
Oracle® NoSQL Database
Java Direct Driver Developer's Guide

Release 21.1
E85378-16
May 2021

Oracle NoSQL Database Java Direct Driver Developer's Guide, Release 21.1

E85378-16

Copyright © 2011, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Conventions Used in This Book ix

Diversity and Inclusion x

1 Developing for Oracle NoSQL Database

Configuring Logging 1-2

Obtaining a KVStore Handle 1-2

Using the KVStoreConfig Class 1-3

Using the Authentication APIs 1-4

Configuring SSL 1-4

Identifying the Trust Store 1-4

Setting the SSL Transport Property 1-5

Authentication using a LoginCredentials Instance 1-5

Renewing Expired Login Credentials 1-7

Authentication using Kerberos 1-9

Authentication using Kerberos and JAAS 1-11

Unauthorized Access 1-13

2 Introduction to Oracle KVLite

Starting KVLite 2-1

Stopping and Restarting KVLite 2-2

Verifying the Installation 2-2

kvlite Utility Command Line Parameter Options 2-3

3 Introducing Oracle NoSQL Database Tables and Indexes

Defining Tables 3-1

Executing DDL Statements From the Admin CLI 3-3

Supported Table Data Types 3-4

Record Fields 3-4

Defining Child Tables 3-5

iii

Defining Multi-Region Tables 3-6

Using CRDT datatype in a multi-region table 3-6

Add MR_COUNTER datatype in a multi-region table 3-8

Table Evolution 3-8

Defining Tables With an IDENTITY Column 3-9

Sequence Generator Attributes 3-10

Creating Tables With an IDENTITY Column 3-12

Adding an IDENTITY Column to an Existing Table 3-14

Altering or Dropping an IDENTITY Column 3-15

Inserting IDENTITY Values from the SQL CLI 3-17

Inserting IDENTITY Values Programmatically 3-20

Using the UUID data type 3-25

Inserting rows into a table with a UUID column 3-27

Updating rows of a table with a UUID column 3-28

Add or Remove a UUID column 3-29

Creating Indexes 3-29

4 Introducing Oracle NoSQL Database Namespaces

Creating Namespaces 4-2

Granting Authorization Access to Namespaces 4-3

Using and Setting Namespaces 4-4

Showing and Describing Namespaces 4-5

Dropping Namespaces 4-6

5 Primary and Shard Key Design

Primary Keys 5-1

Data Type Limitations 5-2

Partial Primary Keys 5-2

Shard Keys 5-3

Row Data 5-3

6 Writing and Deleting Table Rows

Write Exceptions 6-1

Writing Rows to a Table in the Store 6-1

Writing Rows to a Child Table 6-3

Other put Operations 6-4

Bulk Put Operations 6-4

Using Time to Live 6-7

Specifying a TTL Value 6-7

iv

Updating a TTL Value 6-8

Deleting TTL Expiration 6-9

Setting Default Table TTL Values 6-10

Deleting Rows from the Store 6-10

Using multiDelete() 6-11

7 Reading Table Rows

Read Exceptions 7-1

Retrieving a Single Row 7-2

Retrieve a Child Table 7-3

Using multiGet() 7-4

Iterating over Table Rows 7-6

Specifying Field Ranges 7-9

Iterating with Nested Tables 7-11

Reading Indexes 7-15

Parallel Scans 7-19

Bulk Get Operations 7-20

8 Using Data Types

Using Arrays 8-1

Using Binary 8-2

Using Enums 8-3

Using Fixed Binary 8-4

Using JSON 8-6

Using Maps 8-7

Using Embedded Records 8-8

9 Indexing Non-Scalar Data Types

Indexing Arrays 9-1

Indexing JSON Fields 9-2

Indexing Maps 9-4

Indexing by Map Keys 9-4

Indexing by Map Values 9-6

Indexing by a Specific Map Key Name 9-8

Indexing by Map Key and Value 9-9

Indexing Embedded Records 9-11

v

10

Using Row Versions

11

Consistency Guarantees

Specifying Consistency Policies 11-1

Using Simple Consistency 11-2

Using Time-Based Consistency 11-3

Using Version-Based Consistency 11-4

12

Durability Guarantees

Setting Acknowledgment-Based Durability Policies 12-2

Setting Synchronization-Based Durability Policies 12-2

Setting Durability Guarantees 12-3

13

Executing a Sequence of Operations

Sequence Errors 13-1

Creating a Sequence 13-1

Executing a Sequence 13-4

14

Introduction to SQL for Oracle NoSQL Database

Running a simple query 14-1

Using binding variables 14-2

Accessing metadata 14-3

Using a query to update data 14-4

15

Oracle NoSQL Database SDK for Spring Data

About the Oracle NoSQL Database SDK for Spring Data 15-1

Example: Accessing Oracle NoSQL Database Using Spring Data Framework 15-2

Components of Oracle NoSQL Database SDK for Spring Data 15-6

Persistence Model 15-7

Transactional Model 15-20

Setting up the Connection 15-21

Defining a Repository 15-24

Starting the Application 15-24

Queries 15-25

PagingAndSortingRepository Interface 15-25

vi

Derived Queries 15-26

Native Queries 15-29

Activating Logging 15-30

A JSON By Example

Sample Data A-2

UpdateJSON A-5

UpdateJSON.run() A-6

UpdateJSON.defineTable() A-7

UpdateJSON.createIndex() A-8

UpdateJSON.runDDL() A-8

UpdateJSON.updateTableWithoutQuery() A-9

UpdateJSON.updateTableWithIndex() A-10

UpdateJSON.updateTableUsingSQLQuery() A-11

UpdateJSON.updateZipCode() A-12

UpdateJSON.loadTable() A-12

UpdateJSON.displayTable() A-14

UpdateJSON.displayResult() A-15

UpdateJSON.parseArgs() A-16

B Table Data Definition Language Overview

Name Constraints B-1

DDL Comments B-2

CREATE TABLE B-2

Field Definitions B-4

Supported Data Types B-4

Field Constraints B-5

Integer Serialized Constraints B-5

COMMENT B-6

DEFAULT B-6

IDENTITY B-6

UUID B-8

MR_COUNTER B-8

NOT NULL B-8

USING TTL B-8

Table Creation Examples B-9

Modify Table Definitions B-10

ALTER TABLE ADD field B-10

ALTER TABLE DROP Option B-11

vii

ALTER TABLE USING TTL B-11

ALTER TABLE ADD REGIONS B-12

ALTER TABLE DROP REGIONS B-12

DROP TABLE B-12

CREATE INDEX B-13

Indexable Field Types B-14

Simple Indexes B-14

Multi-Key Indexes B-15

Multi-Key Index Restrictions B-16

JSON Indexes B-18

CREATE FULL TEXT INDEX B-18

DROP INDEX B-19

DESCRIBE AS JSON TABLE B-20

DESCRIBE AS JSON INDEX B-20

SHOW TABLES B-20

SHOW INDEXES B-21

C Supported Keywords in Query Method

D Exceptions

viii

Preface

There are two different APIs that can be used to write Oracle NoSQL Database
applications: the original Key/Value API, and the Table API. In addition, the Key/Value
API is available in Java and C. The Table API is available in Java, C, node.js
(Javascript), Python, and C#. This document describes how to write Oracle NoSQL
Database applications using the Table API in Java.

Note:

Most application developers should use one of the Table drivers because the
Table API offers important features not found in the Key/Value API. The Key/
Value API will no longer be enhanced in future releases of Oracle NoSQL
Database.

This document provides the concepts surrounding Oracle NoSQL Database, data
schema considerations, as well as introductory programming examples.

This document is aimed at the software engineer responsible for writing an Oracle
NoSQL Database application.

Conventions Used in This Book
The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example:
"The KVStoreConfig() constructor returns a KVStoreConfig class object."

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME
directory."

Program examples are displayed in a monospaced font on a shaded background. For
example:

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;

...

KVStoreConfig kconfig = new KVStoreConfig("exampleStore",
 "node1.example.org:5088, node2.example.org:4129");
KVStore kvstore = null;

ix

In some situations, programming examples are updated from one chapter to the next.
When this occurs, the new code is presented in monospaced bold font. For example:

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

...

KVStoreConfig kconfig = new KVStoreConfig("exampleStore",
 "node1.example.org:5088, node2.example.org:4129");
KVStore kvstore = null;

try {
 kvstore = KVStoreFactory.getStore(kconfig);
} catch (FaultException fe) {
 // Some internal error occurred. Either abort your application
 // or retry the operation.
}

Note:

Finally, notes of special interest are represented using a note block such as
this.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values
having a diverse workforce that increases thought leadership and innovation. As
part of our initiative to build a more inclusive culture that positively impacts our
employees, customers, and partners, we are working to remove insensitive terms from
our products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

x

1
Developing for Oracle NoSQL Database

You access the data in the Oracle NoSQL Database KVStore using Java drivers that
are provided for the product. In addition to the Java drivers, several other drivers are
also available. They are:

1. Java Key/Value Driver

2. C Table Driver

3. C Key/Value Driver

4. Python Table Driver

5. node.js Table Driver

6. C# Table Driver

Note:

New users should use one of the Table drivers unless they require a feature
only available in the Key/Value API (such as Large Object support). The Key/
Value API will no longer be enhanced in future releases of Oracle NoSQL
Database.

The Java and C Key/Value driver provides access to store data using key/value pairs.
All other drivers provide access using tables. Also, the Java Key/Value driver provides
Large Object (LOB) support that as of this release does not appear in the other
drivers. However, users of the Java Tables driver can access the LOB API, even
though the LOB API is accessed using the Key/Value interface.

Finally, the Java driver provides access to SQL for Oracle NoSQL Database, so you
can run queries. For more information see Introduction to SQL for Oracle NoSQL
Database.

Users of the Table drivers are able to create and use secondary indexing. The Java
and C Key/Value drivers do not provide this support.

To work, the C Table, Python Table, node.js Table, and C# Table drivers require use
of a proxy server which translates network activity between the driver and the Oracle
NoSQL Database store. The proxy is written in Java, and can run on any machine
that is network accessible by both your client code and the Oracle NoSQL Database
store. However, for performance and security reasons, Oracle recommends that you
run the proxy on the same local host as your driver, and that the proxy be used in a 1:1
configuration with your drivers (that is, each instance of the proxy should be used with
just a single driver instance).

Regardless of the driver you decide to use, the provided classes and methods allow
you to write data to the store, retrieve it, and delete it. You use these APIs to define
consistency and durability guarantees. It is also possible to execute a sequence of
store operations atomically so that all the operations succeed, or none of them do.

1-1

The rest of this book introduces the Java APIs that you use to access the store, and
the concepts that go along with them.

Configuring Logging
The Oracle NoSQL Database Java drivers use standard Java logging to capture
debugging output using loggers in the "oracle.kv" hierarchy. These loggers are
configured to use a oracle.kv.util.ConsoleHandler class, and to ignore any
handlers for loggers above oracle.kv in the logger hierarchy. As a result, logging
will be performed to the console at whatever logging levels are configured for the
various loggers and for the oracle.kv.util.ConsoleHandler class. You can adjust
what console output appears for these loggers by modifying the logging levels for the
loggers and the logging handler in their application's logging configuration file.

You can also configure additional logging handlers for all loggers used by the Java
driver by specifying handlers for the oracle.kv logger.

For example, if you want to enable file output for Java driver logging at the INFO level
or above, add the following to your application's configuration file (that is, the file you
identify using the java.util.logging.config.file system property):

 # Set the logging level for the FileHandler logging handler to INFO
java.util.logging.FileHandler.level=INFO

Set the logging level for all Java driver loggers to INFO
oracle.kv.level=INFO

Specify that Java driver loggers should supply log output to the
standard file handler
oracle.kv.handlers=java.util.logging.FileHandler

For information on managing logging in a Java application, see the
java.util.logging Javadoc.

Obtaining a KVStore Handle
To acccess the store for any reason, you must first obtain a KVStore handle, using the
KVStoreFactory.getStore() method.

When you get a KVStore handle, provide a KVStoreConfig object to the handle.
The configuration object identifies important properties about the store that you are
accessing. This section describes the KVStoreConfig class. Minimally, use this class
to identify the following information:

• The store name. The name you provide must be identical to the name used when
you installed the store.

• The network contact information for one or more helper hosts. Such contact
information consists of the network name and port information for hosts currently
belonging to the store. Identify multiple hosts using an array of strings, from one
element to several. We recommend using multiple hosts, since any host can be
down temporarily, and other hosts are then useful.

In addition to the KVStoreConfig class object, you can also provide a
PasswordCredentials class object to KVStoreFactory.getStore(). Do this if you are

Chapter 1
Configuring Logging

1-2

using a store configured to require authentication, which is recommended. See Using
the Authentication APIs for more information.

For a store that does not require authentication, get a store handle like this:

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

...

String[] hhosts = {"n1.example.org:5088", "n2.example.org:4129"};
KVStoreConfig kconfig = new KVStoreConfig("exampleStore", hhosts);
KVStore kvstore = KVStoreFactory.getStore(kconfig);

Using the KVStoreConfig Class
Use the KVStoreConfig class to describe properties about a KVStore handle. Most
of the properties are optional, and those that are required are provided when you
construct a class instance.

The properties that you can provide using KVStoreConfig are as follows:

• Consistency

Consistency is a property describing how likely it is that a record read from a
replica node is identical to the same record stored on a master node. For more
information, see Consistency Guarantees.

• Durability

Durability is a property describing how likely it is that a write operation performed
on the master node will not be lost if the master node is lost or is shut down
abnormally. For more information, see Durability Guarantees.

• Helper Hosts

Helper hosts are hostname and port pairs that identify how to contact helper
nodes within the store. Use an array of strings to identify multiple helper hosts .
Typically, you will obtain these hostname and port pairs from the store's deployer
or administrator. For example:

String[] hhosts = {"n1.example.org:3333", "n2.example.org:3333"};

• Request Timeout

Configures the amount of time the KVStore handle will wait for an operation to
complete before it times out.

• Store name

Identifies the name of the store.

• Password credentials and optionally a reauthentication handler

See the next section on authentication.

Chapter 1
Obtaining a KVStore Handle

1-3

Using the Authentication APIs
You can install Oracle NoSQL Database so that your client code does not have to
authenticate to the store. (For the sake of clarity, most of the examples in this book
do not perform authentication.) However, if you want your store to operate securely,
you can require authentication. Requiring authentication incurs a performance cost,
due to the overhead of using SSL and authentication. While we recommend that your
production store requires authentication over SSL, some sites that are particularly
performance sensitive can forgo that level of security.

Authentication involves sending username/password credentials to the store at the
time a store handle is acquired.

If you configure your store to support authentication, it is automatically configured
to communicate with clients using SSL. The use of SSL ensures privacy of the
authentication and other sensitive information. To use SSL, you must install SSL
certificates on the machines where your client code runs, to validate that the store
being accessed is trustworthy.

Be aware that you can authenticate to the store in several different ways.
You can use Kerberos, or you can specify a LoginCredentials implementation
instance to KVStoreFactory.getStore(). (Oracle NoSQL Database provides the
PasswordCredentials class as a LoginCredentials implementation.) If you use
Kerberos, you can either use security properties that Oracle NoSQL Database
understands to provide necessary Kerberos information, or you can use the Java
Authentication and Authorization Service (JAAS) programming framework.

For information on using LoginCredentials, see Authentication using a
LoginCredentials Instance. For information on using Kerberos, see Authentication
using Kerberos. For information on using JAAS with Kerberos, see Authentication
using Kerberos and JAAS.

For information on configuring a store for authentication, see Configuring
Authentication in the Security Guide.

Configuring SSL
If you are using a secure store, then all communications between your client code
and the store is transported over SSL, including authentication credentials. You must
therefore configure your client code to use SSL. To do this, you identify where the
SSL certificate data is, and you also separately indicate that the SSL transport is to be
used.

Identifying the Trust Store
When an Oracle NoSQL Database store is configured to use the SSL transport, a
series of security files are generated using a security configuration tool. One of these
files is the client.trust file, which must be copied to any machine running Oracle
NoSQL Database client code.

For information on using the security configuration tool, see Security Configuration in
the Security Guide.

Your code must be told where the client.trust file can be found because it
contains the certificates necessary to establish an SSL connection with the store.

Chapter 1
Using the Authentication APIs

1-4

You indicate where this file is physically located on your machine using the
oracle.kv.ssl.trustStore property. There are two ways to set this property:

1. Identify the location of the trust store by using a Properties
object to set the oracle.kv.ssl.trustStore property. You then use
KVStoreConfig.setSecurityProperties() to pass the Properties object to your
KVStore handle.

When you use this method, you use
KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY as the property name.

2. Use the oracle.kv.security property to refer to a properties file, such as the
client.trust file. In that file, set the oracle.kv.ssl.trustStore property.

Setting the SSL Transport Property
In addition to identifying the location of the client.trust file, you must also tell your
client code to use the SSL transport. You do this by setting the oracle.kv.transport
property. There are two ways to set this property:

1. Identify the location of the trust store by using a Properties
object to set the oracle.kv.transport property. You then use
KVStoreConfig.setSecurityProperties() to pass the Properties object to your
KVStore handle.

When you use this method, you use KVSecurityConstants.TRANSPORT_PROPERTY
as the property name, and KVSecurityConstants.SSL_TRANSPORT_NAME as the
property value.

2. Use the oracle.kv.security property to refer to a properties file, such as the
client.trust file. In that file, set the oracle.kv.transport property.

Authentication using a LoginCredentials Instance
You can authenticate to the store by specifying a LoginCredentials implementation
instance to KVStoreFactory.getStore(). Oracle NoSQL Database provides the
PasswordCredentials class as a LoginCredentials implementation. If your store
requires SSL to be used as the transport, configure that prior to performing the
authentication. (See the previous section for details.)

Your code should be prepared to handle a failed authentication attempt.
KVStoreFactory.getStore() will throw AuthenticationFailure in the event of a
failed authentication attempt. You can catch that exception and handle the problem
there.

The following is a simple example of obtaining a store handle for a secured store. The
SSL transport is used in this example.

import java.util.Properties;

import oracle.kv.AuthenticationFailure;
import oracle.kv.PasswordCredentials;
import oracle.kv.KVSecurityConstants;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

Chapter 1
Using the Authentication APIs

1-5

KVStore store = null;
try {
 /*
 * storeName, hostName, port, username, and password are all
 * strings that would come from somewhere else in your
 * application.
 */
 KVStoreConfig kconfig =
 new KVStoreConfig(storeName, hostName + ":" + port);

 /* Set the required security properties */
 Properties secProps = new Properties();
 secProps.setProperty(KVSecurityConstants.TRANSPORT_PROPERTY,
 KVSecurityConstants.SSL_TRANSPORT_NAME);
 secProps.setProperty
 (KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY,
 "/home/kv/client.trust");
 kconfig.setSecurityProperties(secProps);

 store =
 KVStoreFactory.getStore(kconfig,
 new PasswordCredentials(username,
 password.toCharArray(),
 null /* ReauthenticateHandler */));
} catch (AuthenticationFailureException afe) {
 /*
 * Could potentially retry the login, possibly with different
 * credentials, but in this simple example, we just fail the
 * attempt.
 */
 System.out.println("authentication failed!");
 return;
 }

Another way to handle the login is to place your authentication credentials in a flat
text file that contains all the necessary properties for authentication. In order for this to
work, a password store must have been configured for your Oracle NoSQL Database
store. See the Security Guide for information on setting up password stores.

For example, suppose your store has been configured to use a password file
password store and it is contained in a file called login.pwd. In that case, you might
create a login properties file called login.txt that looks like this:

oracle.kv.auth.username=clientUID1
oracle.kv.auth.pwdfile.file=/home/nosql/login.pwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=/home/nosql/client.trust

In this case, you can perform authentication in the following way:

import oracle.kv.AuthenticationFailure;
import oracle.kv.PasswordCredentials;
import oracle.kv.KVStoreConfig;

Chapter 1
Using the Authentication APIs

1-6

import oracle.kv.KVStoreFactory;

/* the client gets login credentials from the login.txt file */
/* can be set on command line as well */
System.setProperty("oracle.kv.security", "/home/nosql/login.txt");

KVStore store = null;
try {
 /*
 * storeName, hostName, port are all strings that would come
 * from somewhere else in your application.
 *
 * Notice that we do not pass in any login credentials.
 * All of that information comes from login.txt
 */
 myStoreHandle =
 KVStoreFactory.getStore(
 new KVStoreConfig(storeName, hostName + ":" + port))
} catch (AuthenticationFailureException afe) {
 /*
 * Could potentially retry the login, possibly with different
 * credentials, but in this simple example, we just fail the
 * attempt.
 */
 System.out.println("authentication failed!")
 return;
}

Renewing Expired Login Credentials
It is possible for an authentication session to expire. This can happen for several
reasons. One is that the store's administrator has configured the store to not allow
session extension and the session has timed out. These properties are configured
using sessionExtendAllow and sessionTimeout.

Reauthentication might also be required if some kind of a major disruption has
occurred to the store which caused the authentication session to become invalidated.
This is a pathological condition which you should not see with any kind of frequency in
a production store. Stores which are installed in labs might exhibit this condition more,
especially if the stores are frequently restarted.

An application can encounter an expired authentication session at any point in its
lifetime, so robust code that must remain running should always be written to respond
to authentication session expirations.

When an authentication session expires, by default the method which is attempting
store access will throw AuthenticationRequiredException. Upon seeing this, your
code needs to reauthenticate to the store, and then retry the failed operation.

You can manually reauthenticate to the store by using the KVStore.login() method.
This method requires you to provide the login credentials via a LoginCredentials
class instance (such as PasswordCredentials):

try {
 ...

Chapter 1
Using the Authentication APIs

1-7

 /* Store access code happens here */
 ...
} catch (AuthenticationRequiredException are) {
 /*
 * myStoreHandle is a KVStore class instance.
 *
 * pwCreds is a PasswordCredentials class instance, obtained
 * from somewhere else in your code.
 */
 myStoreHandle.login(pwCreds);
}

Note that this is not required if you use the oracle.kv.auth.username and
oracle.kv.auth.pwdfile.file properties, as shown in the previous section. In
that case, your Oracle NoSQL Database client code will automatically and silently
reauthenticate your client using the values specified by those properties.

A third option is to create a ReauthenticationHandler class implementation that
performs your reauthentication for you. This option is only necessary if you provided
a LoginCredentials implementation instance (that is, PasswordCredentials) in a call
to KVStoreFactory.getStore(), and you want to avoid a subsequent need to retry
operations by catching AuthenticationRequiredException.

A truly robust example of a ReauthenticationHandler implementation is beyond
the scope of this manual (it would be driven by highly unique requirements that
are unlikely to be appropriate for your site). Still, in the interest of completeness,
the following shows a very simple and not very elegant implementation of
ReauthenticationHandler:

package kvstore.basicExample

import oracle.kv.ReauthenticationHandler;
import oracle.kv.PasswordCredentials;

public class MyReauthHandler implements ReauthenticationHandler {
 public void reauthenticate(KVStore reauthStore) {
 /*
 * The code to obtain the username and password strings would
 * go here. This should be consistent with the code to perform
 * simple authentication for your client.
 */
 PasswordCredentials cred = new PasswordCredentials(username,
 password.toCharArray());

 reauthStore.login(cred);
 }
}

You would then supply a MyReauthHandler instance when you obtain your store
handle:

import java.util.Properties;

import oracle.kv.AuthenticationFailure;

Chapter 1
Using the Authentication APIs

1-8

import oracle.kv.PasswordCredentials;
import oracle.kv.KVSecurityConstants;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

import kvstore.basicExample.MyReauthHandler;

KVStore store = null;
try {
 /*
 * storeName, hostName, port, username, and password are all
 * strings that would come from somewhere else in your
 * application. The code you use to obtain your username
 * and password should be consistent with the code used to
 * obtain that information in MyReauthHandler.
 */
 KVStoreConfig kconfig =
 new KVStoreConfig(storeName, hostName + ":" + port);

 /* Set the required security properties */
 Properties secProps = new Properties();
 secProps.setProperty(KVSecurityConstants.TRANSPORT_PROPERTY,
 KVSecurityConstants.SSL_TRANSPORT_NAME);
 secProps.setProperty
 (KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY,
 "/home/kv/client.trust");
 kconfig.setSecurityProperties(secProps);

 store =
 KVStoreFactory.getStore(kconfig,
 new PasswordCredentials(username,
 password.toCharArray()));
 new MyReauthHandler());
} catch (AuthenticationFailureException afe) {
 /*
 * Could potentially retry the login, possibly with different
 * credentials, but in this simple example, we just fail the
 * attempt.
 */
 System.out.println("authentication failed!")
 return;
}

Authentication using Kerberos
You can authenticate to the store by using Kerberos. To do this, you must already have
installed Kerberos and obtained the necessary login and service information.

The following is a simple example of obtaining a store handle for a secured store, and
using Kerberos to authenticate. Information specific to Kerberos, such as the Kerberos

Chapter 1
Using the Authentication APIs

1-9

user name, is specified using KVSecurityConstants that are set as properties to the
KVStoreConfig instance which is used to create the store handle.

import java.util.Properties;

import oracle.kv.KVSecurityConstants;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

KVStore store = null;
/*
 * storeName, hostName, port, username, and password are all
 * strings that would come from somewhere else in your
 * application.
 */
KVStoreConfig kconfig =
 new KVStoreConfig(storeName, hostName + ":" + port);

/* Set the required security properties */
Properties secProps = new Properties();

/* Set the user name */
secProps.setProperty(KVSecurityConstants.AUTH_USERNAME_PROPERTY,
 "krbuser");

/* Use Kerberos */
secProps.setProperty(KVSecurityConstants.AUTH_EXT_MECH_PROPERTY,
 "kerberos");

/* Set SSL for the wire level encryption */
secProps.setProperty(KVSecurityConstants.TRANSPORT_PROPERTY,
 KVSecurityConstants.SSL_TRANSPORT_NAME);

/* Set the location of the public trust file for SSL */
secProps.setProperty
 (KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY,
 "/home/kv/client.trust");

/* Set the service principal associated with the helper host */
final String servicesDesc =
 "localhost:oraclenosql/localhost@EXAMPLE.COM";
secProps.setProperty(
 KVSecurityConstants.AUTH_KRB_SERVICES_PROPERTY,
 servicesDesc);

/*
 * Set the default realm name to permit using a short name for the
 * user principal
 */
secProps.setProperty(KVSecurityConstants.AUTH_KRB_REALM_PROPERTY,
 "EXAMPLE.COM");

/* Specify the client keytab file location */
secProps.setProperty(KVSecurityConstants.AUTH_KRB_KEYTAB_PROPERTY,

Chapter 1
Using the Authentication APIs

1-10

 "/tmp/krbuser.keytab");

kconfig.setSecurityProperties(secProps);

store = KVStoreFactory.getStore(kconfig);

Authentication using Kerberos and JAAS
You can authenticate to the store by using Kerberos and the Java Authentication and
Authorization Service (JAAS) login API. To do this, you must already have installed
Kerberos and obtained the necessary login and service information.

The following is a simple example of obtaining a store handle for a secured store, and
using Kerberos with JAAS to authenticate.

To use JAAS, you create a configuration file that contains required Kerberos
configuration information. For example, the following could be placed in the file named
jaas.config:

oraclenosql {
 com.sun.security.auth.module.Krb5LoginModule required
 principal="krbuser"
 useKeyTab="true"
 keyTab="/tmp/krbuser.keytab";
};

To identify this file to your application, set the Java property
java.security.auth.login.config using the -D option when you run your
application.

Beyond that, you use KVSecurityConstants to specify necessary properties, such
as the SSL transport. You can also specify necessary Kerberos properties, such
as the Kerberos user name, using KVSecurityConstants, or you can use the
KerberosCredentials class to do this.

import java.security.PrivilegedActionException;
import java.security.PrivilegedExceptionAction;
import java.util.Properties;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

import oracle.kv.KerberosCredentials;
import oracle.kv.KVSecurityConstants;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

/*
 * storeName, hostName, port, username, and password are all
 * strings that would come from somewhere else in your
 * application.
 */

Chapter 1
Using the Authentication APIs

1-11

final KVStoreConfig kconfig =
 new KVStoreConfig(storeName, hostName + ":" + port);

/* Set the required security properties */
Properties secProps = new Properties();

/* Set SSL for the wire level encryption */
secProps.setProperty(KVSecurityConstants.TRANSPORT_PROPERTY,
 KVSecurityConstants.SSL_TRANSPORT_NAME);

/* Set the location of the public trust file for SSL */
secProps.setProperty
 (KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY,
 "/home/kv/client.trust");

/* Use Kerberos */
secProps.setProperty(KVSecurityConstants.AUTH_EXT_MECH_PROPERTY,
 "kerberos");

/* Set Kerberos properties */
final Properties krbProperties = new Properties();

/* Set the service principal associated with the helper host */
final String servicesPpal =
 "localhost:oraclenosql/localhost@EXAMPLE.COM";
krbProperties.setProperty(KVSecurityConstants.AUTH_KRB_SERVICES_PROPERTY
,
 hostName + ":" + servicesPpal);

/* Set default realm name, because the short name
 * for the user principal is used.
 */
krbProperties.setProperty(KVSecurityConstants.AUTH_KRB_REALM_PROPERTY,
 "EXAMPLE.COM");

/* Specify Kerberos principal */
final KerberosCredentials krbCreds =
 new KerberosCredentials("krbuser", krbProperties);

try {
 /* Get a login context */
 final Subject subj = new Subject();
 final LoginContext lc = new LoginContext("oraclenosql", subj);

 /* Attempt to log in */
 lc.login();

 /* Get the store using the credentials specified in the subject */
 kconfig.setSecurityProperties(secProps);

 store = Subject.doAs(
 subj, new PrivilegedExceptionAction<KVStore>() {
 @Override
 public KVStore run() throws Exception {
 return KVStoreFactory.getStore(kconfig, krbCreds, null);

Chapter 1
Using the Authentication APIs

1-12

 }
 });
} catch (LoginException le) {
 // LoginException handling goes here
} catch (PrivilegedActionException pae) {
 // PrivilegedActionException handling goes here
} catch (Exception e) {
 // General Exception handling goes here
}

Unauthorized Access
Clients which must authenticate to a store are granted some amount of access
to the store. This could range from a limited set of privileges to full, complete
access. The amount of access is defined by the roles and privileges granted to the
authenticating user. Therefore, a call to the Oracle NoSQL Database API could fail
due to not having the authorization to perform the operation. When this happens,
UnauthorizedException will be thrown.

When UnauthorizedException is seen, the operation should not be retried. Instead,
the operation should either be abandoned entirely, or your code could attempt to
reauthenticate using different credentials that would have the required permissions
necessary to perform the operation. Note that a client can log out of a store using
KVStore.logout(). How your code logs back in is determined by how your store is
configured for access, as described in the previous sections.

// Open a store handle, and perform authentication as you do
// as described earlier in this section.

...

try {
 // When you attempt some operation (such as a put or delete)
 // to a secure store, you should catch UnauthorizedException
 // in case the user credentials you are using do not have the
 // privileges necessary to perform the operation.
} catch (UnauthorizedException ue) {
 /*
 * When you see this, either abandon the operation entirely,
 * or log out and log back in with credentials that might
 * have the proper permissions for the operation.
 */
 System.out.println("authorization failed!")
 return;
}

Chapter 1
Using the Authentication APIs

1-13

2
Introduction to Oracle KVLite

KVLite is a single-node, single shard store. It usually runs in a single process and is
used to develop and test client applications. KVLite is installed when you install Oracle
NoSQL Database.

Starting KVLite
You start KVLite by using the kvlite utility, which can be found in KVHOME/lib/
kvstore.jar. If you use this utility without any command line options, then KVLite
will run with the following default values:

• The store name is kvstore.

• The hostname is the local machine.

• The registry port is 5000.

• The directory where Oracle NoSQL Database data is placed (known as KVROOT)
is ./kvroot.

• The administration process is turned on.

• Security is turned on.

This means that any processes that you want to communicate with KVLite can only
connect to it on the local host (127.0.0.1) using port 5000. If you want to communicate
with KVLite from some machine other than the local machine, then you must start
it using non-default values. The command line options are described later in this
chapter.

For example:

> java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar kvlite

Note:

To avoid using too much heap space, you should specify the -Xmx and -Xms
flags for Java when running administrative and utility commands.

When KVLite has started successfully, it writes one of two statements to stdout,
depending on whether it created a new store or is opening an existing store (the
following assumes security is enabled):

Generated password for user admin: password
User login file: ./kvroot/security/user.security
Created new kvlite store with args:

2-1

-root ./kvroot -store <kvstore> -host localhost -port 5000
-secure-config enable

Note:

The password is randomly generated.

or

Opened existing kvlite store with config:
-root ./kvroot -store <kvstore name> -host <localhost> -port 5000
-secure-config enable

where <kvstore name> is the name of the store and <localhost> is the name of the
local host. It takes about 10 - 60 seconds before this message is issued, depending on
the speed of your machine.

Note that you will not get the command line prompt back until you stop KVLite.

Stopping and Restarting KVLite
To stop KVLite, use ^C from within the shell where KVLite is running.

To restart the process, simply run the kvlite utility without any command line options.
Do this even if you provided non-standard options when you first started KVLite. This
is because KVLite remembers information such as the port value and the store name
in between run times. You cannot change these values by using the command line
options.

If you want to start over with different options than you initially specified, delete the
KVROOT directory (./kvroot, by default), and then re-run the kvlite utility with
whatever options you desire. Alternatively, specify the -root command line option,
making sure to specify a location other than your original KVROOT directory, as well
as any other command line options that you want to change.

Verifying the Installation
There are several things you can do to verify your installation, and ensure that KVLite
is running:

• Start another shell and run:

jps -m

The output should show KVLite (and possibly other things as well, depending on
what you have running on your machine).

• Run the kvclient test application:

1. cd KVHOME

2. java -Xmx64m -Xms64m -jar lib/kvclient.jar

Chapter 2
Stopping and Restarting KVLite

2-2

This should write the release to stdout:

12cR1.M.N.O...

• Download the examples package and unpack it so that the examples directory is
in KVHOME. You can obtain the examples package from the same place as you
obtained your server download package.

• Compile and run the example program:

1. cd KVHOME

2. Compile the example:

javac -g -cp lib/kvclient.jar:examples examples/hello/*.java

3. Run the example using all default parameters:

java -Xmx64m -Xms64m \
-Doracle.kv.security=<KVROOT>/security/user.security \
-cp lib/kvclient.jar:examples hello.HelloBigDataWorld

Or run it using non-default parameters, if you started KVLite using non-default
values:

java -Xmx64m -Xms64m \
-cp lib/kvclient.jar:examples hello.HelloBigDataWorld \
 -host <hostname> -port <hostport> -store <kvstore name>

kvlite Utility Command Line Parameter Options
This section describes the command line options that you can use with the kvlite
utility.

Note that you can only specify these options the first time KVLite is started. Most
of the parameter values specified here are recorded in the KVHOME directory, and
will be used when you restart the KVLite process regardless of what you provide as
command line options. If you want to change your initial values, either delete your
KVHOME directory before starting KVLite again, or specify the -root option (with a
different KVHOME location than you initially used) when you provide the new values.

• -help

Print a brief usage message, and exit.

• -host <hostname>

Identifies the name of the host on which KVLite is running.

If you want to access this instance of KVLite from remote machines, supply the
local host's real hostname. Otherwise, specify localhost for this option.

• -noadmin

If this option is not specified, the administration user interface is started.

• -port <port>

Chapter 2
kvlite Utility Command Line Parameter Options

2-3

Identifies the port on which KVLite is listening for client connections. Use this
option ONLY if you are creating a new store.

• -root <path>

Identifies the path to the Oracle NoSQL Database home directory. This is the
location where the store's database files are contained. The directory identified
here must exist. If the appropriate database files do not exist at the location
identified by the option, they are created for you.

• -secure-config <enable|disable>

If enabled, causes security to be enabled for the store. This means all clients
connecting to the store must present security credentials. Security is enabled by
default.

• -store <storename>

Identifies the name of a new store. Use this option ONLY if you are creating a new
store.

For information on configuring your client code to connect to a secure store, see
Using the Authentication APIs .

Chapter 2
kvlite Utility Command Line Parameter Options

2-4

3
Introducing Oracle NoSQL Database
Tables and Indexes

Using the Table API (in one of the supported languages) is the recommended method
of developing an Oracle NoSQL Database client application. Table APIs let you
manipulate data using a tables metaphor, in which data is organized in multiple
columns of data. The table APIs support an unlimited number of subtables. You can
also create indexes to improve query performance against your tables.

If you have a mix of clients accessing your store using both Table and Key/Value APIs,
a remote chance exists that keys from different clients could collide. To avoid any
possible conflict between keys, however unlikely, make sure that every KV key has
either only:

• A single component

• A single major component

Note:

Throughout this manual, examples call TableAPI.getTable(). The cost of
calling this API is relatively high, because doing so requires a round trip
to the store to fulfill the request. For optimal performance, call this method
sparingly in your code.

Defining Tables
Before an Oracle NoSQL Database client can read or write to a table in the store,
you must first create the tables. There are several ways to do this, but this document
focuses on using Table DDL statements. You can submit these statements to the
store directly using both the Admin command line interface (CLI), with the execute
command), or the SQL CLI. However, the recommended approach is to submit DDL
statements to the store programmatically. This section describes both direct and
programmatic methods.

The DDL language that you use to define tables is described in Table Data Definition
Language Overview. This section provides a brief overview of how to use that
language.

As an introductory example, suppose you want to create a table called myTable with
four columns: item, description, count, and percentage. To create your table, use
the following statement from the SQL CLI:

sql-> CREATE TABLE myTable (
 item STRING,
 description STRING,
 count INTEGER,

3-1

 percentage DOUBLE,
 PRIMARY KEY (item) // Every table must have a primary key
);
Statement completed successfully

Note:

Primary keys are a concept that have not yet been introduced. See Primary
and Shard Key Design for a complete explanation of what they are, and how
you should use them. For now, be sure a primary key exists for every table
you create, just as the previous example illustrates.

Executing DDL Statements Programmatically

To add the table definition to the store programmatically use the KVStore.execute()
or KVStore.executeSync() methods. (The latter method executes the statement
synchronously.)

For example:

package kvstore.basicExample;

import oracle.kv.FaultException;
import oracle.kv.StatementResult;
import oracle.kv.KVStore;
import oracle.kv.table.TableAPI;
...
// store handle creation and open omitted
...

StatementResult result = null;
String statement = null;

public void createTable() {
 StatementResult result = null;
 String statement = null;

 try {
 /*
 * Add a table to the database.
 * Execute this statement asynchronously.
 */
 statement =
 "CREATE TABLE myTable (" +
 "item STRING," +
 "description STRING," +
 "count INTEGER," +
 "percentage DOUBLE," +
 "PRIMARY KEY (item))"; // Required"
 result = store.executeSync(statement);

 displayResult(result, statement);

Chapter 3
Defining Tables

3-2

 } catch (IllegalArgumentException e) {
 System.out.println("Invalid statement:\n" + e.getMessage());
 } catch (FaultException e) {
 System.out.println
 ("Statement couldn't be executed, please retry: " + e);
 }
}

private void displayResult(StatementResult result, String statement) {
 System.out.println("===========================");
 if (result.isSuccessful()) {
 System.out.println("Statement was successful:\n\t" +
 statement);
 System.out.println("Results:\n\t" + result.getInfo());
 } else if (result.isCancelled()) {
 System.out.println("Statement was cancelled:\n\t" +
 statement);
 } else {
 /*
 * statement was not successful: may be in error, or may still
 * be in progress.
 */
 if (result.isDone()) {
 System.out.println("Statement failed:\n\t" + statement);
 System.out.println("Problem:\n\t" +
 result.getErrorMessage());
 } else {
 System.out.println("Statement in progress:\n\t" +
 statement);
 System.out.println("Status:\n\t" + result.getInfo());
 }
 }
}

Executing DDL Statements From the Admin CLI
You can execute DDL statements using the Admin CLI's execute command. This
executes DDL statements synchronously. For example:

kv-> execute "CREATE TABLE myTable (
> item STRING,
> description STRING,
> count INTEGER,
> percentage DOUBLE,
> PRIMARY KEY (item))"
Statement completed successfully
kv->

Chapter 3
Defining Tables

3-3

Supported Table Data Types
You specify schema for each column in an Oracle NoSQL Database table. This
schema can be a primitive data type, or complex data types that are handled as
objects.

