are creating a Kerberos user, the
user_name must match the fully qualified principal name created in the Key
Distribution Center (KDC) at your site. A username is an ID, just as a table name.
The formal definition for each ID is as follows:

ALPHA (ALPHA | DIG T | UNDER)* ;

Each ID must start with a letter (a- z, A- Z), followed by other letters, numerical
values (0 - 9), and underscore (_) characters. There is no ID size limit for the
number of characters it contains. An an ID can consist of as many characters

8-1

ORACLE

Chapter 8
User Management

as the memory required to accommodate its length. In practice, most sites have
name length recommendations, but they are not checked or enforced by Oracle
NoSQL Database.

Kerberos users must have different names from existing users, since you cannot
change the authentication type of an existing user.

| DENTI FI ED EXTERNALLY

Indicates that Oracle NoSQL Database will use an external mechanism to
authenticate the user. Currently, Oracle NoSQL Database supports only Kerberos
as an external authentication service.

| DENTI FI ED BY "passwor d”

Indicates that Oracle NoSQL Database authenticates the new user by the
password you assign. The new user must log on using that password.

" Note:

You must specify a user password with quotation marks, for example,
"password".

PASSWORD EXPI RE

Specifies that the assigned password has already expired. With this setting the
user is forced to change the given password as soon as they initially login. They
must enter a password of their choice (which meets any site requirements) before
accessing Oracle NoSQL Database.

PASSWORD LI FETI ME {INT duration_time_unit}

Indicates the password duration unit, which is required for using the assigned
password. Enter the integer ti ne_uni t as follows:

time_unit : (SECONDS | M NUTES | HOURS | DAYS)

Using zero (0) with any time unit specifies that the password never expires.
Entering a negative value causes an error. If you do not specify a PASSWORD
LIFETIME time_unit, the lifetime from the global configuration is used. The default
for this parameter is 180 days.

Following is a basic example of creating new user Kate, | DENTI FI ED BY a
password you assign to her, represented here as "password", with a PASSWORD
LI FETI ME duration specifying the integer unit of time as 30 DAYS. We do not
recommend using this practice.

kv-> execute ' CREATE USER Kat e | DENTI FI ED BY \” password\”
PASSWORD LI FETI ME: 30 DAYS

ACCOUNT {LOCK | UNLOCK}

Specify ACCOUNT LOCK to lock a user's account to disable access. An Admin can
use this option to remove access from a user, but retain the account. Then, as
required, reinstate the user account specifying ACCOUNT UNLOCK.

8-2

Chapter 8
User Management

« ADMN O ause

Specify ADM N to grant the user sysadni n role automatically.

" Note:

To create the first user in an Oracle NoSQL Database instance, you must
start the Admin CLI as an anonymous user and use the pl an creat e- user
command. However, creating an initial user is only one of several steps for
setting up a secure site, and is not described here. For further explanation,
see, Performing a Secure Oracle NoSQL Database Installation.

User Modification

ORACLE

To alter a user, use the following command:

ALTER USER user _name [| DENTI FI ED BY password
[RETAI N CURRENT PASSWORD]] [CLEAR RETAI NED PASSWORD] [PASSWORD EXPI RE]
[PASSWORD LI FETI ME duration] [ACCOUNT UNLOCK| LOCK]

where:

« user_nane

Name of user to alter. If specifying a Kerberos user, you can only alter the
ACCOUNT clause options.

e | DENTIFIED O ause
Specify BY passwor d to specify a new password for the user.
e RETAIN CURRENT PASSWORD

Used with BY passwor d clause. If specified, causes the current password defined
for the user to be remembered as a valid alternate password for a limited duration
(24 hours by default), or until the password is explicitly cleared. Only one alternate
password may be retained at a time. This option allows a password to be changed
while an application is still running without affecting its operation.

* CLEAR RETAI NED PASSWORD Cl ause
Erases the current alternate retained password.
e PASSWORD EXPI RE

Causes the user's password to expire immediately, then the user or the user
having sysadmin role must change the password before attempting to log in to the
database following the expiration.

* PASSWORD LI FETI ME duration

Specify the duration that current password can be used for authentication.

duration: [0-9]+ unit
unit: S| M| H| SECONDS | M NUTES | HOURS | DAYS

8-3

Chapter 8
User Management

Note that specifying 0 time unit for PASSWORD LIFETIME will make the password
as "never expired".

e ACCOUNT C ause

Specify ACCOUNT LOCK to lock the user's account and disable access. Specify
ACCOUNT UNLOCK to enable the user.

If you are updating the password of an existing user, the new password should comply
with the password security policies. For more information see Password Complexity
Policies.

User Removal

DROP USER user _name [CASCADE]

Use the DROP USER user _name command to remove the specified user account (users
cannot remove themselves), where user _nare is the name of the user to drop.

If the user has existing tables, drop each of the tables first, and then drop the user.
Alternatively, use the optional CASCADE option, which drops the user tables along with
the user.

For example:

kv-> execute ' DROP USER Kat e CASCADE'

Dropping a user occurs immediately. If another user was accessing tables that the
user owned, the tables are no longer available for DML or DDL operations.

User Status
SHOW USER[S] [-nane user_name] [-json | -json-vi]

Notice that the S on the SHON USERS command is optional for the Admin CLI, except
for DDL statements you call with execut e. For DDL " SHOW USER - name user _nane"
shows information about a single user, and SHOWV USERS displays information about all
users.

" Note:

The SHOW USERS command differs between the Admin CLI and the SQL CLI.
This section describes the differences wherever possible. For example, the
JSON options are not available for all the Admin CLI commands.

From the SQL CLI, add one of the -j son flags to output the information in JSON.

ORACLE 8-4

User Login

ORACLE

Chapter 8
User Management

From the Admin CLI, use the SHOW USERS without further qualification to list all existing
users in the system. For example, here are three users in the system:

kv-> execute ' SHON USERS
user: id=ul name=Ken
user: id=u2 nane=Kate
user: id=u3 name=Alice

< Note:

The User ID values are incremented sequentially as you add each user.
They are an internal mechanism for ensuring each user is unique.

From the Admin CLI, specify SHON USERS - name user _name to view detailed
information about a specific user:

kv-> execute ' SHON USERS - nane Kate'
i d=u2 name=kate enabl ed=true auth-type=LOCAL ret ai n- passwd=i nactive
grant ed-rol e=[public]

From the SQL CLI, you can omit the - nane flag:

sql -> show user Kate

From this CLI, entering SHOW USER name automatically interprets name as a user _nane.

To specify a Kerberos user from the Admin CLI, the returned aut h-t ype value is
EXTERNAL:

kv-> execute ' SHOW USERS krbuser @XAMPLE. COM
user: id=u4 name=krbuser @GEXAMPLE. COM enabl ed=t rue aut h-type=EXTERNAL
retain-passwd=i nactive granted-roles=[readwite, public, sysadnn]

You can use either the - user nane <user > or the -security <path to security
file>runadmin argument to login to the admin CLI:

e -username <user>

Specifies the username to log in as. This option is used in conjunction with
security properties like oracle.kv.transport.
e -security <path-to-security-file>

Specifies the security file that contains property settings for the login. Relative
filename references within the security file are interpreted relative to the location
of the security properties file. For example, if a security properties file contains the
setting oracl e. kv. ssl . truststore=client.trust then, the client.trust file should

8-5

Chapter 8
User Management

be in the same directory as the security properties file. If the file is named with an
absolute path then it can be anywhere in the file system.

The following properties can be set in the file in addition to any of the SSL
communication properties documented in the previous chapter:

oracl e. kv. aut h. user nane
oracle. kv.auth.wal let.dir
oracle.kv.auth. pwdfile.file

where the oracle.kv.auth.wallet.dir and oracle.kv.auth.pwdfile.file properties in this
file indicate the location of an EE wallet directory or CE password store file,
respectively.

" Note:

The oracle.kv.security Java system property can be used as an
alternative mechanism for providing a security file path. Setting this
system property is equivalent to adding the - securi ty option to the
command line for the Admin CLI . This property is supported by all tools
as well as by the KVStore client library.

Password Management

The Admin can configure the lifetime of users’ passwords for various units of time, or
make them expire immediately. When a password expires, the user needs to renew it
to log in Oracle NoSQL Database successfully. All user passwords should follow the
password security policies. For more information see Password Complexity Policies.

ORACLE

The two ways to manage passwords from expiring are as follows:

Explicit Expiration

It makes the current password expire immediately as well as the retained
password, if it exists. For this user, the user must change the password before
attempting to log in the database.

For example:

kv-> execute ' CREATE USER John | DENTI FI ED BY \ " password\” PASSWORD
EXPI RE

Password Lifetime Configuration

If a user logs into the database with John’s account, the user must input the new
password for John.

Logged in admn as John

The password of John has expired, it is required to change the
passwor d.

Enter the new password:

Re-enter the new password:

8-6

Sessions

ORACLE

Chapter 8
Sessions

Password lifetime limits the duration that current password can be used for
authentication.

Note:

This configuration only works for the current password but not the
retained one.

For example:

kv-> execute ' ALTER USER John PASSWORD LI FETI ME 15 days'

In the example above, the current password for user John will expire after 15 days.
After expiration, if the user John attempts to log into the database, the system
displays a notification to change the password.

A retained password is used to allow a password to be changed while an
application is still running without affecting its operation. It is only saved by the
system for a limited duration (24 hours) and there is no way to specify individual
duration for each user. For retained password, only explicit expiration is supported
using the following command:

kv->execute ' ALTER USER John CLEAR RETAI NED PASSWORD

When a user successfully logs in, it receives an identifier for a login session that allows
a single login operation to be shared across Storage Nodes. That session has an initial
lifetime associated with it, after which the session is no longer valid.

The server notifies the user with an error once the session is no longer valid. The
application then needs to re-authenticate.

¢ Note:

The KVStoreFactory API provides a reauthentication handler, which allows
the reauthentication to be completed transparently, except for the delay in
reauthentication processing.

If allowed, the Oracle NoSQL Database client will transparently attempt to extend
session lifetime. For best results, your application should include logic to deal with
reauthentication, as operational issues could prevent it from succeeding initially. In this
way, you can avoid the use of extended logic in your application to reacquire a valid
session state.

You can configure the behavior regarding session management to meet the
needs of the application and environment. To do this, you can modify the
following parameters using the pl an change- par anet er s command: sessionTimeoult,

8-7

Chapter 8
Sessions

sessionExtendAllowed and loginCacheTimeout. For more information, see Security
Policy Modifications

ORACLE 8-8

Configuring Authorization

Privileges

Oracle NoSQL Database provides role-based authorization which enables the user to
assign kvstore roles to user accounts to define accessible data and allow database
administrative operations for each user account.

Users can acquire desired privileges by role-granting. The user-defined role feature
allows the user to create new roles using kvstore built-in privileges, and add new
privilege groups to users by assigning newly-defined roles to users. You can grant
users multiple roles.

For more information, see:
* Privileges
* Roles

* Managing Roles, Privileges and Users

A privilege is an approval to perform an operation on one or more Oracle NoSQL
Database objects. In Oracle NoSQL Database, all privileges fall into the two general
categories:

e System privileges

This gives a user the ability to perform a particular action, or to perform an action
on any data objects of a particular type.

e Object privileges

This gives a user the ability to perform a particular action on a specific object, such
as a table.

System Privileges

ORACLE

Oracle NoSQL Database provides the following system privileges, covering both data
access and administrative operations:

e SYSDBA

Can perform Oracle NoSQL Database management, including table create/drop/
evolve and index create/drop.

° SYSVIEW
Can view/show system information, configuration and metadata.
* DBVIEW

Can query data object information. The object is defined as a resource in Oracle
NoSQL Database, subject to access control. At present, you can have this
privilege to query the table and index information.

9-1

Chapter 9
Privileges

* USRVI EW

Can query users' own information, like their own user information, the status of
commands they issued.

* SYSOPER

Can perform Oracle NoSQL Database system configuration, topology
management, user privilege/role management, diagnostic and maintenance
operations. Allows a role to perform cancel, execute, interrupt, and wait on any
plan.

* WRI TE_SYSTEM TABLE

Can make modifications to system tables if the necessary read and write privileges
are granted for the table. The multi-region agent is the intended user of this
privilege. Typically, normal users should not modify system tables.

« READ ANY
Can get/iterate keys and values in the entire store, including any tables.
« VR TE_ANY
Can put/delete values in the entire store, including any tables.
« CREATE_ANY TABLE
Can create any table in the store.
« DROP_ANY_TABLE
Can drop any table from the store.
« EVOLVE_ANY TABLE
Can evolve any table in the store.
« CREATE_ANY_ | NDEX
Can create any index on any table in the store.
« DROP_ANY_| NDEX
Can drop any index from any table in the store.
< READ ANY TABLE
Can read from any table in the store.
+ DELETE_ANY TABLE
Can delete data from any table in the store.
« | NSERT_ANY TABLE

Can insert and update data in any table in the store.
Object Privileges
The object privileges defined in Oracle NoSQL Database are:
e READ TABLE

Can read from a specific table.
e DELETE_TABLE

ORACLE 9-2

Chapter 9
Privileges

Can delete data from a specific table.
e | NSERT_TABLE
Can insert and update data to a specific table.
« EVOLVE_TABLE
Can evolve a specific table.
e CREATE_| NDEX
Can create indexes on a specific table.
« DROP_| NDEX
Can drop indexes from a specific table.

For more information on the privileges required by the user to access specific KVStore
APIs as well as CLI commands, see KVStore Required Privileges.

Table Ownership

ORACLE

When you are using a secure store, tables are owned by the user that created them.
A table's owner has by default full privileges to the table. That is, the owner has all the
table object privileges.

