Oracle® NoSQL Database
Streams Developer's Guide

Release 20.3
E91416-10
December 2020

ORACLE"

Oracle NoSQL Database Streams Developer's Guide, Release 20.3
E91416-10
Copyright © 2011, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Conventions Used in This Book Y

1 Introduction to the Oracle NoSQL Database Streams API

Architecture 1-1
API Components 1-2
Checkpoints 1-3
Dynamic Streaming 1-4
System Requirements 1-4
Limitations 1-4
Compiling and Running a Streams Application 1-4

2 Using the StreamOperation Class

3 Working with Subscriptions

Using NoSQLSubscriptionConfig 3-1
NoSQLStreamMode 3-3
Using NoSQLSubscription 3-3
4 Implementing Subscribers
Using the NoSQLSubscriber Interface 4-1
NoSQLSubscriber Example 4-4
5 Using a Streams Publisher
Using NoSQLPublisherConfig 5-1
Configuring a Connection to the Store 5-1
Creating a Basic NoSQLPublisherConfig Object 5-2
Tuning Your Publisher 5-2

ORACLE iii

Authenticating to a Secure Store

5-3

ORACLE"

Reauthentication 5-3
Streams Example 5-5
Sample Streams Output 5-9
6 Using Checkpoints
Implementing Checkpoints in GSGStreamExample 6-1
Implementing Checkpoints in GSGSubscriberExample 6-4
Example Checkpoint Behavior 6-9
7 Scaling a Streams Application
Scaling Subscribers 7-2
A GSGStreamsWriteTable
iv

Preface

This document is intended to provide a rapid introduction to the Oracle NoSQL
Database Streams API. This API is an implementation of the Reactive Streams

standard, which provides for asynchronous stream processing with non-blocking back
pressure. See Reactive Streams.

Conventions Used in This Book

The following typographical conventions are used within this manual:
Information that you are to type literally is presented in monospaced font.

Variable or non-literal text is presented in italics. For example: "Go to your KVYHOME
directory."

" Note:

Finally, notes of special interest are represented using a note block such as
this.

ORACLE

Introduction to the Oracle NoSQL
Database Streams API

The Oracle NoSQL Database Streams API lets you subscribe to all logical changes
(put s and del et es) made to Oracle NoSQL Database tables. These changes are
streamed to your application as a series of discrete St r eanrOper at i on class objects.
This API is based on the Reactive Streams standard. See Reactive Streams.

Oracle NoSQL Database Streams APIs are prefixed with NoSQL to differentiate them
from the APIs described by the Reactive Streams standard. For example, Reactive
Streams describes a Publisher class. The Oracle NoSQL Database implementation of
that class is called NoSQLPubl i sher.

¢ Note:

The Oracle NoSQL Database streams API supports table namespaces. If
you reference a table that is in a namespace, prefix the table, such as Users,
with its namespace name (such as ns1) followed by a colon (:). For example,
nsl: Users.

The remainder of this chapter provides an introduction to the Oracle NoSQL Database
Streams API.

Architecture

ORACLE

The Oracle NoSQL Database streams API builds upon the existing JE facilities (that
stream updates to replicas), offering a store-wide stream of all write operations made
to the tables that the application is subscribed to.

The following illustration depicts the overall architecture of the Oracle NoSQL
Database streaming service:

1-1

Shard 1
Node: rg1-m1

Shard 2
Node: rg2-m2

Shard X
Node: rgX-mY

L%

L]
v

Oracle NoSQL Dalabase Store

Each shard in the Oracle NoSQL Database supplies a stream of updates from the
shard. The NoSQLPubl i sher aggregates all shard streams to implement a unified
publisher interface for the entire Oracle NoSQL Database store that it presents to

users.

Chapter 1

API Components

Oracle NoSQL Database
Stream Subscription Service

-

\J

e

NoSQLSubscriber

NoSQLPublisher onSubscribe();
onNexd{StreamOperation op);

onEmor(Throwable e);
onWarn(Throwable w);

Stream Processing Application

A NoSQLPubl i sher is responsible for creating, managing, and canceling all
subscriptions that the user creates.

¢ Note:

API Components

The Reactive Streams standard, available at (http://www.reactive-streams.org)

The current Streams API continues to stream data while store elasticity
operations are in progress. When Storage Nodes, Replication Nodes, or
Admins are being added to the store, streaming continues without effect on
performance.

describes various APl components. These are all implemented for the Oracle NoSQL
Database Streams API. Briefly, these are the major API components:

ORACLE

1-2

http://www.reactive-streams.org

Chapter 1
Checkpoints

API Description More Informatin
NoSQLPubl i sh | Aggregates table operations into a single stream, and NoSQLPubl i sher is introduced in
er publishes them according to the configuration received | the chapter titled Using a Streams
from its subscriber(s). Publisher.
For any Java JVM, create only one NoSQLPubl i sher [For more information about scaling
class instance for a publisher configuration. You can the streaming service to use multiple
create multiple publishers per JVM, as long as their substribers, see Scaling a Streams
configurations differ. For example, you can create Application.
a single JVM to support two or more publishers, For more information
each connecting to different stores with their different on NoSQLPubl i sher, see
configurations. NoSQLPublisher.
You can scale the streaming service to use multiple
subscribers to stream events from Oracle NoSQL
Database store.
NoSQLSubscri | Interface that you must implement to define how to For an introduction to subscriber
ber process each store operation, warning, and error. implementation, see Implementing
NoSQLPubl i sher manages each NoSQLSubscri ber Subscribers.
instance that yOU pI‘OVide. The NOSQ_PUb| | Sher can For information about hOW to use
use multiple NoSQLSubscr i ber instances. multiple subscribers streaming events
from Oracle NoSQL Database store,
see Scaling a Streams Application.
For more information
on NoSQLSubscri ber, see
NoSQLSubscriber.
NoSQLSubscri | Represents a single subscription that you created. This | For an introduction to
ption class receives wri t e and del et e events present in the | NoSQLSubscri pti on, see Working

operations stream, in the form of St r eanOper at i on
objects, and provides them to your NoSQLSubscri ber
implementation for processing.

with Subscriptions. The

St reanOper at i on class is introduced
in Using the StreamOperation Class.
For more information

on NoSQLSubscri ption, see
NoSQLSubscription.

Checkpoints

When a subscriber opens a subscription stream, the subscriber can start consuming
events from the earliest available point in the stream, or from some other location in
the stream. To begin consuming from another location, the application must have run
and saved at least one checkpoint (perhaps more). Checkpoints represent different
locations in the stream. For example, your application could save a stream checkpoint
after the publisher has streamed every 1024 records.

ORACLE

Your application can take a checkpoint at any time; however, only one checkpoint may
be in progress at any given time. The most recent checkpoint is saved in a checkpoint
table within the Oracle NoSQL Database store. If you want to save more than the
most recent checkpoint, you must manually save it to disk or to a database of your

choosing.

For an introduction to checkpoints, see Using Checkpoints. For information about
NoSQLStreamMode, see Implementing Checkpoints in GSGStreamExample.

1-3

Chapter 1
Dynamic Streaming

Dynamic Streaming

The Oracle NoSQL Database supports Dynamic Streaming. Dynamic streaming
enables a user to add or remove a table in a live stream at run time without shutting
down and recreating a new stream. An empty stream which does not have any tables
can be created, and later the tables can be added at runtime. Also, all the existing
tables in a stream can be deleted such that the stream is made empty. A subscription
is called empty when it does not have at least one table in it. The duration for which an
empty stream should be kept alive can be determined by the user.

System Requirements

The Oracle NoSQL Database Streams API requires Java 8.

Limitations

The stream will not include a separate notice of DDL operations (table creations,
alterations, and table deletions). After the table is dropped, your stream will no longer
receive any streamed operation from the dropped table. It is your responsibility to
check with the server if the table has been dropped. Then, decide if the stream shall
be canceled after the table is dropped.

Compiling and Running a Streams Application

The Oracle NoSQL Database Streams APIs can be found in the kvstore. j ar file,
which is located in your distribution's | i b directory.

To run the Streams-related examples in the distribution, first get the Exanpl es
download from Oracle Technology Network (OTN) and run the following commands:

e cd $KVHOWE exanpl es
e javac -cp SKVHOVE/li b/ kvstore.jar:. pubsub/NoSQLStreanExanpl e. | ava

e java -cp $KVHOWE/li b/ kvstore.jar:. pubsub. NoSQ.St reanExanpl e

Example Usage:

+ NoSQLSt r eanExanpl e
[create-table | load-table | subscribe | cleanup]
-store <instance name>
-tabl e <table name>
-host <host name>
-port <port nunber>
-num <nunber of rows>
-checkpoi nt <checkpoint interval in nunber of rows>
-from[now | checkpoint | exact checkpoint]

ORACLE 1-4

Using the StreamOperation Class

A streams application works by implementing Subscribers. Subscribers receive a
stream of events that consist of write operations to a table of interest.

For more information, see Implementing Subscribers.

Every event your application receives in the subscription stream is represented as an
oracl e. kv. pubsub. St reanOper at i on. Each of these events represents either a put or
del et e operation on the table that your application subscribes to.

The St reanOper at i on interface provides the following methods:

e StreanCperation. get Type()

Returns a St reanOper at i on. Type object. This is an enum constant that is either
del et e or put . For example:

/1l so is a StreamOperation object. It is obtained using
/1 NoSQLSubscri ber. onNext ().
switch (so.getType()) {

case PUT:

{
}

br eak;
case DELETE:

{
}

br eak;
defaul t:
/'l Received an unknown and therefore illegal operation type.
throw new I |1 egal StateException("... exception
message ...");

}

e StreanmCperation.asDel ete()

/'l Process the put operation here.