Oracle NoSQL Database tables support the following data types:

Data Type Description

Array An array of values, all of the same type.
Binary Implemented as a byte array with no predetermined

fixed size.
Boolean
Double
Enum An enumeration, represented as an array of strings.
Fixed Binary Implemented as a byte array with no predetermined

fixed size.
Float
Integer
Json Any valid JSON data.
Long
Number A numeric type capable of handling any type of number

or any value or precision.
Map An unordered map type, where all entries are

constrained by a single type.
Records See the following section.
String
Timestamp An absolute timestamp encapsulating a date and,

optionally, a time value.

Record Fields
As described in Defining Child Tables, you can create child tables to hold subordinate
information, such as addresses in a contacts database, or vendor contact information
for an inventory system. When you do this, you can create an unlimited number of
rows in the child table, and you can index the fields in the child table's rows.

However, you do not need to create child tables to organize subordinate data. If you
have simple requirements for subordinate data, you can use record fields, instead of
child tables. In general, you can use record fields instead of child tables if you want
only a fixed, small number of instances of the record for each parent table row. For
anything beyond trivial cases, use child tables.

Note:

There is no downside to using child tables for even trivial cases.

The assumption when using record fields is that you have a fixed, known number of
records to manage (unless you organize them as arrays). For example, in a contacts

Chapter 3
Defining Tables

3-4

database, child tables let you have an unlimited number of addresses associated
for each user. By using records, rather than child tables, you can associate a fixed
number of addresses by creating a record field for each supported address (home and
work, for example).

For example:

CREATE TABLE myContactsTable (
 uid STRING,
 surname STRING,
 familiarName STRING,
 homePhone STRING,
 workPhone STRING,
 homeAddress RECORD (street STRING, city STRING, state STRING,
 zip INTEGER),
 workAddress RECORD (street STRING, city STRING, state STRING,
 zip INTEGER),
 PRIMARY KEY(uid))

Alternatively, you can create an array of record fields. This lets you create an unlimited
number of address records per field. In general, however, you should use child tables
in this case.

CREATE TABLE myContactsTable (
 uid STRING,
 surname STRING,
 familiarName STRING,
 homePhone STRING,
 workPhone STRING,
 addresses ARRAY(RECORD (street STRING, city STRING, state STRING,
 zip INTEGER))),
 PRIMARY KEY(uid))

Defining Child Tables
Oracle NoSQL Database tables can be organized in a parent/child hierarchy. There is
no limit to how many child tables you can create, nor is there a limit to how deep the
child table nesting can go.

By default, child tables are not retrieved when you retrieve a parent table, nor is the
parent retrieved when you retrieve a child table.

To create a child table, you name the table using the format:
<parentTableName>.<childTableName>. For example, suppose you had the trivial
table called myInventory:

CREATE TABLE myInventory (
 itemCategory STRING,
 description STRING,
 PRIMARY KEY (itemCategory)
)

Chapter 3
Defining Tables

3-5

We can create a child table called itemDetails in the following way:

CREATE TABLE myInventory.itemDetails (
 itemSKU STRING,
 itemDescription STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (itemSKU)
)

Note that when you do this, the child table inherits the parent table's primary key. In
this trivial case, the child table's primary key is actually two fields: itemCategory and
itemSKU. This has several ramifications, one of which is that the parent's primary key
fields are retrieved when you retrieve the child table. See Retrieve a Child Table for
more information.

Defining Multi-Region Tables
A Multi-Region Table or MR Table is a global logical table that is stored and maintained
in different regions or installations. It is a read-anywhere and write-anywhere table that
lives in multiple regions.

Consider an Oracle NoSQL Database with three regions, Frankfurt, London, and
Dublin. To create a table called users that stores user details for all the three regions,
you must create an MR table on each KVStore in the connected graph, and specify the
list of regions that the table should span.

For example, to create the users table in all the three regions, you must execute the
following command from each region separately:

CREATE TABLE users (
 id INTEGER,
 firstName STRING,
 lastName STRING,
 age INTEGER,
 primary key (id)
) IN REGIONS fra, lnd, dub;

For information about MR Tables, see Life Cycle of MR Tables in the Concepts Guide.

Using CRDT datatype in a multi-region table
Overview of the MR_COUNTER data type

MR_Counter data type is a counter CRDT. CRDT stands for Conflict-free Replicated
Data Type. In a multi-region setup of an Oracle NoSQL Database, a CRDT is a
data type that can be replicated across servers where regions can be updated
independently and it is always possible to converge on a correct common state.
Changes in the regions are concurrent and not synchronized with one another. In
short, CRDTs provide a way for concurrent modifications to be merged across regions
without user intervention. Oracle NoSQL Databasecurrently supports the counter
CRDT type which is called MR_Counter. The MR_COUNTER datatype is a subtype of
the INTEGER or LONG or NUMBER data type.

Chapter 3
Defining Tables

3-6

Why do you need MR_Counter in a multi-region table?

In a multi-region database configuration, copies of the same data need to be stored in
multiple regions. This configuration needs to deal with the fact that the data may be
concurrently modified in different regions.

Take an example of a multi-region table in three different regions (where data is
stored in three different Oracle NoSQL Database stores). Concurrent updates of the
same data in multiple regions, without coordination between the machines hosting
the regions, can result in inconsistencies between the regions, which in the general
case may not be resolvable. Restoring consistency and data integrity when there are
conflicts between updates may require some or all of the updates to be entirely or
partially dropped. For example, in the current configuration of a multi-region table in
the Oracle NoSQL Database, if the same column (a counter) of a multi-region table is
updated across two regions at the same time with different values, a conflict arises.

Currently, the conflict resolution is that the latest write overwrites the value across
regions. For example, Region 1 updates column1 with a value R1, and region2
updates column1 with a value R2, and if the region2 update happens after region1,
the value of the column (counter) in both the regions becomes R2. This is not what
is actually desired. Rather every region should update the column (a counter) at their
end and also the system internally needs to determine the sum of the column across
regions.

One way to handle this conflict is making serializable/linearizable transactions(one
transaction is completed and changes are synchronized in all regions and only
then the next transaction happens). A significant problem of having serializable
transactions is performance. This is where MR_COUNTER datatype comes in handy.
With MR_COUNTER datatype, we don't need serializable transactions and the conflict
resolution is taken care of. That is, MR_COUNTER datatype ensures that though
data modifications can happen simultaneously on different regions, the data can
always be merged into a consistent state. This merge is performed automatically by
MR_COUNTER datatype, without requiring any special conflict resolution code or user
intervention.

Use-case for MR_COUNTER datatype

Consider a Telecom provider providing different services and packages to its
customers. One such service is a "Family Plan" option where a customer and their
family share the Data Usage plan. The customer is allocated a free data usage limit
for a month which your the customer's entire family collectively uses. When the total
usage of customer's family reaches 90 percent of the data limit, the telecom provider
sends the customer an alert. Say there are four members in customer's family plan
who are spread across different physical regions. The customer needs to get an
alert from the telecom provider once the total consumption of their family reaches 90
percent of the free usage. The data is replicated in different regions to cater to latency,
throughput, and better performance. That means there are four regions and each has
a kvstore containing the details of the customer's data usage. The usage of their family
members needs to be updated in different regions and at any point in time, the total
usage should be monitored and an alert should be sent if the data usage reaches the
limit.

An MR_COUNTER data type is ideal in such a situation to do conflict-free tracking of
the data usage across different regions. In the above example, an increment counter in
every data region's data store will track the data usage in that region. The consolidated
data usage for all regions can be determined by the system at any point without

Chapter 3
Defining Tables

3-7

any user intervention. That is the total data usage at any point in time can be easily
determined by the system using an MR_COUNTER datatype.

Types of MR_COUNTER Datatype

Currently, Oracle NoSQL Database supports only one type of MR_COUNTER data
type. which is Positive-Negative (PN) counter.

Positive-Negative (PN) Counter

A PN counter can be incremented or decremented. Therefore, these can serve as
a general-purpose counter. For example, you can use these counters to count the
number of users active on a social media website at any point. When the users go
offline you need to decrement the counter.

To create a multi-region table with an MR_COUNTER column, See Create multi-region
table with an MR_COUNTER column section in the Administrator's Guide.

Add MR_COUNTER datatype in a multi-region table
For example, to create a multi-region table myTable with a counter data type, you must
execute the following command from each region.

CREATE Table myTable(name STRING,
 count INTEGER AS MR_COUNTER,
 PRIMARY KEY(name)) IN REGIONS DEN,LON;

Table Evolution
As your application is used over time, it's often necessary to update your tables to
either add new fields or remove existing fields that are no longer required. Table
evolution is the term used to update table definitions, adding or removing fields, or
changing field properties, such as a default value. You may even add a particular kind
of column, like an IDENTITY column, to increment some value automatically. Only
tables that already exist in the store are candidates for table evolution.

Use the ALTER TABLE statement to perform table evolution. See Modify Table
Definitions.

Note:

You cannot remove a field if it is a primary key field, or if it participates in an
index. You also cannot add primary key fields during table evolution.

For example, the following statements evolve the table that was created in the
previous section. In this example, you would submit each statement to the store
consecutively, using either the API or the CLI.

ALTER TABLE myInventory.itemDetails (ADD salePrice FLOAT)

ALTER TABLE myInventory.itemDetails (DROP inventoryCount)

Chapter 3
Defining Tables

3-8

Defining Tables With an IDENTITY Column
You can create an IDENTITY column to auto-increment a value each time you add a
row.

You create an IDENTITY column as part of a CREATE TABLE name DDL statement,
or add an IDENTITY column to an existing table with an ALTER TABLE name DDL
statement.

Only one IDENTITY column can exist per table. It must be an INTEGER, LONG, or NUMBER
datatype.

Every IDENTITY column is part of a table, and cannot exist as an independent object.
For more information about adding IDENTITY columns, see Altering or Dropping an
IDENTITY Column .

An IDENTITY column requires an associated Sequence Generator (SG). The SG
is the table’s manager for tracking the IDENTITY column’s current, next, and total
number of values. An SG has several attributes that define its behavior, such as the
starting value for its IDENTITY column, or the number of values stored in cache. You
can optionally define some SG attributes when you create an IDENTITY column, or
use all default values. For more information about the Sequence Generator attributes,
see Sequence Generator Attributes .

Note:

Using an IDENTITY column in any table does not force uniqueness. If your
application requires unique values for every row of an IDENTITY column,
you must create the column as GENERATED ALWAYS AS IDENTITY, and
never permit any use of the CYCLE SG attribute.

If more than one client accesses a table with an IDENTITY column defined for unique
values this way, each client is assigned contiguous value sets to its SG cache. These
sets do not overlap with other client sets. For example, Client1 is assigned values
0001 – 1000, while Client2 has 1001 – 2000, and so on. Thus, as each client adds
rows to the table, the IDENTITY values can run as 0001, 1001, 0002, 1002, 1003, and
so on, as both clients use their own cache when adding rows. The IDENTITY column
values are guaranteed to be unique, but not necessarily contiguous, because each
client has its own set of cache values, and adds rows at different speeds and times.

You can add, remove, or change rows of an IDENTITY column, though certain
limitations exist on such updates, depending on how you create the IDENTITY column,
and whether it is a Primary Key. These specifics are described later in this section.

You can also create an index on a table IDENTITY column.

Note:

Dropping a table that was created with an IDENTITY column also removes
the Sequence Generator.

Chapter 3
Defining Tables With an IDENTITY Column

3-9

Users require table privileges to create tables with an IDENTITY column. For a
description of user privileges, see KVStore Required Privileges in the Security Guide.

Sequence Generator Attributes
Every IDENTITY column you add to a table requires its own Sequence Generator
(SG). The SG is responsible for several tasks, including obtaining and supplying
values to the IDENTITY column as necessary.

Each IDENTITY column requires an associated, dedicated Sequence Generator (SG).
When you add an IDENTITY column, the system creates an SG that's runs on the
client with the application. Information about all attributes for every SG is added to a
system table, SYS$SGAttributesTable. You can see the contents of this system table
using a simple query such as this:

SELECT * FROM SYS$SGAttributesTable

For other commands:

Differences in Commands Description

SHOW TABLES Returns a list of tables

DESCRIBE TABLE name1 Shows the schema of table name1

SELECT * FROM table_name Shows the data rows of table_name

The Sequence Generator for an IDENTITY field has several responsibilities. One of
the first tasks for the SG when you create or add an IDENTITY to a table is to create
a cache of values on the client, and to set the Current_Value. From the cache, the SG
assigns values to the IDENTITY field when new rows are added. By default, if you do
not specify a value for the Cache attribute, the client stores 1000 values, starting at
1. You can increase or decrease this size when you create the IDENTITY, or after the
table exists if the cache value does not meet your requirements. By storing IDENTITY
values at the client, the application does not need to access the server each time it
requires another value.

If you specify the Cycle attribute, all of the existing values for the IDENTITY column
are used again, potentially overwriting current values in place. Creating a column as
GENERATED ALWAYS AS IDENTITY, and using the SG NO CYCLE attribute is the only way
to maintain unique IDENTITY column values.

Following are the SG attributes that you can optionally specify when you create an
IDENTITY column, or change later using the ALTER TABLE statement.

Attribute Type Description

Start With Number Default: 1 The first value in the sequence. Zero (0)
is permitted as a Start With value, but not for an
Increment By setting.

Increment By Long Default: 1 The value to increment the current value,
which can be a positive or a negative number. Zero (0)
is not permitted as an Increment By value. Specifying a
negative number for Increment By decrements values
from the Start With value.

Chapter 3
Defining Tables With an IDENTITY Column

3-10

Attribute Type Description

MinValue Number Default: The minimum value of the field data type.
The lower bound of the IDENTITY values that the SG
supplies. You can specify MinValue, or No MinValue,
but not both.

No MinValue Number Default: Specifies the lower bound of the field values is
the lowest value for the field data type. You can specify
No MinValue, or MinValue, but not both.

MaxValue Number Default: The maximum value of the field data type.
The upper bound of the IDENTITY values that the SG
supplies. If you do not specify this attribute, SG uses the
maximum value of the field data type. You can specify
MaxValue, or No MaxValue, but not both.

No MaxValue Number Default: Specifies that there is no upper bound of the
IDENTITY values that the SG supplies, other than the
maximum value of the field data type. If you do not
specify this attribute, SG uses the maximum value of
the field data type. You can specify No MaxValue, or
MaxValue, but not both.

Cache Long Default: 1000 The number of values stored in local
client cache to use for the next IDENTITY value. When
the set of values is exhausted, the SG requests another
set of values from the server to store in local cache.

Cycle | NoCycle Boolean Default: NoCycle determines whether to reuse the set
of all possible values for the datatype of the IDENTITY.
The Cycle attribute is tied to the total number of values
that can be generated for an IDENTITY of a specific
datatype (INTEGER, LONG, or NUMBER). unless you
specify MaxValue to set a different limit. If you do not
specify Cycle, Oracle NoSQL Database guarantees that
each IDENTITY value in the column is unique, but not
necessarily sequential. For example, if you set MaxValue
as 10000, and multiple clients add rows to the table,
each client is assigned a certain amount of values to
use.

Following are internal SG attributes. You cannot specify any of these when you create
or add an IDENTITY column. Each is derived from how you create the IDENTITY field.
For example, one internal attribute is SGName, which is the column name you give the
IDENTITY field.

Attribute Type Description

SGType String [INTERNAL | EXTERNAL]. The IDENTITY column you
create, or add to a table with a DDL statement. The
default is INTERNAL.

SGName String Name of the IDENTITY field you create and with which
the SG is associated.

Datatype String Sequence Generator datatype that you specified as
part of the CREATE TABLE statement for the IDENTITY
column. Each IDENTITY column can be any numeric
type: INTEGER, LONG, or NUMBER.

Chapter 3
Defining Tables With an IDENTITY Column

3-11

Attribute Type Description

SGAttrVersion Long This is an internal attribute that you cannot set. It is
here for future usage.

Creating Tables With an IDENTITY Column
You can create an IDENTITY column when you create a table, or change an existing
table to add an IDENTITY column using ALTER TABLE...ADD. In either case, choose
one of the IDENTITY statements described below. This section describes creating a
table with an IDENTITY column.

Here is the formal syntax for creating a table with an IDENTITY column:

GENERATED (ALWAYS | (BY DEFAULT [ON NULL])) AS IDENTITY
 [sequence_options,...]

The optional sequence_options refer to all of the Sequence Generator attributes you
can supply.

IDENTITY Column Statement Description

GENERATED ALWAYS AS IDENTITY The sequence generator always supplies an
IDENTITY value. You cannot specify a value
for the column.

GENERATED BY DEFAULT AS IDENTITY The sequence generator supplies an
IDENTITY value any time you do not supply
a column value.

GENERATED BY DEFAULT ON NULL AS
IDENTITY

The sequence generator supplies the next
IDENTITY value if you specify a NULL
columnn value.

To create a table with a column GENERATED ALWAYS AS IDENTITY from the SQL CLI:

sql-> CREATE TABLE IF NOT EXISTS tname1 (
idValue INTEGER GENERATED ALWAYS AS IDENTITY,
acctNumber INTEGER,
name STRING,
PRIMARY KEY (acctNumber));
Statement completed successfully
sql->

For this table, tname1, each time you add a row to the table, the Sequence Generator
(SG) updates the idvalue from its cache. You cannot specify a value for idValue. If
you do not specify any sequence generator attributes, the SG uses its default values.

To create a table with a column GENERATED BY DEFAULT ON NULL AS IDENTITY:

sql-> CREATE TABLE IF NOT EXISTS tname2 (
idvalue INTEGER GENERATED BY DEFAULT ON NULL AS IDENTITY,
acctNumber INTEGER,
name STRING,
PRIMARY KEY (acctNumber));

Chapter 3
Defining Tables With an IDENTITY Column

3-12

Statement completed successfully
sql->

For this table, tname2, each time you add a row, the SG inserts the next available
value from its cache if no value is supplied for the idvalue column, the supplied value
for the idvalue column is NULL.

To create a table with a column GENERATED BY DEFAULT AS IDENTITY:

sql-> CREATE TABLE IF NOT EXISTS tname3 (
idvalue INTEGER GENERATED BY DEFAULT AS IDENTITY,
acctNumber INTEGER,
name STRING,
PRIMARY KEY (acctNumber));
Statement completed successfully
sql->

For this table, tname3, each time you add a row, the SG inserts the next available
value from its cache if no value is supplied for the idvalue column.

To create a new table, sg_atts, with several SG attributes:

sql-> CREATE Table sg_atts (
id INTEGER GENERATED ALWAYS AS IDENTITY
(START WITH 2
INCREMENT BY 2
MAXVALUE 200
NO CYCLE),
name STRING,
PRIMARY KEY (id));
Statement completed successfully
sql->

The table sg_atts specifies that the integer IDENTITY field (id) is generated always.

SG Attribute Description

start with 2 Start the sequence value at 2.

increment by 2 Increment the sequence value by 2 for each row.

maxvalue 200 Specifies the maximum IDENTITY value. What you specify
overrides the default value maxvalue, which is the upper
bound of the IDENTITY datatype in use. Once the IDENTITY
column reaches this value, 200, the SG will not generate
any more IDENTITY values. The maximum value has been
reached and the no cycle attribute is in use.

no cycle Do not restart from 2 or with any value at all, once the
column reaches the maxvalue.

To create another table, sg_some_atts, with some SG attributes:

sql-> CREATE Table sg_some_atts (
id LONG GENERATED BY DEFAULT AS IDENTITY
(START WITH 1
INCREMENT BY 1

Chapter 3
Defining Tables With an IDENTITY Column

3-13

CYCLE
CACHE 200),
account_id INTEGER,
name STRING,
PRIMARY KEY (account_id));

For the sg_some_atts table, specify an id column GENERATED BY DEFAULT AS
IDENTITY, but which is not the primary key.

SG Attribute or Other
Detail

Description

CYCLE Specifying CYCLE indicates that the SG should supply
IDENTITY values up to either the MAXVALUE attribute you
specify, or the default MAXVALUE. When the IDENTITY
reaches the MAXVALUE value, the SG restarts the values over,
beginning with MINVALUE, if it is specified, or with the default
MINVALUE for the data type. CYCLE is orthogonal to the
CACHE attribute, which indicates only how many values to
store in local cache for swift access. You can set CACHE value
to closely reflect the maximum value of the datatype, but we
do not recommend this, due to the client cache size.

CACHE 200 The number of values that each client stores in its cache for
fast retrieval. When the IDENTITY reaches the last number in
the cache, the SG gets another set of values from the server
automatically.

START WITH 1 The SG generates values 1, 2, 3 and so on, until it reaches the
maximum value for a LONG data type.

INCREMENT BY 1 The SG increments each new IDENTITY value for every new
row.

For a full list of all sequence generator attributes, see Sequence Generator Attributes .

Adding an IDENTITY Column to an Existing Table
Use ALTER TABLE to add an IDENTITY column to an existing table.

Create a table, test_alter, without an IDENTITY column:

sql-> CREATE Table test_alter
 (id INTEGER,
 name STRING,
 PRIMARY KEY (id));
Statement completed successfully
sql->

Use ALTER TABLE to add an IDENTITY column to test_alter. Also specify several
Sequence Generator (SG) attributes for the associated new_id IDENTITY column, but
do not use the IDENTITY column as a PRIMARY KEY:

sql-> ALTER Table Test_alter
(ADD new_id INTEGER GENERATED ALWAYS AS IDENTITY

Chapter 3
Defining Tables With an IDENTITY Column

3-14

 (START WITH 1
 INCREMENT BY 2
 MAXVALUE 100
 CACHE 10
 CYCLE));
Statement completed successfully
sql->

Note:

To add an IDENTITY column to a table, the table must be at a top level.
You cannot add an IDENTITY column as the column of a deeply embedded
structured datatype. Adding a column does not affect the existing rows in the
table, which get populated with the new column’s default value (or NULL).

Altering or Dropping an IDENTITY Column
Use the ALTER TABLE...MODIFY clause to change one or more attributes of a table's
IDENTITY column and its Sequence Generator (SG) options.

Each IDENTITY column is generated in one of the following ways:

IDENTITY Column Statement Description

GENERATED ALWAYS AS IDENTITY The sequence generator always supplies an
IDENTITY value. You cannot specify a value
for the column.

GENERATED BY DEFAULT AS IDENTITY The sequence generator supplies an
IDENTITY value any time you do not supply
a column value.

GENERATED BY DEFAULT ON NULL AS
IDENTITY

The sequence generator supplies the next
IDENTITY value if you specify a NULL
columnn value.

The IDENTITY column may have one or more attributes further defining its Sequence
Generator (SG) behavior.

This section presents ways to change or drop an IDENTITY column from a table. The
ALTER TABLE statement lets you add, remove, or alter a field in any table definition.
Use the ALTER TABLE statement to modify an IDENTITY field.

Note:

The MODIFY clause in an ALTER TABLE... statement is supported only on
IDENTITY columns.

Chapter 3
Defining Tables With an IDENTITY Column

3-15

The next example adds an IDENTITY field to a new table, test_alter, created without
an IDENTITY. The example also specifies several attributes for the associated SG for
test_alter:

CREATE Table Test_alter
 (id INTEGER,
 name STRING,
PRIMARY KEY (id));

ALTER Table Test_alter
(ADD new_id INTEGER GENERATED ALWAYS AS IDENTITY
(START WITH 1
INCREMENT BY 2
MAXVALUE 100
CACHE 10
CYCLE));

To remove the IDENTITY column, so no such field remains, use ALTER TABLE with a
DROP id clause:

CREATE Table Test_alter (
id INTEGER GENERATED ALWAYS AS IDENTITY(
START WITH 1
INCREMENT BY 2
MAXVALUE 100
CACHE 10
CYCLE),
name STRING,
PRIMARY KEY (name));

ALTER TABLE Test_alter (DROP id);

To keep the id column, but remove its IDENTITY definition, use ALTER TABLE with a
MODIFY id DROP IDENTITY clause:

CREATE Table Test_alter (
id INTEGER GENERATED ALWAYS AS IDENTITY(
START WITH 1
INCREMENT BY 2
MAXVALUE 100
CACHE 10
CYCLE),
name STRING,
PRIMARY KEY (id));

ALTER TABLE Test_alter (MODIFY id DROP IDENTITY);

You can change the SG attributes. The new values take effect on subsequent client
calls to access the SG attributes. For example, this happens when the cache has no
more values, or when the attributes stored at the client have timed out.

Chapter 3
Defining Tables With an IDENTITY Column

3-16

To change the basic property of an IDENTITY column being GENERATED ALWAYS to
GENERATED BY DEFAULT, see the next ALTER TABLE example. The example also shows
how to change the SG attributes from their original definitions, START WITH, INCREMENT
BY, MAXVALUE, CACHE and CYCLE.

CREATE Table Test_alter (
id INTEGER GENERATED ALWAYS AS IDENTITY
 (START WITH 1
 INCREMENT BY 2
 MAXVALUE 100
 CACHE 10
 CYCLE),
 name STRING, PRIMARY KEY (id)
);

ALTER TABLE Test_alter (MODIFY id GENERATED BY DEFAULT AS IDENTITY
(START WITH 1000
 INCREMENT BY 3
 MAXVALUE 5000
 CACHE 1
 CYCLE)
);

Note:

The client has a time-based cache to store the SG Attributes. The client
connects to the server to refresh this cache after it expires. The default
timeout is 5 minutes. Change this default by setting sgAttrsCacheTimeout in
KVStoreConfig.

Inserting IDENTITY Values from the SQL CLI
You can insert values into IDENTITY fields, regardless of whether you specified it as
GENERATED ALWAYS OR GENERATED BY DEFAULT, using DDL statements and
API calls.

Each IDENTITY field you create uses one of these syntax choices:

• GENERATED ALWAYS AS IDENTITY

• GENERATED BY DEFAULT AS IDENTITY

• GENERATED BY DEFAULT ON NULL AS IDENTITY

How you create an IDENTITY field affects what happens when you INSERT values.
You cannot change the IDENTITY value of a column that is a primary key.

As an example, you create the following table with an IDENTITY field as GENERATED
ALWAYS. The IDENTITY field is not a primary key:

sql-> CREATE Table Test_SGSqlInsert2(

Chapter 3
Defining Tables With an IDENTITY Column

3-17

 id INTEGER,
 name STRING,
 deptId INTEGER GENERATED ALWAYS AS IDENTITY (CACHE 1),
 PRIMARY KEY(id));
Statement completed successfully

To successfully insert values into this table, always specify DEFAULT as the value of the
deptID IDENTITY field, so that the SG generates the next value.

sql->
> INSERT INTO Test_SGSqlInsert2 VALUES (148, 'sally', DEFAULT);
> INSERT INTO Test_SGSqlInsert2 VALUES (250, 'joe', DEFAULT);
> INSERT INTO Test_SGSqlInsert2 VALUES (346, 'dave', DEFAULT);
{"NumRowsInserted":1}
1 row returned
{"NumRowsInserted":1}
1 row returned
{"NumRowsInserted":1}
1 row returned

The preceding INSERT statements add the following rows, with the SG getting the next
available IDENTITY value each time you specify DEFAULT.

sql-> select * from Test_SGSqlInsert2;
{"id":148,"name":"sally","deptId":1}
{"id":250,"name":"joe","deptId":2}
{"id":346,"name":"dave","deptId":3}
3 rows returned

To get the value of the generated deptId for future reference in one statement, use the
returning deptId clause as follows:

INSERT INTO Test_SGSqlInsert2 VALUES (600, 'jabba', DEFAULT) returning
deptId;
{"deptId":6}
INSERT INTO Test_SGSqlInsert2 VALUES (700, 'bubba', DEFAULT) returning
deptId;
{"deptId":7}

Using the following INSERT statement, indicating a value rather than DEFAULT, causes
an exception. You cannot specify any value for any IDENTITY field you define as
GENERATED BY DEFAULT AS IDENTITY:

sql-> INSERT INTO Test_SGSqlInsert2 VALUES (1, 'joe', 200) ;
Error handling command INSERT INTO Test_SGSqlInsert2 VALUES (1, 'joe',
200):
Error: at (1, 48) Generated always identity column must use DEFAULT
construct.

Chapter 3
Defining Tables With an IDENTITY Column

3-18

As another example, create a table with a DeptID integer field, GENERATED BY DEFAULT
AS IDENTITY, and make it the primary and shard key:

sql-> CREATE TABLE Test_SGSqlInsert_Default (
> ID INTEGER,
> NAME STRING,
> DeptID INTEGER GENERATED BY DEFAULT AS IDENTITY (
> START WITH 1
> INCREMENT BY 1
> MAXVALUE 100),
> PRIMARY KEY (SHARD(DeptID), ID));
Statement completed successfully

The following statements show how to insert values into table
Test_SGSqlInsert_Default. In this case, since the column ID is not an IDENTITY,
you can assign integer values to the field:

sql->
> INSERT INTO Test_SGSqlInsert_Default VALUES (100, 'tim', DEFAULT);
> INSERT INTO Test_SGSqlInsert_Default VALUES (200, 'dave', 210);
> INSERT INTO Test_SGSqlInsert_Default VALUES (300, 'sam', 310);
> INSERT INTO Test_SGSqlInsert_Default VALUES (400, 'Jennifer',
DEFAULT);
> INSERT INTO Test_SGSqlInsert_Default VALUES (500, 'Barbara', 2);
{"NumRowsInserted":1}
1 row returned
{"NumRowsInserted":1}
1 row returned
{"NumRowsInserted":1}
1 row returned
{"NumRowsInserted":1}
1 row returned
{"NumRowsInserted":1}
1 row returned

These sample statements insert the following rows into the database.

sql-> select * from Test_SGSqlInsert_Default;
{"ID":300,"NAME":"sam","DeptID":310}
{"ID":100,"NAME":"tim","DeptID":1}
{"ID":400,"NAME":"Jennifer","DeptID":2}
{"ID":500,"NAME":"Barbara","DeptID":2}
{"ID":200,"NAME":"dave","DeptID":210}
5 rows returned

Since you specified two values as DEFAULT in your INSERT statements, the SG supplies
them, as 1 and 2. The other values are inserted as you specify (210, 310, and 2).
Each value is acceptable, even though one results in two DeptID values the same (2
supplied from a DEFAULT, and 2 as a value you supply).

Chapter 3
Defining Tables With an IDENTITY Column

3-19

Because you defined the IDENTITY column as GENERATED BY DEFAULT AS IDENTITY,
the SG supplies a value only when you do not specify a value. Specifying values 210,
310, or 2 is correct. The system neither checks for duplicates, nor enforces uniqueness
for GENERATED BY DEFAULT AS IDENTITY column values. It is the application’s
responsibility to ensure that there are no duplicate values if that is a requirement.

Inserting IDENTITY Values Programmatically
Special considerations arise when you are inserting values into an IDENTITY column
programmatically. This section presents the issues that exist, and how to work around
them using put() and other methods.

You create each IDENTITY column in a table with one of these choices:

• GENERATED ALWAYS AS IDENTITY

• GENERATED BY DEFAULT AS IDENTITY

• GENERATED BY DEFAULT ON NULL AS IDENTITY

Additionally, an identity column can be a primary key, which prevents you from
changing the IDENTITY value.

Each of the ways in which you create your identity column affects activities when you
add rows using the put function, with one of its variants:

• put (unconditional)

• put if absent (only if the row does not have values)

• put if present (only if the row has values)

This section describes the different effects of inserting and updating IDENTITY
columns.

For example, create the following table with a column defined with GENERATED
ALWAYS AS IDENTITY. The IDENTITY field is a primary key:

CREATE Table foo(
 idValue INTEGER GENERATED ALWAYS AS IDENTITY
 (START WITH 1 INCREMENT BY 1 MAXVALUE 2 NO CYCLE),
 name STRING,
 PRIMARY KEY(idValue));

Insert a row into the IDENTITY Column

To insert a row into the foo table, here's what to do in your application:

L1: TableAPI api = store.getTableAPI(); // Gets the TableAPI for the
store
L2: Table table = api.getTable("foo"); // Gets the Table foo instance
L3: Row row = table.createRow(); // constructs an empty Row row for
Table foo.
L4: row.put("name", "joe"); // populates the values for the Row row
L5: api.put(row, null /* previous-row */, null /* write-options */);

// The client driver recognizes that the system must generate the id

Chapter 3
Defining Tables With an IDENTITY Column

3-20

values and \
generates value 1 for the id field in the row before putting it in the
DB.
L6: System.out.println("Value of idValue: " + row.get("idValue")); // 1
L7: row.put("name", "smith");
L8: api.put(row, null /* previous-row */, null /* write-options */);
// driver sets id field to 2
L9: System.out.println("Value of id: " + row.get("idValue")); // 2

Note:

To get the value of a generated IDENTITY column, use a get() call to the
IDENTITY column, as shown in L6 and L9.

Also, to return the idValue use the RETURNING idValue clause, as follows:

StatementResult sr = store.executeSync("INSERT INTO foo " + "(name)
VALUES ('foe')
RETURNING idValue");
int id = sr.iterator().next().get("idValue").asInteger().get();

Updating an IDENTITY Column
When you define a column as GENERATED ALWAYS AS IDENTITY you cannot supply a
value for the IDENTITY column, because the SG must always supply the next value.

The following example illustrates what happens when you try to specify a value for the
IDENTITY column. The first additions, joe and john are fine, and the SG supplies an
idValue for both:

CREATE TABLE foo(
 idValue INTEGER GENERATED ALWAYS AS IDENTITY,
 name STRING, PRIMARY KEY (idValue))
 api.put(‘joe’)
 api.put(‘john’)
 get(idValue, name) or
select * from foo;
1, joe
2, john

Trying to update with any of the put() methods causes the following errors when a
column is defined as GENERATED ALWAYS AS IDENTITY:

api.put(2,’dave’) // error –- cannot specify a value for \
 a column defined as GENERATED ALWAYS AS IDENTITY

api.putIfPresent (2, ‘dave’) -- The following error occurs first in the
code path,

Chapter 3
Defining Tables With an IDENTITY Column

3-21

even though idValue = 2 is present
// error – user cannot specify a value for \
 IDENTITY column defined as GENERATED ALWAYS

api.putIfPresent (3,’cezar’) -- The following error occurs, first in
the code path,
even though idValue = 3 is NOT present
// error - user cannot specify a value for \
 IDENTITY column defined as GENERATED ALWAYS

api.putIfPresent (‘hema’)
//error – a primary key is not provided to look up the record.

putIfAbsent (10, joe) -– is an insert
// error - user cannot specify a value for \
IDENTITY column defined as GENERATED ALWAYS

To use UPDATE on a column defined as GENERATED ALWAYS AS IDENTITY:

Create table foo(idValue INTEGER GENERATED ALWAYS AS IDENTITY,
 name STRING,
 PRIMARY KEY (idValue))

UPDATE foo SET idValue = 10 WHERE name=joe
// error - user cannot set a value for an IDENTITY column defined as
GENERATED ALWAYS
 UPDATE foo SET name=hema WHERE idValue=2
// Success! By using the Primary Key value (idValue=2)to locate its
name record,
// you can update the value and hema replaces john
select * from foo
1, joe
2, hema

To use put, putIfPresent, and putIfAbsent on an IDENTITY column that is not a
PRIMARY KEY:

Create table Foo(idValue INTEGER GENERATED ALWAYS AS IDENTITY,
 acctNumber INTEGER,
 name STRING,
 PRIMARY KEY (acctNumber))

//Put two acctNumber and name values.
api.put(100, ‘joe’)
api.put (200, ‘john’)

//SG increments the IDENTITY values, 1 and 2:
api.get(idValue, acctNumber, name)
1, 100, joe
2, 200, john

//Attempt to put an idValue

Chapter 3
Defining Tables With an IDENTITY Column

3-22

api.put (2, 200, dave)
// error – Cannot specify a value for IDENTITY column defined as
GENERATED ALWAYS

api.putIfPresent(3, 200, cezar)
//error – Cannot specify a value for IDENTITY column defined as
GENERATED ALWAYS

api.putIfPresent (400, cezar) // not IDENTITY column value error
// error - Cannot specify a primary key (400) that is not present

api.putIFPresent (200, cezar)
1, 100, joe
2, 200, cezar
// Success! The IDENTITY value is updated.
The system generates a value on putIfPresent as the API semantics are
to update
the entire record, and not update fields within the record selectively.

api.putIfAbsent (300, hema)
// Success! IDENTITY idValue was generated (3), and 300, hema were
absent
get(idValue, acctNumber, name)
1, 100, joe
2, 200, cezar
3, 300, hema

api.putIfAbsent (20, 300, hema)
// error – user cannot specify a value for IDENTITY column defined as
GENERATED ALWAYS

api.putIfAbsent (300, hema)
//error - no row with primary key = 300 is present

api.putIfAbsent (3,400, hema)
// error – user cannot specify a value for IDENTITY column defined as
GENERATED ALWAYS

To use UPDATE on an IDENTITY column that is not a PRIMARY KEY:

Create table Foo(idValue INTEGER GENERATED ALWAYS AS IDENTITY,
 acctNumber INTEGER,
 name STRING,
 PRIMARY KEY (acctNumber))

select * from foo
1, 100, joe
2, 200, cezar
3, 300, hema

UPDATE foo set name= dave, where PRIMARY KEY = 200
// replaces (2, 200, cezar) with (2, 200, dave)

Chapter 3
Defining Tables With an IDENTITY Column

3-23

select * from foo;
1, 100, joe
2, 200, dave
3, 300, hema

UPDATE foo set name=george, where acctNumber=100
// acctNumber is the PRIMARY KEY
// replaces (1, 100, joe) with (1, 100, george)
select * from foo;
1, 100, george
2, 200, dave
3, 300, hema

UPDATE foo set idValue=10, where acctNumber=100
// acctNumber is the PRIMARY KEY
// error - Cannot specify a value for IDENTITY column defined as
GENERATED ALWAYS

To use put() on a column defined as GENERATED BY DEFAULT AS IDENTITY,
which is a PRIMARY KEY, review the following examples. In this case, not specifying
a value for the IDENTITY column causes the SG to generate a value. Specifying a
value, the system uses what you supply.

Create table foo(idValue INTEGER GENERATED BY DEFAULT AS IDENTITY,
 name STRING,
 PRIMARY KEY (idValue))

api.put(‘joe’)
api.put(‘john’)

//Since you supplied no idValue, SG supplies them:
get(idValue, name)
1, joe
2, john

//You supply 4 as the idValue, so system uses it
api.put (4, george)

get(idValue, name)
1, joe
2, john
4, george

api.put (2, sam) // replaces (2, john) with (2, sam)
get(idValue, name)
1, joe
2, sam
4, george

To use UPDATE() on the column:

select * from foo;

Chapter 3
Defining Tables With an IDENTITY Column

3-24

1, joe
2, sam
4, george

UPDATE foo SET idValue=3 where name=sam
// Updates idValue 2 (2, sam) with 3, so becomes 3, sam
select * from foo
1, joe
3, sam
4, george

Deleting an IDENTITY Column
Deleting a row with an IDENTITY column follows the existing delete logic in the
product. There is no change.

Using the UUID data type
Overview of the UUID data type

A universally unique identifier (UUID) is a 128-bit number used to identify information
in computer systems. You can create a UUID and use it to uniquely identify something.
In its canonical textual representation, the 16 octets of a UUID are represented as
32 hexadecimal (base-16) digits, displayed in five groups separated by hyphens, in
the form 8-4-4-4-12 for a total of 36 characters (32 hexadecimal characters and 4
hyphens). For example, a81bc81b-dead-4e5d-abff-90865d1e13b1.

In Oracle NoSQL, UUID values are represented by the UUID data type. The UUID
data type is considered a subtype of the STRING data type, because UUID values
are displayed in their canonical textual format and, in general, behave the same as
string values in the various SQL operators and expressions. However, in order to save
disk space, the UUID value is saved in a compact format on disk. If the UUID value is
the primary key, the canonical 36-byte string is converted to a 19-byte string, then is
saved on disk. If the UUID value is a non-primary key, the canonical 36-byte string is
converted to a 16-byte array, then is saved on disk.

A table column can be declared as having UUID type in a CREATE TABLE statement.
The UUID data type is best-suited in situations where you need a globally unique
identifier for the records in a table that span multiple regions since identity columns are
only guaranteed to be unique within a NoSQL cluster in a region.

Using the UUID data type:

Declare a column with UUID data type. UUID is a subtype of the STRING data type.
This UUID column can be defined as GENERATED BY DEFAULT. The system then
automatically generates a value for the UUID column if you do not supply a value for it.