Note:

For tables created in a non-secured store, or tables created prior to the 3.3
release, the table's owner is null.

Once a table is created, its owner cannot be changed. If a table is dropped and then
recreated, all previously granted table privileges must be granted again.

Parent and child tables are required to have the same owner. However, table
privileges are not automatically granted to the table's children. For example, if

READ TABLE is granted to table nyTabl e, then that privilege is not automatically granted
to any of that table's children. To grant READ_TABLE to the child tables, you must
individually grant the privilege to each child table in turn.

A table's owner can grant or revoke all table privileges to or from other roles. To do
this, use the GRANT DDL statement. (See Grant Roles or Privileges for details.) To
make a user other than the owner be able to read/insert/delete a specific table, two
conditions must be met:

1. The user has the read/insert/delete privilege for the table in question; and

2. The user has the same privilege, or read privilege, for all parent tables of that
table.

For example, for table myTabl e and its child nyTabl e. chi | d1, a non-owner user
can only insert data to nyTabl e. chi | d1 when she has insert privilege (or better) on
myTabl e. chi | d1, and read and/or insert privilege on nyTabl e.

9-3

Chapter 9
Roles

Privilege Hierarchy

Roles

In Oracle NoSQL Database, there is a relationship between parts of existing privileges,
called 'implications'. Implication means that a privilege may be a superset of some
other privileges.

For example, Privilege A implies (=>) B means that privilege A has all the permissions
defined in privilege B.

The following illustration depicts all implication relationship among Oracle NoSQL
Database privileges:

— CREATE_ANY_ TABLE |

—{ DROP_ANY_TABLE

= — EVO'-VE—AINY—TAB'-E [READ_ANY | WRITE_ANY |
) - [
I | EVOLVE_TABLE | I |
&) | READ_ANY_TABLE | INSERT_ANY_TABLE DELETE_ANY_TABLE |
- —— CREATE_ANY_INDEX | | |
| READ_TABLE [INSERT_TABLE | DELETE_TABLE |

CREATE_INDEX

—{ DROP_ANY_INDEX

DROP_INDEX |

Note:

All implications are transitive, that is, if A=>B and B=>C, then A=>C.

In Oracle NoSQL Database a role is a set of privileges that defines the authority and
responsibility of users assigned to the role. Oracle NoSQL Database provides a set of
system built-in roles. Users can create new roles to group together privileges or other
roles.

System Built-in Roles

ORACLE

The following system roles are predefined:

* readonly

Contains the READ_ANY privilege. Users with this role can read all data in the
KVStore.

e witeonly

Contains the WRITE_ANY privilege. Users with this role can write to the entire
KVStore.

e readwite

9-4

Chapter 9
Roles

Contains both the READ_ANY and WRITE_ANY privileges. Users with this role
can both read and write the entire KVStore.

e dbadnmn

Contains the SYSDBA privilege. Users with this role can execute data definition
operations, including table and index administration.

e sysadmin

Contains the SYSDBA, SYSVIEW and SYSOPER privileges. Users with this role
can execute the same operations as dbadni n, and have the ability of executing
all Oracle NoSQL Database management tasks. A user created with the - adm n
option is granted with the sysadmi n role besides the default publ i ¢ role.

* witesystable

Contains the WRITE_SYSTEM_TABLE privilege. Users with this role can modify
system tables if they have the necessary read and write privileges. The multi-
region table agent is the intended user of this role. Typically, normal users should
not modify system tables.

e public

Contains the USRVIEW and DBVIEW privileges. A default role for all Oracle
NoSQL Database users, which cannot be revoked. Users with this role can login
to database, view and change their own user information, as well as check and
operate the plans owned by them. Users with this role can also obtain a read-only
view of the data object information, for example, table names, indices, and others.

User-Defined Roles

Oracle NoSQL Database allows the user to create new roles using kvstore built-in
privileges, and add new privilege groups to users by assigning defined roles to the
users. To perform role and privilege granting and revocation operations, the user must
have a role having SYSOPER privilege, for example, the sysadmin role.

To manage user-defined roles, use the following commands from the Admin CLI:

kv-> execute ' CREATE ROLE rol e_nane'

kv-> execute ' DROP ROLE rol e_nane'

< Note:

The names of user-defined roles are case-insensitive, and are not the same
as any existing privilege names or names of system built-in roles. Also, a
reserved keyword cannot be used as a role name. For a list of reserved
keywords, see Reserved Words in the SQL Reference Guide.

The following example shows how to create user-defined roles and grant them to, or
revoke them from users:

ORACLE 9-5

Chapter 9
Roles

Create two users with the following commands:

kv-> execute ' CREATE USER Ken | DENTI FI ED BY \"password\" '

kv-> execute ' CREATE USER Kate | DENTI FI ED BY \"password\" '

¢ Note:
Use the following guidelines to define a password :
e Password must have at least 9 characters
e Password must have at least 2 upper case letters

e Password must have at least 2 special characters

Now, create two roles — manager with the wri t e_any privilege and enpl oyee with the
read_any privilege:

kv-> execute ' CREATE ROLE nmanager'’
kv-> execute ' GRANT WRI TE_ANY TO nanager'
kv-> execute ' CREATE ROLE enpl oyee'
kv-> execute ' GRANT READ ANY TO enpl oyee'

The next example shows granting role enpl oyee to role manager (sub-role of
manager), and then grants role manager to user Kat e. User Kate then has both
manager and enpl oyee role, with both of their privileges, to w it e_any data to the
store, and r ead_any data.

kv-> execute ' GRANT enpl oyee TO ROLE manager'
kv-> execute ' GRANT manager TO USER Kat e'

Note:

Make sure the security feature is enabled for the store. Else you get the
following error.

Error: User error in query: GantRoles failed for: Cannot
grant or revoke roles. Please nake sure the security
feature i s enabled.

See Configuring Security with Securityconfig for more details.

ORACLE 9-6

Chapter 9
Managing Roles, Privileges and Users

Use the following command to see the user’s role status:

kv-> execute ' SHOW USER Kat e'
i d=u2 name=Kate enabl ed=true type=LOCAL retai n-passwd=i nactive
granted-rol e[public, manager]

Once the user drops a role, this role and its sub-roles will be revoked automatically
from any users and user-defined roles having this role. However, all of its sub-roles will
not be removed from the Oracle NoSQL Database.

For example:

kv-> execute ' DROP ROLE nmanager'

kv->execute ' SHOWN USERS Kat e’

i d=u2 name=Kate enabl ed=true type=LOCAL retai n-passwd=i nactive
grant ed-rol e=[public]

Now, the show r ol es command will list the roles in the system without the 'manager’
role.

If the administrator decides to drop the manager role, the system revokes the manager
role from user Kate automatically, as well as the enpl oyee role. In the above example,
Kate cannot perform any read or write operations.

Note:

Granting circular roles is not allowed. For example, role manager cannot be
granted to role enpl oyee if role enpl oyee has previously been granted to role
manager .

Managing Roles, Privileges and Users

Oracle NoSQL Database provides a set of security operations, including commands
to create, drop, show, grant or revoke roles to or from users, and to grant or

revoke privileges to or from roles. All these statements can be executed through the
SQL CLI or the Admin CLI execut e command, or the API of KVStore.execute() or
KVStore.executeSync().

Role Creation

ORACLE

CREATE RCLE rol e_name

Where, rol e_nare is the case insensitive name of the role.

For example,

kv-> execute ' CREATE RCOLE administrator'
Statement conpl eted successfully

9-7

Chapter 9
Managing Roles, Privileges and Users

Role Removal

Role Status

ORACLE

DROP RCLE rol e_nane

Where, rol e_nane is the name of the role, which is case insensitive.

For example,

kv-> execute ' DROP ROLE adninistrator’
Statenent conpl eted successfully

SHOW [AS JSON] ROLES | RCLE rol e_nane

Where, rol e_nane is the name of the role.

List all available role names by running 'SHOW ROLES', or view the detailed
information of a role if the role name is specified.

For example,

kv->execute ' SHON ROLES
rol e: nane=dbadni n

rol e: name=public

rol e: nane=r eadonl y

rol e:nane=readwite

rol e: nane=sysadmi n

rol e:nane=writeonly

The detailed information of a role can be viewed by specifying the role name:

kv->execute ' SHOW ROLE dbadmi n'
nane=dbadni n assi gnabl e=true readonl y=true
granted-privil eges=[SYSDBA, DBVI EW

Note:

Assignable indicates whether this role can be explicitly granted to or revoked
from a user.

Object privileges will appear in the form of PRIVILEGE(obj). For example, privilege of
READ_TABLE on table 'emp' will appear as:

kv->execut e ' CREATE ROLE enpt abl er eader

kv->execute ' GRANT READ TABLE ON enp TO enpt abl er eader’
kv->execute ' SHON ROLE enpt abl er eader’

9-8

Chapter 9
Managing Roles, Privileges and Users

nanme=enpt abl er eader assi gnabl e=true readonl y=fal se
granted-privil eges=[READ TABLE(enp)]

Grant Roles or Privileges

ORACLE

GRANT { grant_roles | grant_systemprivileges
| grant_object privileges }

grant _roles ::=role [, role]... TO{ USER user | ROLE role }
grant _systemprivileges ::=

{systemprivilege | ALL PRI VI LEGES}
[,{systemprivilege | ALL PRI VILECGES}]...
TOrole

grant_object privileges ::=

{object _privileges| ALL [PRIVILEGES]}
[,{object_privileges| ALL [PRIVILEGES]}]...
ON object TOrole

where:
« role
The role that is granted.
e user
The user to which the privileges are granted.
e systemprivil eges
The system privileges that are granted.
e object _privileges
The object privileges that are granted.
* object

The object on which the privilege is granted. Currently only table privileges are
supported.

* ALL PRIVILEGES

Grants all of the system privileges. This is a shortcut for specifying all system
privileges.

« ALL [PR VI LEGES]

Grants all object privileges defined for the object. The keyword PRIVILEGES is
provided for semantic clarity and is optional.

For example, you can grant a role with fewer privileges to one with more privileges,
such as enpl oyee to role nanager :

kv-> execute ' GRANT EMPLOYEE TO ROLE manager'
kv-> execute ' GRANT MANAGER TO USER Kat e'
St atenment conpl eted successfully

9-9

Chapter 9
Managing Roles, Privileges and Users

If you try to grant the same role in the other direction, an error occurs:

kv-> execute ' GRANT enpl oyee to ROLE manager'

You will receive an error of "Could not recursively grant role employee to role
manager" because this would lead to a cyclic definition of role manager.

The user can now add new privileges to their defined role. For example:

kv-> execute ' GRANT READ_ANY TO Kat e’

For example, to grant read permission on table T1 to Kate:

kv-> execute ' GRANT READ TABLE on T1 TO Kate'

See also notes on granting table privileges in Table Ownership.

Revoke Roles or Privileges

ORACLE

REVOKE { revoke roles | revoke systemprivileges
| revoke object privileges}

revoke roles ::=role [, role]... FROM{ USER user | RCLE role }
revoke_systemprivileges ::=

{ systemprivilege | ALL PRI VI LEGES }

[, {systemprivilege | ALL PRI VILEGES}]...

FROM rol e

revoke object privileges ::=

{ object_privileges| ALL [PRI VILEGES] }

[, { object_privileges | ALL [PRI VILECES] }]...
ON object FROMrol e

where:
« role
The role to revoke.
e user
The user from which the privileges are revoked.
° systemprivil eges
The system privileges to revoke.
e object_privileges
The object privileges to revoke.
* object

The table from which the privileges are revoked. Currently, the only objects
supported are tables.

* ALL PRIVILEGES

Revokes all of the system privileges that have been granted to the revokee.

9-10

ORACLE

Chapter 9
Managing Roles, Privileges and Users

« ALL [PR VI LEGES]

Revokes all object privileges defined on the object from the revokee. The keyword
PRIVILEGES is provided for semantic clarity and is optional.

For example, to revoke role 'employee’ from role 'manager":

kv-> execute ' REVOKE enpl oyee FROM ROLE manager'
Statement conpl eted successfully

To revoke the role 'manager’ from user 'Kate":

kv-> execute ' REVOKE nanager FROM USER Kat e’
Statenent conpl eted successful ly

9-11

Security Policies

The following default policies in Oracle NoSQL Database may be used to tailor system
behavior to meet your security requirements:

Login sessions have a limited duration of validity. After that duration has passed,
the session needs re-authentication.

Session login errors are tracked at the component level. Access to an account for
a single client host is temporarily disabled if too many failed logins occur at that
component within a configurable time duration.

Note:

Both of these behaviors can be customized by modifying the values
of their respective security parameters. For more information, see the
following section.

Security Policy Modifications

You can use the pl an change- par anet er s command in order to change a security
policy in the system:

ORACLE

pl an change-paraneters -security <id>...

Security parameters are applied implicitly and uniformly across all SNs, RNs and
Admins.

The following security parameters can be set:

sessionTimeout=<Long TimeUnit>

Specifies the length of time for which a login session is valid, unless extended.
The default value is 24 hours.

sessionExtendAllowed=<Boolean>
Indicates whether session extensions should be granted. Default value is true.
accountErrorLockoutThresholdinterval=<Long TimeUnit>

Specifies the time period over which login error counts are tracked for account
lockout monitoring. The default value is 10 minutes.

accountErrorLockoutThresholdCount=<Integer>

Number of invalid login attempts for a user account from a particular host address
over the tracking period needed to trigger an automatic account lockout for a host.
The default value is 10 attempts.

accountErrorLockoutTimeout=<Long TimeUnit>

10-1

ORACLE

Chapter 10
Security Policy Modifications

Time duration for which an account will be locked out once a lockout has been
triggered. The default value is 30 minutes.

loginCacheTimeout=<Long TimeUnit>

Time duration for which KVStore components cache login information locally to
avoid the need to query other servers for login validation on every request. The
default value is 5 minutes.