Il Process the delete operation here.

Returns the operation as a St reanCper at i on. Del et eEvent object. The object
contains only the Primary Key associated with the del et e operation:

/1l so is a StreamOperation object. It is obtained using
/1 NoSQLSubscri ber. onNext ().

StreanOperation. Del et eEvent de = so.asDel ete();
PrimaryKey pk = de. getPrimaryKey();

e StreanCperation. asPut ()

Returns the operation as a St r eanCper at i on. Put Event object. This object allows
you to obtain the row that was changed by the put operation. Be aware that the

ORACLE 2-1

ORACLE

Chapter 2

row returned here represents the state of the row after the put operation has been
performed:

/1 so is a StreamOperation object. It is obtained using
/1 NoSQLSubscri ber. onNext ().

St reanmOper ati on. Put Event pe = so.asPut();

Row row = pe. get Row();

St reamOper at i on. get RepG oupl d()
Returns the Shard ID (as an i nt) where this wri t e operation was performed.

St reamOper at i on. get Sequencel d()

Returns the unique sequence ID associated with this operation. This ID uniquely
identifies a stream operation associated with a given Publisher.

These IDs can be used to sequence operations seen for a given key. The
Subscription API guarantees that the order of events for a particular key is the
same as the order in which these operations were applied in Oracle NoSQL
Database. The subscription API provides no guarantees about the order of
operations beyond the single key.

2-2

Working with Subscriptions

NoSQLSubscri ption is used to manage an active subscription to the Oracle NoSQL
Database store. A Subscription is configured using NoSQLSubscr i pti onConfi g.
NoSQLSubscri ptionConfi g is used to identify important information such as what
table(s) you want to subscribe to.

In this chapter, we first show how to use NoSQLSubscri pti onConfi g, and then show
how to use NoSQLSubscri pti on.

Using NoSQLSubscriptionConfig

You configure your subscription by building an

oracl e. kv. pubsub. NoSQLSubscri pti onConfi g object. You then provide this

object to your NoSQLSubscri ber implementation, and also implement

NoSQLSubscri ber. get Subscri ptionConfig() to return this object when it

is called. When you construct the publisher, you will provide it with

your NoSQLSubscri ber implementation, and the publisher will then call

NoSQLSubscri ber. get Subscri ptionConfig() in order to understand how to create the
subscription. See Implementing Subscribers and Using a Streams Publisher.

To build your NoSQLSubscr i pti onConfi g object, you use
NoSQLSubscri pti onConfi g. Bui | der as follows:

final NoSQLSubscriptionConfig subConfig =
new NoSQLSubscri ptionConfig. Buil der (" Chkpt Tabl e")
. set Subscri bedTabl es(" User Tabl e")
. set St reamvbde(NoSQLSt r eanivbde. FROV NOW
Cbuild();

This configuration causes the subscription to:

e Use the checkpoint table called Chkpt Tabl e. For more information about
checkpoint table, see Using Checkpoints. Be aware that the table name used
here is chosen by you, and should be unique to your subscription. If you are using
multiple subscriptions, then each subscription should use a unique name for the
checkpoint table. This table is created automatically.

If you are using a secure store, you need read/write access to the checkpoint
table. If a checkpoint table does not exist, you also need the CREATE TABLE
privilege. For information about:

— Connecting to a secure store, see Authenticating to a Secure Store.

— Configuring Authorization for a secure store, see Privileges in the Security
Guide.

ORACLE 3-1

Chapter 3
Using NoSQLSubscriptionConfig

e Subscribe to all wri t e activity performed on the user table called User Tabl e.
Subscriptions can be created for user-defined tables; updates to system tables
would not be streamed. You can use this to subscribe to multiple tables:

new NoSQLSubscri ptionConfi g. Buil der (" Chkpt Tabl e")
. set Subscri bedTabl es("User Tabl e", "PriceTabl e",
"I'nventoryTable")

If you do not call set Subscri bedTabl es(), then the subscription will subscribe to
all tables in the store. If a subscription is for every table in the store, and a new

a table is created after subscription is established (using the DDL CREATE TABLE
operation), the stream will include all put events for every row created in the new
table.

e Set the stream mode to NoSQLSt r eamvbde. FROM NOW The stream mode indicates
from where in the stream the Publisher will start retrieving events. For more
information, see NoSQLStreamMode.

Once you have created your subscription configuration, you provide it to your
NoSQLSubscri ber implementation, which then must make it available via the
NoSQLSubscri ber. get Subscri ptionConfi g() method:

cl ass nySubscriber inplenments NoSQ.Subscriber {

private final NoSQSubscriptionConfig config;

Il Generally the constructor will require nore than just

/'l the subscription configuration. The point here is that you
/'l must somehow provide the configuration object to

/'l your subscriber inplemention because that is how

[l your publisher will get it.

nmySubscri ber (NoSQLSubscri pti onConfig config,) {

this.config = config;

}

@verride
public NoSQLSubscriptionConfig getSubscriptionConfig() {

return config;

}

When you implement your streams application, you will use your subscriber
implementation. The get Subscri ptionConfi g() method on the subscriber is how your
publisher finds out what tables to follow, and so forth. See Using a Streams Publisher.

ORACLE 3-2

Chapter 3
NoSQLStreamMode

The expiration time for an empty stream can be specified using the

NoSQLSubscri ptionConfi g. set Enpt ySt reanDur ati on() method. The expiration time
will begin only when a stream becomes empty after which the publisher would

shut down the empty stream. The default empty stream expiration time is 60
seconds. The user can override the default empty stream expiration time by the

set Enpt ySt reanDurati on() method.

In this section, we have shown only a few options that you can set using
NoSQLSubscri ptionConfi g. For a complete list of configuration options, see
NoSQLSubscriptionConfig and NoSQLSubscriptionConfig.Builder in the Java Direct
Driver API Reference.

NoSQLStreamMode

NoSQLSt r eambde is the subscription stream mode used to configure the starting point
for a NoSQL subscription.

Once you have taken a checkpoint, you indicate where you want

event consumption to begin by specifying a NoSQLSt r eamvbde to

NoSQLSubscri ptionConfi g. Buil der. set Streanibde() . For example, if you specify
NoSQLSt r eamivbde. FROM EXACT_CHECKPQ NT, then events will begin at the stream
position identified by the checkpoint saved in the checkpoint table.

The stream positions available to you are:
e FROM CHECKPO NT

Starts the stream from the last checkpoint saved in the checkpoint table, using the
next available position for shards where the checkpoint position is not available.

« FROM_EXACT_CHECKPO NT

Starts the stream from the last checkpoint saved in the checkpoint table, signaling
an exception if the checkpoint position is not available.

« FROM EXACT_STREAM POSI TI ON

Starts the stream from the specified start stream position, signaling an exception if
the requested position is not available.

* FROM NOW
Starts the stream from the latest available stream position.
e FROM STREAM PCSI TI ON

Starts the stream from the specified start stream position, using the next available
position for shards where the requested position is not available.

See NoSQLStreamMode in the Java Direct Driver API Reference.

Using NoSQLSubscription

ORACLE

oracl e. kv. pubsub. NoSQLSubscri pti on is used to control your subscription. It is used
to request operations from the subscribed tables, to perform checkpoints, terminate
the stream, and so forth. It is used as a part of your NoSQLSubscri ber implementation.

The NoSQLSubscri pti on interface extends or g. reacti vestreans. Subscri pti on,
so it is sufficient for your NoSQLSubscri pti on implementation
class to extend NoSQLSubscri pti on. When your implementation

3-3

Chapter 3
Using NoSQLSubscription

class implements NoSQLSubscr i ber . onSubscri be(), you will usually call
NoSQ.Subscri pti on. request (), which asks for an initial set number of events to be
delivered to the subscriber (these are consumed using NoSQLSubscr i ber. onNext ()):

private NoSQ.Subscription subscription;

@verride
public void onSubscribe(Subscription s) {
subscription = (NoSQLSubscription) s;
/'l request 100 store operations be streamed to this
Il subscri ber.
S. request (100);

}

The important actions that you can take with your NoSQLSubscri pti on object are:

e Cancel the stream using NoSQLSubscri pti on. cancel ().
e Request more operations from the subscribed table.

If you want to stream infinite number of operations, you can use Long. MAX_VALUE,
which allows to stream for 584 years, assuming that the subscriber can process 1
billion operations per second.

If the request is made at the beginning of the application's runtime before any
operations have been consumed, then the operations will begin from the location
identified by NoSQ.Subscri pti onConfi g. set St ream\vbde() . If the request is made
after operations have been consumed, then the operations will begin at the point in
the stream immediately after the last consumed operation. For more information,
see NoSQLStreamMode.

e Take a checkpoint. See Using Checkpoints for information about checkpoints.

e Get a list of currently subscribed tables anytime during the lifetime
of the stream using NoSQ.Subscr i ption. get Subscri bedTabl es() method.
Subscri ptionFai | ureExcepti on would be raised if the subscription is canceled
or has shut down.

Add a table to the running subscription stream asynchronously using
NoSQLSubscri ption. subscri beTabl e() method. The change result will be
signaled via the callback NoSQLSubscr i ber . onChangeResul t () method.

* Remove a table from the running subscription stream asynchronously using
NoSQLSubscri ption. unsubscri beTabl e() method. The change result will be
signaled via the callback NoSQLSubscr i ber . onChangeResul t () method.

