Multi-Tenant Patch-set Deployment

Oracle FLEXCUBE Universal Banking
Release 14.5.3.0.0

Part No. F50379-01
[November] [2021]

ORACLE
FINANCIAL SERVICES

ORACLE

Page 1 of 19

Table of Contents

1. Overview of Applications in an Application Containercccvrmiimeiimeniimsn s 3
1.1 Managing Applications in an Application CONtaINeT..........cc.eeveeriierieerienieeiieere e eee e 3

1.2 APPlICation MaINENANCEeeeeviieiiiieeiieeeiieeeiee et e et eeeseteeesaveeetaeeessaeessseeessseeessseeessseesssseeens 3

1.2.1 Application INSALIAtIONeecueieiieeiie ettt et e et e et e s teeeteesteeesbeeenbeeenseesnsaeenseesnseensseens 3

| OO AN o o) V(o 1102 s B B oo ¢ 1o USSR 3

2. Patch-set Application StePs.......ciueiiieiimiimiirrirr s 6
2.1 APPICAION UPZIAAE ..oeneiiieiiiieciieece ettt ettt e et e e et e e et e e ssaeeessbaeessseeensseeennseeens 6

2.1.1 PUIPOSE ..ttt ettt et ettt ettt et e e e e e aee e bb e e tee e baeenbee e baeebee e baeenbae e beeenbeeenreeenbaeenreeanreenn 6

N B 1< o o B o T L0 ()T USSR 6

2.2 Synchronize application PDBS.........ccoooiiiiiiiiiiieee e 9

2.2.1 PUIPOSE ..ttt ettt et st et e e bt e et e s bt e e bt e s bt e e bt e s bt e e bt e s beeeabeesabeesareens 9

I 1<) o (0B o T 1) (o) TP U PSS 10

3. N TS 030 0 T T 05 (o 110 1
311 PIC- ROQUISIEES . .euvietieiieie e etesttert et et et e et et e st ebeesteeatessaesse e st enseenseesseessensaenseenseensesasesnsesseenseenseensenns 11

3.1.2 Patch-set Application Step by Step With SCreenshotsccccuvevviiiriiiiriiiiiieceeeece e 11

Page 2 of 19 ORACLE

1. Overview of Applications in an Application Container

1.1 Managing Applications in an Application Container

In an application container, an application is the named, versioned set of application common objects stored in the
application root. In this context, “application” means “application back-end.” Application common objects include user
accounts, tables, PL/SQL packages, and so on. An application can be shared with the application PDBs that belong to the
application root.

On performing application changes, application PDBs can synchronize with the application in the application root. The
application container also manages the versions of the application and the patches to the application:

e While installing an application, user must specify the application version number.

e While upgrading an application, user must specify the old application version number and the new application
version number.

As the application evolves, the application container maintains all of the versions that are applied.

1.2 Application Maintenance

Application maintenance refers to installing, uninstalling, upgrading, or patching an application.

Perform application installation, upgrade, and patching operations using an ALTER PLUGGABLE DATABASE
APPLICATION statement.

The basic steps for application maintenance are as follows:

1. Log in to the application root.

2. Begin the operation with an ALTER PLUGGABLE DATABASE APPLICATION ... BEGIN statement in the
application root.

3. Execute the application maintenance statements.

4. End the operation with an ALTER PLUGGABLE DATABASE APPLICATION ... END statement.

These statements can be issued in the same user session or in different user sessions.

1.2.1 Application Installation

An application installation is the initial creation of a master application definition. A typical installation creates user
accounts, tables, and PL/SQL packages.

Refer Multi-Tenant_Deployment.pdf for more details on the application installation.

1.2.2 Application Upgrade

Page 3 of 19 ORACLE

An application upgrade is a major change to an installed application.

Typically, an upgrade changes the physical architecture of the application. For example, an upgrade might add new

tables, and packages, or alter the definitions of existing objects.

To upgrade the application, specify the following in the ALTER PLUGGABLE DATABASE

APPLICATION statement:
e Name of the application
e Old application version number

e New application version number

During an application upgrade, the application remains available. To make this availability possible, Oracle Database

clones the application root.

The following figure gives an overview of the application upgrade process.

1 Before upgrade

Application Root v1.0

900

I
Application FDBs

2 Begin upgrade

ﬁpplicatlon Root v1.0 Application Root Clone v1.0

S

Appllcauon FDEBs

3 End upgrade

Application Root v2.0 U

Application Root Clona v1 U

@@%

.&pphcanon PDBs

Page 4 of 19

ORACLE

4 After synchronization

Application Root v2.0 Application Root Clone v1.0

\—I—I

Synchronized Application PDB
Application FDBs atv1.0

When an application is upgraded, Oracle Database automatically clones the application root.

During the upgrade, application PDBs point to the clone and applications continue to run during the upgrade.
Application PDBs can perform DML on metadata-linked and tables and views and query data-linked tables.

After the upgrade, the application root clone remains and continues to support any application PDB that still uses the pre-
upgrade version of the application in the clone.

Application PDBs that re synchronized are pointed to the upgraded application root. Application PDBs that are not
synchronized might continue to use the clone.

Page 5 of 19 DRACLE'

2. Patch-set Application Steps

Multi entity application root/PDB based setup has to be available to perform18c database application upgrade for
applying the patch-set. Refer Multi-Tenant_Deployment.docx for the deployment and installation steps.

Patch-set can be applied by following below steps in sequential order, and detail of each steps explained as separate
sections subsequently.

e Application Upgrade
e Synchronize application PDBs

Patch-set Deployment Pre-requisites:

v" Download the required patch-set zip file and unzip it in a local path.

v' Verify whether the property files (fcubs.properties and env.properties) have the application root schema
details where the application is available, if not update the approot schema details through installer (Refer
FCUBS_Property File Creation.docx for more details) and re-generate the files.

v' Make sure to set the flag PATCHSET INSTALLATION to 'Y".

2.1 Application Upgrade

2.1.1 Purpose

Major changes to an application constitute application upgrades. During the upgrade, Oracle Database
automatically clones the application root and the application PDBs point to the clone.

Application upgrade can be performed in the application root only, and application PDBs applies the changes in
the upgrade when they synchronize with the application.