10-2

Audit Logging

Oracle NoSQL Database monitors and records security sensitive activities. These log
messages are available through the SN-local log files and the store-wide logging view.
High risky security activities are also visible by using the show event s command.

Security Log Messages

For ease of grepping and analysis, the auditing log message uses KVAudi tI nfo as a
prefix. For example:

General audit |ogging:

<Ti mest anp>: KVAudi t | nfo[user: <user_name>,
clienthost: <client_host> operation:
<operation_description> status: <SUCCESS/ FORBI DDEN>,
reason: <failure reason>]

General audit |ogging:

Particular |ogging for successful execution of plan:

<Ti mest anp>: KVAudi t | nf o[<pl an_nane>, owned by <pl an_owner >,
executed by <plan_executor> from <client_host>,

state=<end state of plan execution>]

To distinguish security related messages from standard log messages, the following
two security related logging levels are introduced:

* SEC_WARNI NG

Logs unauthenticated login, unauthorized read/write data access and unauthorized
execution of CLI commands. Unauthenticated login does not log the reasons of
failure.

« SEC_INFO

Logs the success of a user login and the successful execution of plans that require
dbadmi n or sysadmi n role related privileges.

ORACLE 11-1

Keeping Oracle NoSQL Database Secure

This chapter provides a set of guidelines to keep your Oracle NoSQL Database
secure. To maximize the security features offered by Oracle NoSQL Database, it is
imperative that the database itself be well protected.

Security guidelines provide advice about how to securely configure Oracle NoSQL
Database by recommending security practices for operational database deployments.

Guidelines for Securing the Configuration

Follow these guidelines to keep the security configuration secure:

* The initial security configuration should be generated on a host that is not intended
for KVStore operational use, using the securityconfig cr eat e confi g command.

» Storage Nodes should be deployed by running makebootconfig with the - st or e-
security enabl e argument. The configured security directory from the reference
host should be copied to the new Storage Node KVROOT using a secure copy
mechanism prior to starting the store.

e The security configuration should be kept in a protected location for future use.

» Updates to the security configuration should be performed on the configuration
host and copied to the operational Storage Node hosts using a secure copy
mechanism.

« After the first user is configured but before allowing applications to use the store,
you may wish to restart all SNA processes on hosts running Admin processes
and then use the Admin CLI show user s command to ensure that there is only
the single user definition that is expected. This step validates that no other user
creation occurred during the period when administrative login was not required.

Guidelines for Deploying Secure Applications

Follow these guidelines when deploying your Oracle NoSQL Database and if the
properties include oracl e. kv. aut h. wal | et. di r in order to use Oracle wallet to hold a
user password:

* Include the kvst ore- ee. j ar file in the application classpath.

e Thekvstore-ee.jar, oraclepki.jar, osdt cert.jar, osdt core.jar files
should all be made available on the application machine.

" Note:

kvstore-ee references the other files, so they do not need to be included
in the classpath explicitly.

ORACLE 12-1

Chapter 12
Guidelines for Securing the SSL protocol

Guidelines for Securing the SSL protocol

Follow these guidelines to keep the SSL protocol secure:

When configuring SSL communication for your store, you should consider both
performance and security.

For a more secure store you should opt for higher security where possible.

The Oracle JDK 7 supports TLSv1.2 as an SSL protocol level.

Guidelines for using JMX securely

Follow these guidelines to securely use your Java Management Extensions (JMX)
agent:

If you enable JMX for a secure store, your JIMX monitoring application must
access the store using SSL.

You should consult the configuration details for the JIMX product you wish to use.
In this case, you can use jconsole with a secure store by running the following
command:

jconsol e -J-Djavax. net.ssl.trust Store=/home/ nosql/client.trust \
node01: 5000

where node01 is the registry host to be monitored and 5000 is the registry port
configured for the Storage Node.

Guidelines for Updating Keystore Passwords

Follow these steps to update the keystore passwords:

1.

ORACLE

In the security directory on the configuration host run the keyt ool command. You
can provide the new passwords through the keytool interactive prompt or using
arguments. For example, to set the new key and store passwords for store.keys as
well as the new store password for store.trust using the keytool prompt:

Note:

The 3 new passwords must be equal, otherwise the store cannot be
successfully restarted.

keyt ool -keypasswd -keystore store.keys -alias shared
Enter keystore password:

New key password for <shared>;

Re-enter new key password for <shared>:

keyt ool -storepasswd -keystore store. keys
Enter keystore password:

12-2

Chapter 12
Guidelines for Updating Keystore Passwords

New keystore password:
Re-enter new keystore password:

keyt ool -storepasswd -keystore store.trust
Enter keystore password:

New keystore password:

Re-enter new keystore password:

You could also run the keytool command and set the new passwords using
arguments instead. For example:

keyt ool -keypasswd -keystore store. keys \
-alias shared -keypass <ol d_pwd> -new <new_pwd> -storepass
<ol d_pwd>

keyt ool -storepasswd -keystore store. keys \
-storepass <ol d_pwd> -new <new_pwd>

keyt ool -storepasswd -keystore store.trust \
-storepass <ol d_pwd> - new <new_pwd>

2. If using a Password File store, skip ahead to the next step. To update the keystore
password for wallets, use the following command:

java - Xmk64m - Xnms64m \
-jar <KVHOME>/ i b/ kvstore.jar securityconfig \
wal | et secret -directory store.wallet -set -alias keystore

Securityconfig will prompt for the new password. The new password should match
the new one provided earlier to the keytool command.

3. If using Password File stores instead of wallets, use the following command to
update the keystore password:

java - Xmk64m - Xms64m \
-jar <KVHOME>/lib/kvstore.jar securityconfig \
pwdfile secret -file store.pwd -set -alias keystore

Securityconfig will prompt for the new password. The new password should match
the new one provided earlier to the keytool command.

4. Copy the updated store.keys, store.trust file, and either store.pwd or the contents
of store.wallet to the security directory on each host and restart the Storage Node
using the following commands:

java - Xmx64m - Xms64m \
-jar <KVHOME>/li b/ kvstore.jar stop -root KVROOT

ORACLE 12-3

Chapter 12
Guidelines for Updating Kerberos Passwords

< Note:

Before starting the SNA, set the environment variable MALLOC ARENA NMAX
to 1. Setting MALLOC ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

java - Xmk64m - Xnms64m \
-jar <KVHOME>/lib/kvstore.jar start -root KVROOT&

Guidelines for Updating Kerberos Passwords

ORACLE

The password of Kerberos principal should be periodically changed. To do this, you
can either manually specify it by using kadm n. | ocal or automatically randomize
principal keys by using the confi g renew keyt ab command of the securityconfig
tool.

The syntax for this command is:

config renewkeytab -root <secroot> [-secdir <security dir>]
[-keysalt <enc:salt[,enc:salt,..]>]

[-kadmi n-path <kadmin utility path>]

[-instance-name <database instance nane>]

[-adm n-principal <kerberos admin principal nane>]

[- kadni n-keytab <keytab file>]

[- kadni n-ccache <credential cache file>]

where:

e -keysalt

Sets the list of encryption types and salt types to be used for any new
keys created. The default value is des3- cbc- shal: normal , aes128- ct s- hnac-
shal- 96: normal , ar cf our - hmac: nor nal .

e -kadnin-path

Indicates the absolute path of Kerberos kadmin utility. The default value is / usr/
ker ber os/ shi n/ kadni n.

e -jinstance-nanme

Specifies the service principal name. The default value is the fully qualified domain
name (FQDN) of the Storage Node where Oracle NoSQL Database is running.

e -adm n-principal

Specifies the principal used to login to the Kerberos admin interface. This is
required while using kadmin keytab or password to connect to the admin interface.

e -kadni n-keytab

Specifies the location of a Kerberos keytab file that stores Kerberos admin user
principals and encrypted keys. The security configuration tool will use the specified
keytab file to login to the Kerberos admin interface.

12-4

ORACLE

Chapter 12
Guidelines for Updating Kerberos Passwords

You need to specify the - admi n- pri nci pal flag when using keytab to login to the
Kerberos admin, otherwise the correct admin principal will not be recognized. This
flag cannot be specified in conjunction with the - kadmi n- ccache flag.

- kadm n-ccache

Specifies the complete path name to the Kerberos credentials cache file that
should contain a service ticket for the kadmin/ADMINHOST. ADM NHOST is the
fully-qualified hostname of the admin server or kadmin/admin service.

If not specified, the user is prompted to enter the password for principal
while logging to the Kerberos admin interface. This flag cannot be specified in
conjunction with the - kadmi n- keyt ab flag.

To manually update the Kerberos principal password instead, you should follow these
steps:

Use kadmin.local utility to change the service principal password:

kadm n. 1 ocal : cpw nosqgl/ nyhost
Enter password for principal nosgl/nyhost @XAVPLE. COM
Re-enter password for principal nosql/nyhost @XAMPLE. COM

Regenerate the keytab file for Oracle NoSQL Database service principal.

kadm n.local : ktadd —norandkey —k new. keyt ab

Copy the new keytab file for Oracle NoSQL Database service principal to each
Storage Node. For example:

scp new. keytab kvuser @wyst ore: KVROOT/ securi ty/ st ore. keyt ab

Validate the keytab file by comparing the key version number (kvno):

kadm n. | ocal : get princ nosql/ myhost @GXAMPLE. COMI
Princi pal : nosql / nyhost GEXAMPLE. COM
Expiration date: [never]

Last password change: Thu Jun 04 03:16:38 UTC 2015
Password expiration date: [none]
Maxi mum ticket life: 1 day 00:00: 00

Maxi mum renewabl e life: 0 days 00:00: 00
Last nodified: Thu Jun 04 03:16:38 UTC 2015
(root/adm n@RACLE. EXAMPLE. COM)

Last successful authentication: [never]

Last failed authentication: [never]

Fail ed password attenpts: O

Nurmber of keys: 4

Key: vno 12, aes256-cts-hnac-shal-96

Key: vno 12, aesl128-cts-hnac-shal-96

Key: vno 12, des3-chc-shal

Key: vno 12, arcfour-hmac

MKey: vno 1

Attributes:

Policy: [none]

Kadm n.local: quit

klist —k new. keytab

12-5

Chapter 12
Guidelines for Updating SSL Keys and Certificates

KVNO Pri nci pal

12 nosql / nyhost @EXAMPLE. COM
12 nosql / nyhost @EXAMPLE. COM
12 nosql / nyhost @EXAMPLE. COM
12 nosql / nyhost @EXAMPLE. COM

Client side user principals require similar password rotation. Keytab or credential
cache used to login to the database should be renewed. If ki ni t tool is used to create
a credential cache, you should run kdest r oy to clear cached tickets and re-run kinit to
generate a new credential cache.

For example:

kdestroy —c /tnp/krb5ccache
kinit —c /tnp/krb5ccache

Guidelines for Updating SSL Keys and Certificates

ORACLE

If the certificate that the server uses is going to expire, or is no longer valid, you may
need to replace the SSL key and certificate. This section describes the procedure to
complete this task.

These directions describe creating a self-signed certificate, and an associated key,
which is the default for Oracle NoSQL Database. Alternatively, you can use an external
certificate, as described in Guidelines for Configuring External Certificates for an
Existing Default Secure Installation.

Updating the SSL key/certificate involves several steps:
1. Create a new key/certificate pair on a storage node.

2. Copy the new key/certificate pair to every storage node and merge the new
certificate into the existing trust store files: client.trust and store.trust.

3. Restart each storage node sequentially.
4. Copytheclient.trust with the merged entries to each of the clients.

5. Copy the st ore. keys that has the merged entries to each of the storage nodes,
and restart each storage node sequentially, a second time.

6. Remove the old certificate in st ore. trust in all the storage nodes.

7. Verify that only the new certificate is in use.

Complete these steps to update the SSL keys and certificates on a running store.
Oracle NoSQL Database can remain operational throughout the entire process.

" Note:

The Oracle NoSQL Database development environment used for this set of
tasks has one (1) shard, with a replication factor of three (RF=3).

12-6

ORACLE

Chapter 12
Guidelines for Updating SSL Keys and Certificates

Before starting this procedure, create a temporary directory in which to store the key.
In the sample output for Step 1, you'll see the temporary directory created as newKey,
created under / Users/ my_nane/ t np/ kvr oot/ :

cd /Users/ my_name/ t np/ kvr oot/
nkdi r newkey

For more information on security configuration files, see Security Configuration.

Create a New SSL Key Certificate

1.