For a complete list of operations supported by NoSQLSubscri pti on, see
NoSQLSubscription in the Java Direct Driver APl Reference.

ORACLE 3-4

Implementing Subscribers

For every publisher, you must implement one or more Subscriber. The Subscriber is
used to process stream events, which arrive in the form of St r eanCper ati on class
objects. See Using the StreamOperation Class.

Using the NoSQLSubscriber Interface

You implement subscribers using the or acl e. kv. pubsub. NoSQLSubscri ber interface,
an extension of or g. reacti vest reams. Subscri ber. NoSQLSubscri ber provides the
following methods, which you must implement:

e onSubscri be()

This is the method invoked after the publisher has successfully established contact
with the Oracle NoSQL Database store. The argument you pass to this method
isanorg.reactivestreans. Subscri ption instance, which you cam then cast to
oracl e. kv. pubsub. NoSQLSubscri pti on. See Working with Subscriptions.

private NoSQ.Subscription subscription;

@verride
public void onSubscribe(Subscription s) {
subscription = (NoSQ.Subscription) s;
/'l request 100 store operations be streamed to this
Il subscri ber.
s. request (100);

}
" Note:
You do not have to call the s. request (100) method inside
onSubscri be(). Once an instance of NoSQLSubscri pti on is available,
you can call the method outside onSubscri be() . The main point of the
onSubscri be() method here is to pass the user the subscription instance
that the publisher generates.
e onNext ()

Signals the next Oracle NoSQL Database operation. You pass this method a
St reanmOper ati on class instance. See Using the StreamOperation Class. This

ORACLE 4-1

Chapter 4
Using the NoSQLSubscriber Interface

method is where you perform whatever processing you want to perform on the
stream events.

@verride
public void onNext(StreanOperation t) {
/'l performprocessing on the StreanCperation
Il here. Typically you will do different
/1 things depending on whether this is
/1 a put or delete event.
switch (t.getType()) {
case PUT:

{
}

break;
case DELETE:

{
}

br eak;
defaul t:
/'l Received an unknown and therefore illegal operation
Il type.
t hrow new
I'llegal StateException("... exception nessage ...");

/1 Process the put operation here.

/1 Process the del ete operation here.

}

e onConpl ete()

Signals the completion of a subscription. Use this method to perform whatever
cleanup your application requires once a subscription has ended.

@verride
public void onConplete() {
[* nothing to do, so make this a no-op */

}

" Note:

You must implement this method in your stream processing application,
because streaming from a KVStore table is unbounded by nature, so
onConpl et e() will never be called. Any no- op implementation of this
method will be ignored.

e onError()

Signals that the subscription encountered an irrecoverable error and has to be
terminated. The argument passed to this method is a j ava. | ang. Thr owabl e class

ORACLE 4-2

ORACLE

Chapter 4
Using the NoSQLSubscriber Interface

instance. Use this method to perform whatever actions you want to take in
response to the error.

@verride
public void onError(Throwable t) {
| ogger.severe("Error: " + t.getMessage());
}
onVarn()

Signals that the subscription encountered an irrecoverable error and has be
terminated. The argument passed to this method is a j ava. | ang. Thr owabl e class
instance. Use this method to perform whatever actions you want to take in
response to the warning.

@verride
public void onWarn(Throwable t) {
| ogger.warning("Warning: " + t.getMessage());

}

A warning does not end the subscription. Warnings in the form of
Shar dTi meout Except i on are provided as a way to inform the application that a
particular shard is not responding.

onCheckPoi nt Conpl et e()

Signals when a previously requested checkpoint has been completed.
Checkpoints are performed by calling NoSQLSubscr i pti on. doCheckpoi nt (). Note
that if an error occurred, the subscription will lose the checkpoint but the
subscription itself will not terminate, and will continue streaming. See Using
Checkpoints.

Call this method with two arguments:
— oracl e. kv. pubsub. StreanPosi tion

Identifies the location in the stream where the checkpoint was performed.
— java.lang. Throwabl e

Nul |, unless an error occurred while taking the checkpoint.

@verride
public void onCheckpoi nt Conpl et e(St reanPosition pos,
Throwabl e cause) {
if (cause == null) {
| ogger.info("Finish checkpoint at position
} else {
| ogger.warning("Fail to checkpoint at position
, cause: " + cause.get Message());

+ pos);

+ pos +

}

onChangeResul t ()

Adding and removing tables from running subscription streams are made using
asynchronous calls. The asynchronous calls will return immediately without any
return value. The result of the operation can be fetched using the onChangeResul t

4-3

Chapter 4
NoSQLSubscriber Example

callback method after the change is effective. If the change was successful,

this method will be called with a non-null stream position that represents the
first stream position for which the change has taken effect. If the change was
unsuccessful, but the subscription is still active, this method will be called with a
non-null exception that describes the cause of the failure. If the change caused
the subscription to be canceled, this method will not be called, and the onErr or
method will be called instead.

e getSubscriptionConfig()

Use this method to return the or acl e. kv. pubsub. NoSQLSubscri pti onConfi g
object used by this subscription. This method is invoked by the publisher when
it is creating a subscription.

NoSQLSubscriber Example

ORACLE

This section provides a complete, but simple, NoSQLSubscri ber example called
GSGSubscri ber Exanpl e. This implementation is used by the publisher example shown
in Streams Example.

GSGSubscri ber Exanpl e subscribes to a single table called User s. To see
the application that defines this table and writes table rows to it, see
GSGStreamsWriteTable.

To begin, we provide our imports. Notice that or g. react i vest reams. Subscri ption is
a required import. Your Java environment must have the reactive-streans. | ar file in
its classpath in order to both compile and run this example code.

package pubsub;

import java.util.List;

i mport oracl e. kv. pubsub. NoSQLSubscri ber;

i mport oracl e. kv. pubsub. NoSQLSubscri pti on;

i mport oracl e. kv. pubsub. NoSQLSubscri pti onConfi g;
i mport oracl e. kv. pubsub. St reanOperati on;

i mport oracl e. kv. pubsub. StreanPosi tion;

i mport oracle. kv. tabl e. MapVal ue;
i mport oracle. kv.tabl e. Row

i mport org.reactivestreans. Subscription;

Next we declare our class, and initialize our data members. As described previously,
this is an implementation of NoSQLSubscri ber.

cl ass GSGSubscri ber Exanpl e i npl ements NoSQLSubscri ber {

/* subscription configuration */
private final NoSQ.SubscriptionConfig config;

/* nunber of operations to stream*/
private final int nunmOps;

/* nunber of operations seen in the stream*/

4-4

ORACLE

Chapter 4
NoSQLSubscriber Example

private |long strean(ps;

private NoSQ.Subscription subscription;
private bool ean i sSubscri beSucc;
private Throwabl e causeOf Fail ure;

GSGSubscri ber Exanpl e(NoSQLSubscri ptionConfig config,
int numOps) {

this.config = config;

t hi s. nunOps = nunps;

causeOr Failure = null;

i sSubscribeSucc = fal se;
streamOps = 0;
subscription = null;

The first thing we do is implement NoSQLSubscr i ber. get Subscri ptionConfi g(). This
simply returns our NoSQLSubscri pti onConfi g object, which is provided to the class
when it is constructed by the implementing streams application. This method is how
the publisher will learn how to configure the stream for this subscriber.

@verride

publ i c NoSQ.SubscriptionConfig get SubscriptionConfig() {
return config;

}

The implementation we provide for onSubscri be() does several things. First,
it makes the NoSQLSubscri pti on class instance available to this subscriber
implementation. Notice that the instance is passed to this class as an object
of type org. reactivestreans. Subscri pti on, and that object must be cast to
NoSQLSubscri pti on.

This method is also where this subscriber begins requesting operations from the
subscription. Without that call to NoSQ.Subscri pti on. request (), this subscriber will
never receive any operations to process. For this simple implementation, this is the
only place operations are requested. In a more elaborate implementation, operations
are initially asked for here, and once that number of operations have been received
by the subscriber, more can be asked for in another part of the class — usually in
onNext ().

Finally, we signal that the subscription attempt is a success. This information is used
by our streams application when we are creating the publisher and subscriber.

@verride

public voi d onSubscribe(Subscription s) {
subscription = (NoSQ.Subscription) s;
subscri ption. request (nunQps) ;
i sSubscri beSucc = true;

4-5

Chapter 4
NoSQLSubscriber Example

Next we set up our Error and Warning handlers. Note that, when onErr or is called, the
subscription has already been canceled. Here, we do the simple thing and simply write
to the console. However, a more robust implementation would write to the application
log file, and potentially take other notifications and/or corrective actions (such as quit
processing the stream entirely), depending on the nature of the error.

@verride
public void onError(Throwable t) {
causeO Failure = t;
Systemout.printIn("Error: " + t.getMessage());

}

@verride
public void onWarn(Throwable t) {

Systemout. printIn("Warning: " + t.getMessage());
}

The application has to provide an onConpl et e() method, although the implementation
is not required to do anything, since this method is not called.

@verride

public void onConplete() {
/* no-op */

}

Because this example does not implement checkpoints (see Using Checkpoints for
more information), there is nothing to do in this method.

/* called when publisher finishes a checkpoint */
@verride
public voi d onCheckpoi nt Conpl et e(St reanPosition pos,
Throwabl e cause) {
/* no-op. This exanple doesn't inplenent checkpoints */

The onNext () method is where the subscriber receives and processes individual
stream operations in the form of St r eanOper at i on objects.

