Oracle® NoSQL Database
Administrator's Guide

Release 21.1
E85373-22
May 2021

ORACLE"

Oracle NoSQL Database Administrator's Guide, Release 21.1
E85373-22
Copyright © 2011, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Conventions Used in This Book XVi
Diversity and Inclusion XVi
1 Installing Oracle NoSQL Database
Installation Prerequisites 1-1
Installation 1-2
Installation Configuration Parameters 1-3
Configuring Your KVStore Installation 1-6
Configuring the Firewall 1-10
2 Upgrading an Existing Oracle NoSQL Database Deployment
Preparing to Upgrade 2-1
General Upgrade Notes 2-2
Upgrade to a New Release from an Existing Release 2-4
Using a Script to Upgrade to a New Release 2-10
Upgrading JDK on your Oracle NoSQL Database deployment 2-11
3 Plans
Using Plans 3-1
Tracking Plan Progress 3-2
Plan States 3-2
Reviewing Plans 3-3
Plan Ownership 3-3
Pruning Plans 3-4
4 Configuring the KVStore
Configuration Overview 4-1
Start the Administration CLI 4-1

ORACLE

The plan Commands 4-3

Configure and Start a Set of Storage Nodes 4-3
Name your KVStore 4-3
Create a Zone 4-4
Create an Administration Process on a Specific Host 4-6
Create a Storage Node Pool 4-7
Create the Remainder of your Storage Nodes 4-7
Create Additional Admin Processes 4-8
Create and Deploy Replication Nodes 4-10
Configuring Security with Remote Access 4-11
Configuring with Multiple Zones 4-12
Adding Secondary Zone to the Existing Topology 4-20
Using Master Affinity Zones 4-24

Benefits of Master Affinity Zones 4-25

Adding a Master Affinity Zone 4-25

Losing a Master Affinity Zone Node 4-27
Using a Script to Configure the Store 4-27
Smoke Testing the System 4-28
Troubleshooting 4-30

Where to Find Error Information 4-31

Service States 4-31

Useful Commands 4-32

5 Configuring Multi-Region KVStores

Use Case 1: Set up Multi-Region Environment 5-1
Deploy KVStore 5-2
Set Local Region Name 5-3
Configure XRegion Service 5-4
Start XRegion Service 5-8
Create Remote Regions 5-9
Create Multi-Region Tables 5-10

Create multi-region table with an MR_COUNTER column 5-13
Access and Manipulate Multi-Region Tables 5-15
Stop XRegion Service 5-16

Use Case 2: Expand a Multi-Region Table 5-16
Prerequisites 5-17
Create MR Table in New Region 5-20
Add New Region to Existing Regions 5-22
Access MR Table in New and Existing Regions 5-25

Use Case 3: Contract a Multi-Region Table 5-25

ORACLE iv

Alter MR Table to Drop Regions 5-25
Use Case 4: Drop a Region 5-26
Prerequisites 5-27
Isolate the Region 5-27
Drop MR Tables in the Isolated Region 5-28
Drop the Isolated Region 5-29
Troubleshooting multi-region kvstore setup 5-30
6 Determining Your Store's Configuration

Steps for Changing the Store's Topology 6-2
Make the Topology Candidate 6-2
Transforming the Topology Candidate 6-3
Increase Data Distribution 6-4
Increase Replication Factor 6-5
Balance a Non-Compliant Topology 6-6
Contracting a Topology 6-7

View the Topology Candidate 6-8
Validate the Topology Candidate 6-8
Preview the Topology Candidate 6-9
Deploy the Topology Candidate 6-9
Verify the Store's Current Topology 6-11
Deploying an Arbiter Node Enabled Topology 6-13

7 Administrative Procedures

Backing Up the Store 7-1
Taking a Snapshot 7-1
Snapshot Activities 7-2
Managing Snapshots 7-4
Recovering the Store 7-6
Using the Load Program 7-6
Load Program and Metadata 7-8
Restoring Directly from a Snapshot 7-10
Recovering from Data Corruption 7-11
Detecting Data Corruption 7-11
Data Corruption Recovery Procedure 7-12
Replacing a Failed Disk 7-13
Replacing a Failed Storage Node 7-15
Using a New Storage Node 7-16
Task for an Identical Node 7-18

ORACLE

Repairing a Failed Zone by Replacing Hardware
Using Oracle NoSQL Migrator
Overview
Terminology used with NoSQL Data Migrator
Using Oracle NoSQL Data Migrator
Sources and Sinks
Supported Sources and Sinks
Source Configuration Templates
Sink Configuration Templates
Transformation Configuration Templates
Use Case Demonstrations
Migrate from Oracle NoSQL Database Cloud Service to a JSON file

Migrate from Oracle NoSQL Database On-Premise to Oracle NoSQL
Database Cloud Service

Migrate from MongoDB-Formatted JSON file to an Oracle NoSQL Database
Cloud Service

Troubleshooting the NoSQL Data Migrator
Oracle NoSQL Data Migrator Vs. Import/Export Utility
Transitioning from Import/Export to NoSQL Data Migrator
Using the Import and Export Utilities
Import and Export Functionality
Understanding Data Sources and Data Targets (Sinks)
Importing Data
Exporting Data
Examples
Increasing Storage Node Capacity
Managing Storage Directory Sizes
Managing Disk Thresholds
Specifying Storage Directory Sizes
Specifying Differing Disk Capacities
Monitoring Disk Usage
Handling Disk Limit Exception
Increasing Storage Directory Size
Adding a New Shard
Managing Admin Directory Size
Admin is Working
Admin is not Working
Disabling Storage Node Agent Hosted Services
Verifying the Store
Monitoring the Store
Events
Setting Store Parameters

ORACLE

7-20
7-21
7-21
7-22
7-25
7-27
7-28
7-28
7-36
7-47
7-50
7-50

7-55

7-57
7-59
7-63
7-70
7-71
7-71
7-72
7-72
7-73
7-73
7-75
7-79
7-79
7-80
7-81
7-82
7-84
7-85
7-90
7-92
7-93
7-93
7-94
7-95
7-99
7-100
7-101

Vi

Changing Parameters 7-102

Setting Store Wide Policy Parameters 7-103
Admin Parameters 7-103
Changing Admin JVM Memory Parameters 7-104
Storage Node Parameters 7-106
Replication Node Parameters 7-109
Global Parameters 7-110
Security Parameters 7-110
Admin Restart 7-112
Replication Node Restart 7-113
Removing an Oracle NoSQL Database Deployment 7-113
Modifying Storage Node HA Port Ranges 7-114
Modifying Storage Node Service Port Ranges 7-115
Storage Node Not Deployed 7-115
Storage Node Deployed 7-116

8 Avalilablity, Failover and Switchover Operations

Availability and Failover 8-1
Replication Overview 8-1
Loss of a Read-Only Replica Node 8-2
Loss of a Read/Write Master 8-3
Unplanned Network Partitions 8-3
Master is in the Majority Node Partition 8-4
Master is in the Minority Node Partition 8-5
No Majority Node Partition 8-5
Failover and Switchover Operations 8-6
Repairing a Failed Zone 8-7
Performing a Failover 8-7
Performing a Switchover 8-11
Zone Failover 8-14
Durability Summary 8-15
Consistency Summary 8-16

o Monitoring Oracle NoSQL Database

Software Monitoring 9-1
System Log File Monitoring 9-2
Java Management Extensions (JMX) Monitoring 9-3
Monitoring for Storage Nodes (SN) 9-3
Metrics for Storage Nodes 9-3

ORACLE vii

Java Management Extensions (JMX) Notifications 9-5
Monitoring for Replication Nodes (RN) 9-20
Metrics for Replication Node 9-20
Monitoring for Arbiter Nodes 9-25
Metrics for Arbiter Nodes 9-25
Monitoring for Administration (Admin) Nodes 9-27
Metrics for Admin Nodes 9-27
Hardware Monitoring 9-29
Monitoring for Hardware Faults 9-29
The Network 9-29
Persistent Storage 9-30
Servers 9-42
Detecting and Correlating Server Failures to NoSQL Log Events 9-42
Resolving Server Failures 9-42
Terminology Review 9-43
Assumptions 9-45
Replacement Procedure 1: Replace SN with Identical SN 9-45
Replacement Procedure 2: New SN Takes Over Duties of Removed SN 9-47
Examples 9-51
Setup 9-51
Example 1: Replace a Failed SN with an Identical SN 9-56
Example 2: New SN Takes Over Duties of Existing SN 9-62
10 Standardized Monitoring Interfaces

Java Management Extensions (JMX) 10-1
Enabling JMX Monitoring 10-1
In the Bootfile 10-2
By Changing Storage Node Parameters 10-2
Displaying the Oracle NoSQL Database MBeans 10-2

11 Using ELK to Monitor Oracle NoSQL Database
Enabling the Collector Service 11-1
Setting Up Elasticsearch 11-2
Setting Up Kibana 11-2
Setting Up Logstash 11-2
Setting Up Filebeat on Each Storage Node 11-3
Using Kibana for Analyzing Oracle NoSQL Database 11-3
Creating Index Patterns 11-4
ORACLE viii

Analyzing the Data 11-4
12 Using Plugins for Development

About Oracle Enterprise Manager (OEM) Plugin 12-1
Importing and Deploying the EM Plug-in 12-2
Deploying Agent 12-2
Adding NoSQL Database Targets 12-4
Components of a NoSQL Store 12-9
Store Targets 12-9
Store Page 12-9
Storage Node Page 12-11

Shard Page 12-11
Replication Node Page 12-12

About IntelliJ Plugin 12-13
Setting Up IntelliJ Plug-in 12-14
Creating a NoSQL Project in IntelliJ 12-14
Connecting to Oracle NoSQL Database from IntelliJ 12-15
Managing Tables Using the IntelliJ Plugin 12-16
About Eclipse plugin 12-17

13 Oracle NoSQL Database Proxy and Driver

Oracle NoSQL Database Proxy 13-1
About the Oracle NoSQL Database Proxy 13-1
Configuring the Proxy 13-2
Using the Proxy in a Non-Secure kvstore 13-4
Using the Proxy in a Secure kvstore 13-6
Oracle NoSQL Database Java Driver 13-12
About the Oracle NoSQL Java SDK 13-12
Creating NoSQLHandle 13-13
Creating Regions 13-15
Creating Tables and Indexes 13-15
Adding Data 13-16
Adding JSON Data 13-17
Reading Data 13-18
Using Queries 13-19
Deleting Data 13-20
Modifying Tables 13-21
Drop Tables and Indexes 13-22
Drop Regions 13-23

ORACLE

Handling Errors 13-23

Oracle NoSQL Database Python Driver 13-24
A Installing and Configuring a Non-secure Store
Installation Configuration A-1

B Admin CLI Reference

aggregate B-3
aggregate table B-3
await-consistent B-4
change-policy B-5
configure B-5
connect B-6
connect admin B-6
connect store B-7
delete B-7
delete kv B-8
delete table B-8
execute B-9
exit B-10
get B-10
get kv B-10
get table B-13
help B-14
hidden B-15
history B-15
load B-15
logtail B-18
namespace B-18
page B-18
ping B-18
plan B-26
plan add-index B-27
plan add-table B-28
plan cancel B-30
plan change-parameters B-30
plan change-storagedir B-32
plan change-user B-33
plan create-user B-34

ORACLE X

plan deploy-admin B-34

plan deploy-datacenter B-35
plan deploy-sn B-35
plan deploy-topology B-37
plan deploy-zone B-38
plan deregister-es B-40
plan drop-user B-40
plan enable-requests B-41
plan evolve-table B-42
plan execute B-43
plan failover B-44
plan grant B-45
plan interrupt B-45
plan migrate-sn B-46
plan network-restore B-46
plan register-es B-47
plan remove-admin B-48
plan remove-datacenter B-48
plan remove-index B-48
plan remove-sn B-48
plan remove-table B-49
plan remove-zone B-49
plan repair-topology B-49
plan revoke B-50
plan start-service B-51
plan stop-service B-53
plan verify-data B-54
Executing verify-data B-56

plan wait B-57
pool B-57
pool clone B-57
pool create B-58
pool join B-58
pool leave B-58
pool remove B-59

put B-59
put kv B-59

put table B-60
repair-admin-quorum B-61
show B-62
show admins B-62

ORACLE Xi

show datacenters
show events
show faults
show indexes
show mrtable-agent-statistics
show parameters
show perf
show plans
show pools
show snapshots
show regions
show tables
show topology
show upgrade-order
show users
show versions
show zones
shapshot
shapshot create
snapshot remove
table
table-size
timer
topology
topology change-repfactor
topology change-zone-arbiters
topology change-zone-master-affinity
topology change-zone-type
topology clone
topology contract
topology create
topology delete
topology list
topology preview
topology rebalance
topology redistribute
topology validate
topology view
verbose

verify

verify configuration

ORACLE

B-63
B-63
B-64
B-65
B-66
B-73
B-74
B-74
B-75
B-75
B-75
B-75
B-76
B-76
B-77
B-77
B-78
B-79
B-79
B-79
B-79
B-79
B-83
B-83
B-84
B-84
B-85
B-85
B-85
B-86
B-86
B-87
B-87
B-88
B-88
B-88
B-88
B-89
B-89
B-89
B-89

Xii

verify prerequisite B-90
verify upgrade B-90

C Admin Utility Command Reference

diagnostics C-1
export C-2
Export Utility Command Line Parameters C-2
Export Utility Configuration File C-4
Monitoring Export Progress C-5
Export Package Structure C-5
Schema Management C-6
Export Exit Codes C-7
generateconfig C-7
help C-10
import C-10
Import Utility Command Line Parameters C-10
Import Utility Configuration File C-13
MONGODB_JSON Format - Automatic Table Creation C-16
Monitoring Import Progress C-16
Import Exit Codes C-17
Valid JSON Files C-17
Examples using import command C-18
kvlite C-20
load admin metadata C-21
load store data C-22
makebootconfig C-23
ping C-28
Ping Command Line Parameters C-29
Ping Exit Codes C-31
Ping Report Text Output C-32
Ping Report JSON Output C-33
restart C-36
runadmin C-36
securityconfig C-37
start C-39
status C-39
stop C-39
version C-40
xrstart C-40

ORACLE Xiii

xrstop C-41

D Initial Capacity Planning

Shard Capacity D-2
Application Characteristics D-2
Replication Factor D-2
Average Key Size D-2
Average Value Size D-3

Read and Write Operation Percentages D-3
Hardware Characteristics D-3

Shard Storage and Throughput Capacities D-4
Shard Storage Capacity D-4

Shard I/O Throughput capacity D-4
Memory and Network Configuration D-5
Machine Physical Memory D-5
Sizing Advice D-5
Determine JE Cache Size D-6
Machine Network Throughput D-7
Estimate total Shards and Machines D-8
Number of Partitions D-9

E Tuning

Turn off the swap E-1
Linux Page Cache Tuning E-2
OS User Limits E-3
File Descriptor Limits E-3
Process and Thread Limits E-3
Linux Network Configuration Settings E-3
Server Socket Backlog E-4
Isolating HA Network Traffic E-4
Receive Packet Steering E-5
Check AES Intrinsics Settings E-6
Viewing Key Distribution Statistics E-6
Examples: Key Distribution Statistics E-10

F Solid State Drives (SSDs)

Trim requirements F-1

ORACLE Xiv

Enabling Trim

G Diagnostics Utility

F-1

Setting up the tool G-1

Packaging Information and Files G-2

Verifying Storage Node configuration G-4
ORACLE XV

Preface

Preface

This document describes how to install and configure Oracle NoSQL Database
(Oracle NoSQL Database).

This book is aimed at the systems administrator responsible for managing an Oracle
NoSQL Database installation.

Conventions Used in This Book

The following typographical conventions are used within this manual:
Information that you are to type literally is presented in monospaced font.

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME
directory."

< Note:

Finally, notes of special interest are represented using a note block such as
this.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values

having a diverse workforce that increases thought leadership and innovation. As

part of our initiative to build a more inclusive culture that positively impacts our
employees, customers, and partners, we are working to remove insensitive terms from
our products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

ORACLE XVi

Installing Oracle NoSQL Database

This chapter describes the installation process for Oracle NoSQL Database in a multi-
host environment. If you are planning a large system for production use, please read
Initial Capacity Planning to estimate the number of storage nodes on which you need
to install the software. For smaller systems, when you already know the number of
storage nodes you will use, follow the instructions that follow. The Oracle NoSQL
Database will make the best use of the storage nodes you provide.

Installation Prerequisites

Make sure that you have Java SE 8 or later installed on all of the hosts that you are
going to use for the Oracle NoSQL Database installation. Use this command to verify
the version:

java -version

Note:

Oracle NoSQL Database is compatible with, and is tested and certified
against Oracle Java SE 8 (64 bit). We recommend upgrading your
systems to the latest Java releases to take advantage of all bug fixes

and performance improvements. The release notes included in the Oracle
NoSQL Database download specify the exact Java versions used for
certification.

Be sure that the | ps utility is working. Installing the JDK makes the j ps tools
available for use by the Storage Node Agent (SNA) to optimally manage Oracle
NoSQL Database processes. The | ps tools also allow you to diagnose any issues
that may turn up. While Oracle NoSQL Database can operate without the j ps tools,
their absence diminishes the database’s ability to manage its processes.

If the JDK and its tools are installed correctly, the output from invoking j ps should
list at least one Java process (the j ps process itself). Use this command to verify
successful installation:

% ps
16216 Jps

ORACLE 1-1

Chapter 1
Installation

< Note:

You must run the commands listed above as the same OS user who will run
the Oracle NoSQL Database SNA processes.

Linux is officially supported platform for the Oracle NoSQL Database. Running the
Oracle NoSQL Database requires a 64-bit JVM.

You do not necessarily need root access on each node for the installation process.

Finally, make sure that each of the target machines is running some sort of reliable
clock synchronization. Generally, a synchronization delta of less than half a second is
required. Network Time Protocol (nt p) is sufficient for this purpose.

Installation

Follow this procedure to install the Oracle NoSQL Database:

ORACLE

1.

Choose a directory where the Oracle NoSQL Database package files (libraries,
Javadoc, scripts, and so forth) should reside. We recommend using the same
directory path on all nodes in the installation. Use different directories for the
Oracle NoSQL Database package files (referred to as <KVHOVE> in this document)
and the Oracle NoSQL Database data (referred to as KVROOT). Both the <KVHOVE>
and KVROOT directories should be local to the node, and not on a Network File
System.

" Note:

To make future software upgrades easier, adopt a convention for
<KVHOVE> that includes the release number. Always use a <KVHOVE>
location such as / var/ kv/ kv- M N. O, where M N. Orepresent the software
release.major.minor numbers. You can achieve this easily by using unzip
or untar on the distribution into a common directory (/ var/ kv in this
example).

Extract the contents of the Oracle NoSQL Database package (kv-M N. O. zi p or
kv-M N. O. tar. gz) to create the <KVHOVE> directory. For example, <KVHOVE> is the
kv- M N. O/ directory created by extracting the package). If <KVHOMVE> resides on a
shared network directory (which we do not recommend) you need only unpack it
on one machine. If <KVHOVE> is local to each machine, unpack the package on
each node.

Verify the installation using the following command on one of the nodes:

java - Xmk64m - Xms64m -j ar <KVHOMVE>/ | i b/ kvclient.jar

You should see some output that looks like this:

11gR.MN.O (....)

1-2

Chapter 1
Installation Configuration Parameters

where M N. Ois the package version number.

Note:

Oracle NoSQL Database is a distributed system and the runtime needs
to be installed on every node in the cluster. While the entire contents

of the Oracle NoSQL Database package do not need to be installed on
every node, the contents of the lib directory must be present. How this
distribution is done is beyond the scope of this manual.

Installation Configuration Parameters

Before you configure Oracle NoSQL Database, you should determine the following
parameters for each Storage Node in the store. Each of these parameters are
directives to use with the makeboot confi g utility:

ORACLE

root

Where the KVROOT directory should reside. There should be enough disk space
on each storage node to hold the data to be stored in your Oracle NoSQL
Database store. The KVROOT disk space requirements can be reduced if the
storagedir parameter is used to store the data at a different location outside

the KVROOT directory. We recommend that you make the KVROOT directory
the same local directory path on each node (but not a shared or NFS mounted
directory). The examples in this book assume that the KVROOT directory already
exists.

port

The TCP/IP port through which the Storage Node should contact the Oracle
NoSQL Database. This port should be free (unused) on each storage node. The
examples in this book use port 5000. This port is sometimes referred to as the
registry port.

harange

The Replication Nodes and Admin process use the harange (high availability
range) ports to communicate between each other. For each Storage Node in the
store, specify sequential port numbers, one port for each Replication Node on the
Storage Node, plus an additional port if the Storage Node hosts an Admin. The
Storage Node Agent manages this allotment of ports, reserving one for an Admin
service, if needed, and allocating the rest with one port for each Replication Node.
Specify the port range as startPort, endPort. After using port 5000 for the Storage
Node itself, this document uses values 5010, 5020 for examples, with one for the
Admin service, and one for the Replication node.

servicerange

A range of ports that a Storage Node uses to communicate with other
administrative services and its managed services. This optional parameter is
useful when Storage Node services must use specific ports for a firewall or other
security purposes. By default, the services use anonymous ports. Specify this port
range as value string as start Port, endPort . For more information, see Storage
Node Parameters.

store-security

1-3

Chapter 1
Installation Configuration Parameters

Specifies whether security is in use. While this is an optional parameter, we
strongly advise that you configure Oracle NoSQL Database with security in mind.

Specifying none indicates that security will not be in use.

Specifying confi gur e indicates that you want to configure security. The
makeboot confi g process will then invoke the securityconfi g utility as part of its
operation.

Specifying enabl e indicates security will be in use. However, you will need to
either configure security by utilizing the security configuration utility, or by copying
a previously created configuration from another system.

" Note:

The -store-security parameter is optional. If you do not specify this
parameter, security is configured by default. To complete a secure
installation, you must use the securityconfi g utility to create the
security folder before starting up the Storage Node agents. For more
information, see Configuring the KVStore.

* capacity

The total number of Replication Nodes the Storage Node can support. Capacity
is an optional, but extremely important parameter, representing the number of
replication nodes. If the Storage Node you are configuring has the resources

to support more than a one Replication Node, set the capacity value to

the appropriate number. As a general heuristic, hosting Replication Nodes
successfully requires sufficient disk, cpu, memory, and network bandwidth to
satisfy peak runtime demands.

To have your Storage Node host Arbiter Nodes, set the capacity to 0 . Then,
the pool of Storage Nodes configured to host Arbiter Nodes within a zone, will
be allocated as Arbiter Nodes whenever required. For more information see
Deploying an Arbiter Node Enabled Topology.

Consider the following configuration settings for Storage Nodes with a capacity
greater than one:

1. We recommend configuring each Storage Node with a capacity equal to
the number of available disks on the machine. Such a configuration permits
the placement of each Replication Node on its own disk, ensuring that
Replication Nodes on the Storage Node are not competing for I/O resources.
The -st or agedi r parameter lets you specify the directory location for each
Replication Node disk.

For example:

> java - Xmx64m - Xns64m \
-jar <KVHOME>/li b/ kvstore.jar makebootconfig \
-root /opt/ondb/var/kvroot \
-port 5000 \
-host nodel0
-harange 5010, 5025 \
-capacity 3\
-adm ndir /diskl/ondb/adni n01 \
-adm ndirsize 200-MB \

ORACLE 1-4

ORACLE

Chapter 1
Installation Configuration Parameters

-storagedir /diskl/ondb/data \
-storagedir /disk2/ondb/data \
-storagedir /disk3/ondb/data \
-storagedirsize 1 tbh \
-rnlogdir /diskl/ondb/rnlog0l \
-rnlogdir /disk2/ ondb/rnlog02 \
-rnlogdir /disk3/ondb/rnlog03

where -capacity 3 represents the number of disks on the Storage Node
(nodel0). The disks are (di sk1, di sk2, di sk3).

2. Increase the —har ange parameter to support additional ports required for the
Replication and Admin Nodes.

3. Increase the —servi cer ange parameter to account for the additional ports
required by the Replication Nodes.

The capacity value indicates the number of —st or agedi r parameters you must
specify. Otherwise, the value defaults to 1. The examples in this document use 1
as the capacity.

admindir

The directory path to contain the environment associated with a Storage Node
Admin process.

We strongly recommend that the Admin directory path resolves to a separate disk.
You can accomplish this by creating suitable entries in the / et ¢/ f st ab directory
that attaches the file system on disk to an appropriate location in the overall
directory hierarchy. Placing the Admin environment on a separate disk ensures
that the Admin is not competing for 1/O resources. It also isolates the impact of a
disk failure to a single environment.

If you do not specify an explicit directory path for - adni ndi r, the Admin
environment files are located in this directory:

KVROOT/ KVSTORE/ <SNI D>/ <Admi nl d>/

admindirsize

The size of the Admin storage directory. This is optional but recommended. For
more information, see Managing Admin Directory Size.

storagedir

A directory path that will contain the environment associated with a Replication
Node. When the —capaci t y parameter is greater than 1, you must specify a
multiple set of —st or agedi r parameter values, one for each Replication Node that
the Storage Node hosts. Each directory path should resolve to a separate disk.
You can accomplish this by creating suitable entries in the / et ¢/ f st ab directory
that attaches the file system on disk to an appropriate location in the overall
directory hierarchy. Placing each environment on a separate disk ensures that the
shards are not competing for I/O resources. It also isolates the impact of a disk
failure to a single location.

If you do not specify explicit directory locations, the environments are located
under the KVROOT directory.

storagedirsize

1-5

Chapter 1
Installation Configuration Parameters

The size of each storage directory. We strongly recommend that you specify
this parameter for each Replication Node. The Oracle NoSQL Database uses
the storage directory size to enforce disk usage, using the -st or agedi r si ze
parameter value to calculate how much data to store on disk before suspending
write activity. For more information, see Managing Storage Directory Sizes.

e rnlogdir

The directory path to contain the log files associated with a Replication Node. For
capacity values greater than one, specify multiple rnl ogdi r parameters, one for
each Replication Node that the Storage Node is hosting.

We recommend that each r nl ogdi r path resolves to a separate disk partition

on a Replication Node. You can accomplish this by creating suitable entries in
the / et ¢/ f st ab directory that attaches the file system on a disk to an appropriate
location in the overall directory hierarchy. Placing r nl ogdi r in a distinct partition
on the Replication Node ensures that metrics and errors can be reported and
retained, even if the partition containing the JE log files is full. Separating the

rnl ogdi r on a distinct partition also isolates the impact of losing complete
Replication Node log files from a kvr oot disk failure.

If you do not specify a location for r nl ogdi r, logs are placed under the KVROOT/
KVSTORE/ | og directory by default.

s num_cpus

The total number of processors on the machine available to the Replication
Nodes. This is an optional parameter, used to coordinate the use of processors
across Replication Nodes. If the value is 0, the system queries the Storage Node
to determine the number of processors on the machine. The default value for
num cpus is 0, and examples in this document use that value.

e memory_mb

The total number of megabytes of memory available to the Replication Node. The
system uses the nenory_nb value to guide specification of the Replication Node's
heap and cache sizes. This calculation is more critical if a Storage Node hosts
multiple Replication Nodes, and must allocate memory between these processes.
If the value is 0, the system attempts to determine the amount of memory on the
Replication Node. However, the amount of memory value is available only when
the JVM used is the Oracle Hotspot JVM. The default value for menory_nb is 0,
and examples in this document use that value.

 force

Specifies that the command generates the boot configuration files, even if verifying
the configuration against the system finds any inaccurate parameters.

Configuring Your KVStore Installation

Once you determine your configuration information as described in the previous
section (see Installation Configuration Parameters), complete the following tasks to
configure your store. One of the tasks to complete is to start the SNA on each storage
node.

ORACLE 1-6

Chapter 1
Installation Configuration Parameters

< Note:

Before starting the SNA, on each node, set the environment variable
MALLOC ARENA MAX to 1. Doing this ensures that memory usage is restricted
to the specified heap size.

1. Create the initial bootconfig configuration file using the makeboot confi g utility. Do
this on each Oracle NoSQL Database node.

¢ Note:

Using the makeboot confi g command to create the configuration file is
integrated with the Storage Node on which you run the command. Such
integration checks and validates all parameters and their values against
the SN environment before generating the boot configuration files. To
bypass verifying any parameters or values for the boot configuration
files, use the -force flag (makeboot confi g -force).

Following is an example of using makeboot confi g, using a standard set of
parameters and values. For a list of all the makeboot confi g parameters, see
makebootconfig.

> nkdir -p KVROOT

> java - Xmx64m - Xns64m \

-jar <KVHOVE>/|ib/kvstore.jar \

makeboot confi g -root KVROOT \
-port 5000 \
-host <host nane> \
-harange 5010, 5020 \
-capacity 1\
-admindir /export/admin \
-adm ndi rsi ze 2000 MB \
-storagedir /export/datal \
-storagedirsize 1_th \
-rnlogdir /export/rnlogs

" Note:

We strongly recommend that you specify both st or agedi r and
st oragedi rsi ze. If you specify the - st or agedi r parameter, but not -
st oragedi rsi ze, makeboot conf i g displays a warning.

For more information about the makeboot confi g command, see Configuring
Security with Makebootconfig in the Security Guide.

ORACLE r

ORACLE

2.

Chapter 1
Installation Configuration Parameters

Use the securityconfi g tool to create the security directory (also creates security
related files):

java - Xmk64m - Xms64m

-jar <KVHOME>/ i b/ kvstore.jar

securityconfig \

config create -root KVROOT -kspwd (******)

Created files

KVROOT/ security/ security.xm

KVROOT/ securi ty/ store. keys

KVROOT/ security/ store. trust

KVROOT/ security/client.trust

KVROOT/ security/client.security

KVROOT/ security/store. passwd (CGenerated in CE version)
KVROOT/ security/store.wallet/cwallet.sso (Generated in EE version)
Creat ed

See Configuring Security with Securityconfig in the Security Guide.

Note:

Once you configure multiple SNAs after running makeboot confi g on
each SNA, copy the security directory to the KVROOT of each Oracle
NoSQL Database Storage Node Agent (SNA).

scp -r KVROOT/ security NODE: KVROOT/

Start the Oracle NoSQL Database Storage Node Agent (SNA) on each of the
Oracle NoSQL Database nodes. The SNA manages the Oracle NoSQL Database
administrative processes on each node. It also owns and manages the registry
port, which is the main way to communicate with Oracle NoSQL Database
processes on that storage node. To start the SNA on each storage node use the
start utility as follows:

nohup java - Xmk64m - Xms64m \
-jar <KVHOVE>/|ib/kvstore.jar start -root KVROOT &

" Note:

If the Replication Node or the Admin Service crashes, the SNA restarts
the processes.

Use the j ps - mcommand to verify that the Oracle NoSQL Database processes
are running :

>jps -m
29400 ManagedService -root /tnp -class Adnin -service

1-8

ORACLE

Chapter 1
Installation Configuration Parameters

Boot st rapAdmi n. 13250 -config config. xm
29394 St orageNodeAgent I mpl -root /tmp -config config.xm

5. Using ssh to reach the node, issue a pi ng command to be sure that the Oracle
NoSQL Database client library can contact the Oracle NoSQL Database Storage
Node Agent:

ssh node01

java - Xmk64m - Xms64m -j ar <KVHOME>/ | i b/ kvstore.jar ping -host
node0l1 -port 5000

-security KVROOT/security/client.security

Logi n as: Anonymous (Enter any user name here)
Anonynmous' s password: (Enter any password)

SNA at hostname: node0Ql, registry port: 5000 is not registered.
No further information is available

Can't find store topol ogy:

Coul d not contact any RepNode at: [nodeOl1:5000]

This return informs you that only the SN process is running on the local host. Once
Oracle NoSQL Database is fully configured, using pi ng again will provide more
details.

If the client library cannot contact the Storage Node agent, pi ng displays this
message:

Unabl e to connect to the storage node agent at host node0l,
port 5000, which may not be running; nested exception is:

java.rni. Connect Exception: Connection refused to host: node0l;
nested exception is:

j ava. net. Connect Excepti on: Connection refused

Can't find store topol ogy:

Coul d not contact any RepNode at: [nodeOl1:5000]

If the Storage Nodes do not start up, review the adni nboot and snaboot logs in the
KVROOT directory to investigate what occurred and to help identify the problem. If you
have not completed the steps in the Configuring Security with Remote Access, the
pi ng command for a secure store is only available locally.

When the Storage Nodes have all started successfully, you can configure the KVStore.
For more information on how to configure the KVSTORE, see Configuring the KVStore.

Note:

For best results, configure your nodes so that the SNA starts automatically
when the node boots up. The details of how to do this are beyond the scope
of this document, because they depend on how your operating system is
designed. See your operating system documentation for information about
launching application automatically at bootup.

1-9

Chapter 1
Configuring the Firewall

Configuring the Firewall

ORACLE

To make sure your firewall works with Oracle NoSQL Database, you should set the
ports specified by the servi cer ange parameter of the makebootconfig command. This
parameter is used to constrain a store to a limited set of ports, usually for security or
data center policy reasons. By default the services use anonymous ports.

Additionally, the port specified by - port parameter of the makebootconfig command
need to be available as well.

The format of the value string is "startPort,endPort.” The value varies with the capacity
of the Storage Node.

For more information about the servicePortRange and determining its sizing, see
Storage Node Parameters.

1-10

Upgrading an Existing Oracle NoSQL
Database Deployment

This section describes how to upgrade the software of your Oracle NoSQL Database
deployment.

Installing new software requires that you restart each node. Depending on your store’s
configuration, it is sometimes possible to upgrade while the store remains online and
available to clients. Upgrading your software this way is known as a rolling upgrade.
Such a strategy is useful in most cases, since downtime is undesirable.

Even if your store can support a rolling upgrade, you may want to perform an offline
upgrade, which involves these steps:

1. Shutting down all nodes.
2. Installing new software on each node.
3. Restarting each node.

While an offline upgrade is a simpler process in some ways, your store is unavailable
for the duration of the upgrade.

If the store's replication factor is greater than two, you can perform a rolling upgrade.
With a replication factor greater than two, shards can maintain their majorities and
continue reading and writing data on behalf of clients. Meanwhile, you can restart and
upgrade software on each shard component, one at a time.

If the replication factor is 2 or 1, the shards cannot maintain their majorities through
a node restart. This means that each shard will be unavailable while you shutdown a
shard component, upgrade the software, and restart the node.

Preparing to Upgrade

ORACLE

Oracle NoSQL Database supports upgrades from releases for the current year and
prior two calendar years. For example, to upgrade a store to the 20.x release, the
store must be running release 18.x or later.

Before beginning the upgrade process, create a backup of the store by making a
snapshot. See Taking a Snapshot.

In Oracle NoSQL Database, configuration changes and other administrative activities
involve pl ans. For information about plans, see Plans.

Note:

During the upgrade process, you should not create any plans until all
services in the store have been upgraded.

2-1

Chapter 2
General Upgrade Notes

As soon as possible after upgrading the service components, upgrade any application
programs that use the kvstore client library.

General Upgrade Notes

ORACLE

This section contains upgrade information that is generally true for all versions of
Oracle NoSQL Database. Upgrade instructions and notes for specific releases are
given in sections following this one.

When Oracle NoSQL Database is first installed, it is placed in a KVHOVE directory. Such
a directory can exist on each machine, or be shared by multiple Storage Nodes (for
example, using NFS). Here, we refer to this existing KVHOME location, OLD_KVHOME.

Note:

We recommend that installations adopt a naming convention for KYHOVE

that includes the release number. If you always use a KVHOME location

such as /var/ kv/ kv-M N. O, where M N. Orepresents the release.major.minor
numbers, the version is easily visible. You can achieve this naming by
unzipping or untarring the distribution into a common directory, / var/ kv in
this example.

Installing new software requires that each node be restarted. Oracle NoSQL Database
is a replicated system. To avoid excessive failover events, we recommend restarting
any node that is running as a MASTER after all those marked REPLICA. This
command lists which nodes are MASTER and REPLICA:

java - Xmx64m - Xms64m \
-jar KVHOWE |ib/kvstore.jar ping -host <hostnane> -port <port> \
-security USER/ security/admn.security

" Note:

Listing this information assumes that you followed the steps in Configuring
Security with Remote Access.

To make the upgrade process easy to debug when upgrading a node while the
Storage Node is stopped, move the existing log files under KVROOT and KVROOT/
<st or ename>/ | og to any other directory.

Use the host and registry port for any active node in the store. For example, in the
following example, rgl-rnl and rg2-rnl are running as MASTER, so restart those
last:

java - Xmk64m - Xnms64m \
-jar KVHOVE lib/kvstore.jar ping -port 5100 -host nodeOl1 \
-security USER/security/admn.security

Pi ngi ng conmponents of store nystore based upon topol ogy sequence #315

2-2

ORACLE

Chapter 2

General Upgrade Notes

300 partitions and 6 storage nodes
Time: 2020-07-30 15:13:23 UTC Version: 18.1.20

Shard Status: healthy:2 witabl e-degraded: 0 read-only:0 offline:0

total:2

Admin Status: healthy

Zone [name=Boston id=znl type=PRI MARY al | owAr bi t er s=f al se
master Affinity=fal se] RN Status: online:6 offline:0

maxDel ayM I li s: 0 maxCat chupTi meSecs: 0

Storage Node [snl] on node0l: 5100

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se

master Affinity=fal se] Status: RUNNING Ver: 18.1.20 2018-09-19

06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise
Admi n [adm nl] Status: RUNNI NG MASTER

Rep Node [rgl-rnl] Status: RUNNI NG MASTER
sequenceNunber: 338 haPort:5111

Storage Node [sn2] on node02: 5200

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se

master Affinity=fal se] Status: RUNNING Ver: 18.1.20 2018-09-19

06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise
Admi n [adm n2] Status: RUNNI NG REPLI CA

Rep Node [rgl-rn2] Status: RUNNI NG REPLI CA

sequenceNunber: 338 haPort: 5211 delayM|1is: 0 catchupTi meSecs: 0

Storage Node [sn3] on node03: 5300
Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se

master Affinity=fal se] Status: RUNNING Ver: 18.1.20 2018-09-19

06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise
Rep Node [rgl-rn3] Status: RUNNI NG REPLI CA

sequenceNunber: 338 haPort: 5310 del ayM|1is:0 catchupTi meSecs: 0

Storage Node [sn4] on node04: 5400
Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se

master Affinity=fal se] Status: RUNNING Ver: 18.1.20 2018-09-19

06:43:20 UTC

Build id: 9f5c79a9f7e8 Edition: Enterprise

Rep Node [rg2-rnl] Status: RUNNI NG MASTER
sequenceNunber: 338 haPort: 5410

Storage Node [sn5] on node05: 5500

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se

master Affinity=fal se] Status: RUNNING Ver: 18.1.20 2018-09-19

06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise
Rep Node [rg2-rn2] Status: RUNNI NG REPLI CA

sequenceNunber: 338 haPort: 5510 del ayM|1is: 0 catchupTi meSecs: 0

Storage Node [sn6] on node06: 5600
Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se

master Affinity=fal se] Status: RUNNING Ver: 18.1.20 2018-09-19

06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise
Rep Node [rg2-rn3] Status: RUNNI NG REPLI CA

sequenceNunber: 338 haPort: 5610 del ayM|1is:0 catchupTi meSecs: 0

2-3

Chapter 2
Upgrade to a New Release from an Existing Release

When upgrading your store, place the updated software in a new KVHOVE directory

on a Storage Node running the admin service. This section refers to the new KVHOVE
directory as NEW KVHOME. If the KVHOVE and NEW KVHOME directories are shared by
multiple Storage Nodes (for example, using NFS), maintain both locations while the
upgrade is in process. After the upgrade is complete, you no longer need the original
KVHOME directory. In this case, you must modify the start up procedure on each node to
refer to the NEW KVHOME directory so it uses the new software.

Note:

In cases where each node has its own copy of the software installation, then
it is possible to replace the installation in place and not modify the value of
KVHOME.

To add security after upgrading from a non-secure store, see Adding Security to a New
Installation in the Security Guide.

Upgrading the XRegion Service Agent

You should upgrade your store first before upgrading the XRegion Service agent. If the
agent is upgraded first before the store is upgraded, the agent may get blocked when
accessing the new system table and wait for the store to be upgraded. To configure
the XRegion Service agent See, Configure XRegion Service.

Upgrade to a New Release from an Existing Release

ORACLE

Upgrading a store from an existing release to a new release can be accomplished one
Storage Node at a time because Storage Nodes running a mix of the two releases

are permitted to run simultaneously in the same store. This allows you to strategically
upgrade Storage Nodes in the most efficient manner.

" Note:

If your store contains more than a handful of Storage Nodes, you may want
to perform your upgrade using a script. See Using a Script to Upgrade to a
New Release.

To avoid potential problems, new CLI commands are available to identify when nodes
can be upgraded at the same time. These commands are described in the following
procedure.

To upgrade your store, first install the latest software to upgrade the Admin CLI. Then,
use the upgraded CLI to verify that all of the Storage Nodes do not violate any basic
requirements:

kv-> verify prerequisite

Verification conplete, no violations.

2-4

ORACLE

Chapter 2
Upgrade to a New Release from an Existing Release

Once all violations are corrected, if any, install the latest software on a Storage Node
that is running an admin service.

Do the following:

1. On a Storage Node running an admin service;

a.

Place the updated software in a new KVHOME directory on a Storage Node
running the admin service. The new KVHOME directory is referred to here as
NEW_KVHOME. If nodes share this directory using NFS, this only needs to be
done once for each shared directory.

Stop the Storage Node using the CLI. When you do this, this shuts down the
admin service on that Storage Node.

If you have configured the node to automatically start the Storage Node Agent
on reboot using /etc/init.d, Upstart, or some other mechanism first modify that
script to point to NEW_KVHOME.

Once you have modified that script, shutdown the Storage Node:

java - Xmk64m - Xms64m \
-jar KVHOWE |'i b/ kvstore.jar stop -root <kvroot>

Restart the Storage Node using the new release code:

nohup java - Xmk64m - Xms64m \
-jar NEWKVHOME/ |i b/ kvstore.jar start -root <kvroot> &

(If the system is configured to automatically restart the Storage Node Agent,
this step may not be necessary.)

Use the CLI to connect to the Storage Node which is now running the new
release code:

java - Xmk64m - Xnms64m \
-jar NEW KVHOVE/li b/ kvstore.jar runadmn -port 5100 -host nodel \
-security USER/ security/adm n/security

Verify that all the Storage Nodes in the store are running the proper software
level required to upgrade to the new release.

kv-> verify prerequisite

Verify: starting verification of store nystore

based upon topol ogy sequence #315

300 partitions and 6 storage nodes

Time: 2020-07-30 15:23:50 UTC Version: 20.2.15

See node01: <KVROOT>/ nystore/ | og/ nystore_{0..N.log for progress
messages

Verify prerequisite: Storage Node [snl] on node01:5100

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se
master Affinity=fal se] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50: 01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify prerequisite: Storage Node [sn2] on node02: 5200

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se
master Affinity=fal se] Status: RUNNING Ver: 18.1.20 2018-09-19

2-5

ORACLE

Chapter 2
Upgrade to a New Release from an Existing Release

06:43:20 UTC
Build id: 9f5c79a9f7e8 Edition: Enterprise

Verification conplete, no violations.

Note:

Only a partial sample of the verification command's output is shown
here. The important part is the last line, which shows no violations.

The most likely reason for a violation is if you are (accidentally) attempting

a release level downgrade. For example, it is illegal to downgrade from a
higher minor release to a lower minor release. Possibly this is occurring simply
because you are running the CLI using a package at a minor release level that
is lower than the release level at other nodes in the store.

¢ Note:

It is legal to downgrade from a higher patch level to a lower patch
level. So, for example downgrading from 20.1.4 to 20.1.3 would be
legal, while downgrading from 20.1.3 to 20.0.4 would not be legal.

In any case, if the verify prerequisite command shows violations, resolve
the situation before you attempt to upgrade the identified nodes.

Obtain an ordered list of the nodes to upgrade.

kv-> show upgr ade- or der

Cal cul ating upgrade order, target version: 20.2.15,
prerequisite: 18.1.5

sn3 sn4

sn2 snb5

sn6

This command displays one or more Storage Nodes on a line. Multiple
Storage Nodes on a line are separated by a space. If multiple Storage Nodes
appear on a single line, then those nodes can be safely upgraded at the same
time, if desired. When multiple nodes are upgraded at the same time, the
upgrade must be completed on all nodes before the nodes next on the list can
be upgraded. If at some point you lose track of which group of nodes should
be upgraded next, you can always run the show upgrade-order command
again.

The Storage Nodes combined together on a single line can be upgraded
together. Therefore, for this output, you would upgrade sn3 and sn4. Then
upgrade sn2 and sn5. And, finally, upgrade sn6.

2-6

ORACLE

Chapter 2
Upgrade to a New Release from an Existing Release

< Note:

You must completely upgrade a group of nodes before continuing to
the next group. That is, upgrade sn3 and sn4 before you proceed to
upgrading sn2, sn5, or sn6.

For each of the Storage Nodes in the first group of Storage Nodes to upgrade (sn3
and sn4, in this example):

a. Place the new release software in a new KVHOME directory. The new
KVHOME directory is referred to here as NEW_KVHOME. If nodes share
this directory using NFS, this only needs to be done once for each shared
directory.

b. Stop the Storage Node using the CLI utility.

If you have configured the node to automatically start the Storage Node Agent
on reboot using /etc/init.d, Upstart, or some other mechanism first modify that
script to point to NEW_KVHOME.

Once you have modified that script, shutdown the Storage Node using the old
code:

java - Xmx64m - Xms64m \
-jar KVHOWE | ib/kvstore.jar stop -root <kvroot>

c. Restart the Storage Node using the new release code:

nohup java - Xmx64m - Xns64m \
-jar NEWKVHOVE/ li b/ kvstore.jar start -root <kvroot> &

(If the system is configured to automatically restart the Storage Node Agent,
this step may not be necessary.)

Verify the upgrade before upgrading your next set of nodes. This command shows
which nodes have been successfully upgraded, and which nodes still need to be
upgraded:

kv-> verify upgrade

Verify: starting verification of store mystore

based upon topol ogy sequence #315

300 partitions and 6 storage nodes

Time: 2020-07-30 15:28:15 UTC Version: 20.2.15

See node01: <KVROOT>/ nystore/ |l og/ nystore {0..N.log for progress
messages

Verify upgrade: Storage Node [snl] on node01: 5100

Zone: [nanme=Boston id=znl type=PRI MARY al | owAr bi ters=fal se
master Affinity=fal se] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50: 01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify: sn2: Node needs to be upgraded from18.1.20 to version
20.2.15 or newer

Verify upgrade: Storage Node [sn2] on node02: 5200

Zone: [nanme=Boston id=znl type=PRI MARY al | owAr bi ters=fal se
master Affinity=fal se] Status: RUNNING Ver: 18.1.20 2018-09-19

2-7

ORACLE

Chapter 2
Upgrade to a New Release from an Existing Release

06: 43: 20 UTC

Build id: 9f5c79a9f7e8 Edition: Enterprise

Verify upgrade: Storage Node [sn3] on node03: 5300

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se
master Affinity=fal se] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50: 01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify upgrade: Storage Node [sn4] on node04:5400

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se
master Affinity=fal se] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50: 01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify: sn5: Node needs to be upgraded from 18.1.20 to version
20.2.15 or newer

Verify upgrade: Storage Node [sn5] on node05: 5500

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se
master Affinity=fal se] Status: RUNNING Ver: 18.1.20 2018-09-19
06: 43: 20 UTC

Build id: 9f5c79a9f7e8 Edition: Enterprise

Verify: sn6: Node needs to be upgraded from 18.1.20 to version
20.2.15 or newer

Verify upgrade: Storage Node [sn6] on node06: 5600

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se
master Affinity=fal se] Status: RUNNING Ver: 18.1.20 2018-09-19
06: 43: 20 UTC

Build id: 9f5c79a9f7e8 Edition: Enterprise

Verification conplete, 0 violations, 3 notes found.
Verification note: [sn2] Node needs to be upgraded from
18.1.20 to version 20.2.15 or newer

Verification note: [sn5] Node needs to be upgraded from
18.1.20 to version 20.2.15 or newer

Verification note: [sn6] Node needs to be upgraded from
18.1.20 to version 20.2.15 or newer

For brevity and space, we only show part of the output generated by the verify
upgr ade command. Those nodes which have been upgraded are identified with a
verification message that includes the current software version number:

Verify upgrade: Storage Node [sn3] on node03: 5300

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se
master Affinity=fal se] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50: 01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Those nodes which still need to be upgraded are identified in two different ways.
First, the verification message for the node indicates that an upgrade is still
necessary:

Verification note: [sn2] Node needs to be upgraded from
18.1.20 to version 20.2.15 or newer

2-8

ORACLE

Chapter 2
Upgrade to a New Release from an Existing Release

Second, the very end of the verification output identifies all the nodes that still
need to be upgraded:

Verification conplete, 0 violations, 3 notes found.
Verification note: [sn2] Node needs to be upgraded from
18.1.20 to version 20.2.15 or newer

Verification note: [sn5] Node needs to be upgraded from
18.1.20 to version 20.2.15 or newer

Verification note: [sn6] Node needs to be upgraded from
18.1.20 to version 20.2.15 or newer

" Note:

If the verification shows nodes you thought were upgraded as being still
in need of an upgrade, you must resolve that problem before upgrading
the other nodes in your store. As a kind of a sanity check, you can verify
just those nodes you just finished upgrading:

kv-> verify upgrade -sn sn3 -sn sn4

Verify: starting verification of store nystore

based upon topol ogy sequence #315

300 partitions and 6 storage nodes

Ti me: 2020-07-30 15:29:06 UTC Version: 20.2.15

See node01: <KVROOT>/ nyst ore/ | og/ nystore_{0..N}.log for
progress messages

Verify upgrade: Storage Node [sn3] on node03: 5300

Zone: [nane=Boston id=znl type=PRI MARY al | owAr bi t er s=f al se
master Affinity=fal se] Status: RUNNING Ver: 20.2.15
2020-07-24 09:50: 01 UTC

Build id: c8998e4a8aab5 Edition: Enterprise

Verify upgrade: Storage Node [sn4] on node04:5400

Zone: [nane=Boston id=znl type=PRI MARY al | owAr bi t er s=f al se
master Affinity=fal se] Status: RUNNING Ver: 20.2.15

2020- 07-24 09:50: 01 UTC

Build id: c8998e4a8aab5 Edition: Enterprise

Verification conplete, no violations.

4. You can continue upgrading groups of Storage Nodes, as identified by the show

upgr ade- or der command. Follow the procedure outlined above. Stop the existing
release Storage Node using the existing release stop command, then restart the
Storage Node using the new release start command. Continue doing this until all
Storage Nodes have been upgraded.

If at some point you lose track of which group of nodes should be upgraded next,
you can always run the show upgr ade- or der command again:

kv-> show upgr ade- or der
Cal cul ating upgrade order, target version: 20.2.15, prerequisite:
18.1.5

2-9

Chapter 2
Upgrade to a New Release from an Existing Release

sn2 sn5
sn6

5. When you are all done upgrading your Storage Nodes, the verify upgrade
command will show no verification notes at the end of its output:

kv-> verify upgrade

Verify: starting verification of store nystore

based upon topol ogy sequence #315

300 partitions and 6 storage nodes

Time: 2020-07-30 15:33:22 UTC Version: 20.2.15

See node01: <KVROOT>/ nystore/ |l og/ nmystore_{0..N.log for progress
messages

Verify upgrade: Storage Node [snl] on node0l: 5100

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se
master Affinity=fal se] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50: 01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify upgrade: Storage Node [sn2] on node02: 5200

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se
master Affinity=fal se] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50: 01 UTC

Build id: c8998e4a8aab Edition: Enterprise

Verify upgrade: Storage Node [sn3] on node03: 5300

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se
master Affinity=fal se] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50: 01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify upgrade: Storage Node [sn4] on node04: 5400

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit er s=fal se
master Affinity=fal se] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50: 01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify upgrade: Storage Node [sn5] on node05: 5500

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se
master Affinity=fal se] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50: 01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify upgrade: Storage Node [sn6] on node06: 5600

Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se
master Affinity=fal se] Status: RUNNING Ver: 20.2.15 2020-07-24
09:50: 01 UTC

Build id: c8998e4a8aab Edition: Enterprise

Verification conplete, no violations

Using a Script to Upgrade to a New Release

For any deployments with more than a handful of Storage Nodes, the manual upgrade
procedure described above becomes problematic. In that case, you should probably
upgrade your store using a script.

ORACLE 2-10

Chapter 2
Upgrading JDK on your Oracle NoSQL Database deployment

An example script (bash shell script) is available for you to examine in the release 4
distribution. It can be found here:

<KVHOME>/ exanpl es/ upgr ade/ onl i neUpgr ade

This script has the same upgrade restrictions as was described earlier in this section.
Your store must have a replication factor of at least 3 in order for your store to be
available during the upgrade process.

The provided script is an example only. It must be modified in order for it to properly
function for your installation.

¢ Note:

The script does not perform any software provisioning for you. This means
you are responsible for placing the new release package on your host
machines in whatever location you are using for your installation software.
That said, the script communicates with your host machines using ssh, so
you could potentially enhance the script to provision your machines using
scp.

Because the script uses ssh, in order for it to function you must configure your
machines to allow automatic login (that is, login over ssh without a password). ssh
supports public/private key authentication, so this is generally a secure way to operate.

For information on how to configure ssh in this way, see https://www.linuxproblem.org/
art_9.html. For information on how to install and configure ssh and the ssh server, see
your operating system's documentation.

Upgrading JDK on your Oracle NoSQL Database
deployment

ORACLE

Consider that you have a JDK version, say JDK 8 SE, installed on all the Storage
Nodes in your store deployment. But after some time, Oracle releases a new version
of the JDK, say JDK 9 SE, that includes security enhancements and bug fixes. Now,
you want to upgrade the existing JDK to a newer version of the JDK.

Additionally, during the upgrade, you need to ensure that store remains online and
available to clients.

Consider that your existing Oracle NoSQL Database deployment is a store with 3x3
topology and is deployed on 3 Storage Nodes (SN1, SN2, and SN3) each with
capacity 3.

To update JDK on your Oracle NoSQL Database deployment:

1. Based on the OS architecture, download and install the required version of JDK
from Java SE Downloads.

2. Update the JAVA_HOME and PATH environment variables to point to the updated
JDK directory.

2-11

https://www.linuxproblem.org/art_9.html
https://www.linuxproblem.org/art_9.html
https://www.oracle.com/java/technologies/javase-downloads.html

ORACLE

Chapter 2
Upgrading JDK on your Oracle NoSQL Database deployment

Verify that the system JDK is how pointing to the new JDK by running the j ava
-ver si on command and verifying the output.

Stop the SNA (Storage Node Agent) process in SN1 by running the following
command:

java - Xmk64m - Xnms64m -j ar <KVHOVE>/ | i b/ kvstore.jar stop -root
<kvr oot >

Restart the SNA process in SN1 by running the following command:

nohup java - Xmx64m - Xns64m -j ar <KVHOVE>/|i b/ kvstore.jar start -
root <kvroot> &

Repeat steps 1 through 5 for each storage node. Make sure these steps are run

sequentially on all the storage nodes. For example, run steps 1 to 5 on SN1,
followed by SN2, and so on.

2-12

Plans

This chapter describes pl ans, their purpose, and why and how you use them. If you
are installing a store for the first time, you can skip to the next chapter Configuring the
KVStore.

You use plans to configure your Oracle NoSQL Database. A plan consists of multiple
administrative operations. Plans can modify the state managed by the Admin service,
and issue requests to kvstore components such as Storage Nodes and Replication
Nodes. Some plans consist of simple state-changing operations, while others perform
a set of tasks that affect every node in the store over time. For example, you use a
plan to create a zone or Storage Node, or to reconfigure parameters on a Replication
Node.

Using Plans

ORACLE

You use the pl an command, available from the administrative command line interface,
to both create and execute plans, as well as to perform many other tasks. For more
about using the pl an command, see CLI Command Reference.

By default, running a pl an command executes asynchronously in the background. The
command line prompt returns as soon as the background process begins. You can
check the progress of a running plan using the show pl an i d command.

You can run a pl an command synchronously in two ways:

plan action_to_conplete —wait

plan wait -id plan_id

Using either the —wai t flag or the pl an wait command, causes the command line
prompt to return only after the command completes.

The -wai t flag and the pl an wai t command are useful when executing plans from
scripts, which typically expect each command to finish before processing the next
command.

You can also create a plan, but defer its execution using the optional - noexecut e flag,
as follows:

pl an action —name pl an-name -noexecute

Later, execute the plan on demand as follows:

pl an execute -id id_num

3-1

Chapter 3
Plan States

Tracking Plan Progress

There are several ways to track the progress of a plan.

e The show plan -id command provides information about the progress of a
running plan. Use the optional - ver bose flag to get more detail.

e The CLIverify command gives service status information as the plan is executing
and services start.

" Note:

The veri fy command is of interest for only topology-related plans. If the
plan is modifying parameters, such changes may not be visible using the
verify command.

°* The CLI'slogtail command lets you follow the store-wide log.

Plan States

ORACLE

Plans can be in any of the following states. A plan can be in only one state at a time.
These are the possible states:

Name Description

APPROVED The plan exists with correct operations, but
is not running.

CANCELED A plan that is manually | NTERRUPTED

or that experiences an ERROR can be
terminated. Use the cancel command to
terminate a plan.

ERROR If a plan in the RUNNI NGstate encounters
a problem, it transitions to this state
and ends processing without successfully
completing. Storage Nodes and Replication
Nodes can encounter an error before the
plan processes the error and transitions to

an ERROR state.
INTERRUPTED A RUNNI NGplan transitions to this state
after the i nt errupt command in the CLI
INTERRUPT REQUESTED When a running plan receives an interrupt

request, the plan may have to cleanup

or reverse previous steps taken during its
execution. If the plan transitions to this
state, it is to make sure that the store
remains in a consistent state.

RUNNING The plan is currently executing its
commands.
SUCCEEDED The plan has completed successfully.

3-2

Chapter 3
Reviewing Plans

You can use the pl an execut e command whenever a plan enters the | NTERRUPTED,

| NTERRUPT REQUESTED or ERRCR state. Retrying is appropriate if the underlying problem
was transient or has been rectified. When you retry a Plan, it processes the steps
again. Each step is idempotent, and can be safely repeated.

Reviewing Plans

You can use the CLI show pl ans command to review the execution history of plans.
The command also lists the plan ID numbers, plan names, and the state of each

plan. With the plan ID, use the show pl an -id <plan nunber>command to see more
details about a specific plan.

The next example shows the output of both the show pl ans command and then the
show plan -id <plan nunber>command. The show pl an command returns the plan
name, the number of attempts, the start and end date and times, the total number of
tasks the plan completed, and the whether the plan completed successfully.

kv-> show pl ans

1 Deploy KVLite SUCCEEDED
2 Depl oy Storage Node SUCCEEDED
3 Depl oy Admin Service SUCCEEDED
4 Depl oy KVStore SUCCEEDED
kv-> show plan -id 3

Pl an Depl oy Admin Service (3)

Owner: nul |

St at e: SUCCEEDED

Attenpt nunber: 1

Started: 2012-11-22 22:05: 31 UTC
Ended: 2012-11-22 22:05:31 UTC
Total tasks: 1

Successful : 1

For details on using the CLI, see Configuring the KVStore.

Plan Ownership

ORACLE

In a secure Oracle NoSQL Database deployment, each plan command is associated
with its creator as the owner. Only the plan owner can see and operate it. If a plan is
created in an earlier version of Oracle NoSQL Database, or in an insecure store, the
owner is nul | .

" Note:

The SYSOPER privilege allows a role to perform cancel, execute, interrupt,
and wait on any plan.

Users with the SYSVI EWprivilege can see plans owned by other users, plans with a
nul | owner, and plans whose owners have been removed from the Oracle NoSQL
Database.

3-3

Chapter 3
Pruning Plans

For more information about roles and on configuring Oracle NoSQL Database
securely, see the Security Guide.

Pruning Plans

ORACLE

The system automatically prunes plans that should be removed. Plans are removed
from the Admin Store if they match both of these conditions:

* Arein aterminal state (SUCCEEDED or CANCELLED)
e Have a Plan ID number that is 1000 less than the most recent Plan ID

For example, if the most recent Plan ID is 2000, the system prunes all plans with 1D
numbers 1000 or less that are in a terminal state . The system does not remove plans
in a non-terminal state.

While pruning plans occurs automatically, you can detect that pruning has occurred in
these situations:

» Attempting to show a plan with a specific ID that has been pruned.

» Specifying a range of plans that contains one or more removed plans.

3-4

Configuring the KVStore

Once you have installed Oracle NoSQL Database on each of the nodes that you could
use in your store (see Installing Oracle NoSQL Database), you must configure the
store. To do this, you use the Administration command line interface (CLI).

To configure your store, you create and then execute plans. Plans describe a series
of operations that Oracle NoSQL Database should perform for you. While you do not
need to know the details of those internal operations, you do need to know how to use
and execute the plans.

Note:

For information on configuring a non-secure store see Installing and
Configuring a Non-secure Store.

Configuration Overview

At a high level, configuring your store requires these steps:

Configure and Start a Set of Storage Nodes

Name your KVStore

Create a Zone

Create an Administration Process on a Specific Host
Create a Storage Node Pool

Create the Remainder of your Storage Nodes

Create and Deploy Replication Nodes

® N o o p W NP

Configuring Security with Remote Access

You perform all of these activities using the Oracle NoSQL Database command
line interface (CLI). The remainder of this chapter shows you how to perform these
activities. Examples are provided that show you which commands to use, and
how. For a complete list of all the commands available in the CLI, see Admin CLI
Reference.

Start the Administration CLI

ORACLE

Before running the Admin CLI and continuing further, you must have already
completed all of the configuration steps described in Configuring Your KVStore
Installation.

To configure your store, use the runadmi n utility, which provides the Admin command
line interface (CLI). You can use the r unadmi n utility for a number of purposes. In this

4-1

Chapter 4
Start the Administration CLI

section, we describe its use to administer the nodes in your store, after you supply the
node and registry port that r unadni n can use to connect to the store.

If this is the first node you are connecting to the store using the CLI, the node

is designated as the one on which the master copy of the administration database
resides. If you have another node you want to perform that function, be sure to specify
that node at this time.

¢ Note:

You cannot change whatever node you use to initially configure the store,
such as node01 in this example. Carefully plan the node to which r unadni n
first connects.

In this description, we use the string node01 to represent the network name of the node
to which runadni n connects, and we use 5000 as the registry port.

One of the most important aspects of this node is that it must run the Storage Node
Agent (SNA). All storage nodes should have an SNA running on them at this point.

If any do not, complete the instructions in Installing Oracle NoSQL Database before
proceeding further.

To start r unadni n to use the Admin command line interface (CLI) for administration
purposes, use these commands:

ssh node01

> java - Xmx64m - Xms64m \

-jar KVHOWE/ | i b/ kvstore.jar runadmn \
-host nodeOl1 -port 5000 \

-security KVROOT/security/client.security

With this r unadni n example, you specify a single host and port (- host node0Ol - port
5000), permitting one storage node host to run an Admin process. The Admin process
lets you run Admin CLI commands. If you want more than one host to support

CLI commands, use the runadni n utility —hel per - host s flag and list two or more
nodes amd ports, rather than —host <name> —port <val ue>. For example, the next
command starts and Admin process on three hosts, which can then service CLI
commands (node02, node03, and node04):

ssh node01

> java - Xnmx64m - Xns64m \

-jar KVHOWE |ib/kvstore.jar runadnmin \

- hel per-hosts node02: 5010, node03: 5020, node04:5030 \
-security KVROOT/security/client.security

ORACLE 4-2

Chapter 4
Configure and Start a Set of Storage Nodes

< Note:

If you have not completed the steps in the Configuring Security with Remote
Access, then the r unadni n command for a secure store is only available
locally.

After starting the Admin CLI, you can invoke its hel p command to describe all of the
CLI commands.

You can collect the configuration steps that this chapter describes into a file, and then
pass the script to the CLI utility using its - scri pt command. See Using a Script to
Configure the Store for more information.

The plan Commands

Some of the steps described in this chapter make heavy use of the CLI's pl an
command. This command identifies a configuration action that you want to perform

on the store. You can either run that action immediately or you can create a series of
plans with the - noexecut e flag and then execute them later by using the pl an execute
command.

You can list all available plans by using the pl an command without arguments.

For a high-level description of plans, see Plans.

Configure and Start a Set of Storage Nodes

You should already have configured and started a set of Storage Nodes to host the
KVStore cluster. If not, you need to follow the instructions in Installing Oracle NoSQL
Database before proceeding with this step.

Name your KVStore

When you start the command line interface, the kv- > prompt appears. Once you
see this, you can name your KVStore by using the confi gure -name command. The

only information this command needs is the name of the KVStore that you want to
configure.

Note that the name of your store is essentially used to form a path to records kept in
the store. For this reason, you should avoid using characters in the store name that
might interfere with its use within a file path. The command line interface does not
allow an invalid store name. Valid characters are alphanumeric, *-," ', and ".".

For example:

kv-> configure -nane nystore
Store configured: mystore

ORACLE 4.3

Chapter 4
Create a Zone

< Note:

The store name must be unique across all instances of NoSQL Database
that will be monitored by a given instance of Enterprise Manager. For more
information, see Store Targets .

Create a Zone

ORACLE

After starting the Admin command line interface (CLI) and naming your KVstore, you
can create at least one zone. It is possible, and even desirable, to create more than
one zone. Because zones are complete copies of your store, using multiple zones
improves your store availability. This section describes an installation with a single
zone. For more directions about creating a store deployment with multiple zones, see
Configuring with Multiple Zones.

" Note:

Once you add Storage Nodes to a zone, you cannot remove the zone from
your store.

To create a zone, use the pl an depl oy- zone with this usage:

pl an depl oy-zone -nane <zone nane>
-rf <replication factor>
[-type [primary | secondary]]

[-arbiters | -no-arbiters]

[-json]

[-master-affinity | -no-master-affinity]

[-pl an-nane <name>] [-wait] [-noexecute] [-force]
where:

o -arbiters
Specifies that you can allocate Arbiter Nodes on the Storage Node in the zone.
e -no-arbiters

Specifies that you cannot allocate Arbiter Nodes on the Storage Node in the zone.
You can specify this flag only on a primary zone.

Note:

Only primary zones can host Arbiter Nodes.

4-4

Chapter 4
Create a Zone

A number specifying the Zone Replication Factor. A primary zone can have a
Replication Factor equal to zero. Zero capacity Storage Nodes would be added to
this zone to host the Arbiter Nodes.

e -nanme
Identifies the zone name, as a string.
e -json

Formats the command output in JSON.

" Note:

Only primary zones can host Arbiter Nodes.

e -—master-affinity

Indicates that this zone is a Master Affinity zone.

e -no-master-affinity

Specifies that this zone is not a Master Affinity zone.

° -type

Specifies the type of zone to create. If you do not specify a —type, the pl an utility
creates a Primary zone.

For more information on Primary and Secondary Replication Factors, see Configuring
with Multiple Zones.

When you execute the pl an depl oy- zone command, the CLI returns the plan number.
It also returns instructions on how to check the plan's status, or to wait for it to
complete. For example:

kv-> plan depl oy-zone -name "Boston" -rf 3 -wait
Executed plan 1, waiting for conpletion...
Plan 1 ended successfully

You can show the plans and their status using the show pl ans command.

kv-> show pl ans
1 Deploy Zone (1) SUCCEEDED

A zone may also have a Replication Factor equal to zero. This type of zone is useful
to host only Arbiter Nodes. You would add zero capacity Storage Nodes to this zone
in order to host Arbiter Nodes. For more information see Deploying an Arbiter Node

Enabled Topology.

You can also create Master Affinity Zones, which let you prioritize master nodes in
primary zones. See Master Affinity Zones.

ORACLE 4.5

Chapter 4
Create an Administration Process on a Specific Host

Create an Administration Process on a Specific Host

ORACLE

Every KVStore has an administration database. You must deploy the Storage Node to
which the command line interface is currently connecting to, in this case, node01. You
then deploy an Administration process on that same node to continue configuring this
database. Use the depl oy- sn and depl oy- adm n commands to complete this step.

The depl oy- admi n command creates an Administration process, the same type as the
Storage Node (SN) zone — if the zone is primary, the Admin is a primary Admin; if a
secondary zone, so is the Admin.

Secondary Admins support failover. If a primary Admin fails, it converts to an offline
secondary to re-establish quorum using existing Admins. A secondary Admin converts
to a primary to take over for the failed primary. For more information on how quorum is
applied, see the Concepts Guide.

To support failover, ensure that any zones used to continue store operation after a
failure contain at least one Admin node.

¢ Note:

A deployed Admin must be the same type (PRI MARY or SECONDARY) as its
zone. Also, the number of deployed Admins in a zone should be equal to the
Replication Factor for the zone.

The depl oy- sn command requires a Zone ID. You can get this ID by using the show
t opol ogy command:

kv-> show t opol ogy
store=nystore nunPartitions=0 sequence=1
zn: id=znl name=Boston repFactor=3 type=PRI MARY al | owAr bi t er s=f al se

The zone ID is znl in the output.

When you deploy the node, provide the zone ID, the node's network name, and its
registry port number. For example:

kv-> plan depl oy-sn -zn znl -host node0l -port 5000 -wait
Executed plan 2, waiting for conpletion...
Plan 2 ended successfully

Having deployed the node, create the Admin process on the node that you just
deployed, using the depl oy- adm n command. This command requires the Storage
Node ID (which you can obtain using the show t opol ogy command) and an optional
plan name.

kv-> plan depl oy-adnin -sn snl -wait

Executed plan 3, waiting for conpletion...
Plan 3 ended successfully

4-6

Chapter 4
Create a Storage Node Pool

Create a Storage Node Pool

Once you have created your Administration process, you can create a Storage Node
Pool. This pool is used to contain all the Storage Nodes in your store. A Storage Node
pool is used for resource distribution when creating or modifying a store. You use the
pool create command to create this pool. Then you join Storage Nodes to the pool
using the pool joi n command.

Note that a default pool called Al | St or ageNodes will be created automatically and all
SNs will be added to it during the topology deployment process. Therefore, the pool
commands are optional if you use the AllStorageNodes pool as the default pool during
deployment.

< Note:

You may have multiple kinds of storage nodes in different zones that vary

by processor type, speed and/or disk capacity. So the storage node pool lets
you define a logical grouping of storage nodes by whatever specification you
pick.

Remember that we already have a Storage Node created. We did that when
we created the Administration process. Therefore, after we add the pool, we can
immediately join that first SN to the pool.

The pool create command only requires you to provide the name of the pool.

The pool joi n command requires the name of the pool to which you want to join the
Storage Node, and the Storage Node's ID. You can obtain the Storage Node's ID using
the show t opol ogy command.

For example:

kv-> pool create -name BostonPool
Added pool Bost onPool

kv-> show t opol ogy

store=nystore nunPartitions=0 sequence=2
zn: id=znl name=Boston repFactor=3 type=PRI MARY al | owAr bi t er s=f al se
sn=[snl] zn:[id=znl nane=Boston] sl c09kuu: 5000 capacity=1 RUNNI NG

kv-> pool join -name BostonPool -sn snl
Added Storage Node(s) [snl] to pool BostonPool

Create the Remainder of your Storage Nodes

ORACLE

Having created your Storage Node Pool, you can create the remainder of your Storage
Nodes. Storage Nodes host the various Oracle NoSQL Database processes for each
of the nodes in the store. Consequently, you must use the depl oy- sn command in

the same way as you did in Create an Administration Process on a Specific Host.

4-7

Chapter 4
Create Additional Admin Processes

Complete this command for each node that you use in your store. As you deploy each
Storage Node, join it to your Storage Node Pool as described in the previous section.

Hint: Storage Node ID numbers increment sequentially with each Storage Node you
add. So you do not have to repetitively look up the IDs with show t opol ogy. If the last
Storage Node you created was assigned an ID of 10, then the next Storage Node is
automatically assigned ID 11.

kv-> plan depl oy-sn -zn znl -host node02 -port 5000 -wait
Executed plan 4, waiting for conpletion..

Plan 4 ended successfully

kv-> pool join -nanme BostonPool -sn sn2

Added Storage Node(s) [sn2] to pool BostonPoo

kv-> plan depl oy-sn -zn znl -host node03 -port 5000 -wait
Executed plan 5, waiting for conpletion..

Plan 5 ended successfully

kv-> pool join -nane BostonPool -sn sn3

Added Storage Node(s) [sn3] to pool BostonPoo

kv->

Continue this process until you have created Storage Nodes on every node in your
store.

Create Additional Admin Processes

ORACLE

Having deployed all your Storage Nodes, you can now add other Admin processes
using the depl oy- adni n plan. You are responsible for creating the appropriate number
of Admins.

At this point, you have a single Admin process deployed in your store. So far, this has
been sufficient to proceed with store configuration. However, to increase your store's
reliability, you should deploy multiple Admin processes, each running on a different
storage node. This way, you can continue to administer your store even if one SN
becomes unreachable and ends its Admin process. Having multiple Admin processes
also means that you can continue to monitor your store, even if you lose an SN that is
running an Admin process.

Create the Admin process on a node you just deployed, using the pl an depl oy-adm n
command. This command requires the Storage Node ID, which you can get from the
show t opol ogy command:

kv-> show t opol ogy
store=MyStore nunPartitions=100 sequence=104
zn: id=znl nane=MWyRTZone repFactor=1 type=PR MARY al | owAr bi t er s=f al se
master Affinity=fal se
sn=[snl] zn:[id=znl name=MyRTZone] MyHost: 5000 capacity=1 RUNNI NG
[rgl-rnl] RUNNI NG
single-op avg | atency=9. 420646 ns
mul ti-op avg | atency=0.40270275 ms
nunthar ds=1
shard=[rgl] num partitions=100
[rgl-rnl] sn=snl
kv-> plan deploy-adnin -sn snl -wait

4-8

ORACLE

Chapter 4
Create Additional Admin Processes

Executed plan 3, waiting for conpletion...
Plan 3 ended successful ly

Although Admins are not required for normal data operations on the store, they are

needed to perform various administrative operations, including DDL operations. For
example to create or modify tables, and for security operations involving users and

roles. It is very important that the Admin services remain available.

Consideration for Admin Quorum

The full availability of the Admin service depends on having a quorum of the total
Admin services available at a given time. Having a quorum of Admins operates
similarly to the quorum for RNs in a shard. For RNs, the replication factor controls how
many members can fail and still maintain the service. For example, with a replication
factor of 3, the following table describes how failure numbers affect availability:

Failures Availability
0 Full

1 Full

2 Read-only
3 None

The same failure and availability values exist for Admins. We strongly recommend that
you use the store replication factor to determine how many Admins should exist. This
means that the Admin service has the same availability relative to failure as the store
does for data operations. We do not recommend using less than 3 Admins (matching
the typical replication factor), nor having either a very large number of Admins, or an
even number of them.

Since Admins perform data replication much as the replication nodes do, having a
large number of Admins adds more of a burden on the master admin, which must
replicate the data to all of the replicas. While allocating an admin on every SN might
seem convenient (because of its regularity), we do not recommend this, especially if
doing so results in a significantly large number of Admins.

As with the store replication factor, using an even number of replicas means that
maintaining quorum, a majority of the total number, now requires more than half of the
numbers, and results in reduced availability. For example, a replication factor of 4 has
this behavior with failures and availability:

Failures Availability
0 Full

1 Full

2 Read-only
3 Read-only
4 None

So, with a replication factor of 4, the group can still tolerate only a single failure and
maintain full availability. Moreover, in addition to the higher RF value having no benefit
during failures, now one more node exists that can fail, and the chance of losing

4-9

Chapter 4
Create and Deploy Replication Nodes

guorum increases. The replication factors we are describing are for primary nodes
associated with primary zones. For stores with secondary zones, the nodes in the
secondary zones are not included in the quorum.

Available Admins in Zones

Making sure that Admins are available in the right zones is another important
consideration. If a store has multiple primary zones, the zones were presumably set
up to provide better availability. In this case, the admins should reflect the same
arrangement. We recommend that each zone have the same number of admins as
the zone's replication factor. Unlike replication nodes, where all nodes in the shard can
handle read operations, only the admin master responds to admin operations (unless
there is no master). So, putting admins in a secondary zone is mostly only useful to
support failure recovery.

For example, if a store has primary and secondary zones, and all of the primary zones
are lost, the administrator can use the r epai r - adnm n- quor umand pl an fail over
commands to resume operations by converting the secondary zone to a primary zone.
But these operations can occur only if an Admin node is available. For this reason,
stores with secondary zones should include Admins in the secondary zones.

Create and Deploy Replication Nodes

ORACLE

The final step in your configuration process is to create Replication Nodes on

every node in your store. You do this using the t opol ogy create and pl an depl oy-

t opol ogy commands in its place. The t opol ogy creat e command takes the following
arguments:

e topology name

A string to identify the topology.
e pool name

A string to identify the pool.
e number of partitions

The initial configuration is based on the storage nodes specified by pool.
This number is fixed once the topology is created and it cannot be changed.
The command will automatically create an appropriate number of shards and
replication nodes based upon the storage nodes in the pool.

You should make sure the number of partitions you select is more than the largest
number of shards you ever expect your store to contain, because the total number
of partitions is static and cannot be changed. For simpler use cases, you can use

the following formula to arrive at a very rough estimate for the number of partitions:

(Total nunber of disks hosted by the storage nodes /
Replication Factor) * 10

To get a more accurate estimate for production use see Number of Partitions.

The pl an depl oy-t opol ogy command requires a topology name.

Once you issue the following commands, your store is fully installed and configured:

kv-> topol ogy create -nane topo -pool BostonPool -partitions 300
Created: topo

4-10

Chapter 4
Configuring Security with Remote Access

kv-> pl an depl oy-topol ogy -name topo -wait
Executed plan 6, waiting for conpletion...
Plan 6 ended successfully

As a final sanity check, you can confirm that all of the plans succeeded using the show
pl ans command:

kv-> show pl ans

Depl oy Zone (1) SUCCEEDED
Depl oy Storage Node (2) SUCCEEDED
Depl oy Admin Service (3) SUCCEEDED
Depl oy Storage Node (4) SUCCEEDED
Depl oy Storage Node (5) SUCCEEDED
Depl oy- RepNodes SUCCEEDED

OOl WN P

Having done that, you can exit the command line interface.

kv-> exit

Configuring Security with Remote Access

ORACLE

To configure security with remote access, see the following steps:

e Create the first admin user:

kv->execut e ' CREATE USER admin | DENTI FI ED BY "password® ADM N

e Grantthereadw it e role to the first admin user:

kv->execute "GRANT readwite TO USER adm n"

e Make an admin user security directory for remote access:

ssh CLI ENT_HOST mkdir USER/ security

e Copy the SSL trust file from the server node:

scp node0l1: KVROOT/ security/client.trust USER/ security/

* Generate a password store for the first admin user. This step creates an
admi n. passwd file in the USER/ securi ty directory. You can also copy the
admi n. passwd from other machines to the USER/ securi ty directory if the file has
not been created locally. These are the commands to create adni n. passwd:

java - Xmx64m - Xnms64m \
-jar KVHOWE/ |i b/ kvstore.jar securityconfig \
pwdfile create -file USER/ security/adm n. passwd

java - Xmx64m - Xnms64m \
-jar KVHOWE/ |i b/ kvstore.jar securityconfig \

4-11

Chapter 4
Configuring with Multiple Zones

pwdfile secret \
-file USER/security/adm n. passwd -set -alias admn -secret password

* Create an admin user login file as USER/ security/adm n. security:

oracl e. kv. aut h. user name=admi n

oracl e. kv.auth. pwdfile.file=USER/ security/adnin. passwd
oracl e. kv. transport =ssl|

oracl e. kv. ssl . trust St ore=USER/ security/client.trust

* Access the store remotely:

java - Xmx64m - Xms64m \

-jar KVHOWE/ | i b/ kvstore.jar runadmn \
-port 5000 -host node0l \

-security USER/ security/admn.security

Configuring with Multiple Zones

To achieve optimal use of all available physical facilities, deploy your store across
multiple zones. Multiple zones provide fault isolation and availability for your data if

a single zone fails. Each zone has a copy of your complete store, including a copy

of all the shards. With this configuration, reads are always possible, as long as your
data's consistency guarantees can be met, because at least one replica is located in
every zone. Writes can also occur in the event of a zone loss, as long as the database
maintains quorum. See Concepts Guide.

You can specify a different replication factor to each zone. A replication factor is
guantified as one of the following:

Zone Replication Factor
The number of copies, or replicas, maintained in a zone.

Primary Replication Factor

The total number of replicas in all primary zones. This replication factor controls the

number of replicas that participate in elections and acknowledgments. For additional
information on how to identify the Primary Replication Factor and its implications,

see Replication Factor.

Secondary Replication Factor
The total number of replicas in all secondary zones. Secondary replicas provide
additional read-only copies of the data.

Store Replication Factor
Represents for all zones in the store, the total number of replicas across the entire
store.

Zones that are located near each other physically benefit by avoiding bottlenecks from
throughput limitations, and by reducing latency during elections and commits.

ORACLE 4-12

ORACLE

Chapter 4
Configuring with Multiple Zones

< Note:
There are two types of zones: Primary, and Secondary.

Primary zones contain nodes which can serve as masters or replicas.
Zones are created as primary Zones by default. For good performance,
primary zones should be connected by low latency networks so that they
can participate efficiently in master elections and commit acknowledgments.
Primary zones can also become Master Affinity zones. See Using Master
Affinity Zones.

Secondary zones contain nodes which can only serve as replicas.
Secondary zones can be used to provide low latency read access to data

at a distant location, or to maintain an extra copy of the data to increase
redundancy or increase read capacity. Because the nodes in secondary
zones do not participate in master elections or commit acknowledgments,
secondary zones can be connected to other zones by higher latency
networks, because additional latency will not interfere with those time critical
operations.

Using high throughput and low latency networks to connect primary zones leads to
better results and improved performance. You can use networks with higher latency to
connect to secondary zones so long as the connections provide sufficient throughput
to support replication and sufficient reliability that temporary interruptions do not
interfere with network throughput.

" Note:

Because any primary zone can host master nodes, you can reduce write
performance by connecting primary zones through a limited throughput or a
high latency network link.

The following steps walk you through the process of deploying six Storage Nodes
across three primary zones. You can then verify that each shard has a replica in every
zone; service can be continued in the event of a zone failure.

1. For a new store, create the initial "boot config" configuration files using the
makeboot confi g utility:

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar makebootconfig \
-root Data/virtual root/datacenter1/KVROOT \
-host I ocal host \

-port 5100 \

-harange 5110, 5120 \

-capacity 1

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar makebootconfig \
-root Data/virtual root/datacenter2/ KVROOT \
-host | ocal host \

4-13

ORACLE

Chapter 4
Configuring with Multiple Zones

-port 5200 \
-harange 5210, 5220 \
-capacity 1

java - Xmk64m - Xms64m \

-jar KVHOWE/ li b/ kvstore.jar makebootconfig \
-root Data/virtual root/ datacenter 3/ KVROOT \
-host | ocal host \

-port 5300 \

-harange 5310, 5320 \

-capacity 1

java - Xmk64m - Xms64m \

-jar KVHOWE/ li b/ kvstore.jar makebootconfig \
-root Data/virtual root/datacenter4/ KVROOT \
-host | ocal host \

-port 5400 \

-harange 5410, 5420 \

-capacity 1

java - Xmk64m - Xms64m \

-jar KVHOWE/ li b/ kvstore.jar makebootconfig \
-root Data/virtual root/ datacenter5/ KVROOT \
-host | ocal host \

-port 5500 \

-harange 5510, 5520 \

-capacity 1

java - Xmk64m - Xms64m \

-jar KVHOWE/ li b/ kvstore.jar makebootconfig \
-root Data/virtual root/ datacenter6/ KVROOT \
-host 1 ocal host \

-port 5600 \

-harange 5610, 5620 \

-capacity 1

Create and copy the security directory as below:

java - Xmk64m - Xnms64m \

-jar KVHOWE/ l'i b/ kvstore.jar securityconfig config create \
-root Data/virtual root/datacenter1/ KVROOT -kspwd password
Created files

Dat a/ virtual root/ dat acent er 1/ KVROOT/ securi ty/ security. xm
Dat a/ virtual root/ dat acent er 1/ KVROOT/ securi ty/ st ore. keys
Dat a/ virtual r oot/ dat acent er 1/ KVROOT/ securi ty/ store. trust
Dat a/ virtual root/ dat acent er 1/ KVROOT/ security/client.trust
Dat a/ virtual root/ dat acent er 1/ KVROOT/ security/client.security
Dat a/ vi rtual r oot/ dat acent er 1/ KVROOT/ securi ty/ st ore. passwd
(Generated in CE version)

Dat a/ virtual r oot/ dat acent er 1/ KVROOT/ security/store. wal | et/
cwal | et. sso

(CGenerated in EE version)

4-14

ORACLE

Chapter 4

Configuring with Multiple Zones

Creat ed

cp -r Data/virtual root/datacenter1/ KVROOT/ security \
Dat a/ vi rtual r oot / dat acent er 2/ KVROOT/
cp -r Data/virtual root/datacenter1/ KVROOI/ security \
Dat a/ vi rtual r oot / dat acent er 3/ KVROOT/
cp -r Data/virtual root/datacenter1/ KVROOI/ security \
Dat a/ vi rt ual r oot / dat acent er 4/ KVROOT/
cp -r Data/virtual root/datacenter1/ KVROOI/ security \
Dat a/ vi rtual r oot / dat acent er 5/ KVROOT/
cp -r Data/virtual root/datacenter1/ KVROOI/ security \
Dat a/ vi rt ual r oot / dat acent er 6/ KVROOT/

Using each of the configuration files, start all of the Storage Node Agents:

java - Xmk64m - Xnms64m \
-jar KVHOWE/ | ib/kvstore.jar start \
-root Data/virtual root/datacenter1/ KVROOT &

java - Xmk64m - Xnms64m \
-jar KVHOWE |ib/kvstore.jar start \
-root Data/virtual root/datacenter2/ KVROOT &

nohup java - Xmk64m - Xms64m \
-jar KVHOWE/ | ib/kvstore.jar start \
-root Data/virtual root/datacenter3/KVROOT &

java - Xmk64m - Xnms64m \
-jar KVHOWE |ib/kvstore.jar start \
-root Data/virtual root/datacenter4/KVROOT &

java - Xmk64m - Xnms64m \
-jar KVHOWE/ | ib/kvstore.jar start \
-root Data/virtual root/datacenter5/ KVROOT &

java - Xmk64m - Xnms64m \
-jar KVHOWE/ | i b/kvstore.jar start \
-root Data/virtual root/datacenter6/ KVROOT &

Start the CLI:

java - Xmk64m - Xnms64m \

-jar KVHOWE |ib/kvstore.jar runadnin \

-host | ocal host -port 5100 \

-security Data/virtual root/datacenterl/ KVROOT/ security/
client.security

Name your store:

kv-> configure -name MetroArea
Store configured: MetroArea

4-15

ORACLE

Chapter 4
Configuring with Multiple Zones

Deploy the first Storage Node with administration process in the Manhattan zone:

kv-> plan depl oy-zone -name Manhattan -rf 1 -wait
Executed plan 1, waiting for conpletion...
Plan 1 ended successfully

kv-> plan depl oy-sn -znname Manhattan \
-host | ocal host -port 5100 -wait

Executed plan 2, waiting for conpletion...
Plan 2 ended successfully

kv-> plan deploy-adnin -sn snl -wait
Executed plan 3, waiting for conpletion...
Plan 3 ended successfully

kv-> pool create -name SNs
Added pool SNs

kv-> pool join -nane SNs -sn snl
Added Storage Node(s) [snl] to pool SNs

Deploy a second Storage Node in Manhattan zone:

kv-> pl an depl oy-sn -znname Manhattan \
-host | ocal host -port 5200 -wait

Executed plan 4, waiting for conmpletion...
Plan 4 ended successfully

kv-> pool join -name SNs -sn sn2
Added Storage Node(s) [sn2] to pool SNs

Deploy the first Storage Node with administration process in the Jersey City zone:

kv-> pl an depl oy-zone -name JerseyCity -rf 1 -wait
Executed plan 5, waiting for conpletion...
Plan 5 ended successful ly

kv-> plan depl oy-sn -znname JerseyCity \
-host | ocal host -port 5300 -wait

Executed plan 6, waiting for conpletion...
Plan 6 ended successfully

kv-> pl an depl oy-adnmin -sn sn3 -wait
Executed plan 7, waiting for conpletion...
Plan 7 ended successfully

kv-> pool join -name SNs -sn sn3
Added Storage Node(s) [sn3] to pool SNs

Deploy a second Storage Node in Jersey City zone:
kv-> plan depl oy-sn -znname JerseyCity \

-host | ocal host -port 5400 -wait
Executed plan 8, waiting for conpletion...

4-16

ORACLE

10.

11.

12.

13.

Chapter 4
Configuring with Multiple Zones

Plan 8 ended successful ly

kv-> pool join -name SNs -sn sn4
Added Storage Node(s) [sn4] to pool SNs

Deploy the first Storage Node with administration process in the Queens zone:

kv-> plan depl oy-zone -name Queens -rf 1 -wait
Executed plan 9, waiting for conpletion...
Plan 9 ended successfully

kv-> plan depl oy-sn -znname Queens \

-host | ocal host -port 5500 -wait

Executed plan 10, waiting for conpletion...
Plan 10 ended successful ly

kv-> plan deploy-adnin -sn sn5 -wait
Executed plan 11, waiting for conpletion...
Plan 11 ended successful ly

kv-> pool join -nane SNs -sn sn5
Added Storage Node(s) [sn5] to pool SNs

Deploy a second Storage Node in Queens zone:

kv-> pl an depl oy-sn -znname Queens \

-host | ocal host -port 5600 -wait

Executed plan 12, waiting for conpletion...
Plan 12 ended successfully

kv-> pool join -name SNs -sn sné
Added Storage Node(s) [sn6] to pool SNs

Create and deploy a topology:

kv-> topol ogy create -nane Topol -pool SNs -partitions 100
Created: Topol

kv-> pl an depl oy-topol ogy -name Topol -wait
Executed plan 13, waiting for conpletion...
Plan 13 ended successful ly

Check service status with the show t opol ogy command:

kv-> show t opol ogy
store=MetroArea nunPartitions=100 sequence=117
zn: id=znl name=Manhattan repFactor=1 type=PRl MARY
al | owAr bi ters=fal se masterAffinity=false
zn: id=zn2 name=JerseyCity repFactor=1 type=PRI MARY
al | owAr bi ters=fal se masterAffinity=false
zn: id=zn3 name=Queens repFactor=1 type=PRI MARY
al | owAr bi ters=fal se masterAffinity=false

4-17

ORACLE

Chapter 4
Configuring with Multiple Zones

sn=[snl] zn:[id=znl nanme=Manhattan] node0l1:5100 capacity=1 RUNNI NG
[rgl-rnl] RUNNI NG
No performance info available
sn=[sn2] zn:[id=znl nanme=Manhattan] node02: 5200 capacity=1 RUNNI NG
[rg2-rnl] RUNNI NG
No performance info available
sn=[sn3] zn:[id=zn2 nane=JerseyCity] node03: 5300 capacity=1
RUNNI NG
[rgl-rn2] RUNNI NG
No performance info available
sn=[sn4] zn:[id=zn2 nane=JerseyCity] node04: 5400 capacity=1
RUNNI NG
[rg2-rn2] RUNNI NG
No performance info available
sn=[sn5] zn:[id=zn3 name=Queens] node05: 5500 capacity=1 RUNNI NG
[rgl-rn3] RUNNI NG
No performance info available
sn=[sn6] zn:[id=zn3 name=Queens] node06: 5600 capacity=1 RUNNI NG
[rg2-rn3] RUNNI NG
No performance info available

nunShar ds=2
shard=[rgl] num partitions=50
[rgl-rnl] sn=snl
[rgl-rn2] sn=sn3
[rgl-rn3] sn=sn5
shard=[rg2] num partitions=50
[rg2-rnl] sn=sn2
[rg2-rn2] sn=sn4
[rg2-rn3] sn=sn6

14. Verify that each shard has a replica in every zone:

kv-> verify configuration

Verify: starting verification of store MetroArea

based upon topol ogy sequence #117

100 partitions and 6 storage nodes

Time: 2020-07-30 17:04:02 UTC Version: 20.2.15

See node01:

Dat a/ vi rtual r oot/ dat acent er 1/ KVROOT/ Met r oAr ea/ | og/

MetroArea {0..N} .l og

for progress messages

Verify: Shard Status: healthy:2

writabl e-degraded: 0 read-only: 0 offline:0 total:?2

Verify: Admin Status: healthy

Verify: Zone [name=Manhattan id=znl

t ype=PRI MARY al | owAr bi t er s=f al se

mast er Af fi ni ty=f al se] RN Status: online:2 read-only: 0 offline:0
Verify: Zone [name=JerseyCity id=zn2

t ype=PRI MARY al | owAr bi t er s=f al se

mast er Af fi ni ty=f al se] RN Status: online:2 read-only: 0 offline:0
maxDel ayM | |is: 1 maxCat chupTi meSecs: 0

Verify: Zone [name=Queens id=zn3 type=PRI MARY al | owAr bi t er s=f al se
mast er Af fi ni ty=f al se] RN Status: online:2 read-only: 0 offline:0

4-18

ORACLE

Chapter 4
Configuring with Multiple Zones

maxDel ayM I'l i s: 4 maxCat chupTi meSecs: 0

Verify: == checking storage node snl ==

Verify: Storage Node [snl] on node0l: 5100

Zone: [name=Manhattan id=znl type=PRI MARY al | owAr biters=fal se
mast er Af fi ni ty=f al se]

Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify: Admi n [adm nl] Status: RUNNI NG MASTER
Verify: Rep Node [rgl-rnl] Status: RUNNI NG MASTER
sequenceNunber: 1, 261 haPort: 5111 avail abl e storage size:31 GB
Verify: == checking storage node sn2 ==

Verify: Storage Node [sn2] on node02: 5200

Zone: [name=Manhattan id=znl type=PRl MARY

al | owAr bi ters=fal se master Affinity=fal se]

Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC
Build id: c8998e4a8aa5 Edition: Enterprise

Verify: Rep Node [rg2-rnl] Status: RUNNI NG MASTER
sequenceNunber: 1, 236 haPort: 5210 avail abl e storage size:31 GB
Verify: == checking storage node sn3 ==

Verify: Storage Node [sn3] on node03: 5300

Zone: [name=JerseyCity id=zn2 type=PR MARY

al | owAr bi ters=fal se master Affinity=fal se]

Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify: Admi n [adm n2] Status: RUNNI NG REPLI CA
Verify: Rep Node [rgl-rn2] Status: RUNNI NG REPLI CA
sequenceNunber: 1, 261 haPort: 5311 avail abl e storage size:31 GB
delayM I lis:1 catchupTi meSecs: 0

Verify: == checking storage node sn4 ==

Verify: Storage Node [sn4] on node04: 5400

Zone: [name=JerseyCity id=zn2 type=PR MARY

al | owAr bi ters=fal se master Affinity=fal se]

Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify: Rep Node [rg2-rn2] Status: RUNNI NG REPLI CA
sequenceNunber: 1, 236 haPort: 5410 avail abl e storage size:31 GB
delayM I lis:0 catchupTi meSecs: 0

Verify: == checking storage node sn5 ==

Verify: Storage Node [sn5] on node05: 5500

Zone: [name=Queens id=zn3 type=PRI MARY

al | owAr bi ters=fal se master Affinity=fal se]

Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify: Admi n [adm n3] Status: RUNNI NG REPLI CA
Verify: Rep Node [rgl-rn3] Status: RUNNI NG REPLI CA
sequenceNunber: 1, 261 haPort: 5511 avail abl e storage size:31 GB
delayM I lis:1 catchupTi meSecs: 0

Verify: == checking storage node sn6 ==

Verify: Storage Node [sn6] on node06: 5600

Zone: [name=Queens id=zn3 type=PRI MARY

al | owAr bi ters=fal se master Affinity=fal se]

Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify: Rep Node [rg2-rn3] Status: RUNNI NG REPLI CA
sequenceNunber: 1, 236 haPort: 5610 avail abl e storage size:31 GB

4-19

Chapter 4
Adding Secondary Zone to the Existing Topology

delayM I lis:4 catchupTi meSecs: 0
Verification conplete, no violations.

15. Follow the instructions mentioned in Configuring Security with Remote Access to
create the access for the user in the multiple zone deploy example.

In the previous example there are three zones (znl = Manhattan, zn2 = JerseyCity,
zn3=Queens) with six Replication Nodes (two masters and four replicas) in this cluster.
This means that this topology is not only highly available because you have three
replicas within each shard, but it is also able to recover from a single zone failure. If
any zone fails, the other two zones are enough to elect the new master, so service
continues without any interruption.

Adding Secondary Zone to the Existing Topology

ORACLE

This section shows how to add a secondary zone to the existing topology that was
created in the "Configuring with Multiple Zones" section. The following example adds a
secondary zone in a different geographical location, Europe, allowing the users to read
the data from the secondary zone either because it is physically located closer to the
client or because the primary zone in the New York metro area is unavailable due to

a disaster. The steps involve creating and starting a new Storage Node with capacity
2, creating a secondary zone, deploying the new Storage Node in the secondary zone,
and doing a redistribute of the topology so that a replica for each shard is placed in the
secondary zone.

1. Create the initial makebootconfig for the new Storage Node that will be deployed
in the Frankfurt zone.

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar makebootconfig \
-root Data/virtual root/datacenter?7/KVROOT \
-host I ocal host \

-port 5700 \

-harange 5710, 5720 \

-capacity 1

2. Copy the security directory to the new Storage Node.

cp -r Data/virtual root/datacenter1/KVROOT/ security \
Dat a/ vi rtual r oot/ dat acent er 7/ KVROOT/

3. Start the 7th Storage Node Agent.

java - Xmk64m - Xnms64m \
-jar KVHOWE |ib/kvstore.jar start \
-root Data/virtual root/datacenter?7/ KVROOT &

4. Start the Admin CLI.
java - Xmk64m - Xnms64m \

-jar KVHOWE |ib/kvstore.jar runadnmin \
-host | ocal host -port 5100 \

4-20

ORACLE

Chapter 4
Adding Secondary Zone to the Existing Topology

-security Data/virtual root/datacenterl/KVROOT/ security/
client.security

Create a secondary zone in Frankfurt.

kv-> plan depl oy-zone -name Frankfurt -rf 1 -type secondary -wait
Executed plan 14, waiting for conpletion...
Plan 14 ended successful ly

Deploy Storage Node sn7 in the Frankfurt zone.

kv-> plan depl oy-sn -znname Frankfurt -host |ocal host -port 5700
-wai t

Executed plan 15, waiting for conpletion...

