

Oracle Banking Microservices Platform
Foundation Installation Guide

Oracle Banking Corporate Lending
Process Management
Release 14.5.3.0.0

Part Number F50902-01

November 2021

Table of Contents
1. PREFACE .. 1-1

1.1 INTRODUCTION ... 1-1
1.2 AUDIENCE ... 1-1
1.3 DOCUMENTATION ACCESSIBILITY .. 1-1
1.4 ORGANIZATION ... 1-1

2. DATABASE SETUP .. 2-1
2.1 INTRODUCTION ... 2-1
2.2 PRE-REQUISITE ... 2-1

3. DOMAIN AND CLUSTER CONFIGURATION ... 3-1
3.1 ORACLE BANKING MICROSERVICES ARCHITECTURE DOMAIN CONFIGURATION 3-1

3.1.1 Prerequisites ... 3-1
3.1.2 Domain Creation and Configuration .. 3-1

4. DATA SOURCES CREATION .. 4-1
4.1 PREREQUISITE ... 4-1
4.2 DATA SOURCES LIST ... 4-1

5. SECURITY CONFIGURATION AND TOOLS INSTALLATION ... 5-1
5.1 PRE-REQUISITE ... 5-1
5.2 PLATO SECURITY JWT.. 5-1
5.3 PLATO SECURITY CONFIGURATION (ONLINE WEB APPLICATION AUTHENTICATION) 5-1
5.4 USER STORE ... 5-2

6. DEPLOYMENTS .. 6-1
6.1 PRE-REQUISITE ... 6-1
6.2 DEPLOYMENT ORDER ... 6-1

7. MULTI ENTITY CONFIGURATION .. 7-1
7.1 ENABLE MULTI ENTITY .. 7-1
7.2 DEFAULT ENTITY CREATION .. 7-1
7.3 MULTI ENTITY ADMIN USER CREATION ... 7-1
7.4 ENTITY CREATION .. 7-2
7.5 USER CREATION ... 7-2

8. PLATO ORCHESTRATION SERVICES .. 8-1
8.1 MIGRATION ENDPOINT ... 8-1

9. PLATO FEED SERVICES ... 9-1

10. ORACLE BANKING MICROSERVICES ARCHITECTURE SOFTWARE DEPLOYMENT 10-2
10.1 ZOOKEEPER CLUSTER SETUP .. 10-2

10.1.1 Pre-requisite ... 10-2
10.1.2 Installation ... 10-2

10.2 KAFKA CLUSTER SETUP .. 10-3
10.2.1 Pre-requisite ... 10-3
10.2.2 Installation ... 10-3

10.3 KAFKA SECURITY SETUP .. 10-5
10.3.1 Pre-requisite ... 10-5
10.3.2 Installation ... 10-5

10.4 TESSERACT INSTALLATION ... 10-11
10.4.1 Pre-requisite ... 10-11

10.4.2 Installation ... 10-12
10.5 CONDUCTOR INSTALLATION ... 10-15

10.5.1 Pre-requisite ... 10-15
10.5.2 Installation ... 10-15

10.6 REPORT SERVICE INSTALLATION .. 10-17
10.6.1 Pre-requisite ... 10-17
10.6.2 Installation ... 10-17

11. SECURITY- SSL ENCRYPTION WITH SASL-SCRAM AUTHENTICATION 11-1
11.1 GENERATE KEYSTORE .. 11-1
11.2 EXPORT PRIVATE KEY AS CERTIFICATE .. 11-3
11.3 IMPORT THE CERT AND GENERATE TRUSTSTORE .. 11-3
11.4 CREATION OF USERS IN ZOOKEEPER ... 11-4

12. ORACLE BANKING MICROSERVICES ARCHITECTURE DEPLOYMENTS 12-1
12.1 PRE-REQUISITE ... 12-1
12.2 ORACLE BANKING MICROSERVICES ARCHITECTURE APPLICATIONS DEPLOYMENT ORDER 12-1
12.3 STEPS TO DEPLOY AS APPLICATION .. 12-2
12.4 SSL CONFIGURATION ... 12-2

13. RESTARTS AND REFRESH ... 13-1
13.1 RESTARTING SERVERS .. 13-1

14. LOGGING AREA ... 14-1
14.1 INTRODUCTION ... 14-1
14.2 LOGGING AREA... 14-1

15. KNOWN ISSUES – RESOLUTIONS .. 15-1

 1-1

1. Preface
1.1 Introduction

This guide helps you to install the Oracle Banking Microservices Architecture services on
designated environment. It is assumed that all the prior setup is already done related with
WebLogic installation, WebLogic managed server creation and Oracle DB installation.
Note: For the exact version to be installed, refer to Tech Stack section of Release Notes.

It is recommended to use dedicated managed server for each of the Oracle Banking
Microservices Architecture services.

1.2 Audience
This document is intended for WebLogic admin or ops-web team who are responsible for
installing the OFSS banking products.

1.3 Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

1.4 Organization
This installation user guide would allow you to install following services in same order:

• WebLogic system environment settings

• Plato Config Service

• Plato Discovery Service

• Plato API Gateway Service

• Plato UI Config Service

• Plato O (Conductor)

• Plato Orch Service

• Plato Feed Services

• Plato Batch Server

• Plato Alerts Management Services

• Security configuration and tool installation

• Plato Rules

• Plato Reports Services

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

 2-1

2. Database Setup
2.1 Introduction

In this section you are going to setup database related configuration for Oracle Banking
Microservices Architecture Installation. Before you proceed ensure pre-installation setup is done.

2.2 Pre-requisite
Before you proceed with the document, ensure Schemas are being created. It is recommended to
have different schema for Plato and Plato Security. To configure Plato security, refer Security
Configuration chapter. Make sure that the schema user has the below rights:

 OPERATION

DB
OBJECT

CREATE ALTER DROP INSERT UPDATE DELETE

TABLE Y Y N Y Y Y

VIEW NA NA NA NA NA NA

SEQUENCE Y Y Y NA NA NA

PACKAGE NA NA NA NA NA NA

PACKAGE
BODY

NA NA NA NA NA NA

INDEX Y Y Y NA NA NA

SYNONYM NA NA NA NA NA NA

FUNCTION NA NA NA NA NA NA

TRIGGER NA NA NA NA NA NA

TYPE NA NA NA NA NA NA

To know the server port number, refer to How to check port number section in ANNEXURE-1.

Ensure to configure Placeholder parameters in Weblogic server for Plato Config service,
setDomain.env. To know more, refer to Place Holder update for Plato-Config-Services section
in ANNEXURE-1.

 3-1

3. Domain and Cluster Configuration
3.1 Oracle Banking Microservices Architecture Domain

Configuration
3.1.1 Prerequisites

• Machine should have Java has installed.

• Oracle Fusion Middleware has to be installed on the machine.

NOTE: For the exact version to be installed, refer to Software Pre-requisites section in License
Guide.

3.1.2 Domain Creation and Configuration
It is recommended to have different managed server in one domain for each application. For
Creating Domain and Configuration, refer to How to create and Cluster Configuration in
ANNEXURE-1.

 4-1

4. Data Sources Creation
4.1 Prerequisite

Before you proceed with Data source creation, make sure Domain and cluster configuration steps
completed.

4.2 Data sources List
The table below lists the data sources to be created on each managed server prior to deployment
of applications onto managed servers.