In the following method, we show how to determine what type of operation the
subscription has received (either put or del et e). What you would do with an individual
operation is up to your application's requirements. In this case, for put operations we
retrieve field information from the enclosed Row object, and write it to the console. Be
aware that this code is not very robust. In particular, we expect JSON data with a
specific schema. Because any valid JSON can be written to a JSON table column,
some defensive code is required here for a production application to ensure that the
JSON column contains the expected schema.

For del et e operations, we simply write the St r eanOper at i on object to the console.

@verride
public void onNext(StreanOperation t) {

ORACLE 4-6

Chapter 4
NoSQLSubscriber Example

switch (t.getType()) {
case PUT:
streanmps++,
Systemout. printIn("\nFound a put. Rowis:");

St reamOper ati on. Put Event pe = t.asPut();
Row row = pe. get Row();

Integer uid = row get("uid").aslnteger().get();
Systemout.printIn("UD " + uid);

MapVal ue nyjson = row. get ("myJSON'). asMap();
int quantity = nyjson.get("quantity")
.aslnteger().get();
String array =
myj son. get ("myArray").asArray().toString();
Systemout.printIn("\tQuantity: " + quantity);
Systemout.printIn("\tmyArray: " + array);
br eak;
case DELETE:
st reanOps++,
Systemout. printlIn("\nFound a delete. Rowis:");
Systemout.println(t);
br eak;

defaul t:
throw new
I11egal StateException("Receive unsupported " +
"stream operation fromshard " +
t.getRepGoupld() +
", seq: " + t.getSequenceld());
}
if (streamps == nunOps) {
get Subscription(). cancel ();
Systemout. println("Subscription cancelled after " +
"receiving " + nunOps + " operations.");

Finally, we provide a series of getter methods, which are used by our stream
application to retrieve information of interest from this subscriber. Using a Streams
Publisher shows how these are used.

String getCauseOf Failure() {
if (causeOfFailure == null) {
return "success";

}

return causeCf Fail ure. get Message();

}

bool ean isSubscriptionSucc() {
return isSubscribeSucc;
}

ORACLE 47

ORACLE

[ong get StreamDps() {
return streanOps;
}

NoSQ.Subscription get Subscription() {
return subscription;

}

Chapter 4
NoSQLSubscriber Example

4-8

Using a Streams Publisher

Each shard in the store publishes changes made to table data in the shard. Each of
these publishing streams is combined into a single stream of table write operations,
which the or acl e. kv. pubsub. NoSQLPubl i sher class can access. This class constructs
one or more NoSQLSubscri pti on class objects, each of which can be used to manage
a single subscription stream (where each subscription stream can include changes
made to one or more tables in the store).

You configure NoSQLPubl i sher using or acl e. kv. pubsub. NoSQLPubl i sher Confi g,
described next in this chapter. See Streams Example to see how the configuration
is used within a streams application.

For any JVM, only one NoSQLPubl i sher instance can be created given identical
NoSQLPubl i sher Confi g objects. After creating an instance of NoSQLPubl i sher, the
factory constructor returns the same instance of NoSQLPubl i sher for all subsequent
construction requests, if the NoSQLPubl i sher Conf i g for those requests is identical.

Two NoSQLPubl i sher Confi g objects are identical if all of the following information the
same for both objects:

e Store name
e Shard timeout
e Maximum concurrent allowed subscriptions

e Security properties use identical username and credentials

Using NoSQLPublisherConfig

Use or acl e. kv. pubsub. NoSQLPubl i sher Confi g to specify connection and
authentication information to the store. You can also use this class to configure
performance parameters.

Configuring a Connection to the Store

ORACLE

When you construct a NoSQLPubl i sher Conf i g object, you provide it with an
oracl e. kv. KVSt or eConf i g object. This object is used to provide store connection
information:

* The name of the store that your publisher is monitoring

» Alist of one or more helper host port pairs. These helper hosts are Storage Nodes
in the store. They must be resolvable using either DNS or the local / et ¢/ host s
file.

For example:

package pubsub;

i nport oracle. kv. KVStore;

5-1

Chapter 5
Using NoSQLPublisherConfig

i mport oracl e. kv. KVSt oreConfi g;
i mport oracl e. kv. KVSt or eFact ory;

String[] hhosts = {"nl.exanpl e.org:5088", "n2.exanple.org:4129"};
KVSt oreConfi g kconfig = new KVSt oreConfig("exanpl eStore", hhosts);

This simple example is sufficient to connect to a store that is not configured for
authentication. For information about connecting to a secure store, see Authenticating
to a Secure Store.

Creating a Basic NoSQLPublisherConfig Object

You use NoSQLPubl i sher Confi g. Bui | der to construct a NoSQLPubl i sher Confi g
object. The constructor for this class requires you to provide a KVSt or eConf i g object,
as well as a path to the publisher's root directory (this directory is used to contain files
necessary for the publisher's proper operation).

/I Create a miniml KVStoreConfig
String[] hhosts = {"nl. exanpl e.org:5088", "n2.exanple.org:4129"};
KVSt oreConfi g kconfig = new KVSt oreConfi g("exanpl eStore", hhosts);

final NoSQ.PublisherConfig publisherConfig =
new NoSQLPubl i sher Confi g. Bui |l der (kconfig, "/export/publisher")
Cbuild();

Once you have created the NoSQLPubl i sher Confi g object, you can use itin a call to
the NoSQLPubl i sher. get () method to obtain a NoSQLPubl i sher instance and connect
to the store. See, Authenticating to a Secure Store for an example of this.

Tuning Your Publisher

ORACLE

When you construct a NoSQLPubl i sher Confi g object, you can specify several tuning
controls:

e Maximum concurrent subscriptions

Specifies the maximum number of subscribers that this publisher can run. This
must be set to at least 1.

Use NoSQLPubl i sher Confi g. set MaxConcur rent Subs() to configure this value.
Default is 32.

* A shard timeout value. If the publisher does not hear from a source shard in the
amount of time specified here, the publisher will throw Shar dTi neout Except i on
via a call to NoSQLSubscri ber. on\r n. If a Shar dTi meout Except i on is thrown, the
stream and the connection to the shard still remain alive, just that there is no
operation received from that shard within the timeout period.

Use NoSQLPubl i sher . set Shar dTi meout Ms() to configure this value. This method
takes a | ong that represents the timeout value in milliseconds. Default is 600000
ms (10 minutes).

5-2

Chapter 5
Using NoSQLPublisherConfig

For example:

/1 Create a nminimal KVStoreConfig
String[] hhosts = {"nl.exanple.org:5088", "n2. exanple.org:4129"};
KVSt oreConfi g kconfig = new KVSt oreConfig("exanpl eStore", hhosts);

final NoSQLPublisherConfig publisherConfig =
new NoSQLPubl i sher Confi g. Bui | der (kconfig, "/export/publisher")
. set MaxConcur r ent Subs(2)
. set Shar dTi meout Ms(10000)
Cbuild();

Authenticating to a Secure Store

To authenticate to a secure store, you must provide login credentials. The simplest
way to connect your stream processing application to secure store is by specifying a
value for the or acl e. kv. security system property, which incudes the pathname of a
file containing the security property settings generated while setting up a user login for
a secure store. For more information about setting up a secure store to generate the
security property file, see Performing a Secure Oracle NoSQL Database Installation in
the Security Guide.

Note that if you choose to follow the method above, you do not need to modify your
application code. To run the example to connect to secure store, use the command
below:

java -Doracle. kv.security=nylogin
-cp $KVHOME/ |i b/ kvstore.jar:. pubsub. NoSQLSt r eanExanpl e

Reauthentication

Once the publisher has created an initial authenticated connection to the store, the
authentication credentials are lost; they are not kept in memory or in any way cached.

After the initial connection, every subscription also has to be authenticated. This
authentication process ensures that the subscriber has the appropriate read access
to the table(s) for which a subscription is being obtained. If the user is attempting to
subscribe to a single table or a small set of tables, she needs READ TABLE access
for each table. If the user wants to subscribe to any table in the store, then for
convenience that user account can be configured with READ_ANY_TABLE access.

To allow subscriptions to authenticate, you implement a Reaut hent i cat i onHandl er
class and then provide it to your NoSQLPubl i sher Conf i g object using the
NoSQLPubl i sher Confi g. set Reaut hHandl er () method.

The following example extends the authentication example shown in the previous
section to add a reauthentication handler.

ORACLE 5-3

ORACLE

Chapter 5
Using NoSQLPublisherConfig

First, you must implement Reaut hent i cat i onHandl er . The following is an example of
a very simple implementation:

package pubsub;

i mport oracl e. kv. Reaut henti cati onHandl er;
i mport oracl e. kv. Passwor dCr edenti al s;

public class M/Reaut hHandl er inpl ements Reaut henticationHandl er {
public void reauthenticate(KVStore reauthStore) {

Il The code you use to obtain the username and password strings
/'l should be consistent with the code you use to perform

[l sinple authentication for your publisher. Here we do

Il the sinmplest -- and |east secure -- thing possible.

Il This is really not what you should do for production
Il code.

“beth";
"my_cl ever _passwor d00A";

final String usernane
final String password

Passwor dCredential s cred = new PasswordCredenti al s(user nane,
password.toCharArray());

reaut hStore. | ogi n(cred);

We then extend the previous authentication example to use our implemented
Reaut hent i cat i onHandl er. We do this with a single line of code, which is in bold
in the example.

package pubsub;

/] Create a KVStoreConfig object that is configured

[l for a secure store.

String[] hhosts = {"nl.exanpl e.org:5088", "n2.exanple.org:4129"};
KVSt oreConfi g kconfig = new KVSt oreConfi g("exanpl eStore”, hhosts);

/1 Need to set some required security properties.