2.1.2 Steps to be followed

Below steps to be followed to initiate application upgrade
v Start Application upgrade

Compiling Incremental Units

Recompilation of invalids

End Application upgrade

ISR

Start Application upgrade

Application Root objects conversion for new objects
Application Root objects conversion for existing objects
Recompilation of invalids

End Application upgrade

ANENENENEN

2.1.2.1 Start Application upgrade

An ALTER PLUGGABLE DATABASE APPLICATION statement has to be issued to upgrade an application
in the application root.

Page 6 of 19 ORACLE

Each upgrade must be associated with an application name, starting version number, and ending version
number.

Pre-requisites:

o The common user must have the DBA privilege, and the privilege must be commonly granted in the
application root.

o The application root must be in open read/write.

Run the below script for initiating an application upgrade. This will initiate the application from current version
to the next version (patch-set version).

""" iy
&

01_Start_Upgrade.sql

Input sample for the script:

Spool Path << Any local path>>

Application next version 14.2.0.0.1

2.1.2.2 Compiling Incremental Units

Patch-set objects have to be loaded using bat file [E.g.: SMSDBCompileRun.bat, ROFCDBCompileRun.bat] by
silent installer for respective product processer.

Compile the incremental SMS units using /INSTALLER/SOFT/SMSDBCompileRun.sh for UNIX installations
or /INSTALLER/SOFT/SMSDBCompileRun.bat for Windows installations.

Compile the incremental FCUBS units using /INSTALLER/SOFT/ROFCDBCompileRun.sh for UNIX
installations or /INSTALLER/SOFT/ROFCDBCompileRun.bat for Windows installations.

2.1.2.3 Recompilation of invalids

As the sharing property of most of the objects are modified other than NONE, recompilation of objects is not
allowed outside an application.

Recompilation of objects will be initiated inside the application upgrade for sanity with zero invalids with the

below script:
""" w f

03_Invalids_Recompilation_Inside_Upgrade.sql

2.1.2.4 End Application upgrade

Application upgrade can be performed in the application root only and end of the upgrade is performed with an
ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE statement.

Run the below script for ending an application upgrade for patch-set.

04_End_Upgrade.sq|

Page 7 of 19 ORACLE'

And run the invalid script by connecting to the common user in approot outside the upgrade.

04_Invalids_Recompilation_Outside_Upgrade.sql

2.1.2.5 Start Application upgrade

Run the below script for initiating another application upgrade for object conversion. This will initiate the
application from current version to the next version (patch-set version).

05_Start_Upgrade.sql

Input sample for the script:

Spool Path << Any local path>>

Application next version 14.2.0.0.2

2.1.2.6 Application Root objects conversion for new objects

As part of patch-set when there are new tables added which has to be converted as DL or when there is a new
function id which is identified to be an approot function is provided, otherwise no conversion will happen as
part of this step

Below script takes care of converting the new DL objects during patch-set based on the deployment model of
the application during installation.

06_New_Object_Conversion.sql

Input sample for the script:

Spool Path << Any local path>>

Approot User (In Caps) HUBUSER (common user name)

2.1.2.7 Application Root objects conversion for existing objects

Various Sharing types of objects during installation:

e A static table will hold the information of selected table sharing as Data link. Other tables will be
treated as Meta Data Link

e Sharing of object types such as INDEX, LOB, TABLE PARTITION, SEQUENCE, and DYNAMIC
PACKAGES will remain as NONE.

e All other object types such as Packages, Procedures, Functions, and Synonyms would be converted as
Meta Data Link sharing.

Sharing during upgrade:

Sharing of existing database objects will remain the same.

Page 8 of 19 ORACLE

Below script takes care of converting the modified MDL objects when there is a re-creation [objects with Create
or Replace command during creation] happens during patch-set

""" ~ /
&

07_Object_Conversion.sq|

Input sample for the script:

Spool Path << Any local path>>
Approot User (In Caps) HUBUSER (common user name)

When there are new tables introduced as part of patch-set which has to be converted into DL will be done
separately. The recommendation for the same will be provided as part of patch-set instructions for this case.

2.1.2.8 Recompilation of invalids
As the sharing property of most of the objects are modified other than NONE, recompilation of objects is not
allowed outside an application.

Recompilation of objects will be initiated inside the application upgrade for sanity with zero invalids with the

below script:
------ h‘u .’f

08_Invalids_Recompilation_Inside_Upgrade.sql

2.1.2.9 End Application upgrade

Application upgrade can be performed in the application root only and end of the upgrade is performed with an
ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE statement.

Run the below script for ending an application upgrade for patch-set.

09_End_Upgrade.sq|

And run the invalid script by connecting to the common user in approot outside the upgrade.

09_Invalids_Recompilation_Outside_Upgrade.sq|l

2.2 Synchronize application PDBs

2.2.1 Purpose

e Synchronizing an application updates the application in the application PDB to the latest version in the
application root. When an application is upgraded in an application root, an application PDB that belongs
to the application root is not changed until it is synchronized.

e Application PDBs synchronize with an application by running an ALTER PLUGGABLE
DATABASE statement with the SYNC clause.

Page 9 of 19 ORACLE

2.2.2 Steps to be followed

Prerequisites
» The current user must have ALTER PLUGGABLE DATABASE system privilege.
» Ensure that the current container is the application PDB.

» Runan ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC clause.

Run the below script to synchronize the PDBs with the latest application changes in the application root.

10_PDB_Sync.sql

Page 10 of 19 ORACLE

3. Step by Step Execution

3.1.1 Pre- Requisites

1) Before applying the patch-set, we have to make sure the release is updates with the base version of the patch-set.

For Example, If the first patch-set of 14.2 is yet to applied, the release has to be updated as *14.2.0.0.0’. It can be verified
with the below queries

select param name, param val from CSTB PARAM WHERE PARAM NAME = 'RELEASE';

select module group id, release from SMTB MODULES GROUP;

2) Another significant parameter is the values of application name and deployment type in CSTB_ PARAM.