Data source
Name

Data source JNDI Targets

PLATO jdbc/PLATO Config Server, API Gateway
Server, Plato Feed Server, Plato-
Alerts-Management-Server,Plato-
Batch-Server, Appshell Server

PLATOSEC jdbc/PLATO_SECURITY Config Server, API Gateway Server

PLATO_UI jdbc/PLATO_UI_CONFIG Plato UI Config Server, Appshell
Server

CONDUCTOR jdbc/PLATO-O Plato-O, Plato Orch Server

PLATOFEED According to the JNDI created for
each entity, for DEFAULTENTITY,
the JNDI should be
jdbc/PLATOFEED

Plato-Feed-Server

PLATOALERTS According to the JNDI created for
each entity, for DEFAULTENTITY,
the JNDI should be
jdbc/PLATOALERTS

Plato-Alerts-Management-Server

PLATOBATCH According to the JNDI created for
each entity, for DEFAULTENTITY,
the JNDI should be
jdbc/PLATOBATCH

Plato-Batch-server

PLATORULE According to the JNDI created for
each entity, for DEFAULTENTITY,
the JNDI should be
jdbc/PLATORULE

Plato-Rules-Server

REPORTSERVICE According to the JNDI created for
each entity, for DEFAULTENTITY,
the JNDI should be jdbc/
jdbc/REPORTSERVICE

Plato-Report-Server

For creating data source, refer to How to create Data sources section in ANNEXURE-1.

http://whf00asy:7001/console/console.portal?_nfpb=true&_pageLabel=JdbcDatasourcesJDBCDataSourceDispatcherPage&JdbcDatasourcesJDBCDataSourceDispatcherPortlethandle=com.bea.console.handles.JMXHandle%28%22com.bea%3AName%3Djdbc%2FPLATO_UI_CONFIG%2CType%3Dweblogic.j2ee.descriptor.wl.JDBCDataSourceBean%2CParent%3D%5Bstage%5D%2FJDBCSystemResources%5Bjdbc%2FPLATO_UI_CONFIG%5D%2CPath%3DJDBCResource%5Bjdbc%2FPLATO_UI_CONFIG%5D%22%29
http://whf00asy:7001/console/console.portal?_nfpb=true&_pageLabel=JdbcDatasourcesJDBCDataSourceDispatcherPage&JdbcDatasourcesJDBCDataSourceDispatcherPortlethandle=com.bea.console.handles.JMXHandle%28%22com.bea%3AName%3Djdbc%2FPLATO-O%2CType%3Dweblogic.j2ee.descriptor.wl.JDBCDataSourceBean%2CParent%3D%5Bstage%5D%2FJDBCSystemResources%5Bjdbc%2FPLATO-O%5D%2CPath%3DJDBCResource%5Bjdbc%2FPLATO-O%5D%22%29

 5-1

5. Security Configuration and Tools Installation
5.1 Pre-requisite

Before you proceed, do the following steps:

• In case you are planning to use LDAP for web application authentication with Weblogic as
provider for LDAP. Please first go through the steps of Embedded Weblogic setup steps in
ANNEXURE 1.

• In case you are planning to use OAuth without OAM(i.e. Spring OAuth), do the following
change in Weblogic configuration:
In the config.xml file of the concerned domain in Weblogic add the following script at the end
of security-configuration tag (Just before the line </security-configuration>)

To use the Standard LDAP directory authentication for Online Web Application authentication,
make sure LDAP server details is provided to you:
Like LDAP_URL, USER_STORE, LDAP_SERVER_CREDENTIAL_SALT,
LDAP_SERVER_USER, LDAP_SERVER_BASE, LDAP_SERVER_CREDENTIAL,
LDAP_USER_SEARCH_BASE, LDAP_USER_PREFIX, CORS_ALLOWED_ORGINS,
LDAP_SERVER_CREDENTIAL_SALT etc.

5.2 Plato Security JWT
Plato security module enables securing API micro services with JWT (JSON Web Tokens).
JSON Web Tokens are an open, industry standard RFC 7519 method for representing claims
securely between two parties. JSON Web Token (JWT) is a compact, URL-safe means of
representing claims to be transferred between two parties. The claims in a JWT are encoded as
a JSON object that is used as the payload of a JSON Web Signature (JWS) structure or as the
plaintext of a JSON Web Encryption (JWE) structure, enabling the claims to be digitally signed.

5.3 Plato Security Configuration (Online Web Application
Authentication)
Oracle Banking Microservices Architecture recommend to create new schema for security to keep
the security related database objects at one place. If the environment is configured for multi-
tenant, we require a security schema per tenant.
All the Plato security configurations are maintained at SECURITY_CONFIG table
Steps to configure in the table:

1. Change in case of LDAP directory authentication the below KEY with provided
LDAP details:

KEY VALUE
LDAP_SERVER_CREDENTIAL_SALT Enter LDAP server Credential salt e.g.

0.9482628451234567

CORS_ALLOWED_ORGINS valid host names

(comma delimited)

<enforce-valid-basic-auth-credentials>false</enforce-valid-
basic-auth-credentials>

 5-2

KEY VALUE
LDAP_URL Enter LDAP Server URL Example:

ldap://wxy00abc:9001

LDAP_SERVER_USER Enter LDAP Server USERID Example:
uid=admin

LDAP_SERVER_BASE Enter LDAP server BASE Example:
dc=oracle,dc=com

LDAP_SERVER_CREDENTIAL Enter LDAP server encrypted password using
provided jwt algorithm Example:
m0o/F3UvlwvBSv5C/TSckA== (use plato
encryption utlity to generate encrypted
password)

LDAP_USER_SEARCH_BASE Enter LDAP User search Base Example:
ou=people

LDAP_USER_PREFIX Enter LDAP User Prefix Example: uid

2. Change in case of SSO Agent the below KEY with provided LDAP details:

KEY VALUE
IS_SSO_CONFIGURED True

CORS_ALLOWED_ORGINS valid host names (comma delimited)

5.4 User Store
Oracle Banking Microservices Architecture supports following user stores for authentication Users
Maintained at table. Plato security can authenticate the users maintained at table (APP_USER) in
the security schema. However, we do not recommend to use this option.

 6-1

6. Deployments
6.1 Pre-requisite

Before you proceed with below, make sure previous steps are completed.

6.2 Deployment Order

Plato
Infrastructure

Software
Plato SMS Common

Core Products

 7-1

7. Multi Entity Configuration
7.1 Enable Multi Entity

By Default, Multi Entity is disabled.
To enable Multi Entity, add jvm argument as -Dmulti.entity.enabled=true.

7.2 Default Entity Creation
Default entity creation is described as follows:

• A new column ENTITY_ID will be introduced in the APPLICATION_LEDGER
table in the PLATO schema with default value as “DEFAULTENTITY”. This will
get executed as a part of flyway for plato-config-service-{version}.war.

• A new table “SERVICE_REGISTRY” will be introduced in the PLATO schema.
This table will contain the AppId and microservice name of all the microservices.
This will get executed as a part of flyway for plato-config-service-{version}.war.

• A new table “PLATO_TM_ENTITY” will be introduced in the PLATO SECURITY
schema with a single entry for “DEFAULTENTITY”. This will get executed as a
part of the flyway scripts for plato-api-gateway-{version}.war

• A new table “PLATO_TM_USER_ENTITY_MAPPING” will be introduced in the
PLATO SECURITY schema which will also get executed as part of the flyway
scripts for plato-api-gateway-{version}.war

• Only for Existing Customers - For users already maintained in SMS, users
must be replicated to “PLATO_TM_USER_ENTITY_MAPPING” for the
“DEFAULTENTITY”.

• The sample query is as follows:
INSERT INTO PLATO_TM_USER_ENTITY_MAPPING (ID, USER_ID , ENTITY_ID
,HOME_ENTITY,MULTI_ENTITY_ADMIN,USER_NAME,ENTITY_ADMIN,EMAIL,START_D
ATE,END_DATE)
SELECT ID , USER_LOGIN_ID ,'DEFAULTENTITY'
,'Y','N',USER_NAME,'N',USER_EMAIL,START_DATE,END_DATE FROM
PLATOSMS.SMS_TM_USER
PLATOSMS – SMS schema for the DEFAULTENTITY

• If the customer wishes to change the default entity ID, it can be done by
changing the ENTITY_ID column value in the PLATO_TM_ENTITY ,
APPLICATION_LEDGER & PLATO_TM_USER_ENTITY_MAPPING table. It is
considered that the entity schemas are same and only entity ID is changed.