From your NoSQL development environment on one of the SN nodes, SN1, run
the securityconfi g utility to create a new key in the new directory, newKey. The
new configuration needs to specify the same keystore password as your current
configuration. If you do not specify a password with the - kspwd option, the utility
prompts you to set a password.

cd /Users/ my_name/ t np/ kvr oot /

nkdir newkey

java -jar $KVHOVE/ i b/ kvstore.jar securityconfig config create -
root /Users/ny_name/tnp/ kvroot/ newKey

-kspwd 123456

cd newkey

~/ t mp/ kvr oot/ newkey)=> |s -R

security

.Isecurity:

client.security security.xm store.trust tenp.cert client.trust
store. keys store.wal | et

.Isecurity/store.wallet:

cwal | et. sso

(~/t np/ kvr oot / newKey) =>

On the SN node on which you created the new key, merge the truststore entries
using the confi g nerge-trust command, as follows. Then, continue from your
NoSQL development environment:

java -jar <KVHOVE>/Ilib/kvstore.jar securityconfig \
config nerge-trust -root <standard config dir>\
-source-root <new config dir>

java -jar $KVHOWE |ib/kvstore.jar securityconfig config merge-trust
-root $KVROOT1 -source-root /Users/my_name/t np/ kvr oot/ newKey

cd $KVROOT1/security (~/tnp/kvroot/kvrootl/security)=> keytool -
list -keystore store.trust

Enter keystore password: <No password was needed for this Test, so
we just pressed Enter>

kkhkkkkkkkhkhkhkdhkkkx \MRNING\MRNING\MRNING******************

* The integrity of the information stored in your keystore *

* has NOT been verified! In order to verify its integrity, *

* you must provide your keystore password. *
kkhkkkkkkkhkhkhkdhkkkx \MRNING\MRNING\MRNING******************
Keystore type: JKS

12-7

ORACLE

Chapter 12
Guidelines for Updating SSL Keys and Certificates

Keystore provider: SUN

Your keystore contains 2 entries

nykey 2, Feb 6, 2018, trustedCertEntry,

Certificate fingerprint (SHA1):

A3:75: F2:97:25: 20: F9: AD: 52: 61: 71: 8F: 6B: 7E: B1: BB: E8: 54: D1: 7A
nykey, Feb 6, 2018, trustedCertEntry,

Certificate fingerprint (SHAL):

89:71: 8C: F1: 6D: 7E: 25: D7: AD: C4: 7E: 23: 8C: 09: 0D: AC: CE: AE: 3F: 67

Note:

In a multiple Storage Node deployment, you must copy the new
configuration (the security directory and its contents) to each Storage
Node host's new configuration directory and run mer ge-trust as
described on each host.

To update the SSL key, merge the new key (on SN1) into all SNs as follows:

(~/tmp/ kvroot/kvroot1/security)=> java -jar $KVHOME/lib/kvstore.jar
securityconfig

config merge-trust -root $KVROOT2 -source-root /Users/ny_name/tnp/
kvr oot / newKey

Configuration updated.

(~/tmp/ kvroot/kvroot 1/ security)=> java -jar $KVHOME/lib/kvstore.jar
securityconfig config

merge-trust -root $KVROOT3 -source-root /Users/ny_nane/tnp/ kvroot/
newkey

Configuration updated.

(~/tnp/ kvr oot/ kvroot 2/ security)=> keytool -list -keystore
store. trust
Enter keystore password:

kkhkkkkkkkhkhkhkkdkkhkkk*x \MRNI NG \MRNI NG \MRNI NG kkkkhkhkkhkkhkkkhkkkkkhkkk*k
* The integrity of the information stored in your keystore *
* has NOT been verified! In order to verify its integrity, *
* you must provide your keystore password. *
kkhkkkkkkkhkhkhkdkhkhkk%x \MRNI NG \MRNI NG \MRNI NG kkkkkhkkhkkhkkkkkkkhkkk*k
Keystore type: JKS

Keystore provider: SUN

Your keystore contains 2 entries

nykey_2, Feb 6, 2018, trustedCertEntry,

Certificate fingerprint (SHAL):

A3: 75: F2: 97: 25: 20: F9: AD: 52: 61: 71: 8F: 6B: 7E: B1: BB: E8: 54: D1: 7A
nykey, Feb 6, 2018, trustedCertEntry,

Certificate fingerprint (SHAL):

89: 71: 8C. F1: 6D: 7E: 25: D7: AD: CA: 7E: 23: 8C. 09: OD: AC: CE: AE: 3F: 67

(~/tnp/ kvroot)=> cd kvroot3/security

(~/tnp/ kvroot/kvroot 3/ security)=> keytool -list -keystore
store. trust

12-8

ORACLE

Chapter 12
Guidelines for Updating SSL Keys and Certificates

Enter keystore password:

kkkkkkkhkkkkhkkkkkhx*k V\ARNINGV\ARNINGV\ARNING******************
* The integrity of the information stored in your keystore *
* has NOT been verified! In order to verify its integrity, *
* you must provide your keystore password. *
kkkkkkkhkkkkhkkkkkhx*k V\ARNINGV\ARNINGV\ARNING******************

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 2 entries

nykey 2, Feb 6, 2018, trustedCertEntry,

Certificate fingerprint (SHA1):

A3: 75: F2: 97: 25: 20: F9: AD: 52: 61: 71: 8F: 6B: 7E: B1: BB: E8: 54: D1: 7A
nykey, Feb 6, 2018, trustedCertEntry,

Certificate fingerprint (SHA1):

89: 71: 8C: F1: 6D: 7E: 25: D7: AD: CA: 7E: 23: 8C. 09: OD: AC: CE: AE: 3F: 67

Copy the updated cl i ent . trust file (the one with the merged keys) to the security
directory on each host so that clients can use it to access the store.

Note:

The store.trust andtheclient.trust files have the same content,
but different uses. The cl i ent . trust is used to authenticate client-
server communication, and st or e. t rust to authenticate server-server
communication.

From your NoSQL development environment, get the cl i ent. trust file from SN 3,
as follows:

(~/tnp/ kvr oot/ kvroot 3/ security)=> cat client.security

#Security property settings for comunication with KVStore servers
#Tue Feb 06 15:03:40 CST 2018
oracle.kv.ssl.trustStore=client.trust

oracl e. kv. transport =ssl|

oracl e. kv. ssl . protocol s=TLSv1. 2, TLSv1. 1, TLSv1

oracl e. kv. ssl . host naneVeri fi er=dnmat ch(C\\ =NoSQL)

Check that all Replication Nodes are online (using either the Admin CLI pi ng or
verify configuration command).

Restart each Storage Node sequentially, making sure that each SN is completely
up before restarting the next SN. Use the following commands:

java -jar <KVHOVE>/Ilib/kvstore.jar stop -root KVROOT
java -jar <KVHOVE>/Ilib/kvstore.jar start -root KVROOT&

12-9

ORACLE

8.

Chapter 12
Guidelines for Updating SSL Keys and Certificates

Continuing from your NoSQL development environment, start the Admin CLI, and
check that all RNs are up using the pi ng command:

(~/tmp/ kvr oot/ newKey)=> java -jar $KVHOME/ | i b/ kvstore.jar

runadmi n -host |ocal host -port 5000 -security

$KVROOT1/ security/client.security

Logged in admin as anonynous

kv-> ping

Pi ngi ng conmponents of store HSRStore based upon topol ogy sequence

#18

10 partitions and 3 storage nodes

Time: 2018-02-07 00:34:37 UTC Version: 12.2.4.5.12

Shard Status: healthy:1 witabl e-degraded: 0 read-only:0 offline:0

Admin Status: healthy

Zone [name=Austin id=znl type=PRI MARY al | owAr bit ers=fal se]

RN Status: online:3 offline:0 max

Del ayM I1is:1 max Cat chupTi meSecs: 0

Storage Node [snl] on | ocal host: 5000 Zone: [name=Austin

i d=znl type=PRI MARY al | owAr bi t er s=f al se] Status: RUNNI NG

Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id: 0d00330822fc
Adm n [adm nl] Status: RUNNI NG MASTER
Rep Node [rgl-rnl] Status: RUNNI NG MASTER

sequenceNunber: 63 haPort: 5011

Storage Node [sn2] on | ocal host: 6000 Zone: [name=Austin

i d=znl type=PRI MARY al | owAr bi t er s=f al se] Status: RUNNI NG

Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id: 0d00330822fc
Rep Node [rgl-rn2] Status: RUNNI NG REPLI CA

sequenceNunber: 63 haPort: 6010 delayMIlis:1 catchupTi neSecs: 0

Storage Node [sn3] on | ocal host: 7000 Zone: [name=Austin

i d=znl type=PRI MARY al | owAr bi t ers=f al se] Status: RUNNI NG

Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id: 0d00330822fc
Rep Node [rgl-rn3] Status: RUNNI NG REPLI CA

sequenceNunber: 63 haPort: 7010 del ayM I lis:? catchupTi neSecs: ?

Restart each SN sequentially. Make sure that the last one you restarted is
completely up before continuing to the next SN:

java -jar $KVHOVE/lib/kvstore.jar stop -root

[User s/ my_name/ t np/ kvr oot / kvr oot 1

(~/'hg/ kv/ kvstore)=> java -jar $KVHOWE/ | ib/kvstore.jar start -root
$KVROOT1 &

kv-> ping

Pi ngi ng conponents of store HSRStore based upon topol ogy sequence
#18

10 partitions and 3 storage nodes

Time: 2018-02-06 21:23:56 UTC Version: 12.2.4.5.12

Shard Status: healthy:1 witable-degraded: 0 read-only:0 offline:0
Admin Status: healthy

Zone [name=Austin id=znl type=PRI MARY al | owAr bi t er s=f al se]

RN Status: online:3 offline:0 nmaxDelayMIlis:0 maxCat chupTi neSecs: 0
Storage Node [snl] on | ocal host: 5000 Zone: [name=Austin

i d=znl type=PRI MARY al | owAr bi t er s=f al se]

Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build
id: 0d00330822fc

12-10

ORACLE

Chapter 12
Guidelines for Updating SSL Keys and Certificates

Admi n [adm nl] Status: RUNNI NG MASTER
Rep Node [rgl-rnl] Status: RUNNI NG REPLI CA
sequenceNunber: 62 haPort: 5011 delayMI1is:0 catchupTi mneSecs: 0
Storage Node [sn2] on | ocal host: 6000 Zone: [name=Austin
i d=znl type=PRI MARY al | owAr bi t er s=f al se]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822f ¢
Rep Node [rgl-rn2] Status: RUNNI NG MASTER
sequenceNunber: 62 haPort: 6010
Storage Node [sn3] on | ocal host: 7000 Zone: [name=Austin
i d=znl type=PRI MARY al | owAr bi t ers=f al se]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822f ¢
Rep Node [rgl-rn3] Status: RUNNI NG REPLICA
sequenceNunber: 62 haPort: 7010 del ayMI1is:0 catchupTi mneSecs: 0
Rep Node [rgl-rnl] Status: RUNNING REPLICA is up, now restart the
next SN

(~/hgl kv/ kvstore)=> java -jar $KVHOWE/ |ib/kvstore.jar stop -root /
User s/ ny_nane/ t mp/ kvr oot / kvr oot 2
kv->pi ng
Pi ngi ng conmponents of store HSRStore based upon topol ogy sequence
#18
10 partitions and 3 storage nodes
Time: 2018-02-06 21:25:39 UTC Version: 12.2.4.5.12
Shard Status: healthy:0 witabl e-degraded:1 read-only:0 offline:0
Adm n Status: healthy
Zone [name=Austin id=znl type=PRI MARY al | owAr bit er s=f al se]
RN Status: online:2 offline:1 nmaxDelayMIlis:? maxCat chupTi neSecs: ?
Storage Node [snl] on |ocal host:5000 Zone: [name=Austin id=znl
t ype=PRI MARY al | owAr bi t er s=f al se]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822f ¢

Adm n [adm nl] Status: RUNNI NG MASTER
Rep Node [rgl-rnl] Status: RUNNI NG REPLI CA
sequenceNunber: 62 haPort: 5011
Storage Node [sn2] on | ocal host: 6000
Zone: [name=Austin id=znl type=PRI MARY al | owAr bi t er s=f al se]
UNREACHABLE
Rep Node [rgl-rn2] Status: UNREACHABLE
Storage Node [sn3] on | ocal host: 7000
Zone: [name=Austin id=znl type=PRI MARY al | owAr bit er s=f al se]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822f ¢
Rep Node [rgl-rn3] Status: RUNNI NG REPLI CA

sequenceNunber: 62 haPort: 7010 delayMIlis:? catchupTi neSecs: ?

(~/'hg/ kv/ kvstore)=> java -jar $KVHOW/ |ib/kvstore.jar start -root
$KVROOT2 & kv->ping

Pi ngi ng conponents of store HSRStore based upon topol ogy sequence
#18

10 partitions and 3 storage nodes

Time: 2018-02-06 21:26:09 UTC Version: 12.2.4.5.12

Shard Status: healthy:1 witabl e-degraded: 0 read-only:0 offline:0
Admin Status: healthy

12-11

ORACLE

10.