This value will be updated from the installer during Approot Object Conversion utility as part of deployment.

select param name, param val from cstb param where PARAM NAME in
('MULTI TENANT APP NAME', 'MULTI TENANT DEPLOYMENT MODEL');

The Application name of multi-tenant deployment will be stored in CSTB_ PARAM as

Param Name Param Val

MULTI TENANT APP NAME FCUBS

The type of object conversion will be stored in CSTB PARAM as

Param Name Param Val

MULTI TENANT DEPLOYMENT MODEL [SA (or) SAUA (or) SASDD (or) SASDC

SA —> Shared Application

SAUA - Shared Application User Authentication
SASDD -> Shared Application Shared Data - Default
SASDC -> Shared Application Shared Data — Custom

3.1.2 Patch-set Application Step by Step with Screenshots

Step 1: Start Application upgrade
a. Login into the Approot Schema as Common user.
b. Run 01_Start_Upgrade.sql for initiating the application upgrade.

c. User input has to be inputted for the below:

Spool Path << Any local path>>

Application next version 14.2.0.0.1

d. Script will be executed as in the screen shot below and keep the SQL Plus session open for upcoming steps.

Execution Screenshot:

Page 11 of 19 ORACLE

apphclient'pribalac)

SQL> SPOOL ON
SQL> SET SQLBLANKLIMES ON

SQL> SET SERVEROUTPUT OM

SQL> SET ERRORLOGGING OM

SQL> SET ECHO ON

SQL> prompt Welcome to Application PDB Configuration

Wielcome to Application PDB Configuration

SQL> SPOOL "&SPOOL_PATH"

Enter value for spool_path: D:\FCUBS_14.3\Upgrade Patchset_Approach\Documents\Review\Attachment\AVAILS\81Spool.txt
SOL>

SQL> DECLARE

2 1_app_name VARCHAR2(128);
3 1_app_currver VARCHAR2(3@);

4 1_sgl VARCHARZ2(256) ;
5 BEGIN

6

7 BEGIN

8 SELECT app_name

9 INTO 1_app_name

10 FROM dba_applications

11 WHERE app_implicit <> ¥~

12 AND app_name = (SELECT param_val FROM cstb_param WHERE Param_name = "MULTI_TENANT_APP_MAME");
13 EXCEPTION

14 WHEN NO_DATA_FOUND THEN

15 dbms_outp
16 WHEN OTHERS THEN
17 dbms_output.put_line('Error others--->'||SQLERRM);
13 END;

19 SELECT MAX(app_version)

20 INTO 1_app_currver

21 FROM dba_app_versions

22 WHERE app_name = 1_app_name;

t.put_line(Error Nodata--->'||SQLERRM);

24 1_sql := 'ALTER PLUGGABLE DATABASE APPLICATION * 1_app_name||' BEGIN UPGRADE ''°|| 1_app_currver *'UT0 U] &P_APPLICATION_NEXTVER® ||*''";
25 dbms_output.put_line('1l_sql: ' 1_sqgl);

26 EXECUTE IMM E 1_5q1;

TER SYSTEM SET DEFAULT_SHARING = NONE';
put_line("1_sqgl: ° 1_Sqgl);
E 1_5ql;

EXCEPTION
WHEN OTHERS THEN

phclient\pribalac J e \sqlplus
_FOUND THEN

dbms_output.put_line(Error Modata--->"||SQLERRM);
16 WHEN OTHERS THEN
17 dbms_output.put_line('Error others--->'||SQLERRM);
18 END;
19 SELECT MAX(app_version)
20 INTO 1_app_currver
21 FROM dba_app_versions

WHERE app_name = 1_app_name;

1 5g1 := 'ALTER PLUGGABLE DATABASE APPLICATION
25 dbms_output.put_line('l_sql: * 1 sql);
EXECUTE IMMEDIATE 1_Sqgl;

1_app_name||' BEGIN UPGRADE ''' 1_app_currver rttTo "t '&P_APPLICATION_NEXTVER® R

1 5ql := "ALTER SYSTEM SET DEFAULT_SHARING = NONE';
29 dbms_o .put_line('1_sgl: * 1_5ql);
EL] EXECUTE IMMEDIATE 1_5gl;

EXCEPTION
WHEN OTHERS THEN
dbms_output.put_line('Error --->"||SQLERRM);
END;
Enter value for p_application_nextver: 14.2.8.8.2
hld 24: 1_sql LTER PLUGGABLE D SE APPLICATION * 1_app_name| | BEGIN UPGRADE ***|| 1_app_currver Tt TO || "&P_APPLICATTON_NEXTVER™ ||*"*°;
new 24: 1_5ql LTER PLUGGABLE D BASE APPLT ION * 1_app_name||® BEGIN UPGRADE "'° 1_app_currver ttTo "t ‘14.2.8.8.2° R
l_sqgl: ALTER PLUGGABLE DATABASE APPLICATION FCUBS BEGIN UPGRADE '14.2.0.8.1" TO '14.2.0.8.2°
l_sqgl: ALTER SYSTEM SET DEFAULT_SHARING = NONE

PL/SQL procedure successfully completed.

50L>

FQL> SET ERRORLOGGING OFF
5QL> SPOOL OFF
50L>

Step 2: Compiling Incremental Units

a. Make sure that the fcubs.properties and env.properties are updated with approot schema details.

b. Run the <Product Processor>DBCompileRun.bat from <Patchset>\INSTALLER\SOFT directory. DDL
Compilation, Object Compilation and Static Data load will be done.

Page 12 of 19 DRACLE-

For Example: ROFC INSTALLATION-

First load SMS objects first and then ROFC objects. i.e. Run SMSDBCompileRun.bat and after SMS object loading is
completed, then initiate ROFC compilation Run ROFCDBCompileRun.bat

Step 3: Recompilation of invalids
a. Login into the Approot Schema as Common user.
b. Run 03_Invalids_Recompilation.sql for recompiling the invalids during application upgrade.
c. No user input is required for this step.
d. Script will be executed as in the screen shot below and keep the SQL Plus session open for upcoming steps.

Execution Screenshot:

appiclient\pribalac product\12.0.0\client_T\bin\sqlplus.exe

' compile® invalido

DECLARE v

17 Cllappclient\pribalaciproduct\18.0.0\client_Tibirisglplus.exe %

Step 4: End Application upgrade

Page 13 of 19 ORACLE

a. Login into the Approot Schema as Common user.
b. Run 06_End_Upgrade.sql for recompiling the invalids during application upgrade.
c. No user input is required for this step.

d. Script will be executed as in the screen shot below.