Properties secProps = new Properties();

secProps. set Property(KVSecurityConst ant s. TRANSPORT_PROPERTY,
KVSecuri tyConst ants. SSL_TRANSPORT _NAME) ;

/1 The client.trust file is created when you install your
/] store. It nust be noved locally to every nachine where
/1 client code will run.
secProps. set Property

(KVSecurityConstants. SSL_TRUSTSTORE_FI LE_PRCPERTY,

"/ home/ kv/client.trust");
kconfi g. set SecurityProperties(secProps);

/] Create a PasswordCredentials instance. W hard-code

5-4

Chapter 5
Streams Example

/1 the credentials here, but in a production environment
/1 this information should be provided in a significantly
/] nore secure way.

/1 username and password nust have been configured for the store
/1 by its administrator.

final String username
final String password

= "beth",;
= "my_cl ever_passwor d0OA";
Passwor dCredential s pc =

new Passwor dCredent i al s(user nane,
password.toCharArray());

/1 Create the publisher's configuration object.
/1 Keeping it sinple.
final NoSQ.PublisherConfig publisherConfig =
new NoSQLPubl i sher Confi g. Bui | der (kconfig, "/export/publisher")
. set Reaut hHandl er (new MyReaut hHandl er ())
Cbuild();

/1 Now connect to the store
try {
NoSQLPubl i sher publisher =
NoSQLPubl i sher . get (publ i sher Confi g, pc);
} catch (PublisherFail ureException pfe) {
System out . println("Connection or authentication failed.");
Systemout . println(pfe.toString());

Streams Example

This section presents an example of a streams application. While this example is
simplified as much as possible, its broad outline is typical for applications of this
nature.

This example application makes use of the example Subscriber that we described in
NoSQLSubscriber Example.

This application begins by defining information required by the application. It indicates
what table the application will watch — a single subscriber can receive operations from
multiple tables, but for this example we will only subscribe to the table User s. Also, num
is the number of operations the subscriber will request for the User s table.

Note:

Stream operations support namespaces. If you want to subscribe to a table
in a namespace, prefix the table name with a namespace and a colon (:), as
follows: ns1: Users.

We then provide Oracle NoSQL Database connection information. Because this is a
simple example that exists purely for illustration purposes, we avoid authentication

ORACLE 5-5

Chapter 5
Streams Example

issues by using a non-secure store. However, in a production environment you
will probably be required to provide authentication credentials as described in
Authenticating to a Secure Store and Reauthentication.

Finally, we provide some information that is specific to a streaming application.
MAX_SUBSCRI PTI ON_TI ME_MS is used to identify how long the application can wait
before it times out. CKPT_TABLE_NAME is the name of the checkpoint table. This
information is required when constructing a NoSQLPubl i sher, but is not otherwise
used by this particular application. For information about checkpoints, see Using
Checkpoints.

package pubsub;

i mport oracl e. kv. KVSt oreConfi g;

i mport oracl e. kv. pubsub. NoSQ.Publ i sher;;

i mport oracl e. kv. pubsub. NoSQLPubl i sher Confi g;

i mport oracl e. kv. pubsub. NoSQ.Subscri pti onConfi g;

public class GSGStreanExanpl e {

/* table to subscribe */

private static final String TABLE NAME = "Users";
/* Nunber of operations to stream*/

private static final int num= 100;

private static final String storeNane = "kvstore";
private static final String[] hhosts = {"local host:5000"};

/* max subscription allowed tine before forced termnation */
private static final |ong MAX SUBSCRI PTI ON TI ME M5 =
Long. MAX_VALUE;

private static final String rootPath = ".";
private static final String CKPT_TABLE NAME = " Checkpoi nt Tabl e";

public static void main(final String args[]) throws Exception {

final GSGStreanExanple gte = new GSGStreanExanpl e(args);
gte.run();
}

private GSGStreankxanpl e(final String[] argv) {
}

First we construct a NoSQLPubl i sher object. NoSQLPubl i sher Confi g is used to specify
the Oracle NoSQL Database connection information.

/*

* Subscribes a table. The work flow is ReactiveStream
* conpatible

x|

private void run() throws Exception {

NoSQLPubl i sher publisher = null;

ORACLE 5-6

Chapter 5
Streams Example

try {
/* step 1 : create a publisher configuration */

final NoSQ.PublisherConfig publisherConfig =
new NoSQLPubl i sher Confi g. Bui | der (
new KVSt or eConfi g(st oreName, hhosts), rootPath)
Cbuild();

/* step 2 : create a publisher */
publ i sher = NoSQLPubl i sher. get (publ i sher Config);

Next we construct a NoSQLSubscri pti onConfi g. This is where we identify the table(s)
to which we are subscribing.

/* step 3: create a subscription configuration */
final NoSQ.SubscriptionConfig subscriptionConfig =
[* streamwith specified node */
new NoSQLSubscri ptionConfi g. Bui | der (CKPT_TABLE_NAVE)
. set Subscri bedTabl es(TABLE_NANE)
Cbuild();

Now we construct our subscriber. Here, we use the NoSQLSubscr i ber implementation
that we describe in NoSQLSubscriber Example.

/* step 4: create a subscriber */
final GSGSubscriber Exanpl e subscriber =
new GSGSubscri ber Exanpl e(subscri ptionConfig, num;
Systemout. println("Subscriber created to stream" +
num + " operations.");

The above example specifies the number of events to be streamed as
100. However, if you want to do continuous streaming, you must use new
GSGSubscri ber Exanmpl e(subscri ptionConfig, Long. MAX VALUE).

Next you create a subscription. If GSGSubscr i ber Exanpl e reports an error on creating
the subscription (using the get Subscri ptionSucc() method), we throw an Exception
and quit the application with a message that identifies the nature of the error

(get CauseO Fai | ure()) and the subscriber's unique ID (get Subscri berld()).

/* step 5: create a subscription and start stream */

publ i sher. subscri be(subscri ber);

if (!subscriber.isSubscriptionSucc()) {
Systemout . println("Subscription failed for " +

subscri ber. get Subscri pti onConfi g()
. get Subscri berld() +
, reason " +
subscri ber. get CauseCf Fai lure());

t hrow new RuntineException("fail to subscribe");

}

Systemout.printin("Start stream"” + num +
" operations fromtable " + TABLE NAME);

ORACLE .

ORACLE

Chapter 5
Streams Example

At this point we put the application thread to sleep, which allows the subscriber to run
unimpeded by the parent application. Occasionally we allow this thread to wake up,
check how many stream operations have been consumed by the subscriber, and make
sure we have not exceeded our maximum amount of run time. If we have exceeded
our timeout threshold, we throw an exception and quit the application. Otherwise, we
continue to run until all of the required operations have been consumed.

/*
* Wait for the streamto finish. Throw exception if it
* cannot finish within max allowed el apsed tine
*/
final long s = SystemcurrentTimeM|1is();
whil e (subscriber.getStreanOps() < num {

final long elapsed = SystemcurrentTineMIlis() - s;

if (elapsed >= MAX SUBSCRI PTI ON_TI ME_M5) {

throw new
Runt i meException("Not done within max " +
"al | owed el apsed tine");
}

try {
Thread. sl eep(100) ;

} catch (InterruptedException e) {
t hrow new Runti neException("Interrupted!");
}

Finally, we clean up and close the application. Note that we could cancel the
subscription at this point using subscri ber. get Subscri pti on. cancel (), but our
GSGSubscr i ber Exanpl e class is already calling that in its onNext () method. For a
more robust application, you could call cancel () from the stream application itself,
particularly as a part of responding to error situations.

/* step 6: clean up */

subscri ber. get Subscription().cancel ();

publ i sher.close(true);

Systemout . println("Publisher closed normally.");

} catch (Exception exp) {
String nsg = "Error: " + exp.getMessage();
System out . println(nsg);
if (publisher !'=null) {
publisher.cl ose(exp, false);
Systemout . println("Publisher closed with error.");
}

throw exp;

} finally {
Systemout.printin("Al done.");
}

5-8

Chapter 5
Streams Example

Sample Streams Output

ORACLE

Once the User s table is loaded with sample data (see GSGStreamsWriteTable), the
output from this example program is as follows (the output is truncated at the 12th
operation for brevity):

> java pubsub. GSGSt r eanExanpl e
Subscriber created to stream 100 operati ons.
Start stream 100 operations fromtable Users

Found a put. Rowis:
ub: 0
Quantity: 10
myArray: [1,14,3,9,12,12, 13,13, 4, 6]

Found a put. Rowis:
ub: 1
Quantity: 4
myArray: [3, 14,1, 13]

Found a put. Row is:
ub: 2
Quantity: 5
myArray: [5,7,15,1,5]

Found a put. Rowis:
ub: 3
Quantity: 2
myArray: [10,7]

Found a put. Rowis:
ub: 4
Quantity: 7
myArray: [2,17,5,9, 1,10, 5]

Found a put. Row is:
ub: 5
Quantity: 5
myArray: [13,1,2,3,11]

Found a delete. Deleted rowis:
Del OP [seq: 6304, shard id: 1, primary key: {

"uid" 2
}H
Found a put. Row is:
Uub: 6
Quantity: 9

myArray: [16,7,11, 13,13, 10, 11, 15, 5]
Found a put. Row is:

ub: 7
Quantity: 2

5-9

ORACLE

myArray: [11, 3]

Found a put. Row is:
ub: 8
Quantity: 6
myArray: [12,12,5,11, 11, 3]

Found a put. Rowis:
ub: 9
Quantity: 4
myArray: [10,7,6,4]

Found a put. Rowis:
ub 10

Quantity: 8

nyArray: [3,9,18, 11,16, 12, 6, 2]

Chapter 5
Streams Example

Every time this example is run, it always starts streaming from the first table operation
seen for the User s table; that is, for the write operation that created the first row in
the table (UID 0). Instead of streaming from the beginning every time, if you want
to stream from the Nth operation, you need to implement checkpoints. These are

described in the next chapter, Using Checkpoints.