Syntax:

uuid_definition := AS UUID [GENERATED BY DEFAULT]

Semantics

Declares the type of a column to be the UUID type. If the GENERATED BY DEFAULT
keywords are used, the system generates a value for the UUID column automatically,
if the user does not supply one.

Chapter 3
Using the UUID data type

3-25

UUID Column Characteristics :

• One table can have multiple columns defined as "STRING AS UUID". However,
one table can have only one column defined as "STRING AS UUID GENERATED
BY DEFAULT".

• Since the Identity column is also generated by the system, the Identity column
and the UUID GENERATED BY DEFAULT columns are mutually exclusive. That
means only one IDENTITY column or one "UUID GENERATED BY DEFAULT" can
exist per table.

• You create a UUID column as part of a CREATE TABLE DDL statement or add a
UUID column to an existing table with an ALTER TABLE DDL statement.

• You can also index UUID columns via secondary indexes.

Example 1: UUID Column without GENERATED BY DEFAULT

CREATE TABLE myTable (id STRING AS UUID,name STRING, PRIMARY KEY (id));
Statement completed successfully

In the above example, the id column has no "GENERATED BY DEFAULT" defined,
therefore, whenever you insert a new row, you need to explicitly specify a value for the
id column.

INSERT INTO myTable
 values("a81bc81b-dead-4e5d-abff-90865d1e13b1", "test1");
Statement completed successfully

Input format: The input string must conform to the format specified by RFC 4122. An
IllegalArgumentException is thrown if the input string does not conform to the string
representation as described at Class UUID

Output format: The output is a UUID canonical format. This is 32
hexadecimal(base-16) digits, displayed in five groups separated by hyphens, in the
form 8-4-4-4-12 for a total of 36 characters (32 hexadecimal characters and 4
hyphens).

The value for a UUID column can also be generated using the random_uuid function,
which returns a randomly generated UUID, as a string of 36 characters. See Function
to generate a UUID string

Example 2: UUID Column using GENERATED BY DEFAULT

CREATE TABLE myTable (id STRING AS UUID GENERATED BY DEFAULT, name
STRING, PRIMARY KEY (id));
Statement completed successfully

In the above example, the id column has "GENERATED BY DEFAULT" defined,
therefore, whenever you insert a new row without specifying the value for the id
column, Oracle NoSQL Database automatically generates a value for it.

INSERT INTO myTable VALUES(default,"test1");
Statement completed successfully

Chapter 3
Using the UUID data type

3-26

Table 3-1 Comparison between Identity Column and UUID column

Identity Column UUID column

Declare a column as Identity to have Oracle
NoSQL Cluster automatically assign values
to it

Declare a column as UUID if you need
unique values to be assigned to a NoSQL
Cluster column in a multi-region system

An INTEGER, LONG, or NUMBER column
in a table can be defined as an Identity
column

A UUID is a subtype of the STRING data
type

An Identity column can be defined either
as GENERATED ALWAYS or GENERATED BY
DEFAULT

A UUID column can be defined as
GENERATED BY DEFAULT or you can
supply the value of the string while
inserting or updating data

Ideal in a single cluster architecture The UUID data type is best suited In
situations where you need a globally
unique identifier for the records in a table
that span multiple regions since identity
columns are only guaranteed to be unique
within a NoSQL cluster in a region.

Costs less storage space than a
corresponding UUID column.
If LONG is the primary key, it costs a
maximum of 10 bytes. If LONG is a non-
primary key, it costs a maximum of 8 bytes.

Costs more storage space than a
corresponding Identity column.
If the UUID value is the primary key, it
costs 19-bytes. If the UUID value is a non-
primary key, it costs 16-bytes.

Inserting rows into a table with a UUID column
The system generates a UUID column value when the keyword DEFAULT is used as the
insert_clause for the UUID column.

Here are a few examples that show INSERT statements for both flavors of the UUID
column – GENERATED BY DEFAULT and when no DEFAULT CLAUSE is specified in
a CREATE TABLE statement. The keyword DEFAULT in the INSERT statement applies
only when the UUID column is declared as GENERATED BY DEFAULT.

Example : Inserting rows into a table with a UUID column without GENERATED
BY DEFAULT clause

CREATE TABLE myTable (id STRING AS UUID, name STRING, PRIMARY KEY (id));
Statement completed successfully

INSERT INTO myTable values("a81bc81b-dead-4e5d-
abff-90865d1e13b1","test1");
Statement completed successfully

In the above example, the id column in the table myTable has no "GENERATED BY
DEFAULT" defined. Therefore, whenever you insert a new row, you need to explicitly
specify the value for the id column.

Example : Inserting rows into a table with a UUID column using the random_uuid
function

Chapter 3
Using the UUID data type

3-27

The value for a UUID column can also be generated using the random_uuid function.
See Function to generate a UUID string

sql-> INSERT INTO myTable values(random_uuid(),"test2");
{"NumRowsInserted":1}
1 row returned
Statement completed successfully

sql-> select * from myTable;
{"id":"d576ab3b-8a36-4dff-b50c-9d9d4ca6072c","name":"test2"}
{"id":"a81bc81b-dead-4e5d-abff-90865d1e13b1","name":"test1"}
2 rows returned
Statement completed successfully

In this example, a randomly generated UUID is fetched using the random_uuid
function. This value is used in the INSERT statement.

Example : Inserting rows into a table with a UUID column with GENERATED BY
DEFAULT clause

CREATE TABLE myTable (id STRING AS UUID GENERATED BY DEFAULT,name
STRING, PRIMARY KEY (id));
Statement completed successfully

INSERT INTO myTable VALUES(default,"test1") returning id;
{"id":"e7fbab63-7730-4ec9-be73-a62e33ea73c3"}
Statement completed successfully

In the above example, the id column in myTable has "GENERATED BY DEFAULT"
defined. The system generates a UUID column value when the keyword DEFAULT is
used in the insert_clause for the UUID column. The system generated UUID value is
fetched using the returning clause.

Updating rows of a table with a UUID column
You can update a UUID column whether or not it is GENERATED BY DEFAULT. You
can use the function random_uuid to generate a random UUID value to update the
column. The function random_uuid returns a randomly generated UUID, as a string of
36 characters.

Example : Updating a UUID Column defined without GENERATED BY DEFAULT
clause

CREATE TABLE myTable (tabId INTEGER, id STRING AS UUID, PRIMARY KEY
(tabId));
Statement completed successfully

INSERT INTO myTable values(1,"a81bc81b-dead-4e5d-abff-90865d1e13b1");
Statement completed successfully

UPDATE myTable set id=random_uuid() where tabId=1;
Statement completed successfully

Chapter 3
Using the UUID data type

3-28

The above example shows how you can update a UUID column which is NOT
GENERATED BY DEFAULT. To do so, the UUID column should not be part of the
primary key, as NoSQL Primary key values are immutable. In the above example,
tabId is the Primary key. So you can update the UUID column using the random_uuid
function.

Add or Remove a UUID column
An existing table can be altered and a new UUID column can be added. The existing
records in the table will have a NULL value for the newly added UUID column. An
existing UUID column can also be removed from a table.

Adding a UUID Column to an Existing Table

Use ALTER TABLE to add a UUID column to an existing table.

Create a table test_alter without a UUID column.

sql-> CREATE TABLE test_alter(id INTEGER,
 name STRING, PRIMARY KEY(id));
Statement completed successfully

Use ALTER TABLE to add a UUID column to test_alter. You can specify the default
clause, GENERATED BY DEFAULT.

sql-> ALTER TABLE test_alter
 (ADD new_id STRING AS UUID GENERATED BY DEFAULT);
Statement completed successfully

Dropping a UUID Column

To remove a UUID column from a table, use ALTER TABLE with a DROP id clause.

Note:

You cannot drop a UUID column if it is the primary key, or if it participates in
an index.

sql-> CREATE Table Test_alter (name STRING ,
 id STRING AS UUID GENERATED BY DEFAULT,
 PRIMARY KEY (name));
Statement completed successfully

sql-> ALTER TABLE Test_alter (DROP id);
Statement completed successfully

Creating Indexes
Indexes represent an alternative way of retrieving table rows. Normally you retrieve
table rows using the row's primary key. By creating an index, you can retrieve rows
with dissimilar primary key values, but which share some other characteristic.

Chapter 3
Creating Indexes

3-29

You can create indexes on any field that has a data type capable of indexing, including
primary key fields. You can index table IDENTITY fields. For information on the types
of fields that can be indexed, see Indexable Field Types.

For example, if you had a table representing types of automobiles, the primary keys
for each row might be the automobile's manufacturer and model type. However, if you
wanted to be able to query for all red automobiles, regardless of the manufacturer or
model type, you could create an index on the field containing color information.

Note:

Indexes can take a long time to create because Oracle NoSQL Database
must examine all of the data contained in the relevant table in your store.
The smaller the data contained in the table, the faster index creation will
complete. Conversely, if a table contains a lot of data, then it can take a long
time to create indexes for it.

CREATE TABLE myInventory.itemDetails (
 itemSKU STRING,
 itemDescription STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (itemSKU)
)

To create an index, use the CREATE INDEX statement. See CREATE INDEX. For
example:

CREATE INDEX inventoryIdx on myInventory.itemDetails(inventoryCount)

Similarly, to remove an index, use the DROP INDEX statement. See DROP INDEX. For
example:

DROP INDEX inventoryIdx on myInventory.itemDetails

Be aware that adding and dropping indexes can be time consuming. You may want to
run drop index operations asynchronously using the KVStore.execute() method.

package kvstore.basicExample;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

import oracle.kv.ExecutionFuture;
import oracle.kv.FaultException;
import oracle.kv.StatementResult;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

Chapter 3
Creating Indexes

3-30

import oracle.kv.table.TableAPI;

...
// Store open skipped
...

public void createIndex() {
 TableAPI tableAPI = store.getTableAPI();
 ExecutionFuture future = null;
 StatementResult result = null;
 String statement = null;

 try {

 statement = "CREATE INDEX inventoryIdx on " +
 "myInventory.itemDetails(inventoryCount)"
 future = store.execute(statement);
 displayResult(future.getLastStatus(), statement);

 /*
 * Limit the amount of time to wait for the
 * operation to finish.
 */
 result = future.get(3, TimeUnit.SECONDS);
 displayResult(result, statement);

 } catch (IllegalArgumentException e) {
 System.out.println("Invalid statement:\n" + e.getMessage());
 } catch (FaultException e) {
 System.out.println
 ("Statement couldn't be executed, please retry: " + e);
 cleanupOperation(future);
 } catch (ExecutionException e) {
 System.out.println
 ("Problem detected while waiting for a DDL statement: " +
 e.getCause());
 cleanupOperation(future);
 } catch (InterruptedException e) {
 System.out.println
 ("Interrupted while waiting for a DDL statement: " + e);
 cleanupOperation(future);
 } catch (TimeoutException e) {
 System.out.println("Statement execution took too long: " + e);
 cleanupOperation(future);
 }
}

private void cleanupOperation(ExecutionFuture future) {
 if (future == null) {
 /* nothing to do */
 return;
 }

 System.out.println("Statement:");
 System.out.println(future.getStatement());

Chapter 3
Creating Indexes

3-31

 System.out.println("has status: ");
 System.out.println(future.getLastStatus());

 if (!future.isDone()) {
 future.cancel(true);
 System.out.println("Statement is cancelled");
 }
}

private void displayResult(StatementResult result, String statement) {
 System.out.println("===========================");
 if (result.isSuccessful()) {
 System.out.println("Statement was successful:\n\t" +
 statement);
 System.out.println("Results:\n\t" + result.getInfo());
 } else if (result.isCancelled()) {
 System.out.println("Statement was cancelled:\n\t" +
 statement);
 } else {
 /*
 * statement wasn't successful: may be in error, or may still be
 * in progress.
 */
 if (result.isDone()) {
 System.out.println("Statement failed:\n\t" + statement);
 System.out.println("Problem:\n\t" +
result.getErrorMessage());
 } else {
 System.out.println("Statement in progress:\n\t" +
statement);
 System.out.println("Status:\n\t" + result.getInfo());
 }
 }
}

For examples of how to index supported non-scalar types, see Indexing Non-Scalar
Data Types.

Chapter 3
Creating Indexes

3-32

4
Introducing Oracle NoSQL Database
Namespaces

You can create one or more global namespaces to extend table identification.
Namespaces permit tables with the same name to exist in your database store.
To access such tables from the command line, or with DDL commands, use a fully-
qualified table name with the table preceded by its namespace, followed with a colon
(:), such as ns1:table1.

As with tables, you grant authorization permissions to determine who can access
both the namespace and the tables within them. After your namespaces exist, you
can create any number of parent and child tables within the namespace, such as
ns1:table1.child1.

There is a default Oracle NoSQL Database namespace, called sysdefault. For
new installations, all tables are assigned to the default sysdefault namespace,
until or unless you create other namespaces, and create new tables within them.
After upgrading from an earlier Oracle NoSQL Database release, all existing tables
become part of the default sysdefault namespace automatically. You cannot change
an existing table’s namespace.

Tables in the sysdefault namespace do not require further qualification for
existing queries. For example, using a basic SQL table query does not require
the default namespace prefix (sysdefault:tablename), for SQL access. Also, the
TableAPI.getTable() method does not require any updates at existing sites, since it
accepts one argument for table name, or two when you are ready to use namespaces.
For information see Using and Setting Namespaces.

select * from salesincome;

Referencing a table name without a namespace prefix (namespace:) implies that
the table is part of the default, sysdefault namespace. However, by creating
namespaces, and then tables within them, you can have same name tables, such
as the following for a support_ticket table:

• support_ticket

• acme:support_ticket

• international_abc:support_ticket

• international_xyz:support_ticket

No additional permissions are required for tables in the default sysdefault
namespace, so existing authentication remains. For example, if you grant user Joe
permission to access tables t1, t3, and t4, but not t2, Joe can still access all tables
except t2 after they are subsumed into the sysdefault namespace.

4-1

Creating Namespaces
You can add and one or more namespaces to your store. Then, create tables within
the namespaces, and grant various permissions to users to access namespaces
and tables. For the security administrator, several new permissions are available for
namespaces, described in Granting Authorization Access to Namespaces .

You create a new namespace by using a CREATE NAMESPACE DDL statement, as
follows, with whatever name you choose.

sql-> CREATE NAMESPACE [IF NOT EXISTS] namespace_name;

All namespace names use standard identifiers, with the same restrictions as tables
and indexes:

• Names must begin with an alphabetic character (a-z, A-Z).

• Remaining characters are alphanumeric (a-z, A-Z, 0–9).

• Name characters can include period (.), and underscore (_) characters.

• The maximum name length for a namespace is 128 characters.

Note:

You cannot use the prefix sys for any namespaces. The sys prefix is
reserved. No other keywords are restricted.

Following is the namespace syntax showing the identifier rules similar to a table name:

table_name : (namespace ':')? id_path;
-namespace : id_path ;

id_path : id (DOT id)* ;
id : (... | ID);
ID : ALPHA (ALPHA | DIGIT | UNDER)* ;

Here are a couple of examples using DDL statements in the SQL CLI. The SHOW
NAMESPACES directive in the SQL CLI lists the namespaces that currently exist:

sql-> CREATE NAMESPACE ns1;
Statement completed successfully

sql-> CREATE NAMESPACE IF NOT EXISTS ns2;
Statement completed successfully

sql-> SHOW NAMESPACES
namespaces
 ns1
 sysdefault
 ns2

Chapter 4
Creating Namespaces

4-2

Granting Authorization Access to Namespaces
You can add and one or more namespaces to your store, create tables within them,
and grant permission for users to access namespaces and tables. These are the
applicable permissions to supply developers and other users:

Privilege Description

CREATE_ANY_NAMESPACE

DROP_ANY_NAMESPACE

Grant permission to a role to create or drop any namespace:

GRANT CREATE_ANY_NAMESPACE TO user_role;
GRANT DROP_ANY_NAMESPACE TO user_role;

CREATE_TABLE_IN_NAMESPACE

DROP_TABLE_IN_NAMESPACE

EVOLVE_TABLE_IN_NAMESPACE

Grant permission to a role to create, drop, or evolve tables in a
specific namespace:

GRANT CREATE_TABLE_IN_NAMESPACE ON NAMESPACE
namespace TO user_role;
GRANT DROP_TABLE_IN_NAMESPACE ON NAMESPACE
namespace TO user_role;
GRANT EVOLVE_TABLE_IN_NAMESPACE ON NAMESPACE
namespace TO user_role;

CREATE_INDEX_IN_NAMESPACE

DROP_INDEX_IN_NAMESPACE

Grant permission to a role to create or drop an index in a
specific namespace:

GRANT CREATE_INDEX_IN_NAMESPACE ON NAMESPACE
namespace TO user_role;
GRANT DROP_INDEX_IN_NAMESPACE ON NAMESPACE
namespace TO user_role;

READ_IN_NAMESPACE

INSERT_IN_NAMESPACE

DELETE_IN_NAMESPACE

Grant permission to a role to read, insert, or delete items in
a specific namespace. Currently, this applies only to tables
in namespaces, but could apply to other objects in future
releases::

GRANT READ_IN_NAMESPACE ON NAMESPACE namespace TO
user_role;
GRANT INSERT_IN_NAMESPACE ON NAMESPACE namespace
TO user_role;
GRANT DELETE_IN_NAMESPACE ON NAMESPACE namespace
TO user_role;

Chapter 4
Granting Authorization Access to Namespaces

4-3

Privilege Description

MODIFY_IN_NAMESPACE Grant or revoke permission to a role to all DDL privileges for a
specific namespace:

GRANT MODIFY_IN_NAMESPACE ON NAMESPACE namespace
TO user_role;
REVOKE MODIFY_IN_NAMESPACE ON NAMESPACE namespace
TO user_role;

Using and Setting Namespaces
Once you have created one or more namespaces, and tables within them, you can
fully qualify table names in any references. If your store has tables with the same
name, the namespace differentiates them from each other.

Here is the syntax for specifying a fully qualified table, or child table name from the
CLI:

namespace:tablename
namespace:tablename.child1

To reference a table in a namespace in a SELECT statement:

SELECT * FROM ns1:table1;

Set Namespace for Method Execution

You can use the ExecuteOptions.setNamespace method to set a default namespace
for the duration of a KVStore.execute() method. While set, you do not need to qualify
table and other object references. If you do not use setNamespace, or fully qualify table
names, the store uses sysdefault as the default namespace.

ExecuteOptions.setNamespace("ns1");
SELECT * FROM table1;

Determine Table Namespace

To find out which namespace was set on an option object, use the
ExecuteOptions.getNamespace method.

Get a Table in a Specific Namespace

You can call TableAPI.getTable() with two arguments:

TableAPI.getTable(String namespace, String tableFullName);

Here, the first argument for TableAPI.getTable method, namespace, is the
namespace in which you created the table. If this argument is NULL, the method uses

Chapter 4
Using and Setting Namespaces

4-4

the default sysdefault namespace. This case is equivalent to calling the function with
a single argument, described next.

The second argument, tableFullName, is the full table name. This interface
retrieves only top-level tables, without parent tables. To retrieve child tables, use
TableAPI.getChildTable().

Get a Fully-Qualified Table

You can call TableAPI.getTable() with one argument:

TableAPI.getTable(String fullNamespaceName);

The fullNamespaceName argument indicates the full name or namespace-qualified
name of the target table. If you supply an unqualified name, the method uses the
sysdefault namespace. If you supply a namespace that contains a table name
prefixed with a namespace followed with a colon (namespace:), this usage is
equivalent to calling the function as getTable(String,String) with the namespace,
and TableFullName described above.

Showing and Describing Namespaces
You can use the following ways to show namespaces and their tables from the SQL
CLI:

• SHOW

• DESCRIBE

The next example shows creating a namespace (ns1), a table within that namespace
(ns1:foo), and using SHOW namespaces and SHOW table ns1:foo to see the table
hierarchy (that the table was created in the ns1 namespace). Finally, using DESCRIBE
table ns1:foo to see more table details:

sql-> create namespace ns1;
Statement completed successfully

sql-> create table ns1:foo (id integer, primary key (id));
Statement completed successfully

sql-> show namespaces;
namespaces
 ns1
 sysdefault

sql-> show table ns1:foo;
tableHierarchy(namespace ns1)
 foo

sql-> describe table ns1:foo;
 === Information ===
 +-----------+------+-----+-------+----------+----------+--------
+----------+---------+-------------+
 | namespace | name | ttl | owner | sysTable | r2compat | parent |
children | indexes | description |

Chapter 4
Showing and Describing Namespaces

4-5

 +-----------+------+-----+-------+----------+----------+--------
+----------+---------+-------------+
 | ns1 | foo | | | N | N |
| | | |
 +-----------+------+-----+-------+----------+----------+--------
+----------+---------+-------------+

 === Fields ===
 +----+------+---------+----------+-----------+----------+------------
+----------+
 | id | name | type | nullable | default | shardKey | primaryKey |
identity |
 +----+------+---------+----------+-----------+----------+------------
+----------+
 | 1 | id | Integer | N | NullValue | Y | Y
| |
 +----+------+---------+----------+-----------+----------+------------
+----------+

Dropping Namespaces
You can drop a namespace only if you have been granted the
DROP_ANY_NAMESPACE privilege, and the namespace has no associated tables.
Also, you must have the appropriate privileges.

To drop a namespace:

DROP NAMESPACE [IF EXISTS] namespace_name [CASCADE]

Using the CASCADE option with DROP NAMESPACE lets you extend the activity to
tables and other objects within the NAMESPACE.

Dropping a namespace is not an atomic operation, and completes the following steps:

• First check to make sure privileges to drop a namespace exist. Continue if
privileges are in place.

• If no privileges exist, stop process with an error.

• If privileges are in place and CASCADE is not specified, check for tables, or other
objects in the namespace. Drop the namespace if no objects exist.

• If tables or other objects exist in the namespace, stop process with an error.

• If privileges are in place to drop the namespace and CASCADE is specified, the
statement drops the namespace, removing all tables, indexes related to the tables,
and table privileges.

Note:

You cannot drop the default namespace, sysdefault.

Chapter 4
Dropping Namespaces

4-6

5
Primary and Shard Key Design

Primary keys and shard keys are important concepts for your table design. What
you use for primary and shard keys has implications in terms of your ability to read
multiple rows at a time. But beyond that, your key design has important performance
implications.

Primary Keys
Every table must have one or more fields designated as the primary key. This
designation occurs at the time that the table is created, and cannot be changed after
the fact. A table's primary key uniquely identifies every row in the table. In the simplest
case, it is used to retrieve a specific row so that it can be examined and/or modified.

For example, a table might have five fields: productName, productType, color, size,
and inventoryCount. To retrieve individual rows from the table, it might be enough
to just know the product's name. In this case, you would set the primary key field
as productName and then retrieve rows based on the product name that you want to
examine/manipulate.

In this case, the table statement you use to define this table is:

CREATE TABLE myProducts (
 productName STRING,
 productType STRING,
 color ENUM (blue,green,red),
 size ENUM (small,medium,large),
 inventoryCount INTEGER,
 // Define the primary key. Every table must have one.
 PRIMARY KEY (productName)
)

However, you can use multiple fields for your primary keys. For example:

CREATE TABLE myProducts (
 productName STRING,
 productType STRING,
 color ENUM (blue,green,red),
 size ENUM (small,medium,large),
 inventoryCount INTEGER,
 // Define the primary key. Every table must have one.
 PRIMARY KEY (productName, productType)
)

On a functional level, doing this allows you to delete multiple rows in your table in
a single atomic operation. In addition, multiple primary keys allows you to retrieve a
subset of the rows in your table in a single atomic operation.

5-1

We describe how to retrieve multiple rows from your table in Reading Table Rows. We
show how to delete multiple rows at a time in Using multiDelete() .

Note:

If the primary key field is an INTEGER data type, you can apply a serialized
size constraint to it. See Integer Serialized Constraints.

Data Type Limitations
Fields can be designated as primary keys only if they are declared to be one of the
following types:

• Integer

• Long

• Number

• Float

• Double

• String

• Timestamp

• Enum

Partial Primary Keys
Some of the methods you use to perform multi-row operations allow, or even require, a
partial primary key. A partial primary key is, simply, a key where only some of the fields
comprising the row's primary key are specified.

For example, the following example specifies three fields for the table's primary key:

CREATE TABLE myProducts (
 productName STRING,
 productType STRING,
 productClass STRING,
 color ENUM (blue,green,red),
 size ENUM (small,medium,large),
 inventoryCount INTEGER,
 // Define the primary key. Every table must have one.
 PRIMARY KEY (productName, productType, productClass)
)

In this case, a full primary key would be one where you provide value for all three
primary key fields: productName, productType, and productClass. A partial primary
key would be one where you provide values for only one or two of those fields.

Note that order matters when specifying a partial key. The partial key must be a subset
of the full key, starting with the first field specified and then adding fields in order. So
the following partial keys are valid:

Chapter 5
Primary Keys

5-2

• productName

• productName, productType

Shard Keys
Shard keys identify which primary key fields are meaningful in terms of shard
storage. That is, rows which contain the same values for all the shard key fields are
guaranteed to be stored on the same shard. This matters for some operations that
promise atomicity of the results. (See Executing a Sequence of Operations for more
information.)

For example, suppose you set the following primary keys:

PRIMARY KEY (productType, productName, productClass)

You can guarantee that rows are placed on the same shard using the values set for
the productType and productName fields like this:

PRIMARY KEY (SHARD(productType, productName), productClass)

Note that order matters when it comes to shard keys. The keys must be specified
in the order that they are defined as primary keys, with no gaps in the key list.
In other words, given the above example, it is impossible to set productType and
productClass as shard keys without also specifying productName as a shard key.

Row Data
There are no restrictions on the size of your rows, or the amount of data that you store
in a field. However, you should consider your store's performance when deciding how
large you are willing to allow your individual tables and rows to become. As is the case
with any data storage scheme, the larger your rows, the longer it takes to read the
information from storage, and to write the information to storage.

On the other hand, every table row carries with it some amount of overhead. Also, as
the number of your rows grows very large, search times may be adversely affected. As
a result, choosing to use a large number of tables, each of which use rows with just a
small handful of fields, can also harm your store's performance.

Therefore, when designing your tables' content, you must find the appropriate balance
between a small number of tables, each of which uses very large rows; and a large
number of tables, each of which uses very small rows. You should also consider how
frequently any given piece of information will be accessed.

For example, suppose your table contains information about users, where each user
is identified by their first and last names (surname and familiar name). There is a set
of information that you want to maintain about each user. Some of this information
is small in size, and some of it is large. Some of it you expect will be frequently
accessed, while other information is infrequently accessed.

Small properties are:

• name

• gender

Chapter 5
Row Data

5-3

• address

• phone number

Large properties are:

• image file

• public key 1

• public key 2

• recorded voice greeting

There are several possible ways you can organize this data. How you should do it
depends on your data access patterns.

For example, suppose your application requires you to read and write all of the
properties identified above every time you access a row. (This is unlikely, but it does
represent the simplest case.) In that event, you might create a single table with
rows containing fields for each of the properties you maintain for the users in your
application.

However, the chances are good that your application will not require you to access all
of a user's properties every time you access his information. While it is possible that
you will always need to read all of the properties every time you perform a user look
up, it is likely that on updates you will operate only on some properties.

Given this, it is useful to consider how frequently data will be accessed, and its size.
Large, infrequently accessed properties should be placed in tables other than that
used by the frequently accessed properties.

For example, for the properties identified above, suppose the application requires:

• all of the small properties to always be used whenever the user's record is
accessed.

• all of the large properties to be read for simple user look ups.

• on user information updates, the public keys are always updated (written) at the
same time.

• The image file and recorded voice greeting can be updated independently of
everything else.

In this case, you might store user properties using a table and a child table. The parent
table holds rows containing all the small properties, plus public keys. The child table
contains the image file and voice greeting.

CREATE TABLE userInfo (
 surname STRING,
 familiarName STRING,
 gender ENUM (male,female),
 street STRING,
 city STRING,
 state STRING,
 zipcode STRING,
 userPhone STRING,
 publickey1 BINARY,
 publickey2 BINARY,

Chapter 5
Row Data

5-4

 PRIMARY KEY (SHARD(surname), familiarName)
)

CREATE TABLE userInfo.largeProps (
 propType STRING,
 voiceGreeting BINARY,
 imageFile BINARY,
 PRIMARY KEY (propType)
)

Because the parent table contains all the data that is accessed whenever user data is
accessed, you can update that data all at once using a single atomic operation. At the
same time, you avoid retrieving the big data values whenever you retrieve a row by
splitting the image data and voice greeting into a child table.

Chapter 5
Row Data

5-5

6
Writing and Deleting Table Rows

This chapter discusses two different write operations: putting table rows into the store,
and then deleting them.

Write Exceptions
There are many exceptions that you should handle whenever you perform a write
operation to the store. Some of the more common exceptions are described here. For
simple cases where you use default policies or are not using a secure store, you can
probably avoid explicitly handling these. However, as your code complexity increases,
so too will the desirability of explicitly managing these exceptions.

The first of these is DurabilityException. This exception indicates that the operation
cannot be completed because the durability policy cannot be met. For more
information, see Durability Guarantees.

The second is RequestTimeoutException. This simply means that the operation could
not be completed within the amount of time provided by the store's timeout property.
This probably indicates an overloaded system. Perhaps your network is experiencing a
slowdown, or your store's nodes are overloaded with too many operations (especially
write operations) coming in too short of a period of time.

To handle a RequestTimeoutException, you could simply log the error and move on,
or you could pause for a short period of time and then retry the operation. You could
also retry the operation, but use a longer timeout value. (There is a version of the
TableAPI.put() method that allows you to specify a timeout value for that specific
operation.)

You can also receive an IllegalArgumentException, which will be thrown if a Row that
you are writing to the store does not have a primary key or is otherwise invalid.

You can also receive a general FaultException, which indicates that some exception
occurred which is neither a problem with durability nor a problem with the request
timeout. Your only recourse here is to either log the error and move along, or retry the
operation.

Finally, if you are using a secure store that requires authentication, you can receive
AuthenticationFailureException or AuthenticationRequiredException if you do
not provide the proper authentication credentials. When using a secure store, you can
also see UnauthorizedException, which means you are attempting an operation for
which the authenticated user does not have the proper permissions.

Writing Rows to a Table in the Store
Writing a new row to a table in the data store, and updating an existing row are similar
operations. Later in this section, we describe methods that work only if a row is being
updated, or only if you are creating a row. You can write data to a table only after it has
been added to the store. See Introducing Oracle NoSQL Database Tables and Indexes
for details.

6-1

To write a row to a table in the store:

1. Construct a handle for the table to which are writing data. You do this by retrieving
a TableAPI interface instance using KVStore.getTableAPI(). Use that instance to
retrieve a handle for the table using the TableAPI.getTable(), which then returns
a Table interface instance.

Note:

The TableAPI.getTable() method is an expensive call requiring server
side access. For best performance, do not call this method each time
you need a table handle. If possible, call this method for all relevant
tables in the set up section of your code. Then, reuse the handles
throughout your application.

2. Use the Table.createRow() method to create a Row interface instance, using the
Table instance you retrieved in the previous step.

3. Using the Row.put() method, write to each field in the row.

To write a NULL value, use Row.putNull(), rather than Row.put().

4. Write the new row to the store using TableAPI.put().

Note:

If the table you are writing to contains an IDENTITY column, the
generated value from the sequence generator will be available in the
row. For more information, see Defining Tables With an IDENTITY
Column.

You can also load rows into the store using special purpose streams. For more
information, see Bulk Put Operations.

The following example shows how to write a row to the store, assuming that you have
already created the KVStore handle.

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give getTable() must be identical
// to the name of the table when you created it with

Chapter 6
Writing Rows to a Table in the Store

6-2

// the CREATE TABLE DDL statement (myTable in this example).
Table myTable = tableH.getTable("myTable");

// Get a Row instance
Row row = myTable.createRow();

// Use row.put to put all of the cells into the row.
// This does NOT actually write the data to the store.

row.put("item", "Bolts");
row.put("description", "Hex head, stainless");
row.put("count", 5);
row.put("percentage", 0.2173913);

// Now write the table to the store.
// "item" is the row's primary key. If we had not set that key and its
value,
// this operation will result in an IllegalArgumentException.
tableH.put(row, null, null);

Writing Rows to a Child Table
To write to a child table, complete the tasks that you do for a parent table, except using
the two-part table name, such as parent-table.child-table.

For example, in Defining Child Tables we showed how to create a child table. To write
data to that table, do this:

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// Get the corresponding child table
Table myChildTable = tableH.getTable("myInventory.itemDetails");

// Get a row instance
Row childRow = myChildTable.createRow();

// Populate the rows. Because the parent table's "itemCategory"
// field is a primary key, this must be populated in addition
// to all of the child table's rows
childRow.put("itemCategory", "Bolts");
childRow.put("itemSKU", "1392610");

Chapter 6
Writing Rows to a Table in the Store

6-3

childRow.put("itemDescription", "1/4-20 x 1/2 Grade 8 Hex");
childRow.put("price", new Float(11.99));
childRow.put("inventoryCount", 1457);

Other put Operations
Beyond the very simple usage of the TableAPI.put() method illustrated above, there
are three other put operations that you can use:

• TableAPI.putIfAbsent()

This method will only put the row if the row's primary key value DOES NOT
currently exist in the table. That is, this method is successful only if it results in a
create operation.

• TableAPI.putIfPresent()

This method will only put the row if the row's primary key value already exists in
the table. That is, this method is only successful if it results in an update operation.

• TableAPI.putIfVersion()

This method will put the row only if the value matches the supplied version
information. For more information, see Using Row Versions .

Bulk Put Operations
Bulk put operations allow you to load records supplied by special purpose streams into
the store.

The bulk loading of the entries is optimized to make efficient use of hardware
resources. As a result, this operation can achieve much higher throughput when
compared with single put APIs.

The behavior of the bulk put operation with respect to duplicate entries contained
in different streams is thus undefined. If the duplicate entries are just present in
a single stream, then the first entry will be inserted (if it is not already present)
and the second entry and subsequent entries will result in the invocation of
EntryStream.keyExists(E) method. If duplicates exist across streams, then the
first entry to win the race is inserted and subsequent duplicates will result in
EntryStream.keyExists(E) being invoked on them.

To use bulk put, use one of the TableAPI.put() methods that provide bulk put. These
accept a set of streams to bulk load data. The rows within each stream may be
associated with different tables.

When using these methods, you can also optionally specify a BulkWriteOptions
class instance which allows you to specify the durability, timeout, and timeout unit
to configure the bulk put operation.

For example, suppose you are loading 1000 rows with 3 input streams:

 import java.util.ArrayList;
 import java.util.List;
 import java.util.concurrent.atomic.AtomicLong;
 import oracle.kv.BulkWriteOptions;
 import oracle.kv.EntryStream;

Chapter 6
Bulk Put Operations

6-4

 import oracle.kv.FaultException;
 import oracle.kv.KVStore;
 import oracle.kv.KVStoreConfig;
 import oracle.kv.KVStoreFactory;
 import oracle.kv.table.Row;
 import oracle.kv.table.Table;
 import oracle.kv.table.TableAPI;

 ...

 // KVStore handle creation is omitted for brevity

 ...
 Integer streamParallelism = 3;
 Integer perShardParallelism = 3;
 Integer heapPercent = 30;
 // In this case, sets the amount of 1000 rows to load
 int nLoad = 1000;

 BulkWriteOptions bulkWriteOptions =
 new BulkWriteOptions(null, 0, null);
 // Set the number of streams. The default is 1 stream.
 bulkWriteOptions.setStreamParallelism(streamParallelism);
 // Set the number of writer threads per shard.
 // The default is 3 writer threads.
 bulkWriteOptions.setPerShardParallelism(perShardParallelism);
 // Set the percentage of max memory used for bulk put.
 // The default is 40 percent.
 bulkWriteOptions.setBulkHeapPercent(heapPercent);

 System.err.println("Loading rows to " + TABLE_NAME + "...");

 final List<EntryStream<Row>> streams =
 new ArrayList<EntryStream<Row>>(streamParallelism);
 final int num = (nLoad + (streamParallelism - 1)) /
streamParallelism;
 for (int i = 0; i < streamParallelism; i++) {
 final int min = num * i;
 final int max = Math.min((min + num) , nLoad);
 streams.add(new LoadRowStream(i, min, max));
 }

 final TableAPI tableImpl = store.getTableAPI();
 tableImpl.put(streams, bulkWriteOptions);

 long total = 0;
 long keyExists = 0;
 for (EntryStream<Row> stream: streams) {
 total += ((LoadRowStream)stream).getCount();
 keyExists += ((LoadRowStream)stream).getKeyExistsCount();
 }
 final String fmt = "Loaded %,d rows to %s, %,d pre-existing.";
 System.err.println(String.format(fmt, total, TABLE_NAME,
keyExists));

Chapter 6
Bulk Put Operations

6-5

You should implement the stream interface that supplies the data to be batched and
loaded into the store. Entries are supplied by a list of EntryStream instances. Each
stream is read sequentially, that is, each EntryStream.getNext() is allowed to finish
before the next operation is issued. The load operation typically reads from these
streams in parallel as determined by BulkWriteOptions.getStreamParallelism().

private class LoadRowStream implements EntryStream<Row> {

 private final String name;
 private final long index;
 private final long max;
 private final long min;
 private long id;
 private long count;
 private final AtomicLong keyExistsCount;

 LoadRowStream(String name, long index, long min, long max) {
 this.index = index;
 this.max = max;
 this.min = min;
 this.name = name;
 id = min;
 count = 0;
 keyExistsCount = new AtomicLong();
 }

 @Override
 public String name() {
 return name + "-" + index + ": " + min + "~" + max;
 }

 @Override
 public Row getNext() {
 if (id++ == max) {
 return null;
 }
 final Row row = userTable.createRow();
 row.put("id", id);
 row.put("name", "name" + id);
 row.put("age", 20 + id % 50);
 count++;
 return row;
 }

 @Override
 public void completed() {
 System.err.println(name() + " completed, loaded: " + count);
 }

 @Override
 public void keyExists(Row entry) {
 keyExistsCount.incrementAndGet();
 }

 @Override

Chapter 6
Bulk Put Operations

6-6

 public void catchException(RuntimeException exception, Row entry) {
 System.err.println(name() + " catch exception: " +
 exception.getMessage() + ": " +
 entry.toJsonString(false));
 throw exception;
 }

 public long getCount() {
 return count;
 }

 public long getKeyExistsCount() {
 return keyExistsCount.get();
 }
}

Using Time to Live
Time to Live (TTL) is a mechanism that allows you to automatically expire table rows.
TTL is expressed as the amount of time data is allowed to live in the store. Data
which has reached its expiration timeout value can no longer be retrieved, and will not
appear in any store statistics. Whether the data is physically removed from the store is
determined by an internal mechanism that is not user-controllable.

TTL represents a minimum guaranteed time to live. Data expires on hour or day
boundaries. This means that with a one hour TTL, there can be as much as two hours
worth of unexpired data. For example (using a time format of hour:minute:second),
given a one hour TTL, data written between 00:00:00.000 and 00:59:59.999 will expire
at 02:00:00.000 because the data is guaranteed to expire no less than one hour from
when it is written.

In case of MR Tables with TTL value defined, the rows replicated to other regions carry
the expiration time when the row was written. This can be either the default table level
TTL value or a row level override that is set by your application. Therefore, this row will
expire in all the regions at the same time, irrespective of when they were replicated.

Expired data is invisible to queries and store statistics, but even so it is using disk
space until it has been purged. Here, store statistics refer to the statistics related to
your store's performance and availability. See Monitoring the Store. The expired data
is purged from disk at some point in time after its expiration date. The exact time when
the data is purged is driven by internal mechanisms and the workload on your store.

The TTL value for a table row can be updated at any time before the expiration value
has been reached. Data that has expired can no longer be modified, and this includes
its TTL value.

TTL is more efficient than manual user-deletion of the row because it avoids the
overhead of writing a database log entry for the data deletion. The deletion also does
not appear in the replication stream.

Specifying a TTL Value
TTL values are specified on a row by row basis using Row.setTTL(). This method
accepts a TimeToLive class instance, which allows you to identify the number of days
or hours the row will live in the store before expiring. A duration interval specified in

Chapter 6
Using Time to Live

6-7

days is recommended because this results in the least amount of storage consumed in
the store. However, if you want a TTL value that is not an even multiple of days, then
specify the TTL value in hours.