Execution Screenshot:

pphclient\pribalaci product\12.00\client_T\bin\sqlplus.exe X
[i

EXCEPTION
WHEN

* END UPGRADE ';

Step 5: Start Application upgrade
a. Login into the Approot Schema as Common user.
b. Run 05_Start_Upgrade.sql for initiating the application upgrade.

c¢. User input has to be inputted for the below:

Spool Path << Any local path>>
Application next version 14.2.0.0.1

d. Script will be executed similar to step 1 above and keep the SQL Plus session open for upcoming steps.

Step 6: Application Root objects conversion for new objects
a. Login into the Approot Schema as Common user.

b. Run 06_New_Object_Conversion.sql for converting new approot objects added during patch-set as DL

c. User input has to be inputted for the below:

Spool Path << Any local path>>
Approot User (In Caps) HUBUSER (common user name)

d. Script will be executed as in the screen shot below and keep the SQL Plus session open for upcoming steps.

Execution Screenshot:

Page 14 of 19 ORACLE

C:\app\client\pribalac\product\12.0.0\client_1\bin\sqlplus.ex x
L> I Appli PDB Confi| i

Step7: Application Root objects conversion for existing objects

a. Login into the Approot Schema as Common user.
b. Run 07_Object_Conversion.sql for initiating the application upgrade.

c. User input has to be inputted for the below:

Spool Path << Any local path>>

Approot User (In Caps) HUBUSER (common user name)

d. Script will be executed as in the screen shot below and keep the SQL Plus session open for upcoming steps.

Execution Screenshot:

Page 15 of 19 ORACLE

7 Chapphclient\pribalac product\1.0.0\client_T\bin\sqlplus.exe X

BEGIN

Step8: Recompilation of invalids

a. Login into the Approot Schema as Common user.
b. Run 08_Invalids_Recompilation.sql for recompiling the invalids during application upgrade.
c. No user input is required for this step.

d. Script will be executed as in the screen shot below and keep the SQL Plus session open for upcoming steps.

Page 16 of 19 ORACLE

Execution Screenshot:

C\apphclient\pribalac producti12.0.0\client_T\bin\sqlplus.exe

BEGIN
4

DECLARE

C\app\client\pribalac\product\12.0.0\clint_T\bin\sqlplus.exe

Step 9: End Application upgrade

a. Login into the Approot Schema as Common user.
b. Run 06_End_Upgrade.sql for recompiling the invalids during application upgrade.
c¢. No user input is required for this step.

d. Script will be executed as that of step 4.

Page 17 of 19 DRACLE-

Step 10: Synchronize application PDBs
a. Login into the PDB Schema as Common user. For each PDB, this steps has to be done individually

b. Run 07_PDB_Synec.sql for synching the application upgrade with PDBs.
¢. No user input is required for this step.
d. Script will be executed as in the screen shot below.

Execution Screenshot:

B Chapp\client'pribalactproduct\18.0.0\client_1\bin\sglplus.exe

DECLARE

BEGIN

ION
WHEN NO HEN

WHEN OT

THEN
put_line('Error --->"||SQLERRM);

ORACLE

Page 18 of 19

ORACLE

Multi-Tenant Patch-set Deployment
[November] [2021]
Version 14.5.3.0.0

Oracle Financial Services Software Limited
Oracle Park

Off Western Express Highway

Goregaon (East)ss

Mumbai, Maharashtra 400 063

India

‘Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax:+91 22 6718 3001
https://www.oracle.com/industries/financial-services/index.html

Copyright © 2007, 2021, Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures to
ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

Page 19 of 19 ORACLE

https://www.oracle.com/industries/financial-services/index.html

	Table of Contents
	1. Overview of Applications in an Application Container
	1.1 Managing Applications in an Application Container
	1.2 Application Maintenance
	1.2.1 Application Installation
	1.2.2 Application Upgrade

	2. Patch-set Application Steps
	2.1 Application Upgrade
	2.1.1 Purpose
	2.1.2 Steps to be followed
	2.1.2.1 Start Application upgrade
	2.1.2.2 Compiling Incremental Units
	2.1.2.3 Recompilation of invalids
	2.1.2.4 End Application upgrade
	2.1.2.5 Start Application upgrade
	2.1.2.6 Application Root objects conversion for new objects
	2.1.2.7 Application Root objects conversion for existing objects
	Various Sharing types of objects during installation:

	2.1.2.8 Recompilation of invalids
	2.1.2.9 End Application upgrade

	2.2 Synchronize application PDBs
	2.2.1 Purpose
	2.2.2 Steps to be followed

	3. Step by Step Execution
	3.1.1 Pre- Requisites
	3.1.2 Patch-set Application Step by Step with Screenshots

SET VERIFY ON

SET HEAD ON

SET FEEDBACK 1

SET ARRAY 1

SET LINESIZE 10000

SET PAGESIZE 50000

SET LONG 10000

SET ECHO ON

SET TRIMSPOOL ON

SET COLSEP ';'

SET SERVEROUT OFF

clear screen

SPOOL ON

SET SQLBLANKLINES ON

SET SERVEROUTPUT ON

SET ERRORLOGGING ON

SET ECHO ON

prompt Welcome to Application Upgrade initiation

SPOOL "&SPOOL_PATH"

DECLARE

 l_app_name VARCHAR2(128);

 l_app_currver VARCHAR2(30);

 l_Sql VARCHAR2(256);

BEGIN

 BEGIN

 SELECT app_name

 INTO l_app_name

 FROM dba_applications

 WHERE app_implicit <> 'Y'

 AND app_name = (SELECT param_val FROM cstb_param WHERE Param_name = 'MULTI_TENANT_APP_NAME');

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 dbms_output.put_line('Error1 Nodata--->'||SQLERRM);

 WHEN OTHERS THEN

 dbms_output.put_line('Error1 others--->'||SQLERRM);

 END;

 BEGIN

 SELECT MAX(app_version)

 INTO l_app_currver

 FROM dba_app_versions

 WHERE app_name = l_app_name;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 dbms_output.put_line('Error2 Nodata--->'||SQLERRM);

 WHEN OTHERS THEN

 dbms_output.put_line('Error2 others--->'||SQLERRM);

 END;

 l_Sql := 'ALTER PLUGGABLE DATABASE APPLICATION ' || l_app_name||' BEGIN UPGRADE '''|| l_app_currver || ''' TO '''|| '&P_APPLICATION_NEXTVER' ||'''';

 dbms_output.put_line('l_sql: ' || l_Sql);