5-10

Using Checkpoints

When a subscriber opens a subscription stream, it starts consuming events

from the earliest available point in the stream, unless you specify a different

start point. To begin consuming from another location, your application must

have run and saved a checkpoint that represents a stream location. Use

NoSQLSubscri ption. get Current Posi tion() to obtain the current stream position. This
method returns as St r eanPosi ti on class. Use NoSQLSubscri pti on. doCheckpoint () to
run the actual checkpoint.

Running a checkpoint causes the current stream position to be saved in

the store using the checkpoint table you identified when you configured your
NOSQLSubscri pti on instance. Only the latest checkpoint is saved to this table. If
you want to save other checkpoints, you can serialize the St r eanPosi ti on class
representing a checkpoint, and save it to disk or a database of your choice.

¢ Note:

* You are responsible for choosing a name for the checkpoint table. Be
sure that the name is unique to your subscription. If you are using
multiple subscriptions, make sure that each subscription has a unique
name for its checkpoint table.

e Checkpoint tables are used to store checkpoint-related information.
Do not delete or change the table structure without consideration. If
you delete the table, you lose the checkpoint for this subscription.

If the subscription continues after its checkpoint table is deleted,

at the next checkpoint, the subscriber will be unable to locate

the expected checkpoint and will skip a checkpoint. The method
onCheckpoi nt Conpl et e() captures the Checkpoi nt Fai | ur eExcepti on
error message.

If you cancel the current subscription and re-create a new one, the new
subscription will create the checkpoint for you at the beginning, as long
as it has the privilege to do so.

The method NoSQLSubscr i pti on. doCheckpoi nt () runs asynchronously,

so the call returns after the checkpoint is requested, and

NoSQLSubscri ber. onCheckpoi nt Conpl et e is called when the checkpoint is complete.
TheCheckpoi nt Fai | ur eExcepti on is raised if you call this method while there is
another outstanding request for a checkpoint running for the same subscription.

Implementing Checkpoints in GSGStreamExample

This section shows how to implement checkpoints by adding the functionality to
the examples provided in Streams Example. You must also add functionality to the

ORACLE 6-1

Chapter 6
Implementing Checkpoints in GSGStreamExample

Subscriber implementation shown in NoSQLSubscriber Example. For those updates,
see the next section, Implementing Checkpoints in GSGSubscriberExample.

New additions to the original example code are indicated by bold text.

The changes to GSGSt r eansExanpl e. j ava are fairly minor. To begin, we need to import
NoSQLSt r eamivbde:

package pubsub;

i nport oracle. kv. KVSt oreConfi g;

i mport oracl e. kv. pubsub. NoSQ_Publ i sher;

i mport oracl e. kv. pubsub. NoSQLPubl i sher Confi g;

i nport oracle. kv. pubsub. NoSQLSt r eam\bde;

i mport oracl e. kv. pubsub. NoSQ.Subscri pti onConfi g;

Next, we add several new private data members.

The first of these is chkpt I nt v, indicating how many operations this application will see
before it runs a checkpoint. In this case, for illustration purposes, we are running a
checkpoint for every ten operations. If this were production code, this would probably
prove to be too frequent. Also, you are not required to take a checkpoint on a number
of operations interval. You can perform them for any reason whatsoever. You could,

for example, take checkpoints on a clock interval. Or you could take them whenever
you see a del et e operation, or whenever you see a table row written that conforms to
some meaningful criteria.

Beyond the checkpoint interval, we indicate our stream mode will be FROM CHECKPO NT.

public class GSGStreankExanmpl e {

/* table to subscribe */

private static final String TABLE NAME = "Users";
/* Nunber of operations to stream*/

private static final int num= 100;

private static final String storeName = "kvstore";
private static final String[] hhosts = {"l ocal host:5000"};

/* max subscription allowed time before forced termnation */
private static final |ong MAX SUBSCRI PTION_TI ME_MS =

Long. MAX_VALUE;
private static final String rootPath = ".";
private static final String CKPT_TABLE NAME = "Checkpoi nt Tabl e";
/* nunber of ops before a checkpoint is perforned */
private long ckptintv = 10;
private NoSQLStreanmbde streamvbde =

NoSQLSt r eamvbde. FROM_CHECKPO NT;

Next we add the desired stream mode when we configure the subscription.

public static void main(final String args[]) throws Exception {

ORACLE 6-2

Chapter 6
Implementing Checkpoints in GSGStreamExample

final GSGStreanExanpl e gte = new GSGStreanExanpl e(args);

gte.run();
}
private GSGStreanExampl e(final String[] argv) {
}
/*
* Subscribes a table. The work flow is ReactiveStream
* conpatible
*/

private void run() throws Exception {

NoSQLPubl i sher publisher = null;
try {
/* step 1 : create a publisher configuration */
final NoSQ.PublisherConfig publisherConfig =
new NoSQLPubl i sher Confi g. Bui | der (
new KVSt or eConfi g(st oreName, hhosts), rootPath)
Cbuild();

/* step 2 : create a publisher */
publ i sher = NoSQLPubl i sher. get (publ i sher Config);

/* step 3: create a subscription configuration */
final NoSQ.SubscriptionConfig subscriptionConfig =
[* streamwith specified node */
new NoSQLSubscri ptionConfi g. Bui | der (CKPT_TABLE_NAVE)
. set Subscri bedTabl es(TABLE_NANE)
. set St ream\bde(st r eamvbde)
Cbui ld();

The only other change to this application is to provide our checkpoint interval to

our NoSQLSubscr i ber implementation. Again, this change is driven purely by how we
choose to know when to take a checkpoint in this example. Your production code can,
and probably will, do something entirely different.

/* step 4: create a subscriber */
final GSGSubscriberExanpl e subscriber =
new GSGSubscri ber Exanpl e(subscri pti onConfig, num
ckptlntv);
Systemout. println("Subscriber created to stream" +
num + " operations.");

/* step 5: create a subscription and start stream*/
publ i sher. subscri be(subscri ber);
if (!subscriber.isSubscriptionSucc()) {
Systemout. println("Subscription failed for " +
subscri ber. get Subscri pti onConfi g()
. get Subscri berld() +
, reason " +
subscri ber. get CauseCf Fai lure());

t hrow new RuntineException("fail to subscribe");

ORACLE 6-3

Chapter 6
Implementing Checkpoints in GSGSubscriberExample

}

Systemout.printin("Start stream" + num +
" operations fromtable " + TABLE NAME);

/*
* Wit for the streamto finish. Throw exception if it
* cannot finish within max all owed el apsed time
*/
final Tong s = SystemcurrentTimeMI1is();
whil e (subscriber.getStreanOps() < num {

final long elapsed = SystemcurrentTineMIlis() - s;

if (elapsed >= MAX_SUBSCRI PTI ON_TI ME_MS) {

t hrow new
Runt i meException("Not done within max " +
"al | owed el apsed tine");

}

try {
Thread. sl eep(100);

} catch (InterruptedException e) {
t hrow new Runti neException("Interrupted! ");

}
}

/* step 6: clean up */
publ i sher.cl ose(true);
Systemout . println("Publisher closed normally.");

} catch (Exception exp) {

String nmsg = "Error: + exp. get Message();
System out . println(nsg);
if (publisher !'=null) {
publ i sher.cl ose(exp, false);
Systemout . println("Publisher closed with error.");

}

throw exp;

} finally {

Systemout.printin("Al done.");

Implementing Checkpoints in GSGSubscriberExample

ORACLE

In this section, we illustrate how to implement checkpoints by adding functionality to
the examples provided in NoSQLSubscriber Example.

Be aware that you must also add functionality to the example streams application
shown in Streams Example. For those updates, see the previous section,
Implementing Checkpoints in GSGStreamExample.

New additions to the original example code are indicated by bold text.

The changes to GSGSubscr i ber Exanpl e. j ava are moderately extensive. To begin, we
add some private data members necessary for our checkpoint implementation.

6-4

ORACLE

Chapter 6
Implementing Checkpoints in GSGSubscriberExample

» chkpt I nv is the checkpoint interval that we defined when we updated
GSGSt r eanmsExanpl e for checkpoints. This variable indicates the number of
operations that this subscriber sees before running a checkpoint.

» ckpt Succ is a flag to indicate whether a checkpoint is successful.

e CHECKPO NT_TI MEQUT_MS is the time in milliseconds a checkpoint can run before it
is declared a failure.

package pubsub;

import java.util.List;

i mport
i mport
i mport
i mport
i mport

i mport
i mport

i mport

oracl e.
oracl e.
oracl e.
oracl e.
oracl e.

oracl e.
oracl e.

kv.
kv.
kv.
kv.
kv.

kv.
kv.

pubsub. NoSQLSubscri ber;
pubsub. NoSQLSubscri pti on;
pubsub. NoSQLSubscri pti onConfi g;

pubsub. St reanOperati on;
pubsub. St reanPosi ti on;
tabl e. MapVal ue;

tabl e. Row;

org.reactivestreans. Subscription;

cl ass GSGSubscri ber Exanpl e i npl ements NoSQLSubscri ber {

/* subscription configuration */

private final

NoSQLSubscri ptionConfig config;

/* nunber of operations to stream*/

private final

int nunmOps;

/* nunber of operations seen in the stream*/
private |long streanps;

private NoSQLSubscription subscription;

private bool ean i sSubscribeSucc;

private Throwabl e causeC Fail ure;

/* checkpoint interval in nunber of ops */

private final

/*
*

*

*

*/

[ong ckptlnv;

true if checkpoint is successful.
because this value can technically be changed by
different threads, we declare it as volatile

private vol atile bool ean ckpt Succ;

/*

* amount of time in milliseconds that the checkpoint
* has to run before the operation tines out.