7.3 Multi Entity Admin User Creation
Perform the following steps

1. Execute the scripts at the below path in the OSDC zip. You will be prompted to
enter the multi entity admin user Id and language code.

• For new users :
<<PRODUCT_NAME>>_INITIAL_SETUP\INSTALL\PLATO\INS_PLATO_SE
C_ME_ADMIN_USER_CREATION_14.5.0.0.0.sql

 7-2

• For existing users :
<<PRODUCT_NAME>>_INITIAL_SETUP\UPGRADE\PLATO\INS_PLATO_
SEC_ME_ADMIN_USER_CREATION_14.5.0.0.0.sql.

2. Create the multi entity admin user in the LDAP.

7.4 Entity Creation
Using the Multi entity admin created in the previous step, log in to the app-shell and create the
entities.

NOTE: Refer to Common Core User Guide for the steps to create an entity.

When the multi entity admin create an entity the following processes will execute in the
background:

• The entity details will be saved in the PLATO_TM_ENTITY table.

• The JNDIs will be saved in the APPLICATION_LEDGER table.

• The flyway scripts for all the micro services will get executed in their respective
schemas.

• Once the flyway execution is completed a new role “ENTITY_ADMIN” will be
created in the entity. This step will insert scripts into the following tables:

− SMS_TM_ROLE

− SMS_TW_ROLE

− SMS_TM_ROLE_ACTIVITY

− SMS_TW_ROLE_ACTIVITY
This role will be assigned to the entity admin user in the user creation step.

• The Head Office branch details will be inserted into the
CMC_TM_CORE_BRANCH and CMC_TW_CORE_BRANCH tables.

• The Bank details will be inserted into the CMC_TM_CORE_BANK and
CMC_TW_CORE_BANK tables.

• The System dates will be inserted into the CMC_TM_SYSTEM_DATES and
CMC_TW_SYSTEM_DATES tables.

7.5 User Creation
Make sure that the entity creation step is complete before proceeding to create users.

• Create the users in the LDAP.

• Multi entity admin must login to the app-shell and create entity admins and users.

NOTE: Refer to Common Core User Guide for the steps to create users.

• The entity admins and user details will be stored in the
PLATO_TM_USER_MAPPING table in the security schema.

• For the entity admins scripts will be executed in the SMS schema in the following
tables to assign the ENTITY_ADMIN role to the entity admin users.

− sms_tm_user

− sms_tw_user

− sms_tm_user_role_branch

− sms_tw_user_role_branch

 7-3

− sms_tm_user_application

− sms_tw_user_application

• The entity admins need to log in to the app-shell, and provide the missing user
details, assign roles and branches to users.

 8-1

8. Plato Orchestration Services
8.1 Migration Endpoint

NOTE: This section is applicable only to the existing customers.

The task blob usage has been removed for GET endpoints in plato-orch-service for task list
screens. The table HTASK_ADDN_DTLS contains the task related details. A migration endpoint
needs to be executed to populate the data for the completed tasks in this table. In Progress tasks
data will be automatically populated by the poller. This will improve the performance in Free
Tasks/My Tasks/Completed Tasks/Supervisor Tasks inquiry.

To populate the table HTASK_ADDN_DTLS with previously COMPLETED tasks (for tasks not
present in task_in_progress table), a migration API needs to be executed.

GET Request:

Endpoint: http://<host>:<port>/plato-orch-service/api/v1/extn/migrate

Headers: Sample inputs shown below.

appId: platoorch

branchCode: 000

Content-Type: application/json

entityId: DEFAULTENTITY

To verify if the HTASK_ADDN_DTLS table entries are consistent with others, execute the
following script and check if the count comes as zero.

SELECT COUNT(*) FROM TASK t
WHERE JSON_VALUE(json_data, '$.status') = 'COMPLETED'
AND JSON_VALUE (json_data, '$.taskType') = 'WAIT'
AND TASK_ID NOT IN (SELECT TASK_ID FROM HTASK_ADDN_DTLS);

NOTE: For future tasks and previous non-completed tasks present in task_in_progress table,
poller keeps checking the task_in_progress table and populates the HTASK_ADDN_DTLS table.

 9-1

9. Plato Feed Services
To avail the feature of record level approval functionality in Plato-Feed, the below property would
need to maintain as part of the WebLogic VM argument by each product domain including Plato.
If not maintained, the default behavior will be of file-level approval only.
property name - feed.recordLevelApprovalReqd
property value - true or false
default value - false

 10-2

10. Oracle Banking Microservices Architecture
Software Deployment

Once everything is deployed, the managed servers. For each application, call path “/refresh” for
refreshing the configuration properties.

10.1 Zookeeper Cluster Setup
To restart the server, refer to.How to restart section in ANNEXURE-1.

10.1.1 Pre-requisite
JDK should be installed in all node machines.

Download zookeeper and extract the binary in all node machines. Zookeeper can be found at
<Unzip the file>/THIRD_PARTY_SOFTWARES/ZOOKEEPER/ARCHIVE

10.1.2 Installation
• Untar/unzip the zookeeper binary and move them into a folder which will be the

zookeeper home directory.

• Create two directories named logs and data inside the zookeeper home directory
folder in all the nodes with appropriate permission. If logs folder is already
present, please clear it.

• Inside the <zookeeper home directory>/data folder create a myid file. The myid
file consists of a single line containing only the text of that machine's id.
So myid of server 1 would contain the text "1" and nothing else. The id must be
unique within the ensemble and should have a value between 1 and 255.

• Create a configuration file named zoo.cfg at <zookeeper home directory>
/zookeeper_3.6.2/config
Add the following set of properties and values to that file:

NOTE: Any odd number of zookeeper servers can be configured under the cluster.

dataDir= <zookeeper home directory>/data
tickTime=2000
clientPort= Zookeeper client Port value (2181)
initLimit=10
syncLimit=5

server.1=<hostname> :< peer port> :< leader port>
#1 is the id that we put in myid file.

server.2= <hostname> :< peer port> :< leader port>
#2 is the id that we will put in myid file of second
node.

server.3=<hostname> :< peer port> :< leader port>
#3 is the id that we will put in myid file of third
node.

 10-3

• Start the zookeeper on each node machine
Navigate to <zookeeper home directory>/zookeeper_3.6.2 and execute the
below command

1.

• To see who is the leader and followers in the cluster, run the below command on
each node

• To check the zoo cluster functionting i.e dynamic leader election, kill the
zookeeper process on the leader node and check again with the following
commands on the remaining live zookeeper node.

10.2 Kafka Cluster Setup
10.2.1 Pre-requisite

JDK should be installed in all node machines.

Download Kafka and extract the binary in all node machines. Kafka can be found at <Unzip the
file>/THIRD_PARTY_SOFTWARES/KAFKA/ARCHIVE.

10.2.2 Installation
• Untar/unzip the kafka binary and move them into a folder which will be the kafka

home directory.

• Create two directories named logs and data inside the kafka home directory
folder in all the nodes with appropriate permission. If logs folder is already
present, please clear it.

• Edit the below lines in the
<kafka home directory>/kafka_2.13-2.6.0/config/server.properties.

bin/zkServer.sh start

echo stat | nc localhost 2181

echo stat | nc localhost 2181

broker.id= (Unique Integer which identifies the kafka broker in the
cluster.)
listeners=PLAINTEXT://<hostname>:<Kafka broker listen port(9092)>
log.dirs=<kafka home directory>/logs
log.retention.hours= <The number of hours to keep a log file before
deleting it (in hours),tertiary to log.retention.ms property>
log.retention.bytes= <The maximum size of the log before deleting it>
log.segment.bytes= <The maximum size of a single log file>
log.retention.check.interval.ms= <The frequency in milliseconds that
the log cleaner checks whether any log is eligible for deletion>
zookeeper.connect=<zookeeper_hostname_1>:<zookeeper_client_port>,<zook
eeper_hostname_2>:<zookeeper_client_port>,<zookeeper_hostname_3>:<zook
eeper_client_port>, …

 10-4

• To start the Kafka, navigate to <kafka home directory>/kafka_2.13-2.6.0/ folder
and run the below command on each node.