Plan 15 ended successfully

kv-> pool join -name SNs -sn sn7
Added Storage Node(s) [sn7] to pool SNs

Do redistribute and then deploy the new topology to create one replica for every
shard in the secondary Frankfurt zone.

kv-> topol ogy clone -current -name topo_secondary
Created topo_secondary

kv-> topol ogy redistribute -name topo_secondary -pool SNs
Redi stributed: topo_secondary

kv-> topol ogy preview -name topo_secondary
Topol ogy transformation fromcurrent depl oyed topology to
t opo_secondary:
Create 1 RN
shard rgl
1 newRN: rgl-rn4

kv-> pl an depl oy-topol ogy -nanme topo_secondary -wait
Executed plan 16, waiting for conpletion...
Plan 16 ended successful ly

Check service status with the show topology command.

kv-> show t opol ogy
store=MetroArea nunPartitions=100 sequence=120
zn: id=znl nane=Manhattan repFactor=1 type=PRl MARY
al | owAr bi t ers=fal se masterAffinity=false
zn: id=zn2 name=JerseyCity repFactor=1 type=PRI MARY
al | owAr bi t ers=fal se masterAffinity=false
zn: id=zn3 name=Queens repFactor=1 type=PRI MARY
al | owAr bi ters=fal se masterAffinity=false
zn: id=zn4 nane=Frankfurt repFactor=1 type=SECONDARY
al | owAr bi ters=fal se masterAffinity=false

sn=[snl] zn:[id=znl name=Manhattan] node0l:5100 capacity=1 RUNNI NG
[rgl-rnl] RUNNI NG

4-21

ORACLE

Chapter 4
Adding Secondary Zone to the Existing Topology

single-op avg | atency=0.21372496 nms nulti-op avg | atency=0.0 ms

sn=[sn2] zn:[id=znl nanme=Manhattan] node02: 5200 capacity=1 RUNNI NG
[rg2-rnl] RUNNI NG
singl e-op avg | atency=0.30840763 ns nulti-op avg | atency=0.0 ms

sn=[sn3] zn:[id=zn2 nane=JerseyCity] node03: 5300 capacity=1

RUNNI NG

[rgl-rn2] RUNNI NG
No performance info avail able

sn=[sn4] zn:[id=zn2 nane=JerseyCity] node04: 5400 capacity=1

RUNNI NG

[rg2-rn2] RUNNI NG
No performance info avail able

sn=[sn5] zn:[id=zn3 name=Queens] node05: 5500 capacity=1 RUNNI NG
[rgl-rn3] RUNNI NG
No performance info avail able

sn=[sn6] zn:[id=zn3 name=Queens] node06: 5600 capacity=1 RUNNI NG
[rg2-rn3] RUNNI NG
No performance info avail able

sn=[sn7] zn:[id=zn4 name=Frankfurt] node07:5700 capacity=1 RUNNI NG
[rgl-rn4] RUNNI NG
No performance info available

nunShar ds=2
shard=[rgl] num partitions=50
[rgl-rnl] sn=snl
[rgl-rn2] sn=sn3
[rgl-rn3] sn=sn5
[rgl-rn4] sn=sn7
shard=[rg2] num partitions=50
[rg2-rnl] sn=sn2
[rg2-rn2] sn=sn4
[rg2-rn3] sn=sn6

Verify that the secondary zone has a replica for each shard.

kv-> verify config

Verify: starting verification of store MetroArea

based upon topol ogy sequence #120

100 partitions and 7 storage nodes

Time: 2020-07-30 18:00:19 UTC Version: 20.2.15

See node01:

Dat a/ vi rtual r oot/ dat acent er 1/ KVROOT/ Met r oAr ea/ | og/

MetroArea {0..N} .l og

for progress nmessages

Verify: Shard Status: healthy:1

writabl e-degraded: 1 read-only:0 offline:0 total:2

Verify: Adnmin Status: healthy

Verify: Zone [name=Manhattan i d=znl type=PRI MARY al | owAr bi t er s=f al se
mast er Af fi ni ty=f al se] RN Status: online:2 read-only:0 offline:0
Verify: Zone [name=JerseyCity id=zn2

t ype=PRI MARY al | owAr bi t ers=fal se

mast er Af fi ni ty=f al se] RN Status: online:2 read-only:0 offline:0
maxDel ayM | |is: 1 maxCat chupTi meSecs: 0

Verify: Zone [name=Queens id=zn3 type=PRI MARY al | owAr bi t er s=f al se
mast er Af fi ni ty=f al se] RN Status: online:2 read-only:0 offline:0

4-22

ORACLE

Chapter 4
Adding Secondary Zone to the Existing Topology

maxDel ayM I li s: 1 maxCat chupTi meSecs: 0

Verify: Zone [name=Frankfurt id=zn4

t ype=SECONDARY al | owAr bi t er s=f al se

mast er Af fi ni ty=f al se] RN Status: online:1 read-only:0 offline:0
maxDel ayM I li s: 1 maxCat chupTi meSecs: 0

Verify: == checking storage node snl ==

Verify: Storage Node [snl] on node0l: 5100

Zone: [name=Manhattan id=znl type=PRI MARY al | owAr biters=fal se
mast er Af fi ni ty=f al se]

Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify: Admi n [adm nl] Status: RUNNI NG MASTER
Verify: Rep Node [rgl-rnl] Status: RUNNI NG MASTER
sequenceNunber: 1, 261 haPort: 5111 avail abl e storage size:31 GB
Verify: == checking storage node sn2 ==

Verify: Storage Node [sn2] on node02: 5200

Zone: [name=Manhattan id=znl type=PRI MARY al | owAr biters=fal se
mast er Af fi ni ty=fal se]

Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify: Rep Node [rg2-rnl] Status: RUNNI NG MASTER
sequenceNunber: 1, 236 haPort: 5210 avail abl e storage size:31 GB
Verify: == checking storage node sn3 ==

Verify: Storage Node [sn3] on node03: 5300

Zone: [name=JerseyCity id=zn2 type=PRI MARY al | owArbi t er s=f al se
mast er Af fi ni ty=f al se]

Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify: Admi n [adm n2] Status: RUNNI NG REPLI CA
Verify: Rep Node [rgl-rn2] Status: RUNNI NG REPLI CA
sequenceNunber: 1, 261 haPort: 5311 avail abl e storage size:31 GB
delayM I lis:0 catchupTi meSecs: 0

Verify: == checking storage node sn4 ==

Verify: Storage Node [sn4] on node04: 5400

Zone: [name=JerseyCity id=zn2 type=PRI MARY al | owArbi t er s=f al se
mast er Af fi ni ty=f al se]

Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify: Rep Node [rg2-rn2] Status: RUNNI NG REPLI CA
sequenceNunber: 1, 236 haPort: 5410 avail abl e storage size:31 GB
delayM I lis:1 catchupTi meSecs: 0

Verify: == checking storage node sn5 ==

Verify: Storage Node [sn5] on node05: 5500

Zone: [name=Queens id=zn3 type=PRI MARY al | owAr bi t er s=f al se
mast er Af fi ni ty=f al se]

Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify: Admi n [adm n3] Status: RUNNI NG REPLI CA
Verify: Rep Node [rgl-rn3] Status: RUNNI NG REPLI CA
sequenceNunber: 1, 261 haPort: 5511 avail abl e storage size:31 GB
delayM I lis:1 catchupTi meSecs: 0

Verify: == checking storage node sn6 ==

Verify: Storage Node [sn6] on node06: 5600

Zone: [name=Queens id=zn3 type=PRI MARY al | owAr bi t er s=f al se
mast er Af fi ni ty=f al se]

4-23

Chapter 4
Using Master Affinity Zones

Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC

Build id: c8998e4a8aab Edition: Enterprise

Verify: Rep Node [rg2-rn3] Status: RUNNI NG REPLI CA
sequenceNunber: 1, 236 haPort: 5610 avail abl e storage size:31 GB
delayM I lis:0 catchupTi meSecs: 0

Verify: == checking storage node sn7 ==

Verify: Storage Node [sn7] on node07:5700

Zone: [name=Frankfurt id=zn4 type=SECONDARY al | owAr bit er s=f al se
mast er Af fi ni ty=f al se]

Status: RUNNING Ver: 20.2.15 2020-07-24 09:50:01 UTC

Build id: c8998e4a8aa5 Edition: Enterprise

Verify: Rep Node [rgl-rn4] Status: RUNNI NG REPLI CA
sequenceNunber: 1, 261 haPort: 5710 avail abl e storage size:31 GB
delayM I lis:1 catchupTi meSecs: 0

Verification conplete, no violations.

Using Master Affinity Zones

ORACLE

Master Affinity zones let you specify which Primary Zone handles write requests for
your client applications.

Oracle NoSQL Databases use zones. Zones duplicate the entire KVStore, spreading
the data store and load across multiple physical locations. Having zones helps to avoid
catastrophic data loss and operational disruptions. A zone consists of a number of
Storage Nodes (SNs) and Replication Nodes (RNs). See Architecture in the Concepts
Guide.

Two kinds of zones exist:

* Primary zones — can host both master nodes and replication nodes, though they
are not required to do so. Data read and write requests go to Primary zones
configured to handle such requests.

* Secondary zones — have no master node. They handle only read requests from
client applications.

Each shard has a single Master Node, which is capable of writing data to all RNs.
Regardless of zone type, all zones require high quality network connectivity to
maintain optimal performance for writing data to the RNs, and accessing data from
RNs for application data requests.

You choose which Primary zones have Master Affinity, which provides a way for you to
send write requests to a specific Primary zone. Setting the - mast er - af fi ni ty property
confirms its designation as such, while keeping the default —-no- master-affinity
property designates that a zone is not a Master Affinity zone. Using the —nast er -
affinity property organizes Master nodes from different shards into the Master
Affinity zone, providing several advantages:

* Master Affinity zones service high demand write requests across shards.

* When a Master Node fails, a replacement from the Master Affinity zone is
available to take over from the failed node, with virtually no lag in service.

* RNs in the Master Affinity zone perform a standard election process to determine
the Master Node that assumes the role of the failed Master Node.

4-24

Chapter 4
Using Master Affinity Zones

Using Master Affinity zones successfully requires knowledge of the zones that are
in closest proximity to your client applications with the highest demands. The client
application is then predictably serviced by both the Master Node and RNs in the
Master Affinity zone.

Benefits of Master Affinity Zones

Master affinity is a zone property. A zone either has the Master Affinity property
(-master-affinity), or does not (- no- mast er-af fi ni ty). Most likely, you will choose
a specific Primary Zone to become a Master Affinity zone because that zone is ideally
suited to service demanding client write requests. The candidate zone is in close
proximity to the application demands, and has high quality communication capabilities
to service them.

You can set the Master Affinity property only on Primary Zones. Once you do, only
nodes in Master Affinity zones can become masters during a failover. Having a Master
Affinity zone with one or more Master nodes supports both low latency write activities
and high availability.

Typically, when a Master Node fails, the Replication Nodes (RNs) enter a selection
process to elect a new Master node. The election involves an algorithmic approach
using, among other factors, a criteria to elect the RN with the most recent data. Once
a zone is a Master Affinity zone, and a Master Node fails, a similar process occurs.
When a new Master node exists, write requests are automatically directed to the new
Master, and absolute consistency requests are serviced by the new Master in the
Master Affinity zone.

All storage nodes (SNs) can determine if they are part of a Master Affinity zone. If they
are not part of a Master Affinity zone, they help determine which SNs are candidates
to host RNs that will transfer to the Master Affinity zone as potential Master Nodes
during election. By choosing and assigning RNs to a Master Affinity zone, if the current
Master node fails, the next applicable node will assume its responsibilities.

Adding a Master Affinity Zone

ORACLE

Describes the Master Affinity zone parameter, and the effects of setting it.

Using Master Affinity zones is optional. By default, after upgrading to the current
release, all zones are set to - no- mast er- af fi ni ty. To use Master Affinity, you

change the zone property manually. The Master Affinity zone property affects only

the Replication Node masters, and has no effect on the database Admin masters. This
section describes how to use Master Affinity zones, and what effects they can have on
your operations.

Your first choice is to determine which zones should have Master Affinity. The chosen
zones must be in close physical proximity to the applications they serve. In this way, a
Master Affinity zone provides the lowest latency write performance.

As an example, the following topology is for two (2) shards (r g1 and r g2) with a
replication factor of three (3), described as a 2 * 3 KVSTORE, where rg2-rnl and
rgl-rn2 are the master nodes in znl and zn2, respectively:

Storage Node [snl] on | ocal host: 5100 Zone: [name=1 id=znl
t ype=PRI MARY al | owAr bi t er s=f al se Status: RUNNI NG
Admi n [adm nl] St at us: RUNNI NG MASTER

4-25

Chapter 4
Using Master Affinity Zones

Rep Node [rgl-rnl] St at us: RUNNI NG, REPLI CA

Rep Node [rg2-rnl] St at us: RUNNI NG MASTER
Storage Node [sn2] on | ocal host: 5200 Zone: [name=2 id=zn2
type=PRI MARY al | owAr bi t er s=f al se Status: RUNNI NG

Admi n [adm n2] St at us: RUNNI NG, REPLI CA

Rep Node [rgl-rn2] St at us: RUNNI NG MASTER

Rep Node [rg2-rn2] St at us: RUNNI NG, REPLI CA
Storage Node [sn3] on | ocal host: 5300 Zone: [name=3 id=zn3
type=PRI MARY al | owAr bi t er s=f al se Status: RUNNI NG

Admi n [adm n3] St at us: RUNNI NG, REPLI CA

Rep Node [rgl-rn3] St at us: RUNNI NG, REPLI CA

Rep Node [rg2-rn3] St at us: RUNNI NG, REPLI CA

Here are the zones before using Master Affinity. Primary Zones 1 and 2 each have a
master node in their respective shards (rg1 and r g2):

Figure 4-1 Zone Distribution Before Master Affinity

Primary Zone 1 Primary Zone 2 | | Primary Zone 3 | | Secondary Secondary
Zone 4 Zone 5
No-Master- No-Master- No-Master-
Affinity Affinity Affinity
shard 1

Replica Master Replica Replica Replica
rgi1-rmi rgl-m2 rgl-rm3 rgi-rm4 rgi1-rn5
hard 2 Master Replica Replica Replica Replica
shar rg2-mi rg2-m2 rg2-m3 rg2-m4 rg2-m5

After choosing the Primary Zone best suited for having Master Affinity, set the —
mast er - af fi ni ty property as follows:

* When deploying a zone for the first time, use the pl an depl oy- zone command.

e After deploying a zone, use the t opol ogy change-zone-naster-affinity
command.

For example, here is the pl an depl oy- zone command being used as part of
configuring the store nyst or e to change the nast er - af fi ni t y zone property. In this
example, you set the mast er - af fi ni ty property for Zone 2.

configure -name mystore

pl an depl oy-zone -nane 1 -rf 1 -no-naster-affinity -wait
pl an depl oy-zone -nane 2 -rf 1 -master-affinity -wait

pl an depl oy-zone -name 3 -rf 1 -wait

Note:

When Master Affinity is in effect for Zone 2, both master nodes for the two
shards are placed in Zone 2.

ORACLE 4-26

Chapter 4
Using a Script to Configure the Store

Figure 4-2 Zone Distribution After Master Affinity

Primary Zone 1 Primary Zone 2 Primary Zone 3 Secondary Secondary
Zone 4 Zone 5
No-Master- Master- No-Master-
Affinity Affinity Affinity
shard 1
Replica Master Replica Replica Replica
rgl1-rni rgl-rn2 rgl1-rn3 rg1-rn4 rg1-rn5
shard 2 Replica Master Replica Replica Replica
rg2-rni rg2-rn2 rg2-rn3 rg2-rn4 rg2-rn5

Losing a Master Affinity Zone Node

Describes what occurs when a Master Node fails in a Master Affinity Zone.

After your initial setup, you determine which Primary zone will be a Master Affinity
zone. Using Master Affinity zones optimizes write requests to Master Nodes in that
zone. The Storage Nodes (SNs) can detect if they are part of a Master Affinity zone.
If an SN is not part of a zone itself, it detects which SNs are part of a Master Affinity
zone.

If a Master Affinity zone master node fails, the RNs detect if an applicable node

exists within the zone. For example, the Master Affinity zone may have another master
node. If another master node is not available, RNs elect the best candidate, or have
applicable RNs from other zones migrate into the Master Affinity zone for Master Node
consideration. Such zone realignment occurs automatically to support the Master
Affinity zone.

Finally, the RNs vote to determine which node should become the next Master
node. For voting and deciding on a new master node, only the highest performance
RNs can become master nodes in the Master Affinity zone. Once the next Master
node is available, Oracle NoSQL directs all write requests and absolute consistency
requirements to that Master.

Using a Script to Configure the Store

ORACLE

< Note:

You must follow the configuration steps as mentioned in Configuring Your
KVStore Installation before running the Admin CLI.

Up to this point, we have shown how to configure a store using an interactive
command line interface session. However, you can collect all of the commands used in
the prior sections into a script file, and then run them in a single batch operation. To do
this, use the | oad command in the command line interface. For example:

4-27

Chapter 4
Smoke Testing the System

Using the | oad -fil e command line option:

ssh node01

> java - Xnmx64m - Xns64m \

-jar KVHOWE/ li b/ kvstore.jar runadmn -port 5000 -host node0l1 \
-security \

KVROOT/ security/client.security \

load -file script.txt

Using directly the | oad -fil e command:

kv-> load -file <path to file>

Using this command you can load the named file and interpret its contents as a script
of commands to be executed.

The file, scri pt. txt, would contain content like this script. Note that the name of the
store in this example is BostonArea, rather one of the names used previously, such as
MetroArea:

Begin Script

configure -nanme BostonArea

pl an depl oy-zone -nane "Boston" -rf 3 -wait

pl an depl oy-sn -zn znl -host nodeOl -port 5000 -wait
pl an depl oy-admn -sn snl -wait

pool create -nanme BostonPoo

pool join -name BostonPool -sn snl

pl an depl oy-sn -zn znl -host node02 -port 6000 -wait
pool join -name BostonPool -sn sn2

pl an depl oy-sn -zn znl -host node03 -port 7000 -wait
pool join -name BostonPool -sn sn3

topol ogy create -nane topo -pool BostonPool -partitions 300
pl an depl oy-topol ogy -nane topo -wait

exit

End Script

Follow the instructions mentioned in Configuring Security with Remote Access to
create the access for the user in the multiple zone deploy example.

Smoke Testing the System

ORACLE

There are several things you can do to ensure that your KVStore is up and fully
functional.

1. Run the ping command. See:

> java - Xnmx64m - Xns64m \

-jar KVHOWE |i b/ kvstore.jar ping -port 5000 \

-host nodeOl1 -security

USER/ security/adnin. security

Pi ngi ng conmponents of store nystore based upon topol ogy sequence
#316

300 partitions and 3 storage nodes

4-28

Chapter 4
Smoke Testing the System

Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
Shard Status: healthy:3 witabl e-degraded: 0 read-only:0 offline:0
Admin Status: healthy
Zone [name=Boston id=znl type=PRI MARY al | owAr bi t er s=f al se
mast er Af fi ni ty=f al se]
RN Status: online:9 offline:0 nmaxDelayMIlis:1 maxCat chupTi neSecs: 0
Storage Node [snl] on node0l: 5000
Zone [name=Boston id=znl type=PRI MARY al | owAr bi t er s=f al se
mast er Af fi ni ty=f al se]
RN Status: online:1 offline:0
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Adm n [adm nl] Status: RUNNI NG MASTER
Rep Node [rgl-rnl] Status: RUNNI NG REPLI CA
sequenceNunber: 231 haPort:5011 avail abl e storage size:14 (B
delayM I lis:1 catchupTi meSecs: 0
Rep Node [rg2-rnl] Status: RUNNI NG REPLI CA
sequenceNunber: 231 haPort:5012 avail abl e storage size:12 (B
delayM I lis:1 catchupTi meSecs: 0
Rep Node [rg3-rnl] Status: RUNNI NG MASTER
sequenceNunber: 227 haPort:5013 avail abl e storage size:11 (B
Storage Node [sn2] on node02: 6000
Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se
mast er Af fi ni ty=f al se]
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Rep Node [rgl-rn2] Status: RUNNI NG MASTER
sequenceNunber: 231 haPort: 6010 avail abl e storage size:13 (B
Rep Node [rg2-rn2] Status: RUNNI NG REPLI CA

sequenceNunber: 231 haPort: 6011 avail abl e storage size:18 (B
delayM I lis:1 catchupTi meSecs: 0
Rep Node [rg3-rn2] Status: RUNNI NG REPLI CA
sequenceNunber: 227 haPort: 6012 avail abl e storage size:16 GB
delayM I lis:1 catchupTi meSecs: 0
Storage Node [sn3] on node03: 7000
Zone: [name=Boston id=znl type=PRI MARY al | owAr biters=fal se
mast er Af fi ni ty=f al se]
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Rep Node [rgl-rn3] Status: RUNNI NG REPLI CA
sequenceNunber: 231 haPort: 7010 avail abl e storage size:12 (B
delayM I lis:1 catchupTi meSecs: 0

Rep Node [rg2-rn3] Status: RUNNI NG MASTER
sequenceNunber: 231 haPort: 7011 avail abl e storage size:12 (B
Rep Node [rg3-rn3] Status: RUNNI NG REPLI CA

sequenceNunber: 227 haPort: 7012 avail abl e storage size:11 GB
delayM I lis:1 catchupTi meSecs: 0

2. Look through the Javadoc. You can access it from the documentation index page,
which can be found at KYHOVE/ doc/ i ndex. htm .

If you run into installation problems or want to start over with a new store, then on
every node in the system:

ORACLE 4-29

Chapter 4
Troubleshooting
1. Stop the node using:

java - Xmx64m - Xms64m \
-jar KVHOWE/ l'i b/ kvstore.jar stop -root KVROOT

2. Remove the contents of the KVROOT directory:
rm-rf KVROOT

3. Start over with the steps described in Installation Configuration Parameters.

Troubleshooting

ORACLE

Typical errors when bringing up a store are typos and misconfiguration. It is also
possible to run into network port conflicts, especially if the deployment failed and you
are starting over. In that case be sure to remove all partial store data and configuration
and kill any remnant processes. Processes associated with a store as reported by "jps
-m" are one of these:

* kvstore.jar start -root KVROOT (SNA process)
* ManagedService

If you kill the SNA process it should also kill its managed processes.

There are detailed log files available in KVROOT/ st or enane/ | og as well as logs

of the bootstrap process in KVROOT/ *. | og. The bootstrap logs are most useful in
diagnosing initial startup problems. The logs in st or enane/ | og appear once the store
has been configured. The logs on the host chosen for the admin process are the
most detailed and include a store-wide consolidated log file: KVROOT/ st or enane/ | og/
storename_*.1og

Each line in a log file is prefixed with the date of the message, its severity, and the
name of the component which issued it. For example:

2012-10- 25 14:28:26.982 UTC | NFO [admi nl]
Initializing Admin for store: kvstore

When looking for more context for events at a given time, use the timestamp and
component name to narrow down the section of log to peruse.

Error messages in the logs show up with "SEVERE" in them so you can grep for that if
you are troubleshooting. SEVERE error messages are also displayed in the CLI's show
event s command, and when you use the pi ng command.

In addition to log files, these directories may also contain *.perf files, which are
performance files for the Replication Nodes.

In general, verify configurati on is the tool of choice for understanding the

state of the cluster. In addition to contacting the components, it will cross check

each component's parameters against the Admin database. For example, verify
confi gurati on might report that a Replication Node's helperHosts parameter was at
odds with the Admin. If this were the case then it might explain why a Replication
Node cannot come up. Verify configuration also checks on Admins. It also verifies
the configuration of Arbiter Nodes in the topology.

4-30

Chapter 4
Troubleshooting

Additionally, in order to catch configuration errors early, you can use the diagnostics
tool when troubleshooting your KVStore. Also, you can use this tool to package
important information and files to be able to send them to Oracle Support, for example.
For more information, see Diagnostics Utility

Where to Find Error Information

As your store operates, you can discover information about any problems that may be
occurring by looking at the plan history and by looking at error logs.

The plan history indicates if any configuration or operational actions you attempted to
take against the store encountered problems. This information is available as the plan
executes and finishes. Errors are reported in the plan history each time an attempt to
run the plan fails. The plan history can be seen using the CLI show pl an command.

Other problems may occur asynchronously. You can learn about unexpected failures,
service downtime, and performance issues through the CLI's show event s command.
Events come with a time stamp, and the description may contain enough information
to diagnose the issue. In other cases, more context may be needed, and the
administrator may want to see what else happened around that time.

The store-wide log consolidates logging output from all services. Browsing this
file might give you a more complete view of activity during the problem period.
It can be viewed using the CLI's | ogt ai | command, or by directly viewing the

<storename>_N.log file in the <KVHOME>/<storename>/log directory.

Service States

ORACLE

Oracle NoSQL Database uses four different types of services, all of which should be
running correctly in order for your store to be in a healthy state. The four service types
are the Admin, Storage Nodes, Replication Nodes and Arbiters Nodes. You should
have multiple instances of these services running throughout your store.

Each service has a status that can be viewed using any of the following:
* The show t opol ogy command in the Administration CLI.
* Using the pi ng command.

The status values can be one of the following:

Name Description

ERROR_NO_RESTART The service is in an error state and is
not automatically restarted. Administrative
intervention is required.

ERROR_RESTARTING The service is in an error state. Oracle
NoSQL Database attempts to restart the
service.

RUNNING The service is running normally.

STARTING The service is coming up.

STOPPED The service was stopped intentionally and
cleanly.

4-31

Chapter 4
Troubleshooting

Name Description

STOPPING The service is stopping. This may take some
time as some services can be involved in
time-consuming activities when they are
asked to stop.

SUCCEEDED The plan has completed successfully.

UNREACHABLE The service is not reachable by the Admin.
If the status was seen using a command
issued by the Admin, this state may mask
a STOPPED or ERROR state. If an SN
is UNREACHABLE, or an RN is having
problems and its SN is UNREACHABLE,
the first thing to check is the network
connectivity between the Admin and the
SN. However, if the managing SNA is
reachable and the managed Replication
Node is not, we can guess that the network
is OK and the problem lies elsewhere.

WAITING_FOR_DEPLOY The service is waiting for commands
or acknowledgments from other services
during its startup processing. If it is a
Storage Node, it is waiting for the initial
deploy-SN command. Other services should
transition out of this phase without any
administrative intervention from the user.

A healthy service begins with STARTI NG. It may transition to WAI TI NG_FOR_DEPLOY for a
short period before going on to RUNNI NG,

ERROR_RESTARTI NG and ERROR_NO_RESTART indicate that there has been a problem that
should be investigated. An UNREACHABLE service may only be in that state temporarily,
although if that state persists, the service may be truly in an ERROR_RESTARTI NG or
ERROR_NO RESTART state.

Useful Commands

The following commands may be useful to you when troubleshooting your KVStore.

° java - Xnmx64m - Xms64m \
-jar kvstore.tnp/kvstore.jar ping -host nodeOl -port 5000 \
-security USER/ security/admin.security

Reports the status of the store running on the specified host and port. This
command can be used against any of the host and port pairs used for Storage
Nodes.

° jps -m

Reports the Java processes running on a machine. If the Oracle NoSQL Database
processes are running, they are reported by this command.

ORACLE 4-32

Chapter 4
Troubleshooting

< Note:

This assumes that you have completed the steps in Configuring Security with
Remote Access.

ORACLE 433

Configuring Multi-Region KVStores

Oracle NoSQL Database supports Multi-Region Architecture in which you can create
tables in multiple KVStores, and still maintain consistent data across these clusters.
Each KVStore cluster in a Multi-Region Oracle NoSQL Database setup is called a
Region. A Multi-Region Table or MR Table is a global logical table that is stored and
maintained in different regions. MR Tables maintain consistent data in all the regions.
That is, any updates made to an MR Table in one region automatically applies to the
corresponding MR Table in all the other participating regions. To learn more about
Oracle NoSQL Database Multi-Region Architecture and MR Tables, see Multi-Region
Architecture in the Concepts Guide.

You can configure a Multi-Region Oracle NoSQL Database, and create and
manipulate the MR Tables using the Oracle NoSQL Database command-line interface
(CLI).The remainder of this chapter is organized into four use cases to demonstrate
the different features of the Multi-Region Oracle NoSQL Database and MR Tables. The
examples provided show you which commands to use and how. For a complete list of
all the commands available in the CLI, see Admin CLI Reference.

Note:

A child MR table is not supported because of its undefined semantics.

Use Cases

* Use Case 1: Set up Multi-Region Environment
* Use Case 2: Expand a Multi-Region Table
* Use Case 3: Contract a Multi-Region Table

e Use Case 4: Drop a Region

Use Case 1: Set up Multi-Region Environment

ORACLE

An organization deploys two on-premise KVStores, one each at Frankfurt and London.
As per their requirement, they create a few MR Tables in both the regions. The User s
table is one of the many MR Tables created and maintained by this organization. In
the next few topics, let us discuss how to set up the Frankfurt and London regions and
how to create and work with an MR Table called User s in these two regions.

To configure a Multi-Region NoSQL Database, you need to execute the below listed
tasks in each region. For the use case under discussion, you must execute all the
below listed steps in both the participating regions, Frankfurt and London.

1. Deploy KVStore
2. Set Local Region Name

3. Configure XRegion Service

5-1

Chapter 5
Use Case 1: Set up Multi-Region Environment

Start XRegion Service

4
5. Create Remote Regions

6. Create Multi-Region Tables
7

Access and Manipulate Multi-Region Tables

Deploy KVStore

ORACLE

In each region in the Multi-Region NoSQL Database setup, you must deploy its own
KVStore independently.

Steps:
To deploy the KVStore:

1. Follow the instructions given in Configuration Overview.

2. After deploying the KVStore of your desired topology, you can check the health of
the KVStore by executing the pi ng command from the command line interface.

[~]$ java -jar $KVHOVE/ | ib/kvstore.jar ping -port <port nunber> -
host <host nane>

3. You can also verify the topology of the KVStore by executing the show t opol ogy
command from the kv prompt. See show topology.

kv-> show t opol ogy

Example:

For the use case under discussion, you must set up KVStores for the two regions
proposed.

Connect to the KVStore deployed at hostl, host2, and host3 from the
kv prompt

[~] $java -jar $KVHOWE/ lib/kvstore.jar runadmin \

-hel per-hosts host 1: 5000, host 2: 5000, host 3: 5000

View the topology of the kvstore
kv-> show t opol ogy
store=nrtstore nunPartitions=1000 sequence=1008
zn: id=znl nane=znl repFactor=3 type=PRI MARY al | owAr bi t er s=f al se
master Affinity=fal se

sn=[snl] zn:[id=znl nanme=znl] host1: 5000 capacity=1 RUNNI NG
[rgl-rnl] RUNNI NG
single-op avg | atency=0.8630216 ns nulti-op avg
| at ency=1. 7694647 ns
sn=[sn2] zn:[id=znl nanme=znl] host2: 5000 capacity=1 RUNNI NG
[rgl-rn2] RUNNI NG
single-op avg latency=0.0 ns nulti-op avg
| at ency=2. 0211697 ns
sn=[sn3] zn:[id=znl name=znl] host3: 5000 capacity=1 RUNNI NG
[rgl-rn3] RUNNI NG
single-op avg latency=0.0 ns nulti-op avg

5-2

Chapter 5
Use Case 1: Set up Multi-Region Environment

| at ency=1. 8524266 ns

nunShar ds=1

shard=[rgl] num partitions=1000
[rgl-rnl] sn=snl
[rgl-rn2] sn=sn2
[rgl-rn3] sn=sn3

Connect to the KVStore deployed at host4, host5, and host6 from the
kv prompt

[~] $java -jar $KVHOVE/lib/kvstore.jar runadmin \

- hel per - hosts host 4: 5000, host 5: 5000, host 6: 5000

View the topology of the kvstore
kv-> show t opol ogy
store=nrtstore nunPartitions=1000 sequence=1008
zn: id=znl name=znl repFactor=3 type=PRI MARY al | owAr bi t er s=f al se
mast er Affinity=fal se

sn=[snl] zn:[id=znl name=znl] host4:5000 capacity=1 RUNNI NG
[rgl-rnl] RUNNI NG
single-op avg | atency=0.7519707 ms multi-op avg
| at ency=2. 000658 s
sn=[sn2] zn:[id=znl name=znl] host5: 5000 capacity=1 RUNNI NG
[rgl-rn2] RUNNI NG
single-op avg latency=0.0 ns nulti-op avg
| at ency=3. 2067895 ns
sn=[sn3] zn:[id=znl name=znl] host6: 5000 capacity=1 RUNNI NG
[rgl-rn3] RUNNI NG
single-op avg latency=0.0 ns nulti-op avg
| at ency=1. 9516457 ns

nunShar ds=1

shard=[rgl] num partitions=1000
[rgl-rnl] sn=snl
[rgl-rn2] sn=sn2
[rgl-rn3] sn=sn3

Set Local Region Name

ORACLE

Learn how to set a name to the local region in a Multi-Region NoSQL Database.

After deploying the KVStore and before creating the first MR Table in each
participating region, you must set a local region name. You can change the local
region name as long as no MR Tables are created in that region. After creating the first
MR Table, the local region name becomes immutable.

Steps:
To set the local region name:

1. Connect to the sgl prompt from the local region, and connect to the local KVStore.

5-3

Chapter 5
Use Case 1: Set up Multi-Region Environment

2. Execute the following command from the sql prompt.

sql -> SET LOCAL REG ON <l ocal region nane>;

3. Optionally, you can execute the following command to verify that the local region
name is set successfully.

sql -> SHOWN REA ONS;

Example:

Set the local region name for the two proposed regions, Frankfurt and London.

Connect to the KVStore deployed at hostl, host2, and host3 from the
SQL shell

[~] $java -jar $KVHOWE/ lib/sql.jar \

- hel per-hosts host 1: 5000, host 2: 5000, host 3: 5000 \

-store nrtstore

-- Set the local region name to "fra®
sql -> SET LOCAL REG ON fra;
Statement conpl eted successfully

-- List the regions
sql -> SHOW REG ONS
regi ons
fra (local, active)

Connect to the KVStore deployed at host4, host5, and host6 from the
SQL shell

[~] $java -jar $KVHOMVE/lib/sql.jar \

- hel per-hosts host 4: 5000, host 5: 5000, host 6: 5000 \

-store nrtstore

-- Set the local region name to "Ind"
sql -> SET LOCAL REG ON I nd;
Statenent conpl eted successful ly

-- List the regions
sql -> SHOW REG ONS
regi ons
Ind (local, active)

Configure XRegion Service

ORACLE

Learn how to configure the XRegion Service in a Multi-Region Oracle NoSQL
Database

Before creating any MR Table, you must deploy an XRegion Service. In simple terms,
this is also called an agent. The XRegion Service runs independently with the local
KVStore and it is recommended to deploy it close to the local KVStore. To know more
about agent and agent groups, see Cross-Region Service in the Concepts Guide.

5-4

Chapter 5
Use Case 1: Set up Multi-Region Environment

Steps:
To configure the XRegion Service, execute the following tasks in each region:

1. Create a home directory for the XRegion Service.

2. Create a JSON config file in the home directory created in the step 1. The
structure of the j son. confi g file is shown below.

{
"path" : "<entire path to the home directory for the XRegion
Servi ce>",
"agent GroupSi ze" : <nunber of service agents>,
"agentld" : <agent id using 0-based nunbering>,
"region" : "<local region nanme>",
"store" : "<local store name>",
"hel pers" : |
"<host 1>: <port>",
"<host 2>; <port>",
"<host n>: <port >"
1,
"security" : "<entire path to the security file of the local
store>",
"regions" @ |
{
"name" : "<renote region name>",
"store" : "<renote store nane>",
"security" : "<entire path to the security file of the

renote store>",
"hel pers" : |
"<host 1>; <port>",
"<host 2>; <port>",

"<host n>: <port >

¥
{
"name" : "<renote region name>",
"“store" : "<renote store name>",
"security" : "<entire path to the security file of the

renote store>",
"hel pers" : |
"<host 1>: <port>",
"<host 2>; <port>",

"<host n>: <port >
}l
]

"durability" : "<durability setting>"
}

ORACLE 5.5

Chapter 5
Use Case 1: Set up Multi-Region Environment

Where each attribute in the j son. confi g file is explained below:

path This is the root directory of the XRegion
Service. The agents use this directory to
dump logs, statistics and other auxiliary
files. The directory shall be readable
and writable to the agents.

agent GroupSi ze and agent | d Specifies the number of service agents
and the Agent ID in the agent group.
The Agent ID is specified as numbers
starting from 0. These details are used
to form a group of agents that serve the
local region. Forming a group of agents
achieves horizontal scalability.

Note:

The current release supports
only a single service for each
local region. Therefore the
agent G oupSi ze is setto 1
and the agent | d is set to 0.

security Specifies the security file used by the
agent. This attribute must be defined for
the local store as well as the remote
stores.

regi on Specifies the local region name defined
for the region where you are configuring
the agent.

store Specifies the name of the store in the
local region.

hel pers Specifies the list of host and port
numbers used for configuring the local
store. These helper hosts are those you
used to create a KV client. For XRegion
Service to connect to the local and
remote regions, each region's firewall
must be configured to open the registry
port and HA ports.

regi ons After defining the local region, you must
define a list of remote regions. At least
one remote region shall be defined in
order to create an MR Table.

Specifies the region name, store hame,
and helper hosts for each remote region
you want to include.

ORACLE 5-6

ORACLE

Chapter 5
Use Case 1: Set up Multi-Region Environment

Note:

The remote region names
listed here must be same as
the local region names defined
for them.

durability This is an optional parameter. It
specifies the durability setting for Master
commit synchronization. The possible
values are:

. COW T_NO_SYNC
. COW T_SYNC
. COW T_VIRI TE_NO_SYNC

The default durability setting is
COVM T_NO_SYNC.

Grant the following privileges to the XRegion Service Agent:
* Write permission to system table
* Read and Write permission to all the user tables

—create role for the agent --
CREATE ROLE <Agent Rol e>

—grant privileges to the role --

GRANT WRI TE_SYSTEM TABLE to <Agent Rol e>
GRANT READ ANY_TABLE to <Agent Rol e>
GRANT | NSERT_ANY TABLE to <Agent Role>

—grant role to the agent user --
GRANT <Agent Role> to user <Agent User>

" Note:

This step is required only for secure KVStores. In a non-secure KVStore
setup, this step can be skipped.

Example:

Create a j son. confi g file for each proposed region, Frankfurt and London.

Contents of the configuration file in the "fra® Region

"path": "<path to the json config file>",
"agent GroupSi ze": 1,
"agentld": O,

5-7

Chapter 5
Use Case 1: Set up Multi-Region Environment

"region": "fra",
"store": "<storename at the fra region>",

"security": "<path to the security file>",
"hel pers": |
"host 1: 5000",
"host 2: 5000",
"host 3: 5000"
1
"regions": |
{
"name": "lnd",
"store": "<storename at the Ind region>",
"security": "<path to the security file>",
“hel pers": [
"host 4: 5000",
"host 5: 5000",
"host 6: 5000"
]
}

Contents of the configuration file in the "Ind" Region

—~

"path": "<path to the json config file>",
"agent G oupSi ze": 1,
"agentld": 0,
"region": "lnd",
"store": "<storename at the |nd region>",
"security": "<path to the security file>",
"hel pers": |
"host 4: 5000",
"host 5: 5000",
"host 6: 5000"
1,
"regions": |
{
“name": "fra",
"store": "<storename at the fra region>",
"security": "<path to the security file>",
“hel pers": [
"host 1: 5000",
"host 2: 5000",
"host 3: 5000"

Start XRegion Service

The Xregion service in each region can be started using the xr st art command. The
xrstart command has to be executed for each KVStore separately. The status of the

ORACLE 5-8

Chapter 5
Use Case 1: Set up Multi-Region Environment

xrstart command execution can be viewed by reading the contents of nohup. out file.
To get more details about xr st art command and its various parameters, see xrstart .

Example:

Start the XRegion Service in both the regions, Frankfurt and London.

Start the XRegion Service in the "fra®" Region

[oracl e@ost1l xrshonme] $nohup java - Xms256m - Xmx2048m -j ar $KVHOWE/ | i b/
kvstore.jar xrstart \

-config <path to the json config file> >\

<path to the home directory of the xregion service>/ nohup.out &

[1] 24356
[oracl e@ost1l xrshome]$ nohup: ignoring input and redirecting stderr to
st dout

View the status of the xrstart command in the "fra®" Region

[oracl e@ost1l xrshonme]$ cat nohup. out

Cross-region agent (region=fra,store=nrtstore, hel pers=[host1:5000,
host 2: 5000, host 3: 5000])

starts up fromconfig file=/home/oracl e/ xrshome/ json.config at
2019-11-07 08:57:34 UTC

Start the XRegion Service in the "Ind" Region

[oracl e@ost4 xrshonme]$ nohup java - Xms256m - Xmx2048m -j ar $KVHOVE/ | i b/
kvstore.jar xrstart \

-config <path to the json config file> >\

<path to the home directory of the xregion service>/ nohup.out &

[1] 17587
[oracl e@ost4 xrshome]$ nohup: ignoring input and redirecting stderr to
st dout

View the status of the xrstart command in the "Ind" Region

[oracl e@ost4 xrshonme]$ cat nohup. out

Cross-regi on agent (region=lnd,store=nrtstore, hel pers=[host4:5000,
host 5: 5000, host 6: 5000])

starts up fromconfig file=/home/oracl e/ xrshome/ json.config at
2019-11-07 08:57:34 UTC

Create Remote Regions

ORACLE

Learn to create remote regions from each region in a Multi-Region NoSQL Database.

Before creating and operating on an MR table, you must define the remote regions.
You have already set the local region name for each region, in an earlier step. In this
step, you define all the remote regions for each region. A remote region is different
from the local region where the command is executed.

Steps:

To create the remote regions:

5-9

Chapter 5
Use Case 1: Set up Multi-Region Environment

1. Connect to the sgl prompt from the local region, and connect to the local KVStore.

2. Execute the following command from the sql prompt.

sql -> CREATE REG ON <renote regi on nanme>;

3. Optionally, you can execute the following command to list the remote regions that
are created successfully.

sql -> SHOW REQ ONS;

Example:

Create the remote regions in both the regions, Frankfurt and London.

Connect to the KVStore deployed in the "fra® region from the SQL shell
[~] $java -jar $KVHOME/lib/sql.jar \

- hel per-hosts host 1: 5000, host 2: 5000, host 3: 5000 \

-store nrtstore

— Create a remote region "Ind"
sql -> CREATE REG ON | nd
Statenent conpl eted successfully

— List the regions
sql -> SHOW REG ONS
regi ons

fra (local, active)
Ind (renote, active)

Connect to the KVStore deployed in the "Ind" region from the SQL shell
[~] $java -jar $KVHOME/lib/sql.jar \

- hel per - hosts host 4: 5000, host 5: 5000, host 6: 5000 \

-store nrtstore

— Create a remote region "fra®
sql -> CREATE REA ON fra;
Statenent conpl eted successfully

— List the regions
sql -> SHOW REG ONS
regi ons

Ind (local, active)
fra (remote, active)

Create Multi-Region Tables

You must create an MR Table on each KVStore in the connected graph, and specify
the list of regions that the table should span. For the use case under discussion, you
must create the user s table as an MR Table at both the regions, in any order.

ORACLE 5-10

ORACLE

Chapter 5
Use Case 1: Set up Multi-Region Environment

Steps:
To create an MR Table:

1. To create a table definition, use a CREATE TABLE statement. See Create Table in
the SQL Reference Guide.

2. Optionally, you can verify the regions associated with the MR Table by executing
the following command from the kv prompt.

kv-> SHOW TABLE - NAME <t abl e nane>

Example:

Create an MR Table called user s in both the regions, Frankfurt and London.

Connect to the KVStore deployed in the "fra® region from the SQL shell
[~]$java -jar $KVHOVE/lib/sql.jar \

- hel per-hosts host 1: 5000, host 2: 5000, host 3: 5000 \

-store nrtstore

-- Create the users MR Table
sql -> CREATE TABLE user s(

-> id | NTEGER,

-> name STRI NG

-> team STRI NG

-> PRI MARY KEY (id))

-> IN REGONS fra, | nd;
Statement conpl eted successfully

Connect to the KVStore deployed in the "fra® region from the kv prompt
[~] $java -jar $KVHOVE/lib/kvstore.jar runadnmin \

- hel per-hosts host 1: 5000, host 2: 5000, host 3: 5000 \

-store nrtstore

Verify the regions associated with the users MR table
kv-> SHOWN TABLE - NAME users
{
"json_version": 1,
"type": "table",
"name": "users"
"regions™: {
"1 "fra",
"2 "Ind"
}
"fields": [
{
"nane": "id",
"type": "I NTEGER',
“nul lable": false

“name": "nane",
"type": "STRING',
"nul | abl e": true

5-11

ORACLE

"nanme": "teant,
"type": "STRING',
"nul l abl e": true
}
]

n

ri marykKey": [
Ili dll
] 1
"shardKey": [
Ili dll

Chapter 5
Use Case 1: Set up Multi-Region Environment

Connect to the KVStore deployed in the "Ind" region from the SQL shell

[~] $java -jar $KVHOME/lib/sql.jar \

- hel per - hosts host 4: 5000, host 5: 5000, host 6: 5000 \
-store nrtstore

-- Create the users MR Table

sql -> CREATE TABLE user s(

-> id I NTEGER,
-> nane STRI NG
-> team STRI NG,
-> PRI MARY KEY (id))

-> N REGONS Ind, fra;
Statement conpl eted successfully

Connect to the KVStore deployed in the "Ind" region from the kv prompt
[~] $java -jar $KVHOVE/lib/kvstore.jar runadnmin \
- hel per - hosts host 4: 5000, host 5: 5000, host 6: 5000 \
-store nrtstore

Verify the regions associated with the users MR table

kv-> SHOW TABLE - NAME users

{

"json_version": 1,
"type": "table",
"name": "users"
"regions': {
2" "fra",
1" "Ind"
2
"fields": [
{
"name": "id",
"type": "INTEGER',
“nul lable": false

“name": "nane"
"type": "STRING',
"nul | abl e": true

5-12

Chapter 5
Use Case 1: Set up Multi-Region Environment

"nanme": "teant,
"type": "STRING',
"nul l abl e": true
}
]

n

ri marykKey": [
Ili dll
] 1
"shardKey": [
Ili dll

Create multi-region table with an MR_COUNTER column

ORACLE

You can create a multi-region table containing a column of MR_COUNTER datatype.
MR_COUNTER datatype is used in such situations to take care of conflict

resolution that may arise when the same data is modified across different regions.
MR_COUNTER ensures that though data modifications happen simultaneously in
different regions, the data can always be merged into a consistent state. This merge is
performed automatically by the MR_COUNTER data type without requiring any special
conflict resolution code or user intervention. To learn more about MR_COUNTER
datatype, see Using CRDT datatype in a multi-region table section in the Concepts
Guide.

Example:

Create an MR Table called user s with a MR_COUNTER datatype in both the regions,
Frankfurt and London.

-- Create the users MR Table
sql -> CREATE TABLE user s(
-> id | NTEGER,
-> name STRI NG
-> team STRI NG
-> count | NTEGER AS MR_COUNTER,
-> PRI MARY KEY (id))
-> IN REGONS fra, | nd;
Statement conpl eted successfully

Verify the regions associated with the users MR table
sql -> DESC AS JSON TABLE users

{
"json_version": 1,
"type": "table",
“name": "users",
"regions": {
"1": "fra",
"2": "Ind"
1,
"fields": [
{

5-13

ORACLE

Chapter 5

Use Case 1: Set up Multi-Region Environment

"nane": "id",
"type": "INTEGER',
"nul | abl e": false

b

{
"nane": "nane",
"type": "STRING',
"nul l abl e": true

b

{
"nane": "teant,
"type": "STRING',
“nul I abl e": true

b

{
"nane" : "count",
"type" : "INTEGER',
"nul | abl e" : fal se,
"default" : 0,
"MRCounter" : true

}

1

"primryKey": [
" g

1,

"shardKey": [
"i g

]

}

Connect to the KVStore deployed in the 'Ind region fromthe SQ shell

[~]$java -jar $KVHOVE/lib/sql.jar \
- hel per - host s host 4: 5000, host 5: 5000, host 6: 5000 \
-store nrtstore

-- Create the users MR Table

sql -> CREATE TABLE users(

-> id | NTEGER,

-> nane STRI NG

-> team STRI NG

-> count | NTEGER AS MR COUNTER,
-> PRI MARY KEY (id))

-> IN REGONS Ind, fra;

Statement conpl eted successfully

Verify the regions associated with the users MR table
sql -> DESC AS JSON TABLE users
{

"json_version": 1,

"type": "table",

"name": "users",

"regions": {
2" "fra",
"1": "I nd"

5-14

Chapter 5
Use Case 1: Set up Multi-Region Environment

b
"fields": [
{
"name": "id",
"type": "INTEGER',
"nul l abl e": false
b
{
"nane": "nane",
"type": "STRING',
"nul l abl e": true
b
{
"nane": "teant,
"type": "STRING',
“nul I abl e": true
b
{
"nane" : "count",
"type" : "INTEGER',
“nul | abl e" : fal se,
"default" : 0,
“"MRCounter" : true
}
1
"primryKey": [
" g
1,
"shardKey": [
"i g

To know more details about how to create and use an MR_COUNTER datatype, See
Using the MR_COUNTER datatype section in the SQL Reference Guide.

Access and Manipulate Multi-Region Tables

ORACLE

After creating the MR Table, you can perform read or write operations on the table
using the existing data access APIs or DML statements. There is no change to any
existing data access APIs or DML statements to work with the MR Tables. See Data
Row Management in the SQL Reference Guide.

Example:

Perform DML operations on the user s table in one region, and verify if the changes
are replicated to the other region.

To be executed in the fra region

-- Insert two rows into the users MR Table

sql -> I NSERT | NTO users(id, nane,team) VALUES(1,"Any","HR');
{"NumRows| nserted": 1}

1 row returned

sql -> I NSERT | NTO users(id, nane,teanm) VALUES(2,"Jack","HR");

5-15

Chapter 5
Use Case 2: Expand a Multi-Region Table

{"NumRows| nserted": 1}
1 row returned

To be executed in the |Ind region

-- Verify if the rows are replicated from the fra region
sql -> SELECT * FROM users;

{"id":1,"nane":"Any", "team': "HR'}

{"id":2,"nane": "Jack", "tean: "HR"}

2 rows returned

-- Update the row with id = 2 in the users MR Table
sql -> UPDATE users SET team= "IT" WHERE id = 2;

{" NumRows Updat ed": 1}

1 row returned

-- Delete the row with id = 1 from the users MR Table
sql -> DELETE FROM users WHERE id = 1;

{" NumRowsDel et ed": 1}

1 row returned

To be executed in the fra region

-- Verify if the changes are replicated from the Ind region
sql -> SELECT * FROM users;

{"id":2,"nane": "Jack", "teant: "1 T"}

1 row returned

Stop XRegion Service

In a multi-region setup, you can stop any running Xregion service using xr st op
command. To get more details about the xrst op command, see xrstop.

Example:

Stop the XRegion Service in both the regions, Frankfurt and London.

Stopping the XRegion Service in the fra region
[~]$ java - Xmx1024m - Xms256m -j ar $KVHOVE/ | i b/ kvstore.jar xrstop \
-config <path to the json config file>

Similarly, you must stop the XRegion Service in the other region, Ind.

Use Case 2: Expand a Multi-Region Table

ORACLE

An organization deploys two on-premise KVStores, one each at Frankfurt and London.
As per their requirement, they create a few MR Tables in both the regions. The user s
table is one of the many MR Tables created and maintained by this organization.

Now, they decide to expand their organization by adding another NoSQL Database

in Dublin. After creating Dublin as the new region, they want to expand the existing
MR Tables to the new region. In the next few topics, you learn how to add the Dublin
region to the user s table that you already created in the previous use case.

5-16

Chapter 5
Use Case 2: Expand a Multi-Region Table

If you have not created the user s MR Table earlier, execute the steps outlined in Use
Case 1: Set up Multi-Region Environment.

Prerequisites

ORACLE

Steps:

Before expanding the user s table to the new region, you must have set up the new
region by executing the following tasks:

1. Set up a multi-region NoSQL Database with two regions Frankfurt (f r a) and
London (I nd). See Use Case 1: Set up Multi-Region Environment.

2. Deploy a local KVStore with store name as dubst or e in the new region. See
Configuration Overview.

3. Set the new region's local region name to dub. See Set Local Region Name.

4. Configure and start the XRegion Service in the dub region. See Configure XRegion
Service and Start XRegion Service.

5. Update the j son. confi g file in the existing regions, that is, Frankfurt (f ra) and
London (I nd) to include dub (Dublin) as a remote region.

Note:

You must restart the agent at existing regions to pick up the new region
(dub) from the j son. confi g file.

6. Create two remote regions, fra and | nd in the new region dub. See Create
Remote Regions.

Example:

1. Set the local region name for the new region, Dublin.

Connect to the KVStore deployed at host7, host8, and host9 from
the SQL shell

[~]$java -jar $KVHOVE/lib/sql.jar \

- hel per-hosts host 7: 5000, host 8: 5000, host 9: 5000 \

-store dubstore

-- Set the local region name to "dub*®
sql-> SET LOCAL REG ON dub;
Statement conpl eted successfully

-- List the regions
sql -> SHOWN REG ONS
regi ons
dub (local, active)

2. Create aj son. confi g file for the new region, Dublin.

Contents of the configuration file in the “"dub® Region

{

5-17

ORACLE

3.

Chapter 5
Use Case 2: Expand a Multi-Region Table

"path": "<entire path to the hone directory for the XRegion
Servi ce>",
"agent G oupSi ze": 1,

"agentld": 0,
"region": "dub",
"store": "<storename at the dub region>",
"security": "<path to the security file>",
"hel pers": |
"host 7: 5000",
"host 8: 5000",
"host 9: 5000"
1
"regions": |
{
"name": "fra",
"store": "<store nane at the fra region>",
"security": "<path to the security file>",
“hel pers": [
"host 1: 5000",
"host 2: 5000",
"host 3: 5000"
]
b
{
"name": "lnd",
"store": "<store nane at the Ind region>",
"security": "<path to the security file>",
“hel pers": [
"host 4: 5000",
"host 5: 5000",
"host 6: 5000"
]
}

]
}

Start the XRegion Service in the new region, Dublin.

Start the XRegion Service in the "dub® Region

[oracl e@ost 7 xrshone] $nohup java - Xnms256m - Xmx2048m - j ar
$KVHOME/ | i b/ kvstore.jar xrstart \

-config <path to the json config file> >\

<path to the home directory of the xregion service>/ nohup.out &

[1] 24123
[oracl e@ost 7 xrshone] $ nohup: ignoring input and redirecting
stderr to stdout

View the status of the xrstart command in the "dub® Region
[oracl e@ost 7 xrshome]$ cat nohup. out
Cross-regi on agent (region=fra,store=nrtstore,
host 8: 5000, host 9:5000])

starts up fromconfig file=/home/oracl e/ xrshonme/ json.config at
2020-11-07 08:57:34 UTC

hel per s=[host 7: 5000,

5-18

Chapter 5
Use Case 2: Expand a Multi-Region Table

4. Modify the j son. confi g files in the existing regions (Frankfurt and London) to
include Dublin as a remote region.

Contents of the configuration file in the "fra® Region
{
"path": "<path to the json config file>",
"agent G oupSi ze": 1,
"agentld": O,
"region": "fra",
"store": "<storename at the fra region>",
"security": "<path to the security file>",
"hel pers": |
“host 1: 5000",
“host 2: 5000",
"“host 3: 5000"
1,
"regions": |
{
"nane": "lnd",
"store": "<storenane at the Ind region>",
"security": "<path to the security file>",
"hel pers": [
"host 4: 5000",
"host 5: 5000",
"host 6: 5000"

"nanme": "dub",
"store": "<storename at the dub region>",
"security": "<path to the security file>",
“hel pers": [

"host 7: 5000",

"host 8: 5000",

"host 9: 5000"

Contents of the configuration file in the "Ind" Region
{
"path": "<path to the json config file>",
"agent G oupSi ze": 1,
"agentld": O,
"region": "lnd",
"store": "<storename at the |nd region>",
"security": "<path to the security file>",
"hel pers": |
"“host 4: 5000",
"“host 5: 5000",
"host 6: 5000"
1,

"regions": |

ORACLE 5-19

Chapter 5

Use Case 2: Expand a Multi-Region Table

n nane" : I|f rall ,
"store": "<storename at the fra region>",
"security": "<path to the security file>",

“hel pers": [
"host 1: 5000",
"host 2: 5000",
"host 3: 5000"

"nane": "dub",

"store": "<storename at the dub region>",
"security": "<path to the security file>",

“hel pers": [
"host 7: 5000",
"host 8: 5000",
"host 9: 5000"

]
}
]
}

5. Create two remote regions, fra and | nd in the new region, Dublin.

Connect to the KVStore deployed in the "dub® region from the SQL

shell

[~] $java -jar $KVHOME/lib/sql.jar \
- hel per-hosts host 7: 5000, host 8: 5000, host 9: 5000 \

-store dubstore

— Create remote regions "fra® and "Ind"

sql -> CREATE REG ON fra;

Statement conpl eted successful ly

sql -> CREATE REG ON | nd;

Stat ement conpl eted successful Iy

— List the regions
sqgl -> SHOW REG ONS
regions

dub (local, active)

fra (rempte, active)
Ind (renote, active)

Create MR Table in New Region

Steps:

As a first step in expanding an MR Table to a new region, you must create the MR
Table in the new region using the CREATE TABLE statement. See Create Multi-Region

Tables.

ORACLE

5-20

ORACLE

Chapter 5
Use Case 2: Expand a Multi-Region Table

< Note:

Creating the MR Table in the new region alone does not ensure replicating
the data from the existing regions. This is because you have not yet linked
the new region to this MR Table from the existing regions.

Example:

Create the users MR Table in the new region, Dublin.

Connect to the KVStore deployed in the "dub® region from the SQL shell
[~] $java -jar $KVHOMVE/lib/sql.jar \

- hel per-hosts host 7: 5000, host 8: 5000, host 9: 5000 \

-store dubstore

-- Create the users MR Table
sql -> CREATE TABLE users(
-> id I NTEGER,
-> name STRI NG
-> team STRI NG
-> PRI MARY KEY (id))
-> | N REG ONS dub, fra, | nd;
St atement conpl eted successfully

Connect to the KVStore deployed in the "dub® region from the kv prompt
[~] $java -jar $KVHOVE/lib/kvstore.jar runadnin \

- hel per-hosts host 7: 5000, host 8: 5000, host 9: 5000 \

-store dubstore

Verify the regions associated with the users MR table
kv-> SHOWN TABLE - NAME users

{
"json_version": 1,
"type": "table",
“name": "users",
"regions": {
"1": "dub",
"2": "fra"
"3": "Ind"
b
"fields": [
{
"nane": "id",
"type": "INTEGER',
"nul lable": false
1
{
"name": "nane",
"type": "STRING',
"nul lable": true
1
{

name": "teant,

5-21

Chapter 5
Use Case 2: Expand a Multi-Region Table

"type": "STRING',
"nul l abl e": true

}
]

ri marykKey": [
Ili dll
] 1
"shardKey": [
Ili dll

Add New Region to Existing Regions

ORACLE

As a next step, you must create the new region as a remote region in the existing
regions. Then, you must associate the new region with the MR Table in the existing
regions.

Steps:

Execute the following steps from each existing region:

1. Add the new region as a remote region. See Create Remote Regions.

2. Associate the new region with the existing MR Table using the DDL command
shown below.
ALTER TABLE <t abl e name> ADD REG ONS <regi on name>;

Example:

1. Add the new region, Dublin as a remote region from the existing regions, Frankfurt

and London.

Connect to the KVStore deployed in the "fra® region from the SQL
shell

[~] $java -jar $KVHOME/lib/sql.jar \

- hel per-hosts host 1: 5000, host 2: 5000, host 3: 5000 \

-store nrtstore

—- Create a remote region "dub®
sql -> CREATE REQ ON dub;
Statenent conpl eted successful ly

— List the regions
sql -> SHOW REG ONS
regi ons

fra (local, active)

Ind (renote, active)
dub (remote, active)

Connect to the KVStore deployed in the "Ind" region from the SQL
shell

5-22

ORACLE

Chapter 5
Use Case 2: Expand a Multi-Region Table

[~] $java -jar $KVHOMVE/lib/sql.jar \
- hel per - hosts host 4: 5000, host 5: 5000, host 6: 5000 \
-store nrtstore

—- Create a remote region "dub®
sql -> CREATE REG ON dub;
Statement conpl eted successfully

— List the regions
sql -> SHOWN REG ONS
regi ons

Ind (local, active)
fra (remte, active)
dub (remote, active)

In the existing regions, alter the user s MR Table to add the new region, Dublin.

Connect to the KVStore deployed in the "fra® region from the SQL
shell

[~] $java -jar $KVHOMVE/lib/sql.jar \

- hel per-hosts host 1: 5000, host 2: 5000, host 3: 5000 \

-store nrtstore

— Add the “"dub® region to the users MR Table
sql -> ALTER TABLE users ADD REGA ONS dub;
Statement conpl eted successful Iy

Connect to the KVStore deployed in the "fra® region from the kv
prompt

[~] $java -jar $KVHOVE/lib/kvstore.jar runadnin \

- hel per-hosts host 1: 5000, host 2: 5000, host 3: 5000 \

-store nrtstore

Verify the regions associated with the users MR table
kv-> SHOWN TABLE - NAME users
{
"json_version": 1,
"type": "table",
"name": "users"
"regions": {
“1": "fra",
“2": "Ind"
"3": "dub"
¥
"fields": [
{
"nane": "id",
"type": "INTEGER',
“nul lable": false

“name": "nanme"
"type": "STRING',
"nul | abl e": true

5-23

Chapter 5
Use Case 2: Expand a Multi-Region Table

"nanme": "teant,
"type": "STRING',
"nul l abl e": true
}
]

n

ri marykKey": [
Ili dll
] 1
"shardKey": [
Ili dll

Connect to the KVStore deployed in the "Ind" region from the SQL
shell

[~]$java -jar $KVHOVE/lib/sql.jar \

- hel per - hosts host 4: 5000, host 5: 5000, host 6: 5000 \

-store nrtstore

—- Add the "dub® region to the users MR Table
sgl-> ALTER TABLE users ADD REG ONS dub;
Statement conpl eted successfully

Connect to the KVStore deployed in the "Ind" region from the kv
prompt

[~] $java -jar $KVHOVE/lib/kvstore.jar runadnin \

- hel per-hosts host 4: 5000, host 5: 5000, host 6: 5000 \

-store nrtstore

Verify the regions associated with the users MR table
kv-> SHOWN TABLE - NAME users

{

"json_version": 1,
"type": "table",
"name": "users"
"regions": {

“1": "I'nd",

"2 "fra"

"3": "dub"
¥
"fields": [

{

"nane": "id",

"type": "INTEGER',
"nul l abl e": false

1

{
"name": "nane"
"type": "STRING',
"nul lable": true

1

{

ORACLE 5-24

Chapter 5
Use Case 3: Contract a Multi-Region Table

"nanme": "teant,
"type": "STRING',
"nul l abl e": true
}
]

ri marykKey": [
Ili dll
] 1
"shardKey": [
Ili dll

Access MR Table in New and Existing Regions

After performing the tasks discussed in the previous sections, you can perform
read/write operations on the MR Table from the new region without any disruption.
However, the table may not return the complete data from the existing regions until
the initialization completes in the background. Especially if the MR Table has a huge
volume of data in the existing regions, it may take a while for the new table to see the
data from the remote regions.

Similarly, you can continue performing read/write operations on the MR Table from
the existing regions without any disruption. Adding a new region is transparent to the
customers accessing the MR Table from the existing regions. However, the MR Table
at the existing regions may also need initialization to see the writes from the new
region. If the table at the new region is empty or small, the existing regions will quickly
sync up with it. To learn how to access the MR Tables, see Access and Manipulate
Multi-Region Tables.

Use Case 3: Contract a Multi-Region Table

An organization deploys three on-premise KVStores, one each at Frankfurt, London,
and Dublin. As per their requirement, they created a few MR Tables in all three
regions. The user s table is one of the many MR tables created and maintained by this
organization. As per some changes in their business requirements, they decided to
remove the user s table from the Dublin region. In the next few topics, you learn how to
contract an MR Table, that is, how to remove an MR Table from specific regions.

If you have not created the user s MR table earlier, execute the steps outlined in Use
Case 1: Set up Multi-Region Environment.

If you have not added the Dublin region to the users MR table, execute the steps
outlined in Use Case 2: Expand a Multi-Region Table.

Alter MR Table to Drop Regions

ORACLE

Learn how to contract a Multi-Region table and reduce the regions it spans across.
Steps:

To remove an MR Table from a specific region in a Multi-Region NoSQL Database
setup, you must execute the following steps from all the other participating regions.

5-25

Chapter 5
Use Case 4: Drop a Region

1. Execute the following command from the sql prompt.

ALTER TABLE <t abl e name> DROP REGA ONS <comma separated |ist of
regi ons>

2. Optionally, you can execute the following command from the kv prompt to verify
that the region is dropped successfully.

SHOW TABLE - NAME <t abl e name>

¢ Note:
Suppose you drop region A from an MR table created in region B. Then:
* Region B can't see any new writes on this MR table from the region A.
e Region A continues to see the writes on this MR Table from the region B.

If you want to isolate the MR table in the region A from other regions, you
must drop those regions from the MR table created in region A. This is only a
recommendation and not a mandatory step in contracting an MR Table.

Example:

Drop the Dublin region from the user s MR table in the other two regions, Frankfurt and
London.

Connect to the KVStore deployed in the "fra® region from the SQL shell
[~] $java -jar $KVHOME/ lib/sql.jar \

- hel per-hosts host 1: 5000, host 2: 5000, host 3: 5000 \

-store nrtstore

—- drop the "dub® region from the "users®™ MR table
sql -> ALTER TABLE users DROP REGQ ONS dub;
Statement conpl eted successfully

Connect to the KVStore deployed in the "Ind" region from the SQL shell
[~] $java -jar $KVHOME/ lib/sql.jar \

- hel per-hosts host 4: 5000, host 5: 5000, host 6: 5000 \

-store nrtstore

—- drop the "dub® region from the "users® MR table
sql -> ALTER TABLE users DROP REG ONS dub;
Statement conpl eted successfully

Use Case 4: Drop a Region

ORACLE

An organization deploys three on-premise KVStores, one each at Frankfurt, London,
and Dublin. As per their requirement, they created a few MR Tables in all three
regions. As part of business down-sizing, they decided to exclude the Dublin region
resulting in a two-region NoSQL Database. In the next few topics, you learn how

5-26

Chapter 5
Use Case 4: Drop a Region

to drop an existing region from the NoSQL environment that you had set up in the
previous sections.

If you have not set up a Multi-Region NoSQL Database with three regions already,
execute the steps outlined in:

* Use Case 1: Set up Multi-Region Environment

* Use Case 2: Expand a Multi-Region Table

Prerequisites

Learn about the conditions to be satisfied before dropping a region from a Multi-
Region NoSQL Database.

Before removing a region from a Multi-Region NoSQL Database, it is recommended
to:

e Stop writing to all the MR Tables linked to that region.

e Ensure that all writes to the MR Tables in that region have replicated to the other
regions. This helps in maintaining consistent data across the different regions.

< Note:

As of the current release, there is no provision in Oracle NoSQL Database
to make a table read-only. Hence, you must stop writes to the identified MR
Tables at the application level.

Isolate the Region

Learn how to isolate a region from a Multi-Region NoSQL Database.

When you decide to drop a region, it is a good practice to isolate that region from all
the other participating regions. Isolating a region disconnects it from all the MR Tables
in the Multi-Region NoSQL Database.

Isolating a region ensures that:
* The isolated region cannot see writes from the other regions.

* The other regions cannot see writes from the isolated region.

" Note:

Even though it is not mandatory to isolate the region before dropping it from
a Multi-Region NoSQL Database, this is considered a cleaner approach and
hence suggested.

Steps:

Isolating a region from the Multi-Region NoSQL Database environment involves two
tasks. They are:

ORACLE 5-27

Chapter 5
Use Case 4: Drop a Region

1. Drop the target region from all the MR Tables in the other regions using the DDL
command shown below.

2. Drop all the other regions from all the MR Tables in the region to be isolated.

See Alter MR Table to Drop Regions.

Example:

1. Drop the Dublin region from the user s MR table in the other two regions, Frankfurt
and London.

Connect to the KVStore deployed in the "fra® region from the SQL
shell

[~]$java -jar $KVHOVE/lib/sql.jar \

- hel per-hosts host 1: 5000, host 2: 5000, host 3: 5000 \

-store nrtstore

—- drop the “dub® region from the “users® MR table
sgl -> ALTER TABLE users DROP REG ONS dub;
Statement conpl eted successfully

Connect to the KVStore deployed in the "Ind" region from the SQL
shell

[~] $java -jar $KVHOMVE/lib/sql.jar \

- hel per-hosts host 4: 5000, host 5: 5000, host 6: 5000 \

-store nrtstore

—- drop the "dub® region from the "users®™ MR table
sql -> ALTER TABLE users DROP REG ONS dub;
St atenment conpl eted successfully

2. Drop the other regions (Frankfurt and London) from the users MR table in the
Dublin region.

Connect to the KVStore deployed in the "dub® region from the SQL
shell

[~]$java -jar $KVHOVE/ lib/sql.jar \

- hel per-hosts host 7: 5000, host 8: 5000, host 9: 5000 \

-store dubstore

— drop "fra" and "Ind" regions from the "users® MR table

sql -> ALTER TABLE users DROP REG ONS fra, I nd;
Statement conpl eted successfully

Drop MR Tables in the Isolated Region

After you ensure that the region to be dropped is isolated, you can drop all the
MR Tables created in that region safely. Dropping an MR Table is exactly similar to
dropping a local table.

ORACLE 5-28

Chapter 5
Use Case 4: Drop a Region

Example:

Drop users MR table from the isolated region, Dublin.

Connect to the KVStore deployed in the "dub® region from the SQL shell
[~]$java -jar $KVHOVE/lib/sql.jar \

- hel per-hosts host 7: 5000, host 8: 5000, host 9: 5000 \

-store dubstore

—- drop the “users® MR table
sql -> DROP TABLE users;
Statement conpl eted successfully

Drop the Isolated Region

ORACLE

Finally, you can drop the isolated region from all the other regions.

" Note:

Dropping an isolated region is not mandatory. You can retain the isolated
region without dropping from other regions, for any future use.

Steps:
To drop the isolated region from other regions:

1. Connect to the sgl prompt, and connect to the local KVStore.

2. Execute the following DDL command from the SQL prompt.
DROP REG ON <regi on name>;

3. Optionally, you can execute the following command to verify that the isolated
region is dropped successfully.

SHOW REG ONS;

Example:

Drop the Dublin region from the other two regions, Frankfurt and London.

Connect to the KVStore deployed in the "fra® region from the SQL shell
[~] $java -jar $KVHOVE/lib/sql.jar \

- hel per-hosts host 1: 5000, host 2: 5000, host 3: 5000 \

-store nrtstore

—- drop the "dub® region
sql -> DROP REG ON dub;
Statenent conpl eted successful ly

— List the regions
sql -> SHOWN REA ONS;

5-29

Chapter 5
Troubleshooting multi-region kvstore setup

regi ons

fra (local, active)
Ind (renote, active)

Connect to the KVStore deployed in the "Ind" region from the SQL shell
[~]$java -jar $KVHOVE/lib/sql.jar \

- hel per - hosts host 4: 5000, host 5: 5000, host 6: 5000 \

-store nrtstore

—- drop the "dub® region
sql -> DROP REG ON dub;
Statement conpl eted successfully

— List the regions
sql -> SHOWN REG ONS
regi ons

Ind (local, active)
fra (remte, active)

Troubleshooting multi-region kvstore setup

ORACLE

1.

Find agent logs for a multi-region setup:

Users can find the logs of an XRegion agent at the path specified in the JISON
config file. The agent logs, like kvstore logs, contain all diagnostic information from
the service agent. To learn more about the JSON config file used by the XRegion
agent, see Configure XRegion Service

Access the statistics of an XRegion agent

The XRegion agent collects statistics periodically and posts it to a system table
in the local region. You can query the system table for XRegion agent statistics
by using the standard CLI command “SHOW?" that returns a JSON string of agent
statistics.

show nrtabl e-agent-statistics
[-agent <agent|D>][-table <tabl eName>][-json]

The show command with nrt abl e- agent - st ati sti cs option shows the latest
statistics as of the last one minute for the XRegion agent. With no arguments, this
command shows the combined statistics over all regions that the multi-region table
spans. You can limit the statistics to a particular agent by specifying the agent id.

If a table name is specified in the command, the statistics is limited to a particular
multi-region table. To understand more details about using the show command to
obtain statistics for a multi-region setup, see show mrtable-agent-statistics

Display the status of a multi-region table syncing up with remote regions
The statistic | ast Modi fi cationMs in the show nrtabl e-agent-statistics
command is the timestamp of the last operation performed in each remote region,
in milliseconds. By comparing the values of this statistic of the local region and the
remote region, you can determine if the remote region has caught up with the local
region or still lagging behind.

5-30

Chapter 5
Troubleshooting multi-region kvstore setup

For example, suppose the time of the last write made to a remote region is T1,
while the statistic lastModificationMs for the local region is T2. If T2 < T1, it means
that the multi-region table has caught up with that remote region for all writes up to
T2 and will continue catching up for all writes made in between T2 and T1. If T2

= T1, that means the multi-region table has caught up with all writes made at the
remote region. However T2 can never be greater than T1.

MR table agent statistics for a specific agent
kv-> show nrtabl e-agent-statistics -agent 0 -json
{
"operation": "show nrtable-agent-statistics",
"returnCode": 5000,
"description": "Operation ends successfully",
"returnVal ue": {
" XRegi onService-1 0": {
“timestanmp": 1592901180001,
"statistics": {
"agent|d": "XRegionService-1 0",
"begi nMs": 1592901120001,
"del s": 1024,
"endMs": 1592901180001,
"i nconpati bl eRows": 100,
"interval M5": 60000,
"l ocal Region": "slcl",
"persistStreanBytes": 524288,

"puts": 2048,
"regionStat": {
“Ind": {
"compl eteWiteQps": 10,
"l aggi ngMs": {
"avg": 512,
"max": 998,
"mn": 31
}

"l ast MessageMs": 1591594977587,
"l ast Modi ficationMs": 1591594941686,

"l atencyMs": {
"avg": 20,
"max": 40,
"mn": 10

}

¥
"dub": {

"compl eteWiteQps": 20,

"l aggi ngMs": {
"avg": 535,
"max": 1024,
"mn": 45

}

"l ast MessageMs": 1591594978254,
"l ast Modi ficationMs": 1591594956786,

"l atencyMs": {
"avg": 30,
"max": 45,
"mn"; 15

ORACLE 5-31

ORACLE

Chapter 5
Troubleshooting multi-region kvstore setup

}
¥
"requests": 12,
"responses": 12,
"streanmBytes": 1048576,
"wi nDel s": 1024,
"W nPuts": 2048

}

}

4. Troubleshoot problems with XRegion Agent

If the XRegion agent encounters a problem, for example if the network connection
is dropped, you should investigate the reason of the connection failure and come
up with a solution to fix the connection. Meanwhile the XRegion agent would

try to re-connect to the remote region until the remote region is up again. After
successfully re-connecting to the remote region, the XRegion agent will resume
from the stream position or the last checkpoint made, before the connection was
dropped. During re-connection, the agent may dump warning messages in the log
to alert users that the connection to a region or a shard in that region is lost.

Troubleshoot when the local region or remote region goes down

The XRegion agent streams changes to the multi-region table from each remote
region and persists them in the local region. Therefore, if the local region is down,
the agent will keep retrying but won'’t be able to write any changes. After a period
of time, when the buffer in the XRegion agent is full, the XRegion agent will stop
streaming data from the remote regions and the data flow gets frozen. When

the local region is back, the XRegion agent will just resume the stream and the
workflow. No manual intervention to the XRegion agent is needed here. However
you may have to fix the issue with the local region manually.

Local Region Up

Local o : Remote
KVStore |© . Streaming KVStore
Local __| Buffers Remote
KVStore Data KVStore

Tries to wrlte data
but not able to

Local __ | Buffer Remote
KVStore Full KVStore

Data flow
is frozen

Local Streammg Remote
KVStore Continues KVStore

5-32

Chapter 5
Troubleshooting multi-region kvstore setup

If a particular remote region is down, the XRegion agent will just keep retrying till
that remote region is back. This issue is similar to any network connection problem
with the XRegion agent. Until the connection to the remote region is established
again, the multi-region table at the local region won’t be able to see the changes

in that remote region. But changes in the other remote regions are not affected as
long as the XRegion agent is able to maintain the connection to these regions.

Remote Region Up

Local L Remote
KVStore Streaming 7> KVStore
Local Buffers | 2> Remote
KVStore Data KVStore

Tries to write data
but not able to

(3)
Local Buffer | > Remote
KVStore Full KVStore

Data flow
is frozen

Local Streaming___ . Remote
KVStore Continues KVStore

6. Handle schema evolution in a multi-region setup
Schema evolution happens when there is a schema change in any of the remote
regions. Then the schema of a multi-region table at the local region differs from
that in the remote region. In such a situation the XRegion agent will try to solve
the difference by converting a row from the remote region to the schema of local
region. For example, if you add a new column to a multi-region table at a remote
region but this new column is not yet added in the local region. The multi-region
table at the local region will not be able to see the new column in the changes
streamed from the remote region, but the local region should still see the other
columns. This would last until you fix the problem by adding the same column in
the local region to end the schema divergence. In a multi-region table, there is no
automatic notification to other regions when a schema changes in one region. The
XRegion agent of local region is able to detect the change when it sees the data
from a remote region with higher table version, and it will refresh its table metadata
from the remote region to get the latest schema.

ORACLE 5-33

ORACLE

Time T1

Local Store

Cross Service Agent

Chapter 5
Troubleshooting multi-region kvstore setup

Time T1

Remote Store

Cross Service Agent

name id add sal name id add sal
Tim 1 HR Tim 1 HR
Joe 2 IT Joe 2 IT
Sam 3 IT Sam 3 IT
Detects a new table version in
remote region and gets new
metadata from remote region
Time T2 Time T2
Local Store Remote Store
Cross Service Agent Cross Service Agent
name id add sal name id add sal dept
Tim 1 HR Tim 1 1000 IT
Joe 2 IT Joe 2 500 HR
Sam 3 IT Sam 3 1000 IT

Consider the situation when the schema in different regions diverge in a way

that the agent is not able to fix the schema differences by refreshing the local
region table metadata from the remote region. For example, if you add a new
column “Foo” with type “STRING” to the remote region but adds the same
column with type “LONG” in the local region, these changes at the remote region
are considered incompatible to the local region, and the agent cannot fix this
difference. These changes from the remote region will not be persisted locally.
Consequently the changes in the remote regions will be discarded and accounted
in the per-table statistic i nconpat i bl eRows. See the details about persistence of
remote data in the show mrtable-agent-statistics section.

5-34

ORACLE

Time T1

Local Store

Cross Service Agent

Chapter 5
Troubleshooting multi-region kvstore setup

Time T1

Remote Store

Cross Service Agent

name id add sal name id add sal
Tim 1 1000 Tim 1 1000
Joe 2 500 Joe 2 500
Sam 3 1000 Sam 3 1000
Detects a new table version in
remote region and gets new
metadata from remote region
Time T2 Time T2
Local Store Remote Store
Cross Service Agent Cross Service Agent
name id add sal dept name id add sal dept
Tim 1 1000 O1 Tim 1 1000 IT
Joe 2 500 02 Joe 2 500 HR
Sam 3 1000 03 Sam 3 1000 IT

Mismatch in schema. Changes in the remote region will
be discarded and accounted in the per table statistics

Handle difference in software versions between regions

For any particular region, you need to upgrade the kvstore first and then upgrade
the agent to the same version. If a multi-region table has different versions of
software on different regions, the agent with old version may not be able to
process the rows streamed from regions with a newer version of the software
correctly, and some data may be treated by the old agent as incompatible for
operations. For example, if the local region is upgraded to support TTL (Time

to Live) while the remote region has not yet upgraded, the changes made to

the remote region will be persisted to the local region, but without any expiration
information, that means the row will never expire. The same is the case if the
remote region has upgraded to support TTL while the local region has not. Then
all changes to the remote region with TTL will lose their TTL when applied to the
local region, which means these rows will never expire. If this is undesirable, you
should upgrade all regions first before writing the data to the table to ensure every
region can process the data correctly. Any feature will be completely available to a
multi-region table only after all the regions have upgraded to the same version.

5-35

Determining Your Store's Configuration

A store consists of a number of Storage Nodes. Each Storage Node can host one or
more Replication Nodes, based on its storage capacity. The term t opol ogy is used to
describe the distribution of Replication Nodes. A topology is derived from the number
and capacity of available Storage Nodes, the number of partitions in the store, and the
replication factors of the store's zones. Topology layouts are also governed by a set of
rules that maximize the availability of the store.

All topologies must adhere to the following rules:

1. Each Replication Node from the same shard must reside on a different Storage
Node. This rule prevents a single Storage Node failure causing multiple points of
failure for a single shard.

2. The number of Replication Nodes assigned to a Storage Node must be less than
or equal to the capacity of Storage Nodes.

3. A zone must have one or more Replication Nodes from each shard.

4. A valid Arbiter Node distribution is one in which the Arbiter Node is hosted on a
Storage Node that does not contain other members of its shard.

The store’s initial configuration, or topology, is set when you create the store. Over
time, it can be necessary to change the store topology. There are several reasons for
such a change:

1. You need to replace or upgrade an existing Storage Node.

2. You need to increase read throughput. This is done by increasing the replication
factor and creating more copies of the store's data which can be used to service
read only requests.

3. You need to increase write throughput. Since each shard has a single master
node, distributing the data in the store over a larger number of shards provides the
store with more nodes to execute write operations.

You change the store's configuration by changing the number or capacity of available
Storage Nodes, or the replication factor of a zone. To change from one configuration
to another, you either create a new initial topology, or cl one an existing topology and
modify it into your target topology. You then deploy this target topology.

" Note:

Deploying a target topology can be a lengthy operation. Plus, the time
required scales with the amount of data to move. During the deployment,
the system updates the topology at each step. Because of that, the store
passes through intermediate topologies which you did not explicitly create.

This chapter discusses how to make configuration or topological changes to a store. It
also describes how to deploy a topology enabled with Arbiter Nodes.

ORACLE 6-1

Chapter 6
Steps for Changing the Store's Topology

< Note:

Do not make configuration changes while a taking a snapshot, or take

a snapshot when changing the configuration. Before making configuration
changes, we recommend you first create a snapshot as a backup. For
additional information on creating snapshots, see Taking a Snapshot.

Steps for Changing the Store's Topology

When you change your topology, you should go through these steps:

Make the Topology Candidate
Transforming the Topology Candidate
View the Topology Candidate
Validate the Topology Candidate
Preview the Topology Candidate
Deploy the Topology Candidate

N o g & 0 Db PR

Verify the Store's Current Topology

Creating a new topology is typically an iterative process, trying different options to
see what is best before deploying changes. After trying options, examine the topology
candidate and decide if it is satisfactory. If not, apply more transformations, or start
over with different parameters. You can view and validate topology candidates to
determine if they are appropriate.

The possible transformations to expand the store include redistributing data,
increasing the replication factor, and rebalancing. These are described in Transforming
the Topology Candidate.

You can also decrease the current topology by removing Storage Nodes. See
Contracting a Topology.

The following sections walk you through the process of changing your store’s
configuration using the Administration CLI.

Make the Topology Candidate

ORACLE

To create the first topology candidate for an initial deployment, before any Replication
Nodes exist, use the t opol ogy create command. The t opol ogy create command
requires a topology name, a pool name and the number of partitions as arguments.

< Note:

Avoid using the dollar sign ($) character in topology candidate names. The
CLI displays a warning if you try to create or clone topologies whose names
contain the reserved character.

6-2

Chapter 6
Steps for Changing the Store's Topology

For example:

kv-> topol ogy create -nane firstTopo -pool BostonPool
-partitions 300
Created: firstTopo

Use the pl an depl oy-t opol ogy command to deploy this initial topology candidate
without further transformations.

After your store is initially deployed, you can create candidate topologies with the

t opol ogy cl one command. The source of a clone can be another topology candidate,
or the current, deployed topology. The t opol ogy cl one command takes the following
arguments:

e -from<fromtopol ogy>

The name of the source topology candidate.
e -name <to topol ogy>

The name of the clone.
For example:

kv-> topol ogy clone -fromtopo -name C oneTopo
Created C oneTopo

This variant of the topology clone command that takes the following arguments:

e -current

Specifies using the current deployed topology as a source, so the argument
requires no name.

° -name <to topol ogy>
The name of the topology clone.
For example:

kv-> topol ogy clone -current -name C onedTopo
Created C onedTopo

Transforming the Topology Candidate

ORACLE

After you initially deploy your store, you can change it by deploying another topology
candidate that differs from the current topology. This target topology is generated by
transforming a topology candidate to expand the store by using these commands:

e topology redistribute
* rebal ance

e change-repfactor

Alternatively, you can contract the target topology candidate using the t opol ogy
contract command.
Transformations follow the topology rules described in the previous section.

6-3

Chapter 6
Steps for Changing the Store's Topology

The topology rebalance, redistribute or change-repfactor commands can only make
changes to the topology candidate if there are additional, or changed, Storage Nodes
available. It uses the new resources to rearrange Replication Nodes and partitions so
the topology complies with the topology rules and the store improves on read or write
throughput.

The following are scenarios in how you might expand or contract the store.

Increase Data Distribution

ORACLE

Use the t opol ogy redi stribute command to increase data distribution to enhance
write throughput. The redistribute command works only if new Storage Nodes are
added to make creating new replication nodes possible for new shards. With new
shards, the system distributes partitions across the new shards, resulting in more
Replication Nodes to service write operations.

The following example demonstrates adding a set of Storage Nodes (node04 —
node07) and redistributing the data to those nodes. Four Storage Nodes are required
to meet the zone's replication factor of four and the new shards require four nodes to
satisfy the replication requirements:

kv-> plan depl oy-sn -zn znl -host node04 -port 5000 -wait
Executed plan 7, waiting for completion...
Plan 7 ended successfully

kv-> pl an depl oy-sn -zn znl -host node05 -port 5000 -wait
Executed plan 8, waiting for completion...
Plan 8 ended successfully

kv-> pl an depl oy-sn -zn znl -host node06 -port 5000 -wait
Executed plan 9, waiting for completion...
Plan 9 ended successfully

kv-> pl an depl oy-sn -zn znl -host node07 -port 5000 -wait
Executed plan 10, waiting for conpletion...
Plan 10 ended successfully

kv-> pool join -name BostonPool -sn sn4
Added Storage Node(s) [sn4] to pool BostonPool
kv-> pool join -name BostonPool -sn sn5
Added Storage Node(s) [sn5] to pool BostonPool
kv-> pool join -name BostonPool -sn sn6
Added Storage Node(s) [sn6] to pool BostonPool
kv-> pool join -name BostonPool -sn sn7
Added Storage Node(s) [sn7] to pool BostonPool

kv-> topol ogy clone -current -name newTopo
Creat ed newTopo

kv-> topol ogy redistribute -name newTopo -pool BostonPool
Redi stributed: newTopo

kv-> pl an depl oy-topol ogy -nanme newlopo -wait

Executed plan 11, waiting for conpletion...
Plan 11 ended successfully

6-4

Chapter 6
Steps for Changing the Store's Topology

The redistribute command incorporates the new Storage Node capacity that you
added to the BostonPool, and creates new shards. The command also migrates
partitions to the new shards. If the number of new shards is less than or equal to
the current number of shards, the t opol ogy redi stri bute command fails.

Note:

Do not execute the t opol ogy redi stribute command against a store with
mixed shards. A mixed shard store has shards whose Replication Nodes are
operating with different software versions of Oracle NoSQL Database.

The system goes through these steps when it is redistributing a topology candidate:

1. The topology redistribute command creates new Replication Nodes (RNs) for each
shard, assigning the nodes to Storage Nodes according to the topology rules.
While creating new RNs, the topology command might move existing RNs to
different Storage Nodes, to best use available resources while complying with the
topology rules.

2. The topology command distributes Partitions evenly among all shards. The
partitions in over populated shards are moved to shards with the least number
of partitions.

You cannot specify which partitions the command moves.

Increase Replication Factor

ORACLE

You can use the t opol ogy change-repfact or command to increase the replication
factor. Increasing the replication factor creates more copies of the data and improves
read throughput and availability. More Replication Nodes are added to each shard so
that it has the requisite number of nodes. The new Replication Nodes are populated
from existing nodes in the shard. Since every shard in a zone has the same replication
factor, and a large number of shards, this command may require a significant number
of new Storage Nodes to succeed.

For additional information on how to identify your primary replication factor and to
understand the implications of the factor value, see Replication Factor.

The following example increases the replication factor of the store to 4. The
administrator deploys a new Storage Node and adds it to the Storage Node pool.

The admin then clones the existing topology and transforms it to use a new replication
factor of 4.

kv-> plan depl oy-sn -zn znl -host node08 -port 5000 -wait
Executed plan 12, waiting for conpletion...
Plan 12 ended successful ly

kv-> pool join -nane BostonPool -sn sn8
Added Storage Node(s) [sn8] to pool BostonPool

kv-> topol ogy clone -current -nane repTopo
Created repTopo

kv-> topol ogy change-repfactor -name repTopo -pool BostonPool -rf 4 -zn

6-5

Chapter 6
Steps for Changing the Store's Topology

znl
Changed replication factor in repTopo

kv-> pl an depl oy-topol ogy -name repTopo -wait
Executed plan 13, waiting for conpletion...
Plan 13 ended successful ly

The change-r epf act or command fails if either of the following occurs:

1. The new replication factor is less than or equal to the current replication factor.

2. The Storage Nodes specified by the storage node pool do not have enough
capacity to host the required new Replication Nodes.

Balance a Non-Compliant Topology

ORACLE

Topologies must obey the rules described in Determining Your Store's Configuration.
Changes to the physical characteristics of the store can cause the current store
topology to violate those rules. For example, after performance tuning, you want to
decrease the capacity of a Storage Node (SN). If that SN is already hosting the
maximum permissible number of Replication Nodes, reducing its capacity will make
the store non-compliant with the capacity rules. To decrease the capacity of an

SN before using the t opol ogy rebal ance command , use the change- par anet er s
command for the storage node capacity. See plan change-parameters.

You can balance a non-compliant configuration using the t opol ogy rebal ance
command. This command requires a topology candidate name and a Storage Node
pool name.

Before rebalancing your topology, use the t opol ogy val i dat e command for any
violations to the topology rules in your r epTopo plan:

kv-> topol ogy validate -nane repTopo

Validation for topol ogy candidate "repTopo"

4 warnings.

sn7 has 0 RepNodes and is under its capacity linmt of 1
sn8 has 0 RepNodes and is under its capacity linmt of 1
sn5 has 0 RepNodes and is under its capacity linmt of 1
sn6 has 0 RepNodes and is under its capacity linmt of 1

In this case, there are anticipated warnings, but you do not need improvements to
the topology. However, if improvements are needed, then the t opol ogy rebal ance
command will move or create Replication Nodes, using the Storage Nodes in the
BostonPool pool, to correct any violations. The command does not create additional
shards under any circumstances. See Shard Capacity.

kv-> topol ogy rebal ance -name repTopo -pool BostonPool
Rebal anced: repTopo

If there are insufficient Storage Nodes, or if an insufficient storage directory size is
allocated, the t opol ogy rebal ance command may be unable to correct all violations.
In that case, the command makes as much progress as possible, and warns of
remaining issues.

6-6

Chapter 6
Steps for Changing the Store's Topology

Contracting a Topology

ORACLE

You can contract a topology by using the t opol ogy contract command. This
command requires a topology candidate name and a Storage Node pool name. This
command supports the removal of Storage Nodes and contracts the topology by
relocating Replication Nodes, deleting shards, and migrating partitions.

Note:

Decreasing the replication factor is not currently supported. Also, Admin
relocation is not supported. If an admin is present on a contracted Storage
Node, the contraction operation will fail.

The following example contracts the topology by removing 3 Storage Nodes (sn2,
sn5 and sn8). First, you clone the pool using the pool cl one conmand and remove
the Storage Nodes from the cloned pool using the pool | eave comand. Then,

the topology is contracted and deployed using the contracted pool. Finally, the
Storage Nodes can be removed using the pl an renove- sn command. This command
automatically stops Storage Nodes before removal.

Cone the existing Storage Node pool as to be contractedPool
kv-> pool clone -name contractedPool -from All StorageNodes

C oned pool contractedPool

kv-> pool |eave -name contractedPool -sn sn2

Renoved Storage Node(s) [sn2] from pool contractedPool

kv-> pool |eave -name contractedPool -sn sn5

Renoved Storage Node(s) [sn5] from pool contractedPool

kv-> pool |eave -name contractedPool -sn sn8

Renoved Storage Node(s) [sn8] from pool contractedPool

Cenerate a contracted candi date topol ogy

kv-> topol ogy clone -current -name contractedTopol ogy

Created contractedTopol ogy

kv-> topol ogy contract -name contractedTopol ogy -pool contractedPool
Contracted: contractedTopol ogy

Deploy the contracted candidate topology as the real topology.
kv-> plan depl oy-topol ogy -name contractedTopol ogy -wait
Executed plan 16, waiting for completion...

Plan 16 ended successfully

Rermove to-be-del eted SNs

kv-> plan remove-sn -sn sn2 -wait

Executed plan 17, waiting for conpletion..
Plan 17 ended successfully

kv-> plan remove-sn -sn sn5 -wait

Executed plan 18, waiting for conpletion..
Plan 18 ended successfully

kv-> plan remove-sn -sn sn8 -wait

6-7

Chapter 6
Steps for Changing the Store's Topology

Executed plan 19, waiting for conpletion...
Plan 19 ended successful ly

View the Topology Candidate

You can view details of the topology candidate or a deployed topology by using the

t opol ogy vi ewcommand. The command takes a topology hame as an argument.
With the topology view command, you can view all at once: the store name, number of
partitions, shards, replication factor, host name and capacity in the specified topology.

For example:

kv-> topol ogy view -name repTopo
store=nystore nunPartitions=300 sequence=315
zn: id=znl name=Boston repFactor=4 type=PRI MARY

sn=[snl] zn:[id=znl name=Bost on]
[rgl-rnl]

sn=[sn2] zn:[id=znl name=Bost on]
[rgl-rn2]

sn=[sn3] zn:[id=znl name=Bost on]
[rgl-rn3]

sn=[sn4] zn:[id=znl name=Bost on]
[rgl-rn4]

sn=[sn5] zn:[id=znl name=Bost on]

sn=[sn6] zn:[id=znl name=Bost on]

sn=[sn7] zn:[id=znl name=Bost on]

sn=[sn8] zn:[id=znl name=Bost on]

node01: 5000 capacity=1
node02: 5000 capacity=1
node03: 5000 capacity=1
node04: 5000 capacity=1

node05: 5000 capacity=1
node06: 5000 capacity=1
node07: 5000 capacity=1
node08: 5000 capacity=1

shard=[rg1]
[rgl-rnl]
[rgl-rn2]
[rgl-rn3]
[rgl-rn4]

num partitions=300
sn=snl
sn=sn2
sn=sn3
sn=sn4

Validate the Topology Candidate

ORACLE

You can validate the topology candidate or a deployed topology by using the t opol ogy
val i dat e command. The topology validate command takes a topology name as an
argument. If no topology is specified, the current topology is validated. Validation
makes sure that the topology candidate obeys the topology rules described in
Determining Your Store's Configuration. Validation generates "violations" and "notes".

Violations are issues that can cause problems and should be investigated.

Notes are informational and highlight configuration oddities that may be potential
issues, but may be expected.

For example:
kv-> topol ogy validate -nane repTopo
Validation for topol ogy candi date "repTopo":

4 warnings.
sn7 has 0 RepNodes and is under its capacity linmt of 1

6-8

Chapter 6
Steps for Changing the Store's Topology

sn8 has 0 RepNodes and is under its capacity limt of 1
sn5 has 0 RepNodes and is under its capacity limt of 1
sn6 has 0 RepNodes and is under its capacity limt of 1

Preview the Topology Candidate

You should preview the changes that would be made for the specified topology
candidate relative to a starting topology. You use the t opol ogy previ ewcommand
to do this. This command takes the following arguments:

* name
A string to identify the topology.
» start <from topology>

If -start topology name is not specified, the current topology is used. This
command should be used before deploying a new topology.

For example:

kv-> topol ogy clone -current -name redTopo

Created redTopo

kv-> topol ogy redistribute -name redTopo -pool BostonPool

Redi stributed: redTopo

kv-> topol ogy preview -name redTopo

Topol ogy transformation fromcurrent depl oyed topol ogy to redTopo:
Create 1 shard

Create 4 RNs

Mgrate 150 partitions

shard rg2
4 new RNs: rg2-rnl rg2-rn2 rg2-rn3 rg2-rn4
150 partition nmigrations
kv-> topol ogy validate -nane redTopo
Validation for topol ogy candi date "redTopo"
No probl ens

Deploy the Topology Candidate

ORACLE

When your topology candidate is satisfactory, use the Admin service to generate and
execute a plan that migrates the store to the new topology.

Deploy the topology candidate with the pl an depl oy-t opol ogy command, which takes
a topology name as an argument.

While the plan is executing, you can monitor the plan's progress. You have several
options:

* The plan can be interrupted then retried, or canceled.

e Other, limited plans may be executed while a transformation plan is in progress to
deal with ongoing problems or failures.

By default, the pl an depl oy-t opol ogy command will not deploy a topology candidate
if deployment would introduce new violations of the topology rules. You can override

6-9

ORACLE

Chapter 6
Steps for Changing the Store's Topology

this behavior using the optional - f or ce plan flag. Do not use the —f or ce plan without
consideration. Introducing a topology rule violation can have many adverse effects.

The next example shows the topology differences before and after plan deployment.
The first show t opol ogy output lists four Storage Nodes running in Zone 1, with one
shard (r g1) storing 300 partitions. Storage nodes sn5 —sn8 are available.

After deploying the plan, the show t opol ogy output lists storage nodes sn5 —sn8
as running. Another shard exists (r g2), and the partitions are split between the two
shards, each with 150 partitions.

kv-> show t opol ogy
store=nystore nunPartitions=300 sequence=315
zn: id=znl name=Boston repFactor=4 type=PRl MARY

sn=[snl] zn=[id=znl name=Boston] node0l1: 5000 capacity=1 RUNNI NG
[rgl-rnl] RUNNI NG
No performance info available
sn=[sn2] zn=[id=znl name=Boston] node02: 5000 capacity=1 RUNNI NG
[rgl-rn2] RUNNI NG
No performance info available
sn=[sn3] zn=[id=znl name=Boston] node03: 5000 capacity=1 RUNNI NG
[rgl-rn3] RUNNI NG
No performance info available
sn=[sn4] zn=[id=znl name=Boston] node04: 5000 capacity=1 RUNNI NG
[rgl-rn4] RUNNI NG
No performance info available
sn=[sn5] zn=[id=znl name=Boston] node05: 5000 capacity=1
sn=[sn6] zn=[id=znl name=Boston] node06: 5000 capacity=1
sn=[sn7] zn=[id=znl name=Boston] node07: 5000 capacity=1
sn=[sn8] zn=[id=znl name=Boston] node08: 5000 capacity=1

shard=[rgl] num partitions=300
[rgl-rnl] sn=snl
[rgl-rn2] sn=sn2
[rgl-rn3] sn=sn3
[rgl-rn4] sn=sn4

kv-> pl an depl oy-topol ogy -nanme redTopo -wait
Executed plan 14, waiting for conpletion...
Plan 14 ended successful ly

kv-> show t opol ogy
store=nystore nunPartitions=300 sequence=470
zn: id=znl name=Boston repFactor=4 type=PRl MARY

sn=[snl] zn:[id=znl name=Boston] node0l1: 5000 capacity=1 RUNNI NG
[rgl-rnl] RUNNI NG
No performance info available
sn=[sn2] zn:[id=znl name=Boston] node02: 5000 capacity=1 RUNNI NG
[rgl-rn2] RUNNI NG
No performance info available
sn=[sn3] zn:[id=znl name=Boston] node03: 5000 capacity=1 RUNNI NG
[rgl-rn3] RUNNI NG
No performance info available

6-10

Chapter 6
Steps for Changing the Store's Topology

sn=[sn4] zn:[id=znl name=Boston] node04: 5000 capacity=1 RUNNI NG
[rgl-rn4] RUNNI NG
No performance info available
sn=[sn5] zn:[id=znl name=Boston] node05: 5000 capacity=1 RUNNI NG
[rg2-rnl] RUNNI NG
No performance info available
sn=[sn6] zn:[id=znl name=Boston] node06: 5000 capacity=1 RUNNI NG
[rg2-rn2] RUNNI NG
No performance info available
sn=[sn7] zn:[id=znl name=Boston] node07: 5000 capacity=1 RUNNI NG
[rg2-rn3] RUNNI NG
No performance info available
sn=[sn8] zn:[id=znl name=Boston] node08: 5000 capacity=1 RUNNI NG
[rg2-rn4] RUNNI NG
No performance info available

shard=[rgl] num partitions=150
[rgl-rnl] sn=snl
[rgl-rn2] sn=sn2
[rgl-rn3] sn=sn3
[rgl-rnd4] sn=sn4
shard=[rg2] num partitions=150
[rg2-rnl] sn=sn5
[rg2-rn2] sn=sn6
[rg2-rn3] sn=sn7
[rg2-rn4] sn=sn8

Verify the Store's Current Topology

ORACLE

You can verify the store's current topology by using the veri fy command. The verify
command checks the current, deployed topology to make sure it adheres to the
topology rules described in Determining Your Store's Configuration.

You should examine the new topology and decide if it is satisfactory. If it is not, you
can apply more transformations, or start over with different parameters.

For example:

kv-> verify configuration
Verify: starting verification of store nystore based upon

t opol ogy sequence #470
300 partitions and 8 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
See | ocal host : KVROOT/ nyst ore/ | og/ nystore_{0..N}.1og for progress
messages
Verify: Shard Status: healthy:2 witabl e-degraded: 0 read-only:0
offline:0
Verify: Admn Status: healthy
Verify: Zone [name=Boston id=znl type=PRI MARY al | owAr bi t er s=f al se
mast er Af fi ni ty=fal se]

RN Status: online:8 offline:0 maxDelayM Ilis:0 nmaxCat chupTi neSecs: 0
Verify: == checking storage node snl ==
Verify: Storage Node [snl] on node0Ol: 5000

Zone: [nane=Boston id=znl type=PRI MARY al | owAr bit ers=fal se
mast er Af fi ni ty=fal se]

6-11

ORACLE

Chapter 6

Steps for Changing the Store's Topology

Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Verify: Admi n [adm nl] Status: RUNNI NG MASTER
Verify: Rep Node [rgl-rnl] Status: RUNNI NG MASTER ...
Verify: == checking storage node sn2 ==

Verify: Storage Node [sn2] on node02: 5000

Zone: [name=Boston id=znl type=PRI MARY al | owAr biters=fal se
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Verify: Rep Node [rgl-rn2] Status: RUNNING REPLICA ...

Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03: 5000

Zone: [nanme=Boston id=znl type=PRI MARY al | owAr biters=fal se
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Verify: Rep Node [rgl-rn3] Status: RUNNING REPLICA ...

Verify: == checking storage node sn4 ==
Verify: Storage Node [sn4] on node04: 5000

Zone: [nanme=Boston id=znl type=PRI MARY al | owAr biters=fal se
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Verify: Rep Node [rgl-rn4] Status: RUNNING REPLICA ...

Verify: == checking storage node sn5 ==
Verify: Storage Node [sn5] on node05: 5000

Zone: [nanme=Boston id=znl type=PRI MARY al | owAr biters=fal se
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Verify: Rep Node [rg2-rnl] Status: RUNNING MASTER . ..

Verify: == checking storage node sn6 ==
Verify: Storage Node [sn6] on node06: 5000

Zone: [name=Boston id=znl type=PRI MARY al | owAr biters=fal se
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Verify: Rep Node [rg2-rn2] Status: RUNNI NG REPLICA ...

Verify: == checking storage node sn7 ==
Verify: Storage Node [sn7] on node07: 5000

Zone: [nanme=Boston id=znl type=PRI MARY al | owAr biters=fal se
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Verify: Rep Node [rg2-rn3] Status: RUNNING REPLICA ...