The code example from Writing Rows to a Table in the Store can be extended to
specify a TTL value of 5 days like this:

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TimeToLive;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();
Table myTable = tableH.getTable("myTable");

// Get a Row instance
Row row = myTable.createRow();

// Add a TTL value to the row
row.setTTL(TimeToLive.ofDays(5));

// Now put all of the cells in the row.
row.put("item", "Bolts");
row.put("description", "Hex head, stainless");
row.put("count", 5);
row.put("percentage", 0.2173913);

// Now write the table to the store.
tableH.put(row, null, null);

Updating a TTL Value
To update the expiration time for a table row, you write the row as normal, and at
the same time specify the new expiration time. However, you must also indicate that
the expiration time is to be updated. By default, you can modify the row data and the
expiration time will not be modified, even if you specify a new TTL value for the row.

To indicate that the the expiration time is to be updated, specify true to the
WriteOptions.setUpdateTTL() method. For example, using the previous example, to
change the TTL value to 10 days, do the following:

package kvstore.basicExample;

import oracle.kv.KVStore;

Chapter 6
Using Time to Live

6-8

import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.Table.TimeToLive;
import oracle.kv.table.TableAPI;
import oracle.kv.table.WriteOptions;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();
Table myTable = tableH.getTable("myTable");

// Get a Row instance
Row row = myTable.createRow();

// Change the TTL value for the row from 5 days to 10.
row.setTTL(TimeToLive.ofDays(10));

// Now put all of the cells in the row.
row.put("item", "Bolts");
row.put("description", "Hex head, stainless");
row.put("count", 5);
row.put("percentage", 0.2173913);

// Now write the table to the store.
tableH.put(row, null, new WriteOptions().setUpdateTTL(true));

Deleting TTL Expiration
If you have set a TTL value for a row and you later decide you do not want
it to ever automatically expire, you can turn off TTL by setting a TTL value of
TimeToLive.DO_NOT_EXPIRE:

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.Table.TimeToLive;
import oracle.kv.table.TableAPI;
import oracle.kv.table.WriteOptions;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();
Table myTable = tableH.getTable("myTable");

Chapter 6
Using Time to Live

6-9

// Get a Row instance
Row row = myTable.createRow();

// Modify the row's TTL so that it will never expire
row.setTTL(TimeToLive.DO_NOT_EXPIRE);

// Now put all of the cells in the row.
row.put("item", "Bolts");
row.put("description", "Hex head, stainless");
row.put("count", 5);
row.put("percentage", 0.2173913);

// Now write the table to the store.
tableH.put(row, null, new WriteOptions().setUpdateTTL(true));

Setting Default Table TTL Values
You can set a default TTL value for the table when you define the table using the
USING TTL DDL statement. It may be optionally applied when a table is created using
CREATE TABLE or when a table is modified using one of the ALTER TABLE statements.
See USING TTL for details on this statement.

For example:

CREATE TABLE myTable (
 item STRING,
 description STRING,
 count INTEGER,
 percentage DOUBLE,
 PRIMARY KEY (item) // Every table must have a primary key
) USING TTL 5 days

At program run time, you can examine the default TTL value for a table using the
Table.getDefaultTTL() method.

Deleting Rows from the Store
You delete a single row from the store using the TableAPI.delete() method.
Rows are deleted based on a PrimaryKey, which you obtain using the
Table.createPrimaryKey() method. You can also require a row to match a specified
version before it will be deleted. To do this, use the TableAPI.deleteIfVersion()
method. Versions are described in Using Row Versions .

When you delete a row, you must handle the same exceptions as occur when you
perform any write operation on the store. See Write Exceptions for a high-level
description of these exceptions.

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Table;

Chapter 6
Deleting Rows from the Store

6-10

import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give to getTable() must be identical
// to the name that you gave the table when you created
// the table using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

// Get the primary key for the row that we want to delete
PrimaryKey primaryKey = myTable.createPrimaryKey();
primaryKey.put("item", "Bolts");

// Delete the row
// This performs a store write operation
tableH.delete(primaryKey, null, null);

Using multiDelete()
You can delete multiple rows at once in a single atomic operation, as long as they
all share the shard key values. Recall that shard keys are at least a subset of your
primary keys. This results in using a partial primary key, which is the shard key, to
perform a multi-delete.

To delete multiple rows at once, use the TableAPI.multiDelete() method.

For example, suppose you create a table like this:

CREATE TABLE myTable (
 itemType STRING,
 itemCategory STRING,
 itemClass STRING,
 itemColor STRING,
 itemSize STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (SHARD(itemType, itemCategory, itemClass), itemColor,
 itemSize)
)

With tables containing data like this:

• Row 1:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

Chapter 6
Deleting Rows from the Store

6-11

– itemColor: red

– itemSize: small

– price: 12.07

– inventoryCount: 127

• Row 2:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: medium

– price: 13.07

– inventoryCount: 201

• Row 3:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: large

– price: 14.07

– inventoryCount: 39

In this case, you can delete all the rows sharing the partial primary key Hats,
baseball, longbill as follows:

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give to getTable() must be identical
// to the name that you gave the table when you created
// it using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

// Get the primary key for the row that we want to delete
PrimaryKey primaryKey = myTable.createPrimaryKey();

Chapter 6
Deleting Rows from the Store

6-12

primaryKey.put("itemType", "Hats");
primaryKey.put("itemCategory", "baseball");
primaryKey.put("itemClass", "longbill");

// Exception handling omitted
tableH.multiDelete(primaryKey, null, null);

Chapter 6
Deleting Rows from the Store

6-13

7
Reading Table Rows

There are several ways to retrieve table rows from the store. You can:

1. Retrieve a single row at a time using the TableAPI.get() method.

2. Retrieve rows associated with a shard key (which is based on at
least part of your primary keys) using either the TableAPI.multiGet() or
TableAPI.multiGetIterator() methods.

3. Retrieve table rows that share a shard key, or an index key, using the
TableAPI.tableIterator() method.

4. Retrieve and process records from each shard in parallel using a single
key as the retrieval criteria. Use one of the TableAPI.tableIterator() or
TableAPI.tableKeysIterator() methods that provide parallel scans.

5. Retrieve and process records from each shard in parallel using a set of
keys as the retrieval criteria. Use one of the TableAPI.tableIterator() or
TableAPI.tableKeysIterator() methods that provide bulk retrievals.

Each of these are described in the following sections.

Read Exceptions
Several exceptions can occur when you attempt a read operation in the store. The first
of these is ConsistencyException. This exception indicates that the operation cannot
be completed because the consistency policy cannot be met. For more information,
see Consistency Guarantees.

The second exception is RequestTimeoutException. This means that the operation
could not be completed within the amount of time provided by the store's timeout
property. This probably indicates a store that is attempting to service too many read
requests all at once. Remember that your data is partitioned across the shards in your
store, with the partitioning occurring based on your shard keys. If you designed your
keys such that a large number of read requests are occurring against a single key, you
could see request timeouts even if some of the shards in your store are idle.

A request timeout could also be indicative of a network problem that is causing the
network to be slow or even completely unresponsive.

To handle a RequestTimeoutException, you could simply log the error and move on,
or you could pause for a short period of time and then retry the operation. You could
also retry the operation, but use a longer timeout value.

You can also receive an IllegalArgumentException, which will be thrown if a Row that
you are writing to the store does not have a primary key or is otherwise invalid.

You can also receive a general FaultException, which indicates that some exception
occurred which is neither a problem with consistency nor a problem with the request
timeout. Your only recourse here is to either log the error and move along, or retry the
operation.

7-1

You can also receive a MetadataNotFoundException, which indicates that a client's
metadata may be out of sync. It extends FaultException and can be caught by
applications to trigger the need for a refresh of their metadata, and in particular, Table
handles obtained via TableAPI.getTable().

Finally, if you are using a secure store that requires authentication, you can receive
AuthenticationFailureException or AuthenticationRequiredException if you do
not provide the proper authentication credentials. When using a secure store, you can
also see UnauthorizedException, which means you are attempting an operation for
which the authenticated user does not have the proper permissions.

Retrieving a Single Row
To retrieve a single row from the store:

1. Construct a handle for the table from which you want to read. You do this by
retrieving a TableAPI class instance using KVStore.getTableAPI(). You then use
that instance to retrieve the desired table handle using TableAPI.getTable(). This
returns a Table class instance.

Note:

TableAPI.getTable() is an expensive call that requires server side
access. From a performance point of view, it is a mistake to call this
method whenever you need a table handle. Instead, call this method for
all relevant tables in the set up section of your code, and then reuse
those handles throughout your application.

2. Use the Table instance retrieved in the previous step to create a PrimaryKey class
instance. In this case, the key you create must be the entire primary key.

3. Retrieve the row using TableAPI.get(). This performs a store read operation.

4. Retrieve individual fields from the row using the Row.get() method.

For example, in Writing Rows to a Table in the Store we showed a trivial example of
storing a table row to the store. The following trivial example shows how to retrieve
that row.

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

Chapter 7
Retrieving a Single Row

7-2

// The name you give to getTable() must be identical
// to the name that you gave the table when you created
// the table using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

// Construct the PrimaryKey. This is driven by your table
// design, which designated one or more fields as
// being part of the table's primary key. In this
// case, we have a single field primary key, which is the
// 'item' field. Specifically, we want to retrieve the
// row where the 'item' field contains 'Bolts'.
PrimaryKey key = myTable.createPrimaryKey();
key.put("item", "Bolts");

// Retrieve the row. This performs a store read operation.
// Exception handling is skipped for this trivial example.
Row row = tableH.get(key, null);

// Now retrieve the individual fields from the row.
String item = row.get("item").asString().get();
String description = row.get("description").asString().get();
Integer count = row.get("count").asInteger().get();
Double percentage = row.get("percentage").asDouble().get();

Retrieve a Child Table
In Writing Rows to a Child Table we showed how to populate a child table with data. To
retrieve that data, you must specify the primary key used for the parent table row, as
well as the primary key for the child table row. For example:

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// We omit retrieval of the parent table because it is not required.
Table myChildTable = tableH.getTable("myInventory.itemDetails");

// Construct the PrimaryKey. This key must contain the primary key
// from the parent table row, as well as the primary key from the
// child table row that you want to retrieve.
PrimaryKey key = myChildTable.createPrimaryKey();

Chapter 7
Retrieving a Single Row

7-3

key.put("itemCategory", "Bolts");
key.put("itemSKU", "1392610");

// Retrieve the row. This performs a store read operation.
// Exception handling is skipped for this trivial example.
Row row = tableH.get(key, null);

// Now retrieve the individual fields from the row.
String description = row.get("itemDescription").asString().get();
Float price = row.get("price").asFloat().get();
Integer invCount = row.get("inventoryCount").asInteger().get();

For information on how to iterate over nested tables, see Iterating with Nested Tables.

Using multiGet()
TableAPI.multiGet() allows you to retrieve multiple rows at once, so long as they all
share the same shard keys. You must specify a full set of shard keys to this method.

Use TableAPI.multiGet() only if your retrieval set will fit entirely in memory.

For example, suppose you have a table that stores information about products, which
is designed like this:

CREATE TABLE myTable (
 itemType STRING,
 itemCategory STRING,
 itemClass STRING,
 itemColor STRING,
 itemSize STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (SHARD(itemType, itemCategory, itemClass), itemColor,
 itemSize)
)

With tables containing data like this:

• Row 1:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: small

– price: 12.07

– inventoryCount: 127

• Row 2:

– itemType: Hats

– itemCategory: baseball

Chapter 7
Using multiGet()

7-4

– itemClass: longbill

– itemColor: red

– itemSize: medium

– price: 13.07

– inventoryCount: 201

• Row 3:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: large

– price: 14.07

– inventoryCount: 39

In this case, you can retrieve all of the rows with their itemType field set to Hats and
their itemCategory field set to baseball. Notice that this represents a partial primary
key, because itemClass, itemColor and itemSize are not used for this query.

package kvstore.basicExample;

...

import java.util.List;
import java.util.Iterator;
import oracle.kv.ConsistencyException;
import oracle.kv.KVStore;
import oracle.kv.RequestTimeoutException;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give to getTable() must be identical
// to the name that you gave the table when you created
// the table using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

// Construct the PrimaryKey. In this case, we are
// using a partial primary key.
PrimaryKey key = myTable.createPrimaryKey();
key.put("itemType", "Hats");

Chapter 7
Using multiGet()

7-5

key.put("itemCategory", "baseball");
key.put("itemClass", "longbill");

List<Row> myRows = null;

try {
 myRows = tableH.multiGet(key, null, null);
} catch (ConsistencyException ce) {
 // The consistency guarantee was not met
} catch (RequestTimeoutException re) {
 // The operation was not completed within the
 // timeout value
}

You can then iterate over the resulting list as follows:

for (Row theRow: myRows) {
 String itemType = theRow.get("itemType").asString().get();
 String itemCategory = theRow.get("itemCategory").asString().get();
 String itemClass = theRow.get("itemClass").asString().get();
 String itemColor = theRow.get("itemColor").asString().get();
 String itemSize = theRow.get("itemSize").asString().get();
 Float price = theRow.get("price").asFloat().get();
 Integer price = theRow.get("itemCount").asInteger().get();
}

Iterating over Table Rows
TableAPI.tableIterator() provides non-atomic table iteration. Use this method to
iterate over indexes. This method performs a parallel scan of your tables if you set a
concurrent request size other than 1.

TableAPI.tableIterator() does not return the entire set of rows all at once. Instead,
it batches the fetching of rows in the iterator, to minimize the number of network round
trips, while not monopolizing the available bandwidth. Also, the rows returned by this
method are in unsorted order.

Note that this method does not result in a single atomic operation. Because the
retrieval is batched, the return set can change over the course of the entire retrieval
operation. As a result, you lose the atomicity of the operation when you use this
method.

This method provides for an unsorted traversal of rows in your table. If you do not
provide a key, then this method will iterate over all of the table's rows.

When using this method, you can optionally specify:

• A MultiRowOptions class instance. This class allows you to specify a field range,
and the ancestor and parent tables you want to include in this iteration.

• A TableIteratorOptions class instance. This class allows you to identify the
suggested number of keys to fetch during each network round trip. If you provide a
value of 0, an internally determined default is used. You can also use this class to
specify the traversal order (FORWARD, REVERSE, and UNORDERED are supported).

Chapter 7
Iterating over Table Rows

7-6

This class also allows you to control how many threads are used to perform the
store read. By default this method determines the degree of concurrency based
on the number of available processors. You can tune this concurrency by explicitly
stating how many threads to use for table retrieval. See Parallel Scans for more
information.

Finally, you use this class to specify a consistency policy. See Consistency
Guarantees for more information.

Note:

When using TableAPI.tableIterator(), it is important to call
TableIterator.close() when you are done with the iterator to avoid
resource leaks. This is especially true for long-running applications,
especially if you do not iterate over the entire result set.

For example, suppose you have a table that stores information about products, which
is designed like this:

CREATE TABLE myTable (
 itemType STRING,
 itemCategory STRING,
 itemClass STRING,
 itemColor STRING,
 itemSize STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (SHARD(itemType, itemCategory, itemClass), itemColor,
 itemSize)
)

With tables containing data like this:

• Row 1:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: small

– price: 12.07

– inventoryCount: 127

• Row 2:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

Chapter 7
Iterating over Table Rows

7-7

– itemSize: medium

– price: 13.07

– inventoryCount: 201

• Row 3:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: large

– price: 14.07

– inventoryCount: 39

• Row n:

– itemType: Coats

– itemCategory: Casual

– itemClass: Winter

– itemColor: red

– itemSize: large

– price: 247.99

– inventoryCount: 9

Then in the simplest case, you can retrieve all of the rows related to 'Hats' using
TableAPI.tableIterator() as follows. Note that this simple example can also be
accomplished using the TableAPI.multiGet() method. If you have a complete shard
key, and if the entire results set will fit in memory, then multiGet() will perform much
better than tableIterator(). However, if the results set cannot fit entirely in memory,
or if you do not have a complete shard key, then tableIterator() is the better choice.
Note that reads performed using tableIterator() are non-atomic, which may have
ramifications if you are performing a long-running iteration over records that are being
updated.

package kvstore.basicExample;

...

import oracle.kv.KVStore;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;

...

// KVStore handle creation is omitted for brevity

...

Chapter 7
Iterating over Table Rows

7-8

TableAPI tableH = kvstore.getTableAPI();

// The name you give to getTable() must be identical
// to the name that you gave the table when you created
// the table using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

// Construct the PrimaryKey. In this case, we are
// using a partial primary key.
PrimaryKey key = myTable.createPrimaryKey();
key.put("itemType", "Hats");

// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter = tableH.tableIterator(key, null, null);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 // Examine your row's fields here
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Specifying Field Ranges
When performing multi-key operations in the store, you can specify a range of rows to
operate upon. You do this using the FieldRange class, which is accepted by any of the
methods which perform bulk reads. This class is used to restrict the selected rows to
those matching a range of field values.

For example, suppose you defined a table like this:

CREATE TABLE myTable (
 surname STRING,
 familiarName STRING,
 userID STRING,
 phonenumber STRING,
 address STRING,
 email STRING,
 dateOfBirth STRING,
 PRIMARY KEY (SHARD(surname, familiarName), userID)
)

The surname contains a person's family name, such as Smith. The familiarName
contains their common name, such as Bob, Patricia, Robert, and so forth.

Given this, you could perform operations for all the rows related to users with a
surname of Smith, but we can limit the result set to just those users with familiar
names that fall alphabetically between Bob and Patricia by specifying a field range.

Chapter 7
Specifying Field Ranges

7-9

A FieldRange is created using Table.createFieldRange(). This method takes just
one argument — the name of the primary key for which you want to set the range.

In this case, we will define the start of the key range using the string "Bob" and the end
of the key range to be "Patricia". Both ends of the key range will be inclusive.

In this example, we use TableIterator, but we could just as easily use this
range on any multi-row read operation, such as the TableAPI.multiGet() or
TableAPI.multiGetKeys() methods. The FieldRange object is passed to these
methods using a MultiRowOptions class instance, which we construct using the
FieldRange.createMultiRowOptions() convenience method.

package kvstore.basicExample;

...

import oracle.kv.KVStore;
import oracle.kv.table.FieldRange;
import oracle.kv.table.MultiRowOptions;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give to getTable() must be identical
// to the name that you gave the table when you created
// the table using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

// Construct the PrimaryKey. In this case, we are
// using a partial primary key.
PrimaryKey key = myTable.createPrimaryKey();
key.put("surname", "Smith");

// Create the field range.
FieldRange fh = myTable.createFieldRange("familiarName");
fh.setStart("Bob", true);
fh.setEnd("Patricia", true);
MultiRowOptions mro = fh.createMultiRowOptions();

// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter = tableH.tableIterator(key, mro, null);
try {
 while (iter.hasNext()) {

Chapter 7
Specifying Field Ranges

7-10

 Row row = iter.next();
 // Examine your row's fields here
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Iterating with Nested Tables
When you are iterating over a table, or performing a multi-get operation, by default
only rows are retrieved from the table on which you are operating. However, you can
use MultiRowOptions to specify that parent and child tables are to be retrieved as
well.

When you do this, parent tables are retrieved first, then the table you are operating on,
then child tables. In other words, the tables' hierarchical order is observed.

The parent and child tables retrieved are identified by specifying a List of Table
objects to the ancestors and children parameters on the class constructor. You
can also specify these using the MultiRowOptions.setIncludedChildTables() or
MultiRowOptions.setIncludedParentTables() methods.

When operating on rows retrieved from multiple tables, it is your responsibility to
determine which table the row belongs to.

For example, suppose you create a table with a child and grandchild table like this:

CREATE TABLE prodTable (
 prodType STRING,
 typeDescription STRING,
 PRIMARY KEY (prodType)
)

CREATE TABLE prodTable.prodCategory (
 categoryName STRING,
 categoryDescription STRING,
 PRIMARY KEY (categoryName)
)

CREATE TABLE prodTable.prodCategory.item (
 itemSKU STRING,
 itemDescription STRING,
 itemPrice FLOAT,
 vendorUID STRING,
 inventoryCount INTEGER,
 PRIMARY KEY (itemSKU)
)

With tables containing data like this:

• Row 1:

Chapter 7
Iterating with Nested Tables

7-11

– prodType: Hardware

– typeDescription: Equipment, tools and parts

– Row 1.1:

* categoryName: Bolts

* categoryDescription: Metric & US Sizes

* Row 1.1.1:

* itemSKU: 1392610

* itemDescription: 1/4-20 x 1/2 Grade 8 Hex

* itemPrice: 11.99

* vendorUID: A8LN99

* inventoryCount: 1457

• Row 2:

– prodType: Tools

– typeDescription: Hand and power tools

– Row 2.1:

* categoryName: Handtools

* categoryDescription: Hammers, screwdrivers, saws

* Row 2.1.1:

* itemSKU: 1582178

* itemDescription: Acme 20 ounce claw hammer

* itemPrice: 24.98

* vendorUID: D6BQ27

* inventoryCount: 249

In this case, you can display all of the data contained in these tables in the following
way.

Start by getting all our table handles:

package kvstore.tableExample;

import java.util.Arrays;

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

import oracle.kv.table.TableIterator;
import oracle.kv.table.MultiRowOptions;

Chapter 7
Iterating with Nested Tables

7-12

...

private static Table prodTable;
private static Table categoryTable;
private static Table itemTable;

private static TableAPI tableH;

...

// KVStore handle creation is omitted for brevity

...

tableH = kvstore.getTableAPI();
prodTable = tableH.getTable("prodTable");
categoryTable = tableH.getTable("prodTable.prodCategory");
itemTable = tableH.getTable("prodTable.prodCategory.item");

Now we need the PrimaryKey and the MultiRowOptions that we will use to iterate over
the top-level table. Because we want all the rows in the top-level table, we create an
empty PrimaryKey.

The MultiRowOptions identifies the two child tables in the constructor's child
parameter. This causes the iteration to return all the rows from the top-level table,
as well as all the rows from the nested children tables.

// Construct a primary key
PrimaryKey key = prodTable.createPrimaryKey();

// Get a MultiRowOptions and tell it to look at both the child
// tables
MultiRowOptions mro = new MultiRowOptions(null, null,
 Arrays.asList(categoryTable, itemTable));

Now we perform the iteration:

// Get the table iterator
// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter = tableH.tableIterator(key, mro, null);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 displayRow(row);
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Chapter 7
Iterating with Nested Tables

7-13

Our displayRow() method is used to determine which table a row belongs to, and then
display it in the appropriate way.

private static void displayRow(Row row) {
 // Display the row depending on which table it belongs to
 if (row.getTable().equals(prodTable)) {
 displayProdTableRow(row);
 } else if (row.getTable().equals(categoryTable)) {
 displayCategoryTableRow(row);
 } else {
 displayItemTableRow(row);
 }
}

Finally, we just need the methods used to display each row. These are trivial, but in a
more sophisticated application they could be used to do more complex things, such as
construct HTML pages or write XSL-FO for the purposes of generating PDF copies of
a report.

private static void displayProdTableRow(Row row) {
 System.out.println("\nType: " +
 row.get("prodType").asString().get());
 System.out.println("Description: " +
 row.get("typeDescription").asString().get());
}

private static void displayCategoryTableRow(Row row) {
 System.out.println("\tCategory: " +
 row.get("categoryName").asString().get());
 System.out.println("\tDescription: " +
 row.get("categoryDescription").asString().get());
}

private static void displayItemTableRow(Row row) {
 System.out.println("\t\tSKU: " +
 row.get("itemSKU").asString().get());
 System.out.println("\t\tDescription: " +
 row.get("itemDescription").asString().get());
 System.out.println("\t\tPrice: " +
 row.get("itemPrice").asFloat().get());
 System.out.println("\t\tVendorUID: " +
 row.get("vendorUID").asString().get());
 System.out.println("\t\tInventory count: " +
 row.get("inventoryCount").asInteger().get());
 System.out.println("\n");
}

Note that the retrieval order remains the top-most ancestor to the lowest child, even if
you retrieve by lowest child. For example, you can retrieve all the Bolts, and all of their
parent tables, like this:

// Get all the table handles
prodTable = tableH.getTable("prodTable");

Chapter 7
Iterating with Nested Tables

7-14

categoryTable = tableH.getTable("prodTable.prodCategory");
itemTable = tableH.getTable("prodTable.prodCategory.item");

// Construct a primary key
PrimaryKey key = itemTable.createPrimaryKey();
key.put("prodType", "Hardware");
key.put("categoryName", "Bolts");

// Get a MultiRowOptions and tell it to look at both the ancestor
// tables
MultiRowOptions mro = new MultiRowOptions(null,
 Arrays.asList(prodTable, categoryTable), null);

// Get the table iterator
// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter = tableH.tableIterator(key, mro, null);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 displayRow(row);
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Reading Indexes
You use TableIterator to retrieve table rows using a table's indexes. Just as when
you use TableIterator to read table rows using a table's primary key(s), when
reading using indexes you can set options such as field ranges, traversal direction,
and so forth. By default, index scans return entries in forward order.

In this case, rather than provide TableIterator with a PrimaryKey instance, you use
an instance of IndexKey.

For example, suppose you defined a table like this:

CREATE TABLE myTable (
 surname STRING,
 familiarName STRING,
 userID STRING,
 phonenumber STRING,
 address STRING,
 email STRING,
 dateOfBirth STRING,
 PRIMARY KEY (SHARD(surname, familiarName), userID)
)

CREATE INDEX DoB ON myTable (dateOfBirth)

Chapter 7
Reading Indexes

7-15

This creates an index named DoB for table myTable based on the value of the
dateOfBirth field. To read using that index, you use Table.getIndex() to retrieve the
index named Dob. You then create an IndexKey from the Index object. For example:

package kvstore.basicExample;

...

import oracle.kv.KVStore;
import oracle.kv.table.Index;
import oracle.kv.table.IndexKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

// Construct the IndexKey. The name we gave our index when
// we created it was 'DoB'.
Index dobIdx = myTable.getIndex("DoB");
IndexKey dobIdxKey = dobIdx.createIndexKey();

// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter = tableH.tableIterator(dobIdxKey, null, null);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 // Examine your row's fields here
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

If you want to return entries that match a specific field name and field value, then use
the IndexKey.put() method:

// Construct the IndexKey. The name we gave our index when
// we created it was 'DoB'.
Index dobIdx = myTable.getIndex("DoB");
IndexKey dobIdxKey = dobIdx.createIndexKey();
// Return only those entries with a dateOfBirth equal to

Chapter 7
Reading Indexes

7-16

// "1991-08-23"
dobIdxKey.put("dateOfBirth", "1991-08-23");

// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter = tableH.tableIterator(dobIdxKey, null, null);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 // Examine your row's fields here
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

If you want to return all the entries with a null value for the field, use the
IndexKey.putNull() method:

// Construct the IndexKey. The name we gave our index when
// we created it was 'DoB'.
Index dobIdx = myTable.getIndex("DoB");
IndexKey dobIdxKey = dobIdx.createIndexKey();
// Return only those entries with a NULL dateOfBirth
// value.
dobIdxKey.putNull("dateOfBirth");

// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter = tableH.tableIterator(dobIdxKey, null, null);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 // Examine your row's fields here
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

In the previous example, the code examines every row indexed by the DoB index.
A more likely, and useful, example in this case would be to limit the rows returned
through the use of a field range. You do that by using Index.createFieldRange() to
create a FieldRange object. When you do this, you must specify the field to base the
range on. Recall that an index can be based on more than one table field, so the field
name you give the method must be one of the indexed fields.

For example, if the rows hold dates in the form of yyyy-mm-dd, you could
retrieve all the people born in the month of May, 1994 in the following way.

Chapter 7
Reading Indexes

7-17

This index only examines one field, dateOfBirth, so we give that field name to
Index.createFieldRange():

package kvstore.basicExample;

...

import oracle.kv.KVStore;
import oracle.kv.table.FieldRange;
import oracle.kv.table.Index;
import oracle.kv.table.IndexKey;
import oracle.kv.table.MultiRowOption;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

// Construct the IndexKey. The name we gave our index when
// we created it was 'DoB'.
Index dobIdx = myTable.getIndex("DoB");
IndexKey dobIdxKey = dobIdx.createIndexKey();

// Create the field range.
FieldRange fh = dobIdx.createFieldRange("dateOfBirth");
fh.setStart("1994-05-01", true);
fh.setEnd("1994-05-30", true);
MultiRowOptions mro = fh.createMultiRowOptions();

// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter = tableH.tableIterator(dobIdxKey, mro, null);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 // Examine your row's fields here
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Chapter 7
Reading Indexes

7-18

Parallel Scans
By default, store reads are performed using multiple threads, the number of which
is chosen by the number of cores available to your code. You can configure the
maximum number of client-side threads to be used for the scan, as well as the
number of results per request and the maximum number of result batches that the
Oracle NoSQL Database client can hold before the scan pauses. To do this, use
the TableIteratorOptions class. You pass this to TableAPI.tableIterator(). This
creates a TableIterator that uses the specified parallel scan configuration.

Note:

You cannot configure the number of scans you use for your reads if you are
using indexes.

For example, to retrieve all of the records in the store using 5 threads in parallel, you
would do this:

package kvstore.basicExample;

...

import oracle.kv.Consistency;
import oracle.kv.Direction;
import oracle.kv.KVStore;
import oracle.kv.table.FieldRange;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.MultiRowOption;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;
import oracle.kv.table.TableIteratorOptions;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

// Construct the PrimaryKey.
PrimaryKey key = myTable.createPrimaryKey();
key.put("itemType", "Hats");
key.put("itemCategory", "baseball");

TableIteratorOptions tio =

Chapter 7
Parallel Scans

7-19

 new TableIteratorOptions(Direction.UNORDERED,
 Consistency.NONE_REQUIRED,
 0, // timeout
 null, // timeout units
 5, // number of concurrent
 // threads
 0, // results per request
 0); // max result sets
// Exception handling is omitted, but in production code
// ConsistencyException, RequestTimeException, and FaultException
// would have to be handled.
TableIterator<Row> iter =
 tableH.tableIterator(key, null, tio);
try {
 while (iter.hasNext()) {
 Row row = iter.next();
 // Examine your row's fields here
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Bulk Get Operations
Bulk get operations allow you to retrieve and process records from each shard in
parallel, like a parallel scan, but using a set of keys instead of a single key as retrieval
criteria.

A bulk get operation does not return the entire set of rows all at once. Instead, it
batches the fetching of rows in the iterator, to minimize the number of network round
trips, while not monopolizing the available bandwidth. Batches are fetched in parallel
across multiple Replication Nodes. If more threads are specified on the client side,
then the user can expect better retrieval performance – until processor or network
resources are saturated.

To use bulk get, use one of the TableAPI.tableIterator() or
TableAPI.tableKeysIterator() methods that provide bulk retrievals. These accept
a set of keys instead of a single key as the retrieval criteria. The set is provided using
either an Iterator<Key> or List<Iterator<Key>> value.

The methods retrieve the rows or primary keys matching the keys supplied by the
iterator(s).

Note:

If the iterator yields duplicate keys, the row associated with the duplicate
keys will be returned at least once and potentially multiple times.

The supplied keys should follow these rules:

Chapter 7
Bulk Get Operations

7-20

1. All supplied primary keys should belong to the same table.

2. The input key must be a complete shard key.

3. If a field range is specified, then the partial primary keys should be uniform. That
is, they should have the same number of components. Also, the field range must
be the first unspecified field of the supplied key.

When using these methods, you can also optionally specify:

• A MultiRowOptions class instance which allows you to specify a field range, as
well as the ancestor and parent tables you want to include in the iteration.

• The number of keys to fetch during each network round trip using a
TableIteratorOptions class instance. If you provide a value of 0, an internally
determined default is used. You can also specify the traversal order (UNORDERED is
supported).

You can control how many threads are used to perform the store read using the
MaxConcurrentRequests parameter.

Finally, you can specify a consistency policy. See Consistency Guarantees for
more information.

For example, suppose you have a table that stores information about products, which
is designed like this:

CREATE TABLE myTable (
 itemType STRING,
 itemCategory STRING,
 itemClass STRING,
 itemColor STRING,
 itemSize STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (SHARD(itemType, itemCategory), itemClass, itemColor,
 itemSize))

With tables containing data like this:

• Row 1:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: small

– price: 12.07

– inventoryCount: 127

• Row 2:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

Chapter 7
Bulk Get Operations

7-21

– itemColor: red

– itemSize: medium

– price: 13.07

– inventoryCount: 201

• Row 3:

– itemType: Pants

– itemCategory: baseball

– itemClass: Summer

– itemColor: red

– itemSize: large

– price: 14.07

– inventoryCount: 39

• Row 4:

– itemType: Pants

– itemCategory: baseball

– itemClass: Winter

– itemColor: white

– itemSize: large

– price: 16.99

– inventoryCount: 9

• Row n:

– itemType: Coats

– itemCategory: Casual

– itemClass: Winter

– itemColor: red

– itemSize: large

– price: 247.99

– inventoryCount: 13

If you want to locate all the Hats and Pants used for baseball, using nine threads in
parallel, you can retrieve all of the records as follows:

package kvstore.basicExample;

...
import java.util.ArrayList;
import java.util.List;
import oracle.kv.Consistency;
import oracle.kv.Direction;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.TableAPI;

Chapter 7
Bulk Get Operations

7-22

import oracle.kv.table.TableIterator;
import oracle.kv.table.TableIteratorOptions;

...

// KVStore handle creation is omitted for brevity

...

// Construct the Table Handle
TableAPI tableH = store.getTableAPI();
Table table = tableH.getTable("myTable");

// Use multi-threading for this store iteration and limit the number
// of threads (degree of parallelism) to 9.
final int maxConcurrentRequests = 9;
final int batchResultsSize = 0;
final TableIteratorOptions tio =
 new TableIteratorOptions(Direction.UNORDERED,
 Consistency.NONE_REQUIRED,
 0, null,
 maxConcurrentRequests,
 batchResultsSize);

// Create retrieval keys
PrimaryKey myKey = table.createPrimaryKey();
myKey.put("itemType", "Hats");
myKey.put("itemCategory", "baseball");
PrimaryKey otherKey = table.createPrimaryKey();
otherKey.put("itemType", "Pants");
otherKey.put("itemCategory", "baseball");

List<PrimaryKey> searchKeys = new ArrayList<PrimaryKey>();

// Add the retrieval keys to the list.
searchKeys.add(myKey);
searchKeys.add(otherKey);

final TableIterator<Row> iterator = tableH.tableIterator(
 searchKeys.iterator(), null, tio);

// Now retrieve the records.
try {
 while (iterator.hasNext()) {
 Row row = (Row) iterator.next();
 // Do some work with the Row here
 }
} finally {
 if (iterator != null) {
 iterator.close();
 }
}

Chapter 7
Bulk Get Operations

7-23

8
Using Data Types

Many of the types that Oracle NoSQL Database offers are easy to use. Examples
of their usage has been scattered throughout this manual. However, some types are
a little more complicated to use because they use container methods. This chapter
describes their usage.

The types described in this chapter are: Arrays, Maps, Records, Enums, and Byte
Arrays. This chapter shows how to read and write values of each of these types.

Using Arrays
Arrays are a sequence of values all of the same type.

When you declare a table field as an array, you use the ARRAY() statement.

To define a simple two-field table where the primary key is a UID and the second field
contains array of strings, you use the following DDL statement:

CREATE TABLE myTable (
 uid INTEGER,
 myArray ARRAY(STRING),
 PRIMARY KEY(uid)
)

DEFAULT and NOT NULL constraints are not supported for arrays.

To write the array, use Row.putArray(), which returns an ArrayValue class instance.
You then use ArrayValue.put() to write elements to the array:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

Row row = myTable.createRow();
row.put("uid", 12345);

ArrayValue av = row.putArray("myArray");
av.add("One");
av.add("Two");
av.add("Three");

tableH.put(row, null, null);

Note that ArrayValue has methods that allow you to add multiple values to the array
by appending an array of values to the array. This assumes the array of values

8-1

matches the array's schema. For example, the previous example could be done in the
following way:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

Row row = myTable.createRow();
row.put("uid", 12345);

ArrayValue av = row.putArray("myArray");
String myStrings[] = {"One", "Two", "Three"};
av.add(myStrings);

tableH.put(row, null, null);

To read the array, use Row.get().asArray(). This returns an ArrayValue class
instance. You can then use ArrayValue.get() to retrieve an element of the array
from a specified index, or you can use ArrayValue.toList() to return the array
as a Java List. In either case, the retrieved values are returned as a FieldValue,
which allows you to retrieve the encapsulated value using a cast method such as
FieldValue.asString().

For example, to iterate over the array created in the previous example:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

/* Create a primary key for user id 12345 and get a row */
PrimaryKey key = myTable.createPrimaryKey();
key.put("uid", 12345);
Row row = tableH.get(key, null);

/* Iterate over the array, displaying each element as a string */
ArrayValue av = row.get("myArray").asArray();
for (FieldValue fv: av.toList()) {
 System.out.println(fv.asString().get()); }

Using Binary
You can declare a field as binary using the BINARY statement. You then read and write
the field value using a Java byte array.

If you want to store a large binary object, then you should use the LOB APIs rather
than a binary field.

Note that fixed binary should be used over the binary datatype any time you know that
all the field values will be of the same size. Fixed binary is a more compact storage
format because it does not need to store the size of the array. See Using Fixed Binary
for information on the fixed binary datatype.

Chapter 8
Using Binary

8-2

To define a simple two-field table where the primary key is a UID and the second field
contains a binary field, you use the following statement:

CREATE TABLE myTable (
 uid INTEGER,
 myByteArray BINARY,
 PRIMARY KEY(uid)
)

DEFAULT and NOT NULL constraints are not supported for binary values.

To write the byte array, use Row.put().

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

Row row = myTable.createRow();
row.put("uid", 12345);

String aString = "The quick brown fox.";
try {
 row.put("myByteArray", aString.getBytes("UTF-8"));
} catch (UnsupportedEncodingException uee) {
 uee.printStackTrace();
}

tableH.put(row, null, null);

To read the binary field, use Row.get().asBinary(). This returns a BinaryValue class
instance. You can then use BinaryValue.get() to retrieve the stored byte array.

For example:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

/* Create a primary key for user id 12345 and get a row */
PrimaryKey key = myTable.createPrimaryKey();
key.put("uid", 12345);
Row row = tableH.get(key, null);

byte[] b = row.get("myByteArray").asBinary().get();
String aString = new String(b);
System.out.println("aString: " + aString);

Using Enums
Enumerated types are declared using the ENUM() statement. You must declare the
acceptable enumeration values when you use this statement.

Chapter 8
Using Enums

8-3

To define a simple two-field table where the primary key is a UID and the second field
contains an enum, you use the following DDL statement:

CREATE TABLE myTable (
 uid INTEGER,
 myEnum ENUM (Apple,Pears,Oranges),
 PRIMARY KEY (uid)
)

DEFAULT and NOT NULL constraints are supported for enumerated fields. See DEFAULT
for more information.

To write the enum, use Row.putEnum(). If the enumeration value that you use with this
method does not match a value defined on the -enum-values parameter during table
definition, an IllegalArgumentException is thrown.

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

Row row = myTable.createRow();
row.put("uid", 12345);

row.putEnum("myEnum", "Pears");

tableH.put(row, null, null);

To read the enum, use Row.get().asEnum(). This returns a EnumValue class instance.
You can then use EnumValue.get() to retrieve the stored enum value's name as a
string. Alternatively, you can use EnumValue.getIndex() to retrieve the stored value's
index position.

For example:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

/* Create a primary key for user id 12345 and get a row */
PrimaryKey key = myTable.createPrimaryKey();
key.put("uid", 12345);
Row row = tableH.get(key, null);

EnumValue ev = row.get("testEnum").asEnum();
System.out.println("enum as string: " +
 ev.get()); // returns "Pears"
System.out.println("enum index: " +
 ev.getIndex()); // returns '1'

Using Fixed Binary
You can declare a fixed binary field using the BINARY() statement. When you do this,
you must also specify the field's size in bytes. You then read and write the field value

Chapter 8
Using Fixed Binary

8-4

using Java byte arrays. However, if the byte array does not equal the specified size,
then IllegalArgumentException is thrown when you attempt to write the field. Write
the field value using a Java byte array.

If you want to store a large binary object, then you should use the LOB APIs rather
than a binary field.