The Default value of JMX Port is 9999.
Tail the log for server status.

• To create topic, navigate to <kafka home directory>/kafka_2.13-2.6.0/ folder and
run the below command:

• To list the available topic on kafka server, navigate to <kafka home
directory>/kafka_2.13-2.6.0/ folder and run the below command:

• To describe the topic, navigate to <kafka home directory>/kafka_2.13-2.6.0/
folder and run the below command:

• To start a producer, navigate to <kafka home directory>/kafka_2.13-2.6.0/ folder
and run the below command:

By default, port is taken as 9092 for the producer.

• To start a consumer console for viewing the received messages sent by the
producer, use the following command:

export JMX_PORT=[PORT VALUE]

nohup bin/kafka-server-start.sh config/server.properties &

/bin/kafka-topics.sh --create –zookeeper<hostname>:<client
port> --replication-factor 3 --partitions 3 --topic <topic
name>

./bin/kafka-topics.sh --describe --topic <topic name> --
zookeeper <hostname>:<client port>

export JMX_PORT=[PORT VALUE]//Different Value from the server
JMX port

./bin/kafka-console-producer.sh --broker-list
<hostname>:<port>, <hostname>:<port>, --topic <topic name>

export JMX_PORT=[PORT VALUE]//Different Value from the server
JMX port

./bin/kafka-console-consumer.sh --bootstrap-server
<hostname>:<port>,<hostname>:<port>, --topic <topic_name> --
from-beginning

./bin/kafka-topics.sh --list –zookeeper <hostname>:<client
port>

 10-5

10.3 KAFKA Security Setup
10.3.1 Pre-requisite

JDK should be installed in all node machines.

Download Kafka and extract the binary in all node machines. Kafka can be found at <Unzip the
file>/THIRD_PARTY_SOFTWARES/KAFKA/ARCHIVE

10.3.2 Installation
10.3.2.1 Generate Keystore

The items highlighted in bold are placeholders, and should be replaced with suitable values while
running the following command.

keytool -genkeypair -alias alias -keyalg keyalg -keysize keysize -sigalg sigalg -validity valDays

-keystore keystore

In the above command,

1. alias is used to identify the public and private key pair created.

2. keyalg is the key algorithm used to generate the public and private key pair. The
RSA key algorithm is recommended.

3. keysize is the size of the public and private key pairs generated. A key size of
1024 or more is recommended.

4. sigalg is the algorithm used to generate the signature. This algorithm should be
compatible with the key algorithm and should be one of the values specified in
the Java Cryptography API Specification and Reference.

5. valdays is the number of days for which the certificate is to be considered valid.
Please consult with your CA on this period.

6. keystore is used to specify the location of the JKS file. If no JKS file is present in
the path provided, one will be created.

The command will prompt for the following attributes of the certificate and keystore:

1. Keystore Password: Specify a password that will be used to access the keystore.
This password needs to be specified later, while configuring the identity store in
Kafka Server.

2. Key Password: Specify a password that will be used to access the private key
stored in the keystore. This password needs to be specified later, while
configuring the SSL attributes of the Kafka Server.

3. First and Last Name (CN): Enter the domain name of the machine. For example:
www.example.com

4. Name of your Organizational Unit: The name of the department or unit making
the request. Use this field to further identify the SSL Certificate you are creating.
For example, by department or by physical server.

5. Name of your Organization: The name of the organization making the certificate
request, for example, Oracle Financial Services. It is recommended to use the
company or organization's formal name, and this name entered here must match
the name found in official records.

6. Name of your City or Locality: The city in which your organization is physically
located. For example: Bengaluru.

 10-6

7. Name of your State or Province: The state/province in which your organization is
physically located. For example: Karnataka.

8. Two-letter CountryCode for this Unit: The country in which your organization is
physically located. For example US, UK, IN etc.

Example:
A sample execution of the command is mentioned below:

keytool -genkeypair -alias certificates -keyalg RSA -keysize 1024 -sigalg SHA512withRSA -
validity 365 -keystore /scratch/Data/Certificates/KafkaServerKeystore.jks

Enter keystore password:<Enter a password to protect the keystore>

Re-enter new password:<Confirm the password keyed above>

What is your first and last name?

[Unknown]: <domain name>.oracle.com

What is the name of your organizational unit?

[Unknown]: <application name>

What is the name of your organization? [Unknown]: Oracle Financial Services

What is the name of your City or Locality?

[Unknown]: Bengaluru

What is the name of your State or Province?

[Unknown]: Karnataka

What is the two-letter country code for this unit?

[Unknown]: IN

Is CN= name.oracle.com, OU=Test, O=Oracle Financial Services, L= Bengaluru, ST= Karnataka,
C=IN correct? [no]: yes

Enter key password for < password >

RETURN if same as keystore password): <Enter a password to protect the key>

Re-enter new password: <Confirm the password keyed above>

10.3.2.2 Export Private Key as Certificate
The command is given below:

keytool -export -alias <alias_name> -file <export_certificate_file_name_with_location.cer> -

keystore <keystore_name.jks> -keypass <Private key Password> -storepass <Store Password>

Example:

keytool -export -alias certs -file /scratch/Data/Certificates/KafkaCert.cer -keystore
/scratch/Data/Certificates/KafkaServerKeystore.jks -keypass oracle123 -storepass oracle123

If successful, the following message is displayed:

Certificate stored in file < KafkaCert.cer>

 10-7

10.3.2.3 Import the Cert and generate TrustStore
The command is given below:

keytool -import -alias alias -file cert_file -keystore truststore –storepass storepass

In the above command:

1. alias is used to identify the public and private key pair. Specify the alias of the
key pair used to create the CSR in the earlier step mentioned in section 7.3.1.2.

2. cert_file is the location of the file containing the PKCS#7 formatted reply from the
CA, containing the signed certificate.

3. truststore is the location where the truststore should be generated.

4. storepass is the password for the truststore.

Generate two truststores from the same cert. One is used for Kafka server and another is used

for clients.

Example:

keytool -import -alias certs -file /scratch/Data/Certificates/KafkaCert.cer –keystore
/scratch/Data/Certificates/KafkaServerTrustStore.jks -storepass oracle123

keytool -import -alias certs -file /scratch/Data/Certificates/KafkaCert.cer -keystore
/scratch/Data/Certificates/KafkaClientTrustStore.jks -storepass oracle123

Hence, the following three keystore files would be needed for this method:

1. KafkaServerKeystore.jks : keystore file for Kafka brokers

2. KafkaServerTrustStore.jks : Truststore file for server

3. KafkaClientTrustStore.jks : Truststore file for client

To validate the server, each client should import the KafkaClientTrustStore.jks file.

NOTE: The truststore files should be generated using the same CA. Generate and place these

files on all the different servers of Kafka so that it can be accessed by server*.properties file. The

KafkaClientTrustStore.jks should be placed on the server, which is accessible by the

microservices also.

 10-8

10.3.2.4 Creation of users in Zookeeper
Follow the below steps to create user in Zookeeper:

1. Start the zookeeper. Refer command in Section 8.1.2.

2. Execute the below commands for the user creation.

./kafka-configs.sh --zookeeper localhost:2181 --alter --add-config “SCRAM-SHA-

256=[password=admin-secret],SCRAM-SHA-512=[password=admin-secret]” --entity-type

users --entity-name admin

./kafka-configs.sh --zookeeper localhost:2181 --alter --add-config “SCRAM-SHA-

256=[iterations=8192,password=test-secret],SCRAM-SHA-512=[password=test-secret]” --

entity-type users --entity-name test

Two users are created above with user names as test and admin, and two different passwords

are setup for each user one for each scram mechanism. Here, the user ‘admin’ is used for Kafka

broker auth and ‘test’ is used for client auth.

10.3.2.5 Configuring Brokers
Some modifications need to be made in the server.properties file of kafka server. The following

properties need to be added in server.properties file of kafka.