Verify: == checking storage node sn8 ==
Verify: Storage Node [sn8] on node08: 5000

Zone: [nanme=Boston id=znl type=PRI MARY al | owAr biters=fal se
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Verify: Rep Node [rg2-rn4] Status: RUNNING REPLICA ...

Verification conplete, no violations.

6-12

Chapter 6
Deploying an Arbiter Node Enabled Topology

Deploying an Arbiter Node Enabled Topology

ORACLE

An Arbiter Node is a service that supports write availability when the store replication
factor is two and a single Replication Node becomes unavailable. The role of an

Arbi ter Node is to participate in elections and respond to acknowledge requests if one
of the two Replication Nodes in a shard becomes unavailable.

Arbiter Nodes are automatically configured in a topology if the store replication factor
is two and a primary zone is configured to host Ar bi t er Nodes.

For example, suppose a store consists of a primary zone, "Manhattan" with two
Storage Nodes deployed in the same shard. In this example, an Arbiter Node is
deployed in the third Storage Node (capacity = 0) in order to provide write availability
even if one of the two Replication Nodes in the shard becomes unavailable.

Note:

Durability.ReplicaAckPolicy must be set to SIMPLE_MAJORITY, so that
writes can succeed if a Replication Node becomes unavailable in a shard.
For more information on Repl i caAckPol i cy, see this Javadoc page.

1. Create, start, and configure the store. Note that a Storage Node with capacity
equal to zero is deployed, which will host the Arbiter Node.

* Create the store:

java - Xmk64m - Xnms64m \

-jar kv/lib/kvstore.jar makebootconfig \
-root KVROOT \

-host node01 \

-port 8000 \

-harange 8010, 8020 \

-capacity 1

java - Xmk64m - Xnms64m \

-jar kv/lib/kvstore.jar makebootconfig \
-root KVROOT \

-host node02 \

-port 9000 \

-harange 9010, 9020 \

-capacity 1

java - Xmk64m - Xnms64m \

-jar kv/lib/kvstore.jar makebootconfig \
-root KVROOT \

-host node03 \

-port 10000 \

-harange 1000, 10020 \

-capacity 0\

6-13

ORACLE

Chapter 6
Deploying an Arbiter Node Enabled Topology

» Create and copy the security directories:

java - Xmk64m - Xnms64m \

-jar kv/liblkvstore.jar

securityconfig \

config create -root KVROOT -kspwd password

Created files

KVROOT/ security/security.xm

KVROOT/ security/ store. keys

KVROOT/ security/store. trust

KVROOT/ security/client.trust

KVROOT/ security/client.security

KVROOT/ security/store. passwd (CGenerated in CE version)
KVROOT/ security/store.wal l et/cwal |l et.sso (CGenerated in EE
version)

Creat ed
scp -r KVROOT/ security node02: KVROOT/
scp -r KVROOT/ security node03: KVROOT/

» Start the store by running the following command on each Storage Node:

" Note:

Before starting the SNA, on each node, set the environment variable
MALLOC ARENA MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

java - Xmk64m - Xnms64m -j ar KVHOVE/ |i b/ kvstore.jar \
start -root KVROOT &

Load the following script conf . t xt to deploy the zone, admin and Storage Nodes.
To host an Arbiter Node, the zone must be primary and should have the -arbiters
flag set.

ssh node01

java - Xmk64m - Xms64m -j ar KVHOVE/ |i b/ kvstore.jar runadmn \
-port 8000 -host node0l load -file conf.txt \

-security KVROOT/security/client.security

The file, conf . t xt , would then contain content like this:

Begin Script

pl an depl oy-zone -name "Manhattan" -type primary -arbiters -rf 2
-wai t

pl an depl oy-sn -zn znl -host node0l -port 8000 -wait

pool create -name SNs

pool join -name SNs -sn snl

pl an depl oy-admn -sn snl -port 8001 -wait

pl an depl oy-sn -zn znl -host node02 -port 9000 -wait

pool join -name SNs -sn sn2

6-14

ORACLE

Chapter 6
Deploying an Arbiter Node Enabled Topology

pl an depl oy-sn -zn znl -host node03 -port 10000 -wait
pool join -name SNs -sn sn3
End Script

Create a topology, preview it, and then deploy it:

kv-> topol ogy create -nane arbTopo -pool SNs -partitions 300
Created: arbTopo

kv-> topol ogy preview -name arbTopo

Topol ogy transformation fromcurrent depl oyed topol ogy to arbTopo:
Create 1 shard

Create 2 RN\Ns

Create 300 partitions

Create 1 AN

shard rgl
2 new RNs @ rgl-rnl rgl-rn2
1 new AN : rgl-anl
300 new partitions

kv-> pl an depl oy-topol ogy -nanme arbTopo -wait
Executed plan 6, waiting for conpletion...
Plan 6 ended successfully

Verify that the Arbiter Node is running.

kv-> verify configuration
Verify: starting verification of store nystore
based upon topol ogy sequence #308
300 partitions and 3 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
See node01: KVROOT/ nystore/l og/ nystore {0..N .| og
for progress messages
Verify: Shard Status: healthy:1 witabl e-degraded: 0
read-only: 0 offline:0
Verify: Admin Status: healthy
Verify: Zone [name=Manhattan id=znl type=PRI MARY al | owAr biters=true
mast er Af fi ni ty=f al se]
RN Status: online:2 offline:0 naxDelayMIlis:6 nmaxCat chupTi neSecs: 0
Verify: == checking storage node snl ==
Verify: Storage Node [snl] on node0Ol1: 8000
Zone: [name=Manhattan id=znl type=PRI MARY al | owAr biters=true
mast er Af fi ni ty=f al se]
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8h33c
Verify: Admi n [adm nl] Status: RUNNI NG MASTER
Verify: Rep Node [rgl-rnl]
Status: RUNNI NG MASTER sequenceNunber: 635 haPort: 8011 avail abl e
storage size:11 GB
Verify: == checking storage node sn2 ==
Verify: Storage Node [sn2] on node02: 9000
Zone: [name=Manhattan id=znl type=PRI MARY al | owAr biters=true

6-15

ORACLE

Chapter 6
Deploying an Arbiter Node Enabled Topology

mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Verify: Rep Node [rgl-rn2]

Status: RUNNI NG REPLI CA

sequenceNunber: 635 haPort: 9010 avail abl e storage size:12 (B

delayM I lis:6 catchupTi meSecs: 0

Verify: == checking storage node sn3 ==

Verify: Storage Node [sn3] on node03: 10000

Zone: [name=Manhattan id=znl type=PRI MARY al | owArbiters=true
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Verify: Arb Node [rgl-anl]

Status: RUNNI NG REPLI CA sequenceNunber: 0 haPort: node03: 10010

Now suppose node02 is unreachable. Verify this by using verify configurati on:

kv-> verify configuration
Verify: starting verification of store nystore
based upon topol ogy sequence #308
300 partitions and 3 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
See node01: KVROOT/ mystore/ |l og/ mystore_{0..N} .| og
for progress nessages
Verify: Shard Status: healthy:0 witabl e-degraded: 1
read-only: 0 offline:0

Verify: Admin Status: healthy
Verify:

Zone [name=Manhattan id=znl type=PRI MARY al | owAr bi ters=true
mast er Af fi ni ty=f al se]
RN Status: online:1 offline:l

Verify: == checking storage node snl ==
Verify: Storage Node [snl] on node0Ol: 8000
Zone:

[name=Manhatt an i d=znl type=PRI MARY al | owAr bi t ers=true
mast er Af fi ni ty=f al se]
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Admi n [adm nl] Status: RUNNI NG MASTER
Verify: Rep Node [rgl-rnl]
Status: RUNNI NG MASTER sequenceNunber: 901 haPort: 8011 avail abl e
storage size:12 (B
Verify: == checking storage node sn2 ==
Verify: sn2: ping() failed for sn2 : Unable to connect to
t he storage node agent at host node02, port 9000, which may not be
runni ng; nested exception is
java.rm . Connect Exception: Connection refused to
host: node02; nested exception is:
j ava. net. Connect Excepti on: Connection refused
Verify: Storage Node [sn2] on node02: 9000
Zone:
[name=Manhat t an i d=znl type=PRI MARY al | owAr bi t ers=true
mast er Affinity=fal se] UNREACHABLE

6-16

Chapter 6
Deploying an Arbiter Node Enabled Topology

Verify: rgl-rn2: ping() failed for rgl-rn2 : Unable to
connect
to the storage node agent at host node02, port 9000, which may not
be running; nested exception is:

java.rm. Connect Exception: Connection refused to host:

node02;

nested exception is:

j ava. net. Connect Excepti on: Connection refused
Verify: Rep Node [rgl-rn2] Status: UNREACHABLE
Verify: == checking storage node sn3 ==

Verify: Storage Node [sn3] on node03: 10000

Zone: [name=Manhattan id=znl type=PRI MARY al | owArbiters=true
mast er Af fi ni ty=f al se]

Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Arb Node [rgl-anl]

Status: RUNNI NG REPLI CA sequenceNunber: 901 haPort: node03: 10010
avail abl e storage size:16 GB delayMIlis:? catchupTi meSecs: ?
Verification conplete, 3 violations, 0 notes found.
Verification violation: [rgl-rn2]

ping() failed for rgl-rn2 : Unable to connect to the storage node
agent at host node02, port 9000, which may not be running;
nested exception is:

java.rm. Connect Exception: Connection refused to

host: node02; nested exception is:

j ava. net. Connect Excepti on: Connection refused
Verification violation: [sn2] ping() failed for sn2 : Unable to
connect to the storage node agent at host node02, port 9000, which
may not be running; nested exception is:

java.rm. Connect Exception: Connection refused to host:
node02;
nested exception is:

j ava. net. Connect Excepti on: Connection refused

In this case the Arbiter Node supports write availability so you can still perform
write operations while node02 is repaired or replaced. Once node02 is restored,
any written data will be migrated.

6. Test that you can still write to the store with the help of the Arbiter Node. For
example, run the script file t est . kvsgl (see below for test.kvsqgl) using the Oracle
NoSQL Database Shell utility (see below example). To do this, use the | oad
command in the Query Shell:

> java -jar KVHOWE/ lib/sql.jar -hel per-hosts nodeO1: 8000 \
-store nystore -security USER/security/adm n.security
kvsgl-> load -file ./test.kvsql

Statement conpl eted successfully.

Statement conpl eted successfully.

Loaded 3 rows to users.

ORACLE 6-17

ORACLE

Chapter 6
Deploying an Arbiter Node Enabled Topology

¢ Note:

For the Enterprise Edition (EE) installation, make sure the kvstore-ee.jar
is added in the classpath.

The following commands are collected in t est . kvsql :

Begin Script

load -file test.ddl

inport -table users -file users.json
End Script

Where the file t est . ddl would contain content like this:

DROP TABLE | F EXI STS users;
CREATE TABLE users(id INTEGER, firstname STRING |astnane STRING
age | NTEGER, primary key (id));

And the file users. j son would contain content like this:
{"id":1,"firstname":"Dean", "l astnane":"Mrrison", "age": 51}

{"id":2,"firstname": "l dona", "l ast name": " Roman", "age": 36}
"id":3,"firstname":"Bruno", "l astnane": "Nunez", "age": 49}

6-18

Administrative Procedures

This chapter contains useful procedures for the Oracle NoSQL Database
administrator.

" Note:

Oracle NoSQL Database Storage Nodes and Admins make use of an
embedded database (Oracle Berkeley DB, Java Edition). Never directly
manipulate the files maintained by this database. Do not move, delete or
modify the files and directories located under KVROOT unless you are asked
to do so by Oracle Customer Support. In particular, never move or delete any
file ending with a j db suffix. These files are all located in an env directory
under KVROOT.

Backing Up the Store

To make backups of your KVStore, use the CLI snapshot command to copy nodes in
the store. To maintain consistency, no topology changes should be in process when
you create a snapshot. Restoring a snapshot relies on the system configuration having
exactly the same topology that was in effect when you created the snapshot.

When you create a snapshot, it is stored in a subdirectory of the SN. It is your
responsibility to copy each of the snapshots to another location, preferably on a
different machine, for data safety.

Due to the distributed nature and scale of Oracle NoSQL Database, it is unlikely that
a single machine has the resources to contain snapshots for the entire store. This
document does not address where and how you should store your snapshots.

Taking a Snapshot

ORACLE

To create a snapshot from the Admin CLI, use the snapshot create command:

kv-> snapshot create -nane <snapshot nane>

A snapshot consists of a set of hard links to data files in the current topology,
specifically, all partition records within the same shard. The snapshot does not
include partitions in independent shards. To minimize any potential inconsistencies,
the snapshot utility performs its operations in parallel as much as possible.

7-1

Chapter 7
Backing Up the Store

To create a snapshot with a name of your choice, use snapshot create —name
<name>.

kv-> snapshot create -nane Thursday
Created snapshot naned 110915-153514- Thursday on all 3 nodes
Successful 'y backup configurations on snl, sn2, sn3

To remove an existing snapshot, use snapshot renove <nane>.

kv-> snapshot renmove -nane 110915- 153514- Thur sday
Removed snapshot 110915- 153514- Thur sday

To remove all snapshots currently stored in the store, use snapshot renove -al | :

kv-> snapshot create -nanme Thursday

Created snapshot named 110915-153700- Thursday on all 3 nodes
kv-> snapshot create -nane |ater

Created snapshot nanmed 110915-153710-1ater on all 3 nodes
kv-> snapshot renmove -all

Removed al | snapshots

" Note:

To avoid any snapshot from being inconsistent or unusable, do not take
snapshots while any configuration (topological) changes are in process.

At the time of the snapshot, use the pi ng command and save the output
information that identifies Masters for later use during a load or restore. For
more information, see Managing Snapshots.

Snapshot Activities

ORACLE

Creating a snapshot of the NoSQL database store performs these activities:
e Backs up the data files

e Backs up the configuration and environment files required for restore activities

To complete a full set of snapshot files, the snapshot command attempts to backup
the storage node data files, configuration files, and adds other required files. Following
is a description of the various files and directories the snapshot command creates or
copies:

Creates a snapshot s directory
as a peer to the env directory. |kvr oot/ nyst ore/ snl/rgl-rnl/ snapshots/
Each snapshot s directory 170417- 104506- snapshot Nanme/ *. j db
contains one subdirectory for kvroot/ nystore/snl/rgl-rnl/env/*.jdb
each snapshot you create. That [kvr oot/ myst or e/ sn1/ admi nl/ snapshot s/
subdirectory contains the *. j db
files.

7-2

The snapshot name
subdirectory with a date-time-
name prefix has the name

you supply with the —nane
parameter. The date-time prefix
consists of a 6-digit, year,
month, day value in YYMMDD
format, and a 6-digit hour,
minute, seconds timestamp as
HHMMSS. The date and time
values are separated from each
other with a dash (-), and
include a dash (-) suffix before
the snapshot name.

Chapter 7
Backing Up the Store

170417- 104506- snapshot Narre/ *. j db
kvr oot/ nystore/snl/admi nl/env/*.jdb

Copies the root confi g. xnl file
to the date-time-name directory.

kvroot/config.xm >
kvr oot/ snapshot s/ 170417- 104506-
snapshot Nane/ confi g. xm

Creates a status file in the
date-time-name subdirectory.
The contents of this

file, snapshot . st at, indicate
whether creating a snapshot
was successful. When you
restore to a snapshot, the
procedure first validates the
status file contents, continuing
only if the file contains the string
SNAPSHOT=COMPLETED.

kvr oot/ snapshot s/ 170417- 104506-
snapshot Nane/ snapshot . st at

Creates a lock file in the
date-time-name subdirectory.
The lock file, snapshot . | ck,

is used to avoid concurrent
modifications from different SN
Admins within the same root
directory.

kvr oot/ snapshot s/ 170417- 104506-
snapshot Nane/ snapshot . | ck

Creates a subdirectory of the
date-time-name subdirectory,
security. This subdirectory has
copies of security information
copied from kvr oot/ security.

kvr oot/ snapshot s/ 170417- 104506-
snapshot Name/ security

Copies the root security policy
from kvr oot/ security. policy,
to the date-time-name
subdirectory.

kvr oot/ snapshot s/ 170417- 104506-
snapshot Nanme/ security. policy

ORACLE

7-3

Chapter 7
Backing Up the Store

Copies the store security policy
to date-time-name subdirectory, [kvr oot/ snapshot s/ 170417- 104506-

into another subdirectory, snapshot Nane/ nyst or e/ security. pol i cy
nyst or e.

Copies the Storage

Node configuration file, kvr oot / snapshot s/ 170417- 104506-
config.xnt, from kvroot/ snapshot Nane/ nyst or e/ sn1/ confi g. xni
nystore/ snl/config.xm toa

corresponding SN subdirectory
in the date-time-name directory.

Managing Snapshots

ORACLE

When you create a snapshot, the utility collects data from every Replication Node in
the system, including Masters and replicas. If the operation does not succeed for any
one node in a shard, the entire snapshot fails.

When you are preparing to take the snapshot, you can use the pi ng command to
identify which nodes are currently running as the Master. Each shard has a Master,
identified by the MASTER keyword. For example, in the sample output, replication node
rgl-rnl, running on Storage Node snl, is the current Master:

java - Xmk64m - Xnms64m \
-jar KVHOWE/ |i b/ kvstore.jar ping -port 5000 -host nodeOl \
-security USER/ security/admn/security
Pi ngi ng conmponents of store nystore based upon topol ogy sequence #316
300 partitions and 3 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
Shard Status: healthy:3 witabl e-degraded: 0 read-only:0 offline:0
Adm n Status: healthy
Zone [name=Boston id=znl type=PRI MARY al | owAr bi t er s=f al se
mast er Af fi ni ty=fal se]
RN Status: online:9 offline:0 naxDelayMIlis:1 nmaxCat chupTi neSecs: 0
Storage Node [snl] on node0l: 5000
Zone: [name=Boston id=znl type=PRlI MARY]
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8h33c
Admin [adm ni] Status: RUNNI NG MASTER
Rep Node [rgl-rni] Status: RUNNI NG REPLI CA
sequenceNunber: 231 haPort:5011 avail abl e storage size:14 GB
delayM I lis:1 catchupTi meSecs: 0
Rep Node [rg2-rnil] Status: RUNNI NG REPLI CA
sequenceNunber: 231 haPort:5012 avail abl e storage size:12 GB
delayM I lis:1 catchupTi meSecs: 0
Rep Node [rg3-rnil] Status: RUNNI NG MASTER
sequenceNunber: 227 haPort: 5013 avail abl e storage size:13 GB
Storage Node [sn2] on node02: 6000
Zone: [name=Boston id=znl type=PRI MARY al | owAr bi ters=fal se
mast er Af fi ni ty=fal se]
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8h33c
Rep Node [rgl-rn2] Status: RUNNI NG MASTER
sequenceNunber: 231 haPort: 6010 avail abl e storage size:15 GB

7-4

ORACLE

Chapter 7
Backing Up the Store

Rep Node [rg2-rn2] Status: RUNNI NG REPLI CA
sequenceNunber: 231 haPort: 6011 avail abl e storage size:18 (B
delayM I lis:1 catchupTi meSecs: 0
Rep Node [rg3-rn2] Status: RUNNI NG REPLI CA
sequenceNunber: 227 haPort: 6012 avail abl e storage size:12 (B
delayM I lis:1 catchupTi meSecs: 0
Storage Node [sn3] on node03: 7000
Zone: [name=Boston id=znl type=PRI MARY al | owAr bit ers=fal se
mast er Af fi ni ty=f al se]
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Rep Node [rgl-rn3] Status: RUNNI NG REPLI CA
sequenceNunber: 231 haPort: 7010 avail abl e storage size:11 (B
delayM I lis:1 catchupTi meSecs: 0

Rep Node [rg2-rn3] Status: RUNNI NG MASTER
sequenceNunber: 231 haPort: 7011 avail abl e storage size:11 GB
Rep Node [rg3-rn3] Status: RUNNI NG REPLI CA

sequenceNunber: 227 haPort: 7012 avail abl e storage size:10 GB
delayM I lis:1 catchupTi meSecs: 0

You should save the above information and associate it with the respective snapshot,
for later use during a load or restore. If you decide to create an off-store copy of

the snapshot, you should copy the snapshot data for only one of the nodes in each
shard. If possible, copy the snapshot data taken from the node that was serving as the
Master at the time the snapshot was taken.

Note:

Snapshots include the admin database, which may be required if the store
needs to be restored from this snapshot.

Snapshot data for the local Storage Node is stored in a directory inside of the KVROOT
directory. For each Storage Node in the store, you have a directory named:

KVROOT/ <st or e>/ <SN>/ <r esour ce>/ snapshot s/ <snapshot _name>/fil es

where:

e <store> is the name of the store.
* <SN>is the name of the Storage Node.

e <resource> is the name of the resource running on the Storage Node. Typically,
this is the name of a replication node.

» <shapshot_name> is the name of the snapshot.

Snapshot data consists of a number of files. For example:

> |'s [var/kvroot/nystorel/snl/rgl-rnl/snapshots/110915-153514- Thur sday
00000000. j db 00000002. j db 00000004. j db 00000006. j db
00000001. j db 00000003. j db 00000005. j db 00000007. j db

7-5

Chapter 7
Recovering the Store

< Note:

To preserve storage, purge obsolete snapshots on a periodic basis.

Recovering the Store

There are two ways to recover your store from a previously created snapshot:
1. Use a snapshot to create a store with any topology with the Load utility.

2. Restore a snapshot using the exact topology you were using when you created the
snhapshot.

This section describes and explains both ways to recover your store.

Note:

If you need to recover due to a hardware problem, such as a failed Storage
Node, that qualifies as a topology change, so you must use the Load utility
to recover. For information about replacing a failed Storage Node, see
Replacing a Failed Storage Node.

Using the Load Program

ORACLE

You can use the oracl e. kv. util . Load program to restore a store from a previously
created snapshot. You can run this program directly, or you can access it using
kvstore.jar, as shown in the examples in this section.

Using this tool lets you restore to any topology, not just the topology in effect when you
created the snapshot.

This Load mechanism works by iterating through all records in a snapshot, putting
each record into a target store as it proceeds through the snapshot. Use Load to
populate a new, empty store. Do not use this with an existing store. Load only writes
records if they do not already exist.

Note that to recover the store, you must load records from snapshot data captured
for each shard in the store. For best results, you should load records using snapshot
data captured from the replication nodes that were running as Master at the time the
snapshot was taken. (If you have three shards in your store, then there are three
Masters at any given time, and so you need to load data from three sets of snapshot
data). To identify the Master, use ping at the time the snapshot was taken.

You should use snapshot data taken at the same point in time; do not, for example,
use snapshot data for shard 1 that was taken on Monday, and snapshot data for shard
2 that was taken on Wednesday. Such actions will restore your store to an inconsistent
state.

Also, the Load mechanism can only process data at the speed necessary to insert
data into a new store. Because you probably have multiple shards in your store, you
should restore your store from data taken from each shard. To do this, run multiple

7-6

ORACLE

Chapter 7
Recovering the Store

instances of the Load program in parallel, having each instance operate on data from
different replication nodes.

The program's usage to load admin metadata is:

java - Xmx64m - Xms64m \

-jar KVHOWE |ib/kvstore.jar |oad \

-store <storeName> -host <hostname> port <port> \
-1 oad-admin \

-source <adm n-backup-dir>\

[-force] [-username <user>] \

[-security <security-file-path>]

The program's usage to load store data is:

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |ib/kvstore.jar |oad [-verbose] \
-store <storeName> -host <hostname> \

-port <port> -source <shard-backup-dir>\

[, <shard-backup-dir>]* \

[- checkpoi nt <checkpoint-files-directory>] \
[-username <user>] [-security <security-file-path>]

where:

* -l oad-adni n Loads the store metadata from the snapshot to the new store. In this
case the - sour ce directory must point to the environment directory of the admin
node from the snapshot. The store must not be available for use by users at the
time of this operation.

¢ Note:

This option should not be used on a store unless that store is being
restored from scratch. If - f or ce is specified in conjunction with - | oad-
adni n, any existing metadata in the store, including tables and security
metadata, will be overwritten. For more information, see Load Program
and Metadata.

e -host <host nane> identifies the host name of a node in your store.
e -port <port> identifies the registry port in use by the store's node.

e -security <security-file-path> identifies the security file used to specify
properties for login.

e -source <adm n-backup-dir> | <shard-backup-dir> [, <shard-backup-dir>]*
adnmi n- backup- di r specifies the admin snapshot directory containing the contents
of the admin metadata that is to be loaded into the store.

Shar d- backup- di r specifies the backup directories that represent the contents of
shapshots created using the snapshot commands described at Taking a Snapshot.

e -store <storeNane> identifies the name of the store.

e -username <user> identifies the name of the user to login to the secured store.

7-7

Chapter 7
Recovering the Store

For example, if a snapshot exists in / var / backups/ snapshot s/ 110915- 153828-1 at er,
and a new store named "mystore" on host "host1" using registry port 5000, run the
Load program on the host that has the / var/ backups/ snapshot s directory:

java - Xmx64m - Xnms64m \

-jar KVHOWE/ |'i b/ kvstore.jar load \

-source /var/backups/ snapshot s/ 110915- 153514- Thur sday -store nystore \
-host host1 -port 5000 -security KVROOT/security/client.security

Note:

Before you load records into the new store, make sure that the store is
deployed. For more information, see Configuring the KVStore.

Load Program and Metadata

You can use the Load program to restore a store with metadata (tables, security) from
a previously created snapshot.

The following steps describe how to load from a snapshot with metadata to a newly
created store:

1. Create, start and configure the new store (target). Do not make the store
accessible to applications yet.

e Create the new store:

java - Xmk64m - Xnms64m \

-jar KVHOVE/ | i b/ kvstore.jar makebootconfig \
-root KVROOT \

-host NewHost -port 8000 \

- harange 8010, 8020 \

-capacity 1

* Create security directory:

java - Xmk64m - Xms64m \

-jar kv/liblkvstore.jar securityconfig \

config create

-root KVROOT -kspwd password

Created files

KVROOT/ security/security.xm

KVROOT/ security/ store. keys

KVROOT/ security/ store.trust

KVROOT/ security/client.trust

KVROOT/ security/client.security

KVROOT/ security/store. passwd (CGenerated in CE version)
KVROOT/ security/store.wal l et/cwal |l et.sso (CGenerated in EE
version)

Created

ORACLE 7-8

ORACLE

Chapter 7
Recovering the Store

e Start the new store:

Note:

Before starting the SNA, on each node, set the environment variable
MALLOC ARENA MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

java - Xmx64m - Xms64m \
-jar KVHOWE/ | ib/kvstore.jar start \
-root KVROOT &

e Configure the new store:

java - Xmk64m - Xnms64m \

-jar KVHOWE |ib/kvstore.jar runadnin \
-port 8000 -host NewHost \

-security KVROOT/security/client.security
kv-> configure -name NewStore

Store configured: NewStore

< Note:

Loading security metadata requires the names of the source store and
the target store to be the same, otherwise the security metadata cannot
be used later.

Locate the snapshot directories for the source store. There should be one for
the admin nodes plus one for each shard. For example in a 3x3 store there
should be 4 snapshot directories used for the load. The load program must have
direct file-based access to each snapshot directory loaded. In this case, the
shapshot source directory is in / var/ kvr oot / myst or e/ sn1/ adm nl/ snapshot s/
110915- 153514- Thur sday.

Load the store metadata using the - | oad- adni n option. Host, port, and store refer
to the target store. In this case the - sour ce directory must point to the environment
directory of the admin node from the snapshot.

java - Xmk64m - Xnms64m \

-jar KVHOVE/ | i b/ kvstore.jar |oad \

-source \

/var/ kvroot/nystore/ snl/adm nl/ snapshots/110915- 153514- Thur sday \
-store NewStore -host NewHost -port 8000 \

-l oad-adm n \

-security KVROOT/security/client.security

7-9

Chapter 7
Recovering the Store

< Note:

This command can be run more than once if something goes wrong, as
long as the store is not accessible to applications.

4. Deploy the store. For more information, see Configuring the KVStore.

5. Once the topology is deployed, load the shard data for each shard. To do this, run
the Load program in parallel, with each instance operating on data captured from
different replication nodes. For example, suppose there is a snapshot of O dSt ore
in var/ backups/ snapshot s/ 140827- 144141- back.

java - Xmk64m - Xnms64m \

-jar KVHOWE/ |i b/ kvstore.jar load \

-source var/backups/ snapshot s/ 140827- 144141- back -store NewStore \
-host NewHost -port 8000 \

-security KVROOT/security/client.security

Note:

This step may take a long time or might need to be restarted. In order to
significantly reduce retry time, the use of a status file is recommended.

If the previous store has been configured with username and password,
the program will prompt for username and password here.

6. The store is now ready for applications.

Restoring Directly from a Snapshot

ORACLE

You can restore a store directly from a snapshot. This mechanism is faster than using
the Load program. However, you can restore from a snapshot only to the exact same
topology as was in use when the snapshot was taken. This means that all ports and
host names or IP addresses (depending on your configuration) must be exactly the
same as when you took the snapshot.

To restore from a snapshot, complete these steps:

1. Run this command on each of the Storage Nodes (SNs) to shut down the store:

java - Xmk64m - Xnms64m \
-jar KVHOWE/ |i b/ kvstore.jar stop -root $KVROOT

2. When each SN is stopped, run this command on each SN in the store to restore to
the backup (using —updat e-confi g true):

> java -jar KVHOWE |ib/kvstore.jar start -root /var/kvroot \
-restore-fromsnapshot 170417-104506- mySnapshot -update-config true

7-10

Chapter 7
Recovering from Data Corruption

3. To restore to the backup, but not override the existing configurations, run this
command on each SN (with —updat e- confi g fal se):

> java -jar KVHOW |ib/kvstore.jar start -root /var/kvroot \
-restore-fromsnapshot 170417-104506- mySnapshot -update-config
fal se

The 170417-104506—-mySnapshot value represents the directory name of the
shapshot to restore.

< Note:

This procedure recovers the store to the time you created the snapshot. If
your store was active after snapshot creation, all modifications made since
the last snapshot are lost.

Recovering from Data Corruption

Oracle NoSQL Database can automatically detect data corruption in the database
store. When it detects data corruption, Oracle NoSQL Database automatically shuts
down the associated Admin or Replication Nodes. Manual administrative action is then
required before the nodes can be brought back online.

Detecting Data Corruption

ORACLE

Oracle NoSQL Database Admin or Replication Node processes will exit when they
detect data corruption. This is caused by a background task which detects data
corruption caused by a disk failure, or similar physical media or I/O subsystem
problem. Typically, the corruption is detected because of a checksum error in a log
entry in one of the data (*.jdb) files contained in an Admin or Replication Node
database environment. A data corruption error generates output in the debug log
similar to this:

2016- 10- 25 16:59: 52. 265 UTC SEVERE [rgl-rnl] Process exiting
com sl eepycat . je. Envi ronnent Fai | ureException: (JE 7.3.2)
rgl-rnl(-1):kvroot/nystore/snl/rgl-rnl/env

com sl eepycat . je. | og. ChecksunExcepti on:

Invalid log entry type: 102 |sn=0x0/0x0 buf Position=5

buf Rermai ni ng=4091 LOG_CHECKSUM

Checksuminvalid on read, log is likely invalid. Environment is
invalid and must be cl osed

2016- 10-25 16:59: 52. 270 UTC SEVERE [rgl-rnl] Exception creating
service rgl-rnl:

(JE 7.3.2) rgl-rnl(-1):kvroot/mystore/snl/rgl-rnl/env

com sl eepycat . je. | og. ChecksunExcepti on:

Invalid log entry type: 102 |sn=0x0/0x0 buf Position=5

buf Rermai ni ng=4091 LOG_CHECKSUM

Checksuminvalid on read, log is likely invalid. Environment is

7-11

Chapter 7
Recovering from Data Corruption

invalid and nust be closed. (12.1.4.3.0): oracle.kv.Faul t Exception:
(JE 7.3.2) rgl-rnl(-1):kvroot/mystore/snl/rgl-rnl/env

com sl eepycat.je.l og. ChecksunException: Invalid log entry type: 102
| sn=0x0/ 0x0 buf Posi tion=5 buf Remai ni ng=4091 LOG CHECKSUM Checksum
invalid on read, log is likely invalid. Environment is invalid and

nmust be closed. (12.1.4.3.0)

Fault class name: com sl eepycat.je. Environnent Fai |l ureException

2016- 10-25 16:59:52.272 UTC INFO [rgl-rnl] Service status changed
from STARTING t o ERROR_NO_RESTART

The Envi ronnment Fai | ur eExcept i on will cause the process to exit. Because the
exception was caused by log corruption, the service status is set to ERROR_NO _RESTART,
which means that the service will not restart automatically.

Data Corruption Recovery Procedure

ORACLE

If an Admin or Replication Node has been stopped due to data corruption, then
manual administration intervention is required in order to restart the Node:

1. Optional: Archive the corrupted environment data files.

If you want to send the corrupted environment to Oracle support for help in
identifying the root cause of the failure, archive the corrupted environment data
files. These are usually located at:

<KVROOT>/ <STORE_NAME>/ <SNx>/ <Admi nx>/"

or

<KVROOT>/ <STORE_NAVE>/ <SNX>/ < gX- I nx>"

However, if you used the plan change-storagedir CLI command to change the
storage directory for your Replication Node, then you will find the environment in
the location that you specified to that command.

You can use the show topology CLI command to display your store's topology. As
part of this information, the storage directory for each of your Replication Nodes
are identified.

2. Confirm that a non-corrupted version of the data is available.

Before removing the files associated with the corrupted environment, confirm that
another copy of the data is available either on another node or via a previously
save snapshot. For a Replication Node, you must be using a Replication Factor
greater than 1 and also have a properly operating Replication Node in the store in
order for the data to reside elsewhere in the store. If you are using a RF=1, then
you must have a previously saved snapshot in order to continue.

If the problem is with an Admin Node, there must be to be another Admin available
in the store that is operating properly.

Use the ping or verify configuration commands to check if the available nodes are
running properly and healthy.

3. Remove all the data files that reside in the corrupted environment.

7-12

Chapter 7
Replacing a Failed Disk

Once the data files associated with a corrupted environment have been saved
elsewhere, and you have confirmed that another copy of the data is available,
delete all the data files in the enviroment directory. Make sure you only delete
the files associated with the Admin or Replication Node that has failed due to a
corrupted environment error.

|'s <KVROOT>/ nystore/ snl/rgl-rnl/env
00000000. jdb 00000001.jdb 00000002.jdb je.config.csv
je.info.0 je.lck je.stat.csv

rm <KVROOT>/ nystore/ snl/rgl-rnl/env/*.jdb
Perform recovery using either Network Restore, or from a backup. Be aware the
recovery from a backup will not work to recover an Admin Node.

* Recovery using Network Restore

Network restore can be used to recover from data corruption if the corrupted
node belongs to a replication group that has other replication nodes available.
Network restore is automatic recovery task. After removing all of the database
files in the corrupted environment, you only need to connect to CLI and restart
the corrupted node.

For a Replication Node:

kv-> plan start-service -service rgl-rnl

For an Admin:

kv-> plan start-service -service rgl-rnl

* Recovery from a backup (RNs only)

If the store does not have another member in the Replication Node's shard

or if all of the nodes in the shard have failed due to data corruption, you will
need to restore the node's environment from a previously created snapshot.
See Recovering the Store for details.

Note that to recover an Admin that has failed due to data corruption, you must
have a working Admin somewhere in the store. Snapshots do not capture
Admin data.

Replacing a Failed Disk

ORACLE

You can replace a disk that is either in the process of failing, or has already failed. Disk
replacement procedures are necessary to keep the store running. These are the steps
required to replace a failed disk to preserve data availability.

The following example deploys a KVStore to a set of three machines, each with 3
disks. Use the st oragedi r flag of the nakeboot confi g command to specify the storage
location of the disks.

> java - Xmx64m - Xms64m \
-jar KVHOWE/ |i b/ kvstore.jar makebootconfig \

-root /opt/ondb/var/kvroot \
-port 5000 \

7-13

ORACLE

Chapter 7
Replacing a Failed Disk

-host node09

- harange 5010, 5020 \

-numcpus 0 \

-memory _nb 0\

-capacity 3 \

-adm ndir /diskl/ondb/adnmin -admindirsize 1 _gb \
-storagedir /diskl/ondb/data \

-storagedir /disk2/ondb/data \

-storagedir /disk3/ondb/data \

-rnlogdir /diskl/ondb/rnlog01l

With a boot configuration such as the previous example, the directory structure
created and populated on each machine is as follows:

- Machine 1 (SN1) -
[opt/ ondb/ var/ kvr oot

- Machine 2 (SN2) -
[opt / ondb/ var / kvr oot

- Machine 3 (SN3) -
/ opt/ ondb/ var/ kvr oot

/security /security /security
/ st or e- nane / st or e- nane / st ore- nane
/snl /sn2 /sn3
config. xm config. xm config.xm
/ di sk1/ ondb/ admi n / di sk1/ ondb/ adm n / di sk1/ ondb/ admi n
[adm nl [adm n2 [adm n3
/ env / env / env

/ di sk1/ ondb/ dat a
/rgl-rnl
/ env

/ di sk2/ ondb/ dat a
lrg2-rnl
/ env

/ di sk3/ ondb/ dat a
/rg3-rnl
/ env

/ di sk1/ ondb/ rnl 0g01
/1og

/ di sk1/ ondb/ dat a
/rgl-rn2
/ env

/ di sk2/ ondb/ dat a
/rg2-rn2
/ env

/ di sk3/ ondb/ dat a
/rg3-rn2
/ env

/ di sk1/ ondb/ rnl 0g01
/10g

/ di sk1/ ondb/ dat a
/rgl-rn3
/ env

/ di sk2/ ondb/ dat a
/rg2-rn3
/ env

/ di sk3/ ondb/ dat a
/rg3-rn3
/ env

[di sk1/ ondb/ rnl 0g01
/10g

In this case, configuration information and administrative data is stored in a location
that is separate from all of the replication data. The replication data itself is stored by
each distinct Replication Node service on separate, physical media as well. Storing
data in this way provides failure isolation and will typically make disk replacement
less complicated and time consuming. For information on how to deploy a store, see
Configuring the KVStore.

To replace a failed disk:

1. Determine which disk has failed. To do this, you can use standard system
monitoring and management mechanisms. In the previous example, suppose
disk2 on Storage Node 3 fails and needs to be replaced.

7-14

Chapter 7
Replacing a Failed Storage Node

2. Then given a directory structure, determine which Replication Node service to
stop. With the structure described above, the store writes replicated data to disk2
on Storage Node 3, so r g2- r n3 must be stopped before replacing the failed disk.

3. Usethepl an stop-servi ce command to stop the affected service (rg2-rn3) so
that any attempts by the system to communicate with it are no longer made;
resulting in a reduction in the amount of error output related to a failure you are
already aware of.

kv-> plan stop-service -service rg2-rn3

4. Remove the failed disk (disk2) using whatever procedure is dictated by the
operating system, disk manufacturer, and/or hardware platform.

5. Install a new disk using any appropriate procedures.

6. Format the disk to have the same storage directory as before; in this case, /
di sk2/ ondb/ var/ kvr oot .

7. With the new disk in place, use the pl an start-servi ce command to start the
rg2-rn3 service.

kv-> plan start-service -service rg2-rn3

" Note:

Depending on the amount of data stored on the disk before it failed,
recovering that data can take a considerable amount of time. Also, the
system may encounter unexpected or additional network traffic and load
while repopulating the new disk. If so, such events add even more time
to completion.

Replacing a Failed Storage Node

You can replace a failed Storage Node, or one that is in the process of failing.
Upgrading a healthy machine to another one with better specifications is also

a common Storage Node replacement scenario. Generally, you should repair the
underlying problem (be it hardware or software related) before proceeding with this
procedure.

There are two ways to replace a failed Storage Node:
* A new, different Storage node

* Anidentical Storage Node

This section describes both replacement possibilities.

ORACLE 7-15

Chapter 7
Replacing a Failed Storage Node

< Note:

Replacing a Storage Node qualifies as a topology change. This means that
if you want to restore your store from a snapshot taken before the Storage
Node was replaced, you must use the Load program. See Using the Load
Program for more information.

Using a New Storage Node

To replace a failed Storage Node by using a new, different Storage Node (node uses
different host name, IP address, and port as the failed host):

1.

ORACLE

If you are replacing hardware, bring it up and make sure it is ready for your
production environment.

On the new, replacement node, create a "boot config" configuration file using
the makeboot conf i g utility with the following commands. Enable the security
configuration option in the new node. Do this on the hardware where your new
Storage Node runs.

> nkdir -p KVROOT (if it doesn't already exist)
> java - Xnmk64m - Xns64m \
-jar KVHOWE |'i b/ kvstore.jar makebootconfig -root KVROOT \
-port 5000 \
-host <host nane> \
- harange 5010, 5020 \
-capacity 1\
-adm ndir /export/adm nl
-admindirsize 3_gb \
-store-security enable \
-storagedir /export/
datal \
-storagedirsize 1 tbh \
-rnlogdir /export/rnlogl

Create the security directory under KVROOT in your new node.

> cd KVROOT
> nkdir security

Copy the security directory from a healthy node to the failed node:

scp -r <sec dir> node02; KVROOT/ security

Start the Oracle NoSQL Database software on the new node:

7-16

ORACLE

10.

Chapter 7
Replacing a Failed Storage Node

< Note:

Before starting the SNA, on each node, set the environment variable
MALLOC ARENA MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

> nohup java - Xmk64m - Xms64m \
-jar KVHOWE/ l'i b/ kvstore.jar start -root KVROOT &

Deploy the new Storage Node to the new node. To do this using the CLI:

> java - Xmx64m - Xns64m \
-jar KVHOWE/ | i b/ kvstore.jar runadmn \
-port <5000> -host <host> \
-security security/client.security
kv-> plan depl oy-sn -zn <id> -host <host> -port <5000> -wait

Add the new Storage Node to the Storage Node pool. (You created a Storage
Node pool when you installed the store, and you added all your Storage Nodes to
it, but it is otherwise not used in this version of the product.)

kv-> show pool s

Al | St orageNodes: snl, sn2, sn3, sn4 ... sn25, sn26
Bost onPool : snl, sn2, sn3, sn4 ... sn25

kv-> pool join -name BostonPool -sn sn26

Al | St orageNodes: snl, sn2, sn3, sn4 ... sn25, sn26
Bost onPool : snl, sn2, sn3, sn4 ... sn25

Make sure the old Storage Node is not running. If the problem is with the
hardware, then turn off the broken machine. You can also stop just the Storage
Node software by:

> java - Xmx64m - Xms64m \
-jar KVHOWE |'ib/kvstore.jar stop -root KVROOT &

Migrate the services from one Storage Node to another. The syntax for this plan is:

kv-> plan mgrate-sn -from<old SN ID> -to <new SN | D> -wai t

Assuming that you are migrating from Storage Node 25 to 26, you would use:
kv-> plan mgrate-sn -fromsn25 -to sn26 -wait

The old Storage Node is shown in the topology and is reported as
UNREACHABLE. The source SNA should be removed and its rootdir should be
hosed out. Bringing up the old SNA will also bring up the old Replication Nodes
and admins, which are no longer members of their replication groups. This should
be harmless to the rest of the store, but it produces log error messages that might

7-17

Chapter 7
Replacing a Failed Storage Node

be misinterpreted as indicating a problem with the store. Use the pl an renove-sn
command to remove the old and unused Storage Node in your deployment.

kv-> plan renove-sn sn sn25 -wait

11. Use the ping command to verify the migration to the new node is complete and all
services are running well.

> java - Xmx64m - Xns64m \

-jar KVHOWE |ib/kvstore.jar ping \
-port <5000> -host <host> \
-security security/client.security

" Note:

Replacing a Storage Node qualifies as a topology change. This means that
if you want to restore your store from a snapshot taken before the Storage
Node was replaced, you must use the Load program. See Using the Load
Program for more information.

Task for an Identical Node

To replace a failed Storage Node with an identical node, i.e. the target node uses the
same host name, internet address, and port as the failed host.

1. Prerequisite information:

a.

ORACLE

The hostname and port number (registry port) of the machine in the cluster
where the admin process is running (e.g “host1” and 5000).

The ID of the Storage Node to replace (e.g. "sn1").

Note:

The user can use the Admin CLI ping command to get the registry
port and Storage Node Identifier of any failed Storage Node.

Before starting the new Storage Node, the Storage Node to be replaced must
be taken down. This can be done administratively or via failure.

¢ Note:

The instructions below assume that the KVROOT in the target host is
empty and has no valid data. When the new Storage Node Agent begins
it starts the services that it hosts, which recovers their data from other
hosts. The time taken for the recovery depends on the size of the shards
involved and it happens in the background.

7-18

ORACLE

Chapter 7
Replacing a Failed Storage Node

Create the configuration file of the failed host using the gener at econfi g
command. The gener at econf i g command can be executed from any active host
(machine) in the NoSQL cluster.

The generateconfig's usage is:

> java - Xnmx64m - Xns64m \

-jar KVHOWE/ |i b/ kvstore.jar generateconfig \

-host <hostname> -port <port> -sn <StorageNodel d> -target <zipfile>
\

-security <path to security login file>

Parameter Required Description

host Yes The host name of the failed
storage node for which the
config file is generated.

port Yes The registry port of the
failed storage node for
which the config file is
generated.

sn Yes Identifier of the failed
storage node.

target Yes Full path of the zip file to
be created.

security No The client security
configuration file. This
parameter is only required
if your store is secure.
A fully qualified path
to a file containing
security information can
be specified.

For more information on generateconfig command, See generateconfig

For example:

> java - Xmx64m - Xns64m \

-jar KVHOWE/ | i b/ kvstore.jar generateconfig -host adm nhost \
-port 13230 -sn snl -target /tnp/snl.config.zip \

-security USER/ security/admn.security

The command above creates the target "/ t np/ snl. confi g. zi p" . This is a zip file
with the required configuration to re-create the failed Storage Node. The top-level
directory in the newly created zip file (snl. confi g. zi p) is the store's KVROOT.

Note:

This assumes that you must have followed the steps as mentioned in
Configuring Security with Remote Access.

Restore the Storage Node configuration on the target host:

7-19

Chapter 7
Repairing a Failed Zone by Replacing Hardware

a. Copy the zip file "snl. confi g. zi p" to the target host.

b. Unzip the archive into your target host's KVROOT directory. That is, if KYROOT
is / opt/ kvr oot , then do the following:

> cd /opt
> unzip <path-to-snl.config.zip>

Note:

If kvr oot already exists under / opt directory , remove all the
contents in the kvr oot directory before unzipping the config file.

4. Restart the Storage Node on the target host.

< Note:

Before starting the SNA, on each node, set the environment variable
MALLOC ARENA MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

> java - Xmx64m - Xms64m \
-jar KVHOWE/ li b/ kvstore.jar start -root KVROOT

Note:

The hostname, port number and internet address of the target host and
the failed node are the same. So no changes have to be done in the
Storage Node pool and the topology of the store.

Repairing a Failed Zone by Replacing Hardware

If all of the machines belonging to a zone fail, and quorum is maintained, you can
replace them by using new, different Storage Nodes deployed to the same zone.

If a zone fails but quorum is lost, you can perform a failover instead. To do this, see
Performing a Failover.

For example, suppose a store consists of three zones; zn1, deployed to the machines
on the first floor of a physical data center, zn2, deployed to the machines on the
second floor, and zn3, deployed to the third floor. Additionally, suppose that a fire
destroyed all of the machines on the second floor, resulting in the failure of all of the
associated Storage Nodes. In this case, you need to replace the machines in the zn2
zone; which can be accomplished by doing the following:

1. Replace each individual Storage Node in the failed zone with new, different
Storage Nodes belonging to same zone (zn2), although located in a new physical

ORACLE 7-20

Chapter 7
Using Oracle NoSQL Migrator

location. To do this, follow the instructions in Replacing a Failed Storage Node.
Make sure to remove each old Storage Node after performing the replacement.

2. After replacing and then removing each of the targeted SNs, the zone to which
those SNs belonged should now contain the new SNs.

Using Oracle NoSQL Migrator

Overview

ORACLE

Learn about Oracle NoSQL Data Migrator and how to use it for data migration.

Oracle NoSQL Data Migrator is a tool that supports the movement of Oracle

NoSQL tables from one data source to another. This tool can operate on tables in
Oracle NoSQL Database Cloud Service, Oracle NoSQL Database on-premise, and
handle JSON and MongoDB-formatted JSON input files. This utility supports multiple
migration options, such as:

e Oracle NoSQL Database on-premise to Oracle NoSQL Database Cloud Service
and vice-versa

- Between two Oracle NoSQL on-premise Databases

» Between two Oracle NoSQL Database Cloud Service Tables

» JSON file to Oracle NoSQL Database on-premise and vice-versa

e JSON file to Oracle NoSQL Database Cloud Service and vice-versa

* MongoDB-formatted JSON file to an Oracle NoSQL Database table on-premise or
cloud

Topics:

e Overview

e Using Oracle NoSQL Data Migrator

e Supported Sources and Sinks

* Use Case Demonstrations

e Troubleshooting the NoSQL Data Migrator

* Oracle NoSQL Data Migrator Vs. Import/Export Utility

» Transitioning from Import/Export to NoSQL Data Migrator

Oracle NoSQL Data Migrator lets you move Oracle NoSQL tables from one data
source to another, such as Oracle NoSQL Database on-premise or cloud or even a
simple JSON file.

There can be many situations that require you to migrate NoSQL tables from or to

an Oracle NoSQL Database. For instance, a team of developers enhancing a NoSQL
Database application may want to test their updated code in the local Oracle NoSQL
Database Cloud Service (NDCS) instance using cloudsim. To verify all the possible
test cases, they must set up the test data similar to the actual data. To do this, they
must copy the NoSQL tables from the production environment to their local NDCS
instance, the cloudsim environment. In another situation, NoSQL developers may
need to move their application data from on-premise to the cloud and vice-versa,
either for development or testing.

7-21

Chapter 7
Using Oracle NoSQL Migrator

In all such cases and many more, you can use Oracle NoSQL Data Migrator to move
your NoSQL tables from one data source to another, such as Oracle NoSQL Database
on-premise or cloud or even a simple JSON file. You can also copy NoSQL tables
from a MongoDB-formatted JSON input file into your NoSQL Database on-premise or
cloud.

Oracle NoSQL Data Migrator is created to replace and enhance the existing on-
premise-only import/export utility. To know how the NoSQL Data Migrator is different
from the existing import/export utility, see Oracle NoSQL Data Migrator Vs. Import/
Export Utility .

As depicted in the following figure, the NoSQL Data Migrator utility acts as a connector
or pipe between the data source and the target (referred to as the sink). In essence,
this utility exports data from the selected source and imports that data into the sink.
This tool is table-oriented, that is, you can move the data only at the table level. A
single migration task operates on a single table and supports the following options:

* JSON file to Oracle NoSQL Database on-premise and vice versa
* JSON file to Oracle NoSQL Database Cloud Service and vice versa

* Oracle NoSQL Database on-premise to Oracle NoSQL Database Cloud Service
and vice versa

* MongoDB-formatted JSON file to an Oracle NoSQL Database table

* MongoDB-formatted JSON file to an Oracle NoSQL Database Cloud Service table
e One Oracle NoSQL Database on-premise to another

e One Oracle NoSQL Database Cloud Service to another

Oracle NoSQL Data Migrator is designed such that it can support additional sources
and sinks in the future. For a list of sources and sinks supported by Oracle NoSQL
Data Migrator as of the current release, see Supported Sources and Sinks.

%}QTransformations
" NoSQL NoSQL "
—Tab?e Data ——> (—Tabloe Data ——>
“ Migration Pipe “
Source Sink

Terminology used with NoSQL Data Migrator

ORACLE

Learn about the different terms used in the above diagram, in detail.

* Source: An entity from where the NoSQL tables are exported for migration. Some
examples of sources are Oracle NoSQL Database on-premise or cloud, JSON file,
and MongoDB-formatted JSON file.

* Sink: An entity that imports the NoSQL tables from NoSQL Data Migrator. Some
examples for sinks are Oracle NoSQL Database on-premise or cloud and JSON
file.

* Migration Pipe: The data from a source will be transferred to the sink by NoSQL
Data Migrator. This can be visualized as a Migration Pipe.

» Transformations: You can add rules to modify the NoSQL table data in the
migration pipe. These rules are called Transformations. Oracle NoSQL Data

7-22

Chapter 7
Using Oracle NoSQL Migrator

Migrator allows data transformations at the top-level fields or columns only. It does
not let you transform the data in the nested fields. Some examples of permitted
transformations are:

— Drop or ignore one or more columns,
— Rename one or more columns, or
— Aggregate several columns into a single field, typically a JSON field.

» Configuration File : A configuration file is a JSON file where you define all
the parameters required for the migration activity. Later, you pass this JISON
file as a single parameter to the r unM gr at or command from the CLI. A typical

configuration file format looks like as shown below.

{
"source": {
"type" <source type>,
/I'source-configuration for type. See Source Configuration Templates .
h
"sink": {
"type" <sink type>,
/I'sink-configuration for type. See Sink Configuration Templates .
H
"transforms” : {
[Itransforns configuration. See Transformation Configuration Templates .
h
"mgratorVersion" : "1.0.0",
"abortOnError" : <true|false>
}
Group Parameters Mandatory Purpose Supported
(YIN) Values
sour ce type Y Represents the To know the
source from t ype value for
which to each source,
migrate the see Supported
data. The Sources and
source Sinks.
provides data
and metadata
(if any) for
migration.
source- Y Defines the See Source
configuration configuration Configuration
for type for the source. Templates for
These the complete
configuration Jist of
parameters are Conﬁguration
specific to the parameters for

type of source
selected above.

each source
type.

ORACLE

7-23

ORACLE

Chapter 7

Using Oracle NoSQL Migrator

Group Parameters Mandatory Purpose Supported
(YIN) Values
si nk type Y Represents the To know the
sink to which type value for
to migrate the each source,
data. The sink gee Supported
is the target or Sources and
destination for gjnks.
the migration.
sink- Y Defines the See Sink
configuration configuration Configuration
for type for the sink. Templates for
These the complete
configuration ist of
parameters are configuration
specific to the parameters for
type of sink each sink type.
selected above.
transforns transforms N Defines the See
configuration transformation Transformation
s to be applied Configuration
tothe datain Templates for
the migration the complete
pipe. list of
transformation
s supported by
the NoSQL Data
Migrator.
- mgratorVersi N Version of the -
on NoSQL Data
Migrator
7-24

Chapter 7
Using Oracle NoSQL Migrator

Group Parameters Mandatory Purpose Supported
(YIN) Values
- abortOnError N Specifies true, false

whether to stop
the migration
activity in case
of any error or
not.

The default
value is true
indicating that
the migration
stops whenever
it encounters a
migration
error.

If you set this
value to false,
the migration
continues even
in case of failed
records or
other migration
errors. The
failed records
and migration
errors will be
logged as
WARNINGS on
the CLI
terminal.

" Note:

As JSON is case-sensitive, all the parameters defined in the
configuration file are case-sensitive unless specified otherwise.

Using Oracle NoSQL Data Migrator

Learn about the various steps involved in using the Oracle NoSQL Data Migrator utility
for migrating your NoSQL data.

The high level flow of tasks involved in using NoSQL Data Migrator is depicted in the
below figure.

ORACLE 7-25

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

Download the NoSQL
Migrator Utility

l

Identify Source & Sink for
Migration

|
|) |

Generate the Createa
Configuration JSON File Configuration JSON
using runMigrator File Manually

!

OR

|

You can reuse the
Config JSON File
multiple times.

!

You can reuse the
Config JSON File
multiple times.

Proceed to Migration
with the Generated
Configuration JSON File

Save the Configuration
JSON File for a Future
Migration

You can reuse the

Run runMi

grator by

Config JSON File —> passing the Configuration

multiple times.

JSON File as

a Parameter

Download the NoSQL Data Migrator Utility

The Oracle NoSQL Data Migrator utility is available for download from the Oracle
NoSQL Downloads page. Once you download and unzip it on your machine, you can
access the runM gr at or command from the command line interface.

Identify the Source and Sink

Before using the migrator, you must identify the data source and sink. For instance,
if you want to migrate a NoSQL table from Oracle NoSQL Database on-premise to
a JSON formatted file, your source will be Oracle NoSQL Database and sink will be
JSON file. Ensure that the identified source and sink are supported by the Oracle
NoSQL Data Migrator by referring to Supported Sources and Sinks. This is also an
appropriate phase to decide the schema for your NoSQL table in the target or sink,
and create them.

e ldentify Sink Table Schema: If the sink is Oracle NoSQL Database on-premise or
cloud, you must identify the schema for the sink table and ensure that the source
data matches with the target schema. If required, use transformations to map the
source data to the sink table.

7-26

Chapter 7
Using Oracle NoSQL Migrator

* Create Sink Table: Once you identify the sink table schema, create the sink
table either through the Admin CLI or using the schemal nf o attribute of the sink
configuration file. See Sink Configuration Templates .

Run the runMigrator command

The runM gr at or executable file is available in the extracted NoSQL Data Migrator
files. You must install Java 8 or higher version and bash on your system to
successfully run the runM gr at or command.

You can run the runM gr at or command in two ways:

1. By creating the JSON configuration file using the runtime options of the
runM grat or command as shown below.

[~]$./runMgrator
configuration file is not provided. Do you want to generate
configuration?

(y/n)

[nl:y

* When you invoke the runM grat or utility, it provides a series of runtime
options and creates the configuration JSON file based on your choices for
each option.

e After the utility creates the configuration JSON file, you have a choice to either
proceed with the migration activity in the same run or save the configuration
file for a future migration.

e lrrespective of your decision to proceed or defer the migration activity with
the generated configuration JSON file, the file will be available for edits or
customization to meet your future requirements. You can use the customized
configuration JSON file for migration later.

2. By passing a manually created JSON configuration file as a runtime parameter
using the - ¢ or - - confi g option. You must create the configuration JSON file
manually before running the runM gr at or command with the - ¢ or --confi g
option. For any help with the source and sink configuration parameters, see
Sources and Sinks.

[~]$./runMgrator -c </path/to/the/configuration/json/file>

Sources and Sinks

ORACLE

Learn about the different sources and sinks supported by the Oracle NoSQL Data
Migrator utility and their configuration templates.

Topics:
e Supported Sources and Sinks

e Source Configuration Templates

7-27

Chapter 7
Using Oracle NoSQL Migrator

* Sink Configuration Templates

» Transformation Configuration Templates

Supported Sources and Sinks

This topic provides the list of the sources and sinks supported by the Oracle NoSQL
Data Migrator.

You can use any combination of a valid source and sink from this table for the
migration activity. However, you must ensure that at least one of the ends, that is,
source or sink must be an Oracle NoSQL product. You can not use the NoSQL Data
Migrator to move the NoSQL table data from one file to another.

Entity type Value Valid Source Valid Sink
JSON file file Y Y
MongoDB-formatted file Y N

JSON file

Oracle NoSQL nosql db Y Y
Database

Oracle NoSQL nosql db_cl oud Y Y
Database Cloud

Service

Source Configuration Templates

JSON File

ORACLE

Learn about the configuration file formats for each valid source and the purpose of
each configuration parameter.

Topics

e JSON File

* MongoDB-Formatted JSON File

e Oracle NoSQL Database

e Oracle NoSQL Database Cloud Service

The configuration file format for JSON File as a source of NoSQL Data Migrator is
shown below.

Configuration Template

"source" : {
"type" : "file",
"format" : "json",

"dataPath": "</path/to/aljson/file>"
}

Source Parameters

e type

7-28

Chapter 7
Using Oracle NoSQL Migrator

e format
« dataPath
type

* Purpose: Identifies the source type.
» Data Type: string
* Mandatory (YIN): Y

 Example: "type" : "file"

format

e Purpose: Specifies the source format.
e Data Type: string
* Mandatory (YIN): Y

e Example: "format" : "json"

dataPath

* Purpose: Specifies the absolute path to a file or directory containing the JSON
data for migration.

You must ensure that this data matches with the NoSQL table schema defined at
the sink. If you specify a directory, the NoSQL Data Migrator identifies all the files
with the . j son extension in that directory for the migration. Sub-directories are not
supported.

» Data Type: string
* Mandatory (YIN): Y
Example:
— Specifying a JSON file
"dataPath" : "/hone/user/sanple.json"
— Specifying a directory

"dataPath" : "/home/user"

MongoDB-Formatted JSON File

The configuration file format for MongoDB-formatted JSON File as a source of NoSQL
Data Migrator is shown below.

Configuration Template

"source" : {
Iltypell : Ilfi I ell,
“format" : "mongodb_j son",

"dataPath": "</path/to/aljson/file>"

ORACLE 7-29

Chapter 7
Using Oracle NoSQL Migrator

Source Parameters

e type

e format

» dataPath
type

* Purpose: Identifies the source type.
» Data Type: string
* Mandatory (YIN): Y

 Example: "type" : "file"

format

e Purpose: Specifies the source format.
e Data Type: string
* Mandatory (YIN): Y

e Example: "format" : "nongodb_j son"

dataPath

» Purpose: Specifies the absolute path to a file or directory containing the
MongoDB exported JSON data for migration.

You must have generated these files using the mongoexport tool. See
mongoexport for more information.

You can supply the MongoDB-formatted JSON file that is generated using the
mongoexport tool in either canonical or relaxed mode. Both the modes are
supported by the NoSQL Data Migrator for migration.

If you specify a directory, the NoSQL Data Migrator identifies all the files with

the . j son extension in that directory for the migration. Sub-directories are not
supported. You must ensure that this data matches with the NoSQL table schema
defined at the sink.

» Data Type: string
* Mandatory (Y/N): Y
Example:
— Specifying a MongoDB formatted JSON file
"dataPath" : "/hone/user/sanple.json"
— Specifying a directory

"dataPath" : "/home/user"

ORACLE 7-30

Chapter 7
Using Oracle NoSQL Migrator

Oracle NoSQL Database

The configuration file format for Oracle NoSQL Database as a source of NoSQL Data
Migrator is shown below.

Configuration Template

"source" : {
"type": "nosqgl db",
"table" : "<fully qualified table name>",
"storeNane" : "<store name>",
"hel perHosts" : ["hostnanel:portl","hostname2:port2,..."],
"security" : "</path/tol/store/security/file>",

"request Ti meout Ms" : 5000

Source Parameters
e type

* table

* storeName

* helperHosts

e security

* requestTimeoutMs

type

e Purpose: Identifies the source type.
- Data Type: string

* Mandatory (YI/N): Y

e« Example: "type" : "nosql db"

table

* Purpose: Fully qualified table name from which to migrate the data.
Format: [namespace_nane: | <t abl e_nane>

If the table is in the DEFAULT namespace, you can omit the namespace_nane. The
table must exist in the store.

- Data Type: string
* Mandatory (Y/N): Y
Example:
— With the DEFAULT namespace "t abl e" : "nytabl e"

— With a non-default namespace "t abl " : "nynanespace: nyt abl e"

ORACLE 7-31

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

storeName

Purpose: Name of the Oracle NoSQL Database store.
Data Type: string
Mandatory (Y/N): Y

Example: "storeNane" : "kvstore"

helperHosts

Purpose: A list of host and registry port pairs in the host nanme: port format. Delimit
each item in the list using a comma. You must specify at least one helper host.

Data Type: array of strings
Mandatory (Y/N): Y
Example: "hel perHosts" : ["l ocal host:5000", "I ocal host: 6000"]

security

Purpose:

If your store is a secure store, provide the absolute path to the security login file
that contains your store credentials. See Configuring Security with Remote Access
in Administrator's Guide to know more about the security login file.

You can use either password file based authentication or wallet based
authentication. However, the wallet based authentication is supported only in the
Enterprise Edition (EE) of Oracle NoSQL Database.

The Community Edition(CE) edition supports password file based authentication
only.

To authenticate using a wallet, you need to additional jar files that are part of the
EE installation.

Without these jar files, you will get the following exception.

j ava. l ang. NoCl assDef FoundError: oracl e/ security/ pki/
Oracl eSecret St oreException

To prevent the exception shown above, you must copy the below jar files from your
EE server package to the nosql - ni grator-1.0.0/1i b directory:

— oraclepki.jar

— osdt_core.jar

— osdt_cert.jar

Data Type: string

Mandatory (Y/N): Y for a secure store

Example:
"security" : "/hone/user/client.credentials"

Example security file content for password file based authentication:

oracl e. kv. passwor d. noPronpt =t r ue
oracl e. kv. aut h. user nane=admni n
oracl e. kv. auth. pwdfile.file=/home/nosql/l ogin.passwd

7-32

Chapter 7
Using Oracle NoSQL Migrator

oracl e. kv.transport=ssl

oracl e. kv. ssl . trust St ore=/home/ nosql /client.trust
oracl e. kv. ssl . protocol s=TLSv1. 2, TLSv1. 1, TLSv1
oracl e. kv. ssl . host nameVeri fi er=dnmat ch(C\\ =NoSQL)

Example security file content for wallet based authentication:

oracl e. kv. passwor d. noPronpt =t r ue

oracl e. kv. aut h. user name=admi n

oracle. kv.auth.wal | et.dir=/home/ nosqgl /| ogin.wal | et
oracl e. kv. transport=ssl|

oracl e. kv. ssl . trust Store=/home/ nosql /client.trust
oracl e. kv. ssl . protocol s=TLSv1. 2, TLSv1. 1, TLSv1
oracl e. kv. ssl . host nanmeVeri fi er=dnmat ch(C\\ =NoSQL)

requestTimeoutMs

* Purpose: Specifies the time to wait for each read operation from the store to
complete. This is provided in milliseconds. The default value is 5000. The value
can be any positive integer.

- Data Type: integer
* Mandatory (Y/N): N
* Example: "request Ti meout Ms" : 5000

Oracle NoSQL Database Cloud Service

ORACLE

The configuration file format for Oracle NoSQL Database Cloud Service as a source of
NoSQL Data Migrator is shown below.

Configuration Template

"source" : {

"type" : "nosql db_cl oud",

"endpoint" : "<Oracle NoSQ C oud Service Endpoint. You can either
specify the conplete URL or the Region ID al one.>",

"table" : "<table name>",

"conpartment” : "<OCl conpartnent nane or id>",

"credentials" : "</path/to/oci/credential/file>",

"credential sProfile" : "<oci credentials profile nanme>",

"readUnitsPercent™ : <table readunits percent>,

"request Ti meout Ms" : <timeout in mlli seconds>

Source Parameters

e type
e endpoint
* table

e compartment

e credentials

7-33

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

» credentialsProfile
e readUnitsPercent

* requestTimeoutMs

type

* Purpose: Identifies the source type.
» Data Type: string

* Mandatory (YIN): Y

 Example: "type" : "nosqgl db_cl oud"

endpoint

e Purpose: Specifies the Service Endpoint of the Oracle NoSQL Database Cloud
Service.

You can either specify the complete URL or the Region ID alone. See Data
Regions and Associated Service URLs in Using Oracle NoSQL Database Cloud
Service for the list of data regions supported for Oracle NoSQL Database Cloud
Service.

e Data Type: string
* Mandatory (YIN): Y
e Example:
— Region ID: "endpoint" : "us-ashburn-1"
— URL format: "endpoint" : "https://nosql.us-

ashburn- 1. oci . oracl ecl oud. com "

table

* Purpose: Name of the table from which to migrate the data.
- Data Type: string

* Mandatory (YI/N): Y

e« Example: "tabl e" :"nyTabl e"

compartment

* Purpose: Specifies the name or OCID of the compartment in which the table
resides.

If you do not provide any value, it defaults to the root compartment.

You can find your compartment's OCID from the Compartment Explorer window
under Governance in the OCI Cloud Console.

- Data Type: string
* Mandatory (YIN): Y if the table is not in the root compartment of the tenancy.
 Example:

— Compartment name

“conpartment” @ "nyconpartment"

7-34

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

— Compartment name qualified with its parent compartment
"conpartment” : "parent.childconpartment”

— No value provided. Defaults to the root compartment.
“conmpartnent": ""

— Compartment OCID

“conpartment" : "ocidl.tenancy.ocl...4ksd"

credentials

* Purpose: Absolute path to a file containing OCI credentials.
If not specified, it defaults to $HOVE/ . oci / confi g
See Example Configuration for an example of the credentials file.
- Data Type: string
* Mandatory (Y/N): N
Example:
1. "credentials" : "/home/user/.oci/config"

2. "credentials" : "/hone/user/security/config"

credentialsProfile

e Purpose: Name of the configuration profile to be used to connect to the Oracle
NoSQL Database Cloud Service.

If you do not specify this value, it defaults to the DEFAULT profile.
» Data Type: string
* Mandatory (Y/N): N
Example:

1. "credential sProfile" : "DEFAULT"

2. "credential sProfile": "ADM N _USER'

readUnitsPercent

* Purpose: Percentage of table read units to be used while migrating the NoSQL
table.

The default value is 90. The valid range is any integer between 1 to 100.

Please note that amount of time required to migrate data is directly proportional
to this attribute. It's better to increase the read throughput of the table for the
migration activity. You can reduce the read throughput after the migration process
completes.

To learn the daily limits on throughput changes, see Cloud Limits in Using Oracle
NoSQL Database Cloud Service.

The default value is 90. The valid range is any integer between 1 to 100.

7-35

Chapter 7
Using Oracle NoSQL Migrator

< Note:

The time required for the data migration is directly proportional to the
wr it eUni t sPercent value.

See Troubleshooting the NoSQL Data Migrator to learn how to use this attribute to
improve the data migration speed.

» Data Type: integer
* Mandatory (Y/N): N

 Example: "readUni tsPercent” : 90

requestTimeoutMs

e Purpose: Specifies the time to wait for each read operation in the sink to
complete. This is provided in milliseconds. The default value is 5000. The value
can be any positive integer.

- Data Type: integer
* Mandatory (Y/N): N
e Example: "request Ti neout Ms" : 5000

Sink Configuration Templates

JSON File

ORACLE

Learn about the configuration file formats for each valid sink and the purpose of each
configuration parameter.

Topics

» JSON File

e Oracle NoSQL Database

e Oracle NoSQL Database Cloud Service

The configuration file format for JSON File as a sink of NoSQL Data Migrator is shown
below.

Configuration Template

"sink" : {
“type" : "file",
“format" : "json",
"dataPath": "</path/to/a/file>",
"schemaPath" : "<path/to/a/file>"

Sink Parameters

e type
e format

7-36

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

dataPath

schemaPath

type

Purpose: Identifies the sink type.
Data Type: string
Mandatory (Y/N): Y

Example: "type" : "file"

format

Purpose: Specifies the sink format.
Data Type: string
Mandatory (YIN): Y

Example: "format" : "json"

dataPath

Purpose: Specifies the absolute path to a file where the source data will be copied
in the JSON format.

If the file does not exist in the specified data path, the NoSQL Data Migrator
creates it. If it exists already, the NoSQL Data Migrator will overwrite its contents
with the source data.

You must ensure that the parent directory for the file specified in the data path is
valid.

Data Type: string
Mandatory (Y/N): Y

Example: "dataPath" : "/hone/ user/sanple.json"

schemaPath

Purpose: Specifies the absolute path to write schema information provided by the
source.

If this value is not defined, the source schema information will not be migrated
to the sink. If this value is specified, the migrator utility writes the schema of the
source table into the file specified here.

The schema information is written as one DDL command per line in this file. If the
file does not exist in the specified data path, NoSQL Data Migrator creates it. If

it exists already, NoSQL Data Migrator will overwrite its contents with the source
data. You must ensure that the parent directory for the file specified in the data
path is valid.

Data Type: string
Mandatory (Y/N): N

Example: "schemaPat h" : "/hone/ user/schema_file"

7-37

Chapter 7
Using Oracle NoSQL Migrator

Oracle NoSQL Database

The configuration file format for Oracle NoSQL Database as a sink of NoSQL Data
Migrator is shown below.

ORACLE

Configuration Template

"sink" @ {
"type": "nosgl db",
"table" : "<fully qualified table name>",
"schemal nfo" : {
"schemaPath" : "</path/to/al/schema/file>" or "defaultSchema" : true
}
"storeName" : "<store name>",
"hel per Hosts" : ["hostnanel: port1l", "hostname2:port2,..."],
"security" : "</path/to/store/credentials/file>",
"request Ti meout Ms" : <timeout in mlli seconds>

Sink Parameters

type

table

schemalnfo
schemalnfo.schemaPath
schemalnfo.defaultSchema
storeName

helperHosts

security

requestTimeoutMs

type

Purpose: Identifies the sink type.
Data Type: string

Mandatory (Y/N): Y

Example: "type" : "nosql db"

table

Purpose: Fully qualified table name from which to migrate the data.
Format: [namespace_nane: | <t abl e_nane>

If the table is in the DEFAULT namespace, you can omit the namespace_nane. The
table must exist in the store during the migration, and its schema must match with
the source data.

If the table is not available in the sink, you can use the schenal nf o parameter to
instruct the NoSQL Data Migrator to create the table also in the sink.

7-38

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

Data Type: string

Mandatory (Y/N): Y

Example:

— With the DEFAULT namespace "t abl e" :"mytabl e"

— With a non-default namespace "t abl " : "nynanespace: nyt abl e"

schemainfo

Purpose: Specifies the schema for the data being migrated. If this is not specified,
the assumes that the table already exists in the sink's store.

Data Type: Object
Mandatory (Y/N): N

schemalnfo.schemaPath

Purpose: Specifies the absolute path to a file containing DDL statements for the
NoSQL table.

The NoSQL Data Migrator executes the DDL commands listed in this file before
migrating the data.

The NoSQL Data Migrator does not support more than one DDL statement per line
in the schemaPat h file.

Data Type: string

Mandatory: Y, only when the schenal nf 0. def aul t Schema parameter is set to No.

schemalnfo.defaultSchema

Purpose: Setting this parameter to Yes instructs the NoSQL Data Migrator to
create a table with default schema. The default schema is defined by the migrator
itself.

If the source is a MongoDB-formatted JSON file, the default schema for the table
will be as follows:

CREATE TABLE | F NOT EXI STS <t abl ename>(1D STRING, DOCUVENT
JSON, PRI MARY KEY(SHARD(ID));

Where:
— tabl enane = value provided for the t abl e attribute in the configuration.

— I D=_id value from each document of the mongoDB exported JSON source
file.

— DOCUNMENT = For each document in the mongoDB exported file, the contents
excluding the _i d field is aggregated into the DOCUVENT column.

Note:

If the _i d value is not provided as a string in the MongoDB-formatted
JSON file, NoSQL Data Migrator converts it into string before inserting
into the default schema.

7-39

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

For all the other sources, the default schema will be as follows:

CREATE TABLE | F NOT EXI STS <tabl ename> (I D LONG GENERATED ALWAYS AS
| DENTI TY, DOCUMENT JSON, PRI MARY KEY(ID))

Where:
— tabl ename = value provided for the t abl e attribute in the configuration.
— |1 D= An auto-generated LONG value.

— DOCUMENT = The JSON record provided by the source is aggregated into the
DOCUMENT column.

Data Type: boolean

Mandatory: Y, only when the schenal nf 0. def aul t Schena parameter is set to No.

" Note:

def aul t Schema and schenaPat h are mutually exclusive

Example:
— With Default Schema:

"schemal nfo" : {
"defaul t Schema" : true,
"readUnits" : 100,
"witeUnits" : 60,
"storageSize" : 1

}

— With a pre-defined schema:

"schemal nfo" : {

"schemaPat h" : "<conpl ete/ path/to/thel/ schema/ definition/
file>",
"readUni ts" : 100,
"writeUnits" : 100,
"storageSize" : 1
}
storeName

Purpose: Name of the Oracle NoSQL Database store.
Data Type: string
Mandatory (YIN): Y

Example: "st oreName" : "kvstore"

helperHosts

Purpose: A list of host and registry port pairs in the host nanme: port format. Delimit
each item in the list using a comma. You must specify at least one helper host.

Data Type: array of strings

7-40

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

Mandatory (Y/N): Y
Example: "hel per Hosts" : ["l ocal host:5000", "I ocal host: 6000"]

security

Purpose:

If your store is a secure store, provide the absolute path to the security login file
that contains your store credentials. See Configuring Security with Remote Access
in Administrator's Guide to know more about the security login file.

You can use either password file based authentication or wallet based
authentication. However, the wallet based authentication is supported only in the
Enterprise Edition (EE) of Oracle NoSQL Database.

The Community Edition(CE) edition supports password file based authentication
only.

To authenticate using a wallet, you need to additional jar files that are part of the
EE installation.

Without these jar files, you will get the following exception.

j ava. | ang. NoCl assDef FoundError: oracl e/ security/ pki/
Oracl eSecr et St or eExcept i on

To prevent the exception shown above, you must copy the below jar files from your
EE server package to the nosql - mi grator-1.0.0/1i b directory:

— oraclepki.jar

— osdt_core.jar

— osdt_cert.jar

Data Type: string

Mandatory (Y/N): Y for a secure store

Example:
"security" : "/home/user/client.credentials"

Example security file content for password file based authentication:

oracl e. kv. passwor d. noPronpt =t r ue

oracl e. kv. aut h. user name=admni n

oracl e. kv. auth. pwdfile.file=/home/nosql/l ogin. passwd
oracl e. kv.transport=ssl
oracle.kv.ssl.trustStore=/hone/nosql/client.trust
oracl e. kv. ssl . protocol s=TLSv1. 2, TLSv1. 1, TLSv1

oracl e. kv. ssl . host nameVeri fi er=dnmat ch(C\\ =NoSQL)

Example security file content for wallet based authentication:

oracl e. kv. passwor d. noPronpt =t r ue

oracl e. kv. aut h. user name=admi n

oracle. kv.auth.wal | et.dir=/home/ nosqgl /| ogin. wal | et
oracl e. kv. transport =ssl|

oracl e. kv. ssl . trust St ore=/home/ nosql /client.trust

7-41

Chapter 7
Using Oracle NoSQL Migrator

oracl e. kv. ssl . protocol s=TLSv1. 2, TLSv1. 1, TLSv1
oracl e. kv. ssl . host nameVeri fi er=dnmat ch(C\\ =NoSQL)

requestTimeoutMs

* Purpose: Specifies the time to wait for each write operation in the sink to
complete. This is provided in milliseconds. The default value is 5000. The value
can be any positive integer.

» Data Type: integer
* Mandatory (Y/N): N
* Example: "request Ti meout Ms" : 5000

Oracle NoSQL Database Cloud Service

ORACLE

The configuration file format for Oracle NoSQL Database Cloud Service as a sink of
NoSQL Data Migrator is shown below.

Configuration Template

"sink" : {

"type" : "nosql db_cl oud",

"endpoint” : "<Oracle NoSQ C oud Service Endpoint>",

"table" : "<table name>",

"conpartment” : "<OCl conpartment name or id>",

"schemal nfo" : {

"schemaPath" : "</path/to/a/schema/file>" or "defaultSchema" :

true

"readUnits" : <table read units>,
"witeUnits" : <table wite units>,
"storageSi ze" . <storage size in GB>

¥

"credentials" : "</path/to/oci/credential/file>",
"credential sProfile" : "<oci credentials profile nane>",
"writeUnitsPercent” : <table witeunits percent>,
"request Ti meout Ms" : <tineout in mlli seconds>

Sink Parameters

e type
* endpoint
+ table

e compartment

* schemalnfo

* schemalnfo.schemaPath

* schemalnfo.defaultSchema
* schemalnfo.readUnits

* schemalnfo.writeUnits

7-42

Chapter 7
Using Oracle NoSQL Migrator

» schemalnfo.storageSize
» credentials

* credentialsProfile

e writeUnitsPercent

* requestTimeoutMs

type

* Purpose: Identifies the sink type.
» Data Type: string

* Mandatory (YIN): Y

 Example: "type" : "nosqgl db_cl oud"

endpoint

e Purpose: Specifies the Service Endpoint of the Oracle NoSQL Database Cloud
Service.

You can either specify the complete URL or the Region ID alone. See Data
Regions and Associated Service URLs in Using Oracle NoSQL Database Cloud
Service for the list of data regions supported for Oracle NoSQL Database Cloud
Service.

e Data Type: string
* Mandatory (YIN): Y
e Example:
— Region ID: "endpoint" : "us-ashburn-1"
— URL format: "endpoint" : "https://nosql.us-

ashburn- 1. oci . oracl ecl oud. com "

table

e Purpose: Name of the table to which to migrate the data.

You must ensure that this table exists in your Oracle NoSQL Database
Cloud Service. Otherwise, you have to use the schemal nf 0 object in the sink
configuration to instruct the NoSQL Data Migrator to create the table.

The schema of this table must match the source data.
» Data Type: string
* Mandatory (YIN): Y
° Example: "table" :"nyTabl e"

compartment

e Purpose: Specifies the name or OCID of the compartment in which the table
resides.

If you do not provide any value, it defaults to the root compartment.

You can find your compartment's OCID from the Compartment Explorer window
under Governance in the OCI Cloud Console.

ORACLE 7-43

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

Data Type: string
Mandatory (Y/IN): Y if the table is not in the root compartment of the tenancy.
Example:
— Compartment name
“compartment" : "myconpartment"
— Compartment name qualified with its parent compartment
"conpartnent" : "parent.childconpartnent"”
— No value provided. Defaults to the root compartment.
“compartnment”: ""
— Compartment OCID

“compartment” : "ocidl.tenancy.ocl...4ksd"

schemalnfo

Purpose: Specifies the schema for the data being migrated.

If you do not specify this parameter, the NoSQL Data Migrator assumes that the
table already exists in your Oracle NoSQL Database Cloud Service.

If this parameter is not specified and the table does not exist in the sink, the
migration fails.

Data Type: Object
Mandatory (Y/N): N

schemalnfo.schemaPath

Purpose: Specifies the absolute path to a file containing DDL statements for the
NoSQL table.

The NoSQL Data Migrator executes the DDL commands listed in this file before
migrating the data.

The NoSQL Data Migrator does not support more than one DDL statement per line
in the schemaPat h file.

Data Type: string

Mandatory: Y, only when the schenal nf 0. def aul t Schema parameter is set to No.

schemalnfo.defaultSchema

Purpose: Setting this parameter to Yes instructs the NoSQL Data Migrator to
create a table with default schema. The default schema is defined by the migrator
itself.

If the source is a MongoDB-formatted JSON file, the default schema for the table
will be as follows:

CREATE TABLE | F NOT EXI STS <t abl ename>(1D STRING, DOCUVENT
JSON, PRI MARY KEY(SHARD(I D)) ;

Where:

— tabl enane = value provided for the t abl e attribute in the configuration.

7-44

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

— I D=_id value from each document of the mongoDB exported JSON source
file.

— DOCUNMENT = For each document in the mongoDB exported file, the contents
excluding the _i d field is aggregated into the DOCUVENT column.

¢ Note:

If the _i d value is not provided as a string in the MongoDB-formatted
JSON file, NoSQL Data Migrator converts it into string before inserting
into the default schema.

For all the other sources, the default schema will be as follows:

CREATE TABLE | F NOT EXI STS <t abl ename> (I D LONG GENERATED ALWAYS AS
| DENTI TY, DOCUMENT JSON, PRI MARY KEY(ID))

Where:
— tabl ename = value provided for the t abl e attribute in the configuration.
— | D= An auto-generated LONG value.

— DOCUNMENT = The JSON record provided by the source is aggregated into the
DOCUMENT column.

e Data Type: boolean

e Mandatory: Y, only when the schenal nf 0. def aul t Schema parameter is set to No.

Note:

def aul t Schema and schenaPat h are mutually exclusive

schemalnfo.readUnits

* Purpose: Specifies the read throughput of the new table.
« Data Type: integer

* Mandatory: Y

schemalnfo.writeUnits

* Purpose: Specifies the write throughput of the new table.
» Data Type: integer
* Mandatory: Y

schemalnfo.storageSize

* Purpose: Specifies the storage size of the new table in GB
- Data Type: integer
* Mandatory: Y

e Example:

7-45

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

— With schemaPat h

"schemal nfo" : {
"schemaPath" : "</path/to/alschema/file>",
"readUnits" : 500,
"writeUnits" : 1000,
"storageSize" : 5}

— With def aul t Schema

"schemal nfo" : {
"defaul t Schema" : Yes,
"readUnits" : 500,
"writeUnits" : 1000,
"storageSize" : 5

}

credentials

Purpose: Absolute path to a file containing OCI credentials.

If not specified, it defaults to $HOVE/ . oci / confi g

See Example Configuration for an example of the credentials file.
Data Type: string

Mandatory (Y/N): N

Example: "credential s" : "/home/user/security/config"

credentialsProfile

Purpose: Name of the configuration profile to be used to connect to the Oracle
NoSQL Database Cloud Service.

If you do not specify this value, it defaults to the DEFAULT profile.
Data Type: string

Mandatory (Y/N): N

Example: "credential sProfile": "ADM N _USER'

writeUnitsPercent

Purpose: Specifies the Percentage of table write units to be used during the
migration activity.

The default value is 90. The valid range is any integer between 1 to 100.

" Note:

The time required for the data migration is directly proportional to the
wr it eUni t sPercent value.

See Troubleshooting the NoSQL Data Migrator to learn how to use this attribute to
improve the data migration speed.

7-46

Chapter 7
Using Oracle NoSQL Migrator

» Data Type: integer
* Mandatory (Y/N): N

Example: "writeUnitsPercent"” : 90

requestTimeoutMs

e Purpose: Specifies the time to wait for each write operation in the sink to
complete. This is provided in milliseconds. The default value is 5000. The value
can be any positive integer.

- Data Type: integer
* Mandatory (Y/N): N
e Example: "request Ti neout Ms" : 5000

Transformation Configuration Templates

This topic explains the configuration parameters for the different transformations
supported by the Oracle NoSQL Data Migrator.

Oracle NoSQL Data Migrator lets you modify the data, that is, add data
transformations as part of the migration activity. You can define multiple
transformations in a single migration. In such a case, the order of transformations
is vital because the source data undergoes each transformation in the given order.
The output of one transformation becomes the input to the next one in the migrator
pipeline.

The different transformations supported by the NoSQL Data Migrator are:

Table 7-1 Transformations
]

Transformation Config Attribute You can use this transformation to ...

i gnor eFi el ds Ignore the identified columns from the
source row before writing to the sink.

renameFi el ds Rename the identified columns from the
source row before writing to the sink.

aggr egat eFi el ds Aggregate multiple columns from the

source into a single column in the sink.
As part of this transformation, you can
also identify the columns that you want
to exclude in the aggregation. Those
fields will be skipped from the aggregated
column.

You can find the configuration template for each supported transformation below.

e ignoreFields
¢ renameFields

* aggregateFields

ORACLE 7-47

Chapter 7
Using Oracle NoSQL Migrator

ignoreFields
The configuration file format for the i gnor eFi el ds transformation is shown below.
Configuration Template
"transforns” : {
"ignoreFields" : ["<fieldl>", "<field2>",...]
}
Transformation Parameter
ignoreFields
* Purpose: An array of the column names to be ignored from the source records.
< Note:
You can supply only top-level fields. Transformations can not be applied
on the data in the nested fields.
o Data Type: array of strings
* Mandatory (YIN): Y
* Example: To ignore the columns named "name" and "address" from the source
record:
“ignoreFields" : ["name","address"]
renameFields

The configuration file format for the r enaneFi el ds transformation is shown below.

Configuration Template

"transforms" : {
"renaneFiel ds" : {
"<ol d_name>" : "<new_name>",
"<ol d_name>" : "<new_name>,"

Transformation Parameter

renameFields

e Purpose: Key-Value pairs of the old and new names of the columns to be
renamed.

ORACLE 7-48

Chapter 7
Using Oracle NoSQL Migrator

< Note:
You can supply only top-level fields. Transformations can not be applied
on the data in the nested fields.
» Data Type: JSON object
* Mandatory (YIN): Y

* Example: To rename the column named "residence"” to "address" and the column
named " _id" to "id":

“renaneFields" : { "residence" : "address", "_id" : "id" }

aggregateFields

ORACLE

The configuration file format for the aggr egat eFi el ds transformation is shown below.

Configuration Template

"transforns" : {
"aggregateFields" : {
“fieldName" : "nane of the new aggregate field",
"skipFields" : ["<fieldl>","<field2">,...]
}
}

Transformation Parameter

aggregateFields

* Purpose: Name of the aggregated field in the sink.
- Data Type: string

* Mandatory (YI/N): Y

e Example: If the given record is:

{
"id" : 100,
"name” : "john",
"address" : "USA",
"age" : 20

}

If the aggregate transformation is:

"aggregateFi el ds" : {
"fiel dName" : "docunent",
"skipFields" : "id"

}

7-49

Chapter 7
Using Oracle NoSQL Migrator

The aggregated column in the sink looks like:

{
"id": 100,
"docunent": {
“name": "john",
"address": "USA",
"age": 20
1
}

Use Case Demonstrations

Learn how to perform data migration using the Oracle NoSQL Data Migrator for
specific use cases. You can find detailed systematic instructions with code examples
to perform migration in each of the use cases listed below.

Topics:
* Migrate from Oracle NoSQL Database Cloud Service to a JSON file

* Migrate from Oracle NoSQL Database On-Premise to Oracle NoSQL Database
Cloud Service

* Migrate from MongoDB-Formatted JSON file to an Oracle NoSQL Database
Cloud Service

Migrate from Oracle NoSQL Database Cloud Service to a JSON file

This example shows how to use the Oracle NoSQL Data Migrator to copy data and
the schema definition of a NoSQL table from Oracle NoSQL Database Cloud Service
(NDCS) to a JSON file.

Use Case

An organization decides to train a model using the Oracle NoSQL Database

Cloud Service (NDCS) data to predict future behaviors and provide personalized
recommendations. They can take a periodic copy of the NDCS tables' data to a JISON
file and apply it to the analytic engine to analyze and train the model. Doing this helps
them separate the analytical queries from the low-latency critical paths.

Example

For the demonstration, let us look at how to migrate the data and schema definition of
a NoSQL table called nmyTabl e from NDCS to a JSON file.

Prerequisites

e ldentify the source and sink for the migration.
— Source: Oracle NoSQL Database Cloud Service
— Sink: JSON file

ORACLE 7-50

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

Identify your OCI cloud credentials and capture them in the OCI config file. Save
the config file in / home/ . oci / confi g. See Acquiring Credentials in Using Oracle
NoSQL Database Cloud Service.

[DEFAULT]
t enancy=oci d1. t enancy. ocl.. ..
user=oci d1. user.ocl....

key file=</fully/qualified/ path/to/the/privatelkey/>
pass_phrase=<passphrase>

Identify the region endpoint and compartment name for your Oracle NoSQL
Database Cloud Service.
— endpoint: us- phoeni x- 1

— compartment: devel opers

Procedure
To migrate the data and schema definition of nyTabl e from Oracle NoSQL Database
Cloud Service to a JSON file:

1.

Open the command prompt and navigate to the directory where you extracted the
NoSQL Data Migrator utility.

To generate the configuration JSON file using the NoSQL Data Migrator, run the
runM grat or command without any runtime parameters.

[~/ nosql M grator/nosqgl-nmigrator-1.0.0]$./runM grator

As you did not provide the configuration file as a runtime parameter, the utility
prompts if you want to generate the configuration now. Typey.

configuration file is not provided. Do you want to generate
configuration? (y/n) [n]: vy

This command provi des a wal kt hrough of creating a valid config for
Oracle NoSQL data migrator.

The following link explain where to find the information required
by this
script:

<link to doc>

Based on the prompts from the utility, choose your options for the Source
configuration.

Enter a location for your config [./migrator-config.json]: /home/
apot hul a/ nosgl M gr at or / NDCS2JSON

Sel ect the source:

1) nosql db

2) nosql db_cl oud

3) file

#? 2

Configuration for source type=nosql db_cl oud

Enter endpoint URL or region of the Oracle NoSQL Database C oud

7-51

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

us- phoeni x- 1

Enter table nane: nyTable

Enter conpartnment name or id of the source table []: devel opers
Enter path to the file containing OCl credentials [/home/

apot hul a/. oci/ config]:

Enter the profile name in OCl credentials file [DEFAULT]:

Enter percentage of table read units to be used for mgration
operation. (1-100) [90]:

Enter store operation timeout in mlliseconds. (1-30000) [5000]:

Based on the prompts from the utility, choose your options for the Sink
configuration.

Sel ect the sink:

1) nosql db

2) nosql db_cl oud

3) file

#? 3

Configuration for sink type=file

Enter path to a file to store JSON data: /homne/apot hul a/
nosql M grat or/ myTabl eJSON

Wul d you like to store JSON in pretty format? (y/n) [n]: vy
Wuld you like to migrate the table schena also? (y/n) [y]: vy
Enter path to a file to store table schema: /home/ apothul a/
nosql M gr at or/ myTabl eSchema

Based on the prompts from the utility, choose your options for the source data
transformations. The default value is n.

Wul d you like to add transformations to source data? (y/n) [n]:

Enter your choice to determine whether to proceed with the migration in case any
record fails to migrate.

Woul d you like to continue nmigration in case of any record/rowis
failed to mgrate?: (y/n) [n]:

The utility displays the generated configuration on the screen.

generated configuration is:

{

"source": {
"type": "nosqgl db_cl oud",
"endpoi nt": "us-phoenix-1",
"table": "nyTable",
"conmpartment": "devel opers”,
"credential s": "/hone/apothul a/.oci/config",
“credential sProfile": "DEFAULT",
"readUni t sPercent": 90,
"request Ti meout Ms": 5000

¥

"sink": {
“type": "file",
“format": "json",

7-52

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

"schemaPat h": "/ home/ apot hul a/ nosql M gr at or/ myTabl eSchema”,
"pretty": true,
"dat aPath": "/home/ apot hul a/ nosqgl M grat or/ myTabl eJSON'

}1
"abortOnError": true,

"mgratorVersion": "1.0.0"

}

9. Finally, the utility prompts for your choice to decide whether to proceed with the
migration with the generated configuration file or not. The default option is y.

Note:

If you select n, you can use the generated configuration file to run the
migration using the . /runM grator -c orthe./runMgrator --config
option.

woul d you like to run the mgration with above configuration?

If you select no, you can use the generated configuration file to
run the mgration using

.lrunMgrator --config /hone/apothul a/ nosql M grat or / NDCS2JSON

(yln) [y]:

10. The NoSQL Data Migrator migrates your data and schema from NDCS to the
JSON file.

Records provided by source=10, Records witten to sink=10, Records
fail ed=0.

El apsed time: Omn lsec 277ms

M gration conpleted.

Validation

To validate the migration, you can open the JSON Sink files and view the schema and
data.

-- Exported nyTabl e Data

[~/ nosqgl M grator] $cat myTabl eJSON

{
"id" : 10,
"docunment" : {
"course" : "Conputer Science",
"name" : "Neena",
"studentid" : 105
1
}
{
"id" o3,
"docunment" : {
"course" : "Conputer Science",
"name" : "John",

"studentid" : 107

7-53

ORACLE

}

id" oo 4,

"document " :
"course" :
"name"
"studenti

}

"id" . 6,

"document " :
"course" :
"name"
"studenti

}

id" o7,

"document " :
"course"
"name"
"studenti

}

"id" i 5,

"docunment " :
"course"
"name"
"studenti

}

"id"o: o8,

"docunment " :
"course"
"name"
"studenti

}

"id" o9,

"docunment " :
"course"
"name"
"studenti

}

id" o1,

"document " :
"course"
"name"

{

"Ruby",
d" : 100

{
" Bi 0- Technol ogy",

" Rekha",
d" : 104

{

"Ruby",
d" : 100

{

"Journal i snf,
"Rani ",
d" : 106

{

“Tom',
d" : 103

{

"Peter",
d" : 109

{

"Journal i snf,
"Tracy",

"Conput er Sci ence",

"Conput er Sci ence",

"Conput er Sci ence",

"Comput er Sci ence",

Chapter 7
Using Oracle NoSQL Migrator

7-54

Chapter 7
Using Oracle NoSQL Migrator

"studentid" : 110

}
}
{
"id" 2,
"docunment" : {
"course" : "Bio-Technol ogy",
"name" : "Raja",
"studentid" : 108
}
}

-- Exported nyTabl e Schema

[~/ nosqgl M grator] $cat nyTabl eSchema
CREATE TABLE | F NOT EXI STS nyTable (id INTEGER, docunment JSON, PRI MARY
KEY(SHARD(i d)))

Migrate from Oracle NoSQL Database On-Premise to Oracle NoSQL Database
Cloud Service

ORACLE

This example shows how to use the Oracle NoSQL Data Migrator to copy data and the

schema definition of a NoSQL table from Oracle NoSQL Database to Oracle NoSQL
Database Cloud Service (NDCS).

Use Case

As a developer, you are exploring options to avoid the overhead of managing

the resources, clusters, and garbage collection for your existing NoSQL Database
KVStore workloads. As a solution, you decide to migrate your existing on-premise
KVStore workloads to Oracle NoSQL Database Cloud Service because NDCS
manages them automatically.

Example

For the demonstration, let us look at how to migrate the data and schema definition
of a NoSQL table called nyTabl e from the NoSQL Database KVStore to NDCS. We
will also use this use case to show how to run the runM gr at or utility by passing a
pre-created configuration JSON file.

Prerequisites
e |dentify the source and sink for the migration.
— Source: Oracle NoSQL Database
— Sink: Oracle NoSQL Database Cloud Service

« ldentify your OCI cloud credentials and capture them in the OCI config file. Save
the config file in / home/ . oci / confi g. See Acquiring Credentials in Using Oracle
NoSQL Database Cloud Service.

[DEFAULT]
t enancy=oci d1. t enancy. ocl.. ..
user=oci d1. user.ocl....

7-55

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

key file=</fully/qualified/ path/to/thel/privatelkeyl>
pass_phrase=<passphrase>

» ldentify the region endpoint and compartment name for your Oracle NoSQL
Database Cloud Service.

— endpoint: us- phoeni x- 1
— compartment: devel opers
* Identify the following details for the on-premise KVStore:
— storeName: kvstore
— helperHosts: <host nane>: 5000
— table: myTabl e

Procedure
To migrate the data and schema definition of myTabl e from NoSQL Database KVStore
to NDCS:

1. Prepare the configuration JSON file with the identified Source and Sink details.
See Source Configuration Templates and Sink Configuration Templates .

{

"source" : {
"type" : "nosql db",
"storeName" : "kvstore",
"hel perHosts" : ["<hostname>: 5000"],
"table" : "nyTabl e",
"request Ti meout Ms" : 5000
¥
"sink" : {
"type" : "nosql db_cl oud",
"endpoint" : "us-phoenix-1",
"table" : "nyTabl e",
"compartment” : "devel opers”,
"schemal nfo" : {
"schemaPat h" : "<conpl ete/path/to/the/ JSONfile/with/DDL/
conmands/ for/t he/ schema/ defi ni tion>",
"readunits" : 100,
"witeUnits" : 100,
"storageSize" : 1

1
"credentials" : "<conplete/path/to/oci/config/file>",
"credential sProfile" : "DEFAULT",
"writeUnitsPercent” : 90,
"request Ti meout Ms" : 5000

¥

"abortOnError" : true,

"mgratorVersion" : "1.0.0"

}

2. Open the command prompt and navigate to the directory where you extracted the
NoSQL Data Migrator utility.

7-56

Chapter 7
Using Oracle NoSQL Migrator

3. Runthe runM grator command by passing the configuration JSON file using the
--config or-c option.

[~/ nosql M grator/nosql-mgrator-1.0.0]$./runMgrator --config
<compl et e/ path/to/the/ JSON config/fil e>

4. The utility proceeds with the data migration, as shown below.

Records provided by source=10, Records witten to sink=10, Records
fail ed=0.

El apsed time: Omn 10sec 426ns

M gration conpleted.

Validation
To validate the migration, you can login to your NDCS console and verify that nyTabl e
is created with the source data.

Migrate from MongoDB-Formatted JSON file to an Oracle NoSQL
Database Cloud Service

This example shows how to use the Oracle NoSQL Data Migrator to copy Mongo-DB
Formatted Data to the Oracle NoSQL Database (NDCS).

Use Case

After evaluating multiple options, an organization finalizes Oracle NoSQL Database as
its NoSQL Database platform. As its NoSQL tables and data are in MongoDB, they are
looking for a way to migrate those tables and data to Oracle NDCS.

Example

For the demonstration, let us look at how to migrate a MongoDB-formatted JSON file
to NDCS. We will use a manually created configuration JSON file for this example.

Prerequisites

e |dentify the source and sink for the migration.
— Source: MongoDB-Formatted JSON File
— Sink: Oracle NoSQL Database

e Extract the data from Mongo DB using the mongoexport utility. See mongoexport
for more information.

e Create a NoSQL table in the sink with a table schema that matches the data in
the Mongo-DB-formatted JSON file. As an alternative, you can instruct the NoSQL
Data Migratorto create a table with the default schema structure by setting the
def aul t Schena attribute to true.

ORACLE 7-57

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

< Note:
For a MongoDB-Formatted JSON source, the default schema for the
table will be as:

CREATE TABLE | F NOT EXI STS <t abl enane>(1D STRI NG, DOCUMENT
JSON, PRI MARY KEY(SHARD(I D)) ;

Where:
— tabl ename = value of the table config.
— | D=_id value from the mongoDB exported JSON source file.

— DOCUMENT = The entire contents of the mongoDB exported JSON
source file is aggregated into the DOCUVENT column excluding the _i d
field.

Identify your OCI cloud credentials and capture them in the OCI config file. Save
the config file in / horre/ . oci / confi g. See Acquiring Credentials in Using Oracle
NoSQL Database Cloud Service.

[DEFAULT]
t enancy=oci d1. t enancy. ocl. ...
user =oci d1. user.ocl....

key file=</fully/qualified/ path/to/thelprivatelkey/>
pass_phrase=<passphrase>

Identify the region endpoint and compartment name for your Oracle NoSQL
Database.
— endpoint; us- phoeni x- 1

— compartment: devel opers

Procedure
To migrate the MongoDB-formatted JSON data to the Oracle NoSQL Database:

1.