Fixed binary should be used over the binary datatype any time you know that all
the field values will be of the same size. Fixed binary is a more compact storage
format because it does not need to store the size of the array. See Using Binary for
information on the binary datatype.

To define a simple two-field table where the primary key is a UID and the second field
contains a fixed binary field, you use the following DDL statement:

CREATE TABLE myTable (
 uid INTEGER,
 myByteArray BINARY(20),
 PRIMARY KEY (uid)
)

DEFAULT and NOT NULL constraints are not supported for binary values.

To write the byte array, use Row.putFixed(). Again, if the byte array does not match
the size defined for this field, then IllegalArgumentException is thrown.

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

Row row = myTable.createRow();
row.put("uid", 12345);

String aString = "The quick brown fox.";
try {
 row.putFixed("myByteArray", aString.getBytes("UTF-8"));
} catch (UnsupportedEncodingException uee) {
 uee.printStackTrace();
}

tableH.put(row, null, null);

To read the fixed binary field, use Row.get().asFixedBinary(). This returns a
FixedBinaryValue class instance. You can then use FixedBinaryValue.get() to
retrieve the stored byte array.

For example:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

/* Create a primary key for user id 12345 and get a row */
PrimaryKey key = myTable.createPrimaryKey();
key.put("uid", 12345);

Chapter 8
Using Fixed Binary

8-5

Row row = tableH.get(key, null);

byte[] b = row.get("myByteArray").asFixedBinary().get();
String aString = new String(b);
System.out.println("aString: " + aString);

Using JSON
The JSON datatype cannot be used as part of a primary or shard key.

To define a simple two-field table where the primary key is a UID and the second field
contains a JSON data field, you use the following DDL statement:

CREATE TABLE myJsonTable (
 uid INTEGER,
 myJSON JSON,
 PRIMARY KEY (uid)
)

The data that you write for this datatype can be any valid JSON stored as a string. For
example, all of the following are valid:

final String jsonNumber = "2";
final String jsonString = "\"a json string\"";
final String jsonObject_null = "{}";
final String jsonObject = "{\"a\": 1.006, \"b\": null," +
 "\"bool\" : true, \"map\": {\"m1\": 5}," +
 "\"ar\" : [1,2.7,3]}";
final String jsonNull = "null";

To store a JSON value in the table that we defined, above:

 TableAPI tableH = kvstore.getTableAPI();

 Table myJsonTable = tableH.getTable("myJsonTable");
 Row row = myTable.createRow();
 row.put("uid", 12345);
 String jsonArray="[1,5,11.1,88]";
 row.putJson("myJSON", jsonArray);
 tableH.put(row, null, null);

To retrieve it:

 TableAPI tableH = kvstore.getTableAPI();

 Table myTable = tableH.getTable("myJsonTable");
 PrimaryKey pkey = myTable.createPrimaryKey();
 pkey.put("uid", 12345);

 Row row = tableH.get(pkey, null);
 int uid = row.get("uid").asInteger().get();
 String jsonStr = row.get("myJSON").toString();

Chapter 8
Using JSON

8-6

 System.out.println("uid: " + uid + " JSON: " + jsonStr);

Be aware that a version of Row.putJson() exists that allows you to use Java Readers
to stream JSON data from I/O locations (such as files on disk). For example, to stream
a small file from disk use java.io.FileReader:

 TableAPI tableH = kvstore.getTableAPI();

 Table myTable = tableH.getTable("myJsonTable");

 Row row = myTable.createRow();
 row.put("uid", 666);

 try {
 FileReader fr = new FileReader("myJsonFile.txt");
 row.putJson("myJson", fr);
 tableH.put(row, null, null);
 } catch (FileNotFoundException fnfe) {
 System.out.println("File not found: " + fnfe);
 }

For a more complete example of using JSON data fields, see JSON By Example.

Using Maps
All map entries must be of the same type. Regardless of the type of the map's values,
its keys are always strings.

The string "[]" is reserved and must not be used for key names.

When you declare a table field as a map, you use the MAP() statement. You must also
declare the map element's data types.

To define a simple two-field table where the primary key is a UID and the second field
contains a map of integers, you use the following DDL statement:

CREATE TABLE myTable (
 uid INTEGER,
 myMap MAP(INTEGER),
 PRIMARY KEY (uid)
)

DEFAULT and NOT NULL constraints are not supported for map fields.

To write the map, use Row.putMap(), which returns a MapValue class instance. You
then use MapValue.put() to write elements to the map:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

Row row = myTable.createRow();

Chapter 8
Using Maps

8-7

row.put("uid", 12345);

MapValue mv = row.putMap("myMap");
mv.put("field1", 1);
mv.put("field2", 2);
mv.put("field3", 3);

tableH.put(row, null, null);

To read the map, use Row.get().asMap(). This returns a MapValue class instance. You
can then use MapValue.get() to retrieve an map value. The retrieved value is returned
as a FieldValue, which allows you to retrieve the encapsulated value using a cast
method such as FieldValue.asInteger().

For example, to retrieve elements from the map created in the previous example:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

/* Create a primary key for user id 12345 and get a row */
PrimaryKey key = myTable.createPrimaryKey();
key.put("uid", 12345);
Row row = tableH.get(key, null);

MapValue mv = row.get("testMap").asMap();
FieldValue fv = mv.get("field3");
System.out.println("fv: " + fv.asInteger().get());

Using Embedded Records
A record entry can contain fields of differing types. However, embedded records
should be used only when the data is relatively static. In general, child tables provide
a better solution over embedded records, especially if the child dataset is large or is
likely to change in size.

Use the RECORD() statement to declare a table field as a record.

To define a simple two-field table where the primary key is a UID and the second field
contains a record, you use the following DDL statement:

CREATE TABLE myTable (
 uid INTEGER,
 myRecord RECORD(firstField STRING, secondField INTEGER),
 PRIMARY KEY (uid)
)

DEFAULT and NOT NULL constraints are not supported for embedded record fields.
However, these constraints can be applied to the individual fields in an embedded
record. See Field Constraints for more information.

Chapter 8
Using Embedded Records

8-8

To write the record, use Row.putRecord(), which returns a RecordValue class
instance. You then use RecordValue.put() to write fields to the record:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

Row row = myTable.createRow();
row.put("uid", 12345);

RecordValue rv = row.putRecord("myRecord");
rv.put("firstField", "An embedded record STRING field");
rv.put("secondField", 3388);

tableH.put(row, null, null);

To read the record, use Row.get().asRecord(). This returns a RecordValue class
instance. You can then use RecordValue.get() to retrieve a field from the record.
The retrieved value is returned as a FieldValue, which allows you to retrieve the
encapsulated value using a cast method such as FieldValue.asInteger().

For example, to retrieve field values from the embedded record created in the previous
example:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

/* Create a primary key for user id 12345 and get a row */
PrimaryKey key = myTable.createPrimaryKey();
key.put("uid", 12345);
Row row = tableH.get(key, null);

RecordValue rv = row.get("myRecord").asRecord();
FieldValue fv = rv.get("firstField");
System.out.println("firstField: " + fv.asString().get());
fv = rv.get("secondField");
System.out.println("secondField: " + fv.asInteger().get());

Chapter 8
Using Embedded Records

8-9

9
Indexing Non-Scalar Data Types

We describe how to index scalar data types in Creating Indexes, and we show how to
read using indexes in Reading Indexes. However, non-scalar data types (Arrays, Maps
and Records) require more explanation, which we give here.

Index creation is accomplished using the CREATE INDEX statement. See CREATE
INDEX for details on this statement.

Indexing Arrays
You can create an index on an array field so long as the array contains scalar data, or
contains a record with scalar fields.

Note:

You cannot index a map or array that is nested beneath another map or
array. This is not allowed because of the potential for an excessively large
number of index entries.

Be aware that indexing an array potentially results in multiple index entries for each
row, which can lead to very large indexes.

To create the index, first create the table:

CREATE TABLE myArrayTable (
 uid INTEGER,
 testArray ARRAY(STRING),
 PRIMARY KEY(uid)
)

Once the table has been added to the store, create the index. Be sure to use [] with
the field name to indicate that it is an array:

CREATE INDEX arrayFieldIndex on myArrayTable (testArray[])

In the case of arrays, the field can be indexed only if the array contains values that are
of one of the other indexable types. For example, you can create an index on an array
of Integers. You can also create an index on a specific record in an array of records.
Only one array should participate in an index, otherwise the size of the index can grow
exponentially because there is an index entry for each array entry.

9-1

To retrieve data using an index of arrays, you first retrieve the index using its name,
and create an instance of IndexKey that you will use to perform the index lookup:

Index arrayIndex = myTable.getIndex("arrayFieldIndex");
IndexKey indexKey = arrayIndex.createIndexKey();

Next you assign the array field name and its value to the IndexKey that you created
using the IndexKey.put() method:

indexKey.put("testArray[]", "One");

When you perform the index lookup, the only records that will be returned will be those
which have an array with at least one item matching the value set for the IndexKey
object. For example, if you have individual records that contain arrays like this:

Record 1: ["One," "Two", "Three"]
Record 2: ["Two", "Three", "One"]
Record 3: ["One", "Three", "One"]
Record 4: ["Two", "Three", "Four"]

and you then perform an array lookup on the array value "One", then Records 1 - 3 will
be returned, but not 4.

After that, you retrieve the matching table rows, and iterate over them in the same way
you would any other index type. For example:

TableIterator<Row> iter = tableH.tableIterator(indexKey, null, null);
System.out.println("Results for Array value 'One' : ");
try {
 while (iter.hasNext()) {
 Row rowRet = iter.next();
 int uid = rowRet.get("uid").asInteger().get();
 System.out.println("uid: " + uid);
 ArrayValue avRet = rowRet.get("testArray").asArray();
 for (FieldValue fv: avRet.toList()) {
 System.out.println(fv.asString().get());
 }
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Indexing JSON Fields
You can create an index on a JSON field. To create the index, specify it as you would
any other index, except that you must define the data type of the JSON field you are
indexing.

Note that there are some restrictions on the data type of the JSON field that you can
index. See JSON Indexes for more information.

Chapter 9
Indexing JSON Fields

9-2

To create the index, first create the table:

CREATE Table JSONPersons (
 id INTEGER,
 person JSON,
 PRIMARY KEY (id)
)

To create the index, you must specify the JSON field to be indexed using dot notation.
Suppose your table rows look like this:

 "id":1,
 "person" : {
 "firstname":"David",
 "lastname":"Morrison",
 "age":25,
 "income":100000,
 "lastLogin" : "2016-10-29T18:43:59.8319",
 "address":{"street":"150 Route 2",
 "city":"Antioch",
 "state":"TN",
 "zipcode" : 37013,
 "phones":[{"type":"home", "areacode":423,
 "number":8634379}]
 },
 "connections":[2, 3],
 "expenses":{"food":1000, "gas":180}
 }

Then once the table has been added to the store, you can create an index for one of
the JSON fields like this:

CREATE INDEX idx_json_income on JSONPersons (person.income AS integer)

To retrieve data using a JSON index, you first retrieve the index using its name, and
create an instance of IndexKey that you will use to perform the index lookup. The
following is used to retrieve all table rows where the person.income field is 100000:

Index jsonIndex = myTable.getIndex("idx_json_income");
IndexKey indexKey = jsonIndex.createIndexKey();
indexKey.put("person.income", 100000);

When you perform the index lookup, the only rows returned will be those which have
a JSON field with the specified field value. You then retrieve the matching table rows,
and iterate over them in the same way you would any other index type. For example:

TableIterator<Row> iter = tableH.tableIterator(indexKey, null, null);
System.out.println("Results for person.income, value 100000: ");
try {
 while (iter.hasNext()) {
 Row rowRet = iter.next();
 int id = rowRet.get("id").asInteger().get();

Chapter 9
Indexing JSON Fields

9-3

 System.out.println("id: " + id);
 MapValue mapRet = rowRet.get("person").asMap();
 System.out.println("person: " + mapRet.toString());
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

For a more complete example of using JSON data fields, including a JSON index, see
JSON By Example.

Indexing Maps
You can create an index on a map field so long as the map contains scalar data, or
contains a record with scalar fields.

Note:

You cannot index a map or array that is nested beneath another map or
array. This is not allowed because of the potential for an excessively large
number of index entries.

To create the index, define the map as normal. Once the map is defined for the table,
there are several different ways to index it:

• Based on the map's keys without regard to the actual key values.

• Based on the map's values, without regard to the actual key used.

• By a specific map key. To do this, you specify the name of the map field and the
name of a map key using dot notation. If the map key is ever created using your
client code, then it will be indexed.

• Based on the map's key and value without identifying a specific value (such as is
required by the previous option in this list).

Indexing by Map Keys
You can create indexes based on a map's keys without regard to the corresponding
values.

Be aware that creating an index like this can potentially result in multiple index entries
for each row, which can lead to very large indexes.

First create the table:

CREATE TABLE myMapTable (
 uid INTEGER,
 testMap MAP(INTEGER),
 PRIMARY KEY(uid)
)

Chapter 9
Indexing Maps

9-4

Once the table has been added to the store, create the index using the .keys() path
step:

CREATE INDEX mapKeyIndex on myMapTable (testMap.keys())

Data is retrieved if the table row contains the identified map with the identified key. So,
for example, if you create a series of table rows like this:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myMapTable");

Row row = myTable.createRow();
row.put("uid", 12345);
MapValue mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);
mv.put("field3", 3);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 12);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 666);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field3", 4);
tableH.put(row, null, null);

then you can retrieve any table rows that contain the map with any key currently in use
by the map. For example, "field3".

To retrieve data using a map index, you first retrieve the index using its name, and
create an instance of IndexKey that you will use to perform the index lookup:

Index mapIndex = myTable.getIndex("mapKeyIndex");
IndexKey indexKey = mapIndex.createIndexKey();

Next, you populate the IndexKey instance with the field name that you want to retrieve.
Use the keys() path step to indicate that you want to retrieve using the field name
without regard for the field value. When you perform the index lookup, the only records
that will be returned will be those which have a map with the specified key name:

indexKey.put("testMap.keys()", "field3");

Chapter 9
Indexing Maps

9-5

After that, you retrieve the matching table rows, and iterate over them in the same way
you would any other index type. For example:

TableIterator<Row> iter = tableH.tableIterator(indexKey, null, null);
System.out.println("Results for testMap field3: ");
try {
 while (iter.hasNext()) {
 Row rowRet = iter.next();
 int uid = rowRet.get("uid").asInteger().get();
 System.out.println("uid: " + uid);
 MapValue mapRet = rowRet.get("testMap").asMap();
 System.out.println("testMap: " + mapRet.toString());
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Indexing by Map Values
You can create indexes based on the values contained in a map without regard to the
keys in use.

Be aware that creating an index like this can potentially result in multiple index entries
for each row, which can lead to very large indexes.

First create the table:

CREATE TABLE myMapTable (
 uid INTEGER,
 testMap MAP(INTEGER),
 PRIMARY KEY(uid)
)

Once the table has been added to the store, create the index using the .values() path
step:

CREATE INDEX mapElementIndex on myMapTable (testMap.values())

Data is retrieved if the table row contains the identified map with the identified value.
So, for example, if you create a series of table rows like this:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myMapTable");

Row row = myTable.createRow();
row.put("uid", 12345);
MapValue mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);
mv.put("field3", 3);

Chapter 9
Indexing Maps

9-6

tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 12);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 666);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field3", 4);
tableH.put(row, null, null);

then you can retrieve any table rows that contain the map with any value currently in
use by the map. For example, a value of "2".

To retrieve data using a map index, you first retrieve the index using its name, and
create an instance of IndexKey that you will use to perform the index lookup:

Index mapIndex = myTable.getIndex("mapElementIndex");
IndexKey indexKey = mapIndex.createIndexKey();

Next, you populate the IndexKey instance with the field value (2) that you want to
retrieve. Use the values() path step with the field name to indicate that you want to
retrieve entries based on the value only. When you perform the index lookup, the only
records that will be returned will be those which have a map with a value of 2.

indexKey.put("testMap.values()", 2);

After that, you retrieve the matching table rows, and iterate over them in the same way
you would any other index type. For example:

TableIterator<Row> iter = tableH.tableIterator(indexKey, null, null);
System.out.println("Results for testMap value 2: ");
try {
 while (iter.hasNext()) {
 Row rowRet = iter.next();
 int uid = rowRet.get("uid").asInteger().get();
 System.out.println("uid: " + uid);
 MapValue mapRet = rowRet.get("testMap").asMap();
 System.out.println("testMap: " + mapRet.toString());
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Chapter 9
Indexing Maps

9-7

Indexing by a Specific Map Key Name
You can create an index based on a specified map key name. Any map entries
containing the specified key name are indexed. This can create a small and very
efficient index because the index does not contain every key/value pair contained by
the map fields. Instead, it just contains those map entries using the identified key,
which results in at most a single index entry per row.

To create the index, first create the table:

CREATE TABLE myMapTable (
 uid INTEGER,
 testMap MAP(INTEGER),
 PRIMARY KEY(uid)
)

Once the table has been added to the store, create the index by specifying the key
name you want indexed using dot notation. In this example, we will index the key
name of "field3":

CREATE INDEX mapField3Index on myMapTable (testMap.field3)

Data is retrieved if the table row contains the identified map with the indexed key and a
specified value. So, for example, if you create a series of table rows like this:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myMapTable");

Row row = myTable.createRow();
row.put("uid", 12345);
MapValue mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);
mv.put("field3", 3);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 12);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 666);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field3", 4);
tableH.put(row, null, null);

Chapter 9
Indexing Maps

9-8

then you can retrieve any table rows that contain the map with key "field3" (because
that is what you indexed) when "field3" maps to a specified value — such as "3". If you
try to do an index lookup on, for example, "field2" then that will fail because you did not
index "field2".

To retrieve data using a map index, you first retrieve the index using its name and
create an instance of IndexKey that you will use to perform the index lookup:

Index mapIndex = myTable.getIndex("mapField3Index");
IndexKey indexKey = mapIndex.createIndexKey();

Then you populate the map field name (using dot notation) and the desired value
using IndexKey.put(). When you perform the index lookup, the only records that
will be returned will be those which have a map with the matching key name and
corresponding value.

indexKey.put("testMap.field3", 3);

After that, you retrieve the matching table rows, and iterate over them in the same way
you would any other index type. For example:

TableIterator<Row> iter = tableH.tableIterator(indexKey, null, null);
System.out.println("Results for testMap field3, value 3: ");
try {
 while (iter.hasNext()) {
 Row rowRet = iter.next();
 int uid = rowRet.get("uid").asInteger().get();
 System.out.println("uid: " + uid);
 MapValue mapRet = rowRet.get("testMap").asMap();
 System.out.println("testMap: " + mapRet.toString());
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Indexing by Map Key and Value
In the previous section, we showed how to create a map index by specifying a pre-
determined key name. This allows you to perform map index look ups by providing
both key and value, but the index lookup will only be successful if the specified key is
the key that you indexed.

You can do the same thing in a generic way by indexing every key/value pair in your
map. The result is a more flexible index, but also an index that is potentially much
larger than the previously described method. It is likely to result in multiple index
entries per row.

Chapter 9
Indexing Maps

9-9

To create an index based on every key/value pair used by the map field, first create
the table:

CREATE TABLE myMapTable (
 uid INTEGER,
 testMap MAP(INTEGER),
 PRIMARY KEY(uid)
)

Once the table has been added to the store, create the index by using the .keys()
and .values() path steps:

CREATE INDEX mapKeyValueIndex on myMapTable
(testMap.keys(),testMap.values())

Data is retrieved if the table row contains the identified map with the identified key and
the identified value. So, for example, if you create a series of table rows like this:

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myMapTable");

Row row = myTable.createRow();
row.put("uid", 12345);
MapValue mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);
mv.put("field3", 3);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 12);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field2", 2);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 666);
mv = row.putMap("testMap");
mv.put("field1", 1);
mv.put("field3", 4);
tableH.put(row, null, null);

then you can retrieve any table rows that contain the map with specified key/value
pairs — for example, key "field3" and value "3".

To retrieve data using a map index, you first retrieve the index using its name and
create an instance of IndexKey that you will use to perform the index lookup:

Index mapIndex = myTable.getIndex("mapKeyValueIndex");
IndexKey indexKey = mapIndex.createIndexKey();

Chapter 9
Indexing Maps

9-10

Next, you populate the IndexKey class instance with the field name and value you
want to retrieve. In this case, you must specify two sets of information, using two calls
to IndexKey.put():

• The name of the field. Here, use the keys() path step with the field name.

• The field value you want to retrieve. Here, use the values() path step the field
name.

For example:

indexKey.put("testMap.keys()", "field3");
indexKey.put("testMap.values()", 3);

When you perform the index lookup, the only records that will be returned will be those
which have a map with the matching key/value pair. Once you have performed the
index lookup, you retrieve the matching table rows, and iterate over them in the same
way you would any other index type. For example:

TableIterator<Row> iter = tableH.tableIterator(indexKey, null, null);
System.out.println("Results for testMap field3, value 3: ");
try {
 while (iter.hasNext()) {
 Row rowRet = iter.next();
 int uid = rowRet.get("uid").asInteger().get();
 System.out.println("uid: " + uid);
 MapValue mapRet = rowRet.get("testMap").asMap();
 System.out.println("testMap: " + mapRet.toString());
 }
} finally {
 if (iter != null) {
 iter.close();
 }
}

Indexing Embedded Records
You can create an index on an embedded record field so long as the record field
contains scalar data. To create the index, define the record as normal. To index the
field, you specify the name of the embedded record and the name of the field using dot
notation.

To create the index, first create the table:

CREATE Table myRecordTable (
 uid INTEGER,
 myRecord RECORD (firstField STRING, secondField INTEGER),
 PRIMARY KEY (uid)
)

Once the table has been added to the store, create the index:

CREATE INDEX recordFieldIndex on myRecordTable (myRecord.secondField)

Chapter 9
Indexing Embedded Records

9-11

Data is retrieved if the table row contains the identified record field with the specified
value. So, for example, if you create a series of table rows like this:

TableAPI tableH = kvstore.getTableAPI();
Table myTable = tableH.getTable("myRecordTable");

Row row = myTable.createRow();
row.put("uid", 12345);
RecordValue rv = row.putRecord("myRecord");
rv.put("firstField", "String field for 12345");
rv.put("secondField", 3388);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 345);
rv = row.putRecord("myRecord");
rv.put("firstField", "String field for 345");
rv.put("secondField", 3388);
tableH.put(row, null, null);

row = myTable.createRow();
row.put("uid", 111);
rv = row.putRecord("myRecord");
rv.put("firstField", "String field for 111");
rv.put("secondField", 12);
tableH.put(row, null, null);

then you can retrieve any table rows that contain the embedded record where
"secondField" is set to a specified value. (The embedded record index that we
specified, above, indexed myRecord.secondField.)

To retrieve data using a record index, you first retrieve the index using its name, and
create an instance of IndexKey that you will use to perform the index lookup:

Index recordIndex = myTable.getIndex("recordFieldIndex");
IndexKey indexKey = recordIndex.createIndexKey();
indexKey.put(“myRecord.secondField", 3388);

When you perform the index lookup, the only records returned will be those which
have an embedded record with the specified field and field value. You then retrieve the
matching table rows, and iterate over them in the same way you would any other index
type. For example:

TableIterator<Row> iter = tableH.tableIterator(indexKey, null, null);
System.out.println("Results for testRecord.secondField, value 3388: ");
try {
 while (iter.hasNext()) {
 Row rowRet = iter.next();
 int uid = rowRet.get("uid").asInteger().get();
 System.out.println("uid: " + uid);
 RecordValue recordRet = rowRet.get("myRecord").asRecord();
 System.out.println("myRecord: " + recordRet.toString());
 }
} finally {

Chapter 9
Indexing Embedded Records

9-12

 if (iter != null) {
 iter.close();
 }
}

Chapter 9
Indexing Embedded Records

9-13

10
Using Row Versions

When a row is initially inserted in the store, and each time it is updated, it is assigned
a unique version token. The version is always returned by the method that wrote to
the store (for example, TableAPI.put()). The version information is also returned by
methods that retrieve rows from the store.

There are two reasons why versions might be important.

1. When an update or delete is to be performed, it may be important to perform the
operation only if the row's value has not changed. This is particularly interesting
in an application where there can be multiple threads or processes simultaneously
operating on the row. In this case, read the row, examining its version when you
do so. You can then perform a put operation, but only allow the put to proceed if
the version has not changed (this is often referred to as a Compare and Set (CAS)
or Read, Modify, Write (RMW) operation). You use TableAPI.putIfVersion() or
TableAPI.deleteIfVersion() to guarantee this.

2. When a client reads data that was previously written, it may be important to
ensure that the Oracle NoSQL Database node servicing the read operation has
been updated with the information previously written. This can be accomplished by
passing the version of the previously written data as a consistency parameter to
the read operation. For more information on using consistency, see Consistency
Guarantees.

Versions are managed using the Version class. In some situations, it is returned as
part of another encapsulating class, such as the Row class.

The following code fragment retrieves a row, and then writes that row back to the store
only if the version has not changed:

package kvstore.basicExample;

...

import oracle.kv.Version;
import oracle.kv.KVStore;
import oracle.kv.table.Index;
import oracle.kv.table.IndexKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;

...

// Retrieve the row. Note that we do not show the creation of
// the kvstore handle here.

TableAPI tableH = kvstore.getTableAPI();
Table myTable = tableH.getTable("myTable");

10-1

// Construct the IndexKey. The name we gave our index when
// we created it was 'DoB'.
Index dobIdx = myTable.getIndex("DoB");
IndexKey dobIdxKey = dobIdx.createIndexKey();

TableIterator<Row> iter =
 tableH.tableIterator(dobIdxKey, null, null);

while (iter.hasNext()) {
 Row aRow = iter.next();

 // Retrieve the row's version information
 Version rowVersion = aRow.getVersion();

 //////////////////////////
 // Do work on the row here
 //////////////////////////

 // Put if the version is correct. Notice that here we examine
 // the return code. If it is null, that means that the put was
 // unsuccessful, probably because the row was changed elsewhere.

 Version newVersion =
 tableH.putIfVersion(row, rowVersion, null, null);
 if (newVersion == null) {
 // Unsuccessful. Someone else probably modified the record.
 }
}

Chapter 10

10-2

11
Consistency Guarantees

A Oracle NoSQL Database store is built from some number of computers (generically
referred to as nodes) that are working together using a network. All data in your store
is first written to a master node. The master node then copies that data to other nodes
in the store. Nodes which are not master nodes are referred to as replicas.

Because of the nature of distributed systems, there is a possibility that, at any given
moment, a write operation that was performed on the master node will not yet have
been performed on some other node in the store.

Consistency, then, is the policy describing whether it is possible for a row on Node A
to be different from the same row on Node B.

When there is a high likelihood that a row stored on one node is identical to the
same row stored on another node, we say that we have a high consistency guarantee.
Likewise, a low consistency guarantee means that there is a good possibility that a
row on one node differs in some way from the same row stored on another node.

You can control how high you want your consistency guarantee to be. Note that the
trade-off in setting a high consistency guarantee is that your store's read performance
might not be as high as if you use a low consistency guarantee.

There are several different forms of consistency guarantees that you can use. They
are described in the following sections.

Note that by default, Oracle NoSQL Database uses the lowest possible consistency
possible.

Specifying Consistency Policies
To specify a consistency policy, you use one of the static instances of the Consistency
class, or one of its nested classes.

Once you have selected a consistency policy, you can put it to use in one of
two ways. First, you can use it to define a default consistency policy using the
KVStoreConfig.setConsistency() method. Specifying a consistency policy in this way
means that all store operations will use that policy, unless they are overridden on an
operation by operation basis.

The second way to use a consistency policy is to override the default policy using a
ReadOption class instance you provide to the TableAPI method that you are using to
perform the store read operation.

The following example shows how to set a default consistency policy for the store. We
will show the per-operation method of specifying consistency policies in the following
sections.

package kvstore.basicExample;

import oracle.kv.Consistency;

11-1

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

...

KVStoreConfig kconfig = new KVStoreConfig("exampleStore",
 "node1.example.org:5088, node2.example.org:4129");

kconfig.setConsistency(Consistency.NONE_REQUIRED);

KVStore kvstore = KVStoreFactory.getStore(kconfig);

Using Simple Consistency
You can use static instances of the Consistency base class to specify certain rigid
consistency guarantees. There are two such instances that you can use:

1. Consistency.ABSOLUTE

Requires that the operation be serviced at the master node. In this way, the row(s)
will always be consistent with the master.

This is the strongest possible consistency guarantee that you can require, but it
comes at the cost of servicing all read and write requests at the master node.
If you direct all your traffic to the master node (which is just one machine for
each partition), then you will not be distributing your read operations across your
replicas. You also will slow your write operations because your master will be
busy servicing read requests. For this reason, you should use this consistency
guarantee sparingly.

2. Consistency.NONE_REQUIRED

Allows the store operation to proceed regardless of the state of the replica relative
to the master. This is the most relaxed consistency guarantee that you can require.
It allows for the maximum possible store performance, but at the high possibility
that your application will be operating on stale or out-of-date information.

For example, suppose you are performing a critical read operation that you know must
absolutely have the most up-to-date data. Then do this:

package kvstore.basicExample;

import oracle.kv.Consistency;
import oracle.kv.ConsistencyException;
import oracle.kv.KVStore;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.ReadOptions;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

// KVStore handle creation is omitted for brevity

Chapter 11
Using Simple Consistency

11-2

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give to getTable() must be identical
// to the name that you gave the table when you created
// the table using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

// Construct the PrimaryKey.
PrimaryKey key = myTable.createPrimaryKey();
key.put("item", "Bolts");

// Create the ReadOption with our Consistency policy
ReadOptions ro = new ReadOptions(Consistency.ABSOLUTE,
 0, // Timeout parameter.
 // 0 means use the default.
 null); // Timeout units. Null because
 // the Timeout is 0.

// Retrieve the row. This performs a store read operation.
// Exception handling is skipped for this trivial example.
try {
 Row row = tableH.get(key, ro);
} catch (ConsistencyException ce) {
 // The consistency guarantee was not met
}

Using Time-Based Consistency
A time-based consistency policy describes the amount of time that a replica node is
allowed to lag behind the master node. If the replica's data is more than the specified
amount of time out-of-date relative to the master, then a ConsistencyException is
thrown. In that event, you can either abandon the operation, retry it immediately, or
pause and then retry it.

In order for this type of a consistency policy to be effective, the clocks on all the nodes
in the store must be synchronized using a protocol such as NTP.

In order to specify a time-based consistency policy, you use the Consistency.Time
class. The constructor for this class requires the following information:

• permissibleLag

A long that describes the number of TimeUnits the replica is allowed to lag behind
the master.

• permissibleLagUnits

A TimeUnit that identifies the units used by permissibleLag. For example:
TimeUnit.MILLISECONDS.

• timeout

A long that describes how long the replica is permitted to wait in an attempt to
meet the permissible lag limit. That is, if the replica cannot immediately meet the

Chapter 11
Using Time-Based Consistency

11-3

permissible lag requirement, then it will wait this amount of time to see if it is
updated with the required data from the master. If the replica cannot meet the
permissible lag requirement within the timeout period, a ConsistencyException is
thrown.

• timeoutUnit

A TimeUnit that identifies the units used by timeout. For example:
TimeUnit.SECONDS.

The following sets a default time-based consistency policy of 2 seconds. The timeout
is 4 seconds.

package kvstore.basicExample;

import oracle.kv.Consistency;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

import java.util.concurrent.TimeUnit;

...

KVStoreConfig kconfig = new KVStoreConfig("exampleStore",
 "node1.example.org:5088, node2.example.org:4129");

Consistency.Time cpolicy =
 new Consistency.Time(2, TimeUnit.SECONDS,
 4, TimeUnit.SECONDS);
kconfig.setConsistency(cpolicy);

KVStore kvstore = KVStoreFactory.getStore(kconfig);

Using Version-Based Consistency
Version-based consistency is used on a per-operation basis. It ensures that a read
performed on a replica is at least as current as some previous write performed on the
master.

An example of how this might be used is a web application that collects some
information from a customer (such as her name). It then customizes all subsequent
pages presented to the customer with her name. The storage of the customer's name
is a write operation that can only be performed by the master node, while subsequent
page creation is performed as a read-only operation that can occur at any node in the
store.

Use of this consistency policy might require that version information be transferred
between processes in your application.

To create a version-based consistency policy, use the Consistency.Version class.
When you do this, you must provide the following information:

• version

The Version that the read must match. The value returned is either equal or newer
than the version specified in the policy.

Chapter 11
Using Version-Based Consistency

11-4

• timeout

A long that describes how long the replica is permitted to wait in an attempt to
meet the version requirement. That is, if the replica cannot immediately meet the
version requirement, then it will wait this amount of time to see if it is updated
with the required data from the master. If the replica cannot meet the requirement
within the timeout period, a ConsistencyException is thrown.

• timeoutUnit

A TimeUnit that identifies the units used by timeout. For example:
TimeUnit.SECONDS.

For example, the following code performs a store write, collects the version
information, then uses it to construct a version-based consistency policy.

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.Version;

...

// KVStore handle creation is omitted for brevity

...

TableAPI tableH = kvstore.getTableAPI();
Table myTable = tableH.getTable("myTable");

// Get a Row instance
Row row = myTable.createRow();

// Now put all of the cells in the row.

row.put("item", "Bolts");
row.put("count1", 5);
row.put("count2", 23);
row.put("percentage", 0.2173913);

// Now write the table to the store, capturing the
// Version information as we do.

Version matchVersion = tableH.put(row, null, null);

Version matchVersion = kvstore.put(myKey, myValue);

At some other point in this application's code, or perhaps in another application
entirely, we use the matchVersion captured above to create a version-based
consistency policy.

package kvstore.basicExample;

Chapter 11
Using Version-Based Consistency

11-5

import oracle.kv.Consistency;
import oracle.kv.ConsistencyException;
import oracle.kv.KVStore;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.ReadOptions;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

import java.util.concurrent.TimeUnit;

...

// KVStore handle creation is omitted for brevity

...

// Construct the PrimaryKey.

PrimaryKey key = myTable.createPrimaryKey();
key.put("item", "Bolts");

// Create the consistency policy, using the
// Version object we captured, above.
Consistency.Version versionConsistency =
 new Consistency.Version(matchVersion,
 200,
 TimeUnit.NANOSECONDS);

// Create a ReadOptions using our new consistency policy.
ReadOptions ro = new ReadOptions(versionConsistency, 0, null);

// Now perform the read.
try {

 Row row = tableH.get(key, ro);

 // Do work with the row here
} catch (ConsistencyException ce) {
 // The consistency guarantee was not met
}

Chapter 11
Using Version-Based Consistency

11-6

12
Durability Guarantees

Writes are performed in the Oracle NoSQL Database store by performing the write
operation (be it a creation, update, or delete operation) on a master node. As a part
of performing the write operation, the master node will usually make sure that the
operation has made it to stable storage before considering the operation complete.

The master node will also transmit the write operation to the replica nodes in its shard.
It is possible to ask the master node to wait for acknowledgments from its replicas
before considering the operation complete.

Note:

If your store is configured such that secondary zones are in use, then write
acknowledgements are never required for the replicas in the secondary
zones. That is, write acknowledgements are only returned by replicas in
primary zones. For more information on zones, see Administrator's Guide.

The replicas, in turn, will not acknowledge the write operation until they have applied
the operation to their own database.

A durability guarantee, then, is a policy which describes how strongly persistent your
data is in the event of some kind of catastrophic failure within the store. (Examples of
a catastrophic failure are power outages, disk crashes, physical memory corruption, or
even fatal application programming errors.)

A high durability guarantee means that there is a very high probability that the write
operation will be retained in the event of a catastrophic failure. A low durability
guarantee means that the write is very unlikely to be retained in the event of a
catastrophic failure.

The higher your durability guarantee, the slower your write-throughput will be in the
store. This is because a high durability guarantee requires a great deal of disk and
network activity.

Usually you want some kind of a durability guarantee, although if you have highly
transient data that changes from run-time to run-time, you might want the lowest
possible durability guarantee for that data.

Durability guarantees include two types of information: acknowledgment guarantees
and synchronization guarantees. These two types of guarantees are described in the
next sections. We then show how to set a durability guarantee.

Note that by default, Oracle NoSQL Database uses a low durability guarantee.

12-1

Setting Acknowledgment-Based Durability Policies
Whenever a master node performs a write operation (create, update or delete), it must
send that operation to its various replica nodes. The replica nodes then apply the write
operation(s) to their local databases so that the replicas are consistent relative to the
master node.

Upon successfully applying write operations to their local databases, replicas in
primary zones send an acknowledgment message back to the master node. This
message simply says that the write operation was received and successfully applied
to the replica's local database. Replicas in secondary zones do not send these
acknowledgement messages.

Note:

The exception to this are replicas in secondary zones, which will never
acknowledge write operations.

An acknowledgment-based durability policy describes whether the master node
will wait for these acknowledgments before considering the write operation to
have completed successfully. You can require the master node to not wait for
acknowledgments, or to wait for acknowledgments from a simple majority of replica
nodes in primary zones, or to wait for acknowledgments from all replica nodes in
primary zones.

The more acknowledgments the master requires, the slower its write performance will
be. Waiting for acknowledgments means waiting for a write message to travel from the
master to the replicas, then for the write operation to be performed at the replica (this
may mean disk I/O), then for an acknowledgment message to travel from the replica
back to the master. From a computer application's point of view, this can all take a long
time.

When setting an acknowledgment-based durability policy, you can require
acknowledgment from:

• All replicas. That is, all of the replica nodes in the shard that reside in a primary
zone. Remember that your store has more than one shard, so the master node is
not waiting for acknowledgments from every machine in the store.

• No replicas. In this case, the master returns with normal status from the write
operation as soon as it has met its synchronization-based durability policy. These
are described in the next section.

• A simple majority of replicas in primary zones. That is, if the shard has 5 replica
nodes residing in primary zones, then the master will wait for acknowledgments
from 3 nodes.

Setting Synchronization-Based Durability Policies
Whenever a node performs a write operation, the node must know whether it should
wait for the data to be written to stable storage before successfully returning from the
operation.

Chapter 12
Setting Acknowledgment-Based Durability Policies

12-2

As a part of performing a write operation, the data modification is first made to an
in-memory cache. It is then written to the filesystem's data buffers. And, finally, the
contents of the data buffers are synchronized to stable storage (typically, a hard drive).

You can control how much of this process the master node will wait to complete before
it returns from the write operation with a normal status. There are three different levels
of synchronization durability that you can require:

• NO_SYNC

The data is written to the host's in-memory cache, but the master node does not
wait for the data to be written to the file system's data buffers, or for the data to
be physically transferred to stable storage. This is the fastest, but least durable,
synchronization policy.

• WRITE_NO_SYNC

The data is written to the in-memory cache, and then written to the file system's
data buffers, but the data is not necessarily transferred to stable storage before
the operation completes normally.

• SYNC

The data is written to the in-memory cache, then transferred to the file system's
data buffers, and then synchronized to stable storage before the write operation
completes normally. This is the slowest, but most durable, synchronization policy.

Notice that in all cases, the data is eventually written to stable storage (assuming
some failure does not occur to prevent it). The only question is, how much of this
process will be completed before the write operation returns and your application can
proceed to its next operation.

See the next section for an example of setting durability policies.

Setting Durability Guarantees
To set a durability guarantee, use the Durability class. When you do this, you must
provide three pieces of information:

• The acknowledgment policy.

• A synchronization policy at the master node.

• A synchronization policy at the replica nodes.

The combination of policies that you use is driven by how sensitive your application
might be to potential data loss, and by your write performance requirements.

For example, the fastest possible write performance can be achieved through a
durability policy that requires:

• No acknowledgments.

• NO_SYNC at the master.

• NO_SYNC at the replicas.

However, this durability policy also leaves your data with the greatest risk of loss due
to application or machine failure between the time the operation returns and the time
when the data is written to stable storage.

On the other hand, if you want the highest possible durability guarantee, you can use:

Chapter 12
Setting Durability Guarantees

12-3

• All replicas must acknowledge the write operation.

• SYNC at the master.

• SYNC at the replicas.

Of course, this also results in the slowest possible write performance.

Most commonly, durability policies attempt to strike a balance between write
performance and data durability guarantees. For example:

• Simple majority (> 50%) of replicas must acknowledge the write.

• SYNC at the master.