*/
private final

static long CHECKPO NT_TI MEQUT_MS = 60 * 1000;

6-5

ORACLE

Chapter 6
Implementing Checkpoints in GSGSubscriberExample

Next we change our class signature to allow specification of the checkpoint interval
when this class is constructed. We also initialize our ckpt | nv private data member.

GSGSubscri ber Exanpl e(NoSQLSubscri ptionConfig config,
int numOps, long ckptintv) {
this.config

thi s. nunmDps

= config;

= nunmOps;
causeOf Fai lure = nul I ;

i sSubscri beSucc = fal se;
streamOps = O;
subscription = null;

this.ckptlnv = ckptlntv;
}

@verride

publ i ¢ NoSQ.Subscri ptionConfig get SubscriptionConfig() {
return config;

}

@verride

public void onSubscribe(Subscription s) {
subscription = (NoSQ.Subscription) s;
subscri ption. request (nunQps) ;
i sSubscri beSucc = true;

}

@verride
public void onError(Throwable t) {
causeO Failure = t;
Systemout.printIn("Error: " + t.getMessage());

}

@verride

public void onConplete() {
/* shall be no-op */

}

@verride
public void onWarn(Throwable t) {

Systemout. printlIn("Warning: " + t.getMessage());
}

Next, we implement onCheckpoi nt Conpl et e() , which was not implemented earlier. In
this simple example, we use it only to indicate the checkpoint's success status. You
can tell if the checkpoint is successful if the cause method parameter is nul | .

Notice that we cannot examine the return status of
NoSQLSubscri ption. doCheckpoi nt () because that method runs asynchronously, in a

6-6

ORACLE

Chapter 6
Implementing Checkpoints in GSGSubscriberExample

separate thread. The reason is so that doCheckpoi nt () is free to return immediately
without waiting for the checkpoint to complete.

/* called when publisher finishes a checkpoint */
@verride
public voi d onCheckpoi nt Conpl et e(St reanPosition pos,
Throwabl e cause) {
if (cause == null) {
ckpt Succ = true;
Systemout. println("Finish checkpoint at position " +
pos);
} else {
ckpt Succ = fal se;
Systemout. printIn("Fail to checkpoint at position " +
pos + ", cause: " + cause.getMessage());

Next, we update the onNext () method to always call a new internal method,
per f or mCheckpoi nt () (described next).

We could have added logic here to determine if it is time to run a checkpoint. Instead,
we push that functionality into the new doCheckpoi nt () method.

@wverride
public void onNext (StreanOperation t) {

switch (t.getType()) {
case PUT:
streanOps++;
Systemout. println("\nFound a put. Rowis:");

St reamOper ati on. Put Event pe = t.asPut();
Row row = pe. get Row();

Integer uid = row get("uid").aslnteger().get();
Systemout.printIn("UD " + uid);

MapVal ue nyjson = row. get ("myJSON'). asMap();
int quantity = nmyjson.get("quantity")
.aslnteger().get();

String array =

myj son. get ("myArray").asArray().toString();
Systemout.printIn("\tQuantity: " + quantity);
Systemout.printin("\tnyArray: " + array);
break;

case DELETE:

st reanOps++,;
Systemout. printIn("\nFound a delete. Rowis:");
Systemout.printin(t);
break;

defaul t:
t hrow new

6-7

ORACLE

Chapter 6
Implementing Checkpoints in GSGSubscriberExample

I11egal StateException("Receive unsupported " +
"stream operation fromshard " +
t.getRepGoupld() +
", seq: " + t.getSequenceld());
}

per f or mCheckpoi nt () ;
if (streamps == nunOps) {
get Subscription(). cancel ();
Systemout. println("Subscription cancelled after " +
"receiving " + nunOps + " operations.");

Finally, we implement a new private method, per f or nCheckpoi nt () . This method
implements the bulk of the checkpoint functionality.

In this method, we first check if chkpt | nv is 0. If it is, we return:

private void perfornCheckpoint() {

[* 1f 0, turn off checkpointing */
if (ckptinv == 0) {

return;
}

A checkpoint is run if the number of st r eanOps is greater than zero, and if

the number of st r eanOps is evenly divisible by ckpt | nv. If these conditions

are met, NoSQLSubscri ption. get Current Posi tion() is used to get the current
StreanPosi tion, and then NoSQLSubscri pti on. doCheckpoi nt () is used to actually
perform the checkpoint.

Finally, once the checkpoint concludes, we check its success status. Regardless of
the success status, we report it to the console, and then we are done. For production
code, we recommend that you consider taking more elaborate actions here, especially
if the checkpoint was not successful.

if (ckptSucc) {
System out . println("\ nCheckpoint succeeded after "

+ streanOps +
" operations at position " + ckptPos +

, elapsed time inns " +

(SystemcurrentTineMIlis() - start));
/* reset for next checkpoint */
ckpt Succ = fal se;

} else {
System out . println("\ nCheckpoint timeout " +
"at position " + ckptPos +
", elapsed time inns " +
(SystemcurrentTimeM I lis() -
start));
}
}
}

6-8

Chapter 6
Example Checkpoint Behavior

private bool ean i sCkpt Ti meout (1 ong start) {
return (SystemcurrentTineMIlis() - start) >
CHECKPOI NT_TI MEQUT_MS;

}

String getCauseOf Failure() {
if (causeOfFailure == null) {
return "success";
}

return causeCf Fail ure. get Message();

}

bool ean isSubscriptionSucc() {
return isSubscribeSucc;
}

l ong get StreamDps() {
return streanQOps;
}

NoSQ.Subscription get Subscription() {
return subscription;
}

Example Checkpoint Behavior

ORACLE

As shown in Sample Streams Output, the reason why we want to implement
checkpoints is so that our streams application will not consume operations from the
very beginning of the stream every time it is run. Now that we have implemented
checkpoints, our application will begin streaming from the last saved checkpoint.

On the initial run, of 100 operations, the application's behavior is no different from
the original application, with the exception of the checkpoints. (Output is truncated for
brevity.)

> java pubsub. GSGSt r eanExanpl e
Subscriber created to stream 100 operati ons.
Start stream 100 operations fromtable Users

Found a put. Rowis:
ub 0
Quantity: 10
myArray: [19,10, 3,6, 14,17, 20, 8, 7, 20]

Found a put. Rowis:
ub 1
Quantity: 5
myArray: [2,3,10,12, 5]

Found a put. Rowis:

ub 2
Quantity: 9

6-9

ORACLE

Chapter 6
Example Checkpoint Behavior

myArray: [16,6,19,17,6,11, 19,1, 6]
ski pped ops for brevity ...

Found a put. Row is:

ub: 9
Quantity: 1
myArray: [2]

Fi ni sh checkpoint at position {kvstore(id=1500857641631):
[rgl(vlsn=69)]}

Checkpoi nt succeeded after 10 operations at position
{kvstore(id=1500857641631): [rgl(vIsn=69)]}, elapsed time in nms 36

Found a put. Rowis:
ub 10
Quantity: 3
myArray: [4,7,9]

Found a put. Rowis:
ub 11
Quantity: 5
myArray: [14,9, 14,14, 12]

ski pped ops for brevity ...

Found a delete. Rowis:

Del OP [seq: 233, shard id: 1, primary key: {
"uid" : 54

}H

Found a put. Rowis:
ub 88

Quantity: 6
myArray: [4,12,2,2,11,9]

Found a put. Rowis:

ubD: 89
Quantity: 1
myArray: [4]

Fail to checkpoint at position {kvstore(id=1500857641631):
[rgl(vlsn=249)]}, cause: Cannot do checkpoint because there
is a concurrently running checkpoint for subscriber 1_0

Fi ni sh checkpoint at position {kvstore(id=1500857641631):
[rgl(vlsn=249)]}

Checkpoi nt succeeded after 100 operations at position
{kvstore(id=1500857641631): [rgl(vlsn=249)]}, elapsed tine in nms 42
Publ i sher cl osed normal ly.

Al'l done.

Notice in the previous output that at least one checkpoint failed to complete because
there was already a concurrently running checkpoint. This happened because we are
taking checkpoints far too frequently in this example. As a consequnce, we tried to

6-10

ORACLE

Chapter 6
Example Checkpoint Behavior

take a checkpoint before the previous checkpoint finished. Extending the checkpoint
interval to something more reasonable would eliminate the error situation.

Having completed one run of the example program, a subsequent run will begin where
the previous run left off. In this example run, the previous stream left off on the
database write that created the row with UID 89. The next run begins with the write
operation that created row UID 90.

> java pubsub. GSGSt r eanExanpl e
Subscriber created to stream 100 operati ons.
Start stream 100 operations fromtable Users

Found a put. Rowis:
ub 90
Quantity: 3
myArray: [3,1,8]

Found a put. Rowis:
ub 91
Quantity: 4
myArray: [2,9,6,13]

Found a put. Row is:
ub 92

Quantity: 6
myArray: [2,3,9,9,7,3]

ski pped ops for brevity ...