 EXECUTE IMMEDIATE l_Sql;

 l_Sql := 'ALTER SYSTEM SET DEFAULT_SHARING = NONE';

 dbms_output.put_line('l_sql: ' || l_Sql);

 EXECUTE IMMEDIATE l_Sql;

EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('Error --->'||SQLERRM);

END;

/

SET ERRORLOGGING OFF

SPOOL OFF

/* Script for Shared Application + Shared Data */

SET VERIFY ON

SET HEAD ON

SET FEEDBACK 1

SET ARRAY 1

SET LINESIZE 10000

SET PAGESIZE 50000

SET LONG 10000

SET ECHO ON

SET TRIMSPOOL ON

SET COLSEP ';'

SET SERVEROUT OFF

clear screen

SPOOL ON

SET SQLBLANKLINES ON

SET SERVEROUTPUT ON

SET ERRORLOGGING ON

SET ECHO ON

prompt Welcome to Application Upgrade Invalids Recompilation

SPOOL "&SPOOL_PATH"

DECLARE

 inval_cnt NUMBER := 0;

 l_object_name VARCHAR2(240);

BEGIN

 WHILE inval_cnt < 3 LOOP

 --SCRIPT

 FOR J IN (Select 'alter ' || object_type || ' ' || object_name ||' compile' invalidobject1,

 object_name

 FROM user_objects

 WHERE status = 'INVALID'

 AND created_appid IS NOT NULL

 AND object_type IN ('VIEW','SYNONYM','PROCEDURE','FUNCTION','PACKAGE','TRIGGER'))

 LOOP

 BEGIN

 l_object_name := j.object_name;

 dbms_output.put_line(chr(10));

 EXECUTE IMMEDIATE J.invalidobject1;

 EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('failed for -->' || l_object_name);

 END;

 END LOOP;

 inval_cnt := inval_cnt + 1;

 END LOOP;

EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('FAILED FOR -->' || l_object_name);

END;

/

DECLARE

 inval_cnt1 NUMBER := 0;

 l_object_name VARCHAR2(240);

BEGIN

 WHILE inval_cnt1 < 3 LOOP

 --SCRIPT

 FOR k IN (Select 'alter package '|| object_name||' compile body' invalidobject2,

 object_name

 FROM user_objects

 WHERE status = 'INVALID'

 AND created_appid IS NOT NULL

 AND object_type IN ('PACKAGE BODY'))

 LOOP

 BEGIN

 l_object_name := k.object_name;

 dbms_output.put_line(chr(10));

 EXECUTE IMMEDIATE k.invalidobject2;

 EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('FAILED FOR -->' || l_object_name);

 END;

 END LOOP;

 inval_cnt1 := inval_cnt1 + 1;

 END LOOP;

EXCEPTION

WHEN OTHERS THEN

 dbms_output.put_line('FAILED FOR -->' || l_object_name);

END;

/

select count(*) From user_objects Where status = 'INVALID';

SET ERRORLOGGING OFF

SPOOL OFF

/* Pre-requisites: Step 3 on Application associated pdb creation is completed */

SET VERIFY ON

SET HEAD ON

SET FEEDBACK 1

SET ARRAY 1

SET LINESIZE 10000

SET PAGESIZE 50000

SET LONG 10000

SET ECHO ON

SET TRIMSPOOL ON

SET COLSEP ';'

SET SERVEROUT OFF

clear screen

SPOOL ON

SET SQLBLANKLINES ON

SET SERVEROUTPUT ON

SET ERRORLOGGING ON

SET ECHO ON

prompt Welcome to Application end Upgrade

SPOOL "&SPOOL_PATH"

DECLARE

 l_app_name VARCHAR2(128);

 l_sql VARCHAR2(256);

BEGIN

 BEGIN

 SELECT app_name

 INTO l_app_name

 FROM dba_applications

 WHERE app_implicit <> 'Y'

 AND app_name = (SELECT param_val FROM cstb_param WHERE param_name = 'MULTI_TENANT_APP_NAME');

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 dbms_output.put_line('Error1 Nodata--->'||SQLERRM);

 WHEN OTHERS THEN

 dbms_output.put_line('Error1 others--->'||SQLERRM);

 END;

 l_sql := 'ALTER PLUGGABLE DATABASE APPLICATION ' || l_app_name||' END UPGRADE ';

 dbms_output.put_line('l_sql: ' || l_sql);

 EXECUTE IMMEDIATE l_sql;

EXCEPTION

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('Error --->'||SQLERRM);

END;

/

SET ERRORLOGGING OFF

SPOOL OFF

SET VERIFY ON

SET HEAD ON

SET FEEDBACK 1

SET ARRAY 1

SET LINESIZE 10000

SET PAGESIZE 50000

SET LONG 10000

SET ECHO ON

SET TRIMSPOOL ON

SET COLSEP ';'

SET SERVEROUT OFF

clear screen

SPOOL ON

SET SQLBLANKLINES ON

SET SERVEROUTPUT ON

SET ERRORLOGGING ON

SET ECHO ON

prompt Welcome to Application Upgrade initiation

SPOOL "&SPOOL_PATH"

DECLARE

 l_app_name VARCHAR2(128);

 l_app_currver VARCHAR2(30);

 l_Sql VARCHAR2(256);

BEGIN

 BEGIN

 SELECT app_name

 INTO l_app_name

 FROM dba_applications

 WHERE app_implicit <> 'Y'

 AND app_name = (SELECT param_val FROM cstb_param WHERE Param_name = 'MULTI_TENANT_APP_NAME');

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 dbms_output.put_line('Error1 Nodata--->'||SQLERRM);

 WHEN OTHERS THEN

 dbms_output.put_line('Error1 others--->'||SQLERRM);

 END;

 BEGIN

 SELECT MAX(app_version)

 INTO l_app_currver

 FROM dba_app_versions

 WHERE app_name = l_app_name;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 dbms_output.put_line('Error2 Nodata--->'||SQLERRM);

 WHEN OTHERS THEN

 dbms_output.put_line('Error2 others--->'||SQLERRM);

 END;

 l_Sql := 'ALTER PLUGGABLE DATABASE APPLICATION ' || l_app_name||' BEGIN UPGRADE '''|| l_app_currver || ''' TO '''|| '&P_APPLICATION_NEXTVER' ||'''';

 dbms_output.put_line('l_sql: ' || l_Sql);