• NO_SYNC at the replicas.

Note that you can set a default durability policy for your KVStore handle, but you can
also override the policy on a per-operation basis for those situations where some of
your data need not be as durable (or needs to be MORE durable) than the default.

For example, suppose you want an intermediate durability policy for most of your data,
but sometimes you have transient or easily re-created data whose durability really is
not very important. Then you would do something like this:

First, set the default durability policy for the KVStore handle:

package kvstore.basicExample;

import oracle.kv.Durability;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

...

KVStoreConfig kconfig = new KVStoreConfig("exampleStore",
 "node1.example.org:5088, node2.example.org:4129");

Durability defaultDurability =
 new Durability(Durability.SyncPolicy.SYNC, // Master sync
 Durability.SyncPolicy.NO_SYNC, // Replica sync
 Durability.ReplicaAckPolicy.SIMPLE_MAJORITY);
kconfig.setDurability(defaultDurability);

KVStore kvstore = KVStoreFactory.getStore(kconfig);

In another part of your code, for some unusual write operations, you might then want
to relax the durability guarantee so as to speed up the write performance for those
specific write operations:

package kvstore.basicExample;

...

import oracle.kv.Durability;
import oracle.kv.DurabilityException;
import oracle.kv.KVStore;

Chapter 12
Setting Durability Guarantees

12-4

import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

...

TableAPI tableH = kvstore.getTableAPI();

// The name you give to getTable() must be identical
// to the name that you gave the table when you created
// the table using the CREATE TABLE DDL statement.
Table myTable = tableH.getTable("myTable");

// Get a Row instance
Row row = myTable.createRow();

// Now put all of the cells in the row.

row.put("item", "Bolts");
row.put("description", "Hex head, stainless");
row.put("count", 5);
row.put("percentage", 0.2173913);

// Construct a durability policy
Durability durability =
 new Durability(Durability.SyncPolicy.NO_SYNC, // Master sync
 Durability.SyncPolicy.NO_SYNC, // Replica sync
 Durability.ReplicaAckPolicy.NONE);

// Construct a WriteOptions object using the durability policy.
WriteOptions wo = new WriteOptions(durability, 0, null);

// Now write the table to the store using the durability policy
// defined, above.
tableH.put(row, null, wo);

Chapter 12
Setting Durability Guarantees

12-5

13
Executing a Sequence of Operations

You can execute a sequence of write operations as a single atomic unit so long as all
the rows that you are operating upon share the same shard key. By atomic unit, we
mean all of the operations will execute successfully, or none of them will.

Also, the sequence is performed in isolation. This means that if you have a thread
running a particularly long sequence, then another thread cannot intrude on the
data in use by the sequence. The second thread will not be able to see any of the
modifications made by the long-running sequence until the sequence is complete. The
second thread also will not be able to modify any of the data in use by the long-running
sequence.

Be aware that sequences only support write operations. You can perform puts and
deletes, but you cannot retrieve data when using sequences.

When using a sequence of operations:

• All of the keys in use by the sequence must share the same shard key.

• Operations are placed into a list, but the operations are not necessarily executed
in the order that they appear in the list. Instead, they are executed in an internally
defined sequence that prevents deadlocks.

The rest of this chapter shows how to use TableOperationFactory and
TableAPI.execute() to create and run a sequence of operations.

Sequence Errors
If any operation within the sequence experiences an error, then the entire operation is
aborted. In this case, your data is left in the same state it would have been in if the
sequence had never been run at all — no matter how much of the sequence was run
before the error occurred.

Fundamentally, there are two reasons why a sequence might abort:

1. An internal operation results in an exception that is considered a fault. For
example, the operation throws a DurabilityException. Also, if there is an internal
failure due to message delivery or a networking error.

2. An individual operation returns normally but is unsuccessful as defined by the
particular operation. (For example, you attempt to delete a row that does not
exist). If this occurs AND you specified true for the abortIfUnsuccessful
parameter when the operation was created using TableOperationFactory, then
an OperationExecutionException is thrown. This exception contains information
about the failed operation.

Creating a Sequence
You create a sequence by using the TableOperationFactory class to create
TableOperation class instances, each of which represents exactly one operation

13-1

in the store. You obtain an instance of TableOperationFactory by using
TableAPI.getTableOperationFactory().

For example, suppose you are using a table defined like this:

CREATE TABLE myTable (
 itemType STRING,
 itemCategory STRING,
 itemClass STRING,
 itemColor STRING,
 itemSize STRING,
 price FLOAT,
 inventoryCount INTEGER,
 PRIMARY KEY (SHARD(itemType, itemCategory, itemClass), itemColor,
 itemSize)
)

With tables containing data like this:

• Row 1:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: small

– price: 12.07

– inventoryCount: 127

• Row 2:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: medium

– price: 13.07

– inventoryCount: 201

• Row 3:

– itemType: Hats

– itemCategory: baseball

– itemClass: longbill

– itemColor: red

– itemSize: large

– price: 14.07

– inventoryCount: 39

Chapter 13
Creating a Sequence

13-2

And further suppose that this table has rows that require an update (such as a price
and inventory refresh), and you want the update to occur in such a fashion as to
ensure it is performed consistently for all the rows.

Then you can create a sequence in the following way:

package kvstore.basicExample;

import java.util.ArrayList;

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

import oracle.kv.DurabilityException;
import oracle.kv.FaultException;
import oracle.kv.OperationExecutionException;
import oracle.kv.RequestTimeoutException;

import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableOperationFactory;
import oracle.kv.table.TableOperation;

...

// kvstore handle creation omitted.

...

TableAPI tableH = kvstore.getTableAPI();

Table myTable = tableH.getTable("myTable");

// We use TableOperationFactory to create items for our
// sequence.
TableOperationFactory tof = tableH.getTableOperationFactory();

// This ArrayList is used to contain each item in our sequence.
ArrayList<TableOperation> opList = new ArrayList<TableOperation>();

// Update each row, adding each to the opList as we do.
Row row = myTable.createRow();
row.put("itemType", "Hats");
row.put("itemCategory", "baseball");
row.put("itemClass", "longbill");
row.put("itemColor", "red");
row.put("itemSize", "small");
row.put("price", new Float(13.07));
row.put("inventoryCount", 107);
opList.add(tof.createPut(row, null, true));

row = myTable.createRow();

Chapter 13
Creating a Sequence

13-3

row.put("itemType", "Hats");
row.put("itemCategory", "baseball");
row.put("itemClass", "longbill");
row.put("itemColor", "red");
row.put("itemSize", "medium");
row.put("price", new Float(14.07));
row.put("inventoryCount", 198);
opList.add(tof.createPut(row, null, true));

row = myTable.createRow();
row.put("itemType", "Hats");
row.put("itemCategory", "baseball");
row.put("itemClass", "longbill");
row.put("itemColor", "red");
row.put("itemSize", "large");
row.put("price", new Float(15.07));
row.put("inventoryCount", 139);
opList.add(tof.createPut(row, null, true));

Note in the above example that we update only those rows that share the same shard
key. In this case, the shard key includes the itemType, itemCategory, and itemClass
fields. If the value for any of those fields is different from the others, we could not
successfully execute the sequence.

Executing a Sequence
To execute the sequence we created in the previous section, use the
TableAPI.execute() method:

package kvstore.basicExample;
try {
 tableH.execute(opList, null);
} catch (OperationExecutionException oee) {
 // Some error occurred that prevented the sequence
 // from executing successfully. Use
 // oee.getFailedOperationIndex() to determine which
 // operation failed. Use oee.getFailedOperationResult()
 // to obtain an OperationResult object, which you can
 // use to troubleshoot the cause of the execution
 // exception.
} catch (IllegalArgumentException iae) {
 // An operation in the list was null or empty.

 // Or at least one operation operates on a row
 // with a shard key that is different
 // than the others.

 // Or more than one operation uses the same key.
} catch (DurabilityException de) {
 // The durability guarantee could not be met.
} catch (RequestTimeoutException rte) {
 // The operation was not completed inside of the
 // default request timeout limit.
} catch (FaultException fe) {

Chapter 13
Executing a Sequence

13-4

 // A generic error occurred
}

Note that if any of the above exceptions are thrown, then the entire sequence is
aborted, and your data will be in the state it would have been in if you had never
executed the sequence at all.

TableAPI.execute() can optionally take a WriteOptions class instance. This class
instance allows you to specify:

• The durability guarantee that you want to use for this sequence. If you want to use
the default durability guarantee, pass null for this parameter.

• A timeout value that identifies the upper bound on the time interval allowed for
processing the entire sequence. If you provide 0, the default request timeout value
is used.

• A TimeUnit that identifies the units used by the timeout value. For example:
TimeUnit.MILLISECONDS.

For an example of using WriteOptions, see Durability Guarantees.

Chapter 13
Executing a Sequence

13-5

14
Introduction to SQL for Oracle NoSQL
Database

SQL for Oracle NoSQL Database is an easy to use SQL-like language that supports
read-only queries and data definition (DDL) statements. This chapter focuses on the
query part of the language.

For a detailed description of the language (both DDL and query statements), see SQL
Reference Guide.

To follow along query examples run with the interactive shell, see SQL Beginner's
Guide.

This section talks about using SQL through the JAVA API.

Running a simple query
Before running a query, perform store access as usual by obtaining a KVStore handle
using the KVStoreFactory.getStore() method and a KVStoreConfig object.

To create the query, use KVStore.executeSync() This returns a StatementResult
instance, which represents the result of an execution of a statement. There are two
types of results, results of DDL statements and results of DML statements. DDL
statements modify the database schema. CREATE TABLE, ALTER TABLE, and DROP
TABLE are examples of DDL statements. DDL statements do not return data records,
so iterator() and next() will return as if there was an empty result.

DML statements are non-updating queries. SQL SELECT-FROM-WHERE(SFW)
statements are an example of a DML statement. DML statements may contain a set
of records. Objects of StatementResult are not intended to be used across several
threads.

For example, to run a simple query:

// Setup Store
String[] hhosts = {"n1.example.org:5088", "n2.example.org:4129"};
KVStoreConfig kconfig = new KVStoreConfig("exampleStore", hhosts);
KVStore store = KVStoreFactory.getStore(kconfig);

// Compile and Execute the SELECT statement
StatementResult result = store.executeSync("SELECT firstName,
age FROM Users");

// Get the results
for(RecordValue record : result) {
 System.out.println("nameFirst: " +
 record.get("firstName").asString().get());
 System.out.println("age: " +

14-1

 record.get("age").asInteger().get());
}

where the query SELECTS the firstname and age from the table Users. Then, the
results are displayed.

Using binding variables
To declare a binding variable, you need to create an instance of PreparedStatement.
An instance of PreparedStatement can be created through the KVStore.prepare()
method.

You can specify zero or more variable declarations. The syntax for a variable is:

DECLARE $varname vartype;

If the DML statement contains external variables, the PreparedStatement can be
executed multiple times by creating an instance of BoundStatement. The external
variables must be bound to specific values before the statement can be executed. To
allow for the potentially concurrent execution of the same PreparedStatement multiple
times with different bind values each time, binding of external variables must be done
through one or more instances of BoundStatement. Such instances are created using
the createBoundStatement() method.

This instance can then be executed multiple times using the KVStore.execute() or
KVStore.executeSync() methods.

For example:

// store handle creation omitted.

...

// Compile the statement.
PreparedStatement pStmt = store.prepare(
 "DECLARE $minAge integer; $maxAge integer; " +
 "SELECT id, firstName FROM Users WHERE
 age >= $minAge and age < $maxAge "
);

// Iterate decades
for(int age = 0; age <= 100; age = age + 10) {
 int maxAge = age + (age < 100 ? 10 : 1000);
 System.out.println("Persons with ages between " + age +
 " and " + maxAge + ".");

 // Bind variables, reuse the same pStmt
 BoundStatement bStmt = pStmt.createBoundStatement();
 bStmt.setVariable("$minAge", age);
 bStmt.setVariable("$maxAge", maxAge);

 // Execute the statement
 StatementResult result = store.executeSync(bStmt);

Chapter 14
Using binding variables

14-2

 // Get the results in the current decade
 for(RecordValue record : result) {
 System.out.println("id: " +
 record.get("id").asInteger().get());
 System.out.println("firstName: " +
 record.get("firstName").asString().get());
 }
}

Accessing metadata
You can access the metadata of a BoundStatement, PreparedStatement or
StatementResult by using the getResultDef() method.

Additionally, you can use the getFields().size(), getFieldsName(), and getField()
RecordDef methods to obtain the number of fields, field name, and field type
respectively.

For example:

// store handle creation omitted.

...

// Access metadata on PreparedStatement or BoundStatement
PreparedStatement pStmt = store.prepare(
 "DECLARE $minAge integer; $maxAge integer; " +
 "SELECT id, firstName FROM users WHERE age >= $minAge
 and age < $maxAge ");

RecordDef recodDef = pStmt.getResultDef();
int noOfFields = recodDef.getFields().size();
String fieldName = recodDef.getFieldName(0); // fieldName is "$minAge";
FieldDef fieldType = recodDef.getField(0); // feldType is IntegerDef

// Access metadata on StatementResult
StatementResult result = store.executeSync("SELECT * FROM Users WHERE
(age > 18 and age < 30)");

recordDef = result.getResultDef();

Note:

DDL operations do not have metadata.

Chapter 14
Accessing metadata

14-3

Using a query to update data
You can form queries to UPDATE a row in an Oracle NoSQL Database table. The
WHERE clause must specify an exact primary key as only single row updates are
allowed.

For example, to update a field using the UPDATE statement:

// store handle creation omitted.

...

// Updates the age for User with id=2
StatementResult result = store.executeSync("UPDATE Users SET age=20
WHERE id=2");

To update multiple rows, you must first form a query to SELECT records. You then use
the result of the SELECT query to update or insert data.

For example, to update a field using a result record from the SELECT statement:

// store handle creation omitted.

...

TableAPI tableAPI = store.getTableAPI();
Table table = tableAPI.getTable("Users");

StatementResult result = store.executeSync("SELECT * FROM Users WHERE
(age > 13 and age < 17)");

for(RecordValue record : result) {

 // Update a field
 Row row = table.createRow(record);
 row.put("age", record.get("age").asInteger().get() + 1);
 tableAPI.put(row, null, null);
}

Chapter 14
Using a query to update data

14-4

15
Oracle NoSQL Database SDK for Spring
Data

Learn about how to access the Oracle NoSQL Database from the Spring Data
Framework (Spring-based programming model for data).

Prerequisites:

This chapter assumes that the user has a good understanding of the following:

• Maven

• Spring Data Framework

About the Oracle NoSQL Database SDK for Spring Data
Connect to the Oracle NoSQL Database with applications using the Spring Data
Framework (Spring-based programming model for data) and the Oracle NoSQL
Database SDK for Spring Data. The Spring Data Framework provides a familiar and
consistent, Spring-based programming model for data access. For more information
on Spring Data Framework, see Spring Data.

The Oracle NoSQL Database SDK for Spring Data provides POJO (Plain Old Java
Object) centric modeling and integration between the Oracle NoSQL Database and the
Spring Data Framework. One of the key benefits available to the Java programmer is
the ability to write your code as a repository style data access layer, while the Spring
Data Framework maps those repository style data access operations to Oracle NoSQL
Database API calls.

The Oracle NoSQL Database SDK for Spring Data is available in Maven Central
repository, details available here. The main location of the project is in GitHub.

You can get all the required files for running the Spring Data Framework with the
following POM file dependencies.

<dependencies>
 <dependency>
 <groupId>com.oracle.nosql.sdk</groupId>
 <artifactId>spring-data-oracle-nosql</artifactId>
 </dependency>
</dependencies>

Note:

The Oracle NoSQL Database SDK for Spring Data requires an Oracle
NoSQL Database Proxy to connect to an Oracle NoSQL Database cluster.
For more information on setting up an Oracle NoSQL Database Proxy, see
Oracle NoSQL Database Proxy in the Administrator's Guide.

15-1

Supported Features

The following features are currently supported by the Oracle NoSQL Database SDK
for Spring Data.

• Generic CRUD operations on a repository using methods in the CrudRepository
interface. For more information on CrudRepository interface, see CrudRepository.

• Pagination and sorting operations using methods in the
PagingAndSortingRepository interface. For more information on
PagingAndSortingRepository interface, see PagingAndSortingRepository.

• Derived Queries.

• Native Queries.

Example: Accessing Oracle NoSQL Database Using Spring
Data Framework

The following example demonstrates how to access Oracle NoSQL Database from
Spring using Oracle NoSQL Database SDK for Spring Data. In this example, using
the Spring Data Framework, you set up a connection with Oracle NoSQL Database
non-secure store, insert a row in the Student table, and then retrieve the data from the
Student table.

In this example, you set up a Maven Project and then add the following classes/
interfaces:

• Student class

• StudentRepository interface

• AppConfig class

• App class

After that, you will run the Spring application to get the desired output. The following
steps discuss this in detail.

1. Set up a Maven project with the following POM file dependencies.

<dependencies>
 <dependency>
 <groupId>com.oracle.nosql.sdk</groupId>
 <artifactId>spring-data-oracle-nosql</artifactId>
 </dependency>
</dependencies>

2. Create a new package and add the following Student entity class to persist. This
entity class represents a table in the Oracle NoSQL Database and an instance of
this entity corresponds to a row in that table.

import com.oracle.nosql.spring.data.core.mapping.NosqlId;
import com.oracle.nosql.spring.data.core.mapping.NosqlTable;

/*The @NosqlTable annotation specifies that
 this class will be mapped to an Oracle NoSQL Database table.*/

Chapter 15
Example: Accessing Oracle NoSQL Database Using Spring Data Framework

15-2

@NosqlTable
public class Student {
 /*The @NosqlId annotation specifies that this field will act
 as the ID field. And the generated=true attribute specifies
 that this ID will be auto-generated by a sequence.*/
 @NosqlId(generated = true)
 long id;
 String firstName;
 String lastName;
 /* public or package protected constructor required when
retrieving from database */
 public Student() {
 }
 /*This method overrides the toString() method, and then
 concatenates id, firstname, and lastname, and then returns a
String*/
 @Override
 public String toString() {
 return "Student{" +
 "id=" + id + ", " +
 "firstName=" + firstName + ", " +
 "lastName=" + lastName +
 '}';
 }
}

3. Create the following StudentRepository interface. This interface must extend the
NosqlRepository interface and provide the entity class and the data type of the
primary key in that class as sub-typing to the NosqlRepository interface. This
NosqlRepository interface provides methods that could be used to retrieve data
from the database.

import com.oracle.nosql.spring.data.repository.NosqlRepository;

/*The Student is the entity class, and Long is the data type of the
 primary key in the Student class. This interface implements a
derived query
 findByLastName and returns an iterable instance of the Student
class.*/
public interface StudentRepository extends NosqlRepository<Student,
Long> {
 /*The Student table is searched by lastname and
 returns an iterable instance of the Student class.*/
 Iterable<Student> findByLastName(String lastname);
}

4. Create the following AppConfig class that extends AbstractNosqlConfiguration
class to provide the connection details of the database.

import oracle.nosql.driver.kv.StoreAccessTokenProvider;

import
com.oracle.nosql.spring.data.config.AbstractNosqlConfiguration;
import com.oracle.nosql.spring.data.config.NosqlDbConfig;
import

Chapter 15
Example: Accessing Oracle NoSQL Database Using Spring Data Framework

15-3

com.oracle.nosql.spring.data.repository.config.EnableNosqlRepositori
es;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

/*The @Configuration annotation specifies that this class can be
 used by the Spring Data Framework as a source of bean
definitions.*/
@Configuration
//annotation to enable NoSQL repositories.
@EnableNosqlRepositories
public class AppConfig extends AbstractNosqlConfiguration {

 public static NosqlDbConfig nosqlDBConfig =
 new NosqlDbConfig("hostname:port", new
StoreAccessTokenProvider());

/*The @Bean annotation tells the Spring Data Framework that the
returned object
 should be registered as a bean in the Spring application.*/
@Bean
 public NosqlDbConfig nosqlDbConfig() {
 return nosqlDBConfig;
 }
}

Note:

See Setting up the Connection section to know more about connecting to
an Oracle NoSQL Database secure store.

5. This example uses the CommandLineRunner interface to create a runner class
that implements the run method and has the main method. You can code
the functionality as per your requirements by implementing any of the various
interfaces that the Spring Data Framework provides. For more information on
setting up a Spring boot application, see Spring Boot.

In the following code, the first two Student entities are created and saved. You
then search for all the rows in the Student table and print the results to the output.

import com.oracle.nosql.spring.data.core.NosqlTemplate;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;

/*The @SpringBootApplication annotation helps you to build
 an application using Spring Data Framework rapidly.*/
@SpringBootApplication
public class App implements CommandLineRunner {

Chapter 15
Example: Accessing Oracle NoSQL Database Using Spring Data Framework

15-4

 /*The annotation enables Spring Data Framework to look up the
 configuration file for a matching bean.*/
 @Autowired
 private StudentRepository repo;

 public static void main(String[] args) {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(App.class, args);
 SpringApplication.exit(ctx, () -> 0);
 ctx.close();
 System.exit(0);
 }

 @Override
 public void run(String... args) throws Exception {

 System.out.println("=== Start of App ====");

 //Delete all the existing rows of data, if any, in the
Student table.
 repo.deleteAll();

 //Create a new Student instance and load values into it.
 Student s1 = new Student();
 s1.firstName = "John";
 s1.lastName = "Doe";

 //Save the Student instance.
 repo.save(s1);

 //Create a new Student instance and load values into it.
 Student s2 = new Student();
 s2.firstName = "John";
 s2.lastName = "Smith";

 //Save the Student instance.
 repo.save(s2);

 System.out.println("\nfindAll:");
 /*Selects all the rows in the Student table
 and load it into an iterable instance.*/
 Iterable<Student> students = repo.findAll();

 //Print the values to the output from the iterable object.
 for (Student s : students) {
 System.out.println(" Student: " + s);
 }

 System.out.println("\nfindByLastName: Smith");
 /*The Student table is searched by lastname
 and an iterable instance of the Student class is
returned.*/
 students = repo.findByLastName("Smith");

Chapter 15
Example: Accessing Oracle NoSQL Database Using Spring Data Framework

15-5

 //Print the values to the output from the iterable instance.
 for (Student s : students) {
 System.out.println(" Student: " + s);
 }

 System.out.println("=== End of App ====");
 }
}

6. Run the program from the runner class. You will get the following output.

=== Start of App ====
findAll:
 Student: Student{id=5, firstName=John, lastName=Doe}
 Student: Student{id=6, firstName=John, lastName=Smith}

findByLastName: Smith
 Student: Student{id=6, firstName=John, lastName=Smith}
=== End of App ====

Components of Oracle NoSQL Database SDK for Spring
Data

The Oracle NoSQL Database Proxy should be set up to facilitate a connection
between Oracle NoSQL Database and Spring Data Framework. To set up the Oracle
NoSQL Database Proxy, see Oracle NoSQL Database Proxy in the Administrator's
Guide. Once set up, you then configure the Oracle NoSQL Database Proxy details in
the NosqlRepository interface. You provide the Oracle NoSQL Database connection
and authentication (if any) details in the NosqlDBConfig class. The POJOs (entity) with
the @NosqlTable annotation are mapped to the Oracle NoSQL Database tables by the
Oracle NoSQL Database SDK for Spring Data. The following diagram provides the
components of the Oracle NoSQL Database SDK for Spring Data.

Figure 15-1 Components of Oracle NoSQL Database SDK for Spring Data

Chapter 15
Components of Oracle NoSQL Database SDK for Spring Data

15-6

Persistence Model
An entity is a lightweight persistence domain object. The persistent state of an entity
is represented through persistent fields using Java Beans / Plain Old Java Objects
(POJOs).

The Spring Data Framework supports the persistence of entities to Oracle NoSQL
Database tables. An entity is mapped to a table. The ID field in that entity is mapped
to the primary key column of that table. All other fields in the entity are mapped to a
JSON column of that table. Each instance of the entity will be stored as a single row
in that table. The value of the ID field in that instance will be stored as the primary
key value of that row. The values of all other fields (including other objects) (see JSON
Column) in that instance will be serialized and stored as values in the JSON column of
that row. Effectively, the table will always have only two columns: a primary key column
and a JSON column.

Figure 15-2 Persistence Model

If a persistent POJO has a reference to another persistent POJO (nested objects)
that maps to a different table, the Spring Data Framework will not serialize objects to
multiple tables. Instead, all the nested objects will be serialized and stored as values
in the JSON column. For more information on JSON Column mappings, see JSON
Column.

The following is the syntax of an entity with @NosqlTable and @NosqlId annotations. In
the example below, the Student class with the @NosqlTable annotation will be mapped
to a table named Student in the Oracle NoSQL Database. The ID field with the
@NosqlId annotation will be the primary key field in the Student table. The firstName
and lastName fields will be mapped to a single JSON field named kv_json_ in the
Student table.

When retrieving entries from the repository the driver needs to instantiate the entity
classes. These classes need to have a default constructor or an empty constructor
that is public or package protected.

Note:

The classes may have other constructors too.

/*The @NosqlTable annotation specifies that
this class will be mapped to an Oracle NoSQL Database table.*/

Chapter 15
Persistence Model

15-7

@NosqlTable
public class Student {
 //The @NosqlId annotation specifies that this field will act as the
ID field.
 @NosqlId
 public long ID;

 public String firstName;
 public String lastName;

 public Student() {}
}

Table Name

By default, the entity simple class name is used for the table name. You can provide
a different table name using the @NosqlTable annotation. The @NosqlTable annotation
enables you to define additional configuration parameters such as table name and
timeout.

For example, an entity named Student will be persisted in a table named Student.
If you want to persist an entity named Student in a table named Learner, you can
achieve that using the @NosqlTable annotation.

If the @NosqlTable annotation is specified, then the following configuration could be
provided.

Table 15-1 Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

tableNa
me

String Optional Optional empty Specifies the name of the table,
simple or namespace-qualified
form.
If empty, then the entity class
name will be used.
For more information on the
namespace, see Namespace
Management in the SQL Reference
Guide.
In the Oracle NoSQL Database
Cloud Service, the namespace
part, if provided, is used
as the compartment name.
For more information on
using compartments, see About
Compartments in the Using Oracle
NoSQL Database Cloud Service.

Chapter 15
Persistence Model

15-8

Table 15-1 (Cont.) Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

autoCre
ate

boolean Optional Optional true Specifies if the table should be
created if it does not exist.

Note:

The
Spring
Data
Frame
work
looks
for the
reposit
ories
used
in the
applic
ation
in the
init
phase.
If the
table
does
not
exist,
and if
the
@Nosql
Table
annota
tion
has the
autoCr
eate
as
true,
then
the
table
will be
create
d in
the

Chapter 15
Persistence Model

15-9

Table 15-1 (Cont.) Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

init
phase.

readUni
ts

int Ignored Required -1 Specifies the maximum read
throughput to be used if the table
is to be created.
For more information on
readUnits, see Service Metrics in
the Using Oracle NoSQL Database
Cloud Service.

Note:

In
Oracle
NoSQL
Databa
se
Cloud
Servic
e, the
readUn
its
param
eter
should
be set
to a
value
greate
r than
0 else
it will
return
an
error.

Chapter 15
Persistence Model

15-10

Table 15-1 (Cont.) Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

writeUn
its

int Ignored Required -1 Specifies the maximum write
throughput to be used if the table
is to be created.
For more information on
writeUnits, see Service Metrics
in the Using Oracle NoSQL
Database Cloud Service.

Note:

In
Oracle
NoSQL
Databa
se
Cloud
Servic
e, the
writeU
nits
param
eter
should
be set
to a
value
greate
r than
0 else
it will
return
an
error.

Chapter 15
Persistence Model

15-11

Table 15-1 (Cont.) Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

storage
GB

int Ingored Required -1 Specifies the maximum amount
of storage, in gigabytes, allowed
for the table, if the table is to be
created.
For more information on
storageGB, see Service Metrics in
the Using Oracle NoSQL Database
Cloud Service.

Note:

In
Oracle
NoSQL
Databa
se
Cloud
Servic
e, the
storag
eGB
param
eter
should
be set
to a
value
greate
r than
0 else
it will
return
an
error.

Chapter 15
Persistence Model

15-12

Table 15-1 (Cont.) Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

timeout int Optional Optional 0 Specifies the maximum time
length, in milliseconds, that the
operations are allowed to take
before a timeout exception is
thrown.
If the value for timeout is
not set then the timeout set
in NoSQLHandleConfig class
is used. For information on
getting the timeout from
NoSQLHandleConfig class using
getTableRequestTimeout()
method, see NoSQLHandleConfig in
the Java SDK API Reference.
The timeout value can also be
changed using
NosqlRepository.setTimeout(i
nt) method. For more
information, see setTimeout in the
SDK for Spring Data API Reference.

Chapter 15
Persistence Model

15-13

Table 15-1 (Cont.) Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

consist
ency

String Optional Optional EVENTUA
L

Specifies the consistency used for
read operations.
Valid values are based on
oracle.nosql.driver.Consiste
ncy are EVENTUAL and ABSOLUTE .
See Consistency in the Java SDK
API Reference.

Note:

This is
the
default
for all
read
operati
ons. It
can be
overri
dden
by
using
NosqlR
eposit
ory.se
tConsi
stenc
y(Stri
ng).
For
more
inform
ation,
see
setCon
sistenc
y in
the
SDK
for
Spring
Data
API

Chapter 15
Persistence Model

15-14

Table 15-1 (Cont.) Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

Refere
nce.

Primary Key

The table requires a primary key. The field named ID in the entity will be used as the
primary key. You can select a different field in the entity (a field with a different name
other than ID) to designate as the primary key using the @NosqlId annotation or the
@id annotation.

When an ID field is mapped to a primary key column, the Spring Data Framework will
automatically assign the corresponding data type to that field before storing them in
the table. The following is a list of data type mappings between a Java type and an
Oracle NoSQL Database type for the ID field.

The Java types that are provided in the following table are the only valid data types
that can be used for a primary key.

Table 15-2 Mapping Between Java and Oracle NoSQL Database Types

Java Type Oracle NoSQL Database Type

java.lang.String STRING

int

java.lang.Integer

INTEGER

long

java.lang.Long

LONG

Chapter 15
Persistence Model

15-15

Table 15-2 (Cont.) Mapping Between Java and Oracle NoSQL Database Types

Java Type Oracle NoSQL Database Type

double

java.lang.Double

float

java.lang.Float

DOUBLE

Note:

double, java.lang.Double,
float, and java.lang.Float can
be a primary key but it's not a
valid generated=true type

Note:

Since FLOAT in Oracle NoSQL
Database type is not explicitly
used in NoSQL SDK for Java, the
Java float and java.lang.Float
are mapped to the DOUBLE type.

java.math.BigDecimal

java.math.BigInteger

NUMBER

boolean

java.lang.Boolean

BOOLEAN

java.util.Date

java.sql.Timestamp

java.time.Instant

TIMESTAMP (P)

The Spring Data Framework deduces the primary key using the following rules:

• @NosqlId annotation: If @NosqlId annotation is used on a field with a valid data
type for the primary key, then that field is considered as the primary key. If
@NosqlId is used on a field of a type other than a valid data type for the primary
key, an error is raised. For more information, see NosqlId in the SDK for Spring
Data API Reference.

• @org.springframework.data.annotation.Id annotation: If
@org.springframework.data.annotation.Id field annotation is used on a field
with a valid data type for the primary key, then that field is considered as the
primary key. If @org.springframework.data.annotation.Id is used on a field of a
type other than a valid data type for the primary key, an error is raised.

• Not specified: If none of the above two annotations are specified, then the Spring
Data Framework will use the field named ID as the primary key.

An error is raised if:

• No @NosqlId annotation or @org.springframework.data.annotation.Id
annotation or ID field is found in the entity, as no primary key field can be inferred.

Chapter 15
Persistence Model

15-16

• Two or more of @NosqlId or @org.springframework.data.annotation.Id
annotated fields are used in the entity, as multiple primary key fields can be
inferred.

Note:

The name of the fields that take the @NosqlId or
@org.springframework.data.annotation.Id annotations must not be
named kv_json_. It is because the second column of the table created by
the Spring Data Framework will be named as kv_json_ and will be a JSON
column where all attributes in the persistent entity that are not listed as
primary key attributes will be stored.

The @NosqlId field annotation can take the following additional configuration:

Table 15-3 Attributes in NosqlId Annotation

Paramet
er

Type Optional
/
Require
d

Default Description

generat
ed

boolean Optional false Specifies if the ID is auto-generated or not.

• If true, then it is defined as auto-generated
by the program.
– If int/Integer, long/Long, BigInteger

or BigDecimal, then GENERATED
ALWAYS as IDENTITY is used.

– If String, then "String as UUID
GENERATED BY DEFAULT" is used.

Note:

Currently not available in the
Oracle NoSQL Database Cloud
Service.

• If false, then the value must be managed
by your application.

Note:

Composite primary keys are not supported.

JSON Column

All other fields in the entity other than the primary key field will be converted into a
NoSQL JSON value with the following rules:

• The Java scalar values will be converted to NoSQL JSON atomic values.

Chapter 15
Persistence Model

15-17

• The Java collections and array structures will be converted to a NoSQL JSON
array.

• The Java non-scalar values will be recursively converted to NoSQL JSON objects.

• The Java null values will be converted to NoSQL JSON NULL values.

• The complex values will be converted to NoSQL JSON objects according to the
following table.

Table 15-4 Mapping Between Java and NoSQL JSON Types

Java Type Representation within Oracle NoSQL Database JSON
Datatype

java.lang.String STRING

int

java.lang.Integer

INTEGER

long

java.lang.Long

LONG

double

java.lang.Double

float

java.lang.Float

DOUBLE

Note:

Since FLOAT in Oracle NoSQL
Database type is not explicitly
used in NoSQL SDK for Java, Java
float, and java.lang.Float are
mapped to the DOUBLE type.

java.math.BigDecimal

java.math.BigInteger

NUMBER

boolean

java.lang.Boolean

BOOLEAN

byte[] STRING - a binary base64-encoded representation.

java.util.Date

java.sql.Timestamp

java.time.Instant

STRING - an ISO-8601 UTC timestamp encoded representation.

org.springframework.d
ata.geo.Point

GeoJson Point
For more information on GeoJson Data, see About GeoJson
Data in the SQL Reference Guide.

Chapter 15
Persistence Model

15-18

Table 15-4 (Cont.) Mapping Between Java and NoSQL JSON Types

Java Type Representation within Oracle NoSQL Database JSON
Datatype

org.springframework.d
ata.geo.Polygon

GeoJson Polygon
For more information on GeoJson Data, see About GeoJson
Data in the SQL Reference Guide .

Note:

Polygons must conform to the
following rules to be well-formed,
otherwise they will be ignored
when used in queries.

1. A linear ring is a closed
LineString with four or
more positions.

2. The first and last positions
are equivalent, and they must
contain identical values.

3. A linear ring is either the
boundary of a surface or
the boundary of a hole in a
surface.

4. A linear ring must follow the
right-hand rule for the area
it bounds, that is, for exterior
rings, their positions must
be ordered counterclockwise,
and for holes, their position
must be ordered clockwise.

Chapter 15
Persistence Model

15-19

Table 15-4 (Cont.) Mapping Between Java and NoSQL JSON Types

Java Type Representation within Oracle NoSQL Database JSON
Datatype

java.util.ArrayList

java.util.Collection

java.util.List

java.util.AbstractLis
t

java.util.HashSet

java.util.Set

java.util.AbstractSet

java.util.TreeSet

java.util.SortedSet

java.util.NavigableSe
t

java.util.Array []

ARRAY(JSON)

Note:

• For fields of type
java.util.Collection,
java.util.List,
java.util.AbstractList,
and java.util.ArrayList,
an java.util.ArrayList
object is instantiated.

• For fields of
type java.util.Set,
java.util.AbstractSet,
and java.util.HashSet, a
java.util.HashSet object is
instantiated.

• And for fields of
type java.util.SortedSet,
java.util.NavigableSet,
and java.util.TreeSet, a
java.util.TreeSet object is
instantiated.

POJO<f1 T1, f2 T2...> MAP(JSON)

Note:

Java data structures that contain cycles are neither supported nor detected.
That is, if the entity object is traversed from the root down the fields and
encounters the same object twice it becomes a cycle.

Transactional Model
The transaction model for the Oracle NoSQL Database SDK for Spring Data builds on
top of the existing transaction model exposed by the Oracle NoSQL Database. That
is, ACID transactions are only supported for operations that do not span database
shards. From the perspective of your Spring application, you should think about ACID
transactions as being supported for those repository methods that operate over single
objects. Repository methods like deleteAll() are implemented in the Oracle NoSQL
Database SDK for Spring Data to make a "best-effort" to complete across all database
shards but make no ACID guarantees.

Chapter 15
Transactional Model

15-20

The write operations when using save(), saveAll(), delete(), deleteById(),
deleteAll() or write queries will be done based on the default Java driver durability.
For more information on default Java driver durability, see COMMIT_NO_SYNC in the
Java Direct Driver API Reference.

The read operations when using findByID(), findAllById(), findAll(), count() or
select queries will be done based on the default eventual consistency or as specified
in the @NosqlTable annotation. For more information on default eventual consistency,
see getDefaultConsistency in the Java SDK API Reference.

Setting up the Connection
To expose the connection and security parameters to the Oracle NoSQL
Database SDK for Spring Data, you need to create a class that extends the
AbstractNosqlConfiguration class. You could customize this code as per your
requirement. Perform the following steps to set up a connection to the Oracle NoSQL
Database.

Step 1: In your application, create the NosqlDbConfig class. This class will
have the connection details to the Oracle NoSQL Database Proxy. Provide the
@Configuration and @EnableNoSQLRepositories annotations to this NosqlDbConfig
class. The @Configuration annotation tells the Spring Data Framework that the
@Configuration annotated class is a configuration class that should be loaded before
running the program. The @EnableNoSQLRepositories annotation tells the Spring Data
Framework that it needs to load the program and lookup for the repositories that
extends the NosqlRepository interface. The @Bean annotation is required for the
repositories to be instantiated.

Step 2: Create an @Bean annotated method to return an instance of the NosqlDBConfig
class. The NosqlDBConfig class will also be used by the Spring Data Framework to
authenticate the Oracle NoSQL Database.

Step 3: Instantiate the NosqlDbConfig class. Instantiating the NosqlDbConfig class will
cause the Spring Data Framework to internally instantiate an Oracle NoSQL Database
handle by authenticating with the Oracle NoSQL Database.

Note:

You could add an exception code block to catch any connection error that
might be thrown upon authentication failure.

Note:

Creating an Oracle NoSQL Database handle using the above-mentioned
steps has a limitation. The limitation is that the application will not be able to
connect to two or more different clusters at the same time. This is a Spring
Data Framework limitation. For more information on Spring Data Framework,
see Spring Core.

Chapter 15
Setting up the Connection

15-21

Note:

If you have trouble connecting to Oracle NoSQL Database from your Spring
application, you can add an exception block and print the message for
debugging.

As given in the following example, you can use the StoreAccessTokenProvider class to
configure the Spring Data Framework to connect and authenticate with an Oracle
NoSQL Database. You need to provide the URL of the Oracle NoSQL Database Proxy
with non-secure access.

/*Annotation to specify that this class can be used by the
 Spring Data Framework as a source of bean definitions.*/
@Configuration
//Annotation to enable NoSQL repositories.
@EnableNosqlRepositories
public class AppConfig extends AbstractNosqlConfiguration {

 /*Annotation to tell the Spring Data Framework that the returned
object
 should be registered as a bean in the Spring application.*/
 @Bean
 public NosqlDbConfig nosqlDbConfig() {
 AuthorizationProvider authorizationProvider;
 authorizationProvider = new StoreAccessTokenProvider();
 //Provide the host name and port number of the NoSQL cluster.
 return new NosqlDbConfig("http://<host:port>",
authorizationProvider);
 }
}

The following example modifies the previous example to connect to a secure Oracle
NoSQL Database store. For more details on StoreAccessTokenProvider class, see
StoreAccessTokenProvider in the Java SDK API Reference.

/*Annotation to specify that this class can be used by the
 Spring Data Framework as a source of bean definitions.*/
@Configuration
//Annotation to enable NoSQL repositories.
@EnableNosqlRepositories
public class AppConfig extends AbstractNosqlConfiguration {

 /*Annotation to tell the Spring Data Framework that the returned
object
 should be registered as a bean in the Spring application.*/
 @Bean
 public NosqlDbConfig nosqlDbConfig() {
 AuthorizationProvider authorizationProvider;
 //Provide the username and password of the NoSQL cluster.
 authorizationProvider = new StoreAccessTokenProvider(user,
password);
 //Provide the host name and port number of the NoSQL cluster.