Chapter 12
Guidelines for Updating SSL Keys and Certificates

Zone [name=Austin id=znl type=PRI MARY al | owAr bit er s=f al se]
RN Status: online:3 offline:0 nmaxDelayMIlis:1 maxCat chupTi neSecs: 0
Storage Node [snl] on | ocal host:5000 Zone: [name=Austin id=znl
t ype=PRI MARY al | owAr bi t er s=f al se]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822f ¢
Admi n [adm nl] Status: RUNNI NG MASTER
Rep Node [rgl-rnl] Status: RUNNI NG REPLI CA
sequenceNunber: 63 haPort: 5011

St orage Node [sn2] on | ocal host: 6000
Zone: [name=Austin id=znl type=PRI MARY al | owAr bi t er s=f al se]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822f ¢
Rep Node [rgl-rn2] Status: RUNNI NG REPLI CA

sequenceNunber: 63 haPort: 6010 delayMIlis: 1 catchupTi neSecs: 0
Storage Node [sn3] on | ocal host: 7000
Zone: [nanme=Austin id=znl type=PRI MARY al | owAr bit er s=f al se]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822f ¢

Rep Node [rgl-rn3] Status: RUNNI NG REPLI CA
sequenceNunber: 63 haPort: 7010 delayMIlis: 1 catchupTi neSecs: 0

Now that SN2 is up and running, restart SN3 as follows:

(~/'hg/ kv/ kvstore)=> java -jar $KVHOW |ib/kvstore.jar stop -root
[User s/ ny_name/ t np/ kvr oot / kvr oot 3
kv-> ping
Pi ngi ng conponents of store HSRStore based upon topol ogy sequence
#18
10 partitions and 3 storage nodes
Time: 2018-02-06 21:26:43 UTC Version: 12.2.4.5.12
Shard Status: healthy:0 witabl e-degraded:1 read-only:0 offline:0
Adm n Status: healthy
Zone [nanme=Austin id=znl type=PRI MARY al | owAr bi t er s=f al se]
RN Status: online:2 offline:1 naxDelayMIlis:1 nmaxCat chupTi neSecs: 0
Storage Node [snl] on |ocal host:5000 Zone: [name=Austin id=znl
t ype=PRI MARY al | owAr bi t er s=f al se]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822f ¢
Admi n [adm nl] Status: RUNNI NG MASTER
Rep Node [rgl-rnil] Stat us: RUNNI NG MASTER
sequenceNunber: 63 haPort: 5011
Storage Node [sn2] on | ocal host: 7000
Zone: [name=Austin id=znl type=PRI MARY al | owAr bi t er s=f al se]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822f ¢
Rep Node [rgl-rn2] Status: RUNNI NG REPLI CA
sequenceNunber: 63 haPort: 6010 del ayMIlis:1 catchupTi neSecs: 0
Storage Node [sn3] on | ocal host: 7000
Zone: [nanme=Austin id=znl type=PRI MARY al | owAr biters=fal se]
UNREACHABLE
Rep Node [rgl-rn3] Status: UNREACHABLE

12-12

ORACLE

11.

Chapter 12
Guidelines for Updating SSL Keys and Certificates

(~/hgl kv/ kvstore)=> java -jar $KVHOWE/ |lib/kvstore.jar start -root
$KVROOT3 &
kv-> ping
Pi ngi ng components of store HSRStore based upon topol ogy sequence
#18
10 partitions and 3 storage nodes
Time: 2018-02-06 21:27:15 UTC Version: 12.2.4.5.12
Shard Status: healthy:1 witabl e-degraded: 0 read-only:0 offline:0
Admin Status: healthy
Zone [name=Austin id=znl type=PRI MARY al | owAr bi t er s=f al se]
RN Status: online:3 offline:0 nmaxDelayMIlis:1 maxCat chupTi neSecs: 0
Storage Node [snl] on | ocal host: 5000
Zone: [name=Austin id=znl type=PRI MARY al | owAr bit er s=f al se]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822f ¢
Admi n [adm nl] Status: RUNNI NG MASTER
Rep Node [rgl-rnl] Status: RUNNI NG MASTER

sequenceNunber: 63 haPort: 5011
Storage Node [sn2] on | ocal host: 6000
Zone: [name=Austin id=znl type=PRI MARY al | owAr bit er s=f al se]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822f ¢

Rep Node [rgl-rn2] Status: RUNNI NG REPLI CA
sequenceNunber: 63 haPort: 6010 delayMIlis:1 catchupTi mneSecs: 0
Storage Node [sn3] on | ocal host: 7000
Zone: [name=Austin id=znl type=PRI MARY al | owAr biters=fal se]
Status: RUNNING Ver: 12cR2.4.5.12 2018-02-06 08:51:55 UTC Build id:
0d00330822f ¢

Rep Node [rgl-rn3] Status: RUNNI NG REPLI CA
sequenceNunber: 63 haPort: 7010 delayMIlis:? catchupTi neSecs: ?

Copy the st or e. keys file from the security directory of the newly generated key to
the security directory on each storage node. This copies the new generated key
to replace the old ones on the server node (SNs). Then, check that all Replication
Nodes are online and restart each Storage Node, one by one, using the following
commands:

java -jar <KVHOVE>/|ib/kvstore.jar stop -root KVROOT
java -jar <KVHOVE>/lib/kvstore.jar start -root KVROOT&

These commands copy the new generated key to replace the old keys on the
server node (SNs). Then restart each of the SNs:

(~/tnp/ kvr oot/ kvroot 3/ security)=> cp / Users/my_nane/t np/ kvr oot/
newKey/ security/store. keys
[User s/ my_name/ t np/ kvr oot / kvr oot 1/ security/.

(~/tnp/ kvr oot/ kvroot 3/ security)=> cp / Users/ my_nane/t np/ kvr oot/
newKey/ security/store. keys
[User s/ my_name/ t np/ kvr oot / kvr oot 2/ security/.

(~/tnp/ kvr oot/ kvroot 3/ security)=> cp / Users/ my_nane/t np/ kvr oot/
newKey/ security/store. keys
[User s/ my_name/ t np/ kvr oot / kvr oot 3/ security/.

12-13

ORACLE

12.

Chapter 12
Guidelines for Updating SSL Keys and Certificates

java -jar <KVHOVE>/Ilib/kvstore.jar stop -root KVROOT
java -jar <KVHOVE>/Ilib/kvstore.jar start -root KVROOT&

On each Storage Node, remove the obsolete certificate mykey in store. trust.
Then, rename the new certificate nykey_2 to nykey using the following command:

keyt ool -delete -keystore KVROOT/ security/store.trust \
-alias nykey keytool -changealias -keystore \
KVROOT/ security/store.trust -alias nykey 2 -destalias mykey

This step removes the old certificate (nykey) and renames the newly created
certificate, nyKey_2, to the previous key's name, nykey. One key then exists, the
newly generated one, called nyKey.

(~/tnp/ kvr oot/ kvroot 3/ security)=> keytool -delete -keystore
$KVROOT1/ security/store.trust -alias nykey
Enter keystore password:

(~/tnp/ kvr oot/ kvroot 3/ security)=> keytool -delete -keystore
$KVROOT2/ security/store.trust -alias nykey
Enter keystore password:

(~/tnp/ kvr oot/ kvroot 3/ security)=> keytool -delete -keystore
$KVROOT3/ security/store.trust -alias nykey
Enter keystore password:

(~/tnp/ kvr oot/ kvroot 3/ security)=> keytool -changealias -keystore
$KVROOT3/ security/store.trust -alias nmykey 2 -destalias nmykey

(~/tnp/ kvr oot/ kvroot 3/ security)=> keytool -changealias -keystore
$KVROOT2/ security/store.trust -alias nmykey 2 -destalias nmykey

(~/tnp/ kvr oot/ kvroot 3/ security)=> keytool -changealias -keystore
$KVROOT1/ security/store.trust -alias nmykey 2 -destalias nmykey

Verify that the new certificate is the only one used using the following command:

keytool -list -keystore KVROOT/security/store.trust
(~/tnp/ kvr oot / newKey/ security)=> keytool -list -keystore store.keys
Enter keystore password:

Keystore type: JKS
Keystore provider: SUN

Your keystore contains one entry, which is correct:
shared, Feb 6, 2018, PrivateKeyEntry,

Certificate fingerprint (SHAL):
A3: 75: F2:97: 25: 20: F9: AD: 52: 61: 71: 8F: 6B: 7E: B1: BB: E8: 54: D1: 7A

12-14

Chapter 12
Guidelines for Configuring External Certificates for a new Installation

Guidelines for Configuring External Certificates for a new

Installation

Follow these steps to configure a new store to use external certificates:

ORACLE

Note:

This procedure assumes you already have a Java keystore and truststore
setup. For more information see Java KeyStore Preparation.

Collect the distinguished name from the verbose information of the external
certificate. In this example, it is the value of the owner field.

keytool -list -v -keystore store.keys alias shared

Certificate chain length: 3

Certificate[1]:

Omner: CN=nmyhost, OU=Teamd, O=MyConpany, L=Unknown, ST=Californi a,
C=Us

I ssuer: CN=internediate CA, OU=CA O=MyConpany, ST=California,
C=Us

Prepare dnmat ch expression using a distinguished name. Oracle NoSQL Database
verifies identities of server and client while establishing SSL connection between
the server components. The verification is performed by checking if principal
names on each side match the specified dnmat ch expressions, which uses regular
expressions as specified by j ava. uti|.regex. Pattern. The principal names
represent the identities, which are specified by the subject name attribute of the
certificate, represented as a distinguished name in RFC 1779 format, using the
exact order, capitalization, and spaces of the attribute value. RFC 1779 defines
well-known attributes for distinguished names, including CN, L, ST O, OU, C

and STREET. If the distinguished name of the external certificate contains non-
standard attributes, for example, EMAILADDRESS, then the expression used for
dnmat ch must replace these attribute names with an OID that is valid in RFC

1779 form, or use special constructs of regular expression to skip checking these
attributes. The format for a dnmat ch expression is:

dnmatch(regular expression)
In above example, the dnmat ch expression is:

dnmat ch(CN=nyhost, OU=Team®, O=MyConpany, L=Unknown,
ST=California, C=US)

If you are using a wild card to match a certificate with a non-standard distinguished
name attribute, the dnmat ch expression needs to match the attribute name in its
OID format properly. For example, if the distinguished name is:

EMAI LADDRESS=per son@xanpl e. com CN=nyhost, OU=Teamd, O=MyConpany,
L=Unknown, ST=California, C=US

12-15

ORACLE

Chapter 12
Guidelines for Configuring External Certificates for a new Installation

Then wild card should represent the entire EMAILADDRESS attribute name:

dnmat ch(. *=per son@xanpl e. com CN=nyhost, QU=Teamd, O=MyConpany,
L=Unknown, ST=California, C=US)

Run makebootconfig to setup the secure store. Also specify the keystore
password and dnmatch expressions in the security parameters. The keystore
password "password" must use the same password as the Java Keystore of the
external certificates. See:

java - Xmk64m - Xms64m -j ar <KVHOVE>/ | i b/ kvstore.jar makebootconfig \
-root KVROOT -host nodeOl -port 5000 -harange 5010, 5020 -adm n 5001
\

-store-security configure \

-pwdngr wal | et -kspwd password \
-security-paramclient:serverldentityAl | owed="dnnatch

(CN=nyhost, OU=Teamh, O=MyConpany, L=Unknown, ST=California, C=US)"
\

-security-paraminternal :serverldentityA | owed="dnnatch

(CN=nyhost, OU=TeamA, O=MyConpany, L=Unknown, ST=California, C=US)"
\

-security-paraminternal:clientldentityAlowed="dnnatch

(CN=nyhost, OU=Teamh, O=MyConpany, L=Unknown, ST=California, C=US)"
\

-security-param ha: serverldentityAl | owed="dnmat ch

(CN=nyhost, OU=TeamA, O=MyConpany, L=Unknown, ST=California, C=US)"
\

-security-paramha:clientldentityAl | owed="dnmatch

(CN=nyhost, OU=TeamA, O=MyConpany, L=Unknown, ST=California, C=US)"

By default the keystore entry is stored under an alias "shar ed" and the truststore
entry is stored under an alias "nykey". If you are using customized aliases

for keystore and truststore, then additional flags need to be specified in the
makeboot confi g command.

For example if your customized keystore alias is "cur r ent Key" and the certificate
is stored in the truststore under the "current Cert " alias, the following additional
parameters have to be included in the makeboot confi g command.

-security-param "client:serverKeyAl ias=currentKey"
-security-param "ha: server KeyAl i as=curr ent Key"
-security-param "internal:clientKeyAlias=currentKey"
-security-param "internal:serverKeyAl i as=current Key"
-security-param "keystoreSi gPrivat eKeyAl i as=current Key"
-security-param "truststoreSi gPubli cKeyAl i as=currentCert"

The modified makeboot conf i g command with these additional flags is given below.

java - Xmk64m - Xms64m -j ar <KVHOVE>/ | i b/ kvstore.jar makebootconfig \
-root KVROOT -host nodeOl -port 5000 -harange 5010, 5020 -admi n 5001
\

-store-security configure \

-pwdngr wal | et -kspwd password \
-security-paramclient:serverldentityAl | owed="dnnatch

12-16

Chapter 12
Guidelines for Configuring External Certificates for an Existing Default Secure Installation

(CN=nyhost, QU=TeamA, O=MyConpany, L=Unknown, ST=California, C=US)"
\

-security-paraminternal :serverldentityA | owed="dnnatch

(CN=nyhost, QU=TeamA, O=MyConpany, L=Unknown, ST=California, C=US)"
\

-security-paraminternal :clientldentityAlowed="dnnatch

(CN=nyhost, QU=TeamA, O=MyConpany, L=Unknown, ST=California, C=US)"
\

-security-param ha: serverldentityAl | owed="dnmat ch

(CN=nyhost, QU=TeamA, O=MyConpany, L=Unknown, ST=California, C=US)"
\

-security-paramha:clientldentityAllowed="dnmatch

(CN=nyhost, QU=TeamA, O=MyConpany, L=Unknown, ST=California, C=US)"
-security-param "client:serverKeyAlias=currentKey" \
-security-param "ha: serverKeyAl i as=current Key" \

-security-param "internal:clientKeyAl ias=currentKey" \
-security-param "internal : serverKeyAl i as=current Key" \
-security-param "keystoreSi gPrivat eKeyAl i as=current Key" \
-security-param "truststoreSi gPubli cKeyAlias=currentCert"

4. The makebootconfig command automatically generates keystore, server, and
client truststore files using self-signed certificates. To use external certificates
instead, you need to replace the keystore and truststore files with your own on
each server that will host a Storage Node. For example:

copy store.keys store.trust client.trust KVROOT/security/

5. Use the securityconfig tool to verify installation. For example:

security-> config verify -secdir KVROOI/security
Security configuration verification passed.

< Note:

For older releases (prior 4.1), you needed to verify the configuration
manually. In that case, the distinguished name of the certificate must
match the content inside of dnmat ch in security.xml. Also, the user-
generated keystore password must be the same as the one stored in
the wallet (st ore. wal | et) or the password file (st or e. pwd). Finally, the
truststore (st ore. trust) must contain the CA certificates and the one
used for Oracle NoSQL Database.