Prepare the configuration JSON file with the identified Source and Sink details.
See Source Configuration Templates and Sink Configuration Templates .

{
"source" : {
“type" : "file",
“format" : "nongodb_json",

"dataPath" : "<conpl ete/ path/tol/the/ MongoDB/ For matt ed/ JSON
file>"
¥
"sink" : {
"type" : "nosqgl db_cloud",
"endpoi nt" : "us-phoenix-1",
"table" : "mongol nport",
"compartment" : "devel opers"”,
"schemal nfo" : {

7-58

Chapter 7
Using Oracle NoSQL Migrator

"def aul t Schema" : true,
"readUnits" : 100,
"witeUnits" : 60,

"storageSize" : 1
}l
"credential s" : "<conplete/path/to/thel/oci/config/file>",
"credential sProfile" : "DEFAULT",
"writeUnitsPercent" : 90,

"request Ti meout Ms" : 5000

}1
"abortOnError" : true,

"mgratorVersion" : "1.0.0"

}

2. Open the command prompt and navigate to the directory where you extracted the
NoSQL Data Migrator utility.

3. Runthe runM grator command by passing the configuration JSON file using the
--config or-c option.

[~/ nosql M grator/nosql-mgrator-1.0.0]$./runMgrator --config
<compl et e/ path/to/the/ JSON config/fil e>

4. The utility proceeds with the data migration, as shown below.

Records provided by source=29, 353, Records witten to sink=29, 353,
Records fail ed=0.

El apsed time: 9mn 9sec 630ms

M gration conpleted.

Validation
To validate the migration, you can login to your NDCS console and verify that nyTabl e
is created with the source data.

Troubleshooting the NoSQL Data Migrator

Learn about the general challenges that you may face while using the , and how to
resolve them.

Migration has failed. How can | resolve this?

A failure of the data migration can be because of multiple underlying reasons. The
important causes are listed below:

ORACLE 7-59

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

Table 7-2 Migration Failure Causes
|

Error Message Meaning Resolution

Failed to connect to The migrator could not * Check if the values

Oracl e NoSQL Dat abase establish a connection with of the st or eNane and

the NoSQL Database. hel per Host s attributes

in the configuration
JSON file are valid
and that the hosts are
reachable.

* For a secured store,
verify if the security
file is valid with
correct user name and
password values.

Failed to connect to The migrator could not * Verify if the endpoint
Oracl e NoSQL Dat abase establish a connection with URL or region name
C oud Service the Oracle NoSQL Database specified in the
Cloud Service. configuration JSON file
is correct.

e Check if the OCI
credentials file is
available in the
path specified in the
configuration JSON file.

¢ Ensure that the OCI
credentials provided in
the OCI credentials are
valid.

7-60

Chapter 7
Using Oracle NoSQL Migrator

Table 7-2 (Cont.) Migration Failure Causes

Error Message

Meaning

Resolution

Tabl e not found

The table identified for
the migration could not be
located by the NoSQL Data
Migrator.

For the Source:

Verify if the table is
present in the source
database.

Ensure that the table

is qualified with its
namespace in the
configuration JSON

file, if the table is
created in a non-default
namespace.

Verify if you have

the required read/write
authorization to access
the table.

If the source is

Oracle NoSQL Database
Cloud Service, verify if
the valid compartment
name is specified in
the configuration JSON
file, and ensure that
you have the required
authorization to access
the table.

For the Sink:

Verify if the table is
present in the Sink. If
it does not exist, you
must either create the
table manually or use
the schenal nf o0 config
to create it through the
migration.

DDL Execution failed

The DDL commands
provided in the input
schema definition file is
invalid.

Check the syntax of the
DDL commands in the
schemaPat h file.

Ensure that there

is only one DDL
statement per line in
the schenmaPat h file.

failed to wite record
to the sink table with

java.lang. !l egal Argune

nt Exception

The input record is not
matching with the table
schema of the sink.

Check if the data types
and column names
specified in the target
sink table are matching
with sink table schema.
If you applied any
transformation, check if
the transformed records
are matching with the
sink table schema.

ORACLE

7-61

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

Table 7-2 (Cont.) Migration Failure Causes

Error Message Meaning Resolution
Request timeout The source or sink's o Verify the network
operation did not complete connection.

within the expected time. * Check if the NoSQL
Database is up and
running.
¢ Trytoincrease
request Ti mneout value

in the configuration
JSON file.

What should | consider before restarting a failed migration?

When a data migration task fails, the sink will be at an intermediate state containing
the imported data until the point of failure. You can identify the error and failure details
from the logs and restart the migration after diagnosing and correcting the error. A
restarted migration starts over, processing all data from the beginning. There is no way
to checkpoint and restart the migration from the point of failure. Therefore, NoSQL
Data Migrator overwrites any record that was migrated to the sink already.

Migration is too slow. How can | speed it up?

The time taken for the data migration depends on multiple factors such as volume of
data being migrated, network speed, current load on the database. In case of a cloud
service, the speed of migration also depends on the read throughput and the write
throughput provisioned. So, to improve the migration speed, you can:

e Try to reduce the current workload on your Oracle NoSQL Database while
migrating the data.

« Ensure that the machine that is running the migration, source, and sink all are
located in the same data center and the network latencies are minimal.

e In case of Oracle NoSQL Database Cloud Service, provision high read/write
throughput and verify if the storage allocated for table is sufficient or not. If
the NoSQL Data Migrator is not creating the table, you can increase the write
throughput. If the migrator is creating the table, consider specifying a higher value
for the schenal nfo. wri t eUni t s parameter in the sink configuration. Once the
data migration completes, you can lower this value. Be aware of daily limits on
throughput changes. see Cloud Limits and Sink Configuration Templates .

I have a long running migration involving huge datasets. How can I track the
progress of the migration?

You can enable additional logging to track the progress of a long-running migration. To
control the logging behavior of Oracle NoSQL Data Migrator, you must set the desired
level of logging in the | oggi ng. properti es file. This file is provided with the NoSQL
Data Migrator package and available in the directory where the Oracle NoSQL Data
Migrator was unpacked. The different levels of logging are OFF, SEVERE, WARNI NG,
INFO, FINE, and ALL in the order of increasing verbosity. Setting the log level to OFF
turns off all the logging information, whereas setting the log level to ALL provides the
full log information. The default log level is WARNI NG. All the logging output is configured
to go to the console by default. You can see comments in the | oggi ng. properti es file
to know about each log level.

7-62

Chapter 7
Using Oracle NoSQL Migrator

Oracle NoSQL Data Migrator Vs. Import/Export Utility

This topic explains how the Oracle NoSQL Data Migrator utility is different from the
existing Oracle NoSQL import/export utility.

The Oracle NoSQL Data Migrator is created to replace and enhance the existing
on-premise-only import/export utility. It moves the NoSQL table data and schema
definition between a source and a sink or target. It supports multiple sources and sinks
as listed in Supported Sources and Sinks. However, the import/export utility lets you
import into or export from Oracle NoSQL Database (on-premise) only. That is, using
the import/export utility, you can either import data into the Oracle NoSQL Database

or export data from Oracle NoSQL Database. When you export, the source type is
always Oracle NoSQL Database (where you extract data from) and the sink is the
recipient of that data. When you import, the source type is currently limited to a file and
the sink is always Oracle NoSQL Database. See Export and Import Functionality.

Apart from this fundamental difference, both the utilities are different in many other
ways. You can see them in the comparison table below.

Table 7-3 Comparison Table
|

Oracle NoSQL Data Migrator

Oracle NoSQL Import/
Export

Sources and Sinks

Supports multiple sources
and sinks such as

Oracle NoSQL Database (on-
premise), Oracle NoSQL
Database Cloud Service,
JSON file, and MongoDB-
formatted JSON file. See
Supported Sources and Sinks.

Import

Source: JSON, binary, or
MongoDB-formatted JSON

Sink: Oracle NoSQL
Database (on-premise) only.

Export

Source: Oracle NoSQL
Database (on-premise) only.

Sink: Local or network
mounted filesystem.

Supported Platforms

Both the Oracle NoSQL
Database (on-premise) and
the Oracle NoSQL Database
Cloud Service (NDCS).

Only Oracle NoSQL
Database (on-premise).

Migration Level

The migration is supported
only at the table level. You

can migrate only one table
at a time.

You can perform the import/
export operations at a

table level, store level, or

an namespace level. You
can import/export multiple
tables in a single operation.

Data Formats

Supports only JSON format
for the data. The schema
definition is represented
as a file with one DDL
command per line.

Supports both the Binary
and JSON formats.

ORACLE

7-63

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

Table 7-3 (Cont.) Comparison Table

Oracle NoSQL Data Migrator Oracle NoSQL Import/

Export
Unit of Migration The Oracle NoSQL Data When you export data from
Migrator migrates the data Oracle NoSQL Database,
and schema definition the import/export utility
from the Source to the creates an export package
Sink without creating any (a directory structure) that
intermediate packages. contains schema metadata

and table data. When you
import data into Oracle
NoSQL Database, you can
run the utility against this
export package, or any
directory that contains files
with data formats supported
by the import/export utility.

Key-Value and Large Not supported. Supported by the export
Object Data command.

NoSQL Database on- Supported. Not supported.

premise to on-premise

Migration

Example 1: You export data from a table in an on-premise NoSQL datastore in
JSON format and import the content into another on-premise NoSQL datastore.

A) Steps using Import/Export Utility

1.

Export the contents from the table user s in kvst or el and place the export
package into the / user s/ oracl e/ kvst ore_export directory. Specify the format as
JSON.

java -jar lib/kvtool.jar export -table users \
-store kvstorel -hel per-hosts <hostnane>: 5000 \
-config export_config -format JSON

The export _confi g file resides in the current working directory and the file content
is as below:

"path": "/users/oracl e/ kvstore_export"

Directories are created in the kvst ore_export directory for data and schema
definition. Inside the data directory, every table has a directory and the
corresponding json file is stored inside the table directory.

Import the user s table data from the export package created above into a different
Oracle NoSQL Database store kvst or e2. Use checkpoints to be able to restart the
import from where it stopped or got aborted, in case it fails. The parameter -t abl e

7-64

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

is the name of the table or tables you want to import. To import multiple tables,
specify a comma-delimited list of table names. Specify the format as JSON.

java -jar lib/kvtool.jar inport -store kvstore2 \
-tabl e users -hel per-hosts <hostname>: 5000 \
-config inport_config -format JSON \

-status /users/oracl e/ checkpoint _dir

The i nport _confi g file resides in the current working directory and the file content
is as below:

{

"path": "/users/oracl el kvstore_export"

}

Steps using Data Migrator Utility

1.

Prepare the configuration file with the correct source and sink details. Here source
is the first NoSQL Database store kvst or el. The table user s will be exported.
The sink is another NoSQL Database store kvst or e2. You specify the absolute
path to a file containing DDL statements for creating the NoSQL table in the
schenaPat h parameter. The NoSQL Data Migrator executes the DDL commands
listed in this file before migrating the data. The userSchema file has the following
DDL statement.

CREATE TABLE | F NOT EXI STS users (id | NTEGER,
firstName STRING | astName STRING

ot her Names ARRAY(RECORD(first STRING |ast STRING),
age | NTEGER, incone | NTEGER, address JSQN,

connecti ons ARRAY(I NTEGER), expenses MAP(|NTEGER),
PRI MARY KEY(SHARD(i d)))

The Data Migrator configuration file is given below.

{
"source" : {
"type" : "nosql db",
"storeName" : "kvstorel",
"hel per Host s" : ["<hostname>: 5000"],
"table" : "users”
¥
"sink" : {
"type" : "nosql db",
"table" : "users",
"schemal nfo" : {
"schemaPat h" : "/users/oracl e/ export_dir/kvstore_export/
user sSchena"
b
"storeName" : "kvstore2",
"hel per Host s" : ["<hostname>: 5000"],
"request Ti meout Ms" : 5000
}

"abortOnError" : true,

7-65

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

"mgratorVersion" : "1.0.0"

}

2. Runthe runM grat or command by passing the configuration JSON file using the
--config or -c option.

.lrunMgrator --config
/users/oracle/mgrator_config/storeltostore2. config

Example 2: You have a script that exports a table every night in binary format.
You import this backup when there is a failure and restore the table to a
previous night's version

A) Steps using Import/Export Utility

1. Export the contents from the table users in kvst or el and place the export
package into the / user s/ or acl e/ kvst ore_export directory. The default format is
binary and so no format is specified.

java -jar lib/kvtool.jar export -table users \
-store kvstorel -helper-hosts <hostnane>: 5000 \
-config export_config

The export _confi g file resides in the current working directory and the file content
is as below:

"path": "/users/oracle/kvstore_export"

Directories are created in the kvst ore_export directory for data and schema
definition.

2. Whenever there is a failure , use the following import command to restore the table
to a previous night's version.

java -jar lib/kvtool.jar inport -store kvstorel \

-tabl e users -hel per-hosts <hostname>: 5000 \
-config inport_config

The i nport _confi g file resides in the current working directory and the file content
is as below:

{
}

"path": "/users/oracl e/ kvstore_export"

B) Steps using Data Migrator Utility

The Data Migrator utility does not support binary format. Only JSON format is
supported. To use the Data Migrator utility here, you need to create two configuration
files . The first config file will take the Oracle NoSQL datastore kvst or el as the source
and the sink will be a JSON file. You will run this config file every night to backup the
table into a JSON file. The second config file will take the JSON file created above

7-66

Chapter 7
Using Oracle NoSQL Migrator

as the source and the sink will be the Oracle NoSQL Database store kvstorel. This
config file will be run only when there is a failure and there is a need to restore the
table to the previous nights version.

1. Create the configuration file "ni ght | yuser sbackup” to do the nightly backup.

{

"source" : {
"type" : "nosql db",
"storeName" : "kvstorel",
"hel per Hosts" : ["<hostname>: 5000"],
“table" : "users”
¥
"sink" @ {
"type" : "file",
“format" : "json",
"dataPath": "/users/oracle/export_dir/kvstore_export/
user sJSON',
"schemaPat h" : "/users/oracl e/ export_dir/kvstore_export/
user sSchema”
¥
"abortOnError" : true,
"mgratorVersion" : "1.0.0"

}

2. Runthe runM grator command every night by passing the configuration JSON file
using the --config or -c option.

.lrunMgrator --config
/users/oracl e/ mgrator_config/nightlyusersbackup. config

3. Create the configuration file "user srecover y" to recover the user s table to the
previous nights version. Here the source is the json file that is created in the
nightly backup and sink is the Oracle NoSQL datastore kvst orel.

{
"source" : {
"type" : "file",
“format" : "json",
“dataPath": "/users/oracle/export _dir/kvstore_ export/
user sJSON',
"schemaPath" : "/users/oracle/export _dir/kvstore_export/
user sSchena"
¥
"sink" : {
“type" : "nosql db",
“table" : "users",
"schemal nfo" : {
"schemaPat h" : "/users/oracl e/ export_dir/kvstore export/
user sSchena"
b
“storeName" : "kvstorel",
“hel per Host s" : ["<host name>: 5000"],
“request Ti meout Ms" : 5000
¥

ORACLE 7-67

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

"abortOnError" : true,
"mgratorVersion" : "1.0.0"

}

4. Whenever there is a failure and the table users needs to be recovered to
the previous night's version, run the r unM gr at or command by passing the
configuration JSON file created above using the --config or -c option.

.lrunMgrator --config
/users/oracl e/ mgrator_config/usersrecovery.config

Example 3: - You have a script that runs nightly to import a directory of JSON
files

A)Using Import Utility

Import the data from the export package already created from an external source

into the Oracle NoSQL Database store. Specify the format as JSON. You specify the
parameter - ext er nal as the data to import has been generated by a source other than
Oracle NoSQL Database. Use checkpoints to be able to restart the import from where
it stopped or got aborted, in case it fails.

java -jar lib/kvtool.jar inport -external -store kvstore \
- hel per-hosts <host nane>: 5000 -config inmport _config \
-status /users/oracl e/ checkpoint dir -format JSON

The i nport _confi g file resides in the current working directory and the file content is
as below:

"path": "/users/oracl el kvstore_export"

B) Steps using Data Migrator Utility

1. Prepare the configuration file "i nport _j son. confi g" with the correct source and
sink details. Here source is the list of json files that needs to be imported. In
the dat aPat h parameter, specify a directory which contains all the json files.
The NoSQL Data Migrator identifies all the files with the .json extension in that
directory for the migration. The sink is a NoSQL Database store where the files will
be imported into a given table. All the json files are imported into the given table
in the Oracle NoSQL Database store. The userSchema file has the following DDL
statement.

CREATE TABLE | F NOT EXI STS users (id | NTEGER,
firstName STRING |astName STRING

ot her Names ARRAY(RECORD(first STRING |ast STRING),
age | NTEGER, income | NTECER, address JSON,
connections ARRAY(INTEGER), expenses MAP(INTEGER),
PRI MARY KEY(SHARD(i d)))

7-68

ORACLE

Chapter 7
Using Oracle NoSQL Migrator

The Data Migrator configuration file is given below.

{
"source" : {
“type" : "file",
“format" : "json",
“dataPath": "/users/oracle/dir_jsonfiles"
¥
"sink" : {
“type" : "nosql db",
“table" : "users",
“schemal nfo" : {
"schemaPath" : "/users/oracl el export _dir/kvstore export/
user sSchena"
¥
“storeName" : "kvstore",
“hel per Hosts" : ["<host name>: 5000"]
¥
"abortOnError" . true,
“mgratorVersion" : "1.0.0"
}

2. Run the runM grat or command by passing the configuration JSON file using the
--config or -c option.

.IfrunMgrator --config
/users/oracl e/ nmigrator_config/inport_json.config

Example 4: - Import data from a MongoDB export into a KVSTORE
A) Steps using Import/Export Utility

You can import data files that contain data from a MongoDB export. The parameter

- ext ernal specifies that the data to import has been generated by a source other than
Oracle NoSQL Database. Hence, this flag indicates that the directory structure being
read by the import utility is not in the "export package" format. Specify the format as
MONGODB_JSON.

java -jar lib/kvtool.jar inport -external -store kvstore \
- hel per-hosts <hostname>: 5000 -config inmport_config \
-format MONGODB_JSON

The i mport _confi g file resides in the current working directory and the file content
is as below. Store all of the errors and progress information for the import in / user s/
oracl e/ mongo_db_i nport _| ogs. You can specify the DDL statement to be used for
creating tables in the ddl SchemaFi | e parameter.

{

"path": "/users/oracle/ nmy_nongodb_data",

"errorQutput": "/users/oracle/mongo_db_inport | ogs"

"ddl SchemaFil e" : "/users/oraclel/export dir/kvstore_ export/
user sSchena"
}

7-69

Chapter 7
Using Oracle NoSQL Migrator

B) Steps using Data Migrator Utility

1. Prepare the configuration file "i nport _nongodbj son. confi g" with the correct
source and sink details. The source is MongoDB-formatted JSON File and the sink
is Oracle NoSQL Database store. You specify the absolute path to a file containing
the MongoDB exported JSON data for migration. You must ensure that this data
matches with the NoSQL table schema defined at the sink.

{
"source" : {
"type" : "file",
“format" : "mongodb_json",
"dataPath": "/users/oracle/ my_nongodb_data"
¥
"sink" : {
"type" : "nosql db",
“table" : "users",
"schemal nfo" : {
"schemaPat h" : "/users/oracl e/ export_dir/kvstore export/
user sScheng"
¥
“storeName" : "kvstore",
“hel per Hosts" : ["<hostname>: 5000"]
¥
"abortOnError" : true,
"mgratorVersion" : "1.0.0"
}

2. Runthe runM grat or command by passing the configuration JSON file using the
--config or -c option.

.lfrunMgrator --config
[users/oracl e/ mi grator_config/inport_nongodbj son. config

Transitioning from Import/Export to NoSQL Data Migrator

ORACLE

Learn how to transition from the import/export utility to the Oracle NoSQL Data
Migrator.

If you have been using the import/export utility for data migration you would be aware
that the kvt ool . j ar that is part of the Oracle NoSQL Database (on-premise) handles
export and import functionality with the help of two commands, export and i nport.
You can achieve the same export and import operations using the NoSQL Data
Migrator, as explained below.

Equivalent of the export command in NoSQL Data Migrator

The export command is used to export the NoSQL Database (on-premise) data to
a local or network mounted file system. You can achieve the equivalent operation by
defining the following attributes in the Configuration JSON file as follows:

e "source"="nosql db"
o "sink"="file" with"format"="JSON'

7-70

Using the

Chapter 7
Using the Import and Export Utilities

The other configuration attributes can be defined as per the requirement. As the
NoSQL Data Migrator supports migrating only one table at a time, you must run the
NoSQL Data Migrator separately for exporting multiple tables.

Equivalent of the import command in NoSQL Data Migrator

The i nport command is used to import a package created by the export command,
an external JSON file, or a MongoDB-formatted JSON file. You can achieve the
equivalent operation by defining the following attributes in the Configuration JSON
file as follows:

no_n n_n

e "source"="file" with"format"="json" or"format"="nmongodb_j son" depending
on the source file type.

e "sink"="nosql db"

Note:The NoSQL Data Migrator treats an external JSON file or a package that was
generated using the existing import/export utility similarly.

Import and Export Utilities

Oracle NoSQL Database contains an import/export utility to extract and load table
based data, raw key/value based data, and large object data. You can use the import/
export utility, available through kvt ool . j ar, to:

* Export table data from Oracle NoSQL Database and store the data as JSON
formatted files on a local (or network mounted) file system.

* Import ad-hoc JSON data generated from a relational database or other sources,
and JSON data generated via MongoDB strict export.

* Export data and metadata from one or more existing Oracle NoSQL Database
tables, raw key/value based data, and large object data to a compact binary
format.

* Read data from, or write data to files in the file system.
* Import one or more tables into an Oracle NoSQL Database.
* Restart from a checkpoint if an import or export fails before completion.

The import/export utility allows you to configure rich error handling semantics and
data transformations. Other configurable options include logging, check-pointing, and
restarting from failure points.

For more information, see import and export.

Import and Export Functionality

ORACLE

The import/export utility allows you to:

* Import data files containing binary, JSON or MongoDB JSON format into Oracle
NoSQL Database.

* Export data from Oracle NoSQL Database to data files in binary or JSON format.

When you export data from Oracle NoSQL Database, the import/export utility creates
an "export package" (a directory structure) that contains schema metadata and table
data. This package is self-contained and you can use it to re-create the state of one

or more tables on any Oracle NoSQL Database instance. When you import data into

7-71

Chapter 7
Using the Import and Export Utilities

Oracle NoSQL Database, you can run the utility against this "export package", or any
directory that contains files with data formats supported by the import/export utility.

Both import and export operations execute as online operations. These operations
run against an Oracle NoSQL Database data store that is servicing read and

write requests. Hence, when you export data, the export utility does not force a
synchronization point or obtain a global lock that guarantees a consistent table state
across all the shards in your Oracle NoSQL Database data store. If you wish to
capture a consistent state for your tables, it is recommended that you pause any
ongoing write operations (from your application) that modifies the state of your tables
during the export operation. During an import operation, you can configure the import
to ignore overwrite of any record that already exists in your data store.

Understanding Data Sources and Data Targets (Sinks)

When working with the import/export utility, you should understand the concept of
"source", "sink", and data format. You use the import/export utility to transfer data
from the configured source to the configured sink, optionally transforming the data
(based upon configuration options explained later) before inserting the data into the
configured sink. The "direction" of the transfer defines how sources and sinks are
utilized. The data format describes how you want the import/export tool to interpret the

data being read from a source or sink.

When you export, the source type is always Oracle NoSQL Database (where you
extract data from) and the sink is the recipient of that data. When you import,

the source type is currently limited to a file and the sink is always Oracle NoSQL

Database. In subsequent releases, you will be able to use source type as Oracle
Cloud Storage and other cloud storage providers.

For example, you may want to import some textual JSON data files into Oracle NoSQL
Database. In this case, your source type is LOCAL (indicating that the data is stored in
files) and the sink type is NoSQLDB. The data format is JSON.

" Note:

You can configure several data formats for sources and sinks in the import/
export utility’s configuration file.

Importing Data

ORACLE

Use the i nport utility to import a package containing binary or JSON data and schema
that was created with the export utility. By using the i npor t utility, you can also import
JSON data that was extracted from MongoDB or other sources such as a relational
database. When you run the import/export utility to import data, the sink (or target of
the import) is always Oracle NoSQL Database, while the source format (JSON, binary,
or MongoDB) can be configured.

When you import data from an export package, the import utility loads data for one

or more tables whose data exist within the known structure of the export package.
When you import data that was not created by export, the import utility only supports
loading into a single table. If you need to load multiple tables with data that was not
created by export, it is advisable to store the data for each table in a separate directory

7-72

Chapter 7
Using the Import and Export Utilities

structure and run the import utility once for each table to be loaded. Modify the pat h
and t abl eNane parameters for each table in the JSON config file. See the section
below for a detailed description of the parameters available in the JSON config file.

Exporting Data

Examples

ORACLE

When you use the export option, the import/export utility creates a package that
contains:

e Data from your table(s)
e Schema definition metadata of your table(s)
e Logging information

When you use the import option, you may supply the same package to the import/
export utility to automatically create and load your tables from the contents of the
export package.

You can export all data and metadata to either a local or network mounted filesystem.
In future releases, you can export your data to the Oracle Storage Cloud or other cloud
storage providers.

You can optionally use the import/export utility to export individual tables instead of the
entire data store. This utility writes:

» Application created data (excluding security data).
* Schema metadata:

— DDL for recreating the table(s).

— DDL for recreating indexes.
« Time to live information for every table record.

Import/export utility does not allow you to:

e Export security data (such as user definition)
e Export Oracle NoSQL Database deployment information (such as cluster topology)
e Incrementally export data (such as export from a given moment in time)

e Export derived information (such as index data and key distribution statistics data).
You must recreate derived information upon data import.

For export operations, Oracle highly recommends that the target of the export
operation be an encrypted file system such as dmcrypt.

1. Export the entire contents of Oracle NoSQL Database data store and place the
export package into the / user s/ oracl e/ kvst ore_export directory. Supply two
helper hosts, snl and sn2, so that the export can try and contact any host that is
reachable.

java —Xmk64m —Xms64m -j ar KVHOVE/ |i b/ kvt ool .jar export \

-export-all -store kvstore -hel per-hosts snl:5000, sn2: 5000 \
-config export_config

7-73

Chapter 7
Using the Import and Export Utilities

The export _confi g file resides in the current working directory and the file content
is as below:

{
}

"path": "/users/oraclel/kvstore_export"

2. Import all data from the export package created in example 1 into a different
Oracle NoSQL Database data store. Since you are using the export package
created by the export utility, all tables will be automatically created if they do not
already exist.

java —Xmk64m —Xms64m -j ar KVHOME/ | i b/ kvtool .jar import \
-inport-all -store other_kvstore -hel per-hosts snl10:5000 \
-config inport_config

The i nport _confi g file resides in the current working directory and the file content
is as below:

{
}

"path": "/users/oraclel/kvstore_export"

3. Export 3 tables in JSON format by placing the exported data into the / users/
oracl e/json_tabl e_dat a directory.

java —Xmx64m —-Xnms64m -jar KVHOVE/ |i b/ kvtool .jar export \
-table tablel, table2, table3 -store kvstore -hel per-hosts
snl: 5000, sn2: 5000 \
-config export_config -format JSON

The export _confi g file resides in the current directory and the file content is as
below:

{
}

"path": "/users/oraclel/json_table data"

4. Import 3 tables that were exported in example 3 to a different Oracle NoSQL
Database data store. Use checkpoints to be able to restart the import from where it
left, if it fails.

java —Xmk64m —Xms64m -jar KVHOVE/ |i b/ kvtool .jar inport \
-store other_kvstore -hel per-hosts snl10:5000 \
-config inport_config -table tablel, table2, table3\
-status /users/oracl e/ checkpoint_dir —format JSON

ORACLE _—

Chapter 7
Increasing Storage Node Capacity

The i nport _confi g file resides in the current working directory and the file content
is as below:

{
}

5. Run import on data files that contain data from a MongoDB strict export while not
transferring a sensitive attribute in the data entitled "soci al _security_nunmber”.
Store all of the errors and progress information for the import in / user s/ oracl e/
mongo_db_i nport _| ogs.

"path": "/users/oraclel/json_table_ data"

java —Xmk64m —Xms64m -jar KVHOVE/ |i b/ kvtool .jar inport \
-external -store other kvstore \
- hel per-hosts sn10: 5000 -config inport_config \
-status /users/oracl e/ checkpoint _dir —format MONGODB JSON

The i nport _confi g file resides in the current working directory and the file content
is as below:

"path": "/users/oracl e/ my_nongodb_data",
"ignoreFields": "social _security_nunmber",
"errorQutput": "/users/oracle/ mongo_db_inmport_| ogs”

Increasing Storage Node Capacity

ORACLE

You can increase the capacity of a Storage Node by adding additional hard disks.
Adding hard disks to a Storage Node permits the placement of each Replication Node
on its own disk, ensuring that the Replication Nodes on the SN are not competing for
I/O resources. Specify the location of the storage directory on the new disk using the
storagedi r parameter.

Note:

When you specify a storage directory, Oracle strongly recommends you also
specify the storage directory size using the - st or agedi r si ze parameter.

See Managing Storage Directory Sizes for details. The system uses the
configured directory sizes to enforce disk usage. Be sure to specify a storage
directory size for every storage node in the store.

The following example demonstrates deploying a new store and adding two more
disks to a Storage Node, increasing the capacity from 1 to 3:

1. Create, start and configure the new store.

e Create the new store:

java - Xmk64m - Xms64m \
-jar KVHOWE/ |i b/ kvstore.jar makebootconfig \

7-75

ORACLE

Chapter 7
Increasing Storage Node Capacity

-root KVROOT \

-host node20 -port 5000 \
-harange 5010, 5030 \
-capacity 1\

-menmory_nb 200 \

-storagedir /diskl/ondb/data

Create and copy the security directory:

java - Xmk64m - Xnms64m \

-jar kv/liblkvstore.jar \

securityconfig config create -root KVROOT -kspwd password
Created files

KVROOT/ security/security.xm

KVROOT/ security/ store. keys

KVROOT/ security/store.trust

KVROOT/ security/client.trust

KVROOT/ security/client.security

KVROOT/ security/store. passwd (CGenerated in CE version)
KVROOT/ security/store.wal | et/cwal |l et.sso (CGenerated in EE
version)

Created

Start the new store:

" Note:

Before starting the SNA, on each node, set the environment variable
MALLOC ARENA MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

java - Xmk64m - Xnms64m \
-jar KVHOWE/ |i b/ kvstore.jar start \
-root KVROOT &

Configure the new store:

java - Xmk64m - Xms64m \

-jar KVHOWE l'i b/ kvstore.jar runadmn \
-port 5000 -host node20 \

-security KVROOT/security/client.security

kv-> configure -name kvstore
Store configured: kvstore

Create a zone. Then create an administration process on a specific host:

kv-> plan depl oy-zone -name Houston -rf 1 -wait
Executed plan 1, waiting for conpletion...
Plan 1 ended successfully

7-76

Chapter 7
Increasing Storage Node Capacity

kv-> plan depl oy-sn -znname "Houston" -port 5000 -wait -host node20
Executed plan 2, waiting for conpletion...
Plan 2 ended successful ly

kv-> plan depl oy-admin -sn snl -port 5001 -wait
Executed plan 3, waiting for conpletion...
Plan 3 ended successful ly

3. Create the storage node pool. Then add the storage node to the pool:

kv-> pool create -nane All StorageNodes

kv-> pool join -name All StorageNodes -sn snl
4. Create a topology, preview it, and then deploy it:

kv-> topol ogy create -nane 1x1 -pool All StorageNodes -partitions 120
Created: 1x1

kv-> topol ogy preview -name 1x1

Topol ogy transfornmation fromcurrent deployed topol ogy to 1x1:
Create 1 shard

Create 1 RN

Create 120 partitions

shard rgl
1 new RN : rgl-rnl
120 new partitions

kv-> pl an depl oy-topol ogy -name 1x1 -wait
Executed plan 4, waiting for conpletion...
Plan 4 ended successfully

5. Add two more disk drives to the Storage Node, mounted as di sk2 and di sk3. Add
the storage directories using the pl an change- st or agedi r command. Be sure to
add the Storage Directory size, such as -storagedirsize “1 tb".

kv-> plan change-storagedir -sn snl -storagedir /disk2/ondb/data \
-storagedirsize "1 tbh" -add -wait

Executed plan 5, waiting for conpletion..

Plan 5 ended successful ly

kv-> plan change-storagedir -sn snl -storagedir /disk3/ondb/data \
-storagedirsize "1 tbh" -add -wait

Executed plan 6, waiting for conpletion..

Plan 6 ended successfully

ORACLE -

ORACLE

6.

Chapter 7
Increasing Storage Node Capacity

< Note:

Because we specified storage directory sizes in the previous example, it
is necessary to provide that information to your other nodes if you have
not already done so. See Managing Storage Directory Sizes for more
information.

Change the capacity equal to the total number of disks how available on the
Storage Node (3).

kv-> plan change-paraneters -service snl -wait -parans capacity=3
Executed plan 7, waiting for conpletion...
Plan 7 ended successfully

Note:

You need to perform last two steps on all the Storage Nodes (in your
cluster) to add the disk drives and increase the capacity of each Storage
Node. In this case, it is a single node deployment, so the topology is now
ready to be redistributed.

Redistribute your topology to expand the cluster in order to use the new capacity
(3) of the Storage Node.

kv-> topol ogy clone -current -name 3x1
Created 3x1

kv-> topol ogy redistribute -name 3x1 -pool All StorageNodes
Redi stributed: 3x1

kv-> topol ogy preview -name 3x1

Topol ogy transformation fromcurrent deployed topology to 3x1:
Create 2 shards

Create 2 RNs

Mgrate 80 partitions

shard rg2

1 new RN : rg2-rnl

40 partition mgrations
shard rg3

1 newRN: rg3-rnl

40 partition mgrations

kv-> plan depl oy-topol ogy -name 3x1 -wait
Executed plan 8, waiting for conpletion...
Plan 8 ended successfully

7-78

Chapter 7
Managing Storage Directory Sizes

Managing Storage Directory Sizes

We strongly recommend that you always specify storage directory sizes for each
Replication Node on every Storage Node in the store. Doing so sets disk threshold
levels for each replication node, even when your store has hardware with varying disk
capacities. This section describes this topic, and others.

Managing Disk Thresholds

ORACLE

It is very important to configure each storage directory with a specific amount of
available disk space. The Oracle NoSQL Database uses the configured Storage
Directory sizes to enforce disk space limits. Without configuring how much disk
space is available, the store opportunistically uses all available space, less 5 GB
free disk space. The system maintains 5 GB of free space to allow manual recovery
if the Storage Node exceeds its configured disk limit. Be sure to monitor disk usage
regularly using the statistics provided, as described in Monitoring Disk Usage.

Storage Nodes use their available disk space for two purposes:
e To store your data.
* To save reserved files.

Reserved files consist of data that has already been replicated to active replica nodes.
The purpose of storing a copy of this data is to use for Replica Nodes that lose
contact with the Master Node. Losing contact typically occurs because Replica nodes
are shut down, or a network partition event occurs, or because another transient
problem occurs. The Storage Node is primarily designed to consume the amount of
disk space you assign it, and to use the remaining disk space to save the reserved
files. Each Storage Node manages its available disk space, leaving 5 GB free for
recovery purposes. Your intervention is typically not required in this disk management
process, unless a storage node exceeds its available disk capacity.

Note:

If a Storage Node (SN) consumes more than what is assigned as
storagedirsize, including leaving 5 GB of space free, the SN automatically
attempts to free up disk space by deleting reserved files (not your data files),
until more than 5 GB of space is available. If the Storage Node is unable

to free up enough space, it suspends write operations to the node. Read
operations continue as normal. Write operations resume automatically once
the node obtains sufficient free disk space.

You can limit how much disk space the store consumes on a node by node basis,
by explicitly specifying a storage directory size for each storage node, as described
in Specifying Storage Directory Sizes. Storage nodes can then consume all of their
configured disk space as needed, leaving free the required 5 GB. However, if you
do not indicate a storage directory size, the Storage Node uses disk space until it
consumes the disk, except for the required 5 GB for manual recovery.

Consider a storage node with a 200 GB disk. Without configuring a storagedirsize for
that disk, the store keeps consuming up to 195 GB of disk space (leaving only the 5

7-79

Chapter 7
Managing Storage Directory Sizes

GB for manual recovery). If your standard policy requires a minimum 20 GB available
space on each disk, you must configure the storage node with a storagedirsize of 175
GB, leaving 20 GB available, and 5 GB for store recovery.

The most common reason a node's storage directory fills up is because of reserved
files. If the Storage Node exceeds its disk threshold, it continues to delete the reserved
files until the threshold is no longer exceeded.

Specifying Storage Directory Sizes

ORACLE

Use the makebootconfig st or agedi r si ze parameter to specify Storage Node (SN)
capacity when you initially install your store. See Configuring Your KVStore Installation
and makebootconfig for details. Additionally, if your SN has the capacity to support
more than one Replication Node, specify a storage directory location and storage
directory size for each Replication Node.

To specify or change storage capacity after you have installed the store, use pl an
change- st or agedi r. When you use pl an change- st or agedi r be sure to specify the
- st oragedi r si ze parameter to indicate how large the new storage directory is.

Note:

If you specify the - st or agedi r parameter, but not - st or agedi r si ze,
makeboot conf i g displays a warning. Always specify both parameters for
control and tracking.

The value specified for the st or agedi r si ze parameter must be a long, optionally
followed by a unit string. Accepted unit strings are: KB, MB, GB, and TB,
corresponding to 1024, 102472, 1024"3, 1024"4 respectively. Acceptable strings are

case insensitive. Valid delimiters between the long value and the unit string are " ", "-",
or" "

For example:

kv-> verbose
Verbose node is now on
kv-> show t opol ogy
store=nystore nunPartitions=300 sequence=308
zn: id=znl nane=Manhattan repFactor=3 type=PRl MARY
al | owAr bi t ers=f al se

sn=[snl] zn:[id=znl name=Manhattan] nodel: 9000 capacity=1 RUNNI NG
[rgl-rnl] RUNNING /storage-dir/snl O
No performance info avail able
sn=[sn2] zn:[id=znl name=Manhattan] node2: 9000 capacity=1 RUNNI NG
[rgl-rn2] RUNNING /storage-dir/sn2 0
single-op avg latency=0.0 ns nulti-op avg latency=0.0 ns
sn=[sn3] zn:[id=znl name=Manhattan] node3: 9000 capacity=1 RUNNI NG
[rgl-rn3] RUNNING /storage-dir/sn3 0
No performance info avail able

shard=[rgl] num partitions=300
[rgl-rnl] sn=snl haPort=nodel: 9010

7-80

Chapter 7
Managing Storage Directory Sizes

[rgl-rn2] sn=sn2 haPort=node2: 9010
[rgl-rn3] sn=sn3 haPort=node3: 9010
partitions=1-300

kv-> plan change-storagedir -sn snl -storagedir /storage-dir/snl \
-storagedirsize "200 gb" -add -wait
Executed plan 7, waiting for conpletion..
Plan 7 ended successful ly
kv-> plan change-storagedir -sn sn2 -storagedir /storage-dir/sn2 \
-storagedirsize "300 gb" -add -wait
Executed plan 8, waiting for conpletion..
Plan 8 ended successful ly
kv-> plan change-storagedir -sn sn3 -storagedir /storage-dir/sn3 \
-storagedirsize "400 gb" -add -wait
Executed plan 9, waiting for conpletion..
Plan 9 ended successful ly
kv-> show t opol ogy
store=nystore nunPartitions=300 sequence=308
zn: id=znl name=Manhattan repFactor=3 type=PRl MARY
al | owAr bi ters=f al se

sn=[snl] zn:[id=znl name=Manhattan] nodel: 9000 capacity=1 RUNNI NG
[rgl-rnl] RUNNING /storage-dir/snl 214748364800
No performance info avail abl e
sn=[sn2] zn:[id=znl nanme=Manhattan] node2: 9000 capacity=1 RUNNI NG
[rgl-rn2] RUNNING /storage-dir/sn2 322122547200
single-op avg latency=0.0 ns nulti-op avg | atency=0.0 ns
sn=[sn3] zn:[id=znl name=Manhattan] node3: 9000 capacity=1 RUNNI NG
[rgl-rn3] RUNNING /storage-dir/sn3 429496729600
single-op avg latency=0.0 ns nulti-op avg | atency=0.0 ns

shard=[rgl] num partitions=300
[rgl-rnl] sn=snl haPort=nodel: 9010
[rgl-rn2] sn=sn2 haPort=node2: 9010
[rgl-rn3] sn=sn3 haPort=node3: 9010
partitions=1-300

¢ Note:

If any Storage Node stores its data in the root directory (not recommended),
then instead of pl an change- st oragedi r, set the root Di r Si ze parameter.
For example:

kv-> pl an change-paraneters -service snl -parans
root Di r Si ze=200_gb

Specifying Differing Disk Capacities

By default, Oracle NoSQL Database evenly distributes data across all the Storage
Nodes in your store. No check is made in advance. The store expects all of the

ORACLE 7-81

Chapter 7
Managing Storage Directory Sizes

hardware in your storee to be homogenous, and so all Storage Nodes would have the
same disk capacity.

However, more likely, you are running a store in an environment where some Storage
Nodes have more disk capacity than others. In this case, you must specify appropriate
disk capacity for each storage node. Oracle NoSQL Database will then place more
data on higher capacity Storage Nodes. Be aware that specifying greater disk capacity
to a storage node can result in an increased workload. Storage Nodes with more
capacity than others could then serve more read and/or write activity. Be sure to size
your storage nodes accordingly to support additional workload, if any.

Monitoring Disk Usage

If a Storage Node exceeds its disk usage threshold value (storagedirsize - 5GB),
then all write activity for that node is suspended until sufficient disk space is made
available. The store makes disk space available by removing reserved files to satisfy
the threshold requirement. No data files are removed. Read activity continues while
reserved data is being removed.

To ensure that your Storage Node can continue to service write requests, monitor the
avai | abl eLogSi ze JMX statistic. This represents the amount of space that can be
used by write operations. This value is not necessarily representative of the amount
of disk space currently in use, since quite a lot of disk space can, and is, used for
reserved files, which are not included in the avai | abl eLogSi ze statistic.

Reserved files are data files that have already been replicated, but which are retained
for replication to nodes that are out of contact with the master node. Because

Oracle NoSQL Database liberally reserves files, all available storage will frequently
be consumed by reserved data. However, reserved data is automatically deleted

as necessary by the Storage Node to continue write operations. For this reason,
monitoring the actual disk usage is not meaningful.

If avai | abl eLogSi ze reaches zero, writes are suspended for the Storage Node.
Earlier, as avai | abl eLogSi ze approaches zero, the node has less and less space
for reserved data files. The result is that the store becomes increasingly less resilient
in the face of a prolonged but temporary node outage because there are increasingly
fewer historical log files that the store can use to gracefully bring a node up to date
once it is available again.

The following tables lists some other useful statistics about disk usage. These
statistics are stored in the stats file, or you can monitor them using the JMX
oracl e. kv. repnode. envnetric type. (Xref)

Statistic

Description

avai | abl eLogSi ze Disk space available (in bytes) for write operations. This value

is calculated with consideration fo reserved data files, which are
deleted automatically whenever space is required to perform
write operations:

free space + reservedLogSi ze - protectedLogSi ze

In general, monitoring disk usage in the file system is not
meaningful, because of the presence of reserved files that can
be deleted automatically.

ORACLE

7-82

Chapter 7

Managing Storage Directory Sizes

Statistic

Description

activelLogSi ze

Bytes used by all active data files: files required for basic
operation.

reservedLogSi ze

and can be deleted if they are not protected.

Bytes used by all reserved data files: files that have been cleaned

prot ect edLogSi ze

that are temporarily protected and cannot be deleted.

Bytes used by all protected data files: the subset of reserved files

Pr ot ect edLogSi zeMap

name to protected size in bytes.

A breakdown of protectedLogSize as a map of protecting entity

Tot al LogSi ze

Total bytes used by data files on disk: activeLogSize +
reservedLogSize.

The following list from part of some JMX output, shows an example of how you will see
each statistic. All of these statistic names have a O eani ng_ prefix, indicating that they
may be in the log cleaning statistics group (for garbage collection):

"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani
"d eani

ng_nRepeat | teratorReads": O,
ng_nLNsExpired": O,

ng_nC eaner Runs": 0,

ng_nBl NDel t asDead": O,

ng_nC eaner Di sksReads": 0,
ng_protectedLogSi zeMap": "",
ng_nC eaner Del etions": 0,

ng_nC eaner Entri esRead": 0,
ng_avail abl eLogSi ze": 48942137344,
ng_nLNsDead": O,

ng_nl NsCosol ete": 0,
ng_activelLogSi ze": 112716,
ng_nl NsDead": O,

ng_nlNsM grated": 0,
ng_total LogSi ze": 112716,
ng_nBl NDel t asCl eaned": 0,
ng_nLNshsol ete": 0,
ng_nLNsC eaned": 0,
ng_nLNQueueHi ts": 0,
ng_reservedLogSi ze": 0,
ng_protect edLogSi ze": 0,
ng_nC ust er LNsProcessed": 0

"Node Conpression_processedBins": 0,

You can tell if writes have been suspended for a Storage Node using the pi ng
command from the CLI. In the following sample output, the Shard Status shows

ORACLE

7-83

Chapter 7
Managing Storage Directory Sizes

read- onl y: 1. This indicates that one of the Storage Nodes is in read-only mode. The
likeliest reason for that is that it has exceeded its disk threshold.

kv-> ping

Pi ngi ng components of store istore based upon topol ogy sequence #11
3 partitions and 3 storage nodes

Time: 2018-09-28 06:57:10 UTC Version: 18.3.2

Shard Status: healthy:0 witabl e-degraded: 0 read-only:1 offline:0
Admin Status: healthy

Zone [name=dcl id=znl type=PRI MARY al | owAr biters=fal se

mast er Af fi ni ty=fal se]

RN Status: online:1 offline:2

Storage Node [snl] on snl.exanple.com 5000 Zone: [name=dcl

i d=znl type=PRI MARY al | owAr biters=fal se master Affinity=fal se] Status:
RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Admin [admi nl] Status: RUNNI NG MASTER

Rep Node [rgl-rnl] Status: RUNNI NG MASTER (non-authoritative)
sequenceNunber: 39, 177, 477 haPort: 5011 avail abl e storage size:6 GB
Storage Node [sn2] on sn2.exanpl e.com 5000 Zone:

[name=dcl id=znl type=PRI MARY al | owArbiters=fal se masterAffinity=false]
Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Rep Node [rgl-rn2] Status: RUNNI NG UNKNOWN sequenceNumber: 39, 176, 478
haPort: 5010 avail abl e storage size: NOT AVAI LABLE del ayM I 1lis:?

cat chupTi neSecs: ?

Storage Node [sn3] on sn3.exanpl e.com 5000 Zone: [name=dcl

i d=znl type=PRI MARY al | owAr biters=fal se master Affinity=fal se] Status:
RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Rep Node [rgl-rn3] Status: RUNNI NG UNKNOWN sequenceNumber: 39, 166, 804
haPort: 5010 avail abl e storage size: NOT AVAI LABLE del ayM I 1lis:?

cat chupTi neSecs: ?

For information on JMX monitoring the store, see Java Management Extensions (JMX)
Notifications.

Handling Disk Limit Exception

ORACLE

If a Storage Node exceeds its disk usage threshold value (<st or agedi rsi ze> - 5 GB),
then the store suspends all write activities on that node, until sufficient data is removed
to satisfy the threshold requirement. In such a situation, there are two ways to bring
the store back to read and write availability, without deleting user data.

* Increasing st or agedi r si ze on one or more Replication Nodes if there is available
disk space

» Expanding the store by adding a new shard

If there is enough space left on the disk or if the complete disk size is not set as
the size of st oragedi rsi ze, you can bring back the write availability (without any
additional need of the hardware) by simply increasing the storage directory size for
one or more Replication Nodes.

7-84

Chapter 7
Managing Storage Directory Sizes

If there is not enough space left on disk or if the complete disk size is set as the size
of the storage directory, then you should follow the store expansion procedure, where
you will need additional hardware to increase the number of shards by one.

" Note:

If you are following the store expansion procedure, it is important to check
the performance files to see if the cleaner is working well, by monitoring the
mnUilization statistics. If the mi nUtilizati on statistics is less than 30%,
it may mean that the cleaner is not keeping up. In this case it is not possible
to perform store expansion.

Store expansion can only be performed if the mi nUti | i zat i on statistics
percentage is not less than 30%.

For example:

2018-03-07 16:07:12.499 UTC INFO [rgl-rnl] JE Cdean file

0x2b:
predicted min util is below mnUilization, current util nin:
39 max: 39,

predicted util min: 39 max: 39, chose file with util mn: 30
max: 30 avg: 30

2018-03-07 16:07:04.029 UTC INFO [rgl-rn2] JE Cean file

0x27:
predicted min util is below mnUilization, current util nin:
39 max: 39,

predicted util min: 39 max: 39, chose file with util mn: 30
max: 30 avg: 30

2018-03-07 16:05:44.960 UTC INFO [rgl-rn3] JE Cean file

0x27:
predicted min util is below mnUilization, current util nin:
39 max: 39,

predicted util min: 39 max: 39, chose file with util mn: 30
max: 30 avg: 30

Increasing Storage Directory Size

ORACLE

To increase the storage directory size in one or more Replication Nodes, open the CLI
and execute the following commands:

1. Disable write operations on the store or on the failed shard.

pl an enabl e-requests -request-type READONLY \
{-shard <shardld[,shardld]*> | -store}

Here, - request -t ype READONLY is the option which disables write operations on
a shard. You can disable write operations on one or more shards by using the
- shar d option, or on the entire store by using the —st or e option.

7-85

ORACLE

Chapter 7
Managing Storage Directory Sizes

< Note:

Though Replication Nodes are already in non-write availability mode
whenever they hit an out of disk limit exception, it is important to disable
user write operations explicitly. Disabling the user write operations
ensures that the Replication Nodes are brought back up in the correct
manner.

Execute the PI NGcommand to analyze the state of one or more Replication
Nodes.

kv-> ping

Usually, when Replication Nodes hit an out of disk limit exception, Replica
Replication Nodes are in the RUNNI NG UNKNOWN state, and Master Replication
Nodes are in the RUNNI NG, MASTER (non-aut horitative) state.

To display the current, deployed topology, execute the show t opol ogy —ver bose
command. Make note of the current storage directory size allocated to each
Replication Node.

show topol ogy -verbose [-zn] [-rn] [-an] [-sn] [-store] [-status]
[-]json]

To ensure that other Replication nodes in the store do not hit a disk limit exception
while you increase the st or agedi r si ze, reduce the JE free disk space on all
Replication Nodes to 2 GB or 3 GB. You can use the - al | -rns option to reduce
the JE free disk space on all Replication Nodes at once, or the - servi ce -rgx-

r gy option to reduce the free disk space on a specific Replication Node.

kv-> plan change-paraneters [-all-rns|-service -rgx-rgy] \
-params "configProperties=sje. freeD sk=XXX"

After executing this command with either option, the system will stop the
Replication Nodes, update parameters, and restart Replication Nodes with the JE
free disk space parameter you specify.

To increase the storage directory size on one or more Replication Nodes.

kv-> plan change-storagedir -wait -sn snX\
-storagedir <storagedirpath> —add -storagedirsize X GB

Here snXis the Storage Node whose directory size you want to increase, and X is
the new storage size in GB.

After the pl an change- par amet ers command executes successfully, verify the
new st or agedi r si ze value is assigned to one or more Replication Nodes in the
store.

show topol ogy -verbose [-zn] [-rn] [-an] [-sn] [-store] [-status]
[-son]

7-86

ORACLE

Chapter 7
Managing Storage Directory Sizes

7. Lastly, reset the JE free disk space back to 5 GB. Also, enable write operations
back on the store or a specific shard.
kv-> plan change-paraneters [-all-rns|-service -rgx-rgy] \
-paranms "configProperties=je.freeDi sk=5368709120"
kv-> pl an enabl e-requests -request-type ALL {-shard
<shardld[,shardld]*> | -store}
The —request -t ype ALL option re-enables write operations on the store or on a
specific shard.

Example

Let us consider a store with 1x3 topology, hitting a disk limit exception. Perform the
following steps to increase the storage directory size of all Replication Nodes in the
store from 16 GB to 25 GB.

1.

Stop the write operations on the store level:

kv-> pl an enabl e-requests -request-type READONLY -store;

Ping the store to analyze the state of one or more Replication Nodes.

kv-> ping
Pi ngi ng components of store istore based upon topol ogy sequence #11
3 partitions and 3 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
Shard Status: healthy:0 witabl e-degraded: 0 read-only:1 offline:0
total:1
Admin Status: healthy
Zone [name=dcl id=znl type=PRI MARY al | owArbiters=fal se
mast er Af fi ni ty=f al se]
RN Status: online:1 offline:2 Storage Node [snl] on node2l:portl
Zone: [name=dcl id=znl type=PRI MARY al | owArbiters=fal se
mast er Af fi ni ty=f al se]
Status: RUNNING Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id:
a72484h8b33c
Adm n [adm ni] Status: RUNNI NG MASTER
Rep Node [rgl-rnl] Status: RUNNI NG MASTER (non-
authoritative)
sequenceNunber: 27, 447, 667 haPort: 5011 avail abl e storage
size:12 GB
Storage Node [sn2] on node22:portl
Zone: [name=dcl id=znl type=PRI MARY al | owArbiters=fal se
mast er Af fi ni ty=f al se]
Status: RUNNING Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id:
a72484h8b33c
Rep Node [rgl-rn2] Status: RUNNI NG UNKNOWN
sequenceNunber: 27, 447, 667 haPort: 5010 avail abl e storage
size:10 GB delayM Ilis:? catchupTi neSecs: ?
Storage Node [sn3] on node23:portl
Zone: [name=dcl id=znl type=PRI MARY al | owArbiters=fal se
mast er Af fi ni ty=f al se]
Status: RUNNING Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id:

7-87

ORACLE

Chapter 7
Managing Storage Directory Sizes

a72484h8b33c
Rep Node [rgl-rn3] Status: RUNNI NG UNKNOWN
sequenceNunber: 27, 447, 667 haPort: 5010 avail abl e storage
size:9 GB delayMIlis:? catchupTi meSecs: ?

The example shows that the Replication Nodes are in RUNNI NG UNKNOWN state
and Master Replication Node is in RUNNI NG MASTER(non-aut horitative) state.

View the current, deployed topology.

kv-> show t opol ogy -verbose

store=istore nunPartitions=3 sequence=11
zn: id=znl name=dcl repFactor=3 type=PRI MARY al | owAr bi ters=fal se \
mast er Affinity=fal se

sn=[snl] zn:[id=znl nane=dcl] node2l: portl capacity=1 RUNNI NG
[rgl-rnl] RUNNING /scratch/kvroot 16 GB
single-op avg | atency=36.866146 ms nmulti-op avg
| atency=0.0 ns
[rgl-rnl] RUNNING /scratch/kvroot 16 GB
single-op avg | atency=36.866146 ms nmulti-op avg
| atency=0.0 ns
sn=[sn2] zn:[id=znl nane=dcl] node22: portl capacity=1 RUNNI NG
[rgl-rn2] RUNNING /scratch/kvroot 16 GB
single-op avg latency=0.0 n& nulti-op avg
| atency=0.0 ns
[rgl-rn2] RUNNING /scratch/kvroot 16 GB
single-op avg latency=0.0 ns nulti-op avg
| atency=0.0 ns
sn=[sn3] zn:[id=znl nane=dcl] node23: portl capacity=1 RUNNI NG
[rgl-rn3] RUNNING /scratch/kvroot 16 GB
single-op avg latency=0.0 ns nulti-op avg
| atency=0.0 ns
[rgl-rn3] RUNNING /scratch/kvroot 16 GB
single-op avg latency=0.0 ns nulti-op avg
| atency=0.0 ns

nunShar ds=1

shard=[rgl] numpartitions=3
[rgl-rnl] sn=snl haPort=node2l: port?2
[rgl-rn2] sn=sn2 haPort=node22: port3
[rgl-rn3] sn=sn3 haPort=node23: port3
partitions=1-3

You see that 16 GB of disk space is assigned as the storage directory size for
each Replication Node.

Reduce the JE free disk space from 5 GB to 2 GB for all Replication Nodes in the
store.

kv-> pl an change-paraneters -all-rns -paranms \
"configProperties=je.freeDi sk=2147483648";

Started plan 70. Use show plan -id 70 to check status.
To wait for conpletion, use plan wait -id 70

7-88

Chapter 7
Managing Storage Directory Sizes

5. For each Replication Node, increase the storage directory size to 25 GB.

kv-> plan change-storagedir -wait -sn snl -storagedir /scratch/
kvroot \

-add -storagedirsize 25 GB -wait

Executed plan 72, waiting for conpletion...

Plan 72 ended successful ly

kv-> plan change-storagedir -wait -sn sn2 -storagedir /scratch/
kvroot \

-add -storagedirsize 25 GB -wait

Executed plan 73, waiting for conpletion...

Plan 73 ended successful ly

kv-> plan change-storagedir -wait -sn sn3 -storagedir /scratch/
kvroot \

-add -storagedirsize 25 GB -wait

Executed plan 74, waiting for conpletion...

Plan 74 ended successful ly

6. View the topology again to verify that the new value is assigned to
st oragedi rsi ze.

kv-> show t opol ogy -verbose
store=istore nunPartitions=3 sequence=11

zn: id=znl name=dcl repFactor=3 type=PRI MARY al | owArbi ters=fal se \
mast er Affini ty=fal se

sn=[snl] zn:[id=znl name=dcl] node2l:portl capacity=1 RUNNI NG
[rgl-rnl] RUNNING /scratch/kvroot 25 GB
single-op avg latency=0.0 ns nmulti-op avg
| atency=0.0 ns
sn=[sn2] zn:[id=znl name=dcl] node22:portl capacity=1 RUNNI NG
[rgl-rn2] RUNNING /scratch/kvroot 25 GB
single-op avg | atency=552.51996 nms nulti-op avg
| atency=0.0 ns
sn=[sn3] zn:[id=znl nanme=dcl] node23:portl capacity=1 RUNNI NG
[rgl-rn3] RUNNING /scratch/kvroot 25 GB
single-op avg | atency=14.317171 ms nulti-op avg
| atency=0.0 ns

nunShar ds=1

shard=[rgl] numpartitions=3
[rgl-rnl] sn=snl haPort=node2l: port2
[rgl-rn2] sn=sn2 haPort=node22: port3
[rgl-rn3] sn=sn3 haPort=node23: port3
partitions=1-3

The example now shows that 25 GB is assigned as the storage directory size for
each Replication Node.

ORACLE 7-89

Chapter 7
Managing Storage Directory Sizes

7. Reset the JE free disk space to 5 GB and enable write operations back on the
store.
kv-> plan change-paraneters [-all-rns|-service -rgx-rgy] \
-paranms "configProperties=je.freeDi sk=5368709120"
kv-> plan enabl e-requests —request-type READONLY -store;
Adding a New Shard

ORACLE

Apart from increasing the storage directory size, you can also handle disk limit
exceptions by adding a new shard and expanding your store.

The following example demonstrates adding three new Storage Nodes (Storage
Nodes 21, 22, and 23) and deploying the new store to recover from disk limit
exception:

1.

Disable write operations on the store.

kv-> plan enabl e-requests -request-type READONLY -store;

Here, - request -t ype READONLY disables write operations on a store and allows
only read operations.

Reduce the JE free disk space to 2 GB on all nodes and increase the
je.cleaner.mnUtilization configuration parameter from 40 (the default in a
KVStore) to 60.

kv-> pl an change-paraneters -all-rns \
-parans "configProperties=je.cleaner.mnUtilization 60; \
je.freeDi sk 2147483648";

Executing this command creates more free space for store expansion. Replication
Nodes will be stopped, parameters will be updated, and the Replication Nodes will
be restarted with the new parameters.

Create, start, and configure the new nodes for expanding the store.

* Create the new node. Run the makebookconfi g utility to configure each
Storage Node in the store:

java - Xmk256m - Xns256m -j ar KVHOVE/ kvstore. jar nakebootconfig \
-root snl/KVROOT \

-store-security none -capacity 1\

-port portl -host node2l \

-harange 5010, 5020 \

-storagedir /scratch/snl/u0l —storagedirsize 20-G

java - Xmk256m - Xns256m -j ar KVHOVE/ kvstore.jar nakebootconfig \
-root sn2/ KVROOT \

-store-security none -capacity 1\

-port portl -host node22 \

7-90

ORACLE

4,

Chapter 7
Managing Storage Directory Sizes

-harange 5010, 5020 \
-storagedir /scratch/sn2/u0l —storagedirsize 20-G

java - Xmk256m - Xms256m -j ar KVHOVE/ kvst ore. jar nmakeboot config \
-root sn3/KVROOT \

-store-security none -capacity 1\

-port portl -host node23 \

-harange 5010, 5020 \

-storagedir /scratch/sn3/u0l —storagedirsize 20-G

* Restart the Storage Node Agent (SNA) on each of the Oracle NoSQL
Database nodes using the start utility:

kv-> nohup java - Xmx256m - Xms256m -j ar \
KVHOVE/ | i b/ kvstore.jar start -root KVROOT &

* Configure the new store:

java - Xmk256m - Xns256m -j ar KVHOVE/ |i b/ kvstore.jar runadmin \
-port portl -host node2l

java - Xmk256m - Xns256m -j ar KVHOVE/ |i b/ kvstore.jar runadmn \
-port portl -host node22

java - Xmk256m - Xns256m -j ar KVHOVE/ |i b/ kvstore.jar runadmin \
-port portl -host node23

Redistribute the store according to its new configuration.

kv-> java - Xnk256m - Xns256m -jar KVHOVE/ | i b/ kvstore.jar runadmn \
-port portl -host hostl

kv-> plan depl oy-sn -zn znl -host node2l -port portl -wait
Executed plan 7, waiting for conpletion...

Plan 7 ended successfully

kv-> plan depl oy-sn -zn znl -host node22 -port portl -wait
Executed plan 8, waiting for conpletion...

Plan 8 ended successfully

kv-> plan depl oy-sn -zn znl -host node23 -port portl -wait
Executed plan 9, waiting for conpletion...

Plan 9 ended successfully

Plan 11 ended successfully

kv-> pool join -name Exanpl ePool -sn sn4
Added Storage Node(s) [sn4] to pool Exanpl ePool
kv-> pool join -name Exanpl ePool -sn sn5
Added Storage Node(s) [sn5] to pool Exanpl ePool

7-91

Chapter 7
Managing Admin Directory Size

kv-> pool join -name Exanpl ePool -sn sné
Added Storage Node(s) [sn6] to pool Exanpl ePool

kv-> topol ogy clone -current -name newTopo
Creat ed newTopo

kv-> topol ogy redistribute -name newTopo -pool Exanpl ePool
Redi stributed: newTopo

kv-> pl an depl oy-topol ogy -name newTopo -wait
Executed plan 11, waiting for conpletion...

5. Restore the Replication Nodes to its original configuration.

pl an change-paraneters -all-rns \
-paranms "configProperties=je.cleaner.mnUtilization 40; \
je.freeDi sk 5368709120";

6. Enable write operations back on the store.

kv-> pl an enabl e-requests -request-type ALL -store;

Here, —+equest -t ype ALL enables both read and write operations on the store.

Managing Admin Directory Size

ORACLE

You should specify a sufficient directory size for the Admin database when you initially
install your store, using the nakeboot confi g admi ndi rsi ze parameter. If you do not
specify a value, the system allocates a default of 3 GB as the size of the Admin
directory. See Configuring Your KVStore Installation and makebootconfig for details.

Specify the value for the - admi ndi r si ze parameter as a long, optionally followed by

a unit string. Accepted unit strings are: KB, MB, and GB, corresponding to 1024,
10242, and 10243 respectively. Acceptable strings are case insensitive. Valid delimiters
between the long value and the unit string are " ", "-", or "_"

Also, if the admin directory fills up its allotted storage space with reserved files, see
Managing Disk Thresholds for more information.

If the Admin completely uses up its storage space, it will not be able to start. This
condition is unlikely to occur, but in the event that your Admin cannot start, you should
check its available disk space. If the directory is full, then you should increase the
available disk space to the Admin. For the Admin to completely fill its storage space
with actual data files, the store would have to be configured in some unexpected way
— such as with an extraordinarily large number of tables, or have been allotted a very
small Admin directory size.

The procedure that you use to change an Admin's allocated disk space differs
depending on whether the Admin is in working condition.

7-92

Chapter 7
Managing Admin Directory Size

Admin is Working

To increase or decrease the Admin's disk space when the Admin is functional, use the
CLI to execute the following plan:

pl an change-paraneters -all-adnins -params \
"configProperties=je. maxDi sk=<si ze>"

where <size> is the desired storage size in bytes.

Admin is not Working

To increase or decrease the Admin's disk space when the Admin is not functional:

1.

ORACLE

Set the value of j e. naxDi sk to the desired value in confi g. xm for all Admins
manually:

a.

For each Storage Node that is hosting an Admin, locate the confi g. xnl file in
the Storage Node's root directory:

<kvroot dir>/<store nane>/ <SN nanme>/ config. xm

and edit it as follows.

Locate the admin section of the confi g. xn file. This is the section that begins
with:

<conponent name="ADM N- NAME" type="adni nParans" validate="true">
</ conponent >
Add the following line to the admin section of each confi g. xn file:

<propertyname="confi gProperties" val ue="je. maxDi sk=<si ze>"
type="STRING'/ >

where <size> is the desired storage size in bytes for your Admin.

Stop/start these Storage Nodes one by one, using the following commands:

" Note:

Before starting the SNA, on each node, set the environment variable
MALLOC ARENA MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

java - Xmk64m - Xnms64m \
-jar kvstore.jar stop -root <root dir>\
-config <config file name>

7-93

Chapter 7
Disabling Storage Node Agent Hosted Services

java - Xmk64m - Xms64m \
-jar kvstore.jar start -root <root dir>\
-config <config file name>

Wait for the status of these Storage Nodes to change to RUNNING. You can use
the ping command to get the Storage Node status:

java - Xmk64m - Xnms64m \
-jar kvstore.jar runadnin -host <host name> -port <port> ping

If any Admins are unreachable (you cannot get a response using the ping
command), start them from the CLI using the following command:

kv-> plan start-service -service <ADM N_NAVE> - wai t
Once all the Admins are running, execute the following command using the CLI:

pl an change-paraneters -all-admns -parans \
"confi gProperties=je. maxDi sk=<si ze>"

where <size> is the desired storage size in bytes for your Admin. This value
should match the value you provided in the confi g. xn file.

Disabling Storage Node Agent Hosted Services

To disable all services associated with a stopped SNA use the - di sabl e- servi ces
flag. This helps isolate failed services to avoid hard rollbacks during a failover. Also, in
this way, the configuration can be updated during recovery after a failover. The usage

ORACLE

IS:

java - Xmx64m - Xnms64m \

-jar KVHOWE |ib/kvstore.jar {start | stop | restart}
[- di sabl e-services] [-verbose]

-root KVROOT [-config <bootstrapFileNane>]

where:

start -disabl e-services

Starts an Oracle NoSQL Database Storage Node Agent with all of its hosted
services disabled. If the SNA is already running, the command will fail.

stop -disabl e-services

Stops an Oracle NoSQL Database Storage Node Agent, marking all of its services
disabled so that they will not start when starting up the SNA in the future or until
the services are reenabled.

restart -disabl e-services

Restarts an Oracle NoSQL Database Storage Node Agent with all of its hosted
services disabled.

7-94

Chapter 7
Verifying the Store

Verifying the Store

ORACLE

Use the Admin CLI verify command to complete these tasks:

» Perform general troubleshooting of the store.

The veri fy command inspects all store components. It also checks whether all
store services are available. For the available store services, the command also
checks for any version or metadata mismatches.

* Check the status of a long-running plan

Some plans require many steps and may take some time to execute. The
administrator can verify plans to check on the plan progress. For example, you
can verify a pl an depl oy—sn command while it is running against many Storage
Nodes. The veri fy command can report at each iteration to confirm that additional
nodes have been created and come online.

For more about managing plans, see Plans.
* Get additional information to help diagnose a plan in an ERROR state.

You verify your store using the verify command in the CLI. The command requires no
parameters, and runs in verbose mode, by default. For example:

kv-> verify configuration
Verify: starting verification of store MetroArea based upon
t opol ogy sequence #117
100 partitions and 6 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
See nodeO1: Dat a/ vi rt ual r oot/ dat acent er 1/ kvr oot / Met r oAr ea/
| og/ MetroArea_{0..N}.log for
progress nessages
Verify: Shard Status: healthy:2 witabl e-degraded: 0
read-only: 0 offline:0
Verify: Admin Status: healthy
Verify: Zone [name=Manhattan id=znl type=PRI MARY al | owAr bit ers=fal se
mast er Af fi ni ty=f al se]

RN Status: online:2 offline: O maxDelayMIlis:1 maxCatchupTi meSecs: 0
Verify: Zone [name=JerseyCity id=zn2 type=PRI MARY al | owArbi t er s=f al se
mast er Af fi ni ty=f al se]

RN Status: online:2 offline: O maxDelayM Ilis:1 maxCat chupTi meSecs: 0
Verify: Zone [name=Queens id=zn3 type=PRI MARY al | owAr bi t er s=f al se
mast er Af fi ni ty=f al se]

RN Status: online:2 offline: 0
Verify: == checking storage node snl ==
Verify: Storage Node [snl] on node0l: 5000

Zone: [name=Manhattan id=znl type=PRI MARY al | owAr biters=fal se
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Admi n [adm nl] Status: RUNNI NG MASTER
Verify: Rep Node [rgl-rn2] Status: RUNNI NG REPLI CA

sequenceNunber: 127 haPort: 5011 avail abl e storage size:14 GB
delayM I lis:1 catchupTi meSecs: 0
Verify: == checking storage node sn2 ==

7-95

ORACLE

Chapter 7
Verifying the Store

Verify: Storage Node [sn2] on node02: 6000

Zone: [name=Manhattan id=znl type=PRI MARY al | owAr biters=fal se
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn2] Status: RUNNI NG REPLI CA

sequenceNunber: 127 haPort: 6010 avail abl e storage size:24 GB
delayM I lis:1 catchupTi meSecs: 0
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03: 7000

Zone: [name=JerseyCity id=zn2 type=PRI MARY al | owAr bi t ers=fal se
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Admi n [adm n2] Status: RUNNI NG REPLI CA
Verify: Rep Node [rgl-rn3] Status: RUNNI NG REPLI CA

sequenceNunber: 127 haPort: 7011 avail abl e storage size:22 GB
delayM I lis:1 catchupTi meSecs: 0
Verify: == checking storage node sn4 ==
Verify: Storage Node [sn4] on node04: 8000

Zone: [name=JerseyCity id=zn2 type=PRI MARY al | owAr bi t er s=f al se
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn3] Status: RUNNI NG REPLI CA

sequenceNunber: 127 haPort: 8010 avail abl e storage size:24 GB
delayM I lis:1 catchupTi meSecs: 0
Verify: == checking storage node sn5 ==
Verify: Storage Node [sn5] on node05: 9000

Zone: [name=Queens id=zn3 type=PRI MARY al | owAr bi t ers=fal se
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Verify: Admi n [adm n3] Status: RUNNI NG REPLI CA
Verify: Rep Node [rgl-rnl] Status: RUNNI NG MASTER

sequenceNunber: 127 haPort: 9011 avail abl e storage size:18 GB
Verify: == checking storage node sn6 ==

Verify: Storage Node [sn6] on node06: 10000

Zone: [name=Queens id=zn3 type=PRI MARY al | owAr bi t ers=fal se
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rnl] Status: RUNNI NG MASTER

sequenceNunber: 127 haPort: 10010 avail abl e storage size:16 GB

Verification conplete, no violations.

Use the optional —si | ent mode to show only problems or completion.

kv-> verify configuration -silent

Verify: starting verification of store MetroArea based upon
t opol ogy sequence #117

100 partitions and 6 storage nodes

Time: 2018-09-28 06:57:10 UTC Version: 18.3.2

7-96

ORACLE

Chapter 7
Verifying the Store

See node01: Dat a/virtual root/datacenter1/kvroot/ MetroAreal

| og/ MetroArea_{0..N}.log for progress
messages
Verification conplete, no violations.

The veri fy command clearly reports any problems with the store. For example, if a
Storage Node is unavailable, using -si | ent mode displays that problem as follows:

kv-> verify configuration -silent
Verify: starting verification of store MetroArea based upon
t opol ogy sequence #117
100 partitions and 6 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
See nodeO01: Dat a/ vi rt ual root/ dat acent er 1/ kvr oot / Met r oAr ea/
| og/ MetroArea {0..N}.log for progress

messages
Verification conplete, 2 violations, 0 notes found.
Verification violation: [rg2-rn2] ping() failed for rg2-rn2 :

Unabl e to connect to the storage node agent at host node02, port 6000,
whi ch nmay not be running; nested exception is:
java.rn . Connect Exception: Connection refused to host: node02;
nested exception is:
j ava. net. Connect Excepti on: Connection refused
Verification violation: [sn2] ping() failed for sn2 : Unable to
connect
to the storage node agent at host node02, port 6000,
whi ch nay not be running; nested exception is:
java.rn . Connect Exception: Connection refused to host: node02;
nested exception is:
j ava. net. Connect Excepti on: Connection refused

Using the default mode (verbose), veri fy confi guration shows the same problem as
follows:

kv-> verify configuration
Verify: starting verification of store MetroArea based upon
t opol ogy sequence #117
100 partitions and 6 storage nodes
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
See nodeO01: Dat a/ vi rt ual r oot/ dat acent er 1/ kvr oot / Met r oAr ea/

| og/ MetroArea {0..N}.log for progress
messages
Verify: Shard Status: healthy:1 witabl e-degraded: 1

read-only: 0 offline:0

Verify: Admin Status: healthy
Verify: Zone [name=Manhattan i d=znl type=PRI MARY al | owAr bi t er s=f al se
mast er Affi ni ty=fal se]

RN Status: online:1 offline: 1 maxDelayMIlis:1 maxCatchupTi meSecs: 0
Verify: Zone [name=JerseyCity id=zn2 type=PRI MARY al | owAr bit ers=f al se
mast er Affi ni ty=fal se]

RN Status: online:2 offline: 0O maxDelayM|lis:1 maxCatchupTi meSecs: 0
Verify: Zone [name=Queens id=zn3 type=PRI MARY al | owAr bi t ers=fal se
mast er Affi ni ty=fal se]

RN Status: online:2 offline: 0

7-97

ORACLE

Chapter 7
Verifying the Store

Verify: == checking storage node snl ==
Verify: Storage Node [snl] on node0l: 5000
Zone: [name=Manhattan id=znl type=PRI MARY al | owAr biters=fal se
mast er Af fi ni ty=f al se]
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Verify: Admi n [adm nl] Status: RUNNI NG MASTER
Verify: Rep Node [rgl-rn2] Status: RUNNI NG REPLI CA
sequenceNunber: 127 haPort: 5011 avail abl e storage size:18 GB
delayM I lis:1 catchupTi meSecs: 0
Verify: == checking storage node sn2 ==
Verify: sn2: ping() failed for sn2 :
Unabl e to connect to the storage node agent at host node02, port 6000,
whi ch may not be running; nested exception is:
java.rm. Connect Exception: Connection refused to host: node02;
nested exception is:
j ava. net. Connect Excepti on: Connection refused
Verify: Storage Node [sn2] on node02: 6000
Zone: [name=Manhattan id=znl type=PRI MARY al | owAr biters=fal se
mast er Af fi ni ty=fal se]
UNREACHABLE
Verify: rg2-rn2: ping() failed for rg2-rn2 :
Unabl e to connect to the storage node agent at host node02, port 6000,
whi ch may not be running; nested exception is:
java.rnm . Connect Exception: Connection refused to host: node02;
nested exception is:
j ava. net. Connect Excepti on: Connection refused
Verify: Rep Node [rg2-rn2] Status: UNREACHABLE
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03: 7000
Zone: [name=JerseyCity id=zn2 type=PRI MARY al | owArbi t ers=fal se
mast er Af f i ni ty=f al se]
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484h8h33c
Verify: Admi n [adm n2] Status: RUNNI NG REPLI CA
Verify: Rep Node [rgl-rn3] Status: RUNNI NG REPLI CA
sequenceNunber: 127 haPort: 7011 avail abl e storage size:12 GB
delayM I lis:1 catchupTi meSecs: 0
Verify: == checking storage node sn4 ==
Verify: Storage Node [sn4] on node04: 8000
Zone: [name=JerseyCity id=zn2 type=PRI MARY al | owArbi t ers=f al se
mast er Af fi ni ty=f al se]
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484h8h33c
Verify: Rep Node [rg2-rn3] Status: RUNNI NG REPLI CA
sequenceNunber: 127 haPort: 8010 avail abl e storage size:11 GB
delayM I lis:0 catchupTi meSecs: 0
Verify: == checking storage node sn5 ==
Verify: Storage Node [sn5] on node05: 9000
Zone: [name=Queens id=zn3 type=PRI MARY al | owAr bi t ers=fal se
mast er Af fi ni ty=f al se]
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484h8h33c
Verify: Admi n [adm n3] Status: RUNNI NG REPLI CA
Verify: Rep Node [rgl-rnl] Status: RUNNI NG MASTER

7-98

Chapter 7
Monitoring the Store

sequenceNunber: 127 haPort: 9011 avail abl e storage size:14 GB
Verify: == checking storage node sn6 ==
Verify: Storage Node [sn6] on node06: 10000

Zone: [name=Queens id=zn3 type=PRI MARY al | owAr bi t ers=fal se
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8h33c
Verify: Rep Node [rg2-rnl] Status: RUNNI NG MASTER

sequenceNunber: 127 haPort: 10010 available storage size:16 GB

Verification conplete, 2 violations, 0 notes found.
Verification violation: [rg2-rn2] ping() failed for rg2-rn2 :
Unabl e to connect to the storage node agent at host node02, port 6000,
whi ch may not be running; nested exception is:
java.rnm. Connect Exception: Connection refused to host: node02;
nested exception is:
j ava. net. Connect Excepti on: Connection refused
Verification violation: [sn2] ping() failed for sn2 :
Unabl e to connectto the storage node agent at host node02, port 6000,
whi ch may not be running; nested exception is:
java.rm . Connect Exception: Connection refused to host: node02;
nested exception is:
j ava. net. Connect Excepti on: Connection refused

Note:

The verify output is only displayed in the shell after the command is
complete. Use tail, or grep the Oracle NoSQL Database log file to get a
sense of how the verification is progressing. Look for the string Veri fy. For
example:

grep Verify /KVRT1/ nystore/log/nystore_ 0.lo0g

Monitoring the Store

ORACLE

You can obtain Information about the performance and availability of your store from
both server side and client side perspectives:

* Your Oracle NoSQL Database applications can obtain performance statistics using
the oracl e. kv. KVSt ore. get St at s() class. This provides a client side view of the
complete round trip performance for Oracle NoSQL Database operations.

e Oracle NoSQL Database automatically captures Replication Node performance
statistics into a log file that you can into into spreadsheet software for analysis.
The store tracks, logs, and writes statistics at a user specified interval to a CSV
file. The file is j e. stat. csv, located in the Environment directory. Logging occurs
per-Environment when the Environment is opened in read/write mode.

Configuration parameters control the size and number of rotating log files to use
(similar to java logging, see java.util.logging.FileHandler). For a rotating set of files,
as each file reaches a given size limit, it is closed, rotated out, and a new file is

7-99

Events

ORACLE

Chapter 7
Monitoring the Store

opened. Successively older files are named with an incrementing humeric suffix to
the file name. The name format is j e. st at [versi on] . csv.

e The Oracle NoSQL Database administrative service collects and aggregates
status information, alerts, and performance statistics components that the store
generates. This provides a detailed view of the behavior and performance of the
Oracle NoSQL Database server.

e Each Oracle NoSQL Database Storage Node maintains detailed logs of trace
information from the services that the node supports. The administrative service
presents an aggregated, store-wide view of these component logs. Logs are
available on each Storage Node in the event that the administrative service is
not available, or if it is more convenient to examine individual Storage Node logs.

e Oracle NoSQL Database supports the optional Java Management Extensions
(IMX) agents for monitoring. The JMX interfaces allow you to poll the Storage
Nodes for information about the storage node and any replication nodes that
it hosts. For more information on JMX monitoring, see Standardized Monitoring
Interfaces . For information on using JMX securely, see Guidelines for using JMX
securely in the Security Guide.

You can monitor the status of the store by verifying it from within the CLI. See Verifying
the Store. You can also use the CLI to examine events.

Events are special messages that inform you of the state of your system. As events
are generated, they are routed through the monitoring system so that you can see
them. There are four types of events that the store reports:

1. State Change events are issued when a service starts up or shuts down.
2. Performance events report statistics about the performance of various services.

3. Log events are records produced by the various system components to provide
trace information about debugging. These records are produced by the standard
java. util.loggi ng package.

4. Plan Change events record the progress of plans as they execute, are interrupted,
fail or are canceled.

Note:

Some events are considered critical. These events are recorded in the
administration service's database, and can be retrieved and viewed using
the CLI.

You cannot view Plan Change events directly through Oracle NoSQL Database's
administrative interfaces. However, State Change events, Performance events, and
Log events are recorded using the EventRecorder facility, which is internal to the
Admin. Only events considered critical are recorded, and the criteria for being
designated as such varies with the event type. These are the events considered
critical:

e All state changes.

e Log events classified as SEVERE.

7-100

Chapter 7
Setting Store Parameters

* Any performance events reported as below a certain threshold.

You can view all of these critical events using the Admin CLI show event s and show
event commands.

Use the CLI show event s command with no arguments to see all of the unexpired
events in the database. Use the - fromand - t 0 arguments to limit the range of events
that display. Use the -t ype or -i d arguments to filter events by type or id, respectively.

For example, this is part of the output from a show event s command:

kv-> show events

i dar pdf bS STAT 2015-08-13 22:18: 39. 287 UTC snl RUNNI NG sevl

i dar peg0S STAT 2015-08-13 22: 18: 40. 608 UTC sn2 RUNNI NG sevl

i dar phmuS STAT 2015-08-13 22:18:44.742 UTC rgl-rnl RUNNI NG sevl

i darpj LLS STAT 2015-08-13 22:18:47.289 UTC rgl-rn2 RUNNI NG sevl

i dartfcuS STAT 2015-08-13 22:21:48.414 UTC rgl-rn2 UNREACHABLE sev?2
(reported by adminl)

This result shows four service state change events (sevl) and one log event
(UNREACHABLE), classified as sev2. Tags at the beginning of each line are individual
event record identifiers. To see detailed information for a particular event, use the
show event command, which takes an event record identifier, such as i dartf cuS as its
argument:

kv-> show event -id idartfcuS
i dartfcuS STAT 2015-08-13 22:21:48.414 UTC rgl-rn2 UNREACHABLE sev2
(reported by adminl)

Using this method of event identifiers, you can see a complete stack trace.

Events are removed from the system if the total number of events is greater than a
set maximum number, or if the Event is older than a set period. The default maximum
number of events is 10,000, while the default time period is 30 days.

Both Sevl and Sev?2 flags are associated with specific service state change events.
Sev1 flags report the current state. Sev2 flags report errors during attempted state
changes, as follows:

Sevl Flags Sev2 Flags

STARTI NG ERROR_RESTARTI NG
WAI TI NG_FOR_DEPLOY ERROR_NO_RESTART
RUNNI NG UNREACHABLE
STOPPI NG

STOPPED

Setting Store Parameters

The three Oracle NoSQL Database service types, Admin, Storage Node, and
Replication Node, have configuration parameters. You can modify some parameters

ORACLE 7-101

Chapter 7
Setting Store Parameters

after deploying the service. Use the following Admin CLI command to see the
parameter values that you can change:

show paraneters -service <>

You identify an Admin, Storage Node, or Replication service using a valid string. The
show parameters —servi ce command displays service parameters and state for any
of the three services. Use the optional - pol i cy flag to show global policy parameters.

Changing Parameters

ORACLE

All of the CLI commands used for creating parameter-changing plans share a similar
syntax:

pl an change-paraneters -service <id>...

All such commands can have multiple Par anet er Name=NewVal ue assignment
arguments on the same command line. If NewValue contains spaces, then the entire
assignment argument must be quoted within double quote marks. For example, to
change the Admin parameter collectorPollPeriod, you would issue the command:

kv-> pl an change-paraneters -all-admns -parans \
"col | ectorPol | Peri 0d=20 SECONDS" >

If your configProperties for all Replication Nodes is set to:

"configProperties=je.cleaner.mnUilization=40;">

And you want to add new settings for configProperties, you would issue the following
command:

kv-> pl an change-paraneters -all-rns -parans \
“configProperties=je.cleaner.mnUilization=40;\
je.env.runVerifier=fal se;">

If for some reason, different Replication Nodes have different configProperties
parameter values, then the change-parameters command will need to be tailored for
each Replication Node.

The following commands are used to change service parameters:
e plan change-paraneters -service <shardl d-nodel d> -parans [assi gnnents]

This command is used to change the parameters of a single Replication Node,
which must be identified using the shard and node numbers. The shar dl d- nodel d
identifier must be given as a single argument with one embedded hyphen and no
spaces. The shar dl d identifier is represented by r gX, where X refers to the shard
number.

e plan change-paraneters -all-rns -parans [assignnents]

This command is used to change the parameters of all Replication Nodes in a
store. No Replication Node identifier is needed in this case.

7-102

Chapter 7
Setting Store Parameters

e plan change-paranmeters -service <storageNodel d> - parans [assi gnnent s]

This command is used to change the parameters of a single Storage Node
instance. The storageNodeld is a simple integer.

e plan change-paraneters -all-admns -params [assignments]

This command is used to change Admin parameters. Because each instance
of Admin is part of the same replicated service, all instances of the Admin are
changed at the same time, so no Admin identifier is needed in this command.

If an Admin parameter change requires the restarting of the Admin service,
KVAdmin loses its connection to the server. Under normal circumstances,
KVAdmin automatically reconnects after a brief pause, when the next command
is given. At this point the plan is in the | NTERRUPTED state, and must be completed
manually by issuing the pl an execut e command.

* plan change-paraneters -security <id>

This command is used to change security parameters. The parameters are applied
implicitly and uniformly across all SNs, RNs and Admins.

In all cases, you can choose to create a plan and execute it; or to create the plan and
execute it in separate steps by using the - noexecut e option of the plan command.

Setting Store Wide Policy Parameters

Most admin, Storage Node, and replication node parameters are assigned to default
values when a store is deployed. It can be inconvenient to adjust them after
deployment, so Oracle NoSQL Database provides a way to set the defaults that are
used during deployment. These defaults are called store-wide Policy parameters.

You can set policy parameters in the CLI by using this command:

change-policy -parans [name=val ue]

The parameters to change follow the - par ans flag and are separated by spaces.
Parameter values with embedded spaces must be separated by spaces. Parameter
values with embedded spaces must be quoted. For example: name = "value with
spaces”. If the optional dry-r un flag is specified, the new parameters are returned
without changing them.

Admin Parameters

ORACLE

You can set the following parameters for the Admin service:

e admi nLogFi | eCount =<I nt eger >

Sets the number of log files that are kept. This value defaults to "20". It is used to
control the amount of disk space devoted to logging history.

e adm nLogFi | eLi m t =<I nt eger >

Limits the size of log files. After reaching this limit, the logging subsystem switches
to a new log file. This value defaults to "4,000,000" bytes. The limit specifies an
approximate maximum amount to write (in bytes) to any one file. If the value is
zero, then there is no limit.

e collectorPol | Period=<Long Ti meUnit>

7-103

Chapter 7
Setting Store Parameters

Sets the Monitor subsystem's delay for polling the various services for status
updates. This value defaults to "20" seconds. Units are supplied as a string in
the change- par anet er s command, for example: -params collectorPollPeriod="2
MINUTES"

e | oggi ngConfi gProps=<String>

Property settings for the Logging subsystem in the Admin process. Its format is
property=val ue; property=val ue. ... Standard java.util.logging properties can be
set by this parameter.

e event Expi ryAge=<Long Ti meUnit>
You can use this parameter to adjust how long the Admin stores critical event
history. The default value is "30 DAYS".

e configProperties=<String>

This is an omnibus string of property settings for the underlying BDB JE
subsystem. Its format is pr opert y=val ue; property=val ue. . ..

e javaM scParans=<String>

This is an omnibus string that is added to the command line when the Admin
process is started. It is intended for setting Java VM properties, such as -Xmx and
-Xms to control the heap size. If the string is not a valid sequence of tokens for the
JVM command line, the Admin process fails to start.

Changing Admin JVM Memaory Parameters

ORACLE

Admin processes can run out of memory. One of the most likely reasons is that

the default memory setting was insufficient for the Admin services to represent

all of the metadata associated with the store. Metadata includes information about
tables, security information about users and roles, and information about incomplete
plans. Stores with large amounts of metadata may need to increase the memory
setting for Admin services if the activity logs show that Admin services are failing
with Qut OF Merror yEr r or . This topic describes increasing the memory setting of the

j avaM scPar ans.

Initially, JVM memory for an Admin process is set as part of the j avaM scPar ans
parameter. This occurs when starting an Admin process to set the Java VM properties.

To change the j avaM scPar ans requires a comprehensive all or nothing change. You
cannot change individual parameters within the set. To change any setting, declare
them all in the pl an change- par anet ers command, described next.

To determine the current settings of j avaM scPar ams and confi gPr operti es, enter the
Admin CLI show paraneters -service nane command as follows:

kv-> show paraneters -service rgl-rnl;
cacheSi ze=0

col | ect EnvSt at s=true
configProperties=je.cleaner.threads 1;
je.rep.insufficientReplicasTi meout 100 ns;
j e.env.runEraser true;

j e.erase. del et edDat abases true;

j e.erase. extinctRecords true;
je.erase.period 6 days;

j e.env.runBackup fal se;

7-104

ORACLE

Chapter 7
Setting Store Parameters

j e. backup. schedule 0 8 * * *;

j e. backup. copyd ass

oracl e. nosql . obj ect st or age. backup. BackupObj ect St or ageCopy;
j e. backup. copyConfig /var/lib/andc/confi g/ parans/
backup. copy. properties;

j e. backup. |l ocationd ass

oracl e. nosql . obj ect st or age. backup. BackupQbj ect St or ageLocat i on;
j e. backup. | ocationConfig /var/lib/andc/config/parans/
backup. | ocati on. properti es;

je.rep.electionsOpenTi meout =2 s;
je.rep.electionsReadTi meout =2 s;

je.rep. feederTi meout =3 s;

j e.rep. heartbeat | nterval =500;

je.rep.replicaTi meout =3 s;

je.rep.repstreanmOpenTi meout =2 s;

di sabl ed=f al se

hi deUser Dat a=t rue

JavaMiscParams=-Xms96M -Xmx128M -XX:ParallelGCThreads=6
| atencyCei | i ng=0

| oggi ngConf i gProps=

maxTrackedLat ency=1000 M LLI SECONDS

repNodel d=rgl-rnl

rnCachePer cent =70

rnKVI ndexCr eat i onPer ni t Lease=500000 M LLI SECONDS
rnKVI ndexCr eat i onPer mi t Ti meout =1 M NUTES

r nKVSt or ageSt at sPer mi t Lease=1000000 M LLI SECONDS

r nKVSt or ageSt at sPer mi t Ti meout =10 SECONDS

r nLoghvbunt Poi nt =/ RNLOX00

rnLoghount Poi nt Si ze=0

r nMount Poi nt =/ DATAOO

r nMount Poi nt Si ze=2791728742400

rnStatisti csEnabl ed=true

rnStatisticsGatherlnterval =1 HOURS
rnStatisticsLeaseDuration=10 M NUTES

rnStatisticsSl eep\Wait Duration=60 SECONDS

rnStatisti csTTL=60 DAYS

st or ageNodel d=4

t hr oughput Fl oor =0

In this example, the j avaM scPar ans parameters that specify the Admin JVM memory
show the default values: 96 MB for the initial minimum size (-Xms), and 128 MB for the
maximum size (-Xmx):

j avaM scPar ams=- Xms96M - Xmx128M - XX: Par al | el GCThr eads=6

To increase Admin JVM memory when Admins are operational, use the pl an change-
par armet er s command from the Admin CLI, as follows:

kv-> plan change-paraneters -wait -all-adnins -parans \
j avaM scPar ams="- Xn52048m - Xmx2048m
- XX: Par al | el GCThr eads=4"

7-105

Chapter 7
Setting Store Parameters

Specifying these new values changes the Java heap size from the default values to 2
GB for both.

Make sure that you locate the existing j avaM scPar ans from the Admin CLI as shown
above, and update the individual entries. The j avaM scPar ans setting must represent
all desired flags, not just new ones, so be sure to include any previously existing flag

values that you want to retain.

If the Admin loses quorum, then you must use the Admin CLI r epai r - adm n- quor um
command.

Storage Node Parameters

You can set the following Storage Node parameters:

ORACLE

servi ceLogFi | eCount =<I nt eger >

Sets the number of log files kept by this Storage Node, and for all the Replication
Nodes it hosts. This default value is 20. Limiting the number of log files controls
the amount of disk space devoted to logging history.

servi ceLogFi | eLi ni t =<I nt eger >

Limits the size of each log file. After reaching this size, the logging subsystem
starts a new log file. This setting applies to the Storage Node and to all

Replication Nodes that it hosts. The default value is 2, 000, 000 bytes. The limit
specifies an approximate maximum amount of bytes written to any one file. Setting
servi ceLogFi |l eLi nit to zero indicates that it has no size limit.

haPor t Range=<St ri ng>

Defines the range of port numbers available for assigning to Admins and
Replication Nodes that this Storage Node hosts. Each time you deploy a
Replication Node or Admin for this Storage Node, the system allocates a port from
the specified range. Enter the range value for this parameter as “lowport, highport".

haHost name=<Stri ng>

Sets the name of the network interface used by the HA subsystem. A valid string
for a host nanme can be a DNS name or an IP address.

capaci ty=<I nt eger >

Sets the number of Replication Nodes that this Storage Node can host. This value
informs decisions about where to place new Replication Nodes. The default value
is 1. You can set the capacity level to greater than 1 if the Storage Node has
sufficient disk, CPU, and memory resources to support multiple Replication Nodes.

Setting the Storage Node capacity to 0 indicates that the Storage Node can be
used to host Arbiter Nodes. The pool of Storage Nodes in a zone configured to
host Arbiter Nodes is used for Arbiter Node allocation. See Deploying an Arbiter
Node Enabled Topology.

menor yMB=<I nt eger >

Sets the amount of memory (in megabytes) available on this Storage Node. The
default value is 0, which indicates that the amount of memory is unknown. The
store determines the amount of memory automatically as the total amount of RAM
available on the machine.

7-106

ORACLE

Chapter 7
Setting Store Parameters

You should not need to change this parameter. If the machine has other
applications running on it, reserve some memory for those applications, and set
the menor yMB parameter value with a memory allowance for application needs.
Having other applications running on a Storage Node is not a recommended
configuration.

nunCPUs=<I nt eger >

Sets the number of CPUs known to be available on this Storage Node. Default
value: 1.

r nHeapPer cent =<I nt eger >

Sets the percentage of a Storage Node's memory reserved for heap space for all
RN processes that the SN hosts. Default value: 68.

j viOver headPer cent =<I nt eger >

Sets the percentage of Java heap size, for additional memory used by JVM
overhead. Default value: 25. In standard memory allocation, 85% of the SN's
memory is for Java heap and JVM overhead: 68% for Java heap (r nHeapPer cent),
25% (j vmOver headPer cent) * 68 (r nHeapPer cent) = 17% for JVM overhead, and
68% + 17% = 85%.

r nHeapMaxMB=<I nt eger >

Sets a hard limit for the maximum size of the Replication Node's Java VM heap.
The default value is 0, which means the VM-specific limit is used. The default

is roughly 32 GB, which represents the largest heap size that can make use of
compressed object references.

Do not set this value to greater than 32 GB. Doing so can adversely impact your
Replication Node's performance.

Settings larger than the maximum size that supports compressed object
references will maintain the default limit unless the size is large enough that

the heap can reference a larger number of objects given the increased memory
requirements for uncompressed object references. Using larger heap sizes is not
recommended.

mgmt Gl ass=<Stri ng>

The name of the class that provides the Management Agent implementation. See
Standardized Monitoring Interfaces . The port cannot be a privileged port number
(<1024).

servi cePort Range=<Stri ng>

Sets the range of ports used for communication among administrative services
running on a Storage Node and its managed services. This parameter is optional.
By default the services use anonymous ports. The format of the value string is
"startPort, endPort."

The range needs to be large enough to accommodate the Storage Node, all the
Replication Nodes (as defined by the capacity parameter), Admin and Arbiter
services hosted on the machine, and JMX, if enabled. The number of ports
required also depends on whether the system is configured for security, which is
the default. For a non-secure system, the Storage Node consumes 1 port (shared
with the port assigned separately for the Registry Service, if it overlaps the service
port range), and each Replication Node consumes 1 port in the range. An Admin,
if configured, consumes 1 port. Arbiters consume 1 port each. If IMX is enabled,
that consumes 1 additional port. On a secure system, two additional ports are

7-107

ORACLE

Chapter 7
Setting Store Parameters

required for the Storage Node, and two for the Admin. As a general rule, we
recommend that you specify a range significantly larger than the minimum. More
available ports allows for increases in Storage Node capacity, or network problems
that can render ports temporarily unavailable.

The ports that you specify in the servi cePor t Range should not overlap with the
Admin port or with haPor t Range. The service port range can include the registry
port, so the registry and Storage Node share a port.

For deploying a secure Oracle NoSQL Database, use the following formula to
estimate the port range size number, adding an additional port for each Storage
Node, Replication Node or the Admin (if configured):

3 (Storage Nodes) +

capacity (the nunber of Replication Nodes) +
Arbiters (the nunber of Arbiter Nodes) +

3 (if the Storage Node is hosting an adnin) +
1 (if the Storage node is running JMX)

For more information on configuring Oracle NoSQL Database securely, see
Security Guide.

For a non-secure system, use the following formula to estimate the port range size
number:

1 (Storage Node) +

capacity (the nunber of Replication Nodes) +
Arbiters (the number of Arbiter Nodes) +

1 (if the Storage Node is hosting an admn) +
1 (if the Storage Node is running JMX)

For example, if a Storage Node has capacity 1, is hosting an Admin process,

and neither Arbiters nor JMX are in use, the range size must be at least 3. You
can increase the range size beyond this minimum, for safety and Storage Node
expansion. Then, if you expand the Storage Node, you will not need to make
changes to this parameter. If capacity is 2, the range size must be greater than or
equal to 4.

root Di r Pat h=<pat h>
The path to the Storage Node's root directory.
root Di r Si ze=<Long Unit_String>

Sets the storage size of the root directory. However, no run-time checks are
performed to verify that the actual directory size is greater than or equal to the
size you specify. Use this setting for heterogeneous installation environments
where some Storage Nodes have more disk capacity than others. Then, use this
parameter only for those Storage Nodes that store data in the root directory (not
recommended).

The value that you specify for this parameter must be a long, followed optionally
by a unit string. Accepted unit strings are: KB, MB, GB, and TB, corresponding
to 1024, 102472, 1024”3, 102474, respectively. Acceptable strings are case

insensitive. Valid delimiters between the long value and the unit string are ",
" opt

7-108

Chapter 7
Setting Store Parameters

< Note:

The root Di r Si ze parameter is intended for backward compatibility
with older installations that were created without specifying the -

st oragedi r parameter. We strongly recommend not storing data in
your root directory. See Managing Storage Directory Sizes. However,
if you do specify a - r oot Di r Pat h parameter, you must also specify
-root Di r Si ze. If you are trying to change parameter settings (pl an
change- par anet er s), and do not specify both parameters, a warning is
displayed.

Do not use the root Di r parameter if a Storage Nodes uses some other directory
(such as you can specify using pl an change- st oragedir).

Replication Node Parameters

The following parameters can be set for Replication Nodes:

ORACLE

col | ect EnvSt at s=<Bool ean>

If true, then the underlying BDB JE subsystem dumps statistics into the .stat file.
This information is useful for tuning JE performance. Oracle Support may request
these statistics to aid in tuning or to investigate a problem.

maxTr ackedLat ency=<Long Ti meUnit>
The highest latency that is included in the calculation of latency percentiles.
confi gProperties=<String>

Contains property settings for the underlying BDB JE subsystem. Its format is
property=val ue; property=val ue. ...

j avaM scPar ans=<Stri ng>

A string that is added to the command line when the Replication Node process is
started. It is intended for setting Java VM properties, such as -Xmx and -Xms to
control the heap size. If the string is not a valid sequence of tokens for the JVM
command line, the Admin process fails to start.

| oggi ngConf i gProps=<String>

Contains property settings for the Logging subsystem. The format of this string is
like that of configProperties, above. Standard java.util.logging properties can be
set by this parameter.

cacheSi ze=<Long>

Sets the cache size in the underlying BDB JE subsystem. The units are bytes.
The size is limited by the java heap size, which in turn is limited by the amount
of memory available on the machine. You should only ever change this low level
parameter under explicit directions from Oracle support.

| at encyCei | i ng=<I nt eger >

If the Replication Node's average latency exceeds this number of milliseconds, it
is considered an "alertable" event. If IMX monitoring is enabled, the event also
causes an appropriate notification to be sent.

t hr oughput Fl oor =<I nt eger >

7-109

Chapter 7
Setting Store Parameters

Similar to latencyCeiling, throughputFloor sets a lower bound on Replication Node
throughput. Lower throughput reports are considered alertable. This value is given
in operations per second.

rnCachePer cent =<I nt eger >

The portion of an RN's memory set aside for the JE environment cache.
rnStatisticsEnabl ed=<Bool ean>

If true, then the Replication Nodes gather key distribution statistics.
rnStatisticsGatherlnterval =<Long Ti neUni t >

The time interval at which Replication Nodes should gather distribution statistics.
rnStatisticsTTL=<Long DaysOr Hour s>

Specifies the duration for which the key distribution statistics should be retained
in the system tables. The duration specified must be in days or hours. By default,
these statistics are retained for 60 days.

rnStatisticslncludeSt orageSi ze=<Bool ean>

If true, then the information on storage sizes are included when gathering key
distribution statistics.