Chapter 15
Setting up the Connection

15-22

 return new NosqlDbConfig("http://<host:port>",
authorizationProvider);
 }
}

For secure access, the StoreAccessTokenProvider parameterized constructor takes
the following arguments.

• username is the username of the kvstore.

• password is the password of the kvstore user.

For more details on the security configuration, see Creating NoSQL Handle in the
Administrator's Guide.

As given in the following example, you can use the SignatureProvider class to
configure the Spring Data Framework to connect and authenticate with the Oracle
NoSQL Database Cloud Service. See SignatureProvider in the Java SDK API
Reference.

/*Annotation to specify that this class can be used by the
 Spring Data Framework as a source of bean definitions.*/
@Configuration
//Annotation to enable NoSQL repositories.
@EnableNosqlRepositories
public class AppConfig extends AbstractNosqlConfiguration {

 /*Annotation to tell the Spring Data Framework that the returned
object
 should be registered as a bean in the Spring application.*/
 @Bean
 public NosqlDbConfig nosqlDbConfig() {
 SignatureProvider signatureProvider;

 /*Details that are required to authenticate and authorize
access to
 the Oracle NoSQL Database Cloud Service are provided.*/
 signatureProvider = new SignatureProvider(
 <tenantId>, //The Oracle Cloud Identifier (OCID) of the
tenancy.
 <userId>, //The Oracle Cloud Identifier (OCID) of a user
in the tenancy.
 <fingerprint>, //The fingerprint of the key pair used for
signing.
 <privateKeyFile>, //Full path to the key file.
 <passphrase> //Optional. A pass phrase for the key, if it
is encrypted.
);
 /*Provide the service URL of the Oracle NoSQL Database Cloud
Service and
 update the 'Region.US_PHOENIX_1' with an appropriate value.*/
 return new NosqlDbConfig(Region.US_PHOENIX_1,signatureProvider);
 }
}

Chapter 15
Setting up the Connection

15-23

Defining a Repository
The entity class that is used for persistence is discoverable by the Spring Data
Framework either via annotation or inheritance. The NosqlRepository interface allows
you to inherit and create an interface for each entity that will use the Oracle NoSQL
Database for persistence.

The NosqlRepository interface extends Spring's PagingAndSortingRepository
interface that provides many methods that define queries.

In addition to those methods that are provided by the NosqlRepository interface,
you can add methods to your repository interface to define derived queries. These
interface methods follow a specific naming pattern for Spring derived queries (for
more information derived queries, see Query Creation) intercepted by the Spring Data
Framework. The Spring Data Framework will use this naming pattern to generate an
expression tree, passing this tree to the Oracle NoSQL Database SDK for Spring
Data, where this expression tree is converted into an Oracle NoSQL Database query,
which is compiled and then executed. These Oracle NoSQL Database queries are
executed when you call the repository's respective methods.

If you wish to create your derived queries, this must be done by extending the
NosqlRepository interface and adding your own Java method signatures that conform
to the naming patterns as discussed in the derived queries section.

The following is an example of a code that implements the NosqlRepository interface.
You must provide the bounded type parameters: the entity type and the data type of
the ID field. This interface implements a derived query findByLastName and returns an
iterable instance of the Student class.

import com.oracle.nosql.spring.data.repository.NosqlRepository;

/*The Student is the entity class, and Long is the data type of the
 primary key in the Student class. This interface implements a derived
query
 findByLastName and returns an iterable instance of the Student
class.*/
public interface StudentRepository extends NosqlRepository<Student,
Long> {

 /*The Student is searched by lastname and
 an iterable instance of the Student class is returned.*/
 Iterable<Student> findByLastName(String lastname);
}

Starting the Application
After creating the entity and repository, you should write a program to run the
Spring application. You can do that using a Spring boot application or a Spring core
application.

Create an @SpringBootApplication annotated class to run a Spring boot application.
You could override the run method in the CommandLineRunner interface to write your
code.

Chapter 15
Defining a Repository

15-24

The following is an example of a Spring boot application.

//The annotation helps to build an application using Spring Data
Framework rapidly.
@SpringBootApplication
public class BootExample implements CommandLineRunner {

 /*The annotation enables Spring Data Framework to
 look up the configuration file for a matching bean.*/
 @Autowired
 private StudentRepository nosqlRepo;

 @Override
 public void run(String... args) throws Exception {
 ...
 }
}

The following is an example of a Spring core application.

public class CoreExample {
 public static void main(String[] args) {
 ApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);
 NosqlOperations ops =
(NosqlOperations)ctx.getBean("nosqlTemplate");
 ...
 }
}

Note:

The Spring Data Framework will look in the classpath for a class with the
@configuration annotation and contains a method named "NosqlTemplate"
with the @Bean annotation.

Queries
You can use the queries provided in the repository base classes such as the
PagingAndSortingRepository interface, or write your queries. The Spring Data
Framework supports the following types of queries.

1. Queries provided in the PagingAndSortingRepository interface

2. Derived queries

3. Native queries

PagingAndSortingRepository Interface
The NosqlRepository interface extends the PagingAndSortingRepository interface.
The PagingAndSortingRepository interface extends the CrudRepository interface

Chapter 15
Queries

15-25

and provides methods such as count, delete, deleteAll, deleteById, existsById,
findAll, findAllById, findById, save, saveAll. You can use any of these
methods for the required functionality. For more information on the Spring's
PagingAndSortingRepository interface, see PagingAndSortingRepository.

Derived Queries
Apart from those query methods that are provided by Spring's
PagingAndSortingRepository interface, you could also define derived queries. Spring
Data Framework has an inbuilt query creation feature. Spring Data Framework creates
queries directly from the Java method name alone.

For example, if we have a Java method name with the following construct,

List<Customer> findByFirstName(String firstName);

then the following derived query will be auto-created by the Spring Data Framework.

declare $firstName String;

SELECT * FROM Customer AS c WHERE c.kv_json_.firstName = $firstName;

The only requirement for this derived query to work is that this Java method
should be defined in the interface that extends the NosqlRepository interface. The
NosqlRepository interface extends the Repository interface which is responsible for
the derived queries. The common prefixes from the Java method name are removed
and the constraints of the query are parsed from the rest of the Java method name.
For more information on Spring derived query creation, see Query Creation.

The Java methods with the prefixes find…By, read…By, query…By, count…By, get…By,
exists…By, delete…By, and remove…By are considered as derived query methods by
Spring Data Framework. Apart from these prefixes, the Java method name could
also have other keywords. The following section provides the detailed derived query
snippets that would be generated if the given keywords are used.

And

If a method name has the word and in the following construct,

Iterable<Student> findByFirstNameAndLastName(String firstname, String
lastname);

then the following derived query will be auto-created by the Spring Data Framework.

declare $p_firstName String;
$p_lastName String;

SELECT * FROM Student AS s WHERE (
 s.kv_json_.firstName = $p_firstName AND s.kv_json_.lastName =
$p_lastName)

Chapter 15
Queries

15-26

Note:

The Oracle NoSQL Database SDK for Spring Data supports derived queries
that use a combination of the logical operators (and, or). The generated
query will follow the rules of operator precedence defined in the Oracle
NoSQL Database SQL query language. For more information on the
operator precedence in the Oracle NoSQL Database SQL query language,
see Operator Precedence in the SQL Reference Guide.

Or

If a method name has the word or in the following construct,

Iterable<Student> findByFirstNameOrLastName(String firstname, String
lastname);

then the following derived query will be auto-created by the Spring Data Framework.

declare $p_firstName String;
$p_lastName String;

SELECT * FROM Student AS s WHERE (
 s.kv_json_.firstName = $p_firstName OR s.kv_json_.lastName =
$p_lastName)

Note:

The Oracle NoSQL Database SDK for Spring Data supports derived queries
that use a combination of the logical operators (and, or). The generated
query will follow the rules of operator precedence defined in the Oracle
NoSQL Database SQL query language. For more information on the
operator precedence in the Oracle NoSQL Database SQL query language,
see Operator Precedence in the SQL Reference Guide.

OrderBy (Asc/Desc)

If a method name has the word orderby in the following construct,

Iterable<Student> findByLastNameOrderByFirstNameAsc(String lastname);

then the following derived query will be auto-created by the Spring Data Framework.

declare $p_lastName String;

SELECT * FROM Student AS s
 WHERE s.kv_json_.lastName = $p_lastName ORDER BY
s.kv_json_.firstName ASC

Chapter 15
Queries

15-27

If a method name has the word orderby in the following construct,

Iterable<Student> findByLastNameOrderByFirstNameDesc(String lastname);

then the following derived query will be auto-created by the Spring Data Framework.

declare $p_lastName String;

SELECT * FROM Student AS s
 WHERE s.kv_json_.lastName = $p_lastName ORDER BY
s.kv_json_.firstName DESC

First

If a method name has the word first in the following construct,

Page<Student> queryFirst5ByLastname(String lastname, Pageable pageable);

then the following derived query will be auto-created by the Spring Data Framework.

For more information on Page, see Page. For more information on Pageable, see
Pageable.

declare $p_lastName String;
$kv_limit_ Long;
$kv_offset_ Long;

SELECT * FROM Student AS s
 WHERE s.kv_json_.lastName = $p_lastName LIMIT $kv_limit_ OFFSET
$kv_offset_

Top

If a method name has the word top in the following construct,

Slice<Student> findTop10ByLastName(String lastname, Pageable pageable);

then the following derived query will be auto-created by the Spring Data Framework.

For more information on Slice, see Slice.

declare $p_lastName String;
$kv_limit_ Long;
$kv_offset_ Long;

SELECT * FROM Student AS s
 WHERE s.kv_json_.lastName = $p_lastName LIMIT $kv_limit_ OFFSET
$kv_offset_

For the complete list of supported keywords in query methods in Oracle NoSQL
Database SDK for Spring Data, see Supported Keywords in Query Method.

Chapter 15
Queries

15-28

The following is an example of an Oracle NoSQL Database repository. It must extend
the NosqlRepository interface. The bounded types represent the entity type and the
data type of the ID field.

interface PersonRepository extends NosqlRepository<Person, Long> {
 List<Person> findByFirstNameAndLastName(String firstname, String
lastname);
 List<Person> findByLastNameOrderByFirstNameDesc(String lastname);
}

Native Queries
The @oracle.spring.data.nosql.repository.Query annotation allows you to
execute the native SQL query.

public interface AuthorRepository extends NoSQLRepository<Author, Long>
{
 @Query(value = "DECLARE $firstName STRING;
 SELECT * FROM author WHERE first_name = $firstName")
 List<Author> findAuthorsByFirstName(@Param("firstName") String
firstName);

 @Query("DECLARE $firstName STRING; $last STRING; " +
 "SELECT * FROM Customer AS c " +
 "WHERE c.kv_json_.firstName = $firstName AND " +
 "c.kv_json_.lastName = $last")
 List<Customer> findCustomersWithLastAndFirstNosqlValues(
 @Param("$last") StringValue paramLast,
 @Param("$firstName") StringValue firstName
);
}

Parameters are matched by name using the
@org.springframework.data.repository.query.Param annotation. The @Param
annotation value field must match exactly, including the '$' char, the name of the
declared bind variable. If @Param annotation is not used an exception is thrown. All
the parameters will get mapped according to the mapping rules mentioned in the
Persistence Model section.

Note:

The second method findAuthorsWithLastAndFirstNosqlValues works with
oracle.nosql.driver.values.StringValue. All FieldValue sub-classes are
supported for query parameters. FieldValue is the base class of all data
items in the NoSQL SDK for Java. Each data item is an instance of
FieldValue allowing access to its type and its value as well as additional
utility methods that operate on FieldValue. On top of that, parameters of
type FieldValue are also supported. For more information on FieldValue,
see FieldValue.

Chapter 15
Queries

15-29

Activating Logging
To enable logging in Oracle NoSQL Database SDK for Spring Data, you must include
the following parameter when running the application.

-Dlogging.level.com.oracle.nosql.spring.data=DEBUG

The following are the logging levels that you could provide:

• ERROR: The ERROR level logging includes any unexpected errors.

• DEBUG: The DEBUG level logging includes generated SQL statements that the
module generates internally.

The following example contains the code to run the application with logging.

To run the application with Nosql module logging at DEBUG level
$ java -cp $CP:target/example-spring-data-oracle-nosql-1.3-
SNAPSHOT.jar
 -Dlogging.level.com.oracle.nosql.spring.data=DEBUG org.example.App
...
020-12-02 11:50:18.426 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : DDL: CREATE TABLE IF NOT
EXISTS
 StudentTable (id LONG GENERATED ALWAYS as IDENTITY (NO CYCLE),
 kv_json_ JSON, PRIMARY KEY(id))
2020-12-02 11:50:19.334 INFO 20325 --- [main]
 org.example.App : Started App in 2.464 seconds (JVM running for
2.782)
=== Start of App ====
2020-12-02 11:50:19.340 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : Q: DELETE FROM StudentTable
Saving s1: Student{id=0, firstName='John', lastName='Doe'}
2020-12-02 11:50:19.362 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : execute insert in table
StudentTable
Saving s2: Student{id=0, firstName='John', lastName='Smith'}
2020-12-02 11:50:19.387 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : execute insert in table
StudentTable

findAll:
2020-12-02 11:50:19.392 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : Q: SELECT * FROM
StudentTable t
Student: Student{id=1, firstName='John', lastName='Doe'}
Student: Student{id=2, firstName='John', lastName='Smith'}

findByLastName: Smith
2020-12-02 11:50:19.412 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : Q: declare $p_lastName
String;
 select * from StudentTable as t where t.kv_json_.lastName =
$p_lastName

Chapter 15
Activating Logging

15-30

Student: Student{id=2, firstName='John', lastName='Smith'}
2020-12-02 11:50:19.426 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : DDL: DROP TABLE IF EXISTS
StudentTable
=== End of App ====

To enable Nosql module logging when running tests
$ mvn test -Dlogging.level.com.oracle.nosql.spring.data=DEBUG
...

Chapter 15
Activating Logging

15-31

A
JSON By Example

This appendix contains a complete Java example of how to use JSON data in a Oracle
NoSQL Database store.

The example loads a series of table rows, using JSON objects to represent each row.
The example then updates all table rows that contain a home address in Boston so
that the zip code for that address is updated from 02102 to 02102-1000.

Our sample data deliberately contains some table rows with null and missing fields so
as to illustrate some (but by no means all) of the error handling that is required when
working with JSON data. It is possible to be endlessly creative when providing broken
JSON to the store. Any production code would have to be a great deal more robust
than what is shown here.

The update operation is shown three different ways in the following example. While the
actual update is always the same (see the UpdateJSON.updateZipCode() method),
there are three different ways to seek out rows with a home address in Boston:

• No query.

This simply iterates over the entire table, examining each row in turn. See
UpdateJSON.updateTableWithoutQuery().

• With an index.

This uses a JSON index to retrieve all table rows where the home address is in
Boston. See UpdateJSON.updateTableWithIndex().

• With a SQL Query.

This uses a SQL statement with a executeSync() method to retrieve all relevant
table rows. See UpdateJSON.updateTableUsingSQLQuery().

The next section shows some of the sample data used by this example. The
description of the example itself begins with UpdateJSON.

If you want to follow along with the example, and see all of the sample data, you can
find this example in the Examples download from here. The example and its sample
data can be found in the Table folder.

When compiling the example, make sure that kvclient.jar is in your classpath. For
example:

javac -d . -cp <KVHOME>/lib/kvclient.jar UpdateJSON.java

You can run this program against a store or a kvlite instance that does not have
security enabled.

java -cp .:<KVHOME>/lib/kvclient.jar table.UpdateJSON

By default, this example uses localhost:5000, but you can set the helper host and
port at the command line using the -hostport parameter.

A-1

Sample Data
Our sample data is contained in person_contacts.json. We use it create a simple
two-column table to hold our JSON data.

The first column is an account ID, and it serves as the primary key. At a minimum,
every table will always have a single non-JSON field that serves as the primary key. If
you wish to use compound primary keys, or one or more shard keys, then the number
of non-JSON fields will expand.

Our second field is a JSON field. Like all such fields, it can contain any valid JSON
data. This provides extreme flexibility for your table schema, which is particularly
useful when it is necessary to evolve your data's schema. However, it comes at the
cost of requiring more error checking to ensure that your JSON contains the data you
expect it to contain.

CREATE TABLE personContacts (account INTEGER,
 person JSON,
 PRIMARY KEY(account))

We load this table with 23 rows, some of which are deliberately incomplete. Each
row is represented as a single JSON object. We show a representative section of the
sample data file, below, for your reference.

In the following listing, notice that Account 3 only provides a work address — there is
no home address. Account 4 provides no address information at all. Account 5 fails
to provide any data at all for the person field. Account 22 explicitly sets the address
object to null. Account 23 explicitly sets both the home and work addresses to null. All
of this is valid JSON and all of it should be handled by our code.

{
"account" : 1,
"person" : {
 "lastName" : "Jones",
 "firstName" : "Joe",
 "address" : {
 "home" : {
 "street" : "15 Elm",
 "city" : "Lakeville",
 "zip" : "12345"
 },
 "work" : {
 "street" : "12 Main",
 "city" : "Lakeville",
 "zip" : "12345"
 }
 },
 "phone" : {
 "home" : "800-555-1234",
 "work" : "877-123-4567"
 }
 }
}

Appendix A
Sample Data

A-2

{
"account" : 2,
"person" : {
 "lastName" : "Anderson",
 "firstName" : "Nick",
 "address" : {
 "home" : {
 "street" : "4032 Kenwood Drive",
 "city" : "Boston",
 "zip" : "02102"
 },
 "work" : {
 "street" : "541 Bronx Street",
 "city" : "Boston",
 "zip" : "02102"
 }
 },
 "phone" : {
 "home" : "800-555-9201",
 "work" : "877-123-8811"
 }
 }
}

{
"account" : 3,
"person" : {
 "lastName" : "Long",
 "firstName" : "Betty",
 "address" : {
 "work" : {
 "street" : "10 Circle Drive",
 "city" : "Minneapolis",
 "zip" : "55111"
 }
 },
 "phone" : {
 "home" : "800-555-2701",
 "work" : "877-181-4912"
 }
 }
}

{
"account" : 4,
"person" : {
 "lastName" : "Brown",
 "firstName" : "Harrison",
 "phone" : {
 "home" : "800-555-3838",
 "work" : "877-753-4110"
 }
 }
}

Appendix A
Sample Data

A-3

{
"account" : 5
}

{
"account" : 6,
"person" : {
 "lastName" : "Abrams",
 "firstName" : "Cynthia",
 "address" : {
 "home" : {
 "street" : "2 Fairfield Drive",
 "city" : "San Jose",
 "zip" : "95054"
 }
 },
 "phone" : {
 "home" : "800-528-4897",
 "work" : "877-180-5287"
 }
 }
}

...
sample data removed for the book. See person_contact.json
in/examples/table for the complete data
file.
...

{
"account" : 21,
"person" : {
 "lastName" : "Blase",
 "firstName" : "Lisa",
 "address" : {
 "home" : {
 "street" : "72 Rutland Circle",
 "city" : "Boston",
 "zip" : "02102"
 },
 "work" : {
 "street" : "541 Bronx Street",
 "city" : "Boston",
 "zip" : "02102"
 }
 },
 "phone" : {
 "home" : "800-555-4404",
 "work" : "877-123-2277"
 }
 }
}

{

Appendix A
Sample Data

A-4

"account" : 22,
"person" : {
 "address" : null,
 "phone" : {
 "home" : "800-555-1234",
 "work" : "877-123-4567"
 }
 }
}

{
"account" : 23,
"person" : {
 "address" : {
 "home" : null,
 "work" : null
 },
 "phone" : {
 "home" : "800-555-1234",
 "work" : "877-123-4567"
 }
 }
}

UpdateJSON
The example program is called UpdateJSON. We deliberately avoid using Java
JSON APIs in this example so as to show how to perform these operations using
Oracle NoSQL Database APIs only. Our imports are therefore limited to oracle.kv,
oracle.kv.table, java.io, and java.util.

package table;

import oracle.kv.FaultException;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;
import oracle.kv.StatementResult;

import oracle.kv.table.FieldValue;
import oracle.kv.table.Index;
import oracle.kv.table.IndexKey;
import oracle.kv.table.MapValue;
import oracle.kv.table.PrimaryKey;
import oracle.kv.table.RecordValue;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;

Appendix A
UpdateJSON

A-5

import java.io.IOException;

import java.util.ArrayList;

public class UpdateJSON {
 private String dataFile = "person_contacts.json";
 private String defaulthost = "localhost:5000";
 private String helperhosts[];
 private String storeName = "kvstore";

 private static void usage() {
 String msg = "Creates a table and loads data into it from\n";
 msg += "an external file containing one or more JSON\n";
 msg += "objects. The objects must conform to the table\n";
 msg += "schema. Table rows are then updated so that\n";
 msg += "zipcodes for all home addresses in Boston are\n";
 msg += "modified updated. Update is performed 3 different\n";
 msg += "ways so as to illustrate the ways to query JSON\n";
 msg += "data in Oracle NoSQL Database.\n";
 msg += "\nCommand line options: \n";
 msg += "-store <storename>\n";
 msg += "\tName of the store. Defaults to 'kvstore'\n";
 msg += "-hostport <hostname>:<port>\n";
 msg += "\tStore location. Defaults to 'localhost:5000'\n";
 msg += "-file <filename>\n";
 msg += "\tFile containing row data. Defaults to ";
 msg += "person_contacts.json";

 System.out.println(msg);
 System.exit(0);
 }

 public static void main(String args[]) {
 UpdateJSON uj = new UpdateJSON();

 uj.run(args);
 }

UpdateJSON.run()
The UpdateJSON.run() method parses our command line arguments, sets up and
opens our KVStore handle, and then calls each of the methods that provide individual
steps in this example.

Notice that there are three different updateTable... methods. Each provides the
same functionality as the next, but reads are performed in different ways. Once
data is loaded into the table, they can be run independently of the others.

Appendix A
UpdateJSON.run()

A-6

The only other dependency is that UpdateJSON.createIndex() must be run before
UpdateJSON.updateTableWithIndex() is run.

 private void run(String args[]) {
 parseArgs(args);

 KVStoreConfig kconfig =
 new KVStoreConfig(storeName,
 helperhosts);
 KVStore kvstore = KVStoreFactory.getStore(kconfig);

 defineTable(kvstore);
 loadTable(kvstore, dataFile);
 displayTable(kvstore);
 updateTableWithoutQuery(kvstore);
 createIndex(kvstore);
 updateTableWithIndex(kvstore);
 updateTableUsingSQLQuery(kvstore);
 displayTable(kvstore);
 }

UpdateJSON.defineTable()
The defineTable() method drops (deletes) the personContacts table if it exists.
Dropping a table deletes all of the table data from the store. The defineTable()
method then creates the new table without data.

As always, we can write no data to the store until the table has been defined in the
store using the appropriate DDL statement.

This method relies on the UpdateJSON.runDDL() method, which we show later in this
appendix.

 // Drops the example table if it exists. This removes all table
 // data and indexes. The table is then created in the store.
 // The loadTable() method is used to populate the newly created
 // table with data.
 private void defineTable(KVStore kvstore) {
 System.out.println("Dropping table....");
 String statement = "DROP TABLE IF EXISTS personContacts";
 boolean success = runDDL(kvstore, statement);

 if (success) {
 statement =
 "CREATE TABLE personContacts (" +
 "account INTEGER," +
 "person JSON," +
 "PRIMARY KEY(account))";
 System.out.println("Creating table....");
 success = runDDL(kvstore, statement);
 if (!success) {
 System.out.println("Table creation failed.");
 System.exit(-1);
 }

Appendix A
UpdateJSON.defineTable()

A-7

 }

 }

UpdateJSON.createIndex()
The UpdateJSON.createIndex() method creates a JSON index in the store. It must be
run before UpdateJSON.updateTableWithIndex() is run.

For information on JSON indexes, see JSON Indexes.

 // Creates a JSON index. This method must be
 // run before updateTableWithIndex() is run.
 private void createIndex(KVStore kvstore) {
 System.out.println("Creating index....");
 String statement = "CREATE INDEX IF NOT EXISTS ";
 statement += "idx_home_city on personContacts ";
 statement += "(person.address.home.city AS String)";
 runDDL(kvstore, statement);
 }

UpdateJSON.runDDL()
The UpdateJSON.runDDL() method is a utility that executes DDL statements against
the store using KVStore.executeSync().

This method relies on the UpdateJSON.displayResult() method, which simply writes
the results of the DDL execution to the command line. It is shown later in this example.

 // Executes DDL statements (such as are found in defineTable()
 // and createIndex()) in the store.
 private boolean runDDL(KVStore kvstore, String statement) {
 StatementResult result = null;
 boolean success = false;

 try {
 result = kvstore.executeSync(statement);
 displayResult(result, statement);
 success = true;
 } catch (IllegalArgumentException e) {
 System.out.println("Invalid statement:\n" + e.getMessage());
 } catch (FaultException e) {
 System.out.println
 ("Statement couldn't be executed, please retry: " + e);
 }

 return success;
 }

Appendix A
UpdateJSON.createIndex()

A-8

UpdateJSON.updateTableWithoutQuery()
The UpdateJSON.updateTableWithoutQuery() method iterates over every row in our
table looking for the proper rows to update.

This is by far the most complicated of the update methods due to the requirement
to continually check for null fields. Notice that all of the following code is
used to simply retrieve table rows. The actual update operation is performed by
UpdateJSON.updateZipCode().

 // Utility method. Given a MapValue and a field name,
 // return the field as a MapValue. Used by
 // updateTableWithoutQuery()
 private MapValue getMV(MapValue mv, String field) {
 FieldValue fv = null;
 if ((fv = mv.get(field)) != null)
 return fv.asMap();
 return null;
 }

 // Update the zip code found on all Boston home addresses
 // to "02102-1000"
 //
 // Because we are not using an index, we must iterate over
 // every row in the table, modifying the rows with Boston home
 // addresses.
 private void updateTableWithoutQuery(KVStore kvstore) {
 TableAPI tableH = kvstore.getTableAPI();
 Table myTable = tableH.getTable("personContacts");

 PrimaryKey pkey = myTable.createPrimaryKey();
 TableIterator<Row> iter =
 tableH.tableIterator(pkey, null, null);
 try {
 while (iter.hasNext()) {
 int account = 0;
 Row row = iter.next();
 FieldValue fv = null;
 try {
 account = row.get("account").asInteger().get();
 MapValue mv = row.get("person").asMap();

 MapValue mvaddress = getMV(mv, "address");
 if (mvaddress != null) {
 MapValue mvhome = getMV(mvaddress, "home");
 if (mvhome != null) {
 fv = mvhome.get("city");
 if (fv != null) {
 if (fv.toString()
 .equalsIgnoreCase("Boston"))
 updateZipCode(tableH,
 row,
 "home",

Appendix A
UpdateJSON.updateTableWithoutQuery()

A-9

 "02102-1000");
 }
 }
 }
 } catch (ClassCastException cce) {
 System.out.println("Data error: ");
 System.out.println("Account " + account +
 "has a missing or incomplete person field");
 // If this is thrown, then the "person" field
 // doesn't exist for the row.
 }
 }
 } finally {
 if (iter != null) {
 iter.close();
 }
 }

 System.out.println("Updated a table without using a query.");
 }

UpdateJSON.updateTableWithIndex()
The UpdateJSON.updateTableWithIndex() method performs the update using an
index.

This read operation is considerably easier to implement than the previous method
because we do not need to perform all the error checking. This method is also more
efficient because only the table rows identified by the index are returned, resulting in
less network traffic and fewer rows for our code to examine. However, if the required
index does not exist, then this method will fail.

 // Update the zip code found on all Boston home addresses
 // to "02102-1000"
 //
 // Because we have an index available to us, we only have to look
 // at those rows which have person.address.home.city = Boston.
 // All other rows are skipped during the read operation.
 private void updateTableWithIndex(KVStore kvstore) {
 TableAPI tableH = kvstore.getTableAPI();
 Table myTable = tableH.getTable("personContacts");

 // Construct the IndexKey.
 Index homeCityIdx = myTable.getIndex("idx_home_city");
 IndexKey homeCityIdxKey = null;

 // If NullPointerException is thrown by createIndexKey(),
 // it means that the required index has not been created.
 // Run the createIndex() method before running this method.
 homeCityIdxKey = homeCityIdx.createIndexKey();

 // Return only those entries with a home city of "Boston"
 homeCityIdxKey.put("person.address.home.city", "Boston");

Appendix A
UpdateJSON.updateTableWithIndex()

A-10

 // Iterate over the returned table rows. Because we're
 // using an index, we're guaranteed that
 // person.address.home.city exists and equals Boston
 // for every table row seen here.
 TableIterator<Row> iter =
 tableH.tableIterator(homeCityIdxKey, null, null);
 try {
 while (iter.hasNext()) {
 Row row = iter.next();
 updateZipCode(tableH, row, "home", "02102-1000");
 }
 } finally {
 if (iter != null) {
 iter.close();
 }
 }
 System.out.println("Updated a table using an index.");
 }

UpdateJSON.updateTableUsingSQLQuery()
The UpdateJSON.updateTableUsingSQLQuery() method uses a Oracle NoSQL
Database SQL query to retrieve the required table rows.

This third and final query method is the easiest to implement, and it has the advantage
of not requiring an index. If an appropriate index is available, it will be used — with all
the advantages that an index offers — but the index is not required as it was for the
previous method.

 // Update the zip code found on all Boston home addresses
 // to "02102-1000"
 //
 // This query works with or without an index. If an index is
 // available, it is automatically used. For larger datasets,
 // the read operation will be faster with an index because only
 // the rows where person.address.home.city=Boston are returned
 // for the read.
 private void updateTableUsingSQLQuery(KVStore kvstore) {
 TableAPI tableH = kvstore.getTableAPI();
 Table myTable = tableH.getTable("personContacts");

 String query = "select * from personContacts p ";
 query += "where p.person.address.home.city=\"Boston\"";

 StatementResult result = kvstore.executeSync(query);

 for (RecordValue rv : result) {
 Row row = myTable.createRowFromJson(rv.toString(),
 false);
 updateZipCode(tableH, row, "home", "02102-1000");
 }
 System.out.println("Updated a table using a SQL Query to " +

Appendix A
UpdateJSON.updateTableUsingSQLQuery()

A-11

 "read.");
 }

UpdateJSON.updateZipCode()
The UpdateJSON.updateZipCode() method performs the actual update operation in the
store.

Because JSON can be returned as a MapValue, it is simple and efficient to update the
JSON data field.

 // Updates the zipcode for the proper address (either "home"
 // or "work" in this example).
 //
 // The calling method must guarantee that this row contains a
 // home address which refers to the correct city.
 private void updateZipCode(TableAPI tableH, Row row,
 String addrType, String newzip) {

 MapValue homeaddr = row.get("person").asMap()
 .get("address").asMap()
 .get(addrType).asMap();
 // If the zip field does not exist in the home address,
 // it is created with the newzip value. If it currently
 // exists, it is updated with the new value.
 homeaddr.put("zip", newzip);

 // Write the updated row back to the store.
 // Note that if this was production code, we
 // should be using putIfVersion() when
 // performing this write to ensure that the row
 // has not been changed since it was originally read.
 tableH.put(row, null, null);
 }

UpdateJSON.loadTable()
The UpdateJSON.loadTable() method loads our sample date into the Oracle NoSQL
Database store.

As Sample Data shows, all of our table rows are represented as JSON data in a
single text file. Each row is a single JSON object in the file. Typically JSON files are
expected to contain one and only one JSON object. While there are third party libraries
which will iterate over multiple JSON objects found in a stream, we do not want to rely
on them for this example. (In the interest of simplicity, we avoid adding a third party
dependency.) Consequently, this method provides a primitive custom parser to load
the example data into the store.

 // Loads the contents of the sample data file into
 // the personContacts table. The defineTable() method
 // must have been run at least once (either in this
 // runtime, or in one before it) before this method
 // is run.

Appendix A
UpdateJSON.updateZipCode()

A-12

 //
 // JSON parsers ordinarily expect one JSON Object per file.
 // Our sample data contains multiple JSON Objects, each of
 // which represents a single table row. So this method
 // implements a simple, custom, not particularly robust
 // parser to read the input file, collect JSON Objects,
 // and load them into the table.
 private void loadTable(KVStore kvstore, String file2load) {
 TableAPI tableH = kvstore.getTableAPI();
 Table myTable = tableH.getTable("personContacts");

 BufferedReader br = null;
 FileReader fr = null;

 try {
 String jObj = "";
 String currLine;
 int pCount = 0;
 boolean buildObj = false;
 boolean beganParsing = false;

 fr = new FileReader(file2load);
 br = new BufferedReader(fr);

 // Parse the example data file, loading each JSON object
 // found there into the table.
 while ((currLine = br.readLine()) != null) {
 pCount += countParens(currLine, '{');

 // Empty line in the data file
 if (currLine.length() == 0)
 continue;

 // Comments must start at column 0 in the
 // data file.
 if (currLine.charAt(0) == '#')
 continue;

 // If we've found at least one open paren, it's time to
 // start collecting data
 if (pCount > 0) {
 buildObj = true;
 beganParsing = true;
 }

 if (buildObj) {
 jObj += currLine;
 }

 // If our open and closing parens balance (the count
 // is zero) then we've collected an entire object
 pCount -= countParens(currLine, '}');
 if (pCount < 1)
 buildObj = false;
 // If we started parsing data, but buildObj is false

Appendix A
UpdateJSON.loadTable()

A-13

 // then that means we've reached the end of a JSON
 // object in the input file. So write the object
 // to the table, which means it is written to the
 // store.
 if (beganParsing && !buildObj) {
 Row row = myTable.createRowFromJson(jObj, false);
 tableH.put(row, null, null);
 jObj = "";
 }

 }

 System.out.println("Loaded sample data " + file2load);

 } catch (FileNotFoundException fnfe) {
 System.out.println("File not found: " + fnfe);
 System.exit(-1);
 } catch (IOException ioe) {
 System.out.println("IOException: " + ioe);
 System.exit(-1);
 } finally {
 try {
 if (br != null)
 br.close();
 if (fr != null)
 fr.close();
 } catch (IOException iox) {
 System.out.println("IOException on close: " + iox);
 }
 }
 }

 // Used by loadTable() to know when a JSON object
 // begins and ends in the input data file.
 private int countParens(String line, char p) {
 int c = 0;
 for(int i=0; i < line.length(); i++) {
 if(line.charAt(i) == p) {
 c++;
 }
 }

 return c;
 }

UpdateJSON.displayTable()
The UpdateJSON.displayTable() method simply writes the entire table to the
command line.

Appendix A
UpdateJSON.displayTable()

A-14

This method does not format the table's contents in any significant way. It is simply
provided as a convenience to allow the user to see that data has in fact been modified
in the store.

 // Dumps the entire table to the command line.
 // Output is unformatted.
 private void displayTable(KVStore kvstore) {
 TableAPI tableH = kvstore.getTableAPI();
 Table myTable = tableH.getTable("personContacts");

 PrimaryKey pkey = myTable.createPrimaryKey();
 TableIterator<Row> iter = tableH.tableIterator(pkey, null,
 null);
 try {
 while (iter.hasNext()) {
 Row row = iter.next();
 System.out.println("\nAccount: " +
 row.get("account").asInteger());
 if (row.get("person").isNull()) {
 System.out.println("No person field");
 } else {
 System.out.println(row.get("person").asMap());
 }
 }
 } finally {
 if (iter != null) {
 iter.close();
 }
 }
 }

UpdateJSON.displayResult()
The UpdateJSON.displayResult() method shows the contents of a StatementResult
object returned by a KVStore.executeSync() method call. It is used by this example
as a convenience to help the user see that a DDL statement has executed correctly in
the store.

 // Displays the results of an executeSync() call.
 private void displayResult(StatementResult result,
 String statement) {
 System.out.println("===========================");
 if (result.isSuccessful()) {
 System.out.println("Statement was successful:\n\t" +
 statement);
 System.out.println("Results:\n\t" + result.getInfo());
 } else if (result.isCancelled()) {
 System.out.println("Statement was cancelled:\n\t" +
 statement);
 } else {
 // statement wasn't successful: may be in error, or may
 // still be in progress.
 if (result.isDone()) {

Appendix A
UpdateJSON.displayResult()

A-15

 System.out.println("Statement failed:\n\t" +
 statement);
 System.out.println("Problem:\n\t" +
 result.getErrorMessage());
 } else {
 System.out.println("Statement in progress:\n\t" +
 statement);
 System.out.println("Status:\n\t" +
 result.getInfo());
 }
 }
 }

UpdateJSON.parseArgs()
The UpdateJSON.parseArgs() method is used to parse the command line arguments
used with this class at run time.

It is unlikely that this method holds any surprises for Java programmers. It is included
here purely for the sake of completeness.

 // Parse command line arguments
 private void parseArgs(String[] args)
 {
 final int nArgs = args.length;
 int argc = 0;
 ArrayList<String> hhosts = new ArrayList<String>();

 while (argc < nArgs) {
 final String thisArg = args[argc++];

 if (thisArg.equals("-store")) {
 if (argc < nArgs) {
 storeName = args[argc++];
 } else {
 usage();
 }
 } else if (thisArg.equals("-hostport")) {
 if (argc < nArgs) {
 hhosts.add(args[argc++]);
 } else {
 usage();
 }
 } else if (thisArg.equals("-file")) {
 if (argc < nArgs) {
 dataFile = args[argc++];
 } else {
 usage();
 }
 } else if (thisArg.equals("?") ||
 thisArg.equals("help")) {
 usage();
 } else {
 usage();

Appendix A
UpdateJSON.parseArgs()

A-16

 }
 }

 if (hhosts.isEmpty()) {
 helperhosts = new String [] {defaulthost};
 } else {
 helperhosts = new String[hhosts.size()];
 helperhosts = hhosts.toArray(helperhosts);
 }
 }
}

Appendix A
UpdateJSON.parseArgs()

A-17

B
Table Data Definition Language Overview

Before you can write data to tables in the store, you must provide a definition of the
tables you want to use. This definition includes information such as the table's name,
the name of its various rows and the data type contained in those rows, identification
of the primary and (optional) shard keys, and so forth. To perform these definitions,
Oracle NoSQL Database provides a Data Definition Language (DDL) that you use to
form table and index statements. The best way to run DDL statements is from the SQL
Shell as described in Running the SQL Shell in the SQL Beginner's Guide.

From the SQL, you can use these statements:

• Define tables and sub-tables.

• Modify table definitions.

• Delete table definitions.

• Define indexes.

• Delete index definitions.

• Set and modify default Time-to-Live values for tables.

Table and index statements take the form of ordinary strings, which are then
transmitted to the Oracle NoSQL Database store using the appropriate method or
function. For example, to define a simple user table, the table statement might look like
this:

SQL-> CREATE TABLE Users (
 id INTEGER,
 firstName STRING,
 lastName STRING,
 contactInfo JSON,
 PRIMARY KEY (id)
)

For information on how to transmit these statements to the store, see Introducing
Oracle NoSQL Database Tables and Indexes.

For overview information on primary and shard keys, see Primary and Shard Key
Design.

For overview information on indexes, see Creating Indexes.

The remainder of this appendix describes in detail the DDL statements that you use to
manipulate table and index definitions in the store.

Name Constraints
Throughout this document, and elsewhere in the documentation, using uppercase
text signifies DDL keywords (such as STRING, CREATE TABLE, and so on).
These keywords are actually case-insensitive and you can enter them in lowercase

B-1

characters. However, all DDL keywords shown here are reserved words. You cannot
use keywords as table, index, or field names.

Table, index, and field names are case-preserving, but case-insensitive. For example,
you can create a field named MY_NAME, and later reference it as my_name without error.
However, whenever you display the field name, it displays in the way you created it,
MY_NAME, in this case.

Table names are limited to 256 characters. Namespace names, index names, and field
names are limited to 64 characters. All table, index, and field names must begin with
a letter (A-Z, a-z), and are restricted to alphanumeric characters (A-Z, a-z, 0–9), plus
underscore (_) and a period (.) character.