6. Finally, deliver the client.trust or import the CA certificates into the client truststore.

Guidelines for Configuring External Certificates for an
Existing Default Secure Installation

Follow these steps to install external certificates in an existing secure NoSQL
database installation that uses a default security configuration and a self-signed
certificate:

ORACLE 12-17

Chapter 12
Guidelines for Configuring External Certificates for an Existing Default Secure Installation

< Note:

This procedure assumes you already have a Java keystore and truststore
setup. For more information see Java KeyStore Preparation.

1. Create a new security configuration that uses external certificates:

security-> config create -root NEW KVROOT \
-pwdrmgr wal | et -kspwd password \

-param "client:serverldentityA | owed=dnmat ch
(CN=nyhost, OU=TeamA, O=MyConpany, L=Unknown,
ST=California, CUS)" \

-param "internal:serverldentityAl | owed=dnmat ch
(CN=nyhost, OU=TeamA, O=MyConpany, L=Unknown,
ST=California, CUS)" \

-param "internal:clientldentityA | owed=dnmatch
(CN=nyhost, OU=TeamA, O=MyConpany, L=Unknown,
ST=California, CUS)" \

-param "ha: serverldentityAl | owed=dnmat ch
(CN=nyhost, OU=TeamA, O=MyConpany, L=Unknown,
ST=California, CUS)" \

-param "ha: clientldentityA | owed=dnmat ch
(CN=nyhost, OU=TeamA, O=MyConpany, L=Unknown,
ST=California, C=US)"

Note:

NEW KVROOT should be a temporary directory that only holds the
generated security files.

2. Replace the keystore and truststore files with your own on each server that will
host a Storage Node. For example:

copy store.keys store.trust client.trust NEWKVROOT/ security/

3. Itis easier to install an external certificate if the existing store does not needs to
be kept accessible during the certificate installation. To do this, you only need to
copy the entire new security security configuration to each Storage Node and then
restart all of the Storage Nodes.

ORACLE 12-18

ORACLE

Chapter 12
Guidelines for Configuring External Certificates for an Existing Default Secure Installation

< Note:

Before starting the SNA, set the environment variable MALLOC ARENA NMAX
to 1. Setting MALLOC ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

copy -r NEW KVROOT/ security KVROOT

java - Xmk64m - Xms64m -j ar <KVHOMVE>/ | i b/ kvstore.jar stop -root KVROOT
java - Xmk64m - Xms64m -jar <KVHOME>/ | i b/ kvstore.jar start -root
KVROOT&

If the existing store need to be kept accessible during the credential changes
instead, then you should create an interim truststore and modify the security
parameters having dnmat ch field. On the configuration host, merge the truststore
entries by using the confi g merge-trust command, and also import the root and
intermediate certificate:

java - Xmx64m - Xms64m \

-jar <KVHOVE>/|ib/kvstore.jar securityconfig \

config merge-trust -root KVROOT -source-root NEW KVROOT
keytool -inmport -keystore KVROOT/security/store.trust -file
ca.cert.pem-alias root

keytool -inmport -keystore KVROOT/security/store.trust -file
internediate.cert.pem-alias intermediate

copy KVROOT/security/store.trust KVROOI/security/client.trust

" Note:

In a multiple Storage Node deployment, you need to copy the new
configuration to each host's new configuration directory and run merge-
trust on each host like in the example above.

Copy the updated client.trust file to the security directory on each host so that
clients can use it to access the store.

To keep the store accessible during the process, change the dnmatch value

in the security configuration to be a compatible one. The values specified in

the various dnmatch(xxx) expressions are a regular expression, as specified by
java.util.regex.Pattern. The compatible "dnmatch" value should be in the form
ofold certificate DN | new certificate DN. Inthis case, the CN=NoSQL|
represents the DN of the original self-signed certificate.

security-> config update \

-secdir KVROOT/ security \

-param "client:serverldentityAl | owed=dnnat ch

(CN=NoSQL| CN=nyhost, OU=TeamA, O=MyConpany, L=Unknown,
ST=California, C=US)" \

-param "internal : serverldentityAl | owed=dnmat ch

(CN=NoSQL| CN=nyhost, OU=TeamA, O=MyConpany, L=Unknown,
ST=California, C=US)" \

12-19

Chapter 12
Guidelines for Configuring External Certificates for an Existing Default Secure Installation

-param "internal:clientldentityA | owed=dnmatch
(CN=NoSQL| CN=nyhost, OU=Teamd, O=MyConpany, L=Unknown,
ST=California, C=US)" \

-param "ha: serverldentityAl | owed=dnmat ch

(CN=NoSQL| CN=nyhost, OU=Teamd, O=MyConpany, L=Unknown,
ST=California, C=US)" \

-param "ha: clientldentityA | owed=dnmat ch

(CN=NoSQL| CN=nyhost, OU=Teamh, O=MyConpany, L=Unknown,
ST=California, C=US)"

If clients set the login property or acl e. kv. ssl . host nameVeri fi er, change the
value of the dnmatch field. For example:

oracle.kv.ssl.trustStore=client.trust

oracl e. kv. transport =ssl|

oracl e. kv. ssl . protocol s=TLSv1. 2, TLSv1. 1, TLSv1

oracl e. kv. ssl . host naneVeri fi er=dnmat ch(C\\ =NoSQL| CM =nyhost ,
O\ =Team?, O =MyConpany, L\=Unknown, ST\=California, C =US)

7. Check that all Replication Nodes are online and then restart each Storage Node
one by one using the following commands:

java - Xmk64m - Xms64m -j ar <KVHOVE>/|i b/ kvstore.jar stop -root
KVROOT

java - Xmk64m - Xms64m -j ar <KVHOVE>/|i b/ kvstore.jar start -root
KVROOT&

8. Copy the updated store.keys file to the security directory on each host. Then,
check that all Replication Nodes are online and restart each Storage Node one by
one using the following commands:
java - Xmk64m - Xnms64m -j ar <KVHOVE>/ | i b/ kvstore.jar stop -root
KVROOT
java - Xmk64m - Xnms64m -jar <KVHOME>/ | i b/ kvstore.jar start -root

KVROOT &

9. For all Storage Nodes, remove the obsolete certificate nmykey in store.trust. Also,
rename the new certificate mykey_2 to nykey using the following command:

keyt ool -delete -keystore KVROOT/security/store.trust \
-alias nykey

keyt ool -changealias -keystore \
KVROOT/ security/store.trust -alias nykey 2 -destalias mykey

ORACLE 12-20

Chapter 12
Guidelines for Updating the External Certificates

Guidelines for Updating the External Certificates

Follow these steps to update the external certificates for a secure installation that is
already using external certificates.

Note:

This procedure assumes you already have a Java keystore and truststore
setup having the updated external certificates. For more information see
Java KeyStore Preparation.

1. Create a new security configuration that uses external certificates.

security-> config create -root NEW KVROOT \
-pwdrmgr wal | et -kspwd password \

-param "client:serverldentityAl | owed=dnnat ch
(CN=nyhost, OU=Teamh, O=MyConpany, L=Unknown,
ST=California, C=US)" \

-param "internal : serverldentityAl | owed=dnmat ch
(CN=nyhost, OU=Teamh, O=MyConpany, L=Unknown,
ST=California, C=US)" \

-param "internal :clientldentityAllowed=dnmatch
(CN=nyhost, OU=Teamh, O=MyConpany, L=Unknown,
ST=California, C=US)" \

-param "ha: serverldentityAl | owed=dnmat ch
(CN=nyhost, OU=Teamh, O=MyConpany, L=Unknown,
ST=California, C=US)" \

-param "ha: clientldentityAl | owed=dnmat ch
(CN=nyhost, OU=Teamh, O=MyConpany, L=Unknown,
ST=California, C=US)"

2. Replace the keystore and server truststores with your own:

copy store.keys store.trust NEW KVROOT/ security/

3. On the configuration host, merge the truststore entries with the NEW KVROOT
directory. Check that all Replication Nodes are online and then restart each
Storage Node one by one using the following commands. If the updated external
certificate uses a different distinguished name, update the dnmatch value in
the security configuration to a compatible one using the procedures found in
Guidelines for Configuring External Certificates for an Existing Default Secure
Installation.

ORACLE 12-21

Chapter 12
Guidelines for Operating System Security

< Note:

Before starting the SNA, set the environment variable MALLOC ARENA NMAX
to 1. Setting MALLOC ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

java - Xmk64m - Xnms64m \

-jar <KVHOME>/ i b/ kvstore.jar securityconfig \
config nerge-trust -root KVROOT \

-sour ce-root <NEW KVROOT>

java - Xmk64m - Xms64m -j ar <KVHOMVE>/ | i b/ kvstore.jar stop -root KVROOT
java - Xmk64m - Xnms64m -jar <KVHOME>/ | i b/ kvstore.jar start -root
KVROOT&

Note:

You do not need to update the client truststore if the new certificates are
signed by the same Certificate Authority (CA).

Copy the updated store.keys file to the security directory on each host. Then,
check that all Replication Nodes are online and restart each Storage Node one by
one using the following commands:

java - Xmk64m - Xms64m -j ar <KVHOMVE>/ | i b/ kvstore.jar stop -root KVROOT
java - Xmk64m - Xnms64m -jar <KVHOME>/ | i b/ kvstore.jar start -root
KVROOT&

For all Storage Nodes, remove the obsolete certificate mykey in store.trust. Also,
rename the new certificate nykey_2 to mykey using the following command:

keyt ool -delete -keystore KVROOT/security/store.trust \
-alias nykey

keyt ool -changealias -keystore \
KVROOT/ security/store.trust -alias nykey 2 -destalias nykey

Guidelines for Operating System Security

Follow these guidelines regarding operating system security:

ORACLE

There should be a single user identity that runs the KVStore software.
The KVStore user should be in its own group, independent of other users.

JE log files, audit log files, and password stores should have mode 0600 on Linux/
UNIX platforms with equivalent settings for Windows systems. The simplest way to
achieve this on Linux/UNIX is to set an umask of 0077.

12-22

Chapter 12
Guidelines for Operating System Security

» Security configuration files must be write-protected.

* The KVROOT directory and the security directory must be protected from
modification by other users. On UNIX/Linux this should include having the sticky
bit (01000) set in order to prevent renaming and deletion of files/directories.

» Access to the systems that are running KVStore should be limited in order to avoid
the risk of tampering.

Note:

Access protections do not guard against users who have sufficiently
elevated access rights (for example, the UNIX root user).

ORACLE 12-23

Password Complexity Policies

ORACLE

A set of default rules should be followed when creating or updating a user password
in order to enhance security. Password complexity policies do not apply to the SSL
keystore password.

Any user that has the SYSOPER privilege can customize the global password policies
and control the password complexity when creating or updating the passwords for
users. Oracle NoSQL Database checks if the new passwords are sufficiently complex
to prevent attackers to break into the system.

When using the CREATE USER and ALTER USER commands, Oracle NoSQL Database
will check if the passwords set comply with the password complexity policies.
Otherwise, a message will be shown with all the violating policies. For example:
kv-> exec "create user test identified by \"password\""
Error handling command

exec "create user test identified by \"password\"":
Error: User error in query: CreateUser failed for:
Password must have at |east 9 characters

You can enable or disable the password complexity policy like this:

kv-> change-policy -parans passwordConpl exityCheck=true

Then, you can change the password complexity policies by using the change- pol i cy
command. For example:

kv-> change- policy -parans

passwor dM nLengt h=20 passwor dMaxLengt h=50 passwor dM nUpper =3
passwor dM nLower =3 passwor dM nDi gi t =3 passwor dM nSpeci al =3

The following password security parameters can be set:

Parameter Name Value Range and Type Description
passwordAllowedSpecial Sub set or full set of Lists the allowed special
#P%&'()*+,-./;; <=>?@["_{|} characters.
(string)~
passwordComplexityCheck [true|false] (boolean) Whether to enable

the password complexity
checking. The default value is
true.

passwordMaxLength 1 - 2048 (integer) The maximum length of a
password. The default value is
256.

A-1

ORACLE

Appendix A

Parameter Name

Value Range and Type

Description

passwordMinDigit

0 - 2048 (integer)

The minimum required number
of numeric digits. The default
value is 2.

passwordMinLength

1 - 2048 (integer)

The Minimum length of a
password. The default value is
9.

passwordMinLower

0 - 2048 (integer)

The minimum required number
of lower case letters. The
default value is 2.

passwordMinSpecial

0 - 2048 (integer)

The minimum required number
of special characters. The
default value is 2.

passwordMinUpper

0 - 2048 (integer)

The minimum required number
of upper case letters. The
default value is 2.

passwordNotStoreName

[true|false] (boolean)

If true, password should not
be the same as current store
name, nor is it the store name
spelled backwards or with

the numbers 1-100 appended.
The default value is true.

passwordNotUserName

[true|false] (boolean)

If true, password should not
be the same as current user
name, nor is it the user name
spelled backwards or with

the numbers 1-100 appended.
The default value is true.

passwordProhibited

list of strings separated by
comma (string)

Simple list of words that
are not allowed to be

used as a password. The
default reserved words are:
oracle,password,user,nosq|l.

passwordRemember

0 - 256 (integer)

The maximum number of
passwords to be remembered
that are not allowed to be
reused when setting a new
password. The default value is
3.

Most of the special characters in the standard US keyboard are allowed to be used in
a password with exception of " (doubl e quote) and \ (back slash).