6-11

Scaling a Streams Application

ORACLE

You can scale a single streaming service to run on multiple nodes to handle a high
volume of stream events from large Oracle NoSQL Database stores. The streaming
service can use multiple subscribers to stream data from the Oracle NoSQL Database
store.

The stream processing application does not need to know the topology of the Oracle
NoSQL Database store, but can simply add or remove more independent subscribers
as needed. All that the stream processing application needs to specify is the number
of subscribers and a subscriber ID.

The following illustration depicts how a stream application can be scaled to use two
clients to stream data from the six shards of the Oracle NoSQL Database store:

/ \\ Oracle NoSQL Database
Stream Subscription Service
Shard 1 \\
Shard 2 NoSQL Subscriber
NoSQLPublisher
setSubscriptionld(2, 0)
Shard 3 L—
Subscription Senvice-1 running on Node/JVM-1
Shard 4
‘\\N
/ NoSQL Subscriber
Shard 5 NoSQLPublisher
selSubscriptionid(2, 1)
Subscription Senvice-2 running on NodelJViM-2
Shard 6 L]

Oracle NoSQL Dalabase Store

The Oracle NoSQL Database store strives to achieve even distribution of streams
among its subscribers. As shown in the illustration, there are six shards and two
subscribers. In this example, each subscriber receives streams from three shards. The
subscriber does not choose which shard it gets streams from. The system determines
this automatically, and the decision is transparent to the subscribers. In cases where
there are more shards than of subscribers (as in this example), some subscribers can
receive streams from more than one shard.

7-1

Chapter 7
Scaling Subscribers

< Note:

¢ The maximum number of scalable subscribers cannot exceed the
number of shards. For example, if the Oracle NoSQL Database has six
shards, subscribers cannot be scaled to more than six clients.

e Oracle NoSQL Databasethat you scale stream processing applications
by running them on different nodes to benefit from newly added
resources.

Although scalable subscribers can be created and run inside separate JVMs on the
same node, such configuration would not have any benefit over running a single
subscriber without using scalable subscribers. In our example, running two scalable
subscribers inside different JVMs (but within the same node), streaming over three
shards each, would not benefit over running a single subscriber on the same node that
is subscribed to the entire (six shards) Oracle NoSQL Database store.

Scaling Subscribers

To add or remove subscribers running on different nodes, NoSQLSubscri pti onConfi g
has to be created with the following additional builder API.

/* step 3: create a subscription configuration */
final NoSQLSubscriptionConfig subscriptionConfig =
Il Scal abl e subscriber should set Subscriber Id
[l with 2 as total nunmber of subscribers and
/1 0 as its own Subscriberld within the group of 2 subscribers

new NoSQLSubscri ptionConfig. Buil der (CKPT_TABLE_NANE)
. set Subscri bedTabl es("usert abl e")

. set Subscri ber | d(new NoSQ.Subscri berld(2,0))

. set St ream\bde(st r eanmvbde)

Cbuild();

The API set Subscri berld() takes a single argument NoSQLSubscri ber | D.
NoSQLSubscri ber 1 d is an object with both total number of subscribers and subscriber
index. Hence, we need the following two arguments to construct a NoSQLubscri ber | d
object.

e Number of Subscribers

The total number of subscribers that would be running on different

nodes. For example, in the code example above, . set Subscri ber | d(new
NoSQLSubscri ber1d(2,0)), the NoSQLSubscri ber | d created has two subscribers
in total.

e Subscriber Index

A numerical index of the current subscriber among the total number of
subscribers. Note that a numerical index begins with 0. For example, two
subscriber clients can be identified as 0 and 1.

ORACLE 7-2

GSGStreamsWriteTable

The examples in this document rely on a User s table that is populated with data. The

application we used to create and populate this table is provided in this appendix.

¢ Note:

While this example does not use hamespaces, the streaming API supports
them. To assess a table in a namespace, such as ns1, prefix the table name
with the namespace, followed by a colon. For example: ns1: Users.

We provide this class without comment and solely for completeness. The actions taken
by this class should be familiar to anyone who has used the Oracle NoSQL Database
Java API. See Java Direct Driver Developer's Guide.

package pubsub;

i mport java.util.
i mport java.util.
i mport java.util.
i mport java.util.

i mport oracle.
i mport oracle.
i mport oracle.
i mport oracle.
i mport oracle.

i mport oracle.
i mport oracle.
i mport oracle.
i mport oracle.

kv.
kv.
kv.
kv.
kv.

kv

kv

Arrays;
Arraylist;
Li st;
Random

Faul t Excepti on;
KVSt or e;

KVSt or eConfi g;
KVSt or eFact ory;
St at ement Resul t;

.tabl e. PrimryKey;
kv.
kv.

t abl e. Row;
tabl e. Tabl e;

.tabl e. Tabl eAPI ;

public class GSGStreamsWiteTable {

private static final String[] hhosts = {"local host:5000"};
private static final int MAX_ROAS = 200;

public static void main(String args[]) {
GSGStreansWiteTabl e gswt = new GSGStreamsWiteTabl e();

gswt. run(args);

Systemout.printIn("Al done.");

ORACLE

A-1

ORACLE

Appendix A

private void run(String args[]) {

}

KVSt oreConfi g kconfig = new KVSt oreConfig("kvstore", hhosts);
KVStore kvstore = KVStoreFactory. get Store(kconfig);

defineTabl e(kvstore);
writeTabl e(kvstore);

private void defineTabl e(KVStore kvstore) {

}

Systemout. printIn("Creating table schema....");
Tabl eAPI tabl eAPI = kvstore. get Tabl eAPI ();
StatenentResult result = null;

String statement = null;

try {
statenent = "DROP TABLE | F EXI STS Users";

result = kvstore. executeSync(statenent);
di spl ayResul t (result, statement);

statenment = "CREATE TABLE Users (" +

" uid INTEGER " +

" myJSON JSON, " +

" PRI MARY KEY(uid))";
result = kvstore. executeSync(statement);
di spl ayResul t (result, statement);

} catch (I1legal Argunent Exception e) {
Systemout.printin("Invalid statement:\n" +
e. get Message());
} catch (Faul t Exception e) {
Systemout. println
("Statenent couldn't be executed, please retry:

private void witeTabl e(KVStore kvstore) {

Systemout.printin("In witeTable....");
Tabl eAPl tableH = kvstore. get Tabl eAPI ();

Tabl e nyTabl e = tabl eH. get Tabl e("Users");
int count = 0;
Random rand = new Random();

/*
* Wite rows to the table, using randominformation
* for the JSON dat a.
*/
while (count < MAX_ROAB) {
Row row = nyTabl e. creat eRow() ;
row. put ("uid", count);

int g =rand.nextlnt(10) + 1;

Li st<Integer> integersList = new ArraylList<Integer>();
int a count = Q;

A-2

Appendix A

while (a_count < q) {
int val =rand.nextlnt(q + 10) + 1,
i ntegersList.add(val);
a_count ++;

}

String json = "{";
json += "\"quantity\" :
json += "\"nyArray\" :
json +="}1";

+q+
+ integersList.toString();

[* Wite the rowto the store */
row. put Json("myJSON', json);
tabl eH put (row, null, null);

/* Randomy delete table rows */
int shoul dDel ete = rand. next|nt (10);
if (shouldDelete == 1) {
/* Randomy select a rowto delete */
int toDelete = rand. nextlnt(count);
Pri maryKey pk = nyTabl e. createPrimaryKey();
pk. put ("uid", toDelete);
t abl eH. del ete(pk, null, null);
}

count ++;

}

Systemout.printIn("Wote " + count +

rows");

}

private void displayResult(StatementResult result,
String statenent) {

Systemout . println(" ");
if (result.isSuccessful()) {

Systemout. println("Statement was successful :\n\t" +

statenent);

Systemout.printin("Results:\n\t" + result.getlnfo());
} else if (result.isCancelled()) {

Systemout. println("Statement was cancelled:\n\t" +

statenent);
} else {
/*
* statement wasn't successful: may be in error, or may
* still be in progress.
*/

if (result.isDone()) {
Systemout.printIn("Statement failed:\n\t" +
statenent);
Systemout. printIn("Problem\n\t" +
result.get ErrorMessage());
} else {
Systemout.printIn("Statement in progress:\n\t" +
statenent);
Systemout.printIn("Status:\n\t" +
result.getinfo());

ORACLE A-3

Appendix A

ORACLE' A4

	Contents
	Preface
	Conventions Used in This Book

	1 Introduction to the Oracle NoSQL Database Streams API
	Architecture
	API Components
	Checkpoints
	Dynamic Streaming
	System Requirements
	Limitations
	Compiling and Running a Streams Application

	2 Using the StreamOperation Class
	3 Working with Subscriptions
	Using NoSQLSubscriptionConfig
	NoSQLStreamMode
	Using NoSQLSubscription

	4 Implementing Subscribers
	Using the NoSQLSubscriber Interface
	NoSQLSubscriber Example

	5 Using a Streams Publisher
	Using NoSQLPublisherConfig
	Configuring a Connection to the Store
	Creating a Basic NoSQLPublisherConfig Object
	Tuning Your Publisher
	Authenticating to a Secure Store
	Reauthentication

	Streams Example
	Sample Streams Output

	6 Using Checkpoints
	Implementing Checkpoints in GSGStreamExample
	Implementing Checkpoints in GSGSubscriberExample
	Example Checkpoint Behavior

	7 Scaling a Streams Application
	Scaling Subscribers

	A GSGStreamsWriteTable