 EXECUTE IMMEDIATE l_Sql;

 l_Sql := 'ALTER SYSTEM SET DEFAULT_SHARING = NONE';

 dbms_output.put_line('l_sql: ' || l_Sql);

 EXECUTE IMMEDIATE l_Sql;

EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('Error --->'||SQLERRM);

END;

/

SET ERRORLOGGING OFF

SPOOL OFF

/* Script for Shared Object Conversion for patch-set */

SET VERIFY ON

SET HEAD ON

SET FEEDBACK 1

SET ARRAY 1

SET LINESIZE 10000

SET PAGESIZE 50000

SET LONG 10000

SET ECHO ON

SET TRIMSPOOL ON

SET COLSEP ';'

SET SERVEROUT OFF

clear screen

SPOOL ON

SET SQLBLANKLINES ON

SET SERVEROUTPUT ON

SET ERRORLOGGING ON

SET ECHO ON

prompt Welcome to Upgrade New object Conversion

SPOOL "&SPOOL_PATH"

DECLARE

 l_count NUMBER;

 l_app_deployment VARCHAR2(30);

BEGIN

 SELECT count(*)

	 INTO l_count

	 FROM user_objects

	 WHERE sharing = 'NONE' --to get the new set of DL approot objects if any

	 AND object_name IN

		 (SELECT DISTINCT a.object_name

			 FROM cstm_approot_objects a

			 WHERE sharing = 'DL'

			 AND UPPER(object_type) = 'TABLE'

			 AND EXISTS (SELECT 1

					 FROM user_objects b

					 WHERE b.object_name = a.object_name)

			 AND EXISTS (SELECT 1

					 FROM cstm_approot_functions_menu c

					 WHERE c.function_id = a.function_id

					 AND c.modifiable IN ('Y', 'S')));

 dbms_output.put_line('l_count: ' || l_count);

	

 IF l_count > 0 THEN

 dbms_output.put_line('New DL objects are available');

 SELECT param_val

		 INTO l_app_deployment

		 FROM cstb_param

		 WHERE param_name = 'MULTI_TENANT_DEPLOYMENT_MODEL';

 dbms_output.put_line('l_app_deployment: '||l_app_deployment);

 IF l_app_deployment IS NOT NULL AND l_app_deployment = 'SAUA' THEN

 UPDATE smtb_menu menu

 SET menu.approot_flg = 'Y'

 WHERE menu.function_id IN

 (SELECT function_id

 FROM cstm_approot_functions_menu

 WHERE modifiable = 'S'

 UNION

 SELECT summary_fn_id

 FROM cstm_approot_functions_menu

 WHERE modifiable = 'S'

 AND summary_fn_id IS NOT NULL) --SMS function id 'S'

 AND menu.approot_flg <> 'Y'; --excluding the already modified approot function ids in menu.

 ELSIF l_app_deployment IS NOT NULL AND l_app_deployment = 'SASDD' THEN

 UPDATE smtb_menu menu

 SET menu.approot_flg = 'Y'

 WHERE menu.function_id IN

 (SELECT function_id

 FROM cstm_approot_functions_menu

 UNION

 SELECT summary_fn_id

 FROM cstm_approot_functions_menu

 WHERE summary_fn_id IS NOT NULL)

 AND menu.approot_flg <> 'Y'; --excluding the already modified approot function ids in menu.

 ELSIF l_app_deployment IS NOT NULL AND l_app_deployment = 'SASDC' THEN

		/*Assumption new table cstm_approot_menu_custom_movedtopdb will be available

 and is populated with the function ids which are moved to PDB as part of custom deployment

 It has 2 columns FUNCTION_ID and SUMMARY_FN_ID*/

 UPDATE smtb_menu menu

 SET menu.approot_flg = 'Y'

 WHERE menu.function_id IN

 (SELECT function_id

 FROM cstm_approot_functions_menu

 UNION

 SELECT summary_fn_id

 FROM cstm_approot_functions_menu

 WHERE summary_fn_id IS NOT NULL)

 AND menu.function_id NOT IN --excluding the function ids moved to PDB already.

 (SELECT function_id

 FROM cstm_approot_menu_movedtopdb

 UNION

 SELECT summary_fn_id

 FROM cstm_approot_menu_movedtopdb

 WHERE summary_fn_id IS NOT NULL)

 AND menu.approot_flg <> 'Y'; --excluding the already modified approot function ids in menu.

 END IF;

 BEGIN

			FOR I IN (SELECT 'BEGIN ' || chr(10) ||

						 'DBMS_PDB.SET_DATA_LINKED(''&P_APPROOT_USER''' || ',''' ||

						 Object_Name || ''',' || Namespace || '); ' || chr(10) ||

						 'EXCEPTION ' || chr(10) ||

						 'WHEN OTHERS THEN ' || chr(10) ||

						 'DBMS_OUTPUT.PUT_LINE(''ERROR ->''|| SQLERRM); ' ||

						 chr(10) || 'END;' sqlobject

					 FROM user_objects

					 WHERE sharing = 'NONE' --to get the new set of DL approot objects if any

					 AND object_name IN

						 (SELECT DISTINCT a.object_name

							 FROM cstm_approot_objects a

							 WHERE sharing = 'DL'

							 AND UPPER(object_type) = 'TABLE'

							 AND EXISTS (SELECT 1

									 FROM user_objects b

									 WHERE b.object_name = a.object_name)

							 AND EXISTS

							 (SELECT 1

									 FROM cstm_approot_functions_menu c

									 WHERE c.function_id = a.function_id

									 AND c.modifiable IN ('Y', 'S')))) LOOP

				DBMS_OUTPUT.PUT_LINE(chr(10));

				EXECUTE IMMEDIATE I.sqlobject;

				DBMS_OUTPUT.PUT_LINE(I.sqlobject);

			END LOOP;

		EXCEPTION

			WHEN OTHERS THEN

				DBMS_OUTPUT.PUT_LINE('Error --->' || SQLERRM);

		END;

 ELSE

 dbms_output.put_line('No new DL objects available');

 END IF;

EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('Error --->'||SQLERRM);

END;