If you want to allow certain special characters use the passwor dAl | owedSpeci al

parameter. For example:

kv-> change-policy -parans passwordAl | owedSpeci al =" @ $"

If you want to enforce the password complexity for existing users, then you need to set
the existing user's password to expired, like this:

A-2

ORACLE

Appendix A

1. Review the existing users in the system:

kv-> exec "show users"
user:id=ul nane=r oot

user:id=u3 nane=userl
user:id=u4 nane=user?2
user: i d=u5 nane=user3

2. Set the new password complexity policies:

kv-> change-policy -parans

passwor dConpl exi t yCheck=t rue passwor dM nLengt h=9
passwor dM nUpper =2 passwor dM nLower =2

passwor dM nSpeci al =2 passwor dM nDi gi t =2

3. Finally, change the existing user's password life time to be expired:

kv-> exec "alter user userl password expire"
Statement conpl eted successfully
kv-> exec "alter user user2 password expire"
Statement conpl eted successfully
kv-> exec "alter user user3 password expire"
Statement conpl eted successfully

In this case, user 1, 2, and 3 will need to re-new their password according to the new
policy. For example, when trying to login with user 1, the system will prompt to change
the password:

java - Xmx64m - Xms64m \

-jar kvstore.jar runadnin -host |ocal host \

-port 5000 -security login file

userl's password:

The password of userl has expired, it is required to
change the password.

Enter the new password:

Re-enter the new password:

If the new password violates any password complexity policies, an exception with a
violation message will be thrown. For example:

userl's password:

The password of userl has expired, it is required to

change the password.

Enter the new password: password

Re-enter the new password: password

Exception in thread "main" oracle.kv. AuthenticationFail ureExcepti on:
Renew password fail ed:

Password must have at |east 9 characters

Password nust contain at |least 2 upper case letters

Password must contain at least 2 |lower case letters

A-3

Appendix A

< Note:

After the password is reset, if you're using Oracle Wallet for external
password storage, you must recreate the wallet files for all your Oracle
NoSQL Database user accounts. See Oracle Wallet.

ORACLE A-4

SSL keystore generation

ORACLE

The keystores (store.keys and store.trust) that are automatically generated by
makebootconfig or securityconfig can also be manually created using the following
keyt ool (Java built-in key and certificate management tool) commands:

To generate the keypair, use the keyt ool - genkeypai r command:

keyt ool -genkeypair \
-keystore store. keys \
- st orepass <passwd> \
-keypass <passwd> \
-alias shared \

-dnane "CN=NoSQ." \
-keyAl g RSA \

-keysi ze 1024 \
-validity 365

To export the keypair, use the keyt ool -export command:

keyt ool -export \
-file <tenp file>\
-keystore store. keys \
-storepass <passwd> \
-alias shared

To import the keypair, use the keyt ool -inport command:

keytool -import \
-file <tenp file>\
-keystore store. keys \
-storepass <passwd>

- nopr onpt

You can also use the keyt ool commands described above to manually generate other
keystore and truststore keys and substitute them for the ones that Oracle NoSQL
Database generates, provided you adhere to the following rules:

e The store.keys file should have a key pair with the alias "shared".

e The store.keys store password (-storepass) must match the key password (-
keypass)

e If a subject distinguished name other than CN=NoSQL is chosen for the self-signed
certificate, then you must specify the following options to the makebootconfig or
securityconfig command:

-param "ha: serverldentityAl | owed=dnmat ch(SOVEDN) "
-param "ha: clientldentityAl | owed=dnmat ch(SOVEDN) "

B-1

ORACLE

Appendix B

-param "internal : serverldentityAl | owed=dnmat ch(SOVEDN) "
-param "internal :clientldentityA | owed=dnmat ch(SOVEDN) "
-param "client:serverldentityAl | owed=dnmat ch(SOVEDN) "

where SOMEDN is the distinguished name (-dname) chosen.

The store password for store.trust should match the store password for store.keys.

B-2

Java KeyStore Preparation

ORACLE

The following example demonstrates how to use keyt ool to prepare keystore and
truststore with external certificate. If you want to import an existing private/public key
pair generated by an external tool instead, see Import Key Pair to Java Keystore.

1. Generate a keypair and store it into store.keys

keyt ool -genkeypair -keystore store.keys \
-alias shared -keyAl g RSA -keySize 2048 \
-validity 365 -dnane <xxx> \

-storepass <ssl Pwd>

Enter key password for <shared>
(RETURN i f same as keystore password):

Note:

Store. keys is the default name of Oracle NoSQL Database keystore
and shar ed is the default alias of the Oracle NoSQL Database certificate
You can customize the name by specifying a security parameter in the
makebootconfig command or the securityconfig utility. Additionally, you
can specify the algorithm, size and validity of key.

2. Generate a certificate request and send to CA.

keytool -certreq -keystore store.keys -alias
shared -file myhost.csr
Enter keystore password:

3. A public trusted CA usually signs the certificate after receiving your csr file. A pem
file is generated (myhost.cert.pem).

4. Import certificates that are part of a certificate chain in order. If there are multiple
intermediate certificates, they also need to be imported in order.

keytool -inmport -file ca.cert.pem

-keystore store.keys -alias root

keytool -inmport -file intermediate.cert.pem-keystore store.keys
-alias internmediate

After inporting the root and intermediate certificates,

install the signed certificate for this server. The alias name
must be specified.

keytool -inport -file nyhost.cert.pem-keystore store. keys
-alias shared

Certificate reply was installed in keystore

C-1

Appendix C
Import Key Pair to Java Keystore

5. Verify the installation by checking the certificate content in st or e. keys:

keytool -list -v -keystore store.keys -alias shared
Certificate chain length: 3

Certificate[1]:

Omner: CN=nyhost, OU=Team?, O=MyConpany, L=Unknown,
ST=California, C=US

I ssuer: CN=internediate CA, OU=CA O=MyConpany,
ST=California, C=US

The certificate chain length should match the number of certificates in the chain
that were imported, in this case, three.

6. Build server truststore (store.trust). The server truststore must contain the signed
certificate as well as the root and intermediate certificate. Note that the server and
client truststores need to use the same password as that of the keystore.

keyt ool -export -file store.tnp

-keystore store. keys -alias shared

keytool -inmport -keystore store.trust -file store.tnp

keytool -inport -keystore store.trust -file ca.cert.pem

-alias root

keytool -inmport -keystore store.trust -file intermediate.cert.pem
-alias intermediate

7. Create client truststore (client.trust). In this case, import the root and intermediate
certificates into the client truststore.

keytool -inport -keystore client.trust

-file ca.cert.pem-alias root

keytool -inmport -keystore client.trust -file internediate.cert.pem
-alias internmediate

Import Key Pair to Java Keystore

ORACLE

This section describes how to import an existing private/public key pair into Java
keystore. This is useful if you have your own tools for generating a CA signed key
pair. The procedure assumes you already have the root and intermediate certificates
as well as the private key and its signed certificate.

To import an existing key pair:

1. Build the certificate chain and convert the private key and certificate files into a
PKCS12 file.

cat nyhost.pem internediate. pemroot.pem> inport.pem
openssl pkcsl2 -export -in inport.pem-inkey nyhost.key. pem
-name shared > server.pl2

2. Import the PKCS12 file into Java keystore:

keyt ool -inportkeystore -srckeystore server.pl2
-destkeystore store. keys -srcstoretype pkcsl2 -alias shared

C-2

Appendix C
Import Key Pair to Java Keystore

3. Finally, to complete the preparation of the Java keystore, perform the procedures
for creating the server and client truststore described in the previous section.

ORACLE C-3

KVStore Required Privileges

This section lists the user required privileges to access specific KVStore APIs as well
as CLI commands.

Privileges for Accessing CLI Commands

READ_ANY:

e getkv
READ_ANY_TABLE or READ_TABLE (on $table_name):

e get table —name table_name

WRITE_ANY:
e delete kv
° put kv

INSERT_ANY_TABLE or INSERT_TABLE (on $table_name):

* put table —name table_name
DELETE_ANY_TABLE or DELETE_TABLE (on $table_name):

e delete table —name table_name
SYSDBA:

e ddl

e plan add-index

* plan add-table

* plan evolve-table

* plan remove-index
* plan remove-table
CREATE_ANY_TABLE:
* plan add-table
DROP_ANY_TABLE:

e plan remove-table

EVOLVE_ANY_TABLE or EVOLVE_TABLE (on $table_name):
» plan evolve-table —name table_name
CREATE_ANY_INDEX or CREATE_INDEX (on $table_name):
* plan add-index —table table_name

DROP_ANY_INDEX or DROP_INDEX (on $table_name):

ORACLE D-1

ORACLE

» plan remove-index —table table_name

SYSVIEW:

* await-consistency

* logtall

* ping

e show admins

e show events

* show topology

» show upgrade-order

* show users (all users)
e show zones

o verify

* show parameters

e show perf

» show plans (plans created by all users)
» show pools

* show snapshots
DBVIEW:

* show indexes

* show tables
USRVIEW:

* show users (for self)

» show plans (plans created by self)
* plan change-user (for self)
DBVIEW and READ_ANY:

* aggregate

SYSOPER:

* change-policy

» configure

e plan change-parameters

e plan change-storagedir

e plan change-user (for all users)
e plan deploy-admin

e plan deploy-datacenter

e plan deploy-sn

e plan deploy-topology

Appendix D
Privileges for Accessing CLI Commands

D-2

ORACLE

No privilege is required for the following commands:

plan deploy-zone

plan drop-user

plan failover

plan grant

plan migrate-sn

plan remove-admin

plan remove-sn

plan remove-zone

plan repair-topology
plan revoke

plan start-service

plan stop-service

pool (all sub-commands)
repair-admin-quorum
shapshot (all sub-commands)

topology (all sub-commands)

connect
exit

help
hidden
history
verbose
show faults

table (all sub-commands)

Appendix D
Privileges for Accessing CLI Commands

Privilege required depends on the command being timed:

time

Privilege required depends on the commands contained in the script file:

load

Privilege required depends on the privilege needed for the plan being referred to:

plan cancel
plan execute
plan interrupt

plan wait

D-3

Privileges for DDL Commands

ORACLE

SYSDBA:

» CREATE TABLE

* CREATE INDEX

» DROP INDEX

» DROP TABLE

* ALTER TABLE
CREATE_ANY_TABLE:

- CREATE TABLE
DROP_ANY_TABLE:

- DROP TABLE

Appendix D
Privileges for DDL Commands

EVOLVE_ANY_TABLE or EVOLVE_TABLE (on $table_name):

 ALTER TABLE table_name

CREATE_ANY_INDEX or CREATE_INDEX (on $table_name):

e CREATE INDEX ON table_name
DROP_ANY_INDEX or DROP_INDEX (on $table_name):
* DROP INDEX ON table_name

SYSOPER:

« CREATE USER
« CREATE ROLE
« DROP USER
+ DROP ROLE
* ALTER USER

e GRANT
* REVOKE
DBVIEW:

« SHOW TABLE

« SHOW INDEX
 DESCRIBE TABLE
 DESCRIBE INDEX
SYSVIEW:

e SHOW USERS

* SHOW ROLES
USRVIEW:

D-4

Appendix D
Privileges for Accessing KVStore APIs

* SHOW USERS (for self only)

Privileges for Accessing KVStore APIs

ORACLE

Privilege(s) required: READ_ANY, or READ_TABLE/READ_ANY_TABLE if accessing
key-values are in tables.

. get

* multiGet

* multiGetlterator
* multiGetKeys

* multiGetKeyslterator

" Note:

For multi-XYZ and storeXYZiterator APIs, the parentKey may be null
for scanning the whole store. In this case, if the user has no required
roles, an empty result set will be returned rather than throwing the
UnauthorizedException.

e storelterator
e storeKeyslterator

Privilege(s) required: WRITE_ANY, or DELETE_TABLE/DELETE_ANY_TABLE if
accessing key-values are in tables:

e delete
* deletelfVersion
multiDelete

Privilege(s) required: WRITE_ANY, or INSERT_TABLE/INSERT_ANY_TABLE if
accessing key-values are in tables:

* put

e putlfAbsent

* putlfPresent

* putlfVersion

Privilege(s) required: DBVIEW
e getAvroCatalog
Privilege(s) required: None:

e getOperationFactory

e getStats

Privilege(s) required: Union of all required roles of each single operation in the
operation list:

° execute

D-5

Appendix D
Privileges for Accessing KVStore TableAPIs

Privilege required depends on the privilege needed for the statement being executed:

e execute(String statement)

e executeSync(String statement)

Privileges for Accessing KVStore TableAPIs

Privileges(s) required: READ_TABLE/READ_ANY_TABLE:

* get

* multiGet

¢ multiGetKeys

* tablelterator

e tablelKeyslterator

Privilege(s) required: DELETE_TABLE/DELETE_ANY_TABLE:

* delete

e deletelfVersion

* multiDelete

Privilege(s) required: INSERT_TABLE/INSERT_ANY_TABLE:
* put

e putlfAbsent

* putlfPresent

e putlfVersion

Privilege(s) required: USRVIEW:
e getTable

e getTables

Privilege(s) required: None:

» getTableOperationFactory

Privilege(s) required: Union of all required roles of each single operation in the
operation list:

e execute

Privileges for Accessing KvLargeObject APIs
Privilege(s) required: READ_ANY:

* getLOB
Privilege(s) required: READ_ANY and WRITE_ANY:

* appendLOB
* deleteLOB
* putLOB

ORACLE D-6

* putLOBIfAbsent
* putLOBIfPresent

Privileges for Running XRegion Service

Privilege(s) required:

* WRITE_SYSTEM_TABLE
« READ_ANY_TABLE

* INSERT_ANY_TABLE

ORACLE

Appendix D
Privileges for Running XRegion Service

D-7

Configuring the Kerberos Administrative

Utility

ORACLE

Before using kadni n, you first need to configure permissions on the KDC. Kerberos
uses an Access Control List (ACL) file to determine which principals have
administrative access to the Kerberos database and their level of access.