DDL Comments
You can include comments in your DDL statements using one of the following
constructs:

id INTEGER, /* this is a comment */
firstName STRING, // this is a comment
lastName STRING, # this is a comment

CREATE TABLE
To create a table definition, use a CREATE TABLE statement, as follows:

CREATE TABLE [IF NOT EXISTS] [namespace:]table-name
 [COMMENT "comment string"]
 (field-definition, field-definition-2 [,...]
 PRIMARY KEY (field-name, field-name-2 [,...]),
) [USING TTL ttl]
 [IN REGIONS region-name,region-name-2 [,...]]

where:

• IF NOT EXISTS

Optional clause. If you use this clause and a table of the same name and definition
already exists in the current namespace, the statement neither creates a new
table, nor returns an error. No action occurs.

If you do not use IF NOT EXISTS, and a table of the same name and definition
already exists in the current namespace, the statement attempts to create
the table, and fails. You cannot have two tables with the same name in one
namespace.

• table-name

Required. Specifies the full table name, regardless of where it exists in the table
hierarchy. A table can be a top-level table created in the default namespace
(sysdefault), a table in a non-default namespace, or a child or grandchild table of
a parent table. Specify a fully-qualified table name as follows:

– parent-table.child-table – Specifies a new child table of an existing parent.
To create a child table, specify the parent table followed by a period (.) before

Appendix B
DDL Comments

B-2

the child name. For example, if the parent table is Users, define a child table
named MailingAddress as Users.MailingAddress.

– parent-table.child-table.grandchild-table – Specifies a child table of
an existing table. You must also specify the parent table, for example
Users.MailingAddress.Zip.

– namespace-name:table-name – Identifies a new table in a specific namespace,
either user-created or in the default namespace (sysdefault:). Use the
namespace followed by a colon (:) as a prefix to the new table name. For
a new child table of a table in a namespace, or any further generation,
use a fully qualified table name such as Sales:Users.MailingAddress, or
Sales:Users.MailingAddress.Zip.

• COMMENT

Optional. Use a comment to provide a brief description of the table. The comment
is not interpreted at runtime, but becomes part of the table's metadata.

• field-definition

Required. A comma-separated list of fields. One of the columns can be an
IDENTITY, as described in Defining Tables With an IDENTITY Column. There are
one or more field definitions for every table. Field definitions are described next in
this section.

• PRIMARY KEY

Required for every table. Identifies at least one field in the table that is the primary
key. For information on primary keys, see Primary Keys.

Note:

If the primary key field is an INTEGER data type, you can apply a
serialized size constraint to it. See Integer Serialized Constraints for
details.

To optionally define a shard key, use the SHARD keyword within the primary key
statement. For information on shard keys, see Shard Keys.

For example:

PRIMARY KEY (SHARD(id), lastName)

• USING TTL

Optional. Defines a default time-to-live value for the table's rows. See USING TTL
for information on this clause.

• IN REGIONS
Optional. In case, the table being created is an MR Table, this parameter lists
all the regions that the table should span. You must mention at least one remote
region in this clause to create the table as an MR Table. For information on MR
Tables, see Life Cycle of MR Tables in the Concepts Guide.

Appendix B
CREATE TABLE

B-3

Field Definitions
When defining a table, field definitions take the form:

field-name type [constraints] [COMMENT "comment-string"]

where:

• field-name is the name of the field. For example: id or familiarName. Every field
must have a name.

• type describes the field's data type. This can be a simple type such as INTEGER
or STRING, or it can be a complex type such a RECORD. The list of allowable
types is described in the next section.

• constraints describes any limits placed on the data contained in the field. That
is, allowable ranges or default values. Ann IDENTITY field, to be created by a
sequence generator, is also permissable. This information is optional. See Field
Constraints for more information.

• COMMENT is optional. You can use this to provide a brief description of the field. The
comment will not be interpreted but it is included in the table's metadata.

Supported Data Types
The following data types are supported for table fields:

• ARRAY

An array of data. All elements of the array must be of the same data type, and this
type must be declared when you define the array field. For example, to define an
array of strings:

myArray ARRAY(STRING)

• BINARY

Binary data.

• BINARY(length)

Fixed-length binary field of size length (in bytes).

• BOOLEAN

A boolean data type.

• DOUBLE

A double.

• ENUM

An enumerated list. The field definition must provide the list of allowable
enumerated values. For example:

fruitName ENUM(apple,pear,orange)

• FLOAT

Appendix B
CREATE TABLE

B-4

A float.

• INTEGER

An integer.

• JSON

A JSON-formatted string.

• LONG

A long.

• MAP

A data map. All map keys are strings, but when defining these fields you must
define the data type of the data portion of the map. For example, if your keys map
to integer values, then you define the field like this:

myMap MAP(INTEGER)

• Number

A numeric type capable of handling any type of number of any value or precision.

• RECORD

An embedded record. This field definition must define all the fields contained in the
embedded record. All of the same syntax rules apply as are used for defining an
ordinary table field. For example, a simple embedded record might be defined as:

myEmbeddedRecord RECORD(firstField STRING, secondField INTEGER)

Data constraints, default values, and so forth can also be used with the embedded
record's field definitions.

• STRING

A string.

• TIMESTAMP(<precision>)

Represents a point in time as a date and, optionally, a time value.

Timestamp values have a precision (0 - 9) which represents the fractional seconds
to be held by the timestamp. A value of 0 means that no fractional seconds are
stored, 3 means that the timestamp stores milliseconds, and 9 means a precision
of nanoseconds. When declaring a timestamp field, the precision is required.

Field Constraints
Field constraints define information about the field, such as whether the field can be
NULL, or what a row's default value should be. Not all data types support constraints,
and individual data types do not support all possible constraints.

Integer Serialized Constraints
You can put a serialized size constraint on an INTEGER data type, provided the
INTEGER is used for a primary key field. Doing this can reduce the size the keys in
your store.

Appendix B
CREATE TABLE

B-5

To do this, use (n) after the primary key field name, where n is the number of bytes
allowed for the integer. The meaningful range for n is 1 - 4. For example:

create table myId (id integer, primary key(id(3)))

The number of bytes allowed defines how large the integer can be. The range is from
negative to positive.

Note:

Specifying an integer constraint value for number of bytes on an IDENTITY
field is not permitted.

Number of
Bytes

Allowed Integer Values

1 -63 to 63
2 -8191 to 8191
3 -1048575 to 1048575
4 -134217727 to 134217727
5 Any integer value

COMMENT
All data types can accept a COMMENT as part of their constraint. COMMENT strings
are not parsed, but do become part of the table's metadata. For example:

myRec RECORD(a STRING, b INTEGER) COMMENT "Comment string"

DEFAULT
All fields can accept a DEFAULT constraint, except for ARRAY, BINARY, MAP, and
RECORD. The value specified by DEFAULT is used in the event that the field data is
not specified when the table is written to the store.

For example:

id INTEGER DEFAULT -1,
description STRING DEFAULT "NONE",
size ENUM(small,medium,large) DEFAULT medium,
inStock BOOLEAN DEFAULT FALSE

IDENTITY
You can define one IDENTITY field per table. All IDENTITY fields must have a numeric
type: INTEGER. LONG, or NUMBER. An IDENTITY field can optionally be a primary
key.

Appendix B
CREATE TABLE

B-6

There are two ways to define an IDENTITY field. You can optionally specify one or
more Sequence Generator attributes for the Sequence Generator (SG) associated
with the IDENTITY. These are the options:

• GENERATED ALWAYS AS IDENTITY

• GENERATED BY DEFAULT AS IDENTITY

These are the Sequence Generator attributes you can define:

Attribute Type Default Value and Description

StartWith Number Default: 1 The first value in the sequence. Zero (0) is
not permitted.

IncrementBy Long Default: 1 The value to increment the current value,
which can be a positive or a negative number.
Specifying a negative number for IncrementBy
decrements values from the StartWith value.

MinValue Number Default: The minimum value of the field data type.
The lower bound of the IDENTITY values that the SG
supplies.

MaxValue Number Default: The maximum value of the field data type.
The upper bound of the IDENTITY values that the SG
supplies. If you do not specify this attribute, SG uses the
maximum value of the field data type.

Cache Long Default: 1000 The number of values stored in cache on
the client to use for the next IDENTITY value. When the
set of values is exhausted, the SG requests another set
to store in the local cache (unless you specify the Cycle
attribute).

Cycle | NoCycle Boolean Default: NoCycle Determines whether to reuse the set
of stored values in cache. For example, if the cache
stores 1024 integers for the IDENTITY column, and you
specify Cycle, when the IDENTITY value reaches 1023,
the next row value is 0001. If you do not specify Cycle,
Oracle NoSQL Database guarantees that each IDENTITY
value in the column is unique, but not necessarily
sequential.

For example:

CREATE Table T (id INTEGER GENERATED ALWAYS AS IDENTITY
(START WITH 2 INCREMENT BY 2 MAXVALUE 200),
name STRING,
PRIMARY KEY (id));

CREATE Table T_DEFAULT (id LONG GENERATED BY DEFAULT AS IDENTITY
(START WITH 1 INCREMENT BY 1 CYCLE CACHE 200),
account_id INTEGER,
name STRING,
PRIMARY KEY (account_id));

Appendix B
CREATE TABLE

B-7

UUID
You can define one UUID field per table. UUID is a subtype of the STRING data type.
The UUID column can be defined as GENERATED BY DEFAULT. The system then
automatically generates a value for the UUID column if you do not supply a value for it.

For example :

CREATE TABLE myTable (id STRING AS UUID,name STRING, PRIMARY KEY (id));

In the above example, the id column has no "GENERATED BY DEFAULT" defined,
therefore, whenever you insert a new row, you need to explicitly specify a value for the
id column.

MR_COUNTER
In a multi-region table, you can create an MR_COUNTER datatype. MR_COUNTER
datatype ensures that though data modifications can happen simultaneously on
different regions, the data can always be merged into a consistent state. This merge
is performed automatically by MR_COUNTER datatype, without requiring any special
conflict resolution code or user intervention.

Example:

In the below example, you create a PN counter data type in two regions DEN and
LON.

CREATE Table myTable(name STRING,
 count INTEGER AS MR_COUNTER,
 PRIMARY KEY(name)) IN REGIONS DEN,LON;

In the above example, while inserting data into the table, the system inserts the default
value (0) when you either give the "DEFAULT" keyword or skip the column name in the
INSERT clause.

NOT NULL
NOT NULL indicates that the field cannot be NULL. This constraint requires that
you also specify a DEFAULT value. Order is unimportant for these constraints. For
example:

id INTEGER NOT NULL DEFAULT -1,
description STRING DEFAULT "NONE" NOT NULL

USING TTL
USING TTL is an optional statement that defines a default time-to-live value for a table's
rows. See Using Time to Live for information on TTL.

Appendix B
CREATE TABLE

B-8

If specified, this statement must provide a ttl value, which is an integer greater than or
equal to 0, followed by a space, followed by time unit designation which is either hours
or days. For example:

USING TTL 5 days

If 0 is specified, then either days or hours can be used. A value of 0 causes table rows
to have no expiration time. Note that 0 is the default if a default TTL has never been
applied to a table schema. However, if you previously applied a default TTL to a table
schema, and then want to turn it off, use 0 days or 0 hours.

USING TTL 0 days

Be aware that if you altering an existing table, you can not both add/drop a field and
alter the default TTL value for the field using the same ALTER TABLE statement. These
two operations must be performed using separate statements.

Table Creation Examples
The following are provided to illustrate the concepts described above.

CREATE TABLE users
COMMENT "This comment applies to the table itself" (
 id INTEGER,
 firstName STRING,
 lastName STRING,
 age INTEGER,
 PRIMARY KEY (id),
)

CREATE TABLE temporary
COMMENT "These rows expire after 3 days" (
 sku STRING,
 id STRING,
 price FLOAT,
 count INTEGER,
 PRIMARY KEY (sku),
) USING TTL 3 days

CREATE TABLE Users
COMMENT "This is an MR table"(
 id INTEGER,
 firstName STRING,
 lastName STRING,
 age INTEGER,
 primary key (id)
) IN REGIONS us_east, us_west;

CREATE TABLE usersNoId (
 firstName STRING,

Appendix B
CREATE TABLE

B-9

 lastName STRING COMMENT "This comment applies to this field only",
 age INTEGER,
 ssn STRING NOT NULL DEFAULT "xxx-yy-zzzz",
 PRIMARY KEY (SHARD(lastName), firstName)
)

CREATE TABLE users.address (
 streetNumber INTEGER,
 streetName STRING, // this comment is ignored by the DDL parser
 city STRING,
 /* this comment is ignored */
 zip INTEGER,
 addrType ENUM (home, work, other),
 PRIMARY KEY (addrType)
)

CREATE TABLE complex
COMMENT "this comment goes into the table metadata" (
 id INTEGER,
 PRIMARY KEY (id), # this comment is just syntax
 nestedMap MAP(RECORD(m MAP(FLOAT), a ARRAY(RECORD(age INTEGER)))),
 address RECORD (street INTEGER, streetName STRING, city STRING, \
 zip INTEGER COMMENT "zip comment"),
 friends MAP (STRING),
 floatArray ARRAY (FLOAT),
 aFixedBinary BINARY(5),
 days ENUM(mon, tue, wed, thur, fri, sat, sun) NOT NULL DEFAULT tue
)

CREATE TABLE myJSON (
 recordID INTEGER,
 jsonData JSON,
 PRIMARY KEY (recordID)
)

Modify Table Definitions
Use ALTER TABLE statements to either add new fields to a table definition, or delete
a currently existing field definition. You can also use an ALTER TABLE statement to
change the default Time-to-Live (TTL) value for a table, and to add an IDENTITY
column to a table.

ALTER TABLE ADD field
To add a field to an existing table, use the ADD statement:

ALTER TABLE table-name (ADD field-definition)

Appendix B
Modify Table Definitions

B-10

See Field Definitions for a description of what should appear in field-definitions, above.
For example:

ALTER TABLE Users (ADD age INTEGER)

You can also add fields to nested records. For example, if you have the following table
definition:

CREATE TABLE u (id INTEGER,
 info record(firstName String)),
 PRIMARY KEY(id))

then you can add a field to the nested record by using dot notation to identify the
nested table, like this:

ALTER TABLE u(ADD info.lastName STRING)

ALTER TABLE DROP Option
To delete a field from an existing table, use the DROP option:

ALTER TABLE table-name (DROP field-name)

For example, to drop the age field from the Users table:

ALTER TABLE Users (DROP age)

Note:

You cannot drop a field if it is the primary key, or if it participates in an index.

You can also us the ALTER TABLE MODIFY FIELD clause to add, drop, or modify an
IDENTITY column in a table.

ALTER TABLE USING TTL
To change the default Time-to-Live (TTL) value for an existing table, use the USING
TTL statement:

ALTER TABLE table-name USING TTL ttl

For example:

ALTER TABLE Users USING TTL 4 days

Appendix B
Modify Table Definitions

B-11

In case of MR Tables, you can not use the USING TTL clause along with the IN
REGIONS clause. That is, you can not alter an MR table's TTL value and regions in a
single statement.

For more information on the USING TTL statement, see USING TTL.

ALTER TABLE ADD REGIONS
The add regions clause lets you link an existing multi-region table (MR Table) with
new regions in a multi-region Oracle NoSQL Database environment.

The add regions clause is used in expanding MR Tables to new regions. See Use
Case 2: Expand a Multi-Region Table in the Administrator's Guide.

To add a region to an existing MR Table, use the ADD REGIONS option:

ALTER TABLE <table name> ADD REGIONS <comma separated list of regions>

See Add New Region to Existing Regions for the example code.

ALTER TABLE DROP REGIONS
The drop regions clause lets you disconnect an existing multi-region table (MR Table)
from a participating region in a multi-region Oracle NoSQL Database environment.

The drop regions clause is used in contracting MR Tables to fewer regions. See Use
Case 3: Contract a Multi-Region Table in the Administrator's Guide.

To drop a region from an MR Table, use the DROP REGIONS option:

ALTER TABLE <table name> DROP REGIONS <comma separated list of regions>

See Alter the MR Table to Drop Regions for the example code.

DROP TABLE
To delete a table definition, use the DROP TABLE statement:

DROP TABLE [IF EXISTS] table-name

where:

• IF EXISTS is optional. If you use this option and the specified table does not exist,
the system returns a message:

sql-> drop table if exists foo;
Statement did not require execution

Appendix B
DROP TABLE

B-12

If you do not specify IF EXISTS , and the table does not currently exist, the DROP
statement returns as follows:

sql-> drop table foo;
Error handling command drop table foo:
Error: User error in query: DROP TABLE failed for table foo:
Table does not exist: foo

If you specify IF EXISTS, and the table exists, the DROP statement executes
successfully:

sql-> create table foo (first string, second integer, primary key
(second));
Statement completed successfully
sql-> drop table if exists foo;
Statement completed successfully

• table-name is the name of the table you want to drop.

As soon as you execute the DROP TABLE statement, users can no longer access the
deleted table or its data. Deleting all of the table data occurs asynchronously in the
background after you execute the DROP TABLE statement.

If you choose to drop an MR Table in a particular region, it still continues to remain
an MR Table in the other participating regions. In a case where you want to drop a
particular MR Table from multiple regions, you must execute the DROP TABLE statement
in each region separately.

Note:

In a case where an MR Table is dropped in all remote regions but still exists
in local region, it still continues to be an MR Table linked with a single region.
Such an MR Table with a single region can be expanded to more regions in
future. That is, you can add new regions to this table in future, as needed.

If the table to drop has child tables, you must drop those first. For example, if you have
these tables:

• myTable

• myTable.childTable1

• myTable.childTable2

You must first drop myTable.childTable1 and myTable.childTable2 before you can
drop the parent myTable. If you try to drop the parent, the statement returns an error.

CREATE INDEX
To add an index definition to the store, use a CREATE INDEX statement. It can be used
to create simple indexes and multi-key indexes. It can also be used to create JSON
indexes.

Appendix B
CREATE INDEX

B-13

Indexable Field Types
Fields can be indexed only if they are declared to be one of the following types. For
all complex types (arrays, maps, and records), the field can be indexed if the ultimate
target of the index is a scalar datatype. So a complex type that contains a nested
complex type (such as an array of records, for example) can be indexed if the index's
target is a scalar datatype contained by the embedded record.

• Integer

• Long

• Number

• Float

• Double

• Json

Note that there are some differences and restrictions on indexing Json data versus
other data types. See JSON Indexes for more information.

• String

• Enum

• Array

In the case of arrays, the field can be indexed only if the array contains values that
are of one of the other indexable scalar types. For example, you can create an
index on an array of Integers. You can also create an index on a specific record in
an array of records. Only one array can participate in an index, otherwise the size
of the index can grow exponentially because there is an index entry for each array
entry.

• Maps

As is the case with Arrays, you can index a map if the map contains scalar types,
or if the map contains a record that contains scalar types.

• Records

Like Arrays and Maps, you can index fields in an embedded record if the field
contains scalar data.

Simple Indexes
An index is simple if it does not index any maps or arrays. To create a simple index:

CREATE INDEX [IF NOT EXISTS] index-name ON table-name
(path_list)

where:

• IF NOT EXISTS is optional, and it causes the CREATE INDEX statement to be
ignored if an index by that name currently exists. If this phrase is not specified,
and an index using the specified name does currently exist, then the CREATE INDEX
statement will fail with an error.

• index-name is the name of the index you want to create.

Appendix B
CREATE INDEX

B-14

• table-name is the name of the table that you want to index.

• path_list is a comma-separated list of one or more name_paths. A name_path
refers to an element of a table. Normally these are schema fields — that is,
field names that appear in the CREATE TABLE expression used to create the
associated table.

However, if the table contains a record, then the name_path may be record keys
that use dot-notation to identify a record field. For example:

CREATE TABLE example (
 id INTEGER,
 myRecord RECORD(field_one STRING, field_two STRING),
 PRIMARY KEY (id)
)

An index can then be created on field_one by using the name_path of
myRecord.field_one. See Indexing Embedded Records for a more detailed
explanation of indexing records.

For example, if table Users has a field called lastName, then you can index that field
with the following statement:

CREATE INDEX surnameIndex ON Users (lastName)

Note that depending on the amount of data in your store, creating indexes can take
a long time. This is because index creation requires Oracle NoSQL Database to
examine all the data in the store.

Multi-Key Indexes
Multi-key indexes are used to index all the elements of an array. They are also used to
index all of the elements and/or values of a map.

For each table row, a multi-key index contains as many entries as the number of
elements/entries in the array/map that is being indexed (although duplicate entries are
not represented in the index). To avoid an explosion in the number of index entries,
only one array/map may be contained in a single multi-key index.

To create a multi-key index, use one of the following forms:

CREATE INDEX [IF NOT EXISTS] index-name ON table-name (name-path.keys())

or

CREATE INDEX [IF NOT EXISTS] index-name ON table-name (name-
path.values())

or

CREATE INDEX [IF NOT EXISTS] index-name ON table-name \
(name-path.keys(),name-path.values())

Appendix B
CREATE INDEX

B-15

or

CREATE INDEX [IF NOT EXISTS] index-name ON table-name (name-path[])

The syntax shown, above, is identical to that described in Simple Indexes, with the
following additions:

• .keys()

The index is created on the keys in a map. If used, name-path must be a map.

• .values()

The index is created on the values in a map. If used, name-path must be a map.

• []

The index is created on an array. If used, name-path must be array.

For each of the previously identified forms, a comma-seperated list of name-paths may
be provided. Some restrictions apply.

Multi-Key Index Restrictions
The following restrictions apply to multi-key indexes:

• There is at least one name-path that uses a multi-key step (.keys(), .values(),
or []). Any such path is called a multi-key path, and the associated index field a
multi-key field. The index definition may contain more than one multi-key path, but
all multi-key paths must use the same name-path before their multi-key step.

• Any non-multi-key paths must be simple paths.

• The combined path specified for the index must contain at least one map and/or
array. These must contain indexable atomic items, or record items, or map items.
That is, an index of an array of arrays is not supported, nor is an index of maps
containing arrays.

For example, given the following table definition:

create table Foo (
id INTEGER,
complex1 RECORD(mapField MAP(ARRAY(MAP(INTEGER)))),
complex2 RECORD(matrix ARRAY(ARRAY(RECORD(a LONG, b LONG)))
primary key(id)
)

The path expression complex2.matrix[] is not valid, because the result of
this path expression is a sequence of arrays, not atomic items. Neither is
complex2.matrix[][].a valid, because you cannot index arrays inside other
arrays (in fact this path will raise a syntax error, because the syntax allows at
most one [] per index path).

On the other hand, the path complex1.mapField.someKey[].someOtherKey is
valid. In this case, the path complex1.mapField.someKey specifies an array
containing maps, which is valid. Notice that in this index path, someKey and
someOtherKey are map-entry keys. So, although we are indexing arrays that are
contained inside maps, and the arrays being indexed contain maps, the path is

Appendix B
CREATE INDEX

B-16

valid, because it is selecting specific entries from the map, rather than indexing all
the map entries in addition to all the array entries.

• If the index is indexing an array-valued field:

– If the array contains indexable atomic items:

* There must be a single multi-key index path of the form M[] (without any
name_path following after the []). Again, this implies that you cannot index
more than one array in the same index.

* For each table row (R), a number of index entries are created as follows:

The simple index paths (if any) are computed on R.

Then, M[] is computed (as if it were a query path expression), returning
either NULL, or EMPTY, or all the elements of the array returned by M.

Finally, for each value (V) returned by M[], an index entry is created whose
field values are V and the values of the simple paths.

* Any duplicate index entries (having equal field values and the same
primary key) created by the above process are eliminated.

– If the array contains records or maps:

* All of the multi-key paths must be of the form M[].name_path. Each
name_path appearing after M[] in the multi-key index path must return
at most one indexable atomic item.

* For each table row (R), a number of index entries are created as follows:

The simple index paths (if any) are computed on R.

Then, M[] is computed (as if it were a query path expression), returning
either NULL, or EMPTY, or all the elements of the array returned by M.

Next, for each value (V) returned by M[], one index entry is created as
follows:

The elements contained in each V are computed. This returns a single
indexable atomic item (which may be the NULL or EMPTY item). An index
entry is created for each of these, whose field values are the values of the
simple index paths plus the values found for element contained in V.

* Any duplicate index entries (having equal field values and the same
primary key) created by the above process are eliminated.

– If the index is indexing a map-valued field, the index may be indexing only
map keys, or only map elements, or both keys and elements. In all cases, the
definition of map indexes can be given in terms of array indexes, by viewing
maps as arrays containing records with 2 fields: a field with name “key” and
value a map key, and a field named “element” and value the corresponding
map element (that is, MAP(T) is viewed as ARRAY(RECORD(key STRING,
element T))). Then, the 2 valid kinds for map indexes are:

1. A single multi-key index path using a keys() step. Using the array view of
maps, M.keys() is equivalent to M[].key.

2. One or more multi-key index paths, all using a .values() step. If Ri
is an value contained in the map, then each of these has the form
M.values().Ri. Using the array view of maps, each M.values().Ri path is
equivalent to M[].element.Ri.

Appendix B
CREATE INDEX

B-17

JSON Indexes
An index is a JSON index if it indexes at least one field that is contained inside JSON
data.

Because JSON is schema-less, it is possible for JSON data to differ in type across
table rows. However, when indexing JSON data, the data type must be consistent
across table rows or the index creation will fail. Further, once or more JSON indexes
have been created, any attempt to write data of an incorrect type will fail.

Indexing JSON data and working with JSON indexes is performed in much the same
way as indexing non-JSON data. To create the index, specify a path to the JSON field
using dot notation.

When creating JSON indexes, you must specify the data's type, using the AS keyword.
The data type must be atomic, and cannot be a float. That is, only integer, long,
double, number, string, and boolean are supported types for JSON indexes. Note that
arrays and maps can be indexed so long as they contain these atomic values.

CREATE INDEX [IF NOT EXISTS] index-name ON table-name \
(JSONRow.JSONField AS data_type)

When creating a multi-key index on a JSON map, a type must not be given for
the .keys() expression because the type will always be String. However, a type
declaration is required for the .values() expression. Beyond that, all the constraints
described in Multi-Key Index Restrictions also apply to a JSON multi-keyed index.

CREATE INDEX [IF NOT EXISTS] index-name ON table-name \
(JSONRow.JSONField.keys(),\
 JSONRow.JSONField.values() AS data_type)

For an example of using JSON indexes, see Indexing JSON Fields.

For additional examples of using JSON indexes, see Indexing JSON Data in the SQL
Beginner's Guide.

CREATE FULL TEXT INDEX
To create a text index on that table that indexes the category and txt columns, use
CREATE FULLTEXT INDEX statement:

CREATE FULLTEXT INDEX [if not exists] <index-name> ON <table-name>
(<field-name> [<mapping-spec>], ...)
[ES_SHARDS = <n>] [ES_REPLICAS = <n>]

For example:

kv-> execute 'CREATE FULLTEXT INDEX JokeIndex
ON Joke (category, txt)'
Statement completed successfully

Appendix B
CREATE FULL TEXT INDEX

B-18

While creating index, CREATE FULLTEXT INDEX statement uses the OVERRIDE flag,
which allows to delete any index existing in Elasticsearch by the same name as would
be created by the command.

CREATE FULLTEXT INDEX [IF NOT EXISTS] index_name ON table_name
 (field_name [{mapping_spec}] [, field_name [{mapping_spec}]]...)
 [ES_SHARDS = value] [ES_REPLICAS = value]
 [OVERRIDE] [COMMENT comment]

For example:

CREATE INDEX JokeIndex on Joke (category, txt) OVERRIDE

For more information, see Creating Full Text Index and Mapping a Full Text Index Field
to an Elasticsearch Field in the Integrations Guide.

DROP INDEX
To delete an index definition from the store, use a DROP INDEX statement. Its form
when deleting an index is:

DROP INDEX [IF EXISTS] index-name ON table-name

where:

• IF EXISTS is optional, and it causes the DROP INDEX statement to be ignored if
an index by that name does not exist. If this phrase is not specified, and an index
using the specified name does not exist, then the DROP INDEX statement will fail
with an error.

• index-name is the name of the index you want to drop.

• table-name is the name of the table containing the index you want to delete.

For example, if table Users has an index called surnameIndex, then you can delete it
using the following statement:

DROP INDEX IF EXISTS surnameIndex ON Users

Use DROP INDEX on a text index to stop the population of the index from NoSQL
Database shards, and removes the mapping and all related documents from
Elasticsearch. See the following statement:

DROP INDEX [IF EXISTS] index_name ON table_name

For example:

kv-> execute 'DROP INDEX JokeIndex on Joke'
 Statement completed successfully

Appendix B
DROP INDEX

B-19

While deleting index, you can use the OVERRIDE flag. The DROP INDEX statement uses
the OVERRIDE flag to enable overriding of the default constraints:

DROP INDEX [IF EXISTS] index_name ON table_name [OVERRIDE]

For example:

DROP INDEX JokeIndex on Joke OVERRIDE

For more information, see Deleting FTI in the Integrations Guide.

DESCRIBE AS JSON TABLE
You can retrieve a JSON representation of a table by using the DESCRIBE AS JSON
TABLE statement:

DESCRIBE AS JSON TABLE table_name [(field-name, field-name2, ...)]

or

DESC AS JSON TABLE table_name [(field-name, field-name2, ...)]

where:

• table_name is the name of the table you want to describe.

• field-name is 0 or more fields defined for the table that you want described. If
specified, the output is limited to just the fields listed here.

For Map and Array fields, use [] to restrict the JSON representation to just the
map or array element.

DESCRIBE AS JSON INDEX
You can retrieve a JSON representation of an index by using the DESCRIBE AS JSON
INDEX statement:

DESCRIBE AS JSON INDEX index_name ON table_name

where:

• index_name is the name of the index you want to describe.

• table_name is the name of the table to which the index is applied.

SHOW TABLES
You can retrieve a list of all tables currently defined in the store using the SHOW TABLES
statement:

SHOW [AS JSON] TABLES

Appendix B
DESCRIBE AS JSON TABLE

B-20

where AS JSON is optional and causes the resulting output to be JSON-formatted.

SHOW INDEXES
You can retrieve a list of all indexes currently defined for a table using the SHOW
INDEXES statement:

SHOW [AS JSON] INDEXES ON table_name

where:

• AS JSON is optional and causes the resulting output to be JSON-formatted.

• table_name is the name of the table for which you want to list all the indexes.

Appendix B
SHOW INDEXES

B-21

C
Supported Keywords in Query Method

The following is the list of supported keywords for prefix in the dynamic query method
name.

Table C-1 Supported Keywords for Prefix

Prefix Keyword Example

findBy List<Customer> findByFirstName(String firstName)

queryBy List<Customer> queryByFirstName(String firstName)

getBy List<Customer> getByFirstName(String firstName)

readBy List<Customer> readByFirstName(String firstName)

countBy long countByFirstName(String firstName) - returns the
count of the matching rows

existsBy boolean existsByLastName(String lastname) - returns true if
returned rows > 0

The following is the list of supported keywords for body in the dynamic query method
name.

Table C-2 Supported Keywords for Body

Body Keyword No. of
Parts

No. of
Param
s

Example

fieldname 1 1 List<Customer> findByLastName(String
lastName)

fieldnameReferenc
efieldname

1 1 List<Customer> findByAddressCity(String
city)

class Customer { Address adress; ...}

class Address { String city; ...}

And 2 0 List<Customer>
findByFirstNameAndLastName(String
firstName, String lastName)

Or 2 0 List<Customer>
findByFirstNameOrLastName(String
firstName, String lastName

GreaterThan 1 1 List<Customer> findByAgeGreaterThan(int
minAge)

GreaterThanEqual 1 1 List<Customer>
findByAgeGreaterThanEqual(int minAge)

LessThan 1 1 List<Customer> findByAgeLessThan(int
maxAge)

C-1

Table C-2 (Cont.) Supported Keywords for Body

Body Keyword No. of
Parts

No. of
Param
s

Example

LessThanEqual 1 1 List<Customer>
findByAgeLessThanEqual(int maxAge)

IsTrue 1 0 List<Customer> findByVanillaIsTrue()

Desc 1 0 List<Customer>
queryByLastNameOrderByFirstNameDesc(Str
ing lastname)

Asc 1 0 List<Customer>
getByLastNameOrderByFirstNameAsc(String
lastname)

In 1 1 List<Customer>
findByAddressCityIn(List<Object>
cities) - param must be a List

NotIn 1 1 List<Customer>
findByAddressCityNotIn(List<String>
cities) - param must be a List

Between 2 2 List<Customer> findByKidsBetween(int
min, int max)

Regex 1 1 List<Customer>
findByFirstNameRegex(String regex)

Exists 1 0 List<Customer>
findByAddressCityExists() - find all that
have a city set

Near 1 1 List<Customer>
findByAddressGeoJsonPointNear(Circle
circle) - param must be of
org.springframework.data.geo.Circle type

Within 1 1 List<Customer>
findByAddressGeoJsonPointWithin(Polygon
point) - param must be of
org.springframework.data.geo.Polygon type

For the complete list of query methods in Spring Data JPA driver, see Query Creation.

Appendix C

C-2

D
Exceptions

Exceptions will be translated into Spring Data Framework exceptions as follows:

Table D-1 Exceptions

Oracle NoSQL Database Spring Data Framework

• oracle.nosql.driver.RetryableException
– oracle.nosql.driver.SecurityInfoNotReadyException
– oracle.nosql.driver.SystemException
– oracle.nosql.driver.TableBusyException
– oracle.nosql.driver.ThrottlingException
– oracle.nosql.driver.OperationThrottlingException
– oracle.nosql.driver.ReadThrottlingException
– oracle.nosql.driver.WriteThrottlingException

TransientDataAccessReso
urceException

• oracle.nosql.driver.InvalidAuthorizationException
• oracle.nosql.driver.UnauthorizedException

PermissionDeniedDataAc
cessException

• oracle.nosql.driver.IndexExistsException
• oracle.nosql.driver.IndexNotFoundException
• oracle.nosql.driver.JsonParseException
• oracle.nosql.driver.OperationNotSupportedException
• oracle.nosql.driver.RequestTimeoutException
• oracle.nosql.driver.ResourceExistsException
• oracle.nosql.driver.ResourceNotFoundException
• oracle.nosql.driver.TableExistsException
• oracle.nosql.driver.TableNotFoundException

InvalidDataAccessApiUsa
geException

• oracle.nosql.driver.ResourceLimitException
– oracle.nosql.driver.BatchOperationNumberLimitExc

eption
– oracle.nosql.driver.DeploymentException
– oracle.nosql.driver.EvolutionLimitException
– oracle.nosql.driver.IndexLimitException
– oracle.nosql.driver.KeySizeLimitException
– oracle.nosql.driver.RequestSizeLimitException
– oracle.nosql.driver.RowSizeLimitException
– oracle.nosql.driver.TableLimitException

• oracle.nosql.driver.TableSizeException

InvalidDataAccessResour
ceUsageException

D-1

	Contents
	Preface
	Conventions Used in This Book
	Diversity and Inclusion

	1 Developing for Oracle NoSQL Database
	Configuring Logging
	Obtaining a KVStore Handle
	Using the KVStoreConfig Class

	Using the Authentication APIs
	Configuring SSL
	Identifying the Trust Store
	Setting the SSL Transport Property

	Authentication using a LoginCredentials Instance
	Renewing Expired Login Credentials
	Authentication using Kerberos
	Authentication using Kerberos and JAAS
	Unauthorized Access

	2 Introduction to Oracle KVLite
	Starting KVLite
	Stopping and Restarting KVLite
	Verifying the Installation
	kvlite Utility Command Line Parameter Options

	3 Introducing Oracle NoSQL Database Tables and Indexes
	Defining Tables
	Executing DDL Statements From the Admin CLI
	Supported Table Data Types
	Record Fields
	Defining Child Tables
	Defining Multi-Region Tables
	Using CRDT datatype in a multi-region table
	Add MR_COUNTER datatype in a multi-region table

	Table Evolution

	Defining Tables With an IDENTITY Column
	Sequence Generator Attributes
	Creating Tables With an IDENTITY Column
	Adding an IDENTITY Column to an Existing Table
	Altering or Dropping an IDENTITY Column
	Inserting IDENTITY Values from the SQL CLI
	Inserting IDENTITY Values Programmatically

	Using the UUID data type
	Inserting rows into a table with a UUID column
	Updating rows of a table with a UUID column
	Add or Remove a UUID column

	Creating Indexes

	4 Introducing Oracle NoSQL Database Namespaces
	Creating Namespaces
	Granting Authorization Access to Namespaces
	Using and Setting Namespaces
	Showing and Describing Namespaces
	Dropping Namespaces

	5 Primary and Shard Key Design
	Primary Keys
	Data Type Limitations
	Partial Primary Keys
	Shard Keys

	Row Data

	6 Writing and Deleting Table Rows
	Write Exceptions
	Writing Rows to a Table in the Store
	Writing Rows to a Child Table
	Other put Operations

	Bulk Put Operations
	Using Time to Live
	Specifying a TTL Value
	Updating a TTL Value
	Deleting TTL Expiration
	Setting Default Table TTL Values

	Deleting Rows from the Store
	Using multiDelete()

	7 Reading Table Rows
	Read Exceptions
	Retrieving a Single Row
	Retrieve a Child Table

	Using multiGet()
	Iterating over Table Rows
	Specifying Field Ranges
	Iterating with Nested Tables
	Reading Indexes
	Parallel Scans
	Bulk Get Operations

	8 Using Data Types
	Using Arrays
	Using Binary
	Using Enums
	Using Fixed Binary
	Using JSON
	Using Maps
	Using Embedded Records

	9 Indexing Non-Scalar Data Types
	Indexing Arrays
	Indexing JSON Fields
	Indexing Maps
	Indexing by Map Keys
	Indexing by Map Values
	Indexing by a Specific Map Key Name
	Indexing by Map Key and Value

	Indexing Embedded Records

	10 Using Row Versions
	11 Consistency Guarantees
	Specifying Consistency Policies
	Using Simple Consistency
	Using Time-Based Consistency
	Using Version-Based Consistency

	12 Durability Guarantees
	Setting Acknowledgment-Based Durability Policies
	Setting Synchronization-Based Durability Policies
	Setting Durability Guarantees

	13 Executing a Sequence of Operations
	Sequence Errors
	Creating a Sequence
	Executing a Sequence

	14 Introduction to SQL for Oracle NoSQL Database
	Running a simple query
	Using binding variables
	Accessing metadata
	Using a query to update data

	15 Oracle NoSQL Database SDK for Spring Data
	About the Oracle NoSQL Database SDK for Spring Data
	Example: Accessing Oracle NoSQL Database Using Spring Data Framework
	Components of Oracle NoSQL Database SDK for Spring Data
	Persistence Model
	Transactional Model
	Setting up the Connection
	Defining a Repository
	Starting the Application
	Queries
	PagingAndSortingRepository Interface
	Derived Queries
	Native Queries

	Activating Logging

	A JSON By Example
	Sample Data
	UpdateJSON
	UpdateJSON.run()
	UpdateJSON.defineTable()
	UpdateJSON.createIndex()
	UpdateJSON.runDDL()
	UpdateJSON.updateTableWithoutQuery()
	UpdateJSON.updateTableWithIndex()
	UpdateJSON.updateTableUsingSQLQuery()
	UpdateJSON.updateZipCode()
	UpdateJSON.loadTable()
	UpdateJSON.displayTable()
	UpdateJSON.displayResult()
	UpdateJSON.parseArgs()

	B Table Data Definition Language Overview
	Name Constraints
	DDL Comments
	CREATE TABLE
	Field Definitions
	Supported Data Types
	Field Constraints
	Integer Serialized Constraints
	COMMENT
	DEFAULT
	IDENTITY
	UUID
	MR_COUNTER
	NOT NULL

	USING TTL
	Table Creation Examples

	Modify Table Definitions
	ALTER TABLE ADD field
	ALTER TABLE DROP Option
	ALTER TABLE USING TTL
	ALTER TABLE ADD REGIONS
	ALTER TABLE DROP REGIONS

	DROP TABLE
	CREATE INDEX
	Indexable Field Types
	Simple Indexes
	Multi-Key Indexes
	Multi-Key Index Restrictions

	JSON Indexes

	CREATE FULL TEXT INDEX
	DROP INDEX
	DESCRIBE AS JSON TABLE
	DESCRIBE AS JSON INDEX
	SHOW TABLES
	SHOW INDEXES

	C Supported Keywords in Query Method
	D Exceptions