/

SET ERRORLOGGING OFF

SPOOL OFF

SET VERIFY ON

SET HEAD ON

SET FEEDBACK 1

SET ARRAY 1

SET LINESIZE 10000

SET PAGESIZE 50000

SET LONG 10000

SET ECHO ON

SET TRIMSPOOL ON

SET COLSEP ';'

SET SERVEROUT OFF

clear screen

SPOOL ON

SET SQLBLANKLINES ON

SET SERVEROUTPUT ON

SET ERRORLOGGING ON

SET ECHO ON

prompt Welcome to Upgrade object conversion

SPOOL "&SPOOL_PATH"

BEGIN

	FOR I IN (SELECT 'BEGIN ' || chr(10) ||

					 'DBMS_PDB.SET_METADATA_LINKED(''&P_APPROOT_USER''' || ',''' ||

					 Object_Name || ''',' || Namespace || '); ' || chr(10) ||

					 'EXCEPTION ' || chr(10) || 'WHEN OTHERS then ' || chr(10) ||

					 'DBMS_OUTPUT.PUT_LINE(''ERROR ->''|| SQLERRM); ' ||

					 chr(10) || 'END;' sqlobject

				 FROM user_objects

				 WHERE sharing = 'NONE'

 AND object_type NOT IN ('INDEX', 'LOB', 'TABLE PARTITION','SEQUENCE','JOB','MATERIALIZED VIEW','MATERIALIZED VIEW LOG')

				 AND application = 'Y'

 AND (object_name,object_type) NOT IN (SELECT object_name,object_type

 FROM cstm_approot_objects

 WHERE function_id = 'DYNAMIC'

 AND sharing = 'NONE'															

)				

) LOOP

		dbms_output.put_line(chr(10));

		EXECUTE IMMEDIATE I.sqlobject;

		dbms_output.put_line(I.sqlobject);

	END LOOP;

EXCEPTION

WHEN OTHERS THEN

 dbms_output.put_line('Error --->'||SQLERRM);

END;

/

SET ERRORLOGGING OFF

SPOOL OFF

/* Script for Shared Application + Shared Data */

SET VERIFY ON

SET HEAD ON

SET FEEDBACK 1

SET ARRAY 1

SET LINESIZE 10000

SET PAGESIZE 50000

SET LONG 10000

SET ECHO ON

SET TRIMSPOOL ON

SET COLSEP ';'

SET SERVEROUT OFF

clear screen

SPOOL ON

SET SQLBLANKLINES ON

SET SERVEROUTPUT ON

SET ERRORLOGGING ON

SET ECHO ON

prompt Welcome to Application Upgrade Invalids Recompilation

SPOOL "&SPOOL_PATH"

DECLARE

 inval_cnt NUMBER := 0;

 l_object_name VARCHAR2(240);

BEGIN

 WHILE inval_cnt < 3 LOOP

 --SCRIPT

 FOR J IN (Select 'alter ' || object_type || ' ' || object_name ||' compile' invalidobject1,

 object_name

 FROM user_objects

 WHERE status = 'INVALID'

 AND created_appid IS NOT NULL

 AND object_type IN ('VIEW','SYNONYM','PROCEDURE','FUNCTION','PACKAGE','TRIGGER'))

 LOOP

 BEGIN

 l_object_name := j.object_name;

 dbms_output.put_line(chr(10));

 EXECUTE IMMEDIATE J.invalidobject1;

 EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('failed for -->' || l_object_name);

 END;

 END LOOP;

 inval_cnt := inval_cnt + 1;

 END LOOP;

EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('FAILED FOR -->' || l_object_name);

END;

/

DECLARE

 inval_cnt1 NUMBER := 0;

 l_object_name VARCHAR2(240);

BEGIN

 WHILE inval_cnt1 < 3 LOOP

 --SCRIPT

 FOR k IN (Select 'alter package '|| object_name||' compile body' invalidobject2,

 object_name

 FROM user_objects

 WHERE status = 'INVALID'

 AND created_appid IS NOT NULL

 AND object_type IN ('PACKAGE BODY'))

 LOOP

 BEGIN

 l_object_name := k.object_name;

 dbms_output.put_line(chr(10));

 EXECUTE IMMEDIATE k.invalidobject2;

 EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('FAILED FOR -->' || l_object_name);

 END;

 END LOOP;

 inval_cnt1 := inval_cnt1 + 1;

 END LOOP;

EXCEPTION

WHEN OTHERS THEN

 dbms_output.put_line('FAILED FOR -->' || l_object_name);

END;

/

select count(*) From user_objects Where status = 'INVALID';

SET ERRORLOGGING OFF

SPOOL OFF

/* Pre-requisites: Step 3 on Application associated pdb creation is completed */

SET VERIFY ON

SET HEAD ON

SET FEEDBACK 1

SET ARRAY 1

SET LINESIZE 10000

SET PAGESIZE 50000

SET LONG 10000

SET ECHO ON

SET TRIMSPOOL ON

SET COLSEP ';'

SET SERVEROUT OFF

clear screen

SPOOL ON

SET SQLBLANKLINES ON

SET SERVEROUTPUT ON

SET ERRORLOGGING ON

SET ECHO ON

prompt Welcome to Application end Upgrade

SPOOL "&SPOOL_PATH"

DECLARE

 l_app_name VARCHAR2(128);

 l_sql VARCHAR2(256);

BEGIN

 BEGIN

 SELECT app_name

 INTO l_app_name

 FROM dba_applications

 WHERE app_implicit <> 'Y'

 AND app_name = (SELECT param_val FROM cstb_param WHERE param_name = 'MULTI_TENANT_APP_NAME');

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 dbms_output.put_line('Error1 Nodata--->'||SQLERRM);

 WHEN OTHERS THEN

 dbms_output.put_line('Error1 others--->'||SQLERRM);

 END;

 l_sql := 'ALTER PLUGGABLE DATABASE APPLICATION ' || l_app_name||' END UPGRADE ';

 dbms_output.put_line('l_sql: ' || l_sql);

 EXECUTE IMMEDIATE l_sql;

EXCEPTION

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('Error --->'||SQLERRM);

END;

/

SET ERRORLOGGING OFF

SPOOL OFF

/* Script for Shared Application + Shared Data */

SET VERIFY ON

SET HEAD ON

SET FEEDBACK 1

SET ARRAY 1

SET LINESIZE 10000

SET PAGESIZE 50000

SET LONG 10000

SET ECHO ON

SET TRIMSPOOL ON

SET COLSEP ';'