Global Parameters

The following store-wide non-security parameters can be implicitly and uniformly set
across all Storage Nodes, Replication Nodes and Admins:

col lectorinterval =<Long Ti meUnit>

Sets the collection period for latency statistics at each component. This value defaults
to "20" seconds. Values like average interval latencies and throughput are averaged
over this period of time.

Security Parameters

ORACLE

The following store-wide security parameters can be implicitly and uniformly set across
all Storage Nodes, Replication Nodes and Admins:

sessi onTi meout =<Long Ti meUnit>

Specifies the length of time for which a login session is valid, unless extended.
The default value is 24 hours.

sessi onExt endAl | owed=<Bool ean>
Indicates whether session extensions should be granted. Default value is true.
account Error Lockout Thr eshol dl nt er val =<Long Ti neUni t >

Specifies the time period over which login error counts are tracked for account
lockout monitoring. The default value is 10 minutes.

account Error Lockout Thr eshol dCount =<I nt eger >

Number of invalid login attempts for a user account from a particular host address
over the tracking period needed to trigger an automatic account lockout for a host.
The default value is 10 attempts.

account Error Lockout Ti neout =<Long Ti neUni t >

7-110

Chapter 7
Setting Store Parameters

Time duration for which an account will be locked out once a lockout has been
triggered. The default value is 30 minutes.

e | ogi nCacheTi meout =<Long Ti meUni t >

Time duration for which KVStore components cache login information locally to
avoid the need to query other servers for login validation on every request. The
default value is 5 minutes.

The following password security parameters can be set:

Parameter Name Value Range and Type Description
passwordAllowedSpecial Sub set or full set of #$ Lists the allowed special
%&'()*+,-./;; <=>?@[1*_"{|} characters.
(string)~
passwordComplexityCheck [true|false] (boolean) Whether to enable

the password complexity
checking. The default value

is true.
passwordMaxLength 1-2048 (integer) The maximum length of a
password. The default value
is 256.
passwordMinDigit 0 - 2048 (integer) The minimum required

number of numeric digits.
The default value is 2.

passwordMinLength 1-2048 (integer) The Minimum length of a
password. The default value
is 9.

passwordMinLower 0 - 2048 (integer) The minimum required

number of lower case
letters. The default value is
2.

passwordMinSpecial 0 - 2048 (integer) The minimum required
number of special
characters. The default
value is 2.

passwordMinUpper 0 - 2048 (integer) The minimum required
number of upper case
letters. The default value is
2.

passwordNotStoreName [true|false] (boolean) If true, password should not
be the same as current store
name, nor is it the store
name spelled backwards or
with the numbers 1-100
appended. The default value
is true.

passwordNotUserName [true|false] (boolean) If true, password should not
be the same as current user
name, nor is it the user
name spelled backwards or
with the numbers 1-100
appended. The default value
is true.

ORACLE 7-111

Chapter 7
Setting Store Parameters

Parameter Name Value Range and Type Description
passwordProhibited list of strings separated by Simple list of words that
comma (string) are not allowed to be

used as a password. The
default reserved words are:
oracle,password,user,nosql.

passwordRemember 0 - 256 (integer) The maximum number
of passwords to be
remembered that are not
allowed to be reused when
setting a new password. The
default value is 3.

For more information on top-level, transport, and password security parameters see
the Security Guide.

Admin Restart

ORACLE

Changes to the following Oracle NoSQL Database parameters will result in a Admin
restart by the Storage Node Agent:

Admin parameters:

e adminLogFileCount
e adminLogFileLimit
» configProperties

e javaMiscParams

* loggingConfigProps
e adminHttpPort

For example:

kv-> plan change-paraneters -all-adm ns

-paranms adm nLogFi | eCount =10

Started plan 14. Use show plan -id 14 to check status.
To wait for conpletion, use plan wait -id 14

kv-> show plan -id 14

Pl an Change Adm n Parans (14)

Oaner: nul |

State: | NTERRUPTED

Attenpt nunber: 1

Started: 2013-08-26 20:12:06 UTC
Ended: 2013-08-26 20:12:06 UTC
Tot al tasks: 4

Successful : 1

I nterrupted: 1

Not started: 2

Tasks not started

Task StartAdmin start admnl

Task WaitForAdminState waits for Admin adnminl to reach RUNNING state
kv-> plan execute -id 14
Started plan 14. Use show plan -id 14 to check status.

7-112

Chapter 7
Removing an Oracle NoSQL Database Deployment

To wait for conpletion, use plan wait -id 14
kv-> show plan -id 14
Pl an Change Admin Params (14)

St at e: SUCCEEDED
Attenpt nunber: 1
Started: 2013-08-26 20:20:18 UTC
Ended: 2013-08-26 20:20:18 UTC
Tot al tasks: 2
Successful : 2
Note:

When you change a parameter that requires an Admin restart using the pl an
change- par anet er s command, the plan ends in an | NTERRUPTED state. To
transition it to a SUCCESSFUL state, re-issue the plan a second time using the
pl an execute -id <i d>command.

Replication Node Restart

Changes to the following Oracle NoSQL Database parameters will result in a
Replication Node restart by the Storage Node Agent:

Storage Node parameters:

» serviceLogFileCount

* serviceLogFileLimit

* servicePortRange
Replication Node parameters:
e configProperties

e javaMiscParams

* loggingConfigProps

Removing an Oracle NoSQL Database Deployment

ORACLE

There are no scripts or tools available to completely remove an Oracle NoSQL
Database installation from your hardware. However, the procedure is simple. On each
node (machine) comprising your store:

1. Shut down the Storage Node:

java - Xmx64m - Xms64m \
-jar KVHOWE/ |'i b/ kvstore.jar stop -root KVROOT

Note that if an Admin process is running on the machine, this command also stops
that process.

7-113

Chapter 7
Modifying Storage Node HA Port Ranges

2. Physically remove the entire contents of KVROOT:

>rm-rf KVROOT

3. Empty the contents of all the storage directories configured for the KVStore. For
example, if you configured three storage directories using the makeboot confi g
utility, you must clean up all the three storage directories.

cd /diskl
rm-rf *

Once you have performed this procedure on every machine comprising your store,
you have completely removed the Oracle NoSQL Database deployment from your
hardware.

Modifying Storage Node HA Port Ranges

When you initially configured your installation, you defined a range of ports for the
nodes to use when communicating between themselves. (You did this in Installation
Configuration Parameters.) This range of ports is called the HA port range, where HA
is an acronym for High Availability, and indicates your store’s replication factor.

If you inadvertently used invalid values for the HA Port Range, you cannot deploy a
Replication Node (RN) or a secondary Administration process (Admin) on any Storage
Node. You will discover the problem when you first attempt to deploy a store with a
Replication node. Following are indications that the Replication Node did not come up
on the Storage Node:

* The Admin logs include an error that the Replication Node is in the
ERROR_RESTARTI NG state. After a number of retries, the warning error changes to
ERROR_NO RESTART. You can find the Replication Node state in the pi ng command
output.

* The plan enters an ERROR state. Using the CLI's show pl an <pl anl D> command to
get more history details includes an error message like this:

Attenpt 1
state: ERRCR
start time: 10-03-11 22:06: 12
end time: 10-03-11 22:08:12
Depl oyOneRepNode of rgl-rn3 on sn3/farley: 5200 [RUNNI NG
failed. Failed to attach to RepNodeService for rgl-
rn3,
see |l og, /KVRT3/<storenane>/|og/rgl-rn3*.10g, on host
farley for nmore information.

* The critical events mechanism, accessible through the Admin CLI show event s

command, includes an alert containing the same error information from the plan
history.

ORACLE 7-114

Chapter 7
Modifying Storage Node Service Port Ranges

* The store’s runtime or boot logs for the Storage Node and/or Admin shows a port
specific error message, such as:

[rgl-rn3] Process exiting
java.lang. |1l egal Argunent Exception: Port nunber 1 is invalid because
the port must be outside the range of "well known" ports

You can address incorrect HA port ranges in a configuration by completing the
following steps. Steps that require you to execute them on the physical node hosting
the Oracle NoSQL Database Storage Node, begin with the directive On the Storage
Node. You can execute other steps from any node that can access the Admin CLI.

1. Using the Admin CLI, cancel the pl an depl oy-sn or pl an depl oy-adm n
command that includes invalid HA Port Range values.

2. On the Storage Node, kill the existing, incorrectly configured
St or ageNodeAgent | npl process and all of its Managed Processes. You can
distinguish managed processes from other processes because they have the
parameter -r oot <KVROOT>.

3. On the Storage Node, remove all files from the KVROOT directory.

4. On the Storage Node, recreate the storage node bootstrap configuration file in the
KVROOT directory. For directions, see Installation Configuration Parameters.

5. On the Storage Node, restart the storage node using this Java command:

java - Xmk64m - Xnms64m
-jar KVHOWE/li b/ kvstore.jar restart

6. Using the Admin CLI, you can now create and execute a depl oy- sn or depl oy-
adni n plan, using the same parameters as the initial plan, but with the correct HA
range.

Modifying Storage Node Service Port Ranges

This section explains how to modify your Storage Node service port ranges after an
initial configuration and deployment.

When you initially configure your installation, you specify a range of ports that

your Storage Node's Replication Nodes and Admin services use. These ports are
collectively called the service port ranges. Configuring them at installation time was
optional. If you did not configure them, the configuration scripts automatically selected
a range of ports for you.

The process of modifying your service port range depends on whether the Storage
Node has already been deployed. You can determine whether a Storage Node has
been deployed by using the Command Line Interface (CLI) to run the show t opol ogy
command. (See show topology for details). The show t opol ogy command lists the
Storage Node, along with the host and port if it has been deployed.

Storage Node Not Deployed

Use this process to modify your Service Port Ranges if the Storage Node has been
configured but not deployed.

Execute the following steps on the Storage Node host:

ORACLE 7-115

Chapter 7
Modifying Storage Node Service Port Ranges

1. Kill the existing Storage Node process. You can find the ID of this process by
using:

ps -af | grep -e "kvstore.jar.*start.*<KVROO>"

Kill the process using:
kill <storage node id>

2. Remove all the files from the <KVROOT> directory.
rm-rf <KVROOT>/*

3. Recreate the Storage Node bootstrap configuration file with the updated service
port ranges, being sure to specify the - servi cer ange parameter. For example:

java - Xmk64m - Xms64m \

-jar <KVHOME>/li b/ kvstore.jar makebootconfig -root <KVROOT> \
-port <port> -host <host> -harange <harange> \

-servicerange <startPort, endPort>

See makebootconfig for details on using this utility.

4. Restart the Storage Node:

Note:

Before starting the SNA, on each node, set the environment variable
MALLOC ARENA MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

java - Xmk64m - Xms64m -j ar <KVHOVE>/li b/ kvstore.jar restart

You can proceed to deploy the Storage Node using the Admin CLI. It will use the newly
specified service port range.

Storage Node Deployed

Use this process to modify your Service Port Ranges if the Storage Node has been
deployed.

1. Using the Admin CLI, modify the service port range using the pl an change-
par anet ers command. Specify ser vi cePor t Range while you do. For example:

pl an change-paraneters -service <id> \
-parans servicePortRange=<startPort, endPort >

servi cePort Range is described in Storage Node Parameters.

ORACLE 7-116

ORACLE

Chapter 7
Modifying Storage Node Service Port Ranges

Restart the Storage Node process and its services. The Replication Nodes and
any admin services for the Storage Node can be stopped in an orderly fashion

using the CLI. Use the show t opol ogy command (show topology) to list all the

services associated with the Storage Node.

Stop each of these services using the pl an st op-servi ce command. See plan
stop-service for details on this command. Note that when you stop a service, you
must use the services ID, which you can find from the output of the show t opol ogy
command. Keep track of these IDs because you will need them when you restart
the Storage Node.

Repeat until all services for the Storage Node have been stopped.

Kill the existing Storage Node process. You can find the ID of this process by
going to the Storage Node host and issuing:

ps -af | grep -e "kvstore.jar.*start.*<KVROOT>"

Kill the process using:

kill <storage node id>

Note:

Avoid killing all Replication Nodes in your store at the same time, as
doing so will result in unexpected errors.

4. Restart the Storage Node by going to the Storage Node host and issuing:

¢ Note:

Before starting the SNA, on each node, set the environment variable
MALLOC_ARENA_MAXto 1. Doing this ensures that memory usage is
restricted to the specified heap size.

java - Xmk64m - Xms64m -j ar <KVHOVE>/ | i b/ kvstore.jar restart
Restart the Storage Node services by using pl an start-servi ce for each service
on the Storage Node. See plan start-service for details.

When the Storage Node is restarted and all its Replication Nodes and any admin
services are running, the services will be using the updated service port range.
You can check by first locating the process ID of the Storage Node services using
this command:

ps -af | grep -e "ManageService. * <KVROOT>"

7-117

Chapter 7
Modifying Storage Node Service Port Ranges

and then check the ports the services are listening to by using this command:

netstat -tlpn | grep <id>

One of the listening ports is the service port and it should be within the new range.

ORACLE 7-118

Avallablity, Failover and Switchover
Operations

Availability and Failover

Oracle NoSQL Database is a data storage product with enormous scalability

and performance benefits. Additionally, Oracle NoSQL Database offers excellent
availability mechanisms. These mechanisms are designed to provide your applications
access to data contained in the store in the event of localized hardware and network
failures.

This document describes the mechanisms Oracle NoSQL Database uses to ensure
your data remains available, along with the various failover algorithms that Oracle
NoSQL Database employs. In addition, this document describes application design
patterns you can use to best make use of Oracle NoSQL Database's availability
mechanisms. In some cases, tradeoffs exist between ensuring data is highly available,
and achieving optimal performance. This document explores these tradeoffs.

The intended audience for this document includes system architects, engineers, and
others who want to understand the concepts and issues surrounding data availability
when using Oracle NoSQL Database. In addition, software engineers responsible for
writing code that interacts with an Oracle NoSQL Database store should also read this
document.

We recommend that you read and get familiar with the following contents before
continuing.

e SQL Reference Guide

This document introduces terms and concepts you need to know before reading
this document.

» Durability Guarantees in the Java Direct Driver Developer's Guide
This section includes concepts that lead to issues surrounding write availability.
* Consistency Guarantees in the Java Direct Driver Developer's Guide

This section includes concepts that lead to issues surrounding read availability.

Replication Overview

To ensure data durability and availability, Oracle NoSQL Database uses a single-
master replication strategy. Using a single machine to perform write operations, Oracle
NoSQL Database then broadcasts those operations to multiple read-only replicas.

The Concepts Guide describes a shard as a collection of replication nodes, associated
with a single master node and multiple replicas. Your store contains multiple shards,
and your data is spread evenly across all of the shards that your store uses.

ORACLE 8-1

Chapter 8
Loss of a Read-Only Replica Node

When you perform a write operation in your store, Oracle NoSQL Database completes
the write operation on the master node in use by the shard containing your data. The
master node performs this write according to whatever durability guarantees are in
place at the time. If you set a strong durability guarantee, the master requires the
participation of some or all of the replicas in the shard to complete the write operation.

If the master node of the shard becomes unavailable for any reason, the replica nodes
in primary zones hold an election to determine which of the remaining replication
nodes should take over as the master node. The replication node with the most
up-to-date data wins the election.

The election is decided based on a simple majority vote. This means that a majority of
the nodes in the shard in primary zones must be available to participate in the election
to select a new master.

Loss of a Read-Only Replica Node

ORACLE

A common fail over case is losing a replica node due to a problem with the machine
upon which it is running. This loss can be due to something as common as a hard
drive failure.

In this case, the only shard that is affected is the one using the replica. By default, the
effect on the shard is reduced read throughput capacity. The shard itself is capable of
continuing normal operations. However, losing a single Replication Node reduces its
capacity to service read requests by whatever read throughput a single host machine
offers your store. Whether you detect this reduction in read throughput capacity
depends on how heavy a read load your shard is experiencing. The shard could

have a low enough read load that losing the replica results in a minor performance
reduction.

Such a small performance reduction assumes that a single host machine contains
only one Replication Node. If you configure your store so that multiple Replication
Nodes run on a single host, then the loss of throughput capacity increases accordingly.
It is likely that the loss of a machine running multiple Replication Nodes will affect

the throughput capacity of more than one shard, because it is unlikely that all the
Replication Nodes on that machine will belong to the same shard. Again, whether you
notice any performance reduction from the loss of the Storage Node depends on how
heavy a read load the individual affected shards are experiencing.

In this scenario, with one exception, the shard will continue servicing write requests,
and may be able to do so with no changes to its write throughput capacity. The master
itself is not affected, so it can continue performing writes and replicating them to the
remaining replicas in the shard. There can be reduced write throughput capacity if:

» thereis such a heavy read load on the shard that the loss of one replica saturates
the remaining replica(s); and

* the master requires an acknowledgement before finishing a write commit.

In this scenario, write performance capacity can be reduced either because the master
is continually waiting for the replica to acknowledge commits, or because the master
itself is expending resources responding to read requests. In either case, you may see
degraded write throughput, but the level of degradation depends on how heavy the
read/write load actually is on the shard. Again, it is possible that you will never detect
any write throughput reduction, because the write load on the shard is low.

In addition, the loss of a single read-only replica can cause all write operations at that
shard to fail with a Dur abi | i t yExcept i on exception. This happens if you are using

8-2

Chapter 8
Loss of a Read/Write Master

a durability guarantee that requires acknowledgements from all replicas in the shard
in primary zones. In this case, writes at that shard will fail until either that replica is
brought back online, or you place a less strict durability guarantee into use.

Using durability guarantees that require acknowledgements from all replicas in primary
zones offer you the strongest data durability possible (by making certain that your
writes are replicated to every machine in a shard). At the same time, they have the
potential to lose write capabilities for an entire shard from a single hardware failure.
Consequently, be sure to balance your durability requirements against your availability
requirements, and configure your store and related code accordingly.

Loss of a Read/Write Master

If you lose a host machine containing a shard's master, the shard will be incapable of
responding to write requests, momentarily. The lack of write request response is so
brief that it may not be detected by your client code. Only the shard containing the
master is affected by this outage. All other shards continue to perform as normal.

In this case, the shard's replicas in primary zones will quickly notice the master is
missing and call for an election. Typically this will occur within a few milliseconds after
losing the master.

The replica nodes will conduct an election, and the replica in a primary zone with the
most up-to-date set of data will be elected master. To be elected master requires a
simple majority vote from the other machines in the shard hosting nodes in primary
zones. Keep in mind that this simple majority requirement has implications if many
machines are lost from your store.

Once a new master is elected, the shard will continue operations, reducing its
read throughput capacity by one machine. As with the loss of a single replica (see
the previous section), all write operations can continue as long as your durability
guarantee does not require acknowledgements from all replicas in primary zones.

Your client code will not notice the missing master if the new master is elected

and services the write request within the timeout value used for the write operation.
However, we recommend that your production code include ways to guard against
timeout problems. In the event of a timeout, your code should include a decision policy
about what to do next. For example, your policy could:

* Retry the write operation immediately,
* Retry the write operation after a defined wait,

* Abandon the write operation entirely.

Unplanned Network Partitions

ORACLE

A shard can be split into two, nhon-communicating networks. Such an event can occur
when a piece of network hardware, such as a router, fails in some way that divides the
shard. The store’s response to such an event depends on how the network partition
divides the shard’s Replication Nodes as in these three cases:

A single Replication Node is isolated from the rest of the shard. If the Replication Node
is a read-only replica, the shard continues operating as normal, but without the read
throughput capacity caused by the loss of a single machine. See Loss of a Read-Only
Replica Node for more details.

8-3

Chapter 8
Unplanned Network Partitions

A single Replication Node becomes isolated from the rest of the shard. If the
Replication Node is a master, the shard handles the event in the same way as if it had
lost a master. The shard holds an election to select a new master and then continues
operating as normal. See Loss of a Read/Write Master for further information.

The new network partition divides the shard into two or more groups of machines. In
this case, there will be at least one minority node partition. A minority node partition
contains less than a majority of the Replication Nodes in the shard. There could also
be a majority node partition. A majority node partition has the majority of nodes in
the shard —. However, a majority node partition is not a given, especially if the new
network partition creates more than two sets of Replication Nodes.

How failover is handled in this scenario depends on whether a majority node partition
does exist, and if the master exists in that partition. There are also other issues to
consider, such as the durability and consistency policies that were in use at the time
the new network partition was created.

Master is in the Majority Node Partition

ORACLE

Suppose the shard is divided into two partitions. Partition A contains a simple majority
of the Replication Nodes in primary zones, including the master. Partition B has the
remaining nodes.

» Partition A continues to service read and write requests as normal, but with a
reduced read throughput from the loss of however many Replication Nodes are
in Partition B. A caveat in this situation is what durability policy is in use at the
time. If Partition A does not have enough replicas from primary zones to meet the
durability policy requirements, it could be prevented from servicing write requests.
If the durability policy requires a simple majority, or less, of replicas, then the shard
will be able to service write requests.

« Partition B continues to service read requests as normal, but with increasingly
stale data. Depending on the consistency guarantee in place, Partition B might
cease to service read requests. If a version-based consistency is in use,
then Partition B will probably encounter Consi st encyExcept i on exceptions soon
after the network partition occurs, due to its inability to obtain version tokens
from the master. Similarly, if a time-based consistency policy is in use, then
Consi st encyExcept i on exceptions will occur as soon as the replica lags too far
behind the master, from which it is no longer receiving write updates. By default,
a consistency guarantee is not required to service read requests. So unless you
explicitly create and use a consistency policy, Partition B can continue to service
read requests through the entire network outage.

Partition B will attempt to elect a new master, but will be unable to do so because
it does not contain the simple majority of Replication Nodes required to hold an
election.

Further, if the partition is such that your client code can reach Partition A but not
Partition B, then the shard will continue to service read and write requests as normal,
but with a reduced read capacity.

However, if the partition is such that your client code can read Partition B but not
Partition A, then the shard will be unable to service any write requests. This is because
Partition A contains the master, and Partition B does not include enough Replication
Nodes to elect a new master.

8-4

Chapter 8
Unplanned Network Partitions

Master is in the Minority Node Partition

Suppose the shard is divided into two partitions. Partition A contains a simple majority
of the Replication Nodes from primary zones, but NOT the master. Partition B has the
remaining nodes, including the master.

Assuming both partitions are network accessible by your client code, then:

e Partition A will notice that it no longer has a master. Because Partition A has at
least a simple majority of the Replication Nodes in primary zones, it will be able to
elect a new master. It will do this quickly, and the shard will continue operations as
normal.

Whether Partition A can service write requests is determined by the durability
policy in use. As long as the durability policy requires a simple majority, or less, of
replicas, then the shard is able to service write requests.

e Partition B will continue to operate as normal, believing that it has a valid master.
However, the only way Partition B can service write requests is if the durability
policy in use requires no participation from the shard's replicas. If a majority of
nodes in primary zones must acknowledge the write operation, or if all nodes in
primary zones must acknowledge the write, then the partitions will be unable to
service writes because not enough nodes are available to satisfy the durability

policy.

If durability NONE is in use, then for the period of time that it takes to resolve

the network partition, the shard will operate with two masters. When the partition
is resolved, the shard will recognize the problem and correct it. Because Partition
A held a valid election, writes performed there will be kept. Any writes performed
in Partition B will be discarded. The old master in Partition B will be demoted to

a simple replica, and the replicas in Partition B will all be synced with the new
master.

Note:

Because of the potential for loss of data in this scenario, Oracle strongly
recommends that you do NOT use durability NONE. The only time you
should use that durability setting is if you want to absolutely maximize
write throughput, and do not care if you lose the data.

Further, if the partition is such that your client code can reach Partition A but not
Partition B, then the shard will continue to service read and write requests as normal,
but only after an election is held, and then with a reduced read capacity.

However, if the partition is such that your client code can read Partition B but not
Partition A, then the shard will be unable to service write requests at all, unless

you use the weakest durability policy available. This is because Partition B does not
include enough Replication Nodes to satisfy anything other than the weakest available
durability policy.

No Majority Node Partition

Suppose the shard is divided into multiple partitions, and no partition contains a
majority of the Replication Nodes in the shard. In this case, the shard's partitions can

ORACLE 8-5

Chapter 8
Failover and Switchover Operations

service read requests, so long as the consistency policy in use for the read supports it.
If the read requires tight consistency with the master, and the master is not available to
ensure the consistency can be met, then the read will fail.

The partition containing the master can service write requests only if you are using the
weakest available durability policy, in which no acknowledgements from replicas are
required. If acknowledgements are required, then there will not be enough replicas to
satisfy the durability policy and no write operations can occur.

Once the network partition is resolved, the shard will elect a new master, synchronize
all replicas with it, and continue operations as normal.

Failover and Switchover Operations

Optimal use of available physical datacenters is achieved by deploying your store
across multiple zones. This provides fault isolation as each zone has a copy of your
complete store, including a copy of all the shards. With this configuration, when a zone
fails, write availability is automatically reestablished as long as quorum is maintained.

< Note:

To achieve other levels of fault isolation, best practices for data center design
should be applied. For example, site location, building selection, floor layout,
mechanical design, electrical system design, modularity, etc.

However, if quorum is lost, manual procedures such as failovers can be used instead
to recover from zone failures. For more information on quorum, see Concepts Guide.

A failover is typically performed when the primary zone fails or has become
unreachable and one of the secondary zones is transitioned to take over the primary
role. Failover can also be performed to reduce the quorum to the available primary
zones. Failover may or may not result in data loss.

Switchovers can be used after performing a failover (to restore the original
configuration) or for planned maintenance.

A switchover is typically a role reversal between a primary zone and one of the
secondary zones of the store. A switchover can also be performed to convert one or
more zones to another type for maintenance purposes. Switchover requires quorum
and guarantees no data loss. It is typically done for planned maintenance of the
primary system.

In this chapter, we explain how failover and switchover operations are performed.

Note:

Arbiters are not currently supported during failover and switchover
operations.

ORACLE 8-6

Chapter 8
Failover and Switchover Operations

Repairing a Failed Zone

If a zone fails but quorum is maintained, you have the option to repair the failed zone
with new hardware by following the procedure described in Repairing a Failed Zone by
Replacing Hardware.

Another option is to convert the failed zone to a secondary zone. In some cases, this
approach can improve the high availability characteristics of the store by reducing the
guorum requirements.

For example, suppose a store consists of two primary zones: zone 1 with a replication
factor of three and zone 2, with a replication factor of two. Additionally, suppose zone
2 fails. In this case, quorum is maintained because you would have 3 out of the 5
replicas, but any additional failure would result in a loss of quorum.

Converting zone 2 to a secondary zone would reduce the primary replication factor to
3, meaning that each shard could tolerate an additional failure.

You should determine if switching zone types would actually improve availability. If so,
then decide if it is worth doing in the current circumstances.

Performing a Failover

If quorum is maintained, you do not need to do anything because the store is still
performing normally.

In situations where a zone fails but quorum is lost, your only option is to perform a
failover.

For example, suppose a store consists of two primary zones, "Manhattan" and
"JerseyCity", each deployed in its own physical data center.

¢ Note:

For simplicity, this example uses a store with a replication factor of two. In
general, a Primary Replication Factor of 3 is adequate for most applications
and is a good starting point, because 3 replicas allow write availability if a
single primary zone fails.

Additionally, suppose that the "Manhattan" zone fails, resulting in the failure of all of
the associated Storage Nodes and a loss of quorum. In this case, if the host hardware
of "Manhattan" was irreparably damaged or the problem will take too long to repair you
may choose to initiate a failover.

The following steps walk you through the process of verifying failures, isolating
Storage Nodes, and reducing admin quorum to perform a failover operation. This
process allows service to be continued in the event of a zone failure.

ORACLE .

ORACLE

1.

Chapter 8
Failover and Switchover Operations

Connect to the store. To do this, connect to an admin running in the JerseyCity
zone:

java - Xmk64m - Xms64m -j ar KVHOVE/ |i b/ kvstore.jar \
runadmin -host jerseyl -port 6000 \
-security USER/ security/admn.security

Note:

This assumes that you must have followed the steps as mentioned in
Configuring Security with Remote Access.

Use the verify configurati on command to confirm the failures:

kv-> verify configuration
Connected to Admin in read-only node
Verify: starting verification of store nystore based upon
t opol ogy sequence #207
200 partitions and 2 storage nodes.
Time: 2018-09-28 06:57:10 UTC Version: 18.3.2
See jerseyl:/kvroot/nystore/log/nystore {0..N.Iog
for progress nessages
Verify: Shard Status: healthy:0 witabl e-degraded: 0
read-only: 1
offline:0
Verify: Admin Status: read-only
Verify: Zone [name=Manhattan id=znl type=PRI MARY
al | owAr bi ters=fal se master Affinity=fal se]
RN Status: online:0 offline:l
Verify: Zone [name=JerseyCity id=zn2 type=PRl MARY
al | owAr bi ters=fal se master Affinity=fal se]
RN Status: online:1 offline:0
Verify: == checking storage node snl ==
Verify: snl: ping() failed for snl
Unabl e to connect to the storage node agent at host nycl
port 5000, which may not be running; nested exception is:
java. rn. Connect Exception: Connection refused to host:
nycl; nested exception is
j ava. net. Connect Excepti on: Connection refused
Verify: Storage Node [snl] on nycl: 5000
Zone: [name=Manhattan id=znl type=PRI MARY al | owAr bi ters=fal se
mast er Af fi ni ty=f al se]
UNREACHABLE
Verify: adminl: ping() failed for adninl
Unabl e to connect to the storage node agent at host nycl
port 5000, which may not be running; nested exception is:
java. rm. Connect Exception: Connection refused to host:
nycl; nested exception is
j ava. net. Connect Exception: Connection refused
Verify: Admi n [adm nl] St at us: UNREACHABLE
Verify: rgl-rnl: ping() failed for rgl-rnl
Unabl e to connect to the storage node agent at host nycl

8-8

ORACLE

Chapter 8
Failover and Switchover Operations

port 5000, which may not be running; nested exception is:
java.rm. Connect Exception: Connection refused to host:
nycl; nested exception is:
j ava. net. Connect Exception: Connection refused

Verify: Rep Node [rgl-rnl] Status: UNREACHABLE

Verify: == checking storage node sn2 ==

Verify: Storage Node [sn2] on jerseyl: 6000

Zone: [name=JerseyCity id=zn2 type=PRI MARY al | owArbi t er s=f al se

mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c

Verify: Admi n [adm n2]
Status: RUNNI NG MASTER (non-authoritative)
Verify: Rep Node [rgl-rn2]

Status: RUNNI NG MASTER (non-authoritative)
sequenceNunber: 217 haPort: 6003
avail abl e storage size:12 GB
Verification conplete, 4 violations, 0 notes found.
Verification violation: [adm nl] ping() failed for admnl
Unabl e to connect to the storage node agent at host nycl
port 5000, whi ch may not be running; nested exception is:
java.rm. Connect Exception: Connection refused to host:
nycl; nested exception is
j ava. net. Connect Exception: Connection refused
Verification violation: [rgl-rnl] ping() failed for rgl-rnl
Unabl e to connect to the storage node agent at host nycl
port 5000, which may not be running; nested exception is:
java.rm. Connect Exception: Connection refused to host:
nycl; nested exception is
j ava. net. Connect Exception: Connection refused
Verification violation: [snl] ping() failed for snl
Unabl e to connect to the storage node agent at host nycl
port 5000, which may not be running; nested exception is:
java.rm. Connect Exception: Connection refused to host:
nycl; nested exception is
j ava. net. Connect Exception: Connection refused

In this case, the Storage Node Agent at host nycl is confirmed unavailable.

To prevent a hard rollback and data loss, isolate failed nodes (Manhattan) from
the rest of the system. Make sure all failed nodes are prevented from rejoining the
store until their configurations have been updated.

To do this, you can:
» Disconnect the network physically or use a firewall.
* Modify the start-up sequence on failed nodes to prevent SNAs from starting.

To make changes to the store, you first need to reduce admin quorum. To do this,
use the repai r - adm n- quor umcommand, specifying the available primary zone:

kv-> repair-adnin-quorum -znnanme JerseyCity
Connected to admin in read-only node
Repai red admin quorum using adm ns: [adm n2]

8-9

ORACLE

Chapter 8
Failover and Switchover Operations

Now you can perform administrative procedures using the remaining admin
service with the temporarily reduced quorum.

Use the pl an fail over command to update the configuration of the store with the
available zones.

kv-> plan failover -znnane \

JerseyCity -type primary \

-znname Manhattan -type of fline-secondary -wait
Executing plan 8, waiting for conpletion...
Plan 8 ended successful ly

The pl an fail over command fails if it is executed while other plans are still
running. You should cancel or interrupt the plans, before executing this plan.

For example, suppose the t opol ogy redi stribute is in progress. If you run the
plan fail over command, it will fail. For it to succeed, you need to first cancel or
interrupt the t opol ogy redi stri bute command.

To do this, first use the show pl ans command to learn the plan ID of the topology
redistribute command. In this case, 9. Then, cancel the t opol ogy redi stribute
command using the pl an cancel command:

kv-> plan cancel -id 9

After performing the failover, confirm that the zone type of Manhattan has been
changed to secondary using the pi ng command.

kv-> ping

Pi ngi ng conmponents of store nystore based upon topol ogy sequence
#208

200 partitions and 2 storage nodes

Time: 2018-10-18 07:39:03 UTC Version: 18.3.2

Shard Status: healthy:0 witabl e-degraded:1 read-only:0 offline:0
Admin Status: writabl e-degraded

Zone [name=Manhattan i d=znl type=SECONDARY al | owAr bi t er s=f al se
mast er Affini ty=fal se]

RN Status: online:0 offline:1

Zone [name=JerseyCity id=zn2 type=PRI MARY al | owAr bit ers=f al se
mast er Affini ty=fal se]

RN Status: online:1 offline:0

Storage Node [snl] on nycl: 5000

Zone: [nanme=Manhattan id=znl type=SECONDARY al | owAr bi t ers=f al se
mast er Affini ty=fal se]

UNREACHABLE
Admi n [admi nl] Status: UNREACHABLE
Rep Node [rgl-rnl] Status: UNREACHABLE

Storage Node [sn2] on jerseyl: 6000
Zone: [nane=JerseyCity id=zn2 type=PRI MARY al | owAr bi t ers=fal se
mast er Affini ty=fal se]
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8h33c
Admi n [admi n2] Status: RUNNI NG MASTER
Rep Node [rgl-rn2]

8-10

Chapter 8
Failover and Switchover Operations

Status: RUNNI NG MASTER sequenceNunber: 427 haPort: 6011
avail abl e storage size:12 GB

6. The failover operation is now complete. Write availability in the store is
reestablished using zone 2 as the only available primary zone. Zone 1 is offline.
Any data that was not propagated from zone 1 prior to the failure will be lost.

Note:

In this case, the store has only a single working copy of its data, so
single node failures in the surviving zone will prevent read and write
access, and, if the failure is a permanent one, may produce permanent
data loss.

If the problems that led to the failover have been corrected and the original data from
the previously failed nodes (Manhattan) is still available, you can return the old nodes
to service by performing a switchover. To do this, see the next section.

Performing a Switchover

To continue from the example of the previous section, after performing the failover, you
can return the old nodes to service by performing the following switchover procedure:

1. After the failed zones are repaired, restart all the Storage Nodes of the failed
zones without starting any services (avoids hard rollback):

< Note:

Before starting the SNA, on each node, set the environment variable
MALLOC_ARENA_MAXto 1. Doing this ensures that memory usage is
restricted to the specified heap size.

java - Xmx64m - Xms64m \
-jar KVHOWE/ | i b/ kvstore.jar restart -disable-services \
-root nycl/ KVROOT &

" Note:

When performing planned maintenance, there is no need to isolate
nodes or disable services prior to bringing nodes back online.

2. Reestablish network connectivity or reenable the standard startup sequence of the
previously failed zones.

ORACLE 8-11

ORACLE

Chapter 8
Failover and Switchover Operations

Repair the topology so that the topology for the newly restarted Storage Nodes
can be updated with changes made by the failover.

java - Xmk64m - Xms64m -j ar KVHOVE/ |i b/ kvstore.jar runadmn \
-host jerseyl -port 5000 \
-security USER/ security/admn.security

kv-> plan repair-topol ogy -wait
Executed plan 10, waiting for conpletion...
Plan 10 ended successful ly

" Note:

This assumes that you must have followed the steps as mentioned in
Configuring Security with Remote Access.

< Note:

This command will also restart services on the previously failed nodes.

Use the verify configuration command to confirm that there are no
configuration problems.

Run the ping command. The "maxCatchupTimeSecs" value will be used for the
-timeout flag of the awai t - consi st ency command.

Use the timeout flag to specify an estimate of how long the switchover will take.
For example, if the nodes have been offline for a long time it might take many
hours for them to catch up so that they can be converted back to primary nodes.

kv-> ping

Pi ngi ng components of store nystore based upon topol ogy sequence
#208

200 partitions and 2 storage nodes

Time: 2018-09-28 06:57:10 UTC Version: 18.3.2

Shard Status: healthy:1 witabl e-degraded: 0 read-only:0 offline:0
Admin Status: healthy

Zone [name=Manhattan id=znl type=SECONDARY al | owAr bi t er s=f al se
mast er Af fi ni ty=f al se]

RN Status: online:1 offline:0 nmaxDelayMI1is: 120000

maxCat chupTi neSecs: 1800

Zone [name=JerseyCity id=zn2 type=PRI MARY al | owAr bit ers=fal se
mast er Af fi ni ty=f al se]

RN Status: online:1 offline:0

Storage Node [snl] on nycl: 5000

Zone: [name=Manhattan id=znl type=SECONDARY al | owAr bi t er s=f al se
mast er Af fi ni ty=f al se]

Status: RUNNI NG

Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8h33c

8-12

ORACLE

Chapter 8
Failover and Switchover Operations

Admi n [adm nl] Status: RUNNI NG REPLI CA
Rep Node [rgl-rnl] Status: RUNNI NG REPLI CA
sequenceNunber: 434 haPort:5011 avail abl e storage size:18 (B
delayM I lis:0 catchupTi meSecs: 0
Storage Node [sn2] on jerseyl: 6000
Zone: [name=JerseyCity id=zn2 type=PRI MARY al | owArbi t er s=f al se
mast er Af fi ni ty=f al se]
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8b33c
Admi n [adm n2] Status: RUNNI NG MASTER
Rep Node [rgl-rn2]
Status: RUNNI NG MASTER sequenceNunber: 434 haPort: 6011
avail abl e storage size:16 GB

In this case, 1800 seconds (30 minutes) is the value to be used.

Use the awai t - consi st ency command to specify the wait time (1800 seconds)
used for the secondary zones to catch up with their masters.

The system will only wait five minutes for nodes to catch up when attempting to
change a zone's type. If the nodes do not catch up in that amount of time, the plan
will fail.

If the nodes will take more than five minutes to catch up, you should run the
awai t - consi st ency command, specifying a longer wait time using the -timeout
flag. In this case, the wait time (1800 seconds) is used:

kv-> awai t -consi stent -timeout 1800 -znnanme Manhattan
The specified zone is consistent

By default, nodes need to have a delay of no more than 1 second to be considered
caught up. You can change this value by specifying the -replica-delay-threshold
flag. You should do this if network delays prevent the nodes from catching up
within 1 second of their masters.

Note:

If you do not want the switchover to wait for the nodes to catch up, you
can use the -no-replica-delay threshold flag. In that case, nodes will be
converted to primary nodes even if they are behind. You should evaluate
whether this risk is worth taking.

Perform the switchover to convert the previously failed zone back to a primary
zone.

kv-> topol ogy clone -current -name newTopo
kv-> topol ogy change-zone-type -name newTopo \
-znname Manhattan -type primary

Changed zone type of znl to PRIMARY in newTopo
kv-> pl an depl oy-topol ogy -nanme newTopo -wait
Executed plan 11, waiting for conpletion...
Plan 11 ended successful ly

8-13

Chapter 8
Zone Failover

Confirm the zone type change of the Manhattan zone to PRIMARY by running the
ping command.

kv-> ping

Pi ngi ng conmponents of store nystore based upon topol ogy sequence
#208

200 partitions and 2 storage nodes

Time: 2018-09-28 06:57:10 UTC Version: 18.3.2

Shard Status: healthy:1 witable-degraded: 0 read-only:0 offline:0
Admin Status: healthy

Zone [name=Manhattan i d=znl type=PRI MARY al | owAr bi t er s=f al se

mast er Affi ni ty=fal se]

RN Status: online:1 offline:0 maxDel ayM|1is: 120000

maxCat chupTi neSecs: 1800
Zone [name=JerseyCity id=zn2 type=PRI MARY al | owAr bit ers=f al se
mast er Affi ni ty=fal se]
RN Status: online:1 offline:0
Storage Node [snl] on nycl: 5000
Zone: [nanme=Manhattan id=znl type=PRI MARY al | owAr biters=fal se
mast er Affi ni ty=fal se]
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8h33c
Admi n [admi nl] Status: RUNNI NG REPLI CA
Rep Node [rgl-rnl] Status: RUNNI NG REPLI CA
sequenceNunber : 434 haPort: 5011 avail abl e storage size: 18 GB
delayM | 1is:0 catchupTinmeSecs: 0
Storage Node [sn2] on jerseyl: 6000
Zone: [nane=JerseyCity id=zn2 type=PRI MARY al | owAr bi t ers=fal se
mast er Affini ty=fal se]
Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC Build id: a72484b8h33c
Admi n [admi n2] Status: RUNNI NG MASTER
Rep Node [rgl-rn2]
Status: RUNNI NG MASTER sequenceNunber: 434 haPort: 6011
avail abl e storage size:12 GB

Zone Fallover

ORACLE

Zones allow you to spread your data store across various physical installation
locations. The different locations can be anything from different physical buildings
near each other, to different racks in the same building. The basic goal of spreading
your store across locations is to guard against large-scale infrastructure disruptions,
such as power outages or major storm damage, by placing the nodes in your store
physically as far apart as possible.

Oracle NoSQL Database provides support for two kinds of zones. Primary zones
contain nodes which can serve as masters or replicas. Zones are created as primary
zones by default. Secondary zones contain nodes which can serve only as replicas.
Secondary zones can be used to make a copy of the data available at a distant
location, or to maintain an extra copy of the data to increase redundancy or read
capacity.

8-14

Chapter 8
Durability Summary

Both types of zones require high throughput network connections to transmit the
replication data required to keep replicas up-to-date. Failing to provide sufficient
network capacity will result in nodes in poorly connected zones falling farther and
farther behind. Locations connected by low throughput network connections are not
suitable for use with zones.

For primary zones, in addition to a high throughput network, the network

connections with other primary zones should provide highly reliable and low latency
communication. These capabilities make it possible to perform master elections for
quick master failovers, and to provide acknowledgments to meet write request timeout
requirements. Primary zones are not, therefore, suitable for use with an unreliable or
slow wide area network.

For secondary zones, the nodes do not participate in master elections or
acknowledgments. For this reason, the system can tolerate reduced reliability or
increased latency for connections between secondary and primary zones. The network
connections still need to provide sufficient throughput to support replication, and must
provide sufficient reliability that temporary interruptions do not interfere with network
throughput.

If you deploy your store across multiple zones, then Oracle NoSQL Database tries to
physically place at least one Replication Node from each shard in each zone. Whether
Oracle NoSQL Database can do this depends on the number of shards in use in

your store, the number of zones, the number of Replication Nodes, and the number

of physical machines available in each zone. Still, Oracle NoSQL Database makes

a best-effort to spread Replication Nodes across available zones. Doing so guards
against losing entire shards should the zone become unavailable for any reason.

All of the failover descriptions covered here apply to zones. Failover works across
zones in the same way as it does if all nodes are contained within a single zone.
Zones offer you the ability for your data to remain available in the event of a large
outage. However, read and write capability for any given shard is still gated by whether
the remaining zone(s) constitute a majority node partition, and the durability and
consistency policies in use for your store activities.

Durability Summary

ORACLE

This document has described how durability guarantees affect a shard's write
availability in the event of hardware or network failures. In summary:

e A durability guarantee that requires no acknowledgements from the shard's
replicas gives you the best chance that the shard can continue servicing write
requests in the event of an outage. However, this durability guarantee can also
result in the shard operating with two masters, which leads to data loss once
hardware problems are resolved. This is not a recommended configuration.

e A durability guarantee requiring a simple majority of primary zone replicas to
acknowledge the write operation guards against two masters accidently operating
at one time. However, it also means that the shard will be incapable of servicing
write requests if more than a majority of the replicas are offline due to a hardware
failure.

e A durability guarantee requiring all primary zone replicas to acknowledge the write
operation guards against any possibility of data loss. However, it also means that
the shard will be unable to service write requests if even one of the replicas is
unavailable for any reason.

8-15

Chapter 8
Consistency Summary

Consistency Summary

ORACLE

In most cases, replicas can continue to service read requests as long as the
underlying hardware remains functional. In its default configuration, there is nothing
that stops a replica from doing this, even if it is the only node running after some
catastrophic failure.

However, is is possible for a replica to stop servicing read requests following a network
failure, if the consistency policy requires either version information, or disallows stale
data relative to the master. Whether this happens depends on how your Replication
Nodes are exactly partitioned as a result of the failure, and how long it takes

to establish a new master. The replica's ability to service read requests is also
determined by the consistency policy in use for each request. If the read requires tight
consistency with the master, and the master is not available to ensure the consistency
can be met, then the read will fail.

8-16

Monitoring Oracle NoSQL Database

There are several important aspects to maintaining a highly available NoSQL
Database that can service requests with predictable latency and throughput. This book
outlines these aspects and describes how to maintain NoSQL Database to achieve
these goals by focusing on the following topics:

e How to monitor the hardware and software in a NoSQL Database cluster.
* How to detect hardware and software failures.
* How to diagnose a hardware or software failure.

« How to restore a component, or set of components, once a failure has been
detected and resolved.

The following chapters focus on the management and monitoring aspects of the
Oracle NoSQL Database. The purpose here is to monitor, detect, diagnose, and
resolve run-time issues that may occur with the NoSQL Database and the underlying
hardware.

Though the guide briefly touches on guidelines and best practices for the application
layer's role in monitoring and diagnosis, it does not provide any specific guidance
as this will be dictated by the application and its requirements as set forth by the
business.

Software Monitoring

ORACLE

Being a distributed system, the Oracle NoSQL Database is composed of several
software components and each expose unique metrics that can be monitored,
interpreted, and utilized to understand the general health, performance, and
operational capability of the Oracle NoSQL Database cluster.

This section focuses on best practices for monitoring the Oracle NoSQL software
components. While there are several software dependencies for the Oracle NoSQL
Database itself (for example, Java virtual machine, operating system, NTP), this
section focuses solely on the NoSQL components.

There are four basic mechanisms for monitoring the health of the Oracle NoSQL
Database:

e System Log File Monitoring — Oracle NoSQL Database uses the java.util.logging
package to write all trace, information, and error messages to the log files for each
component of the store. These files can be parsed using the typical log file probing
mechanism supported by the leading system management solutions.

e System Monitoring Agents — Oracle NoSQL Database publishes MIBs for
integration with Java Management Extensions (JMX) Management Beans for
integration with JIMX based monitoring solutions.

e Application Monitoring — A good proxy for the “health” of the Oracle NoSQL
Database rests with application level metrics. Metrics like average and 90th
percentile response times, average and 90th percentile throughput, as well

9-1

Chapter 9
Software Monitoring

average number of timeout exceptions encountered from NoSQL API calls are

all potential indicators that something may be wrong with a component in the
NoSQL cluster. In fact, sampling these metrics and looking for deviations from
mean values can be the best way to know that something may be wrong with your
environment.

* Oracle Enterprise Manager (OEM) — The integration of Oracle NoSQL Database
with OEM primarily takes the form of an EM plug-in. The plug-in allows monitoring
store components, their availability, performance metrics, and operational
parameters through Enterprise Manager. For more information on OEM, see About
Intellid Plugin.

The following sections discuss details of each of these monitoring techniques (except
OEM) and illustrate how each of them can be utilized to detect failures in Oracle
NoSQL Database components.

System Log File Monitoring

ORACLE

The Oracle NoSQL Database is composed of the following components, and each
component produces log files that can be monitored:

* Replication Nodes (RN) — Service read and write requests from API calls.
Replication Nodes for a particular shard are laid out on different Storage Nodes
(physical servers) by the topology manager, so the log files for the nodes in each
shard are spread across multiple machines.

- Storage Node Agents (SNA) — Manage the Replication Nodes that are running
on each Storage Node (SN). The Storage Node Agent maintains its own log
regarding the state of each replication node it is managing. You can think of the
Storage Node Agent log as a high level log of the Replication Node activity on a
particular Storage Node.

* Administration (Admin) Nodes — Administrative Nodes handle the execution of
commands from the administrative command line interface. Long running plans
are also staged from the administrative nodes. Administrative Nodes also maintain
a consolidated log of all the other logs in the Oracle NoSQL cluster.

All of the above mentioned log files can be found in the following directory structure
KVROOT/ kvst or e/ | og on the machine where the component is running. The following
steps can be used to find the machines that are running the components of the cluster:

1. java - Xmk64m - Xms64m -jar kvstore.jar ping -host <any machine in the
cluster> -port <the port nunber used to initialize the KVStore>

2. Each Storage Node (snXX) is listed in the output of the ping command, along
with a list of Replication nodes (rgXX-rnXX) running on the host listed in the ping
output. XX denotes the unique number assigned to that component by NoSQL
Database. For Replication Nodes, rg denotes the shard number and stands for
replication group, while rn denotes the Replication Node number within that shard.

3. Administration (Admin) Nodes — Identifying the nodes in the cluster that are
running administrative services is a bit more challenging. To identify these nodes,
a script would run ps axww on every host in the cluster and grep for kvstore.jar
and -class Admin.

The Oracle NoSQL Database maintains a single consolidated log of every node in the
cluster, and this can be found on any of the nodes running an administrative service.
While this is a convenient and easy single place to monitor for errors, it is not 100%
guaranteed. The single consolidated view is aggregated by getting log messages over

9-2

Chapter 9
Software Monitoring

the network, and transient network failures, packet loss, and high network utilization
can cause this consolidated log to either be out of date, or have missing entries.
Therefore, we recommend monitoring each host in the cluster as well as monitoring
each type of log file on each host in the cluster.

Generally speaking, any log message with a level of SEVERE should be considered a
potentially critical event and worthy of generating a systems management notification.
The sections in the later part of this document illustrate how to correlate specific
SEVERE exceptions with hardware component failure.

Java Management Extensions (JMX) Monitoring

Oracle NoSQL Database is also monitored through JMX based system management
tools. For JMX based tools, the Oracle NoSQL MIB is found in lib directory of the
installation along with the JAR files for the product. For more information on JMX, see
Standardized Monitoring Interfaces .

Monitoring for Storage Nodes (SN)

A Storage Node is a physical (or virtual) machine with its own local storage, which
houses the Replication Node. For more information, see Architecture in the Concepts
Guide.

See the following sections:

* Metrics for Storage Nodes

» Java Management Extensions (JMX) Notifications

Metrics for Storage Nodes

ORACLE

* snServiceStatus — The current status of the Storage Node Agent running on the
host. The Storage Node Agent manages all the Replication Nodes running on the
Storage Node (host). The textual representation along with the enumeration ID are
shown below:

— starting (1) — The Storage Node Agent is booting up.

— waitingForDeploy (2) — The Storage Node Agent is waiting for the initial
deploy-SN command to be run.

— running(3) — The Storage Node Agent is running.

— stopping(4) — The Storage Node Agent is in the process of shutting down. It
may be in the process of shutting down Replication Nodes that it manages.

— stopped(5) — An intentional clean shutdown.

— errorRestarting(6) — Although this state exists in the category, it is typically
never seen for storage node agents.

— errorNoRestart(7) — Although this state exists in the category, it is typically
never seen for storage node agents.

— unreachable(8) — The Storage Node Agent is unreachable by the admin
service.

9-3

ORACLE

Chapter 9
Software Monitoring

< Note:

If a Storage Node is UNREACHABLE, or a Replication Node is
having problems and its Storage Node is UNREACHABLE, first
check the network connectivity between the Admin and the Storage
Node. If the managing Storage Node Agent is reachable, but the
managed Replication Node is not, the problem most likely lies
somewhere other than the network.

— expectedRestarting(9) — This state is rare for Storage Node Agents.

snHostName — The name of the host where the Storage Node agent has been
deployed.

snRegistryPort — The TCP/IP port on which Oracle NoSQL Database should be
contacted.

snHAHostName — If the HA host name has been configured through the boot
parameters then this is returned, otherwise the name of the host running the
Storage Node agent is returned. This value represents the network interface name
that the replication subsystem uses for internode communication. The HA host
name is specified using the - hahost flag to the makeboot confi g command, and

it corresponds to the haHostname Storage Node parameter, in the Setting Store
Parameters. If users encounter a problem indicating that the HA host name has
been specified incorrectly, first check that they have used the correct value in the
call to the makeboot confi g command. The user can change the value later by
modifying the haHost name parameter. For more information, see makebootconfig.

snHaPortRange — The range of ports that replication nodes use to communicate
among themselves.

snStoreName — The name of the KVStore that this storage node agent is
servicing.

snRootDirPath — The fully qualified path to the root of the directory structure where
the Oracle NoSQL Database installation files exist.

snLogFileCount — A logging config parameter that represents the maximum
number of log files that are retained by the Storage Node Agent.

snLogFileLimit — A logging config parameter that represents the maximum size of
a single log file in bytes.

snCapacity — The current capacity of the Storage Node. This parameter essentially
describes the number of persistent storage devices on the Storage Node and is
typically set at store initialization time, but can be modified by the administrator if
the hardware configuration is changed after the store is initialized.

snMountPoints — A list of one or more fully qualified paths to the data files that
reside on this storage node.

snMemory — The current memory configuration for this Storage Node in
megabytes. This parameter is typically set at store initialization time, but can be
modified by the administrator if the hardware configuration is changed after the
store is initialized.

snCPUs — The current number of CPUs configured for this Storage Node. This
parameter is typically set at store initialization time. The administrator can modify
the number if the hardware configuration changes after the store is initialized.

9-4

Chapter 9
Software Monitoring

snCollectorinterval — The interval that all nodes are using for aggregate statistics.

Java Management Extensions (JMX) Notifications

ORACLE

Mbean Object Name: Oracle NoSQL Database:type=StorageNode

New operation performance metrics are available as follows:
— Type: oracle.kv.repnode. opnetric

— User Data: Contains a full listing of performance metrics for a given
RN. The statistics are a string in JSON form, and are obtained via
Notification.getUserData().

These metrics contain statistics of each type of API operation. And each
operation statistics is calculated by interval and cumulative statistics. Interval
statistics cover a single measurement period, cumulative statistics cover the
duration of this repNode's uptime. Statistics follows the following naming
convention:

[Operation] _[Interval | Cumul ative] [Metric]

[Operation] has following user operations: Gets, Puts, PutlfAbsent,
PutlfPresent, PutlfVersion, Deletes, DeletelfVersion, MultiGets, MultiGetKeys,
MultiGetlterator, MultiGetKeyslterator, Storelterator, StoreKeyslterator,
MultiDeletes, Executes, Indexlterator, IndexKeyslterator, QuerySinglePartition,
QueryMultiPartition, QueryMultiShard, BulkPut, BulkGet, BulkGetKeys,
BulkGetTable, BulkGetTableKeys

Al'l Si ngl eKeyQper at i ons are Gets, Puts, PutlfAbsent, PutlfPresent, PutlfVersion,
Deletes, DeletelfVersion

Al'l Mul ti KeyQper at i ons are MultiGetKeys, MultiGetlterator, MultiGetKeyslterator,
Storelterator, StoreKeyslterator, MultiDeletes, Executes, IndexIterator,
IndexKeyslterator, QuerySinglePartition, QueryMultiPartition, QueryMultiShard,
BulkPut, BulkGet, BulkGetKeys, BulkGetTable, BulkGetTableKeys

Read operations are Gets, MultiGets, MultiGetKeys, MultiGetlterator,
MultiGetKeyslterator, Storelterator, StoreKeyslterator, Indexlterator,
IndexKeyslterator, QuerySinglePartition, QueryMultiPartition, QueryMultiShard,
BulkGet, BulkGetKeys, BulkGetTable, BulkGetTableKeys

Write operation are Puts, PutlfAbsent, PutlfPresent, PutlfVersion, Deletes,
DeletelfVersion, MultiDeletes, Executes, BulkPut

[Metric] has the following types:
— Tot al Req: The total number of operation requests.

— Total Ops: The total number of records returned or processed. Single
operation requests only apply to one record, but the multi, iterate, query, bulk
or execute operation requests will work on multiple records.

— Per Sec: Operation throughput per second, that is [TotalOps] / [Interval]
— M n: minimum latency

— Max: maximum latency

— Avg: average latency

— 95t h: The maximum value within the bottom 95% of latency values.

9-5

ORACLE

Chapter 9
Software Monitoring

— 99t h: The maximum value within the bottom 99% of latency values.

The average latency tells users how long to expect calls to take when considering
a large number of calls. The 95th and 99th percentile latency numbers provide
information about how much call times vary in cases where calls took longer than
the average amount of time to complete. 95% of calls completed within the time
specified by the 95th percentile number; 5% of calls took at least that long to
complete. 99% of calls completed within the time specified by the 99th percentile
number; 1% of calls took at least that long to complete.

For example, consider the following latency values:
— Avg:1ms

— 95th:3ms

— 99th: 10 ms

If these were the measurements for 1000 calls to the store, then the average
means that, overall, the 1000 calls took a total of 1000 ms (1000 x 1 ms), with

a mix of call times, some less than 1 ms and some greater. The 95% and 99%
values give some sense of how the call times varied over the set of calls. A 95%
value of 3 ms means that, out of 1000 calls, 950 (95% of 1000) took less than 3
ms, and 50 (5% of 1000) took 3 ms or longer. A 99% value of 10 ms means that,
out of 1000 calls, 990 (99% of 1000) took less than 10 ms, and 10 (1% of 1000)
took 10 ms or longer.

The Ml ti Gets_Interval Total Ops stats tells how many records were read
through MultiGets operations in the last interval. Mul ti Get s_Cunul ati ve_Tot al Ops
stats tells how many records were read through MultiGets operations in the whole
Replication Node lifetime.

A sample operation performance metrics:

{

"resource": "rgl-rnl",

"shard": "rgl",

"reportTinme": 1481031260001,

"Al'l Singl eKeyOperations_Interval _Total Ops": 154571,
"Al'l Singl eKeyOperations_Interval _Total Req": 154571,
"Al'l Si ngl eKeyOper ations_I nterval _PerSec": 7728,

"Al'l Singl eKeyOperations_Interval _Mn": 0,

"Al'l Singl eKeyOperations_Interval _Max": 72,

"Al'l Si ngl eKeyOQperations_Interval _Avg": 0.09015835076570511,
"Al'l Singl eKeyOperations_Interval _95th": 0,

"Al'l Singl eKeyOperations_Interval _99th": 0,

"Al'l Si ngl eKeyOper ati ons_Cunul ative_Total Ops": 27916089,
"Al'l Si ngl eKeyOper ations_Cunul ative_Total Req": 27916089,
"Al'l Si ngl eKeyOper ati ons_Cunul ative_Per Sec": 854,

"Al'l Si ngl eKeyOper ati ons_Cunul ative_Mn": 0,

"Al'l Si ngl eKeyOper ati ons_Cunul ative_Max": 5124,

"Al'l Si ngl eKeyOper ati ons_Cunul ative_Avg": 0.1090782955288887,
"Al'l Si ngl eKeyOper ations_Cunul ative_95th": O,

"Al'l Si ngl eKeyOper ati ons_Cunul ative_99th": O,

"All Ml ti KeyOperations_Interval Total Ops": 6002,

"All Ml ti KeyOperations_Interval Total Req": 6002,

"All Ml ti KeyOperations_|nterval _PerSec": 300,

"All Ml ti KeyOperations_Interval _Mn": 0,

"All Ml tiKeyOperations_Interval _Max": 29,

9-6

ORACLE

Chapter 9
Software Monitoring

"AllMiltiKeyOperations_Interval Avg": 0.14758114516735077,
"AllMiltiKeyOperations_Interval _95th": O,
"AllMiltiKeyOperations_Interval _99th": 1,
"AlMltiKeyOperations_Cumul ative_Total Ops": 1105133,
"Al Ml tiKeyOperations_Cumul ative_Total Req": 1105133,
"Al Ml tiKeyQOperations_Cumul ative_PerSec": 33,
"AlMltiKeyOperations_Cumul ative_ Mn": 0,
"AlMiltiKeyOperations_Cumul ative_Max": 9586,
"AllMiltiKeyOperations_Cumul ative_Avg": 0.16301529109477997,
"A Il MiltiKeyOperations_Cumul ative _95th": 0,
"AlMiltiKeyOperations_Cumul ative 99th": 1,
"Gets_Interval _Total Ops": 154571,
"Gets_Interval _Total Req": 154571,
"CGets_Interval PerSec": 7728,

"CGets Interval_ Mn": 0,

"CGets_Interval _Max": 72,

"Gets_Interval _Avg": 0.08909573405981064,
"CGets_Interval _95th": O,

"Gets_ Interval _99th": O,

"Gets_Cunul ative_Total Ops": 27916089,
"Gets_Cunul ative_Total Req": 27916089,
"CGets_Cunul ative_ PerSec": 854,

"CGets_Cunul ative_ Mn": 0,

"CGets_Cunul ative Max": 5124,

"Gets_Cumul ative_Avg": 0.10803056508302689,
"Gets_Cunul ative 95th": 0,

"Gets_Cunul ative 99th": 0,

"Puts_Interval _Total Ops": 0,

"Puts_Interval _Total Req": O,

"Puts_Interval PerSec": 0,

"Puts Interval_ Mn": O,

"Puts_Interval Max": O,

"Puts_Interval Avg": O,

"Puts Interval 95th": O,

"Puts Interval _99th": O,

"Put | f Absent _Interval _Total Ops": 0,

"Put | f Absent _Interval _Total Req": 0,
"Put|fAbsent Interval PerSec": 0,
"PutlfAbsent Interval Mn": O,

"Put|fAbsent Interval Max": O,

"Put| f Absent Interval Avg": O,

"Put|fAbsent Interval 95th": 0,

"Put|fAbsent Interval 99th": 0,

"Put | fPresent _Interval Total Ops": O,

"Put | fPresent _Interval _Total Req": O,
"PutlfPresent Interval PerSec": O,
"PutlfPresent Interval _Mn": 0,
"PutlfPresent Interval Mx": 0,
"Put|fPresent _Interval Avg": O,
"PutlfPresent Interval 95th": 0,
"PutlfPresent Interval 99th": 0,

"Put | fVersion_Interval Total Ops": O,

"Put | fVersion_Interval _Total Req": O,
"PutlfVersion_Interval PerSec": O,
"PutlfVersion_Interval _Mn": 0,

9-7

ORACLE

Chapter 9
Software Monitoring

"PutlfVersion_Interval Mx": 0,
"Put|fVersion_Interval Avg": O,
"PutlfVersion_Interval 95th": 0,
"PutlfVersion_Interval 99th": 0,
"Puts_Cumul ative_Total Ops": 0,
"Puts_Cumul ative_Total Req": 0,
"Puts_Cunul ative_ PerSec": 0,
"Puts_Cunul ative_ Mn": 0,

"Puts_Cunul ative Max": 0,

"Puts_Cumul ative_Avg": 0,

"Puts_Cunul ative 95th": 0,

"Puts_Cunul ative 99th": 0,

"Put | f Absent _Cunul ative_Total Ops": O,
"Put | f Absent _Cunul ative_Total Req": O,
"Put | f Absent Curul ative PerSec": 0,
"Put|fAbsent Cunul ative Mn": 0,
"Put|fAbsent Cunul ative Max": 0,

"Put | f Absent _Cunul ative_Avg": O,
"Put|fAbsent Cunul ative 95th": 0,
"Put|fAbsent Cunul ative 99th": 0,

"Put | fPresent _Cumul ative_Total Ops": O,
"Put|fPresent_Cumul ative_Total Req": O,
"Put|fPresent_Cumul ative PerSec": 0,
"PutlfPresent Cumul ative Mn": 0,
"PutlfPresent Cumul ative Max": 0,
"Put|fPresent_Cumul ative Avg": 0,
"PutlfPresent _Cumul ative 95th": O,
"PutlfPresent _Cumulative 99th": O,
"Put | f Version_Cumul ative_Total Ops": O,
"Put | fVersion_Cumul ative_Total Req": O,
"Put | fVersion_Cumul ative PerSec": 0,
"PutlfVersion Curmul ative Mn": 0,
"Put|fVersion_Curmul ative Max": 0,

"Put | f Version_Cumul ative_Avg": 0,
"Put|fVersion_Cumul ative 95th": O,
"Put|fVersion_ Curmul ative 99th": O,
"Del etes_Interval Total Ops": O,

"Del etes_Interval _Total Req": O,

"Del etes_Interval PerSec": 0,
"Deletes Interval_Mn": 0,

"Del etes_Interval Max": 0,

"Del etes_Interval _Avg": 0,

"Deletes Interval 95th": O,

"Deletes Interval 99th": O,

"Del etel fVersion_Interval Total Ops": 0,
"Del etel fVersion_Interval Total Req": 0,
"Del etelfVersion_Interval PerSec": 0,
"Del etelfVersion_Interval_ Mn": O,
"Del etelfVersion_Interval Max": O,
"Del etel fVersion_Interval _Avg": O,
"Del etelfVersion_Interval 95th": 0,
"Del etelfVersion_Interval 99th": 0,
"Del etes_Cumul ative_Total Ops": 0,

"Del etes_Cumul ative_Total Req": 0,

"Del etes_Cunul ative PerSec": 0,

9-8

ORACLE

Chapter 9
Software Monitoring

"Del etes_Cunul ative_ Mn": 0,
"Del etes_Cunul ative Max": 0,
"Del etes_Cumul ative_Avg": 0,
"Del etes_Cunul ative 95th": 0,
"Del etes_Cunul ative 99th": 0
"Del etel fVersion_Cunul ative_Total Ops": O,
"Del etel fVersion_Cunul ative_Total Req": O,
"Del et el fVersion_Cumul ative PerSec": 0,
"Del etel fVersion_Curmul ative Mn": 0,
"Del etel fVersion_Cumul ative Max": 0,
"Del etel fVersion_Cunul ative_Avg": 0,
"Del etel fVersion_Curul ative 95th": O,
"Del etel fVersion_Curul ative 99th": 0
"Mul ti Gets_Interval _Total Ops": O,
"Mul ti Gets_Interval _Total Req": O,
"MultiGets_Interval PerSec": 0,
"MultiGets Interval _Mn": O,
"MultiGets_Interval Max": O,

"Mul tiGets_Interval Avg": O,
"MultiGets Interval _95th": 0,
"MultiGets Interval _99th": 0,

"Mil ti Get Keys_Interval Total Ops": O,
"Mil ti Get Keys_Interval Total Req": O,
"Ml ti Get Keys_Interval PerSec": O,
"Mul ti Get Keys_Interval_Mn": 0,

"Mil ti Get Keys_Interval _Max": O,

"Mil ti Get Keys_Interval _Avg": O,

"Mil ti Get Keys_Interval _95th": 0,

"Mil ti Get Keys_Interval _99th": 0,

"Mul tiGetlterator_Interval _Total Qps": O,
"MultiGetlterator_Interval _Total Req": O,
"MultiGetlterator Interval PerSec": 0,
"MultiGetlterator_Interval _Mn": 0,
"MultiGetlterator_Interval Mx": 0,

"Mul tiGetlterator_Interval Avg": O,
"MultiGetlterator Interval _95th": 0,
"MultiGetlterator Interval _99th": 0,

"Mil ti Get Keyslterator_Interval Total Ops": O,
"Mil ti Get Keyslterator_Interval Total Req": O,
"Mil ti Get Keyslterator_Interval PerSec": 0,
"Mil ti Get Keyslterator_Interval _Mn": O,

"Mil ti Get Keyslterator_Interval Mx": 0,

"Mil ti Get Keyslterator_Interval Avg": O,

"Mil ti Get Keyslterator_Interval _95th": 0,
"Mil ti Get Keyslterator_Interval _99th": 0,
"Mul ti Gets_Cumul ative_Total Ops": 0,

"Mul ti Gets_Cumul ative_Total Req": 0,
"MultiGets_Cumul ative PerSec": 0,
"MultiGets_Cumul ative Mn": O,
"MultiGets_Cumul ative Max": O,

"Mul ti Gets_Cumul ative_Avg": O,
"MultiGets_Cumul ative 95th": 0,
"MultiGets_Cumulative 99th": 0,

"Ml ti Get Keys_Cumul ative_Total Ops": O,

"Ml ti Get Keys_Cumul ative_Total Req": O,

9-9

ORACLE

Chapter 9
Software Monitoring

"Ml ti Get Keys_Cumul ative_PerSec": 0,

"Mil ti Get Keys_Cumul ative_ Mn": 0,

"Ml ti Get Keys_Cumul ative_Max": 0,

"Ml ti Get Keys_Cumul ative_Avg": 0,

"Ml ti Get Keys_Cumul ative 95th": O,

"Ml ti Get Keys_Cumul ative 99th": O,

"Mul tiGetlterator_Cunul ative_Total Ops": 0,
"Mul tiGetlterator_Cunul ative_Total Req": 0,
"MultiGetlterator Cumul ative PerSec": 0,
"MultiGetlterator Cumulative Mn": O,
"MultiGetlterator Cumul ative Max": O,

"Mul tiGetlterator_Cunul ative_ Avg": O,
"MultiGetlterator Cunul ative 95th": 0,
"MultiGetlterator Cumulative 99th": 0,

"Ml ti Get Keyslterator_Cunul ative_Total Ops": O,
"Ml ti Get Keyslterator_Cunul ative_Total Req": O,
"Ml ti Get Keyslterator_Cunul ative_PerSec": 0,
"Mil ti Get Keyslterator_Cunul ative_Mn": 0,

"Ml ti Get Keyslterator_Cunul ative_Max": O,

"Ml ti Get Keyslterator_Cunul ative_Avg": O,

"Mil ti Get Keyslterator_Cunul ative 95th": 0,
"Ml ti Get Keyslterator_Cunul ative 99th": 0,
"Storelterator_Interval Total Ops": O,
"Storelterator_Interval Total Req": O,
"Storelterator _Interval PerSec": 0,
"Storelterator _Interval_Mn": 0,
"Storelterator_Interval Mx": 0,
"Storelterator_Interval Avg": O,
"Storelterator_Interval _95th": 0,
"Storelterator_Interval _99th": 0,
"StoreKeyslterator_Interval Total Ops": O,
"StoreKeyslterator_Interval _Total Req": O,
"StoreKeyslterator_Interval PerSec": 0,
"StoreKeyslterator _Interval_Mn": 0,
"StoreKeyslterator _Interval _Max": 0,
"StoreKeyslterator _Interval _Avg": O,
"StoreKeyslterator _Interval _95th": O,
"StoreKeyslterator_Interval _99th": 0
"Storelterator_Cunul ative_Total Ops": 0,
"Storelterator_Cunul ative_Total Req": O,
"Storelterator_ Cunul ative PerSec": 0,
"Storelterator Cunulative Mn": O,
"Storelterator Cunul ative Max": O,
"Storelterator_Cunul ative_Avg": O,
"Storelterator Cunulative 95th": 0,
"Storelterator Cunulative 99th": 0,
"StoreKeyslterator Cumul ative Total Ops": 0,
"StoreKeyslterator_Cumul ative Total Req": O,
"StoreKeyslterator_Cumul ative_PerSec": O,
"StoreKeyslterator Cunul ative_Mn": 0,
"StoreKeyslterator Cunul ative Max": 0,
"StoreKeyslterator Cunul ative Avg": O,
"StoreKeyslterator Cumul ative 95th": 0,
"StoreKeyslterator Cumul ative 99th": 0
"Mul tiDel etes_Interval _Total Ops": O,

9-10

ORACLE

Chapter 9
Software Monitoring

"Mul tiDel etes_Interval _Total Req": O,
"MultiDel etes_Interval PerSec": O,
"MultiDeletes Interval Mn": 0,
"MultiDeletes Interval Mx": 0,

"Mul tiDel etes_Interval _Avg": O,
"MultiDeletes Interval 95th": 0,
"MultiDeletes Interval 99th": 0,

"Mil tiDel etes_Cumul ative_Total Ops": O,
"Mil tiDel etes_Cumul ative_Total Req": O,
"MultiDel etes_Cumul ative PerSec": 0,
"MultiDel etes_Curmul ative Mn": 0,
"MultiDel etes_Cumul ative Max": 0,

"Mul tiDel etes_Cumul ative_Avg": 0,
"MultiDel etes_Cumul ative 95th": O,
"MultiDel etes_Cumul ative 99th": O,
"Executes_Interval _Total Ops": 0,
"Executes_Interval _Total Req": 0,
"Executes_Interval PerSec": 0,
"Executes_Interval _Mn": O,
"Executes_Interval Mx": 0,
"Executes_Interval _Avg": O,
"Executes_Interval 95th": O,
"Executes_Interval 99th": O,

"Execut es_Cunul ative_Total Ops": O,
"Executes_Cunul ative_Total Req": O,
"Executes_Curul ative_PerSec": 0,
"Executes_Cumul ative_Mn": 0,
"Executes_Cumul ative Max": 0,
"Execut es_Cunul ative_Avg": O,
"Executes_Cumul ative 95th": O,
"Executes_Cumul ative 99th": 0
"NOPs_Interval _Total Ops": 0,
"NOPs_Interval _Total Req": 0,
"NOPs_Interval PerSec": 0,
"NOPs_Interval Mn": 0,
"NOPs_Interval Max": O,
"NOPs_Interval _Avg": O,
"NOPs_Interval 95th": O,
"NOPs_Interval 99th": O,
"NOPs_Cumul ative_Total Ops": 0,

"NOPs_Cumul ative_Total Req": 0,

"NOPs_Cunul ative_ PerSec": 0,

"NOPs_Cunul ative_Mn": 0,

"NOPs_Cunul ative Max": 0,

"NOPs_Cumul ative_Avg": 0,

"NOPs_Cunul ative 95th": 0,

"NOPs_Cunul ative 99th": 0,

"I'ndexlterator_Interval Total Ops": 6002,
"I'ndexlterator_Interval Total Req": 6002,
"Indexlterator_Interval PerSec": 300,
"Indexlterator _Interval _Mn": 0,

"Indexlterator _Interval Mx": 29,
"I'ndexlterator_Interval _Avg": 0.14662425220012665,
"Indexlterator _Interval 95th": 0,

"Indexlterator _Interval 99th": 1,

9-11

ORACLE

Chapter 9
Software Monitoring

"I ndexKeyslterator_Interval Total Ops": O,
"I ndexKeyslterator_Interval Total Req": O,
"I ndexKeyslterator_Interval PerSec": 0,
"I ndexKeyslterator _Interval_Mn": 0,
"I ndexKeyslterator _Interval Max": 0,
"I ndexKeyslterator_Interval Avg": O,
"I ndexKeyslterator _Interval _95th": O,
"I ndexKeyslterator_Interval _99th": 0
"I'ndexl|terator_Cunul ative_Total Ops": 1105133,
"I'ndexlterator_Cunul ative_Total Req": 1105133,
"Indexlterator_ Cunul ative PerSec": 33,
"Indexlterator Cunulative Mn": O,

"Indexlterator Cunul ative Max": 956,
"I'ndexlterator_Cunul ative_Avg": 0.1620502769947052,
"I ndexlterator Cunul ative 95th": 0,

"Indexlterator Cunulative 99th": 1,

"I ndexKeyslterator_Cumul ative _Total Ops": O,

"I ndexKeyslterator_Cumul ative _Total Req": O,

"I ndexKeysl terator_Cumul ative_PerSec": 0,

"I ndexKeysl terator_Cunul ative_Mn": 0,

"I ndexKeysl terator_Cunul ative Max": 0,

"I ndexKeysl terator_Cunul ative_Avg": O,

"I ndexKeyslterator_Cumul ative 95th": 0,

"I ndexKeyslterator_Cumul ative 99th": 0,
"QuerySinglePartition_Interval Total Ops": O,
"QuerySinglePartition_Interval Total Req": O,
"QuerySinglePartition_lnterval PerSec": 0,
"QuerySinglePartition_Interval _Mn": 0,
"QuerySinglePartition_Interval Mx": 0,
"QuerySinglePartition_Interval Avg": O,
"QuerySinglePartition_Interval 95th": 0,
"QuerySinglePartition_Interval _99th": 0,

"QueryMiul tiPartition_Interval Total Ops": 0,
"QueryMiul tiPartition_Interval _Total Req": O,
"QueryMiul tiPartition_Interval PerSec": O,

"QueryMiul tiPartition_Interval_Mn": 0,

"QueryMiul tiPartition_Interval Max": 0,

"QueryMiul tiPartition_Interval Avg": 0
"QueryMiul tiPartition_Interval 95th":
"QueryMiul tiPartition_Interval 99th":
"QueryMil ti Shard_I nterval Total Ops":
"QueryMil ti Shard_I nterval Total Req":
"QueryMil ti Shard_I nterval _PerSec": 0,
"QueryMil ti Shard_Interval _Mn": O,
"QueryMil ti Shard_I nterval _Max": O,
"QueryMil ti Shard_I nterval _Avg": O,
"QueryMil ti Shard_I nterval _95th": 0,
"QueryMil ti Shard_I nterval _99th": 0,
"QuerySinglePartition_Cunul ative_Total Ops": O,
"QuerySinglePartition_Cunul ative_Total Req": O,
"QuerySinglePartition_Cunul ative_PerSec": 0,
"QuerySinglePartition_Cunulative_Mn": O,
"QuerySinglePartition_Cunul ative Max": O,
"QuerySinglePartition_Cunul ative_Avg": O,
"QuerySinglePartition_Cunul ative 95th": 0,

cocooo-

9-12

ORACLE

Chapter 9
Software Monitoring

"QuerySinglePartition_Cunul ative 99th": 0,
"QueryMil tiPartition_Cumul ative_Total Ops": 0,
"QueryMil tiPartition_Cumul ative_Total Req": 0,
"QueryMil tiPartition_Cumul ative PerSec": 0,
"QueryMiul tiPartition_Curmulative_ Mn": 0,
"QueryMiul tiPartition_Cumul ative Max": 0,
"QueryMil tiPartition_Cumulative Avg": O
"QueryMil tiPartition_Cumulative 95th":
"QueryMil tiPartition_Cumulative 99th":
"QueryMil ti Shard_Cunul ative_Tot al Ops":
"QueryMil ti Shard_Cunul ative_Tot al Req":
"QueryMil ti Shard_Cunul ative_Per Sec": 0,
"QueryMil ti Shard_Cunul ative_Mn": 0,
"QueryMil ti Shard_Cunul ative_Max": 0,
"QueryMil ti Shard_Cunul ative_Avg": 0,
"QueryMil ti Shard_Cumnul ative_95th": 0,
"QueryMil ti Shard_Cunul ative_99th": 0
"Bul kPut _Interval Total Ops": O,

"Bul kPut _Interval Total Req": O,

"Bul kPut _Interval PerSec": 0,

"Bul kPut _Interval_Mn": 0,

"Bul kPut Interval Max": 0,

"Bul kPut _Interval _Avg": 0,

"Bul kPut _Interval 95th": O,

"Bul kPut _Interval 99th": O,

"Bul kPut _Cumul ative_Total Ops": 0,
"Bul kPut _Cumul ative_Total Req": 0,
"Bul kPut _Cunul ative PerSec": 0,

"Bul kPut _Cunul ative M n": 0,
"Bul kPut _Cunul ative Max": 0,
"Bul kPut _Curul ative_Avg": 0,
"Bul kPut _Cunul ative 95th": 0,
"Bul kPut _Cunul ative 99th": 0,

"Bul kGet _Interval _Total Ops": O,

"Bul kGet _Interval _Total Req": O,

"Bul kGet _Interval PerSec": 0,

"Bul kGet Interval_Mn": 0,

"Bul kGet Interval Max": 0,

"Bul kGet _Interval _Avg": 0,

"Bul kGet Interval 95th": O,

"Bul kGet Interval 99th": O,

"Bul kGet Keys_I nterval _Total Ops": 0,
"Bul kGet Keys_I nterval _Total Req": 0,
"Bul kGet Keys_I nterval PerSec": 0,
"Bul kGet Keys_Interval _Mn": 0,

"Bul kGet Keys_I nterval _Max": 0,

"Bul kGet Keys_I nterval _Avg": 0,

"Bul kGet Keys_Interval _95th": 0,

"Bul kGet Keys_Interval _99th": 0,

"Bul kGet Tabl e_I nterval _Total Ops": O,
"Bul kGet Tabl e_Interval _Total Req": O,
"Bul kGet Tabl e_I nterval PerSec": 0,
"Bul kGet Tabl e_Interval _Mn": 0,

"Bul kGet Tabl e_Interval Mx": 0,

"Bul kGet Tabl e_I nterval _Avg": O,

ocoo0oo-

9-13

ORACLE

}

Chapter 9
Software Monitoring

"Bul kGet Tabl e_Interval 95th": 0,

"Bul kGet Tabl e_Interval _99th": 0,

"Bul kGet Tabl eKeys_Interval _Total Ops": 0,
"Bul kGet Tabl eKeys_Interval _Total Req": 0,
"Bul kGet Tabl eKeys_Interval _PerSec": 0,
"Bul kGet Tabl eKeys_Interval _Mn": 0,

"Bul kGet Tabl eKeys_I nterval _Max": 0,

"Bul kGet Tabl eKeys_I nterval _Avg": 0,

"Bul kGet Tabl eKeys_Interval _95th": 0,
"Bul kGet Tabl eKeys_Interval _99th": 0,
"Bul kGet _Cumul ative_Total Ops": 0,

"Bul kGet _Cumul ative_Total Req": 0,

"Bul kGet _Cunul ative PerSec": 0,

"Bul kGet _Cunul ative Mn": 0,

"Bul kGet _Cunul ative Max": 0,

"Bul kGet _Cumul ative_Avg": 0,

"Bul kGet _Cunul ative 95th": 0,

"Bul kGet _Cunul ative 99th": 0,

"Bul kGet Keys_Cunul ative_Total Ops": O,
"Bul kGet Keys_Cunul ative_Total Req": 0,
"Bul kGet Keys_Cunul ative_Per Sec": 0,

"Bul kGet Keys_Cunul ative_Mn": 0,

"Bul kGet Keys_Cunul ative_Max": 0,

"Bul kGet Keys_Cunul ative_Avg": 0,

"Bul kGet Keys_Cunul ative_95th": 0,

"Bul kGet Keys_Cunul ative_99th": 0,

"Bul kGet Tabl e_Cumul ative_Total Ops": 0,
"Bul kGet Tabl e_Cumul ative_Total Req": O,
"Bul kGet Tabl e_Cumul ative PerSec": 0,
"Bul kCGet Tabl e_Curul ative_Mn": 0,

"Bul kCGet Tabl e_Curul ative Max": 0,

"Bul kGet Tabl e_Cumul ative_Avg": 0,

"Bul kGet Tabl e_Cumul ative 95th": O,

"Bul kGet Tabl e_Curul ative 99th": O,

"Bul kGet Tabl eKeys_Cunul ative_Tot al Ops": 0,
"Bul kGet Tabl eKeys_Cunul ative_Tot al Req": 0,
"Bul kGet Tabl eKeys_Cumul ati ve_Per Sec": 0,
"Bul kGet Tabl eKeys_Cunul ative_Mn": 0,
"Bul kGet Tabl eKeys_Cunul ative_Max": 0,
"Bul kGet Tabl eKeys_Cunul ative_Avg": O,
"Bul kGet Tabl eKeys_Cumul ative_95th": 0,
"Bul kGet Tabl eKeys_Cunul ative 99th": 0

* New detailed statistics of single environment and replicated environment are
available as follows:

Type: oracle.kv.repnode. envnetric

User Dat a: contains a full listing of detailed statistics for a given RN.

The statistics are a string in JSON form, and are obtained through
Notification.getUserData(). See the javadoc for EnvironmentStats and
ReplicatedEnvironmentStats for more information about the meaning of the
statistics.

9-14

ORACLE

Chapter 9
Software Monitoring

An example stat is: get Repl i caVLSNLaghap() — Returns a map from replica
node name to the lag, in VLSNSs, between the replication state of the replica
and the master, if known. Returns an empty map if this node is not the master.

A sample statistics of single environment and replicated environment:

"resource": "rgl-rnl",

"shard": "rgl",

"reportTine": 1498021100001,

"Feeder Manager _nMaxRepl i caLag": -1,

"Feeder Manager _repl i caLast Commi t Ti mest anpMap”:
"rgl-rn2=1498021098996; r g1-rn3=1498021096989",

"Feeder Manager _nFeeder sShut down": 0,

"Feeder Manager _nFeedersCreated": 2,

"Feeder Manager _nMaxRepl i caLagNane": "rgl-rn2",

"Feeder Manager _repl i caVLSNLagMap": "rgl-rn2=0;rgl-rn3=2",
"Feeder Manager _repl i caVLSNRat eMap": "rgl-rn2=472;rgl-rn3=472",
"Feeder Manager _repl i cabDel ayMap”: "rgl-rn2=0;rgl-rn3=2007",
"Feeder Manager _repl i caLast Commi t VLSNVap": "rgl-rn2=836; rgl-

rn3=834",

"Feeder Txns_t xnsAcked": 77,

"Feeder Txns_| ast Conmi t VLSN': 848,

"Feeder Txns_t otal TxnM5": 228,

"Feeder Txns_| ast Conmi t Ti nest anp": 1498021099030,
"Feeder Txns_vl snRate": 439,

"Feeder Txns_t xnsNot Acked": 0,

"Feeder Txns_ackWait M5": 115,

"Repl ay_nAborts": 0,

"Repl ay_nG oupCommits": 0,

"Repl ay_nNameLNs": 0,

"Repl ay_nEl apsedTxnTi me": 0,

"Repl ay_nMessageQueueOver fl ows": 0,

"Repl ay_nG oupCommi t MaxExceeded": 0,

"Repl ay_nCommi t Syncs": 0,

"Repl ay_nCommi t NoSyncs": O,

"Repl ay_maxConmi t Pr ocessi ngNanos": O,

"Repl ay_nG oupCommi t Txns": O,

"Repl ay_nCommi t WiteNoSyncs": 0,

"Repl ay_m nConmi t Processi ngNanos": O,

"Repl ay_nCommi t Acks": O,

"Repl ay_nLNs": 0,

"Repl ay_nCommits": O,

"Repl ay_I at est Commi t Laghs": 0,

"Repl ay_t ot al Commi t Laghs™: O,

"Repl ay_t ot al Conmi t Processi ngNanos": 0,

"Repl ay_nG oupCommi t Ti meouts": 0,

"Consi st encyTracker _nVLSNConsi st encyWai t M5": 0,
"Consi st encyTracker _nLagConsi st encyWai ts": 0,
"Consi st encyTracker _nLagConsi st encyWai t M5": 0,
"Consi st encyTracker _nVLSNConsi st encyWaits": O,
"Bi naryProt ocol _nMaxG oupedAcks": 0,

"Bi naryProt ocol _messagesWittenPer Second": 19646,
"Bi naryProtocol _nEntriesd dVersion": 0,

"Bi nar yPr ot ocol _byt esReadPer Second": 0,

9-15

ORACLE

Chapter 9
Software Monitoring

"Bi naryProt ocol _bytesWittenPer Second": 1057385,

"Bi naryProt ocol _nMessagesWitten":

"Bi naryProt ocol _nG oupAckMessages":

"Bi naryProt ocol _nMessagesRead": O,
"Bi naryPr ot ocol _nReadNanos": 0,

344,
05

"Bi naryProt ocol _nMessageBat ches": 24,

"Bi naryProt ocol _nAckMessages": 0,

"Bi naryProtocol _nWiteNanos": 17509221,

"Bi naryProt ocol _nBytesRead": O,
"Bi naryProt ocol _nG oupedAcks": 0,
"Bi naryPr ot ocol _nMessagesBat ched":

48,

"Bi naryProt ocol _messagesReadPer Second": 0,
"Bi naryProtocol _nBytesWitten": 18514,

"VLSN ndex_nHeadBucket sDel eted": 0,

"VLSN ndex_nBucket sCreated": 0,
"VLSN ndex_nM sses": 0,

"VLSNI ndex_nTai | Bucket sDel eted": 0,

"VLSN ndex_nHits": 19,

"1/ O _nRepeat Faul t Reads": 0,

"1/ 0 nRandonReads": 0,

"1/ 0 nLogl nterval Exceeded": 0,
"1/ O _nTenpBuf ferWites": O,

"1/ 0 nWiteQueueOverfl owrail ures":
"1/ 0_nG oupConmmi t Wi ts": O,

"1/ 0_nG oupConmi t Requests": 0,
"1/O nWitesFrom/iteQueue": 0,
"1/ 0 _nSequential Wites": 4,

"1/ 0_nG pCommi t Ti neouts": 0,

"1/ 0_nFileCpens": O,

"1/ 0O nRandom¥ites": O,

"1/ 0 bufferBytes": 4404016,

"1/ 0 _nSequenti al ReadBytes": 0,
"I/ 0 _endO Log": 135573,

"1/ 0 nSequential WiteBytes": 16693,

"1/ O_nFSyncTi me": 114,

"1/ 0 _nSequent i al Reads": 0,

"1/ 0_nLogFSyncs": 1,

"1/ 0O nNoFreeBuffer": 0,

"1/ 0 _nFSyncs": 0,

"1/ 0 nCacheM ss": 0,

"1/0 nWiteQueueOverflow': 0,

"1/ O _nRandonmNiteBytes": O,

"1/ 0 nReadsFromWiteQueue": O,

"1/ 0_nByt esReadFroniteQueue": O,
"1/ 0 nBytesWittenFromniteQueue":
"1/ 0 _nNot Resi dent": 21,

"1/ 0 _nFSyncRequests": 0,

"1/ O _nRandonReadByt es": 0,

"1/ 0_nOpenFiles": 1,

"1/ 0 _nLogBuffers": 186,

"1/ 0 _nLogMaxG oupConmi t Thr eshol d":
"1/ O_nFSyncMaxTi me": 114,
"Cache_nByt esEvi ct edCACHEMODE": 0,
"Cache_nl NSpar seTarget": 85,
"Cache_nl NNoTarget": 81,

01

9-16

ORACLE

"Cache_dat aAdm nBytes": 48800,
"Cache_nBI NsFetchM ss": 0,
"Cache_nNodesEvi cted": 0,
"Cache_cacheTot al Byt es": 5125248,
"Cache_nShar edCacheEnvi ronments": 0,
"Cache_nEvictionRuns": 0,
"Cache_| ruM xedSi ze": 90,
"Cache_nLNsEvicted": O,
"Cache_nBI NsFetch": 92,
"Cache_nNodesMvedToDi rtyLRU": 0,
"Cache_nLNsFetch": 1761,
"Cache_nByt esEvi ct edDAEMON': 0,
"Cache_nDirtyNodesEvi cted": 0,
"Cache_nUpper | NsFet chM ss": 0,
"Cache_nCachedBI Ns": 90,
"Cache_nNodesMiut ated": 0,
"Cache_nNodesStri pped": 0,
"Cache_dat aBytes": 686704,
"Cache_nFul | BINsM ss": 0,
"Cache_nBI NsFet chM ssRatio": 0,
"Cache_nRoot NodesEvi cted": 0,
"Cache_nCachedBI NDel tas": 0,
"Cache_nByt esEvi ct edMANUAL": 0,
"Cache_nNodesSki pped": 0,
"Cache_nUpper | NsFetch": 0,
"Cache_nBi nDel t aBl i ndOps": 0,
"Cache_nByt esEvi ct edCRI TI CAL": 0,
"Cache_lruDirtySize": 0,
"Cache_nLNsFetchM ss": 21,
"Cache_adm nBytes": 589,
"Cache_nBI NDel t asFet chM ss": 0,
"Cache_nThreadUnavai |l abl e": 0,
"Cache_nCachedUpper | Ns": 84,
"Cache_sharedCacheTot al Bytes": 0,
"Cache_nNodesPut Back": 0,
"Cache_nByt esEvi ct edEVI CTORTHREAD": 0,
"Cache_DOSBytes": 0,

"Cache_| ockByt es": 33936,
"Cache_nNodesTargeted": 0,
"Cache_nl NConpact Key": 7,

"O f Heap_of f HeapCri ti cal NodesTar get ed":

" O f Heap_of f HeapDi rt yNodesEvi cted": 0,
" O f Heap_of f HeapNodesSki pped": 4,

" O f Heap_of f HeapLNsEvi ct ed": 44,

" O f Heap_of f HeapAl | ocOverflow': O,

" O f Heap_of f HeapCachedLNs": 0,

" O f Heap_of f HeapNodesSt ri pped": 44,
" O f Heap_of f HeapLr uSi ze": 0,

"Of f Heap_of f HeapLNsSt ored": 44,

" O f Heap_of f HeapLNsLoaded": 22,

" O f Heap_of f HeapTot al Bytes": 0,

" O f Heap_of f HeapTot al Bl ocks": 0,

" O f Heap_of f HeapNodesEvi cted": 0,

" O f Heap_of f HeapCachedBI NDel t as": 0,
" O f Heap_of f HeapNodesMit at ed": 0,

Chapter 9
Software Monitoring

9-17

ORACLE

Chapter 9
Software Monitoring

" O f Heap_of f HeapNodesTar get ed": 48,

" O f Heap_of f HeapCachedBI Ns": 0,

" O f Heap_of f HeapAl | ocFai lure": 0,

" O f Heap_of f HeapBl NsLoaded": O,

" O f Heap_of f HeapThr eadUnavai | abl e": 63,
" O f Heap_of f HeapBl NsSt ored": 0,

"Cl eani ng_nBl NDel t asM grated": 0,
"Cleaning_mnltilization": 68,

"Cl eani ng_nLNsM grated": O,

"C eani ng_nl NsCl eaned": 0,

"l eani ng_nPendi ngLNsProcessed": 0,
"Cl eani ng_nToBed eanedLNsProcessed": 0,
"Cl eani ng_nLNsLocked": 0,

"Cl eani ng_nRevi sal Runs": 0,

"l eani ng_nPendi ngLNsLocked": 0,

"C eani ng_nTwoPassRuns": 0,

"Cl eani ng_nBlI NDel t asCbsol ete": 0,

"Cl eaning_maxUilization": 68,

"Cl eani ng_nLNsMar ked": 0,

"Cl eani ng_pendi ngLNQueueSi ze": 0,

"Cl eani ng_nMar kLNsProcessed": 0,

"Cl eani ng_nRepeat I terat or Reads": 0,
"Cl eani ng_nLNsExpired": 0,

"C eani ng_nCl eaner Runs": 0,

"Cl eani ng_nBI NDel t asDead": 0,

"Cl eani ng_nCl eaner Di sksReads": 0,

"Cl eani ng_prot ect edLogSi zeMap": "",
"Cl eani ng_nCl eanerDel etions": 0,

"Cl eani ng_nCl eanerEntriesRead": 0,

"Cl eani ng_avai |l abl eLogSi ze": 48942137344,
"Cl eani ng_nLNsDead": 0,

"Cl eani ng_nl NsCbsol ete": 0,

"Cl eani ng_activelogSi ze": 112716,

"Cl eani ng_nl NsDead": 0,

"Cl eaning_nl NsM grated": O,

"Cl eaning_total LogSi ze": 112716,

"Cl eani ng_nBlI NDel t asCl eaned": 0,

"Cl eani ng_nLNsCbsol ete": 0,

"Cl eani ng_nLNsC eaned": 0,

"Cl eani ng_nLNQueueH ts": O,

"Cl eani ng_reservedLogSi ze": 0,

"Cl eani ng_prot ect edLogSi ze": 0,

"C eani ng_nCl ust er LNsProcessed": 0,
"Node Conpression_processedBins": 0,
"Node Conpression_splitBins": 0,

"Node Conpression_dbd osedBi ns": 0,
"Node Conpression_cursorsBins": 0,
"Node Conpression_nonEnptyBins": 0,
"Node Conpression_i nConpQueueSi ze": 0,
"Checkpoi nts_I ast Checkpoi ntlnterval": 670,
"Checkpoi nts_nDel tal NFl ush": 0,
"Checkpoi nts_| ast Checkpoi nt Start": 670,
"Checkpoi nts_| ast Checkpoi nt End": 1342,
"Checkpoi nts_nFul | BI NFl ush": 0,
"Checkpoi nts_I ast Checkpointld": 1,

9-18

ORACLE

Chapter 9
Software Monitoring

"Checkpoi nts_nFul | NFl ush": 0,

"Checkpoi nts_nCheckpoi nts": 0,

"Environnent _nBinDel talnsert": 0,

"Envi ronment _nBi nDel t aUpdate": 0,

"Environnent _nBinDeltaGet": O,

"Envi ronment _btreeRel at chesRequired": 0,

"Envi ronnent _nBinDel taDel ete": 0,

"Envi ronnent _envi ronnment CreationTi me": 1498021055255,

"Locks_nWaiters": O,

"Locks_nRequests": 142,

"Locks_nlLat chAcqui resSel f Omned": 0,

"Locks_nWitelLocks": O,

"Locks_nTot al Locks": 303,

"Locks_nReadLocks": 303,

"Locks_nlat chAcqui r esNoWai t Successful ": 0,

"Locks_nOwners": 303,

"Locks_nLat chAcqui resWthContention": 0,

"Locks_nLat chAcqui r eNoWai t Unsuccessful ": 0,

"Locks_nLat chRel eases": 0,

"Locks_nlLat chAcqui resNoVi ters": 0,

"Locks_nWaits": 0,

"Qp_secSearchFail": 0,

"Qp_priDelete": 0,

"Qp_pri SearchFail ": 14,

"Op_secPosition": 0,

"Qp_prilnsertFail": 0,

"Qp_priDel eteFail": 0,

"(p_secSearch": 0,

"Qp_pri Search": 54,

"Qp_priPosition": 2,

"Qp_secDel ete": 0,

"Op_secUpdate": 0

"Op_seclnsert": 0,

"Qp_pri Update": 11,

"Qp_prilnsert": 66
}

Announce a change in this RepNode's replication state.

— Type: oracle.kv.repnode.replicationstate

— User Data: RN replication state change event. The event is a string in JSON
form, and is obtained via Notification.getUserData().

For example:

{"resource":"rgl-rn3","shard":"rgl","report Ti me": 1476980297641,
"replication_state":"MASTER'}

Announce a change in this RepNode's service status.

— Type: oracle.kv.repnode. st atus

— User Data: RN service status change event. The event is a string in JSON
form, and is obtained via Notification.getUserData().

9-19

Chapter 9
Software Monitoring

For example:

{"resource":"rg3-rn3","shard":"rg3","report Ti me": 1476981010202,
"service_status":"ERROR RESTARTI NG'}

Announce a plan state change.

— Type: oracle.kv.plan.status

— User Data: Plan status change event. The event is a string in JSON form, and
is obtained via Notification.getUserData().

For example:

{"planl d":7,"pl anNane": " Change d obal Parans

(7)","reportTime": 1477272558763, "st at e": " SUCCEEDED", " at t enpt Nunber":
1!

"message”:"Plan finished. "}

Monitoring for Replication Nodes (RN)

Each Storage Node hosts one or more Replication Nodes which stores the data
in key-value pairs. For more information, see Replication Nodes and Shards in the
Concepts Guide.

See the following section:

Metrics for Replication Node

Metrics for Replication Node

ORACLE

repNodeServiceStatus — The current status of the Replication Node. They are as
follows:

— starting (1) — The storage node agent is booting up.

— waitingForDeploy (2) — The Replication Node is waiting to be registered with
the Storage Node Agent.

— running(3) — The replication node is running.
— stopping(4) — The replication node is in the process of shutting down.
— stopped(5) — An intentional clean shutdown.

— errorRestarting(6) — The Replication Node is restarting after encountering an
error.

— errorNoRestart(7) — Service is in an error state, will not restart automatically,
and the service requires Administrative intervention. The user can search for
SEVERE entries in both the log file for the Replication Node and the log file of
the SNA controlling the failed service. The service's log in Monitoring for RN
section is RN log:

<kvr oot >/ <st orenanme>/ | og/rg*-rn*_*.| og

9-20

ORACLE

Chapter 9
Software Monitoring

where, <kvroot> and <storename> are user inputs and * represents the
number of the log. For example: rg3-rn2_0.log is the latest log, rg3-rn2_1.log
is previous log.

Note that the kvroot and storename will be different for every installation.
Similarly, to find the log file for SNA, use:

<kvr oot >/ <st orename>/ 1 og/ sn*_*.1og

Examples of SN logs can be: sn1_0.log, sn1_1.log.

You can search SEVERE keyword in these log files, and then read the
searched messages to fix the errors, or you may require help from Oracle
NoSQL Database support. The action to take depends on the nature of the
failure and can vary from stopping and restarting the service explicitly (easy)
to the need to replace the service instance entirely (not easy and slow). The
issues can be any of the following:

* Resource issue — Some type of necessary resource for example, disk
space, memory, or network is not available.

* Configuration problem — Some configuration-related issues which needs a
fix.

* Software bug — Bugs in the code which needs Oracle NoSQL Database
support.