SSL-SCRAM Settings

ssl.endpoint.identification.algorithm=

ssl.truststore.location=/scratch/Data/Certificates/KafkaServerTrustStore.jks

ssl.truststore.password=orcl@123

ssl.keystore.location/scratch/Data/Certificates/KafkaServerKeystore.jks

ssl.keystore.password=orcl@123

ssl.key.password=orcl@123

sasl.enabled.mechanisms= SCRAM-SHA-256

sasl.mechanism.inter.broker.protocol= SCRAM-SHA-256

security.inter.broker.protocol=SASL_SSL

listeners=SASL_SSL://whf00phz:9093

advertised.listeners=SASL_SSL://10.40.162.113:9093
listener.name.sasl_ssl.scram-sha-
256.sasl.jaas.config=org.apache.kafka.common.security.scram.ScramLoginModule required
username="admin" password="admin-secret";

NOTE: Provide the absolute path of the Kafka Server Truststore and keystore, and its respective

passwords. Modify the hostname and IP in the listeners and advertised.listeners properties field

accordingly.

Start the Kafka servers. Refer command in Section 10.2.2.

 10-9

10.3.2.6 Changes to Clients
These attributes should be available in application.yml of any custom service that connects to

SSL/Authentication enabled Kafka broker. Values for these needs to be released to the

PROPERTIES table.

Key Value
spring.cloud.stream.kafka.
binder.brokers

<hostname:port>

spring.cloud.stream.kafka.
binder.zknodes

<hostname:port>

spring.cloud.stream.kafka.
binder.jaas.options.userna
me

<Zookeeper user created for clients>

spring.cloud.stream.kafka.
binder.jaas.options.passw
ord

<Zookeeper user encrypted password for
clients>

spring.cloud.stream.kafka.
binder.configuration.ssl.tru
ststore.location

<location of client trust store certificate>

spring.cloud.stream.kafka.
binder.configuration.ssl.tru
ststore.password

<Pass code of client truststore certificate>

To encrypt the password, use the following API of plato-config-service:

API: http://hostname:port/config-service/encrypt

Request Type: Text

Request Body: Password

For example, when you hit the above API for the following passwords we get the response of

encrypted value:

test-secret : 36c11a239ffafbe229d888e7d21f0508a38a2501fd5592b1fe54e30889dd57ed

While inserting to properties table, append the encrypted values with the keyword {cipher} to get it

decrypted by the config-service during fetch as given in below example:

For more information on adding properties to plato-config-deploy.env, refer to the section “Method

3 – Using env files and setUserOverrides.sh file” in ANNEXURE-1.

 10-10

10.3.2.7 Important Commands
To view the messages getting sent in Kafka, save the below lines in a file, and name it as

ssl.properties.

ssl.truststore.location=/scratch/Data/Certificates/KafkaClientTrustStore.jks

ssl.truststore.password=orcl@123

security.protocol=SASL_SSL

ssl.endpoint.identification.algorithm=

sasl.mechanism=SCRAM-SHA-256

sasl.jaas.config=org.apache.kafka.common.security.scram.ScramLoginModule required \

 username="obvam_new" \

 password="obvam-secret";

NOTE: Update the truststore location and the password.

To view the messages being published use the below command:

./kafka-console-consumer.sh --bootstrap-server kafka-server --topic topicName --consumer.config
absolute-path-of-consumer-config --from-beginning

Example:

./kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test_topic --
consumer.config =/scratch/kafka/config/ssl.properties --from-beginning

 10-11

10.4 Tesseract Installation
10.4.1 Pre-requisite

10.4.1.1 Build Tools
Ensure that the following build tools are available:

• GNU Autotools—autoconf, automake, libtool

• CMake (Optional, we will use this only if autoconf fails while building leptonica)

Both should be available inside Oracle yum.

10.4.1.2 Dependent Libraries
These libraries should be present in the server. By default, these libraries are available in Oracle
Linux. If these libraries are not present, please install it through yum with the following command:

Following are the library names:

• libjpeg

• libtiff

• zlib

• libjpeg-turbo

• libwebp

• libpng-devel

• libtiff-devel

• libwebp-devel

NOTE: If you are using any distribution other than Oracle Linux, please install the libraries from
official Oracle repo or any other repo available for that distribution.

10.4.1.3 Installation Files
Download installation files required to install and set up tesseract. Files are available at the
following location:

<Unzip the file>/THIRD_PARTY_SOFTWARES/Tesseract
Please find below the list of files present in the directory:

1. leptonica-1.80.0.tar.gz

2. tesseract-4.1.0.tar.gz

3. eng.traineddata

4. osd.traineddata

sudo yum install <LIBRARY_NAME>

 10-12

10.4.2 Installation
10.4.2.1 Leptonica Installation:

Tesseract uses leptonica internally for image processing. Leptonica can be build and installed

either by autoconf or by CMake.

In this document, we will cover installation using both autoconf and CMake.

NOTE: If you already have all access to all installation directory then sudo is not required.

>sudo LINUX_COMMAND (In case the user does not have file access permissions)

>LINUX_COMMAND (In case the user has all access. Example: DBA user, Root user)

In this document, we will execute all the commands with sudo. You can omit it based upon your

user’s permission details.

10.4.2.1.1 Installation through Autoconf
• Copy the downloaded leptonica tarball (leptonica-1.76.0.tar.gz) in server (in

the installation directory. Ex: /scratch)

• Execute below commands sequentially to install leptonica through autoconf

NOTE: In line 4, we used sudo make –j4. Here 4 is the number of CPU core. Generally, you

can use sudo make –jn where n is the number of core. It will make the build process much

faster.

In the document, we will use 4 as core number to build the software.

If the processor does not have multiple cores you can use normal make command sudo

make.

2.

If the installation is successful, then go to 10.4.2.2. Else, go to 10.4.2.1.2.

sudo tar xvf leptonica-1.76.0.tar.gz
cd leptonica-1.76.0

sudo ./configure

sudo make -j4
sudo make install

 10-13

10.4.2.1.2 Installation through CMake
In case autoconf fails to generate the configure file or there is any other error, then proceed with

the below steps, to build through CMake.

10.4.2.2 Leptonica Configuration
• Leptonica path should be configured such that tesseract can find the leptonica

installation.

• Please add the leptonica installation directory (Ex: /usr/local/lib ,/usr/lib, /usr/lib64
etc) in library path.

• leptonica header path (Ex: /usr/local/include/leptonica) should be configured.

• Pkgconfig path also need to be set up.

Execute the below mentioned commands to set the path:

3.

4.

NOTE: Sometimes, tesseract will still be unable to find lept.pc file.

It will give configuration errors (ex: Leptonica 1.74 or higher is required). In that case locate
the lept.pc file (usually present at /usr/local/lib/pkgconfig/) with the command locate
lept.pc and copy the same in /usr/lib64 directory.

• Similarly, some services might not be able to get libleptonica shared object
files (.so files, ex: liblept.so, libleptonica.so etc.)

• .so files are usually present in the server at /usr/local/lib. You can type
whereis libleptonica or locate libleptonica to find the path.
Then copy the .so files in /usr/lib64 path.

sudo cp /usr/local/lib/pkgconfig/lept.pc /usr/lib64/pkgconfig/

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig/
export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/lib64/pkgconfig/

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib
export LIBLEPT HEADERSDIR=/usr/local/include/leptonica

sudo tar xvf leptonica-1.76.0.tar.gz

cd leptonica-1.76.0

sudo mkdir build

cd build

sudo cmake ..

sudo make -j4

sudo make install

cd /usr/local/lib

sudo cp -a *liblept* /usr/lib64

 10-14

10.4.2.3 Tesseract Installation
• Copy the tesseract tarball tesseract-4.1.0.tar.gz in server (in the installation

directory. Ex: /scratch)

• Copy the tesseract trained files eng.traineddata, osd.traineddata in the server

• Execute below commands sequentially to build and install tesseract

NOTE: /usr/bin is the directory where tesseract binary will be present if you pass prefix=/usr in

configure. You can provide the path based upon where you want to install.