The default location of the Kerberos ACL file is <LOCALSTATEDIR>/krb5kdc/
kadmb5.acl, where LOCALSTATEDI R is the directory prefix where the KDC databases
are located. This location can be modified by the acl _fi | e variable in kdc. conf.

Lines containing ACL entries have this format:

principal pernmissions [target_principal [restrictions]]

< Note:

Line order in the ACL file is important. The first matching entry will control
access for an actor principal on a target principal.

To configure kadmi n, perform the following steps:
1. Create an access control list file and put the Kerberos principal of at least one of
the administrators into it. For example:

*[adm n@XAMPLE. COM *

In this case, any principal in the EXAMPLE. COMrealm with an adni n instance has all
administrative privileges on the KDC.

For example, j oe/ adm n@XAMPLE. comhas all privileges over the realm's Kerberos
database.

2. Create the first principal before accessing the KDC remotely:

kadm n.local : addprinc -randkey adm n/adnin
kadm n.local : ktadd -k kadnb. keytab adni n/adm n

Note:

To enable passwordless autentication, copy kadnb. keyt ab to any client
machine.

E-1

Appendix E

Kadmin can also be used to perform security maintenance. For more information, see
Guidelines for Updating Kerberos Passwords.

ORACLE E-2

Manually Registering Oracle NoSQL
Database Service Principal

ORACLE

The securityconfig tool allows you to create service principals and generate keytabs
assuming that each Storage Node is able to access the Kerberos admin interface
remotely. Although this is the typical configuration most Kerberos deployments have,
you may want to use a non-standard configuration. You can manage service principals
by using only kadmin.local or ktutil utility on the KDC host.

To register Oracle NoSQL Database service principal by using kadmi n. | ocal :

1.

Register the service principal:

kadm n.local : addprinc -randkey nosql/abc. exanpl e. com

Extract the keytab file using the kt add command:

kadm n.local : ktadd —norandkey -k keytab nosql/abc. exanpl e. com

Verify the entries of the generated keytab using the kl i st tool:

klist =k —e /tnp/keytab
Keytab nane: FILE: keytab
KVNO Pri nci pal
12 nosql / abc. exanpl e. com@XAMPLE. COM
(AES-128 CTS node with 96-bit SHA-1 HWAC)
12 nosql / abc. exanpl e. com@XAMPLE. COM
(AES-256 CTS node with 96-hit SHA-1
HVAC)

Copy the keytab of Oracle NoSQL Database server principal to each Storage
Node. The default location is under kvroot/security. You need to create the security
directory.

Run makebootconfig or securityconfig utility to complete the rest of the Kerberos
security configuration.

To register Oracle NoSQL Database service principal by using kt uti | utility:

1.

Add principal entries:

ktutil: add_entry —password —p \

nosql / abc. exanpl e.com -k 1 —e aes128-cts-hmac-shal- 96
Password for nosql/abc. exanpl e. com@XAVPLE. COM
ktutil:add entry —password —p nosql/abc. exanpl e. com\
-k 1 —e aes256-cts-hmac-shal- 96

Password for nosql/abc. exanpl e. com@XAVPLE. COM

F-1

ORACLE

2.

3.

Appendix F

Write the current keylist into the keytab file:
Ktutil: wite kt keytab

Verify the entries of the generated keytab using the kl i st tool:

klist -k —e /tnp/keytab
Keytab name: FILE: keytab
KVNO Pri nci pal
12 nosql / abc. exanpl e. com@XAMPLE. COM
(AES-128 CTS node with 96-bit SHA-1 HVAC)
12 nosql / abc. exanpl e. com@XAMPLE. COM
(AES-256 CTS node with 96-bit SHA-1
HVAC)

Copy the keytab of Oracle NoSQL Database server principal to each Storage
Node. The default location is under kvroot/security. You need to create the security
directory.

Run makebootconfig or securityconfig utility to complete the rest of the Kerberos
security configuration.

F-2

Generating Certificate and Private Key for
the Oracle NoSQL Database Proxy

Topics

Guidelines for Generating Self-Signed Certificate and Private Key using OpenSSL

Guidelines for Generating Certificate Chain and Private Key using OpenSSL

Guidelines for Generating Self-Signed Certificate and
Private Key using OpenSSL

Self-signed certificates can be used to securely connect to the Oracle NoSQL
Database Proxy. This section provides the steps to generate the self-signed certificate
and other required files for a secure connection using OpenSSL.

ORACLE

As a pre-requisite, download and install OpenSSL on the host machine. See
OpenSSL.

To generate a self-signed certificate and private key using the OpenSSL, complete the
following steps:

1.

On the configuration host, navigate to the directory where the certificate file is
required to be placed.

Use the following OpenSSL command to generate the self-signed certificate and
private key. When prompted, provide a secure password of your choice for the
certificate file.

Note:

All prompt password will use 123456 in this example.

openssl req -x509 -days 365 -newkey rsa: 4096 \
-keyout key.pem-out certificate.pem)\

-subj "/ C=US/ ST=CA/ L=San/ CN=l ocal host/

enui | Addr ess=I ocal host @r acl e. conf

where, CNin the subj should map the proxy domain name.

Convert the private key to PKCS#8 format. When prompted, provide a secure
password of your choice for the encryption.

openssl pkcs8 -topk8 \
-inform PEM -out f orm PEM \
-in key.pem -out key-pkcs8. pem

G-1

Appendix G
Guidelines for Generating Certificate Chain and Private Key using OpenSSL

The following files are generated in the directory:
* key. pemis the private key.
e key-pkcs8. pemis the private key in PKCS#8 format.

e certificate. pemisthe SSL certificate file in pem format.

< Note:

The below conversion should be done if your key is encrypted

with the PKCS#5 v2. 0 algorithm. Otherwise, you might encounter

Il egal Argunent Excepti on exception that indicates the file does not contain
a valid private key due to the unsupported algorithm. The encryption
algorithm can be converted via OpenSSL pkcs8 utility by specifying PKCS#5
v1. 5 or PKCS#12 algorithms with - v1 flag. The following command converts
the encryption algorithm of a key to PBE- SHA1- 3DES.

openssl pkcs8 -topk8 -in <PKCS#5v2.0 key file> -out
<new key file> -v1 PBE-SHAl- 3DES

Additionally, a dri ver. trust file is also required if you are using the Java driver.

This driver. trust file is not required for other language drivers. To generate the
driver.trust file, import the certificate to the Java keystore. When prompted, provide
the keystore password.

keytool -inmport -alias exanple -keystore driver.trust -file
certificate. pem

Guidelines for Generating Certificate Chain and Private Key
using OpenSSL

ORACLE

Certificate chains can be used to securely connect to the Oracle NoSQL Database
Proxy. This section provides the steps to generate certificate chains and other required
files for a secure connection using OpenSSL.

A certificate chain is provided by a Certificate Authority (CA). There are many CAs.
Each CA has a different registration process to generate a certificate chain. Follow the
steps provided by your CA for the process to obtain a certificate chain from them.

As a pre-requisite, download and install OpenSSL on the host machine. See
OpenSSL.

To generate a certificate chain and private key using the OpenSSL, complete the
following steps:

1. On the configuration host, navigate to the directory where the certificate file is
required to be placed.

G-2

ORACLE

Appendix G
Guidelines for Generating Certificate Chain and Private Key using OpenSSL

Create a 2048 bit server private key.

openssl genrsa -out key.pem 2048

The following output is displayed.

CGenerating RSA private key, 2048 bit |ong nodul us

e is 65537 (0x10001)

This step is required only when your server private key is not in PKCS#8 format.
Convert the private key to PKCS#8 format. When prompted, provide a secure
password of your choice for the encryption.

openssl pkcs8 -topk8 \
-inform PEM - out f orm PEM \
-in key.pem -out key-pkcs8. pem

The following output is displayed.

Enter Encryption Password:
Verifying - Enter Encryption Password:

" Note:

The below conversion should be done if your key is encrypted

with the PKCS#5 v2. 0 algorithm. Otherwise, you might encounter

I'I'l egal Argunent Except i on exception that indicates the file does not
contain a valid private key due to the unsupported algorithm. The
encryption algorithm can be converted via OpenSSL pkcs8 utility by
specifying PKCS#5 v1. 5 or PKCS#12 algorithms with - v1 flag. The
following command converts the encryption algorithm of a key to PBE-
SHA1- 3DES.

openssl pkcs8 -topk8 -in <PKCS#5v2.0 key file> -out
<new key file> -v1 PBE-SHAl- 3DES

Create a Certificate Signing Request (CSR).

openssl req -new -key key.pem -out request.csr \
-subj "/ C=US/ ST=CA/ L=San/ CN=l ocal host/
emai | Addr ess=Il ocal host @r acl e. conf

where, CNin the subj should map the proxy domain name.

Send Certificate Signing Request (CSR) data file to CA. CA will use CSR data to
issue a SSL certificate.

G-3

ORACLE

Appendix G
Guidelines for Generating Certificate Chain and Private Key using OpenSSL

6. CAreturns a signed certificate certifi cate. pem If it is not yet chained up with
CA's certificate (r oot CA. crt), you need to manually chain up.

cat rootCA. crt >> certificate. pem

The following files are generated in the directory:
e key. pemis the server private key.
* key-pkcs8. pemis the server private key in PKCS#8 format.

e certificate. pemis the certificate chain file in pem format. It includes the server
certificate issued by CA and CA intermediate or root certificate.

* request.csr is the server certificate request file.

e rootCA crt is the root certificate provided by the CA.

Additionally, a dri ver. trust file is also required if you are using the Java driver, and if
the root CA. crt is not listed in Java default trust store JAVA HOVE/ jre/ | i b/ security/
cacerts. Thisdriver.trust file is not required for other language drivers. To generate
the driver. trust file, import the root CA. crt certificate to the Java keystore. When
prompted, provide the keystore password.

keytool -inport -alias exanple -keystore driver.trust -file rootCA crt

For the Python driver, if your selected CA is not trusted by default, you need to get the
root CA crt from CA and set the system environment variable:

REQUESTS CA BUNDLE=PATH OF CA FI LE/r oot CA. crt

G-4

	Contents
	Preface
	Conventions Used in This Book

	1 Introducing Oracle NoSQL Database Security
	2 Security Configuration
	Security Configuration Overview
	Configuring Security with Makebootconfig
	Configuring Security with Securityconfig
	Creating the security configuration
	Adding the security configuration
	Verifying the security configuration
	Updating the security configuration
	Showing the security configuration
	Removing the security configuration
	Merging truststore configuration

	3 Performing a Secure Oracle NoSQL Database Installation
	Single Node Secure Deployment
	Adding Security to a New Installation
	Adding Security to an Existing Installation

	Multiple Node Secure Deployment
	Adding Security to a New Installation
	Adding Security to an Existing Installation

	4 Kerberos Authentication Service
	Installation Prerequisites
	Kerberos Principal
	Keytabs
	Kadmin and kadmin.local
	Kerberos Security Properties
	Setting Security Properties in a security login file
	Setting Security Properties through KVStoreConfig
	Using Security Properties to Log In
	Using credential cache
	Using a keytab

	JAAS programming framework integration
	Performing a Secure Oracle NoSQL Database Installation with Kerberos
	Adding Kerberos to a New Installation
	Adding Kerberos to an Existing Secure Installation

	Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

	5 External Password Storage
	Oracle Wallet
	Password store file

	6 Security.xml Parameters
	Top-level parameters
	Transport parameters

	7 Encryption
	SSL model
	SSL communication properties
	Disk Encryption in a Linux Environment

	8 Configuring Authentication
	User Management
	User Creation
	User Modification
	User Removal
	User Status
	User Login
	Password Management

	Sessions

	9 Configuring Authorization
	Privileges
	System Privileges
	Object Privileges
	Table Ownership
	Privilege Hierarchy

	Roles
	System Built-in Roles
	User-Defined Roles

	Managing Roles, Privileges and Users
	Role Creation
	Role Removal
	Role Status
	Grant Roles or Privileges
	Revoke Roles or Privileges

	10 Security Policies
	Security Policy Modifications

	11 Audit Logging
	Security Log Messages

	12 Keeping Oracle NoSQL Database Secure
	Guidelines for Securing the Configuration
	Guidelines for Deploying Secure Applications
	Guidelines for Securing the SSL protocol
	Guidelines for using JMX securely
	Guidelines for Updating Keystore Passwords
	Guidelines for Updating Kerberos Passwords
	Guidelines for Updating SSL Keys and Certificates
	Guidelines for Configuring External Certificates for a new Installation
	Guidelines for Configuring External Certificates for an Existing Default Secure Installation
	Guidelines for Updating the External Certificates
	Guidelines for Operating System Security

	A Password Complexity Policies
	B SSL keystore generation
	C Java KeyStore Preparation
	Import Key Pair to Java Keystore

	D KVStore Required Privileges
	Privileges for Accessing CLI Commands
	Privileges for DDL Commands
	Privileges for Accessing KVStore APIs
	Privileges for Accessing KVStore TableAPIs
	Privileges for Accessing KvLargeObject APIs
	Privileges for Running XRegion Service

	E Configuring the Kerberos Administrative Utility
	F Manually Registering Oracle NoSQL Database Service Principal
	G Generating Certificate and Private Key for the Oracle NoSQL Database Proxy
	Guidelines for Generating Self-Signed Certificate and Private Key using OpenSSL
	Guidelines for Generating Certificate Chain and Private Key using OpenSSL