* On disk corruption — Something in persistent storage has been corrupted.

Note that the corruption situations are difficult to handle, but this is rare and
require help from Oracle NoSQL Database support.

unreachable(8) — The Replication Node is unreachable by the admin service.

" Note:

If a Storage Node is UNREACHABLE, or a Replication Node is
having problems and its Storage Node is UNREACHABLE, the first
thing to check is the network connectivity between the Admin and
the Storage Node. However, if the managing Storage Node Agent is
reachable and the managed Replication Node is not, we can guess
that the network is OK and the problem lies elsewhere.

expectedRestarting(9) — The Replication Node is executing an expected
restart as some plan CLI commands causes a component to restart. This is
an expected restart, that is different from errorRestarting(6) (which is a restart
after encountering an error).

The following metrics can be monitored to get a sense for the performance of each
Replication Node in the cluster. There are two flavors of metric granularity:

Interval — By default, each node in the cluster will sample performance data
every 20 seconds and aggregate the metrics to this interval. This interval may
be changed using the admin plan change-parameters - global and supplying the
collectorinterval parameter with a new value (see Changing Parameters).

Cumulative — Metrics that have been collected and aggregated since the node has
started.

9-21

ORACLE

Chapter 9
Software Monitoring

The metrics are further broken down into measurements for operations over single
keys versus operations over multiple keys.

" Note:

All timestamp metrics are in UTC, therefore appropriate conversion to a time
zone relevant to where the store is deployed is necessary.

repNodelntervalStart — The start timestamp of when this sample of single key
operation measurements were collected.

repNodelntervalEnd —The start timestamp of when this sample of single key
operation measurements were collected.

repNodelntervalTotalOps — Total number of single key operations (get, put, delete)
processed by the Replication Node in the interval being measured.

repNodelntervalThroughput — Number of single key operations (get, put, delete)
per second completed during the interval being measured.

repNodelntervalLatMin — The minimum latency sample of single key operations
(get, put, delete) during the interval being measured.

repNodelntervalLatMax — The maximum latency sample of single key operations
(get, put, delete) during the interval being measured.

repNodelntervalLatAvg — The average latency sample of single key operations
(get, put, delete) during the interval being measured (returned as a float).

repNodelntervalPct95 — The 95th percentile of the latency sample of single key
operations (get, put, delete) during the interval being measured.

repNodelntervalPct99 — The 95th percentile of the latency sample of single key
operations (get, put, delete) during the interval being measured.

repNodeCumulativeStart — The start timestamp of when the replication started
collecting cumulative performance metrics (all the below metrics that are
cumulative).

repNodeCumulativeEnd — The end timestamp of when the replication ended
collecting cumulative performance metrics (all the below metrics that are
cumulative).

repNodeCumulativeTotalOps — The total number of single key operations that
have been processed by the Replication Node.

repNodeCumulativeThroughput — The sustained operations per second of single
key operations measured by this node since it has started.

repNodeCumulativeLatMin — The minimum latency of single key operations
measured by this node since it has started.

repNodeCumulativeLatMax — The maximum latency of single key operations
measured by this node since it has started.

repNodeCumulativeLatAvg — The average latency of single key operations
measured by this node since it has started (returned as a float).

repNodeCumulativePct95 — The 95th percentile of the latency of single key
operations (get, put, delete) since it has started.

9-22

ORACLE

Chapter 9
Software Monitoring

repNodeCumulativePct99 — The 99th percentile of the latency of single key
operations (get, put, delete) since it has started.

repNodeMultilntervalStart — The start timestamp of when this sample of multiple
key operation measurements were collected.

repNodeMultilntervalEnd — The end timestamp of when this sample of multiple key
operation measurements were collected.

repNodeMultilntervalTotalOps — Total number of multiple key operations (execute)
processed by the replication node in the interval being measured.

repNodeMultilntervalThroughput — Number of multiple key operations (execute)
per second completed during the interval being measured.

repNodeMultilntervalLatMin — The minimum latency sample of multiple key
operations (execute) during the interval being measured.

repNodeMultilntervalLatMax — The maximum latency sample of multiple key
operations (execute) during the interval being measured.

repNodeMultilntervalLatAvg — The average latency sample of multiple key
operations (execute) during the interval being measured (returned as a float).

repNodeMultilntervalPct95 — The 95th percentile of the latency sample of multiple
key operations (execute) during the interval being measured.

repNodeMultilntervalPct99 — The 95th percentile of the latency sample of multiple
key operations (execute) during the interval being measured.

repNodeMultilntervalTotalRequests — The total number of multiple key operations
(execute) during the interval being measured.

repNodeMultiCumulativeStart — The start timestamp of when the Replication Node
started collecting cumulative multiple key performance metrics (all the below
metrics that are cumulative).

repNodeMultiCumulativeEnd — The end timestamp of when the Replication Node
started collecting cumulative multiple key performance metrics (all the below
metrics that are cumulative).

repNodeMultiCumulativeTotalOps — The total number of single multiple operations
that have been processed by the Replication Node since it has started.

repNodeMultiCumulativeThroughput — The sustained operations per second of
multiple key operations measured by this node since it has started.

repNodeMultiCumulativeLatMin — The minimum latency of multiple key operations
(execute) measured by this node since it has started.

repNodeMultiCumulativeLatMax — The maximum latency of multiple key
operations (execute) measured by this node since it has started.

repNodeMultiCumulativeLatAvg — The average latency of multiple key operations
(execute) measured by this node since it has started (returned as a float).

repNodeMultiCumulativePct95 — The 95th percentile of the latency of multiple key
operations (execute) since it has started.

repNodeMultiCumulativePct99 — The 99th percentile of the latency of multiple key
operations (execute) since it has started.

repNodeMultiCumulativeTotalRequests — The total number of multiple key
operations measured by this node since it has started.

9-23

Chapter 9
Software Monitoring

* repNodeCommitLag — The average commit lag (in milliseconds) for a given
Replication Node's update operations during a given time interval.

* repNodeCacheSize — The size in bytes of the replication node's cache of B-tree
nodes, which is calculated using the DBCacheSize utility.

» repNodeConfigProperties — The set of configuration name/value pairs that the
Replication Node is currently running with. Each parameter is a constant
which has a string value. The string value is used to set the parameter in
KVSTORE. For example, the parameter CHECKPOINTER_BYTES_INTERVAL
has je.checkpointer.bytesinterval string value in the javadoc (see, here). The
document also details on the data type, minimum, maximum time, etc.

* repNodeCollectEnvStats — True or false depending on whether the Replication
Node is currently collecting performance statistics.

* repNodeStatsinterval — The interval (in seconds) that the Replication Node is
utilizing for aggregate statistics.

* repNodeMaxTrackedLatency — The maximum number of milliseconds for which
latency statistics will be tracked. For example, if this parameter is set to 1000,
then any operation at the repnode that exhibits a latency of 1000 or greater
milliseconds is not put into the array of metric samples for subsequent reporting.

* repNodeJavaMiscParams — The value of the -Xms, -Xmx, and -
XX:ParallelGCThreads= as encountered when the Java VM running this
Replication Node was booted.

* repNodelLoggingConfigProps — The value of the loggingConfigProps parameter as
encountered when the Java VM running this Replication Node was booted.

* repNodeHeapMB — The size of the Java heap for this Replication Node, in MB.

* repNodeMountPoint — The path to the file system mount point where this
Replication Node's files are stored.

* repNodeMountPointSize — The size of the file system mount point where this
Replication Node's files are stored.

* repNodeHeapSize — The current value of —Xmx for this Replication Node.

* repNodelLatencyCeiling — The upper bound (in milliseconds) at which latency
samples may be gathered at this Replication Node before an alert is generated.
For example, if this is set to 3, then any latency sample above 3 generates an
alert.

* repNodeCommitLagThreshold — If the average commit lag (in milliseconds) for a
given Replication Node during a given time interval exceeds the value returned by
this method, an alert is generated.

* repNodeReplicationState — The replication state of the node.

* repNodeThroughputFloor — The lower bound (in operations per second) at which
throughput samples may be gathered at this Replication Node before an alert is
generated. For example, if this is set to 300,000, then any throughput calculation
at this Replication Node that is lower than 300,000 operations per seconds
generates an alert.

ORACLE 9-24

Chapter 9
Software Monitoring

Monitoring for Arbiter Nodes

An Arbiter Node is a lightweight process that participates in electing a new master
when the old master becomes unavailable. For more information, see Arbiter Nodes in
the Concepts Guide.

See the following section:

e Metrics for Arbiter Nodes

Metrics for Arbiter Nodes

ORACLE

e arbNodeServiceStatus — The current status of the Arbiter Node. They are as
follows:

— starting (1) — The Storage Node Agent is booting up.

— waitingForDeploy (2) — The Arbiter Node is waiting to be registered with the
Storage Node Agent.

— running(3) — The Arbiter Node is running.

— stopping(4) — The Arbiter Node is in the process of shutting down.

— stopped(5) — An intentional clean shutdown.

— errorRestarting(6) — The Arbiter Node is restarting after encountering an error.

— errorNoRestart(7) — Service is in an error state and will not be automatically
restarted. Administrative intervention is required. The user can search for
SEVERE entries in both the service's log file and the log file of the SNA
controlling the failed service. The service's log in Monitoring for Arbiter section
is Arbiter log:

<kvr oot >/ <st orenanme>/ | og/rg*_anl *.l og

where, <kvroot> and <storename> are user inputs and * represents the
number of the log.

Note that the kvroot and storename will be different for every installation.
Similarly, to find the log file for SNA, use:

<kvr oot >/ <st or ename>/ | og/ sn*_*.1og

Examples of SN logs can be: sn1_0.log, sn1_1.log.

You can search SEVERE keyword in these log files, and then read the
searched messages to fix the errors, or you may require help from Oracle
NoSQL Database support. The action to take depends on the nature of the
failure and can vary from stopping and restarting the service explicitly (easy)
to the need to replace the service instance entirely (not easy and slow). The
issues can be any of the following:

* Resource issue — Some type of necessary resource for example, disk
space, memory, or network is not available.

* Configuration problem — Some configuration-related issues which needs a
fix.

9-25

ORACLE

Chapter 9
Software Monitoring

* Software bug — Bugs in the code which needs Oracle NoSQL Database
support.

* On disk corruption — Something in persistent storage has been corrupted.

Note that the corruption situations are difficult to handle, but this is rare and
require help from Oracle NoSQL Database support.

— unreachable(8) — The Arbiter Node is unreachable by the admin service.

¢ Note:

If a Storage Node is UNREACHABLE, or an Admin Node is having
problems and its Storage Node is UNREACHABLE, the first thing
to check is the network connectivity between the Admin and the
Storage Node. However, if the managing Storage Node Agent is
reachable and the managed Arbiter Node is not, we can guess that
the network is OK and the problem lies elsewhere.

— expectedRestarting(9) — The Arbiter Node is executing an expected restart
as some plan CLI commands causes a component to restart. This is an
expected restart, that is different from errorRestarting(6) (which is a restart
after encountering an error).

Note:

All timestamp metrics are in UTC, therefore appropriate conversion to a
time zone relevant to where the store is deployed is necessary.

arbNodeConfigProperties — The set of configuration name/value pairs that the
Arbiter Node is currently running with. This is analogous to the Replication Node.

arbNodeJavaMiscParams — The value of the -Xms, -Xmx, and -
XX:ParallelGCThreads= as encountered when the Java VM running this Arbiter
Node was booted.

arbNodeLoggingConfigProps — The value of the loggingConfigProps parameter as
encountered when the Java VM running this Arbiter Node was booted.

arbNodeCollectEnvStats — True or false depending on whether the Arbiter Node is
currently collecting performance statistics.

arbNodeStatsinterval — The interval (in seconds) that the Arbiter Node is utilizing
for aggregate statistics.

arbNodeHeapMB — The size of the Java heap for this Arbiter Node, in MB.
arbNodeAcks — The number of transactions acked.
arbNodeMaster — The current master.

arbNodeState — The replication state of the node. An Arbiter has an associated
replication state (analogous to the replication node state). The state diagram is
UNKNOWN <-> REPLICA -> DETACHED.

9-26

Chapter 9
Software Monitoring

arbNodeVLSN — The current acked VLSN. Arbiters track the VLSN/DTVLSN of the
transaction commit that the Arbiter acknowledges. This is the highest VLSN value
that the Arbiter acknowledged.

arbNodeReplayQueueOverflow — The current replayQueueOverflow value. The
arbNodeReplayQueueOverflow statistic is incremented when the Arbiter is

not able to process acknowledgement requests fast enough to prevent the

thread reading from the network to wait for free space in the queue. The
RepParms.REPLICA_MESSAGE_QUEUE_SIZE is used to specify the maximum
number of entries that the queue can hold. The default is 1000 entries. A high
arbNodeReplayQueueOverflow value may indicate that the queue size is too small
or that the Arbiter is not able to process requests as fast as the system load
requires.

Monitoring for Administration (Admin) Nodes

The Administrative (Admin) Node is a process running in the Storage Node, that is
used to configure, deploy, monitor, and change store components. The Administrative
Node handles the execution of commands from the Administrative Command Line
Interface (CLI). For more information, see Administration in the Concepts Guide.

See the following section:

Metrics for Admin Nodes

Metrics for Admin Nodes

ORACLE

The following metrics are accessible through JMX for monitoring Administrative Nodes
in the Oracle NoSQL Database cluster.

adminld — The unique ID for the Admin Node.

adminServiceStatus — The status of the administrative service. It can be one of the
follows:

— unreachable(0) — The Admin Node is unreachable. This can be due to a
network error or the Admin Node maybe down.

— starting (1) — The Admin Node agent is booting up.

— waitingForDeploy (2) — Indicates a bootstrap admin that has not been
configured, that is, it has not been given a store name. Configuring the admin
triggers the creation of the Admin database, and changes its status from
"WAITING_FOR_DEPLOY" to "RUNNING".

— running(3) — The Admin Node is running.
— stopping(4) — The Admin Node in the process of shutting down.
— stopped(5) — An intentional clean shutdown of the Admin Node.

— errorRestarting(6) — The Storage Node tried to start the admin several times
without success and gave up.

— errorNoRestart(7) — Service is in an error state and will not be automatically
restarted. Administrative intervention is required. The user can start looking
for SEVERE entries in both the service's log file and the log file of the SNA

9-27

ORACLE

Chapter 9
Software Monitoring

controlling the failed service. The service's log in Monitoring for Admin section
is Admin log:

<kvr oot >/ <st or ename>/ | og/ admi n*_*. | og

where, <kvroot> and <storename> are user inputs and * represents the
number of the log.

Note that the kvroot and storename will be different for every installation.
Similarly, to find the log file for SNA, use:

<kvr oot >/ <st or ename>/ | og/ sn*_*.1og

Examples of SN logs can be: sn1_0.log, sn1_1.log.

You can search SEVERE keyword in these log files, and then read the
searched messages to fix the errors, or you may require help from Oracle
NoSQL Database support. The action to take depends on the nature of the
failure and can vary from stopping and restarting the service explicitly (easy)
to the need to replace the service instance entirely (not easy and slow). The
issues can be any of the following:

* Resource issue — Some type of necessary resource for example, disk
space, memory, or network is not available.

* Configuration problem — Some configuration-related issues which needs a
fix.

* Software bug — Bugs in the code which needs Oracle NoSQL Database
support.

* On disk corruption — Something in persistent storage has been corrupted.

In the rare case that you discover disk corruption, you must get help from
Oracle NoSQL Database support.

— expectedRestarting(9) — The Admin Node is executing an expected restart
as some plan CLI commands causes a component to restart. This is an
expected restart, that is different from errorRestarting(6) (which is a restart
after encountering an error).

adminLogFileCount — A logging config parameter that represents the maximum
number of log files that are retained by the Admin Node. Users can change the
value of this parameter, and also the adm nLogFi | eLi ni t parameter, if they want
to reduce the amount of disk space used by debug log files. Note that reducing
the amount of debug log data saved may make it harder to debug problems if
debug information is deleted before the problem is noticed. For more information
on adni nLogFi | eCount , see Admin Parameters and Admin Restart.

adminLogFileLimit — A logging config parameter that represents the maximum size
of a single log file in bytes. For more information on adni nLogFi l eLinm t, see
Admin Parameters and Admin Restart.

adminPollPeriod — The frequency by which the Admin polls agents (Replication
Node and Storage Node Agent) for statistics. This polling receives service status
changes, performance metrics, and log messages. This period is reported in units
of milliseconds.

adminEventExpiryAge — Tells how long critical events are saved in the admin
database. This value is reported in units of hours.

9-28

Chapter 9
Hardware Monitoring

* adminlsMaster — A Boolean value which indicates whether or not this Admin Node
is the master node for the admin group.

Hardware Monitoring

While software component monitoring is central to insuring that high availability service
levels are met, hardware monitoring, fault isolation, and ultimately the replacement of
a failed component and how to recover from that failure are equally important. The
following sections cover guidelines on what to monitor and how to detect potential
hardware failures. It also discusses the replacement procedures of replacing failed
hardware components and how to bring the Oracle NoSQL Database components
(that were utilizing the components that were replaced) back online.

Monitoring for Hardware Faults

There are several different hardware scenarios/failures that are considered when
monitoring the environment for Oracle NoSQL Database. The sections below cover
the monitoring of network, disk, and machine failures as well as the correlation of
these failures with log events in the Oracle NoSQL Database. Finally, it discusses how
to recover from these failure scenarios.

The Network

Monitoring packet loss, round trip average latencies, and network utilization provides
a glimpse into critical network activity that can affect the performance as well as the
ongoing functioning of the Oracle NoSQL Database. There are two critical types of
network activity in the Oracle NoSQL Database. The client driver will utilize Java RMI
over TCP/IP to communicate between the machine running the application, and the
machines running the nodes of the NoSQL Database cluster. Secondly, each node in
the cluster must be able to communicate with each other. Replication Nodes will utilize
Java RMI over TCP/IP and will also utilize streams based communication over TCP/IP.
Administrative nodes and Storage Node agents will only utilize RMI over TCP/IP. The
key issue in insuring an operational store that is able to maintain predictable latencies
and throughput is to monitor the health of the network through which all of these nodes
communicate.

The following tools are recommended for monitoring the health of the network
interfaces that the Oracle NoSQL Database relies on:

* Sar, ping, iptraf — These operating system tools display critical network statistics
such as # of packets lost, round trip latency, and network utilization. It is
recommended to use pi ng in a scripted fashion to monitor round trip latency as
well as packet loss and use either sar oriptraf in a scripted fashion to monitor
network utilization. A good rule of thumb is to raise an alert if network utilization
goes above 80%.

* Oracle NoSQL Ping command — The ping command attempts to contact each
node of the cluster. Directions on how to run and script this command can be
found here: CLI Command Reference.

Correlating Network Failure to NoSQL Log Events

Network failures that affect the runtime operation of NoSQL Database is ultimately
logged as instances of Java runtime exceptions. Using log file monitoring, the following
exception strings are added to a list of regular expressions that are recognized as

ORACLE 9-29

Chapter 9
Hardware Monitoring

critical events. Correlating the timestamps of these events with the timestamps of
whatever network monitoring tool is being utilized.

Note:

While searching the log file for any of the exceptions stated below, the

log level must also be checked such that only log levels of SEVERE is
considered. These exceptions are logged at a level of INFO which indicates
no errors will be encountered by the application.

* UnknownHostException — A DNS lookup of a node in the NoSQL Database
failed due to either a misconfigured NoSQL Database or a DNS error.
Encountering this error after a NoSQL cluster has been operational for some time
indicates a network failure between the application and the DNS server.

» ConnectException — The client driver cannot open a connection to the NoSQL
Database node. Either the node is not listening on the port being contacted or the
port is blocked by a firewall.

» ConnectlOException — Indicates a possible handshake error between the client
and the server or an I/O error from the network layer.

* MarshalException — Indicates a possible 1/O error from the network layer.
* UnmarshalException — Indicates a possible I/O error from the network layer.
* NoSuchObjectException — Indicates a possible 1/O error from the network layer.

* RemoteException — Indicates a possible 1/O error from the network layer.

Recovering from Network Failure

In general, the NoSQL Database will retry and recover from network failures and no
intervention at the database level is necessary. It is possible that a degraded level
of service is encountered due to the network failure; however, the failure of network
partitions will not cause the NoSQL Database to fail.

Persistent Storage

ORACLE

One of the most common failure scenarios you can expect to encounter while
managing a deployed Oracle NoSQL Database instance (sometimes referred to as
KVStore) is a disk that fails and needs to be replaced; where the disk is typically

a hard disk drive (HDD), or a solid state drive (SSD). Because HDDs employ many
moving parts that are continuously in action when the store performs numerous writes
and reads, moving huge numbers of bytes on and off the disk, parts of the disk can
easily wear out and fail. With respect to SSDs, although the absence of moving parts
makes SSDs a bit less failure prone than HDDs, when placed under very heavy load,
SSDs will also generally fail with regularity. As a matter of fact, when such stores
scale to a very large number of nodes (machines), a point can be reached where disk
failure is virtually guaranteed; much more than other hardware components making
up a node. For example, disks associated with such systems generally fail much
more frequently than the system's mother board, memory chips, or even the network
interface cards (NICs).

9-30

Chapter 9
Hardware Monitoring

Since disk failures are so common, a well-defined procedure is provided for replacing
a failed disk while the store continues to run; providing data availability.

Detecting and Correlating Persistent Storage Failures to NoSQL Log Events

There are many vendor specific tools for detecting the failure of persistent storage
devices. It is beyond the scope of this book to recommend any vendor specific
mechanism. There are however, some general things that can be done to identify
a failed persistent storage device;

" Note:

Using log file monitoring, the following exception string is to a list of regular
expressions that should be recognized as critical events. Correlating the
timestamps of these events with the timestamps of whatever storage device
monitoring tool is being utilized. When searching the log file for any of the
exception stated below, the log level must also be checked such that only log
levels of SEVERE is considered.

« 1/O errors in Ivarllog/imessages — Monitoring /var/log/messages for 1/O errors
indicate that something is wrong with the device and it may be failing.

* Smartctl — If available, the smartctl tool detects a failure with a persistent storage
device and displays the serial number of the specific device that is failing.

* EnvironmentFailureException — The storage layer of NoSQL Database
(Berkeley DB Java Edition) converts Java IOExceptions detected from the storage
device into an EnvironmentFailureException and this exception is written to the log
file.

Resolving Storage Device Failures

ORACLE

The sections below describe that procedure for two common machine configurations.

In order to understand how a failed disk can be replaced while the KVStore is running,
review what and where data is stored by the KVStore; which is dependent on each
machine's disk configuration, as well as how the store's capacity and storage directory
location is configured. Suppose a KVStore is distributed among 3 machines — or
Storage Nodes (SNs) — and is configured with replication factor (RF) equal to 3,

each SN's capacity equal to 2, KVROOT equal to /opt/ondb/var/kvroot, and store name
equal to "store-name". Since the capacity or each SN is 2, each machine will host 2
Replication Nodes (RNs). That is, each SN will execute 2 Java VMs and each run

a software service (an RN service) responsible for storing and retrieving a replicated
instance of the key/value data maintained by the store.

Suppose in one deployment, the machines themselves (the SNs) are each configured
with 3 disks; whereas in another deployment, the SNs each have only a single disk
on which to write and read data. Although the second (single disk) scenario is fine

for experimentation and "tire kicking", that configuration is strongly discouraged for
production environments, where it is likely to have disk failure and replacement. In
particular, one rule deployers are encouraged to follow in production environments

is that multiple RN services should never be configured to write data to the same
disk. That said, there may be some uncommon circumstances in which a deployer
may choose to violate this rule. For example, in addition to being extremely reliable

9-31

ORACLE

Chapter 9
Hardware Monitoring

(for example, a RAID device), the disk may be a device with such high performance
and large capacity that a single RN service would never be able to make use of

the disk without exceeding the recommended 32GB heap limit. Thus, unless the
environment consists of disks that satisfy such uncommon criteria, deployers always
prefer environments that allow them to configure each RN service with its own disk;
separate from all configuration and administration information, as well as the data
stored by any other RN services running on the system.

As explained below, to configure a KVStore use multiple disks on each SN, the
storagedir parameter must be employed to exploit the separate media that is available.
In addition to encouraging deployers to use the storagedir parameter in the multi-disk
scenario, this note is also biased toward the use of that parameter when discussing
the single disk scenario; even though the use of that parameter in the single disk

case provides no substantial benefit over using the default location (other than the
ability to develop common deployment scripts). To understand this, first compare the
implications of using the default storage location with a non-default location specified
with the storagedir parameter.

Thus, suppose the KVStore is deployed — in either the multi-disk scenario or the single
disk scenario — using the default location; that is, the storagedir parameter is left
unspecified. This means that data will be stored in either scenario under the KVROOT;
which is / opt / ondb/ var/ kvr oot in the examples below. For either scenario, a directory
structure like the following is created and populated:

- Machine 1 (SN1) - - Machine 2 (SN2) - - Machine 3 (SN3) -
[opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
log files log files log files
/ store-nane / st ore- name / st or e- name
/1og /'1og /10og
/snl /sn2 /sn3
config. xm config. xm config. xn
[adm nl [admi n2 [adm n3
/ env / env l env
/rgl-rnl /rgl-rn2 /rgl-rn3
l env l env l env
/rg2-rnl /rg2-rn2 /rg2-rn3
l env l env l env

Compare this with the structure that is created when a KVStore is deployed to the
multi-disk machines; where each machine's 3 disks are named /opt, /disk1, and/disk2.
Assume that the makebootconfig utility (described in Chapter 2 of the Oracle NoSQL
Database Administrator's Guide, section, "Installation Configuration") is used to create
an initial boot config with parameters such as the following:

> java - Xnmx64m - Xns64m \
-jar KVHOWE |i b/ kvstore.jar makebootconfig \
-root /opt/ondb/var/kvroot \
-port 5000 \
-host <host-i p>
- harange 5010, 5020 \
-numcpus 0 \
-memory_nmb 0\
-capacity 2 \

9-32

ORACLE

Chapter 9
Hardware Monitoring

-adm ndir /opt/ondb/var/admin \
-storagedir /diskl/ondb/data \
-storagedir /disk2/ondb/data \
-rnlogdir /diskl/ondb/rnlog \
-storagedir /disk2/ondb/rnlog

With a boot config such as that shown above, the directory structure that is created
and populated on each machine would then be:

- Machine 1 (SN1) - - Machine 2 (SN2) - - Machine 3 (SN3) -
[opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
log files log files log files
/ st ore-narme / st or e- name / st or e- name
/1og /109 /10g
/snl /sn2 /sn3
config. xm config. xm config. xm
/admi nl [adnmi n2 [admi n3
[env [env | env
/ di sk1/ ondb/ dat a / di sk1/ ondb/ dat a / di sk1/ ondb/ dat a
/rgl-rnl /rgl-rn2 /rgl-rn3
/ env | env | env
/ di sk2/ ondb/ dat a / di sk2/ ondb/ dat a / di sk2/ ondb/ dat a
/rg2-rnl /rg2-rn2 /rg2-rn3
/ env | env | env

In this case, the configuration information and administrative data is stored in a
location that is separate from all of the replication data. Furthermore, the replication
data itself is stored by each distinct RN service on separate, physical media as well.
That is, the data stored by a given member of each replication group (or shard) is
stored on a disk that separate from the disks employed by the other members of the

group.

" Note:

Storing the data in these different locations as described above, provides for
failure isolation and will typically make disk replacement less complicated
and less time consuming. That is, by using a larger number of smaller

disks, it is possible to recover much more quickly from a single disk failure
because of the reduced amount of time it will take to repopulate the smaller
disk. This is why both this note and Chapter 2 of the Oracle NoSQL
Database Administrator's Guide, section, "Installation Configuration” strongly
encourage configurations like that shown above; configurations that exploit
separate physical media or disk partitions.

Even when a machine has only a single disk, nothing prevents the deployer from
using the storagedir parameter in a manner similar to the multi-disk case; storing the
configuration and administrative data under a parent directory that is different than

the parent(s) under which the replicated data is stored. Since this non-default strategy
may allow to create deployment scripts that can be more easily shared between single

9-33

Chapter 9
Hardware Monitoring

disk and multi-disk systems, some may prefer this strategy over using the default
location (KVROOQOT); or may simply view it as a good habit to follow. Employing this
non-default strategy is simply a matter of taste, and provides no additional benefit
other than uniformity with the multi-disk case.

Hence, such a strategy applied to a single disk system will not necessarily make

disk replacement less complicated; because, if that single disk fails and needs to be
replaced, not only is all the data written by the RN(s) unavailable, but the configuration
(and admin) data is also unavailable. As a result, since the configuration information

is needed during the (RN) recovery process after the disk has been replaced, that
data must be restored from a previously captured backup; which can make the disk
replacement process much more complicated. This is why multi-disk systems are
generally preferred in production environments; where, because of sheer use, the data
disks are far more likely to fail than the disk holding only the configuration and other
system data.

Procedure for Replacing a Failed Persistent Storage Device

ORACLE

Suppose a KVStore has been deployed to a set of machines, each with 3 disks, using
the 'storagedir' parameter as described above. Suppose that disk2 on SN3 fails and
needs to be replaced. In this case, the administrator would do the following:

1. Execute the KVStore administrative command line interface (CLI), connecting via
one of the healthy admin services.

2. From the CLI, execute the following command:

kv-> plan stop-service-service rg2-rn3

This stops the service so that attempts by the system to communicate with that
particular service are no longer necessary; resulting in a reduction in the amount
of error output related to a failure the administrator is already aware of.

3. Remove disk2, using whatever procedure is dictated by the OS, the disk
manufacture, and/or the hardware platform.

4. |Install a new disk using the appropriate procedures.

5. Format the new disk to have the same storage directory as before; that is, / di sk2/
ondb/ var/ kvr oot

6. From the CLI, execute the following commands; where the verify configuration
command simply verifies that the desired RN is now up and running:

kv-> plan start-service -service rg2-rn3 -wait
kv-> verify configuration

7. Verify that the recovered RN data file(s) have the expected content; that is, /
di sk2/ ondb/ var/ kvroot/rg2-rn3/env/*.jdb

In step 2, the RN service with id equal to 3, belonging to the replication group with id2,
is stopped (rg2-rn3). To determine which specific RN service to stop when using the
procedure outlined above, the administrator combines knowledge of which disk has
failed on which machine with knowledge about the directory structure created during
deployment of the KVStore. For this particular case, the administrator has first used
standard system monitoring and management mechanisms to determine that disk2
has failed on the machine corresponding to the SN with id equal to 3 and needs to

be replaced. Then, given the directory structure shown previously, the administrator

9-34

Example

ORACLE

Chapter 9
Hardware Monitoring

knows that — for this deployment — the store writes replicated data to disk2 on the
SN3 machine using files located under, / di sk2b/ dat a/ r g2- rn3/ en. As a result, the
administrator determined that the RN service with name equal to rg2-rn3 must be
stopped before replacing the failed disk.

In step 6, if the RN service that was previously stopped has successfully restarted
when the verify configurati on command is executed, and although the command's
output indicates that the service is up and healthy, it is not necessary that the restarted
RN has completely repopulated the new disk with that RN's data. This is because,

it could take a considerable amount of time for the disk to recover all its data;
depending on the amount of data that previously resided on the disk before failure.
The system may encounter additional network traffic and load while the new disk is
being repopulated.

Finally, it should be noted that step 7 is just a sanity check, and therefore optional.
That is, if the RN service is successfully restarted and the verify configuration
command reports RN as healthy, the results of that command is viewed as sufficient
evidence for declaring the disk replacement a success. As indicated above, even if
some data is not yet available on the new disk, that data will continue to be available
via the other members of the recovering RN's replication group (shard), and will
eventually be replicated to, and available from, the new disk as expected.

Below, an example is presented that allows you to gain some practical experience with
the disk replacement steps presented above. This example is intended to simulate

the multi-disk scenario using a single machine with a single disk. Thus, no disks

will actually fail or be physically replaced. But you should still feel how the data is
automatically recovered when a disk is replaced.

For simplicity, assume that the KVStore is installed under / opt / ondb/ kv; that is,
KVHOVE=/ opt / ondb/ kv, and that KVROOT=/ opt / ondb/ var / kvr oot ; that is, if you have
not done so already, create the directory:

> nkdir -p /opt/ondb/var/kvroot

To simulate the data disks, create the following directories:

> nkdir -p /tnp/snl/diskl/ondb/data
> nkdir -p /tnp/snl/disk2/ondb/data
> nkdir -p /tnp/sn2/di skl/ondb/data
> nkdir -p /tnp/sn2/di sk2/ ondb/ dat a
> nkdir -p /tnp/sn3/diskl/ondb/data
> nkdir -p /tnp/sn3/disk2/ondb/data

Next, open 3 windows; Win_A, Win_B, and Win_C, which will represent the 3
machines (SNs). In each window, execute the makeboot conf i g command, creating
a different, but similar, boot config for each SN that will be configured.

On Win_A

java - Xmk64m - Xnms64m \
-jar [opt/ondb/kv/libl/kvstore.jar makebootconfig \

9-35

ORACLE

Chapter 9
Hardware Monitoring

-root /opt/ondb/var/kvroot \

-host <host-ip>\

-config configl. xm \

-port 13230 \

-harange 13232, 13235 \

-mermory_nb 100 \

-capacity 2\

-adm ndir /opt/ondb/var/adnmin \
-storagedir /tnp/snl/diskl/ondb/data \
-storagedir /tnp/snl/disk2/ ondb/data

On Win_B

java - Xmk64m - Xnms64m \
-jar /opt/ondb/kv/liblkvstore.jar makebootconfig \
-root /opt/ondb/var/kvroot \
-host <host-ip>\
-config config2. xm \
-port 13240 \
-harange 13242, 13245 \
-mermory_nb 100 \
-capacity 2\
-adm ndir /opt/ondb/var/adnin \
-storagedir /tnp/sn2/diskl/ondb/data \
-storagedir /tnp/sn2/di sk2/ondb/data

On Win C

java - Xmk64m - Xnms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
-root /opt/ondb/var/kvroot \

-host <host-ip>\

-config config3.xm \

-port 13250 \

-harange 13252, 13255 \

-merory_nb 100 \

-capacity 2 \

-adm ndir /opt/ondb/var/adnin \
-storagedir /tnp/sn3/diskl/ondb/data \
-storagedir /tnp/sn3/disk2/ ondb/data

This will produce 3 configuration files:

[opt / ondb/ var/ kvr oot

[configl. xm
[config2. xm
[config3. xm

Using the different configurations just generated, start a corresponding instance of the
KVStore Storage Node Agent (SNA) from each window.

9-36

ORACLE

Chapter 9
Hardware Monitoring

< Note:

Before starting the SNA, set the environment variable MALLOC ARENA MAX
to 1. Setting MALLOC ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

On Win_A

> nohup java - Xnx64m - Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar start \
-root /opt/ondb/var/kvroot -config configl. xm &

On Win_B

> nohup java - Xmx64m - Xns64m \
-jar /opt/ondb/kv/lib/kvstore.jar start \
-root /opt/ondb/var/kvroot -config config2.xm &

On Win_C

> nohup java - Xmk64m - Xnms64m \
-jar /opt/ondb/kv/lib/kvstore.jar start \
-root /opt/ondb/var/kvroot -config config3.xm &

Finally, from any window (Win_A, Win_B, Win_C, or a new window), use the KV Store
administrative CLI to configure and deploy the store.

To start the administrative CLI, execute the following command:

> java - Xnmx64m - Xns64m \
-jar lopt/ondb/kv/lib/kvstore.jar runadmn \
-host <host-ip> -port 13230

To configure and deploy the store, type the following commands from the
administrative CLI prompt (remembering to substitute the actual IP address or
hostname for the string <host-ip>):

configure -name store-nane

pl an depl oy-zone -name Zonel -rf 3 -wait

pl an depl oy-sn -zn 1 -host <host-ip> -port 13230 -wait
pl an depl oy-admin -sn 1 -port 13231 -wait

pool create -name snpoo

pool join -name snpool -sn snl

pl an depl oy-sn -zn 1 -host <host-ip> -port 13240 -wait
pl an depl oy-admin -sn 2 -port 13241 -wait

pool join -name snpool -sn sn2

pl an depl oy-sn -zn 1 -host <host-ip> -port 13250 -wait
pl an depl oy-admin -sn 3 -port 13251 -wait

pool join -name snpool -sn sn3

change-policy -parans "l oggi ngConfi gProps=oracl e. kv. | evel =I NFQ, "

9-37

ORACLE

Chapter 9
Hardware Monitoring

change-policy -parans cacheSi ze=10000000
topol ogy create -name store-layout -pool snpool -partitions 100
pl an depl oy-topol ogy -nane store-layout -plan-nane RepNode-Depl oy -wait

" Note:

The CLI command prompt (kv- >) was excluded from the list of commands
above to facilitate cutting and pasting the commands into a CLI load script.

When the above commands complete (use show pl ans), the store is up and running
and ready for data to be written to it. Before proceeding, verify that a directory like that
shown above for the multi-disk scenario has been laid out. That is:

- Wn_A - - WnB - - Wn_C-
[opt/ ondb/ var/ kvr oot [opt / ondb/ var / kvr oot / opt/ ondb/ var/ kvr oot
log files log files log files
/ exanmpl e-store / exanpl e-store / exanpl e-store
/1og /10g /1o0g
/snl /sn2 /sn3
config. xm config. xm config. xm
[adm nl / adm n2 [adm n3
/ env / env l env

[tp/ snl/di sk1l/ ondb/data /tnp/sn2/diskl/ ondb/data /tnp/sn3/diskl/ ondb/
data

/rgl-rnl /rgl-rn2 /rgl-rn3
/ env / env / env
00000000. j db 00000000. j db 00000000. j db

When a key/value pair is written to the store, it is stored in each of the (rf=3) files
named, 00000000.jdb that belong to a given replication group (shard); for example,
when a single key/value pair is written to the store, that pair would be stored in either
these files:

[t mp/ snl/ di sk2/ ondb/ dat a/ r g2- r n1/ env/ 00000000. j db
[t mp/ sn2/ di sk2/ ondb/ dat a/ r g2- r n2/ env/ 00000000. j db
[t mp/ sn3/ di sk2/ ondb/ dat a/ r g2- r n3/ env/ 00000000. j db

Or in these files:

[t mp/ snl/ di sk1/ ondb/ dat a/ r g1-rnl/ env/ 00000000. j db
[t mp/ sn2/ di sk1/ ondb/ dat a/ r g1- r n2/ env/ 00000000. j db
[t mp/ sn3/ di sk1/ ondb/ dat a/ r g1-r n3/ env/ 00000000. j db

At this point, each file should contain no key/value pairs. Data can be written to the

store in the most convenient way. But a utility that is quite handy for doing this is the
KVStore client shell utility; which is a process that connects to the desired store and
then presents a command line interface that takes interactive commands for putting

9-38

ORACLE

Chapter 9
Hardware Monitoring

and getting key/value pairs. To start the KVStore shell, type the following from a
window:

> java - Xnx64m - Xms64m \
-jar [opt/ondb/kv/lib/kvstore.jar runadnin\
-host <host-ip> -port 13230 -store store-nane

kv-> get -all
0 Record returned.

kv-> put -key /FIRST_KEY -val ue "HELLO WORLD'
Put OK, inserted.

kv-> get -all
| FI RST_KEY
HELLO WORLD

A quick way to determine which files the key/value pair was stored in is to simply

grep for the string "HELLO WORLD"; which should work with binary files on most linux
systems. Using the grep command in this way is practical for examples that consist of
only a small amount of data.

> grep "HELLO WORLD' /tnp/snl/diskl/ondb/data/rgl-rnl/env/00000000.jdb
> grep "HELLO WORLD' /tnp/sn2/di sk1/ ondb/ dat a/rgl-rn2/env/00000000. | db
> grep "HELLO WORLD' [/t np/sn3/di skl/ondb/ dat a/rgl-rn3/env/00000000.j db

> grep "HELLO WORLD' [/t np/snl/di sk2/ ondb/ dat a/rg2-rnl/env/00000000. | db
Binary file /tnp/snl/disk2/ ondb/data/rg2-rnl/env/00000000.|db matches

> grep "HELLO WORLD' [/t np/ sn2/di sk2/ ondb/ dat a/ r g2- rn2/ env/ 00000000. j db
Binary file /tnp/sn2/disk2/ondb/datalrg2-rn2/env/00000000.jdb matches

> grep "HELLO WORLD' [/t np/sn3/di sk2/ ondb/ dat a/ r g2- rn3/ env/ 00000000. j db
Binary file /tnp/sn3/disk2/ ondb/data/rg2-rn3/env/00000000.jdb matches

In the example above, the key/value pair that was written to the store was stored
by each RN belonging to the second shard; that is, each RN is a member of the
replication group with id equal to 2 (rg2-rnl, rg2-rn2, and rg2-rn3).

Note:

With which shard a particular key is associated depends on the key's value
(specifically, the hash of the key's value) as well as the number of shards
maintained by the store. It is also worth noting that although this example
shows log files with the name 00000000.jdb, those files are only the first of
possibly many such log files containing data written by the corresponding RN
service.

As the current log file reaches its maximum capacity, a new file is created to
receive all new data written. That new file's name is derived from the previous
file by incrementing the prefix of the previous file. For example, you might

see files with names such as, "..., 00000997 .jdb, 00000998.jdb, 00000999.jdb,
00001000.jdb,00001001..jdb, ...".

9-39

Chapter 9
Hardware Monitoring

After the data has been written to the store, a failed disk can be simulated, and the
disk replacement process can be performed. To simulate a failed disk, pick one of

the storage directories where the key/value pair was written and, from a command
window, delete the storage directory. For example:

>rm-rf /tp/sn3/disk2

At this point, if the log file for SN3 is examined, you should see repeated exceptions
being logged. That is:

> tail /opt/ondb/var/kvroot/store-nane/l og/sn3_0.log

rg2-rn3: ProcessMnitor: java.lang.!lll|egal StateException: Error occurred
accessing statistic log file
[t mp/ sn3/ di sk2/ ondb/ dat a/ rg2-rn3/env/je.stat.csv.

But if the client shell is used to retrieve the previously stored key/value pair, the store
is still operational, and the data that was written is still available. That is:

kvshel | -> get -all
| FI RST_KEY
HELLO WORLD

The disk replacement process can now be performed. From the command window in
which the KVStore administrative CLI is running, execute the following (step 2 from
above):

kv-> plan stop-service -service rg2-rn3
Executed plan 9, waiting for conpletion...
Plan 9 ended successfully

kv-> verify configuration

Rep Node [rg2-rn3] Status: UNREACHABLE

If you attempt to restart the RN service that was just stopped, the attempt would not
succeed. This can be seen via the contents of SN3's log fi | e/ opt/ ondb/ var/ kvr oot/
store-nane/ | og/ sn3_0. | og. The contents of that file indicate repeated attempts to
restart the service, but due to the missing directory — that is, because of the "failed"
disk — each attempt to start the service fails, until the process reaches an ERROR
state; for example:

kv-> show pl ans
1 Depl oy Zone (1) SUCCEEDED
9 Stop RepNodes (9) SUCCEEDED
10 Start RepNodes (10) ERROR

ORACLE 9-40

ORACLE

Chapter 9
Hardware Monitoring

Now, the disk should be "replaced". To simulate disk replacement, we must create the
original parent directory of rg2-rn3; which is intended to be analogous to installing and
formatting the replacement disk:

> nkdir -p /tnp/sn3/di sk2/ ondb/ dat a

From the administrative CLI, attempt to restart the RN service should succeed since
the disk has been "replaced".

kv-> plan start-service -service rg2-rn3 -wait
Executed plan 11, waiting for conpletion...
Plan 11 ended successfully

kv-> verify configuration
Rep Node [rg2-rn3] Status: RUNNI NG REPLICA at sequence
number 327 haPort: 13254

To verify that the data has been recovered as expected, grep for "HELLO WORLD"
again.

> grep "HELLO WORLD" /tnp/sn3/di sk2/ ondb/ dat a/ r g2-rn3/ env/ 00000000. j db
Binary file /tnp/sn3/disk2/ ondb/datalrg2-rn3/env/00000000.jdb mat ches

To see why the disk replacement process outlined above might be more complicated
for the default — and by extension, the single disk — case than it is for the multi-disk
case, try running the example above using default storage directories; that is, remove
the storagedir parameters from the invocation of the makeboot confi g command
above. This will result in a directory structure such as:

[opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot

log files log files log files
/ store-name / store-name / store-name
/1og /10g /10g
/snl /sn2 /sn3
config.xm config.xm config. xm
/rgl-rnl /rgl-rn2 /rgl-rn3
/rg2-rnl lrg2-rn2 /rg2-rn3

In a similar example, to simulate a failed disk in this case, you would delete the
directory / opt / ondb/ var / kvr oot / sn3; which is the parent of the / adni n3 database,
the /rgl-rn3 database, and the / r g2- r n3 database.

It is important to note that the directory also contains the configuration for SN3.

Since SN3's configuration information is contained under the same parent — which

is analogous to that information stored on the same disk — as the replication node
databases; when the "failed" disk is "replaced" as it was in the previous example, the
step where the RN service(s) are restarted will fail because SN3's configuration is no
longer available. While the replicated data can be automatically recovered from the
other nodes in the system when a disk is replaced, the SN's configuration information
cannot. That data must be manually restored from a previously backed up copy. This
extends to the non-default, single disk case in which different storagedir parameters
are used to separate the KVROOT location from the location of each RN database.

9-41

Servers

Chapter 9
Hardware Monitoring

In that case, even though the replicated data is stored in separate locations, that data
is still stored on the same physical disk. Therefore, if that disk fails, the configuration
information is still not available on restart, unless it has been manually reinstalled on
the replacement disk.

Although not as common as a failed disk, it is not unusual for an administrator to
need to replace one of the machines hosting services making up a given KVStore
deployment (an SN). There are two common scenarios where a whole machine
replacement may occur. The first is when one or more hardware components fail and
it is more convenient or cost effective to simply replace the whole machine than it is
to replace the failed components. The second is when a working, healthy machine is
to be upgraded to a machine that is bigger and robust; for example, a machine with
larger disks and better performance characteristics. The procedures presented in this
section are intended to describe the steps for preparing a new machine to replace an
existing machine, and the steps for retiring the existing machine.

Detecting and Correlating Server Failures to NoSQL Log Events

In a distributed such as Oracle NoSQL Database, it is generally difficult to distinguish
between network outages and machine failure. The HA components of the NoSQL
Database detects when a replication node is unreachable and logs this as an event
in the admin log - however grepping for this log event produces false positives.
Therefore it is recommended to utilize a systems monitoring package like IMX to
detect machine/server failure.

Resolving Server Failures

ORACLE

Two replacement procedures are presented below. Both procedures essentially
achieve the same results, and both will result in one or more network restore
processes being performed (see below).

The first procedure presented replaces the old machine with a machine that — to all
interested parties — looks exactly like the original machine. That is, the new machine
has the same hostname, IP address, port, and SN id. Compare this with the second
procedure; where the old machine is removed from the store's topology and replaced
with a machine that appears to be a different machine - different hostname, IP
address, SN id — but the behavior is identical to the behavior of the replaced machine.
That is, the new machine runs the same services, and manages the exact same data,
as the original machine; it just happens to have a different network and SN identity.
Thus, the first case can be viewed as a replacement of only the hardware; that is,
from the point of view of the store, the original SN was temporarily taken down and
then restarted. The new hardware is not reflected in the store's topology. In the other
case, the original SN is removed, and a different SN takes over the original's duties.
Although the store's content and behavior hasn't changed, the change in hardware is
reflected in the store's new topology.

When determining which procedure to use when replacing a Storage Node, the
decision is left to the discretion of the store administrator. Some administrators

prefer to always use only one of the procedures, never the other. And some
administrators establish a policy that is based on some preferred criteria. For example,
you might imagine a policy where the first procedure is employed whenever SN
replacement must be performed because the hardware has failed; whereas the
second procedure is employed whenever healthy hardware is to be upgraded with

9-42

Chapter 9
Hardware Monitoring

newer/better hardware. In the first case, the failed SN is down and unavailable during
the replacement process. In the second case, the machine to be replaced can remain
up and available while the new machine is being prepared for migration; after which
the old machine can be shut down and removed from the topology.

Terminology Review

ORACLE

It may be useful to review some of the terminology introduced in the Oracle

NoSQL Database Getting Started Guide as well as the Oracle NoSQL Database
Administrator's Guide. Recall from those documents that the physical machine on
which the processes of the KVStore run is referred to as a Storage Node, or SN;
where a typical KVStore deployment generally consists of a number of machines —
that is, a number of SNs — that execute the processes and software services provided
by the Oracle NoSQL Database KVStore. Recall also that when the KVStore software
is initially started on a given SN machine, a process referred to as the "Storage

Node Agent" (or the SNA) is started. Then, once the SNA is started, the KVStore
administrative CLI is used to configure the store and deploy a "topology"; which results
in the SNA executing and managing the lifecycle of one or more "services" referred to
as "replication nodes" (or RN services). Finally, in addition to starting and managing
RN services, the SNA also optionally (depending on the configuration) starts and
manages another service type referred to as the "admin” service.

Because of the 1-to-1 correspondence between the machines making up a given
KVStore deployment and the SNA process initially started on each machine when
installing and deploying a store, the terms "Storage Node", "SN", or "SNx" (where x
is a positive integer) are often used interchangeably in the Oracle NoSQL Database
documents — including this note — when referring to either the machine on which the
SNA is running, or the SNA process itself. Which concept is intended should be clear
from the context in which the term is used in a given discussion. For example, when
the terms SN3 or sn3 are used below as part of a discussion about hardware issues
such as machine failure and recovery, that term refers to the physical host machine
running an SNA process that has been assigned the id value 3 and is identified in the
store's topology with the string "sn3". In other contexts, for example when the behavior
of the store's software is being discussed, the term SN3 and/or sn3 would refer to the
actual SNA process running on the associated machine.

Although not directly pertinent to the discussion below, the following terms are
presented not only for completeness, but also because it may be useful to understand
their implications when trying to determine which SN replacement procedure to
employ.

First, recall from the Oracle NoSQL Database documents that the RN service(s) that
are started and managed by each SNA are represented in the store's topology by their
service identification number (a positive integer), in conjunction with the identification
number of the replication group — or "shard" — in which the service is a member.

For example, a given store's topology may reference a particular RN service with

the string, "rg3-rn2"; which represents the RN service having id equal to 2 that is a
member of the replication group (that is, the shard) with id 3. The capacity then, of a
given SN machine that is operating as part of a given KVStore cluster is the number of
RN services that will be started and managed by the SNA process deployed to that SN
host. Thus, if the capacity of a given SN is 1, only a single RN service will be started
and managed by that SN. On the other hand, if the capacity is 3 (for example), then 3
RN services will be started and managed by that SN, and each RN will typically belong
to a different replication group (share).

9-43

ORACLE

Chapter 9
Hardware Monitoring

With respect to the SN host machines and resident SNA processes that are deployed
to a given KVStore, two concepts to understand are the concept of a "zone", and

the concept of a "pool" of Storage Nodes. Both concepts correspond to mechanisms

that are used to organize the SNs of the store into groups. As a result, the distinction

between the two concepts is presented below.

When configuring a KVStore for deployment, it is a requirement that at least one
"zone" be deployed to the store before deploying any Storage Nodes. Then, when
deploying each SNA process, in addition to specifying the desired host, one of the
previously deployed zones must also be specified; which, with respect to the store's
topology, will "contain" that SNA, as well as the services managed by that SNA. Thus,
the KVStore deployment process produces a a store consisting of one or more zones,
where a distinct set of storage nodes belongs to (is a member of) one — and only one —
of those zones.

In contrast to a zone, rather than being "deployed" to the store, one or more Storage
Node "pools" can be (optionally) "created" within the store. Once such a "pool" is
created, any deployed Storage Node can then be configured to "join" that pool, as well
as any other pool that has been created. This means that, unlike zones, where the
store consists of one or more zones containing disjoint sets of the deployed SNs, the
store can also consist of one or more "pools”, where there is no restriction on which,
or how many, pools a given SN joins. Every store is automatically configured with a
default pool named, "AllStorageNodes"; which all deployed Storage Nodes join. The
creation of any additional pools is optional, and left to the discretion of the deployer; as
is the decision about which pools a given Storage Node joins.

Besides the differences described above, there are additional conceptual differences
to understand when using zones and pools to group sets of Storage Nodes. Although
zones can be used to represent logical groupings of a store's nodes, crossing physical
boundaries, deployers generally map them to real, physical locations. For example,
although there is nothing to prevent the deployment of multiple SNA processes to a
single machine, where each SNA is deployed to a different zone, more likely than not,
a single SNA will be deployed to a single machine, and the store's zones along with
the SN machines within each zone will generally be defined to correspond to physical
locations that provide some form of fault isolation. For example, each zone may be
defined to correspond to a separate floor of a building; or to separate buildings, a few
miles apart (or even across the country).

Compare how zones are used with how pools are generally used. A single pool

may represent all of the Storage Nodes across all zones; where the default pool

is one such pool. On the other hand, multiple pools may be specified; in some

cases with no relation between the pools and zones, and in other cases with each
pool corresponding to a zone and containing only the nodes belonging to that zone.
Although there may be reasons to map a set of Storage Node pools directly to the
store's zones, this is not the primary intent of pools. Whereas the intent of zones is

to enable better fault isolation and geographic availability via physical location of the
storage nodes, the primary purpose of a pool is to provide a convenient mechanism for
referring to a group of storage nodes when applying a given administrative operation.
That is, the administrative store operations that take a pool argument can be called
once to apply the desired operation to all Storage Nodes belonging to the specified
pool, avoiding the need to execute the operation multiple times; once for each Storage
Node.

Associated with zones, another term to understand is "replication factor" (or "rf").
Whenever a zone is deployed to a KVStore, the "replication factor" of that zone must
be specified; which represents the number of copies (or "replicas") of each key/value
pair to write and maintain on the nodes of the associated zone. Note that whereas

9-44

Assumptions

Chapter 9
Hardware Monitoring

"capacity" is a per/SN concept that specifies the number of RN services to manage on
a given machine, the "replication factor" is a concept whose scope is per/zone, and is
used to determine the number of RN services that belong to each shard (or "replication
group") created and managed within the associated zone.

Finally, a "network restore" is a process whereby the store automatically recovers all
data previously written by a given RN service; retrieving replicas of the data from one
or more RN services running on different SNs and then transferring that data (across
the network) to the RN whose database is being restored. It is important to understand
the implications this process may have on system performance; as the process can
be quite time consuming, and can add significant network traffic and load while the
data store of the restored RN is being repopulated. Additionally, with respect to SN
replacement, these implications can be magnified when the capacity of the SN to be
replaced is greater than 1; as this will result in multiple network restorations being
performed.

When presenting the two procedures below, for simplicity, assume that a KVStore is
initially deployed to 3 machines, resulting in a cluster of 3 Storage Nodes; snl, sn2,
sn3 on hosts with names, host-snl, host-sn2, and host-sn3 respectively. Assume that:

e Each machine has a disk named / opt and a disk named / di sk1; where each SN
will store its configuration and admin database under / opt / ondb/ var / kvr oot , but
will store the data that is written on the other, separate disk under / di sk1/ ondb/
dat a.

* The KVStore is installed on each machine under / opt / ondb/ kv; that
is,KVHOVE=/ opt / ondb/ kv.

* The KVStore is deployed with KVROOT=/ opt / ondb/ var/ kvr oot .

e The KVStore is named "example-store"”.

e One zone — named "Zonel" and configured with r f =3 — is deployed to the store.
* Each SN is configured with capaci t y=1.

» After deploying each SN to the zone named "Zonel", each SN joins the pool
named "snpool".

* In addition to the SNA and RN services, an admin service is also deployed to each
machine; that is, adni nl is deployed to host - snl, adni n2 is deployed to host - sn2,
and adnmi n3 is deployed to host - sn3, each listening on port 13230.

Using specific values such as those reflected in the Assumptions described above
enables to follow the steps of each procedure. Using this administrators can
generalize and extend those steps to their own particular deployment scenario,
substituting the values specific to the given environment where necessary.

Replacement Procedure 1: Replace SN with Identical SN

ORACLE

The procedure presented in this section describes how to replace the desired SN with
a machine having an identical network and SN identity. A number of requirements
must be satisfied before executing this procedure; which are:

* An admin service must be running and accessible somewhere in the system.

e Theid of the SN to be replaced must be known.

9-45

ORACLE

Chapter 9
Hardware Monitoring

* The SN to be replaced must be taken down — either administratively or via failure —
before starting the new SN.

An admin service is necessary so that the current configuration of the SN to be
replaced can be retrieved from the admin service's database and packaged for
installation on the new SN. Thus, before proceeding, the administrator must know the
location (hostname or IP address) of the admin service, along with the port on which
that service is listening for requests. Additionally, since this process requires the id of
the SN to be replaced, the administrator must also know that value before initiating the
procedure below; for example, something like, sn1, sn2, sn3, etc.

Finally, if the SN to be replaced has failed, and is down, the last requirement above is
automatically satisfied. On the other hand, if the SN to be replaced is up, then at some
point before starting the new SN, the old SN must be down so that that SN and the
replacement SN do not conflict.

With respect to the requirement related to the admin service, if the system is running
multiple instances of the admin, it is not important which instance is used in the steps
below; just that the admin is currently running and accessible. This means that if the
SN to be replaced is not only up but is also running an admin service, then that admin
service can be used to retrieve and package that SN's current configuration. But if that
SN has failed or is down or inaccessible for some reason, then any admin service on
that SN is also down and/or inaccessible - which means an admin service running on
one of the other SNs in the system must be used in the procedure below. This is why
the Oracle NoSQL Database documents strongly encourage administrators to deploy
multiple admin services; where the number deployed should make quorum loss less
likely.

For example, it is obvious that if only 1 admin service was specified when deploying
the store, and that service was deployed to the SN to be replaced, and that SN has
failed or is otherwise inaccessible, then the loss of that single admin service makes
it very difficult to replace the failed SN using the procedure presented here. Even if
multiple admins are deployed — for example, 2 admins — and the failure of the SN
causes just one of those admins to also fail and thus lose quorum, even though a
working admin remains, it will still require additional work to recover quorum so that
the admin service can perform the necessary duties to replace the failed SN.

Suppose a KVStore has been deployed as described in the section Assumptions.
Also, suppose that the sn2 machine (whose hostname is, "host-sn2") has failed in
some way and needs to be replaced. If the administrator wishes to replace the
failed SN with an identical but healthy machine, then the administrator would do the
following:

1. If, for some reason, host-sn2 is running, shut it down.
2. Log into host-snl (or host-sn3).

3. From the command line, execute the gener at econfi g utility to produce a ZIP file
named "sn2-config.zip" that contains the current configuration of the failed SN
(sn2):

> java - Xnmx64m - Xns64m \
-jar [opt/ondb/kv/lib/kvstore.jar generateconfig \
-host host-snl -port 13230 \
-sn sn2 -target /tnp/sn2-config

which creates and populates the file, / t np/ sn2- confi g. zi p.

9-46

Chapter 9
Hardware Monitoring

4. Install and provision a new machine with the same network configuration as the
machine to be replaced; specifically, the same hostname and IP address.

5. Install the KVStore software on the new machine under KVHOVE=/ opt / ondb/ kv.

6. If the directory KVROOT=/ opt / ondb/ var/ kvr oot exists, then make sure it's empty;
otherwise, create it:

> rm-rf /opt/ondb/var/kvroot
> nkdir -p /opt/ondb/var/kvroot

7. Copy the ZIP file from host - snl to the new host - sn.
> scp /tnp/sn2-config.zip host-sn2:/tnp

8. On the new host-sn2, install the contents of the ZIP file just copied.
> unzip /tnp/sn2-config.zip -d /opt/ondb/var/kvroot

9. Restart the sn2 Storage Node on the new host-sn2 machine, using the old sn2
configuration that was just installed:

< Note:

Before starting the SNA, set the environment variable MALLOC_ARENA MAX
to 1. Setting MALLOC_ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

> nohup java - Xmx64m - Xns64m \
-jar /opt/ondb/kv/lib/kvstore.jar start \
-root /opt/ondb/var/kvroot \
-config config.xm &

which, after starting the SNA, RN, and admin services, will initiate a (possibly
time-consuming) network restore, to repopulate the data stores managed by this
new sn2.

Replacement Procedure 2: New SN Takes Over Duties of Removed SN

ORACLE

The procedure presented in this section describes how to deploy a new SN, having a
network and SN identity different than all current SNs in the store, that will effectively
replace one of the current SNs by taking over that SN's duties and data. Unlike the
previous procedure, the only prerequisite that must be satisfied when executing this
second procedure is the existence of a working quorum of admin service(s). Also,
whereas in the previous procedure the SN to be replaced must be down prior to
powering up the replacement SN (because the two SNs share an identity), in this
case, the SN to be replaced can remain up and running until the migration step of
the process; where the replacement SN finally takes over the duties of the SN being
replaced. Thus, although the SN to be replaced can be down throughout the whole
procedure if desired, that SN can also be left up so that it can continue to service
requests while the replacement SN is being prepared.

9-47

ORACLE

Chapter 9
Hardware Monitoring

Suppose a KVStore has been deployed as described in the section Assumptions.
Also, suppose that the sn2 machine is currently up, but needs to be upgraded to
a new machine with more memory, larger disks, and better overall performance
characteristics. The administrator would then do the following:

1.

From a machine with the Oracle NoSQL Database software installed that has
network access to one of the machines running an admin service for the deployed
KVStore, start the administrative CLI; connecting it to that admin service. The
machine on which the CLI is run can be any of the machines making up the store
— even the machine to be replaced — or a separate client machine. For example,

if the administrative CLI is started on the snl1 Storage Node, and one wishes to
connect that CLI to the admin service running on that same snl host, the following
would be typed from a command prompt on the host named, host - snl:

> java - Xmx64m - Xms64m \
-jar lopt/ondb/kv/lib/kvstore.jar runadnin \
-host host-snl -port 13230

From the administrative CLI just started, execute the show pool s command to

determine the Storage Node pool the new Storage Node will need to join after
deployment; for example,

kv-> show pool s

which, given the initial assumptions, should produce output that looks like the
following:

Al'l St orageNodes: snl sn2 sn3
snpool : snl sn2 sn3

where, from this output, one should note that the name of the pool the
new Storage Node should join below is "snpool”; and the pool named
"AllStorageNodes" is the pool that all Storage Nodes join by default when
deployed.

From the administrative CLI just started, execute the show t opol ogy command to
determine the zone to use when deploying the new Storage Node; for example,

kv-> show t opol ogy

which, should produce output that looks like the following:

st ore=exanpl e-store nunPartitions=300 sequence=308
zn: id=1 name=Zonel repFactor=3

sn=[snl] zn:[id=1 name=Zonel] host-snl capacity=1 RUNNI NG
[rgl-rnl] RUNNI NG

sn=[sn2] zn:[id=1 name=Zonel] host-sn2 capacity=1 RUNNI NG
[rgl-rn2] RUNNI NG

sn=[sn3] zn:[id=1 name=Zonel] host-sn3 capacity=1 RUNNI NG

9-48

Chapter 9
Hardware Monitoring

[rgl-rn3] RUNNI NG

where, from this output, one should then note that the id of the zone to use when
deploying the new Storage Node is "1".

4. Install and provision a new machine with a network configuration that is different
than each of the machines currently known to the deployed KVStore. For example,
provision the new machine with a hostname such as, host-sn4, and an IP address
unique to the store's members.

5. Install the KVStore software on the new machine under KVHOVE=/ opt / ondb/ kv.
6. Create the new Storage Node's KVROOT directory; for example:

> nkdir -p /opt/ondb/var/kvroot

7. Create the new Storage Node's data directory on a separate disk than KVROOT,
for example:

> nkdir -p /diskl/ondb/data

" Note:

The path used for the data directory of the replacement SN must be
identical to the path used by the SN to be replaced.

8. From the command prompt of the new host-sn4 machine, use the nakeboot confi g
utility (described in Chapter 2 of the Oracle NoSQL Database Administrator's
Guide, section, "Installation Configuration") to create an initial configuration for the
new Storage Node that is consistent with the Assumptions specified above; for
example:

> java - Xnmx64m - Xns64m \

-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
-root /opt/ondb/var/kvroot \
-port 13230 \
-host host-sn4
-harange 13232, 13235 \
-numcpus 0 \
-mermory_nmb 0\
-capacity 1 \
-adm ndir /opt/ondb/var/adnin \
-adm ndirsize 3 gb \
-storagedir /diskl/ondb/data \
-rnlogdir /diskl/ ondb/rnlog

which produces the file named config.xml, under KVROOT=/ opt / ondb/ var / kvr oot .

9. Using the configuration just created, start the KVStore software (the SNA and its
managed services) on the new host-sn4 machine; for example,

ORACLE 9-49

ORACLE

10.

11.

12.

Chapter 9
Hardware Monitoring

< Note:

Before starting the SNA, set the environment variable MALLOC ARENA NMAX
to 1. Setting MALLOC ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

> nohup java - Xmx64m - Xnms64m \
-jar /opt/ondb/kv/lib/kvstore.jar start \
-root /opt/ondb/var/kvroot \
-config config.xm &

Using the information associated with the sn2 Storage Node (the SN to replace)
that was gathered from the show t opol ogy and show pool s commands above,
use the administrative CLI to deploy the new Storage Node and join the desired
pool; that is,

kv-> plan depl oy-sn -znname Zonel -host host-sn4 -port 13230 -wait
kv-> pool join -name snpool -sn sn4

For an SN to join a pool, the SN must have been successfully deployed and the

id of the deployed SN must be specified in the pool | oi n command; for example,
"sn4" above. But upon examination of the pl an depl oy- sn, command you can see
that the id to assign to the SN being deployed is not specified. This is because

it is the KVStore itself — not the administrator — that determines the id to assign

to a newly deployed SN. Thus, given that it was assumed that only 3 Storage
Nodes were initially deployed in the example used to demonstrate this procedure,
when deploying the next Storage Node, the system will increment by 1 the integer
component of the id assigned to the most recently deployed SN — "sn3" or 3 in
this case — and use the result to construct the id to assign to the next SN that

is deployed. Hence, "sn4" was assumed to be the id to specify to the pool join
command above. But if you want to ascertain the assigned id, then before joining
the pool, execute the show t opol ogy command which will display the id that was
constructed and assigned to the newly deployed SN.

Since the old SN must not be running when the migrate operation is performed
(see the next step), if the SN to be replaced is still running at this point,
programmatically shut it down, and then power off and disconnect the associated
machine. This step can be performed at any point prior to performing the next
step. Thus, to shut down the SN to be replaced, type the following from the
command prompt of the machine hosting that SN:

> java - Xmx64m - Xms64m \
-jar [opt/ondb/kv/lib/kvstore.jar stop \
-root /opt/ondb/var/kvroot

On completion, the associated machine can then be powered down and
disconnected if desired.

After the new Storage Node has been deployed, joined the desired pool, and the
SN to be replaced is no longer running, use the administrative CLI to migrate
that old SN to the new SN. This means, in this case, that the SNA, and RN
associated with sn4 will take over the duties previously performed in the store by

9-50

Examples

Setup

ORACLE

Chapter 9
Hardware Monitoring

the corresponding services associated with sn2; and the data previously stored by
sn2 will be moved — via the network — to the storage directory for sn4. To perform
this step then, execute the following command from the CLI:

kv-> plan migrate-sn -fromsn2 -to sn4 [-wait]

The -wai t argument is optional in the command above. If - wai t is used, then the
command will not return until the full migration has completed; which, depending
on the amount of data being migrated, can take a long time. If - wai t is not
specified, then the show plan -id <nmigration-plan-id> command is used to
track the progress of the migration; allowing other administrative tasks to be
performed during the migration.

13. After the migration process completes, remove the old SN from the store's
topology. You can do this by executing the pl an renove- sn command from the
administrative CLI. For example,

kv-> plan renove-sn -sn sn2 -wait

At this point, the store should have a structure similar to its original structure;
except that the data that was originally stored by sn2 on the host named host-sn2
via that node's rg1-rn2 service, is now stored on host-sn4 by the sn4 Storage
Node (via the migrated service named rg1-rn2 that sn4 now manages).

In this section, two examples are presented that should allow you to gain some
practical experience with the SN replacement procedures presented above. Each
example uses the same initial configuration, and is intended to simulate a 3-node
KVStore cluster using a single machine with a single disk. Although no machines will
actually fail or be physically replaced, you should still get a feel for how the cluster and
the data stored by a given SN is automatically recovered when that Storage Node is
replaced using one of the procedures described above.

Assume that a KVStore is deployed in a manner similar to the section Assumptions
Specifically, assume that a KVStore is initially deployed using 3 Storage Nodes -
named snl, sn2, and sn3 — on a single host with IP address represented by the
string, <host-ip> where the host's actual IP address (or hostname) is substituted for
<host-ip> when running either example. Additionally, since your development system
will typically not contain a disk named /diskl (as specified in the Assumptions section),
rather than provisioning such a disk, assume instead that the data written to the

store will be stored under / t np/ sn1/ di sk1, / t np/ sn2/ di sk1, and / t np/ sn3/ di skl
respectively. Finally, since each Storage Node runs on the same host, assume each
Storage Node is configured with different ports for the services and admins run by
those nodes; otherwise, all other assumptions are as stated above in the Assumptions
section.

As indicated above, the initial configuration and setup is the same for each example
presented below. Thus, if not done so already, first create the KVROOT directory; that is,

> nkdir -p /opt/ondb/var/kvroot

9-51

ORACLE

Chapter 9
Hardware Monitoring

Then, to simulate the data disk, create the following directories:

> nkdir -p /tnp/snl/diskl/ondb/data
> nkdir -p /tnp/sn2/di skl/ondb/ data
> nkdir -p /tnp/sn3/diskl/ondb/ data

Next, open 3 windows; Win_A, Win_B, and Win_C, which will represent the 3
machines running each Storage Node. In each window, execute the makeboot confi g
command (remembering to substitute the actual IP address or hostname for the
string <host-ip>) to create a different, but similar, boot config for each SN that will

be configured.

On Win_A

java - Xmk64m - Xnms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
-root /opt/ondb/var/kvroot \
-host <host-ip>\
-config configl. xm \
-port 13230 \
-harange 13232, 13235 \
-mermory_nb 100 \
-capacity 1\
-adm ndir /opt/ondb/var/adnin \
-adm ndirsize 2000- Mo \
-storagedir /tnp/snl/diskl/ondb/data \
-rnlogdir /tnp/snl/diskl/ ondb/rnl og

On Win_B

java - Xmk64m - Xms64m \
-jar /opt/ondb/kv/liblkvstore.jar makebootconfig \
-root /opt/ondb/var/kvroot \
-host <host-ip>\
-config config2. xm \
-port 13240 \
-harange 13242, 13245 \
-mermory_nb 100 \
-capacity 1\
-adm ndir /opt/ondb/var/adnmn \
-adm ndirsize 2000- Mo \
-storagedir /tnp/snl/disk2/ ondb/data \
-rnlogdir /tnp/snl/disk2/ ondb/rnl og

On Win_C

java - Xmx64m - Xms64m \
-jar lopt/ondb/kv/liblkvstore.jar makebootconfig \
-root /opt/ondb/var/kvroot \
-host <host-ip>\
-config config3.xm \
-port 13250 \
-harange 13252, 13255 \

9-52

ORACLE

Chapter 9
Hardware Monitoring

-mermory_nb 100 \

-capacity 1\

-adm ndir /opt/ondb/var/adnmin \

-adm ndirsize 2000- Mo \

-storagedir /tnp/snl/disk3/ondb/data \
-rnlogdir /tnp/snl/disk3/ondb/rnl og

This will produce 3 configuration files:

[opt / ondb/ var/ kvr oot
[configl. xm
[config2. xm
[config3. xm

Next, using the different configurations just generated, from each window, start a
corresponding instance of the KVStore Storage Node agent (SNA); which, based on
the specific configurations generated, will start and manage an admin service and an
RN service.

" Note:

Before starting the SNA, set the environment variable MALLOC ARENA MAX
to 1. Setting MALLOC ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

Win_A

> nohup java - Xmk64m - Xnms64m \
-jar /opt/ondb/kv/lib/kvstore.jar start \
-root /opt/ondb/var/kvroot \
-config configl. xm &

Win_B

> nohup java - Xnx64m - Xms64m \
-jar [opt/ondb/kv/libl/kvstore.jar start \
-root /opt/ondb/var/kvroot \
-config config2. xm &

Win_C

> nohup java - Xmx64m - Xns64m \
-jar /opt/ondb/kv/lib/kvstore.jar start \
-root /opt/ondb/var/kvroot \
-config config3. xm &

Finally, from any window (Win_A, Win_B, Win_C, or a new window), start the KVStore
administrative CLI and use it to configure and deploy the store. For example, to start

9-53

Chapter 9
Hardware Monitoring

an administrative CLI connected to the admin service that was started above using the
configuration employed in Win_A, you would execute the following command:

> java - Xmx64m - Xms64m \
-jar lopt/ondb/kv/lib/kvstore.jar runadnin \
-host <host-ip> -port 13230

To configure and deploy the store, type the following commands from the
administrative CLI prompt (remembering to substitute the actual IP address or
hostname for the string <host-ip>):

configure -name exanpl e-store

pl an depl oy-zone -name Zonel -rf 3 -wait

pl an depl oy-sn -znname Zonel -host <host-ip> -port 13230 -wait
pl an deploy-adnmin -sn 1 -port 13231 -wait

pool create -name snpoo

pool join -name snpool -sn snl

pl an depl oy-sn -znname Zonel -host <host-ip> -port 13240 -wait
pl an deploy-adnmin -sn 2 -port 13241 -wait

pool join -name snpool -sn sn2

pl an depl oy-sn -znname Zonel -host <host-ip> -port 13250 -wait
pl an deploy-adnmin -sn 3 -port 13251 -wait

pool join -name snpool -sn sn3

change-policy -parans "l oggi ngConfi gProps=oracle. kv.|evel =I NFG "
change-policy -parans cacheSi ze=10000000

topol ogy create -name store-layout -pool snpool -partitions 300
pl an depl oy-topol ogy -nane store-layout -plan-nane RepNode-Depl oy -wait

< Note:

The CLI command prompt (kv- >) was excluded from the list of commands
above to facilitate cutting and pasting the commands into a CLI load script.

When the commands above complete (use show pl ans to verify each plan's
completion), the store is up and running and ready for data to be written to it. Before
proceeding though, verify that directories like those shown below have been created
and populated:

- Wn_A - - Wn_B - - Wn_C -
[opt/ ondb/ var/ / opt / ondb/ var/ [opt / ondb/ var/
adnmin admin adnmin
[opt/ ondb/ var/ kvr oot [opt/ ondb/ var / kvr oot [opt / ondb/ var/ kvr oot
log files log files log files
/ exanpl e-store [exanpl e-store [exanpl e-store
/1og /10g /10g
/snl /sn2 /sn3
config. xm config. xm config.xm
/adm nl [adm n2 [adm n3
/ env / env / env

ORACLE 9-54

ORACLE

Chapter 9
Hardware Monitoring

/tp/ snl/di sk1/ ondb/data /tnp/sn2/diskl/ondb/data /tnp/sn3/diskl/ ondb/
dat a

/rgl-rnl /rgl-rn2 /rgl-rn3
| env [env / env
00000000. j db 00000000. j db 00000000. j db

Because rf=3 for the deployed store, and capacity=1 for each SN in that store, when a
key/value pair is initially written to the store, the pair is stored by each of the replication
nodes —rnl, rn2, and rn3 — in their corresponding data file named "00000000.jdb";
where each replication node is a member of the replication group — or shard — named
rgl; that is, the key/value pair is stored in:

[t p/ snl/ di sk1/ ondb/ dat a/ r g1-rnl/ env/ 00000000. j db
[t mp/ sn2/ di sk1/ ondb/ dat a/ r g1- r n2/ env/ 00000000. j db
[t mp/ sn3/ di sk1/ ondb/ dat a/ r g1-r n3/ env/ 00000000. j db

At this point in the setup, each file should contain no key/value pairs. Data can be
written to the store in a way most convenient. But a utility that is quite handy for doing
this is the KVStore client shell utility; which is a process that connects to the desired
store and then presents a command line interface that takes interactive commands

for putting and getting key/value pairs. To start the KVStore client shell, type the
following from a command window (remembering to substitute the actual IP address or
hostname for the string <host-ip>):

> java - Xnmx64m - Xns64m \
-jar lopt/ondb/kv/lib/kvstore.jar runadm n\
-host <host-ip> -port 13230 -store exanpl e-store

kv-> get -all
0 Record returned.

kv-> put -key /FIRST_KEY -val ue "HELLO WORLD'
Put OK, inserted.

kv-> get -all
| FI RST_KEY
HELLO WORLD

Although simplistic and not very programmatic, a quick way to verify that the key/value
pair was stored by each RN service is to simply grep for the string "HELLO WORLD" in
each of the data files; which should work with binary files on most linux systems. Using
the "grep" command in this way is practical for examples that consist of only a small
amount of data.

> grep "HELLO WORLD" /tnp/snl/diskl/ondb/datalrgl-rnl/env/00000000.]db
Binary file /tnp/snl/diskl/ondb/data/rgl-rnl/env/00000000.jdb matches

> grep "HELLO WORLD" /tnp/sn2/diskl/ondb/datalrgl-rn2/ env/00000000.] db
Binary file /tnp/sn2/diskl/ondb/data/rgl-rn2/env/00000000.jdb matches

> grep "HELLO WORLD" /tnp/sn3/diskl/ondb/datalrgl-rn3/env/00000000.] db
Binary file /tnp/sn3/diskl/ondb/data/rgl-rn3/env/00000000.jdb mat ches

Based on the output above, the key/value pair that was written to the store was stored
by each RN service belonging to the shard rgl; that is, each RN service that is a

9-55

Chapter 9
Hardware Monitoring

member of the replication group with id equal to 1 (rg1-rnl, rg1l-rn2, and rg1-rn3). With
which shard a particular key is associated depends on the key's value (specifically, the
hash of the key's value) as well as the number of shards maintained by the store (1

in this case). It is also worth noting that although this example shows log files with

the name 00000000.jdb, those files are only the first of possibly many such log files
containing data written by the corresponding RN service. Over time, as the current log
file reaches its maximum capacity, a new file will be created to receive all new data
being written. That new file has a name derived from the previous file by incrementing
the prefix of the previous file. For example, you might see files with names such as,
"..., 00000997.jdb, 00000998.jdb, 00000999.jdb, 00001000.jdb, 00001001.jdb, ...".

Now that data has been written to the store, a failed storage node can be simulated,
and an example of the first SN replacement procedure can be performed.

Example 1: Replace a Failed SN with an Identical SN

ORACLE

To simulate a failed Storage Node, pick one of the Storage Nodes started above,
programmatically stop it's associated processes, and delete all files and directories
associated with that process. For example, suppose sn2 is the "failed" Storage Node.
But before stopping the sn2 Storage Node, you might first (optionally) identify the
processes that are running as part of the deployed store; that is:

>jps -m

408 kvstore.jar start -root /opt/ondb/var/kvroot -config configl. xm
833 ManagedService -root /opt/ondb/var/kvroot -class Adnin -service
Boot st rapAdnmi n. 13230 -config configl. xm

1300 ManagedService -root /opt/ondb/var/kvroot/exanpl e-store/snl -store
exampl e-store -class RepNode -service rgl-rnl

563 kvstore.jar start -root /opt/ondb/var/kvroot -config config2.xm
1121 ManagedService -root /opt/ondb/var/kvroot/exanpl e-store/sn2
-store exanpl e-store -class Admin -service adm n2

1362 ManagedService -root /opt/ondb/var/kvroot/exanpl e-store/sn2
-store exanpl e-store -class RepNode -service rgl-rn2

718 kvstore.jar start -root /opt/ondb/var/kvroot -config config3.xmn
1232 ManagedService -root /opt/ondb/var/kvroot/exanpl e-store/sn3 -store
exampl e-store -class Admn -service adnin3

1431 ManagedServi ce -root /opt/ondb/var/kvroot/exanpl e-store/sn3 -store
exampl e-store -class RepNode -service rgl-rn3

The output above was manually re-ordered for readability. In reality, each process
listed may appear in a random order. But it should be noted that each SN from the
example deployment corresponds to 3 processes:

* The SNA process, which is characterized by the string "kvstore.jar start”, and
identified by the corresponding configuration file; for example, confi g1. xm for
snl, config2. xm for sn2, and confi g3. xm for sn3.

* An admin service is characterized by the string - cl ass Adni n , and either a string
of the form - servi ce Boot st rapAdmi n. <port > or a string of the form - servi ce
admi n<i d> (see the explanation below).

* An RN service characterized by the string - cl ass RepNode along with a string of
the form - servi ce rgl-rn<id>; where "<id>"is 1, 2, etc. and maps to the SN

9-56

ORACLE

Chapter 9
Hardware Monitoring

hosting the given RN service, and where for a given SN, if the capaci ty of that SN
is N>1, then for that SN, there will be N processes listed that reference a different
RepNode service.

" Note:

With respect to the line in the process list above that references the string
-servi ce BootstrapAdm n. <port >, some explanation may be useful. When
an SNA starts up and the - adm n argument is specified in the configuration,
the SNA will initially start what is referred to as a bootstrap admin.

Because this example specified the - adm n argument in the configuration

of all 3 Storage Nodes, each SNA in the example starts a corresponding
bootstrap admin. The fact that the process list above contains only one entry
referencing a Boot st r apAdni n is explained below.

Recall that Oracle NoSQL Database requires the deployment of at least 1 admin
service. If more than 1 such admin is deployed, the admin that is deployed first takes
on a special role within the KVStore. In this example, any of the 3 bootstrap admins
that were started by the corresponding Storage Node Agent can be that first deployed
admin service. After configuring the store and deploying the zone, the deployer must
choose one of the Storage Nodes that was started and use the plan depl oy-sn
command to deploy that Storage Node to the desired zone within the store. After
deploying that first Storage Node, the admin service corresponding to that Storage
Node must then be deployed, using the pl an depl oy- adni h command.

Until that first admin service is deployed, no other storage nodes or admins can be
deployed. When that first admin service is deployed to the machine running the first
SN (snl in this case), the bootstrap admin running on that machine continues running,
and takes on the role of the very first admin service in the store. This is why the

Boot st rapAdmi n. <por t > process continues to appear in the process list; whereas, as
explained below, the processes associated with the other Storage Nodes are identified
by admin2 and admin3 rather than Boot st r apAdni n. <port >. It is only after this first
admin is deployed that the other Storage Nodes (and admins) can be deployed.

Upon deployment of any of the other Storage Nodes, the BootstrapAdmin process
associated with each such Storage Node is shut down and removed from the RMI
registry. This is because there is no longer a need for the bootstrap admin on these
additional Storage Nodes. The existence of a bootstrap admin is an indication that the
associated Storage Node Agent can host the first admin if desired. But once the first
Storage Node is deployed and its corresponding bootstrap admin takes on the role of
the first admin, the other Storage Nodes can no longer host that first admin; and so,
upon deployment of each additional Storage Node, the corresponding Boot st r apAdmni n
process is stopped. Additionally, if that first process referencing the Boot st r apAdmi n is
stopped and restarted at some point after the store has been deployed, then the new
process will be identified in the process list with the string - cl ass Adni n, just like the
other admin processes.

Finally, recall that although a store can be deployed with only 1 admin service, it

is strongly recommended that multiple admin services be run for greater availability;
where the number of admins deployed should be large enough that quorum loss is
unlikely in the event of failure of an SN. Thus, as this example demonstrates, after
each additional Storage Node is deployed (and the corresponding bootstrap admin is
stopped), a new admin service should then be deployed that will coordinate with the

9-57

ORACLE

Chapter 9
Hardware Monitoring

first admin service to replicate the administrative information that is persisted. Hence,
the admin service associated with snl in the process list above is identified as a
BootstrapAdmin (the first admin service), and the other admin services are identified
as simply admin2 and admin3.

Thus, to simulate a "failed" Storage Node, sn2 should be stopped; which is
accomplished by typing the following at the command prompt:

> java - Xnmx64m - Xns64m \
-jar lopt/ondb/kv/lib/kvstore.jar stop \
-root /opt/ondb/var/kvroot \
-config config2. xn

Optionally, use the j ps command to examine the processes that remain; that is,
>jps -m

408 kvstore.jar start -root /opt/ondb/var/kvroot

-config configl. xn

833 ManagedServi ce -root /opt/ondb/var/kvroot

-class Adnmin -service BootstrapAdnin. 13230 -config configl. xnl

1300 ManagedService -root /opt/ondb/var/kvroot/

exampl e-store/snl -store exanpl e-store -class RepNode -service rgl-rnl

718 kvstore.jar start -root /opt/ondb/var/

kvroot -config config3.xn

1232 ManagedServi ce -root /opt/ondb/var/kvroot/exanpl e-store/
sn3 -store exanpl e-store -class Admin -service adnin3

1431 ManagedServi ce -root /opt/ondb/var/kvroot/exanpl e-store/
sn3 -store exanpl e-store -class RepNode -service rgl-rn3

where the processes previously associated with sn2 are no longer running. Next, since
the sn2 processes have stopped, the associated files can be deleted as follows:

>rm-rf /tnp/sn2/diskl/ondb/datalrgl-rn2
> rm-rf /opt/ondb/var/kvroot/exanpl e-store/sn2

> rm-f /opt/ondb/var/kvroot/config2. xm
rm-f /opt/ondb/var/kvroot/config2.xm .| og
rm-f /opt/ondb/var/kvroot/snaboot 0.l og. 1*

VvV Vv

rm-r /opt/ondb/var/kvroot/exanpl e-store/l og/ adm n2*

rm-r /opt/ondb/var/kvroot/exanpl e-store/l og/rgl-rn2*

rm-r /opt/ondb/var/kvroot/exanpl e-store/l og/ sn2*

rm-r /opt/ondb/var/kvroot/exanpl e-store/l og/config.rgl-rn2

rm-r /opt/ondb/var/kvroot/exanpl e-store/l og/ exanpl e-store_0.*. 1*

V V V V V

where the files above that contain a suffix component of "1" (for example,
shaboot_0.log.1 and example-store_0.log.1, example-store_0.perf.1,example-
store_0.stat.1, etc.) are associated with the sn2 Storage Node.

Executing the above commands should then simulate a catastrophic failure of the
"machine" to which sn2 was deployed; where the configuration and data associated

9-58

ORACLE

Chapter 9
Hardware Monitoring

with sn2 is now completely unavailable, and is only recoverable via the deployment of
a "new" — and in this example, identical — sn2 Storage Node. To verify this, execute the
show t opol ogy command from the administrative CLI previously started; that is,

kv-> show t opol ogy

which should produce output that looks like the following:

st ore=exanpl e-store nunPartitions=300 sequence=308
zn: id=1 name=Zonel repFactor=3

sn=[snl] zn:[id=1 name=Zonel] <host-ip> capacity=1 RUNNI NG
[rgl-rnl] RUNNI NG

sn=[sn2] zn:[id=1 name=Zonel] <host-ip> capacity=1 UNREACHABLE
[rgl-rn2] UNREACHABLE

sn=[sn3] zn:[id=1 name=Zonel] <host-ip> capacity=1 RUNNI NG
[rgl-rn3] RUNNI NG

where the actual IP address or hostname appears instead of the string <host-ip>, and
observe that sn2 is now UNREACHABLE.

At this point, the first 2 steps of the SN replacement procedure have been executed.
That is, because the sn2 processes have been stopped and their associated files
deleted, from the point of view of the store's other nodes, the corresponding "machine”
is inaccessible and so has been effectively "shut down" (step 1). Additionally, because
a single machine is being used in this simulation, we are already logged in to the snl
(and sn3) host (step 2). Thus, step 3 of the procedure can now be performed. That

is, to retrieve the sn2 configuration from one of the store's remaining healthy nodes,
execute the following command using the port for one of those remaining nodes (and
remembering to substitute the actual IP address or hostname for the string <host-ip>):

> java - Xnmx64m - Xns64m \
-jar lopt/ondb/kv/liblkvstore.jar generateconfig \
-host <host-ip> -port 13230 \
-sn sn2 -target /tmp/sn2-config

Verify that the command above produced the expected zip file:

>|s -al /tnp/sn2-config.zip
-rwWrwr-- 1 <group> <owner> 2651 2013-07-08 12:53 /tnp/sn2-config.zip

where the contents of / t np/ sn2- confi g. zi p should look something like:

> unzip -t /tnp/sn2-config.zip

Archive: /tnp/sn2-config.zip

testing: kvroot/config.xm K

testing: kvroot/exanple-store/sn2/config.xm K
testing: kvroot/exanple-store/security.policy K

9-59

Verification

ORACLE

Chapter 9
Hardware Monitoring

testing: kvroot/security.policy K
No errors detected in conpressed data of /tnp/sn2-config.zip

Next, because this example is being run on a single machine, steps 4, 5, 6, and 7 of
the SN replacement procedure have already been performed. Thus, the next step to
perform is to install the contents of the ZIP file just generated; that is,

> unzip /tnp/sn2-config.zip -d /opt/ondb/var

which will overwrite kvroot/security. policy and kvr oot/ exanpl e- st or e/
security. pol i cy with identical versions of that file.

When the store was originally deployed, the names of the top-level configuration files
were not identical; that is, confi g1. xm for snl, config2.xml for the originally deployed
sn2, and config3.xml for sn3. This was necessary because, for convenience, all three
SNs were deployed using the same KVROOT; which would have resulted in conflict
among snl, sn2, and sn3, had identical names been used for those files. With this

in mind, it should then be observed that the gener at econfi g command executed
above produces a top-level configuration file for the new sn2 that has the default
name (config.xml), rather than confi g2. xm . Because both names — confi g2. xml and
confi g. xm — are unique relative to the names of the configuration files for the store's
other nodes, either name can be used in the next step of the procedure (see below).
But to be consistent with the way sn2 was originally deployed, the original file name
will also be used when deploying the replacement. Thus, before proceeding with the
next step of the procedure, the name of the kvroot/ confi g. xn file is changed to
kvroot/config2. xm ; that is,

> nv /opt/ondb/var/kvroot/config.xm /opt/ondb/var/kvroot/config2. xni

Finally, the last step of the first SN replacement procedure can be performed. That is,
a "new" but identical sn2 is started using the old sn2 configuration:

Note:

Before starting the SNA, set the environment variable MALLOC ARENA NMAX
to 1. Setting MALLOC ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

> nohup java - Xmk64m - Xnms64m \
-jar /opt/ondb/kv/lib/kvstore.jar start \
-root /opt/ondb/var/kvroot \
-config config2. xm &

To verify that sn2 has been successfully replaced, first execute the show t opol ogy
command from the administrative CLI; that is,

kv-> show t opol ogy

9-60

ORACLE

Chapter 9
Hardware Monitoring

which should produce output that looks like the following:

st ore=exanpl e-store nunPartitions=300 sequence=308
zn: id=1 name=Zonel repFactor=3

sn=[snl] zn:[id=1 name=Zonel] <host-ip> capacity=1 RUNNI NG
[rgl-rnl] RUNNI NG

sn=[sn2] zn:[id=1 name=Zonel] <host-ip> capacity=1 RUNNI NG
[rgl-rn2] RUNNI NG

sn=[sn3] zn:[id=1 name=Zonel] <host-ip> capacity=1 RUNNI NG
[rgl-rn3] RUNNI NG

where the actual IP address or hostname appears instead of the string <host-ip>, and
observe that sn2 is again RUNNING.

In addition to executing the show t opol ogy command, you can also verify that the
previously removed sn2 directory structure has been recreated and repopulated; that
is, directories and files like the following should again exist:

[opt / ondb/ var / kvr oot
config2. xm*
/ exanmpl e-store
/1og
adm n2*
rgl-rn2*

sn2*
config.rgl-rn2

/sn2
config. xm
/ adm n2
/ env

[t mp/ sn2/ di sk1/ ondb/ dat a
/rgl-rn2
l env
00000000. j db

And finally, verify that the data stored previously by the original sn2 has been
recovered; that is,

> grep "HELLO WORLD" /tnp/sn2/diskl/ondb/datalrgl-rn2/env/00000000.] db
Binary file /tnp/sn2/diskl/ondb/data/rgl-rn2/env/00000000.jdb matches

9-61

Chapter 9
Hardware Monitoring

Example 2: New SN Takes Over Duties of Existing SN

In this example, the second replacement procedure described above will be employed
to replace/upgrade an existing, healthy storage node (sn2 in this case) with a new
Storage Node that will take over the duties of the old Storage Node. As indicated
previously, the assumptions and setup for this example are identical to the first
example's assumptions and setup. Thus, after setting up this example as previously
specified, start an administrative CLI connected to the admin service associated with
the snl Storage Node; that is, substituting the actual IP address or hostname for the
string <host-ip>, execute the following command:

> java - Xmx64m - Xms64m \
-jar [opt/ondb/kv/lib/kvstore.jar runadnin \
-host <host-ip> -port 13230

Then, from the administrative CLI just started, execute the show pool s and show
t opol ogy commands; that is,

kv-> show pool s
kv-> show t opol ogy

which should, respectively, produce output that looks something like:

Al'l St orageNodes: snl sn2 sn3
snpool : snl sn2 sn3

and

st ore=exanpl e-store nunPartitions=300 sequence=308
zn: id=1 name=Zonel repFactor=3

sn=[snl] zn: [id=1 name=Zonel] host-snl capacity=1 RUNNI NG
[rgl-rnl] RUNNI NG

sn=[sn2] zn:[id=1 name=Zonel] host-sn2 capacity=1 RUNNI NG
[rgl-rn2] RUNNI NG

sn=[sn3] zn:[id=1 name=Zonel] host-sn3 capacity=1 RUNNI NG
[rgl-rn3] RUNNI NG

Note:

At this point, the pool to join is named "snpool”, and the id of the zone to
deploy to is "1".

Next, recall that in a production environment, where the old and new SNs run on
separate physical machines, the old SN would typically remain up — servicing requests

ORACLE 9-62

ORACLE

Chapter 9
Hardware Monitoring

— until the last step of the procedure. In this example though, the old and new
SNs run on a single machine, where the appearance of separate machines and
file systems is simulated. Because of this, the next step to perform in this example
is to programmatically shut down the sn2 Storage Node by executing the following
command:

> java - Xmx64m - Xms64m \
-jar [opt/ondb/kv/libl/kvstore.jar stop \
-root /opt/ondb/var/kvroot \
-config config2. xm

After stopping the sn2 Storage Node, you might (optionally) execute the show

t opol ogy command and observe that the sn2 Storage Node is no longer RUNNING;
rather, it is UNREACHABLE, but will continue to be referenced in the topology until
the node is explicitly removed from the topology (see below). For example, from the
administrative CLI, execute the following command:

kv-> show t opol ogy

which should produce output that looks like the following:

st ore=exanpl e-store nunPartitions=300 sequence=308
zn: id=1 name=Zonel repFactor=3

sn=[snl] zn:[id=1 name=Zonel] host-snl capacity=1 RUNNI NG
[rgl-rnl] RUNNI NG

sn=[sn2] zn:[id=1 name=Zonel] host-sn2 capacity=1 UNREACHABLE
[rgl-rn2] UNREACHABLE

sn=[sn3] zn:[id=1 name=Zonel] host-sn3 capacity=1 RUNNI NG
[rgl-rn3] RUNNI NG

At this point, preparation of the new, replacement sn4 storage node can begin; where
steps 4, 5, and 6 of the procedure have already been completed, since a single
machine hosts both the old and new SN in this example.

With respect to the next step (7), recall that when employing this procedure, step 7
requires that the path of the replacement SN's data directory must be identical to the
path used by the SN to be replaced. But in this example, the same disk and file system
is used for the location of the data stored by each SN. Therefore, the storage directory
that would be created for the new sn4 Storage Node in step 7 already exists and has
been populated by the old sn2 Storage Node. Thus, to perform step 7 in this example's
simulated environment, as well as to support verification (see below), after shutting
down sn2 above, the storage directory used by that node should be renamed; which
makes room for the storage directory that needs to be provisioned in step 7 for sn4.
That is, type the following at the command line:

>nv /tnp/sn2 /tnp/sn2_old

9-63

Chapter 9
Hardware Monitoring

< Note:

The renaming step above is performed only for this example, and would
never be performed in a production environment.

Next, provision the storage directory that sn4 will use; where the path specified must
be identical to the original path of the storage directory used by sn2. That is,

> nkdir -p /tnp/sn2/di skl/ondb/ data

The next step to perform when preparing the replacement SN is to generate a boot
configuration for the new Storage Node by executing the makeboot confi g command
(remember to substitute the actual IP address or hostname for the string <host-ip>):

java - Xmk64m - Xms64m \
-jar /opt/ondb/kv/liblkvstore.jar makebootconfig \
-root /opt/ondb/var/kvroot \
-host <host-ip>\
-config configd. xm \
-port 13260 \
-harange 13262, 13265 \
-mermory_nb 100 \
-capacity 1\
-adm ndir /opt/ondb/var/admn \
-adm ndi rsize 2000 MB \
-storagedir /tnp/sn2/diskl/ondb/data \
-rnlogdir /tnp/sn2/diskl/ ondb/rnl og

which will produce a configuration file for the new Storage Node; / opt / ondb/ var/
kvroot/config4. xm .

After creating the configuration above, use that new configuration to start a new
instance of the KVStore Storage Node Agent (SNA), along with its managed services;
that is,

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_NMAX
to 1. Setting MALLOC ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

> nohup java - Xmx64m - Xns64m \
-jar /opt/ondb/kv/lib/kvstore.jar start \
-root /opt/ondb/var/kvroot \
-config configd. xm &

ORACLE 9-64

ORACLE

Chapter 9
Hardware Monitoring

After executing the command above, use the administrative CLI to deploy a new
Storage Node by executing the following command (with the actual IP address or
hostname substituted for the string <host-ip>):

kv-> plan depl oy-sn -znname Zonel -host <host-ip> -port 13260 -wait

As explained previously, because "sn3" was the id assigned (by the store) to the most
recently deployed storage node, the next Storage Node that is deployed — that is, the
storage node deployed by the command above — will be given "sn4" as its assigned id.
After deploying the sn4 Storage Node above, you might then (optionally) execute the
show pool s command from the administrative CLI and observe that the new Storage
Node has joined the default pool named "AllStorageNodes"; for example:

kv-> show pool s

which should produce output that looks like the following:

Al | St orageNodes: snl sn2 sn3 sn4
snpool ; snl sn2 sn3

where upon deployment, although sn4 has joined the pool named "AllStorageNodes",
it has not yet joined the pool named "snpool".

Next, after successfully deploying the sn4 Storage Node, use the CLI to join the pool
named "snpool”; that is:

kv-> pool join -name snpool -sn sn4

After deploying the new Storage Node and joining the pool hamed "snpool", using
the administrative CLI, you might (optionally) execute the show t opol ogy command
followed by the show pool s command; and then observe that the new Storage Node
has been deployed to the store and has joined the pool nhamed "snpool”; for example,

kv-> show t opol ogy
kv-> show pool s

which, given the initial assumptions, should produce output that looks like the
following:

st ore=exanpl e-store nunPartitions=300 sequence=308
zn: id=1 nane=Zonel repFactor =3

sn=[snl] zn:[id=1 name=Zonel] host-snl capacity=1 RUNNI NG
[rgl-rnl] RUNNI NG

sn=[sn2] zn:[id=1 name=Zonel] host-sn2 capacity=1 UNREACHABLE
[rgl-rn2] UNREACHABLE

sn=[sn3] zn:[id=1 name=Zonel] host-sn3 capacity=1 RUNNI NG
[rgl-rn3] RUNNI NG

9-65

Chapter 9
Hardware Monitoring

sn=[sn4] zn:[id=1 name=Zonel] host-sn4 capacity=1 RUNNI NG

and

Al'l St orageNodes: snl sn2 sn3 sn4
snpool : snl sn2 sn3 sn4

The output above shows that the sn4 Storage Node has been successfully deployed
(is RUNNING) and is now a member of the pool hamed "snpool". But it does not yet
include an RN service corresponding to sn4. Such a service will not appear in the
store's topology until sn2 is migrated to sn4 (see below).

At this point, after the sn4 Storage Node is deployed and has joined the pool named
"snpool", and the old sn2 Storage Node has been stopped, sn4 is ready to take over
the duties of sn2. This is accomplished by migrating the sn2 services and data to

sn4 by executing the following command from the administrative CLI (remembering to
substitute the actual IP address or hostname for the string<host-ip>):

kv-> plan migrate-sn -fromsn2 -to sn4 -wait

After migrating sn2 to sn4 you might (optionally) execute the show t opol ogy command
again and observe that the rgl1-rn2 service has moved from sn2 to sn4 and is now
RUNNING; that is,

kv-> show t opol ogy

st ore=exanpl e-store nunPartitions=300 sequence=308
zn: id=1 name=Zonel repFactor=3

sn=[snl] zn:[id=1 name=Zonel] host-snl capacity=1 RUNNI NG
[rgl-rnl] RUNNI NG

sn=[sn2] zn:[id=1 name=Zonel] host-sn2 capacity=1 UNREACHABLE

sn=[sn3] zn:[id=1 name=Zonel] host-sn3 capacity=1 RUNNI NG
[rgl-rn3] RUNNI NG

sn=[sn4] zn:[id=1 name=Zonel] host-sn4 capacity=1 RUNNI NG
[rgl-rn2] RUNNI NG

Finally, after the migration process is complete, remove the old sn2 Storage Node from
the store's topology; which can be accomplished by executing the pl an renove-sn
command from the administrative CLI in the following way:

kv-> plan renove-sn -sn sn2 -wait

ORACLE 9-66

Verification

ORACLE

Chapter 9
Hardware Monitoring

To verify that sn2 has been successfully replaced/upgraded by sn4, first execute the
show t opol ogy command from the previously started administrative CLI; that is,

kv-> show t opol ogy

The output is like the following:

st ore=exanpl e-store nunPartitions=300 sequence=308
zn: id=1 name=Zonel repFactor=3

sn=[snl] zn:[id=1 name=Zonel] <host-ip> capacity=1 RUNNI NG
[rgl-rnl] RUNNI NG

sn=[sn3] zn:[id=1 name=Zonel] <host-ip> capacity=1 RUNNI NG
[rgl-rn3] RUNNI NG

sn=[sn4] zn:[id=1 name=Zonel] <host-ip> capacity=1 RUNNI NG
[rgl-rn2] RUNNI NG

Here the actual IP address or hostname appears instead of the string <host-ip>, and
only sn4 appears in the output rather than sn2.