5.

6.

• Copy the traineddata files in tessdata directory. If you use prefix=/usr, tessdata
directory will be present at /usr/share. If you use prefix=/usr/local, tessdata
directory will be present at /usr/local/share.

10.4.2.4 Tesseract Configuration
• Set the tesseract library path by executing the below commands:

• Sometimes services are unable to find libtesseract shared object files (.so files)
present in system (Usually at /usr/lib). In that case copy the libtesseract files in
/usr/lib64

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

sudo tar xvf tesseract-4.1.0.tar.gz

cd tesseract-4.1.0

sudo ./autogen.sh

sudo ./configure --prefix=/usr

sudo make -j4

sudo make install

sudo cp osd.traineddata /usr/share/tessdata

sudo cp eng.traineddata /usr/share/tessdata

cd /usr/lib

sudo cp -a *libtesseract* /usr/lib64

 10-15

• Some of the programs search for the tessdata directory in a different path
usr/share/tesseract/4/tessdata). Copy the existing tessdata directory (which will
be present in either /usr/share or /usr/local/share based on your installation) in
that path.

• Set tessdata prefix by running following command.

7.

• Tesseract is now installed.

• You can verify the version with following command. It will give the tesseract
version (4.1.0), leptonica version (1.76.0) along with other default libraries
(libjpeg, libjpeg-turbo, libpng, libtiff, zlib).

10.5 Conductor Installation
10.5.1 Pre-requisite

Perform the following steps:

1. Ensure that the datasource jdbc/PLATO-O is created. The maximum capacity
attribute of the datasource connection pool should be greater than 100.

2. Make sure that the Domain and cluster configuration steps completed.

NOTE: The conductor-server.war file needs to be deployed in a separate manged server
because of its load and size.

10.5.2 Installation
Perform the following steps:

1. Required properties should be set in the config.properties file found in {unzip the
file} THIRD_PARTY_SOFTWARES\CONDUCTOR_SERVER\CONFIG. Refer to
the below table to find the description of properties in the config.properties. This
file should be placed at <<CONFIG.PROPERTIES LOCATION >>.

2. An additional environment variable is required for setting up the conductor.
Include the below mentioned –Dparam along with the existing environment
variables.
-Dconductor.properties = << CONFIG.PROPERTIES LOCATION >>/config.properties

export TESSDATA_PREFIX=/usr/share/tesseract/4/tessdata

cd /usr/share

sudo mkdir tesseract (execute if tesseract
directory is not present)

cd tesseract

sudo mkdir 4

cd /usr/share

sudo cp -R tessdata /usr/share/tesseract/4

tesseract --version

http://whf00asy:7001/console/console.portal?_nfpb=true&_pageLabel=JdbcDatasourcesJDBCDataSourceDispatcherPage&JdbcDatasourcesJDBCDataSourceDispatcherPortlethandle=com.bea.console.handles.JMXHandle%28%22com.bea%3AName%3Djdbc%2FPLATO-O%2CType%3Dweblogic.j2ee.descriptor.wl.JDBCDataSourceBean%2CParent%3D%5Bstage%5D%2FJDBCSystemResources%5Bjdbc%2FPLATO-O%5D%2CPath%3DJDBCResource%5Bjdbc%2FPLATO-O%5D%22%29

 10-16

3. Deploy the conductor-server.war file in the weblogic. To deploy application, refer
to How to deploy section ANNEXURE-1.

Property Name Property Description
flyway.enabled Set this to true to enable flyway and false to disable

flyway.

flyway.setbaselineOnMigrate Set this to true to enable flyway baselineOnMigrate
and false to disable.

eureka.registration.enabled Should be set to true to enable discovery registration.

eureka.hostName plato-o

eureka.instanceId plato-o:<port-number>

eureka.serviceUrl.default Discovery service URL
(http://<hostname>:<port>/plato-discovery-
service/eureka)

eureka.registerWithEureka true

eureka.name plato-o

eureka.vipAddress plato-o

eureka.port Port Number on which the conductor server war file
is deployed.

conductor.entity.list DEFAULTENTITY~jdbc/PLATO-O

Here – DEFAULTENTITY – is entity Id

jdbc/PLATO-O – JNDI name of Conductor
Datasource

The entity added, need to make changes in this
property. Multiple entities can be added using “,” as a
delimiter.

For example, ENTITY1~jdbc/PLATO-O1,
ENTITY2~jdbc/PLATO-O2

workflow.elasticsearch.instanceT
ype

EXTERNAL

multi.entity.enabled By default, it is false.

To enable multi-entity, set it to true.

rpm -ivh

 10-17

10.6 Report Service Installation
10.6.1 Pre-requisite

Make sure that the data source is created.

Data source Name Data source JNDI Targets

PLATOCMC jdbc/CMNCORE Plato Common Core Server

PLATOSMS jdbc/sms Plato-SMS-Server

REPORTSERIVCE jdbc/REPORTSERVICE Plato-Report-Service-Server

Make sure that the wars mentioned below are installed along with the ones mentioned above.

• CMC Core Service

• CMC Base Service

• CMC Currency Service

• CMC Component Service

• Plato Report Service

• SMS Component Server

• App Shell

10.6.2 Installation
10.6.2.1 setUserOverrides.sh file

Perform the following steps:

1. Create a file called setUserOverrides.sh inside the Weblogic bin location.

2. The following formats of the setUserOverrides.sh file and the list of parameters that need to
be passed in order to run the plato services properly.

NOTE: Below are the list of -D params (ENV Variables), which needs to be set for all the
individual services. Set a single –Dparam as follows:

JAVA_OPTIONS="${JAVA_OPTIONS} -DParam =<ParamValue>”

export JAVA_OPTIONS

 10-18

//Plato Report Service
-Dflyway.domain.placeholders.report-
service.hostname=<http://<REPORT_SERVOICE_HOSTNAME>:<REPORT_SERVICE_PO
RT>/report-service/api/>
-Dflyway.domain.placeholders.report-service.server.port=<REPORT_SERVICE_PORT>
-Dflyway.domain.placeholders.report-service.domain.jndi=<JNDI_SCHEMA>
-Dflyway.domain.placeholders.report-service.template-metadata-
directory=/scratch/OBMA/report-service/template_metadata
-Dflyway.domain.placeholders.report-service.output-directory=/scratch/OBMA/report-
service/output/
-Dflyway.domain.placeholders.report-service.fop-config-file=/scratch/OBMA/report-
service/fop.xconf

10.6.2.2 Plato Reporting Deployment Order

Installation Summary for Plato Reporting Service:

Application Archive name OSDC path Targets

sms-core-Service sms-core-Service-
{version}.war

{unzip the
file}PLATO\sms-core-
service\

Sms-core-
Service

cmc-base-services cmc-base-services-
{version}.war

{unzip the
file}PLATO\cmc-base-
service\

cmc-base-
Service

cmc-branch-
services

cmc-branch-services-
{version}.war

{unzip the
file}PLATO\cmc-branch-
service\

cmc-branch-
Service

cmc-currency-
services

cmc-currency-
services-{version}.war

{unzip the
file}PLATO\cmc-
currency-service\

cmc-currency-
Service

 10-19

Application Archive name OSDC path Targets

cmc-component-
server

cmc-component-
services-{version}.war

{unzip the
file}PLATO\cmc-
component-service\

cmc-component-
Service

plato-report-
Services

plato-report-Services-
{version}.war

{unzip the
file}PLATO\plato-report-
services\

Plato-report-
Server

sms-component-
server

sms-component-
services-{version}.war

{unzip the
file}PLATO\sms-
component-service\

sms-component-
Service

NOTE: Refer to OSDC file for the exact version number for each service.

 11-1

11. Security- SSL Encryption with SASL-SCRAM
Authentication

11.1 Generate Keystore
The items highlighted in blue are placeholders and should be replaced with suitable values when
running the command.

keytool -genkeypair -alias alias -keyalg keyalg -keysize keysize -sigalg sigalg -validity valDays -

keystore keystore

In the above command:

1. alias is used to identify the public and private key pair created.