SET SERVEROUT OFF

clear screen

SPOOL ON

SET SQLBLANKLINES ON

SET SERVEROUTPUT ON

SET ERRORLOGGING ON

SET ECHO ON

prompt Welcome to Application Upgrade Invalids Recompilation

SPOOL "&SPOOL_PATH"

DECLARE

 inval_cnt NUMBER := 0;

 l_object_name VARCHAR2(240);

BEGIN

 WHILE inval_cnt < 3 LOOP

 --SCRIPT

 FOR J IN (Select 'alter ' || object_type || ' ' || object_name ||' compile' invalidobject1,

 object_name

 FROM user_objects

 WHERE status = 'INVALID'

 AND created_appid IS NULL

 AND object_type IN ('VIEW','SYNONYM','PROCEDURE','FUNCTION','PACKAGE','TRIGGER'))

 LOOP

 BEGIN

 l_object_name := j.object_name;

 dbms_output.put_line(chr(10));

 EXECUTE IMMEDIATE J.invalidobject1;

 EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('failed for -->' || l_object_name);

 END;

 END LOOP;

 inval_cnt := inval_cnt + 1;

 END LOOP;

EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('FAILED FOR -->' || l_object_name);

END;

/

DECLARE

 inval_cnt1 NUMBER := 0;

 l_object_name VARCHAR2(240);

BEGIN

 WHILE inval_cnt1 < 3 LOOP

 --SCRIPT

 FOR k IN (Select 'alter package '|| object_name||' compile body' invalidobject2,

 object_name

 FROM user_objects

 WHERE status = 'INVALID'

 AND created_appid IS NULL

 AND object_type IN ('PACKAGE BODY'))

 LOOP

 BEGIN

 l_object_name := k.object_name;

 dbms_output.put_line(chr(10));

 EXECUTE IMMEDIATE k.invalidobject2;

 EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('FAILED FOR -->' || l_object_name);

 END;

 END LOOP;

 inval_cnt1 := inval_cnt1 + 1;

 END LOOP;

EXCEPTION

WHEN OTHERS THEN

 dbms_output.put_line('FAILED FOR -->' || l_object_name);

END;

/

select count(*) From user_objects Where status = 'INVALID';

SET ERRORLOGGING OFF

SPOOL OFF

SET VERIFY ON

SET HEAD ON

SET FEEDBACK 1

SET ARRAY 1

SET LINESIZE 10000

SET PAGESIZE 50000

SET LONG 10000

SET ECHO ON

SET TRIMSPOOL ON

SET COLSEP ';'

SET SERVEROUT OFF

clear screen

SPOOL ON

SET SQLBLANKLINES ON

SET SERVEROUTPUT ON

SET ERRORLOGGING ON

SET ECHO ON

prompt Welcome to Application PDB Sync

SPOOL "&SPOOL_PATH"

DECLARE

 l_app_name VARCHAR2(128);

 l_sql VARCHAR2(256);

BEGIN

 BEGIN

 SELECT app_name

 INTO l_app_name

 FROM dba_applications

 WHERE app_implicit <> 'Y';

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 dbms_output.put_line('Error1 Nodata--->'||SQLERRM);

 WHEN OTHERS THEN

 dbms_output.put_line('Error1 others--->'||SQLERRM);

 END;

 l_sql := 'ALTER PLUGGABLE DATABASE APPLICATION ' || l_app_name||' SYNC ';

 dbms_output.put_line('l_sql: ' || l_sql);

 EXECUTE IMMEDIATE l_sql;

EXCEPTION

WHEN OTHERS THEN

 dbms_output.put_line('Error --->'||SQLERRM);

END;

/

SET ERRORLOGGING OFF

SPOOL OFF

/* Script for Shared Application + Shared Data */

SET VERIFY ON

SET HEAD ON

SET FEEDBACK 1

SET ARRAY 1

SET LINESIZE 10000

SET PAGESIZE 50000

SET LONG 10000

SET ECHO ON

SET TRIMSPOOL ON

SET COLSEP ';'

SET SERVEROUT OFF

clear screen

SPOOL ON

SET SQLBLANKLINES ON

SET SERVEROUTPUT ON

SET ERRORLOGGING ON

SET ECHO ON

prompt Welcome to Application Upgrade Invalids Recompilation

SPOOL "&SPOOL_PATH"

DECLARE

 inval_cnt NUMBER := 0;

 l_object_name VARCHAR2(240);

BEGIN

 WHILE inval_cnt < 3 LOOP

 --SCRIPT

 FOR J IN (Select 'alter ' || object_type || ' ' || object_name ||' compile' invalidobject1,

 object_name

 FROM user_objects

 WHERE status = 'INVALID'

 AND created_appid IS NULL

 AND object_type IN ('VIEW','SYNONYM','PROCEDURE','FUNCTION','PACKAGE','TRIGGER'))

 LOOP

 BEGIN

 l_object_name := j.object_name;

 dbms_output.put_line(chr(10));

 EXECUTE IMMEDIATE J.invalidobject1;

 EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('failed for -->' || l_object_name);

 END;

 END LOOP;

 inval_cnt := inval_cnt + 1;

 END LOOP;

EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('FAILED FOR -->' || l_object_name);

END;

/

DECLARE

 inval_cnt1 NUMBER := 0;

 l_object_name VARCHAR2(240);

BEGIN

 WHILE inval_cnt1 < 3 LOOP

 --SCRIPT

 FOR k IN (Select 'alter package '|| object_name||' compile body' invalidobject2,

 object_name

 FROM user_objects

 WHERE status = 'INVALID'

 AND created_appid IS NULL

 AND object_type IN ('PACKAGE BODY'))

 LOOP

 BEGIN

 l_object_name := k.object_name;

 dbms_output.put_line(chr(10));

 EXECUTE IMMEDIATE k.invalidobject2;

 EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('FAILED FOR -->' || l_object_name);

 END;

 END LOOP;

 inval_cnt1 := inval_cnt1 + 1;

 END LOOP;

EXCEPTION

WHEN OTHERS THEN

 dbms_output.put_line('FAILED FOR -->' || l_object_name);

END;

/

select count(*) From user_objects Where status = 'INVALID';

SET ERRORLOGGING OFF

SPOOL OFF