In addition to executing the show t opol ogy command, you can also verify that the
expected sn4 directory structure is created and populated; that is, directories and files
like the following should exist:

[opt/ ondb/ var / kvr oot
conf| g4. xn
}ékénpl e-store

/1og
sn4*

/sn4
config. xm
/ adm n2
/ env

[t mp/ sn2/ di sk1/ ondb/ dat a
/rgl-rn2
/ env
00000000. j db

9-67

ORACLE

Chapter 9
Hardware Monitoring

You can also verify that the data stored previously by sn2 has been migrated to sn4;
that is:

> grep "HELLO WORLD' [/t np/sn2/di sk1/ ondb/ dat a/rgl-rn2/env/00000000.j db
Binary file /tnp/sn2/diskl/ondb/datal/rgl-rn2/env/00000000.|db matches

" Note:

Although sn2 was stopped and removed from the topology, the data files
created and populated by sn2 in this example were not deleted. They were
moved under the / t np/ sn2_ol d directory. Thus, the old sn2 storage directory
and data files can still be accessed. That is:

/'t mp/ sn2_ol d/ di sk1/ ondb/ dat a
/rgl-rn2
/ env
00000000. j db

And the original key/value pair should still exist in the old sn2 data file; that
is,

> grep "HELLO WORLD" \
[tmp/ sn2_ol d/ di sk1/ ondb/ dat a/ r g1- r n2/ env/ 00000000. j db
Binary file
[tmp/ sn2_ol d/ di sk1/ ondb/ dat a/ r g1- r n2/ env/ 00000000. j db
mat ches

Finally, the last verification step that can be performed is intended to show that the
new sn4 Storage Node has taken over the duties of the old sn2 Storage Node. This
step consists of writing a new key/value pair to the store and then verifying that the
new pair has been written to the data files of snil, sn3, and sn4, as was originally done
with snl, sn3, and sn2 prior to replacing sn2. To perform this step, you can use the
KVStore client shell utility in the same way as described in Setup , when the first key/
value pair was initially inserted. That is, you can execute the following (remembering to
substitute the actual IP address or hostname for the <host-ip> string):

> java - Xnx64m - Xns64m \
-jar lopt/ondb/kv/lib/kvstore.jar runadm n\
-host <host-ip> -port 13230 -store exanpl e-store

kv-> get -all
| FI RST_KEY
HELLO WORLD

kv-> put -key /SECOND KEY -val ue "HELLO WORLD 2"
Put OK, inserted.

kv-> get -all

| SECOND_KEY
HELLO WORLD 2

9-68

Chapter 9
Hardware Monitoring

| FI RST_KEY
HELLO WORLD

After performing the insertion, use the "grep" command to verify that the new key/value
pair was written by sn1, sn3, and sn4; and of course, the old sn2 data file still only
contains the first key/value pair. That is,

> grep "HELLO WORLD 2" /tnp/snl/dskl/ ondb/ data/rgl-rnl/env/00000000. jdb
Binary file /tnp/snl/diskl/ondb/datal/rgl-rnl/env/00000000.)db matches
> grep "HELLO WORLD 2" /tnp/sn2/ dskl1/ ondb/ data/rgl-rn2/env/00000000. j db
Binary file /tnp/sn2/diskl/ondb/data/rgl-rn2/env/00000000.|db matches
> grep "HELLO WORLD 2" /tnp/sn3/dskl/ ondb/ data/rgl-rn3/env/00000000. j db
Binary file /tnp/sn3/diskl/ondb/datalrgl-rn3/env/00000000.|db matches
> grep "HELLO WORLD 2"
/tnp/ sn2_ol d/ dsk1/ ondb/ dat a/ r g1-r n2/ env/ 00000000. j db

ORACLE 9-69

Standardized Monitoring Interfaces

In addition to the native monitoring provided by the Admin CLI, Oracle NoSQL
Database allows Java Management Extensions (JMX) agents to be optionally
available for monitoring. These agents provide interfaces on each storage node that
allow management clients to poll them for information about the status, performance
metrics, and operational parameters of the storage node and its managed services,
including replication nodes, and admin instances. You can also use JMX to monitor
Arbiter Nodes.

Both of these management agents can also be configured to push notifications about
status changes of any services, and for violations of preset performance limits.

You can enable the JMX interface in either the Community Edition or the Enterprise
Edition.

The JMX service exposes MBeans for the three types of components. These MBeans
are the java interfaces StorageNodeMBean, RepNodeMBean, and AdminMBean in the
package oracle.kv.impl.mgmt.jmx. For more information about the status reported for
each component, see the javadoc for these interfaces.

Note:

For information on using JMX securely, see Guidelines for using JMX
securely in the Security Guide.

Java Management Extensions (JMX)

JMX agents in Oracle NoSQL Database are read-only interfaces. These interfaces
let you poll Storage Nodes for information about the storage node and about

any replication nodes or Admins that the Storage Node hosts. The information
available from polling includes the service status (RUNNING, STOPPED, and so on),
operational parameters, and performance metrics.

JMX agents also deliver event traps and naotifications for particular events. For
example, JMX sends notifications for every service status state change, and any
performance limits that the store exceeds.

Enabling JMX Monitoring

You can enable monitoring on a per-storage node basis in two different ways:
e In the boot configuration file.

e Change the ngnt d ass parameter.

ORACLE 10-1

Chapter 10
Java Management Extensions (JMX)

In the Bootfile

You can specify that you want to enable JMX in the boot configuration file for the
Storage Node.

Note:

When you specify -mgmt jmx, a storage node's JMX agent uses the RMI
registry at the same port number as it uses for all other RMI services that the
Storage Node manages.

By Changing Storage Node Parameters

You can enable JMX after you deploy a store by changing the storage node parameter
mgnt O ass.

The ngnt O ass parameter value may be one of the following class names:
e To enable JMX:

oracl e. kv.inpl.ngnt.|jnm. JmAgent

e To disable JMX:

oracl e. kv. i npl . ngnt. NoOpAgent

Displaying the Oracle NoSQL Database MBeans

You can view the Oracle NoSQL Database JMX MBeans in a monitoring tool such
as JConsole. In the JConsole, use the Remote Process option and connect using
hostname and registry port for each Storage Node that you would like to view.

¢ Note:

You should not choose Local Process option to connect to Oracle NoSQL
database.

For example, in the following case, in the JConsole New Connection window, you
should choose the Remote Process option and specify localhost:5000 to connect to
Oracle NoSQL Database.

ORACLE 10-2

Chapter 10
Java Management Extensions (JMX)

D Mermory Thresdh Casses 11 Gurmary Eeans

* JMirpiemestatzn NecFicathnbaftes
* Oracle FeoSQL Dacibase Teitarp [Tt Seq.. |Message o @
» B hdmia [Snoanahea SRR o e 1
» hestiodt RIS [oracis Rurepids enmerc Mgmﬁrwwm o,
e MWMAEN eraieerepnaceopmenc e opiraien metrcs Forhs dzptlace E
» diprbutes MIBADEH Jorachelecreprzde erumtiic P statistice Fer thit Repllode. i
v et NofFication mmhlﬁs ;
e mensgement Natficaion HEITM0M |oreciekoerepade enametric Hige st or this Repllnde. B
v mamagimert NafFication WMEIREE__[race ke repnade cpreti T ogeeration metrics Forthes Rephipde: ﬁ
massgemert Natfision MO |oreeie kerephade umitne e sacimict Forthis pepllode. ;
it masagimart Natfiation HITALEHE jorachelocrepnade cpminic Pl peration malrics Forthis Gephede. o,
racmaagumerctotfein || 0¥k eadeRerepnide enmere [e saglosfor i R, ﬁ_
i maaginart Mot | Bawngny [bereprade pmeic it 0N MG ot Regiinge: :
Iraemeegimerchatficin o se i Kerepnate enumetric hmhuﬁum Jaa.
'““W"“Mg‘g WA mckhrm:d:_apmm Fitw Dptration melrcafor s ephinge. 7
e il T _tewsgmihetabeles

AT — i tac urepnide e, [TesmAtE T 5o, 1
mw_%mm_wm_m
MATALHTorzcieleen wic | e

memmhrmmm

e Dgeraion mlrics Forthis Eaphlade.

lﬂl'-lckl\‘t"'f-l'L !hbﬂ

-5"?]?3.5’15?.5’-??I?FI?3I? SR FEFE R

T M PartStatethange [i313 nameaSeart Senvnes [15]stateasUCCEE _jove.

* g MISEE_ [orackRerepade HKs T, sha, 3 [Thesenice batus or Replioge rgt-mit charged toRPdiNG, v

» anhy HMSBE forscieerepnade gl "rmmt‘*rm-m: Ciha, 2 Thereplicaron stae For dephode rgi-mi changedto EFUCA [ava,

» jzauilieggng MiiSAeiEd Jorachelereprizde stdbes. gl sha [The sendoe 1katus For Bepllnde rgd-mit changed ba STRETIG 0
HriSdTHE [oracielaplaitibus 05, Pt 5. 45 g . .
MFR&M%.—.WIAE‘HMJ_ 1 o JR.
PRl e plantabes artiame 5. 4 EE.. favd.
MR Jorechelerepnade tatus rcmtu 'rgHm sha, 4] | i 0
HsERT_frsckkreptadsenmer [B st Forts Repllods. g .
HEMLSKTM e inerephide opTaing B OpsrRton MEINCE Ui!l:ep’ilﬁs O |
M MAEEH Joracheleereprizde ttiben ¥ T [The tendoe 1latus Foe Renllode rgd-mi changed ba STOPPTIG. v, O
MHASE [orackRepin it [Barid i Flaristacehange [id1: name-Sarm Senices [12] saleAURNRL. [ave. O

R T T ﬁ@gmﬁwa e
HiHADMT _ |orece kerepnade enamEt ic T s M sttistics| th!_ [ava. Cra
M MARES joracie erepnade cpmaint i Htw operation melrics orkths Rephipde |Ore|
WHIE_ hecekoepudenmen [T Tt e st ot Beplinde. Eq—;
MM |orecinerephiadecpraint s e ooeiton mEIrics lﬁsﬂ:ﬂl& Ok |
WAL hﬂhnmmmaﬁc gl Plew statisticy Fer this Repllode e [
MBIOHE Jorace berepnade comet _mu"&:gfl'.'sm ¥ Iewoertion metrice forthis Rephiade. E; [Cre|

120D karepradennetnc [tessice” T aﬁ_gmmm%g iy [Ore
%ﬁ-mﬁa it Weﬁ% “'E“H.ITE' "y’ %"s e Ea R Ol
Sobarbe | Unsubsobe | Ceer
[caheszson | |

ORACLE

10-3

Using ELK to Monitor Oracle NoSQL
Database

“ELK” is the acronym for three open source projects: Elasticsearch, Logstash, and
Kibana.

Elasticsearch is a search and analytics engine. Logstash is a server-side data
processing pipeline that ingests data from multiple sources simultaneously, transforms
it, and then send it to a “stash” like Elasticsearch. Kibana lets users visualize data
with charts and graphs in Elasticsearch. The ELK stack can be used to monitor Oracle
NoSQL Database.

Note:

For a Storage Node Agent (SNA) to be discovered and monitored, it must be
configured for IMX. JMX is not enabled by default. You can tell whether JIMX
is enabled on a deployed SNA issuing the show par anet ers command and
checking the reported value of the mgmtClass parameter. If the value is not
oracle.kv.inpl.ngnt.jnx. JnxAgent, then you need to issue the change-
par armet er s plan command to enable JMX.

For example:

pl an change-paraneters -service snl -wait \
-parans ngnmt G ass=oracl e. kv.inpl. ngnt.jm. JnxAgent

For more information, see Standardized Monitoring Interfaces .

Enabling the Collector Service

Follow the steps below to enable collector service in Oracle NoSQL Database:

1. Setthe col | ect or Enabl ed parameter across the store to tr ue.

pl an change-paraneter -global -wait -parans collectorEnabl ed=true

2. Set an appropriate value for col | ect or I nt erval . Low interval value collects more
details and requires more storage. High interval value comparatively collects
lesser details and requires lesser storage.

pl an change-paraneter -global -wait -parans collectorlnterval ="30 s"

ORACLE 11-1

Chapter 11
Setting Up Elasticsearch

Provide an appropriate storage size for col | ect or St or agePer Conponent . The data
collected by each component (each SN and RN) is stored in a buffer. This buffer
size can be changed by setting this parameter.

pl an change- paraneter -global -wait -parans
col | ect or St or agePer Conponent ="50 MB"

Setting Up Elasticsearch

Follow the steps below to setup Elasticsearch:

1.
2.

Download and decompress Elasticsearch-5.6.4.

Modify the $ELASTI CSEARCH confi g/ el asti csearch. ynl file as per your
configuration.

For example: Set values for pat h. dat a and pat h. | ogs to store data and logs in
the specified location.

Startup Elasticsearch.
$ cd $ELASTI CSEARCH

$ sudo sysctl -q -w vm nmax_map_count =262144;
$ nohup bin/elasticsearch &

For more information, see Elasticsearch Reference guide.

Setting Up Kibana

Follow the steps below to setup Kibana:

1.
2.

Download and decompress Kibana-5.6.4.
Modify the $KI BANA confi g/ ki bana. ynl file as per your configuration.

For example: If Elasticsearch is not deployed on the same machine as Kibana,
add line el asti csearch. url:”<your _es_host name>: 9200". This sets Kibana to
connect to the Elasticsearch address specified instead of 127. 0. 0. 1: 9200.

Startup Kibana.

$ cd $KI BANA
$ nohup bin/kibana &

For more information, see Kibana Reference guide.

Setting Up Logstash

Follow the steps below to setup Logstash:

1.
2.

ORACLE

Download and decompress Logstash-5.6.4.

Place the | ogst ash. confi g file in the same directory where Logstash is
decompressed. Modify the | ogst ash. confi g file as per your configuration.

11-2

Chapter 11
Setting Up Filebeat on Each Storage Node

For example: If Elasticsearch is not deployed on the same machine
as Logstash, change the Elasticsearch hosts from | ocal host : 9200 to
<your _es_host nane>; 9200.

Place the templates (kvevents.tenpl ate, kvpingstats.tenplate,
kvrnenvstats.tenplate, kvrnjvnstats.tenplate, kvrnopstats.tenplate)in
the same directory where Logstash is decompressed. Modify the templates as
per your configuration.

Switch to the $LOGSTASH directory . Verify that the directory contains the Logstash
setup files, configuration file, and all the templates. Then, startup Logstash.

$ cd $LOGSTASH
$ | ogstash-5.6.4/bin/logstash -f |ogstash.config &

For more information, see Logstash Reference guide.

Setting Up Filebeat on Each Storage Node

Follow the steps below to setup Filebeat on each storage node:

ORACLE

1.
2.

4,

Download and decompress Filebeat-5.6.4.

Replace the existing fi | ebeat.ym with fil ebeat.ynl . Edit the file and replace all
occurrences of / pat h/ of / kvr oot with the actual KVROOT path of this SN. Also,
replace LOGSTASH_HOST with the actual IP of Logstash.

Startup Filebeat.

$ cd $FI LEBEAT
$./filebeat &

Repeat the above steps in all the storage nodes of the cluster.

For more information, see Filebeat Reference guide.

Using Kibana for Analyzing Oracle NoSQL Database

This example demonstrates how to visualize the data by creating indexes in Kibana.

Index patterns tell Kibana which Elasticsearch indices you want to explore. An index
pattern can match the name of a single index, or include a wildcard (*) to match
multiple indices.

If you use the template files provided above, then the following indexes are available:

1
2
3.
4
5

kvrnj vist at s- *
kvrnenvstats-*
kvpi ngst at s- *
kvrnopst ats-*

kvrnopst at s-* — This index may not exist if the store is brand new as no events
would have occurred.

11-3

Chapter 11
Using Kibana for Analyzing Oracle NoSQL Database

Creating Index Patterns

You will need to configure index patterns before using Kibana. Create the above
indexes in Kibana:

¥ it

Index Patterns Saved Objects Advanced Settings

| Configure an index pattern
ou

oo In cmer to s KIBana you must configure 21 east one index pattem. Indes patterns are sed 1 identify the Elasticsearch indes to run
saath and anatytics aanst. They are also uwed to configure fieids.

Indlex pattern oo
leerrivmstats
Patmor T lowe you to Sefine Synamic index name Laing * a1 8 wilicand. Easrnpie: logstash ¢
Time Filter fleld name O e ¢
Btimestamp
Expand index pattern when seanching [DEFRECATED)

WWER (54 S0 belectnd. G AL by DY e 1 L ENIL 050 1 o v Bl b i s vy vy I it hat
conein daa within he corrsetly weiccted e range.

Sarchig st S i pattere, kg fwil ictisly queey [lavteusars for tha tpec i matrhing ndices (8, bt J0TA 1117 that fall within
Curners T range.

oo et in 1 .

Use event times 1o create index names [DEPRECATED]

Analyzing the Data

In this example, you create a visualization using index kvpi ngst at s- * to find out the
95thLatency in the cluster.

1. Choose the visualizing type. In this example, you choose Timelion.

Duta Table Gaage Gost Meric
Maps
Coordrate Mg Region Mg
Time Series.
Timeston Visual Butider
-
=

pwn Wivebaakiearesvite Tirsm v 2 1 g . e tat

2. Input the Timelion Expression to aggregate the data. The following expression is
used in this example:

.es(index=kvrnopstats-*, timefield=" @i nmestanp',

nmetric="max: Si ngl eKeyReadQper ations_Interval _95th'). | abel ('read-
single').legend("sw',2).title("95thLatency"),.es(index=kvrnopst at s-
* tinefield=" @i nestanp',

metric="max: Si ngl eKeyWiteQperations Interval 95th').label ("wite-
single').legend("sw',2).title("95thLatency")

ORACLE" 11-4

Chapter 11
Using Kibana for Analyzing Oracle NoSQL Database

. Swe Swee Refresh 4 O Last1Sminutes >
AELE

Wihatey

ovaoFEo PY

singeblegendlew’ 25 SSthLatency e

3. Save the visualization and add it to the dashboard of your choice.

ORACLE 11-5

Using Plugins for Development

Get familiar with the plugins available for developing NoSQL applications in the Oracle
NoSQL Database from external integrated development environments or IDEs.

Topics

* About Oracle Enterprise Manager (OEM) Plugin
* About IntelliJ Plugin

* About Eclipse plugin

About Oracle Enterprise Manager (OEM) Plugin

ORACLE

The monitoring of a store in Oracle NoSQL Database can be done through its
native command-line interface (CLI). The monitoring data is available through Java
Management Extensions (JMX) interfaces allowing customers to build their own
monitoring solutions. For more information on monitoring data, see Standardized
Monitoring Interfaces .

In this current release, the integration of Oracle’s Enterprise Manager (OEM) with
Oracle NoSQL Database provides a graphical management interface tool to discover
and monitor a deployed store.

The integration of Oracle NoSQL Database with OEM primarily takes the form of

an EM plugin. The plugin allows monitoring through Enterprise Manager of the

Oracle NoSQL Database store components, their availability, performance metrics,
and operational parameters. The current 12.1.0.9.0 version of the plugin is compatible
with multiple versions of the Oracle Enterprise Manager Cloud Control (EM 13.x
versions). See Oracle Enterprise Manager Cloud Control Administrator's Guide.

¢ Note:

For a Storage Node Agent (SNA) to be discovered and monitored, it must be
configured for IMX. JMX is not enabled by default. You can tell whether JMX
is enabled on a deployed SNA issuing the show par anet ers command and
checking the reported value of the mgmtClass parameter. If the value is not
oracle.kv.inpl.ngnt.jnx. JnxAgent, then you need to issue the change-
par aret er s plan command to enable JMX.

For example:

pl an change-paraneters -service snl -wait \
-parans ngnt d ass=oracl e. kv.inpl.ngnt.jnm. JnxAgent

Also, the EM agent process must have read permission on the contents of $KVROOT.

12-1

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

Importing and Deploying the EM Plug-in

Follow the steps below to import and deploy the EM plug-in:

1.

Import the file (.opar) into the Enterprise Manager before deploying it. The
plug-in is delivered to the user as a file inside the release package: i b/
12.1.0.9.0; _oracl e. nosql . snab; _2000_0. opar

See Importing Plug-in Archives in the Oracle Enterprise Manager Cloud Control
Administrator's Guide.

Copy the . opar file to the host where Oracle Management Service (OMS) is
running. Import the plugin into OEM and deploy the plugin on the server hosting
OEM, via the following commands:

$encli inport _update -file=/homel/guy/
12.1.0.9.0; oracl e. nosqgl . snab; 2000 _0. opar -onsl ocal

Deploy the plug-in to the Oracle Management Service (OMS). You can deploy
multiple plug-ins to an OMS instance in graphical interface or command line
interface. See Deploying Plug-Ins to Oracle Management Service in the Oracle
Enterprise Manager Cloud Control Administrator's Guide.

CLI Example:

$entli depl oy_plugin_on_server -plugin
=oracl e. nosql . snab: 12. 1. 0. 9. 0 -sys_passwor d=passwor d

Deploy the agent on the server hosting Oracle NoSQL Database. See Deploying
Agent .

Deploy the plug-in to the EM Agents where Oracle NoSQL Database components
are running. See step 4 in Deploying Plug-Ins on Oracle Management Agent in the
Oracle Enterprise Manager Cloud Control Administrator's Guide.

CLI Example:

$entli depl oy_plugin_on_agent -agent_names=agent 1. exanpl e. com 3872;
agent 2. exanpl e. com 3872 - pl ugi n=or acl e. nosqgl . snab:12.1.0.9.0

Add Oracle NoSQL Database targets. See Adding NoSQL Database Targets .

Note:

The plugin components are now installed and can be configured.

Deploying Agent

Follow the steps below to deploy agent on the server hosting Oracle NoSQL
Database:

1.

ORACLE

Click Setup -> Add Target -> Add Targets Manual | y on Oracle Enterprise
Manager Cloud.

12-2

Chapter 12

About Oracle Enterprise Manager (OEM) Plugin

* Favorites ¥ @ History * -ﬂ- Setup ¥ O\ ‘.

Initial Setup Console

Configure Auto Discovery Add Target

Auto Discovery Results Extensibility

Add Targets Manually Proxy Settings

Group Security

Dynamic Group Incidents

Administration Groups Natifications

Generic System Cloud

Redundancy System Provisioning and Patching

Generic Service

My Oracle Support

Middleware Management »

Manage Cloud Caontrol >
Command Line Interface

Management Packs b

2. ClickInstall Agent on Host.

b Overview

Add Host Targets Add Non-Host Targets

Using Guided Process

& \J
= 4

|E5 Install Agent on Host

Add Non-Host Targets
Using Declarative Process

. Add Using Guided Process /~ Add Target Declaratively

EE Install Agent Results

Add Host targets by installing an agent
using remote installation process. View
status of past Agent installations.

Fun guided discovery on a host to find
manageanle targats. Choose 1o promote
some or all discovered targets to become
managed.

Add targets by expacitly specifying
menitonng properties.

Installing Agent on Host

3. Add the host name of the machine running Oracle NoSQL Database and select
the operating system type and click Next .

ORACLE" 12-3

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

Add Target
@

Host and Platferm Instaliation Detalls
Add Host Targets: Host and Platform

This wizard enables you to install Management Agenis on unmanaged hosts, thareby converting them to managed hosts,

* Session Name ADD_HOST_SYSMAM_Jun_12_2017_&:Z3:18_AM_UTC

b Agent Software Options

4 Add | v ¢ Remove Platform Ditferent for Each Host 4
Host Platferm
slc4arl.us.oracle.com Linux =86-64

4. Enter the directory where agent files should be stored and the credential
information to login to the machine and click Next .

Add Target
i @
Host and Platform Installation Details Fieviaw

Add Host Targets: Installation Details
On this screen, $elect each row from the foliowing table and provide the installation details in the Installation Details section,

¥ Deployment Type: Fresh Agent Install

Agent Software

Platform Vargian Hosts

Linie #BG-G4 13.1.0.0.0 sl an. ug. OrackE, Gom

LLinune xB6-64: Agent Instaliation Details
* installation Base DIFeClory joratchitestsioam_agent

.
Instance Direclory fscratch/ests/oam_agent/agent_inst

* Named Cradential Select il
Privileged Delegation Setting g min/sud -u %AUNASH %COMMAND%
Port 37z

b Optional Details

5. Click Depl oy.

Adding NoSQL Database Targets

Run the plug-in's discovery program on each host where a Storage Node Agent (SNA)
is running, to add the components of a store as monitoring targets.

Follow the steps below to add NoSQL Database targets:

1. Select “Add Targets” from the “Setup” menu, then choose “Add Targets Manually”.

ORACLE 12-4

Chapter 12

About Oracle Enterprise Manager (OEM) Plugin

h Enterprise ¥ Iamels v * Favorites ¥ @ Histgry ¥ O\ !

Configure Auto Discovery
Auto Discovery Results

Add Targats Manually

Group

Dynamic Group
“gic domain administration Adminisiration Groups
wents types using comactive actions

Ganaric System
nent

Redundancy System

Ganeric Service
Getting St

+ Verify Sof
v Configure
v Verify My
v Add An A

Initial Satup Consale

Add Target »
Extensibility L
Proxy Seftings 3
Security 3
Incidents]
Natifications "
Cloud 3
Hybad Cloud

Provisioning and Patching #

My Oracia Suppon 3
Middleware Management »
Manage Cloud Gantrol]
Command Line Interface

Management Packs B

2. Select “Add Using Guided Process” on the “Add Targets Manually” page.

Add Targets Manually
b Overview

Add Host Targets

' Install Agent on Host
[ES Add Host To Existing Agent
=0 Install Agent Results

Add Hoat by instaling an agent
uskng remata installation procass. View
=1E1us of past Agent installaions,

Add Non-Host Targets
Using Guided Process

03

104

¥, Add Using Guided Procass

Fun guided discovery on a host to find
manageable tarpats. Choose o pramate
s0ema or @l discoverad tangets 1o become
marEged,

Add Non-Host Targets
Using Declarative Process

7
I
/- Add Tanget Declasatively

Audld targets oy explicity specifving
maonitaring praperties.

3. Select “Discover NoSQL SNA System Targets” in the “Target Types” drop-down

list.

ORACLE"

12-5

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

Add Using Guided Process 4
Guided Discovered Target
Discovery Types
Guided Discovery Discovered Target Types
|Discover NoSQL SNA System Targets| NoSQL Database Admin, NoSQL Database Shard, No...
Exalogic Elastic Clowd Exalogic Elastic Clowd
Exalytics System Exalytics System

Fusion Instance

Global Data Services

|1BM WebSphere Application Server
1BM WebSphere MO Queus Manager
JBoss Application Server

Oracle Bl Suite EE

Oracle Big Data Appliance

Fusion Instance

Global Data Services, Global Service Manager, Global...
|1BM WebSphere Application Server Cluster, IBM Web...
1BM WebSphere MO Queus Manager, IBM WebSpher...

JBoss Partition

Oracle Bl Analytics Server (10g). Oracle Bl Cluster Co...
Big Data Appliance, Hadoop Cluster, Hadoop DataNo...

Oracle Clustar and High Availabdity Service Cluster, Oracle High Availability Service

Oracle Coherence Oracle Coherence Cluster, Oracle Coherence Cache, ...
Oracle Databasa, Listenes and Automatic Storage Management Database Instanca, Listaner, Pluggable Database, Clu...

Mirnrla Missmtnm s Cammne Crtnrminn Crtinn Sanmme Dies

Add.. Cancel
L —
4. Select an agent on which you can run the discovery program. "Choose Agent"

(Select Agent to Run Discovery On) in the first page of the program displays a list
of all available EM agents.

Mirmnla Mirmmtmm s ©amime Crtarmrinn Cetbinm

Page Rafreshed Jun 22, 2017 10:4T:

Discover NoSQL SNA System Targets Discovery

[
&)
Choose Agent Components Confirm Summary
Add SNA Target: Select Agent | Back | Stepiof4 | Next
Select Agent to Run Discovery On
Agent Name Status

adczardb01.us.oracle.com:45783
scagqad02adm01.us.oracle.com:45783
den00bun.us.oracle.com:3872
adczardb02.us.oracle.com:d5783
slcaj923.us. oracle.com:3872

e EL

denl1nmv.us.oracle.com: 1830

o —

Select Agent to Run Discovery On

5. Click “Next". This takes you to the “Components” (Manage NoSQL Database
Targets: Select Store Components) page. This shows all the NoSQL Database
components that were found on the agent's host. To be found, an SNA must be
running when the discovery program runs. The SNA's configuration reports the
SNA's managed components, such as Replication Nodes and Admins.

ORACLE" 12-6

ORACLE

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

Discover NoSQL SNA System Targets Discovery Page Refreshed Jun 22, 2017 10:47:51
O ®
Choose Agent Components Confirm

Manage NoSQL Database Targets: Select Store Components | Back | Stap2afé | Next |

Agent Mame slcal323.us.oracle.com:3872
Discovery complete.
[P TP PP TP PP T PP T PP PP PP PR P PPPrr

4 Discovery Results

SNA Managed Component Type Currentl... Discover... Action
mystore-sni nesgl_sna RO YES v acd target
mystore-admini nesgl_admin NO YES v add target

mystare-rg1-m1 repnode YES YES rarmaove target
mystare-rg2-m1 repnode MO YES v add tanget
mystone-sn2 nosqgl_sna MO YES " aod tanget

For each component, two attributes are listed:
» Discovered
e Currently Managed

Each attribute can have a value of “Yes” or “No”. For each component found, one
of two actions is available:

e add target
* remove target

The action is enabled by means of a check box. The recommended action for a
component is shown by the state of its check box.

« |f the box is checked, then the action is recommended. The user can override
the recommended action by checking or un-checking the box.

e If a component has Discovered = YES, it means that an instance of that
component was found on the host.

e If a component has Currently Managed = YES, it means that the component is
already configured for monitoring by EM.

e If a component is Discovered and not Currently Managed, then it is a
candidate for being added as a target. For such components, the available
action is "add target", which is the recommended action.

e If a component is Discovered and Currently Managed, it means that the
component has already been discovered and added as a monitoring target.
For such components, the available action is "remove target", but the
recommended action is to do nothing, because the discovery report is in sync
with EM's configuration.

e If acomponent is Currently Managed and not Discovered, it means that EM
is configured to monitor a component that was unexpectedly not found on the
agent's host. This could be so because the component no longer resides on
the host; or it could reflect a temporary unavailability of the Storage Node
Agent. For such components, the recommended action is "remove target".

12-7

ORACLE

6.

7.

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

< Note:

In most cases, the default recommended action is the correct action, and
no checkboxes need to be altered.

Click “Next” once the desired configuration is set up on the “Components” page.
This takes you to the “Confirm” (Manage NoSQL Database Targets: Confirm
Changes) page, which shows a list of all the chosen actions.

Discover NoSQL SNA System Targets Discovery Page Refreshed Jun 22, 2017 10:47:51 AM UTC -
O L) @
Choosa Agent Companents Confirm Summany

Manage NoSQL Database Target: Confirm Changes Back | Step3cf4 | Next | Cancel

[Eeacel|
component action
mystore-sni add target
mystore-admini add target
mystore-rg2-rmi add target
mystore-sn2 add target
mystore-admin3 add target

Click “Next” to go to the “Summary” (Add SNA Targets: Apply Changes) page. This
shows a report of success or failure of each action.

Discover NoSQL SNA System Targets Discovery Page Refreshed Jun 22, 2017 10:47:51 AM UTC 4
@) & O L]
Choose Agent Components Confirm Summary
Add SNA Targets: Apply Changes Back | Step4ofd4 Next | Exit

Topology updates complete.

component status
mystore-sni added successfully
mystore-admint added successfully
mystore-rg2-m1 added successfully
mystare-sn2 added successtully
mystore-admind added successfully

At this point, you may exit Discovery, or you may click on "Choose Agent", near
the top of the page, to return to the first page of the program, to re-start and run
discovery on a new agent.

Once all of the components of a store have been discovered and added, EM's
model of the store's topology is complete.

12-8

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

Components of a NoSQL Store

Components of a NoSQL Database Store include the Store itself, Storage Node
Agents, Replication Nodes, Admins, and Shards. Of these, Stores and Shards are
abstract components that do not correspond to a particular service running on a
host. Shards are implied by the existence of Replication Nodes that implement
them, and a Store is implied by the existence of the components that belong to it.
These components are discovered when components that imply their existence are
discovered.

For example, the first time discovery is run on an agent where components belonging
to a Store are running, the Store itself will appear as a Discovered and not Managed
component to be added. After the Store is added, subsequent runs of discovery

on other agents where the existence of the Store is implied will show that the

Store is Discovered and Managed, with a recommended action to do nothing. Newly
discovered components belonging to the Store will be added as Members of the Store.

Likewise, Shards may appear to be discovered on multiple hosts, but a single Shard
need be added only once.

Store Targets

Store Page

ORACLE

The name of the Store target will be the name of the Store as configured in the NoSQL
Database CLlI's "configure" command. For more information, see configure. This name
must be unique across all instances of NoSQL Database that will be monitored by a
given instance of EM.

Member components of the store have target names made up of their component

IDs appended to the store name. For example, in a store named myStore, a Storage
Node Agent with an id of "sn1" will have the target name "myStore-sn1", a Replication
Node with an id of "rg1-rn1" will have the target name "myStore-rg1-rn1", and so
forth. The undeployed StorageNodes will be "UNREGISTERED-hostname-port”, for
example, “UNREGISTERED-examplel.example.com-5050". Once the components of
a store have been added, you can find the page representing the store by searching
for the store name in the “Search Target Name” box in the upper right part of EM's
home page. You can also find it via Tar get s- >Al | Tar get's or Tar get s- >Syst ens.

Clicking on the Store's name in any of the lists will take you to the Store's target page.

* The page has two large graphs showing the:
— Average Latency Averaged over all Replication Nodes in the Store

— Total Throughput for all Replication Nodes

12-9

ORACLE

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

1 kvstore @
I Crcie NoSOL Dalnbase Sioee = Page Fietres hed Jum 16, 2016 3

! Store Navigation | Apgregate Perdommance for NoSOL Databass store kustors

& Types = Avermge Latency (ms) aversged overall Replieation Nodes. summed

In the lower right is a list of “Undeployed Storage Node” agents.
In the lower middle is a list of “Incidents and Problems” related to the store.

On the left side of the page is the “Store Navigation” panel. This panel presents
the topology of the store in three different ways:

— Types

“By Types” groups targets by their target types; so all Replication Nodes are
listed together, all Storage nodes are together, and so forth.

— StorageNodes

“By StorageNodes” shows the hierarchy of St or e- >St or age Node-

>Repl i cation Node. Each Replication Node is managed by a Storage Node
Agent, and always resides on the same host. A Storage Node Agent may
manage more than one Replication Node, and this is reflected in the tree
layout of the navigation panel.

— Shard
“By Shards” shows the hierarchy of St or e- >Shar d- >Repl i cati on Node.

ORAC LS Enterprise Manager Cloud Control 12¢

% Entorprise = @) Targels ~ iy Favorites ~ &) History -

9F emTestStore @

e

: Orace MNoSQL Database Store -

= | Store Navigation

.E:-.-' Types bt |
Target Statu By Shards
nosgl_store By Storageiodes
F e ol By Types

nosgl_admin

YT Y Y}

mosgl_shard

Each component in the navigation panel has a status "up" or "down", or "unknown"
and a link to the target page (labeled "Home Page") for that component. The
status can be "unknown" if the targets have yet to be reported for the first time, or
if OMS cannot contact the EM Agent.

The “Store” page, (under menu item Members->Topology) shows the layout of the
store as a graph, which is an overview of the "Configuration Topology".

12-10

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

& kvstore @
T Srac HoS0L Bantase Som -

Configuration Topology

vew [Symmienters ¥ Cosiomier 2 | W Bremars | H - §
L]
e
=
stareagl
Bl ¥ 3
buesera sm3 Fusora 2 kevetsra end
© @ <
Lortars 3aming g re- 3 Armun2 wysiare sdmenl
fveorergling | kvsoreglin? | kvsorerglm]

On the “Storage Node” page, you see the same graphs of “Average Latency” and
“Throughput”. Here, the graphs show aggregate information for the Replication Nodes
that are managed by the Storage Node. The graphs display either discrete series, with
one line per Replication Node; or it can combine the series into a single line. The
choice is made using the radio buttons at the bottom of the graph.

This page also shows the operational parameters for the Storage Node Agent.

& kvstore-sn3 @ Her
F Somago o * Page Rafres bect Jun 16, 2016 31
| Stor Navigation | Aggregate Performaace tor Replication Nodes managed by sn3
By Typm v Avemge Latancy (ms] Throughput (opasec)

mer me Fage
nasq) aice
= 2000 Jun 16, 24500 am Jus 16, 285D an
(@) Deereie sor e Siegie-op hroughpat (e |Lssté

¥/ 5a3 O perational Parmeters

susld Mezsage Target Severty Sat Escaied Cagory Tine tiece U Pammete: ame vabe
Tena Since Updute Capacty 1

Hostrame emlie sxang

MumcPus 2

Amintiipfen 0

Shard Page

The “Shard” page is similar to the "Storage Node" page. It shows metrics collected
from multiple Replication Nodes. These Replication Nodes are the ones that serve as
the replication group for the Shard.

ORACLE 12-11

Chapter 12
About Oracle Enterprise Manager (OEM) Plugin

& kvstore-rg1 @
T3 Ormcio hooL Datiase Shar ™ Poage Rsfras becl Jun 1
! Storw Mavigation ¥/ Aggregate Pefomance for NoSOL Databass Shard lorstor-1g1
By Types v Average Latency (ms) Throughput fopaiaec)
Taget Home Page: |
* mal_siore ? 0 }
* repnocs 180 }
3
* nosql admin (4] }
* noeql sna o 8
* ooql_shard JoN16, 224000 Jun 16, 235C00M Jun 16, 249008 Jun 16, 300000m Jun 16, 31200am U016, 224000% U 18, 238008 Jun 16, 2400am Jun 18, 30000am W
Q) Avernge sacins (&) Dibereta seins Shqecpavengetisacy (v |LasieOMietes (v (O Sumseries (&) Diserete periea Singe-op teooghpat
| kvstore-1g1 Incklents and Problems
IsgueiD Misags Targst Saverty Stus Excabed Calagory

Replication Node Page

The “Replication Node” page shows metrics for a single replication node. This page
also shows the Replication Node's operational parameters.

Pags Ralreshad Jun 16, 208

. Store Navigation x| Performance overview for Replication Node rg 1-m3
By Types v Single-op averge latency (ms) Single-op thraighpat {ops/see)

Tamet Home Page |

¥ ponql_sore ' 20 }

> repoce |

. {

> st e |

* ol s 0 &l
P sosal shrd Jun 16, Z2600m Jun 16, 235008m Jen 16, Z4ECOAM Jun 16, 300MDAM Jum 16, 31200am Jin 16, 224000m Jun 16 236000m Jun 16,245,000 Jun 16, 3000am Jun 16, T

Single-cp average hiercy (me) (W) |Last€0 Minsies [Singlecp throughput cpesec) (W] |Last 60 Misstes [

= rat-m3 Inchients and Problems =/ rg1-m3 Operaiional Pammeters

IezueiD Meszage Target Severty St Escatiled Caigery Tine Skece U Farameter Hame
Satinieral 605

Cacheske SS20MB
ThoughputFioor Oopssec

CollciEnvants tre

On this page you can view a variety of metrics by choosing Repl i cati on Node-
>Monitoring->All Metrics. It also shows different time ranges.

ORACLE" 12-12

Chapter 12
About IntelliJ Plugin

(5] Reicaton hode »
wTestirerglem] > Al Merics
Al Metrics
Search +| MultiumulativeEnd
- EET [oeotincers e ee—— orlr et Trggeres . ast Cleton Trestamg
e e N Nt AN SO
b Rephiode Cordiuratin
V Reptiods Merion
Commiag
Curlabomativg
Curmulabosathe
Corminie o, ptlm
Camlibrsscti s
Carmiys sy
Cumulaborsanct Repliodeld : rgl-m1l
Cormulyboeiowt
CamuabveThraughout « Metric Valoe History
[ET_TLLA N1 - AR G ’
IvterealEnd Plcchecionvmesmg ofwke
nipreplLataeg 17-Jun-2014 00 2647 POT T Jur U7 00 14l POT 2014
InvbereplL S 17Jun=-2004 D2 TAT POT T Jom LT 001548 POT 2014
Inigraplatin 13- Jun-2014 00 2847 PO Tue Jun 1700 2-48 P07 2004
InieraPiG j 17-Jun=2014 00 2947 POT Tioe: Jury §7 Q02745 POT 2014
[ntereaPrisy 17 0n=20 14 00 3047 FOT T Jom LT 0035048 POT 2014
Intereaitart 172014 0031047 FOT Tue ko 17002542707 2014
vt el Throogrut 17-he2014 00: 34T POT Tut: Jun 17100 K4l POT 2014
varialTz<alCp 17dun-20 14 D33 AT POT T Jon LT 00=31-42 PDT 2314
i otk 1-Jon-2004 00 34T POT Tue Jon ET00: 342 P0T X004
Cum L 17-Jun=2014 00 35:47 POT Tioe: Jory 170033048 POT 2014
Resicatan tade =
emTestSiorevpind > A Mot
Al Metrics
Search = HultCumula trrend
vemr | ETER | mecrinsezs {Last Colersed vae v | - Lniert Trogeree s Last Coteston Trestavo
V enTestsurergivni I . .
e
' Repfiade Mevas
Cormrmens
Curmuy toeLating
Curmuis toelaDan
Cormudatooslndr
Cumy veF (s
Cursly b 8295
Clrmuis tvesuart Repliodeld : rgl-rmi
Curuiy tvriowt
CumudstroeThvoughent) Metric Valwe History
Caraky vt ToLNDoS "-' -
Intere sEnd L [Colecton Trestamp B Y
Prlereplatieg } 1722014 00:26<47 POT Tue Jun 17002458 POT 2014
Intere sl ATVAN | 172un=-20 14 O0= 2 7= 47 POT Tue dun 17002548 POT 2014
Irters sl atvin I 17-0n-20 140072847 POT Tum Jun 17 00-24-38 POT 2014
InteredPCriS j § 17-2un-2014 00 25=47 POT T Jum 17 00c27-48 POT 2014
EntervalPctsy L 37-2un-20 14007 X547 POT Tur Jon 37 O=T9 FOT 014
et | 17un-201400:31:47 POT Tue Jun 17 00-29-48 PDT 2014
:z‘ﬂ"w § 17-0un-201400:3:47 POT Toe Jun 1700:30-48 POT 2014
e | 15%0une20 14 00: 33247 FOT Tue Jn 1700=31=48 FOT 2014
Hﬁm'u:::-‘ | 132014003447 POT Tue Jun 17 00348 POT 2014
o 17-Jur-20 14 00= 35: 47 POT T Jum 17 00=33-48 POT 2014

From here you can examine and graph any of the numerous metric values that are
collected from the Replication Node.

About IntelliJ Plugin

Browse tables and execute queries on your Oracle NoSQL Database KVStore from
IntelliJ.

The Oracle NoSQL Database IntelliJ plugin connects to a running instance of Oracle
NoSQL Database KVStore and allows you to:

* Quickly get started with Oracle NoSQL Database by using the examples available
with the plugin.

* View the tables in your Oracle NoSQL Database KVStore.

ORACLE" 12-13

Chapter 12
About IntelliJ Plugin

Retrieve columns, indexes, primary keys, and shard keys for each table.
Build and test your SQL queries on a table and obtain results in a tabular format.

View the data in each column in the JSON format.

Topics:

Setting Up IntelliJ Plug-in
Creating a NoSQL Project in IntelliJ
Connecting to Oracle NoSQL Database from IntelliJ

Managing Tables Using the IntelliJ Plugin

Setting Up IntelliJ Plug-in

Learn how to set up the IntelliJ plug-in for Oracle NoSQL Database KVStore.

Perform the following steps:

1.

Download and extract Oracle NoSQL Java SDK. See About the Oracle NoSQL
Java SDK.

Install the IntelliJ plugin, and restart the IDE.
You have two options to install the plugin:

* Search the Oracle NoSQL Database Connector in the JetBrains plug-in
repository, and install it, or

* Download the IntelliJ plugin from Oracle Technology Network, and install the
plugin from disk.

Tip:

Don't extract the downloaded plugin zip file. Select the plugin in the zip
format while installing it from disk.

After you successfully set up your IntelliJ plugin, create a NoSQL project, and connect
it to your Oracle NoSQL Database KVStore.

Creating a NoSQL Project in IntelliJ

Learn how to create a NoSQL project in IntelliJ.

ORACLE

Perform the following steps:

1.
2
3

Open IntelliJ IDEA. Click File > New > Project.
Select Oracle NoSQL examples from the explorer window, and click Next.

Browse to the location where you extracted Oracle NoSQL Java SDK on your
hard-disk, and click OK.

For example, if you extracted the Oracle NoSQL Java SDK in your D:\ drive, the
path looks like D: \ or acl e- nosql - j ava- sdk-5. 2. 11

Click Next.

Enter a value for Project Name and Project Location, and click Finish.

12-14

6.

Chapter 12
About IntelliJ Plugin

Once your NoSQL project is created, you can browse the example java files from
the Project Explorer window.

After you successfully create a NoSQL project in IntelliJ, connect your project to your
Oracle NoSQL Database KVStore.

Connecting to Oracle NoSQL Database from IntelliJ

Learn how to connect your NoSQL project to Oracle NoSQL Database KVStore using
the Intellid plugin.

ORACLE

Prerequisites:
To create a successful connection to your Oracle NoSQL Database KVStore, ensure
that:

The KVStore is deployed and running.

The Oracle NoSQL Database Proxy is started. See Configuring the Proxy. Starting
the release 19.5, Proxy is bundled along with the Oracle NoSQL Database
download package.

Perform the following steps:

1.
2.

Open your NoSQL project in IntelliJ.

Click the wrench icon in the Schema Explorer window to open the Settings
dialog for the plugin.

Expand Tools > Oracle NoSQL in the Settings Explorer, and click Connections.
Select Onprem from the drop-down menu for the connection type.

Enter values for the following connection parameters, and click OK.

Table 12-1 Connection Parameters

|
Parameter Description

Proxy URL http://

<proxy_host >: <proxy_http_port>

orhttps://

<proxy_host>: <proxy_http_port>

where:

e httporhttps indicates the store
security. For a secure KVStore, the
proxy URL begins with ht t ps.

e proxy_host is the host name of the

machine to host the proxy service.
This should match the host you
configured earlier.

See Configuring the Proxy.

SDK Path Complete path to the directory where
you extracted the Oracle NoSQL Java
SDK. For example, D: \ or acl e- nosql -

java-sdk-5.2. 11

12-15

Chapter 12
About IntelliJ Plugin

Table 12-1 (Cont.) Connection Parameters

__|
Parameter Description

Security Select SSL for secure KVStores. In case,
you are creating connection to a non-
secure KVStore, select None. The default
value is SSL.

¢ Note:

In case of secure KVStores, the
proxy URL must begin with
htt ps.

Username User name to connect to the secure store.
This value is required only if you select
SSL for the Security parameter.

Password Password to connect to the secure store.
This value is required only if you select
SSL for the Security parameter.

TrustStore Browse to the location where the
certificate trust file is placed. See Using

the Proxy in a Secure kvstore.

6. The Intellij plugin connects your project to the Oracle NoSQL Database KVStore
and displays its schema in the Schema Explorer window.

After you successfully connect your project to your Oracle NoSQL Database KVStore,
you can manage the tables and data in your schema.

Managing Tables Using the IntelliJ Plugin

ORACLE

Learn how to create tables and view table data in Oracle NoSQL Database KVStore
from IntelliJ.

After connecting to the Oracle NoSQL Database, you can execute the examples
downloaded with Oracle NoSQL Java SDK to create a sample table. With the help
of the IntelliJ Plugin, you can view the tables and their data in the Schema Explorer
window.

To execute an example program:
1. Open the NoSQL project connected to your Oracle NoSQL Database.

2. Locate and click Basi cTabl eExanpl e in the Project Explorer window. By looking at
the code, you can notice that this program creates a table called audi enceDat a,
puts two rows into this table, queries the inserted rows, deletes the inserted rows,
and finally drops the audi enceDat a table.

3. To pass the required arguments, click Run > Edit Configurations. Enter the
following program arguments, and click OK.

12-16

Chapter 12
About Eclipse plugin

Table 12-2 Program Arguments
]

Program Arguments More Information

http:// For example, if your Proxy URL
<proxy_host>: <proxy_http_port> ishttp://<proxy_host>: 8080, the
- useKVPr oxy program argument must be htt p://

<proxy_host >: 8080 - useKVProxy.

To execute this program, click Run > Run 'BasicExampleTable' or press Shift +

Verify the logs in the terminal to confirm that the code executed successfully. You
can see the display messages that indicate table creation, rows insertion, and so

Tip:

As the Basi cExanpl eTabl e deletes the inserted rows and drops the
audi enceDat a table, you can't view this table in the Schema Explorer.
If you want to see the table in the Schema Explorer, comment the
code that deletes the inserted rows and drops the table, and rerun the
program.

To view the tables and their data:

Locate the Schema Explorer, and click the Refresh icon to reload the schema.

Locate the audi enceDat a table under your tenant identifier, and expand it to
view its columns, primary key, and shard key details.

Double-click the table name to view its data. Alternatively, you can right-click
the table and select Browse Table.

A record viewer window appears in the main editor. Click Execute to run the
guery and display table data.

Note:

As of the current release, only SELECT queries are supported on the
NoSQL tables from the Schema Explorer.

To view individual cell data separately, double-click the cell.

About Eclipse plugin

ORACLE

Build and run your Oracle NoSQL Database applications quickly from the Eclipse IDE.

To enhance your experience of building an Oracle NoSQL Database application, a
plugin is available in Eclipse. This plugin connects to a running instance Oracle
NoSQL Database KVStore and allows you to:

Quickly get started with Oracle NoSQL Database by using the examples available
with the plugin.

12-17

Chapter 12
About Eclipse plugin

» Explore development/test date from tables in your Oracle NoSQL Database
KVStore.

* Build and test your queries.

* Retrieve columns, indexes, primary keys, and shard keys for each table.

» Build and test your SQL queries on a table and obtain results in a tabular format.
* View the date in each column in the JSON format.

To use the Eclipse plugin:

1. Download the eclipse plugin from Oracle Technology Network.

2. Follow the instructions given in the README file and install the plugin.

3. After installing the Eclipse plugin, you can connect to your Oracle NoSQL
Database KVStore and execute the code to read/write the tables. For more details,
you can access the help content embedded within Eclipse.

To access the help content:

a. Click Help Contents from the Help menu.

b. Locate and expand the Oracle NoSQL Plugin Help Contents section. This
lists all the help topics available for Oracle NoSQL Plugin.

c. Refer the help topic as per your requirement.

¢ Note:

The Oracle NoSQL Database Eclipse plugin works with Eclipse Neon 4.6
and later.

ORACLE 12-18

Oracle NoSQL Database Proxy and Driver

Learn about how to set up Oracle NoSQL Database Proxy and access it using the
Oracle NoSQL Database Driver.

Topics:
* Oracle NoSQL Database Proxy

e Oracle NoSQL Database Java Driver
e Oracle NoSQL Database Python Driver

Oracle NoSQL Database Proxy

Learn how to set up Oracle NoSQL Database Proxy in Oracle NoSQL Database.

Topics:

* About the Oracle NoSQL Database Proxy
* Configuring the Proxy

» Using the Proxy in a Non-Secure kvstore

e Using the Proxy in a Secure kvstore

About the Oracle NoSQL Database Proxy

ORACLE

The Oracle NoSQL Database Proxy is a middle-tier component that lets the Oracle
NoSQL Database drivers communicate with the Oracle NoSQL Database cluster. The
Oracle NoSQL Database drivers are available in various programming languages that
are used in the client application. Currently, Java, Python, and Node.js language
drivers are supported.

The Oracle NoSQL Database Proxy is a server that accepts requests from Oracle
NoSQL Database drivers and processes them using the Oracle NoSQL Database.
The Oracle NoSQL Database drivers can be used to access either the Oracle

NoSQL Database Cloud Service or an on-premises installation via the Oracle NoSQL
Database Proxy. Since the drivers and APIs are identical, applications can be moved
between these two options. However, an application connecting simultaneously to both
the on-premises and Oracle NoSQL Database Cloud Service is not recommended.

For example, you can deploy a local Oracle NoSQL Database store first for a
prototype project, and move forward to Oracle NoSQL Database Cloud Service for
a production project.

13-1

Chapter 13
Oracle NoSQL Database Proxy

Figure 13-1 Oracle NoSQL Database Proxy and Driver

Oracle NoSQL
Cloud Service

i

Client o] —
- _— PFOX}I’ - —
Application ;ﬁ' e

Lhidtdi KVStore
-—
On-Premise Oracle I—'

HTTP/ | NoSQL Database Scr\.rcr-=!

Driver HTTPS

Al
LAARRAAI

it F’I’OX){ e

KVStore

The JAR file for the Oracle NoSQL Database Proxy is included in the Enterprise
Edition distribution and the Community Edition distribution of Oracle NoSQL Database.
Users can download the JAR for the Oracle NoSQL Database Proxy from the Oracle
Technology Network.

Configuring the Proxy

ORACLE

The Oracle NoSQL Database Proxy should be configured after deploying a kvstore.
See Installing and Configuring a Non-secure Store for non-secure kvstore deployment.
See Configuring the KVStore for secure kvstore deployment.

The following information should be obtained from the secure kvstore deployment:

* kvstore's store name. See ping.

* kvstore's helper host:port list. See Obtaining a KVStore Handle in the Java Direct
Driver Developer's Guide.

Proxy Parameters

The following parameters can be provided as the command line arguments to start up
the proxy.

Parameter Requir Default Description
ed? Value

-helperHosts Requir Helper hosts are hostname and port pairs that
ed. identify how to contact helper nodes within the

store. Use an array of strings to identify multiple
helper hosts . Typically, you will get these hostname
and port pairs from the store's deployer or
administrator. Example pattern is
"hostnamel:portl,hostname2:port2,..hostnameX:po
rex"

Confirm that the ports in helper host list are left
open by the firewall rules for connection between
the proxy and kvstore server.

-storeName Requir Name of kvstore. This name is obtained from
ed. kvstore deployment process.

13-2

ORACLE

Chapter 13
Oracle NoSQL Database Proxy

Parameter Requir Default Description

ed? Value

-hostname No localho The host name of the machine which is starting up

st the proxy instance.

-httpPort No 80 The HTTP port of the proxy machine which will be
used by the proxy to accept non-secure connections
from HTTP requests. This parameter is mutually
exclusive with the - ht t psPort parameter. Only one
of these parameters can be specified.

Confirm that the port is left open by the firewall
rules for connection between the proxy and the
driver.

-httpsPort No 443 The HTTPS port of the proxy machine which will
be used by the proxy to accept secure connections
from HTTPS requests. This parameter is mutually
exclusive with the - ht t pPort parameter. Only one
of these parameters can be specified.

Confirm that the port is left open by the firewall
rules for connection between the proxy and the
driver.

- No 3 This value determines the thread pool size for

numAcceptThre the threads that are used to handle the incoming

ads connections to the proxy.

- No 32 This value determines the thread pool size for

numRequestThr the threads that are used to handle the request

eads input/output traffic, after the connection has been
registered by the "AcceptThread” and handed over
to the "RequestThread".

-verbose No false Displays the proxy start-up information. Can take
either "true" or "false" as values.

-sslCertificate Requir Path to the SSL certificate file in pem file format.

ed for You can either generate a self-signed certificate

secure using OpenSSL, or send a request to a public CA to

proxy generate a certificate. See Generating Certificate and

only. Private Key for the Oracle NoSQL Database Proxy in
the Security Guide.

-sslPrivateKey = Requir Path to the SSL private key file. You can either

ed for generate a private key using OpenSSL, or send a
secure request to a public CA to generate a private key.
proxy See Generating Certificate and Private Key for the
only. Oracle NoSQL Database Proxy in the Security Guide.

- Requir Password for the private key, if the private key is

sslPrivateKeyPa ed for encrypted. This parameter is not required if the

ss secure private key is not encrypted.

proxy
only.

- Requir Path to the security login file which is generated

storeSecurityFil ed for by the client user of the kvstore. The client user of

e secure the kvstore should be a non-admin proxy bootstrap

proxy user. To generate a login file, see Configuring Security
only. with Remote Access.

13-3

Chapter 13
Oracle NoSQL Database Proxy

Using the Proxy in a Non-Secure kvstore

ORACLE

Starting up the Proxy

Use the following command to start up the proxy for a non-secure kvstore.

java -jar lib/httpproxy.jar \
-storeName <kvstore name> \

-hel per Host s <kvstore_hel per_host> \
[-host name <proxy_host>] \
[-httpPort <proxy_http_port>]

where,

» kvstore_nane is the kvstore's store name obtained from the kvstore deployment.
See ping.

e kvstore_hel per_host is the kvstore's helper host:port list obtained from the
kvstore deployment. See Obtaining a KVStore Handle in the Java Direct Driver
Developer's Guide.

e proxy_host is the hostname of the machine to host the proxy service. If the proxy
is to be accessed from machines other than the one on which it is started this
should be the hostname of the machine running the proxy. This parameter is
optional and defaults to | ocal host .

e proxy_http_port is the port on which the proxy is watching for requests on its
host machine. This is an optional parameter and defaults to 80.

" Note:

Use of port 80 may require additional privileges, depending on your
machine.

Connect to the Proxy using Java

The Oracle NoSQL Database Java Driver contains the jar files that enable a Java
application to communicate with the proxy.

Install the Java driver in the application’'s classpath and use the following code to
connect to the proxy.

String endpoint = "http://<proxy_host>:<proxy_http_port>";

St oreAccessTokenProvi der at Provider = new St or eAccessTokenProvi der();
NoSQLHandl eConfig config = new NoSQLHandl eConfi g(endpoint);
config.set Aut hori zati onProvi der (at Provi der);

NoSQLHandl e handl e = NoSQLHandl eFact ory. cr eat eNoSQLHandl e(confi g);

where,

e proxy_host is the hosthname of the machine to host the proxy service. This should
match the host you configured earlier.

13-4

Chapter 13
Oracle NoSQL Database Proxy

e proxy_http_port is the port on which the proxy is watching for requests on its
host machine. This should match the http port you configured earlier.

Connect to the Proxy using Python

The Oracle NoSQL Database Python Driver contains the files that enable a Python
application to communicate with the proxy.

See Connect to the Proxy Using Python for more information.

Connect to the Proxy using Go

The Oracle NoSQL Database Go SDK contains the files that enable a Go application
to communicate with the proxy.

See Connect to the Proxy using Go for more information.

Connect to the Proxy using Node.js

The Oracle NoSQL Database Node.js SDK contains the files that enable a Node.js
application to communicate with the proxy.

See Connect to the Proxy using Node.js for more information.

Example

In the following example you start a proxy instance on the local machine called nyhost
using HTTP port 8080. It will connect to an Oracle NoSQL Database instance hame
kvst ore thatis running on 2 hosts, kvhost 1 and kvhost 2, both on port 5000.

Start up a non-secure kvstore

1. Start the proxy in the | ocal host using 8080 as the htt pPort.

java -jar |ib/httpproxy.jar \
-storeName kvstore \
- hel per Host s kvhost 1: 5000, kvhost 2: 5000 \
-httpPort 8080 \
-verbose true

2. In the application, run the following code to connect to the proxy.

String endpoint = "http://local host:8080";
St or eAccessTokenProvi der at Provider = new
St or eAccessTokenProvi der () ;
NoSQLHandl eConfig config = new NoSQ.Handl eConfi g(endpoint);
config. set Aut hori zati onProvi der (at Provi der);
NoSQLHandl e handl e =
NoSQLHandl eFact ory. cr eat eNoSQLHandl e(confi g) ;

3. See Oracle NoSQL Database Java Driver to add CRUD operations for the
example as needed.

ORACLE 13-5

Chapter 13
Oracle NoSQL Database Proxy

Using the Proxy in a Secure kvstore

ORACLE

Starting up the Proxy

The Oracle NoSQL Database Proxy can be started on a secure kvstore using the
following steps.

1.

A secure proxy connection should be bootstrapped. Before you start up the
proxy, you need to create a bootstrap user in the secure kvstore for the proxy to
bootstrap its security connection. In SQL shell, the following command will create
a bootstrap user for the proxy. See Introduction to the SQL for Oracle NoSQL
Database Shell in the SQL Beginner's Guide.

sgl - > CREATE USER <proxy_user> | DENTI FI ED BY "<proxy_passwor d>";

where,
° proxy_user isthe user name.

e proxy_password is the password for the proxy_user.

Note:

The default privilege is sufficient for a bootstrap user. It is not
recommended to grant admin privilege or any other additional privileges
to the bootstrap user.

Note:

Any user-supplied name can be given for the bootstrap user.

Create a directory . / pr oxy where the proxy related files can be stored.

Create a login file . / proxy/ proxy. | ogi n for the bootstrap user with the following
information in it.

oracl e. kv. aut h. user name=<pr oxy_user >
oracl e. kv. auth. pwdfile.fil e=proxy.passwd
oracl e. kv.transport =ssl
oracle.kv.ssl.trustStore=client.trust

where,
e proxy.passwd is the file to store the password value of the proxy_user user.
e client.trust isthe certificate trust file obtained from the kvstore deployment.

See Configuring Security with Remote Access to know how to generate the
proxy. passwd and cl i ent.trust files in kvstore client machine. In this case, the
proxy runs as a kvstore client. These files must exist in order for the proxy. | ogi n
to work properly.

13-6

Chapter 13
Oracle NoSQL Database Proxy

4. Create acertificate.pemfile and key- pkcs8. pemfile for the proxy and driver
to configure and establish a secure communication. If the Java driver is used,
the driver. trust file should also be generated. See Generating Certificate and
Private Key for the Oracle NoSQL Database Proxy in the Security Guide.

5. Use the following command to start up the proxy for a secure kvstore:

java -jar |ib/httpproxy.jar \

-storeName <kvstore_name> \

-hel per Host s <kvstore_hel per_host > \

[- host nane <proxy_host>] \

[-httpsPort <proxy https port>] \
-storeSecurityFile proxy/proxy.login\
-ssl Certificate certificate. pem)\

-ssl PrivateKey key-pkcs8. pem\

-ssl Privat eKeyPass <privat ekey password> \
[-verbose true]

where,

e kvstore_nane is the kvstore's store name obtained from the kvstore
deployment. See ping.

» kvstore_hel per _host is the kvstore's helper host:port list obtained from the
kvstore deployment. See Obtaining a KVStore Handle in the Java Direct Driver
Developer's Guide.

e proxy_host is the hostname of the machine to host the proxy service. If the
proxy is to be accessed from machines other than the one on which it is
started this should be the hostname of the machine running the proxy. This
parameter is optional and defaults to | ocal host which means that the proxy
will only be available from the machine running the proxy.

e proxy_https_port is the port on which the proxy is watching for requests on
its host machine. This is an optional parameter and defaults to 443.

Note:
Use of port 80 may require additional privileges, depending on your
machine.
e proxy.loginis the security login file generated in the earlier step for
accessing the secure kvstore.
e certificate. pemis the certificate file generated in the previous step.
* key-pkcs8. pemis the private key file generated in the previous step.

e privatekey password is the password for the encrypted key- pkcs8. pemfile.

ORACLE 13-7

ORACLE

Chapter 13
Oracle NoSQL Database Proxy

< Note:

The proxy start-up only accepts private key file in PKCS#8 format. If your
private key is already in PKCS#8 (start with ----- BEGIN ENCRYPTED
PRIVATE KEY----- or ----- BEGIN PRIVATE KEY-----), you don't need

any additional conversion. Otherwise, you can use OpenSSL to do the
conversion.

Connect to the Proxy using Java Driver

The Oracle NoSQL Database Java Driver contains the jar files that enables an
application to communicate with the Oracle NoSQL Database Proxy. You can connect
to the proxy using the following steps.

1. Create a user for the driver which is used by the application to access the kvstore
through the proxy.

sql -> CREATE USER <driver _user> | DENTI FI ED BY "<driver_password>"
sql -> GRANT READWRI TE TO USER <dri ver_user>

where, the dri ver _user is the username and dri ver _password is the password
for the driver _user user. In this example, the user dri ver _user is granted
readw i t e role, which allows the application to perform only read and write
operation. See Configuring Authorization in the Security Guide.

Note:

If the user needs to create, drop, or alter tables or indexes, the
driver_user should be granted dbadmni n role, which allows the
application to perform DDL operations.

sql -> GRANT DBADM N TO USER <dri ver _user>

2. Install the Oracle NoSQL Database Java Driver in the application's classpath and
use the following code to connect to the proxy.

String endpoint = "https://<proxy_host>:<proxy_https_port>";
St or eAccessTokenProvi der at Provider =
new
St or eAccessTokenProvi der ("<driver_user>","<driver_password>".toChar A
rray());
NoSQLHandl eConfi g config = new NoSQLHandl eConfi g(endpoint);
config.set Aut hori zati onProvi der (at Provi der);
NoSQLHandl e handl e = NoSQLHandl eFact ory. cr eat eNoSQLHandl e(confi g);

where,

e proxy_host is the hostname of the machine to host the proxy service. This
should match the proxy host you configured earlier.

13-8

Chapter 13
Oracle NoSQL Database Proxy

e proxy_https_port is the port on which the proxy is watching for requests on
its host machine. This should match the proxy https port configured earlier.

e driver_user is the driver username. This should match the user created in the
previous step.

e driver_password is the password of the driver user.

3. Start-up the application program and set the dri ver. trust file's path to the Java
trust store by using the following command. This is required as the proxy is
already set up using the certificate. pemand key- pkcs8. pemfiles.

java -Djavax. net.ssl.trustStore=driver.trust \
-javax. net.ssl.trust St orePasswor d=<password of driver.trust> \
-cp .:lib/nosgldriver.jar application_program

The driver.trust contains the certificate. pemorroot CA crt certificate. If the
certificate certifi cat e. pemis in a chain signed by a trusted CA that is listed

in JAVA HOWE/ jrel/lib/security/cacerts, then you don't need to append Java
environment parameter - Dj avax. net. ssl . trust St or e in the Java command.

Connect to the Proxy using Python

The Oracle NoSQL Database Python Driver contains the files that enable a Python
application to communicate with the proxy.

See Connect to the Proxy Using Python for more information.

Connect to the Proxy using Go

The Oracle NoSQL Database Go SDK contains the files that enable a Go application
to communicate with the proxy.

See Connect to the Proxy using Go for more information.

Connect to the Proxy using Node.js

The Oracle NoSQL Database Node.js SDK contains the files that enable a Node.js
application to communicate with the proxy.

See Connect to the Proxy using Node.js for more information.

Example

Run the Oracle NoSQL Database Java Driver and connect to the proxy using the
following steps. In this example, we will deploy a secure one-node Oracle NoSQL
Database server on the same host as the proxy. This example will start a proxy
instance on the local machine called nmyhost using HTTPS port 443. It will connect to

a secure Oracle NoSQL Database instance name kvst or e that is running on 2 hosts,
kvhost 1 and kvhost 2, both on port 5000. In order to perform the administrative steps
required to create users and assign privilege you must have access to an identity

with administrative privilege. In this example, the identity with administrative privilges is
provided in the file KVROOT/ security.

ORACLE 13-9

ORACLE

Chapter 13
Oracle NoSQL Database Proxy

Create a proxy_user user using the following command in the Oracle NoSQL
Database SQL shell.

java -jar lib/sqgl.jar \
- hel per-hosts kvhost 1: 5000, kvhost 2: 5000 -store kvstore \
-security kvroot/security/user.security

sql -> CREATE USER proxy_user |DENTIFI ED BY "ProxyPass@al23";
exit

Create a directory . / pr oxy where the proxy related files can be stored.

Create a . / proxy/ proxy. passwd file and set the proxy password for user proxy
in the proxy. passwd file. In this example, the proxy is in the same machine as
kvstore. So, we create the files related to proxy in the . / pr oxy directory.

java -jar lib/kvstore.jar securityconfig pwdfile create -file proxy/
proxy. passwd

java -jar lib/kvstore.jar securityconfig pwdfile secret -file proxy/
proxy. passwd -set -alias proxy_user -secret "ProxyPass@a23"

Copy the client. trust file from kvstore to the / pr oxy directory for the proxy to
use it.

cp kvroot/security/client.trust proxy/client.trust

Create a login file proxy. | ogi n for the bootstrap user in the . / pr oxy directory with
the following information in it.

oracl e. kv. aut h. user name=pr oxy_user

oracl e. kv. auth. pwdfile.file=proxy.passwd
oracl e. kv. transport=ssl|

oracl e. kv.ssl.trustStore=client.trust

Generate a self-signed certificate and a private key.

openssl req -x509 -days 365 -newkey rsa: 4096 \
-keyout key.pem -out certificate.pem\

-subj "/ C=US/ ST=CA/ L=San/ CN=Il ocal host/

emai | Addr ess=| ocal host @r acl e. conf

The bel ow conversion can be skipped if openssl by default
gener ate PKCS#8 key.

openssl pkcs8 -topk8 \

-inform PEM -out f orm PEM \

-in key.pem -out key-pkcs8. pem

¢ Note:

Provide 123456 for all the password prompts.

13-10

ORACLE

Chapter 13
Oracle NoSQL Database Proxy

< Note:

Provide the hostname of the machine for the parameter CN if you are not
running in localhost.

Note:

The below conversion should be done if your key is encrypted

with the PKCS#5 v2. 0 algorithm. Otherwise, you might encounter

I'I'l egal Argunment Except i on exception that indicates the file does not
contain a valid private key due to the unsupported algorithm. The
encryption algorithm can be converted via OpenSSL pkcs8 utility by
specifying PKCS#5 v1. 5 or PKCS#12 algorithms with - v1 flag. The
following command converts the encryption algorithm of a key to PBE-
SHA1- 3DES.

openssl pkcs8 -topk8 -in <PKCS#5v2.0 key file> -out
<new key file> -v1 PBE-SHAl- 3DES

Import the certificate into the Java trust store.

keytool -inport -alias exanple \
-keystore driver.trust -file certificate.pem

Start the proxy on the local machine, nmyhost , using 443 as the ht t psPort

java -jar lib/httpproxy.jar \

-storeName kvstore \

- hel per Host s kvhost 1: 5000, kvhost 2: 5000 \
-httpsPort 443 \

-storeSecurityFile proxy/proxy.login\
-ssl Certificate certificate. pem)\

-ssl PrivateKey key-pkcs8. pem\

-ssl Privat eKeyPass 123456 \

-verbose true

Create a driver _user user. In this example, the dri ver _user is granted
readw i t e role, which allows the application to perform only read and write
operations. To run table DDLs like CREATE TABLE, the dri ver _user should be
granted more roles. See Configuring Authorization in the Security Guide.

java -jar lib/sqgl.jar \
- hel per-hosts kvhost 1: 5000, kvhost 2: 5000 -store kvstore \
-security kvroot/security/user.security

sql -> CREATE USER driver _user |DENTIFIED BY "DriverPass@al23";
sql -> GRANT READWRI TE TO USER dri ver_user;

exit

13-11

Chapter 13
Oracle NoSQL Database Java Driver

10. In the application program, run the following code to connect to the proxy. Add

11.

JVM parameter - Dj avax. net. ssl . trust Store=driver.trust when starting up the
example program.

String endpoint = "https://Iocal host:8089";
St or eAccessTokenProvi der atProvi der =
new
St or eAccessTokenProvi der ("driver _user","DriverPass@l23".toCharArra

y());

NoSQLHandl eConfig config = new NoSQ.Handl eConfi g(endpoint);
config.set Aut hori zati onProvi der (at Provi der);

NoSQLHandl e handl e = NoSQ.Handl eFact ory. cr eat eNoSQ_Handl e(confi g);

See Oracle NoSQL Database Java Driver to add CRUD operations for the
example as needed.

Oracle NoSQL Database Java Driver

Learn about how to access the Oracle NoSQL Database Proxy using Oracle NoSQL
Database Java Driver.

Topics:

About the Oracle NoSQL Java SDK
Creating NoSQLHandle

Creating Tables and Indexes
Adding Data

Adding JSON Data

Reading Data

Using Queries

Deleting Data

Modifying Tables

Drop Tables and Indexes

Handling Errors

About the Oracle NoSQL Java SDK

Learn about the Oracle NoSQL Java SDK.

ORACLE

You can run operations on an Oracle NoSQL Database from an application through
the Oracle NoSQL Database Proxy.

The Oracle NoSQL Database Java Driver contains the jar files that enable an
application to communicate with the on-premises Oracle NoSQL Database or the
Oracle NoSQL Database Cloud Service or the Oracle NoSQL Database Cloud
Simulator.

13-12

Chapter 13
Oracle NoSQL Database Java Driver

The client applications need to include the Oracle NoSQL Database Java Driver in
JVM classpath in order to use the driver API to send CRUD requests through the
Oracle NoSQL Database Proxy. To facilitate this, you need to first configure and
start-up an Oracle NoSQL Database Proxy instance. See Oracle NoSQL Database
Proxy.

Download and unpack the Java SDK from . Extracting the Oracle NoSQL Java
SDK provides you with all the Java classes, methods, interfaces, examples, and
documentation.

Creating NoSQLHandle

ORACLE

In your application, create NoSQLHandl| e which will be your connection to the
Oracle NoSQL Database Proxy. Using this NoSQLHandl e you could access

the Oracle NoSQL Database tables and execute Oracle NoSQL Database
operations. To instantiate NoSQLHandl e, pass a reference of NoSQLHandl eConfi g
class to the NoSQLHandl eFact ory. Cr eat eNoSQLHandl e method. Provide the Oracle
NoSQL Database Proxy URL as a parameterized constructor to instantiate the
NoSQLHandl eConfi g class.

You could configure the proxy in the Oracle NoSQL Database server in either
non-secure or secure mode. The NoSQLHandl eConfi g class allows an application to
specify the security configuration information which is to be used by the handle.

For non-secure access, create an instance of the St or eAccessTokenPr ovi der class
with the no-argument constructor. For secure access, create an instance of the

St or eAccessTokenProvi der class with the parameterized constructor. Provide the
reference of St or eAccessTokenProvi der class to the NoSQLHandl eConfi g class to
establish the appropriate connection.

The following is an example of creating NoSQLHandl e that connects to a non-secure
proxy.

/'l Service URL of the proxy
String endpoint = "http://1ocal host:5000";

Il Create a default StoreAccessTokenProvider for accessing the proxy
St oreAccessTokenProvi der provider = new StoreAccessTokenProvi der();

Il Create a NoSQLHandl eConfi g
NoSQLHandl eConfig config = new NoSQLHandl eConfi g(endpoint);

/1 Setup authorization provider using StoreAccessTokenProvider
config. set Aut hori zati onProvi der (provi der);

/1 Create NoSQLHandl e using the information provided in the config
NoSQLHandl e handl e = NoSQLHandl eFact ory. cr eat eNoSQLHandl e(confi g);

The following is an example of creating NoSQLHandl| e that connects to a secure proxy.

/1 Service URL of the secure proxy
String endpoint = "https://Iocal host:5000";

/'l Username of kvstore
String userName = "driver_user";

13-13

ORACLE

Chapter 13
Oracle NoSQL Database Java Driver

/] Password of the driver user
String password = "DriverPass@dil23";

/] Construct StoreAccessTokenProvider with username and password
St or eAccessTokenProvi der provider =
new St or eAccessTokenProvi der (user Nanme, password.toCharArray());

/] Create a NoSQLHandl eConfig
NoSQLHandl eConfig config = new NoSQ.Handl eConfi g(endpoint);

/1 Setup authorization provider using StoreAccessTokenProvider
config.set Aut hori zati onProvi der (provi der);

/1 Create NoSQLHandl e using the information provided in the config
NoSQ.Handl e handl e = NoSQ.Handl eFact ory. creat eNoSQ_Handl e(confi g);

For secure access, the St or eAccessTokenPr ovi der parameterized constructor takes
the following arguments.

e usernane is the username of the kvstore.

e password is the password of the kvstore user.

" Note:

The client driver program should include a dri ver. trust file path in its

JVM environment parameter j avax. net. ssl . trust St or e to make the secure
connection work. The dri ver. trust should be distributed when the proxy is
configured and started. This file is to allow the client driver to certify the proxy
server's identity to make a secured connection.

User should generate dri ver. trust file for the java driver to access the secure proxy.
See Generating Certificate and Private Key for the Oracle NoSQL Database Proxy in
the Security Guide.

Following is an example of adding the dri ver. trust file to the client program:

java -Djavax.net.ssl.trustStore=driver.trust -cp .:/lib/nosqgldriver.jar
Exanpl e

A handle has memory and network resources associated with it. Therefore, invoke
the NoSQLHandl e. cl ose method to free up the resources when the application finishes
using the handle.

To minimize network activity, and resource allocation and deallocation overheads,
it's best to avoid repeated creation and closing of handles. For example, creating
and closing a handle around each operation would incur large resource allocation
overheads resulting in poor application performance. A handle permits concurrent
operations, so a single handle is sufficient to access tables in a multi-threaded
application. The creation of multiple handles incurs additional resource overheads
without providing any performance benefit.

13-14

Chapter 13
Oracle NoSQL Database Java Driver

Creating Regions

Learn how to create a region in a Multi-Region Oracle NoSQL Database.

To create a region, use the CREATE REG ON DDL statement. For example:

/* Create the region named us_east */
CREATE REQ ON us_east;

To drop a region from your application, you use the KVSt or e class to pass the DDL
statement to the execut eSync method. For example to create the us_east region:

KVSt or e. execut eSync(“ CREATE REG ON us_east”);

Creating Tables and Indexes

ORACLE

Learn how to create tables and indexes.

Creating a table is the first step of developing your application. You use the
Tabl eRequest class and methods to execute all DDL statements, such as, creating,
modifying, and dropping tables.

The Tabl eRequest class lets you pass a DDL statement to the
Tabl eRequest . set St at ement method. Examples of DDL statements are:

/* Create a new table called users */
CREATE | F NOT EXI STS users(id | NTEGER
name STRI NG,
PRI MARY KEY(id));

/* Create a new table called users and set the TTL value to 4 days */
CREATE | F NOT EXI STS users(id | NTEGER,

name STRI NG

PRI MARY KEY(id))

USING TTL 4 days;

/* Create a new multi-region table called users with two regions, and
set the TTL value to 4 days */
CREATE TABLE users(
id | NTEGER,
nanme STRI NG
team STRI NG
primry key(id))
USING TTL 4 DAYS IN REG ONS fra, |nd;

/* Create a new index called nameldx on the nane field in the users

table */
CREATE | NDEX | F NOT EXI STS nanel dx ON users(nane);

13-15

Chapter 13
Oracle NoSQL Database Java Driver

To create a table and index using the Tabl eRequest and its methods:

/* Create a sinple table with an integer key and a single json data
* field and set your desired table capacity.

* Set the table TTL value to 3 days.

*/

String createTabl eDDL = "CREATE TABLE | F NOT EXI STS users " +

"(id INTEGER, name STRING " +

"PRI MARY KEY(id)) USING TTL 3 days";

Tabl eRequest treq = new Tabl eRequest (). set St at ement (creat eTabl eDDL) ;
/] start the asynchronous operation
Tabl eResult tres = handl e.tabl eRequest(treq);

/1 The table request is asynchronous, so wait for the table to becone
active.

Tabl eResul t . wai t For St at e(handl e, tres. get Tabl eNanme(),

Tabl eResul t. St at e. ACTI VE,

60000, // wait for 60 sec

1000); // delay in ms for poll

/] Create an index called nameldx on the name field in the users table.
treq = new Tabl eRequest (). set St at enent (" CREATE | NDEX
I F NOT EXI STS nanel dx ON users(nane)

");

/] start the asynchronous operation
handl e. t abl eRequest (treq);

Adding Data

Add rows to your table.

When you store data in table rows, your application can easily retrieve, add to, or
delete information from a table.

The Put Request class represents the input to a

NoSQLHand! e. put (oracl e. nosql . dri ver. ops. Put Request) operation. This request
can be used to perform unconditional and conditional puts to:

* Overwrite any existing row. Overwrite is the default functionality.

e Succeed only if the row does not exist. Use the Put Request . Opti on. | f Absent
method in this case.

e Succeed only if the row exists. Use the Put Request . Opti on. | f Present method in
this case.

* Succeed only if the row exists and the version matches a specific
version. Use the Put Request . Opti on. | f Ver si on method for this case and the
set Mat chVer si on(oracl e. nosql . dri ver. Versi on) method to specify the version
to match.

ORACLE 13-16

Chapter 13
Oracle NoSQL Database Java Driver

< Note:

First, connect your client driver to Oracle NoSQL Database to get a handle
and then complete other steps. This topic omits the steps for connecting your
client driver and creating a table. If you do not yet have a table, see Creating
Tables and Indexes.

To add rows to your table:

/* use the MapVal ue class and input the contents of a new row */
MapVal ue val ue = new MapVal ue().put("id", 1).put("nane", "nynane");

/* create the Put Request, setting the required value and table name */
Put Request put Request = new Put Request (). set Val ue(val ue)
. set Tabl eNane("users");

/* use the handle to execute the PUT request
* on success, PutResult.getVersion() returns a non-null value
*/
Put Resul t put Res = handl e. put (put Request);
if (putRes.getVersion() !'= null) {
/'l success
} else {
[l failure

}

You can perform a sequence of Put Request operations on a table that share the

shard key using the WiteMil tipl eRequest class. If the operation is successful, the
WiteMiltipleResult.getSuccess() method returns true.

You can also add JSON data to your table. You can either convert JSON data into a
record for a fixed schema table or you can insert JSON data into a column whose data
type is of type JSON. See Adding JSON Data.

Adding JSON Data

Learn how to add JSON data to a fixed schema table.

Note:

First, connect your client driver to Oracle NoSQL Database to get a handle
and then complete other steps. This topic omits the steps for connecting your
client driver and creating a table. If you do not yet have a table, see Creating
Tables and Indexes.

Table rows are added to the table by using APIs which let you individually specify each
table field value. For example, you use the MapVal ue. put () method to fill in each field
value for a row, before inserting the entire row into the table.

ORACLE 13-17

Chapter 13
Oracle NoSQL Database Java Driver

The Put Request class also provides the set Val ueFr omlson method which takes a
JSON string and uses that to populate a row to insert into the table. The JSON string
should specify field names that correspond to the table field names.

To add JSON data to your table:

/* Construct a sinple row, specifying the values for each
* field. The value for the rowis this:

*

A

* "cookie_ id": 123,

* "audience_data": {

* "i paddr": "10.0.00. xxx",

* "audi ence_segment": {

* "sports_lover": "2018-11-30",
* "book_reader": "2018-12-01"
i }

)

"}

*/

MapVal ue segments = new MapVal ue()
.put ("sports_lover", new TimestanpVal ue("2018-11-30"))
. put ("book_reader", new TimestanpVal ue("2018-12-01"));
MapVal ue val ue = new MapVal ue()
.put ("cookie_ id", 123) // fill in cookie id field
.put ("ipaddr", "10.0.00.xxx")
. put ("audi ence_segnent", segments);
Put Request put Request = new Put Request ()
. set Val ue(val ue)
. set Tabl eNange(t abl eNane) ;
Put Resul t put Res = handl e. put (put Request);

The same row can be inserted into the table as a JSON string:

/* Construct a sinmple rowin JSON */
String jsonString = "{\"cookie_ id\":123,\"i paddr\":\"10.0.00. xxx\ ",
\"audi ence_segment\":
{\"sports_lover\":1"2018-11-30\",
\"book _reader\":\"2018-12-01\"}}";
Put Request put Request = new Put Request ()
. set Val ueFromlson(jsonString, null) // no options
. set Tabl eNane(t abl eNane) ;
Put Resul t put Res = handl e. put (put Request);

Reading Data

ORACLE

Learn how to read data from your table.

You can read data from your application by using the NoSQ_Handl e. get () method.
This method allows you to retrieve a record based on a single primary key value, or by
using queries. The Get Request class provides a simple and powerful way to read data,
while queries can be used for more complex read requests.

13-18

Chapter 13
Oracle NoSQL Database Java Driver

To read data from a table, specify the target table and target key using the Get Request
class and use NoSQLHandl e. get () to execute your request. The result of the operation
is available in Cet Resul t.

To read data from your table:

[* GET the row, first create the row key */
MapVal ue key = new MapVal ue().put("id", 1);
CGet Request get Request = new Get Request (). set Key(key)
. set Tabl eNane("users");
CGet Result get Res = handl e. get (get Request);

/* on success, CGetResult.getValue() returns a non-null value */
if (getRes.getValue() !'=null) {

/'l success
} else {

[l failure

}

Note:

By default, all read operations are eventually consistent. You can change
the default Consistency for a NoSQLHandle instance by using the
NoSQLHandl eConfi g. set Consi st ency(oracl e. nosql . dri ver. Consi st ency)
and Get Request . set Consi st ency() methods.

Using Queries

ORACLE

Learn about some aspects of using queries to your application in Oracle NoSQL
Database.

Oracle NoSQL Database provides a rich query language to read and update data. See
SQL Reference Guide for a full description of the query language.

To execute your query, you use the NoSQLHandl e. query() API.

To execute a SELECT query to read data from your table:

/* QUERY a table named "users", using the primary key field "name".
* The table name is inferred fromthe query statenent.

*/

Quer yRequest queryRequest = new Quer yRequest ().

set St at enent (" SELECT * FROM users WHERE nane = \"Taylor\"");

[* Queries can return partial results. It is necessary to |oop,
* reissuing the request until it is "done"
*/

do {
QueryResult queryResult = handl e. query(queryRequest);

/* process current set of results */
Li st <MapVal ue> results = queryResul t. get Resul ts();

13-19

Chapter 13
Oracle NoSQL Database Java Driver

for (MapValue gval : results) {
//handl e result

}
} while (!queryRequest.isDone());

When using queries, be aware of the following considerations:

* You can use prepared queries when you want to run the same query multiple
times. When you use prepared queries, the execution is more efficient than
starting with a query string every time. The query language and API support query
variables to assist with the reuse.

For example, to execute a SELECT query to read data from your table using a prepared
statement:

/* Performthe same query using a prepared statement. This is nore
* efficient if the query is executed repeatedly and required if
* the query contains any bind variables.
*/
String query = "DECLARE $name STRING " +
"SELECT * from users WHERE nane = $nane";

Prepar eRequest prepReq = new PrepareRequest (). set Stat enent (query);

/* prepare the statenent */
PrepareResult prepRes = handl e. prepare(prepReq);

/* set the bind variable and set the statenent in the QueryRequest */
prepRes. get Prepar edSt at enent ()
.setVariabl e("$nanme", new StringVal ue("Taylor"));
QueryRequest queryRequest = new
QueryRequest (). set Prepar edSt at enent (pr epRes) ;

/* performthe query in a loop until done */

do {
QueryResult queryResult = handl e. query(queryRequest);
[* handle result */

} while (!queryRequest.isDone());

Deleting Data

Learn how to delete rows from your table.

After you insert or load data into a table, you can delete the table rows when they are
no longer required.

ORACLE 13-20

Chapter 13
Oracle NoSQL Database Java Driver

< Note:

First, connect your client driver to Oracle NoSQL Database to get a handle
and then complete other steps. This topic omits the steps for connecting your
client driver and creating a table. If you do not yet have a table, see Creating
Tables and Indexes.

To delete a row from a table:

[* identify the rowto delete */
MapVal ue del Key = new MapVal ue().put("id", 2);

/* construct the Del et eRequest */
Del et eRequest del Request = new Del et eRequest (). set Key(del Key)
. set Tabl eNane("users");

/* Use the NoSQ handle to execute the del ete request */
Del eteResult del = handl e. del et e(del Request);

/* on success Del eteResult.getSuccess() returns true */
if (del.getSuccess()) {
/'l success, row was del et ed
} else {
[l failure, roweither did not exist or conditional delete failed

}

You can perform a sequence of Del et eRequest operations on a table using the
Mil ti Del et eRequest class.

Modifying Tables

Learn how to modify tables.
You modify a table to:
e Add new fields to an existing table

« Delete currently existing fields in a table

e To change the default TTL value

Note:

First, connect your client driver to Oracle NoSQL Database to get a handle
and then complete other steps. This topic omits the steps for connecting your
client driver and creating a table. If you do not yet have a table, see Creating
Tables and Indexes.

ORACLE 13-21

Chapter 13
Oracle NoSQL Database Java Driver

Examples of DDL statements are:

/* Add a newfield to the table */
ALTER TABLE users (ADD age | NTEGER);

/* Drop an existing field fromthe table */
ALTER TABLE users (DROP age);

/* Modify the default TTL val ue*/
ALTER TABLE users USING TTL 4 days;

Following is an example of altering a table:

/* set the table TTL value to 4 days. */

String alterTabl eDDL = "ALTER TABLE users USING TTL 4 days";

Tabl eRequest treq = new Tabl eRequest (). set St atement (al t er Tabl eDDL) ;
Tabl eResult tres = handl e. tabl eRequest (treq);

Drop Tables and Indexes

ORACLE

Learn how to delete a table or index that you have created in Oracle NoSQL
Database.

To drop a table or index, use the DROP TABLE or DROP | NDEX DDL statements. For
example:

/* Drop the table named users */
DROP TABLE users;

/* Drop the index called nanelndex on the table users */
DROP | NDEX | F EXI STS nanel ndex ON users;

You can drop an MR Table using the DROP statement in the same manner as you drop
any other Oracle NoSQL Database table. If you choose to drop an MR Table in a
particular region, it continues to remain an MR Table in the other participating regions.
In a case where you want to drop a particular MR Table from multiple regions, you
must execute the DROP TABLE statement in each region separately.

" Note:

If you drop an MR Table in all the regions except one, it becomes an MR
Table linked with a single region. The difference between an MR Table with
a single region and a local table is that you can add new regions to the MR
Table with a single region in the future.

To drop a table or index from your application, you use the Tabl eRequest class. For
example to drop the user s table:

/* Drop the table identified by the tabl eName */
final String dropStatenent = "drop table " + users;

13-22

Chapter 13
Oracle NoSQL Database Java Driver

/* Pass the dropStatement string to the Tabl eRequest. set St at enent
met hod */

Tabl eRequest tabl eRequest = new

Tabl eRequest () . set St at ement (dr opSt at enent) ;

/* Wit for the table state to change to DROPPED. */
Tabl eResult tres = handl e. t abl eRequest (t abl eRequest);
tres = Tabl eResul t.wait For St at e(handl e, tres. get Tabl eNanme(),
Tabl eResul t. St at e. DROPPED,
30000, /* wait 30 sec */
1000); /* delay ns for poll */

Drop Regions

Learn how to delete a region that you have created in a Multi-Region Oracle NoSQL
Database.

Even though you can drop a region directly in a multi-region environment, it is
recommended that you isolate the region to be dropped from other participating
regions before dropping it. To learn more about isolating a region, see

To drop a region, use the DROP REG ON DDL statement. For example:

/* Drop the region named us_east */
DROP REG ON us_east;

To create a region from your application, you use the KVSt or e class to pass the DDL
statement to the execut eSync method. For example to drop the us_east region:

KVSt or e. execut eSync(“ DROP REGA ON us_east”);

Handling Errors

ORACLE

Learn how to handle errors and exceptions.

Java errors are thrown as exceptions when you build or run your application.
The NoSQ Except i on class is the base for most exceptions thrown by the
driver. However, the driver throws exceptions directly for some classes, such as
I'I'l egal Argument Exception and Nul | Poi nt er Excepti on.

In general, NoSQL exception instances are split into two broad categories:

* Exceptions that may be retried with the expectation that they may succeed on
retry.

These exceptions are instances of the Ret ryabl eExcept i on class. These
exceptions usually indicate resource consumption violations.

e Exceptions that will fail even after retry.

Examples of exceptions that should not be retried are 1 | | egal Ar gunent Excepti on,
Tabl eNot FoundExcept i on, and any other exception indicating a syntactic or
semantic error.

13-23

Chapter 13
Oracle NoSQL Database Python Driver

Oracle NoSQL Database Python Driver

Learn how to create, update, and delete tables from your Python application.

Oracle NoSQL Database provides a Python SDK that enables your Python application
to create, update, and drop tables as well as add, read, and delete data in the tables.
See Oracle NoSQL Database Python SDK.

ORACLE 13-24

Installing and Configuring a Non-secure

Store

This appendix provides information about installing and configuring a non-secure
store. For detailed information on installation and configuration see:

* Installing Oracle NoSQL Database
e Configuring the KVStore

Installation Configuration

ORACLE

To install Oracle NoSQL Database, complete the prerequisite and installation steps in
chapter Installing Oracle NoSQL Database. After completing those steps, determine
the configuration parameters for each Storage Node in the store (see Installation
Configuration Parameters section for a description of the parameters). Then, complete
the following tasks to configure your store.

While configuring a non-secure store is similar to configuring a secure store, the
following steps note any differences that exist:

1. Use the makeboot confi g utility to create the initial boot confi g file. You must
perform this task on each Oracle NoSQL Storage Node.

¢ Note:

Using the makeboot confi g command to create the configuration file is
integrated with the Storage Node on which you run the command. Such
integration checks and validates all parameters and their values against
the SN environment before generating the boot configuration files. To
bypass verifying any parameters for the boot configuration files, use the
-force flag (makeboot config -force).

2. For a non-secure configuration, specify the —st or e- security none parameter to
the makeboot confi g options:

> nkdir -p KVROOT (if it does not already exist)

> java - Xnmk64m - Xns64m \

-jar KVHOVE/ | i b/ kvstore.jar makebootconfig -root KVROOT \
-port 5000 \

-host <host name> \

- harange 5010, 5020 \

-store-security none \

-capacity 1\

-adm ndir /export/adm n0l \

-storagedir /export/datal \

A-1

ORACLE

3.

Appendix A
Installation Configuration

-storagedirsize 1 tb \
-rnlogdir /export/rnlog0l

Note:

It is best if the directory path of - admi ndi r resolves to a separate disk.
This is typically accomplished by creating suitable entries in the / et ¢/
f st ab directory. It attaches the file system on a disk to an appropriate
location in the overall directory hierarchy.

Placing the admin environment on a distinct disk ensures that the admin
is not competing for Input/Output resources. It also isolates the impact of
a disk failure to a single environment.

Start the Oracle NoSQL Database Storage Node Agent (SNA) on each of the
Oracle NoSQL Database nodes. You can use the start command as follows:

" Note:

Before starting the SNA, on each node, set the environment variable
MALLOC ARENA MAX to 1. Doing this ensures that memory usage is
restricted to the specified heap size.

nohup java - Xmx64m - Xns64m \
-jar KVHOWE/ l'i b/ kvstore.jar start -root KVROOT &

Use the pi ng command to ensure that the Oracle NoSQL Database client library
can contact the Oracle NoSQL Database Storage Node Agent (SNA). You do not
need to use the —securi ty flag and an argument for a non-secure setup:

java - Xmk64m - Xms64m \

-jar kvstore.tnp/kvstore.jar ping \

-host node01 -port 5000

SNA at hostname: node0Ql, registry port: 5000 is not registered.
No further information is available

Can't find store topology:

Coul d not contact any RepNode at: [nodeOl1:5000]

If the Storage Nodes do not start up, you can look through the adni nboot and
snaboot logs in the KVROOT directory to identify the problem. You can also use
the - host option to check an SNA on a remote host. You do not need to use the
—security flag and an argument for a non-secure setup:

> java - Xnx64m - Xns64m

-jar KVHOWE |i b/ kvstore.jar ping

-port 5000 -host node02

SNA at hostname: node02, registry port: 5000 is not registered.
No further information is available

A-2

ORACLE

Appendix A
Installation Configuration

Can't find store topol ogy:
Coul d not contact any RepNode at: [node02:5000]

Assuming the Storage Nodes all started successfully, you can configure the KVStore.
To do this, you use the CLI command. Start r unadmi n:

> java - Xnmx64m - Xns64m \
-jar KVHOWE/ l'i b/ kvstore.jar runadmin \
-port 5000 -host node0Ol

Follow the steps below:

Name your KVStore

The name of your store is essentially used to form a path to records kept in the
store. For example:

kv-> configure -name nystore
Store configured: nystore

Create a Zone

Once you have started the command line interface and configured a store name,
you can create at least one zone. The usage is:

pl an depl oy-zone -name <zone nane>

-rf <replication factor>

[-type [prinmary | secondary]]

[-arbiters | -no-arbiters]

[-ison]

[-pl an-nane <name>] [-wait] [-noexecute] [-force]

Create an Administration Process on a Specific Host

Every KVStore has an administration database. You must deploy the Storage
Node to which the command line interface is currently connecting to, and then
deploy an Administration process on that same node, to proceed to configure this
database. Use the depl oy- sn and depl oy- adm n commands to complete this step.
For more information, see Create an Administration Process on a Specific Host.

Create a Storage Node Pool

Once you have created your Administration process, you can create a Storage
Node Pool. This pool is used to contain all the Storage Nodes in your store. You
use the pool creat e command to create this pool. Then you join Storage Nodes
to the pool using the pool joi n command. For more information, see Create a
Storage Node Pool.

Create the Remainder of your Storage Node

After creating storage node pool, you can create the remainder of your Storage
Nodes. Storage Nodes host the various & processes for each of the nodes in the
store. You must use deploy-sn command in the same way as you did in Create
an Administration Process on a Specific Host for each node that you use in your
store. For more information, see Create the Remainder of your Storage Nodes.

Create and Deploy Replication Nodes

A-3

Appendix A
Installation Configuration

This final step of the configuration process creates Replication Nodes on every
node in your store. You use the the topology create and plan deploy-topology

commands in its place. For more information, see Create and Deploy Replication
Nodes.

ORACLE A-4

Admin CLI Reference

This appendix describes the following commands:
e aggregate

e await-consistent

e change-policy

e configure

e connect
* delete

° execute
o exit

o get
 help

e hidden
e history
e load

e logtall

e namespace

° page
¢ ping
* plan
e pool
° put

e repair-admin-quorum
* show

e shapshot

* table

* table-size

e timer
e topology
* verbose
e verify

ORACLE

ORACLE

Appendix B

The Command Line Interface (CLI) is run interactively or used to run single
commands. The general usage to start the CLI is:

java - Xmk64m - Xnms64m \

-jar KVHOWE/ | i b/ kvstore.jar runadmn \

-host <host name> -port <port> [single comand and argunent s]
-security KVROOT/security/client.security

If you want to run a script file, you can use the "load" command on the command line:

java - Xmk64m - Xnms64m \

-jar KVHOWE li b/ kvstore.jar runadmn -host <hostnane> -port <port> \
-security \

KVROOT/ securtiy/client.security \

load -file <path-to-script>

If none of the optional arguments are passed, it starts interactively. If additional
arguments are passed they are interpreted as a single command to run, then return.
The interactive prompt for the CLlI is;

"ky-> "

Upon successful completion of the command, the CLI's process exit code is zero. If
there is an error, the exit code will be non-zero.

The CLI comprises a number of commands, some of which have subcommands.
Complex commands are grouped by general function, such as "show" for displaying
information or "ddI" for manipulating schema. All commands accept the following flags:

e -help

Displays online help for the command or subcommand.
e ?

Synonymous with -help. Displays online help for the command or subcommand.
* -verbose

Enables verbose output for the command.

CLI commands have the following general format:

1. All commands are structured like this:

"kv-> command [sub-command] [argunents]

2. All arguments are specified using flags which start with "-"

3. Commands and subcommands are case-insensitive and match on partial
strings(prefixes) if possible. The arguments, however, are case-sensitive.

Inside a CLI script file, you can use # to designate a comment. Also, you can terminate
a line with a backslash \ to continue a command onto the next line.

B-2

aggregate

Appendix B
aggregate

Performs simple data aggregation operations on numeric fields like count, sum,
average, keys, start and end. The aggregate command iterates matching keys or rows
in the store so, depending on the size of the specified key or row, it may take a very
long time to complete.

aggregate table is an aggregate subcommand.

aggregate table

ORACLE

aggregate table -nane <name>
[-count] [-sum<field[,field,..]>]
[-avg <field[,field,..]>]
[-index <name>]
[-field <name> -val ue <val ue>]*
[-field <name> [-start <value>] [-end <val ue>]]
[-json <string>]

Performs simple data aggregation operations on numeric fields of the table.
where:

e -nanme
Specifies the table for the operation.
e -count
Returns the count of matching records.
° -sum
Returns the sum of the values of matching fields.
e -avg
Returns the average of the values of matching fields.
e -index

Specifies the name of the index to use. When an index is used, the fields named
must belong to the specified index and the aggregation is performed over rows
with matching index entries.

« -fieldand-val ue pairs are used to specify the field values of the primary key to
use to match for the aggregation, or you can use an empty key to match the entire
table.

e« The-field flat, along with its - start and - end flags, can be used for restricting
the range used to match rows.

e -json

Specifies the fields and values to use for the aggregation as a JSON input string.