2. keyalg is the key algorithm used to generate the public and private key pair. The
RSA key algorithm is recommended.

3. keysize is the size of the public and private key pairs generated. A key size of
1024 or more is recommended.

4. sigalg is the algorithm used to generate the signature. This algorithm should be
compatible with the key algorithm and should be one of the values specified in
the Java Cryptography API Specification and Reference.

5. valdays is the number of days for which the certificate is to be considered valid.
Please consult with your CA on this period.

6. keystore is used to specify the location of the JKS file. If no JKS file is present in
the path provided, one will be created.

The command will prompt for the following attributes of the certificate and keystore:

7. Keystore Password: Specify a password that will be used to access the
keystore. This password needs to be specified later, when configuring the identity
store in Kafka Server.

8. Key Password: Specify a password that will be used to access the private key
stored in the keystore. This password needs to be specified later, when
configuring the SSL attributes of the Kafka Server.

9. First and Last Name (CN): Enter the domain name of the machine, for instance,
www.example.com.

10. Name of your Organizational Unit: The name of the department or unit making
the request. Use this field to further identify the SSL Certificate you are creating,
for example, by department or by physical server.

11. Name of your Organization: The name of the organization making the certificate
request, for example, Oracle Financial Services. It is recommended to use the
company or organization's formal name, and this name entered here must match
the name found in official records.

12. Name of your City or Locality: The city in which your organization is physically
located, for example Bengaluru.

13. Name of your State or Province: The state/province in which your organization is
physically located, for example Karnataka.

14. Two-letter CountryCode for this Unit: The country in which your organization is
physically located, for example US, UK, IN etc.

http://www.example.com/

 11-2

For example:
Listed below is the result of a sample execution of the command:

keytool -genkeypair -alias certificates -keyalg RSA -keysize 1024 -sigalg SHA512withRSA -

validity 365 -keystore /scratch/Data/Certificates/KafkaServerKeystore.jks

Enter keystore password:<Enter a password to protect the keystore>

Re-enter new password:<Confirm the password keyed above>

What is your first and last name?

[Unknown]: <domain name>.oracle.com

What is the name of your organizational unit?

[Unknown]: <application name>

What is the name of your organization? [Unknown]: Oracle Financial Services

What is the name of your City or Locality?

[Unknown]: Bengaluru

What is the name of your State or Province?

[Unknown]: Karnataka

What is the two-letter country code for this unit?

[Unknown]: IN

Is CN= name.oracle.com, OU=Test, O=Oracle Financial Services, L= Bengaluru, ST= Karnataka,

C=IN correct? [no]: yes

Enter key password for < password >

RETURN if same as keystore password): <Enter a password to protect the key>

Re-enter new password: <Confirm the password keyed above>

 11-3

11.2 Export Private Key as Certificate
The command is mentioned below:

keytool -export -alias <alias_name> -file <export_certificate_file_name_with_location.cer> -

keystore <keystore_name.jks> -keypass <Private key Password> -storepass <Store Password>

For example:,

keytool -export -alias certs -file /scratch/Data/Certificates/KafkaCert.cer -keystore

/scratch/Data/Certificates/KafkaServerKeystore.jks -keypass oracle123 -storepass oracle123

If successful, the following message will be displayed:

Certificate stored in file < KafkaCert.cer>

11.3 Import the Cert and generate TrustStore
The command is mentioned below:

keytool -import -alias alias -file cert_file -keystore truststore –storepass storepass

In the above command:

1. alias is used to identify the public and private key pair. Specify the alias of the
key pair used to create the CSR in the earlier step.

2. cert_file is the location of the file containing the PKCS#7 formatted reply from the
CA, containing the signed certificate.

3. truststore is the location where the truststore should be generated.

4. storepass is the password for the truststore.

Generate two truststores from the same cert. One used for kafka server and one for clients.

For example:

keytool -import -alias certs -file /scratch/Data/Certificates/KafkaCert.cer –keystore

/scratch/Data/Certificates/KafkaServerTrustStore.jks -storepass oracle123

keytool -import -alias certs -file /scratch/Data/Certificates/KafkaCert.cer -keystore

/scratch/Data/Certificates/KafkaClientTrustStore.jks -storepass oracle123

Hence, three keystore files would be needed for this method:

1. KafkaServerKeystore.jks : keystore file for Kafka brokers

2. KafkaServerTrustStore.jks : Truststore file for server

3. KafkaClientTrustStore.jks : Truststore file for client

 11-4

The KafkaClientTrustStore.jks file need to be imported by every client to validate the server.

NOTE: The truststore files should be generated using the same CA. Generate and place these

files on all the different servers of kafka so that it can be accessed by server*.properties file. The

KafkaClientTrustStore.jks should be placed on the server, which is accessible by the

microservices also.

11.4 Creation of users in Zookeeper
Start the zookeeper (command in Section 10.1) and execute the below commands for the user
creation.

./kafka-configs.sh --zookeeper localhost:2181 --alter --add-config “SCRAM-SHA-

256=[password=admin-secret],SCRAM-SHA-512=[password=admin-secret]” --entity-type users --

entity-name admin

./kafka-configs.sh --zookeeper localhost:2181 --alter --add-config “SCRAM-SHA-

256=[iterations=8192,password=test-secret],SCRAM-SHA-512=[password=test-secret]” --entity-

type users --entity-name test

Two users are created above with test and admin as usernames and two different passwords are
setup for each user one for each scram mechanism. Here, the user ‘admin’ is used for Kafka
broker auth and ‘test’ is used for client auth.

 12-1

12. Oracle Banking Microservices Architecture
Deployments

12.1 Pre-requisite
Before you proceed with below, make sure that the previous steps are completed. Below table
give details of the deployments required on each Server for the Oracle Banking Microservices
Architecture application to run.

12.2 Oracle Banking Microservices Architecture Applications
Deployment Order

Installation Summary for Oracle Banking Microservices Architecture Services:

Application Archive name OSDC path Targets

Plato-config-
service

plato-config-service-
{version}.war

{unzip the
file}PLATO\plato-
config-service\

Config Server

Plato-discovery-
service

plato-discovery-service-
{version}.war

{unzip the
file}PLATO\plato-
discovery-service\

Discovery Server

Plato-api-gateway plato-api-gateway-
{version}.war

{unzip the
file}PLATO\plato-api-
gateway\

Api Gateway

Plato-ui-config-
service

plato-ui-config-service-
{version}.war

{unzip the
file}PLATO\plato-ui-
config-service\

Plato UI Config

Plato-Orch-Service
(To be deployed
after sms-service is
deployed)

plato-orch-service-
{version}.war

{unzip the
file}PLATO\plato-orch-
service\

Plato-Orch-
Service

Plato Config
Service

Plato
Discovery

Service

Plato API-
Gateway
Service

Plato UI-
Config
Service

Plato Feed
Services

Plato Batch
Server

Plato Alerts
Management

Services

Plato App-
shell

Plato-Orch-Service
(To be deployed, only after

SMS-Servce is deployed)

 12-2

Application Archive name OSDC path Targets

Plato-Feed-
Services

plato-feed-services-
{version}.war

{unzip the
file}PLATO\plato-feed-
services\

Plato-Feed-
Services

Plato-Batch-Server plato-batch-server-
{version}.war

{unzip the
file}PLATO\plato-batch-
server\

Plato-Batch-
Server

Plato-Alerts-
Management-
Services

plato-alerts-
management-services-
{version}.war

{unzip the
file}PLATO\plato-alerts-
management-services\

Plato-Alerts-
Management-
Server

Plato-Rule-Services plato-rule-service-
{version}.war

{unzip the file}PLATO\
plato-rule-service\

Plato-Rule-
Server

Plato-Report-
Services

plato-report-services-
{version}.war

{unzip the file}PLATO\
plato-report-services\

Plato-Report-
Server

Plato-Swagger-Api plato-swagger-api-
{version}.war

{unzip the file}PLATO\
plato-swagger-api\

Plato-Swagger-
Api Server

Appshell app-shell-{version}.war {unzip the file}UI\app-
shell-{version}.war

Appshell Server

Refer to OSDC file for the exact version number for each service.