B-3

Appendix B
await-consistent

See the example below:

Create a table '"user_test' with an index on user_test(age):
kv-> execute ' CREATE TABLE user_test (id |INTEGER

firstName STRING |astNane STRING age | NTEGER, PRI MARY KEY (id))'
St atement conpl eted successfully

kv-> execute ' CREATE | NDEX i dx1 on user test (age)'
Statenent conpl eted successful ly

Insert 3 rows:

kv-> put table -name user _test -json

{"id": 1, "firstName": "joe", "l ast Name": "wang", "age": 21}'
(peration successful, row inserted.

kv-> put table -name user _test -json
{rid"2,"firstName": "jack", "l ast Nanme": "zhao", "age": 32}
(peration successful, row inserted.

kv-> put table -name user _test -json
{"id":3,"firstNane":"john", "l ast Name": "gu", "age": 43}'
(peration successful, row inserted.

Get count(*), sunm(age) and avg(age) of rows in table:
kv-> aggregate table -nane user_test -count -sum age -avg age
Row count: 3
Sum
age(3 values): 96
Aver age:
age(3 values): 32.00

Get count(*), sunm(age) and avg(age) of rows where
age >= 30, idxl is utilized to filter the rows:
kv-> aggregate table -nane user_test -count -sum age
-avg age -index idxl -field age -start 30
Row count: 2
Sum
age(2 values): 75
Aver age:
age(2 values): 37.50

await-consistent

ORACLE

awai t - consi stent -tineout <timeout-secs> [-zn <id> | -znnane <nane>]...
[-replica-delay-threshold <time-mllis>]

Waits for up to the specified number of seconds for the replicas in one or more zones,
or in the entire store, to catch up with the masters in their associated shards. Prints
information about whether consistency was achieved or, if not, details about which
nodes failed to become consistent.

where:

e -tineout

B-4

Appendix B
change-policy

Specifies the number of seconds for the replicas to catch up with the masters in
their associated shards.

e -zn <id>

Specifies the zone name to restrict the zones whose replicas need to satisfy the
requested consistency requirements. If this option is not specified, all replicas
must meet the consistency requirements.

e -Znnhane <name>

Specifies the zone name to restrict the zones whose replicas need to satisfy the
requested consistency requirements. If this option is not specified, all replicas
must meet the consistency requirements.

e -replica-delay-threshold <time-nillis>

Specifies the maximum number of milliseconds that a replica may be behind the
master and be considered caught up. The default if 2000 milliseconds (1 second).

When performing a switchover, you can use this command to wait for secondary
nodes to catch up with their masters, and to obtain information about progress towards
reaching consistency.

change-policy

configure

ORACLE

change-policy [-dry-run] -params [nane=val ue]*

Modifies store-wide policy parameters to services you have not yet deployed. Specify
the parameters to change after the - par ans flag, separating each parameter with a
space character.

To specify parameter values that include embedded spaces, use quotation marks (")
around the value, like this:

nane="val ue with spaces"

If you use - dry-run, the command returns the parameters you specify without
changing them.

For more information on setting policy parameters, see Setting Store Wide Policy
Parameters.

configure -name <storenane> -json

Configures a new store. This call must be made before any other administration can
be performed.

Use the - name option to specify the name of the KVStore that you want to configure.
The name is used to form a path to records kept in the store. For this reason, you
should avoid using characters in the store name that might interfere with its use within

B-5

connect

Appendix B
connect

a file path. The command line interface does not allow an invalid store name. Valid

characters are alphanumeric, -'," ', and '.".

kv-> configure -name nystore -json{

"operation" : "configure",
"returnCode" : 5000,
"description" : "Qperation ends successfully",
"returnval ue" : {
"storeNanme" : "nystore"
}

Encapsulates commands that connect to the specified host and registry port to
perform administrative functions or connect to the specified store to perform data
access functions.

The current store, if any, will be closed before connecting to another store. If there is
a failure opening the specified KVStore, the following warning is displayed: "Warning:
You are no longer connected to KVStore".

The subcommands are as follows:

e connect admin

e connect store

connect admin

ORACLE

connect admin -host <hostnane> -port <registry port>
[-usernanme <user>] [-security <security-file-path>]

Connects to the specified host and registry port to perform administrative functions. An
Admin service must be active on the target host. If the instance is secured, you may
need to provide login credentials.

where:

* -host <hostnanme>
Identifies the host name of a node in your store.
e -port <registry port>

The TCP/IP port on which Oracle NoSQL Database should be contacted. This port
should be free (unused) on each node. It is sometimes referred to as the registry
port.

e -usernanme <user>
Specifies a username to log on as in a secure deployment.
e -security <security-file-path>

In a secured deployment, specifies a path to the security file. If not specified in a
secure store, updating the sn-target-list will fail.

B-6

Appendix B
delete

connect store

delete

ORACLE

connect store [-host <hostnanme>] [-port <port>]
-nane <storename> [-tineout <timeout ns>]
[- consi stency <NONE_REQUI RED(def aul t)
| ABSOLUTE| NONE_REQUI RED_NO MASTER>]
[-durability <COW T_SYNC(defaul t)
| COMM T_NO SYNC | COMM T_WRI TE_NO_SYNC>]
[-username <user>] [-security <security-file-path>]

Connects to a KVStore to perform data access functions. If the instance is secured,
you may need to provide login credentials.

Use the timeout, consistency and durability flags to override the default connect
configuration.

where:
e -host <hostname>

Identifies the host name of a node in your store.
e -port <port>

The TCP/IP port on which Oracle NoSQL Database should be contacted. This port
should be free (unused) on each node.

* -name <storename>

Identifies the name of the store.
e -timeout <tineout me>

Specifies the store request timeout in milliseconds.
e -consistency

Specifies the store request consistency. The default value is NONE_REQUIRED.
e -durability

Specifies the store request durability. The default value is COMMIT_SYNC.
e -usernane <user>

Specifies a username to log on as in a secure deployment.
e -security <security-file-path>

In a secured deployment, specifies a path to the security file.

Encapsulates commands that delete key/value pairs from store or rows from table.
The subcommands are as follows:

e delete kv

* delete table

B-7

delete kv

delete table

ORACLE

Appendix B
delete

delete kv [-key <key>] [-start prefixString] [-end prefixString] [-all]

Deletes one or more keys. If - al | is specified, delete all keys starting at the specified
key. If no key is specified, delete all keys in the store. The -start and - end flags can
be used for restricting the range used for deleting.

For example, to delete all keys in the store starting at root:

kv -> delete kv -all
301 Keys del eted starting at root

kv-> del ete table -nanme <table_nanme>

[-field <name> -val ue <val ue>]*

[-field <name> [-start <value>] [-end <val ue>]]
[-ancestor <nanme>]* [-child <child_name>]*
[-json <string>] [-delete-all]

Deletes one or multiple rows from the named table.

- nane
Identifies a table name, which can be any of the following:

t abl e_nane — The target table is a top level table created in the default
namespace, sysdef aul t . The default namespace (sysdef aul t ;) prefix is not
required to identify such tables.

t abl e_nane. chi | d_name — The target table is the child of a parent table.
Identify the child table by preceding it with the parent t abl e_nane, followed
by a period (.) separator before chi | d_nane.

nanmespace_nane: t abl e_name — The target table was not created in the
default (sysdef aul t) namespace. Identify t abl e_nane by preceding it with its
namespace_nane, followed by a colon (2).

namespace_name: t abl e_nane. chi | d_name — The target table is the child of

a parent table that was created in a namespace. Identify chi | d_nane by
preceding it with both nanespace_nane: and the parentt abl e_nane, , followed
by a period (.) separator.

-fieldand-val ue

Pairs specify the field values of the primary key or, use an empty key to delete all
rows from the table.

-field,-start, and -end

Use these flags to restrict the sub-range for deletion associated with the parent

key.

-ancestor and -child

B-8

execute

ORACLE

Appendix B
execute

Use to delete rows from a specific ancestor or descendant tables, in addition to the
target table.

e -json
Indicates that the key field values are in JSON format.
o -delete-all

Indicates to delete all rows in a table.

execute <statenent> [-json] [-wait]

Oracle NoSQL Database provides a way to run Data Definition Language (DDL)
statements used to form table and index statements. Using the execut e command
runs each statement you specify synchronously. You must enclose each DDL
statement in single or double quotes. You must connect to a database store before
using the execute command.

¢ Note:

All DDL commands from the Admin CLI, including execut e, are deprecated.
Use the SQL for Oracle NoSQL Database Shell to execute this command.
For more information, see Appendix A Introduction to the SQL for Oracle
NoSQL Database Shell.

For example:

kv-> plan execute -id 19 -json -wait

{
"operation"” : "plan depl oy-zone -name zn6 -rf 1 -type PRI MARY -no-
arbiters -no-master-affinity",
“returnCode" : 5000,
"description" : "Cperation ends successfully",
"returnval ue" : {
"id"o: 19,
"name" : "Depl oy Zone",
"isDone" : true,
"state" : " SUCCEEDED',
"start” : "2017-09-28 09:35:31 UTC',

“interrupted" : null,
"end" : "2017-09-28 09:35:31 UTC',
“error" : null,
"executionDetails" : {
"taskCounts" : {
“total" : 1,
"successful" : 1,
“failed" : 0,
“interrupted" : 0,
"inconplete" : O,
"notStarted" : 0

B-9

exit

get

get kv

ORACLE

Appendix B
exit

¥

“finished" : [{
"taskNunt : 1,
"name" : "Plan 19 [Depl oy Zone] task [Depl oyDatacenter

zone=zn6] ",

"state" : "SUCCEEDED',
"start" : "2017-09-28 09:35:31 UTC',
"end" : "2017-09-28 09: 35:31 UTC'
P

“running" : [],

"pending" : []

¥

"planld" : 19,

"zoneNane" : "zn6",

"zoneld" : "zn4",

"type" : "PRI MARY",

rf' o1,

“all owArbiters" : false,

"master Affinity" : false

}

}
exit | quit

Exits the interactive command shell.

Encapsulates commands that get key/value pairs from store or get rows from table.
The subcommands are as follows:

e getkv
e gettable

get kv [-key <keyString>] [-file <output>] [-all] [-keyonly]
[-valueonly] [-start <prefixString>] [-end <prefixString>]

Perform a simple get operation using the specified key. The obtained value is printed
out if it contains displayable characters, otherwise the bytes array is encoded using
Base64 for display purposes. "[Base64]" is appended to indicate this transformation.
The arguments for the get command are:

e -key <keyString>

Indicates the full or the prefix key path to use. If <keySt ri ng> is a full key path, it
returns a single value information. The format of this get command is: get - key
<keyString>. If <keyString> is a prefix key path, it returns multiple key/value

B-10

ORACLE

Appendix B
get

pairs. The format of this get command is: get -key <keyString> -all. Key can
be composed of both major and minor key paths, or a major key path only. The
<keyString> format is: "major-key-path/-/minor-key-path". Additionally, in the case
of the prefix key path, a key can be composed of the prefix part of a major key
path.

For example, with some sample keys in the KVStore:

/ group/ TQ -/ user/ bob

/ group/ TC/ -/ user/j ohn
[group/ TC/ -/ dep/ I T

/ group/ SZ/ - | user/ st eve
/ group/ SZ/ - I user/ di ana

A get command with a key containing only the prefix part of the major key path
results in:

kv -> get kv -key /group -all -keyonly
/ group/ TQ -/ user/ bob

[group/ TC/ -/ user/j ohn
[group/ TC/ -/ dep/ I T

/ group/ SZ/ -/ user/ st eve

[group/ SZ/ -/ user/ di ana

A get command with a key containing a major key path results in:

kv -> get kv -key /group/ TC -all -keyonly
/ group/ TQ -/ user/ bob

[group/ TC/ -/ user/j ohn

[group/ TC/ -/ dep/ I T

Get commands with a key containing major and minor key paths results in:

kv -> get kv -key /group/ TC/-/user -all -keyonly
/ group/ TQ -/ user/ bob

/ group/ TQ/ -/ user/j ohn

kv -> get kv -key /group/ TC -/ user/bob

{
"name" : "bob.smth",
"age" . 20,
"email" : "bob.smth@xanpl e.conf,
"phone" : "408 555 5555"
}

-file <output>

Specifies an output file, which is truncated, replacing all existing content with new
content.

In the following example, records from the key / Smi t h/ Bob are written to the file
"data.out".

kv -> get kv -key /Smith/Bob -all -file ./data. out

B-11

Appendix B
get

In the following example, contents of the file " dat a. out" are replaced with records
from the key / Wong/Bi | | .

kv -> get kv -key /Wong/Bill -all -file ./data. out

e -all

Specified for iteration starting at the specified key. If the key argument is not
specified, the entire store will be iterated.

° -keyonly
Specified with - al | to return only keys.
e -valueonly
Specified with - al | to return only values.
e -start <prefixString>and-end <prefixString>

Restricts the range used for iteration. This is particularly helpful when getting a
range of records based on a key component, such as a well-formatted string. Both
the -start and - end arguments are inclusive.

Note:

-start and - end only work on the key component specified by - key
<keyString>. The value of <keySt ri ng> should be composed of simple
strings and cannot have multiple key components specified.

For example, a log where its key structure is:

/1 ogl <year >/ <nont h>/ - [<day>/ <t i me>

puts all log entries for the same day in the same partition, but splits the days
across shards. The ti nme format is: "hour.minute".

In this way, you can do a get of all log entries in February and March, 2013 by
specifying:

kv-> get kv -all -keyonly -key /log/2013 -start 02 -end 03
/1o0gl/ 2013/ 02/-/01/1. 45

/1 ogl/ 2013/ 02/-/05/ 3. 15

/1 ogl/ 2013/ 02/ -/ 15/ 10. 15

/1 ogl/ 2013/ 02/ -/ 20/ 6. 30

/1 ogl/ 2013/ 02/ -/28/8. 10

/1o0g/2013/03/-/01/11.13

/1 ogl/ 2013/ 03/-/15/2.28

/1 ogl 2013/ 03/ -/22/ 4.52

/1o0g/2013/03/-/31/11.55

ORACLE B-12

get table

ORACLE

Appendix B
get

You can be more specific to the get command by specifying a more complete key
path. For example, to display all log entries from April 1st to April 4th:

kv-> get kv -all -keyonly -key /log/2013/04 -start 01 -end 04
/1o0g/ 2013/ 04/-/01/1.03
/1 og/ 2013/ 04/ -/01/ 4. 05
/1 o0g/ 2013/ 04/-/02/7.22
/1 0og/ 2013/ 04/ -/02/9. 40
/1 og/ 2013/ 04/ -/03/ 4. 15
/1 0og/ 2013/ 04/ -/03/ 6. 30
/1 og/ 2013/ 04/ -/ 03/ 10. 25
/1 0og/ 2013/ 04/ -/04/ 4. 10
/1 0og/ 2013/ 04/ -/04/8. 35

See the subcommand get table

kv-> get table -name <table_name> [-index <nane>]

[-field <name> -val ue <val ue>] +

[-field <name> [-start <value>] [-end <val ue>]]
[-ancestor <nane>]+ [-child <nane>]+

[-json <string>] [-file <output>] [-keyonly]
[-pretty] [-report-size]

Identifies a table name, which can be any of the following:

- name
Identifies any of the following tables:

— tabl e_name — The target table is a top level table created in the default
namespace, sysdef aul t . The default namespace (sysdef aul t ;) prefix is not
required to identify such tables.

— table_nane.child_name — The target table is the child of a parent table.
Identify the child table by preceding it with the parent t abl e_nane, followed
by a period (.) separator before chi | d_nane.

— namespace_nane:tabl e_name — The target table was not created in the
default (sysdef aul t) namespace. Identify t abl e_nanme by preceding it with its
namespace_nane, followed by a colon (3).

— namespace_nane:tabl e_name. chi | d_nane — The target table is the child of
a parent table that was created in a namespace. Identify chi | d_nane by
preceding it with both namespace_narme: and the parent t abl e_nane, , followed
by a period (.) separator.

-field and - val ue pairs are used to specify the field values of the primary key or
index key if using an index, specified by - i ndex, or with an empty key to iterate the
entire table.

-fiel d flag, along with its - start and - end flags, can be used to define a value
range for the last field specified.

-ancest or and - chi | d flags are used to return results from specific ancestor
and/or descendant tables as well as the target table.

B-13

help

ORACLE

Appendix B
help

e -jsonindicates that the key field values are in JSON format.
« -fileisused to specify an output file, which is truncated.
» -keyonly is used to restrict information to keys only.

e -pretty is used for a nicely formatted JSON string with indentation and carriage
returns.

e -report-sizeis used to show key and data size information for primary keys, data
values, and index keys for matching records. When - r eport - si ze is specified no
data is displayed.

hel p [command [sub-command]] [-incl ude-deprecat ed]

Prints help messages. With no arguments the top-level shell commands are listed.
With additional commands and sub-commands, additional detail is provided.

kv-> hel p I oad

Usage: load -file <path to file>
Load the naned file and interpret its contents as a script of
commands to be executed. |f any command in the script fails
execution will end.

Use -i ncl ude- depr ecat ed to show deprecated commands.

For example:

kv-> hel p show -incl ude-deprecated
Encapsul ates commands that display the state of the store and its
conponent s.
Usage: show adnins |

dat acenters |

events |

faults |

i ndexes |

paraneters |

perf |

plans |

pool s |

schemas |

snapshots |

tables |

t opol ogy |

upgrade-order |

users |

versions |

zones

B-14

hidden

history

load

ORACLE

Appendix B
hidden

hi dden [on| of f]

Toggles visibility and setting of parameters that are normally hidden. Use these
parameters only if advised to do so by Oracle Support.

history [-last <n>] [-from<n>] [-t0 <n>]

Displays command history. By default all history is displayed. Optional flags are used
to choose ranges for display.

load -file <path to file>

Loads the named file and interpret its contents as a script of commands to be
executed. If any of the commands in the script fail, execution will stop at that point.

For example, users of the Table API can use the load command to define a table and
insert data using a single script. Suppose you have a table defined like this:

create table I'F NOT EX STS Users (
idinteger,
firstname string,
| ast name string,
age integer,
i ncone integer,
primry key (id)
);

Then sample data for that table can be defined using JSON like this:

{

"id" 1,

“firstname": "David",
"l astnane": " Mrrison",
"age": 25,

"i ncome": 100000

}

{

"id": 2,
“firstname":"John",

"l ast nane": " Ander son",
"age": 35,

"i ncome": 100000

B-15

ORACLE

Appendix B
load

}

{

"id":3
“firstname":"John",
"l ast nane": " Morgan",
"age": 38,

"income": 200000

}

{

"id": 4,
“firstname":"Peter"
"lastnane":"Smith",
"age": 38,

"incone": 80000

}

{

"id":5
“firstnanme":"Dana",
"l astnane": " Scul | y",
"age": 47,

"income": 400000

}

Assume that the sample data is contained in a file called User s. j son. Then you can
define the table and load the sample data using a script that looks like this (file name
| oadTabl e. txt) :

Begin Script
execute "create table IF NOT EXI STS Users (\
idinteger, \
firstname string, \
| astname string, \
age integer, \
i ncone integer, \
primry key (id) \
)

put table -name Users -file users.json

Then, the script can be run by using the | oad command:

> java - Xnmx64m - Xns64m \

-jar KVHOWE |ib/kvstore.jar runadm n -host node0l -port 5000 \
-security \

KVROOT/ securtiy/client.security \

-store nystore

kv-> load -file ./l oadTabl e. txt

Statement conpl eted successfully

Loaded 5 rows to Users

kv->

B-16

ORACLE

Appendix B
load

If you are using the Key/Value API, first you create schema in the store:

{
“type": "record",
"name": "Contactlnfo",
"namespace": "exanple",
“fields": [
{"name": "phone", "type": "string", "default": ""},
{"name": "email", "type": "string", "default": ""},
{"name": "city", "type": "string", "default": ""}
]
}

Then you can collect the following commands in the script file | oad- cont act s- 5. txt :

Begin Script

put -key /contact/Bob/Wal ker -value "{\"phone\":\"857-431-9361\", \
\"emai I\ "\ " Nunc@ui sque. com ", \"city\":\"Turriffi"}" \

-j son exanpl e. Cont act I nfo

put -key /contact/Crai g/ Cohen -value "{\"phone\":\"657-486-0535\", \
\"emai I\":\"sagittis@retal corp.net\",\"city\":\"Hamoir\"}" \

-j son exanpl e. Cont act I nfo

put -key /contact/Lacey/Benjanin -value "{\"phone\":\"556-975-3364\", \
\"emaiI\":\"Dui s@aceyassoci ates.ca\",\"city\":\"Wasseiges\"}" \

-j son exanpl e. Cont act I nfo

put -key /contact/Preston/Church -value "{\"phone\":\"436-396-9213\", \
\"emai [\":\"preston@mauris.ca\",\"city\":\"Hel medal e\ "}" \

-j son exanpl e. Cont act I nfo

put -key /contact/Evan/Houston -value "{\"phone\":\"028-781-1457\", \
\"emaiI\":\"evan@ exfoundation.org\",\"city\":\"Ceest-G"}" \

-j son exanpl e. Cont act I nfo

exit

End Script

The script can be run by using the | oad command:

> java - Xmx64m - Xnms64m \

-jar KVHOWE | ib/kvstore.jar runadm n -host node0l -port 5000 \
-security \

KVROOT/ securtiy/client.security \
-store nystore

kv-> load -file ./l oad-contacts-5.txt
Operation successful, record inserted.
Operation successful, record inserted.
Operation successful, record inserted.
Operation successful, record inserted.
Operation successful, record inserted.

For more information on using the load command, see Using a Script to Configure the
Store.

B-17

logtall

Appendix B
logtail

Monitors the store-wide log file until interrupted by an "enter" key press.

namespace

page

ping

ORACLE

nanespace [hamespace_nane]

Sets nanespace_nane as the default namespace for table operations and queries. For
example:

kv-> nanespace nsl
Namespace is nsl

Entering the command without namespace_name returns to the default namespace:

kv-> nanespace
Nanmespace is sysdefault

page [on| <n>| of f]

Turns query output paging on or off. If specified, n is used as the page height.

If nis O, or "on" is specified, the default page height is used. Setting n to "off" turns
paging off.

ping [-json] [-shard <shardld>]

The pi ng and veri fy commands return information about the runtime entities of a data
store. The command accesses components and Admin services available from the
topology, returning information about the state of various components.

e -json
Displays output in JSON format.
e —shard <shardl d>
Displays a subset of status information about the specific shard ID you supply.
Here is a basic example of calling ping from the Admin CLI:
kv-> ping

Pi ngi ng components of store nystore based upon topol ogy sequence #308
300 partitions and 3 storage nodes

B-18

ORACLE

Appendix B
ping

Time: 2019-01-03 20:19:27 UTC Version: 19.1.0
Shard Status: healthy:1 witabl e-degraded: 0 read-only:0 offline:0
total:1 Admin Status: healthy
Zone [name=1 id=znl type=PRI MARY al | owArbi t ers=fal se
mast er Af fi ni ty=f al se]
RN Status: online:3 read-only:0 offline:0
maxDel ayM I li s: 0 maxCat chupTi meSecs: 0
Storage Node [snl] on | ocal host: 13230
Zone: [name=1 id=znl type=PRI MARY al | owAr bit ers=fal se
mast er Af fi ni ty=f al se]
Status: RUNNING Ver: 19.1.0 2019-01-03 08:17:52 UTC Build id:
12641466031c Edition: Enterprise
Admi n [adm nl] Status: RUNNI NG MASTER
Rep Node [rgl-rnl] Status: RUNNI NG MASTER sequenceNunber: 633
haPort: 13233
avail abl e storage size:109 GB
Storage Node [sn2] on | ocal host: 13240
Zone: [name=1 id=znl type=PRI MARY al | owAr bit ers=fal se
mast er Af fi ni ty=fal se]
Status: RUNNING Ver: 19.1.0 2019-01-03 08:17:52 UTC Build id:
12641466031c Edition: Enterprise
Admi n [adm n2] Status: RUNNI NG REPLI CA
Rep Node [rgl-rn2] Status: RUNNI NG REPLI CA sequenceNunber: 633
haPort: 13243 avail abl e storage size: 109 GB delayMIlis:0
cat chupTi neSecs: 0
Storage Node [sn3] on | ocal host: 13250 Zone: [name=1 id=znl
t ype=PRI MARY al | owAr bi t ers=fal se masterAffinity=fal se] St at us:
RUNNING ~ Ver: 19.1.0 2019-01-03 08:17:52 UTC Build id: 12641466031c
Edition: Enterprise
Admi n [adm n3] Status: RUNNI NG REPLI CA
Rep Node [rgl-rn3] Status: RUNNI NG REPLI CA sequenceNunber: 633
haPort: 13253 avail abl e storage size:109 GB delayMIlis:0
cat chupTi neSecs: 0

About Shard and Admin Status

After running a pi ng command, you should understand what is most useful (or
troubling) about the system health. The most important content is the Shard Status
entry. The following pi ng output details indicate one shard (t ot al : 1) that is healthy
(heal t hy: 1). All of the status types you'd prefer not to see (w it abl e- degr aded, r ead-
only, and of f | i ne are zero (0), indicating nothing has one of those states. Everything
is good.

Shard Status: healthy:1
writabl e-degraded: 0
read-only: 0

offline:0

total:1

What exactly does a healthy shard indicate? A healthy shard is one with all of its RNs
running. Thus, if all shards in the topology are healthy, then all RNs are running, and
no failures exist. Why are RNs so important? Because they are the components that
perform read and write data operations.

B-19

ORACLE

Appendix B
ping

Checking the Admin nodes status is also useful. In this simple example, only one
Admin shard exists, so there is a single result: Admi n Status: heal t hy. Other
possible states are: wri t abl e- degr aded, read-onl y, or of f| i ne.

For both RN shards and admins, these are what each result indicates:

Result Meaning

heal t hy All nodes are running, and the system is fully operational.

writabl e-degraded A majority of the nodes are running. All operations are
supported, but a minority of the nodes are offline or
don't support writes. If you are using RF=3, this state is
one step closer to being unable to support all operations.
For example, with one node offline, losing another node
means quorum will be lost, and the shard becomes read-
only. Most people use RF=3, so this is typically what
writable-degraded means.

read-only Only a minority of the nodes are running. Read operations
are supported, but write operations are not.
of fline No nodes are running, so no operations are supported.

About Zone Status

The next information from ping is about zones:

Zone [nanme=1 id=znl

t ype=PRI MARY

al | owAr bi t ers=f al se

mast er Af fi ni ty=f al se]

RN Status: online:3 read-only:0 offline:0
maxDel ayM I lis: 0

maxCat chupTi neSecs: 0

For stores with multiple zones, this information provides the status of nodes in different
locations. For example, if a store was deployed using three zones, with the machines
for each zone in a separate building, this information gives a quick summary status

for machines in each building. In this simple example, there is only one zone, so

that status information is similar to that for the entire store. The naxDel ayM I | i s

and maxCat chupTi meSecs entries provide information about data replication to replicas
located in the zone. In our example, both values are zero (0). However, having large
numbers for these entries could suggest that there are hardware problems with the
machines in the zone, or problems with the network that connects that zone to other
zones. Such information would be used only for more detailed debugging.

About Storage Nodes

Next, there is information about the nodes associated with a particular storage node:

Storage Node [snl] on |ocal host: 13230 Zone:

[name=1 id=znl type=PRI MARY al | owAr bi t ers=fal se masterAffinity=fal se]
Status: RUNNING Ver: 19.1.0 2019-01-03 08:17:52 UTC Build id:
12641466031c

Edition: Enterprise

Admin [adm nl] Status: RUNNI NG MASTER

B-20

ORACLE

Rep Node [rgl-rnl] Status:

Appendix B
ping

RUNNI NG, MASTER

sequenceNunber: 633 haPort: 13233 avail abl e storage size: 109 GB

The St at us: entry for the SN can have several possible values:

Status

Description

STARTI NG

The storage node is starting up.

WAl TI NG_FOR_DEPLOY

The storage node is running but is waiting to be
deployed in a new store.

RUNNI NG The storage node is running -- this is the usual
state.

STOPPI NG The storage node is in the process of stopping, but
is not yet in a STOPPED status.

STOPPED The storage node is stopped.

UNREACHABLE The storage node is not reachable, either because

the SN service is down, the host machine is offline,
or the machine is not reachable over the network.

About RNs and Admins on the Storage Node

The next entries provide status information about RNs and any Admin processes
that are running on the storage node. Not all storage nodes have admin nodes. The
number of RNs running on the storage node depends on the SN capacity.

Admin [adm nl] Status:

RUNNI NG, MASTER Rep Node [rgl-rni]

Status: RUNNI NG MASTER sequenceNunber: 633 haPort: 13233 avail abl e

storage size:109 GB

The St at us: entry for both admin nodes and RNs, can have the following values:

Status

Description

STARTI NG

The node is starting up.

RUNNI NG, MASTER

The node is up and is the master. The
master is in contact with a majority of
nodes in the shard, and can perform writes
requiring acknowledgment. This is the first
of two normal states.

RUNNI NG, REPLI CA

The node is up and is a replica. This is the
second of two normal states.

RUNNI NG, MASTER (non-aut horitative) The node is up and is the master, but is

not in contact with a majority of nodes in
the shard. A non-authoritative master can
perform only writes that do not require
acknowledgment.

STOPPI NG

The node is stopping.

UNREACHABLE

The node could not be contacted over the
network. The node is either stopped, failed,
or there is a problem with the network
connection to the machine.

B-21

ORACLE

Appendix B
ping

Status

Description

Additional status values that can be
appended to the status line to provide

more information:

readonly requests enabl ed

The node is running in read-only mode
because the pl an enabl e-request s
command was run to set the node into
read-only user operations mode.

requests disabl ed

The node is running with all user
operation requests disabled, because the

pl an enabl e-request s command was run
to disable all requests on the node. The

pl an enabl e-request s command disables
requests on a per-shard basis, so it will
prevent writes or all operations on all data

in the shard.

While not shown in the initial example, the pi ng and veri fy commands can display
one of the following states for RNs and shards. The table describes their effects and

outcomes:

Displayed State

Effects

Outcome

Unknown

Masters go down.

Represents the read-only
state of the RNs and shards
still running. Currently, we
do not support read-only
status for any RN.

Non- Aut horitative
Mast er

Replica nodes go down.

After Replica nodes are
down, remaining RNs and
shards are in read-only
mode. Currently, we do not
support read-only status for
any RN.

Qut of disk space

Masters and replica nodes
go down. Replicas are left
in the RUNNI NG, UNKNOWN
state, and the masters are
in the Non- Aut hori tative
state.

When masters and replica
nodes go down, any
remaining RNs and shards
are in read-only mode.
Currently, we do not
support read-only status for
any RN.

Wite requests disabled

RNs and shard health are in
read-only enabled request
state.

RNs and shards are unable
to accept any user requests,
and are marked offline.

Both the pi ng and veri f y commands detect these states. Following is the output of a
ping command on a shard (r g2), in a normal state, showing how results are returned:

kv-> ping -shard rg2

Pi ngi ng components of store nystore based upon topol ogy sequence #2376
shard rg2 500 partitions and 3 storage nodes Time: 2018-09-28 07:06: 46

UTC Version:
Shard Status:
i d=znl t ype=PRl MARY

18.3.2

heal thy: Admin Status:

al | owAr bi ters=fal se masterAffinity=fal se]

heal t hy Zone [nane=shardzone

B-22

Appendix B
ping

RN Status: online:3 offline:0 nmaxDelayMIlis:0 maxCat chupTi neSecs: 0
Storage Node [sn10] on nodeA: 5000 Zone: [name=shardzone id=znl
t ype=PRl MARY
al | owArbiters=fal se masterAffinity=false] Status: RUNNING Ver: 18.3.2
2018-09-17 09:33:45 UTC
Build id: a72484b8b33c Edition: Enterprise
Rep Node [rg2-rnl]
Status: RUNNI NG MASTER sequenceNunber: 71, 166 haPort: 5010
avail abl e storage size:8 GB Storage Node [snll] on nodeB: 5000
Zone: [name=shardzone id=znl type=PR MARY
al | owArbiters=fal se masterAffinity=false] Status: RUNNI NG
Ver: 18.3.2 2018-09-17 09:33:45 UTC
Build id: a72484b8b33c Edition: Enterprise
Rep Node [rg2-rn2]
Status: RUNNI NG REPLI CA sequenceNumber: 71, 166 haPort: 5011
avail abl e storage size:4 GB delayMI1is:0 catchupTi meSecs: 0
Storage Node [sn12] on nodeC: 5000 Zone: [name=shardzone id=znl
t ype=PRl MARY
al | owArbiters=fal se masterAffinity=false] Status: RUNNING Ver: 18.3.2
2018-09-17 09:33:45 UTC
Build id: a72484b8b33c Edition: Enterprise
Rep Node [rg2-rn3]
Status: RUNNI NG REPLI CA sequenceNunber: 71, 166 haPort: 5012
avail abl e storage size:6 GB delayMI1is:0 catchupTi meSecs: 0

Following are examples of return information when different states occur.

* Shard status becomes writable-degraded and is read-only:

kv-> ping

Pi ngi ng conmponents of store concurrent plan store based upon topol ogy
sequence #1082

1000 partitions and 9 storage nodes
Time: 2018-11-06 05:12:36 UTC Version: 18.3.8

Shard Status: healthy:2 writable-degraded:12 read-only:4

offline:0 total:18
Admin Status: healthy
Zone [name=dcl id=znl type=PRI MARY al | owAr biters=fal se
mast er Affini ty=fal se]

RN Status: online:30 read-only:24 offline:0 naxDelayMIlis:0
maxCat chupTi neSecs: 0
Storage Node [snl] on slcao397: 5000
Zone: [nane=dcl id=znl type=PRI MARY al | owAr biters=fal se
master Affinity=fal se] Status: RUNNING
Ver: 18.3.8 2018-10-26 11:36:43 UTC Build id: 6259xxxxxxxx Edition
Enterprise

* RNs can have the RUNNI NG, UNKNOWN state for more than one reason, including
reaching a disk limit, or when the RN is down:

Storage Node [sn4] on sl cao400: 5000 Zone: [nanme=dcl id=znl type=PRI MARY
al owArbiters=fal se nasterAffinity=false] Status: RUNNING Ver: 18.3.8
2018-10-26 11:36:43 UTC

Build id: 6259xxxxxxxx Edition: Enterprise

ORACLE B-23

Appendix B
ping

Rep Node [rg7-rnl] Status: RUNNING,UNKNOWN
sequenceNunber: 173, 717, 825 haPort: 5020

avail abl e storage size:-3 GB delayMIlis:? catchupTi meSecs: ?

Rep Node [rg8-rnl] Status: RUNNING,UNKNOWN
sequenceNunber: 173, 555, 937 haPort: 5021

avail abl e storage size:-3 GB delayMIlis:? catchupTi meSecs: ?

Rep Node [rg9-rnl] Status: RUNNI NG MASTER
sequenceNunber: 173, 697, 007 haPort: 5022 avail able storage size:-3 GB

Rep Node [rgl10-rnl] Status: RUNNING,UNKNOWN
sequenceNunber: 173, 293, 747 haPort: 5023

avail abl e storage size:-3 GB delayMIlis:? catchupTi meSecs: ?

Rep Node [rgll-rnl] Status: RUNNING,UNKNOWN
sequenceNunber: 170, 561, 758 haPort: 5024 avail abl e storage size:-3 GB

delayM I lis:? catchupTi meSecs: ?

Rep Node [rgl2-rnl] Status: RUNNI NG MASTER
sequenceNunber: 170, 410, 483 haPort: 5025 avail abl e storage size:-3 GB

* Arunning out of disk space error results in the master becoming non-
authoritative:

Storage Node [sn6] on slcao402:5000 Zone: [nanme=dcl id=znl
t ype=PRI MARY al | owAr bi t ers=fal se

master Affinity=fal se] Status: RUNNING Ver: 18.3.8 2018-10-26 11:36:43
UTC Build id: 6259XXXXXXXX

Edition: Enterprise

Rep Node [rg7-rn3] Status: RUNNING,MASTER (non-authoritative)
sequenceNunber: 173, 754, 579 haPort: 5020 avail abl e storage size: 45 GB
Rep Node [rg8-rn3] Status: RUNNI NG REPLI CA sequenceNunber: 173, 555, 937
haPort: 5021 avail abl e storage size: 46 GB
delayM I lis:0 catchupTi meSecs: 0

Rep Node [rg9-rn3] Status: RUNNI NG REPLICA
sequenceNunber: 173, 697, 007 haPort: 5022 avail abl e storage size: 45 GB
delayM I lis:0 catchupTi meSecs: 0

Rep Node [rgl0-rn3] Status: RUNNING,MASTER (non-authoritative)
sequenceNunber: 173, 293, 747 haPort: 5023 avail abl e storage size: 45 GB
Rep Node [rgll-rn3] Status: RUNNI NG REPLI CA sequenceNunber: 170, 561, 758
haPort: 5024 avail able storage size:45 GB delayMIlis:0
cat chupTi neSecs: 0

Rep Node [rgl2-rn3] Status: RUNNI NG REPLI CA sequenceNunber: 170, 410, 483
haPort : 5025
avail abl e storage size: 46 GB delayM|lis:0 catchupTi meSecs: 0

Finally, here is a basic example of calling pi ng -j son:

kv-> ping -json

{
"operation” : "ping",
"returnCode" : 5000
"description" : "No errors found"
"returnval ue" : {
"topol ogy" : {
"storeName" : "QurStore",

"sequenceNunber" : 104,
“nurPartitions" : 100,

ORACLE B-24

Appendix B
ping

"nuntt or ageNodes" : 1,
"time" : 1546801860520,

"version" : "18.3.4"
¥
"adm nStatus" : "heal thy",
"shardStatus" : {
“heal thy" : 1,
"writabl e-degraded" : O,
"read-only" : 0,
"offline" : O,
“total" : 1
¥
"zoneStatus" : [{
“resourceld" : "znl",
"nane" : "QurZone",
"type" : "PRI MARY",
"allowArbiters" : false,
"master Affinity" : false,
“rnSummaryStatus"
"online" : 1,
"offline" : O,
"read-only" : 0,
"hasReplicas" : fal se
}
Yl
"snStatus" : [{
“resourceld" : "snl",
“host nane" : "QurHost",
"registryPort" : 5000,
"zone" : {
"resourceld" : "znl",
“nane" : "QurZone",
"type" : "PRI MARY",
"al l owArbiters" : fal se,
"master Affinity" : false
}

erviceStatus" : "RUNN NG',
"version" : "18.4.0 2018-12-06 09:21:03 UTC Build id:
f bf bd1541004 Edition: Enterprise",

"adm nStatus" : {
"resourceld" : "adm nl",
"status" : "RUNNING',
"state" : "MASTER',
"authoritativeMaster" : true

b

"“rnStatus" : [{
"resourceld" : "rgl-rnl",
"status" : "RUNNING',

"request sEnabl ed" : "ALL",
"state" : "MASTER',
"authoritativeMaster" : true,
"sequenceNunber” : 381,

"haPort" : 5013,

"avail abl eSt orageSi ze" : "97 G&B"

}

ORACLE B-25

plan

ORACLE

Appendix B
plan

"anStatus" : []

H
"exitCode" : 0

You can also access the pi ng utility through Admin utility tools, available in
kvt ool . j ar. For more information see ping.

Encapsulates operations, or jobs that modify store state. All subcommands with the
exception of interrupt and wait change persistent state. Plans are asynchronous jobs
so they return immediately unless - wai t is used. Plan status can be checked using
show pl ans. The optional arguments for all plans include:

e -wait

Wait for the plan to complete before returning.
e -plan-name

The name for a plan. These are not unique.
e -noexecute

Do not execute the plan. If specified, the plan can be run later using pl an
execut e.

« -force
Used to force plan execution and plan retry.
e -json | -json-vi

Displays the plan output as json or json-v1. The -j son flag can be used to output
in the new json format. The -j son-v1 flag can be used to output in the json-v1
format. If you have an existing script that relies on an older version of JSON
output, you may want to consider using - j son- v1 flag so that your existing scripts
continue to function.

The subcommands are as described below.

* plan add-index

* plan add-table

* plan cancel

* plan change-parameters
* plan change-storagedir
* plan change-user

e plan create-user

* plan deploy-admin

e plan deploy-datacenter
* plan deploy-sn

* plan deploy-topology

B-26

plan deploy-zone
plan deregister-es
plan drop-user

plan enable-requests
plan evolve-table
plan execute

plan failover

plan grant

plan interrupt

plan migrate-sn

plan network-restore
plan register-es

plan remove-admin
plan remove-datacenter
plan remove-index
plan remove-sn

plan remove-table
plan remove-zone
plan repair-topology
plan revoke

plan start-service
plan stop-service
plan verify-data

plan wait

plan add-index

ORACLE

pl an add-index -name <nane> -table <nanme> [-field <nane>]*

Adds an index to a table in the store.

[-desc <description>]

[-plan-nane <name>] [-wait] [-noexecute] [-force]

where:

- hame

Specifies the name of the index to add to a table.

-table

Appendix B
plan

Specifies the table name where the index will be added. The table name is a

dot-separated name with the format t abl eNang[. chi | dTabl eNane] *.

-field

B-27

Appendix B
plan

Specifies the field values of the primary key.

plan add-table

ORACLE

pl an add-tabl e -name <nane>
[-plan-nane <name>] [-wait] [-noexecute] [-force]

Adds a new table to the store. The table name is a dot-separated name with the format
tabl eName[. chi | dTabl eNane] *.

Before adding a table, first use the t abl e creat e command to create the named table.
The following example defines a table (creates a table by name, adds fields and other
table metadata).

Enter into table creation node
table create -name user -desc "A sanple user table"

user->
user-> help

Usage: add-array-field |
add-field |
add-map-field |
add-record-field |
cancel |

exit |

primary-key |

remove-field |

set-description |

shard- key |

show

Now add the fields

user-> help add-field

Usage: add-field -type <type> [-name <field-name>] [-not-required]
[-nullable] [-default <value>] [-max <value>] [-m n <val ue>]

[- max- excl usive] [-m n-exclusive] [-desc <description>]

[-size <size>] [-enumval ues <value[,value[,...]]

<type>: |NTEGER, LONG DOUBLE, FLOAT, STRING BOCLEAN, DATE, BINARY, FIX
ED_BI NARY, ENUM

Adds a field. Ranges are inclusive with the exception of String,
which will be set to exclusive.

user-> add-field -type Integer -nane id

user-> add-field -type String -nane firstNane

user-> add-field -type String -nane |astName

user-> help primry-key

Usage: primary-key -field <field-nane> [-field <field-nanme>]*

Sets primary key.

user-> primary-key -field id

Exit table creation node

user-> exit

Table User built.

B-28

ORACLE

Appendix B
plan

Usetable list -create to see the list of tables that can be added. The following

example lists and displays tables that are ready for deployment.

kv-> table |ist

Tables to be added:

User -- A sanple user table
kv-> table |ist -nane user

Add table User:

{
"type" : "table",
"name" : "User",
"id" o "User",
"description" : "A sanple user table",
"shardKey" : ["id"],
"primryKey" @ ["id"],
“fields" : [{
"name" : "id",
"type" : "INTEGER'
boA
"name" : "firstName",
"type" : "STRING'
boA
"name" : "l ast Name",
"type" : "STRING'
b
}

The following example adds the table to the store.

Add the table to the store.

kv-> help plan add-table

kv-> plan add-table -name user -wait
Executed plan 5, waiting for conpletion...
Plan 5 ended successfully

kv-> show tabl es -nanme user

{
"type" : "table",
"name" : "User",
"id" oo "rt,
"description" : "A sanple user table",

"shardKey" : ["id"],
"primaryKey" : ["id"],

"fields" : [{
"name" : "id",
"type" : "INTECER'
boA
"name" : "firstName",
"type" : "STRING'
boA
"nane" : "lastName",
"type" : "STRING'
b
1

B-29

plan cancel

Appendix B
plan

For more information and examples on table design, see Table Management in the
SOL Reference Guide.

plan cancel -id <plan id>| -last - json
Cancels a plan that is not running. A running plan must be interrupted before it can be
canceled.

Use show pl ans to list all plans that have been created along with their corresponding
plan IDs and status.

Use the - | ast option to reference the most recently created plan.

kv-> plan cancel -id 23 -json

{

"operation"” : "plan cancel|interrupt",
"returnCode" : 5000,

"description" : "Plan 23 was cancel ed",
"returnVal ue" : null

}

plan change-parameters

ORACLE

pl an change-paraneters -security | -service <id> |

-all-rns [-zn <id> | -znnane <name>] | -all-ans [-zn <id> |
-znnane <name>] | -all-admins [-zn <id> | -znname <nane>]
[-dry-run] [-plan-name <nane>]

[-json] [-wait] [-noexecute] [-force] -parans [name=val ue]*

Changes parameters for either the specified service, or for all service instances of the
same type that are deployed to the specified zone or all zones.

The - security flag allows changing store-wide global security parameters, and should
never be used with other flags.

The - servi ce flag allows a single instance to be affected; and should never be used
with either the - zn or - znnane flag.

The - al | - * flags can be used to change all instances of the service type. The
parameters to change follow the - par ans flag and are separated by spaces. The
parameter values with embedded spaces must be quoted; for example, name="value
with spaces".

One of the -all-* flags can be combined with the -zn or -znname flag to change all
instances of the service type deployed to the specified zone; leaving unchanged, any
instances of the specified type deployed to other zones. If one of the -all-* flags is used
without also specifying the zone, then the desired parameter change will be applied to
all instances of the specified type within the store, regardless of zone.

B-30

Appendix B
plan

If - dry-run is specified, the new parameters are returned without changing them. Use
the command show par anet er s to see what parameters can be modified. For more
information, see show parameters.

For more information on changing parameters in the store, see Setting Store
Parameters.

Note:

The pl an change- par anet er s updates the store metadata database even if
the component is not available. The component's configuration will be made
consistent when the KVStore system detects an inconsistency.

kv-> plan change-paraneters -service rgl-rn2 -json -wait -parans
| oggi ngConfi gProps="oracl e. kv. | evel =DEBUG'

{
"operation” : "Change RepNode Parans",
"returnCode" : 5000,
"description” : "Operation ends successfully",
"returnVal ue" : {
"id" @ 20,
"owner" : "root(id:ul)",
"name" : "Change RepNode Parans",

"isDone" : true,
"state" : "SUCCEEDED",
"start" : "2017-09-28 05:31:05 UTC',
"interrupted” : null,
"end" : "2017-09-28 05:31:10 UTC',
"error” : null,
"executionDetails" : {
"taskCounts" : {
"total " : 4,
"successful " : 4,
"failed" : O,
"interrupted" : 0,
"inconplete" : O,
"notStarted" : O
¥
“finished" : [{
“taskNunt' : 1,
"name" : "Plan 20 [Change RepNode Parans] task
[WiteNewParans rgl-rn2]",
“state" : " SUCCEEDED',

“start" : "2017-09-28 05:31:05 UTC',
“end" : "2017-09-28 05:31:06 UTC'
b o
“taskNunt' : 2,
"name" : "Plan 20 [Change RepNode Parans] task [StopNode
rgl-rn2]",
“state" : " SUCCEEDED',
“start" : "2017-09-28 05:31:06 UTC',
“end" : "2017-09-28 05:31:07 UTC'
b o

ORACLE B-31

Appendix B
plan

"taskNunt' : 3,
"name" : "Plan 20 [Change RepNode Parans] task [StartNode]",
"state" : " SUCCEEDED',

"start" : "2017-09-28 05:31:07 UTC',

"end" : "2017-09-28 05:31:07 UrC'
oA

"taskNunt : 4,

"name" : "Plan 20 [Change RepNode Parans] task
[Wai t For NodeState rgl-rn2 to reach RUNNING ",

"state" : " SUCCEEDED',

“start" : "2017-09-28 05:31:07 UTC',

“end" : "2017-09-28 05:31:10 UTC'
b1
"runni ng"
" pendi ng"
}

Sl
0]

plan change-storagedir

pl an change-storagedir -sn <id> -storagedir <path> -add | -renove
[-storagedirsize <size>] [-plan-name <nane>] [-json] [-wait] [-
noexecut e]
[-force]

Adds or removes a storage directory on a Storage Node, for storing a Replication
Node.

where:
e -sn

Specifies the Storage Node where the storage directory is added or removed.
e -storagedir

Specifies the path to the storage directory on a Storage Node for storing a
Replication Node.

e -add | -renove
Specifies to add (- add) the storage dir.
Specifies to remove (- r enove) the storage dir.
e -storagedirsize

Specifies the size of the directory specified in - st or agedi r . This parameter is
optional; however, it is an error to specify this parameter for some, but not all,
storage directories.

Use of this parameter is recommended for heterogeneous installation
environments where some hardware has more storage capacity than other
hardware. If this parameter is specified for all storage directories, then the store's
topology will place more data on the shards that offer more storage space. If this
parameter is not used, then data is spread evenly across all shards.

ORACLE B-32

Appendix B
plan

The value specified for this parameter must be a long, optionally followed by a
unit string. Accepted unit strings are: KB, MB, GB, and TB, corresponding to 1024,
102472, 1024”3, 102474 respectively. Acceptable strings are case insensitive.

Valid delimiters between the long value and the unit string are " ", "-", or "__
-storagedirsize 200 MB

-storagedirsize 4 tb

-storagedirsize 5000- M

kv-> plan change-storagedir -sn sn2 -storagedir /tnp/kvroot -add

-json -wait
{
"operation" : "Change Storage Node Parans",
"returnCode" : 5000,
"description" : "Qperation ends successfully",
"returnval ue" : {

“id" 21,

"owner" : "root(id:ul)",

"name" : "Change Storage Node Parans",

"isDone" : true,
"state" : "SUCCEEDED',
"start" . "2017-09-28 05:33:14 UTC',
“interrupted" : null,
"end" : "2017-09-28 05:33:14 UTC',
"error" : null,
“executionDetails" : {
"taskCounts" : {
“total " : 1,
"successful" : 1,
“failed" : 0,
"interrupted" : 0,
"inconplete" : O,
"notStarted" : O

}l
“finished" : [{
"taskNunt : 1,
"name" : "Plan 21 [Change Storage Node Parans] task

[WiteNewSNParans sn2]",
"state" : "SUCCEEDED',
"start" : "2017-09-28 05:33:14 UTC',
"end" : "2017-09-28 05:33:14 UTC'
H
“running" : [],
"pending" : []

}
}

plan change-user

pl an change-user -nane <user nanme>
[-disable | -enable] [-set-password [-password <new passwor d>]

ORACLE B-33

Appendix B
plan

[-retain-current-password]] [-clear-retained-password]
[-pl an-nane <name>] [-wait] [-noexecute] [-force]

Change a user with the specified name in the store. The -retain-current-password
argument option causes the current password to be remembered during the -set-
password operation as a valid alternate password for configured retention time or until
cleared using -clear-retained-password. If a retained password has already been set
for the user, setting password again will cause an error to be reported.

This command is deprecated. For more information see User Modification in the
Security Guide.

plan create-user

pl an create-user -nane <user name>
[-admin] [-disable] [-password <new password>]
[-plan-nane <name>] [-wait] [-noexecute] [-force]

Create a user with the specified name in the store. The -admin argument indicates that
the created user has full administrative privileges.

This command is deprecated. For more information, see User Creation in the Security
Guide.

plan deploy-admin

ORACLE

pl an depl oy-adnmin -sn <id> [-plan-name <name>]
[-wait] [-noexecute] [-force]

Deploys an Admin to the specified Storage Node. The admin type (PRIMARY/
SECONDARY) is the same type as the zone the Storage Node is in.

For more information on deploying an admin, see Create an Administration Process on
a Specific Host.

kv-> plan deploy-admin -sn snl -json -wait

"operation" : "plan deploy-adnin -sn 1",
"returnCode" : 5000,
"description" : "Qperation ends successfully",
"returnval ue" : {

"id" oo 22,

“owner" : "root(id:ul)",

"name" : "Deploy Admin Service",

"isDone" : true,
"state" : "SUCCEEDED',
"start" : "2017-09-28 05:34:26 UTC',
“interrupted" : null,
"end" : "2017-09-28 05:34:27 UTC',
"error" : null,
"executionDetails" : {

"taskCounts" : {

"total" : 4,

B-34

Appendix B
plan

"successful" : 4,
"failed" : 0,
"interrupted" : 0,
"inconplete" : O,
"notStarted" : 0O
b
“finished" : [{
"taskNunt : 1,
"name" : "Plan 22 [Deploy Admin Service] task [Depl oyAdmin
adminl on snl]",
"state" : " SUCCEEDED',

"start" : "2017-09-28 05:34:26 UTC',

"end" : "2017-09-28 05:34:27 UTC'
oA

"taskNunt : 2,

"name" : "Plan 22 [Deploy Admn Service] task
[Wai t For Admi nState adnminl to reach RUNNING ",
"state" : " SUCCEEDED',

"start" : "2017-09-28 05:34:27 UTC',

"end" : "2017-09-28 05:34:27 UTC'
oA

"taskNunt : 3,

"name" : "Plan 22 [Deploy Admn Service] task
[Updat eAdni nHel per Host admi n1] ",
"state" : " SUCCEEDED',

"start" : "2017-09-28 05:34:27 UTC',

"end" : "2017-09-28 05:34:27 UTC'
oA

"taskNunt : 4,

name" : "Plan 22 [Deploy Admin Service] task
[NewAdni nParaneters refresh adminl paraneter state

wi thout restarting]"”,

"state" : " SUCCEEDED',

“start" : "2017-09-28 05:34:27 UTC',

“end" : "2017-09-28 05:34:27 UTC'

I
"“running” : [],
"pending” : []
b
"planld" : 22,
"resourceld" : "adm nl",
"snld" : "snl"
}

plan deploy-datacenter

Deprecated. See plan deploy-zone instead.
plan deploy-sn

pl an depl oy-sn -zn <id> | -znname <nane> -host <host> -port <port>
[-plan-nane <name>] [-json] [-wait] [-noexecute] [-force]

ORACLE B-35

ORACLE

Appendix B
plan

Deploys the Storage Node at the specified host and port into the specified zone.
where:
e -sn
Specifies the Storage Node to deploy.
e -zn <id> | -znname <name>
Specifies the Zone where the Storage Node is going to be deployed.
* -host
Specifies the host name where the Storage Node is going to be deployed.
e -port
Specifies the port number of the host.
For more information on deploying your Storage Nodes, see Create the Remainder of

your Storage Nodes.

kv-> plan deploy-sn -zn 1 -json -host |ocal host -port 10000 -wait

{
"operation" : "plan deploy-sn -zn 1 -host |ocal host -port 10000",
"returnCode" : 5000,
"description" : "Cperation ends successfully",
"returnval ue" : {
"id" : 25,
“owner" : "root(id:ul)",

"name" : "Depl oy Storage Node",
"isDone" : true,
"state" : "SUCCEEDED',
"start" : "2017-09-28 05:40:50 UTC',
“interrupted" : null,
"end" : "2017-09-28 05:40:51 UTC',
“error" : null,
“executionDetails" : {
"taskCounts" : {
"total" : 1,
"successful " : 1,
"failed" : 0,
“interrupted" : 0,
"inconplete" : O,
"notStarted" : 0O
b
“finished" : [{
"taskNunt' : 1,
"name" : "Plan 25 [Depl oy Storage Node] task [Depl oySN
sn4(l ocal host: 10000)]",
"state" : "SUCCEEDED',
"start" : "2017-09-28 05:40:50 UTC',
"end" : "2017-09-28 05:40:51 UTC'
|
"runni ng
"pendi ng
¥
"planld" : 25,

[],
[]

B-36

Appendix B
plan

"resourceld" : "sn4",
"zoneld" : "znl",
"host" : "local host",
"port" : 10000

}

plan deploy-topology

ORACLE

pl an depl oy-topol ogy -nane <topol ogy nane> [-pl an-nane <nane>]
[-json] [-wait] [-noexecute] [-force]

Deploys the specified topology to the store. The KVStore size determines how

long the command takes to deploy replication and arbiter nodes to become fully
functional shard members. The pl an depl oy-t opol ogy command does not wait for
this command to finish.

After running the pl an depl oy-t opol ogy command, use the verify configuration
command to check the running state of the components in the topology. See Deploy
the Topology Candidate.

kv-> plan depl oy-topol ogy -name MyStoreLayout -json -wait

{
"operation” : "plan depl oy-topol ogy -name MyStorelLayout",
"returnCode" : 5000,
"description" : "Cperation ends successfully",
"returnvalue" : {
"id" : 26,
“owner" : "root(id:ul)",
"name" : "Depl oy Topo",
"isDone" : true,
"state" : "SUCCEEDED',
"start" : "2017-09-28 05:56:25 UTC',
“interrupted" : null,
"end" : "2017-09-28 05:56:26 UTC',
"error" : null,
"executionDetails" : {
"taskCounts" : {
“total" : 6,
"successful" : 6,
“failed" : 0,
“interrupted" : 0,
"inconplete" : O,
"notStarted" : 0
¥
“finished" : [{
"taskNunt : 1,

"name" : "Plan 26 [Depl oy Topo] task [UpdateDatacenterV2 zone=znl]",
"state" : "SUCCEEDED',

"start" : "2017-09-28 05:56:25 UTC',
"end" : "2017-09-28 05:56:25 UTC'
oA

"taskNunt : 2,

B-37

Appendix B

plan

"name" : "Plan 26 [Depl oy Topo] task [UpdateDatacenterV2 zone=zn2]",

"state" : "SUCCEEDED',

"start" : "2017-09-28 05:56:25 UTC',
"end" : "2017-09-28 05:56:25 UTC'
oA

"taskNunt : 3,

"name" : "Plan 26 [Depl oy Topo] task [UpdateDatacenterV2 zone=zn3]",

"state" : "SUCCEEDED',

"start" : "2017-09-28 05:56:25 UTC',
"end" : "2017-09-28 05:56:25 UTC'
oA

"taskNunt : 4,

"name" : "Plan 26 [Depl oy Topo] task [Broadcast Topo]",
"state" : " SUCCEEDED',

"start" : "2017-09-28 05:56:25 UTC',
"end" : "2017-09-28 05:56:26 UTC'
oA

"taskNunt : 5,

"name" : "Plan 26 [Depl oy Topo] task [BroadcastMetadata]"”,
"state" : " SUCCEEDED',

"start" : "2017-09-28 05:56:26 UTC',
"end" : "2017-09-28 05:56:26 UTC'
oA

"taskNunt : 6,

"name" : "Plan 26 [Depl oy Topo] task [Broadcast Topo]",
"state" : " SUCCEEDED',

"start" : "2017-09-28 05:56:26 UTC',
"end" : "2017-09-28 05:56:26 UTC
H

"“running” : [],

"pending" : []

}1

"planld" : 26,

"topoNane" : "MStorelLayout"

1

plan deploy-zone

ORACLE

pl an depl oy-zone -name <zone nane>
-rf <replication factor>
[-type [primary | secondary]]
[-arbiters | -no-arbiters]

[-json]
[-master-affinity | —no-master-affinity]
[-plan-nane <name>] [-wait] [-noexecute] [-force]

Deploys the specified zone to the store and creates a primary zone if you do not
specify a - t ype.

where:

e - hame

B-38

ORACLE

Appendix B
plan

Specifies the name of the zone to deploy.
o -rf

Specifies the replication factor of the zone.
° -type

Specifies the type of the zone to deploy. It can be a primary or a secondary zone.
If -type is not specified, a primary zone is deployed.

e -json

Formats the command output in JSON.

e -arbiters | -no-arbiters

If you specify - ar bi t er s, you can allocate Arbiter Nodes on the Storage Node in
the zone. You can specify this flag only on a primary zone.

Specifying - no- ar bi t er s precludes allocating Arbiter Nodes on the Storage Node
in the zone.
The default value is - no- ar bi ters.

e -master—affinity | -no-master-affinity
Specifying - mast er - af fi ni ty indicates that this zone can host a master.

Specifying - no- mast er-af fi nity indicates that this zone cannot host a master.
The default value is - no-master-affinity.

For more information on creating a zone, see Create a Zone.

kv-> pl an depl oy-zone -name zn6 -rf 1 -json -wait
{

"operation" : "plan depl oy-zone -name zn6 -rf 1 -type PRI MARY -no-
arbiters -no-nmaster-affinity",

"returnCode" : 5000,

"description" : "Operation ends successfully",
"returnval ue" : {

"id" oo 27,

"owner" : "root(id:ul)",

"nane" : "Deploy Zone",

"isDone" : true,
"state" : " SUCCEEDED',
"start" : "2017-09-28 05:57:29 UTC',
“interrupted" : null,
"end" : "2017-09-28 05:57:29 UTC',
“error" : null,
"executionDetails" : {
"taskCounts" : {
"total" : 1,
"successful " : 1,
"failed" : O,
"interrupted" : 0,
"incomplete" : O,
"notStarted" : O
¥
"finished" : [{
"taskNunt : 1,

B-39

"name" : "Plan 27 [Depl oy Zone] task [Depl oyDatacenter

zone=zn6] ",

"state" : "SUCCEEDED',
"start" : "2017-09-28 05:57:29 UTC',
"end" : "2017-09-28 05:57:29 UTC'
I
“running" : [],
"pending" : []
b

"planld" : 27,

"zoneNane" : "zn6",

"zoneld" : "zn4",

"type" : "PRI MARY",
rftooo1,

"al | owArbiters" : false,
"master Affinity" : false

}

plan deregister-es

pl an deregister-es

Appendix B
plan

Deregisters the Elasticsearch cluster from the Oracle NoSQL Database store, using
the der egi st er - es plan command. This is allowed only if all full text indexes are first

removed using the pl an renove-i ndex command, see plan remove-index.

For example:

kv-> plan deregister-es

Cannot deregi ster ES because these text indexes exist:
nyt est | ndex

Jokel ndex

For more information, see Integration with Elastic Search for Full Text Search in the

Integrations Guide.

plan drop-user

pl an drop-user -nane <user name>
[-plan-nane <name>] [-wait] [-noexecute] [-force]

Drop a user with the specified name in the store. A logged-in user may not drop itself.

This command is deprecated. For more information, see User Removal in the Security

Guide.

ORACLE

B-40

Appendix B
plan

plan enable-requests

ORACLE

This command will change the type of user requests supported by a set of shards or
the entire store.

pl an enabl e-requests
-request-type {all|readonly| none}
{-shards <shardld[,shardld]*> | -store}
[-plan-nane <name>] [-wait]
[-noexecute] [-force]
[-json|-json-vl]

Limit the type of requests enabled for specific shards or the whole store.

The -request - t ype flag configures the read and write requests. The following request
types can be configured by this command.

- all means the store or shards can process both read and write requests;
« readonly makes the store or shards only respond to read requests;
¢ none means no read or write requests will be processed by the store or shards.

The - shar ds flag specifies the list of shards that should be configured, if you want the
configuration to be done on one or more shards. You can get details about the shar di d
by executing the show t opol ogy command. The r gXX portion in the show topology
output denotes the shar di d. See show topology.

The - st or e flag specifies that the configuration to be done on the entire store.
You should specify either the - shar d flag or the - st or e flag.
Example B-1 plan enable-requests

For example, If you want to put the shard rgl in readonly mode, you would specify r g1
as the shar di d and readonl y as the request - t ype.

kv-> plan enabl e-requests
-request-type readonly -shards rgl

Started plan 25. Use show plan -id 25 to check status.
To wait for conpletion, use plan wait -id 25

Example B-2 plan enable-requests

For example, If you want to put the whole store in readonly mode and to get the
output in json format, you would specify the st or e attribute, r equest - t ype attribute as
readonl y and j son attribute.

kv-> pl an enabl e-requests
-request-type readonly -store -json

{
"operation" : "plan enabl e-requests"”,
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnval ue" : {
"planld" : 26

B-41

Appendix B
plan

Example B-3 plan enable-requests

For example, If you want to put the whole store in readonly mode and to get the output
in json v1 format, you would specify the st or e attribute, r equest - t ype attribute as
readonl y and j son-v1 attribute.

kv-> pl an enabl e-requests
-request-type readonly -store -json-vl

{
"operation” : "plan enabl e-requests”,
"return_code" : 5000,
"description" : "Operation ends successfully",
"return_val ue" : {
"plan_id" : 27
}
}

plan evolve-table

pl an evol ve-tabl e -name <name>
[-plan-nane <name>] [-wait] [-noexecute] [-force]

Evolves a table in the store. The table name is a dot-separate with the format
tabl eName[. chi | dTabl eNane] *.

Use the t abl e evol ve command to evolve the named table. The following example
evolves a table.

Enter into table evolution node
kv-> tabl e evol ve -name User

kv-> show
{
"type" : "table",
“name" : "User",
"id"orort,
"description" : "A sanple user table",

“shardkey" : ["id"],
"primryKey" @ ["id"],

"fields" : [{
"nane" : "id",
"type" : "I NTEGER'
boA
"name" : "firstName",
"type" : "STRING'
boA
"name" : "l ast Name",
"type" : "STRING'
}

}
Add a field

ORACLE B-42

Appendix B
plan

kv-> add-field -type String -nane address

Exit table creation node

kv-> exit

Table User built.

kv-> plan evol ve-tabl e -nane User -wait

Executed plan 6, waiting for conpletion...
Plan 6 ended successfully

kv-> show tabl es -name User

{
"type" : "table",
"name" : "User",
id oo trt,
"description" : "A sanple user table",
"shardKey" : ["id"],
"primryKey" @ ["id"],
"fields" : [{
"name" : "id",
"type" : "INTEGER'
boA
"name" : "firstName",
"type" : "STRING'
boA
"name" : "l ast Name",
"type" : "STRING'
boA
"name" : "address",
"type" : "STRING'
b
}

Usetable |ist -evol ve to see the list of tables that can be evolved. For more
information, see plan add-table .

plan execute

pl an execute -id <id> | -last
[-plan-nane <name>] [-json] [-wait] [-noexecute] [-force]

Executes an existing plan that has not yet been executed. The plan must have been
previously created using the - noexecut e flag .

Use the - | ast option to reference the most recently created plan.

kv-> plan execute -id 19 -json -wait
{

"operation" : "plan depl oy-zone -name zn6 -rf 1 -type PRI MARY -no-
arbiters -no-master-affinity",

“returnCode" : 5000,

"description" : "Cperation ends successfully",
"returnval ue" : {

"id" o 19,

"name" : "Depl oy Zone",

"isDone" : true,

ORACLE B-43

Appendix B

"state" : "SUCCEEDED',
"start" : "2017-09-28 09: 35:31 UTC',
“interrupted" : null,
"end" : "2017-09-28 09:35:31 UTC',
“error" : null,
"executionDetails" : {
"taskCounts" : {
“total" : 1,
"successful" : 1,
"failed" : 0,
"interrupted" : 0,
"inconplete" : O,
"notStarted" : O

b
“finished" : [{
"taskNunt @ 1,
"name" : "Plan 19 [Depl oy Zone] task [Depl oyDatacenter
zone=zn6] ",
"state" : "SUCCEEDED',
"start" : "2017-09-28 09: 35:31 UTC',
"end" : "2017-09-28 09:35:31 UTC'
} 1
“running" : [],
"pending" : []
b
"planld" : 19,
"zoneNane" : "zn6",
"zoneld" : "zn4",
"type" : "PR MARY",
o1,
"al l owArbiters" : false,
"master Affinity" : false
}
}
plan failover

ORACLE

plan failover { [-zn <zone-id> | -znnane <zone-nane>]
-type [primary | offline-secondary] }...
[-plan-nane <name>] [-wait] [-noexecute] [-force]

where:

* -zn <zone-id> | -znnanme <zone- name>
Specifies a zone either by zone ID or by name.

e ~-type [primary | offline-secondary]
Specifies the new type for the associated zone.

Changes zone types to failover to either Primary or Secondary zones, whenever
a primary zone failure results in a loss of quorum. Arbiters will not be created
or removed from the topology. This command can introduce violations if a zone

plan

B-44

Appendix B
plan

that contains Arbiters is specified as secondary-offline. Use the force flag if arbiter
violations are introduced.

Zones whose new type is primary are taking over from failed primary zones to
reestablish quorum. For these zones, a quorum of storage nodes in each shard in
the zone must be available and responding to requests.

Zones whose new type is offline-secondary represent primary zones that are currently
offline, resulting in the current loss of quorum. For these zones, all of the storage
nodes in the zones must currently be unavailable. No zone type changes can be
performed if these requirements are not met when the command starts.

Note:

Arbiter nodes are not currently supported during failover and switchover
operations.

To correct any violations after the topology components are repaired, the pl an

fail over command executes a r ebal ance command. To successfully deploy the new
topology after a r ebal ance, the Storage Nodes hosting topology components must
be running. If a Storage Node in a zone that failed over to a Secondary zone that
contained an Arbiter, when the SN restarts, the Arbiter rejoins the shard.

You cannot execute this command when other plans are in progress for the data store.
Before executing this plan, cancel or interrupt any other plans.

plan grant

plan grant [-role <role name>]* -user <user_name>

Allows granting roles to users.
where:
e -role <role nanme>

Specifies the roles that will be granted. The role names should be the system-
defined roles (except publ i c) listed in the Security Guide.

e -user <user_nane>
Specifies the user who the role will be granted from.

This command is deprecated. For more information see Grant Roles or Privileges in
the Security Guide.

plan interrupt

plan interrupt -id <plan id>| -last [-json]

ORACLE B-45

Appendix B
plan

Interrupts a running plan. An interrupted plan can only be re-executed or canceled.
Use -last to reference the most recently created plan.

kv-> plan interrupt -id 20 -json

{

"operation" : "plan cancel|interrupt",
"returnCode" : 5000,

"description" : "Plan 20 was interrupted",
“returnVal ue" : null

}

plan migrate-sn

plan migrate-sn -from<id> -to <id>
[-plan-nane <name>] [-wait] [-noexecute] [-force]

Migrates the services from one Storage Node to another. The old node must not be
running.

where:
o -from
Specifies the Storage Node (old) that you are migrating from.
e -to
Specifies the Storage Node (new) that you are migrating to.
For example, assuming that you are migrating from Storage Node 25 to 26, you would

use:

kv-> plan migrate-sn -fromsn25 -to sn26

Before executing the pl an mi gr at e- sn command, you can stop any running old
Storage Node by using -j ava - Xnx64m - Xns64m -j ar KVHOWE/ | i b/ kvstore.jar stop
-root KVROOT.

plan network-restore

ORACLE

pl an network-restore -from<id> -to <id> -retain-Ilogs
[-plan-nane <name>] [-wait] [-noexecute] [-force] [-json|-json-vi]

The pl an networ k-rest ore command restores a replication node (RN) with updates
that the RN missed after losing networking connectivity. Use this only if the RN cannot
be restored through the automatic procedures described here.

When a replication node becomes disconnected for any reason, it misses updates that
occur while it was not connected. Oracle NoSQL Database uses two ways to update
the recovered RN after it comes back online.

One way occurs within the RN's replication group. When the recovered RN returns, the
replication group's master node streams all missed updates from the time the time the
RN became disconnected, to the time it resumed operations.

B-46

Appendix B
plan

Another way to restore a reconnected RN is over a network connection. Performing

a network restore copies a complete set of data log files (*. j db) from a peer,
supplying the recovered RN with a comprehensive data set. The content contains
many intermediate changes that are not reflected in the current store contents. This is
because the data log files (*. j db), which the recipient RN ingests, contain all changes,
including any intermediate ones.

Do not confuse the data *. j db log files, which contain data store activities, with the
debug log files (*. | 0g), which are used for debugging purposes.

If neither of the automatic Oracle NoSQL Database RN repopulation attempts
succeed, it can be due to unforeseen circumstances, or a catastrophic situation that
destroys data on multiple hosts. In this case, you can execute pl an network-restore
manually from the Admin CLI. However, doing so requires you to specify the RN that
will supply the updated data.

You can attempt a network restore using the pl an net wor k- r est or e command from
the admin CLI:

kv-> plan network-restore -help

Usage: plan network-restore -from<id> -to <id> [-retain-logs] \
[-plan-name <name>] [-wait] [-noexecute] [-force] [-json | json-vl]
Network restore a RepNode from another one in their replication group.

where:

» -fromflag — Specifies the Replication Node ID from the same replication group
(matching rgX). The - f romnode must be fully up to date, and able to supply the
*. dbd log files to the destination RN. For example, if the - t o recipient RN ID
is rgl-rn3, and the ping output shows that r g1-r n2 is the master, then that ID
(rgl-rn2)is a good choice for the - f romvalue.

* -to flag — Specifies the ID (rgX-rnY) of the recipient RN.

e -retain-1ogs flag — Retains obsolete log files on the lagging replica. The system
renames the files, rather than deleting them. It is generally unnecessary to use this
flag, unless you suspect that log files are corrupted on the recovering RN.

plan register-es

ORACLE

pl an register-es -clustername <nanme> -host <host>
-port <transport port> [-force]

Registers the Elasticsearch cluster with the Oracle NoSQL Database store, using the
regi st er-es plan command. It is only necessary to register one node of the cluster, as
the other nodes in the cluster will be found automatically.

where:
e -clustername

Specifies the name of the Elasticsearch cluster.
* -host

Specifies the host name of a node in the cluster.

B-47

Appendix B
plan

e -port
Specifies the transport port of a node in the cluster.

For more information, see Integration with Elastic Search for Full Text Searchin the
Integrations Guide.

plan remove-admin

pl an renove-admn -admn <id> | -zn <id> | -znnane <nane>
[-plan-nane <name>] [-wait] [-noexecute] [-force]

Removes the desired Admin instances; either the single specified instance, or all
instances deployed to the specified zone.

If you use the - adni n flag and there are 3 or fewer Admins running in the store, or if
you use the - zn or - znnane flag and the removal of all Admins from the specified zone
would result in only one or two Admins in the store, then the desired Admins will be
removed only if you specify the - f or ce flag.

Also, if you use the - admi n flag and there is only one Admin in the store, or if you use
the - zn or - znnane flag and the removal of all Admins from the specified zone would
result in the removal of all Admins from the store, then the desired Admins will not be
removed.

plan remove-datacenter

pl an renove- dat acent er

This command is deprecated. See plan remove-zone instead.

plan remove-index

pl an renove-index -name <name> -table <nane>
[-plan-nane <name>] [-wait] [-noexecute] [-force]

Removes an index from a table.
where:

e -nanme
Specifies the name of the index to remove.
e -table

Specifies the table name to remove the index from. The table name is a dot-
separated name with the format tableName[.childTableName]*.

plan remove-sn

pl an renove-sn -sn <id>
[-plan-nane <name>] [-wait] [-noexecute] [-force]

ORACLE B-48

Appendix B
plan

Removes the specified Storage Node from the topology. The Storage Node is
automatically stopped before removal.

This command is useful when removing unused, old Storage Nodes from the store. To
do this, see Replacing a Failed Storage Node.

If the Storage Node is being removed as part of removing a secondary zone then,

e any replication nodes must first be removed using the t opol ogy change-
replication-factor and pl an depl oy-topol ogy commands, and

* any Admin Nodes must first be removed using pl an renove- adm n command.

plan remove-table

pl an renove-tabl e -nane <name> [-keep- dat a]
[-plan-nane <name>] [-wait] [-noexecute] [-force]

Removes a table from the store. The named table must exist and must not have any
child tables. Indexes on the table are automatically removed. By default data stored
in this table is also removed. Table data may be optionally saved by specifying the
-keep-data flag. Depending on the indexes and amount of data stored in the table this

may be a long-running plan.

The following example removes a table.

Renove a table.

kv-> plan renove-tabl e -nane User

Started plan 7. Use show plan -id 7 to check status.
To wait for conpletion, use plan wait -id 7.

kv-> show tabl es
No table found.

plan remove-zone

pl an renove-zone -zn <id> | -znname <nane>
[-plan-nane <name>] [-wait] [-noexecute] [-force]

Removes the specified zone from the store.

Before running this command, all Storage Nodes that belong to the specified zone
must first be removed using the pl an renove- sn command.

plan repair-topology

pl an repair-topol ogy
[-plan-nane <name>] [-wait] [-json] [-noexecute] [-force]

Inspects the store's deployed, current topology for inconsistencies in location metadata
that may have arisen from the interruption or cancellation of previous deploy-topology

ORACLE B-49

plan revoke

ORACLE

Appendix B
plan

or migrate-sn plans. Where possible, inconsistencies are repaired. This operation can
take a while, depending on the size and state of the store.

kv-> plan repair-topology -json -wait

{
"operation" : "Repair Topol ogy",
"returnCode" : 5000,
“description" : "Qperation ends successfully",
"returnval ue" : {
"id" o 25,
"name" : "Repair Topol ogy",
"i sDone" : true,
"state" : "SUCCEEDED',
"start" : "2017-09-28 09:43:06 UTC',
“interrupted" : null,
"end" : "2017-09-28 09:43;:06 UTC',
“error" : null,
“executionDetails" : {
"taskCounts" : {
“total" : 1,
"successful " : 1,
“failed" : 0,
"interrupted" : 0,
"inconplete" : O,
"notStarted" : 0
¥
“finished" : [{
"taskNunt' : 1,
"nane" : "Plan 25 [Repair Topol ogy] task [VerifyAndRepair]",
"state" : "SUCCEEDED',
“start" : "2017-09-28 09:43:06 UTC',
"end" : "2017-09-28 09:43:06 UTC'
Hl
“running" : [],
"pending" : []
}
}
}

pl an revoke [-role <role name>]* -user <user_nane>

Allows revoking roles to users.
where:

e -role <role name>

Specifies the roles that will be revoked. The role names should be the system-
defined roles (except publ i c) listed in the Security Guide.

e -user <user_nanme>

Specifies the user who the role will be revoked from.

B-50

Appendix B
plan

This command is deprecated. For more information see Revoke Roles or Privileges in
the Security Guide.

plan start-service

ORACLE

plan start-service {-service <id>| -all-rns [-zn <id> |

-znnane <name>] | -all-ans [-zn <id> | -znname <nane>] |
-zn <id> | -znname <nane> } [-plan-nanme <nane>]
[-json] [-wait] [-noexecute] [-force]

Starts the specified service(s). The service may be a Replication Node, an Arbiter
Node, or Admin service, as identified by any valid string.

For example, to identify a Replication Node, use - servi ce shardl d- nodel d, where
shar dl d- nodel d must be given as a single argument with one embedded hyphen and
no spaces. The shar dl d identifier is represented by rgX, where X refers to the shard
number.

where:
e -service
Specifies the name of the service to start.
e -all-rns
If specified, starts the services of all Replication Nodes in a store.
e -all-ans

If specified, starts all the Arbiter Nodes in the specified zone.

B-51

Appendix B
plan

< Note:

This plan cannot be used to start a Storage Node. Further, you cannot restart
the Storage Node's services without first starting the Storage Node itself. To
start the Storage Node, go to the Storage Node host and enter the following
command:

nohup java - Xmk64m - Xms64m \
-jar <KVHOME>/li b/ kvstore.jar start -root <KVROOT> &

kv-> plan start-service -service rgl-rn3 -json -wait

{
"operation" : "Start Services",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnval ue" : {
“id" 21,
“"name" : "Start Services",

"isDone" : true,

"state" : "SUCCEEDED',

"start" : "2017-09-28 09:50:54 UTC',
“interrupted" : null,

"end" : "2017-09-28 09:50:57 UTC',

“error" : null,"executionDetails" : {
"taskCounts" : {

"total" : 2,

"successful" : 2,

"failed" : 0,

"interrupted" : 0,
"inconplete" : O,
"notStarted" : 0

1
"finished" : [{
"taskNunt' : 1,
"name" : "Plan 21 [Start Services] task [StartNode]",
"state" : "SUCCEEDED',
"start" : "2017-09-28 09:50:54 UTC',
"end" : "2017-09-28 09:50:55 UTC'
oA
"taskNunt : 2,
"name" : "Plan 21 [Start Services] task [WitForNodeState

rgl-rn3 to reach RUNNING ",
"state" : "SUCCEEDED',

“start" : "2017-09-28 09:50:55 UTC',
"end" : "2017-09-28 09:50:57 UTC
H
"running" : [],
"pending" : []
}

}

ORACLE B-52

Appendix B
plan

plan stop-service

pl an stop-service {-service <id> |

-all-rns [-zn <id> | -znnane <nane>] | -all-ans [-zn <id> |
-znnane <nane>] | -zn <id> | -znnane <name> }
[-plan-nane <name>] [-json] [-wait] [-noexecute] [-force]

Stops the specified service(s). The service may be a Replication Node, an Arbiter
Node, or Admin service as identified by any valid string.

For example, to identify a Replication Node, use - servi ce shardl d- nodel d, where
shar dl d- nodel d must be a single string with an embedded hyphen (-) and no spaces.
The shar dl d identifier is represented as r gX, where X represents the shard nhumber.

Other options to specify after - servi ce include:

e -all-rns
Stops the services of all Replication Nodes in a store.
e -all-ans
Stops the services of all Arbiter Nodes in the specified zone.

Use this command to stop any affected services so that any attempts by the system
to communicate with the services are no longer accepted. Stopping communication
to one or more services reduces the amount of error output about a failure you are
already aware of.

Whenever you execute the pl an st op- servi ce command, the system automatically
initiates a health check. The health check determines if stopping an indicated service
will result in losing quorum. There are no further checks performed, only whether
qguorum will be lost if you stop the service. To avoid losing quorum, the pl an st op-
servi ce fails to execute if the health check fails, and outputs detailed health check
information such as the following:

One of the groups is not healthy enough for the operation:

[rgl] Only 1 primary nodes are running such that a sinple

maj ority cannot be formed which requires 2 primary nodes.

The shard is vulnerable and will not be able to elect a new master.
Nodes not running: [rgl-rnl]. Nodes to stop: {rgl=[rgl-rn2]}

If you cannot stop a service because it will result in lost quorum, you should determine
what problem is occurring before trying to stop the service.

If, on the other hand, you understand that stopping a service will result in losing
guorum, but such an event is nhecessary to make some important change, you can
force the pl an st op-servi ce command to execute by appending the - f or ce flag.

ORACLE B-53

Appendix B
plan

< Note:

If you forcefully stop the Admin service and Admin quorum is lost, you cannot
use the start - servi ce plan to bring up the Admin services anymore. All
plan operations will also fail thereafter.

The pl an st op-servi ce command is also useful during disk replacement process.
Use the command to stop the affected service prior removing the failed disk. For more
information, see Replacing a Failed Disk.

Note:

e This plan cannot be used to stop a Storage Node. To stop a Storage
Node, first stop all services running on it. Then, find the ID of the
Storage Node process by going to the Storage Node host and issuing
this command:

ps -af | grep -e "kvstore.jar.*start.*<KVROO>"

Kill the process using:
kill <storage node id>

e Also, because the pl an stop-service -all-rns command always
results in losing quorum, executing pl an st op- servi ce with this option
skips running a health check. Further, you do not need to use the -force
flag is when using the - al | - r ns option.

plan verify-data

plan verify-data
[-verify-1o0g <enable|disable> [-1o0g-read-delay <mlliseconds>]]
[-verify-btree <enabl e| di sabl e> [-btree-batch-delay <nmilliseconds>]

[-index <enabl e| di sabl e>] [-datarecord <enabl e| di sabl e>]]

[-valid-time <tine>]
[-showcorrupt-files <enabl e| di sabl e>]
-service <id>| -all-services [-zn <id> | -znnane <nane>] |
-all-rns [-zn <id> | -znnane <nane>|
-all-admins [-zn <id> | -znname <name>]
[-plan-nanme <name>] [-wait] [-noexecute] [-force] [-]son|-json-vl]

Verifies and controls certain elements (such as log files and indexes), as presented in
this section. Here is a description for each of the veri f y- dat a parameters and options:

ORACLE B-54

ORACLE

Appendix B
plan

Option

Description

-verify-1og

Verifies the checksum of each data record in the JE log
file of JE. The Berkeley DB Java Edition (JE) is the data
storage engine of Oracle NoSQL Database.

It is enabled by default.

-1 0g- read- del ay

Configures the delay time between file reads.
The default value is 100 milliseconds.

-verify-btree

Verifies that the B-tree of the database in memory
contains a valid reference to each data record on disk.
You can combine - veri f y- bt r ee with - dat ar ecord
and - i ndex.

It is enabled by default.

- bt ree- bat ch- del ay

Configures the delay time, in milliseconds, between
batches.

The default delay value is 10 milliseconds.

-datarecord

Reads and verifies data records from disk, if the

data record is not in cache. The - dat ar ecor d option
takes longer than verifying records only in cache, and
results in more read I/O.

It is disabled by default.

-i ndex

Verifies indexes. Using the - i ndex option alone verifies
only the reference from the index to the primary table,
not the reference from the primary table to index. To
verify both references from index to primary table,
and primary table to index, specify the - dat ar ecor d
and - i ndex options.

It is enabled by default.

-valid-tinme

Specifies the amount of time for which an existing
verification will be considered valid and not be rerun.
The format is 'number unit' where the unit can be
minutes or seconds. The unit is case insensitive and
can be separated from the number by a space, "-" or

The default is '10 minutes'.

-show-corrupt-files

Specifies whether to show corrupt files, including
missing files and reserved files that are referenced.

It is disabled by default.

-service id

Runs verification on the specified service (id)

-all-services [-zn id | -
znname nang]

Runs verification on all services, both RNs and Admins,
in the specified zone, or in all zones if none is
specified.

| -all-rns [-znid | -
znnanme nang]

Runs verification on all RNs in the specified zone, or in
all zones if none is specified.

| -all-admins [-znid | -
znnanme nang]

Runs verification on all Admins in the specified zone,
or in all zones if none is specified.

[-pl an-nane nane]

Runs the named plan that you have saved to execute
pl an verify-data and its available options.

[-wait]

Runs a plan synchronously, so that the command line
prompt returns after the command completes.

B-55

Appendix B

plan

Option Description

[- noexecut €] Lets you create a plan but delay its execution.
Conversely, use the pl an execut e command to run the
plan.

[-force] Runs the plan as you enter it on the CLI, without
validating the flags.

[-json|-json-vl] Displays the plan output as json or json-v1.

Executing verify-data

ORACLE

The pl an veri fy-data command is available to verify both primary table and
secondary indexes. The command lets you verify either a checksum of data records,
or the B-tree of the database.

¢ Note:

Since Oracle NoSQL Database uses Oracle Berkeley DB Java Edition (JE)
as its underlying storage engine, verifying data using pl an verify-data
depends on several low-level JE features that are neither described here, nor
visible. Throughout this section, terms or concepts related to Oracle Berkeley
DB Java Edition (JE) are indicated by the term Berkeley, indicating their
origination. For more information about Oracle Berkeley DB Java Edition,
start here: Oracle Berkeley DB Java Edition.

The pl an verify-data has two parts for verifications:
* Log record integrity on disk
* B-tree integrity

To verify the integrity of log records on disk, veri f y- dat a accesses and verifies

each record's checksum. Since this procedure includes disk reads, it consumes I/O
resources and is relatively time consuming. To reduce the performance effects of
verification, you can configure a longer delay time between reading each batch of log
files. While increasing the delay time increases operation time overall, it consumes
fewer I/O activities. If that choice is preferable for your requirements, use - bt r ee-

bat ch- del ay to increase the delay between log file integrity checks during peak I/O
operations.

When verifying B-tree integrity, the pl an veri fy- dat a process verifies in-memory
integrity. The basic verification checks only if the LSN (Berkeley) for each data record
in primary tables is valid. You can configure the verification to include data records on
disk, as well as secondary index integrity.

If you do not enable data record verification, the secondary index verification checks
only the reference from secondary index to primary table, but not from primary table to
index. Since basic verification checks only in-memory data structures, it is significantly
faster and less resource intensive than verification involving disk reads.

B-56

plan wait

pool

pool clone

ORACLE

Appendix B
pool

plan wait -id <id> | -last [-seconds <timeout in seconds>] [-json]

Waits indefinitely for the specified plan to complete, unless the optional timeout is
specified.
Use the - seconds option to specify the time to wait for the plan to complete.

The -1 ast option references the most recently created plan.

kv-> plan wait -id 26 -json

{
"operation" : "plan wait",
"returnCode" : 5000,
"description" : "Cperation ends successfully",
“returnval ue" : {
“planld" : 26,
"state" : "CANCELED'
}
}

Encapsulates commands that manipulates Storage Node pools, which are used for
resource allocations. The subcommands are as follows:

e pool clone
e pool create
e pooljoin

e pool leave

* pool remove

pool clone -nane <name> -from <source pool nane> [-json]

Clone an existing Storage Node pool to a new Storage Node pool to be used for
resource distribution when creating or modifying a store.

For more information on using a cloned Storage Node pool when contracting a
topology, see Contracting a Topology.

kv-> pool clone -nane mypool from snpool -json{

"operation" : "pool clone",
"returnCode" : 5000,
"description" : "Qperation ends successfully",

"returnVal ue" : {
"pool Nane" : "mypool "

B-57

pool create

pool join

pool leave

ORACLE

Appendix B
pool

pool create -nane <name> -json

Creates a new Storage Node pool to be used for resource distribution when creating
or modifying a store.

For more information on creating a Storage Node pool, see Create a Storage Node
Pool.

kv-> pool create -name newPool -json{

"operation” : "pool create",
"returnCode" : 5000,
"description® : "Cperation ends successfully",
"returnVal ue" : {
"storeName" : "newPool "
}
}

pool join -name <nane> [-sn <snX>]* [-json]

Adds Storage Nodes to an existing Storage Node pool.

kv-> pool join -name newPool -sn snl -json{

"operation” : "pool join",
"returnCode" : 5000,
"description" : "Qperation ends successfully",
"returnval ue" : {
“storeName" : "newPool "
}
}

pool |eave -nane <name> [-sh <snX>]* [-]son]

Remove Storage Nodes from an existing Storage Node pool.

kv-> pool |eave -name newPool -sn snl -json{

"operation" : "pool |eave",
"returnCode" : 5000,
"description" : "Cperation ends successfully",
"returnval ue" : {
"storeName" : "newPool "

B-58

Appendix B
put

pool remove

put

put kv

ORACLE

pool renove -name <nane>

Removes a Storage Node pool.

kv-> pool renove -name newPool -json{

"operation" : "pool renove",
"returnCode" : 5000,
"description" : "Qperation ends successfully",
"returnVal ue" : {
“storeName" : "newPool "
}

Encapsulates commands that put key/value pairs to the store or put rows to a table.
The subcommands are as follows:

* putkv
* puttable

put kv -key <keyString> -value <valueString> [-file]
[-hex] [-if-absent] [-if-present]

Put the specified key/value pair into the store. The following arguments apply to the
put command:

e -key<keyString>

Specifies the name of the key to be put into the store. Key can be composed of
both major and minor key paths, or a major key path only. The <keyString> format
is: "major-key-path/-/minor-key-path".

For example, a key containing major and minor key paths:

kv-> put kv -key /Snmith/Bob/-/enmail -value
“{\"id\": 1, \"email\":\"bob. sm th@xanple.com"}"

For example, a key containing only a major key path:

kv-> put kv -key /Smith/Bob -value"{\"name\":
\"bob.smth\", \"age\": 20, \"phone\":\"408 555 5555\", \"email\":
\"bob. sm t h@xanpl e. com "}"

B-59

put table

ORACLE

Appendix B
put

-val ue <val ueString>
If -file is not specified, the <valueString> is treated as a raw bytes array.

For example:

kv-> put kv -key /Snith/Bob/-/phonenunber -value "408 555 5555"

Note:

The mapping of the raw arrays to data structures (serialization and
deserialization) is left entirely to the application.

-file

Indicates that the value is obtained from a file. The file to use is identified by the
value parameter.

For example:
kv-> put kv -key /Smith/Bob -value ./smith-bob-info.txt
-file
- hex
Indicates that the value is a BinHex encoded byte value with base64 encoding.
-if-absent
Indicates that a key/value pair is put only if no value for the given key is present.
-if-present

Indicates that a key/value pair is put only if a value for the given key is present.

kv-> put table -name table nanme [if-absent | -if-present]

[-json string] [-file file_name] [-exact] [-update]

Puts one or more rows into the named table.

- nane
Specifies a table name, which can identify different types of tables:

— table_name — The table is a top level table created in the default namespace,
sysdef aul t. The default sysdef aul t: namespace prefix is not required.

— table_nane.child_name — The table is a child table. Always precede a
chi | d_nane table with its parent t abl e_name, followed by a period (.)
separator.

— namespace_nane:tabl e_name — The table was created in the namespace you
specify. Always precede t abl e_nane with its namespace_nane, followed by a
colon (©).

B-60

Appendix B
repair-admin-quorum

— namespace_nane: t abl e_name. chi | d_nane — The table is a child table of a
parent table created in a namespace. Specify chi | d_nane by preceding it with
both namespace_nane: and its parent t abl e_nane, , followed by a period (.)
separator.

e -if-absent

Indicates to put a row only if the row does not exist.
o -if-present

Indicates to put a row only if the row already exists.
e -json

Indicates that the value is a JSON string.
o -file

Use to load a file of JSON strings.
o -exact

Indicates that the input JSON string or file must contain values for all columns in
the table and cannot contain extraneous fields.

e -update

Can be used to partially update the existing record.
repair-admin-quorum
repair-adnmn-quorum{-zn <id> | -znnane <nanme> | -adnin <id>}...

Restores Admin quorum after it is lost by reducing membership of the admin group
to the admins in the specified zones, or to the specific admins you can list. Use this
command when attempting to recover from a failure that has resulted in losing admin
guorum. This command can result in data loss.

After obtaining a working admin by using the r epai r - adni n- quor umcommand, call the
plan fail over command to failover to the zones that remain available after a failure,
and to update the topology to match the changes made to the admins.

The arguments specify which admins to use as the new set of primary admins, either
by specifying all of the admins in one or more zones, or by identifying specific admins.
The specified set of admins must not be empty, must contain only currently available
admins, and must include all currently available primary admins. It may also include
secondary admins, if desired, to increase the admin replication factor or because no
primary admins are available.

Note:

You can repeat this command if a temporary network or component failure
results in the initial command invocation to fail.

ORACLE B-61

show

show admins
{

ORACLE

Appendix B
show

Encapsulates commands that display the state of the store and its components or
schemas. The subcommands are as follows:

show admins

show datacenters
show events

show faults

show indexes

show mrtable-agent-statistics
show parameters
show perf

show plans

show pools

show snapshots
show regions

show tables

show topology
show upgrade-order
show users

show versions

show zones

show admi ns [-] son]

Displays basic information about Admin services.

kv-> show admi ns -json

"operation" : "show adm ns",

"returnCode" : 5000,

"description" : "Operation ends successfully",

"returnval ue" : {
"admns" : [{
"id" : "adm nl",

"storageNode" : "snl",

"type" : "PRI MARY",
"connected" : true,

"adm nStatus" : "RUNNING',

"replicationState" :

"MASTER',

B-62

"authoritative" : true

oA
"id" : "admn2",
"storageNode" : "sn2",
"type" : "PRI MARY",
"connected" : fal se,
"adm nStatus" : "RUNNI NG',
“replicationState" : "REPLICA",
"authoritative" : true

bl

show datacenters

show dat acenters

Deprecated. See show zones instead.

show events

ORACLE

show events [-id <id>] | [-from<date>] [-to <date>]

[-type <stat | log | perf>] [-]son]

Appendix B
show

Displays event details or list of store events. The status events indicate changes in
service status.

Log events are noted if they require attention.

Performance events are not usually critical but may merit investigation. Events marked
"SEVERE" should be investigated.

The following date/time formats are accepted. They are interpreted in the local time
zone.

MM-dd-yy HH:mm:ss:SS
MM-dd-yy HH:mm:ss
MM-dd-yy HH:mm
MM-dd-yy
HH:mm:ss:SS
HH:mm:ss

HH:mm

For more information on events, see Events.

kv-> show events -json

{

"operation"” : "show events",
"returnCode" : 5000,
"description" : "Cperation ends successfully",

B-63

Appendix B

show
"returnVal ue" : {
"events" : [{
"event" : "j84al6s3S STAT 2017-09-28 09:48:12.819 UTC snl
RUNNI NG sev1"
boA
"event" : "j84al7j0S STAT 2017-09-28 09:48:13.788 UTC sn2
RUNNI NG sev1"
boA
"event" @ "j84al9xoS STAT 2017-09-28 09:48:16.908 UTC sn3
RUNNI NG sev1"
boA
"event" : "j84alcznS STAT 2017-09-28 09:48:20.867 UTC rgl-
rnl RUNNI NG sevl"
boA
"event" : "j84alf75S STAT 2017-09-28 09:48:23.729 UTC rgl-
rn2 RUNNI NG sev1"
boA
"event" : "j84alh7xS STAT 2017-09-28 09:48: 26. 349 UTC rgl-
rn3 RUNNI NG sev1"
boA
"event" : "j84a3i9rS STAT 2017-09-28 09:50: 01.023 UTC rgl-
rn3 STOPPED sevl (reported by sn3)"
boA
"event" : "j84adoquS STAT 2017-09-28 09:50:56.070 UTC rgl-
rn3 RUNNI NG sev1"
oA
"event" : "j84abhfeS STAT 2017-09-28 09:51: 33. 242 UTC rgl-
rn3 STOPPED sevl (reported by sn3)"
boA
"event" : "j84awb3tS STAT 2017-09-28 10:12:16.985 UTC sn3
UNREACHABLE sev2 (reported by
admnl)"
oA
"event" : "j84b585yL LOG 2017-09-28 10: 19: 20. 854 UTC SEVERE
[admi nl] Plan 24 [Renpve Admin
Replica] task [DestroyAdm n adm n3] of plan 24 ended in
state ERROR with java.rm . Connect Exception:
Unabl e to connect to the storage node agent at host
| ocal host, port 22000, which may not be running;
nested exception is: "
oA
"event" : "j84b585zL LOG 2017-09-28 10: 19: 20. 854 UTC SEVERE

[adminl] Plan [null] failed. Attenpt 1
[RUNNING start=2017-09-28 10:19: 20 UTC end=2017-09- 28
10: 19: 20 UTC "

bl
}

show faults

show faults [-last] [-command <command index>] [-json]

ORACLE B-64

Appendix B
show

Displays faulting commands. By default all available faulting commands are displayed.
Individual fault details can be displayed using the -last and -command flags.

kv-> show faults -json

{
"operation" : "show faults",
"returnCode" : 5000,
"description" : "Cperation ends successfully",
“returnVal ue" : {
“faul t Commands" : [{
"faul t Conmand" : "503 plan renove-adnin -adnin 3 -json -
wait: class
oracle.kv.util.shell.Shell Exception"
b A
"faul t Command" : "526 topol ogy create -nane nytopo -pool

snpool -json -partitions 300 -json: class
java. | ang. Nul | Poi nt er Excepti on"

]

show indexes

ORACLE

show i ndexes [-tabl e <nane>] [-name <nane>] [-json]

Displays index metadata. By default the indexes metadata of all tables are listed.

If a specific table is named, its indexes metadata are displayed. If a specific index
of the table is named, its metadata is displayed. For more information, see plan
add-index.

Use SHOW | NDEX statement to indicate the index type (TEXT, SECONDARY) when you
enable text-searching capability to Oracle NoSQL Database, in-concert with the tables
interface.

For example:

kv-> show i ndex
I ndexes on table Joke
Jokel ndex (category, txt), type: TEXT

For more information, see Integration with Elastic Search for Full Text Search in the
Integrations Guide.

kv-> show i ndexes -json

{

"operation” : "show indexes",
"returnCode" : 5000,
"description” : "Operation ends successfully",
"returnval ue" : {

"tables" : [{

"table" : {

“tabl eName" @ "t1",

B-65

"indexes" : [{
"name" : "idx1",
"fields" : ["idl", "id2"],
"type" : "SECONDARY",
"description" : null
boo
"name" : "idx2",
“fields" : ["id2"],
"type" : "SECONDARY",

"description" : null
}]
b
“childTable" : [{
"tables" : []
b
}]
}
}

show mrtable-agent-statistics

Appendix B
show

show nrtabl e-agent-statistics [-agent <agent|D>][-table <tabl eName>][-

j son]

Shows the latest statistics as of the last one minute for multi-region table agents. With
no arguments, this command shows combined statistics over all regions the MR Table

spans.

Input Parameters

Optionally, you can enable the following flags with appropriate parameters with this

command:

Table B-1 Input Parameters

Flag Parameter

Description

- agent agent1D

Limits the statistics to the
agent ID specified. You
can find the agent ID
from the JSON config file
created while configuring
your agent. See Configure
XRegion Service.

- table t abl eNamre

Limits the statistics to the
MR Table specified.

ORACLE

B-66

ORACLE

Table B-1 (Cont.) Input Parameters

Appendix B
show

Flag

Parameter

Description

- json

Returns the complete
statistics in JSON format.
Even though the statistics
are returned in JSON format
by default, specifying

this flag adds additional
information in the output
such as operation, return
code, and the return code's
description.

Output Statistics

The statistics reported by the show nrt abl e- agent - st ati sti cs can be categorized as

t

hose used to:

Monitor streams from other regions

Table B-2 Output Statistics 1
]

Statistic

Description

conpl eteWiteQps

Number of complete write operations
per region.

| ast MessageMs

Timestamp when the agent sees the
last message from a remote region, in
milliseconds.

If this statistic information is not
available, -1 is printed as its output
value.

| ast Modi fi cationMs

Timestamp of the last operation
performed in each remote region, in
milliseconds.

If this statistic information is not
available, -1 is printed as its output
value.

B-67

Table B-2 (Cont.) Output Statistics 1

Appendix B
show

Statistic

Description

[aggi ngMs (avg, max, mn)

In a multi-region KVStore, each shard

in a region pushes all the operations
performed on all its tables to the

agent's queue. The agent replicates the
contents of its queue, in event order,

to all other regions. The lagging statistic
represents the time difference between
an event being pushed into the queue
and replicated to the other regions by the
agent. If this value is high, it indicates
that the queue is getting backed up. A
smaller value indicates that the agent

is able to keep up with the number of
events coming from remote regions. The
lagging statistics are reported as average,
minimum, and maximum in milliseconds
for each remote region.

If this statistic information is not
available, -1 is printed as its output
value.

| at encyMs (avg, max, nmin)

In MR tables, the latency statistic
indicates the time taken in milliseconds
for each operation to travel from its
origin (remote) region to the target
(local) region.

The latency is computed as T2 - T1,

where:

— T1is the timestamp whe