NOTE: Eventhub based applications should not be deployed in admin server

12.3 Steps to Deploy as Application
To deploy application, refer to How to deploy section in ANNEXURE-1.

12.4 SSL Configuration
 We recommend only https-based connections. Below are the recommendations:

1. Appshell needs to be secured with SSL.

2. Api-Gateway needs to be secured with SSL.

3. Appshell to Api-gateway communication should happen over SSL.The api-
gateway url mentioned as -D parameter for appshell should be ssl enabled (i.e.
https-based).

http://100.76.132.169:7001/console/console.portal?_nfpb=true&_pageLabel=AppApplicationDispatcherPage&AppApplicationDispatcherPortlethandle=com.bea.console.handles.AppDeploymentHandle%28%22com.bea%3AName%3Dplato-rule-service-6.0.0%2CType%3DAppDeployment%22%29
http://100.76.132.169:7001/console/console.portal?_nfpb=true&_pageLabel=AppApplicationDispatcherPage&AppApplicationDispatcherPortlethandle=com.bea.console.handles.AppDeploymentHandle%28%22com.bea%3AName%3Dplato-rule-service-6.0.0%2CType%3DAppDeployment%22%29
http://100.76.132.169:7001/console/console.portal?_nfpb=true&_pageLabel=AppApplicationDispatcherPage&AppApplicationDispatcherPortlethandle=com.bea.console.handles.AppDeploymentHandle%28%22com.bea%3AName%3Dplato-report-services-6.1.0%2CType%3DAppDeployment%22%29
http://100.76.132.169:7001/console/console.portal?_nfpb=true&_pageLabel=AppApplicationDispatcherPage&AppApplicationDispatcherPortlethandle=com.bea.console.handles.AppDeploymentHandle%28%22com.bea%3AName%3Dplato-report-services-6.1.0%2CType%3DAppDeployment%22%29
http://100.76.132.169:7001/console/console.portal?_nfpb=true&_pageLabel=AppApplicationDispatcherPage&AppApplicationDispatcherPortlethandle=com.bea.console.handles.AppDeploymentHandle%28%22com.bea%3AName%3Dplato-swagger-api-6.0.0%2CType%3DAppDeployment%22%29
http://100.76.132.169:7001/console/console.portal?_nfpb=true&_pageLabel=AppApplicationDispatcherPage&AppApplicationDispatcherPortlethandle=com.bea.console.handles.AppDeploymentHandle%28%22com.bea%3AName%3Dplato-swagger-api-6.0.0%2CType%3DAppDeployment%22%29
http://100.76.132.169:7001/console/console.portal?_nfpb=true&_pageLabel=AppApplicationDispatcherPage&AppApplicationDispatcherPortlethandle=com.bea.console.handles.AppDeploymentHandle%28%22com.bea%3AName%3Dapp-shell-6.0.0%2CType%3DAppDeployment%22%29

 13-1

13. Restarts and Refresh
Once everything is deployed, the managed servers. And for each application call path “/refresh”
for refreshing the configuration properties.

13.1 Restarting Servers
To restart the server, refer to.How to restart section in ANNEXURE-1.

 14-1

14. Logging Area
14.1 Introduction

This section describes the logs area where after deployment of Plato Applications in the
WebLogic server.

14.2 Logging Area
Plato Application writes logs in the below area of the server:

<WEBLOGIC_DOMAIN_CONFIG_AREA>/ logs/plato-api-gateway.log

For example, consider that a domain has been created platoinfra_domain in the following area
of the server “/scratch/oracle/middleware/user_projects/domains/platoinfra_domain”.

Logging area for Plato
=<URL>

 15-1

15. Known Issues – Resolutions
For deploying any application, if there is an issue with ID column conflict for table
product_services_ledger (PLATO_UI_CONFIG schema), change the current value of DB
sequence (PRODUCT_SVCS_LEDGER_ID_SEQ) to maximum value present in ID column for
table product_services_ledger.

Oracle Banking Microservices Platform Foundation Installation Guide

Oracle Financial Services Software Limited
Oracle Park
Off Western Express Highway
Goregaon (East)
Mumbai, Maharashtra 400 063
India

Worldwide Inquiries:
Phone: +91 22 6718 3000
Fax: +91 22 6718 3001
https://www.oracle.com/industries/financial-services/index.html

Copyright © 2018, 2021, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then
you shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure
its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

https://www.oracle.com/industries/financial-services/index.html

	1. Preface
	1.1 Introduction
	1.2 Audience
	1.3 Documentation Accessibility
	1.4 Organization

	2. Database Setup
	2.1 Introduction
	2.2 Pre-requisite

	3. Domain and Cluster Configuration
	3.1 Oracle Banking Microservices Architecture Domain Configuration
	3.1.1 Prerequisites
	3.1.2 Domain Creation and Configuration

	4. Data Sources Creation
	4.1 Prerequisite
	4.2 Data sources List

	5. Security Configuration and Tools Installation
	5.1 Pre-requisite
	5.2 Plato Security JWT
	5.3 Plato Security Configuration (Online Web Application Authentication)
	5.4 User Store

	6. Deployments
	6.1 Pre-requisite
	6.2 Deployment Order

	7. Multi Entity Configuration
	7.1 Enable Multi Entity
	7.2 Default Entity Creation
	7.3 Multi Entity Admin User Creation
	7.4 Entity Creation
	7.5 User Creation

	8. Plato Orchestration Services
	8.1 Migration Endpoint

	9. Plato Feed Services
	10. Oracle Banking Microservices Architecture Software Deployment
	10.1 Zookeeper Cluster Setup
	10.1.1 Pre-requisite
	10.1.2 Installation

	10.2 Kafka Cluster Setup
	10.2.1 Pre-requisite
	10.2.2 Installation

	10.3 KAFKA Security Setup
	10.3.1 Pre-requisite
	10.3.2 Installation
	10.3.2.1 Generate Keystore
	10.3.2.2 Export Private Key as Certificate
	10.3.2.3 Import the Cert and generate TrustStore
	10.3.2.4 Creation of users in Zookeeper
	10.3.2.5 Configuring Brokers
	10.3.2.6 Changes to Clients
	10.3.2.7 Important Commands

	10.4 Tesseract Installation
	10.4.1 Pre-requisite
	10.4.1.1 Build Tools
	10.4.1.2 Dependent Libraries
	10.4.1.3 Installation Files

	10.4.2 Installation
	10.4.2.1 Leptonica Installation:
	10.4.2.1.1 Installation through Autoconf
	10.4.2.1.2 Installation through CMake

	10.4.2.2 Leptonica Configuration
	10.4.2.3 Tesseract Installation
	10.4.2.4 Tesseract Configuration

	10.5 Conductor Installation
	10.5.1 Pre-requisite
	10.5.2 Installation

	10.6 Report Service Installation
	10.6.1 Pre-requisite
	10.6.2 Installation
	10.6.2.1 setUserOverrides.sh file
	10.6.2.2 Plato Reporting Deployment Order

	11. Security- SSL Encryption with SASL-SCRAM Authentication
	11.1 Generate Keystore
	11.2 Export Private Key as Certificate
	11.3 Import the Cert and generate TrustStore
	11.4 Creation of users in Zookeeper

	12. Oracle Banking Microservices Architecture Deployments
	12.1 Pre-requisite
	12.2 Oracle Banking Microservices Architecture Applications Deployment Order
	12.3 Steps to Deploy as Application
	12.4 SSL Configuration

	13. Restarts and Refresh
	13.1 Restarting Servers

	14. Logging Area
	14.1 Introduction
	14.2 Logging Area

	15. Known Issues – Resolutions

